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Abstract. [Context and Motivation] Information systems depend on personal data
to individualize services. To manage privacy expectations, companies use privacy
policies to regulate what data is collected, used and shared. However, different termi‐
nological interpretations can lead to privacy violations, or misunderstandings about
what behavior is to be expected. [Question/Problem] A formal ontology can help
requirements authors to consistently check how their data practice descriptions relate
to one another and to identify unintended interpretations. Constructing an empirically
valid ontology is a challenging task since it should be both scalable and consistent
with multi-stakeholder interpretations. [Principle Ideas/Results] In this paper, we
introduce a semi-automated semantic analysis method to identify ontology fragments
by inferring hypernym, meronym and synonym relationships from morphological
variations. The method employs a shallow typology to categorize individual words,
which are then matched automatically to 26 reusable semantic rules. The rules were
discovered by classifying 335 unique information type phrases extracted from 50
mobile privacy policies. The method was evaluated on 109 unique information types
extracted from six privacy policies by comparing the generated ontology fragments
against human interpretations of phrase pairs obtained by surveying human subjects.
The results reveal that the method scales by reducing the number of otherwise manual
paired comparisons by 74% and produces correct fragments with a 1.00 precision and
0.59 recall when compared to human interpretation. [Contributions] The proposed
rules identify semantic relations between a given lexeme and its morphological
variants to create a shared meaning between phrases among end users.

Keywords: Requirements engineering · Natural language processing
Ontology

1 Introduction

Mobile and web applications (apps) are increasingly popular due to the convenient services
they provide in different domains of interest. According to a 2015 PEW Research Center
study, 64% of Americans own a smart phone [1]. They found that smart phone users typi‐
cally check health-related information online (62% of Americans), conduct online banking
(54%), and look for job-related information (63%). To fulfill user needs and business
requirements, these apps collect different categories of personal information, such as
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friends’ phone numbers, photos and real-time location. Regulators require apps to provide
users with a legal privacy notice, also called a privacy policy, which can be accessed by
users before installing the app. For example, the California Attorney General’s office
recommends that privacy policies list what kind of personally identifiable data is collected,
how it is used, and with whom it is shared [2]. Privacy policies contain critical require‐
ments that inform stakeholders about data practices [3]. Due to different stakeholder needs,
there can be disparate viewpoints regarding what is essentially the same subject matter [4].
Stakeholders use different words for the same domain, which reduces shared understanding
of the subject and leads to a misalignment among the designers’ intention, and expectations
of policy writers and regulators [5].

Data practices are commonly described in privacy polices using hypernymy [6], which
occurs when a more abstract information type is used instead of a more specific information
type. Hypernymy permits multiple interpretations, which can lead to ambiguity in the
perception of what exact personal information is used. To address this problem, companies
can complement their policies with a formal ontology that explicitly states what kinds of
information are included in the interpretations of data-related concepts. Initial attempts to
build any ontology can require comparing each information type phrase with every other
phrase in the policy, and assigning a semantic relationship to each pair. However, consid‐
ering a lexicon built from 50 policies that contains 351 phrases, an analyst must make

 = 61,425 comparisons, which is over 200 h of continuous comparison by one
analyst.

In this paper, we describe a semi-automated semantic analysis method that uses lexical
variation of information type phrases to infer ontological relations, such as hypernyms.
Instead of performing paired comparisons, the analyst spends less than one hour typing the
phrases, and then a set of semantic rules are automatically applied to yield a subset of all
possible relations. The rules were first discovered in a grounded analysis of information
types extracted from 50 privacy policies for a manual ontology construction approach [7].
To improve the semantic relations inferred using these initial set of rules, we established a
ground truth by asking human subjects to perform the more time-consuming task of
comparing phrases in the lexicon. We then compared the results of the semantic rules
against these human interpretations, which led to identifying additional semantic rules.
Finally, we evaluated the improved semantic rules using 109 unique information types
extracted from six privacy policies, and human subject surveys to measure the correctness
of the results produced by the semantic rules.

This paper is organized as follows: in Sect. 2, we discuss terminology and the theoret‐
ical background; Sect. 3 presents a motivating example; in Sect. 4, background and related
work are discussed; in Sect. 5, we introduce our semi-automated method for discovering
ontology fragments consisting of hypernyms, meronyms and synonyms; In Sect. 6, we
explain the experimental setup; in Sect. 7, we present results of evaluating this technique
against human subject-surveyed information type pairs, before presenting our discussion and
conclusion in Sects. 8 and 9.
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2 Important Terminology and Theoretical Background

In this section, we define the terminology and present the theoretical background.

2.1 Terminology

• Hypernym – a noun phrase, also called a superordinate term, that is more generic
than another noun phrase, called the hyponym or subordinate term.

• Meronym – a noun phrase that represents a part of a whole, which is also a noun
phrase and called a holonym.

• Synonym – a noun phrase that has a similar meaning to another noun phrase.
• Lexicon – a collection of phrases or concept names that may be used in an ontology.
• Ontology – a collection of concept names and logical relations between these

concepts, including hypernymy, meronymy and synonymy, among others [8].

2.2 Theoretical Background on Description Logic

Description Logic (DL) ontologies enable automated reasoning, including the ability to infer
which concepts subsume or are equivalent to other concepts in the ontology. We chose the
DL family , which is PSPACE-complete for concept satisfiability and concept subsump‐
tion. In this paper, reasoning in DL begins with a TBox T that contains a collection of
concepts and axioms based on an interpretation  that consists of a nonempty set , called
the domain of interpretation. The interpretation function  maps concepts to subsets of :
every atomic concept C is assigned a subset , the top concept  has the
interpretation .

The  family includes operators for concept union and intersection, and axioms
for subsumption, and equivalence with respect to the TBox. Subsumption is used to
describe individuals using generalities, and we say a concept C is subsumed by a concept
D, written  if  for all interpretations  that satisfy the TBox T. The
concept C is equivalent to a concept D, written  if  for all interpre‐
tations  that satisfy the TBox T.

The DL enables identifying which lexicon phrases directly or indirectly share mean‐
ings, called an interpretation in DL. Each lexicon phrase is mapped to a concept in the
TBox T. We express a hyponym concept C in relation to a hypernym concept D using
subsumption  and for two concepts C and D that correspond to synonyms, we
express these as equivalent concepts  For meronymy, we define a part-whole
relation  that maps parts to wholes as follows: a part concept C that has a whole
concept D, such that  We express the DL ontology using the Web
Ontology Language1 (OWL) version 2 DL and the HermiT2 OWL reasoner.

1 https://www.w3.org/TR/owl-guide.
2 http://www.hermit-reasoner.com/.
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3 Motivating Example

We now provide an example statement from the WhatsApp privacy policy with example
interpretations inferred from the statement to demonstrate the problem.

Statement: You must provide certain devices, software, and data connections to use
our Services, which we otherwise do not supply.

In this statement, “device” is an abstract information type that can be interpreted in
many ways. Here are three example strategies for obtaining an interpretation:

1. If device is a super-ordinate concept, then we infer that mobile device is a kind
device, therefore, the collection of information also applies to mobile devices.

2. If device is a kind of system with components, settings, etc., and we know that a
device can have an IP address, then WhatsApp may collect device IP address. This
interpretation is reached using a meronymy relationship between device and device
IP address.

3. By use both strategies (1) and (2), together, we can infer that the collection statement
applies to mobile device IP address, using both hypernymy and meronymy.

These interpretations are based on human knowledge and experience, and there is a need
to bridge the gap between linguistic information types in privacy policies and knowledge of
the world. In the above examples, mobile device, device IP address, and mobile device IP
address are variants of a common lexeme: “device.” We use the syntactic structure of lexical
variants to infer semantics and construct lexical ontologies that are used to bridge this
knowledge gap.

4 Related Work

In requirements engineering, two approaches are defined for codifying knowledge: naïve
positivism, and naturalistic inquiry [9]. Positivism refers to the world with a set of stable and
knowable phenomena, often with formal models. Naturalistic inquiry (NI) refers to construc‐
tivist views of knowledge that differ across multiple human observations. The research in
this paper attempts to balance among these two viewpoints by recognizing that information
types are potentially unstable and intuitive concepts. Our approach permits different inter‐
pretations, before reducing terminological confusion to reach a shared understanding through
formal ontologies. We now review prior research on ontology in privacy.

4.1 Ontology in Security and Privacy Policy

Heker et al. developed a privacy ontology for e-commerce transactions which includes
concepts about privacy mechanisms and principles from legislative documents [10]. Brad‐
shaw et al. utilize an ontology that distinguishes between authorization and obligations for
a policy service framework that forces agents to check their behavior with specifications
[11]. Kagal et al. constructed an ontology to enforce access control policies in a web service
model [12]. Syed et al. developed an ontology that provides a common understanding of
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cybersecurity and unifies commonly used cybersecurity standards [13]. Breaux et al. utilize
an ontology that includes simple hierarchies for actors and information types to infer data
flow traces across separate policies in multi-tier applications [14]. To our knowledge, our
work is the first privacy-related lexical ontology that formally conceptualizes information
types extracted from policies with their implied semantic relations. The initial version of this
ontology has been used to find conflicts between mobile app code-level method calls and
privacy policies [15].

4.2 Constructing an Ontology

There is no standard method to build an ontology [4], yet, a general approach includes
identifying the ontology purpose and scope; identifying key concepts leading to a lexicon;
identifying relations between lexicon concepts; and formalizing those relations. A lexicon
consists of terminology in a domain, whereas ontologies organize terminology by semantic
relations [16]. Lexicons can be constructed using content analysis of source text, which
yields an annotated corpus. Breaux and Schaub empirically evaluated crowdsourcing to
create corpora from annotated privacy policies [17]. Wilson et al. employed crowd‐
sourcing to create a privacy policy corpus from 115 privacy policies [18].

WordNet is a lexical database which contains English words and their forms captured
from a newswire corpus, and their semantic relations, including hypernymy and synonymy
[19]. Our analysis shows that only 14% of our lexicon was found in WordNet, mainly
because our lexicon is populated with multi-word phrases. Moreover, meronymy relations
are missing from WordNet.

Snow et al. presented a machine learning approach using hypernym-hyponym pairs in
WordNet to identify additional pairs in parsed sentences of newswire corpus [20]. This
approach relies on explicit expression of hypernymy pairs in text. Bhatia et al. [21] identi‐
fied and applied a set of 72 Hearst-related patterns [22] to 30 privacy policies to extract
hypernymy pairs. This approach yields hypernyms for only 24% of the lexicon. This means
the remaining 76% of the lexicon must be manually analyzed to construct an ontology.
These approaches fail to consider the semantic relations between the morphological variants
of a nominal, which may not be present in the same sentence as the nominal. Our proposed
model identifies these variants with semantic relations.

5 Ontology Construction Method Overview

The ontology construction method (see Fig. 1) consists of 7 steps: (1) collecting privacy
policies; (2) itemizing paragraphs in the collected privacy policies; (3) annotating the item‐
ized paragraphs by crowd workers based on a specific coding frame; (4) employing an
entity extractor developed by Bhatia and Breaux [6] to analyze the annotations and extract
information types which results in an information type lexicon (artifact A in Fig. 1); (5) pre-
processing the phrases in the lexicon; (6) assigning role types to each pre-processed phrase
that yields information type phrases with associated role sequences; (7) automatically
matching the type sequence of each phrase to a set of semantic rules to yield a set of
ontology fragments consisting of hypernym, meronym, and synonym relationships. Steps
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1–3 are part of a crowdsourced content analysis task based on Breaux and Schaub [17]. Our
contribution in this paper includes steps 5–7 which utilizes an information type lexicon to
construct an ontology.

Fig. 1. Overview of ontology construction method

5.1 Acquiring the Mobile Privacy Policy Lexicon

The mobile privacy policy lexicon (artifact A in Fig. 1) was constructed using a combina‐
tion of crowdsourcing, content analysis and natural language processing (NLP). In step 1
(see Fig. 1), we selected the top 20 mobile apps across each of 69 sub-categories in Google
Play3. From this set, we selected apps with privacy policies, removing duplicate policies
when different apps shared the same policy. Next, we selected only policies that match the
following criteria: format (plain text), language (English), and explicit statements for privacy
policy; yielding 501 policies, from which we randomly selected 50 policies. In step 2, the
50 policies were segmented into ~120 word paragraphs using the method described by
Breaux and Schaub [17]; yielding 5,932 crowd worker annotator tasks with an average 98
words per task for input to step 3.

In step 3, the annotators select phrases corresponding to one of two category codes in a
segmented paragraph as described below for each annotator task, called a Human Intelli‐
gence Task (HIT). An example HIT is shown in Fig. 2.

• Platform Information: any information that the app or another party accesses through
the mobile platform which is not unique to the app.

• Other Information: any other information the app or another party collects, uses,
shares or retains.

These two category codes were chosen, because our initial focus is on information types
that are automatically collected by mobile apps and mobile platforms, such as “IP address,”
and “location information.” The other information code is used to ensure that annotators
remain vigilant by classifying and annotating all information types.

3 https://play.google.com.
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In step 4, we selected only platform information types when two or more annotators
agreed on the annotation to construct the lexicon. This number follows the empirical anal‐
ysis of Breaux and Schaub [17], which shows high precision and recall for two or more
annotators on the same HIT. Next, we applied an entity extractor [6] to the selected annota‐
tions to itemize the platform information types into unique entities included in the privacy
policy lexicon.

Six privacy experts, including the authors, performed the annotations. The cumulative
time to annotate all HITs was 59.8 h across all six annotators, yielding a total 720 annota‐
tions in which two or more annotators agreed on the annotation. The entity extractor reduced
these annotations down to 351 unique information type names, which comprise the initial
lexicon.

In step 5, the initial lexicon was reduced as follows:

a. Plural nouns were changed to singular nouns, e.g., “peripherals” is reduced to
“peripheral.”

b. Possessives were removed, e.g., “device’s information” is reduced to “device infor‐
mation.”

c. Suffixes “-related,” “-based,” and “-specific” are removed, e.g., “device-related
information” is reduced to “device information.”

This reduced the initial lexicon by 16 types to yield a final lexicon with 335 types.

5.2 Semantic Role Typing of Lexicon Phrases

Figure 3 shows an example phrase, “mobile device IP address” that is decomposed into the
atomic phrases: “mobile,” “device,” “IP,” “address,” based on a 1-level, shallow typology.
The typology links atomic words from a phrase to one of six roles: (M) modifiers, which
describe the quality of a thing, such as “mobile” and “personal;” (T) things, which is a
concept that has logical boundaries and which can be composed of other things; (E) events,
which describe action performances, such as “usage,” “viewing,” and “clicks;” (G) agents,
which describe actors who perform actions or possess things; (P) property, which describes

Fig. 2. Example HIT shown to a crowd worker
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the functional feature of an agent, place or thing, such as “date,” “name,” “height;” and (α)
which is an abstract type that indicates “information,” “data,” “details,” and any other
synonym of “information.” In an information type ontology, the concept that corresponds
to the α type is the most general, inclusive concept.

Fig. 3. Example lexicon phrase, grouped and typed

In step 6, the analyst reviews each information type phrase in the lexicon and assigns
role types to each word. The phrase typing is expressed as a continuous series of letters that
correspond to the role typology. Unlike the quadratic number of paired comparisons required
to identify relationships among lexicon phrases, this typing step is linear in the size of the
lexicon. Furthermore, word role types can be reused across phrases that reuse words to
further reduce the time needed to perform this step. Next, we introduce the semantic rules
that are applied to the typed phrases in the lexicon.

5.3 Automated Lexeme Variant Inference

We now describe step 7, which takes as input the typed, atomic phrases produced in step 6
to apply a set of semantic rules to infer variants and their ontological relationships, which
we call variant relationships. Rules consist of a type pattern and an inferred ontological
relationship. The type pattern is expressed using the typology codes described in Sect. 5.2.
The rules below were discovered by the first and second author who classified the 335 pre-
processed lexicon phrases using the typology as a second-cycle coding, which is a qualita‐
tive research method [23]. Subscripts indicate the order of same-typed phrases in asym‐
metric ontological relations:

Hypernymy Rules 

H1.  implies that , e.g., “unique information” is a kind of “information.”
H2.  implies that , e.g., “anonymous demo‐
graphic information” is a kind of “anonymous information” and “demographic infor‐
mation.”
H3.  implies  and , e.g.,
“mobile device hardware” is a kind of “mobile information,” “device hardware,” and
“device hardware” is a part of “mobile device.”
H4.  implies , e.g., “mobile device information” is a
kind of “mobile information” and “device information.”
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H5.  implies  and  and
 e.g., “mobile device name” is a kind of “mobile information” and a

part of “mobile device” and “device name” is a part of “mobile device.”
H6.  implies that , e.g. “aggregated user data” is a kind
of “aggregated data” and “user data.”
H7.  implies , e.g., “device information” is a kind of “information.”
H8.  implies  e.g., “device log information” is a kind
of “device information” and “log information.”
H9.  implies that , e.g. “user information” is a kind of “information.”
H10.  implies that , e.g., “user content” is a kind of “user infor‐
mation” and “content.”
H11.  implies that , e.g., “user name” is a
kind of “user information” and “user name” is a part of “user.”
H12.  implies that , e.g. “usage data” is a kind of “data.”
H13.  implies that , e.g., “page viewed” is a kind of
“page,” “viewed,” and “view.”

Meronymy Rules 

M1.  implies , e.g., “device hardware” is a part
of “device” and is a kind of “hardware.”
M2.  implies  and , e.g., “device unique
id” is a part of “device,” and “unique id” is a part of “device.”
M3.  implies  e.g., “device name” is a part of
“device” and a kind of “name.”
M4.  implies that  e.g., “advertising identifier” is
part of “advertising” and a kind of “identifier.”
M5.  implies  e.g., “click count” is part of “click”
and a kind of “count.”
M6.  implies that  and , e.g., “language
modeling data” is a part of “language” and a kind of “language data” and “modeling
data.”
M7.  implies  and

, e.g., “mobile device unique identifier” is a part of “mobile
device” and a kind of “unique identifier.”
M8.  implies that  and

, e.g., “Internet browsing
behavior” is a part of “Internet browsing” and a kind of “browsing behavior” and “Internet
information” and “behavior information.”
M9.  implies that , e.g.,
“website activity date” is a part of “website activity” and a kind of “activity date,”
“website information,” and “date.”
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Synonymy Rules 

S1. T implies , e.g., “device” is a synonym of “device information.”
S2. P implies , e.g., “name” is a synonym of “name information.”
S3. E implies , e.g., “views” is a synonym of “views information”
and “view.”
S4. G implies , e.g., “user” is a synonym of “user information.”

The automated step 7 applies the rules to phrases and yields variant relationships for
evaluation in two steps: (a) the semantic rules are matched to the typed phrases to infer
new candidate phrases and relations; and (b) for each inferred phrase, we repeat step (a)
with the inferred phrase. The technique terminates when no rules match a given input
phrase. An inferred phrase can be either explicit concept name, which refers to an
inferred phrase that exists in the lexicon, or tacit concept name referring to an inferred
phrase that does not exist in the lexicon.

For example, in Fig. 3, we perform step (a) by applying the rule H5 to infer that
“mobile device IP address” is a kind of “mobile information” and a part of “mobile
device IP” and “device IP address” is a part of “mobile device IP.” Rule H5 has the
implication that , which yields an information class for  that includes
information about things distinguished by a modifier M. In practice, these classes
describe all things personal, financial, and health-related, and, in this example, all things
mobile. Continuing with the example, the phrases “device IP address” and “mobile
device IP” are not in the lexicon, i.e., they are potentially implied or tacit concept
names. Thus, we re-apply the rules to “device IP address” and “mobile device IP.” Rule
M3 matches the “device IP address” typing to infer that “device IP address” is part of
“device IP” and is a kind of “address.” Since “device IP” is not in the lexicon, we re-
apply the rules to this phrase. Rule M1 matches the type sequence of this phrase to yield
“device IP” is a part of “device” and “device IP” is a kind of “IP.” Both “device” and
“IP” are explicit concept names. Therefore, we accept both inferences for further eval‐
uation. We continue performing step (a) on “mobile device IP” by applying rule H3 that
infers additional concept names and relations. The axioms from re-applying the rules to
the explicit and tacit concepts names yield ontology fragments. We evaluate these
axioms using the individual preference relationships described in the next section.

6 Experiment Setup

In psychology, preferences reflect an individual’s attitude toward one or more objects,
including a comparison among objects [24]. We designed a survey to evaluate and
improve the ontological relationship prospects produced by step 7. We used 50 privacy
policies and 335 pre-processed unique information types in a training set to improve the
semantic rules. Because the prospects produced by the semantic rules all share at least
one common word, we asked 30 human subjects to compare each 2,365 phrase-pair from
the lexicon that shares at least one word. The survey asks subjects to classify each pair
by choosing a relationship from among one of the following six options:

S: Phrase A is subsumed by phrase B in pair (A, B)
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S: Phrase B is subsumed by phrase A in pair (A, B)
P: Phrase A is part of Phrase B in pair (A, B)
W: Phrase B is part of Phrase A in pair (A, B)
E: Phrase A is equivalent to phrase B in pair (A, B)
U: Phrase A is unrelated to phrase B in pair (A, B)

Figure 4 presents a survey excerpt: the participant checks one option to indicate the
relationship, and they can check a box to swap the word order, e.g., in the first pair, the
subject can check the box to indicate that “web browser type” is a part of “browser.”
We recruited 30 participants to compare each pair using Amazon Mechanical Turk, in
which three pairs were shown in one Human Intelligence Task (HIT). Qualified partic‐
ipants completed over 5,000 HITs, had an approval rate of at least 97%, and were located
in the United States. The average time for participants to compare a pair is 11.72 s.

Fig. 4. Example survey questions to collect relation preferences

The participant results are analyzed to construct a ground truth (GT) in Description
Logic. In the results, participants can classify the same phrase pair using different onto‐
logical relations. There are several reasons that explain multiple ontological relations
for each pair: participants may misunderstand the phrases, or they may have different
experiences that allow them to perceive different interpretations (e.g., “mac” can refer
to both a MAC address for Ethernet-based routing, and a kind of computer sold by Apple,
a manufacturer). To avoid excluding valid interpretations, we built a multi-viewpoint
GT that accepts multiple, competing interpretations. For the entire survey results, we
define valid interpretations for a phrase pair to be those interpretations where the
observed number of responses per category exceeds the expected number of responses
in a Chi-square test, where p < 0.05, which means there is at least a 95% chance that the
elicited response counts are different than the expected counts. The expected response
counts for an ontological relationship are based on how frequently participants chose
that relationship across all comparisons. We constructed a multi-viewpoint GT as
follows: for each surveyed pair, we add an axiom to GT for the relation category, if the
number of participant responses is greater than or equal to the expected Chi-square
frequency; except, if the number of unrelated responses exceeds the expected Chi-square
frequency, then we do not add any axioms. We published the ground truth dataset4 that

4 http://gaius.isri.cmu.edu/dataset/plat17/preferences.csv.

Inferring Ontology Fragments from Semantic Role Typing 49

http://gaius.isri.cmu.edu/dataset/plat17/preferences.csv


includes phrase pairs, the ontological relation frequencies assigned by participants to
each pair, and the Chi-square expected values for each relation per pair.

We measure the number of true positives (TPs), true negatives (TNs), false positives
(FPs), and false negatives (FNs) by comparing the variant relationships with the ground
truth ontology to compute precision = TP/(TP + FP) and recall = TP/(TP + FN). A
variant relation is a TP, if it is logically entailed by GT, otherwise, that relationship is a
FP. An unrelated phrase pair in the preferences results is considered as TN, if we cannot
match any inferred variant relationship with it. For all phrase pairs with valid interpre‐
tations (hypernymy, meronymy, synonymy) that do not match an inferred variant rela‐
tionship, we count these as FN. We use logical entailment to identify true positives,
because subsumption is transitive and whether a concept is a hypernym to another
concept may rely on the transitive closure of that concept’s class relationships. Next,
we present results from improving the semantic rules using the training dataset and
describe our approach for building the test set to evaluate the final rule set.

7 Evaluation and Results

This section presents the results for the training and testing of the approach. The training
has been done in two incremental phases: (1) we first evaluated a set of 17 initial rules
applied to the 335 pre-processed unique information types; (2) based on the results of
phase 1 and analysis of false negatives, we extended the initial rules to 26 rules and
evaluated the application of the extended rule set using the 335 pre-processed unique
information types. In the testing stage, we utilized a separate 109 pre-processed unique
information types to evaluate the extended rule set.

7.1 Preference Relations with Initial Rule Set

We began with a set of 17 rules that summarized our intuition on 335 pre-processed
unique information types for variant relationship inference. After typing and decompo‐
sition, the technique yields 126 explicit concept names from the original lexicon, 182
potential tacit concept names, and 1,355 total axioms. Comparing the inferred relations
with the individuals’ preferences in the training ground truth (GT) results in 0.984
precision and 0.221 recall. Overall, the method correctly identifies 256/1,134 of related
phrase pairs in the training GT. The total number of true positives (TPs), true negatives
(TNs), false positives (FPs), and false negatives (FNs) are 256, 1092, 4, and 901, respec‐
tively. To improve the results, we analyzed the FNs and extended the initial 17 rules to
26 total rules that are discussed in Sect. 5.3. Next, we report the results from applying
the extended rules to the original 335 pre-processed unique information types.

7.2 Preference Relations with Extended Rule Set

The extended rule set consists of the initial and nine additional rules to improve the semi-
automated technique. We also extended rules H3 and H5 with a new meronymy-inferred
relationship as defined in Sect. 5.3. Using the extended rule set, the technique yields 186
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explicit concept names, 286 potential tacit concept names, and 2,698 total axioms. The
ontology fragments computed by applying the extended rule set can be found online in
the OWL format.5 Table 1 shows results for the semi-automated method with the initial
and extended rule sets. This table also includes the number of hypernymy, meronymy,
and synonymy relations that are inferred using the two rule sets. The extended rule set
correctly identifies 782 preference relations out of 1,134 related pairs in the training GT.
Also, the recall is improved to 0.569 with the extended rule set.

Table 1. Evaluations of relations using initial and extended rule set on training GT

Initial rules Extended rules
Explicit/tacit concept names 126/182 194/289
Number of inferred hypernyms 580 1,122
Number of inferred meronyms 192 535
Number of inferred synonyms 583 1041
Precision 0.984 0.996
Recall 0.221 0.569

The total number of TPs, TN, FPs, and FNs are 782, 878, 3, and 590, respectively.
We observed that 477/590 of false negatives (FNs) depend on semantics beyond the
scope of the 6-role typology. For example, the training GT shows the participants agreed
that “mobile phone” is a kind of “mobile device,” possibly because they understood that
“phone” is a kind of “device.” We observed that 22/477 of semantically related FNs
exclusively concern synonyms that require additional domain knowledge, e.g., “postal
code” is equivalent to “zip code,” or in the case of acronyms, “Internet protocol address”
is equivalent to “IP address.” Moreover, 10/477 of semantically related FNs exclusively
concern meronymy, e.g., “game activity time” is a part of “game system.” Only 1/477
of semantically related FNs is exclusively mentioned for hypernymy: “forwarding
number” is a kind of “valid mobile number.” Finally, 444/477 of semantically related
FNs can have multiple valid interpretations (meronymy, hypernymy, and synonymy) in
the training GT.

In addition, we discovered that 53/590 of FNs were due to individual preference-
errors that were inconsistent with the automated method, e.g., individual preferences
identified “mobile device identifier” equivalent to “mobile device unique identifier,”
which ignores the fact that an identifier is not necessarily unique. Finally, we identified
60/590 relations that can be identified by introducing new semantic rules.

The training GT also contains a special relationship identified by individuals between
40 pairs that we call part-of-hypernymy. For example, individuals identified “device id”
as a part of “mobile device,” because they may have assumed that mobile device (as a
hyponym of device) has an id. Therefore, we extended rules H3 and H5 to infer part-
of-hypernymy in the extended rule set.

5 http://gaius.isri.cmu.edu/dataset/plat17/variants.owl.
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7.3 Method Evaluation

To evaluate our extended rule set, we randomly selected six additional privacy policies
from the pool of 501 policies discussed in Sect. 5.1. We used the same approach and
annotators from Sect. 5.1 to extract the unique information types and construct the test
lexicon. The resulting 110 information types were reduced to 109 information types
which were then typed and analyzed by the extended rule set, resulting in 76 explicit
concept names, 139 potential tacit concept names, and 831 total axioms. We acquired
the preference relations6 for the test lexicon by surveying 213 phrase pairs resulting in
121 related phrase pairs included in the testing ground truth (GT) using the method
discussed in Sect. 6. In further analysis, the relations in the testing GT were compared
with the relations provided by the extended rule set. Overall, the extended rule set
correctly identifies 79 preference relations out of 121 related pairs in the training GT.
Table 2 presents the results including the precision and recall for this analysis. The
ontology fragments computed using the extended rule set are online in OWL.7

Table 2. Evaluations of relations using extended rule set on testing GT

Extended rules
Explicit/tacit concept names 194/289
Number of inferred hypernyms 385
Number of inferred meronyms 80
Number of inferred synonyms 366
Precision 1.000
Recall 0.593

In summary, the results show total number of 79 TPs, 80 TNs, zero FPs, and 54 FNs.
We observed that 44/54 of FNs in the test set depend on semantics beyond the scope of
the role typology and syntactic analysis of information types. We published a list of
these concept pairs, including the human preferences.8 Some examples include: “device
open udid” as a kind of “device identifier,” “in-app page view” as a kind of “web page
visited,” and “page viewed” as equivalent to “page visited.” We also observed 7/54 of
FNs that require introducing six new rules. Finally, by comparing the total number of
TPs and TNs with 213 phrase pairs, we can conclude that the semi-automated semantic
analysis method can infer  of paired comparisons.

8 Discussion

We now discuss and interpret our results and threats to validity.

6 http://gaius.isri.cmu.edu/dataset/plat17/study-utsa-prefs-test-set.csv.
7 http://gaius.isri.cmu.edu/dataset/plat17/variants-test-set.owl.
8 http://gaius.isri.cmu.edu/dataset/plat17/supplements-test-set.csv.
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8.1 Interpretation of Extended Rule Set Results

Comparing the ontology fragments to preferences, we observe that preferences imply
new axioms that explain a portion of the FNs in training and testing. These preferences
are influenced by individual interpretations of relations between two phrases. Analyzing
these FNs, we identified four cases where individuals report incorrect interpretations:

(1) The meaning of modifiers in a phrase are ignored and an equivalent relationship is
identified for a pair of phrases, e.g., “unique id” and “id.”

(2) Different modifiers are interpreted as equivalent, e.g., “approximate location infor‐
mation” and “general location information.”

(3) The superordinate and subordinate phrase’s relationship is diminished and an
equivalent relation is assumed, e.g., “hardware” and “device”, “iPhone” and
“device.”

(4) Information as a whole that contains information is confused with information as
a sub-ordinate concept in a super-ordinate category, e.g., “mobile application
version” is both a part of, and a kind of, “mobile device information.”

One explanation for the inconsistencies is that individuals conflate interpretations
when comparing two phrases as a function of convenience. Without prompting indi‐
viduals to search their memory for distinctions among category members (e.g., iPhone
is different from Android, and both are kinds of device), they are inclined to ignore these
distinctions when making sense of the comparison. In requirements engineering, this
behavior corresponds to relaxing the interpretation of constraints or seeking a narrower
interpretation than what the natural language statement implies. When relaxing
constraints, stakeholders may overlook requirements: e.g., if “actual location” and
“physical location” are perceived as equivalent, then stakeholders may overlook require‐
ments that serve to more closely approximate the “actual” from noisy location data, or
requirements to acquire location from environmental cues to more closely approximate
a “physical” location. Furthermore, this behavior could yield incomplete requirements,
if analysts overlook other, unstated category members.

8.2 Threats to Validity

In this section, we discuss the internal and external validity for our approach.

Internal Validity. Internal validity is the extent to which observed causal relations
actually exist within the data, and whether the investigator’s inferences about the data
are valid [25]. In this method, the inferred semantic relations are highly dependent on
the role typing system and any inconsistencies in the types affect the final results. For
this reason, two analysts assigned roles to the phrases in the training lexicon. We used
Fliess’ Kappa to measure the degree of agreement for this task [26]. Two analysts
reached Kappa of 0.72, which shows a high, above-chance agreement. However, there
is still a need for automating the role typing system to reduce potential inconsistencies.

External Validity. External validity is the extent to which our approach generalizes to
the population outside the sample used in the study [25]. Based on our study, 7/54 of
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false negatives in test set evaluation require six new semantic rules. Moreover, we cannot
claim that the extended rule set will cover all the information types extracted from
privacy policies, since we only analyzed specific information types called platform
information. To assure that the rules have saturated for information type analysis, further
studies on different information types are required.

9 Conclusion and Future Work

Privacy policies contain legal requirements with which company information systems
need to comply. In addition, they serve to communicate those requirements to other
stakeholders, such as consumers and regulators. Because stakeholders use different
words to describe the same domain concept, how these policies use abstraction and
variability in concept representation can affect ambiguity and reduce the shared under‐
standing among policy authors, app developers, regulators and consumers. To address
this problem, we present results of a semi-automated, semantic analysis method to
construct privacy policy ontologies that formalize different interpretations of related
concepts.

The method was evaluated on 213 pairs of phrases that share at least one word from
a set of 109 unique phrases in the lexicon acquired from six mobile app privacy policies.
The individual preference data set contains 80/213 pairs that are identified as unrelated
(37%) and 121/213 relations identified as related through hypernymy, meronymy, and
synonymy in the testing GT. The technique yields 79/121 of axioms in testing GT with
an average precision = 1.00 and recall = 0.59.

In future work, we envision a number of extensions. To increase coverage, we
propose to formalize the rules as a context free grammar with semantic attachments
using the rule-to-rule hypothesis [27]. We also envision expanding the knowledge base
to include relations that cannot be identified using syntactic analysis, such as hypernymy
between “phone” and “device.” To improve typing, we considered identifying role types
associated with part-of-speech (POS) tagging and English suffixes. However, prelimi‐
nary results on 335 pre-processed phrases from the training lexicon shows only 22% of
role type sequences can be identified using POS and English suffixes. Therefore, instead
of relying on POS and suffix features, we envision using deep learning methods [28] to
learn the features for identifying the semantic relations between phrases. Finally, we
envision incorporating these results in requirements analysis tools to help detect and
remediate variants that can increase ambiguity and misunderstanding.
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