
QREME – Quality Requirements Management Model
for Supporting Decision-Making

Thomas Olsson1(✉) and Krzysztof Wnuk2

1 RISE SICS AB, Lund, Sweden
thomas.olsson@ri.se

2 DIPT, BTH, Karlskrona, Sweden
krzysztof.wnuk@bth.se

Abstract. [Context and motivation] Quality requirements (QRs) are inherently
difficult to manage as they are often subjective, context-dependent and hard to
fully grasp by various stakeholders. Furthermore, there are many sources that can
provide input on important QRs and suitable levels. Responding timely to
customer needs and realizing them in product portfolio and product scope deci‐
sions remain the main challenge.

[Question/problem] Data-driven methodologies based on product usage data
analysis gain popularity and enable new (bottom-up, feedback-driven) ways of
planning and evaluating QRs in product development. Can these be efficiently
combined with established top-down, forward-driven management of QRs?

[Principal idea/Results] We propose a model for how to handle decisions
about QRs at a strategic and operational level, encompassing product decisions
as well as business intelligence and usage data. We inferred the model from an
extensive empirical investigation of five years of decision making history at a
large B2C company. We illustrate the model by assessing two industrial case
studies from different domains.

[Contribution] We believe that utilizing the right approach in the right situa‐
tion will be key for handling QRs, as both different groups of QRs and domains
have their special characteristics.

Keywords: Requirements engineering · Quality requirements
Non-functional requirements · Requirements scoping

1 Introduction

Quality Requirements (QRs, a.k.a. non-functional requirements, NFRs), defined as
“attributes of or constraints on a system.” [1], are ever-increasingly important [2, 3] but
also challenging to handle. There are many challenges associated with QRs, e.g., insuf‐
ficient product usability [4], project overruns, increased time-to-market [5], poor cost
estimation or lower priority of quality compared to functionality [6] and poor validation
of QRs [7, 8].

Extensive research was conducted in eliciting [2] representing and modeling QRs
[7], leaving the areas of their realization and release planning greatly unexplored. At the
same time, our previous work brings evidence that realizing QRs puts new demands on

© Springer International Publishing AG, part of Springer Nature 2018
E. Kamsties et al. (Eds.): REFSQ 2018, LNCS 10753, pp. 173–188, 2018.
https://doi.org/10.1007/978-3-319-77243-1_11

http://orcid.org/0000-0002-2933-1925
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77243-1_11&domain=pdf

scoping and release planning [2, 9, 10], e.g., QRs often require more than one software
release to be realized, top-down planning is not sufficient in many cases and there is a
lack of support for executing product strategies based on QRs. Making decisions about
what requirements to focus on is often called scoping. Scoping is usually performed by
a product manager at a product level [11] and impacts portfolio strategy and product
success [12]. Requirements scoping is a continuous activity that supports in translating
the product strategies into a series of software releases [11].

Several researchers studied QRs and challenges associated with them. In our
previous work, QRs appear to be unequally distributed within the same specification
and the same company [10]. Ernst and Mylopoulos analyzed open source projects and
concluded that there are large differences among projects and no clear correlation to the
project age [13]. Concerning release planning, Ameller et al. report that most models
provide “simple output for which requirements to implement in the next release” [14].
Others have identified an under-emphasis of product quality and difficulties in handling
cross-cutting concerns across teams with agile methodologies [15].

In this work, we present QREME – Quality Requirements Management model for
supporting decision-making about QRs. QRs are changing over time (even if you do not
actively make decisions on them), QRs are always present in the software whether you
have made explicit decisions on them or not and scoping is a continuous activity, scoping
for QRs is different from traditional scoping. The main parts of QREME are: (1) the
prominent roles and their responsibilities when making decisions on QRs, (2) the deci‐
sion forums and how they are related, and (3) the strategic and operational levels for
both product-related decisions and business intelligence related decisions. We focus on
the following research question: How can we support portfolio and product decision
makers with respects to QRs? The benefit of using QREME is a combination of more
effective scoping decisions (making the right decisions) and a quicker response to
changes in the marketplace and to software quality issues. It will also be easier to plan
the improvement of QRs over several releases. As QREME is addressing the scoping
of QRs, the specific way in which QRs are modeled and documented are as such
impacting the use of QREME.

The paper is organized as follows: Sect. 2 introduces background and relevant related
work. The research methodology is described in Sect. 3. The proposed model with rele‐
vant descriptions is found in Sect. 4 and two cases using the model is elaborated on in
Sect. 5. Section 6 concludes the paper, including future work.

2 Background and Related Work

There are several definitions of QRs [1]. One implication of the definition we use in this
paper of QRs as “attributes or constraints on a system” is that a QRs cannot exist without
a corresponding functional requirement or (sub-) system. This, in turn, implies that a
requirement or a system will always exhibit the attribute or constraint even if it is not
explicitly specified. For example, a system always has a startup-time even if it is not
explicitly expressed with a QR. In this paper, we use the term Quality Attribute (QA)
as the abstraction of a specific QR., For example, start-up time is a QA and “the system

174 T. Olsson and K. Wnuk

should start in 2 s” a QR. Furthermore, we use the term Quality Level (QL) for the
measurable level of a QR, in alignment with our previous work [2]. From the example,
“2 s” is the QL.

The continuous nature of requirements scoping plays a vital role in bridging strategic
product portfolio planning and associated release planning with operational scope deci‐
sions that need to be taken to adapt to unexpected changes [16]. However, linking busi‐
ness strategy to detailed planning is non-trivial [17]. The software product management
literature [18] recognizes the strategic importance of QRs in setting the product strategy
[19] but does not consider its particular nature during the product and release planning
processes. Our previous empirical work shows that QRs should be incrementally deliv‐
ered and the scoping process stretches over several product releases [9].

Traditional software development is typically done in a forward feeding and top-
down manner, typified by the waterfall model [20]. In a forward feeding process, ideas
or goals are the starting point and are broken down into requirements, later to be imple‐
mented and verified. In the end, the resulting product is evaluated against the original
ideas and goals. Today, feedback-driven or bottom-up approaches are gaining
momentum, often supported by data-driven approaches [21] or crowd-based approaches
[22]. Objective data usage can remove subjectivity from the product managers [23]. In
a feedback-inspired process, ideas and goals emerge from the actual usage, mostly
through experimentation on alternatives to improve the product, and lastly evaluated
against requirements and strategies whether the product is evolving in the right direction.
However, for feedback driven approaches, is not clear which type of information is
needed for scoping and how to achieve alignment among stakeholders. In our previous
work, we saw a need to combine both forward and feedback processes [9].

Agile approaches such as Scrum [24] or the ideas with DevOps [25] end up some‐
where in-between. This transition has substantial implications for software product
strategies, product requirements engineering and product scoping. Increased flexibility
in decision making that the above transformations bring puts more pressure on the
synergy between strategic planning, product scoping, requirements management and
realization. Incremental delivery of software gains importance and impacts release
planning methods and processes [26].

Scoping decisions are often interdependent [27], continuously made [11] during
different steps in the development process [27], in different forums [12], at several
abstraction levels [28] and often not in a top-down fashion [9]. We studied release plan‐
ning for QRs [2] while Carlshamre et al. focused on interdependencies among require‐
ments in software release planning [29]. Berntsson-Svensson re-used the interdepend‐
ency types suggested by Carlshamre et al. to study dependencies between QRs but
without an apparent release planning angle [6]. Our work focuses on how to plan and
deliver QRs across many releases, with each release taking the software closer to the
fulfillment of the complete QR and desired QL.

QREME – Quality Requirements Management Model 175

3 Research Methodology

We used Canonical Action Research (CAR) to develop the framework presented in this
paper [30]. The focal point of CAR is a real-word problem that researchers attempt to
address by combining scholarly observations with practical interventions using mostly
interpretivist epistemology [30]. During one cycle, we continuously interacted with the
environment under research and the subjects in this environment to reflect on the needs
supported by the model.

Problem investigation. Previous work on analyzing decision patterns for quality
requirements [9] have shaped the scope and goals of the current research. We have
studied 4444 features from a period of 5 years from the beginning of a new product
portfolio across many product and software releases. We combined decision history and
document analysis with the interviews with key stakeholders involved in the decision-
making process. Our main findings are: (1) QRs require planning across several releases,
as they tend to require long lead-time and effort planning (2) some quality aspects (e.g.
efficiency) were handled in a bottom-up fashion while other aspects (e.g. security) were
driven from a top-down strategic process and (3) multiple strategies are required to have
a responsive and aligned organization. The strong need for improved decision making
about QRs was expressed during the interviews with the key stakeholders involved in
the decision-making process.

Treatment design. During the development of QREME, we focused on creating
QREME as “instrumental theory” that helps in generating coherent explanations and
achieving understanding for decision making about QRs [30]. A clear need emerged
early in the design process to handle both strategic and operational decision-making
levels [27] as decisions on these levels are often interconnected. Moreover, the obser‐
vations made from the in-depth analysis of 5 years of decision making about QRs
confirmed that both feedback-loop and forward-loop are unsystematically used and
needed to properly handle decision about QRs [9].

QREME was incrementally designed in a series of meetings where the authors
discussed the versions and made changes and updates. Each new version of the model
was critically evaluated and discussed in a workshop session among the researchers.
Changes and updates were documented to enable traceability. The first version of
QREME contained only the portfolio strategy and the product scope elements, based on
empirical data [9] and related work [27]. After evaluations, it was decided that the core
element of the feedback-loop is the product usage data that decision-makers need to
continuously analyze and filter. Therefore, the analytics scope element was added to
QREME. Next, the three decision forums were identified we named the input and output
for each of the forums. Finally, in the last iteration, the roles involved in each decision
forum were detailed.

Treatment Implementation and Evaluation. We evaluated QREME on two explor‐
atory case studies from two companies developing software-intensive products but
having different QR profiles. The evaluation consists of an assessment based on expert

176 T. Olsson and K. Wnuk

opinion on the companies’ ways of working and which elements of QREME they are
compliant with and would benefit from.

Company A focuses on user experience, performance and security as it develops
software-intensive products of daily use for consumers. Company B, on the other hand,
develops software-intensive products for B2B and is mainly concerned with perform‐
ance, security, and maintainability. The products that company B develops have no user
interface that the customers can interact with but collect digital images that can be
analyzed in the software that combines it from several devices.

In the next phase, we will evaluate with companies and practitioners the underlying
findings from [9] in other companies to ensure this is not unique the company used in
that study. Furthermore, we will validate that QREME addresses the findings and is
usable in a practical context.

3.1 Threats to Validity

We discuss the validity threats according to the four perspectives on validity proposed
by Yin [31] and some of the guidelines provided by Runeson and Höst [32].

Construct validity is concerned with establishing appropriate methods and measures
for the studied phenomena or concepts. The empirical evidence that the framework is
based on was collected from both the analysis of the decision-making logs and in inter‐
views. This multiple-source evidence provides trustful catalog of observations that
impacted the design decisions for the framework. Moreover, we worked inspired by
CAR [30] where a theory is the focal point of generating coherent explanations of the
studied phenomena and QREME can be considered as an instrumental theory of decision
making about QRs.

Internal validity is concerned with uncontrolled confounding factors that may affect
the studied causal relationships. The relationships between the selected decision strat‐
egies were anchored in the empirical data obtained in our previous study [9]. Still, a
threat remains that when QREME is put into operation at other than studies industrial
contexts, we may discover additional confounding factors that may affect the decision
processes and therefore should be further incorporated into the framework.

Reliability is concerned with the degree of repeatability of the study. The framework
creation process was continuously documented to enable traceability and analysis. The
QREME creation process was inspired by CAR guidelines to ensure rigor during the
iteration and collaboration between researchers and practitioners [30]. However, relia‐
bility of the interpretations made during QREME development could be questioned as
this step of the process remains highly subjective. We took precautions to minimize
subjectivity by discussing our interpretations with industry practitioners and between
the authors and seeking most reliable explanations.

External validity remains the main concern of this work. QREME is based on an in-
depth analysis of five years of decision making about QRs at a large company. Still, we
cannot claim that this is a representative case of how all software-intensive product
development companies deal with QRs. Therefore, the suitability of QREME must be
further validated outside the two contexts described in the case studies to bring

QREME – Quality Requirements Management Model 177

supporting evidence that the foundations of the theoretical framework remain strong for
other contexts, product types, and requirements engineering processes.

4 Quality Requirements Management Model (QREME)
Supporting Decision-Making for Quality Requirements

The goal of QREME is to provide decision support for managing quality requirements,
incorporating two highly interconnected processes: a top-down forward driven, and a
bottom-up feedback process. QREME can be applied as an assessment instrument as
well as to plan improvement activities for scoping of quality requirements.

4.1 The Anatomy of QREME

QREME has two abstraction levels for decisions: a strategic level and an operational
level [9, 27], see Fig. 1. At the strategic level, strategic product decisions are handled,
such as deciding which quality aspect (QA) to address and what customer segments to
focus on. At the operational level, decisions for individual products are handled, such
as quality level (QL) for a specific QR for a specific release or analysis of usage data in
a specific context. For example, a QR can be start-up time from powering on a device
and the QL can be 10 s. The operational decisions are usually short-term and consider
individual products and releases.

Fig. 1. The conceptual overview of QREME, with PStr = Portfolio Strategy, PSc = Product
Scope, BI = Business Intelligence and An = Analytics. Figure 1a summarizes types of decisions
in the different areas of QREME and Fig. 1b illustrates the two loops.

Furthermore, QREME separates scoping decisions on the products from decisions
on data analysis. Product decisions are about what the products should realize and what
data to utilize in the experiments.

178 T. Olsson and K. Wnuk

This results in four scope decision areas: Product portfolio strategy (PStr), Product
Scope (PSc), Business intelligence (BI) and Analytics (An), see Fig. 1a. QREME also
distinguishes between (product-)planning-driven decisions (forward-loop) and data-
driven decisions (feedback-loop), see Fig. 1b. For the two highly interconnected loops,
the feedback-loop is usually faster than the forward-loop. Both loops traverse the four
scope decision areas in opposite directions and at different speeds.

4.2 Scope Decision Areas

To achieve both a structured process in refining a long-term roadmap as well as an agile
and short response-time to changes in the market, all four decision areas need to have a
certain level of autonomy, independent input and possibility to influence each other.

The PStr area concerns strategic product decisions such as quality aspects, markets
and release strategy. The decisions are on a strategic level [27] and should embody a
company’s strategy for the product(s) or portfolio. A portfolio manager is typically the
main decision maker [33]. Decisions will outline portfolio-wide direction regarding
which QAs to focus on and how individual products show relate to this. PStr decisions
should be reviewed on a quarterly or half-year interval. The main decision forum is the
product portfolio strategy forum. The decisions are typically summarized in informal
natural language as a presentation file or a short document. The portfolio manager mainly
interacts with the product manager and the business intelligence manager for scope
decisions, cf. Fig. 2. Besides the roles directly involved in the decisions, the portfolio
manager takes input from executive management, marketing manager, key account
managers, etc.

Fig. 2. Interactions among the four scope decision areas in the forward- and feedback-loops.

QREME – Quality Requirements Management Model 179

The BI area is also on the strategic level. BI decisions concern which competitors to
monitor, which market data to collect and how to divide the customers into the relevant
customer groups, etc. It can also be areas where the company wants to experiment (e.g.,
through A/B testing) rather than performing a (traditional) upfront requirements analysis.
A business intelligence manager is the main decision maker for BI. Decisions should
outline relevant BI data to ensure adequate coverage. Similar to PStr decisions, BI deci‐
sions should be reviewed and updated on a quarterly or half-year interval. The main deci‐
sion forum is the business intelligence decision forum. The BI data is presented with
graphs and numbers but in informal documents or presentations. Besides interacting with
PStr and An regarding scope decisions, input comes from marketing manager, competitive
intelligence, sales, etc.

The BI manager interacts with the portfolio manager on the strategic level and the
analytics manager on the operational level (cf. Fig. 2). The BI manager also interacts much
with, e.g., marketing managers, customer services and external companies to collect
competitive intelligence.

The PSc area operational decisions (see Fig. 1a) target QL for a specific QR and the
realization strategy in the coming releases. A Product Manager is responsible for PSc
decisions [33]. Depending on the development context and release interval, PSc decisions
could be made a weekly or monthly interval, or continuously. The main decision forum is
the product scope decision forum. In an agile context, a more informal continuous
dialogue in the team replaces the formal product scope decision forum. PSc decisions are
on an operational level and in a semi-structured format e.g. in an issue handling tool, deci‐
sion database or spreadsheet backlog. The product manager receives the portfolio strategy
from the portfolio manager and product usage data from the Analytics manager (see
Fig. 2). The product manager also interacts with key account managers, internal stake‐
holders, such as subject area experts and the development organization, and external stake‐
holders, such as customers and key account managers.

The An area decisions concern the product usage data collection and analysis. If a
company is utilizing experimentation or beta-testing, decisions on how many experiments
to run and how closely to monitor the product usage is an decision. Especially important
is to be wary of the amount of data generated, as collecting usage data can result in the
copious amount of data. An Analytics manager oversees the An area decisions. Analytics
consists of one part focused on instrumentation and the actual usage data collection and one
part of the analysis and presentation of the data. Decisions on which usage data to collect
are made daily or weekly. Decisions are made either in centralized Analytics decision
forums or distributed in different development teams. Analytics decisions are presented
alongside with the rich and highly structured data. The analytics manager receives the
product scope from the product manager as well as a usage data scope from the BI
manager (see Fig. 2). The analytics team also interacts closely with the development team
for the instrumentation and actual data collection. Competitor devices can also be used to
compare specific measurements with.

180 T. Olsson and K. Wnuk

4.3 The Interaction Between Roles and Decision Forums in QREME

The four scope decision areas are connected and impact each other through the two loops,
as outlined in the previous section. Figure 2 outlines how decisions from different decision
forums are connected to each other.

The forward-loop (counter-clockwise in the figure) is characterized by top-down flow
where PStr decisions and extracted into PSc decisions that are realized in software [19].
Customer sentiment and sales data are reported back to the portfolio management. The
forward-loop is often exercised by bespoke or MDRE (Market-Driven Requirements Engi‐
neering) companies where the development is either performed in-house or regulated by a
contract. In these situations, it is possible to work with our framework to create systematic
information exchange among the different decision processes.

The feedback-loop (clock-wise) is constructed based on the assumption that a soft‐
ware-intensive company has access to product usage data [21]. As a result, instead of
having upfront investments to analyze and synthesize a scope, inspiration is taken from the
product usage or other sources (e.g., social media), though both understanding as well as
exploring changes. Based on product usage data analysis, improvements are identified and
made part of the product scope for implementation. The resulting product scope is evalu‐
ated in the portfolio strategy.

We assume that no organization uses only forward- or feedback-loop. Rather, they tend
to favor one of the loops without sufficient synergy between them. For example, informa‐
tion flow between the An and PSc need to be efficient. Low efficiency of this information
flow may result in long lead-times, e.g., when the product usage data is not promptly inte‐
grated into the PStr forum via either PSc or BI. Moreover, if a QA is not considered to be
relevant in PStr, the information night never reaches PSc.

There are four interactions in the forward-loop (labelled 1–4) and four interactions in
the feedback-loop (labelled I–IV) among the decision forums (labelled A–D), see Fig. 2.
We make two assumptions:

1. Decisions (and development) are made in all the forums continuously.
2. Decisions are made individually.

Hence, we are not considering the situation, e.g. where a requirements specification is
prepared and finalized and then sent onwards in the process. Furthermore, there is no
explicit beginning or end in the loops as most software-intensive companies work with
existing portfolios and products and seldom create new portfolios. Table 1 outlines a
guideline to choose whether to use the forward- or feedback-loop.

4.4 Tailoring QREME

The ideal model of QREME as described in the previous sections need to be adapted to the
specific organization and their needs. In tailoring QREME, the central aspect to consider
is to cater for the two loops and leverage from the different characteristics; the forward-loop
with long-term planning and the feedback-loop with shorter lead-time to changes in the
market and the software. However, the specific roles or decision forums are not crucial to

QREME – Quality Requirements Management Model 181

have as in the ideal model. Instead, the critical aspect is to be aware of the different types
of decisions and map the roles to the ones in the organization.

Table 1. Alternatives for scope decisions for the different forums

Forum Forward-loop Feedback-loop
A 1. Realize QA in product scope – The

PStr can decide to have the PSc refine the
decisions. This is a typical refinement of a
QA to QRs, suitable when the market
needs are well understood or when there
is no comparable experience to learn from
(e.g. radical innovation)

I. Data-driven feature identification –
The PStr can decide to have BI analyze the
actual needs. Instead of upfront QAs
refinement, experiments determine the
appropriate QLs. This is suitable when it
is difficult to upfront estimate QLs or there
is an opportunity to incrementally
improve a QA in a data-driven manner
without any change to QAs as such

B 4. Candidate QA – The decisions which
QAs to improve as identified by BI can be
send to PStr as a candidate QAs included
in PStr. It can be market trends or QLs in
the existing software which stands out in
BI and it not represented in the PStr. The
forward-loop is suitable when the product
QLs are known and there is an identified
gap in the PStr

II. Collect usage data – Decisions on
which is the relevant QAs to collect
refined data can be request of An. Based
on market and competitor analysis and
input from PStr, the BI identifies QAs
which need clarification on regarding QLs
in the software. This is appropriate when
the QLs in the software are unknown and
the QAs are part of the PStr

C 2. QR measurement to realize – PSc
decides which QRs to implement. In the
forward-loop, PSc requests An to collect
usage data for the relevant QRs being
implemented. This is a kind of refinement
in terms of collecting data for defined QLs.
The forward-loop from PSc to An for
scoped decisions is appropriate when the
QRs and their QL is in line with the
portfolio strategy

IV. Update PStr request – If the product
manager finds gaps in what they want to
highlight to PSc, then the product manager
can decide to send a QR to request PStr to
update PStr with respect to the QR. This
can happen when there is feedback from
An on gaps or input from other
stakeholders which PSc would like to
include in the scope. The feedback-loop
usage is appropriate when there is a
discrepancy from the needs of the PSc and
the PStr

D 3. Update BI request – Based on usage
data analysis, An can request to update BI.
This can be if QLs and QRs are identified
as relevant for An but this is not in line
with the current BI scope. Utilizing the
forward-loop from An to BI is appropriate
when the BI need to include product usage
data currently not covered by the BI
strategy, as a result of the forward-loop
from PSc

III. QR recommendation –The An
decision forum provides
recommendations to the product manager
on suitable QLs for different QRs as well
as if there are specific QRs which need
attention. The QAs might be identified in
BI in the feedback-loop or be a feedback
on QLs coming from PSc. The analytics
manager should use the feedback-loop
QAs in the strategy or when the customers
express their strong dissatisfaction about
QRs

182 T. Olsson and K. Wnuk

5 Two Exploratory Case Studies

In this section, we present two case studies that provide experiences from applying
QREME. The application consists of using QREME in an expert assessment on the
companies’ current decision processes related to scoping of QRs.

5.1 Case A: Consumer Device Products for a Global Market

Company A develops software-intensive products for B2C for a global market. Devel‐
opment is performed in a cooperative manner with other companies, sometimes called
Software Ecosystems (SECO) [34]. Substantial investment is made in the software
developed for the dedicated hardware. QAs play a crucial role in product success as well
as customer purchase decisions. We performed an extensive longitudinal study of the
decision patterns [9], which lay the underlying rationale for QREME.

Case: One of the observations was an issue with battery performance. The company
releases several products per year. The software is updated several times over the life‐
cycle and up to 2 years after the product first reaches the market. Even though software
today is a significant part of the engineering efforts, the underlying hardware platform
brings substantial opportunities and limitations regarding the possible quality aspects.
This “hardware legacy” is still visible regarding processes and culture, leading to a
prevalence of the forward-loop.

Portfolio strategy. In the portfolio strategy decision forum, it was decided an overall
target for battery performance and it had been the same for several product generations.
However, despite reports of not meeting the target level, there were no actions on a
portfolio level. Given the legacy of hardware development, there is a strong focus on
the hardware side of the portfolio for the new products to reach the market and less focus
on the software updates for existing products. The software product managers are not
represented (cf. Fig. 2). Furthermore, the BI manager role is not present. Instead, the
software organization undertakes ad-hoc measurements of the product usage. Albeit
product managers repeatedly highlighting battery problems, the portfolio strategy deci‐
sion forum failed to timely and appropriately react.

When assessing this case using the framework, the feedback-loop, mainly with IV.
In Fig. 2, is the most prominent problem in the portfolio strategy decision forum causing
a delayed updated of the portfolio strategy. Furthermore, once the portfolio strategy was
updated, there was still a focus on the forward-loop. We believe that it might have been
more effective to employ a feedback-loop, see interaction I in Fig. 2, as the setting of
an unrealistic QLs in the portfolio strategy, had previously shown to be ineffective.
Hence, instead of using a feedback-loop, the battery performance should be improved
until there is a positive sentiment rather than fulfilling a somewhat random number.

Product scope. The product manager got input from the portfolio manager to achieve
a specific target QL for battery performance. However, it was one of many aspects
needed fulfillment and was when the problems started to occur not prioritized among

QREME – Quality Requirements Management Model 183

other features and QRs. There was also a strong focus on the products’ introduction to
the market and less focus on the software updates, limiting the ability to work with the
product scope for later releases. This is further complicated by the fact that both the
users’ behavior (what they are doing) as well as the execution environment (the network)
influence QAs. Hence, setting appropriate QLs upfront is challenging.

The feedback-loop from development to product scope work well regarding the
framework (cf. III in Fig. 2). In the product scope decision forum, the product manager
and representatives from the development organization are present. This creates a strong
relationship and quite well working forward-loop and relative well feedback-loop.
However, the product manager had difficulty to act on feedback, as the portfolio manager
expected the portfolio strategy to be prioritized and as so often it caused an over-scoping.
Furthermore, there was no explicit data scope role and no strong tradition to experiment.
Because the forward-loop preference from the portfolio and focus on the first release of
the products to the market, this also caused an over-scoping for the first release and
down-prioritizing of software updates.

Analytics scope. There was no explicit analytics manager role as intended in our
framework. Instead, the development organization, through the project manager
performed some of the usage data collection tasks. However, there was no tradition or
explicit ambition to experiment or test improvements on parts of the consumer base and
form the analytics decision forum either.

BI scope. The BI is much focused on external input such as market and competitor data
and less on internal data such as usage and customer services data. There is a strong
focus on pre-release of new products and their perception as they are first introduced to
the market. There is much less focus on monitoring the perception of the (software)
products during the whole lifecycle.

There is a gap in the feedback-loop in that the communication in I and II (cf. Fig. 2)
are mostly missing. Even if the portfolio strategy is used for BI in general, it is not used
to understand specific QAs in the products. Furthermore, there is little or no direction
from BI to the teams collecting usage data and performing analysis thereof. This case a
fragmented picture and lack of actionable intelligence in a strategic level.

To summarize, there is a strong focus on the forward-loop, i.e., 1–4 in Fig. 2. The
main information presented to the portfolio manager is related to general performance
of the products including specific QRs. Specific suggestions were communicated from
the analytics team to the product manager (III in Fig. 2). However, the feedback-loop
from the portfolio manager to BI was effectively non-existent. Hence, there was no
ambition to experiment and measure on software and incrementally update it in a data-
driven way. Instead, it was expected that analytics is driven in a forward-loop manner.

The main benefit of improving the feedback-loop is expected to be a significantly
shorter lead-time to adapt to customer expectations and changes in the market. Further‐
more, sometimes decisions are made early in the process without real data. By intro‐
ducing a clearer feedback-loop and daring to leave details to a later stage, more appro‐
priate QLs will be implemented (neither too conservative nor over-shooting the target)
which will in the end mean more effective use of development resources.

184 T. Olsson and K. Wnuk

5.2 Case B: B2B Product Developing Company

Company B develops software-intensive products for B2B contexts for a global market
in a market-driven manner. In this case, we analyze performance requirements just as
in Case A. This illustrates a different approach to handling the QRs and how QREME
can support it.

Case: Company B is one of the world’s leaders in its market segment despite having
no official requirements database and only lightweight and informal requirements
management processes. The requirements are often expressed in a comparative way as
“benchmarking”, e.g., “Product x should be as Product y, but better” and “The new
version of the software must not be worse than the last version”. This way of expressing
requirements combined with test-driven development methods created a very strong
feedback-loop based on continuous validation of the product behaviors by engineers.

Portfolio strategy. The portfolio strategy forum decision mainly focuses on new func‐
tionality and associated technical novelties. QRs and expected QLs are well understood
and acknowledged but rarely quantified or explicitly documented. The leading require‐
ments specification technique is to express the requirements about current or previous
software capabilities. This creates issues in translating the strategy into objective QRs
and the product scope.

Despite the best efforts, the forward-loop (1 in Fig. 2) is not sufficiently established
to perform refinement into features with sufficient QRs and QLs and to later assess
strategy fulfillment. On the other hand, the data-driven feature identification (II) works
well when customers signal insufficient QLs that are escalated into the portfolio strategy
decision forum. The role of the portfolio manager is not present in the organization as
the responsibility falls between the executive management and product managers who
have a limited responsibility for their products.

Product scope. The refine of functional features in the product scope decision forum
worked well but not for QRs. Due to lack of strategic guidelines and “benchmarking as
requirements”, the product manager could not effectively communicate with experts and
developers. The “benchmarking as requirements” had to be combined with feature/
product usage data. However, in this case, usage data was replaced by test data obtained
from the lab. Software developers or testers ran the previous products on example use
cases and measured the current QLs for performance and other quality aspects. No
additional product testing and product usage data was generated leaving little guideline
or support for scoping decisions. Regarding QREME, the feedback from analytics team
to product manager (III in Fig. 2) works well. However, the forward communication (2)
is mostly lacking, which makes analytics mostly reactive.

Data scope. Developers, testers and often requirements engineers perform product tests
to obtain reliable QLs. The product usage data arriving from the customers is only
analyzed from the functional requirements viewpoint. The analytics manager role is not
clearly established and clear data usage input challenges are not maintained. Upon
incoming feature requests, this forum can only answer by providing QLs of previous

QREME – Quality Requirements Management Model 185

products that can form a baseline for improvement suggestions. Potential feature recom‐
mendations are mostly functionality centered and lack clear QLs.

BI scope. The BI is much focused on external input from the market and competitors
and direct customer data channels are not available for the company. The company sells
its products via retailers who take the responsibility for hardware and software instal‐
lations. Moreover, data is often secured by the customers and special permissions or
legal documents are required to obtain it, e.g. by authorities. The company runs various
products and software versions in the lab to obtain product usage data and to measure
performance levels for products sold to the customers.

QREME highlights a need for an explicit role for the analytics manager. Further‐
more, since there is no culture of experimenting or collecting product usage data, there
is a need for education and training. QREME also emphasizes the need for more explicit
channels and roles for portfolio management, to be able to quicker make changes rele‐
vant for the customers and markets.

The main benefit from applying QREME in this case is improving the forward-loop
and increasing the synchronization effect between the feedback- and the forward-loop.
Establishing the forward-loop and associated roles should mitigate the issues in trans‐
lating the strategy into QRs and the product scope. Moreover, this should enable more
proactive QRs definition rather than reactive response to customer dissatisfaction.

6 Conclusion and Future Work

In this paper, we addressed the research question for how to support decision-making
for QRs. Based on related work and our empirical work on understanding the decision
patterns for QRs, we propose a decision-making model to align roles and forums for QR
decisions combining a forward-loop and feedback-loop on strategic and operational
levels. The focal points of the QREME model introduced in this paper are the two loops
and the group decision making forums.

We applied QREME into exploratory case studies where we performed two assess‐
ments of how two companies make decisions for QRs. Using QREME, we identify
several challenges in handling QRs that the companies should focus on addressing;
namely an over-emphasis on a forward-loop and lack of common direction for QRs. We
see a potential to shorten lead-times to react to changes in the market and customer
expectations as well as a more efficient use of development resources with more accurate
setting of QLs and therefore not wasting resources.

QREME has not yet been rolled out for daily operational work at any of the studied
companies. Therefore, we plan to integrate QREME into the daily requirements opera‐
tions and decision making at the partner companies and measure the long-term impact
of it. Besides that, we also see a need to understand in more detail the contextual factors
influencing the choice of the forward-loop and the feedback-loop, especially for inno‐
vation and the strategic portfolio decisions but also product lifecycle and market
maturity. Finally, we plan to integrate various requirements abstraction levels of require‐
ments into the model and detailed requirement levels for the decision forums.

186 T. Olsson and K. Wnuk

We believe that the improved understanding of QRs, specifically regarding the feed‐
back-loop, can have a positive influence on getting companies to emphasize on QRs. In
our experience, the development organization is often aware of the QRs, but at the same
time, portfolio and product management typically do not drive improvement of QRs.
By introducing a clearer feedback-loop and thus making the QRs explicit, both the
understanding that addressing the QRs in the software takes up development resources
and user experience of the product is improved. This, we speculate, can help to create
a foundation for an overall clearer prioritization of QRs at all levels and both in the
forward-loop as well as the feedback-loop.

Acknowledgements. We want to thank all the participants in the interviews. This work is
supported by the IKNOWDM project (20150033) from the Knowledge Foundation in Sweden.

References

1. Glinz, M.: On non-functional requirements. In: IEEE International Conference on
Requirements Engineering, Piscataway, NJ, USA, pp. 21–26 (2007)

2. Regnell, B., Berntsson-Svensson, R., Olsson, T.: Supporting roadmapping of quality
requirements. IEEE Softw. 25, 42–47 (2008)

3. Regnell, B., Berntsson-Svensson, R., Wnuk, K.: Can we beat the complexity of very large-
scale requirements engineering? In: Requirements Engineering: Foundation for Software
Quality, Montpellier, France, pp. 123–128 (2008)

4. Ebert, C.: Putting requirement management into praxis: dealing with nonfunctional
requirements. Inf. Softw. Technol. 40, 175–185 (1998)

5. Cysneiros, L.M.: Leite, J.C.S.D.P.: Nonfunctional requirements: from elicitation to
conceptual models. IEEE Trans. Softw. Eng. 30, 328–350 (2004)

6. Svensson, R.B., Gorschek, T., Regnell, B., Torkar, R., Shahrokni, A., Feldt, R.: Quality
requirements in industrial practice - an extended interview study at eleven companies. IEEE
Trans. Softw. Eng. 38, 923–935 (2012)

7. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Springer, USA (2000). https://doi.org/10.1007/978-1-4615-5269-7

8. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional requirements:
a process-oriented approach. IEEE Trans. Softw. Eng. 18, 483–497 (1992)

9. Olsson, T., Wnuk, K., Gorschek, T.: Decision patterns for quality requirements: an empirical
study. Submitted to J. Syst. Softw.

10. Berntsson-Svensson, R., Olsson, T., Regnell, B.: An investigation of how quality
requirements are specified in industrial practice. Inf. Softw. Technol. 55, 1224–1236 (2013)

11. Wnuk, K., Kollu, R.K.: A systematic mapping study on requirements scoping. In: Proceedings
of the 20th International Conference on Evaluation and Assessment in Software Engineering,
Limerick, Ireland (2016)

12. Regnell, B., Brinkkemper, S.: Market-driven requirements engineering for software products.
In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Requirements, pp.
287–308. Springer, Berlin (2005). https://doi.org/10.1007/3-540-28244-0_13

13. Ernst, N.A., Mylopoulos, J.: On the perception of software quality requirements during the
project lifecycle. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp.
143–157. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14192-8_15

QREME – Quality Requirements Management Model 187

http://dx.doi.org/10.1007/978-1-4615-5269-7
http://dx.doi.org/10.1007/3-540-28244-0_13
http://dx.doi.org/10.1007/978-3-642-14192-8_15

14. Ameller, D., Farré, C., Franch, X., Rufian, G.: A survey on software release planning models.
In: Abrahamsson, P., Jedlitschka, A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen,
T. (eds.) PROFES 2016. LNCS, vol. 10027, pp. 48–65. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49094-6_4

15. Mohagheghi, P., Aparicio, M.E.: An industry experience report on managing product quality
requirements in a large organization. Inf. Softw. Technol. 88, 96–109 (2017)

16. Wnuk, K., Gorschek, T., Callele, D., Karlsson, E.A., Åhlin, E., Regnell, B.: Supporting scope
tracking and visualization for very large-scale requirements engineering-utilizing FSC+,
decision patterns, and atomic decision visualizations. IEEE Trans. Softw. Eng. 42, 47–74
(2016)

17. Komssi, M., Kauppinen, M., Töhönen, H., Lehtola, L., Davis, A.M.: Roadmapping problems
in practice: value creation from the perspective of the customers. Requir. Eng. 20, 45–69
(2015)

18. Kittlaus, H.B., Clough, P.N.: Software Product Management and Pricing. Springer, Berlin
(2009). https://doi.org/10.1007/978-3-540-76987-3

19. ISPMA: Software Product Management - Foundation Level v.1.2., pp. 1–39 (2014)
20. Royce, W.: Managing the development of large software systems. In: Proceedings of the IEEE

WESCON, pp. 1–9 (1970)
21. Bosch, J.: Speed, data, and ecosystems: the future of software engineering. IEEE Softw. 33,

82–88 (2016)
22. Groen, E.C., Doerr, J., Adam, S.: Towards crowd-based requirements engineering a research

preview. In: Fricker, S.A., Schneider, K. (eds.) REFSQ 2015. LNCS, vol. 9013, pp. 247–253.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16101-3_16

23. Johansson, E., Bergdahl, D., Bosch, J., Holmström Olsson, H.: Requirement prioritization
with quantitative data - a case study. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B.
(eds.) PROFES 2015. LNCS, vol. 9459, pp. 89–104. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-26844-6_7

24. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond (2004)
25. Hüttermann, M.: DevOps for Developers. Springer, New York (2012). https://doi.org/

10.1007/978-1-4302-4570-4
26. Ruhe, G., Saliu, M.O.: The art and science of software release planning. IEEE Softw. 22, 47–

53 (2005)
27. Aurum, A., Wohlin, C.: The fundamental nature of requirements engineering activities as a

decision-making process. Inf. Softw. Technol. 45, 945–954 (2003)
28. Gorschek, T., Wohlin, C.: Requirements abstraction model. Requir. Eng. 11, 79–101 (2006)
29. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Nattoch Dag, J.: An industrial survey

of requirements interdependencies in software product release planning. In: Proceedings of
the Fifth IEEE International Symposium on Requirements Engineering, pp. 84–92 (2001)

30. Davison, R.M., Martinsons, M.G., Ou, C.X.J.: The roles of theory in canonical action
research. MIS Q. 36, 763–786 (2012)

31. Yin, R.K.: Case Study Research. Design and Methods. Sage Publications, Thousand Oaks
(2003)

32. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Softw. Eng. 14, 131–164 (2009)

33. Kittlaus, H.-B., Fricker, S.A.: Software Product Management: The ISPMA-Compliant Study
Guide and Handbook. Springer, Berlin (2017). https://doi.org/10.1007/978-3-642-55140-6

34. Jansen, S., Cusumano, M.A., Brinkkemper, S.: Software Ecosystems: Analyzing and
Managing Business Networks in the Software Industry. Edward Elgar Publishing,
Cheltenham (2013)

188 T. Olsson and K. Wnuk

http://dx.doi.org/10.1007/978-3-319-49094-6_4
http://dx.doi.org/10.1007/978-3-319-49094-6_4
http://dx.doi.org/10.1007/978-3-540-76987-3
http://dx.doi.org/10.1007/978-3-319-16101-3_16
http://dx.doi.org/10.1007/978-3-319-26844-6_7
http://dx.doi.org/10.1007/978-3-319-26844-6_7
http://dx.doi.org/10.1007/978-1-4302-4570-4
http://dx.doi.org/10.1007/978-1-4302-4570-4
http://dx.doi.org/10.1007/978-3-642-55140-6

	QREME – Quality Requirements Management Model for Supporting Decision-Making
	Abstract
	1 Introduction
	2 Background and Related Work
	3 Research Methodology
	3.1 Threats to Validity

	4 Quality Requirements Management Model (QREME) Supporting Decision-Making for Quality Requirements
	4.1 The Anatomy of QREME
	4.2 Scope Decision Areas
	4.3 The Interaction Between Roles and Decision Forums in QREME
	4.4 Tailoring QREME

	5 Two Exploratory Case Studies
	5.1 Case A: Consumer Device Products for a Global Market
	5.2 Case B: B2B Product Developing Company

	6 Conclusion and Future Work
	Acknowledgements
	References

