
Problem-Oriented Requirements in Practice –

A Case Study

Soren Lauesen(&)

IT University of Copenhagen, Copenhagen, Denmark
slauesen@itu.dk

Abstract. [Context and motivation] Traditional requirements describe what
the system shall do. This gives suppliers little freedom to use what they have
already. In contrast, problem-oriented requirements describe the customer’s
demands: what he wants to use the system for and which problems he wants to
remove. The supplier specifies how his system will deal with these issues. The
author developed the problem-oriented approach in 2007 on request from the
Danish Government, and named it SL-07. [Question/problem] SL-07 has been
used in many projects – usually with success. However, we had no detailed
reports of the effects. [Principal ideas/results] This paper is a case study of
SL-07 in acquisition of a complex case-management system. The author wrote
the requirements and managed the supplier selection. Next, he was asked to run
the entire acquisition project, although he was a novice project manager. Some
of the results were: The problem-oriented requirements were a factor 5 shorter
than traditional requirements in the same domain. Stakeholders understood them
and identified missing demands. Suppliers could write excellent proposals with a
modest effort. The requirements were a good basis for writing test cases and
resolving conflicts during development. The delivery was 9 months late, but this
was not related to the requirements. [Contribution] This is a publication of a
full, real-life, complex requirements specification, the selection document, error
lists, etc. The full texts are available on the author’s web-site. The paper dis-
cusses the results and illustrates them with samples from the full texts.

Keywords: Problem-oriented requirements � SL-07 � COTS-based
Case study � Supplier selection � Issue resolution � Fixed-price contract
Usability requirements

1 Background

Requirements can be written in many ways: traditional system-shall requirements,
various kinds of use cases, user stories, UML-diagrams, etc. Does it matter which kind
of requirements we use, e.g. which of the many kinds of use cases or user stories we
use? It does. It influences whether stakeholders can check that requirements cover their
needs (validate them), suppliers can provide meaningful proposals, the parties can
agree whether issues are bugs or requests for change, etc. The author has seen many
real-life requirements specifications and published five very different ones in his
textbook (Lauesen [5]), where he also explains the consequences of each kind of

© Springer International Publishing AG, part of Springer Nature 2018
E. Kamsties et al. (Eds.): REFSQ 2018, LNCS 10753, pp. 3–19, 2018.
https://doi.org/10.1007/978-3-319-77243-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77243-1_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77243-1_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77243-1_1&domain=pdf

requirements. Some of the consequences have been disastrous, such as losing a busi-
ness opportunity of 100 M$ because of traditional system-shall-requirements.

What does research say about the way we write requirements? Amazingly very
little. Publications rarely provide examples of real-life requirements, and how they
worked in practice. Many papers have statistics and general discussions of require-
ments (e.g. Nurmuliani et al. [13] about requirements volatility), but the reader wonders
what the real requirements looked like. As another example Bruijn and Dekkers [1]
investigated how many requirements in a specific project were ambiguous and how
many of them actually caused problems. However, we don’t see any of the require-
ments, not even the one that caused serious problems. Maiden and Ncube [11] wrote
about acquisition of a COTS system and gave advice on how to do it better. Here too,
we don’t see any requirements. Even in textbooks about requirements, we rarely see
real requirements. The focus is on the requirements processes. Exceptions are
Robertson and Robertson [15], who illustrate all kinds of requirements with tiny pieces,
primarily from a road de-icing system, Kotonya and Sommerville [4], who show tiny
pieces from a university library system, and Cockburn [2], who shows examples of
many kinds of use cases. None of them show a full, real requirements specification or
substantial parts of one, nor the supplier’s proposal or reports of how the requirements
worked in practice.

In 2007, the author published Requirements SL-07, an exemplary requirements
specification for an electronic health record system with a guide booklet. It covered all
kinds of requirements in a problem-oriented way: we don’t specify what the system
shall do, but what the user will use it for. The Danish government had requested it as
part of their standard contract for software acquisitions, K02. Analysts can download it,
replace irrelevant requirements with their own and reuse large parts.

SL-07 was intended for software acquisitions where large parts existed already
(COTS). However, SL-07 proved equally useful for other kinds of projects, such as
product development or agile in-house development.

In this paper, we show how SL-07 was used in a real-life project: acquisition of a
COTS-based system for complex case management. We show how the spec developed,
how the suppliers reacted, how we selected the winner, how issues were resolved
during development, and why the project was 9 months late. You can download the full
specification with the supplier’s proposal, the selection document, the list of
errors/issues, the test script, etc. from the author’s web-site:

http://www.itu.dk/people/slauesen/Y-foundation.html.

Method
This is a report of a real project. The project was not action research, nor planned to be
part of any research. As a consultant, the author had helped many customers with
requirements, but left project management and acquisition to the customer. The
Y-Foundation project started in the same way, but developed into the author being also
the project manager. Later he got permission to anonymize and publish papers from the
project. This paper is based on 795 emails, other existing documents, discussions and
meetings that the author participated in. In addition, the author later contacted the new
foundation secretary and the supplier to get their view on the system after more than
two years of use. The documents have been translated from Danish and anonymized.

4 S. Lauesen

http://www.itu.dk/people/slauesen/Y-foundation.html

There is an obvious validity threat since the author reports about a project where he
had a significant influence. The threat is reduced by giving the reader access to the
original documents, which were shared with stakeholders and suppliers. However, it
has not been possible to anonymize the emails.

2 The Y-Foundation Case

Twice a year the Danish Y-Foundation (synonym) receives around 300 applications
and gives grants to some of them. There are two grant areas: Engineering and Medical.
The Foundation has two full-time employees (a secretary and the CEO) and two
part-time (an accountant and a web-editor). The board of the Foundation has four
members - two business members and two domain experts, one in engineering and one
in medicine. All board members look at all the applications. At a board meeting, the
board decides which applications to grant. Next, it is a clerical task to send accepts or
rejects to the applicants, pay grants and receive final reports.

The entire process was manual. The applications were paper documents. They
circulated between the board members prior to the board meeting. The secretary
maintained a spreadsheet that gave an overview of the applications.

In January 2013, the foundation decided to acquire a grant management system and
a new CMS on a fixed-price contract. Applicants would upload grant applications on
the foundation’s web site. The board members would in parallel look at the applications
and see the other board member’s ratings. At the board meeting, they might modify
their rating, and the other board members would see it live. After the meeting, the
secretary would send bulk emails to applicants; handle payment of grants; remind
applicants to send a final report, etc.

The foundation contracted with the author to write the requirements, later to handle
also supplier selection, and finally to be the project manager (PM) of the entire project.
He wrote and maintained the requirements based on the problem-oriented requirements
in the SL-07 template [7]. Most of the system existed already. The new parts were
developed in an agile way. The system was deployed March 2014 with several open
issues and completed October 2014, nine months late.

3 Problem-Oriented Requirements and SL-07

Jackson [3] distinguished between the problem space (outside the computer system)
and the solution space (inside the system). He pointed out that requirements should
describe the problem domain, leaving the solution domain to the developers. However,
it wasn’t clear where the boundary - the user interface - belonged.

When we use the term problem-oriented requirements, we don’t specify the user
interface. It is part of the solution space. The developer/supplier has to provide it. We
describe not only functional requirements in a problem-oriented way, but also usability,
security, documentation, phasing out, etc.

Here is an example of problem-oriented requirements from the Y-Foundation. It is
the requirements for how to support the board members during the board meeting.

Problem-Oriented Requirements in Practice – A Case Study 5

From the board member’s point of view, discussion of applications during the meeting
is one task, carried out without essential interruptions. At first sight, a task description
looks like a typical use case, but it is profoundly different:

Task C21. During the board meeting
This task describes what a board member does with the grant applications during the
meeting.
Start: When discussion of the applications starts.
End: When all applications have been discussed for now.
Frequency: Twice a year.
Users: Board members. The four board members and the secretary look at the

applications at the same time and note their own comments directly in
the system. See also access rights in H1

The text before the table is not requirements, but assumptions the supplier can make
and the context in which the task is carried out. The requirements are in the table. In
this case there are three requirements, each of them being a subtask of the full task.
Column one shows the user’s demand, what he wants to do. Column 2 may initially
show the customer’s idea of a possible solution, later the supplier’s proposed solution.
In the real document, the proposed solution is in red, here shown also in italics. Column
three (the code column) is for assessment, reference to test cases, etc.

The subtasks can be repeated and carried out in almost any sequence. The user
decides. A subtask could also be a problem the user has today. We might have written
this “problem subtask”:

Notice that the task doesn’t describe an interaction between user and system. It
describes what the user wants to achieve. The requirement is that the system supports it.

Subtasks: Proposed solution: Code:
1. Look at each application. See what the other

board members mean, preferably live as soon
as they have indicated something. Look at
the full application and attached documents.

As task C20. [C20 shows the
proposed screen with a list of
applications, each with a traffic
light for each board member]
The system updates the list of
applications without the board
members having to click a
"refresh".

2. Record your conclusion and your private
comments.

As task C20.

3. Maybe record the joint conclusion. As task C20.

1p. Problem. Today you cannot see
what the other board members
mean. You have to wait and hear.

The system updates the list of applica-
tions without the board members
having to click a "refresh".

6 S. Lauesen

We have shown experimentally that tasks perform much better than use cases in many
ways, for instance in their ability to deal with the business-critical needs of the cus-
tomer (Lauesen and Kuhail [6]).

User stories have become widely used. We might translate each task step to a user
story. Using Lucassen [9] as a guide, step 2 would become this user story:

As a board member, I want to see the application’s traffic lights, so that I can record my
conclusion and my private comments.

The traffic lights have now become requirements. In the task version, the traffic
lights are potential solutions. This makes user stories less suited for COTS-based
systems where most of the system exists already. An existing system might not use
traffic lights at all, yet provide a good solution. If we replace all the task steps with user
stories, we have defined a solution: a rather detailed description of the functions on the
user interface. However, we cannot go the other way from user stories to task
descriptions, because we have lost information about the larger context in which these
user stories take place. It will for instance be hard to see which user stories should be
supported by a single user screen. An Epic might help here, but there are no traditions
or guidelines that ensure that it will group user stories in a useful way. With SL-07,
grouping and context description are compulsory.

Stakeholders like user stories [10], probably because they have a simpler and more
rigid structure than use cases, and have more user focus than system-shall require-
ments. However, there are no experience reports about how successful user stories are
in fixed-price projects, how stable they are, and how many customer-supplier conflicts
they resolve.

Table 1 shows the table of contents for the final SL-07 spec, including the sup-
plier’s proposal. Around 30% of the pages are tasks (Chapter C). Another 20% are
descriptions of data the system must store (Chapter D). It includes a slim E/R data
model and a detailed data description. Business aspects, system integration and
non-functional requirements take up the rest. All requirements are written in a
problem-oriented way. Around 90% of Chapters G to L can usually be reused
word-by-word.

The spec contains a total of 275 requirements. Of these, 100 are task steps, 80 are
descriptions of the fields in the data model (each field is a requirement). The remaining
95 requirements are system integration and non-functional requirements.

User stories and use cases cover only what corresponds to the 100 task steps.
SL-07 is not just a problem-oriented way to express requirements. It provides a

convenient format that makes it easy to match requirements with the supplier’s pro-
posal, track requirements to test cases, and track business goals to requirements. It also
serves as a checklist for what to remember, with realistic examples of everything.
Based on experience with many projects, it has grown over the years to deal with new
topics, e.g. supplier selection criteria and recently (version 5) EU’s General Data
Protection Regulation (GDPR).

Problem-Oriented Requirements in Practice – A Case Study 7

Usability requirements
Usability is important in most projects, but it is hard to specify in a verifiable way. In
the Y-Foundation, usability requirements played a major role in determining whether
an issue was an error or a request for change.

The SL-07 template, Chapter I, covers usability requirements. It requires what
usability specialists agree on: Make early, unguided usability tests of the user interface
(or a mockup) with potential real users; redesign and test with new users until the test
results are acceptable (Nielsen [12], Redish et al. [14]).

This cannot be used directly in our case where the complex part of the user interface
has only one user (the secretary) and the medium complex part has only four users (the
board members). We came up with these problem-oriented requirements:

Table 1. The Y-Foundation requirements

Contents
A. Background and overall solution3

A1. Background and vision.......................3
A2. Supplier guide....................................4
A3. Overall solution..................................4

B. High-level demands................................6
B1. Visions about the future work flow......6
B2. Business goals7
B3. Early proof of concept7
B4. Minimum requirements7
B5. Selection criteria7

C. Tasks to support.....................................8
Work area 1: Grant management................8

C10. Handle a request about a grant
application ..8

C11. Prepare board meeting11
C12. During the board meeting11
C13. Carry out the decisions12
C14. Pay grants13

Work area 2: The board.............................14
C20. Assess applications before the
board meeting..14
C21. During the board meeting16
C22. After the board meeting16

Work area 3: Web editor17
C30. Edit the customer's web-site17
C31. Publish selected projects19

Work area 4: Applicants and the public...20
C40. Visit the Y-foundation's web-site20
C41. Apply for a grant20

D. Data to record21
D0. Common fields22
D1. ApplicationRound22
D2. Application.......................................22
D3. Payment ..24
D4. RoundState24
D5. ApplicationRole25
D6. Person_Org.....................................26

D7. Reporting .. 27
D8. Document 28
D9. Template... 29

E. Other functional requirements 30
E1. System generated events................ 30
E2. Overview and reports 30
E3. Business rules and complex calc..... 30
E4. System administration 30

F. Integration with external systems 31
G. Technical IT architecture..................... 32

G1. The supplier or a third party
operates the system, etc........................ 32

H. Security... 33
H1. Login and access rights for users.... 33
H2. Security management 34
H3. Protection against data loss 34
H4. Protection against unintended user
actions... 34
H5. Protection against threats................ 35

I. Usability and design.............................. 36
I1. Ease-of-learning and task efficiency . 36
I2. Accessibility and Look-and-Feel 36

J. Other requirements and deliverables .. 37
J1. Other standards to obey 37
J2. User training 37
J3. Documentation 37
J4. Data conversion............................... 37
J5. Installation 37
J6. Phasing out...................................... 38

K. The customer's deliverables 39
L. Operation, support, and maintenance. 40

L1. Response times............................... 40
L2. Availability 42
L3. Data storage.................................... 42
L4. Support.. 43
L5. Maintenance.................................... 44

8 S. Lauesen

Usability I1. Ease-of-learning and task efficiency

A serious usability problem is a situation where the user:

a. is unable to complete the task on his own,
b. or believes it is completed when it is not,
c. or complains that it is really cumbersome,
d. or the test facilitator observes that the user doesn’t use the system efficiently.

The first requirement (I1-1) worked well in practice. It says that the users may not
encounter serious usability problems during their tasks, and it defines what a serious
usability problem is.

The requirements were used in this way: During acceptance testing, the secretary
carried out various test tasks. When she was stuck, we recorded it as an issue (“de-
fect”), according to requirement I1-1. Later, the secretary sat next to a supplier spe-
cialist, carried out the tasks and asked when needed. Some of the issues were true
defects; others were things we learned how to do.

The user interface for the board members was tailor-made, based on the secretary’s
vision and agile (iterative) development with the supplier. The user interface became
intuitive to the board members, but there were many errors in the detail (bugs). They
were gradually removed.

For the potential applicant’s user interface, we accepted the responsibility (I1-3) and
paid the supplier for changes, as we in an agile way developed the web part.

4 Elicitation and Specification of the Requirements

The PM (the author) used 11 weeks to elicit and write the requirements that we sent to
the potential suppliers. He spent 40 work hours on it. A month-by-month timeline of
the project with hours spent and number of emails handled, is available at the author’s
web site [8]. Here is a summary:
18-01-2013: The consultant (the author) started his work.
02-04-2013: Requirements version 2.4 was ready (34 pages + 3 page data exam-

ples). The requirements had been through versions 1.0, 1.1, 2.0, 2.1, 2.2
and 2.3. Each version was the result of interviews, study of existing
documents, comments from stakeholders, and a focus group with

Requirements: Proposed solution Code
1. The secretary must be able to

carry out the tasks in Work
Area 1 without serious usabi-
lity problems [“Serious”
defined below the table]

With a functional version of the system, a
secretary carries out examples of tasks without
guidance. On the way, the secretary may ask the
supplier's expert. The secretary assesses whether
the system is sufficiently efficient and easy to
use. Offered.

2. Board members … (similar) (similar) Offered.
3. Potential applicants must be

able to carry out the tasks in
Work Area 4 without serious
usability problems.

A think-aloud test with three potential applicants
is made. The user cannot ask when in doubt. This
is the customer’s own responsibility.

Problem-Oriented Requirements in Practice – A Case Study 9

potential applicants. The contents grew almost chapter by chapter
according to the TOC in Table 1. Chapters C (tasks to support) and D
(data to record) required most of the work. The last parts from
Chapter H (security) to Chapter L (maintenance) were around 90%
reuse of the template example.

10-04-2013: We sent this version to the three suppliers we had selected and asked for
a meeting with each of them. They should show how their system
supported the requirements. They could also suggest changes to the
requirements. They did not have to write anything.

06-06-2013: Requirements version 2.5 was ready (still 34 + 3 pages). After the
meetings with the suppliers, we had 6 comments that we included in
version 2.5. An important one was to allow other accounting systems
than the present one. No major changes were needed. We sent this
version to the three suppliers asking for a written proposal. The supplier
should write his proposed solution in column 2 of the requirement
tables or as solution notes above or below the table. He should also
quote the price.

28-06-2013: Contract version 1.0 was ready (44 pages). We got proposals from all
three suppliers and selected one of them. His version of the
requirements with his proposed solution became version 1.0 of the
contractual requirements.

13-09-2013: Contract version 2.1 was ready (44 pages). During the contract work,
we made a few minor changes in the contractual requirements. This is
the version available at the author’s web site [8]. It includes a detailed
change log.

During development, we did not make further changes to the requirements. We
managed errors and changes through a list of issues, as explained in the development
section below. In two cases, we made an amendment to the contract.

During elicitation, we received many stakeholder comments, but we usually had to
restructure them to fit them into the template. Many analysts simply make each
comment a new requirement. In fact, some analysts consider requirements a list of the
user’s wishes. However, this leads to unstructured requirements that are hard to
implement and keep track of. In addition, user wishes may be solutions that conflict
with the supplier’s way of doing things. In our case, we took care to translate the
comments into the SL-07 style and insert them in the proper template part. Here are two
of the wishes we got, the resulting requirements, and the selected supplier’s proposed
solution (red in the real document, italics here). In several cases, we had to add more
than one requirement to meet the wish:

Wish from a domain expert
I want a “private space” for my own comments on the grant application.We translated
it into a task step (functional requirement) and a data requirement. It looked like this,
including the supplier’s proposed solution in italics:

10 S. Lauesen

Task C20. Assess applications before the board meeting

Data D5. Application role [Name of a data class]

Wish from the auditor
It shall not be possible to pay money to an applicant’s bank account until the account
number has been approved by someone else than the one who created the account
number in the system. We needed an elaboration. He explained that he had seen fraud
where a secretary handled a large grant by changing the applicant’s bank account
number to his own, paying the amount to it and informing the applicant that the
application had been rejected. It became these two new requirements:

Task C14. Pay grants

Security H5. Protection against threats

5 Supplier Selection

In general, suppliers spend a lot of time and money on proposal writing and customer
meetings, often more than 500 h for a proposal. Making it easy for them is important
for getting good proposals. In our case, the three suppliers found it easy to reply.
According to their comments, a supplier spent only 20–30 work hours. There are
several reasons for this.

Subtasks and variants: Proposed solution Code
1. Look at the applications you have to assess

…
The system shows a list of …

… …
6 [new]. Note your private comments that are

not intended for others.
Noted directly in the list.

Fields and relationships: Proposed solution Code
1. roleType: … The customer can maintain a list …
… …
9 [new]. private_comment: The board mem-

ber’s private comments. Not visible to oth-
ers.

Yes

Subtasks and variants: Proposed solution Code
1. Make a list of payments … The system creates the list …
… …
4 [new]. Check that account numbers are what

the applicant specified.
If the account number has been
changed, this is clearly flagged.

Threats to protect against: Proposed solution Code
… …
5 [new]. The system must prevent that some-

one forges the bank account number prior
to the payment.

The system can in the payment list
show what originates directly from
the applicant …

Problem-Oriented Requirements in Practice – A Case Study 11

First, the requirements were short, just 34 pages. According to the suppliers, tra-
ditional requirements in this domain are hundreds of pages.

Second, the suppliers did not have to write anything before the first meeting. They
just had to present their solution and explain how it met our requirements.

Third, when they sent their written proposal, they could easily write how their
system met each of the requirements, because the demand (e.g. the task step) was
clearly visible. However, only two of the three suppliers did this.

Fourth, when we had received and discussed the proposal with the supplier, we
took the burden of editing the proposal and sending it to the supplier before he quoted a
price.

Supplier A offered a solution based on Microsoft’s CRM-system (for managing
communication with customers), Microsoft’s SharePoint, etc. SharePoint was used also
to develop the Foundation’s web-site. Everything was standard components that were
configured and combined. No programming was necessary.

Supplier A didn’t reply to each of the requirements. He described the solution as a
list of modules to be delivered, e.g. “customer management, segmentation, internal case
management”. We couldn’t see how all of this related to the Foundation’s work.

However, we had the promised meeting where we discussed their proposal. During
the meeting, we managed to walk through all the SL-07 requirements, listen to the way
they planned to support them, and take notes. Next, the PM edited the notes into the
SL-07 requirements and returned them as the agreed solution.

Supplier B offered a solution based on their own extensions to SharePoint, Outlook
(e-mail) and either Navision or eConomic (accounting). SharePoint was also used to
develop the Foundation’s web site. Possibly, a bit of programming would be needed for
the Foundation.

B had carefully written their solution proposal for each of the Foundation’s
requirements, but in several essential places they just wrote “needs more analysis”. For
instance, it was obscure how the accounting system would be integrated. Some solution
proposals showed a misunderstanding of the needs.

Supplier C offered a solution based on their existing case management system (an
extension of Microsoft’s SharePoint), Outlook (e-mail), Navision (accounting) and
Wordpress (Open source system for development of the Foundation’s web-site).
Possibly, a bit of programming would be needed for the Foundation.

C had carefully written their solution proposal for each requirement. As an
example, the most important central overview screen (the list of grant applications) was
shown in graphical detail. The SL-07 requirements including solutions were 44 pages.
The most uncertain parts would be tested early in the project and both parties could
terminate the contract if the test failed (proof-of-concept, requirements B3).

Choice: We chose supplier C based on three factors: Financial benefit, risk, and cost of
product including 4-years of operation. See details on the author’s web-site.

12 S. Lauesen

6 Development

The plan was that the system should be acceptance-tested early December 2013 and the
4-week operational test completed before New Year. Actually, full delivery didn’t take
place until end of September 2014 (a delay of 9 months). Here is a summary of the
development steps:
18-09-2013: We sign the contract with supplier C and start development. The

supplier had identified integration with the accounting system, tax
reporting and automatic bank transfer as the most risky parts. He had
not tried this before. The plan was to make a POC (Proof of Concept,
B3) to reduce the risk. However, it turned out that the bank needed
many weeks to give electronic access.

11-10-2013: We accept the POC although we have not completed an electronic bank
transfer. However, the system can do all the preparatory work. The
system is able to make the basic communication with the accounting
system, which is supposed to handle also the tax reporting. Implemen-
tation of the applicant’s parts, the board’s parts, and the secretary’s parts
continues.

11-11-2013: According to the contract, the supplier should have completed the
system test by now, but he needs just a few more days. Everything
looks promising.

14-11-2013: To speed up things, we run our first acceptance test. We don’t get very
far. We encounter and report 23 issues (defects, mistakes, etc.).

20-11-2013: The supplier reports system test passed. We try acceptance testing
again, but don’t get much further. The list of issues grows, some issues
are resolved, many remain open or are reopened. The ambition was to
deploy the entire system before Christmas, where applicants become
busy sending grant applications. We decide to focus on the on-line
application part and delay other parts.

23-12-2013: We deploy the on-line application part. It works fine, although some
applicants need assistance to circumvent system issues. At the
application deadline 15-01-2014, we have 225 applications. There are
now 69 issues on the list, including the closed ones.

31-01-2014: We have now been in operational test for the four weeks specified in the
contract. There are only 12 open issues on the list. They seem tiny and
we agree that they can be handled during the warranty period. We
accept delivery and pay the supplier the full amount (around 100,000 $)
plus 40 h for changes.

25-02-2014: The system parts for the board and the secretary work miserably. Often
the users have to login for each document they want to see. This is
extremely cumbersome because a grant application contains several
documents. Errors come and go. We focus on repairing the issues.
The PM strives to postpone discussions about issues being defects or
changes, to meetings in the steering committee.

Problem-Oriented Requirements in Practice – A Case Study 13

27-03-2014: The great grant meeting in the board. The supplier has an expert in the
room to offer support. Fortunately, the meeting is a success. Although a
bit slow, everybody can see each other’s vote. Earlier the board spent
the whole day discussing the applications. Now they have already
agreed on most of them (those with four red lights or four green lights
in the list of applications). In around an hour, they deal with the
applications that need discussion. They spend the rest of the meeting
discussing strategic issues, which they did not have time for earlier.

15-04-2014: The secretary cannot handle the grants. There are things she doesn’t
know how to do and outright errors in the system. The supplier is silent.
There is no financial incentive anymore. We escalate the problems to
the CEO level and things move on slowly.

01-09-2014: There are still 9 open issues on the list.
01-10-2014: The last issues have been resolved or renounced. The business goals are

met and the users are happy with the system.

Test cases and user manual
For the acceptance test, we developed a test script that would cover test of most of the
requirements. It had one or more sections for each of the requirements sections. Here is
part of the script for tasks C12 and C21:

In a copy of the requirements, we made the code columns refer to the line or lines in
the test script that would test this requirement. Now it was easy to spot the requirements
that were not tested.

User manual. As explained above, the secretary’s part of the system was not intuitive.
New secretaries would come aboard and would need help. Since the task part of the
requirements corresponded to observable periods of working with the system, it was
obvious to make a guide section for each task.

So we did. Basically, each guide section consisted of a screenshot of the situation,
and for each button a callout with a short explanation of the subtask which would use it.
We tested the first part of the user manual with a potential secretary. The result was that
it would not suffice as a stand-alone manual, but with a bit of initial personal expla-
nation, it allowed a new secretary to experiment on his own.

Test script: Section 6. C12 and C21. During the board meeting
NN [Secretary] and a [simulated] board member work concurrently with the system.
1. Board member writes own public and private comments for application L and M. Votes

yellow for both.
2. Check that NN and other board members can see the vote and the public comments.
3. NN records for application L: green, M: red, C: green.
4. NN records that C is worth publishing.
5. Ask the board to confirm that everything is correct. Start time monitoring, 12 hours.

14 S. Lauesen

7 Error Handling and Issue Resolution

During the project, the list of issues grew to 130 (including 23 from the first test). At
the end, they were all closed, i.e. resolved or renounced.

We can classify issues in this way:

1. Defect: The system violates the requirements. The supplier must cover the cost of
repair. Includes serious usability problems where the system could do what the user
wanted, but the user couldn’t figure out how (requirements I1-1 and I1-2).

2. Failed expectation: Although not specified as a requirement, the developer should
have known and must cover the cost. Includes obvious errors. Danish contract law
uses this principle.

3. Change: A new or changed requirement. The developer couldn’t know. The cus-
tomer must pay for the repair.

4. Ignore: A mistake, a duplicate, cannot be reproduced, or the customer decides to
accept it as it is.

Using these definitions, we get the
number of issues shown in Table 2.

There are 45 defects (violated
requirements). From the customer’s point
of view, it is an advantage that issues are
classified as defects, rather than changes
(for which he has to pay). More than 60%
of the defects were violation of usability
requirements and security requirements
(H4-2 and H4-3, protecting against human
mistakes). See examples below.

The 49 failed expectations can be
obvious bugs or issues the supplier should
know. See examples below. There are 22
change issues. The customer had to pay.
Here, better elicitation might have helped
(see the discussion section below).

Examples of defects (violated requirements)

#F8 When the user scrolls far down the application list, the list headings dis-
appear. [Violates I1-2. It was a serious usability problem for the board. See
discussion of #F8 below.]

#F13 The test person applied for 81.000 DKK, but it ended up as 81 DKK.
[Denmark uses decimal comma. Violates H4-2: All data entered must be
checked for format, consistency and validity.]

#25 When sending bulk emails to all rejected applicants, we need to make a few
individual changes. Not possible, said the supplier. [Violates C13-11, where
the supplier had proposed this solution: The secretary can change them
individually before sending them. So he had to find a solution – and he did.]

Table 2. Issues according to type

45 defects related to these requirements:
18 related to usability (Chapter I)
10 to security (H)
7 to deployment (J)
5 to tasks (C)
2 to data (D)
1 to system integration (F)
1 to response time (L1)

49 failed expectations
22 changes
14 ignore
130 Total

Problem-Oriented Requirements in Practice – A Case Study 15

#28 Wanted to pay an applicant. By mistake, the secretary clicked one with red
lights, meaning reject. The system couldn’t undo it. [Violates H4-3: The
user must be able to correct mistakes easily.]

Examples of failed expectations

#F23 File names in the application form: Only the top half of the letters are
visible. [This is an obvious error. You would not write a requirement about
such details.]

#71 Port 80 must be used in the upload part of the web-site. For security reasons,
many companies block other ports. [The supplier used another port, and as a
result many professional applicants couldn’t upload their application. We
argued that port 80 was the usual default, and that the supplier had
announced the solution as accessible from everywhere.]

Examples of changes

#44 It must not be allowed to upload travel applications without an Excel budget.
#70 The grant receiver’s bank account should show the payment with the recei-

ver’s project ID. We showed the foundation ID only. Important for univer-
sities that receive grants for many projects. They couldn’t trace the payment to
a department. [We had missed this rule because we forgot to treat the recei-
ver’s accountants as stakeholders. Fortunately, the error was easy to repair.]

Example of issue resolution
#F8 Scrolling a list with headings. The board member’s list of applications has a line
for each of the 200-300 applications. It has 16 columns, including 5 “traffic lights”, one
for each member and one for the secretary. When the user scrolled down the list, the
headers moved away too and the user couldn’t see what was what. It was a serious
usability problem. We had this dialog with the supplier:

• Supplier: It is web-based, so it is impossible to do it better.
• The PM found a solution on the web and gave the supplier the link. It is possible.
• Supplier: It will be costly.
• We: It is a usability defect (I1-2), so do it, please.

8 Discussion

Why was delivery late?
The selected supplier suggested developing and deploying the system in 3 months,
based on his COTS system. Actually, it took 11 months. The reasons were:

1. The supplier had been too optimistic with system integration. The POC (Proof of
Concept) had not revealed the complexities, partly because we had not anticipated
that the bank needed many weeks to provide electronic access.

16 S. Lauesen

2. For a complex web application that handled also Office documents, browsers turned
out to behave differently and it was hard to figure out what to do.

3. For programming, the supplier used a subcontractor without domain knowledge.
This caused many misunderstandings, also because the communication path became
long.

4. We had accepted the delivery and paid the supplier, assuming that the few open
issues could be handled as maintenance. This removed the financial incentive for
the supplier, and things went very slowly.

It is hard to see that additional requirements would have reduced the delay. Better
project management would.

Would traditional requirements help?
Traditional requirements in this domain are hundreds of pages, told the suppliers. The
author has experienced it himself. The university where he works wanted a
case-management system for the entire university. It was a bit more complex than the
Y-foundation system, e.g. because it had to handle many types of cases. The project
manager and the author wrote SL-07 requirements similar to the ones for the
Y-foundation. We spent around 60 h to do this. The spec was 45 pages. However, in
order to speed up the process and avoid a full EU acquisition, the university wanted to
build on an existing requirements framework for case management systems, where
several suppliers had been prequalified. So the university hired two consultants. They
spent around 100 h to move various SL-07 requirements into the system-shall
framework. They refused to include usability requirements because it was impossible to
define usability, so forget about it. (As explained above, usability requirements saved
many troubles in the Y-Foundation case.)

The result was a requirements specification of 240 pages with lots of mandatory
requirements. The contract part was an additional 120 pages. Just having suppliers send
a proposal was a problem. We got two proposals, only one of which met the mandatory
requirements. The conclusion is that this kind of requirements would not have helped.
SL-07 doesn’t use mandatory requirements because requirements can rarely be
assessed in isolation. They interact. Instead you may insist on adequate support of
requirements areas, e.g. board meetings or usability. In the Y-Foundation, the
mandatory “requirement” was that the business value of the entire acquisition shall be
positive (requirements section B4).

Avoiding the issues
Issue handling takes time, also for the issues where the supplier has to cover the cost.
To what extent could we have prevented the issues? Let us look at the issue classes one
by one:

Defects: Defects are violated requirements, so defects are a sign that requirements
work well. Otherwise, the issues would have been changes at the customer’s expense.
But it still makes sense to prevent them. More than 60% of the defects were usability
issues and handling human mistakes. You would expect that they might be prevented
by early prototyping, but most of them are of a very technical nature and would not
have been caught in this way. As an example, it seems unlikely that any of the four

Problem-Oriented Requirements in Practice – A Case Study 17

defects above would have been caught by prototyping. Would agile development help?
No, all the new parts of the system were developed in an agile way.

Failed expectations: Again, most of them are very technical, and better requirements
would not help.

Changes: Thirteen out of the 22 change requests were about data not being shown
when needed, doubts about mandatory data fields, or confusing labeling of data fields
on the user interface. If the supplier had accepted responsibility for usability of the
applicant’s web interface, these issues would have been defects. A more profound
change was that a new application state was needed in addition to the nine specified.
Fortunately, none of the changes were costly to implement (40 h total).

Better requirements elicitation would have helped, e.g. the customer exploring the
data presentation with prototypes or wireframes. The wire frames would fit into SL-07
as solution notes, in that way not being requirements.

COTS or tailor-made: As expected, the problem-oriented requirements were equally
suited for the COTS parts and the tailor-made parts. Traditional system-shall require-
ments or user stories are less suited for COTS, because the COTS system may support
the need, but not in the system-shall/user story way.

9 Conclusion

The case study has shown the following benefits of problem-oriented requirements in
this project. Since there is no similar study of other ways to specify requirements, we
have little to compare with. The hypothesis is that the benefits below can be expected in
other projects too, if they are based on SL-07 and have an analyst with solid SL-07
experience.

1. The problem-oriented requirements were 5 times shorter than traditional require-
ments in the same area.

2. The requirements were well suited for COTS-based solutions, since they didn’t
specify what the system should do, but only what it was to be used for.

3. Elicitation and requirements writing took just 40 h. This was due to reuse of the
SL-07 template example and the way it expresses requirements, but also to the
author having extensive experience with SL-07.

4. Stakeholders could understand the requirements and explain what they missed.
5. Suppliers could write excellent proposals with a modest effort (20–30 h).
6. It was easy to select the winner because we could se what each proposal supported

well and poorly.
7. The requirements were a good basis for resolving conflicts about who pays when

issues came up during development.
8. They were also a good basis for writing test cases and user manual.
9. The SL-07 usability requirements and the security requirements about guarding

against human errors, eliminated a lot of change requests.

18 S. Lauesen

References

1. de Bruijn, F., Dekkers, H.L.: Ambiguity in natural language software requirements: a case
study. In: Wieringa, R., Persson, A. (eds.) REFSQ 2010. LNCS, vol. 6182, pp. 233–247.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14192-8_21

2. Cockburn, A.: Writing Effective Use Cases. Addison Wesley, Reading (2001)
3. Jackson, M.: Problem Frames: Analysing and Structuring Software Development Problems.

Addison-Wesley, New York (2001)
4. Kotonya, G., Sommerville, I.: Requirements Engineering, Processes and Techniques. Wiley,

Chichester (1998)
5. Lauesen, S.: Software Requirements – Styles and Techniques. Addison-Wesley, Boston

(2002)
6. Lauesen, S., Kuhail, M.: Task descriptions versus use cases. Requir. Eng. 17, 3–18 (2012).

https://doi.org/10.1007/s00766-011-0140-1
7. Lauesen, S.: Guide to Requirements SL-07 - Template with Examples (2016). ISBN:

9781523320240. http://www.itu.dk/people/slauesen/index.html
8. Lauesen, S.: Requirements for the Y-Foundation. Full requirements specification including

the supplier’s reply, the selection document, and the list of errors/issues (2017). http://www.
itu.dk/people/slauesen/Y-foundation.html

9. Lucassen, G., et al.: Improving agile requirements. Requir. Eng. 21, 383–403 (2016)
10. Lucassen, G., Dalpiaz, F., Werf, J., Brinkkemper, S.: The use and effectiveness of user

stories in practice. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016. LNCS, vol. 9619,
pp. 205–222. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30282-9_14

11. Maiden, N.A., Ncube, C.: Acquiring COTS software selection requirements. IEEE Softw.
15, 46–56 (1998)

12. Nielsen, J.: The usability engineering life cycle. IEEE Comput. 25, 12–22 (1992)
13. Nurmuliani, N., Zowghi, D., Fowell, S.: Analysis of requirements volatility during software

development life cycle. IEEE (2004). https://opus.lib.uts.edu.au/bitstream/10453/2603/3/
2004001816.pdf

14. Redish, J., Molich, R., Bias, R.G., Dumas, J., Bailey, R., Spool, J.M.: Usability in practice:
formative usability evaluations — evolution and revolution. In: CHI 2002, Minneapolis,
USA, 20–25 April 2002

15. Robertson, S., Robertson, J.: Mastering the Requirements Process. Addison-Wesley, Harlow
(2012)

Problem-Oriented Requirements in Practice – A Case Study 19

http://dx.doi.org/10.1007/978-3-642-14192-8_21
http://dx.doi.org/10.1007/s00766-011-0140-1
http://www.itu.dk/people/slauesen/index.html
http://www.itu.dk/people/slauesen/Y-foundation.html
http://www.itu.dk/people/slauesen/Y-foundation.html
http://dx.doi.org/10.1007/978-3-319-30282-9_14
https://opus.lib.uts.edu.au/bitstream/10453/2603/3/2004001816.pdf
https://opus.lib.uts.edu.au/bitstream/10453/2603/3/2004001816.pdf

	Problem-Oriented Requirements in Practice – A Case Study
	Abstract
	1 Background
	2 The Y-Foundation Case
	3 Problem-Oriented Requirements and SL-07
	4 Elicitation and Specification of the Requirements
	5 Supplier Selection
	6 Development
	7 Error Handling and Issue Resolution
	8 Discussion
	9 Conclusion
	References

