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1  Introduction

Broadly speaking, we visualize data to investigate complex relationships among 
variables and to communicate these relationships to others. Network visualizations 
translate network data into a visual representation of some combination of the 
actors, relationships, clusters, and data attributes. The value of visualizing the struc-
ture of relationships and connections is being recognized as an increasingly impor-
tant twenty-first-century skill due to the need for all people to have a better 
understanding of complex phenomena across disciplines.

A call for increased literacy about networks, writ large, resulted in the develop-
ment of essential concepts that can be taken as a set of goals for what a network- 
literate person should know by the time they graduate high school [1]. For the 
purposes of this chapter, we define network visualization literacy (NVL) as the 
ability to read, interpret, and create visualizations of various types of networks. 
Research on NVL is still in its early phases, and recent studies suggest that NVL, 
and more generally data visualization literacy, of youth and adults is not very high 
or broad [2, 3].

Given this, we focus this chapter on a set of topics that together constitute an 
attempt to build a more comprehensive vision for NVL, including how to measure 
NVL, the role of NVL in teaching and learning, what the current research says 
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about NVL across a variety of learning contexts, and recommendations based on 
our current understanding of best ways to improve NVL. Before we move into dis-
cussing these topics, we first define how we conceive of NVL.

2  Network Visualizations

The simplest network visualization is an adjacency list, where each node is itemized 
and followed by a list of all of the other nodes with which that node shares a link (its 
neighbors). In the example in Fig. 1a, entity A has connections with B and D, and 
entity B has connections with A and C. Entities C (with B) and D (with A) only have 
singular connections with other nodes.

Large networks are more likely to be visualized as matrices or node-link dia-
grams and can be displayed using one or more of several organizing principles. A 
matrix visualization (Fig. 1b, representing the same network data as Fig. 1a) is a 
tabular visualization where a node is represented by either a row or a column (or 
both) and a link is represented by a numerical value placed in the cell where a node 
row and a node column intersect. For example, in a matrix visualization of a net-
work of individuals who send text messages to each other, a two-dimensional table 
is created where the same names appear in the row and column headers. Numerical 
values representing the number of texts sent between the two people will appear in 
the cell where the row of one individual and the column of the other intersect. 
Columns and rows can be ordered to highlight patterns in the data values, such as 
social cliques where all members text each other a lot [4].

In contrast to a matrix, a node-link diagram represents each actor as a single 
point using some graphical icon or symbol (often a circle). The presence of a link 
between two actors is visualized by the addition of a line or arc between the nodes 
(Fig. 2). These components are often laid out such that smaller distances between 
nodes represent higher similarity (Fig. 3), but nodes can also be arranged in a circu-
lar layout, perhaps in order of a certain property (e.g., a node’s number of links), or 
against a separate reference system like a geospatial map or a science map, where 
scientific disciplines are arranged in space using citation- or topic-based similarity 
algorithms (Fig. 4).

Fig. 1 Sample network 
visualizations: adjacency 
list (a) and matrix (b)
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Fig. 2 Node-link diagrams typically represent nodes as circles and links as lines or arcs

Fig. 3 A simple node-link diagram, labeled with common network-related terminology

Fig. 4 Sample network visualizations, using a circular layout algorithm (a), a geographic layout 
(b), and a science map (c)
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3  Researching Network Visualization Literacy

In general, we define data visualization literacy as the ability to make meaning from 
and interpret patterns, trends, and correlations in visual representations of data [5]. 
In order to interpret visualizations, users need the ability to complete a combination 
of the following tasks: read text, interpret data arrangements (e.g., to see correla-
tions, trends), and compare object properties (e.g., compare the sizes of nodes in a 
network given a legend). Users of any information visualization form may engage 
in a variety of tasks, including both low-level tasks like data foraging and high-level 
tasks like problem-solving and composing (i.e., making decisions based on data 
trends) [6].

As a subset of data visualization, network visualization is subject to many of the 
same kinds of interpretation issues present in other approaches to data visualization. 
Given the range of abilities needed to interpret visualizations and the myriad tasks 
possible, it is important to acknowledge the opportunities for network visualizations 
to be easily misinterpreted. These challenges arise through lack of clarity about the 
limits of network visualizations in interpreting very complex systems and the many 
ways that characteristics and behaviors of network components can be 
represented.

3.1  Representational Literacy: Do Individuals Understand 
How Network Data Are Converted into Visuals?

There has been an ongoing concern among network science practitioners about the 
trajectory of network science as a way into deepening data understanding, particu-
larly of large data sets. A call for increased literacy about networks, writ large, has 
resulted in the articulation of a set of seven essential concepts and core ideas [1]. 
These essential concepts can be taken as a set of goals for what a network-literate 
person should know by the time they graduate high school. The fourth essential 
concept is: “Visualizations can help provide an understanding of networks,” and the 
core ideas subsumed by it include:

• Networks can be visualized in many different ways.
• Diagrams of a network can be drawn by connecting nodes to each other using 

edges.
• There are a variety of tools available for visualizing networks.
• Visualization of a network often helps to understand it and communicate ideas 

about connectivity in an intuitive, nontechnical way.
• Creative information design plays a very important role in making an effective 

visualization.
• It is important to be careful when interpreting and evaluating visualizations 

because they typically do not tell the whole story about networks.

A. Zoss et al.



173

These essential concepts are relatively new, and scaling them into wide adoption 
will require robust validation and transformative professional development that 
integrates new curriculum and learning materials on network visualization into rig-
orous content knowledge and pedagogical approaches.

Research on the skills required to interpret network visualizations and the preva-
lence and quality of those skills is still in early phases. Small-scale studies investi-
gated the comprehension of the basic metaphors used by the diagrams [7], the 
specific structural properties of network data [8], and the graph design aesthetics 
that are most likely to improve performance on quantitative interpretation tasks [9]. 
In the sections that follow, we outline some general questions related to NVL that 
have been investigated through research along with initial findings.

3.2  Metaphoric Literacy: How Intuitive Is the Arrangement 
of Nodes and Links in a Network Visualization?

Network visualization literacy studies might address whether users understand the 
metaphoric properties of the visualization, that is, the implicit structures the visual-
ization is using to represent network data. Most node-link diagrams have conven-
tions that guide interpretation of the diagram, such as:

• The positions of nodes are an approximation of the similarity between the nodes, 
based on an analysis of the links between nodes (and possibly also the weights of 
those links).

• Nodes that are close together are more similar than nodes that are far apart (the 
distance-similarity metaphor).

• The positions of nodes may be influenced by aesthetic choices that are encoded 
into the layout algorithm (e.g., to minimize edge crossing) or that are used to 
make manual adjustments (e.g., to eliminate overlap of two nodes by manual 
shifting).

• Network visualizations can be rotated or reflected in space arbitrarily.
• Some network visualizations omit a portion of the links to better focus attention 

on the node positions and the most important link structures.
• Shorter links are usually stronger than longer links, even though longer links 

may draw the eye and shorter links may be so short that they almost disappear.

Studies of the metaphoric properties of network visualizations are rare and have 
focused primarily on the distance-similar metaphor. Fabrikant and colleagues [7, 
10, 11] explored the judgments of novice users of network visualizations regarding 
the presumed similarity of two pairs of target nodes, manipulating a variety of topo-
logical and aesthetic variables: the Euclidean distance between the nodes, the cumu-
lative measured length of links between the nodes, the number of intervening nodes 
on the path between the target nodes, and the width, darkness or hue of links. In all 
studies, participants overwhelmingly associated similarity with the length of the 
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path between two nodes (in terms of geometric length or direct-line distance, not the 
number of links in the path). Nodes close to each other “as the crow flies” were 
considered less similar to each other than nodes that had a shorter network connec-
tion. The only design features of a network that contradicted this powerful intuition 
were the width of a link and, to a lesser extent, the darkness of a link; wider links 
especially made nodes seem more similar to each other, even if those nodes had a 
longer measured path.

In a final study, [10] compared judgments of node similarity to judgments of 
node distance by making a slight change to the task instructions from their previous 
studies, such that participants answered questions about similarity and distance 
separately. When asked about distance, participants focused on Euclidean distance. 
When asked about similarity, participants focused on the geometric length of links. 
These results are encouraging, in that network layout algorithms may make com-
promises about where a node is positioned, thereby rendering “as the crow flies” 
distances less meaningful than the presence of links. On the other hand, the length 
of links can be determined both by the layout of the nodes and by whether the layout 
algorithm has a constraint on link length. Novices without a sophisticated under-
standing of layout algorithms will be likely to make judgments based on the length 
of the lines.

One way of interpreting these findings is through the lens of basic perceptual 
skills. Even without special training, users of visualizations have natural skills for 
interpreting spatial information. These skills were described over a century ago by 
German psychologists as “Gestalt laws” [12], and they can help explain how com-
ponents of data visualizations are understood on a very fundamental, perceptual 
level. These laws are especially relevant for network visualizations, where training 
and even exposure are uncommon among a general population. The arrangements 
of nodes in space and the connection of those nodes by lines have very strong con-
notations for users, and visualization designers must anticipate how that will affect 
interpretation.

3.3  Topological Literacy: Do Individuals Understand Basic 
Network Properties When Reading Network 
Visualizations?

Beyond a user’s intuition about a network visualization, researchers may also want 
to investigate whether users can glean topological information (i.e., the mathemati-
cal or statistical properties of the network data underlying the diagram) from the 
visualization. Depending on the field of study, different parts of a network dataset 
may be considered especially important. In some fields, the clusters of nodes in the 
network are most important, whereas in other fields it is important to identify spe-
cific nodes that are highly influential. For example, a study could measure a user’s 
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ability to identify nodes with a high betweenness centrality score (i.e., those nodes 
that lie on heavily traveled paths between node clusters) from the network visualiza-
tion. Testing whether a user can read or estimate topological information about net-
work data from a visualization can be an important way of assessing either the 
user’s literacy or the visualization’s success.

A user’s topological literacy is dependent on many factors: the user’s prior train-
ing with both network data and network visualizations, the choice of network layout 
algorithm (and by extension, the topological properties that are emphasized by the 
network layout algorithm), any additional design choices made by the producer of 
the network visualization (e.g., adding color coding to emphasize a particular topo-
logical property), the specific properties of that particular network dataset (e.g., the 
size of the network, whether some nodes have notably more links than others), and 
the choice of topological property (i.e., “task”) to measure.

3.3.1  Effect of Layout or Base Map Choice

Node-link diagrams have a wide variety of layout algorithms (Fig. 5) that determine 
the position of nodes and edges. The most common layout algorithms, especially for 
small- or medium-sized networks, are algorithms drawn from physical analogies 
like springs and forces, pushing and pulling the nodes into place based on the pres-
ence and/or weight of edges. The complexity of network data means that there is no 
one “correct” layout of the nodes and edges – two nodes may have a strong link to 
each other, but they may also be strongly connected to other nodes that are very far 
apart. Because of this complexity problem, different layout algorithms have been 
developed either to prioritize different features of the data or to make certain types 
of visual judgments easier.

Fig. 5 Two visualizations of the same network data. The layout algorithm on the left prioritizes 
clusters, while the layout algorithm on the right prioritizes even node distribution
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One way of evaluating layout algorithms is to explore the extent to which the 
layout follows guidelines for graph design aesthetics [13, 14]. Many such graph 
aesthetic principles have been identified [9], including:

• Global and local symmetry
• Non-overlapping nodes
• Minimized edge crossings
• Edges of equal length
• Evenly spaced nodes
• Visual representation or emphasis of clusters (e.g., intra-cluster edges are short-

ened; inter-cluster edges are lengthened)
• Space-filling algorithms
• Node-area awareness

The most widely studied aesthetic properties for network visualizations have 
been edge crossings and the angles created by those crossings. These features have 
been found to have a large impact on topological literacy. Different layout algo-
rithms also vary greatly in their performance on these aesthetic properties.

Seminal work by Purchase and colleagues [15–19] manipulated and tested a 
series of aesthetic properties of network visualizations to determine user perfor-
mance on three tasks for finding: (a) the length of the shortest path between two 
nodes, (b) the number of nodes that need to be removed to destroy a path between 
two nodes, and (c) the number of edges that need to be removed to destroy a path 
between two nodes. Through a sequence of related studies, Purchase and colleagues 
[15–18] systematically investigated the effects of edge bends, edge crossings, lay-
out symmetry, angles between links as they leave a node, and use of an orthogonal 
grid for nodes and links. Results consistently emphasized that higher numbers of 
edge crossings and high numbers of edge bends generally reduce performance, 
measured via task accuracy and response time. Related work by Huang and col-
leagues [20–24] supports these results and suggests that edge crossings with small 
angles, especially, inhibit performance (measured by accuracy, response time, and 
self-reported mental effort) on tasks that require users to follow paths.

As a follow-up to the original studies by Purchase and colleagues, [19] intro-
duced the concept of path continuity or the lack of abrupt changes in direction of 
the path. This study focused on a single task – length of the shortest path between 
two nodes – and found that response time on this task increased as a result of the 
following changes (in order of influence): increase in number of edges in shortest 
path, decrease in continuity of shortest path, increase in number of crossings on 
shortest path, and increase in number of branches off nodes in the shortest path. 
This suggests that for tasks requiring users to follow a path, anything increasing 
the number of additional candidate paths or that makes it harder to focus on the 
shortest path will increase the time needed to complete the task. Rather than focus-
ing on properties of the entire network visualization, it may make more sense to 
optimize visualizations for specific tasks and the aesthetic properties that will 
make those tasks easier.
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3.3.2  Effect of Data Overlay Design Choices

Regardless of the layout algorithm used, other basic graphic design properties that 
apply to all visualizations should be considered when designing network visualiza-
tions. A series of core perceptual studies have addressed basic human perceptual abili-
ties as they relate to interpreting information visualizations. Both early studies and 
more recent replications [25, 26] suggest that humans have aptitude for comparisons 
related to position in space and length of an object. Accuracy suffers when tasks 
require comparisons of area (like comparisons between two circles) or color value 
(like the comparisons between two shades of red). Node-link diagrams employ only 
relative positioning, and even those relative positions are the result of algorithms that 
may not have an optimal solution for a 2D visualization. In data visualization, there is 
often a tension between accuracy and aesthetics. The differences in positions in a 
node-link diagram are not meant to be interpreted with great accuracy, despite human 
acuity for position comparisons. Conversely, node-link diagrams often employ size 
and color coding to emphasize topological data in the visualization despite our rela-
tively low acuity with those visual encodings. These mismatches between node-link 
diagrams and our basic human perceptual systems suggest challenges for the use of 
network visualizations without supplemental numerical information.

3.3.3  Effect of Network Data Properties

The basic properties of a network dataset can also have a large impact on the effec-
tiveness of the visualization. Ghoniem, Fekete, and Castagliola [8] compared task 
performance of users viewing matrices and node-link diagrams, varying the size 
and densities of sample data sets. They found performance on all experimental tasks 
deteriorated for node-link diagrams as the size increased from 20 nodes to 50 nodes 
and again between 50 nodes and 100 nodes. Increases in density between 0.2 and 
0.6 had mixed effects on task performance. They concluded that certain tasks are 
much harder with high-density networks, while others show no significant drop in 
accuracy as density increases. Similarly, Purchase, Cohen, and James [18] found 
that an increase in density of node-link diagrams relates to a decrease in accuracy 
on tasks dealing with the connectivity of a network.

4  Teaching Network Visualization Literacy

As reviewed above, research within the visualization community focuses primarily 
on experimental studies of network visualization comprehension, limited to specific 
predetermined tasks. A more robust understanding of network visualization literacy 
must also take into account both how users understand network visualizations when 
they encounter them in their daily life and how individuals can gain the expertise 
necessary to produce their own network visualizations. Thus, a combination of 
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formal and informal education is desirable for empowering many to read and make 
network data visualizations. Here we present and discuss three existing approaches–
Connections: The Nature of Networks (a public science museum exhibition at the 
New York Hall of Science), NetSci High (a research program for high school stu-
dents sponsored by Boston University, Binghamton University, USMA West Point, 
and the New  York Hall of Science), and the Information Visualization MOOC 
course at Indiana University.

4.1  Network Visualization in Informal Learning Environments

Informal learning environments (which includes unstructured learning opportuni-
ties such as museums and personal learning) provide opportunities for acquainting 
the public with network visualization to increase NVL. Because of the unstructured 
nature of these environments and the relative novelty of the use of network visual-
ization as a tool for understanding complex systems, significant scaffolding is 
required for effective learning and knowledge transfer.

4.1.1  Connections: The Nature of Networks

The first public museum exhibition on network science was developed by the New 
York Hall of Science in 2004 [27]. The pedagogical goal of this exhibition was to 
acquaint museum visitors with the fundamentals of network science, including the 
basic ways networks are represented as a series of links and nodes, as well as the 
generalizability and value of how most kinds of complex connected systems can be 
represented as networks, the benefits of these kinds of representations, and a basic 
characterization of complex network concepts (small worlds, scale-free properties 
and emergence). To address a very diverse audience (including all ages), it was 
theorized that the experience overall should engage visitors in network concepts in 
a variety of ways, including visual representations, sound, and embodied or physi-
cal interaction with networks and network concepts (Fig. 6).

A significant challenge to developing this experience was that the notion of net-
works as a general principle was a new idea to visitors. In a preliminary visitor study 
[28], visitors could readily identify computer and communications networks with 
little or no prompting, but they could not readily identify networks in either social 
or natural contexts. A summative evaluation of the exhibition [29] indicated an 
increase in the number of visitors who identified networks in a broad spectrum of 
applications, particularly environmental and social, and indicated that networks are 
a way to understand the world through the Connections exhibition. To achieve these 
outcomes, however, required intervention by floor staff to explain relevant network 
ideas represented in the exhibition. By far the most popular and effective aspects of 
the experience were when visitors physically interacted with networks.
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On balance, beyond positive affect and recognition of the ubiquity of networks, 
there was little transfer of knowledge. It was a much more difficult task for visitors 
to deepen their understanding of the properties of networks. The implications of this 
work for NVL are that effective engagement of museum visitors in complex net-
work ideas (a) is deeper when visualization is combined with hands-on activities in 
which the visitor is engaged in network concepts, (b) requires intervention of floor 
staff for understanding specific network properties, and (c) exists within a reality of 
an overall lack of understanding of networks among a diverse visitorship, indicating 
the need for more learning opportunities for the public about the importance and 
utility of networks.

4.2  Network Visualization in Formal Learning Environments

For the sake of this chapter, formal learning environments circumscribe teaching 
and learning in primary, secondary, and post-secondary school-based environments. 
The following section details NVL activities in both university and high school 
classrooms.

Fig. 6 Ropes and Pulleys (left) convey the complexity and dynamic of networks. Visitors turn the 
wheels to change the topology of the pulleys and ropes creating clusters and isolated nodes. NEAR 
(bottom right) simulates the dynamics of social networks using nearest neighbor algorithms
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4.2.1  NetSci High

Network visualizations have been taught at the university level for some time, but 
secondary educational environments only recently started exploring this topic. As 
with the introduction of any new idea, finding a way to fit networks into existing 
curriculum is difficult for teachers, who are accountable primarily for their student’s 
performance on standardized tests. Because networks align well with mathematics 
and science content standards through the Common Core [30] and NGSS [31], it is 
reasonable to infuse these ideas into curriculum, create professional development 
opportunities, and also student and teacher research through guidance by research-
ers and university faculty.

NetSci High started in 2010 and is a first of its kind program to train high school 
teachers and students in network analysis techniques and have them apply it to 
research mentored by university researchers and graduate students [32]. An impor-
tant aspect of this program is the training of students and teachers, which between 
2012 and 2015 took the form of a 2-week “boot camp” at Boston University, in 
which teachers and students were immersed in network concepts and trained in 
tools to equip them for mentored research during the school year. Research projects 
culminate in display and defense of research at the International School and 
Conference for Network Science.

Findings from the evaluation of the Connections exhibition at the New York Hall 
of Science were useful to inform the development of the training and the role of 
network visualization in the program. Specifically, this involved exposing partici-
pants to a wide variety of applications of networks and how they are visualized, as 
well as providing hands-on and embodied ways to demonstrate and engage with 
network concepts. Central to the training was skills development in the use of net-
work analysis tools. NetworkX and Gephi were the primary tools taught, and vari-
ous other analysis environments and techniques were included in the actual research 
phase. Program evaluation by Davis Square Research Associates [33] indicated sig-
nificant gains in the understanding of (a) the value of network visualization and its 
role in analysis of complex networks; (b) the intimate relationship between analysis 
and visualization; (c) the process of representing a variety of network attributes, 
which can be accomplished through a variety of tools; and (d) the importance of an 
intensive approach to teaching novices network visualization as a tool to analyze 
and communicate findings in network science.

4.2.2  Information Visualization MOOC

In a long-running teaching and research program at Indiana University, teaching 
university students to understand and create network visualizations began by devel-
oping a systematic process for designing effective visualizations. This framework 
for creating visualizations has then been embedded into course structure, books, 
activities, software, and digital teaching aids, all of which allowed the graduate- 
level Information Visualization course to expand into a massive open online course 
(MOOC).
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Frameworks for Network Visualization Education

Börner [34] proposes a general process for converting data into a visualization 
(Fig. 7), each step of which is based on an analysis of what the users of the visual-
ization need and want from the visualization. First, data need to be parsed and read 
(READ).

Extensive cleaning and preprocessing might be needed. Temporal, geospatial, 
topical, and network analyses might be performed to identify trends and patterns 
(ANALYZE). The visualization phase (VISUALIZE) comprises three major steps. 
First, the appropriate reference system must be identified. This reference system 
becomes the stable base map onto which data are layered. Second, the reference 
system might be modified (e.g., an axis may undergo a logarithmic transforma-
tion). Third, additional data variables are visually encoded using diverse graphic 
variable types. Ultimately, the visualization must be deployed (DEPLOY) (i.e., 
printed, published online, etc.) Last but not least, the visualization is presented to 
stakeholders for validation and interpretation. Frequently, new visual insights lead 
to new questions, requiring additional data analysis and visualization – the cycle 
repeats.

This detailed formulation of different steps involved in visualization design open 
each step up for the critical discussions that are necessary for gaining data visualiza-
tion literacy. For example, different needs from stakeholders, combined with differ-
ent properties of the data, will lead to different visual design recommendations. In 
the case of network visualizations, the framework is especially helpful in guiding 
students through a series of design choices that are easy to dismiss as arbitrary 
because of the lack of standardized guidelines and training within the broader infor-
mation visualization community.

Fig. 7 Needs-driven workflow design with science map network example on right
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The information visualization MOOC (IVMOOC) [35] is a graduate-level course 
that has been continually developed and taught at Indiana University (IU) since 
2013. Most students, coming from over 100 countries, take the course for free to 
earn a personalized letter of accomplishment and digital Mozilla badge. Additionally, 
in Spring 2016, more than 120 students registered for three IU credits as part of the 
Information and Library Science M.S. program and the online Data Science M.S. 
program offered by the School of Informatics and Computing.

Course Structure

The IVMOOC course aims to improve data visualization literacy – the expertise and 
skills needed to read and make data visualizations. It teaches theoretical foundations 
and advanced tools that help turn data into insights.

The course uses a combination of hands-on case studies showing how to read, 
analyze, and visualize; theory lectures; client projects; homework assignments; and 
exams to empower students to design effective visualizations that take the needs of 
users into account. In the first week of the course, students are introduced to the 
visualization framework, which is used to structure the course’s schedule and 
exams, textbook [36], tools, and an IVMOOC flashcard app (discussed more below). 
In weeks two to six students use the framework to learn about a variety of types of 
visualizations, including network visualizations. In the last 7 weeks of the course, 
students collaborate on real-world projects for a variety of clients. Results from 
previous student projects are published in [36].

Each unit includes theory and hands-on sections. Each theory section 
comprises:

• Examples of exemplar visualizations
• Visualization goals
• Key terminology
• General visualization types and their names
• Workflow design
• Discussion of specific algorithms

Each hands-on section guides students through user and task analysis; data 
preparation, analysis, and visualization; deployment; and the interpretation of visu-
alizations. The sections feature in-depth instruction on how to navigate and operate 
several software programs used to visualize information. Furthermore, students 
learn the skills needed to visualize their own data, allowing them to create unique 
visualizations.

The theory and hands-on components are standalone, meaning that participants 
can read/watch whichever section they are more interested in first, and then review 
the other section. After the theory videos, there are self-assessments, and after the 
hands-on videos, there are short homework assignments.
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Textbook

The Visual Insights textbook [36] was designed as a companion resource for students 
taking the IVMOOC. It contains all theory and workflows covered in the course. 
While the Atlas of Knowledge [34] aims to feature timeless knowledge, or princi-
ples that are indifferent to culture, gender, nationality, or history, the IVMOOC and 
associated textbook cover “timely knowledge,” or the most current data formats, 
tools, and workflows used to convert data into insights.

Analogous to the IVMOOC course, Chap. 1 introduces the visualization framework 
intended to help non-experts assemble advanced analysis workflows and design dif-
ferent visualization layers. It also showcases how the framework can be applied to 
“dissect visualizations” for optimization or interpretation. Chapters 2–7 in the text-
book introduce the different types of analysis: temporal (when), geospatial (where), 
topical (what), and trees and networks (with whom). Chapter 8 presents exemplary 
case studies that resulted from IVMOOC real-world client projects.

Software

Every student who registers for the IVMOOC gets experience using the Sci2 Tool 
[37] a software application for data analysis and visualization developed by Börner 
at IU. The NSF-funded tool has been in development since 2008 and benefits from 
more than 10 years of tool development and feedback from many of the more than 
150,000 tool users in academia, industry, and government. The tool supports the 
temporal, geospatial, topical, and network analysis and visualization of scholarly 
datasets at the micro (individual), meso (local), and macro (global) levels. It imple-
ments the visualization framework to help users assemble more than 180 algorithms 
into proper workflows. Specifically, it organizes the main menu structure by work-
flow steps (from reading and preprocessing data to analyzing and visualizing data 
and saving out results) and by visual analysis type (temporal, geospatial, topical, 
networks) using the visualization framework discussed above.

Flashcard App

Visualization designers and users must have a basic understanding of different visu-
alizations – their types and the visual encodings used. They must be able to recog-
nize and name visualizations in order to refer to and talk about visualizations. The 
IVMOOC Flashcard app lets users browse more than 60 information visualizations. 
Users swipe to navigate through visualizations, pinch in/out to zoom, and tap to turn 
the card to access information about name of the visualization, visualization type 
(e.g., graph, map, network layout), visual encoding used (graphic symbol types and 
graphic variable types), and reference to additional information provided in the 
Atlas of Knowledge [34]. The Flashcard app, created in Unity 3D, supports both 
Android and iOS.
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5  What Are our Best Ways Forward?

Based on our review of relevant research and experiences with teaching and learning 
with network visualization in formal and informal settings, we make the following 
recommendations for improving network visualization literacy:

• Use data that are meaningful to the learner. Data that are personally relevant to, 
directly collected from/by or selected by the learner will increase their engage-
ment and familiarity with the data. Similarly, when asking questions of the data, 
instructors are urged to pick tasks that make sense for network visualizations but 
also those that make sense for the selected data and for the research questions the 
user is investigating.

• When introducing novices to networks and visualization techniques, best prac-
tices would suggest the use of small networks with low density to increase 
understanding.

• When designing visualizations, leverage core perception mechanisms by follow-
ing Gestalt grouping, continuity, and proximity principles. Additionally, endors-
ing certain types of aesthetic principles like minimal edge crossing and path 
continuity should improve the likelihood of understanding by the public.

• Following best instructional practices, educators should engage novices in low 
complexity tasks with greater support and move toward higher-complexity tasks 
and networks, withdrawing support as the learners gain competence.

• Network scientists need to provide explicit instruction on how readers/users 
should read the visualizations they create. Clearly outlining what conclusions are 
and are not valid will help users in interpretation. This should include use of 
standardized terminologies to leverage prior knowledge.

6  Discussion

In conclusion, there is ample evidence that network visualization is an important 
tool for understanding complex connected systems, but it is important that it be 
thoughtfully combined with other pathways into understanding what networks are, 
their characteristics and behaviors.

To enact these recommendations and advance the nascent research on NVL, we 
invite close collaboration with others on developing both widely adoptable visual-
ization frameworks that can be used to teach information visualization theory and 
methods and also custom development of a more refined and meaningful definition 
and framework for NVL. Efforts must be made to develop guidelines that  recommend 
skills and learning outcomes and competencies for both learners that have taken 
information visualization courses in formal settings and a wide audience of citizens 
and policymakers. Additionally, the visualization community should work together 
openly to standardize terminology, theoretical frameworks, and visualization tech-
niques. This work should involve the development, testing, and implementation of 
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course designs, tools, materials, and activities to increase student competency with 
interpreting and implementing visualizations, preparing them to evangelize these 
methods and practices in research, practice, and training. Finally, open data, open 
code, and open education are true enablers that can empower anyone to convert data 
into visual insights.
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