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3.1 Introduction

Process modeling offers a robust framework for developing, testing, and refining
substantive theories through mathematical specification of the mechanisms and/or
latent processes that produce observed data. Across many fields of application
(e.g., chemistry, biology, engineering), process modeling uses detailed mathematical
models to obtain accurate description and explanation of equipment and phenom-
ena, and to support prediction and optimization of both intermediate and final
outcomes. In the social and behavioral sciences, the process modeling approach
is being used to obtain insight into the complex processes underlying human
functioning. In particular, the approach offers a way to describe substantively
meaningful components of behavior using mathematical functions that map directly
to theoretical concepts. In cognitive science, for example, drift diffusion models
(see, e.g., Ratcliff and Rouder 1998) have been used to derive rate of information
accumulation, non-decision time, bias, and decision boundaries from observed data
on reaction time and correctness of response. Applied to data about individuals’
decisions in gambling tasks, process models are used to describe people’s tendency
to take risks, their response consistency, and their memory for payoffs (Wetzels
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et al. 2010). In sociology, multinomial tree-based process models have been used to
infer cultural consensus, latent ability, willingness to guess, and guessing bias from
individuals’ judgments on a shared knowledge domain (Oravecz et al. 2014). In
psychology, process models are proving especially useful for study of regulatory and
interpersonal processes. Process models based on principles governing thermostats
and reservoirs are being used to describe regulation of negative affect and stress
(Chow et al. 2005; Deboeck and Bergeman 2013), and process models based
on physical principles of pendulums are being used to describe interaction and
coordination between partners of a dyad (e.g., wife-husband, mother-child; see in
Chow et al. 2010; Ram et al. 2014; Thomas and Martin 1976). In this paper we
present and illustrate how a specific processmodel, a multilevel Ornstein-Uhlenbeck
model, can be used to describe and study moment-to-moment continuous-time
dynamics of affect captured in ecological momentary assessment studies.

Process modeling is, of course, sometimes challenging. Mathematically precise
descriptions of humans’ behavior are often complex, with many parameters, non-
linear relations, and multiple layers of between-person differences that require
consideration within a multilevel framework (e.g., repeated measures nested within
persons nested within dyads or groups). The complexity of the models often means
that implementation within classical statistical frameworks is impractical. Thank-
fully, the Bayesian statistical inference framework (see, e.g., Gelman et al. 2013) has
the necessary tools. The algorithms underlying the Bayesian estimation framework
are designed for highly dimensional problems with non-linear dependencies.

Consider, for example, the multilevel extension of continuous-time models
where all dynamic parameters are allowed to vary across people, thus describing
individual differences in intraindividual variation or velocity of changes. Driver
et al. (2017) offer an efficient and user-friendly R package for estimation of mul-
tilevel continuous-timemodels, cast in the structural equation modeling framework.
However, at the time of writing, person differences are only allowed in the intercepts
and not in the variance or velocity parameters. A flexible Bayesian extension of the
package that allows for all dynamics parameters to be person-specific is, though,
in progress (Driver and Voelkle 2018). Importantly, flexible Markov chain Monte
Carlo methods (Robert and Casella 2004) at the core of Bayesian estimation also
provide for simultaneous estimation of model parameters and regression coefficients
within a multilevel framework that supports identification and examination of
interindividual differences in intraindividual dynamics (i.e., both time-invariant and
time-varying covariates).

In the sections that follow, we review how process models are used to analyze
longitudinal data obtained from multiple persons (e.g., ecological momentary
assessment data), describe the mathematical details of the multilevel Ornstein-
Uhlenbeck model, and illustrate through empirical example how a Bayesian imple-
mentation of this model provides for detailed and new knowledge about individuals’
affect regulation.
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3.1.1 The Need for Continuous-Time Process Models
to Analyze Intensive Longitudinal Data

Psychological processes continuously organize behavior in and responses to an
always-changing environment. In attempting to capture these processes as they
occur in situ, many researchers make use of a variety of experience sampling,
daily diary, ecological momentary assessment (EMA), and ambulatory assessment
study designs. In EMA studies, for example, self-reports and/or physiological
measurements are collected multiple times per day over an extended period of
time (i.e., weeks) from many participants as they go about their daily lives—
thus providing ecological validity and reducing potential for reporting bias in the
observations (Shiffman et al. 2008; Stone and Shiffman 1994). The data obtained
are considered intensive longitudinal data (ILD, Bolger and Laurenceau 2013;
Walls and Schafer 2006), in that they contain many replicates across both persons
and time, and support modeling of interindividual differences in intraindividual
dynamics. ILD, however, also present unique analytical challenges. First, the
data are often unbalanced. The number of measurements is almost never equal
across participants because the intensive nature of the reporting means that study
participants are likely to miss at least some of the prompts and/or (particularly in
event contingent designs) provide a different number of reports because of natural
variation in exposure to the phenomena of interest. Second, the data are often
time-unstructured.Many EMA studies purposively use semi-random time sampling
to reduce expectation biases in reporting and obtain what might be considered a
representative sampling of individuals’ context. Although the in situ and intensive
nature of the data obtained in these studies provides for detailed description of the
processes governing the moment-to-moment continuous-time dynamics of multiple
constructs (e.g., affect valence, affect arousal), the between-participant differences
in data collection schedule (length and timing) make it difficult to use traditional
statistical modeling tools that assume equally spacedmeasurements or equal number
of measurements. Modeling moment-to-moment dynamics in the unbalanced and
time-unstructured data being obtained in EMA studies requires continuous-time
process models (see more discussion in Oud and Voelkle 2014b).

3.1.2 The Need for Continuous-Time Process Models
to Capture Temporal Changes in Core Affective States

To illustrate the benefits of a process modeling approach and the utility of
continuous-time process models, we will analyze data from an EMA study in which
participants reported on their core affect (Russell 2003) in the course of living
their everyday lives. In brief, core affect is a neurophysiological state defined by
an integral blend of valence (level of pleasantness of feeling) and arousal (level of
physiological activation) levels. Core affect, according to the theory of constructed
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emotion (see, e.g., Barrett 2017), underlies all emotional experience and changes
continuously over time. People can consciously access their core affect by indicating
the level of valence and arousal of their current experience. Our empirical example
makes use of data collected as part of an EMA study where N = 52 individuals
reported on their core affect (valence and arousal) for 4 weeks, six times a day
at semi-random time intervals. Specifically, participants’ awake time was divided
into six equal-length time intervals within which a randomly timed text prompt
arrived asking participants about their current levels of core affect (along with
other questions related to general well-being). The intensive longitudinal data,
obtained from four individuals, are shown in Fig. 3.1. Interval-to-interval changes
in arousal and valence are shown in gray and blue, respectively. Some individual
differences are immediately apparent: the four people differ in terms of the center
of the region in which their core affect fluctuates, the extent of fluctuation, and the
degree of overlap in arousal and valence. The process modeling goal is to develop a
mathematical specification of latent processes that underlie the moment-to-moment
dynamics of core affect and how those dynamics differ across people.

Based on reviews of empirical studies of temporal changes in emotions and
affect, Kuppens et al. (2010) proposed the DynAffect framework, wherein intraindi-
vidual affective dynamics are described in terms of three key elements: affective
baseline, homeostatic regulatory force, and variation around the baseline. Using
a process modeling approach, these features are translated into a mathematical
description of core affect dynamics—a continuous-time process model. Important
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general features of the mathematical parameterization include the following: (1)
the latent person-level temporal dynamics of core affect are explicitly mapped to
the substantive theory, (2) measurement noise in observed data is accommodated
through addition of a measurement model, and (3) simultaneous modeling of
person and population-level characteristics (e.g., organization of interindividual
differences) is accommodatedwithin a multilevel framework. Previous studies using
similar process models have confirmed the utility of the approach for studying
interindividual differences in intraindividual dynamics. In particular, it has been
shown that people who score high on the neuroticism scale of Big Five personality
model show lower baseline pleasantness and increased fluctuation (Oravecz et al.
2011), people who tend to apply reappraisal as emotion regulation strategy show
higher levels of moment-to-moment arousal regulation (Oravecz et al. 2016), and
older people tend to have higher arousal baseline with less fluctuation (Wood et al.
2017). In this chapter we add new information about how interindividual differences
in the temporal dynamics of core affect are related to interindividual differences in
trait-level emotional well-being (i.e., relatively stable characteristics of individuals’
emotional patterns).

3.2 The Ornstein-Uhlenbeck Process to Describe
Within-Person Latent Temporal Dynamics

3.2.1 The Stochastic Differential Equation Definition
of the Ornstein-Uhlenbeck Process

As noted earlier, process modeling requires specification of a mathematical model
that describes the mechanisms and/or latent processes that produce observed data.
Here, three key features of the temporal dynamics of core affect are described by
using an Ornstein-Uhlenbeck process model (OU; Uhlenbeck and Ornstein 1930),
the parameters of which will be estimated using EMA data that are considered noisy
measurements of this latent process. Let us denote the position of the latent process
at time t with θ(t). The OU process can be defined as a solution of the following
first-order stochastic differential equation (Langevin equation):

dθ(t) = β(μ − θ(t))dt + σdW(t). (3.1)

Parameter θ(t) represents the latent variable evolving in time, and Eq. (3.1)
describes the change in this latent variable, dθ(t), with respect to time t . As
can be seen, changes in the latent state are a function of μ, which represents the
baseline level of the process, β, which represents attractor or regulatory strength,
W(t), which is the position of a standard Wiener process (also known as Brownian
motion; Wiener 1923) at time t , and σ , which scales the added increments (dW(t))
from the Wiener process (together, also called the innovation process). The Wiener
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process evolves in continuous time, following a random trajectory, uninfluenced by
its previous positions. If you consider Eq. (3.1) as a model for temporal changes in
a person’s latent core affect dynamics, μ corresponds to the baseline or homeostatic
“goal,” and β quantifies the strength of the regulation toward this goal.

The first part of the right-hand side of Eq. (3.1), β(μ − θ(t))dt , describes the
deterministic part of the process dynamics. In this part of the model, the degree
and direction of change in θ(t) is determined by the difference between the state
of the process at time t , θ(t), and the baseline, μ, which is scaled by an attractor
strength coefficient β (also called drift). We only consider stable processes here,
meaning that the adjustment created by the deterministic part of the dynamics is
always toward the baseline and never away from it. This is achieved in the current
parameterization by restricting the range of β to be positive.1 More specifically,
when the process is above baseline (θ(t) > μ), the time differential dt is scaled
by a negative number (μ − θ(t) < 0); therefore the value of θ(t) will decrease
toward baseline as a function of the magnitude of the difference, scaled by β.
Similarly, when the process is below baseline (μ > θ(t)), time differential dt part
is positive, and the value of θ(t) will increase toward baseline. As such, the OU
process is a mean-reverting process: the current value of θ(t) is always adjusted
toward the baseline, μ, which is therefore characterized as the attractor point of the
system. The magnitude of the increase or decrease in θ(t) is scaled proportional
to distance from the baseline by β, which defines the attractor strength. When β

goes to zero, the OU process approaches a Wiener process, that is, a continuous-
time random walk process. When β becomes very large (goes to infinity), the OU
process fluctuates around the baselineμwith a certain variance (stationary variance,
see next paragraph).

The second part of the right-hand side of Eq. (3.1), σdW(t), describes the
stochastic part of the process dynamics. This part adds random input to the system,
the magnitude of which is scaled by β and σ . Parameter σ can be transformed into a
substantivelymore interesting parameter γ , by scaling it with the regulation strength

β, that is γ = σ 2

2β . The γ parameter expresses the within-person fluctuation around
baseline due to inputs to the system-defined as all affect-provoking biopsychosocial
(BPS) influences internal and external to the individual. As such, γ can be viewed
substantively as the degree of BPS-related reactivity in the core affect system or
the extent of input that constantly alters the system. Parameter γ is the stationary
variance of the OU process: if we let the process evolve over a long time (t → ∞),
the OU process converges to a stationary distribution, a normal distribution with
mean μ and variance γ , given that we have a stable process (i.e., β > 0; see above).

Together, the deterministic and stochastic parts of the model describe how the
latent process of interest (e.g., core affect) changes over time: it is continuously
drawn toward the baseline while also being disrupted by the stochastic inputs.
Psychological processes for which this type of perturbation and mean reversion can
be an appropriate model include emotion dynamics and affect regulation (Gross

1More intricate dynamics with unrestricted range β include exploding processes with repellers.
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2002), semantic foraging (i.e., search in semantic memory, see Hills et al. 2012),
and so on. In our current example on core affect, the deterministic part of the
OU process is used to describe person-specific characteristics of a self-regulatory
system, and the stochastic part of the process is used to describe characteristics
of the biopsychosocial inputs that perturb that system—and invoke the need for
regulation.

To illustrate the three main parameters of the Ornstein-Uhlenbeck process, we
simulated data with different μ, γ , and β values, shown in Fig. 3.2. Baseline (μ)
levels are indicated with dotted gray lines. In the first row of the plot matrix, only
the baseline, μ, differs between the two plots (set to 50 on the left and 75 on the
right), and γ and β are kept the same (100 and 1, respectively). In the second row,
only the level of the within-person variance, γ , differs between the two plots (set to
100 on the right and 200 on the left), while μ and β are kept the same (50 and 1,
respectively). Finally, in the last row, we manipulate only the level of mean-reverting
regulatory force, with a low level of regulation set on the left plot (β = 0.1) and high
regulation on the right (β = 5). The baseline and the BPS-reactivity kept the same
(μ = 50 and γ = 100). As can be seen, the process on the left wanders away from
the baseline and tends to stay longer in one latent position. Descriptively, low β

(i.e., weak regulation) on the left produces θ with high autocorrelation (e.g., high
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Fig. 3.2 Six Ornstein-Uhlenbeck process trajectories. Each trajectory in the plot matrix consists
of 150 irregularly spaced data points. In the first row, the μ was set to 50 for the left plot and 75 for
the right plot, with γ kept at 100 and β at 1 for both plots. In the second row, μ and β were kept
the same (50 and 1), and γ was set to 100 for the right and 200 for the left. For the last row, μ and
γ were kept the same (50 and 100), and β-s were set to 0.1 for the left plot and 5 for the right plot
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“emotion inertia”), while high β (i.e., strong regulation) on the right produces θ

with low autocorrelation (e.g., low “emotion inertia”).

3.2.2 The Position Equation of the Ornstein-Uhlenbeck
Process

Once the temporal dynamics have been articulated in mathematical form, param-
eters of the model can estimated from empirical data. With the OU model,
however, the estimation algorithm for obtaining parameters in Eq. (3.1) would
require approximation of the derivatives from the data shown in Fig. 3.1, potentially
introducing some approximation errors. Instead, we take a different approach,
solving the stochastic integral in Eq. (3.1) and then estimating the parameters in
the integrated model directly from the actual observed data.

We can integrate over Eq. (3.1), to get the value of the latent state θ (i.e., the
position of the process) at time t , after some time difference Δ:

θ(t) = μ + e−βΔ(θ(t − Δ) − μ) + σe−βΔ

∫ t

t−Δ

eβudW(u). (3.2)

The integral in Eq. (3.2) is a stochastic integral, taken over the Wiener process. For
the OU process, the above stochastic integral was solved based on Itô calculus (see,
e.g., Dunn and Gipson 1977), resulting in the conditional distribution of OU process
positions, more specifically:

θ(t) | θ(t − Δ) ∼ N(μ + e−βΔ(θ(t − Δ) − μ), γ − γ e−2βΔ). (3.3)

Equation (3.3) is the conditional distribution of the position of the OU process,
θ(t), based on the previous position of the process at θ(t − Δ) after elapsed
time Δ and based on its three process parameters, μ, γ , and β, described earlier.
Equation (3.3) is a particularly useful representation of the OU process as it can
be used to formulate the likelihood function for the OU model without the need of
approximating derivatives in Eq. (3.1).

The mean of the distribution presented in Eq. (3.3) is a compromise between
the baseline μ and the distance of the process from its baseline (θ(t) − μ), scaled
by e−βΔ. The larger β and/or Δ is, the closer this exponential expression gets to
0, and the mean of Eq. (3.3) will get closer to μ. When β and/or Δ are small,
the exponential part approaches 1, and the mean will be closer to θ(t). In fact, β

controls the continuous-time exponential autocorrelation function of the process;
larger β-s correspond to lower autocorrelation and more centralizing behavior.
Naturally, autocorrelation also decreases with the passage of time (higher values of
Δ). Figure 3.3 shows a graphical illustration of the continuous-time autocorrelation
function of the OU process. Larger values of β correspond to faster regulation to
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Fig. 3.3 Continuous-time autocorrelation function of the OU process

baseline μ, therefore less autocorrelation in the positions of θ over time. Smaller β

values correspond to more autocorrelation over time.
The variance of the process presented in Eq. (3.3) is γ − γ e−2βΔ. We can re-

arrange this expression to the form of γ (1 − e−2βΔ). Now if we consider a large
Δ value (long elapsed time), the exponential part of this expression goes to 0.
Therefore γ represents all the variation in the process—it is the stationary (long
run) variance, as described above. The moment-to-moment variation is governed by
γ but scaled by the elapsed time and the attractor strength.

3.2.3 Extending the Ornstein-Uhlenbeck Process to Two
Dimensions

Thus far, we have presented the model with respect to a univariate θ(t). Many
psychological processes, however, involve multiple variables. Core affect, for
example, is defined by levels of both valence and arousal. Process models of core
affect, thus, might also consider how the two component variables covary. We can
straightforwardly extend into multivariate space by extending θ(t) into a multi-
variate vector, Θ , and the corresponding multivariate (n-dimensional) extension of
Eq. (3.1) is:

dΘ(t) = B(μ − Θ(t))dt + ΣdW(t), (3.4)
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where μ is an n×1 vector,B and Σ are n×n matrices. The conditional distribution
of a bivariate OU process model based on this equation is (see, e.g, Oravecz et al.
2011):

Θ(t)|Θ(t − Δ) ∼ N2

(
μ + e−BΔ(Θ(t − Δ) − μ),Γ − e−BΔΓ e−BTΔ

)
. (3.5)

The latent state at time t is now represented in a 2 × 1 vector Θ . Parameter μ is
2 × 1 vector representing the baselines for the two variables (μ1 and μ2); Γ is a 2
× 2 stationary covariance matrix, with within-person variances (γ1 and γ2) in the
diagonal and covariance in the positions of the process in the off-diagonal, with
γ12 = γ21 = ργ

√
γ1γ2 = σ12

β1β2
. Drift matrix B is defined as a 2 × 2 diagonal

matrix with attractor strength parameters (β1 and β2) on its diagonals (T stands for
transpose).

It is straightforward to use Eq. (3.5) to describe positions for the latent process
dynamics for a single person p (p = 1, . . . , P ). Let us assume that we want to
model np positions for person p, at times tp,1, tp,2, . . . , tp,s , . . . , tp,np . The index
s denotes the sth measurement occasion of person p. Now elapsed time Δ can be
written specifically as elapsed time between two of these time points: tp,s − tp,s−1.
We let all OU parameters be person-specific, and then Eq. (3.5) becomes:

Θ(tp,s)|Θ(tp,s−1) ∼ N2
(
μp,s + e−Bp(tp,s−tp,s−1)(Θ(tp,s−1) − μp,s), (3.6)

Γ p − e−Bp(tp,s−tp,s−1)Γ pe−BT
p(tp,s−tp,s−1)

)
,

where Θ(tp,s) = (Θ1(tp,s),Θ2(tp,s))
T and the rest of the parameters are defined as

before in Eq. (3.5).
We note here that our choice of notation of the OU parameters was inspired by

literature on modeling animal movements with OU processes (see, e.g., Blackwell
1997; Dunn and Gipson 1977). However, in time-series literature in many of the
works referenced so far, the following formulation of the multivariate stochastic
differential equation is common:

dη(t) = (Aη(t) + b)dt + GdW(t),

A simple algebraic rearrangement of our Eq. (3.4) gives:

dΘ(t) = (−BΘ(t) + Bμ)dt + ΣdW(t).

If we work out the correspondence between the terms, we find that differences
for the latent states (Θ(t) = η(t)) and the scaler for the effect of the stochastic
fluctuations (Σ = G) are only on the level of the notation. With respect to the drift
matrix across the two formulations,A = −B, the correspondence is straightforward
(the sign only matters when stationarity constraints are to be implemented). The
only real difference between the two formulations concerns the b and μ parameters:
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in the formulation introduced in this chapter, μ has a substantively interesting
interpretation, since it represents a homeostatic baseline to which the process most
often returns. In contrast, the b parameter, in the more typical SDE formulation, only
denotes the intercept of the stochastic differential equation. Our process baseline
parameter derives from the typical SDE formulation as μ = −A−1b.

3.2.4 Accounting for Measurement Error

In many social and behavioral science applications, it is reasonable to assume
that observed data are actually noisy measurements of the latent underlying
process. Therefore, we add a state-space model extension to link the latent OU
process variables to the observed data. Equation (3.6) is considered a transition
equation, describing changes on the latent level. The observed data is denoted as
Y(tp,s) = (Y1(tp,s), Y2(tp,s))

T at time point tp,s for person p at observation s. The
measurement equation is then specified as:

Y(tp,s) = Θ(tp,s) + ep,s (3.7)

with the error in measurement distributed as ep,s ∼ N2(0, Ep), with the off-
diagonals of Ep fixed to 0, and person-specific measurement error variances, ε1,p
and ε2,p, on the diagonals.

3.3 A Multilevel/Hierarchical Extension
to the Ornstein-Uhlenbeck Process

The above sections have outlined how the OUmodel can be used to describe intrain-
dividual dynamics for a given person, p. Also of interest is how individuals differ
from one another—interindividual differences in the intraindividual dynamics, and
how those differences are related to other between-person differences. The multi-
level framework allows for inferences on the hierarchical (or population, or group)
level while accommodating individual differences in a statistically coherent manner
(Gelman and Hill 2007; Raudenbush and Bryk 2002). The multilevel structure of
the model parameters assumes that parameters of the same type share a certain
commonality expressed by their superordinate population distributions. In brief,
when estimating OU parameters for multiple personsp = 1, . . . , P in the multilevel
framework, we pool information across participants by placing the parameters into
a distribution with specific shape (e.g., Gaussian). Treating the person-specific
parameters as random variables drawn from a particular interindividual difference
distribution thus improves the recovery of the person-level parameters. Further,
the multilevel modeling framework allows for a straightforward way to include
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covariates in the model, without needing to resort to a two-stage analysis (i.e., first
estimating person-level model parameters, then exploring their association with the
covariates through correlation or regression analysis). We will include both time-
varying covariates (TVCs) and time-invariant covariates (TICs) in the model. The
modeling of process model parameters such as the regulatory (attractor) force as a
function of covariates has not yet been a focus in continuous-time models, although
in many cases it can be done in a straightforward manner. In the next paragraphs, we
outline how reasonable population distributions are chosen for each person-specific
process model parameter.

3.3.1 Specifying the Population Distribution for the Baseline

The two-dimensional baseline, μp,s , shown in Eq. (3.6), can be made a function of
both time-varying and time-invariant covariates. For the TICs, let us assume that
K covariates are measured and xjp denotes the score of person p on covariate
j (j = 1, . . . , k). All person-specific covariate scores are collected into a vector
of length K + 1, denoted as xp = (xp,0, xp,1, xp,2, . . . , xp,K)T, with xp,0 = 1,
to allow for an intercept term. Regarding the TVCs, suppose that we repeatedly
measure person p on D time-varying covariates which are collected in a vector
zp,s = (zp,s,1, . . . , zp,s,D)T, where index s stands for sth measurement occasion for
person p. In order to avoid collinearity problems, no intercept is introduced in the
vector zp,s .

For the applied example, we use time of the self-report (e.g., time of day) as an
indicator of timing within a regular diurnal cycle as TVC (zp,s). We expected that
some people will show low levels of valence and arousal in the morning, with the
baseline increasing and decreasing in a quadratic manner over the course of the day.
We also consider interindividual differences in gender and self-reported emotional
health as TICs (xp). We expected that person-specific baselines, regulatory force,
and extent of BPS input would all differ systematically across gender and linearly
with general indicators of individuals’ emotional health.

The level 2 (population-level) distribution of μp,s with regression on the time-
invariant and time-varying covariates person-specific random variation can be
written as follows:

μp,s ∼ N2
(
Δpμzp,s + Aμxp,Σμ

)
. (3.8)

The covariance matrix Σμ is defined as:

Σμ =
[

σ 2
μ1

σμ1μ2

σμ1μ2 σ 2
μ2

]
, (3.9)
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where σ 2
μ1

and σ 2
μ2

quantify the unexplained (by covariates) individual differences
in baseline values in the two dimensions (in our case valence and arousal), and
the covariance parameter σμ1μ2 describes how person-specific levels of valence and
arousal covary on the population level, that is, it provides a between-person measure
of covariation in the core affect dimensions. The TVC regression coefficient matrix
Δpμ has dimensions 2D × P , allowing between-person differences in the time-
varying associations. The TIC regression coefficient matrix Aμ is of dimensions
2× (K + 1), containing the regression weights for the time-invariant covariates xp.

3.3.2 Specifying the Population Distribution for the Regulatory
Force

The regulatory or attractor force is parameterized as a diagonal matrix Bp, with
diagonal elements β1p and β2p representing the levels of regulation for the two
dimensions. By definition this matrix needs to be positive definite to ensure that
there is always an adjustment toward the baseline and never away from it, implying
that the process is stable and stationary. This constraint will be implemented by
constraining both β1p and β2p to be positive. The population distributions for these
two will be set up with a lognormal population distribution. For β1p this is,

β1p ∼ LN
(
xT

pαβ1, σ
2
β1

)
.

The mean of this distribution is written as the product of time-invariant covariates
and their corresponding regression weights, with the vector αβ1 containing the
(fixed) regression coefficients and parameter σ 2

β1
representing the unexplained

interindividual variation in the regulatory force, in the first dimensions. The
specification and interpretation of the parameters for the second dimension follow
the same logic.

3.3.3 Specifying the Population Distribution for the BPS Input

The 2× 2 stationary covariance matrix Γ p models the BPS-related reactivity of the
OU-specified process and is formulated as:

Γ p =
[

γ1p γ12p

γ21p γ2p

]
. (3.10)

Its diagonal elements (i.e., γ1p and γ2p) quantify the levels of fluctuation due
to BPS input in the two dimensions, in our case valence and arousal. The off-
diagonal γ12p = γ21p quantifies how valence and arousal covary within-person.
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The covariance can be decomposed into γ12p = ργp

√
γ1pγ2p, where ργp is the

contemporaneous (i.e., at the same time) correlation of the gamma parameters on
the level of the latent process. The diagonal elements of the covariance matrix (γ1p
and γ2p), that is, the variances, are constrained to be positive. We will model the
square root of the variance, that is, the intraindividual standard deviation, and assign
a lognormal (LN) population distribution to it to constrain it to the positive real line:

√
γ1p ∼ LN

(
xT

pαγ1, σ
2
γ1

)
.

The mean of this population-level distribution is modeled via the product of time-
invariant covariates and their corresponding regression weights, in the same manner
that was described for the regulatory force above. The vector αγ1 contains the
(fixed) regression coefficients, belonging to the set of person-level covariates. The
first element of αγ1 relates to the intercept and expresses the overall mean level of
BPS-related reactivity. The parameter σ 2

γ1
represents the unexplained interindividual

variation in BPS-related reactivity in the first dimension. The specification and
interpretation of the parameters for the second dimension follow the same logic.

The cross-correlation ργp is bounded between −1 and 1. By taking advantage of

the Fisher z-transformationF(ργp) = 1
2 log

1+ργp

1−ργp
, we can transform its distribution

to the real line:

F(ργp ) ∼ N
(
xT

pαργ , σ 2
ργ

)
.

Again, αργ contains K + 1 regression weights and xT
p the K covariate values for

person p with 1 for the intercept, and σ 2
ργ

quantifies the unexplained interindividual
variation. The first coefficient of αργ belongs to the intercept and represents the
overall population-level within-person (standardized) correlation between the two
dimensions. We note that while the model can capture covariation across the two
dimensions, the current implementation is limited in the sense that it does not
capture how the processes may influence each other over time (i.e., the off-diagonal
elements of Bp are not estimated).

3.4 Casting the Multilevel OU Process Model in the Bayesian
Framework

Estimation of the full model and inference to both individuals and the population are
facilitated by the Bayesian statistical framework. In brief, the Bayesian statistical
inference framework entails using a full probability model that describes not
only our uncertainty in the value of an outcome variable (y) conditional on
some unknown parameter(s) (θ ) but also the uncertainty about the parameter(s)
themselves. The goal of Bayesian inference is to update our beliefs about the likely
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values of model parameters using the model and data. The relationship between
our prior beliefs about the parameters (before observing the data) and our posterior
beliefs about the parameters (after observing the data) is described by Bayes’
theorem: p(θ |y) = p(y|θ)p(θ)/p(y), which states that the posterior probability
distribution, p(θ |y), of parameter(s) θ given data y is equal to the product of
a likelihood function p(y|θ) and prior distribution p(θ), scaled by the marginal
likelihood of the data p(y). With the posterior distribution, we can easily make
nuanced and intuitive probabilistic inference. Since in Bayesian inference we obtain
a posterior probability distribution over all possible parameter values, instead of
merely point estimates, we can use the posterior distribution to make probabilistic
statements about parameters (and functions of parameters) of interest. For example,
we can easily derive the probability that the parameter value lies in any given
interval.

To cast the described multilevel process model in Bayesian framework, we used
Eqs. (3.6) and (3.7) as our likelihood function, and we specified non-informative
prior distributions on all parameters. The posterior can be thought of as a compro-
mise between the likelihood and the prior distributions and describes the relative
plausibility of all parameter values conditional on the model being estimated.
In the Bayesian framework, parameter estimation and inference focuses on the
posterior distribution. For some simple models, posterior distributions can be
calculated analytically, but for almost all nontrivial models, the posterior has to be
approximated numerically. Most commonly, Bayesian software packages employ
simulation techniques such as Markov chain Monte Carlo algorithms to obtain
many draws from the posterior distribution. After a sufficiently large number
of iterations, one obtains a Markov chain with the posterior distribution as its
equilibrium distribution, and the generated samples can be considered as draws
from the posterior distribution. Checks that the algorithm is behaving properly are
facilitated by use of multiple chains of draws that are started from different initial
values and should converge to the same range of values.

3.5 Investigating Core Affect Dynamics with the Bayesian
Multilevel Ornstein-Uhlenbeck Process Model

3.5.1 A Process Model of Core Affect Dynamics Measured
in an Ecological Momentary Assessment Study

Data used in the current illustration of the processmodeling approachwere collected
at Pennsylvania State University in the United States from N = 52 individuals
(35 female, mean age = 30 years, SD = 10) who participated in an EMA study
of core affect and well-being. Participants were informed that the study protocol
consisted of (1) filling out short web-based survey via their own smartphones,
six times a day for 4 weeks, while going on with the course of their everyday
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life and (2) completing a battery of personality tests and demographics items
during the introductory and exit sessions. After consent, the participants provided
their phone number and were registered with a text messaging service. Over the
course of the next month, participants received and responded to up to 168 text-
message-prompted surveys. Compliance was high, with participants completing an
average of 157 (SD = 15) of the surveys. Participants were paid proportional to
their response rate, with maximum payment of $200. In addition to the core affect
ratings of valence and arousal from the repeated surveys, we make use of two
sets of covariates. Linear and quadratic representations of the time of day of each
assessment, which ranged between 7 and 24 o’clock (centered at 12 noon), were
used as TVCs. Select information from the introductory and exit batteries were
used as TICs, namely, gender (n = 35 female) and two measures of emotional
functioning: the emotional well-being (M = 74, SD = 18) and role limitations due
to emotional problems (M = 77, SD = 36) scales from the 36-Item Short Form
Health Survey (SF-36; Ware et al. 1993) (centered and standardized for analysis).

The parameter estimation for the multilevel, bivariate OU model described by
Eqs. (3.6) and (3.7), was implemented in JAGS (Plummer 2003) and fitted to the
above data.2 Six chains of 65,000 iterations each were initiated from different
starting values, from which the initial 15,000 were discarded (adaptation and
burn-in). Convergence was checked using the Gelman-Rubin R̂ statistic (for more
information, see Gelman et al. 2013). All R̂’s were under 1.1 which indicated no
problems with convergence.

3.5.2 Population-Level Summaries and Individual Differences
of Core Affect Dynamics

Table 3.1 summarizes the results on the population level by showing posterior
summary statistics for the population mean values and interindividual standard
deviation for each process model parameter. The posterior summary statistics are
the posterior mean (column 2) and the lower and upper ends of the 90% highest
probability density interval (HDI; columns 3 and 4), designating the 90% range of
values with the highest probability density. We walk through each set of parameters
in turn.

The valence and arousal baselines were allowed to vary as function of time of day
(linear and quadratic). The displayed estimates for the population mean baselines
therefore represent estimated baselines at 12 noon. As seen in the first line of
Table 3.1, average core affect at noon is somewhat pleasant (59.60 on the 0–100
response scale) and activated (57.63). Posterior means for the linear and quadratic
effects of time of day indicate practically no diurnal trend for valence (1.30 for

2Code and data used in this chapter are available as supplementary material at the book website
http://www.springer.com/us/book/9783319772189.

http://www.springer.com/us/book/9783319772189
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Table 3.1 Population-level results

Model parameter Posterior 90% HDI

Description Notation mean Low High

Valence

Baseline intercept α1,μ1 59.60 54.54 64.75

Interindividual SD in baseline σμ1 12.05 9.51 14.43

Linear time effect αδ1,L 1.30 0.92 1.74

Interindividual SD in linear time effect σδ1,L 0.19 0.08 0.30

Quadratic time effect αδ1,Q −0.04 −0.05 −0.02

Interindividual SD in quadratic time σδ1,Q 0.00 0.00 0.01

BPS-related reactivity intercept α1,
√

γ1 7.53 5.30 10.94

Interindividual SD in BPS-related reactivity σ√
γ1 4.94 2.50 9.46

Regulation intercept α1,β1 0.17 0.09 0.33

Interindividual SD in regulation σβ1 0.19 0.06 0.57

Arousal

Baseline intercept α1,μ2 57.63 51.07 64.23

Interindividual SD in baseline σμ2 16.13 12.70 19.32

Linear time effect αδ2,L 6.32 5.73 6.90

Interindividual SD in linear time effect σδ2,L 0.37 0.00 0.61

Quadratic time effect αδ2,Q −0.22 −0.23 −0.19

Interindividual SD in quadratic time effect σδ2,Q 0.02 0.02 0.03

BPS-related reactivity intercept α1,
√

γ2 13.58 11.08 16.69

Interindividual SD in BPS-related reactivity σ√
γ2 5.17 3.20 7.91

Regulation intercept α1,β2 0.44 0.25 0.80

Interindividual SD in regulation σβ2 0.39 0.14 1.04

Cross-effects

Within-person correlation intercept α1,ργ
0.99 0.90 1.00

Between-person correlation intercept σμ1μ2 0.68 0.53 0.84

linear time, −0.04 for quadratic time), but an inverted U-shaped pattern for arousal
(6.32 for linear, −0.22 for quadratic). The interindividual SDs for baselines and the
linear and quadratic time effects quantify the extent of between-person differences
in baseline throughout the day. These differences are illustrated in Fig. 3.4. As
can be seen, most of the interindividual differences are in the baseline intercepts
(differences in level at 12 noon) and not in the shape of the trajectories. For example,
the left panel shows that while there is remarkable inverted U-shaped trend in the
daily arousal baselines, this pattern is quite similar across people. Similarly, the
right panel shows the extent of between-person differences in level, and similarities
in shape of the daily trends, for valence.

The population-level estimates of the biopsychosocial input-related reactivity are
also summarized Table 3.1. The prototypical participant (male) had BPS input to
valence of γ1 7.53 and to arousal of γ2 = 13.58, with the amount of perturbation



72 Z. Oravecz et al.

Arousal Valence

5 10 15 20 5 10 15 20

25

50

75

100

Time during the day

Le
ve

l

Fig. 3.4 Individual differences in changes in core affect over the day

differing substantially between-persons for both valence (SD = 4.94) and arousal
(SD = 5.17).3

The population-level estimates of regulatory force (β1 and β2) are also shown in
Table 3.1. These values quantify how quickly individuals’ core affect is regulated
back to baseline after perturbation. The prototypical participant had regulatory force
of β1 = 0.17 for valence and β2 = 0.44 for arousal, with substantial between-person
difference in how quickly the regulatory force acted (SD = 0.19 for valence, SD
= 0.39 for arousal). As noted above, these parameters control the slope of the
exponential continuous-time autocorrelation function of the process. Illustrations
of the differences across persons for both valence and arousal are shown in Fig. 3.5.

Finally, the population-level estimates of the cross-effects, within-person and
between-person covariation of valence and arousal, are shown in the bottom of
Table 3.1. For the prototypical participant (male), valence and arousal are very
strongly coupled within-person, r = 0.99, suggesting that valence and arousal
change in similar ways when BPS-related perturbations come in (but see also
covariate results regarding gender differences for this parameter in the next section).
Across persons, individuals with higher baselines in valence also tend to have higher
baselines in arousal, r = 0.68.

3Note that the means and standard deviations for this standard deviation parameter (
√

γ ) are based
on the first and second expectations of the lognormal distribution. Same applies for the regulation
(β) parameters as well.
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Fig. 3.5 Individual differences in the continuous-time autocorrelation functions for valence and
arousal

3.5.3 Results on the Time-Invariant Covariates

Selected results on the time-invariant covariates are shown in Table 3.2. Only the
TICs for which most of the posterior mass was positive or negative (90% highest
density interval did not contain 0) were selected, as these are the coefficients that
we consider remarkably different from 0. As mentioned before, γ (BPS-related
reactivity) and β (regulation) were constrained to be positive; therefore their log-
transformed values were regressed on the covariates; for these parameters relative
effect sizes are reported in Table 3.2 (instead of the original regression coefficients
that relate to the log scale). With regard to the covariates, gender was coded as 0 for
male and 1 for female, and higher values on the emotional well-being scale indicate
better well-being, while lower values on the role limitations due to emotional
problems scale indicate more difficulties.

As expected, results show that higher levels of emotional well-being were
associated with higher baseline levels of valence (α3,μ1 = 8.00) and higher baseline
levels of arousal (α3,μ2 = 6.54). Higher levels of emotional well-being were also
associated with greater BPS input into arousal: α3,

√
γ2 = 1.14. Again, the 1.14 value

here is a relative effect size that relates to the original scale of the BPS-related
reactivity and is interpreted the following way: consider a comparison point to be
at 1, then the relative effect size expresses how many percent of change in the
outcome (i.e., BPS-related reactivity) is associated with one standard deviation (or
one point in case of gender) change in the covariate. For example, if we consider the
association between emotional well-being and BPS-related reactivity, one standard
deviation increase in emotional well-being is associated with 14% (1.14 − 1 =
0.14) increase in BPS-related reactivity. Relative effect sizes related to regulation
are interpreted the same way.
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Table 3.2 Results on the covariates

Model parameter Person Posterior 90% HDI

Description Notation covariate mean Low High

Valence

Baseline α3,μ1 Emotional well-being 8.00 3.95 12.22

BPS-related reactivity α4,
√

γ1 Role limitations 0.79 0.64 0.97

BPS-related reactivity α2,
√

γ1 Gender (1: female) 1.46 1.05 2.04

Regulation α2,β1 Gender (1: female) 2.21 1.27 3.81

Arousal

Baseline α3,μ2 Emotional well-being 6.54 2.03 11.14

BPS-related reactivity α3,
√

γ2 Emotional well-being 1.14 1.01 1.29

Regulation α4,β2 Role limitations 0.73 0.53 0.98

Cross-effects

Synchronicity in changes α2,ργ
Gender (1: female) −0.89 −0.99 −0.34

Greater role limitation due to emotional problemswas associated with higher lev-
els of BPS-related valence reactivity (α4,

√
γ1 = 0.79; 21%) and stronger regulatory

force on arousal (i.e., quicker return to baseline; α4,β2 = 0.73; 27%). There were also
some notable gender differences: female participants tended to have higher levels of
BPS-related valence reactivity (α2,

√
γ1 = 1.46; 46%) and stronger regulatory force

for valence (α2,β1 = 2.21; 121%). This suggests that women participants experienced
both greater fluctuations in pleasantness over time and regulated more quickly
toward baseline. In line with the idea that females must contend with a more varied
and less predictable set of perturbations, they also have less synchronicity between
changes in valence and arousal (α2,ργ = −0.89).

Note that this is an exploratory approach of looking at associations between-
person traits and dynamical parameters. As can be seen, some coefficients in
Table 3.2 represent very small effect sizes with 90% highest density interval (HDI)
being close to 1 (the cutoff for the relative effect sizes). For more robust inference in
a follow-up study, we would recommend using a stricter criterion (e.g., 99% HDI)
or, more ideally, calculating a Bayes factor for these coefficients.

3.6 Discussion

In this paper we presented process modeling as a framework that can contribute
to theory building and testing through mathematical specification of the processes
that may produce observed data. We illustrated how the framework can be used to
examine interindividual differences in the intraindividual dynamics of core affect. In
conceptualization, core affect is a continuously changing neurophysiological blend
of valence and arousal that underlies all emotional experiences (Barrett 2017)—a
video. Measurement of core affect, however, requires that individuals consciously
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access their core affect and indicate their current level of pleasantness (valence) and
activation (arousal)—a selfie. The inherent discrepancy between the continuous-
time conceptualization of core affect and the moment-to-moment measurement
of core affect requires a framework wherein the parameters of process models
governing action in an individual’s movie biopic can be estimated from a series of
selfies that were likely snapped at random intervals (e.g., in an EMA study design).

Our illustration developed a mathematical description for the continuous-time
conceptualization of core affect based on a mean-reverting stochastic differential
equation, the OU model. From a theoretical perspective, this mathematical model
is particularly useful because it explicitly maps key aspects of the hypothesized
intraindividual regulatory dynamics (e.g., DynAffect model) of core affect, to
three specific parameters, μ, β, and γ , that may differ across persons. Expansion
into a bivariate model provides opportunity to additionally examine interrelations
between affect valence and affect arousal. A key task in tethering the mathematical
model to the psychological theory is “naming the betas” (Ram and Grimm 2015).
Explicitly naming the parameters facilitates interpretation, formulation and testing
of hypotheses, and potentially, theory building/revision. Here, we explicitly tethered
μ to a baseline level of core affect—the “goal” or attractor point of the system; β

to the strength of the “pull” of the baseline point—an internal regulatory force; and
γ to the variability that is induced by affect-provoking biopsychosocial inputs. This
content area-specific naming facilitated identification and inclusion into the model
of a variety of time-varying and time-invariant covariates—putative “causal factors”
that influence the intraindividual dynamics and interindividual differences in those
dynamics. In particular, inclusion of time-of-day variables (linear and quadratic)
provided for testing of hypotheses about how baseline valence and arousal change
across the day in accordance with diurnal cycles, and inclusion of gender and
indicators of emotional well-being provide for testing of hypotheses about how
social roles and psychological context may influence affective reactivity and
regulation. Generally, parameter names are purposively selected to be substantively
informative in order that theoretical considerations may be easily engaged.

Statistical considerations come to the fore when attempting to match the model
to empirical data, and particularly in situations like the one illustrated here, where
a model with measurement and dynamic equations is placed within a multilevel
framework that accommodates estimation of interindividual differences in intrain-
dividual dynamics from noisy ILD that are unbalanced and time-unstructured.
Our empirical illustration was constructed to highlight the utility of a multilevel
Bayesian statistical estimation and inference framework (Gelman et al. 2013). The
flexible Markov chain Monte Carlo methods provide for estimation of increasingly
complex models that include multiple levels of nesting and both time-varying
and time-invariant covariates. Specification of the full probability model, for
both the observed outcomes and the model parameters, provides for robust and
defensible probabilistic statements about the phenomena of interest. In short, the
Bayesian estimation framework offers a flexible alternative to frequentist estimation
techniques and may be particularly useful when working with complex multilevel
models.
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We highlight specifically the benefits of estimation for EMA data. Generally,
these data are purposively collected to be time-unstructured. Intervals between
assessments are kept inconsistent in order to reduce validity threats related to expec-
tation bias in self-reports. This is problematic when a discrete-time mathematical
model is used to describe the processes that may produce observed data, because
the data cannot be mapped (in a straightforward way) to relations formulated in
terms of θ(t) and θ(t − 1). As such, when working with EMA data, the model is
better formulated with respect to continuous time, θ(t) and dθ(t). Theoretically,
continuous-time models may also be more accurate to describe any measured
phenomena that do not cease to exist between observations: most processes in
behavioral sciences unfold in continuous time and should be modeled as such,
see more discussion in, for example, Oud (2002) and Oud and Voelkle (2014a).
In our case, core affect is by definition continuously changing and thus requires a
mathematical description based in a continuous-time model. The process modeling
framework stands taller and with more confidence when the data, mathematical
model, and theory are all continuously aligned.
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