
Chapter 13
Continuous Time State Space Modelling
with an Application to High-Frequency
Road Traffic Data

Siem Jan Koopman, Jacques J. F. Commandeur, Frits D. Bijleveld,
and Sunčica Vujić

13.1 Introduction

We present a practical treatment of continuous time state space modelling. The
main features of the analysis are highlighted and explored in some generality. We
further present and discuss the main results of an empirical study related to road
safety analysis. This application of the continuous time methodology in time series
analysis shows how it can be used in practice.

A time series is a set of observations which are sequentially ordered over time.
In a discrete time state space analysis, the time series observations are assumed
to be equally spaced in time. Although missing data may give rise to different
time gaps between available observations in discrete time series also, these time
gaps are then always multiples of the time unit specific to the time series at hand
(e.g. a year for annual data, a month for monthly data, etc.). In this chapter, on
the other hand, we concentrate on the continuous time state space model and
some of its special cases. In continuous state space models, the time gaps between
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consecutive observations of a series are typically allowed to vary freely from one
pair of consecutive observations to the next. The expositions in this chapter rely
mostly on the textbooks by Harvey (1989) and by Durbin and Koopman (2012).
For an introduction to state space time series analysis, we refer to Commandeur and
Koopman (2007).

The literature on continuous time modelling in statistics and econometrics is
extensive. It is beyond the scope of this paper to present a full review of this
literature. A major and key reference to continuous time models in econometrics
is the review of Bergstrom (1984) where various results on parameter estimation for
dynamic structural models in continuous time are provided. The many benefits of
continuous time modelling are also illustrated. In the statistics literature, there is a
considerable focus on smoothing methods that are formulated in continuous time.
For example, a standard treatment using the continuous time approach is developed
by Green and Silverman (1994). But also the earlier contributions of Wahba (1978)
and Silverman (1985) have been of key importance in the development of signal
extraction and spline smoothing in continuous time. The connections between spline
smoothing and continuous time state space analysis are first established in the work
of Wecker and Ansley (1983).

In this review chapter, we provide a detailed account of a continuous time state
space approach to time series analysis. The outline of this chapter is as follows.
In Sect. 13.2 we formulate the general continuous time state space model and
discuss two well-known special cases. Section 13.3 discusses the estimation of
the unobserved states together with the unknown model parameters. Finally, in
Sect. 13.4 we apply the methodology to an empirical example consisting of road
traffic speed data.

13.2 A Continuous Time Modelling Framework

Let tτ denote the time point at which observation τ in the series was measured,
τ = 1, 2, . . . , T . Note that τ is an integer denoting the number of the observation in
the time series, while tτ is the time at which this observation was made. Thus, unlike
τ , tτ can be any non-negative number, for example, 10 years, 200 days, 300.405ms,
etc. The only requirement is that t1 < t2 < t3 < · · · < tT . The general linear
Gaussian state space model for the T -dimensional observation sequence y1, . . . , yT

is given by

yτ = Zτατ + ετ , ετ ∼ NID(0,Hτ ), (13.1)

ατ+1 = Tτατ + Rτητ , ητ ∼ NID(0,Qτ ), τ = 1, . . . , T , (13.2)
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where ατ is the state vector, ετ and ητ are disturbance vectors and the system
matricesZτ , Tτ , Rτ ,Hτ and Qτ are fixed and known. A selection of the elements of
the system matrices may depend on an unknown parameter vector. Equation (13.1)
is referred as the observation or measurement equation, while Eq. (13.2) is called
the state or transition equation. The p × 1 observation vector yτ contains the p

observations at time point tτ , and the m×1 state vector ατ is unobserved. The p×1
irregular vector ετ has zero mean and p × p variance matrix Hτ .

The p × m matrix Zτ links the observation vector yτ with the unobservable state
vector ατ and may consist of regression variables. The m × m transition matrix Tτ

in (13.2) determines the dynamic evolution of the state vector. The r ×1 disturbance
vector ητ for the state vector update has zero mean and r×r variancematrixQτ . The
observation and state disturbances ετ and ητ are assumed to be serially independent
and independent of each other at all time points. In many standard cases, r = m and
matrix Rτ is the identity matrix Im. In other cases, matrix Rτ is a m × r selection
matrix with r < m. AlthoughmatrixRτ can be specified freely, it is often composed
of a selection from the first r columns of the identity matrix Im. It further implies
that often we can treat the matrix Rτ as a constant matrix that does not vary with τ .
Similarly, all system matrices are assumed to be (deterministically) varying with τ ,
but in many cases of practical interest, most system matrices are fixed for all τ .

The initial state vector α1 is assumed to be generated as

α1 ∼ NID(a1, P1),

independently of the observation and state disturbances ετ and ητ , where initial
mean a1 and initial variance P1 can be treated as given and known in almost all
stationary processes for the state vector. For nonstationary processes and regression
effects in the state vector, the associated elements in the initial mean a1 can be
treated as unknown and need to be estimated. For an extensive discussion of
initialisation in state space analysis, we refer to Durbin and Koopman (2012,
Chapter 5).

13.2.1 Local Level and Local Linear Trend Models

By appropriate choices of the vectors ατ , ετ and ητ , and of the matrices Zτ , Tτ ,
Hτ , Rτ and Qτ , a wide range of different continuous time state space models
can be derived from (13.1) and (13.2). Here we focus on the continuous time
equivalents of the discrete local level and local linear trend models. Other model
formulations can be considered as well since our state space framework allows for
many different linear dynamic specifications that are commonly used in time series
analysis. However, the arguments for continuous time formulations are similar, and
therefore our treatment below remains relatively general.
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Let δτ = tτ − tτ−1 denote the amount of time elapsed between two consecutive
observations τ and τ − 1. Also defining

ατ = μτ , ητ = ξτ , Zτ = Tτ = Rτ = 1, Hτ = σ 2
ε , Qτ = δτ σ

2
ξ ,

(all variables are scalars) for τ = 1, . . . , T , model (13.1) and (13.2) reduces to the
univariate continuous local level model as given by

yτ = μτ + ετ , ετ ∼ NID(0, σ 2
ε ),

μτ+1 = μτ + ξτ , ξτ ∼ NID(0, δτ σ
2
ξ ), (13.3)

for τ = 1, . . . , T . Note that (13.3) reduces to the discrete local level model when
the observations are equally spaced, i.e. when δτ = tτ − tτ−1 = 1, say, for all
τ = 1, . . . , T .

The local level model can be regarded as the most basic version of a state
space model. It is intuitive as it can be interpreted as a model representation
for yτ that is generated by the normal distribution with a time-varying mean μτ

and a fixed variance σ 2
ε . The continuous time formulation only applies to the

dynamic process of the time-varying mean. The local level model also provides a
statistical specification for the exponentially weighted moving average (EWMA)
forecasting method that is very popular amongst professional practitioners. The
forecast function of the local level model is equivalent to the EWMA, but the state
space treatment also provides statistical standard errors to the point forecasts; see
the discussion below. A full discussion and treatment of the local level model is
provided by Harvey (1989) and Durbin and Koopman (2012, Chapter 2).

By defining

ατ =
(

μτ

ντ

)
, ητ =

(
ξτ

ζτ

)
, Tτ =

[
1 δτ

0 1

]
, Zτ = (

1 0
)
,

Hτ = σ 2
ε , Var(ητ ) = Qτ = δτ

[
σ 2

ξ + 1
3δ

2
τ σ

2
ζ

1
2δτ σ

2
ζ

1
2δτσ

2
ζ σ 2

ζ

]
, and Rτ =

[
1 0
0 1

]
,

the scalar notation of (13.1) and (13.2) leads to

yτ = μτ + ετ , ετ ∼ NID(0, σ 2
ε ),

μτ+1 = μτ + δτ ντ + ξτ , (13.4)

ντ+1 = ντ + ζτ ,

for τ = 1, . . . , T , and we obtain the univariate continuous local linear trend model.
Unlike in the discrete local linear trend model, we see that the disturbances of the
level and the slope component are correlated through the off-diagonal elements
1
2δ

2
τ σ

2
ζ in matrix Qτ in the continuous local linear trend model. However, as
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mentioned by Harvey (1989, p. 487), “this difference is unlikely to be of any great
importance”.

The treatment above for the local linear trend model has many connections with
the statistical literature on spline smoothing. Reviews of methods related to spline
smoothing are given in Silverman (1985), Wahba (1990) and Green and Silverman
(1994, Chapter 2). Some of these connections with the approach given above and
the more traditional methods are given by Wahba (1990) but are also discussed in
Wecker and Ansley (1983). These connections are also highlighted in Durbin and
Koopman (2012, Chapter 3).

13.2.2 Multivariate Continuous Time State Space Models

The treatments as set out for univariate time series above can be easily extended to
multivariate time series. This is one of the advantages of the state space approach
since multivariate spline smoothing methods are not widespread.

In case we let yτ denote a p×1 vector of observations, a multivariate local linear
trend model can be applied to the p time series simultaneously:

yτ = μτ + ετ , ετ ∼ NID(0,Σε),

μτ+1 = μτ + ητ , ητ ∼ NID(0,Ση),
(13.5)

for τ = 1, . . . , T , where μτ , ετ , and ητ are p × 1 vectors, Σε is a p × p variance
matrix, and

Ση = δτ

[
Σξ + 1

3δ
2
τΣζ

1
2δτΣζ

1
2δτΣζ Σζ

]

is a 2p × 2p matrix, Σξ and Σζ being the p × p variance matrices of the level and
the slope disturbances, respectively.

13.3 State Space Methods for Continuous Time Models

The model formulations as discussed above are all special cases of the general linear
Gaussian state space model. We can therefore rely on the associated methods for
signal extraction, parameter estimation and forecasting. The most important and
well-known method for this class of state space models is the Kalman filter that
allows the (predictive and filtered) estimation of the unobserved state vector ατ

when the system matrices have given values. It also enables the computation of the
log-likelihood function of the model, for a given parameter vector, via the prediction
error decomposition. It allows the maximisation of the log-likelihood function with
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respect to the parameter vector, in order to obtain its maximum likelihood estimate.
On the basis of these parameter estimates, signal extraction and forecasting can
take place. We next provide more details of this central part of the state space
methodology.

In a similar way as in discrete state space models, in continuous state space
models for given values of all system matrices—and for known initial conditions
a1 and P1—the state vector can be estimated in three different ways, yielding what
are known as the filtered, the predicted and the smoothed state vector. Depending
on the types of state estimates required in the analysis, the estimates of the state
vector can be obtained by performing one or two passes through the observed time
series:

1. A forward pass, from τ = 1, . . . , T , using a recursive algorithm known as
the Kalman filter enables the computation of filtered and predicted states and
prediction errors, including their variances; from the prediction error and their
variances, we can compute the log-likelihood function of the given continuous
state space model;

2. A backward pass, from τ = T , . . . , 1, using all filtered and associated variables
from the Kalman filter and using recursive algorithms known as state and
disturbance smoothers enables the computation of smoothed estimates of states
and disturbances; it requires the storage of the Kalman filter variables.

In continuous time state space models, the standard Kalman, state and distur-
bance smoothing filters can be used; see Durbin and Koopman (2012, Chapter
4) for technical details. A specific difference of substance between discrete and
continuous time models is that the variance matrix Qτ in Eq. (13.2) of the state
space formulation of the model (containing the variances of the state disturbances) is
typically time-invariant in the discrete case while it becomes a time-varying matrix
for continuous time state space models.

We have discussed these continuous time state space methods above as if the
disturbance variances are given and known. In practice, of course, these parameters
are unknown, and they have to be estimated. Just as in the discrete time series
situation, the parameter estimates are obtained via maximum likelihood methods
which are discussed in Durbin and Koopman (2012, Chapter 7). It requires an
optimisation algorithm, and for this purpose quasi-Newton methods are typically
used. Each time new parameter values are proposed by the search-for-the-maximum
algorithm, the Kalman filter is used to compute the log-likelihood function. In many
applications, it is found that the maximum is found quickly and the estimation
process does not take much computing time.
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13.4 An Application in Road Safety and Traffic Control

We consider our continuous time modelling approach to a full day of measurements
of the speed of passing motor vehicles on a fixed location in the right lane of a Dutch
motorway, starting at midnight and ending at midnight of the following day. For our
analysis of this interesting and important time series for road safety studies, we
have considered the continuous time models and methods as set out in the previous
sections. All computations are implemented in the OxMetrics object-oriented
programming environment of Doornik (2013) together with the SsfPack library
of state space routines of Koopman et al. (2008). Initial analyses are carried out by
means of the discrete time versions of our models using the STAMP software of
Koopman et al. (2007).1

There is a total of 25,539 passages in this series meaning that we also have
25,539 observations. The time of each passage is measured as the number of
milliseconds elapsed since the start of the measurements and the difference between
the time of the last and the first observation of the series, i.e. tT − t1, is 86,396ms
which indeed corresponds to a full 86,396/602 = 24 h. The average time lapse
between consecutive observations in the series is 3.383ms with a minimum of
0.038ms and a maximum of 1417.4ms. The variance of the time lapses δτ is
230.170.

From the perspective of road safety, it is of interest to analyse passages of cars at
different speed levels. In our analyses, we consider two groups of speed levels: slow
passages with a speed of less than 100 km/h (but faster than 75 km/h as we discard
very slow passages which may be due to measurement failings) and fast passages
with a speed of higher than 120 km/h. These two different groups constitute a total
of 14,435 passages (9010 slow and 5425 fast passages).

The analyses of the two series are based on the continuous time local linear trend
model (13.4). To enforce a smoother evolving signal in this highly noisy time series
of speed passages, we restrict the variance of the level component to be zero. The
remaining variances are estimated by the method of maximum likelihood (ML).
We yield the following estimation results. At convergence of the ML process, the
parameter estimates for the variance of the slope disturbances and the measurement
errors are, respectively, given by σ 2

ζ = 1.061× 10−6 and σ 2
ε = 31.966 for the slow

passages and σ 2
ζ = 5.434 × 10−6 and σ 2

ε = 43.295 for the fast passages.
The recorded speed levels of the passages for the slow and the fast groups are

presented in Figs. 13.1 and 13.3, respectively, together with their estimated trend
components which are also presented separately in Figs. 13.2 and 13.4, respectively.
We learn from these graphs that the number of passages of motor vehicles on the
motorway diminishes during the night. It is especially observable for the fast-speed
passages, between roughly 8000ms after midnight (i.e. around half past three in the

1The programming code of our analyses is available as supplementary material at the book website
http://www.springer.com/us/book/9783319772189.

http://www.springer.com/us/book/9783319772189
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Fig. 13.1 Slow-speed passages: speed measures (in km/hour) of slow passages of motor vehicles
during a full day on a fixed location in the right lane of a Dutch motorway (in tiny dots) together
with the smoothed estimated trend component (solid line) from the continuous time local linear
trend model. The horizontal x-axis represents the time index measured in seconds of a full day
starting at midnight 0:00 h
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Fig. 13.2 Slow-speed trend: the smoothed estimated trend component from the continuous time
local linear trend model. The horizontal x-axis represents the time index measured in seconds of a
full day starting at midnight 0:00 h
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Fig. 13.3 Fast-speed passages: speed measures (in km/hour) of fast passages of motor vehicles
during a full day on a fixed location in the right lane of a Dutch motorway (in tiny dots) together
with the smoothed estimated trend component (solid line) from the continuous time local linear
trend model. The horizontal x-axis represents the time index measured in seconds of a full day
starting at midnight 0:00 h
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Fig. 13.4 Fast-speed trend: the smoothed estimated trend component from the continuous time
local linear trend model. The horizontal x-axis represents the time index measured in seconds of a
full day starting at midnight 0:00 h
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morning) and 20,000ms after midnight (i.e. around six o’clock in the morning), that
the number of passages is clearly much smaller. At the same time, we can conclude
that the speed of the fast group increases somewhat as it is quiet on the motorway
during these night hours. In contrast, somewhat later in the night and up to the early
morning hours, the speed of the slow group diminishes to clearly lower speed levels
which is possibly due to a relatively intensified presence of more heavy trucks that
generally drive slower and on the right lane of the road. This possible explanation
can be investigated in more detail since our data set has information on following
distances between two passing vehicles. In future research we plan to formally
test such hypotheses by using statistical procedures based on the continuous time
modelling framework developed in this chapter (Figs. 13.1 and 13.3).

We have shown in our current analysis that the unequal time lapses between
consecutive vehicles can be handled effectively using our continuous time trend
model. In this particular application that is highly relevant for road safety studies,
there are several directions in which the results of our analysis can be improved.
Diagnostic tests on the one-step ahead prediction errors indicate that neither the
assumption of independence nor the assumption of normality of the residuals is
satisfied: the Box-Ljung statistic for independence has values for Q(10) that are too
high; their values should be smaller than 16.95 in order to be non-significant at the
usual 5% level. Also, the values for the Bowman-Shenton test for normality are too
high; their values should be smaller than 5.99 to be non-significant.

Although our reported initial findings are highly interesting, the continuous time
trend model appears to be somewhat away from a correct model specification for the
analysis of traffic speed data. Further research can be conducted in order to obtain a
more satisfactory model that is capable of capturing the remaining autocorrelation
and non-normality of the data. However, this research falls outside the scope of our
current review on continuous time state space modelling.

13.5 Conclusions

We have discussed the basic principles of a model-based continuous time approach
using the state space methodology. The methodology is especially designed for
the analysis of irregularly spaced data. We have highlighted the potential of this
approach in an illustration of high-frequency intra-daily time series of speed
measures from vehicles that pass a certain point at a motorway.

Acknowledgements We thank Rijkswaterstaat, The Netherlands (WVL), for providing us with
the data set.
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