
Chapter 1
First- and Higher-Order Continuous
Time Models for Arbitrary N Using SEM

Johan H. L. Oud, Manuel C. Voelkle, and Charles C. Driver

1.1 Introduction

This chapter is closely based on an earlier article in Multivariate Behavioral
Research (Oud et al. 2018). The chapter extends the previous work by the analysis
of the well-known Wolfer sunspot data along with more detailed information on the
relation between the discrete time and continuous time model in the so-called exact
discrete model (EDM). The previously published MBR article provides additional
information on the performance of CARMA(p, q) models by means of several
simulations, an empirical example about the relationships between mood at work
and mood at home along with a subject-group-reproducibility test. However, to
improve readability, we repeat the basic introduction to CARMA(p, q) modeling
in the present chapter.
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Time series analysis has a long history. Although the roots can be traced back to
the earlier work of statisticians such as Yule, Kendall, and Durbin (see the historical
overview in Mills 2012), it was the landmark publication “Time Series Analysis,
Forecasting and Control” by Box and Jenkins (1970) that made time series analysis
popular in many fields of science. Examples are Harvey (1989) and Lütkepohl
(1991) in economics or Gottman (1981) and McCleary and Hay (1980) in the social
sciences.

Time series analysis has greatly benefited from the introduction of the state space
approach. The state space approach stems from control engineering (Kalman 1960;
Zadeh and Desoer 1963) and sharply distinguishes the state of a system, which is
a vector of latent variables driven by the system dynamics in the state transition
equation, from the observations. The measurement part of the state space model
specifies the relation between the observed and the underlying latent variables.
It turns out that any Box-Jenkins autoregressive and moving average (ARMA)
model as well as any extended ARMAX model, in which exogenous variables
are added to the model, can be represented as a state space model (Caines 1988;
Deistler 1985; Harvey 1981; Ljung 1985). However, the state space representation
is much more flexible, allows one to formulate many time series models that cannot
easily be handled by the Box-Jenkins ARMA approach, and makes important state
space modeling techniques such as the Kalman filter and smoother accessible for
time series analysis (Durbin and Koopman 2001). Therefore, the ARMA model in
continuous time presented in this chapter, called a CARMA model (Brockwell 2004;
Tómasson 2011; Tsai and Chan 2000), will in this chapter be formulated as a state
space model.

Structural equation modeling (SEM) was introduced by Jöreskog (1973, 1977)
along with the first SEM software: LISREL (Jöreskog and Sörbom 1976). The
strong relationships between the state space approach and SEM were highlighted
by Oud (1978) and Oud et al. (1990). Both consist of a measurement part and
an explanatory part, and in both the explanatory part specifies the relationships
between latent variables. Whereas in the state space approach the latent explanatory
part is a recursive dynamic model, in SEM it is a latent structural equation model.
As explained in detail by Oud et al. (1990), SEM is sufficiently general to allow
specification of the state space model as a special case and estimation of its
parameters by maximum likelihood and other estimation procedures offered by
SEM. By allowing arbitrary measurement error structures, spanning the entire time
range of the model, SEM further enhances the flexibility of the state space approach
(Voelkle et al. 2012b).

An important drawback of almost all longitudinal models in SEM and time series
analysis, however, is their specification in discrete time. Oud and Jansen (2000),
Oud and Delsing (2010), and Voelkle et al. (2012a) discussed a series of problems
connected with discrete time models, which make their application in practice
highly questionable. One main problem is the dependence of discrete time results on
the chosen time interval. This leads, first, to incomparability of results over different
observation intervals within and between studies. If unaccounted for, it can easily
lead to contradictory conclusions. In a multivariate model, one researcher could
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find a positive effect between two variables x and y, while another researcher finds
a negative effect between the same variables, just because of a different observation
interval length in discrete time research. Second, because results depend on the
specific length of the chosen observation interval, the use of equal intervals in
discrete time studies does not solve the problem (Oud and Delsing 2010). Another
interval might have given different results to both researchers. Continuous time
analysis is needed to make the different and possibly contradictory effects in discrete
time independent of the interval for equal as well as unequal intervals.

The CARMA time series analysis procedure to be presented in this chapter is
based on SEM continuous-time state-space modeling, developed for panel data by
Oud and Jansen (2000) and Voelkle and Oud (2013). The first of these publications
used the nonlinear SEM software package Mx (Neale 1997) to estimate the
continuous time parameters, the second the ctsem program (Driver et al. 2017).
ctsem interfaces to OpenMx (Boker et al. 2011; Neale et al. 2016), which is
a significantly improved and extended version of Mx. In both publications the
kernel of the model is a multivariate stochastic differential equation, and in both
maximum likelihood estimation is performed via the so-called exact discrete model
EDM (Bergstrom 1984). The EDM uses the exact solution of the stochastic
differential equation to link the underlying continuous time parameters exactly to
the parameters of the discrete time model describing the data. The exact solution
turns out to impose nonlinear constraints on the discrete time parameters. Several
authors tried to avoid the implementation of nonlinear constraints by using approx-
imate procedures, although acknowledging the advantages of the exact procedure
(e.g., Gasimova et al. 2014; Steele and Ferrer 2011a,b). In an extensive simulation
study, Oud (2007) compared, as an example, the multivariate latent differential
equation procedure (MLDE; Boker et al. 2004), which is an extension of the
local linear approximation (LLA; Boker 2001), to the exact procedure. The exact
procedure was found to give considerably lower biases and root-mean-square error
values for the continuous time parameter estimates.

Instead of SEM, most time series procedures, particularly those based on the state
space approach (Durbin and Koopman 2001; Hannan and Deistler 1988; Harvey
1989), use filtering techniques for maximum likelihood estimation of the model.
Singer (1990, 1991, 1998) adapted these techniques for continuous time modeling
of panel data. In a series of simulations, Oud (2007) and Oud and Singer (2008)
compared the results of SEM and filtering in maximum likelihood estimation of
various continuous time models. It turned out that in case of identical models, being
appropriate for both procedures, the parameter estimates as well as the associated
standard errors are equal. Because both procedures maximize the likelihood, this
ought to be the case. Considerable technical differences between the two procedures,
however, make it nevertheless worthwhile to find that results indeed coincide. In
view of its greater generality and its popularity outside of control theory, especially
in social science, SEM can thus be considered a useful alternative to filtering.
Making use of the extended SEM framework underlying OpenMx (Neale et al.
2016), both SEM and the Kalman filter procedure, originally developed in control
theory, are implemented in ctsem.
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An argument against SEM as an estimation procedure for time series analysis
could be that it is known and implemented as a large N procedure, while time series
analysis is defined for N = 1 or at least includes N = 1 as the prototypical case.
In the past, different minimum numbers of sample units have been proposed for
SEM, such as N ≥ 200, at least 5 units per estimated parameter, at least 10 per
variable, and so on, with all recommendations being considerably larger than N =
1. Recently, Wolf et al. (2013), on the basis of simulations, settled on a range of
minimum values from 30 to 460, depending on key model properties. For small N ,
in particular N = 1, leading to a nonpositive definite sample covariance matrix,
some SEM programs simply refuse to analyze the data or they change the input data
before the analysis. For example, LISREL gives a warning (“Matrix to be analyzed
is not positive definite”) and then increases the values on the diagonal of the data
covariance matrix S to get this matrix positive definite (“Ridge option taken with
ridge constant = . . . ”), before starting the analysis.

As made clear by Hamaker et al. (2003), Singer (2010), and Voelkle et al.
(2012b), however, the long-standing suggestion that a SEM analysis cannot be
performed because of a nonpositive definite covariance matrix S is wrong. Nothing
in the likelihood function requires the sample covariance matrix S to be positive
definite. It is the model implied covariance matrix Σ that should be positive definite,
but this depends only on the chosen model and in no way on the sample size N . For
the same reason, minimum requirements with regard to N do not make sense, and
N = 1 is an option as well as any other N . The quality of the estimates as measured,
for example, by their standard errors, depends indeed on the amount of data. The
amount of data, however, can be increased both by the number of columns in the data
matrix (i.e., the number of time points T in longitudinal research) and by the number
of rows (i.e., the number of subjects N in the study). The incorrect requirement of a
positive definite S for maximum likelihood estimation (Jöreskog and Sörbom 1996)
may be explained by the modified likelihood function employed in LISREL and
other SEM programs. This contains the quantity log |S| (see Equation (3) in Voelkle
et al. 2012b), and thus these programs cannot handle N = 1 and N smaller than the
number of columns in S. By employing the basic “raw data” or “full-information”
maximum likelihood function (RML or FIML), OpenMx avoids this problem and (a)
allows any N , including N = 1, (b) permits the nonlinear constraints of the EDM,
(c) allows any arbitrary missing data pattern under the missing at random (MAR)
assumption, and (d) allows individually varying observation intervals in continuous
time modeling by means of so-called definition variables (Voelkle and Oud 2013).

Until now, however, the SEM continuous time procedure has not yet been applied
on empirical N = 1 data, although the possibility is discussed and proven to
be statistically sound by Singer (2010), and the software to do so is now readily
available (Driver et al. 2017). Thus, the aim of the present chapter is, first, to discuss
the state space specification of CARMA models in a SEM context. Second, to show
that the SEM continuous time procedure is appropriate for N = 1 as well as for
N > 1. Third, the proposed analysis procedure using ctsem will be applied on the
well-known Wolfer sunspot data. This N = 1 data set has been analyzed by several
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continuous time analysts before. The results from ctsem will be compared to those
found previously.

1.2 Continuous Time Model

1.2.1 Basic Model

In discrete time, the multivariate autoregressive moving-average model ARMA
(p, q) with p the maximum lag of the dependent variables vector yt and q the
maximum lag of the error components vector et reads for a model with, for example,
p = 2 and q = 1

yt = Ft,t−1yt−1 + Ft,t−2yt−2 + Gtet + Gt,t−1et−1. (1.1)

The autoregressive part with F-matrices specifies the lagged effects of the dependent
variables, while the moving-average part with G-matrices handles the incoming
errors and lagged errors. Assuming the errors in the vectors et , et−1 to be indepen-
dently standard normally distributed (having covariance matrices I) and Gt ,Gt,t−1
lower-triangular, the moving-average effects Gtet ,Gt,t−1et−1 get covariance matri-
ces Qt = GtG′

t ,Qt,t−1 = Gt,t−1G′
t,t−1, which may be nondiagonal and with

arbitrary variances on the diagonal. Specifying moving-average effects is no less
general than the covariance matrices. Any covariance matrix Q can be written as
Q = GG′ in terms of a lower-triangular matrix (Cholesky factor) G. In addition,
estimating G instead of directly Q has the advantage of avoiding possible negative
variance estimates showing up in the direct estimate of Q.

The moving-average part Gtet + Gt,t−1et−1 in Eq. (1.1) may also be written as
Gt,t−1et−1 + Gt,t−2et−2 with the time indices shifted backward in time from t and
t − 1 to t − 1 and t − 2. Replacing the instantaneous error component Gtet by the
lagged one Gt,t−1et−1 (and Gt,t−1et−1 by Gt,t−2et−2) could be considered more
appropriate, if the errors are taken to stand for the unknown causal influences on
the system, which need some time to operate and to affect the system. The fact
that the two unobserved consecutive error components get other names but retain
their previous values will result in an observationally equivalent (equally fitting)
system. Although equivalent, the existence of different representations in discrete
time (forward or instantaneous representation in terms of t and t−1 and backward or
lagging representation in terms of t −1 and t −2) is nevertheless unsatisfactory. The
forward representation puts everything that happens in between t and t − 1 forward
in time at t , the backward representation puts the same information backward in
time at t − 1. From a causal standpoint, though, the backward representation is no
less problematic than the forward representation, since it is anticipating effects that
in true time will happen only later.
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The ambiguous representation in discrete time of the behavior between t and
t − 1 in an ARMA(p, q) model disappears in the analogous continuous time
CARMA(p, q) model, which reads for p = 2 and q = 1

d2y(t)
dt2 = F0y(t) + F1

dy(t)
dt

+ G0
dW(t)

dt
+ G1

d2W(t)

dt2 . (1.2)

Writing y(t) instead of yt emphasizes the development of y across continuous
time. The role of successive lags in discrete time is taken over by successive
derivatives in continuous time. The causally unsatisfactory instantaneous and
lagging representations meet, so to speak, in the derivatives, which instead of using
a discrete time interval �t = t − (t − 1) = 1, let the time interval go to zero:
�t → 0. Equation (1.2) is sometimes written as

F0y(t) + F1
dy(t)

dt
+ F2

d2y(t)
dt2 = G0

dW(t)

dt
+ G1

d2W(t)

dt2 , (1.3)

with F2 = −I and opposite signs for G0,G1, making it clear that the CARMA(2,1)
model has F2 as the highest degree matrix in the autoregressive part and G1 as the
highest degree in the moving-average part.

The next subsection will show in more detail how discrete time and continuous
time equations such as (1.1) and (1.2) become connected as �t → 0. The
error process in continuous time is the famous Wiener process1 W(t) or random
walk through continuous time. Its main defining properties are the conditions
of independently and normally distributed increments, �W(t) = W(t) −
W(t − �t), having mean 0 and covariance matrix �tI. This means that
the increments with arbitrary �t are standard normally distributed for
�t = 1 as assumed for et , et−1 in discrete time. Likewise, the role of
lower-triangular G0,G1 in (1.2) is analogous to the role of Gt ,Gt,t−1
in discrete time. Derivative dW(t)/dt (white noise) does not exist in the
classical sense but can be defined in the generalized function sense, and
also integral

∫ t

t0
GdW(t) can be defined rigorously (Kuo 2006, pp. 104–

105 and pp. 260–261). Integrals are needed to go back again from the
continuous time specification in Eq. (1.2) to the observed values in discrete
time.

We will now show how the CARMA(2,1) model in Eq. (1.2) and the general
CARMA(p, q) model can be formulated as special cases of the continuous time
state space model. The continuous time state space model consists of two equations:
a latent dynamic equation (1.4) with so-called drift matrix A and diffusion matrix
G and a measurement equation (1.5) with loading matrix C and measurement error

1In this chapter we follow the common practice to write the Wiener process by capital letter W,
although it is here a vector whose size should be inferred from the context.
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vector v(t):

dx(t)
dt

= Ax(t) + G
dW(t)

dt
, (1.4)

y(t) = Cx(t) + v(t). (1.5)

In general, the variables in state vector x(t) are assumed to be latent and only
indirectly measured by the observed variables in y(t) with measurement errors
in v(t). The measurement error vector v(t) is assumed independent of x(t) and
normally distributed: v(t) ∼ N(0,R). For the initial state x(t0), we assume
x(t0) ∼ N(μx(t0),�x(t0)). Often, but not necessarily, it is assumed E[x(t0)] =
μx(t0) = 0. The latter would imply that the model has an equilibrium state:
E[x(t)] = E[x(t0)] = 0, and in case all eigenvalues of A have negative real part, 0
is the stable equilibrium state in the model.

In state space form, the observed second-order model CARMA(2,1) in Eq. (1.2)
gets a state vector x(t) = [x1(t)

′ x2(t)
′]′, which is two times the size of the

observed vector y(t). The first part x1(t) is not directly related to the observed
variables and thus belongs to the latent part of the state space model. This special
case of the state space model equates the second part to the observed vector:
y(t) = x2(t). Equation (1.2) then follows from state space model (1.4)–(1.5) by
specification

A =
[
0 F0

I F1

]

, G =
[
G0 0
G1 0

]

, C = [
0 I

]
, v(t) = 0. (1.6)

Applying (1.6) we find first

dx1(t)

dt
= F0x2(t) + G0

dW(t)

dt
, (1.7)

dx2(t)

dt
= x1(t) + F1x2(t) + G1

dW(t)

dt
⇒

d2x2(t)

dt2 = dx1(t)

dt
+ F1

dx2(t)

dt
+ G1

d2W(t)

dt2 . (1.8)

Substituting (1.7) into the implication in (1.8) gives

d2x2(t)

dt2 = F0x2(t) + F1
dx2(t)

dt
+ G0

dW(t)

dt
+ G1

d2W(t)

dt2 , (1.9)

which for y(t) = x2(t) leads to the CARMA(2,1) model in (1.2).
The specification in the previous paragraph can be generalized to find the

CARMA(p, q) model in state space form in (1.10), where r = max (p, q + 1).
G leads to diffusion covariance matrix Q = GG′, which has Cholesky factor-based
covariance matrices GiGi

′ on the diagonal and in case q > 0 off-diagonal matrices
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GiGj
′ (i, j = 0, 1, . . . , r − 1). In the literature one often finds the alternative

state space form (1.11) (see e.g., Tómasson 2011; Tsai and Chan 2000). Here the
moving average matrices G1,G2, . . . ,Gr−1 are rewritten as Gi = HiG0 in terms
of corresponding matrices H1,H2, . . . ,Hr−1, specified in the measurement part of
the state space

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 F0

I 0
. . . 0 F1

0 I
. . . 0 F2

...
...

. . .
...

...

0 0 . . . I Fr−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

G0 0 · · · 0 0

G1 0
. . . 0 0

G2 0
. . . 0 0

...
...

. . .
...

...

Gr−1 0 . . . 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C = [
0 0 0 · · · I

]
, v(t) = 0. (1.10)

model and G0. For two reasons we prefer (1.10) in the case of CARMA(p, q)
models with q > 0. The derivation of (1.11) requires the matrices Hi and
Fj to commute, which in practice restricts the applicability to the univariate
case. In addition, using the measurement part for the moving average specifica-
tion would make it difficult to specify at the same time measurement parame-
ters. For CARMA(p,0) models (all Hi = 0), we prefer (1.11), because each
state variable in state vector x(t) is easily interpretable as the derivative of
the previous one. The interpretation of the state variables in (1.7)–(1.8) is less
simple.

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 I 0 · · · 0

0 0 I
. . . 0

...
...

...
. . .

...

0 0 0 . . . I
F0 F1 F2 · · · Fr−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 · · · 0

0 0 0
. . . 0

...
...

...
. . .

...

0 0 0 . . . 0
0 0 0 · · · G0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

C = [
I H1 H2 · · ·Hr−1

]
, v(t) = 0. (1.11)

The fact that the general CARMA(p, q) model fits seamlessly into the state
space model means that all continuous time time series problems in modeling and
estimation can be handled by state space form (1.4)–(1.5). The state space approach
in fact reformulates higher-order models as a first-order model, and this will be
applied in the sequel.
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1.2.2 Connecting Discrete and Continuous Time Model
in the EDM

The EDM combines the discrete time and continuous time model and does so in an
exact way. It is by the EDM that the exact procedure in this chapter differentiates
from many approximate procedures found in the literature. We show how the exact
connection looks like between the general continuous time state space model and its
discrete time counterpart, derived from it. The first-order models ARMA(1,0) and
CARMA(1,0) in state space form differ from the general discrete and continuous
time state space model only in a simpler measurement equation. So, having made
the exact connections between the general state space models and thus between
ARMA(1,0) and CARMA(1,0) and knowing that each CARMA(p, q) model can be
written as a special case of the general state space model, the exact connections
between CARMA(p, q) and ARMA(p, q), where the latter is derived from the
former, follow. Next we consider the question of making an exact connection
between an arbitrary ARMA(p∗, q∗) model and a CARMA(p, q) model, where the
degrees p∗ and p as well as q∗ and q need not be equal.

Comparing discrete time equation (1.1) to the general discrete time state space
model in (1.12)–(1.13), one observes that the latter becomes immediately the
ARMA(1,0) model for yt = xt but is more flexible in time handling.

xt = A�txt−�t + G�tet−�t (1.12)

yt = Cxt + vt . (1.13)

Inserting arbitrary lag �t instead of fixed lag �t = 1 enables us to put discrete time
models with different intervals (e.g., years and months) on the same time scale and
to connect them to the common underlying continuous time model for �t → 0.

State equation (1.12) can be put in the equivalent difference quotient form

�xt

�t
= A∗�txt−�t + G�t

et−�t

�t

for A∗�t = (A�t − I)/�t implying A�t = I + A∗�t�t. (1.14)

So we have the discrete time state space model in two forms: difference quotient
form (1.14) and solution form (1.12). Equation (1.12) is called the solution of (1.14),
because it describes the actual state transition across time in accordance with (1.14)
and is so said to satisfy the difference quotient equation. Note that analogously the
general continuous time state space model (1.4)–(1.5) immediately accommodates
the special CARMA(1,0) model for y(t) = x(t) and can be put in two forms:
stochastic differential equation (1.4) and its solution (1.15) (Arnold 1974; Singer
1990):

x(t) = eA�tx(t − �t) +
∫ t

t−�t

eA(t−s)GdW(s). (1.15)
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In the exact discrete model EDM the connection between discrete and continuous
time is made by means of the solutions, which in both cases describe the actual
transition from the previous state at t − �t to the next state at t . The EDM thus
combines both models and connects them exactly by the equalities:

A�t = eA�t and Q�t =
∫ t

t−�t

eA(t−s)QeA
′(t−s)d(s) . (1.16)

While discrete time autoregression matrix A�t and continuous time drift matrix A
are connected via the highly nonlinear matrix exponential, the errors are indirectly
connected by their covariance matrices Q�t = G�tG′

�t and Q = GG′. In
estimating, after finding the drift matrix A on the basis of A�t , next on the basis
of G�t the diffusion matrix G is found.

The connection between discrete and continuous time becomes further clarified
by two definitions of the matrix exponential eA�t . The standard definition (1.17)

eA�t =
∑∞

k=0
(A�t)k/k!

= I + A�t +
(

1

2
A2�t2 + 1

6
A3�t3 + 1

24
A4�t4 + · · ·

) (1.17)

shows the rather complicated presence ofA in A�t and the formidable task to extract
continuous time A from discrete time A�t in an exact fashion. However, it also
shows that for �t → 0, the quantity between parentheses becomes arbitrarily small,
and the linear part I + A�t could be taken as an approximation of eA�t , leading
precisely to A∗�t in the difference quotient equation (1.14) as approximation of
A in the differential equation (1.4). Depending on the length of the interval �t ,
however, the quality of this approximation can be unduly bad in practice. An
alternative definition is based on oversampling (Singer 2012), meaning that the total
time interval between measurements is divided into arbitrary small subintervals:
δ = �t

D
for D → ∞. The definition relies on the multiplication property of

autoregression: xt = A0.5�txt−0.5�t and xt−0.5�t = A0.5�txt−�t ⇒ xt =
A0.5�tA0.5�txt−�t = A�txt−�t which is equally valid in the continuous time case:
xt = eA(0.5�t)eA(0.5�t)xt−�t = eA�txt−�t , leading to multiplicative definition:

eA�t = lim
D→∞

D−1∏

d=0

(I + Aδd) for δd = �t

D
. (1.18)

I + A�t in (1.17), becoming I + Aδ in (1.18), is no longer an approximation
of eAδ but becomes equal to eAδ for D → ∞ and δ → 0, while then A∗δ =
(eAδ − I)/δ in difference equation (1.14) becomes equal to drift matrix A in
differential equation (1.4). So, the formidable task to extract A from A�t is
performed here in the same simple way as done by just taking approximate A∗�t

from A�t in (1.14), but instead of once over the whole interval �t , it is repeated
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over many small subintervals, becoming for sufficiently large D equal to the exact
procedure in terms of (1.17). We write A∗�t ≈ A, but one should keep in mind
that by taking a sufficiently small interval in terms of the right-hand side of (1.18),
one can get A∗�t as close to A as wanted. An adapted version2 of the oversampling
procedure is described in Voelkle and Oud (2013).

Let us illustrate the connection between CARMA(1,0) and ARMA(1,0) by an

example. If A =
[−1.0 0.2

0.3 −1.5

]

, the exact connection in the EDM is for �t = 1

made by A�t=1 = eA�t = eA =
[

0.377 0.058
0.088 0.231

]

. A in the differential equation

may be compared to A∗�t=1 = (eA�t−I)/�t = eA−I =
[−0.623 0.058

0.088 −0.769

]

in the

difference equation for �t = 1. For �t = 0.1 we getA∗�t=0.1 = (eA×0.1−I)/0.1 =[−0.949 0.177
0.264 −1.390

]

which is much closer to A and for �t = 0.001, A∗�t=0.001 =

(eA×0.001 − I)/0.001 =
[−0.999 0.200

0.300 −1.499

]

becomes virtually equal to A.

Making an exact connection between an ARMA(p∗, q∗) model and a model
CARMA(p, q) such that the ARMA process {yt ; t = 0, t = �t, t = 2�t, . . .}
generated by ARMA(p∗, q∗) is a subset of the CARMA process {y(t);
t � 0} generated by CARMA(p, q) is called “embedding” in the literature.
The degrees p∗ and q∗ of the embedded model and p and q of the embedding
model need not be equal. Embeddability is a much debated issue. Embedding
is not always possible and need not be unique. Embedding is clearly possible
for the case of ARMA(1,0) model yt = A�tyt−�t + G�tet−�t derived from
CARMA(1,0) model dy(t)

dt
= Ay(t) + G dW(t)

dt
with A�t = eA�t , Q�t =

∫ t

t−�t
eA(t−s)QeA

′(t−s)ds, Q�t = G�tG′
�t , Q = GG′ as shown above. The same

is true for the higher-order ARMA(p, q) model, derived from CARMA(p, q).
However, in general it is nontrivial to prove embeddability and to find the
parameters of the CARMA(p, q) model embedding an ARMA(p∗, q∗) process.
For example, not all ARMA(1,0) processes have a CARMA(1,0) process in
which it can be embedded. A well-known example is the simple univariate

2The adapted version uses (1.18A)

eA�t = lim
D→∞

D−1∏

d=0

[(
I − 1

2
Aδd

)−1(
I + 1

2
Aδd

)]
for δd = �t

D
, (1.18A)

which converges much more rapidly than (1.18). It is based on the approximate discrete model
(ADM), described by Oud and Delsing (2010), which just as the EDM goes back to Bergstrom
(1984). Computation of the matrix exponential by (1.18) or (1.18A) has the advantage over the
diagonalization method (Oud and Jansen 2000) that no assumptions with regard to the eigenvalues
need to be made. Currently by most authors the Padé-approximation (Higham 2009) is considered
the best computation method, which therefore is implemented in the most recent version of ctsem.



12 J. H. L. Oud et al.

process yt = a�tyt−�t + g�t et−�t with −1 < a�t < 0, because there
does not exist any a for which a�t = ea�t can be negative. However, Chan
and Tong (1987) showed that for this ARMA(1,0) process with −1 < a�t <

0, a higher order CARMA(2,1) process can be found, in which it can be
embedded.

Also embeddability need not be unique. Different CARMA models may embed
one and the same ARMA model. A classic example is “aliasing” in the case of
matrices A with complex conjugate eigenvalue pairs λ1,2 = α ± βi with i the
imaginary unit (Hamerle et al. 1991; Phillips 1973). Such complex eigenvalue
pairs imply processes with oscillatory movements. Adding ±k2π/�t to β leads for
arbitrary integer k to a different A with a different oscillation frequency but does not
changeA�t = eA�t and so may lead to the same ARMA model. The consequence is
that the CARMA model cannot uniquely be determined (identified) by the ARMA
model and the process generated by it. Fortunately, the number of aliases in general
is limited in the sense that there exists only a finite number of aliases that lead for
the same ARMA model to a real G and so to a positive definite Q in the CARMA
model (Hansen and Sargent 1983). The size of the finite set additionally depends
on the observation interval �t , a smaller �t leading to less aliases. The number of
aliases may also be limited by sampling the observations in the discrete time process
at unequal intervals (Oud and Jansen 2000; Tómasson 2015; Voelkle and Oud 2013).

An important point with regard to the state space modeling technique of
time series is the latent character of the state. Even in the case of an observed
ARMA(p, q) or CARMA(p, q) model of such low dimension as p = 2, we have
seen that part of the state is not directly connected to the data. This has especially
consequences for the initial time point. Suppose for the ARMA(2,1) model in state
space form (1.19)–(1.20),

[
x1,t−�t

x1,t

]

=
[

0 I
Ft,t−2�t Ft,t−�t

] [
x1,t−2�t

x1,t−�t

]

+
[
0 0
0 Gt,t−�t

]

et−�t ,

xt = A�t xt−�t + G�t et−�t , (1.19)

yt = [
0 I

]
xt , (1.20)

the initial time point, where the initial data are located, is t0 = t − �t . It means
that there are no data directly or indirectly connected to (the lagged) part of xt−�t .
The initial parameters related to this part can nevertheless be estimated but become
highly dependent on the model structure, and the uncertainty will be reflected in
high standard errors. It does not help to start the model at later time point t0 + �t .
That would result in data loss, since the 0 in (1.20) simply eliminates the lagged
part of xt−�t without any connection to the data. Similar remarks apply to the initial
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derivative dx1(t)/dt

[
dx1(t )

dt
d2x1(t )

dt2

]

=
[
0 I
F0 F1

] [
x1(t)
dx1(t )

dt

]

+
[
0 0
0 G0

]
dW(t)

dt
,

dx(t)

dt
= A x(t) + G

dW(t)

dt
, (1.21)

y(t) = [
I 0

]
x(t), (1.22)

in (1.21)–(1.22), which is not directly connected to the data and cannot be computed
at the initial time point. Again, the related initial parameters can be estimated
in principle. One should realize, however, that dependent on the model structure,
the number of time points analyzed and the length of the observation intervals,
these initial parameter estimates can become extremely unreliable. In a simulation
study of a CARMA(2,0) model with oscillating movements, Oud and Singer (2008)
found in the case of long interval lengths extremely large standard errors for the
estimates related to the badly measured initial dx1(t)/dt . This lack of data and
relative unreliability of estimates are the price one has to pay for choosing higher-
order ARMA(p, q) and CARMA(p, q) models.

1.2.3 Extended Continuous Time Model

The extended continuous time state space model reads

dx(t)
dt

= Ax(t) + Bu(t) + γ + G
dW(t)

dt
, (1.23)

yti = Cx(ti) + Du(ti) + κ + vti . (1.24)

In comparison to the basic model in (1.4)–(1.5), the extended model exhibits one
minor notational change and two major additions. The minor change is in the
measurement equation and is only meant to emphasize the discrete time character
of the data at the discrete time points ti (i = 0, . . . , T − 1) with x(ti) and
u(ti) sampling the continuous time vectors x(t) and u(t) at the observation time
points. One major addition are the effects Bu(t) and Du(t) of fixed exogenous
variables in vector u(t). The other is the addition of random subject effect
vectors γ and κ to the equations. While the (statistically) fixed variables in u(t)

may change across time (time-varying exogenous variables), the subject-specific
effects γ and κ with possibly a different value for each subject in the sample are
assumed to be constant across time but normally distributed random variables:
γ ∼ N(0,�γ), κ ∼ N(0,�κ). To distinguish them from the changing states,
the constant random effects in γ are called traits. Because trait vector γ is
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modeled to influence x(t) continuously, before as well as after t0, �x(t0),γ, the
covariance matrix between initial state and traits cannot in general be assumed
zero. The additions in state equation (1.23) lead to the following extended solu-
tion:

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−s)Bu(s)d(s)

+ A−1[eA(t−t0) − I
]
γ +

∫ t

t0

eA(t−s)GdW(s).

(1.25)

1.2.4 Exogenous Variables

We have seen that the basic model in the case of stability (all eigenvalues of A
having negative real part) has 0 as stable equilibrium state. Exogenous effects Bu(t)

and Du(t) accommodate nonzero constant as well as nonconstant mean trajectories
E[x(t)] and E[y(t)] even in the case of stability. By far the most popular exogenous
input function is the unit function, e(s) = 1 for all s over the interval, with the effect
be called intercept and integrating over interval [t0, t) into

∫ t

t0
eA(t−s)bee(s)d(s) =

A−1[eA(t−t0) − I]be. In the measurement equation, the effect of the unit variable in
D is called measurement intercept or origin and allows measurement instruments to
have scales with different starting points in addition to the different units specified
in C.

Useful in describing sudden changes in the environment is the intervention
function, a step function that takes on a certain value a until a specific time point t ′
and changes to value b at that time point until the end of the interval: i(s) = a for
all s < t ′, i(s) = b for all s � t ′. An effective way of handling the step or piecewise
constant function is a two-step procedure, in which Eq. (1.26) is applied twice: first
with u(t0) containing the step function value of the first step before t ′ and next with
u(t0) containing the step function value of the second step.

x(t) = eA(t−t0)x(t0) + A−1
[
eA(t−t0) − I

]
Bu(t0)

+ A−1
[
eA(t−t0) − I

]
γ +

∫ t

t0

eA(t−s)GdW(s).

(1.26)

In the second step, the result x(t) of the first step is inserted as x(t0). The relatively
simple solution equation (1.26) has much more general applicability, though, than
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just for step functions. It can be used to approximate any exogenous behavior
function in steps and approximate its effect arbitrarily closely by oversampling
(dividing the observation interval in smaller intervals) and choosing the oversam-
pling intervals sufficiently small.3

The handling of exogenous variables takes another twist, when it is decided to
endogenize them. The problem with oversampling is that it is often not known,
how the exogenous behavior function looks like in between observations. By
endogenizing the exogenous variables, they are handled as random variables, added
to the state vector, and in the same way as the other state variables related to
their past values in an autoregressive fashion. Advantages of endogenizing are its
nonapproximate nature and the fact that the new state variables may not only be
modeled to influence the other state variables but also to be reciprocally influenced
by them.

In addition to differentiating time points within subjects, exogenous variables
also enable to differentiate subjects in case of an N > 1 sample. Suppose the
first element of u(t) is the unit variable, corresponding in B with first column be,
and the second element is a dummy variable differentiating boys and girls (boys
0 at all-time points and girls 1 at all-time points) and corresponding to second
column bd . Supposing all remaining variables have equal values, the mean or
expectation E[x(t)] of girls over the interval [t0, t) will then differ by the amount of
A−1[eA(t−t0) − I]bd from the one of boys. This amount will be zero for t − t0 = 0,
but the regression-like analysis procedure applied at initial time point t0 allows
to distinguish different initial means E[x(t0)] for boys and girls. Thus, the same
dummy variable at t0 may impact both the state variables at t0 and according to the
state space model over the interval t − t0 the state variables at the next observation
time point.

1.2.5 Traits

Although, as we have just seen, there is some flexibility in the mean or expected
trajectory, because subjects in different groups can have different mean trajectories,
it would nevertheless be a strange implication of the model, if a subject’s expected

3A better approximation than a step function is given by a piecewise linear or polygonal
approximation (Oud and Jansen 2000; Singer 1992). Then we write u(t) in (1.23) as u(t) = u(t0)+
(t − t0)b(t0,t] and (1.26) becomes:

x(t) = eA(t−t0)x(t0) + A−1[eA(t−t0) − I
]
Bu(t0) +

{
A−2[eA(t−t0) − I

] − A−1(t − t0)
}
Bb(t0,t]

+ A−1[eA(t−t0) − I
]
γ +

∫ t

t0

eA(t−s)GdW(s).

(1.26A)
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current and future behavior is totally dependent on the group of which he or she
is modeled to be a member. It should be noted that the expected trajectories are
not only interesting per se, but they also play a crucial role in the estimated latent
sample trajectory of a subject, defined as the conditional mean E[x(t)|y], where
y is the total data vector of the subject (Kalman smoother), or E[x(t)|y[t0, t]],
where y[t0, t] is all data up to and including t (Kalman filter). In a model
without traits, the subject regresses toward (in the case of a stable model) or
egresses from (in an unstable model) the mean trajectory of its group. The con-
sequences are particularly dramatic for predictions, because then after enough time
is elapsed, the subject’s trajectory in a stable model will be coinciding with its group
trajectory.

From solution equation (1.25), it becomes clear, however, that in the state-trait
model, each subject gets its own mean trajectory that differs from the group’s mean.
After moving the initial time point of a stable model sufficiently far into the past,
t0 → − ∞, the subject’s expected trajectory is

E[x(t)|γ] =
∫ t

−∞
eA(t−s)Bu(s)d(s) − A−1γ, (1.27)

which keeps a subject-specific distance −A−1γ from the subject’s group mean
trajectory E[x(t)] = ∫ t

−∞ eA(t−s)Bu(s)d(s). As a result the subject’s sample
trajectory regresses toward its own mean instead of its group mean. A related
advantage of the state-trait model is that it clearly distinguishes trait variance
(diagonals of �γ), also called unobserved heterogeneity between subjects, from
stability. Because in a pure state model (γ = 0) all subject-specific mean trajectories
coincide with the group mean trajectory, trait variance and stability are confounded
in the sense that an actually nonzero trait variance leads to a less stable model
(eigenvalues of A having less negative real part) as a surrogate for keeping the
subject-specific mean trajectories apart. In a state-trait model, however, stability is
not hampered by hidden heterogeneity.

It should be noted that the impact of the fixed and random effects Bu(t) and
γ in the state equation (1.23) is quite different from that of Du(ti ) and κ in
the measurement equation (1.24). The latter is a one-time snapshot event with
no consequences for the future. It just reads out in a specific way the current
contents of the system’s state. However, the state equation is a dynamic equation
where influences may have long-lasting and cumulative future effects that are
spelled out by Eq. (1.25) or (1.26). In particular, the traits γ differ fundamentally
from the nondynamic or “random measurement bias” κ, earlier proposed for panel
data by Goodrich and Caines (1979), Jones (1993), and Shumway and Stoffer
(2000).
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1.3 Model Estimation by SEM

As emphasized above, if the data are collected in discrete time, we need the EDM
to connect the continuous time parameter matrices to the discrete time parameter
matrices describing the data. The continuous time model in state space form
contains eight parameter matrices that are connected to the corresponding discrete
time matrices as shown in (1.28). In (1.28) ⊗ is the Kronecker product and the row
operator puts the elements of the Q matrix row-wise in a column vector, whereas
irow stands for the inverse operation.

While there are only eight continuous time parameter matrices, there may
be many more discrete time parameter matrices. This is typically the case for
the dynamic matrices A�ti,j ,B�ti,j ,Q�ti,j . The observation time points ti (i =
0, . . . , T − 1) may differ for different subjects j (j = 1, . . . , N) but also the
observation intervals �ti,j = ti,j − ti−1,j (i = 1, . . . , T − 1) between the
observation time points. Different observation intervals can lead to many different
discrete time matrices A�ti,j ,B�ti,j ,Q�ti,j but all based on the same underlying
continuous time matrices A,B,Q.

A A�ti,j = eA�ti,j

B B�ti,j = A◦
�ti,j B for A◦

�ti,j = A−1(eA�ti,j − I)

Q = GG′ Q�ti,j =
∫ t

t−�ti,j

eA(t−s)QeA
′(t−s)d(s)

= irow[A−1
# (eA#�ti,j − I)row Q]

for A# = A ⊗ I + I ⊗ A

C Cti,j = C

D Dti,j = D

R Rti,j = R

μx(t0) = E[x(t0)] = Bt0u(t0)

�x(t0) = E[(x(t0) − μx(t0))(x(t0) − μx(t0))
′]

(1.28)

The most extreme case is that none of the intervals is equal to any other interval,
a situation a traditional discrete time analysis would be unable to cope with but is
unproblematic in continuous time analysis (Oud and Voelkle 2014).

The initial parameter matrices μx(t0) and �x(t0) deserve special attention. In a
model with exogenous variables, the initial state mean may take different values
in different groups defined by the exogenous variables. Since the mean trajectories
E[x(t)] may be deviating from each other because of exogenous influences after
t0, it is natural to let them already differ at t0 as a result of past influences.
These differences are defined regression-wise by E[x(t0)] = Bt0u(t0) with Bt0u(t0)
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absorbing all unknown past influences. For example, if u(t0) consists of two
variables, the unit variable (1 for all subjects) and a dummy variable defining gender
(0 for boys and 1 for girls), there will be two means E[x(t0)], one for the boys
and one for the girls. If u(t0) contains only the unit variable, the single remaining
vector bt0 in Bt0 will become equal to the initial mean: E[x(t0)] = bt0 . Because the
instantaneous regression matrix Bt0 just describes means and differences as a result
of unknown effects from before t0, it should not be confused with the dynamic B
and as a so-called predetermined quantity in estimation not undergo any constraint
from B. Similarly, �x(t0) should not undergo any constraint from the continuous
time diffusion covariance matrix Q.

A totally new situation for the initial parameters arises, however, if we assume
the system to be in equilibrium. Equilibrium means first μx(t) = μx(t0) as well as all
exogenous variables u(t) = u(t0) being constant. Evidently, the latter is the case, if
the only exogenous variable is the unit variable, reducing B to a vector of intercepts,
but also if it contains additional gender or any other additional exogenous variables,
differentiating subjects from each other but constant in time. The assumption of
equilibrium, μx(t) = μx(t0),—possibly but not necessarily a stable equilibrium—
leads to equilibrium value

μx(t) = μx(t0) = −A−1Buc, (1.29)

with uc the value of the constant exogenous variables u(t) = u(t0) = uc. If we
assume the system to be stationary, additionally �x(t) = �x(t0) is assumed to be in
equilibrium, leading to equilibrium value

�x(t) = �x(t0) = irow[ − A−1
# row Q] . (1.30)

The novelty of the stationarity assumption is that the initial parameters are totally
defined in terms of the dynamic parameters as is clearly seen from (1.29) and (1.30).
It means, in fact, that the initial parameters disappear and the total number of
parameters to be estimated is considerably reduced. Although attractive and present
as an option in ctsem (Driver et al. 2017), the stationarity assumption is quite
restrictive and can be unrealistic in practice.

To estimate the EDM as specified in (1.28) by SEM, we put all variables and
matrices of the EDM into SEM model

η = B η + ζ with � = E(ζζ ′), (1.31)

y = �η + ε with � = E(εε′). (1.32)

The SEM model consists of two equations, structural equation (1.31) and mea-
surement equation (1.32), in terms of four vectors, η, ζ , y, ε, and four matrices,
B,�,�,�. From Eqs. (1.31)–(1.32), one easily derives the model implied mean μ
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and covariance matrix � and next the raw maximum likelihood equation (1.33) (see
e.g., Bollen 1989)

RML =
N∑

j=1

[
mj log(2π) + log(|�j |) + (yj − μj )

′�−1
j (yj − μj )

]
. (1.33)

The subscript j makes the SEM procedure extremely flexible by allowing any
number of subjects, including N = 1, and any missing value pattern for each of
the subjects j , as the number of variables mj (m = pT ), the data vector yj , the
mean vector μj , and the covariance matrix �j may all be subject specific. In case
of missing values, the corresponding rows and columns of the missing elements for
that subject j are simply deleted.

For obtaining the maximum likelihood estimates of the EDM, it suffices to show
how the SEM vectors η, y, ζ , ε, and matrices, B,�,�,� include the variables
and matrices of the EDM. This is done in (1.34). In the vector of exogenous
variables u(t) = [uc uv(t)], we distinguish two parts: the part uc, consisting of
the unit variable and, for example, gender and other variables that differ between
subjects but are constant across time, and the part uv(t) that at least for one
subject in the sample is varying across time. Exogenous variables like weight
and income, for example, are to be put into uv(t). We abbreviate the dynamic
errors

∫ ti,j
ti,j −�ti,j

eA(ti,j −s)GdW(s) to w(ti,j − �ti,j ). The mean sum of squares and
cross-products matrix of uj over sample units is called �u, and the mean sum of
cross-products between x(t0,j ) − μx(t0,j )

and uj is called �x(t0),u. The latter must
be estimated, though, if the state is latent.

The traits γ and κ are not explicitly displayed but can be viewed as a special kind
of constant zero-mean exogenous variables uc,j in uj , whose covariance matrices
�γ and �κ in �u as well as �x(t0),γ and �x(t0),κ in �x(t0),u are not fixed quantities
but have to be estimated. These latent variables have no loadings in � and have
Bc,t0 = 0 in B . For γ the Bc,�ti,j in B are replaced by A◦

�ti,j (see (1.28)) and for κ

the Dc,ti,j in � by I.

η = [x′
j u′

j ]′ with xj = [x′(t0,j ) x′(t1,j ) · · · x′(tT −1,j )]′
and uj = [u′

c,j u′
v(t0,j ) u′

v(t1,j ) · · · u′
v(tT −1,j )]′,

ζ = [w′
j u′

j ]′ with wj = [x′(t0,j ) − μ′
x(t0,j )

w′(t1,j − �t1,j )

· · · w′(tT −1,j − �T −1,j )]′,
y = [y′

j u′
j ]′ with yj = [y′(t0,j ) y′(t1,j ) · · · y′(tT −1,j )]′,

ε = [v′
j 0′]′ with vj = [v′(t0,j ) v′(t1,j ) · · · v′(tT −1,j )]′,
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B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 · · · 0 Bc,t0 Bv,t0 0 · · · 0
A�t1,j 0 · · · 0 Bc,�t1,j Bv,�t1,j 0 · · · 0
0 A�t2,j · · · 0 Bc,�t2,j 0 Bv,�t2,j · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · A�tT−1,j Bc,�tT −1,j 0 0 · · · Bv,�tT−1,j

0 0 · · · 0 0 0 0 · · · 0
0 0 · · · 0 0 0 0 · · · 0
0 0 · · · 0 0 0 0 · · · 0
0 0 · · · 0 0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

�x(t0) 0 · · · 0 �x(t0),u

0 Q�t1,j · · · 0 0
...

...
. . .

...
...

0 0 · · · Q�tT−1,j 0
�′

x(t0),u
0 · · · 0 �u

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ct0,j 0 · · · 0 Dc,t0,j Dv,t0,j 0 · · · 0
0 Ct1,j · · · 0 Dc,t1,j 0 Dv,t1,j · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · CtT −1,j Dc,tT −1,j 0 0 · · · Dv,tT−1,j

0 0 · · · 0 I 0 0 · · · 0
0 0 · · · 0 0 I 0 · · · 0
0 0 · · · 0 0 0 I · · · 0

0 0 · · · 0 0 0 0
. . . 0

0 0 · · · 0 0 0 0 · · · I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Rt0,j �cov 0
Rt1,j 0

�′
cov

. . .
...

RtT −1,j 0
0 0 · · · 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(1.34)
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For the crucial property of measurement invariance, we need to specify

Ct0,j = Ct1,j = · · · = CtT −1,j = C,

Dc,t0,j = Dc,t1,j = · · · = Dc,tT −1,j = Dc,

Dv,t0,j = Dv,t1,j = · · · = Dv,tT−1,j = Dv,

Rt0,j = Rt1,j = · · · = RtT −1,j = R.

(1.35)

Although measurement invariance is important for substantive reasons, statistically
speaking, the assumption of strict measurement invariance may be relaxed if
necessary. An additional advantage of the SEM approach is the possibility of
specifying measurement error covariances across time in �cov. This can be done in
ctsem by the MANIFESTTRAIT option. Measurement instruments often measure
specific aspects, which they do not have in common with other instruments and
can be taken care of by freeing corresponding elements in �cov. In view of
identification, however, one should be very cautious in choosing elements of �cov
to be freed.

1.4 Analysis of Sunspot Data: CARMA(2,1)
on N = 1, T = 167

The Wolfer sunspot data from 1749 to 1924 is a famous time series of the number
of sunspots that has been analyzed by many authors. Several of them applied a
CARMA(2,1) model to the series, the results of which are summarized in Table 1.1
together with the results of ctsem. The sunspot data, which are directly available in
R (R Core Team 2015) by “sunspot.year,” are monthly data averaged over the years
1700–1988. The data from 1749 to 1924 are analyzed by the authors in Table 1.1 as
a stationary series. Stationarity means that the initial means and (co)variances are in
the stable equilibrium position of the model, which is defined in terms of the other
model parameters. An option of ctsem lets the initial means and (co)variances be
constrained in terms of these parameters. ctsem version 1.1.6 and R version 3.3.2
were used for our analyses.4

As shown in Table 1.1, differences in parameter estimates between ctsem and
previously reported analyses are small and likely caused by numerical imprecision.
The most recent estimates by Tómasson (2011) and our results are closer to
each other than to the older ones reported by Phadke and Wu (1974) and Singer
(1991). The results in Table 1.1 imply an oscillatory movement of the sunspot
numbers. Complex eigenvalues of the matrix A lead to oscillatory movements. The

4The programming code of the analysis is available as supplementary material at the book website
http://www.springer.com/us/book/9783319772189.

http://www.springer.com/us/book/9783319772189
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Table 1.1 Parameter estimates of CARMA(2,1) model on yearly sunspot data 1749–1924 by
several authors and ctsem; N = 1, T = 176

Parameter

f0 f1 g0 g1 μ

Phadke and Wu (1974) −0.359 −0.327 15.70 9.94 44.8

Singer (1991) −0.360 −0.330 15.72 9.94 44.6

Tómasson (2011) −0.357 −0.327 15.52 10.01 44.8

ctsem (Driver et al. 2017) −0.357 −0.327 15.52 10.02 44.9

eigenvalues of A =
[

0 1
f0 f1

]

are

λ1,2 = f1/2 ± j

√
−f 2

1 /4 − f0, (1.36)

where j is the imaginary number
√−1. The eigenvalues are complex, because

−f1
2/4 > f0 for all 4 sets of parameter estimates in Table 1.1. The period of the

oscillation Tp is computed by

Tp = 2π/

√
−f1

2/4 − f0 (1.37)

resulting in a period of 10.9 years for all 4 sets of parameter estimates, despite the
small differences in parameter estimates.

1.5 Conclusion

As noted by Prado and West (2010), “In many statistical models the assumption
that the observations are realizations of independent random variables is key. In
contrast, time series analysis is concerned with describing the dependence among
the elements of a sequence of random variables” (p. 1). Without doubt, SEM for
a long period took position in the first group of models, which hampered the
development of N = 1 modeling and time series analysis in an SEM context. The
present chapter attempts to reconcile both perspectives by putting time series of
independently drawn subjects in one and the same overall SEM model, while using
continuous time state space modeling to simultaneously account for the dependence
between observations in each time series over time. The present article explained in
detail how this may be achieved for first- and higher-order CARMA(p, q) models
in an extended SEM framework.

Attempts to combine time series of different subjects in a common model are rare
in traditional time series analysis and state space modeling. A first, rather isolated
proposal was done by Goodrich and Caines (1979). They call a data set consisting of
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N > 1 time series “cross-sectional,” thereby using this term in a somewhat different
meaning from what is customary in social science. They give a consistency proof for
state space model parameter estimates in this kind of data in which “the number T

of observations on the transient behavior is fixed but the number N of independent
cross-sectional samples tends to infinity” (p. 403). As a matter of fact, an important
advantage of N > 1 models is to not be forced to T → ∞ asymptotics, which
at least in the social sciences is often unrealistic. Arguably, there are not many
processes with, for example, exactly the same parameter values over the whole time
range until infinity. As argued by Yu (2014, p. 738), an extra advantage offered by
continuous time modeling in this respect is that asymptotics can be applied on the
time dimension, even if T is taken as fixed. Supposing the discretely observed data
to be recorded at 0,�t, 2�t, n�t(= T ), this so-called “in-fill” asymptotics takes
T as fixed but lets n → ∞ in continuous time. By letting N as well as n go to
infinity, a kind of double asymptotics results, which may be particularly useful for
typical applications in the social sciences, where it is often hard to argue that T will
approach infinity.

References

Arnold, L. (1974). Stochastic differential equations. New York: Wiley.
Bergstrom, A. R. (1984). Continuous time stochastic models and issues of aggregation over time.

In Z. Griliches & M. D. Intriligator (Eds.), Handbook of econometrics (Vol. 2, pp. 1145–1212).
Amsterdam: North-Holland. https://doi.org/10.1016/S1573-4412(84)02012-2

Boker, S. M. (2001). Differential structural equation modeling of intraindividual variability. In
L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 5–27).
Washington, DC: American Psychological Association. https://doi.org/10.1007/s11336-010-
9200-6

Boker, S. M., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., . . . Fox, J. (2011). OpenMx:
An open source extended structural equation modeling framework. Psychometrika, 76(2), 306–
317. https://doi.org/10.1007/s11336-010-9200-6

Boker, S. M., Neale, M., & Rausch, J. (2004). Latent differential equation modeling with
multivariate multi-occasion indicators. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.),
Recent developments on structural equation models (pp. 151–174). Amsterdam: Kluwer.

Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley. https://doi.org/
10.1002/9781118619179

Box, G. E. P., & Jenkins, G. M. (1970). Time serie analysis: Forecasting and control. Oakland,
CA: Holden-Day.

Brockwell, P. J. (2004). Representations of continuous-time ARMA processes. Journal of Applied
Probability, 41(a), 375–382. https://doi.org/10.1017/s0021900200112422

Caines, P. E. (1988). Linear stochastic systems. New York: Wiley.
Chan, K., & Tong, H. (1987). A note on embedding a discrete parameter ARMA model in a

continuous parameter ARMA model. Journal of Time Series Analysis, 8, 277–281. https://doi.
org/10.1111/j.1467-9892.1987.tb00439.x

Deistler, M. (1985). General structure and parametrization of arma and state-space systems and
its relation to statistical problems. In E. J. Hannan, P. R. Krishnaiah, & M. M. Rao (Eds.),
Handbook of statistics: Volume 5. Time series in the time domain (pp. 257–277). Amsterdam:
North Holland. https://doi.org/10.1016/s0169-7161(85)05011-8

https://doi.org/10.1016/S1573-4412(84)02012-2
https://doi.org/10.1007/s11336-010-9200-6
https://doi.org/10.1007/s11336-010-9200-6
https://doi.org/10.1007/s11336-010-9200-6
https://doi.org/10.1002/9781118619179
https://doi.org/10.1002/9781118619179
https://doi.org/10.1017/s0021900200112422
https://doi.org/10.1111/j.1467-9892.1987.tb00439.x
https://doi.org/10.1111/j.1467-9892.1987.tb00439.x
https://doi.org/10.1016/s0169-7161(85)05011-8


24 J. H. L. Oud et al.

Driver, C. C., Oud, J. H., & Voelkle, M. C. (2017). Continuous time structural equation modeling
with R package ctsem. Journal of Statistical Software, 77, 1–35. https://doi.org/10.18637/jss.
v077.i05

Durbin, J., & Koopman, S. J. (2001). Time series analysis by state space methods. Oxford: Oxford
University Press. https://doi.org/10.1093/acprof:oSo/9780199641178.001.0001

Gasimova, F., Robitzsch, A., Wilhelm, O., Boker, S. M., Hu, Y., & Hülür, G. (2014). Dynamical
systems analysis applied to working memory data. Frontiers in Psychology, 5, 687 (Advance
online publication). https://doi.org/10.3389/fpsyg.2014.00687

Goodrich, R. L., & Caines, P. (1979). Linear system identification from nonstationary cross-
sectional data. IEEE Transactions on Automatic Control, 24, 403–411. https://doi.org/10.1109/
TAC.1979.1102037

Gottman, J. M. (1981). Time-series analysis: A comprehensive introduction for social scientists.
Cambridge: Cambridge University Press.

Hamaker, E. L., Dolan, C. V., & Molenaar, C. M. (2003). ARMA-based SEM when the number
of time points T exceeds the number of cases N : Raw data maximum likelihood. Structural
Equation Modeling, 10, 352–379. https://doi.org/10.1207/s15328007sem1003-2

Hamerle, A., Nagl, W., & Singer, H. (1991). Problems with the estimation of stochastic differential
equations using structural equations models. Journal of Mathematical Sociology, 16(3), 201–
220. https://doi.org/10.1080/0022250X.1991.9990088

Hannan, E. J., & Deistler, M. (1988). The statistical theory of linear systems. New York: Wiley.
Hansen, L. P., & Sargent, T. J. (1983). The dimensionality of the aliasing problem. Econometrica,

51, 377–388. https://doi.org/10.2307/1911996
Harvey, A. C. (1981). Time series models. Oxford: Philip Allen.
Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge:

Cambridge University Press.
Higham, N. J. (2009). The scaling and squaring method for the matrix exponential revisited. SIAM

Review, 51, 747–764. https://doi.org/10.1137/090768539
Jones, R. H. (1993). Longitudinal data with serial correlation; a state space approach. London:

Chapman & Hall. https://doi.org/10.1007/978-1-4899-4489-4
Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. In

A. S. Goldberger & O. D. Duncan (Eds.), Structural equation models in the social sciences
(pp. 85–112). New York: Seminar Press.

Jöreskog, K. G. (1977). Structural equation models in the social sciences: Specification, estimation
and testing. In P. R. Krishnaiah (Ed.), Applications of statistics (pp. 265–287). Amsterdam:
North Holland.

Jöreskog, K. G., & Sörbom, D. (1976). LISREL III: Estimation of linear structural equation
systems by maximum likelihood methods: A FORTRAN IV program. Chicago: National
Educational Resources.

Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User’s reference guide. Chicago: Scientific
Software International.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic
Engineering, 82, 35–45 (Trans. ASME, ser. D).

Kuo, H. H. (2006). Introduction to stochastic integration. New York: Springer.
Ljung, L. (1985). Estimation of parameters in dynamical systems. In E. J. Hannan, P. R. Krishnaiah,

& M. M. Rao (Eds.), Handbook of statistics: Volume 5. Time series in the time domain (pp. 189–
211). Amsterdam: North Holland. https://doi.org/10.1016/s0169-7161(85)05009-x

Lütkepohl, H. (1991). Introduction to multiple time series analysis. Berlin: Springer.
McCleary, R., & Hay, R. (1980). Applied time series analysis for the social sciences. Beverly Hills:

Sage.
Mills, T. C. (2012). A very British affair: Six Britons and the development of time series analysis

during the 20th century. Basingstoke: Palgrave Macmillan.
Neale, M. C. (1997). Mx: Statistical modeling (4th ed.). Richmond, VA: Department of Psychiatry.

https://doi.org/10.18637/jss.v077.i05
https://doi.org/10.18637/jss.v077.i05
https://doi.org/10.1093/acprof:oSo/9780199641178.001.0001
https://doi.org/10.3389/fpsyg.2014.00687
https://doi.org/10.1109/TAC.1979.1102037
https://doi.org/10.1109/TAC.1979.1102037
https://doi.org/10.1207/s15328007sem1003-2
https://doi.org/10.1080/0022250X.1991.9990088
https://doi.org/10.2307/1911996
https://doi.org/10.1137/090768539
https://doi.org/10.1007/978-1-4899-4489-4
https://doi.org/10.1016/s0169-7161(85)05009-x


1 First- and Higher-Order Continuous Time Models for Arbitrary N Using SEM 25

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M.,
. . . Boker, S. M. (2016). OpenMx 2.0: Extended structural equation and statistical modeling.
Psychometrika, 81, 535–549. https://doi.org/10.1007/s11336-014-9435-8

Oud, J. H. L. (1978). Systeem-methodologie in sociaal-wetenschappelijk onderzoek [Systems
methodology in social science research]. Unpublished doctoral dissertation, Radboud Univer-
sity Nijmegen, Nijmegen.

Oud, J. H. L. (2007). Comparison of four procedures to estimate the damped linear differential
oscillator for panel data. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.), Longitudinal
models in the behavioral and related sciences (pp. 19–39). Mahwah, NJ: Erlbaum.

Oud, J. H. L., & Delsing, M. J. M. H. (2010). Continuous time modeling of panel data by means of
SEM. In K. van Montfort, J. H. L. Oud, & A. Satorra (Eds.), Longitudinal research with latent
variables (pp. 201–244). New York: Springer. https://doi.org/10.1007/978-3-642-11760-2-7

Oud, J. H. L., & Jansen, R. A. R. G. (2000). Continuous time state space modeling of panel data
by means of SEM. Psychometrika, 65, 199–215. https://doi.org/10.1007/BF02294374

Oud, J. H. L., & Singer, H. (2008). Continuous time modeling of panel data: SEM versus
filter techniques. Statistica Neerlandica, 62, 4–28. https://doi.org/10.1111/j.1467-9574.2007.
00376.x

Oud, J. H. L., van den Bercken J. H., & Essers, R. J. (1990). Longitudinal factor score estimation
using the Kalman filter. Applied Psychological Measurement, 14, 395–418. https://doi.org/10.
1177/014662169001400406

Oud, J. H. L., & Voelkle, M. C. (2014). Do missing values exist? Incomplete data handling in
cross-national longitudinal studies by means of continuous time modeling. Quality & Quantity,
48, 3271–3288. https://doi.org/10.1007/s11135-013-9955-9

Oud, J. H. L., Voelkle, M. C., & Driver, C. C. (2018). SEM based CARMA time series modeling
for arbitrary N. Multivariate Behavioral Research, 53(1), 36–56. https://doi.org/10.1080/
00273171.1383224

Phadke, M., & Wu, S. (1974). Modeling of continuous stochastic processes from discrete
observations with application to sunspots data. Journal of the American Statistical Association,
69, 325–329. https://doi.org/10.1111/j.1467-9574.2007.00376.x

Phillips, P. C. B. (1973). The problem of identification in finite parameter continuous time models.
In A. R. Bergstrom (Ed.), Statistical inference in continuous time models (pp. 135–173).
Amsterdam: North-Holland.

Prado, R., & West, M. (2010). Time series: Modeling, computation, and inference. Boca Raton:
Chapman & Hall.

R Core Team. (2015). R: A language and environment for statistical computing. Vienna, Austria:
R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/

Shumway, R. H., & Stoffer, D. (2000). Time series analysis and its applications. New York:
Springer. https://doi.org/10.1007/978-1-4419-7865-3

Singer, H. (1990). Parameterschätzung in zeitkontinuierlichen dynamischen Systemen [Parameter
estimation in continuous time dynamic systems]. Konstanz: Hartung-Gorre.

Singer, H. (1991). LSDE-A program package for the simulation, graphical display, optimal filtering
and maximum likelihood estimation of linear stochastic differential equations: User’s guide.
Meersburg: Author.

Singer, H. (1992). The aliasing-phenomenon in visual terms. Journal of Mathematical Sociology,
17, 39–49. https://doi.org/10.1080/0022250X.1992.9990097

Singer, H. (1998). Continuous panel models with time dependent parameters. Journal of Mathe-
matical Sociology, 23, 77–98.

Singer, H. (2010). SEM modeling with singular moment part I: ML estimation of time series.
Journal of Mathematical Sociology, 34, 301–320. https://doi.org/10.1080/0022250X.2010.
509524

Singer, H. (2012). SEM modeling with singular moment part II: ML-estimation of sampled
stochastic differential equations. Journal of Mathematical Sociology, 36, 22–43. https://doi.
org/10.1080/0022250X.2010.532259

https://doi.org/10.1007/s11336-014-9435-8
https://doi.org/10.1007/978-3-642-11760-2-7
https://doi.org/10.1007/BF02294374
https://doi.org/10.1111/j.1467-9574.2007.00376.x
https://doi.org/10.1111/j.1467-9574.2007.00376.x
https://doi.org/10.1177/014662169001400406
https://doi.org/10.1177/014662169001400406
https://doi.org/10.1007/s11135-013-9955-9
https://doi.org/10.1080/00273171.1383224
https://doi.org/10.1080/00273171.1383224
https://doi.org/10.1111/j.1467-9574.2007.00376.x
http://www.R-project.org/
https://doi.org/10.1007/978-1-4419-7865-3
https://doi.org/10.1080/0022250X.1992.9990097
https://doi.org/10.1080/0022250X.2010.509524
https://doi.org/10.1080/0022250X.2010.509524
https://doi.org/10.1080/0022250X.2010.532259
https://doi.org/10.1080/0022250X.2010.532259


26 J. H. L. Oud et al.

Steele, J. S., & Ferrer, E. (2011a). Latent differential equation modeling of self-regulatory and
coregulatory affective processes. Multivariate Behavioral Research, 46, 956–984. https://doi.
org/10.1080/00273171.2011.625305

Steele, J. S., & Ferrer, E. (2011b). Response to Oud & Folmer: Randomness and residuals.
Multivariate Behavioral Research, 46, 994–1003. https://doi.org/10.1080/00273171.625308

Tómasson, H. (2011). Some computational aspects of Gaussian CARMA modelling. Vienna:
Institute for Advanced Studies.

Tómasson, H. (2015). Some computational aspects of Gaussian CARMA modelling. Statistical
Computation, 25, 375–387. https://doi.org/10.1007/s11222-013-9438-9

Tsai, H., & Chan, K.-S. (2000). A note on the covariance structure of a continuous-time ARMA
process. Statistica Sinica, 10, 989–998.

Voelkle, M. C., & Oud, J. H. L. (2013). Continuous time modelling with individually varying time
intervals for oscillating and non-oscillating processes. British Journal of Mathematical and
Statistical Psychology, 66, 103–126. https://doi.org/10.1111/j.2044-8317.2012.02043.x

Voelkle, M. C., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012a). An SEM approach to continuous
time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods,
17, 176–192. https://doi.org/10.1037/a0027543

Voelkle, M. C., Oud, J. H. L., Oertzen, T. von, & Lindenberger, U. (2012b). Maximum likelihood
dynamic factor modeling for arbitrary N and T using SEM. Structural Equation Modeling: A
Multidisciplinary Journal, 19, 329–350.https://doi.org/10.1080/10705511.2012.687656

Wolf, E. J., Harrington, K. M., Clark, S. L., & Miller, M. W. (2013). Sample size requirements for
structural equation models: An evaluation of power, bias, and solution propriety. Educational
and Psychological Measurement, 73, 913–934. https://doi.org/10.1177/0013164413495237

Yu, J. (2014). Econometric analysis of continuous time models: A survey of Peter Philips’s
work and some new results. Econometric Theory, 30, 737–774. https://doi.org/10.1017/
S0266466613000467

Zadeh, L. A., & Desoer, C. A. (1963). Linear system theory: The state space approach. New York:
McGraw-Hill.

https://doi.org/10.1080/00273171.2011.625305
https://doi.org/10.1080/00273171.2011.625305
https://doi.org/10.1080/00273171.625308
https://doi.org/10.1007/s11222-013-9438-9
https://doi.org/10.1111/j.2044-8317.2012.02043.x
https://doi.org/10.1037/a0027543
https://doi.org/10.1080/10705511.2012.687656
https://doi.org/10.1177/0013164413495237
https://doi.org/10.1017/S0266466613000467
https://doi.org/10.1017/S0266466613000467

	1 First- and Higher-Order Continuous Time Models for Arbitrary N Using SEM
	1.1 Introduction
	1.2 Continuous Time Model
	1.2.1 Basic Model
	1.2.2 Connecting Discrete and Continuous Time Model in the EDM
	1.2.3 Extended Continuous Time Model
	1.2.4 Exogenous Variables
	1.2.5 Traits

	1.3 Model Estimation by SEM
	1.4 Analysis of Sunspot Data: CARMA(2,1) on N = 1, T = 167
	1.5 Conclusion
	References


