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Abstract. The paper explores the issues of universal computational formalisms
and reusable developer environment as applied to rule-based NLP. It suggests a
portable grammar framework and modular NLP architecture that by combining
certain modules can be reused for different unilingual and multilingual appli-
cations through a universal developer environment. The developer environment
includes a lexicon shell with flexible settings to define, among others, tag
descriptions, entry structures, depth of knowledge, and a number of compilers
with universal rule-writing formalisms. The formalisms and compilers described
have been successfully used (in different combinations and with different depth
of analysis) in a number of unilingual and multilingual applications that
involved English, Danish, French and Russian.

Keywords: Rule-based NLP � Reusability � Computational formalism
Compilers

1 Introduction

After more than a decade of the dominance of the statistical paradigm in NLP, a new
wave of R&D has reverted to the primacy of rule-based approaches. This is particularly
true for processing tasks where highly inflecting languages are involved, for which,
though certain attempts are made to substitute costly rule-based procedures with purely
statistical methods, hidden costs are recognized associated with the use of pure
statistics [11]. However, high quality NLP demands rich knowledge resources (world
models, grammar rules and lexicons), which are often handcrafted from scratch for
every new application, language or language pair.

The idea to reduce development and maintenance costs, by sharing and reusing
processing methods and knowledge has been in focus of researchers’ attention for
many years. Certain attempts have been made to develop universal tagsets [2, 7],
portable cross-linguistic knowledge [6, 16], and reusable rule-based components [9].
A formalism for simultaneous rule-based morphosyntactic tagging and partial parsing
is suggested in [10]. Universal computational formalisms have been already explored in
early works on portability [3, 8], which outline the following major principles:
(a) universal computational formalisms are to be based on grammars that in a uniform
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way deal with atomic informational structures and then manipulate these structures by
means of a few well-defined operations, which build new more complex structures;
(b) within the frame of these formalisms both the atomic and complex structures, are to
be application oriented and motivated by processing considerations; (c) a computa-
tional formalism is to be well-defined, which means that its semantics (not the
semantics of the language described by the formalism) is also well defined.

To be used in practice, computational formalisms, apart from being natural lan-
guage frameworks, should be available for a developer through developer tools for
knowledge acquisition, code validation, navigation, test suite management, etc. Most of
such tools (see, e.g., [1]) require programming qualification and are primarily devel-
oped for programmers. However, the contribution of linguistic knowledge in devel-
oping rule-based applications cannot be cannot be but appreciated, though the needs of
linguists, not so experienced in programming, are often neglected.

In this work we attempt to cover this gap and suggest universal computational
formalisms and developer environment addressing both, programmers, and, primarily,
linguists without extensive programming training. In what follows, we first present the
overall framework of a line of rule-based applications, sharing linguistic and pro-
gramming resources and then describe the main modules of the developer environment.
The work in summarized in Conclusions.

2 Overall Framework

2.1 Grammar

In an attempt to introduce robustness into the grammar itself, rather than adjusting a
parser algorithm, we combine the formalisms of context free lexicalized Phrase
Structure Grammar (PSG) and Dependency Grammar (DG). The PSG component
consists of a subset of regular PSG rewriting rules. However, this subset includes
neither the basic PSG rule “S = NP + VP”, nor any rules for rewriting VP.

The PSG grammar component covers only those sentence constituents that are not
clause predicates (be it a main clause or a subordinate/relative clause). It is the basis for
a chunking procedure and does not give any description of syntactic dependencies.
The PSG component is specified over a space of supertags [14] augmented with local
information, such as lexical preference and some of rhetorical knowledge, - the
knowledge about text segments, anchored to tabulations, commas and periods.

The DG grammar component is a strongly lexicalized case-role grammar specified
over the space of phrases (NP, PP, etc.) and a residue of tagged “ungrammatical”
words, i.e., words that do not satisfy any of the rules of the PSG component. All
syntactic and semantic knowledge within this grammar is anchored to one type of
lexemes, namely predicates.

The grammar assigns a final parse (a universal content representation) to a sentence
as shown in Fig. 1, where label is a unique identifier of the elementary predicate-
argument structure (by convention, marked by the number of its predicate as it appears
in the sentence, predicate-class is a label of an ontological concept, predicate is a string
corresponding to a predicate from the lexicon, status is a semantic status of a case-role,
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such as place, instrument, etc., and value is a string which fills a case-role. Supertag is a
tag, which conveys morphological, syntactic and semantic features as specified in the
lexicon. Word and phrase are a word and phrase (NPs, PPs, etc.) in a standard
understanding. This representation is universal in that, in case of multilingual appli-
cations, e.g. machine translation, the format of predicate-argument structures stays
invariant after transfer to a TL.

2.2 Processing Steps and Applications Architecture

We here present a number of rule-based modules that in different configurations can be
used to solve different unilingual and multilingual NLP tasks. This architecture resulted
from our multi-year research, in the course of which formalisms and programs first
created for authoring of patent claims in English were further ported and updated to
develop a family of other multilingual scientific- and technical information-related
applications, see, e.g., [5, 14, 15], to name just a few.

The reuse of earlier developed modules was to a great extent possible due to the
universal grammar formalism (see Sect. 2.1) and elaborate developer environment for
rule and lexicon acquisition.

An umbrella configuration of our processing modules shown in Fig. 2 covers the
traditional top level procedures of RBMT (analysis, transfer and generation), while in
particular applications only selected modules can be used (e.g., in case of unilingual
authoring or summarization the Transfer module is skipped, and the Analyzer is
pipelined directly into the Generator). All modules are compatible and can provide
different depth of processing, the grammar formalism being the same. Every top level
procedure includes a number of application-specific sub procedures. In our computa-
tional formalism the basic analysis scenario consists of the following sequence of pro-
cedures: Tokenization, Tagging, Chunking and Shallow semantic analysis. Tokeniza-
tion can be tuned to detect generally used and more specific features and to flag them
with different types of “border” tags, thus significantly augmenting the feature space for
disambiguation rules. Tagging includes assigning tags by lexicon look up and tag
disambiguation according to disambiguation rules. The specificity of the tagging
procedure is that it does not require any lemmatization due to the amount of knowledge
stored in the lexicon, where for all lexemes their paradigms are explicitly listed [13].
Chucking is performed by a bottom-up heuristic parser with a recursive pattern
matching technique. It identifies and classifies text constituents as typed phrases.
Shallow semantic analysis determines semantic dependency relations between the
classified text chunks and predicates.

text::={ template){template}*
template::={label predicate-class predicate ((case-role)(case-role)*}
case-role::= (status value) 
value::= phrase{(phrase(word supertag)*)}*

Fig. 1. A universal format of content representation, invariant between languages.
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For every identified phrase-chunk its governing predicate is detected and, then, the
case-role status for every chunked phrase is determined. The final parse is a shallow
semantic representation in the form of predicate/argument structures filled with SL text
strings (see Fig. 1). Transfer is applied in case of multilingual applications and is a
combination of interlingual transfer, lexicalization and syntactic transfer. The inter-
lingual transfer substitutes a SL predicate-argument structure with a TL predicate-
argument structure and links the latter with the TL knowledge in the lexicon. Lexi-
calization, called Base transfer substitutes every SL word in a predicate-argument
structure with the base form of its cross-language equivalent by lexicon look-up. The
predicate-argument format is kept unchanged (invariant). The Syntactic transfer is
responsible for substituting lexicalized TL fillers resulting from the lexicon look up
with well formed TL chunks, which is in fact translation of SL chunks-case-role fillers
into a target language. Generation module linearizes predicate-argument structures
filled with case-role strings into well-formed sentences. In case of a multilingual
application a “real” translation procedure is thus reduced to the phrase level which,
though not without problems, is still much simpler than machine translation that
involves a full syntactic analysis and generation of possibly very complex sentences.

Every procedure relies on the system static knowledge and on the dynamic
knowledge collected by the previous processing procedures. The knowledge handling
and reuse is maintained by the universal developer environment.

Fig. 2. An umbrella configuration of the rule-based NLP architecture.
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3 Developer Environment

3.1 General Characteristic

The developer environment, we describe here, can be used to acquire and handle
knowledge for multiple languages, domains. It includes a lexicon shell with flexible
settings, several rule-acquisition compilers, where a linguist can write rules in a very
simple formal language, and rule-control interfaces. The compilers provide for a
computer environment, which can be used by a linguist not very experienced in pro-
gramming. The multilingual lexicon developer tool with flexible settings is described in
detail in [13]. The program shell of the lexicon allows defining entry structures, tagsets,
contains knowledge that is directly used for text generation.

The lexicon program permits porting entry structures, tags and knowledge between
languages and applications. The lexicon knowledge is directly pipelined to the rule
acquisition compilers. Any changes made in the lexicon, e.g., tagsets, instantaneously
propagate to the compilers and are displayed in the compiler interfaces. Developer
environment is multilingual and every compiler is linked to a lexicon in a corre-
sponding language.

Rules for different languages are accessed from a single program startup window.
It makes it possible for the developer to freely navigate between knowledge bases for
different applications and languages and to easily reuse appropriate amounts of lin-
guistic knowledge, which proves to be quite possible, especially, in highly restricted
domains, like, e.g., patent claims [14].

All compilers are equipped with front-end interfaces with a lot of effort saving
functionalities, - it is possible on a mouse click to automatically get rule templates,
transfer tag notations from the displayed list of tags to the curser position and check the
consistency of tags and rule syntax. The compilers thus provide for an easy way to
experiment with knowledge by simply copying the rules from one compiler to another
and then, using the « check » and « control » functionalities update the language-
specific rules. Figure 3 shows a startup window to access sets of language-dependent
rules for tokenization, tag disambiguation, preediting, chunking, defining shallow
semantic dependencies, predicate template tree builder, case-roles syntactic transfer,
linearization, postediting.

Fig. 3. Compilers’ startup window
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3.2 Generic Features of Rule Formalisms

All rules are completely or partially formulated over the strings of tag variables and/or
word variables. Though particular tagsets for different languages and applications can
differ, what only matters in the universal computational formalism is a special top level
classification of tags into single or multiple, fine or coarse tags. A single tag is a one tag
symbol as assigned to an unambiguous wordform.

A single tag can code any range of linguistic information specified by developers,
from simple POS classes [7] to what is included in “supertags” [4, 13–15] or mor-
phosyntactic descriptions MSD [12], etc. Besides, we use the so called border tags to
mark the start and end of a certain text segment.

A multi-tag is a string of several single tags assigned to one ambiguous wordform
after, say, lexicon look up.

A fine tag is a tag assigned to one wordform after lexicon look up. A fine tag can be
a single-tag or multi-tag.

A coarse tag is a tag that codes a group of single tags with the same morphosyntactic
behavior. For example, if a tagset includes separate tags for different verbforms depending
upon voice, person, tense, number etc., then a coarse tag can correspond, for example, to all
verb forms or to the groups of verb tags in passive or active voice, correspondingly.

The rules for a very particular application, evidently, instead of generic tags should
contain language-specific tags that should either be declared in a particular compiler or
pipelined from lexicons. But the rule formalism is still the same. Every compiler
program consists of two parts – a declaration part (optional) and a rule part. In the
declaration part a developer can set variables, like lists of specific words or new valid
tags to be used in the rules. The formalisms for writing rules are language independent,
quite simple, though well-defined semantically, and, as said above, are formulated in
terms of generic types of tags (see next section).

All compiler descriptions share the declaration part and rule format, - the IF-THEN-
ELSE-ENDIF structure, where the IF block (rule conditions) can contain simple or
complex conditions. Complex conditions can be formulated with the use of the binary
logic operators AND, OR, and the operator NOT. The difference between particular
rule formalisms used by every compiler program lies in the rule simple conditions and
actions that are specific for every particular processing procedure. Below, we illustrate
the developer environment and rule formalisms with the detailed descriptions of the tag
disambiguation compiler and syntactic transfer compiler.

3.3 Tag Disambiguation Compiler

The input to the disambiguation compiler is the output of the first tagging procedure
that is “welded in” the tagger. The input consists of border tags, as specified in the
tokenization compiler, and text strings tagged with single or multiple fine tags assigned
by the lexicon look up. The (condition) right-hand side of the tag disambiguating rules
uses context information in terms of tags with attributes or words within a 5-word
window with the tag/word in question in the middle. Figure 4 shows the compiler
interface for writing rules. The left panes display tagset and help to format rules.

Below, for our fellow linguists, we in detail comment the disambiguation rules
formalism, where the following notions are used.
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CW means a current word, LW is a word to the left of CW, RW is a word to the
right of CW, LLW is a word to the left of the left of CW, RRW means a word to the
right of the right of CW. Everyone of these variable names can be used either on their
own, or specified by some attributes, for example, as follows:

CW = {“means”}, LW = {“comprising”, “having”, “including”} or RRW =
ListA, where listA is declared as SETVAR ListA = {“comprising”, “having”,
“including”}.

ISLW, ISRW, ISLLW, ISRRW are conditions specifying that in the analyzed string
there are words to the left, right, left-of-left, right-of-right of the current word;

CT means a current tag, LT means a tag to the left of CT, RT is a tag to the right of
CT, LLT is a tag to the left of the left of CT, RRT is a tag to the right of the right of CT.
Similar to the word variables the tag variables can be used either on their own,
or specified by the tag attributes (parameters), for example, as follows: RT =
{*Brd, *Btb, *Conj, *DE, *Pg}, LT = {*Adv}, or CT < *Ns meaning that a
current tag CT (multiple or single) includes a single tag component that is listed in a set
of values of the coarse tag *Ns. This coarse tag should be declared in the compiler,
and in our example *Ns is declared with the tag values for nouns of different semantic
classes, see Fig. 4. The rule displayed in the screenshot in Fig. 4 disambiguates a
multiple tag that could be assigned, e.g., to such a word as “opening”: {open-
ing} *Adj*N*P*Ger, which means that this word can be an adjective, singular
noun, present participle active or gerund. ISLAST, ISFIRST denote conditions, spec-
ifying that CT is the last/first in the segment. A processing module (the tagger in this
case) can make several passes through he rules and the condition PASS <compare
operation> <number> specifies the ordinal number of the pass, during which a certain
part of the rules should be applied.

Fig. 4. A screenshot of the compiler interface for tag disambiguation rules (Here and in other
exemples language-dependent tags are those specified in the patent-related application lexicon for
English, see, e.g., (Sheremetyeva, 2004, 2007)).
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The compiler program description in the EBNF language
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3.4 Syntactic Transfer Rule Compliler

This compiler is used in our machine translation applications to acquire rules for
syntactic restructuring and agreement in the strings of words that fill the case-role slots
in the final parse structure (see Fig. 1) after TL lexicalization. In other words, the input
to this compiler is separate strings of words in TL in base forms; the output is the
correctly translated TL phrases filling particular case-roles in the TL predicate-
argument structures.

At this stage, the feature space to formulate rule conditions includes the knowledge
about SL and TL equivalents as specified in the bilingual lexicon and the knowledge
produced by the previous processing steps that, in turn, includes

(a) the base forms of TL words with their base form tags,
(b) semantic classes of the predicates (cross-linguistic invariants) governing case-

roles filled with the strings to be translated,
(c) case-role types (cross-linguistic invariants), to which the strings belong,
(d) phrase types (e.g., NP), to which the strings belong (in case processing included

the phrase chunking stage1), and
(e) tag histories. The tag history is the knowledge about the “old” SL disambiguated

tag of the SL word of its TL equivalent. The tags can only be single fine or coarse
tags as multiple tags are disambiguated by this time.

All coarse tags, both for TL and SL should be necessarily declared in the compiler
like, e.g., SETCOARSE *NounInstr = {*Nfi, *Ni, *Nni, *Detdi, *Npersi,
*Nai}. The TL fine tags are automatically taken from the lexicon, while the SL
tags that are to be used in tag history should be declared in the compiler as SET-
TAG *Nameg. It is also necessary to declare lists of TL words that can be used as
attributes (or parameters): SETVAR ListDifferent = {“different”, “various”, “similar”}.

The syntactic transfer rules are formulated in terms of tag templates composed of
the strings of fine and/or coarse tags. The condition part contains “raw” TL tag tem-
plates as produced by lexicalization; the action part contains a template corresponding
to a well-formed TL phrase. A “raw” tag template can be converted into a well-formed
template by reordering, deleting, changing or inserting new tags associated with certain
words. To make it possible the tags can be conditioned by the following attributes or
parameters (Fig. 5):

(a) the number of their possible repetitions in the tag template, for which the
Kleene + or * are used,

(b) their “parent” old SL tag: *Gerund{*oldNoun},
(c) inclusion of the words from a certain list: Adj{ListDifferent},
(d) exclusion of the words, from a certain list: *Adj(- ListDifferent} and (e) ordinal

numbers in the output template in case a “raw” template contains several coin-
ciding tags. This is done to apply appropriate changes to the relevant template
component, in case the raw template contains, e.g. several nouns.

1 It might not always be the case as there are applications that skip phrase chunking and work directly
on lexicon tags.
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In the EBNF description of the compliler the following notations are used:
T = *Tag*Tag2… is a “raw” template; *Tag can have parameters (a) – (e) listed
above;

PATTERN is an output pattern, indicating all changes.
PREDSC means semantic class of the predicate as specified in the lexicon.
CRTYPE is case-role type SUBJ, DOBJ, IOBJ, PLC, MANN,… PAR are case-role
notations as specified in the system lexicon, meaning, “subject”, “direct object”,
“indirect object”, “place”, “manner”, … “parameter”, correspondingly.

Fig. 5. A screenshot of the compiler interface with the rules for machine translation for patent
claims and scientific and technical papers from Russian into English.
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The compiler program description in the EBNF language

4 Conclusions

The paper presented a set of portable computational formalisms for rule-based tagging,
analysis, transfer and generation that allow migrating from one rule-based application
to another within one language or cross-linguistically. All formalisms are implemented
in processing modules and developer environment that includes a lexicon shell with
flexible settings and a number of compilers for writing rules in language independent
formalisms. The developer environment can be used by linguists without advanced
programming skills and allows acquiring or editing lexical resources, specifying tags,
writing processing rules, and control the correctness of processing. The formalisms and
compilers described have been successfully used (in different combinations and with
different depth of analysis) in a number of unilingual and multilingual applications in
English, Danish, French and Russian.
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