
59AGeneric Approach to Efficiently Parallelize
Legacy Sequential Software

Andreas Granholm and Federico Ciccozzi

Abstract

Multi-core processing units have been the answer to ever
increasing demand of computational power of modern
software. One of the main issues with the adoption of new
hardware is portability of legacy software. In this specific
case, in order for legacy sequential software to maximize
the exploitation of the computational benefits brought by
multi-core processors, it has to undergo a parallelization
effort. Although there is a common agreement and well-
specified support for parallelizing sequential algorithms,
there is still a lack in supporting software engineers in
identifying and assessing parallelization potentials in a
legacy sequential application. In this work we provide a
generic parallelization approach which supports the engi-
neering in maximizing performance gain through paral-
lelization while minimizing the cost of the parallelization
effort. We evaluate the approach on an industrial use-case
at ABB Robotics.

Keywords

Parallelization · Legacy · CUDA · OpenMP

59.1 Introduction

The greediness of modern software in terms of computational
power has led to a wide industrial adoption of the so called
multi-core processing units [1]. Besides multi-core Central
Processing Units (CPUs), developers have an additional par-

A. Granholm
ABB Robotics, Västerås, Sweden
e-mail: andreas.granholm@se.abb.com

F. Ciccozzi (�)
Mälardalen University – IDT, Västerås, Sweden
e-mail: federico.ciccozzi@mdh.se

allel computing platform for general-purpose programming
at their disposal, namely Graphical Processing Unit (GPU).
Initially designed for graphical computations, GPUs offer
many more computational units than a multi-core CPU, with
the drawback of a generally slower clock frequency.

In order to utilize the full potential of parallel hardware,
existing sequential software needs to be re-engineered to ex-
ploit parallelization. Parallelizing sequential software mainly
conceives two steps: (1) individuation of software portions
with the best parallelization potentials in relation to a more
or less fixed “parallelization budget”.1 While techniques for
parallelizing sequential algorithms have been largely studied,
there is lack of support for guiding the software engineering
in identifying parallelization potentials [2].

Parallelizing software increases performance, but it can
negatively affect other quality attributes, such as verifiability
and maintainability [3]. Moreover, due to the intrinsic com-
plexity of parallelizing software [4], introducing paralleliza-
tion in existing sequential software can be a very costly task.
In this study we are interested in finding out which software
and process aspects shall be considered when parallelizing
legacy sequential software and how to take them into ac-
count. Thus, we focus on providing a generic parallelization
approach which aims at maximizing the increment of per-
formance of existing software through parallelization while
minimizing the cost of the parallelization effort. We consider
both CPUs and GPUs as parallelization hardware targets to
maximize the potential performance gain depending on the
specific application type and we evaluate the parallelization
approach on an industrial use-case.

The remainder of the paper is structured as follows.
In Sect. 59.2, we provide a snapshot of the state-of-the-
art in contraposition to our contribution. The parallelization
approach and its details are unwound in Sect. 59.3, and its
industrial evaluation is described in Sect. 59.4. The paper is

1The parallelization budget depends on several factors and it represents
the budget in terms of maximum parallelization effort by which the
parallelization itself is considered preferable to a re-implementation
from scratch.

© Springer International Publishing AG, part of Springer Nature 2018
S. Latifi (ed.), Information Technology – New Generations, Advances in Intelligent Systems and Computing 738,
https://doi.org/10.1007/978-3-319-77028-4_59

451

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77028-4_59&domain=pdf
mailto:andreas.granholm@se.abb.com
mailto:federico.ciccozzi@mdh.se
https://doi.org/10.1007/978-3-319-77028-4_59


452 A. Granholm and F. Ciccozzi

concluded with a conclusive summary and identified future
research directions in Sect. 59.5.

59.2 State-of-the-Art and Novelty

In 2003, Intel [5] presented a method to introduce threading
in sequential software using a generic development lifecycle
consisting of six different phases. This methods only targets
developers using Intel threading tools and it only considers
CPUs as target hardware. Tovinkere [6] presents an approach
very similar to Intel’s, also using threading to increase the
performance of sequential software. Tovinkere’s approach is
less tool-dependent than Intel’s, but focuses on CPUs only
too. Jun-feng[7] provides an approach for parallelization, but
without supporting the location of parallellization potentials
and only targeting CPUs. Christmann et al. [8] present a
method for porting existing sequential software to a parallel
platform taking into account some financial aspects of the
parallelization, but target CPUs only. The method proposed
by Nvidia [9] is based upon an iterative approach able to
deploy a parallelized portion as soon as possible to quickly
create value for the users. However, it only considers GPUs.
The method presented by Tinetti et al. [10] is iterative and
focuses on parallelization of Fortran software using OpenMP
on CPUs.

The novel aspect brought by our contribution is the
provision and the interplay of the following four features:

1. consideration of effort estimation for the parallelization
task;

2. support for identifying software portions with best paral-
lelization potential;

3. consider both CPUs and GPUs as potential target parallel
platforms;

4. not focus on specific languages or tools.

The combination of (1) and (2) gives the opportunity to
prioritize software portions with parallelization potential that
require lower effort and provide higher potential perfor-
mance gain. With (3), we can maximize performance gains
in case where both CPUs and GPUs are available. Through
(4), we aim at providing a generic approach which can be
instantiated using different technologies depending on the
application scenario.

59.3 The Parallelization Approach

The parallelization approach that we propose consists of
three phases and is depicted in Fig. 59.1. The first phase
represents the definition of the goals of the parallelization
as well as the tools to use. In the second phase, developers

Fig. 59.1 Parallelization approach

analyze the software for individuating parallelization poten-
tial and perform a parallelization feasibility analysis. The
third and last phase concerns the actual parallelization, where
the selected software portions are further analyzed and a
parallel solution is designed, implemented, and validated. In
the following subsections we describe the three phases in
more detail.

59.3.1 Specification Phase

In this phase, the engineer specifies the goals of the paral-
lelization and decides on which tools to use. Goals are of two
kinds: financial and technical. An example of financial goal
is development effort introduced by the parallelization. An
example of technical goal is the desired performance gain in



59 A Generic Approach to Efficiently Parallelize Legacy Sequential Software 453

terms of execution speedup as a result of the parallelization.
In the industrial evaluation of our approach we focus on
these two. Clearly, there are two ways to tradeoff them:
either prioritizing cost over performance or the other way
around [8]. In the first case, there is a fixed budget for
carrying out the parallelization task and, once the budget is
used, parallelization stops no matter how much performance
has improved. In the second, we decide on a target level of
performance to reach, and parallelization is carried on until
that is reached, with looser constraints on cost.

Apart from goals, the engineer is supposed to select
the tools to use for the parallelization, and this is usually
very dependent on the characteristics of the software to
parallelize. For instance, if the existing software is written in
C++, then tools that support C++ need to be used. In some
cases, it could be beneficial to first port the existing software
in order for it to be used on a unsupported platform; this
would require additional parallelization phases, and it is not
in the scope of this work. A profiling tool, to be used during
the identification of software portions with parallelization
potential should be selected too, together with a monitoring
tool to measure the software execution time to be used for
feasibility analysis. Additionally, the engineer selects which
parallel computing APIs to use, considering compatibility
with the software to parallelize and the targeted parallel
platform.

59.3.2 Analysis Phase

The purpose of this phase is to analyze the software to (1)
find potential for parallelization, (2) estimation of maximum
performance gain from parallelization, and (3) estimation of
parallelization effort, in the given order. We address (2) and
(3) as feasibility analysis.

59.3.2.1 Identification of Parallelization
Potentials

Our approach indicates two complementary methods, to be
exploited jointly, for carrying out this task: manual and
automatic control flow analysis. Analyzing the control flow
of the software to parallelize is needed to reveal paralleliza-
tion potentials in the program flow. Manual analysis of an
entire piece of software can be time-consuming, so automatic
analysis can help in pointing out where in the software to
look for parallelization potentials. The profiling tool selected
in the specification phase can be used to search for pieces of
the software where much of the execution time is spent, i.e.
hot-spots. If these portions of the software are parallelized,
the total gain of performance is greater than parallelizing
“colder” portions. Once a set of hot-spots is identified, a
manual inspection of their code needs to be performed to
decide whether there is potential for parallelization. This is

done by looking for independent computations that can thus
be performed in parallel.

59.3.2.2 Feasibility Analysis
Once portions with parallelization potential are found, we
advise to run a feasibility analysis to find out whether it
is worth parallelizing them. The first step is to measure
how much code can be parallelized. Once this is defined,
an estimation of the potential execution time speedup from
parallelization can be calculated by using well-defined math-
ematical equations. In our approach we suggest the use of
Amdahl’s law2 [12] to assess the potential speedup that can
be achieved from parallel processing.

Speedup(N)A = 1

(1 − P) + P/N + ON

(59.1)

The formalization of Amdahl’s law is depicted in Eq. (59.1),
where P is the parallel portion of the process, N is the
number of processors, and ON the overhead introduced from
using N , if any. The estimated speedup factor calculated by
applying Amdahl’s can then be used to calculate the actual
speedup gain in time through Eq. (59.2), where Speeduptime

represents the speedup gain in time and SeqET the total
sequential execution time.

Speeduptime = SeqET − SeqET

Speedup(N)A
(59.2)

These equations can be applied to a piece of software
in order to evaluate its parallel potential. The results can
then be used to decide whether it is worth parallelizing
the software or not. Since these laws expect a number of
processors to apply the parallelization on, a decision of
whether to utilize CPUs or GPUs (note that we suppose
that both are available) for the parallelization must be taken
beforehand. This decision can be taken looking at the type of
parallelization we want to achieve: task parallelism, where
the goal is to distribute task across processors running in
parallel, or data parallelism, where data is supposed to be
distributed. For task parallelism, CPUs are considered more
suited due to higher clock frequencies and lower memory
management overhead. For data parallelism, we suggest to
make an estimation of the potential speedup in both the cases
of targeting CPUs and GPUs. This is due to the fact that,
besides varying processor’s characteristics, such as clock
frequency and memory clock frequency, the grain-size of the
parallel task plays a role in the selection of the processing
unit type too. Since GPUs often have several hundreds or

2An alternative to Amdahl’s law is represented by Gustafson’s law [11],
which can be more suitable when parallelizing algorithms that can
expand the amount of computation to fit the amount of parallelization
available.



454 A. Granholm and F. Ciccozzi

thousands of cores, the parallel task should be fine-grained
enough to maximize the utilization of these cores; for coarse-
grained tasks, it might be better to choose a CPU instead.

The second step of the feasibility analysis phase is to
estimate the effort needed for the actual parallelization task
in terms of time. There are three aspects that compose the
total effort: (1) time to design a parallel implementation, (2)
time to implement the parallelization, (3) time to validate the
parallelized application.

Once estimated speedup is calculated for each candidate
software portion, and depending on the set financial goals
(i.e., maximize performance gain or minimize effort), the
engineer decides whether to parallelize any of the candidates.
The outcome of this step is a prioritized list of software
portions to be parallelized within the given effort budget.

59.3.3 Development Phase

During this iterative phase, selected software portions are
actually parallelized, in the prioritized order defined in the
previous phase. The first step of the development phase is to
design how the selected piece of software should be paral-
lelized. In the analysis phase, an initial design decision was
taken regarding which hardware platform to utilize. If the
chosen hardware was CPU, we are facing either task or data
parallelism. In the case of a task parallelism, we recommend
to use a threading library, such as the C++ Thread Support
Library.3 For data parallelism on CPU, the recommendation
is to use a compilation-based approach, such as OpenMP.4

If parallelization targets a GPU, the engineer will use the
parallel computing API selected in the specification phase,
such as NVIDIA’s CUDA.5

It is worth mentioning that further analysis of the software
portion to parallelize is amenable since activities, such as
refactoring of data, may be necessary to maximize par-
allelizability. Actual implementation and validation of the
parallelization are decided by the engineer; our approach
does not pose any limitation on them since they do not affect
the expected gains, if properly carried out.

59.4 Industrial Evaluation

In order to evaluate our parallelization method, we set up an
experiment exploiting a real-life industrial use case focusing
on 3D sensors using structured light at ABB Robotics (site of
Västerås, Sweden). The goal of the experiment was to answer
the following set of research questions:

3http://en.cppreference.com/w/cpp/thread.
4http://www.openmp.org/.
5https://developer.nvidia.com/cuda-zone.

RC1 What is the effort of the parallelization approach over-
all and the effort of its phases individually?

RC2 How much did the execution time of the parallelized
software improve from the original?

RC3 Are there clearly perceived limitations in applying the
parallelization approach?

In order to answer RC1, the effort spent on each step of
the approach was recorded so to track how much time was
spent on preparation, planning, and implementation activi-
ties. Benchmarking was performed on the software portions
selected for parallelization, before and after the application
of the approach in order to answer RC2. Additionally, we
kept track of the “sensations” of the engineers applying the
approach so to have an informal understanding on clear
limitations of the approach (RC3).

The parallelization approach was applied on a palletizer
application, developed as a proof-of-concept for a 3D vision
library at ABB Robotics. The application makes a robot arm
to pick and place objects from point A to point B. The exact
location of point B is unknown; only a larger area of where
B’s location is known beforehand. The same goes for the
location of the objects, whose exact position is unknown. In
order to identify the location of the placing area (point B) as
well as position and orientation of the objects to be moved,
the application uses the 3D vision library. The control flow of
the application is shown in Fig. 59.2. Currently, the software
running on the Palletizer is sequential, and the vision-related
algorithms are so computational heavy that, once an image is
taken, the application needs to wait for the vision algorithms
to compute it before it can move the robot arm. This idle
time increases the overall cycle time and limits throughput.
The goal of the experiment was to apply the parallelization
method to the sequential Palletizer application to improve its
performance.

59.4.1 Specification Phase

The goal of the parallelization was to maximize performance
gain in terms of execution time speedup; since the exper-
iment’s goal was to assess the parallelization method, we
did not set any limit on parallelization effort, but rather
measured it. Moreover, we aimed at providing parallelization
for both targets (in case of data parallelism, where GPUs
are favorable), CPU and GPU, in order (1) to compare
results from the two, both in terms of effort and achieved
speedup, and (2) to maximize portability (in case no GPUs
are available). The development as well as the benchmarking
was carried out using a Lenovo P50 laptop with Windows
7 as operating system. The laptop contains a CPU Intel Core
i7-6820HQ vPro (8M Cache, up to 3.60 GHz) with a memory
of 8 GB DDR4 2133 MHz, and a GPU Quadro M1000M,

http://en.cppreference.com/w/cpp/thread
http://www.openmp.org/
https://developer.nvidia.com/cuda-zone


59 A Generic Approach to Efficiently Parallelize Legacy Sequential Software 455

Fig. 59.2 Control flow of the
Palletizer application

512 CUDA cores 993-1072 MHz with a memory of 4 GB
GDDR5 5000 MHz and 128 Bit bus width.

The existing code base was developed in C++11 using
Visual Studio 2015 (v140 platform toolset) and Microsofts
VC++ compiler, and the code was compiled using the ‘-O2’
optimization flag. The C++11 threading library and OpenMP
were used in order to express concurrency on the CPU
when applying the parallelization approach for task and data
parallelism, respectively. To express concurrency on GPUs,
we used NVIDIA’s CUDA since the target system includes a
CUDA-enabled GPU. Effort spent in this phase was 8 h.

59.4.2 Analysis Phase

The first step of the analysis phase is to locate a set of soft-
ware portions that could potentially be parallelized. Based
on the control flow of the Palletizer application and the
dependencies between actions, there were two visible lo-
cations for parallelization. The first one was the Model
environment procedure, where there were no depen-
dencies between the robot moving and adding the point-
cloud from the image to the point-cloud representing the
environment. The two actions could be run in parallel. The

second one was when a picture of the placing area is taken
and the placing position is calculated, after which a collision-
free path to the picking area is planned. The two actions are
again independent and could be run in parallel.

To systematically identify hot-spots, automatic (dynamic)
analysis using Visual Studio Profiling Tools was run on the
codebase. The result showed 13 functions that were accessed
frequently and consumed much computational power.
These functions were inspected and analyzed manually for
parallelization potential. After the analysis, the following
4 functions were identified as parallelizable: Model
environment, Extract environment, Align
object, Edge detection. Once these locations of
parallel potential software were located, we conducted a
feasibility analysis on them. Model environment takes
care of combining multiple images taken from the robot
arms perspective. The robot arm moves to a set of positions
and takes an image at each position. What we can do here is
to add the previously taken image to the environment at the
same time as moving the robot arm to the next position. The
parallelization of this function would run on two parallel
cores since only two tasks can run in parallel. Model
environment’s sequential execution time was 9822 ms.
Then, the individual times of the two tasks that could run in



456 A. Granholm and F. Ciccozzi

parallel was 2816 ms for adding the image and 6635 ms for
moving the robot arm. In theory, 5632 ms (2*2816, where
2816 ms is the shorter execution time), or 57.34%, of the
total sequential execution time could run on two cores at
the same time. Since we address task parallelism on two
cores, we apply Amdahl’s law only for a 2-core CPU. The
application of Amdahl’s law is shown in Eq. (59.3) gives
an estimated speedup factor of 1.4, for a speedup time of
2806.29 ms (see Eq. (59.4)).

Speedup(2)A = 1

(1 − 0.5734) + 0.5734/2
= 1.4 (59.3)

Speeduptime = 9822 − 9822

1.4
= 2806.29 (59.4)

The sequential execution time of Extract
environment was 295.4 ms, with a parallelizable portion
of 291.26 ms (98.6%). Since this is data parallelism, we
estimate speedup on both CPU and GPU, using the maximum
amount of available cores (4 for CPU and 512 for GPU). At
this point, the speedup estimation was performed for both
CPUs and GPUs according to the parallelization method.
Absolute speedup factors for CPU and GPU are 3.83 and
62.79, respectively, as shown in Eqs. (59.5) and (59.6). Since
the GPU used in this experiment has a core frequency which
is 27.7% of the CPUs, the relative speedup for GPU is
62.79 ∗ 0.277 = 16.5.

Speedup(4)A = 1

(1 − 0.986) + 0.986/4
= 3.83 (59.5)

Speedup(512)A = 1

(1 − 0.986) + 0.986/512
= 62.79

(59.6)
The reasoning is similar for the remaining functions, whose
estimated speedup gains are as follows (for the sake of page
limitation we do not provide all the details of the related
parallelization rationale).
Aligning object has an execution time of 1548.54

ms, with 98.8% of it parallelizable through data parallelism.
Absolute speedup factors for CPU and GPU are 3.86 and
71.79 respectively, as shown in Eqs. (59.7) and (59.8), with a
relative GPU speedup factor of 19.88.

Speedup(4)A = 1

(1 − 0.988) + 0.988/4
= 3.86 (59.7)

Speedup(512)A = 1

(1 − 0.988) + 0.988/512
= 71.79

(59.8)

Edge detection has an execution time was 32.73
ms, of which 92.6% parallelizable through data parallelism.
Absolute speedup factors for CPU and GPU are 3.27 and

13.19 respectively, as shown in Eqs. (59.9) and (59.10), with
a relative GPU speedup factor of 3.65.

Speedup(4)A = 1

(1 − 0.926) + 0.926/4
= 3.27 (59.9)

Speedup(512)A = 1

(1 − 0.926) + 0.926/512
= 13.19

(59.10)

As we can see speedup factor for CPU (3.27) is slightly lower
to the one for GPU (3.65). This would suggest to target GPU.
Nevertheless, since the size of the point-clouds provided as
input to Edge detection are normally up to 200 points,
which would take up to 200 GPU cores, we will have a
minimum of 312 cores always ‘idling’, thus severely under-
utilizing the GPU. CPU is thereby a better candidate in this
specific case.

In this experiment we prioritized the software portions to
parallelize based on their estimated speedup factor achiev-
able through parallelization. A summary of the estimated
speedup factor, priority, type of target platform, and effort
spent for the analysis of the specific software portion is
shown in Table 59.1.

59.4.3 Development Phase

In this phase the selected software portions are parallelized
from highest to lowest priority until the depletion of the
available effort budget (no budget limits in our case since
we wanted to measure the needed effort). Moreover, each
parallelized code portion was validated through canonical
unit testing. In the following we describe the results of
this hand-crafted phase in terms of achieved speedup contra
estimations done in the analysis phase.

The Align object procedure was parallelized both
for CPU, using OpenMP, and for GPU, using CUDA. After
further analysis of the related sequential code, we discovered
that re-implementation of several mathematical functions
had to be done for the CUDA implementation, since used
third-party APIs did not provide native support for CUDA.
Additionally, refactoring was needed to loosen up a number

Table 59.1 Estimated speedup, priority, platform, and analysis effort

Estimated Analysis
Function speedup Priority Target effort

Align object 3.86 5 CPU 16

Align object 19.88 5 GPU -

Extract env. 3.83 4 CPU 8

Extract env. 16.5 4 GPU -

Edge det. 3.27 3 CPU 2

Model env. 1.4 2 CPU 4



59 A Generic Approach to Efficiently Parallelize Legacy Sequential Software 457

0 200 400 1,400 1,800

Seq

OMP

CUDA

1,548.54

457.57

108.19

milliseconds

Fig. 59.3 Execution times of Align Object

0 50 100 150 200 250 300 350

CUDA

OMP

Seq

22.6

96.47

295.4

milliseconds

Fig. 59.4 Execution times of Extract environment

of computation dependencies so that they could be performed
in parallel. The results of the parallelization are shown
in Fig. 59.3. Note that in Figs. 59.3, 59.4, 59.5, and 59.6,
Seq, C++TL, OMP, and CUDA represent the execution
times of the sequential application, the parallel applica-
tion with C++ threading, with OpenMP, and with CUDA,
respectively.

The achieved speedup factors were: 3.38 for CPU/
OpenMP (expected 3.86), and 14.31 for GPU/CUDA
(expected 19.88), as shown in Fig. 59.3. Forty man-hours
were spent on implementation and validation.
Extract environment was also parallelized for

CPU, using OpenMP, and for GPU, using CUDA. From
further code analysis, we identified a potential risk for race
conditions due to reading and writing to a shared list. This
was handled in different ways for the two implementations:
for OpenMP, we added a critical section to protect from
multiple access, while for CUDA, we added an array of
booleans representing whether a point should be kept. The
achieved speedup factors were: 3.06 for CPU/OpenMP
(expected 3.83), and 13.07 for GPU/CUDA (expected 16.5),
as shown in Fig. 59.4. Fort four man-hours were spent on
implementation and validation.
Edge detection was parallelized for CPU using

OpenMP problem in the analysis phase. Additionally, it was
decided to parallelize it on the CPU using OpenMP. Also
in this procedure we had to add a critical section to avoid
race conditions. The achieved speedup factor was 3.01 for
CPU/OpenMP (expected 3.27), as shown in Fig. 59.5. Four
man-hours were spent on implementation and validation.
Model environment was identified as candidate for

task parallelization, thus on CPU using C++ threading. To
avoid race conditions, we add to protect some of the shared

0 5 10 15 20 25 30 35

Seq

OMP

32:73

12:36

milliseconds

Fig. 59.5 Execution times of Edge Detection

0 2,000 4,000 6,000 8,000 10,000

C++TL

Seq

7,048

9,822

milliseconds

Fig. 59.6 Execution times of Model environment

Table 59.2 Experiment summary

Estimated Actual
Procedure speedup speedup Dev/val effort Target

Align object 3.86 3.38 4 CPU

Align object 19.88 14.31 36 GPU

Extract env. 3.83 3.06 6 CPU

Extract env. 16.5 13.07 38 GPU

Edge det. 3.27 3.01 4 CPU

Model env. 1.4 1.39 6 CPU

data with a mutex. The achieved speedup factor was 1.39 for
CPU/C++TL (expected 1.4), as shown in Fig. 59.6. Six man-
hours were spent on implementation and validation.

A summary of the development activity results in relation
to the estimations computed during the analysis phase is
depicted in Table 59.2. In general we can observe that the
actual speedup was indeed fairly close to the estimated one
for all cases. As expected, speedups achieved targeting GPUs
were higher than the one on CPUs. However, in all cases this
came with an additional cost, since parallelization to GPU
required additional much higher implementation effort. The
overall recorded effort was 132 man-hours, of which 8 spent
on the specification phase, 30 on the analysis, and 94 on
development.

59.5 Conclusion

In this work we described and assessed a generic paral-
lelization method for introducing parallelization in legacy
sequential software. In the proposed method, automatic (dy-
namic) analysis in combination with manual analysis is used
to locate parallelization potentials in existing software. Ad-
ditionally, a feasibility analysis is used (1) to decide whether
it is worth parallelizing a piece of software, and (2) to decide
which hardware platform to target (CPU or GPU).



458 A. Granholm and F. Ciccozzi

In order to evaluate the proposed method, an experiment
was carried out in industrial settings. Three research ques-
tions were defined for the experiment and the outcomes are
as follows:

RC1 What is the effort of the parallelization approach over-
all and the effort of its phases individually?

28.8% of the effort was spent preparing, locating
and analyzing parallelization potential.

71.2% of the effort for designing, implementing and
validating the parallelization.

RC2 How much did the execution time of the parallelized
software improve from the original?

The average case achieved a 6.37 times faster execu-
tion time compared to the sequential implementation.

RC3 Are there clearly perceived limitations in applying the
parallelization approach?

The parallelization method does not consider other
hardware platforms than CPUs and GPUs.

Additionally, the experiment showed that parallelization
using CPUs required less effort compared to parallelization
using GPUs. However, the speedup gained from GPU par-
allelization was, expectedly, higher compared to what was
achieved on a CPU. This resulted in the effort to speedup
ratio being similar for both approaches. A possible future
research work would be a study comparing existing parallel
computation APIs in terms of achieved speedup and required
development effort. The purpose of this would be to define
suggestions regarding what API to choose depending on
problem and goals.

Acknowledgements This research is partially supported by the
Knowledge Foundation through the MOMENTUM project (http://
www.es.mdh.se/projects/458-MOMENTUM).

References

1. E. Chovancova, J. Mihal’ov, Load balancing strategy for multicore
systems, in Proceedings of ICETA (2015), pp. 1–6

2. M.A. Kiefer, K. Molitorisz, J. Bieler, W.F. Tichy, Parallelizing a
real-time audio application – a case study in multithreaded software
engineering, in Proceedings of IPDPS (2015), pp. 405–414

3. L. Bass, P. Clements, R. Kazman, Software Architecture in Prac-
tice, 3rd edn. (Addison-Wesley Professional, Reading, 2012)

4. H. Vandierendonck, T. Mens, Techniques and tools for parallelizing
software. IEEE Softw. 29, 22–25 (2012)

5. Intel, Threading Methodology: Principles and Practices (Intel
Corporation, Mountain View, 2003)

6. V. Tovinkere, A methodology for threading serial applications.
Intel White paper (2006)

7. B. Jun-feng, Application development methods based on multi-
core systems, in 2012 International Conference on Industrial
Control and Electronics Engineering (2012), pp. 858–862

8. C. Christmann, J. Falkner, A. Weisbecker, A methodology for
porting sequential software to the multicore platform considering
technical and economical aspects of software parallelization, in
Proceedings of ICSOFT-EA (2014), pp. 551–559

9. Nvidia, CUDA C best practices guide. DG-05603-001_v8.0 (2017)
10. F.G. Tinetti, M. Méndez, A. De Giusti, Restructuring fortran

legacy applications for parallel computing in multiprocessors. J.
Supercomput. 64(2), 638–659 (2013)

11. J.L. Gustafson, Reevaluating amdahl’s law. Commun. ACM, 31(5),
532–533 (1988). http://doi.acm.org/10.1145/42411.42415

12. G.M. Amdahl, Validity of the single processor approach to achiev-
ing large scale computing capabilities, in Readings in Com-
puter Architecture (Morgan Kaufmann, San Francisco, 2000),
pp. 79–81

http://www.es.mdh.se/projects/458-MOMENTUM
http://www.es.mdh.se/projects/458-MOMENTUM
http://doi.acm.org/10.1145/42411.42415

	59 A Generic Approach to Efficiently Parallelize Legacy Sequential Software
	59.1 Introduction
	59.2 State-of-the-Art and Novelty
	59.3 The Parallelization Approach
	59.3.1 Specification Phase
	59.3.2 Analysis Phase
	59.3.2.1 Identification of Parallelization Potentials
	59.3.2.2 Feasibility Analysis

	59.3.3 Development Phase

	59.4 Industrial Evaluation
	59.4.1 Specification Phase
	59.4.2 Analysis Phase
	59.4.3 Development Phase

	59.5 Conclusion
	References


