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Abstract

Recently, the NLP community has focused on finding
methods for learning good vectorial word representations.
These vectorial representations must be good enough to
capture semantic relationships between words using sim-
ple vector arithmetic operations. Currently, two methods
stand out: GloVe and word2vec. We argue that the proper
usage of knowledge bases such as WordNet, Freebase and
Paraphrase can improve even further the results of such
methods. Although the attempt to incorporate information
from knowledge bases in vectorial word representations
is not new, results are not compared to that of GloVe
nor word2vec. In this paper, we propose a method to
incorporate the knowledge of Paraphrase knowledge base
into GloVe. Results show that such incorporation im-
proves GloVe’s original results for at least three different
benchmarks.
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53.1 Introduction

Deep architectures of Multilayer Perceptron (MLP), Con-
volutional Neural Network (CNN) and Recurrent Neural
Network (RNN) are the state-of-the-art for many NLP tasks,
such as automatic translation [22], question & answering
[23], named-entity recognition [15], automatic text sum-
marization [19] and sentiment analysis [16]. Most NLP
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solutions involving Deep Learning use word embeddings,
which are vectorial word representations. Word embeddings
are vectors of real numbers that represent a word; in this way,
each word has its own word embedding. There are three main
techniques for learning word embeddings:

1. Context-window based methods;
2. Semantic Relationship based methods;
3. Graph distance based methods.

All three methods have disadvantages in their develop-
ment. Some of the methods in (1), such as [9] and [17], use
only the local context of each word instead of the global
context for training. The methods in (2) and (3) use the
WordNet [18] and Freebase [3] knowledge bases to learn
the word embeddings. The main disadvantage of the methods
in (2) is that they use only a subpart of the aforementioned
knowledge bases and do not consider the Paraphrase dataset
[12], which contains a set of word pairs that are written
differently but share the same meaning. Methods in (3) use
the Leacock-Chodorow [6] distance in order to capture the
semantic information between two words; not considering
other distance measures is a limitation.

In this work, we used the Paraphrase knowledge base to
enrich our training base of word embeddings and trained
them using GloVe [20], which considers the global context of
words. The hypothesis to be tested is that such combination
improves vectorial word representations.

In Sect. 53.2 we present some related works. In Sect. 53.3
we describe the method used to improve the training base us-
ing the Paraphrase knowledge base. Section 53.4 details the
experiments and discusses the results. Finally, we conclude
the work in Sect. 53.5.
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53.2 RelatedWork

53.2.1 Context-Window BasedMethods

Collobert et al. [9] implemented a Neural Language Model
(NLM) where each vocabulary word i is related with a
vector vi ε Rn of dimension n, the word embedding of i.
A sentence s = (s1, s2, s..., sl) of size l is represented for a
vector x which is equal to concatenate vector of words em-
beddings from sentence s, x = [vs1 ; vs2 ; . . . ; vsl ], x ε Rln.
After achieving x, it is propagated through a two layer
neural network to obtain a score assign of how real this
sentence is.

Score(x) = uT (σ (Ax + b)) (53.1)

A is an weight matrix such that Aε Rh×ln and b ε Rh is
the bias of first layer. The parameter h indicates how many
units are in the layer f. uT ε R1×h is the weight vector of
output layer. The weight matrix and word embeddings of this
model are trained using Noise Contrastive Estimation (NCE)
[13], where, for each training sequence s, we build a noise
sequence sc. To build sc we choose a word from s and replace
it for a randomly selected word from vocabulary. Thus, we
have a vector x for s and a vector xc for sc. To train a neural
network able to achieve a high score on real sequences, we
minimized the function cost at Eq. (53.2).

cost = max(0, 1 − Score(x) + Score(xc)) (53.2)

The word embeddings and parameters A, b, and u are
trained with backpropagation using Stochastic Gradient De-
scent (SGD) over a training corpus.

Mikolov et al. [17] presents two architectures to learn
word embeddings based on word context window inside an
sentence, the Skip-gram and bag-of-words (CBOW). The
skip-gram goal is: given a sentence s and a central word
c of s, predict the context words of c. The CBOW goal is
predict the central word c based on its context. Given an
word sequence w1, w2, w3, · · · , wT , the Skip-gram goal is
maximize the Esk function.

Esk = 1

T

T∑

t=1

∑

−c≤j≥c,j �=0

logp(wt+j |wt), (53.3)

where c is the context window size used. The most simple
Skip-gram formula define p(wt+j |wt) as:

p(wt+j |wt) = exp(v
′
wt+1

T vwt )
∑N

n=1 exp(v
′
wn

T vwt )
(53.4)

53.2.2 Semantic Relationship BasedMethods

There are knowledge bases that present semantic information
about words, such as Freebase [3], WordNet [18], Dbpedia
[2], NELL [7]. Often, knowledge is represented by t =
(wi, r, wj ), where r indicate an semantic relationship be-
tween words wi e wj . Some models, e.g. TransE [4], Neural
Tensor Network [21], try to learn word representations from
this semantic information: tuple t as input and the output is a
score indicating how real is the relationship r between words
wi e wj .

53.2.3 Graph Distance-BasedMethods

Fried and Duh [11] proposes the Graph Distance (GD)
model. The goal of GD is to train the words embeddings
such that its similarity is equal to LCH distance between the
respective words in WordNet database. Its objective function
is:

LGD(vi, vj ) = (
vivj

||vi ||2||vj ||2 − [a × LCH(wi,wj ) + b])2,

(53.5)
where vi and vj are word embeddings of wi e wj words,
respectively. The GD uses the parameters a and b to put the
LCH distance in the same scale as cosine similarity between
vi e vj

53.3 Model

Paraphrase is the task of rewrite an sentence p using different
words, but keeping the meaning of p. Word level Paraphrase
is when we rewrite an word w with different characters
but keep the w word meaning. Ganitkevitch et al. [12]
presents an database for Paraphrase (PPDB). This database
has around 73 million paraphrases at sentence level and 8
million paraphrases at word level. The PPDB is divided into
six sizes: S, M, L, XL, XXL, XXXL, in crescent order.
The subpart S, minor part, has a higher precision score.
In this work, we selected the PPDB subpart S and used
its 473 thousand word level paraphrases. We implemented
the getparaphrase(word = w) method which uses S; it
randomly selects one paraphrase of the word w.

In this work, we used the GloVe [20] model to train the
word embeddings. It is a context window based method. It
uses the word global context of training corpus. Over its
training, GloVe uses an word-to-word co-occurrence matrix
X, where Xij indicates how many times the word j is
presented in word i context within the training corpus.
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Xi =
∑

k

Xik (53.6)

After building the matrix X, the GloVe’s goal is to minimize
J loss function:

J =
V∑

i,j=1

f (Xij )(w
T
i w̃j + bi + b̃j − log(Xij ))

2, (53.7)

where V is the vocabulary size, wi is the word embedding of
central word i and w̃j is the word embedding of the context
word j. Thus, we have two word embedding matrices, W and
W̃ . Equation (53.8) defines f(x) function.

f (x) =
{

(x/xmax)
α, ifx < xmax

1, otherwise
(53.8)

At GloVe original work, the authors use α = 3/4 and
xmax = 100 to train the word embeddings and perform the
experiments.

input : matrix X, int V

for i ← 1 to V do
p = getparaphrase(i);
for j ← 1 to V do

if Xij == 0 and Xpj ! = 0 then
Xij := Xpj

end
end

end
Algorithm 1: Algorithm used to enhance the X matrix

We use Algorithm 1 to enhance our X co-occurrence ma-
trix and perform the GloVe’s training. For each vocabulary
word v, it randomly selects an paraphrase x and uses its
context to fill the empty slots of v. In other words, it appends
more information in our X matrix. This idea is valid because
the words x and v have the same meaning, so the word v can
be placed at the contexts of the word x.

53.4 Experiments

53.4.1 EvaluationMethods

We use three different benchmarks to evaluate the word
embedding: (1) SimLex999 [14], (2) MEN [5] and (3)
WordSimilarity-353 (WS353) [1]. They all measure the se-
mantic similarity between two words. Each dataset has a
set of tuples t = (word1, word2), where each tuple has
a score indicating how word1 and word2 are semantically

related. This score is defined by arithmetic mean of a score
set defined by humans.

The great difference between the SimLex999 and the
other two, is that it explicitly evaluates the semantic similar-
ity between two words, whereas the MEN and WS353 also
consider the relatedness between two words. For instance,
the tuple (Freud, Psychology) has a low score in SimLex999
but has a high score in MEN and WS, since the name Freud
has a high relation with psychology.

For each dataset, we compute the cosine similarity be-
tween the word embeddings of word1 and word2 of its tuple
t = (word1, word2), so we have the semantic similarity of
its word embeddings. In the end, we calculate the Spearman
correlation between word embeddings semantic similarity
and humans semantic similarity to obtain how good is our
word embeddings on that dataset.

53.4.2 Corpora and Training Details

To perform the experiment, we use the 1 Billion Word
Language Model Benchmark [8] corpus. This corpus has
approximately 1 billion tokens. We tokenize and lowercase
every word in the corpus using the Stanford tokenizer. We
build a vocabulary with the most 100 thousand frequent
words and produce the X co-occurrence matrix. To build the
X matrix, we use an context window of size 10.

For every experiment, we use a xmax = 100, α = 0.75
and train the GloVe model using Adagrad [10] and stochas-
tically select elements with values different of zero from X.
The initial learning rate was 0.05. We execute 100 training
iterations of each word embedding for every experiment. In
this work, we use W + W̃ as our final word embedding
matrix. We use the GloVe original implementation to train
our word embeddings and keep its default settings.

53.4.3 Results

In Table 53.1 we present the best achieved accuracy values. It
can be observed that using the Paraphrase dataset to improve
GloVe’s co-occurrence matrix X presents an improvement in
every scenario. Another important aspect to be noted is the
word embeddings’ dimension: experiments with bigger word
embeddings also present better results.

Table 53.1 Best results for each model

Model Size SimLex999 WS353 MEN

GloVe 100 21.85 25.95 44.00

GloVe-P 100 21.89 27.75 44.85

GloVe 200 22.74 27.60 46.87

GloVe-P 200 23.66 27.93 47.92

P paraphrase
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Fig. 53.2 SimLex999 results

Fig. 53.3 MEN results

Figures 53.2, 53.3, and 53.4 present the accuracy evo-
lution for Glove 200 and Glove-P 200 on the following
benchmarks: SimLex999, MEN, and WS353, respectively.
Aside from the fact that Glove-P 200 presents better results
in every epoch and every evaluation, it is clear that during
the first epochs, Glove-P shows a better improvement when
compared to Glove 200. This is important due to the fact that
high computational power is not always available to enable
long-run training sessions.

53.5 Conclusion

Vectorial word representations are important for obtaining
good results in NLP tasks using machine learning algorithms.
Recently, some works have tried to incorporate information

from knowledge bases in order to improve the learning of
word embeddings. However, these works have not tried to
achieve the state-of-the-art results in their methods. Also,
they usually limit their experiments with the use of self-
tailored datasets.

In this work, we have proposed a modification on the
GloVe method, the state-of-the-art in word representation
benchmarks. In particular, we presented a method to incor-
porate the knowledge of the Paraphrase dataset into GloVe’s
co-occurrence matrix. We have used an universal dataset
to train the word embeddings and results have shown im-
proved word embeddings if compared to GloVe” original
approach.

As future work, we intend to come up with a method to
incorporate similar knowledge into other relevant learning
methods such as word2vec.
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Fig. 53.4 WS353 results
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