
51Reproducible Research in Document Analysis
and Recognition

Jorge Ramón Fonseca Cacho and Kazem Taghva

Abstract

With reproducible research becoming a de facto standard
in computational sciences, many approaches have been
explored to enable researchers in other disciplines to
adopt this standard. In this paper, we explore the impor-
tance of reproducible research in the field of document
analysis and recognition and in the Computer Science
field as a whole. First, we report on the difficulties
that one can face in trying to reproduce research in
the current publication standards. These difficulties for
a large percentage of research may include missing raw
or original data, a lack of tidied up version of the data,
no source code available, or lacking the software to run
the experiment. Furthermore, even when we have all
these tools available, we found it was not a trivial task
to replicate the research due to lack of documentation
and deprecated dependencies. In this paper, we offer a
solution to these reproducible research issues by utilizing
container technologies such as Docker. As an example, we
revisit the installation and execution of OCRSpell which
we reported on and implemented in 1994. While the code
for OCRSpell is freely available on github, we continu-
ously get emails from individuals who have difficulties
compiling and using it in modern hardware platforms. We
walk through the development of an OCRSpell Docker
container for creating an image, uploading such an image,
and enabling others to easily run this program by simply
downloading the image and running the container.

Keywords

Reproducible research · Containers · Docker ·
OCRSpell · Document analysis and recognition

J. Ramón Fonseca Cacho (�) · K. Taghva
Department of Computer Science, University of Nevada, Las Vegas,
NV, USA
e-mail: Jorge.FonsecaCacho@unlv.edu; kazem.taghva@unlv.edu

51.1 Introduction

A key to advancing our field is to build and expand on
previous work, namely cumulative science. The only way
we can achieve this is if we understand the foundations and
can replicate it. In this lies the importance of Reproducible
Research, which means the ability to take a paper—code
in many of our cases—and be able to run the experiment
addressed in that paper so we can learn and expand on the
paper’s research or even refute it [1]. Knowing and having
access to the raw, intermediate, and processed data is another
important aspect as it is key in understanding how every
result was produced [2].

Reproducible research should be more than the final data
and product. The necessity to implement a gold standard for
publications and conferences is ever increasing. A great deal
can be learned from the steps it took to come up with an al-
gorithm or solve a problem. Version control and the concept
of Git is a great solution to increase transparency and see the
evolution of code to its final form [3]. Reproducible research
is also about how TIDY data is produced [4]. Recently, we
wanted to revisit our research on post-processing of Optical
Character Recognition (OCR) data. As a part of this work,
we wanted to access some data which is referenced by some
of the authors in the International Conference on Document
Analysis and Recognition (ICDAR) proceedings. We were
unsuccessful in obtaining the data since the download page
produced errors. We contacted the university that had pro-
duced the OCR’d documents and ground truth, and never re-
ceived a response. This is a common trend that is thoroughly
documented by Christian Collberg et al. [5]. Collberg’s group
was in the pursuit of a project’s source code that should have
legally been available due to having been partially funded
with federal grant money. After evasion from the university
to release the code, Collberg threatened legal action which
was met by lawyers’ refusal and eventually avoiding his
request by charging extreme retrieval fees. The exchange is
well documented along with other examples of researchers

© Springer International Publishing AG, part of Springer Nature 2018
S. Latifi (ed.), Information Technology – New Generations, Advances in Intelligent Systems and Computing 738,
https://doi.org/10.1007/978-3-319-77028-4_51

389

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77028-4_51&domain=pdf
mailto:Jorge.FonsecaCacho@unlv.edu
mailto:kazem.taghva@unlv.edu
https://doi.org/10.1007/978-3-319-77028-4_51


390 J. Ramón Fonseca Cacho and K. Taghva

giving reasons for not sharing the code such as it no longer
existing or not being ready to publish it. Collberg ultimately
found that only a quarter of the articles were reproducible [5].

People are usually criticized for unpolished or buggy
code, and writing pristine code is usually time consuming
and unnecessary. Authors may not want to be subject to that
critique [6]. This creates an environment that encourages
code that is not acceptable to not be released. There is no
easy solution to this. Scientist must have confidence in that
the results are what matters and not how the code is written as
long as its reproducible. The code can always be cleaned up
after the fact. Similarly, with the data used in experiments,
many times researchers will not want to share it in order
to avoid exposing potential bias in their research for False
positive findings [7]. There is also the monetary potential that
a project’s code could bring [6]. In this case the researcher
has hopes his new algorithm, or data set, could be monetized
down the line giving no incentive to offer it for free initially.

Another difficulty in reproducible research lies in not all
researchers having access to the same level of resources such
as computing power required for certain resource-intensive
projects. This makes it difficult to review or reproduce such
research. There is no definite solution to that difficulty.

Roger D. Peng is known for his advocacy for Repro-
ducible Research in several publications; as Peng mentions,
requiring a reproducibility test when peer reviewing has
helped computational sciences to only publish quality re-
search. Peng clearly shows reproducible data is far more
cited and of use to the scientific community [1]. Many others
agree with the concept of creating a standard in the field
of computer science that matches that of other sciences for
reproducible research to the point of requiring mandatory
data archiving policies [8]. Even the US Congress has shown
interest and has had hearings on transparency [9], and while
reproducible research helps, reproducibility of both data and
code is insufficient to avoid problematic research in the first
place [10]. Nevertheless, the benefits in transparency in the
way data is handled will avoid potential risk of researchers
being accused of skewing data to their advantage [11].

51.2 Docker

Docker is an open source project used to create images that
run as Linux Containers with a virtualization of the OS level
[12]. See docs.docker.com for more information.

Containers enable us to freeze the current state of a virtual
operating system so that we can reload it and refer to it at any
time. This enables us to store data and/or code that works
at the time and be able to save with it any dependencies or
requirements without worrying about deprecation or code-
rot. They help to reduce the complexity of reproducing
experiments [13]. The Dockerfile, which is what builds the

containers as a series of steps, enables one to see the steps
used to create that container. This along with version control
help to understand the history and steps used in research.

Docker does have limitations when it comes to rendering
graphics, as it uses the host machine for that. Solutions to
make this issue not be platform specific come in the form
of GUIdock [14]. It is in this environment surrounding the
Docker platform where the open source availability shines as
most limitations have been removed with additional software
ensuring it as a consistent solution to reproducible research.

Because containers are processes that have a lot of over-
head, questions may arise as to the impact in terms of
performance for larger projects with big data such as in
bio-informatics; however, benchmarks prove that their fast
start-up time along with negligible impact on execution
performance has no negative effects on using them [15].

51.3 OCRSpell

OCRSpell is a spelling correction system designed for OCR
generated text. Although the software was released in 1994,
it continues to be relevant based on number of downloads and
citations such as [16]. Making OCRSpell easily available for
our own projects as well as others made it a good candidate
for our work on reproducible research.

OCRSpell code is written as a mix of shell script com-
mands in Linux and C code. It works by generating candidate
words through different techniques including the use of
ispell. For more information see [17] and [18]. At the time
of writing, the source code is available at https://github.com/
zw/ocrspell, and has a small readme file describing the steps
to compile the source code. Several issues arise if one tries
to build and run OCRspell using only these instructions:

1. Dependencies: to build, the readme says to run
autoconf which means running a program of which
no more information or version is given. Furthermore, no
support is given for running that dependency.

2. Modifications by Hand: readme says:
./configure -prefix=/local/ocrspell

-<version>
and:

in configure at line 685 change
prefix=NONE to prefix=/home/graham
/Downloads/ocrspell-1.0/src

All these changes are manual changes that must be done
in order to build and run the file which can be prone to
mistakes due to lack of understanding what is happening.

3. Libraries and Guess Work: in order to build the program,
several non-standard libraries must be included, programs
like ispell must be installed. The only way to know what
is required is to try and build, see the error, download that

https://github.com/zw/ocrspell
https://github.com/zw/ocrspell


51 Reproducible Research in Document Analysis and Recognition 391

program and try again. While in this case this works, it
is a dangerous practice due to unknown changes in newer
versions of dependencies.

4. Lack of Documentation: Aside from having documenta-
tion once the program is running, as is the case here, the
readme is not very descriptive as to what is going on. Once
the program runs with

./ocrspell -a -f ./ocr.freq <
quick_demo.txt

we have no confirmation that our output will be equal to
what it was when the experiment was run years ago aside
from one test file.

51.3.1 Docker as a Solution

Docker can resolve all of the above problems by creating
an environment that is ready to go and is clearly defined
to easily be replicated enabling researches to focus on the
science instead of trying to glue different tools together [19].
Many have embraced Docker as a way to distribute easily
reproducible raw and TIDY data along with several forms of
code and even as a standardized way to share algorithms with
AlgoRun [20].

51.4 Applying Docker to OCRSpell

51.4.1 Installing Docker

Docker will run in any of today’s popular hardware platforms
available and continued support due to its open-source nature
ensures it will continue to do so. It can be downloaded and
installed from the official website, which has step-by-step
instructions on how to do so:

https://docs.docker.com/engine/installation/#platform-
support-matrix
We recommend installation of Docker CE as this is the open-
source community edition. For the remainder of this guide
we will assume a Linux host system. However, the advantage
of Docker means that the following commands will work in
any platform the host system uses. To test the install make
sure the docker service is running:

service docker start
and that we are connected to the docker repository by running
a test container:

docker run hello-world
If it installed correctly it will pull the image from docker and
display a message saying (among other things):

Hello from Docker.
This message shows that the installation appears to be work-
ing correctly.

If Docker was previously installed, we recommend delet-
ing any existing images and containers before following this
guide further. See Sect. 51.4.5 for instructions on how to do
so.

51.4.2 Creating the Container

To create a Docker container, we must first create a Docker-
file. A Dockerfile contains the instructions needed to gen-
erate the appropriate image and includes all required de-
pendencies. Each instruction in the Dockerfile creates an
intermediary container that adds the change in that line.
In that sense Docker is very modular; one can take other
author’s containers, add or remove a dependency or program,
and publish their own version of the container for others to
use. Using this concept we will begin to create our container
by pulling a basic image of the Ubuntu OS as the base where
OCRSpell will run. So we create a text file named Dockerfile
and in the first line we add:

FROM ubuntu:14.04.2
This command pulls and installs the ubuntu:14.04.2 docker
container. Next we add a maintainer line which adds a label
to our container of who to contact in case of support.

MAINTAINER my@email.com
If we were to generate our container we would have a basic,
non-gui working version of Ubuntu 14.04.2. However, OCR-
Spell requires certain dependencies that are not included in
this basic version of Ubuntu to run. These dependencies may
be acquirable today with the right install commands, but as
they become deprecated with time, they may no longer be
accessible. However, once we build our image, they will be
saved permanently and never need to be reacquired again,
enabling us to solve the issue of deprecated dependencies
and code-rot. To install these dependencies we use the RUN
command. First we will update the Ubuntu package list:

RUN apt-get -yqq update
Similarly we start to install the required libraries, software,
and other dependencies we will need. We had to analyze the
requirements of OCRSpell in order to determine these, but
when a new author creates a container. They will be aware of
what they need and easily include it:

RUN apt-get install unzip -yqq
RUN apt-get install autoconf -yqq
RUN apt-get install gcc -yqq
RUN apt-get install make -yqq
RUN apt-get install xutils-dev -yqq
RUN apt-get install nano -yqq

Notice we installed nano in order to be able to edit
files within the container. The Ubuntu OS we have is as
lightweight as possible and does not include basics like nano.
Next we would normally want to install ispell, but instead
we will do so while the container is running to show that

https://docs.docker.com/engine/installation/#platform-support-matrix
https://docs.docker.com/engine/installation/#platform-support-matrix


392 J. Ramón Fonseca Cacho and K. Taghva

option. Next we want to create our work directory before
copying our source files. We use the WORKDIR command for
that:

WORKDIR /home/ocrspell
This creates a folder in the virtual home folder called ocr-
spell. From now on whenever we start our container this will
be the default starting directory. Next we want to download
the source files from the github repository as a zip file. To
do so we can use any web browser and copy the link in the
quotes below or we can open a new terminal window and
type:
wget “https://github.com/zw/ocrspell/archive/master.zip”
When finished downloading, place the zip file in the same
directory as our Dockerfile. With this done we add the
following command to copy the files into the image:

COPY master.zip ./
For our next line we want the container to unzip these files
so we use RUN again:

RUN unzip master.zip
This prepares everything to start compiling the source files.
As per the instructions in the readme, the first step is to run
autoconf to generate a configure script. We can do this
with a complex RUN command.

RUN cd ocrspell-master/src;autoconf;
chmod +x configure.in ./

Because every RUN command is run on its own intermediary
container we cannot create a run command to enter the folder
src and another to run autoconf or chmod since each RUN
command starts at the root folder which is our WORKDIR
folder. To solve this semicolon is used to send multiple
commands.

We could continue setting up the container from within
the docker file by calling the makedepend and make com-
mands as per the readme, but since we still need to install is-
pell and also do some manual modifications to get OCRSpell
running due to its age, it is time to start up the container to
do this.

51.4.3 Running the Container

So far we have a text file called Dockerfile with all of the
above commands, but in order to create the container we
have to feed this file to Docker. We do this by opening a
new terminal in the same directory as the Dockerfile and
OCRSpell zip source file(master.zip) and typing:

docker build -t ocrspell-master .
This will take some time as it downloads the Ubuntu im-
age, runs it, downloads and install the dependencies (each
on its own intermediate container), and then executes the
remainder of the Dockerfile. When it is complete our image
is ready to run. If there are any errors in any Dockerfile line
the intermediate containers will remain in order to either run

those and find the problem or fix the problem and not have to
start building from scratch. This is a great way to show with
reproducible research the steps taken to reach a final version
of a program. When ready, we start up our image by typing
in the terminal:

docker run -it ocrspell-master /bin
/bash

We are now running our container! Because the base is
Ubuntu, any terminal command will work. A good way to
test is to type in the terminal:

ls
It should show both our zip file source files and the unzipped
directory. Now we can install ispell by running in our
terminal:

apt-get install ispell -yqq
This is the same command we would do in a regular Linux
machine. After it is done installing we can test it by running:

ispell -help
Now it is time to finish building the source. First, let’s enter
the src folder.

cd ocrspell-master/src/
As the readme on github points out, due to the age of
OCRSpell and deprecated code, a few changes by hand must
be made in order for the configure file to build correctly. First
lets open the file in nano:

nano configure
Then go to line 712 and change:

prefix=NONE
to

prefix=/home/ocrspell/
ocrspell-master/src

Next, go to lines 732 and 733 and change:
datarootdir=’${prefix}/share’
datadir=’${datarootdir}’

to
datarootdir=’/home/ocrspell/
ocrspell-master/src’

datadir=’/home/ocrspell/
ocrspell-master/src’

respectively. Save the file and close nano. Now we can
run ./configure and then build as per the readme with
makedepend and make:

./configure -prefix=/
local/ocrspell-master

makedepend
make

OCRSpell is now fully compiled and we can test it with the
included test file called quick_demo,txt:

./ocrspell -a -f ./ocr.freq < quick_d
emo.txt

We have now successfully set up our container; however,
due to the nature of the container. If we were to close the
container we would lose all changes and the container would

https://github.com/zw/ocrspell/archive/master.zip


51 Reproducible Research in Document Analysis and Recognition 393

open in the same state as if he had just done the docker
run command. So in order to save our final container we
can use the commit command in a different terminal
window than the one we are working with our container on.
The syntax is:

docker commit <CONTAINER NAME FROM
DOCKER PS> <file name>

In this case we type:
docker ps

to find our Container name and then use the commit com-
mand with those values and a name for our new con-
tainer image. These names are randomly generated and
change each time we run the container so we must pay
special attention to selecting the right one; in this case it is
distracted_bardeen:

docker commit distracted_bardeen
ocrspell-final

We now have a saved version of our container and can close
the running container and re-open it to the exact same state
as it is now. To close it, in the terminal window where our
container is active we type:

exit
If we want to save our docker image to share with other
collaborators or publications we use the save command:

docker save -o <save image to
path> <image name>

an example of this in our case is:
docker save -o /home/jfunlv/Desktop/
test/ocrspell-final ocrspell-final

Be sure to modify the first part with the path where we will
save the image. If there are any issues modifying the output
image, use chmod and chown in linux to give rights to it or
the equivalent in other platforms.

If we want to upload to the docker repository for other
Docker users to collaborate or reproduce our research we
need to create a free docker account at docker.com Once we
have an account we have to tag and push the image. To do
this we find the image id by typing:

docker images
Then, we tag the image by using:

docker tag 90e925195d6c username/
ocrspell-final:latest

Replace username with one’s docker user name and replace
the image id with that of the appropriate image. Make sure
one is logged in to docker by typing:

docker login
Finally we push by:

docker push username/ocrspell-final
For full details on tagging and pushing see:

https://docs.docker.com/engine/getstarted/step_six/
We have now uploaded a copy of our image for others to try,
contribute and much more.

51.4.4 Downloading Our Version of the
Container

The steps explained above should be done by the author
of the research, but what if we want to download someone
else’s work and replicate it? In this case we will download
the image that we created when writing this guide and run
OCRSpell with a few simple commands.

We can download the image from an arbitrary location and
load it up on docker, or download it from the official docker
git repository:

1. Load image in Docker: Suppose we downloaded from the
author’s website an image with a container to the project
of OCRSpell. The file name is ‘ocrspell-image’
To load this image we open up a terminal at the image
location and type:

docker load -i ocrspell-image
Make sure one is in the directory of the image otherwise
type the path to it such as:

docker load /home/user/
Desktop/ocrspell-image

At this point we can type: docker images and verify
that the entry was added. In our case, ‘ocrspell-master’.
As before we can now run it by typing:

docker run -it ocrspell-
master /bin/bash

We now have a running container with OCRSpell that will
not break or deprecate and includes all necessary source
and software to run.

2. Download directly to Docker from Docker git repository:
To search from the available images we use the ‘docker
search command’ by typing the name of the image after
the search keyword:

docker search ocrspell
A list of matching images will appear. In this case we
want the ocrspell-master image from the unlvcs user, to
download it we use the pull command:

docker pull unlvcs/ocrspell-master
If we check docker images we should see it listed
under the repository and can now run it.

51.4.5 Deleting Old Images and Containers

Once we are done working with an image we can use the
docker rmi command followed by the image ID which
can be found next to the name of the image in docker
images. In this case our Image id is: 90e925195d6c; there-
fore, we type in a terminal:

docker rmi 90e925195d6c

https://docs.docker.com/engine/getstarted/step_six/


394 J. Ramón Fonseca Cacho and K. Taghva

If there is a warning that the image is currently being used by
a container. Make sure to first close the container and then
delete the image. If we want to delete all containers stored in
docker we can do so by typing in a terminal:

docker rm $(docker ps -a -q)
Similarly we can delete all images by typing:

docker rmi $(docker images -q)

51.4.6 Transferring Files In and Out of a
Container

So far only when executing the Dockerfile did we copy
data onto the container. Ideally we want to copy all of our
data at this time and store it within the container to have
everything in one place. But suppose that due to portability
or projects with large file size we want to maintain the data in
a separate docker container or repository in general. Docker
communications within containers can easily achieve this
with the docker network command. See for full details:

https://docs.docker.com/engine/userguide/networking/
If we want to instead transfer data from the container to and
from the host machine we use the docker cp command.

51.4.7 Using the OCRSpell Container

Suppose we have an OCR document named FR940104.0.
clean we would like to spell check with OCRSpell. The
document is in our host machine and we have pulled the
latest version of the OCRSpell container from the Docker
repository. First we start our container by running in a new
terminal:

docker run -it unlvcs/ocrspell
-master /bin/bash

then we maneuver to the ocrspell program:
cd ocrspell-master/src

Next, we open a new terminal window at the location of our
OCR document we will be running and type:

docker ps
We find and save our container name there for ocrspell-
final. In this case it is adoring_wescoff, but it will be
different each time. We are now ready to copy the file into
the container. We run the following command:

docker cp FR940104.0.clean adoring_
wescoff:/home/ocrspell/ocrspell-
master/src/FR940104.0.clean

Note one will need to enter the correct name for one’s
container instead of ‘adoring_wescoff’. The file should have
copied successfully, so back in our container terminal we can
type ls and verify it is there.

Now we run OCRSpell and rather than output to the termi-
nal we will output to a file called FR940104.0.output

which we will later copy back to the host machine. We use
simple linux redirection to achieve this.

./ocrspell -a -f ./ocr.freq <
FR940104.0.clean > FR940104.0.output

OCRSpell has now done its job for us. Now to copy the file
back we open a terminal window where we wish to save our
file and run the following command:

docker cp adoring_wescoff:/home/
ocrspell/ocrspell-master/src/
FR940104.0.output FR940104.0.output

The file is now saved in the host machine. We can now close
the container with the exit command. Next time we open
the container none of the files will exist in it as explained
earlier. If we wish to retain this data in the container we use
the commit and save message as mentioned previously.

51.5 Results

We have successfully used OCRSpell without having to go
through the difficulties of tracking down source code and
dependencies, compiling, or worrying about compatibility
with hardware. We have made reproducible research in that
anyone can take our data and run it through OCRSpell,
modify the code without issues and publish their own version
to improve on previous work.

As shown in this example, the steps taken to place OCR-
Spell into Docker are trivial and mechanical. The compli-
cated part was finding the dependencies and by-hand modifi-
cations and making sure they were valid when first building
the initial image. In new research this can be considered
and easily stored in a Dockerfile making the added work to
researchers minimal. The Dockerfile itself is a great way to
view the construction of the image, and the container is a way
to ensure that the reproducibility remains as it can be checked
when trying to rebuild the image to see if it matches.

51.6 Conclusion

This paper reported on the state of reproducible research
and its importance along with the challenges it brings.
Docker containers are reviewed as a solution to consistent
reproducible research and a complete application is shown
with OCRSpell, a program that does not easily run in its
current state, but after being placed in a container is now
immortalized to be able to be tested anywhere and anytime
with ease. Possible extensions to this project include parallel
programming and complex GUI docker implementations
examples, but more importantly a proposed standard for
reproducible research for the ICDAR and other conferences
in the hopes of a better future where we can all share

https://docs.docker.com/engine/userguide/networking/


51 Reproducible Research in Document Analysis and Recognition 395

and work together to create good reproducible research that
benefits the scientific community.

References

1. R.D. Peng, Reproducible research in computational science. Sci-
ence 334(6060), 1226–1227 (2011)

2. G.K. Sandve, A. Nekrutenko, J. Taylor, E. Hovig, Ten simple
rules for reproducible computational research. PLoS Comput. Biol.
9(10), e1003285 (2013)

3. K. Ram, Git can facilitate greater reproducibility and increased
transparency in science. Source Code Biol. Med. 8(1) 7 (2013)

4. H. Wickham et al., Tidy data. J. Stat. Softw. 59(10), 1–23 (2014)
5. C. Collberg, T. Proebsting, G. Moraila, A. Shankaran, Z. Shi, A.M.

Warren, Measuring reproducibility in computer systems research,
Technical report, 2014

6. N. Barnes, Publish your computer code: it is good enough. Nature
467(7317), 753 (2010)

7. J.P. Ioannidis, Why most published research findings are false.
PLos Med 2(8), e124 (2005)

8. T.H. Vines, R.L. Andrew, D.G. Bock, M.T. Franklin, K.J. Gilbert,
N.C. Kane, J.-S. Moore, B.T. Moyers, S. Renaut, D.J. Rennison
et al., Mandated data archiving greatly improves access to research
data. FASEB J 27(4), 1304–1308 (2013)

9. Testimony on scientific integrity & transparency. https://www.gpo.
gov/fdsys/pkg/CHRG-113hhrg79929/pdf/CHRG-113hhrg79929.
pdf. Accessed 2017-03-01

10. J.T. Leek, R.D. Peng, Opinion: reproducible research can still be
wrong: Adopting a prevention approach. Proc. Natl. Acad. Sci.
112(6), 1645–1646 (2015)

11. G. Marcus, E. Davis, Eight (no, nine!) problems with big data. New
York Times 6(04), 2014 (2014)

12. C. Boettiger, An introduction to docker for reproducible research.
ACM SIGOPS Oper. Syst. Rev. 49(1), 71–79 (2015)

13. I. Jimenez, C. Maltzahn, A. Moody, K. Mohror, J. Lofstead,
R. Arpaci-Dusseau, A. Arpaci-Dusseau, The role of container tech-
nology in reproducible computer systems research, in 2015 IEEE
International Conference on Cloud Engineering (IC2E) (IEEE,
New York, 2015), pp. 379–385

14. L.-H. Hung, D. Kristiyanto, S.B. Lee, K.Y. Yeung, Guidock:
using docker containers with a common graphics user interface to
address the reproducibility of research. PloS One 11(4), e0152686
(2016)

15. P. Di Tommaso, E. Palumbo, M. Chatzou, P. Prieto, M.L. Heuer,
C. Notredame, The impact of docker containers on the performance
of genomic pipelines. PeerJ 3, e1273 (2015)

16. D. Hládek, J. Staš, S. Ondáš, J. Juhár, L. Kovács, Learning string
distance with smoothing for OCR spelling correction. Multimedia
Tools and Applications 76(22), 24549–24567 (2017)

17. K. Taghva, E. Stofsky, Ocrspell: an interactive spelling correction
system for OCR errors in text. Int. J. Doc. Anal. Recogn. 3(3), 125–
137 (2001)

18. K. Taghva, T. Nartker, J. Borsack, Information access in the
presence of OCR errors, in Proceedings of the 1st ACM Workshop
on Hardcopy Document Processing (ACM, New York, 2004),
pp. 1–8

19. P. Belmann, J. Dröge, A. Bremges, A.C. McHardy, A. Sczyrba,
M.D. Barton, Bioboxes: standardised containers for interchange-
able bioinformatics software. Gigascience 4(1), 47 (2015)

20. A. Hosny, P. Vera-Licona, R. Laubenbacher, T. Favre, Algorun,
a docker-based packaging system for platform-agnostic imple-
mented algorithms. Bioinformatics 32, btw120 (2016)

https://www.gpo.gov/fdsys/pkg/CHRG-113hhrg79929/pdf/CHRG-113hhrg79929.pdf
https://www.gpo.gov/fdsys/pkg/CHRG-113hhrg79929/pdf/CHRG-113hhrg79929.pdf
https://www.gpo.gov/fdsys/pkg/CHRG-113hhrg79929/pdf/CHRG-113hhrg79929.pdf

	51 Reproducible Research in Document Analysis and Recognition
	51.1 Introduction
	51.2 Docker
	51.3 OCRSpell
	51.3.1 Docker as a Solution 

	51.4 Applying Docker to OCRSpell
	51.4.1 Installing Docker
	51.4.2 Creating the Container
	51.4.3 Running the Container
	51.4.4 Downloading Our Version of the Container
	51.4.5 Deleting Old Images and Containers
	51.4.6 Transferring Files In and Out of a Container
	51.4.7 Using the OCRSpell Container

	51.5 Results
	51.6 Conclusion
	References


