
49ATraffic Light Recognition Device

Thiago Almeida, Hendrik Macedo, and Leonardo Matos

Abstract

Traffic lights detection and recognition research has
grown every year. Time is coming when autonomous
vehicle can navigate in urban roads and streets and
intelligent systems aboard those cars would have to
recognize traffic lights in real time. This article proposes
a traffic light recognition (TLR) device prototype using
a smartphone as camera and processing unit that can
be used as a driver assistance. A TLR device has to
be able to visualize the traffic scene from inside of a
vehicle, generate stable images, and be protected from
adverse conditions. To validate this layout prototype, a
dataset was built and used to test an algorithm that uses
an adaptive background suppression filter (AdaBSF) and
Support Vector Machines (SVMs) to detect traffic lights.
The application of AdaBSF and subsequent classification
with SVM to the dataset achieved 100% precision rate and
recall of 65%. Road testing shows that the TLR device
prototype meets the requirements to be used as a driver
assistance device.
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49.1 Introduction

A study published by [1] shows that in August/2016, advanc-
ing the red sign in traffic light was the second main infraction
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associated with fatal accidents involving motorcycles, cars
and bus in the city of São Paulo, Brazil.

Traffic lights are widely used as a traffic regulator device.
Although it is a simple and logical device, drivers frequently
cross the red light causing accidents with serious conse-
quences as death to drivers, passengers, and pedestrians.

Some situations can be pointed as probable causes to these
infractions:

• Poorly located traffic lights;
• Faulty/off traffic lights or in very dim light;
• Ambient light that disturbs the vision of the driver;
• Visual impairment of the driver;
• Doubt if there is enough time to cross the traffic light when

the signal turns yellow;
• Number of traffic regulator items to be observed.

The first two listed items can be easily solved with the
effort of the traffic regulator in arranging and maintaining
traffic lights optimally on the streets. However, the problem-
atic presented by the remaining items could be minimized by
using a Traffic Light Recognition Device—TLR to assist the
driver.

The main task of a TLR is to avoid accidents and save
lives by informing the presence of a red or yellow traffic light
to the driver in a non-intrusive way. In addition, an even more
complex TLR can bring other information such as which is
the main traffic light for a route when there is more than one
and how far the traffic light is.

Another information that could be extracted from a more
complex TLR is what speed the driver must maintain to
advance the largest number of green signals in sequence on a
given avenue.

A TLR would also be very useful for pedestrians who are
visually impaired. Although several crossings for pedestrians
have signaled adapted for visually impaired people, few
adaptations include sound signaling. In addition, there are
many crossings that do not have pedestrian traffic lights, thus
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leaving the visually impaired dependent on others to cross
the street in safety.

The device used to build a TLR and how it is positioned
at the vehicle has a big influence in the TLR success. For
example, if the device has a faulty camera the images may
not reflect the scene reality. Also if the device can not see
clearly the road, or it is not stable, the images can be blur or
miss some important information from the real world.

In this paper we evaluate a TLR layout prototype using
a detection and recognition method proposed by [2]. The
proposed TLR uses a smartphone as camera and processing
unit. The results shows that the proposed layout is valid and
can be used to test TLRs, build traffic light datasets, and build
other image datasets related to traffic and vehicles.

49.2 RelatedWork

An object recognition mechanism works in two phases in
order to recognize objects from an image: (1) an initial phase
to detect targets as possible objects, and (2) a second phase
to classify the targets.

When working with object detection/recognition we need
to define which object features shall be used to guide the
algorithms. In traffic light recognition, features such as light,
shape, and color are commonly used.

Concerned literature shows that Neural Networks,
Saliency Map, and Blob Detection are the most common
techniques used to detect traffic lights.

Weber et al. [3], John et al. [4–6] used Convolutional
Neural Network—CNN to detect possible traffic lights, while
[7] used a PCAnet NN.

Philipsen et al. [8] used a learning algorithm based on im-
age feature channels and Histogram of Oriented Gradient—
HOG to detection and recognition.

Saliency Maps was used as a detection tool by [9–12] and
[5]. We also observed fine examples of Blob Detection use in
[13–15].

Geometric transforms were used in detection phase by
[16, 17] and [18], which applies the Hough Circular Trans-
form and [19], which used the Radial Symmetry Fast Trans-
form.

Some less common techniques used alone or in associa-
tion with the ones cited before are Adaptive Filters [2], Tem-
plate Matching [20], Gaussian Distribution [21], Probability
Estimation with CNN [3], and Top Hat [22].

Processing image algorithms are also commonly used to
detect traffic lights. Color or shape segmentation was used by
[23] and [24]; and threshold was used by [25] and [26].

To recognize traffic lights, most works used Machine
Learning algorithms, mainly CNN and variants, Support
Vector Machines—SVMs, and Fuzzy systems. Chen and
Huang [14] used CNN whereas [3] used a PCAnetwork, a
NN that simulates a CNN using less layers. SVMs were used
by [2, 7, 12–14, 27–31] to recognize traffic lights, sometimes
along with a NN. Fuzzy was also used in [10] and [32].

Other techniques were used as ML substitutes, to improve
false positives detection or to make the connection between
detection output and recognition input. Zhou et al. [13],
Michael and Schlipsing [28], Ji et al. [12], Almeida et
al. [11], and Almagambetov et al. [33] used Histograms.
Balcerek et al. [34], Cai [35], Omachi and Omachi [18] and
[36] used Transforms. John et al. [5], Choi et al. [37], Fan
[38], and de Charette and Nashashibi [39] used Template
Matching. John et al. [6] used Saliency Map and [40] used
Probability Histograms.

Normalized Cross Correlation was observed in [41] to
recognize pedestrian traffic lights. Hidden Markov Models—
HMM were used in [42] to recognize common traffic lights.

To highlight regions of interest—ROI at the image, [2]
proposed an Adaptive Background Suppression Filter—
AdaBSF. In the algorithm, a 4-channel feature map Wi ,
where i represent the 4-channel feature map index, are
generated extracting R, G and B channels and calculating the
normalized gradients of the input image.

To search for vertical and horizontal traffic lights, the
window size for Wi is fixed as 16 × 8 pixels and 8 × 16
pixels, respectively. As each window is 4-dimensional the
pixel amount is D = 16×8×4 per window. Each window is
represented by a feature vector x of size D = 512. The multi-
scale problem was solved by down-sampling the original
image to different scales while the window detection remains
with fixed size.

The aim of AdaBSF algorithm is to design an Finite
Impulse Response (FIR) filter specified by the vector w =
[w1, w2, . . . , wD]T in a way that y = wT x. The output y
assigns a score to each detection window, which represents
how likely the detection window covers a traffic light [2].

To classify the ROI found by AdaBSF, [2] used Support
Vector Machines—SVM. The author created a cascade of
SVM classifiers that begins classifying the ROI whether it
is a traffic light or not. If it is a traffic light the next SVM
classify the ROI into “red type” or “green type”. After this the
traffic light is classified in more specifics types considering
if it has an arrow and its direction by the next SVM using a
‘1-vs-1’ voting method.
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In this paper, the method proposed by [2] was applied at
images obtained by a TLR device that uses a smartphone as
camera, and with possible use as a processing unit. The TLR
follows a specific layout to use the TLR in real-time. This
layout is specified in the following sections.

In order to validate the method presented in [2], the
algorithm was reimplemented in Python language. SVMs
and AdaBSF algorithm was trained with traffic light samples
made available by the author and used in [2]. Negative
samples, i.e. background samples, was extracted from four
random test sequences also made available by the author,
once the negative samples used in [2] was not accessible.

The algorithm was tested with the test sequences that
was not used to generate the negative samples for training,
obtaining a precision rate of 90%. In Fig. 49.5 it is possible
to see the reproduction result in comparison with the original
work result. There is little difference between the repro-
duction results and the original results, what validates the
reproduction and the original work. Section 49.3.1 presents a
detailed discussion over these result.

49.3 Traffic Light Recognition Device
Prototype

A main question when prototyping a TLR Device is where
it will be positioned at the vehicle, once it has to be in a
position that allows it to observe the traffic clearly without
compromising the vision of the driver. Another critical ob-
servation is that the device shall be protected from adverse
meteorological conditions like rain, or be waterproof. The
heat also might cause problems in some electronic devices,
so the sunlight incidence at the device location may be
considered as well.

As the vehicle moves, it is normal to observe some
trepidation. However, this trepidation might have a negative
influence in the device vision. Considering this, the device
needs to be the most stabilized as possible. The device
also has to be able to generate a warning sound to advise
the driver, to see the traffic using a camera, and to have a
computational unit to process the data. An accessible device
that accomplishes these requirements and is commonly used
to help drivers at traffic are the smartphones.

In this work, a smartphone was positioned inside a vehicle
to capture real traffic scenes with and without traffic lights.
Two kinds of supports are generally used to position a smart-
phone in a useful location to help the driver: air conditioning
supports and windshield suction cups. Air conditioning sup-
ports can not be used to position a TLR Device because it has
no outside view from the vehicle. Windshield suction cups
supports are a possible choice, however, the support may fall
down with or become very shaking if low quality suckers
were used.

Fig. 49.1 TLR device support holding an iPhone 6

To overcome the smartphone supports problems and to
meet the requirements specified previously we designed an
stable device support using a two-sided tape and part of a
windshield suction cup support. We remove the support part
that holds the device from the cable with suction cup that
is attached to the windshield. Then we fixed the first part
centralized at the vehicle panel with the two-sided tape. This
design allow the device to capture the traffic scene without a
bias to the left or to the right. The proposed layout obligates
the device to use the camera in landscape mode, minimizing
the amount of sky captured and maximizing the traffic scene
size obtained with more visible traffic lights (Fig. 49.1).

Three different smartphones was used to capture traffic
videos containing traffic lights: Motorola G second genera-
tion, iPhone 6, and Galaxy S8+. All devices was configured
to capture video with HD resolution. Figure 49.2 shows an
example of images obtained with this devices. The images
were extracted from videos at 5 frames per second (fps) rate.

49.3.1 Prototype Results

The images obtained by the TLR device using this support
prototype were submitted to classification in a personal
computer using the method applied in [2].

The images was obtained using three different smart-
phones. The first group obtained with Motorola G 2nd
Generation did not present good results, for this reason it was
not accounted in the results. The second group with images
obtained by iPhone 6 contains 682 images, 209 negative
samples and 473 traffic light samples. The third group is
formed by 247 images obtained with Galaxy S8+, being 165
traffic light samples and 82 negative samples.
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Fig. 49.2 Images obtained using the TLR Device support prototype
with different smartphones. From top to bottom: image obtained by
Motorola G 2nd Generation, by iPhone 6, and by Galaxy S8+

An amount of 929 traffic images were analyzed: 638
images containing green or red traffic lights and 291 images
not containing traffic lights, the negative group.

Considering that most times there are two equal traffic
lights for the same road, we account as one true positive for
traffic light type when one or both of the traffic lights are

recognized in image. So from each image we have one error
or one hit. This also reflects the real life behavior when we
just need to look at one traffic light to make a choice.

In Fig. 49.3 it is possible to see detailed results from
each image group. The two groups achieved high precision
rates, but the iPhone 6 group presented a low recall rate
of 60%. This result can be can be explained by the fact
that traffic lights samples used in training dataset are too
different from some traffic lights present in the iPhone group
dataset as shown in Fig. 49.4. If the training samples does not
properly represent the real world some traffic lights can not
be recognized.

Also the illumination condition in the dataset training are
very different from the condition found in test dataset due
to geographic/meteorological issues and possibly the device
used to obtain it. These conditions have influence in the final
result as well.

The distance from the TLR device to the traffic light is
crucial to recognition. So far the device was able to correctly
classify the traffic lights from second car line, considering
the traffic stopped at red traffic light.

The iPhone group low recall rate influenced the final rates
of TLR tests, as observed in Fig. 49.5. In comparison with the
results obtained by [2] and by our reproduction using data
from [2], the TLR result is valid to justify its use in future
research.

49.4 Conclusion

This work presents a TLR device layout prototype used to
capture road scenes. The tests achieved a 100% precision rate
and 65% recall rate. The results demonstrate the prototype
feasibility. The recall rate can be improved by training the ap-
plied algorithm with more representative samples, which will
be done in the future along with cross-validation tests. The
results also show that Galaxy S8+ and iPhone 6, two different
mobile platforms, can be successfully used as TLR devices.
Another future work includes real-time tests, investigating
other detection and recognition models that could fit better
with the obtained dataset, and expansion of the dataset itself.
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Fig. 49.3 Precision and recall
rates by smartphone used to
obtain the images
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Fig. 49.4 From left to right: red
and green traffic light sample
used in training, red and green
traffic light sample from the test
dataset obtained with the TLR
device prototype

Fig. 49.5 Precision and recall
rates on our reproduction of [2],
original work from [2], and tests
using the images obtained with
the TLR device prototype,
respectively
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