®

Check for
updates

Mathias Longo, Cristian Mateos, and Alejandro Zunino

Abstract

Mobile devices have become so ubiquitous and their
computational capabilities have increased so much that
they have been deemed as first-class resource providers
in modern computational paradigms. Particularly, novel
Mobile Cloud Computing paradigms such as Dew Com-
puting promote offloading heavy computations to nearby
mobile devices. Not only this requires to produce resource
allocators to take advantage of device resources, but
also mechanisms to quantify current and future energy
availability in target devices. We propose a model to
produce hour-wise estimations of battery availability by
inspecting past device owner’s activity and relevant device
state variables. The model includes a feature extraction
approach to obtain representative features/variables, and a
prediction approach, based on regression models and ma-
chine learning classifiers. Comparisons against a relevant
related work in terms of the Mean Squared Error metric
shows that our method provides more accurate battery
availability predictions in the order of several hours ahead.

Keywords
Mobile cloud computing - Battery prediction - Feature
selection - Time series - Android

47.1 Introduction

Mobile Cloud Computing (MCC) [1] is a computing
paradigm that has been proposed as a way of augmenting
mobile devices —and hence deal with their inherent

M. Longo
University of Southern California, Los Angeles, CA, USA
e-mail: mathiasl @usc.edu

C. Mateos (<) - A. Zunino

ISISTAN-UNCPBA-CONICET, Tandil, Buenos Aires, Argentina
e-mail: cristian.mateos @isistan.unicen.edu.ar;

alejandro.zunino @isistan.unicen.edu.ar

© Springer International Publishing AG, part of Springer Nature 2018

limitations— with remote resources located in the Cloud.
To this end, MCC combines advances from the areas
of distributed architectures, mobile computing, cloud
computing and wireless/fixed networks so that rich
applications can be seamlessly and efficiently “executed”
in mobile devices via the actual execution/processing of
computations/data on remote Cloud resources. Examples of
such applications are speech recognition and augmented
reality. Moreover, moving computations and data from
devices to remote resources while obtaining maximal
benefit from the system in terms of application execution
performance and energy saving is performed via offloading
techniques [1-3].

Traditional MCC proved however insufficient to cope
with many latency-sensitive applications and very large num-
ber of (mobile) client devices, such as critical IoT (Inter-
net of Things) services [4]. In response, the Fog Com-
puting paradigm [5] was proposed around 2012 by Cisco
researchers to provide highly-scalable infrastructures for
developing and deploying latency and location-aware appli-
cations, where geographical distribution, mobility and soft-
ware/hardware heterogeneity are the rule. Fog Computing
has the ability of augmenting mobile (e.g., laptops, smart-
phones, tablets, wearables) and wireless devices (e.g., sen-
sors) with nearby fixed processing/storage resources. More-
over, motivated by the huge amount of mobile devices —there
will be 1.5 mobile-connected devices per capita by 2021
(http://tinyurl.com/mokcut3)- with ever-growing software
and hardware capabilities, recent research [6] has suggested
the possibility of using nearby mobile devices as destination
for offloading computations/data, paradigm which has been
named Dew Computing [7, 8].

Among the many challenges this new computing
paradigm intuitively poses is resource scheduling/allocation,
i.e. the mechanism by which tasks or data to be run
or processed, respectively, are placed in appropriate
computational resources (mobile devices in this case).
Compared to resource scheduling in conventional distributed

351

S. Latifi (ed.), Information Technology — New Generations, Advances in Intelligent Systems and Computing 738,

https://doi.org/10.1007/978-3-319-77028-4_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77028-4_47&domain=pdf
mailto:mathiasl@usc.edu
mailto:cristian.mateos@isistan.unicen.edu.ar
mailto:alejandro.zunino@isistan.unicen.edu.ar
http://tinyurl.com/mokcut3
https://doi.org/10.1007/978-3-319-77028-4_47

352

computing environments, resource scheduling using a
cluster of nearby mobile devices is challenging due to
the highly dynamic and heterogeneous nature of resource
availability [9]: mobile devices can change their location,
they are non-dedicated by nature and have energy limitations.
Quantifying resource availability, on the other hand, is of
utmost importance for a Dew Computing scheduler to take
good scheduling decisions, i.e. selecting the most appropriate
nearby devices to execute some given computations.
However, such quantification is difficult in light of Dew
Computing high dynamism and heterogeneity.

In this context, we investigate in this paper a model to
quantify resource availability in mobile devices that take into
account the usage profile of device owner’s, which is an open
problem seldom explored in the literature [10]. The model
produces ahead predictions of remaining battery in the order
of hours, and it is built by analyzing relevant past owner’s
activity (charging state, application execution, activated ra-
dios, etc.). Both the model itself and the assessment of its
predictive accuracy are based on real traces from the Device
Analyzer data-set [11], which is at present the largest mobile
device usage data-set and includes traces from more than
31,000 users worldwide and different Android-based mobile
device brands.

The organization of this paper is as follows. The next
section explain our model to predict energy availability in
detail. Then, Sect.47.3 evaluates the accuracy of the model
in terms of the Mean Square Root Error metric. Finally,
Sect.47.4 summarizes the implications of our findings and
delineates future works.

47.2 Approach

In this section, we present our approach for predicting mobile
device battery lifetime based on owner’s activity, i.e. device
usage patterns. Based on the activity traces of an individual
user, our approach relies on feature selection to select the
most relevant activity types for building a prediction model.
This is explained in detail in Sect.47.2.1. Feature selection
pursues two goals, namely reducing the number of features to
reduce overfitting and improve the generalization of models,
and gaining better understanding of the features and their
relationship to the response variables [12]. Moreover, we
also propose an ensemble of several Machine Learning
algorithms, trained using the resulting features from previous
steps, which is detailed in Sect.47.2.2. For the sake of
illustrating the proposal, values shown below correspond to
applying the model to a user from the data-set, who has
registered activity traces for over 6 weeks.

Lastly, the implementation of this approach, as well as
the creation of the Machine Learning models, was done in

M. Longo et al.

Python using open-source libraries: Scikit-Learn, Pandas,
Numpy and MatplotLib. The source code is available from
a GitHub repository.!

47.2.1 Preliminary Data Analysis and Feature
Selection

To come up with an approach to feature selection that is
general enough in the problem domain at hand, we have
as mentioned earlier focused our research in the Device
Analyzer data-set.

Before analysing the data, we defined a structured format
for it. To this end, the data-set that basically consists in plain
logs is splitted into states, where each state has the value
for each mobile sensor in a device. A mobile device state
changes as a result of an event in time that changes the
value of any sensor. For example, a change in the battery
level can be defined as an event, which triggers a new state
of the mobile device in which the battery level is modified
and all other features remain the same. Initially, from the
formatted data, the following combination of features were
considered:

e Day of week: Day of week where the event occurred,
numbered from 0 to 6. Type: Integer.

e Minute: Minute of the day in which the event took place.
Type: Integer.

» External Supply: Whether the mobile device is plugged
to an external energy supply, e.g. AC adapter or USB
connection. Type: Boolean.

» Bright Level: Screen brightness intensity. Type: Integer.

* Screen on/off: Whether the mobile screen is active or
inactive. Type: Boolean.

¢ Connected: Whether the mobile phone is connected to a
3G/4G network. Type: Boolean.

e Connected to Wifi: Whether the mobile phone is con-
nected to a Wifi network or not. Type: Boolean.

* Temperature: Mobile phone’s actual temperature. Type:
Integer.

* Voltage: Current battery voltage. Type: Integer.

* Battery Level: Current battery level ranging between 0
and 100. Type: Integer.

The dataset itself contains several other features, such as
those related to location and application usage. Nevertheless,
these features were not considered as relevant to the battery
level modelling as the ones previously listed. First of all, it
is true that by knowing the location of a user in each state, it
might be possible to infer if they are at home. If that is the
case, the probability of charging the mobile phone increases.

Uhttp://github.com/matlongo/battery-level-predictor.

http://github.com/matlongo/battery-level-predictor

47 A Model for Hour-Wise Prediction of Mobile Device Energy Availability

Table 47.1 Extract from the formatted data-set for an individual user

353

Day of week | Minute | External supply | Bright level | Screen on/off | Connected | Connected to Wifi | Temperature | Voltage (mV) | Battery level

3 652 0 149 1 0 1 275 3686 31
3 653 0 149 1 0 1 286 3740 30
3 654 0 149 1 0 1 286 3740 30
3 655 0 149 1 0 1 286 3740 30
Cells in Boolean-typed columns contain either O (false) or 1 (true)
Fig. 47.1 Battery level 100 A . I
overview of the sample user in 80 B N\
the first 5 days 60 [\ : . \ V
40 A \ \ \ . \ \
20 ' WA V ! ~ !
Y |
0
Day 0 Day 1 Day 2 Day 3 Day 4 Day 5
Fig. 47.2 Per-hour average Real curve Sinus curve
battery level of the sample user:
real (left) and sinus curve (right) 100
90
80 /-
70
60
50
40
30
20
0 4 8 12 16 20 0 4 8 12 16 20
Hour of day Hour of day

However, that information can also be obtained from the
charging pattern using the Energy Supply feature. Secondly,
application usage is highly seasonal, because applications
tend to change in a short time, as well as the users might also
change their applications periodically (e.g. replacements).
Therefore, it is very difficult to generalize a model based on
this feature, and it might incur in extra noise.

Table 47.1 shows an extract from the formatted data-set
for one particular mobile device user. Furthermore, Fig. 47.1
depicts the battery level variation along time for this user
(first 5 days of the sample). It is possible to see that the
resulting curve is not exactly periodic since it takes different
shapes, and it does not have a preset behavior. However, it is
worth noting that there is a visual resemblance to a sinusoidal
curve, because it continuously goes up and down. In fact,
Fig.47.2 (left) depicts a greater resemblance when the bat-
tery level is averaged per day. Considering this observation,
which applied to many other users in the data-set as well,
a new feature representing the sinus movement was added

to the feature list: Battery sinus
. minute
pl*minsPerDay

amplitude *x sin(2 *
)+batteryLevel M ean, where amplitude de-

scribes how much the curve goes up and down, minute is the
minute of the day, minsPerDay is the total number of minutes
in a day (i.e., 1440), and batteryLevelMean is the average
battery level per day. The batteryLevelMean is the mean per
day battery level in the dataset. In addition, the maximum
amplitude is 50, since a bigger value makes the curve going
above the maximum battery level or below the minimum
battery level. Finally, it is worth pointing out that the only
variable used to calculate the sinus is minute, which is easily
accessible in every mobile device. Figure 47.2 (right) shows
the resulting curve compared to the real one (in the left) we
previously obtained using real battery level samples.
Likewise, from Fig.47.1 it is possible to see that the
battery level tends to go up during the night, due to the
fact that the energy supply is connected. Therefore we can
model the energy supply behavior with a cosine, getting the
zenith during the night when it is usually connected, and
going down during daytime. Concretely, we included the
following extra feature: Battery cosine amplitude *
cos (2 x pi x —minte_y 4 patteryExternal Mean. In this

mins Per Day .
case the amplitude has a maximum value of 0.5, because the

354

Fig. 47.3 Per-hour average
energy supply feature value on

Real curve

sample user dataset: real (left) 0.8
and cosine curve (right)
0.6
0.4
0.2
0.0

0 4 8 12

Hour of day

energy supply can only take values O or 1. Then, batteryEx-
ternalMean is the average of all the external supply feature
values in the dataset. Figure 47.3 (right) shows the curve
obtained from this calculation, and Fig. 47.3 (left) shows the
real averaged curve.

47.2.1.1 Correlation Analysis

Based on the features included in the data representing
any mobile user activity with his/her device, we performed
a correlation analysis between the features established in
previous steps, using the Pearson correlation coefficient.

First of all, there is a very strong positive correlation
between battery level and voltage. This is due to the fact that
the voltage is used as a variable to carry out the battery level.
This means that voltage is not discriminant for our model and
it will overfit any Machine Learning model, hence it should
not be considered for the following steps. In addition to the
voltage, the temperature should also be dismissed for future
analysis, because it has a remarkable negative correlation
with the battery level.

Secondly, we also obtained a very strong negative correla-
tion between Connected and Connected to Wifi. That means,
whenever the Wifi is connected, 3G/4G is not used, and vice
versa. This might be because of the way Android works,
since Android turns off 3G/4G connection when there is
Wifi available so as to avoid incurring in monetary costs or
wasting mobile data quota.

A more interesting relationship to point out is between
the sinus, one of the last added features, and the battery
level. This is a good symptom that the model can rely on this
feature to predict the battery level for future states. Although
slightly weaker, there is a noticeable positive correlation
between the External Supply and the cosine which was also
added as a new feature.

Another interesting point is that the screen tends to be off
when the external supply is connected. Probably, the mobile

v\

M. Longo et al.

Cosinus curve

16 20 0 4 20
Hour of day
Table 47.2 Dickey-Fuller test: results
Test statistic —13.37
Critical value (5%) —2.86
Critical value (1%) —3.43

device was left charging without so much interaction with it.
Besides, there is a negative correlation between the hour (in
minutes) and the battery level, meaning that as time passes
by the mobile device tends to have less battery level. This
behavior is consistent with the curve depicted in Fig. 47.1.

47.2.1.2 Time Series Analysis

Given the fact that the input data-set is a collection of
data points gathered at constant time intervals -established
by the Device Analyzer Android app that collects samples
in a device- and that the battery level is time dependent,
Time Series analysis can be used to determine how many
lag intervals should be used to estimate a future battery
level. For the purpose of this work, a lag is the number
of previous states that are needed to come up with a good
battery level estimation. Since intuitively estimations have a
strong dependence on previous state’s values, it is necessary
to know how many previous states should be considered for
the prediction.

We first checked if the time series is stationary. A time
series is said to be stationary if its statistical properties such
as mean and variance remain constant over time. Intuitively,
it can be inferred that if a time series has a particular behavior
over time, there is a very high probability that it will follow
the same in the future. More formally, stationarity can be
checked by using the Dickey-Fuller Test [13]. In this case,
the null hypothesis is that a time series is non-stationary.
Depending on the resulting critical value from the test, the
level of confidence to say that the time series is stationary
might be higher or lower. Table 47.2 shows the results for

47 A Model for Hour-Wise Prediction of Mobile Device Energy Availability

Fig. 47.4 Autocorrelation and
Partial Autocorrelation for battery 1.0
level feature along the time

1.0
0.8
0.6
0.4
0.2

355

Autocorrelation Function

1.0 15 2.0 2.5 3.0 3.5
Partial Autocorrelation Function

4.0

0.0 "esssssssnsnnnnnn "

0.0 0.5

the Dickey-Fuller Test on the data-set. As we can see, the
statistic test is less than the 1% critical value, meaning that
there is a 99% of confidence to say that the time series is
stationary.

Once proven its stationarity, we decided to apply an Auto-
Correlation Function (ACF) and a Partial Auto-Correlation
Function (PACF) to determine the number of lags that best
represent the following state. Figure 47.4 shows the ACF
and PACF applied to the dataset. It is possible to visually
infer, according to the figure, that one lag is sufficient to
estimate the following state. Therefore, a new feature is
added to accomplish this relationship: Previous Battery
Level.

47.2.1.3 Feature Selection

Once the dataset was preprocessed and the feature extraction
steps is finished, we performed feature selection to obtain
the minimal set of descriptive features. In this part of the
process those features that are not influential in the battery
level are filtered out. There exist many strategies that can be
adopted for this part of the pipeline [12], and then, in this
case, a combination of three different approaches have been
considered.

First of all, two Univariate Feature Selection methods
were considered: F-Test and Mutual Information. The former
one is a statistical test for estimating the degree of linear de-
pendency between two random variables, so it is performed
for each feature against the battery level. On the other hand,
the latter one is a non-parametric method that uses entropy
to measure information content in data, in the sense that the
higher the entropy the lower the information. Finally, the

1.0 1.5 2.0 25 3.0 3.5 4.0

Table 47.3 Feature selection using F-regression, mutual information
and Lasso: scores

F-Regression | Mutual Information | Lasso
Previous battery level | 3.86E+09 3.995 0.9966
Minute 2.06E+-05 0.599 0.0088
Day of week 5.25E+02 0.067 0.0002
External supply 1.28E+-05 0.193 0.467
Connected 1.21E+03 0.028 0
Connected to Wifi 2.85E+03 0.024 0
Bright level 2.87E404 0.002 0.0002
Screen on/off 3.22E+404 0.059 0.007
Sinus 2.61E4-05 0.308 0.086
Cosine 6.39E+03 0.244 0

third approach considered is Lasso regression. Lasso regres-
sion is a regression model with L1 = |w;|, regularization
term, where wj is the coefficient used for x;. Compared to the
Ridge Regression regularization term, Lasso shrinks those
“irrelevant” coefficients to zero instead of shrinking them to a
small value. This model is parametrized by a meta-parameter
called alpha. The larger the value of alpha the fewer the
features selected.

Table 47.3 depicts the values obtained from the three
mentioned techniques. The first column shows the F-Score
calculated from the correlation between each feature and
the target feature, ie, the battery level. The second column
depicts the mutual information score calculated from the
entropy of the dataset. Lastly, Lasso scores are the resultant
coefficients associated for each feature after training the
regression model with the regularization term.

356
47.2.2 Model Construction

In this section, to explain the proposed model to predict
mobile phones battery level in future states. In particular, it is
a result of combining classification models and a regression
model to predict a new state based on a previous one. First
of all, the selected model to estimate the battery level is a
Multiple Linear Regression Model built using the resulting
features from previous section. Multiple Linear Regression
models are the most suitable Machine Learning algorithms
for predicting a continuous variable, such as mobile phones
battery level, depending on a set of different features. A Time
Series model is not enough for this particular case, because
it dismisses all the non-time related features. Moreover, the
model is trained using the first 2 weeks of gathered data
for a user, and the rest of the data-set is used for testing
purposes.

In addition to the regression model, two complementary
classification models were built to estimate the variability
of external supply and screen on/off features. These models
predict the state of both features in future states. The external
supply classifier is a Random Forest classifier with ten
estimators and its maximum depth is 3. It was trained using
the cosine as well as the minute of the day that is being
predicted and the previous state. The screen on/off estimator
is a Decision Tree classifier built using the minute of day and
the previous screen state.

The proposed mechanism to combine all the created
models is an iterative method that estimates the following
state based on the previous estimated states. The following is
the pseudocode of the proposed method:

while current_state < desired_state:

current_state[external_supply] =
external_supply_classifier.estimate(current_state)

current_state[screen] =
screen_classifier.estimate(current_state)

current_state =
regression_model.estimate_following_state
(current_state)

In this context, a desired state is a particular minute in
the near future where we would like to know the battery
level. This becomes pivotal in the context of mobile cloud
scheduling, where the scheduler should consider, among
several variables, how much available energy a mobile device
has to execute specific tasks. By being able to know the
device’s future battery level, the scheduler is able to make
more intelligent decisions, and avoiding assigning a task
to a device that for example will run out of battery while
executing.

M. Longo et al.
47.3 Evaluation

In this section, we describe the experiments performed to
evaluate the model proposed in the previous section. Specif-
ically, the estimation model is trained using the activity
traces of one particular user, and then it is compared to
a similar approach from the literature [14]. To assess the
prediction results and compare the approaches we used the
Mean Squared Error metric, which is defined as MSE =
S i —)2

The method proposed in [14] to predict the battery level
is based on defining all the possible combinations of sensor
states, such as energy supply connected and Wifi connected,
energy supply connected and Wifi disconnected, and so on.
After that, the method figures out the average time a user
spends on each state, and the average battery consump-
tion per state. Finally, the method computes the battery
level by feeding that information to the following formula:
BatteryLevel =T * ZlN:] pi * B; where T is the number of
minutes to be predicted, p; is the average number of minutes
spent on state i and B; is the average battery consumption
per minute.

Regarding the test setup, firstly, both models are trained
using the first 2 weeks of the abovementioned user’s traces.
Then, for each of the following days in the dataset, specifi-
cally 30 days, we pick a particular hour of the day, 12 p.m.,
and each model is run to estimate the battery level along the
next 6 h. After that, the MSE is calculated for each curve and
averaged to get the MSE per day for each model. The hour
12 p.m. is chosen because it is the time of the day on which
the mobile phone has more activity, and it is when schedulers
might take more advantage of the model. Besides, 6h is a
good baseline for comparing both approaches, since [14]’s
model does not return good estimations in the long run as it
can be seen in Fig. 47.5.

The final result of this process can be found in Table 47.4.
The first two columns show the average MSE per day for both
methods. It is clear that our proposed method has a lower
MSE considering every day. This outcome is due to the fact
that [14] is based only in the average consumption, and it
does not take into account time-related factors, such as when
the battery is going to be charged. Our proposed method,
instead, not only takes into account previous states by learn-
ing its behavior with a Regression Model, but also predicts
whether the mobile phone is going to be connected to the
energy supply or not in the future. That feature helps the
model figure out if the series is going up or down at a specific
time. Besides, by predicting whether the screen is going to be
on, the model can adapt the fastness at which the battery level
decreases or increases (depending on the energy supply).

47 A Model for Hour-Wise Prediction of Mobile Device Energy Availability

Fig. 47.5 Predicted battery 100
level for a period of 48 h using
the proposed approach and [14]
80
T 60
)
|
Py
i)
3 40
20
0
12PM 6PM
Table 47.4 Per-day average MSE of [14] and our approach
Average MSE | Minimum MSE | Maximum MSE
Day/approach | [14] Ours | [14] Ours [14] Ours
Sunday 3326 1882 | 9.89 | 1.96 |55.29 |44.34
Monday 3544 1 21.09 2482 | 647 |50.09 |49.79
Tuesday 3199 2444 1693 | 7.20 48.69 36.58
Wednesday 38.36 |26.10 | 18.29 | 4.87 |55.90 47.73
Thursday 37.52 | 16.40 |20.88 | 6.38 |51.16 |40.48
Friday 35.24 | 1842 | 1738 | 5.19 |56.64 | 38.46
Saturday 33.59 | 17.58 |11.42 | 7.28 |52.53 |39.68

Minimum and maximum MSE are also shown

In fact, the complementary models make our approach
more precise for longer periods of times considering the
test user. Figure 47.5 shows the predicted battery level for
a period of 36h using the proposed approach, i.e., from a
given starting point it iteratively predicted, state by state,
the final battery level after 48 h. It is clear that there is a
significant visual resemblance between the real battery level
and the estimated one. Moreover, the energy supply model
had a very high influence in predicting the hour when the
battery level is going to increase. For that particular case,
[14]’s MSE is 57.67, while our approach obtained 27.86.

47.4 Conclusions

In this paper we have described a novel model to predict
battery availability in mobile devices. The basic idea is to
exploit past device owners activity and relevant device state

357

—— Prediction
— Real
—— [15] approach

-

12AM 6AM 12PM 6PM

Hour of day

12AM 6AM 12PM

variables with a two-phase approach, which includes feature
extraction/selection techniques on one hand and regression
models and machine learning classifiers on the other hand.

Preliminary experiments performed using mobile phone
usage data from the Device Analyzer data-set and compar-
isons against the estimation model published in [14] yielded
encouraging results. Our model was able to reduce the MSE
metric, and hence estimations are more accurate. This is in
line with our utmost objective, which is quantifying future
energy availability in mobile devices in order to consider
them as first-class resource providers in state-of-the-art edge
computing paradigms such as Dew Computing.

Future work involve generalizing our results with more
test cases. Concretely, we need to test the per-user accuracy
of our model using device activity from several device own-
ers. Fortunately, the Device Analyzer data-set contains many
users with activity data spanning several weeks and even
months. As an aside, models to fill in the potential missing
activity data must be developed (e.g. days for which activity
data is missing due to the device is off). In addition, other
Machine Learning models can be used in order better capture
the intrinsic relationships between features, so as to come up
with more accurate predictions. Specifically, we will analyze
a recurrent neural network (NN) known as Long Short Term
Memory (LSTM) [15]. As Recurrent NN predictions depend
on previous states, LSTMs are very effective for predicting
state sequences [16], hence all previous states can be taken
into account. Finally, we could also compare our results
against battery estimation models from the industry, such as
those behind battery manager applications in the Google Play
Store.

358

Acknowledgements We acknowledge the financial support by AN-
PCyT through grant no. PICT-2013-0464. The first author acknowl-
edges his MSc. scholarship in Data Science (USA) granted by Fun-
dacién Sadosky.

References

1. N. Fernando, S.W. Loke, W. Rahayu, Mobile cloud computing: a
survey. Futur. Gener. Comput. Syst. 29(1), 84-106 (2013)

2. K. Kumar, J. Liu, Y.-H. Lu, B. Bhargava, A survey of computation
offloading for mobile systems. Mob. Netw. Appl. 18(1), 129-140
(2013)

3. M. Sharifi, S. Kafaie, O. Kashefi, A survey and taxonomy of cyber
foraging of mobile devices. IEEE Commun. Surv. Tutorials 14(4),
1232-1243 (2012)

4. S.Nunna, A. Kousaridas, M. Ibrahim, M. Dillinger, C. Thuemmler,
H. Feussner, A. Schneider, Enabling real-time context-aware col-
laboration through 5G and mobile edge computing, in /2th Inter-
national Conference on Information Technology-New Generations
(ITNG) (IEEE, New York, 2015), pp. 601-605

5. F Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and
its role in the internet of things, in Proceedings of the first edition
of the workshop on Mobile Cloud Computing (ACM, New York,
2012), pp. 13-16

6. P. Mach, Z. Becvar, Mobile edge computing: a survey on architec-
ture and computation offloading. IEEE Commun. Surv. Tutorials
19(3), 1628-1656 (2017)

10.

11.

12.

13.

14.

15.

16.

M. Longo et al.

M. Gusev, A dew computing solution for IoT streaming devices, in
40th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO) (IEEE,
New York, 2017), pp. 387-392

K. Skala, D. Davidovic, E. Afgan, 1. Sovic, Z. Sojat, Scalable
distributed computing hierarchy: cloud, fog and dew computing.
Open J. Cloud Comput. 2(1), 16-24 (2015)

C. Tapparello, C.F.B. Karaoglu, H. Ba, S. Hijazi, J. Shi, A. Aquino,
W. Heinzelman, Volunteer computing on mobile devices: state of
the art and future, in Enabling Real-Time Mobile Cloud Computing
through Emerging Technologies, pp. 153—181 (2015)

M. Hirsch, J.M. Rodriguez, C. Mateos, A. Zunino, A two-phase
energy-aware scheduling approach for CPU-intensive jobs in mo-
bile grids. J. Grid Comput. 15(1), 55-80 (2017)

D.T. Wagner, A. Rice, A.R. Beresford, Device analyzer: large-scale
mobile data collection. ACM SIGMETRICS Perform. Eval. Rev.
41(4), 53-56 (2014)

I. Guyon, A. Elisseeff, An introduction to variable and feature
selection. J. Mach. Learn. Res. 3 1157-1182 (2003)

E.X. Diebold, G.D. Rudebusch, On the power of dickey-fuller tests
against fractional alternatives. Econ. Lett. 35(2), 155-160 (1991)
J.-M. Kang, S.-S. Seo, J.W.-K. Hong, Personalized battery lifetime
prediction for mobile devices based on usage patterns. J. Comput.
Sci. Eng. 5(4), 338-345 (2011)

S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural
Comput. 9(8), 1735-1780 (1997)

H. Sak, A. Senior, F. Beaufays, Long short-term memory based
recurrent neural network architectures for large vocabulary speech
recognition (2014). arXiv preprint arXiv:1402.1128

	47 A Model for Hour-Wise Prediction of Mobile Device Energy Availability
	47.1 Introduction
	47.2 Approach
	47.2.1 Preliminary Data Analysis and Feature Selection
	47.2.1.1 Correlation Analysis
	47.2.1.2 Time Series Analysis
	47.2.1.3 Feature Selection

	47.2.2 Model Construction

	47.3 Evaluation
	47.4 Conclusions
	References

