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Abstract

Condition of a patient in an intensive care unit is as-
sessed by monitoring multiple correlated variables with
individual observations. Individual monitoring of vari-
ables leads to misdiagnosis. Therefore, variability of the
correlated variables needs to be monitored simultaneously
by deploying a multivariate control chart. Once the shift
from the accepted range is detected, it is vital to identify
the variables that are responsible for the variance shift
detected by the chart. This will aid the medical practition-
ers to take the appropriate medical intervention to adjust
the condition of the patient. In this paper, Multivariate
Exponentially Weighted Moving Variance chart has been
used as the variance shift identifier. Once the shift is
detected, authors for the first time have used ANNIGMA
to identify the variables responsible for variance shifts
in the condition of the patient and rank the responsible
variables in terms of the percentage of their contribution
to the variance shift. The performance of the proposed
ANNIGMA has been measured by computing average
classification accuracy. A case study based on real data
collected from ICU unit shows that ANNIGMA not only
improve the diagnosis but also speed up the variable
identification for the purpose of appropriate medical di-
agnosis.
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40.1 Introduction

Patients are placed in an intensive care unit (ICU) follow-
ing major surgery. Continuous monitoring is essential to
the daily care of ICU patients. Ongoing and continuous
monitoring is achieved by complex devices that require
special training and experience to operate. If certain phys-
iologic limits are exceeded, the devices set to generate
alarms. Those alarms need to be investigated by following
strict protocols. The measured observations are highly cor-
related for a given patient and the condition of the patient
is assessed with individual observations. It is imperative
to maintain overall variability of all the observations with
respect to the accepted variability (target variance-covariance
matrix) in order to achieve stable medical condition for the
patient.

In this paper, Multivariate Exponentially Weighted Mov-
ing Variance (MEWMV) chart [1] has been used as the
variance shift identifier for individual observations. The
advantage of MEWMV chart is its ability to monitor vari-
ance while stabilizing mean of the process. The challenge
in deploying multivariate control chart [2] is to identify
variables responsible for the out-of-control (OOC) signals
(fault diagnoses). Several machine learning approaches such
as Artificial Neural Networks (ANN) and Support Vector
Machines (SVM) have been proposed [3–12] for fault di-
agnoses. Hsu et al. [13] proposed an improved artificial
neural networks called ANNIGMA approach. The method
incorporates weights analysis based heuristic to direct the
search in the wrapper model and allows effective feature
selection for ANN.

This paper for the first time presents new strategy for
fault diagnosis of variance shifts in multivariate clinical
processes. The proposed approach integrates the deployment
of MEWMV chart with ANNIGMA.
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40.2 MEWMV Chart

MEWMV chart has the ability to monitor multivariate pro-
cess variability while stabilizing the mean. Huwang et al. [1]
has introduced the chart by estimating optimal control limits
for up to 3 variables. Gunaratne et al. [14] have extended
the charts ability to monitor high dimension multivariate
processes by estimating control limits for up to 15 variables
and introducing a mathematical model to estimate control
limits beyond 15 variables.

Let a = (a1, . . . ap)1 be a random vector that represents p
correlated quality characteristics from a multivariate process.
Consider a transformation of a, X = ∑−1/2

0 (a − μ0) such

that X is distributed as N(μ, �), where μ = ∑−1/2
0 (μ − μ0)

and
∑ = ∑−1/2

0

∑
u
∑−1/2

0 . Consequently, when the pro-
cess is in-control, X is distributed as N (0, Ip), where Ip is
p*p identity matrix.

The MEWMV statistic Vt [1] is defined by

Vt = ω (Xt − Yt ) (Xt − Yt )
′ + (1 − ω) Vt−1 (40.1)

Where Yt is the predicted mean shift at sampling point
t and its value is obtained by the multivariate exponentially
moving average of Xt

Yt = λ Xt + (1 − λ) Yt−1 (40.2)

They have shown that for 0 < ω<1, 0 < λ < 1 and t ≤ p,
the matrix Vt is positive definite with probability 1.

Defining It as the t*t identity matrix and X, Y, D and N as
follows

Xt = (X1, X2, . . . . . . Xt)
′

Yt = (Y1, Y2, . . . . . . Yt)
′

D = diag (D1, D2, . . . . . . . Dt)

N =

⎛

⎜
⎜
⎜
⎝

λ 0 . . . 0
λ (1 − λ) λ . . . 0

...
...

. . .
...

λ(1 − λ)t−1 . . . λ (1 − λ) λ

⎞

⎟
⎟
⎟
⎠

Huwang et al. [1] showed that Vt can be written as

Vt = (X − Y)′ D (X − Y)

= X′(It − N)′ D (It − N) X

Vt = X′ RX

E [tr (Vt )] = p∗tr (R) (40.3)

Var [tr (Vt)] = 2 p
∑t

i=1

∑t

j=1
r2
ij (40.4)

Therefore, the control limits for MEWMV chart are given
by

E [tr (Vt)] ± L
√

Var [tr (Vt)]

= p tr (R) ± L
√

2p
∑t

i=1
∑t

j=1r
2
ij

(40.5)

The constant L depends on p, ω and λ. The value of L
can be estimated by time consuming Monte Carlo simula-
tions [15]. However, Gunaratne et al. [14] have developed
predictive models to obtain the control limits for any high
dimension multivariate process.

40.3 Annigma Approach

Hsu et al. [13] proposed a weights analysis based wrapper
heuristic called ANNIGMA. It is a feature ranking approach
which is mathematically derived from the back propagation
training formulation of ANN. ANNIGMA also ranks the
quality characteristics by the relevance which is based on
the weight associated with the quality characteristic in a
neural network based wrapper approach. Therefore, it is not
necessary to train m neural nets for each branching point.
Consequently, the speed of the fault diagnostic task using
ANNIGMA would substantially increase.

For a two-layer neural network, if i, j and k are the input,
hidden and output layer and F is a logistic activation linear
function F(x) = 1/(1 + exp (-x)) then output of the network
is given by Eq. (40.6).

Ok =
∑

j
F

(∑

i
Ai × Wij

)
× Wjk (40.6)

where Wij and Wjk are the network weights. The local gain
can be defined as:

LGik =
∣
∣
∣
∣
� Ok

� Ai

∣
∣
∣
∣ (40.7)

According to [13], the local gain LGik can be defined in
terms of network weights by
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LGik =
∑

j

∣
∣Wij × Wjk

∣
∣ (40.8)

The ANNIGMA score for ith input and kth node is defined
as [13]

ANNIGMAik = LGik

max (LGk)
(40.9)

Neural Network weights give an estimate of the relative
importance of input features.

40.4 Case Study: Application
of the Proposed Approach
in Monitoring ICU Patients

Authors have used observations from 9 correlated vari-
ables that play a substantial role in assessing the condi-
tion of a patient after open heart surgery. This is usu-
ally achieved by screening Systolic Blood Pressure (SBP),
Diastolic Blood Pressure (DBP), Mean Arterial Pressure
(MAP), Systolic Pulmonary Artery Pressure (SPAP), Dias-
tolic Pulmonary Artery Pressure (DPAP), Mean Pulmonary
Artery Pressure (MPAP), Pulmonary Capillary Wedge Pres-
sure (PCWP), Central Venous Pressure (CVP) and Heart
Rate (HR). The characteristics indicate highly significant
correlation (P-value = 0.05) among them. A total of 600
samples of size one with 9 characteristics in each sample
were available. The data recording times were recommended
by the medical practitioners. The study has used all the
collected data.

The Time Series plots for 9 variables (Fig. 40.1) suggest
that the most independent variables are CVP, DPAP and
MAP. The Correlation analysis also confirms this.

40.4.1 MEWMV Chart for Monitoring
the Variability of the Condition
of a Patient After Heart Surgery

MEWMV chart has been used to monitor large variance
shifts (ω = 0.9) while mean is stabilized for small shift
(λ = 0.1). Stabilizing mean is essential while monitoring
variance of the process to avoid capturing mean changes.
The control limits for the MEWMV charts are obtained using
the predictive models developed by Gunaratne et al. [14].
Figure 40.2 shows 22 OOCs for MEWMV chart (out of 600
observations).

40.4.2 Fault Diagnostics to Identify
the Responsible Characteristics Based
on ANNIGMA Approach

The OOCs and in-control samples from MEWMV chart
have been injected to ANNIGMA and other commonly
used machine learning approaches to identify the group of
variables responsible for in-controls and OOC signals and
estimate the percentage of their individual contribution to
the signals. The accuracy of ANNIGMA results have been
investigated by deploying univariate Moving Range (UMR)
charts.

Table 40.1 shows the ANNIGMA approach is superior to
other commonly used approaches in selecting the minimum
number of variables with higher accuracy. The accuracy
computation starts with full variables set. The lowest ranked
variable has been removed by utilizing Backword Elimina-
tion (BE) process. BE iteration continues until last variable in
the subset. The subset with highest accuracy with minimum
number of variables has been selected as the best subset. The

Fig. 40.1 Time series plot for 9
variables
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Fig. 40.2 Out-of-controls for
MEWMV chart
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Table 40.1 Average accuracies for large variance shifts (ω = 0.9)
while mean is stabilized for small shifts (λ = 0.1)

Number of
variables

ANNIGMA
accuracy

Maximum
relevance filter SVM

Naïve-
Bayes

9 96.53 96.58 96.33 94.83

8 96.96 96.58 96.33 94.83

7 96.43 96.16 96.33 96.00

6 96.26 96.66 96.33 96.16

5 96.53 95.66 96.33 96.66

4 96.60 95.83 96.33 97.50

3 97.00 95.83 96.33 97.33

2 96.53 95.91 96.33 96.83

1 96.86 96.33 96.33 96.83

Table 40.2 Percentage contribution of variables selected by ANNIGMA
to fault signals

Variable name % Contribution

MAP 37.96%

DPAP 31.99%

CVP 30.05%

highest accuracy (97%) achieved for ANNIGMA by moni-
toring only 3 characteristics, i.e., 97% of the total variability
of the patient condition is due to Mean Arterial Pressure
(MAP), Diastolic Pulmonary Artery Pressure (DPAP) and
Central Venous Pressure (CVP).

ANNIGMA also ranked the percentage contribution of
the significant variables as shown in Table 40.2. The highest
contributing variable for the OOC signals is MAP (37.96%)
followed by DPAP (31.99%) and CVP (30.05%).

40.5 Fault Diagnosis Using Univariate
Moving Range (UMR) Charts

Traditional statistical approach for identifying variables
responsible for the variance shift in multivariate chart is
to deploy UMR charts for each individual variable and
select the variables that produce OOC signals similar to
MEWMV chart. However, this approach disregards the
correlation among variables and may misdiagnosis the
cause of the OOC signals (samples that are in control in
multivariate chart may be OOC in UMR charts or vice
versa).

UMR charts for SBP, DBP (Fig. 40.3a, b) and HR do not
produce any OOC observations that matches OCCs produced
by MEWMV chart. ANNIGMA removes SBP, DBP and
HR variables as insignificant variables to process faults at
early stage. The following UMR charts (Fig. 40.3c, d) show
OOC signals for two of the responsible variables DPAP
and CVP which have been identified by ANNIGMA. The
OOC signals almost match those produced by the MEWMV
chart.

Accuracy has been calculated for the variables selected
by ANNIGMA (MAP, DPAP and CVP) using UMR charts.
Table 40.3 shows the calculated accuracies are approxi-
mately close to 97% as indicated by ANNIGMA. Percentage
contribution (around 33%) also in line with the ANNIGMA
results. Therefore, UMR charts results further confirm the
precision of results given by ANNIGMA.

40.6 Conclusion

Fault diagnostic in multivariate control chart can be per-
formed either by deploying univariate control chart for each
individual characteristics or deploying machine learning ap-
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Fig. 40.3 UMR charts. (a) UMR charts for SBP (b) UMR charts for DBP (c) UMR charts show OOC signals for DPAP (d) UMR charts show
OOC signals for CVP

Table 40.3 Accuracy and percentage contribution based on UMR
charts

MAP DPAP CVP

OOCs in MEWMV 22 22 22

OOCs in UMR 3 8 5

matching OOCs with UMR 1 5 4

matching in-controls with UMR 576 575 577

Accuracy for UMR (%) 96.1 96.6 96.8

Percentage contribution (%) 33.2 33.4 33.4

proaches such as ANNs, SVMs and ANNIGMA. However,
univariate charts not only ignore the correlation among the
variables but also are time consuming as the number of
variables to be monitored increases. This paper for the first
time deployed ANNIGMA to identify and rank the charac-
teristics responsible for the multivariate variance shifts when
monitoring ICU patients. Average classification accuracy has
been used to select the most significant subset of variables.
The comparison results show that ANNIGMA approach

select the responsible variables more effectively than other
commonly used machine learning approaches. Information
on the extent of the responsible variables’ abnormal rates
and rhythms to the patient condition can effectively aid the
medical practitioners in their early diagnostics intervention
tasks.
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