
37Improving Agile Software Development
with Domain Ontologies

Pedro Lopes de Souza, Antonio Francisco do Prado, Wanderley Lopes de
Souza, Sissi Marilia dos Santos Forghieri Pereira, and Luís Ferreira Pires

Abstract

In this paper we propose to apply domain ontologies in ag-
ile software development to reduce the ambiguity caused
by using natural language as ubiquitous language to report
user stories. To justify and demonstrate our approach, we
present a case study that combines Scrum and Behaviour-
Driven Development (BDD) in the development of an
educational support system, which was built to support
the activities of the Medicine Programme of Federal Uni-
versity of São Carlos (UFSCar) in Brazil. Starting from a
reference ontology for the Higher Education domain, we
gradually specialized this ontology for this programme.
Since we selected the Evaluation Management module of
this system for our case study, we applied the Evaluation
Process Ontology to that programme, and defined user
stories to identify the feature set to be implemented.
For evaluation and validation purposes, we assessed the
quality of all ontologies used in this work according to
structural and functional dimensions.

Keywords

Ontology · PBL · LMS · Scrum · BDD

P. L. de Souza (�) · A. F. do Prado · W. L. de Souza
Department of Computing, Federal University of São Carlos, São
Paulo, Brazil

S. M. dos Santos Forghieri Pereira
Department of Medicine, Federal University of São Carlos, São Paulo,
Brazil

L. F. Pires
Department of Electrical Engineering, Mathematics, and Computer
Science, University of Twente, Enschede, The Netherlands

37.1 Introduction

Agile software development requires iterative development
methodologies, like e.g., Scrum [1], in which requirements
and solutions evolve through collaboration between clients
and developers. Scrum prescribes sprint reviews, which are
development team meetings, and the role of Product Owner
(PO) to plan and evaluate sprints. A list of prioritised require-
ments, named product backlog, is created in a sprint planning
meeting, and in each sprint the development team decide
which requirements should be addressed, and then create a
sprint backlog that contains the tasks to be performed during
that sprint.

Behaviour-Driven Development (BDD) [2] is a develop-
ment methodology based on the principle that “stakeholders
and developers should refer to the same system in the same
way.” This requires a ubiquitous language understandable by
all developers, and that enables executable granular specifi-
cations of the system’s behaviour and testing.

Ontologies are used in the design of Information Systems
(IS) in several domains, with potential benefits due to their
mathematical rigour. According to Guarino [3], an ontology
can impact an IS both in the temporal dimension, depending
whether it is used at design time and/or runtime, and in the
structural dimension when it affects the main IS compo-
nents.

The Medicine Programme of the Federal University of
São Carlos (UFSCar) in Brazil follows a socio-constructivist
educational approach, and employs active learning method-
ologies such as Problem-Based Learning (PBL) [4]. EAMS-
CBALM (Educational and Academic Management System
for Courses Based on Active Learning Methodologies, [5])
is a system developed to provide computational support for
these learning methodologies. EAMS-CBALM was devel-
oped using Scrum, and during its development it was often
necessary to redefine system behaviour scenarios, and conse-
quently the product backlog items, due to misunderstanding
of the stories reported by the PO. In addition, test suites

© Springer International Publishing AG, part of Springer Nature 2018
S. Latifi (ed.), Information Technology – New Generations, Advances in Intelligent Systems and Computing 738,
https://doi.org/10.1007/978-3-319-77028-4_37

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77028-4_37&domain=pdf
https://doi.org/10.1007/978-3-319-77028-4_37


268 P. L. de Souza et al.

defined for this system were incomplete and not always
properly covered the system requirements.

Inspired by these problems, we defined the following
research questions: (a) “How to improve communication
among PO and developers?”, and (b) “How to eliminate
the ambiguities inherent to natural languages when report-
ing user stories?” These questions led to two hypotheses:
(1) combining BDD with Scrum can substantially improve
communication, and (2) ontologies can eliminate natural
language ambiguities. We validated hypothesis (1) in [6] with
a case study using EAMS-CBALM, by proposing a ubiqui-
tous language to define BDD scenarios and acceptance tests,
allowing the PO to properly communicate with the develop-
ment team members. This paper focuses on hypothesis (2),
by employing domain ontologies as ubiquitous language for
software development, and it is further structured as follows:
Sect. 37.2 discusses related work; Sect. 37.3 introduces a
reference ontology for the Higher Education domain; Sect.
37.4 presents the UFSCar ontology; Sect. 37.5 reports on our
case study; and Sect. 37.6 presents some final remarks.

37.2 RelatedWork

In our systematic literature review of ontologies and agile
software methodologies, we found some developments that
combine these methodologies to improve software develop-
ment.

In [7], the OntoSoft agile process is proposed, which as-
sociates practices of Software Engineering, Ontology Engi-
neering and Scrum for improving the collaboration between
software and ontology engineers. This process provides a set
of guidelines for defining activities, tasks, roles, and artefacts
to develop ontology-based software. OntoSoft was applied
for developing an ontology-based application to map and
recommend real estates.

An approach is presented in [8] to help team members
perform more efficiently their daily tasks according to a
specific process. This approach is based on the K-CRIO
ontology for business processes modelling and on a multi-
agent system for providing intelligent assistance to workers.

In [9], the Quality User Story (QUS) framework is pro-
posed for ensuring the quality of agile requirements ex-
pressed as user stories. QUS contains 13 criteria that deter-
mine the quality of user stories in terms of syntax, semantics,
and pragmatics. Based on QUS, the Automatic Quality User
Story Artisan (AQUSA) tool was built to detect QUS quality
criteria violations, and to improve user stories.

An ontological model is introduced in [10] to support
scenario description and to test functional requirements of
interactive systems. This model was developed based on
BDD principles, describing user behaviours when interact-
ing with User Interface (UI) elements in a scenario-based

approach. Once described in the ontology, behaviours can
be freely reused to write new scenarios in natural language,
providing test automation. A case study is presented for
the flight tickets e-commerce domain, where ontology-based
tools were used to support the assessment of evolutionary
prototypes and final UIs.

All these related developments employ ontologies for spe-
cific purposes: for boosting the collaboration among software
and ontology engineers, for modelling the Scrum develop-
ment process, for extracting semantic information to improve
user stories, and to support test automation. In our work,
in contrast, we use ontologies in a broader context, starting
from a reference ontology for a given domain, and gradually
specializing it to be used in the agile software development
for that domain.

37.3 Ontologies

An ontology can be classified according to its generality
and dependence levels in: (a) Top-level ontology, describes
general concepts (e.g., Object, Property) that are independent
of a particular domain; (b) Domain ontology describes the
vocabulary related to a generic domain (e.g., Medicine,
Programme) by specializing terms introduced in the top-
level ontology; (c) Task ontology describes the vocabulary
related to a generic task (e.g., Diagnosing, Lecturing), by
specializing terms introduced in the top-level ontology; and
(d) Application ontology describes concepts that depend on a
particular domain and task (e.g., the roles played by domain
entities while performing the activity of given a lecture),
which are specializations of the related ontologies [3].

A top-level ontology aims at supporting semantic inter-
operability among domain ontologies. In some situations,
domain ontologies may have to be merged, and if they
are derived from the same top-level ontology this can be
automated. Unfortunately, most of the available domain
ontologies are not derived from the same top-level ontology,
and different domain perceptions, usage intentions, and lan-
guages give rise to incompatible application ontologies in
the same domain. To deal with these problems, application
ontologies have to be defined based on a reference domain
ontology.

Higher Education Reference Ontology (HERO) [11] was
defined to provide consensual knowledge of the university
domain. HERO describes several aspects of this domain,
such as organizational structure, staff, and income. Based on
HERO key concepts and according to the higher education
areas described by Brazilian National Council for Scien-
tific and Technological Development (CNPq), we extended
this reference ontology to describe Brazilian universities, as
shown in Fig. 37.1.



37 Improving Agile Software Development with Domain Ontologies 269

Fig. 37.1 HERO (from [11])
with CNPq areas

37.4 UFSCar Ontologies

We applied the concepts shown in Fig. 37.1 to define an
ontology that represents all the UFSCar programmes. Figure
37.2 depicts an excerpt of this ontology in OWLViz/Protégé
[12], showing the 8 CNPq large educational areas, and the 10
UFSCar programmes in the Health Sciences area.

37.4.1 UFSCar Medicine Programme

Most Brazilian universities employ teaching-learning
methodologies based on classic frontal lectures, but some
UFSCar programmes, like the Medicine Programme,
employ active learning methodologies. Education in this
programme is based on activities with no frontal lectures
at all, organized in three educational units: Education Unit
of Simulation of Professional Practice (EUSPP), Education
Unit of Professional Practice (EUPP), and Education Unit
of Elective Activities (EUEA) [13]. Figure 37.3 shows an
excerpt of an ontology that describes the UFSCar Medicine
Programme.

The UFSCar Medicine Programme learning methodology
has several educational activities, such as Problem Situation
(PS), Simulation Station (SS) and Team Based Learning
(TBL). All of them have learning triggers, which are prob-
lems that simulate or portray the daily activities to be per-
formed by the students. Each trigger makes the students tra-
verse the constructivist spiral [13], starting by identifying the
problem, formulating explanations, preparing learning ques-
tions, looking for new information, building new meanings,
and evaluating the process. Figure 37.4 shows an excerpt

of the UFSCar Medicine Programme ontology, focusing on
its learning methodology, showing some of its educational
activities and the steps of the constructivist spiral.

37.5 Case Study

Our case study concentrates on one of the EAMS-CBALM
modules. This system was developed using Scrum by the
TokenLab commercial company, in collaboration with the
Ubiquitous Computing Group (UCG) and Medicine Depart-
ment (DMed) of UFSCar, and the Teaching and Research
Institute (TRI) of the Sírio-Libanês Hospital (SLH).

During this development, weekly sprint meetings were
held at TokenLab, and monthly sprint review meetings were
held at TRI/SLH. During the TokenLab meetings, the PO
(a teacher of the UFSCar Medicine Programme) reported
user stories informally in Portuguese, describing activities
to be performed by the EAMS-CBALM, and system re-
quirements were also captured and specified in Portuguese.
Using these specifications, the developers defined system
behaviour scenarios and implemented screen pages, which
were discussed at the next meeting. 109 hours have been
spent with these meetings, in which the CBALM teaching-
learning process was scrutinised, resulting in the definition of
the functional and non-functional system requirements, and
system architecture [6].

The Evaluation Management module of EAMS-CBALM
generated the most controversies between PO and devel-
opers. This module had 14 functional requirements and
although the scenarios of the “Evaluation Instrument Reg-
ister” requirement have been redone several times, its final



270 P. L. de Souza et al.

Fig. 37.2 UFSCar ontology (in OWLViz)

Fig. 37.3 UFSCar Medicine
Programme ontology



37 Improving Agile Software Development with Domain Ontologies 271

Fig. 37.4 Constructivist spiral
steps and educational activities of
UFSCar Medicine Programme
ontology

implementation did not fully satisfy the PO. This module was
already selected in [6] to validate hypothesis (1) and is used
here again to validate hypothesis (2).

37.5.1 Evaluation Process Ontology

The student evaluation process of the UFSCar Medicine
Programme is quite peculiar and complex. Evaluations are
performed by all people involved in the educational activities
[13]. There are two evaluation types, formative and summa-
tive, and the results are “satisfactory,” “unsatisfactory” or
“needs improvement.” In the latter case, the student must
execute an improvement plan proposed by the teacher, and is
then re-evaluated. Evaluations are consolidated by applying
six instruments types:

(a) Performance Assessment of the Teaching-Learning Pro-
cess (PATLP): teacher evaluates the student (formative)
in three steps, teacher evaluation, classmate evaluation,
and improvement plan;

(b) Reflective Portfolio (RP): teacher monitors each stu-
dent’s portfolio (formative), and students’ present ac-
cording to delivery dates (summative);

(c) Written Examination (WE): questions defined by the
teacher, answered by the student, and then assigned
by the teacher (summative). All questions must have
a “satisfactory” result for the student to pass. Failed
questions are considered as progress deficit and are
worked out in the next WE;

(d) Progress Test (PT): multiple choice questions. Teacher
monitors each student’s performance (formative) and
presence gives students a “satisfactory” result (summa-
tive);

(e) Objective and Structured Evaluation of Professional
Performance (OSEPP): students act in clinical cases and
are evaluated by the teacher similarly to WE (summa-
tive);

(f) Problems Based Exercise (PBE): assesses the student’s
individual ability to study and identify health needs,
formulate patient and family problems, and propose
a healthcare plan for a particular problem situation
(formative).

Based on these instruments and [13], we defined the
terminology (names, adjectives, and verbs) to be formally
represented in the Evaluation Process. Figure 37.5 shows an
excerpt of this ontology, where the EducationalActivity and
EvaluationProcess classes model the concept of Curricular-
Activity.

Each EducationalActivity starts with one or more meet-
ings, where a Meeting has the participation of students
and teachers, each one with specific Roles, and triggers a
LearningTrigger. Each Learning Trigger transverse the Con-
strutivistSpiralSteps, and ends with an EvaluationProcess,
which is consolidated by applying EvaluationInstruments.

Figure 37.6 shows an excerpt of the Evaluation Process
ontology of the UFSCar Medicine Programme, focusing on
its evaluation instruments types, and showing the PATLP
instrument.

37.5.2 User Story and Scenario Ontology

In the BDD analysis phase the most expected system be-
haviours are identified from the business outcomes to be pro-
duced by the system. Based on them, feature sets are defined,
where each feature indicates what should be accomplished to



272 P. L. de Souza et al.

Fig. 37.5 Evaluation Process
ontology root classes (left-side)
and Meeting class relations
(right-side)

Fig. 37.6 Evaluation Process
ontology with PATLP

achieve a specific business outcome. When combining BDD
with Scrum, the POs and developers should agree on the
feature sets, and ideally define them together.

Features are expressed by user stories, describing the
interactions between a user and the system. A user story
should elucidate the user’s role in this story, the feature
desired by the user, and the benefit gained by the user if
the system provides the desired feature. Due to different
contexts, a user story may have different versions that will
lead to different story instances (scenarios), which in turn
should describe specific contexts and outcomes of this user
story. For our case study, we have taken into account the
following user story reported by the PO during the EAMS-
CBALM development:

In order for the programme coordinator to carry out a student
evaluation, the six instrument types have to be previously reg-
istered. This requirement is needed because the evaluation form
heading changes according to the employed instrument. When
registering an instrument, the system must keep the following
information: name, acronym and the relationship between who
responds to the evaluation, who evaluates and who is evaluated.
This last information is crucial since in conjunction with the
curricular activity it defines which form type is applied when
registering an evaluation.

Narrative:[story title]
In order to[benefit]
As a[role]
I want to[feature]

Senario:[scenario title]
Given[main context]
And[additional contexts]
When[specific event]
Then[main outcome]
And[additional outcome]

Fig. 37.7 JBehave User Story and Scenario templates

BDD user stories and scenarios follow the templates de-
scribed in [2], but BDD tools generally do not strictly follow
these models. For example, JBehave [14] supports a slightly
different user story template and the same scenario template,
which are shown in Fig. 37.7. Since JBehave supports most
of the BDD characteristics, it is well-accepted in the BDD
community, it is open source software, and is frequently
updated, we chose this tool to develop the case study reported
in [6].

This scenario template is similar to an Extended Finite
State Machine (EFSM) model, which was formally defined
as an OWL ontology in [10]. We employed a similar EFSM
model using the JBehave templates to build the User Story
and Scenario ontology for our case study. There are six



37 Improving Agile Software Development with Domain Ontologies 273

Fig. 37.8 User Story and Scenario ontology with PATLP

scenarios in our case study, one for each instrument type.
Figure 37.8 shows an excerpt of this ontology for PATLP.

To validate our approach, we assessed the quality of
our ontologies according to the structural and functional
dimensions [15]. Structural validation considers the ontology
logical structure, focusing on its syntax and formal seman-
tics. Protégé [12] offers several ontology verification tools
for detecting inconsistencies and redundancies in ontologies.
For all ontologies we used the reasoners FaCT++, HermiT
and Pellet, and we discovered neither inconsistencies nor
redundancies on them.

Functional assessment focused on the ontologies usage.
This assessment includes evaluation by domain experts,
user satisfaction, task assessment, and topic assessment. Our
ontologies were assessed in collaboration with our PO during
development, aiming at verifying their structure, their restric-
tions, relations between concepts and the attributes of their
concepts. The PO assessed how well these ontologies met
predefined criteria, and they have been updated according to
the PO suggestions.

37.6 Conclusion

In this paper, we proposed the use of domain ontologies
to reduce the ambiguity introduced by using natural lan-
guages to report user stories. We validated this hypothesis
by performing a case study in the context of the EAMS-

CBALM using a combination of Scrum and BDD. We started
from a reference ontology, and we specialized it for the
UFSCar Medicine Programme. We selected a module of this
system, and used the Evaluation Process ontology of this
programme with the user stories for determining the features
to be developed.

This ontology provided the main terminology and its
relations to the evaluation process that combined with PO
user stories improved the communication between PO and
developers. Furthermore, it facilitated the definition of sce-
narios, as well as the User Story and Scenario ontology.

The ontology presented in [10] is domain-free, and de-
scribes behaviours that report steps of scenarios performing
actions on the UI. Although it is possible to reuse these steps
in multiple testing scenarios, specific business behaviours of
our case study had to be specified, and we had to map each
term to a user interaction, and to write steps for these interac-
tions. Since this ontology only covers UI testing, we intend
to extend it to cover other aspects of software behaviour (e.g.,
persistence). We will also define a development process that
combines Scrum, BDD, and Domain Ontologies.

References

1. K. Schwaber et al., The Definitive Guide to Scrum: The Rules of
the Game (Scrum.Org and ScrumInc, 2016), 17 pp. https://goo.gl/
SBsyUQ

https://goo.gl/SBsyUQ


274 P. L. de Souza et al.

2. D. North, Introducing BDD (Dan North & Associates, 2006).
https://goo.gl/JBqmry

3. N. Guarino, Formal ontology and information systems. Front.
Artif. Intell. Appl. 46, 03–15 (1998)

4. J. Rhem, in Problem Based Learning an Introduction, vol. 8, no.
1 (National Teaching and Learning Forum, 1998), 07 pp. https://
goo.gl/LckbVX

5. H.F. Santos et al., Augmented reality approach for knowledge visu-
alization and production in educational and academic management
system for courses based on active learning methodologies, in
Proceedings of ITNG 2016,Advances in Intelligent Systems and
Computing, vol. 448 (Springer, 2016), pp. 1113–1123

6. P.L. Souza et al., Combining Behaviour-Driven Development with
Scrum for Software Development in the Education Domain, vol. 2
(SCITEPRESS–Science and Technology Publications Ltd, 2017),
pp. 449–458

7. J.B. Machado et al., OntoSoft Process: Towards an agile process
for ontology-based software, in Proceedings of 49th Hawaii Inter-
national Conference on System Sciences (IEEE Computer Society,
2016), pp. 5813–5822

8. Y. Lin et al., Multi-Agent System for intelligent Scrum project
management. Integr. Comput. Aided Eng. 22(3), 281–296 (2015)

9. G. Lucassen et al., Improving agile requirements: the Quality User
Story framework and tool. Requir. Eng. 21(3), 283–403 (2016)

10. T. Silva et al., A behavior-based ontology for supporting auto-
mated assessment of interactive systems, in Proceedings of 11th
International Conference on Semantic Computing (IEEE Computer
Society, 2017), pp. 250–257

11. L. Zemmouchi-Ghomari et al., Process of building reference on-
tology for higher education, in Proceedings of World Congress on
Engineering, vol. 3 (2013), 06 pp.

12. M. Horridge, A Practical Guide to Building Owl Ontologies Using
Protégé 4.0 and CODE Tools, Edition 1.1 (University of Maryland,
2007)

13. UFSCar, Curso de Medicina—CCBS Projeto Político Pedagógico
(Medicina UFSCar, 2007), 139 pp. https://goo.gl/NmWYi3

14. JBehave, JBehave (2015). http://jbehave.org/
15. A. Gangemi et al., in Modelling ontology evaluation and valida-

tion. Lecture Notes in Computer Science, vol. 4011 (2006), pp.
140–154

https://goo.gl/JBqmry
https://goo.gl/LckbVX
http://springerlink.bibliotecabuap.elogim.com/bookseries/11156
https://goo.gl/NmWYi3
http://jbehave.org/

	37 Improving Agile Software Development with Domain Ontologies
	37.1 Introduction
	37.2 Related Work
	37.3 Ontologies
	37.4 UFSCar Ontologies
	37.4.1 UFSCar Medicine Programme

	37.5 Case Study
	37.5.1 Evaluation Process Ontology
	37.5.2 User Story and Scenario Ontology

	37.6 Conclusion
	References


