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Abstract

This paper describes some software optimizations for the
classical Data Encryption Standard (DES) cipher DES
applicable for modern processor architectures that have
SIMD instructions. Performance is gained by processing
several messages in parallel, compared to processing
single messages serially. An added value that the proposed
optimizations offer is that the resulting implementations
are also side channel protected, unlike other implementa-
tions that are found in open source libraries. For compar-
ison, when measured on the latest Intel server processor
(Architecture Codename Skylake), our side channel safe
implementation is 3.2× faster than that of OpenSSL.
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21.1 Introduction

The proliferation of the block cipher AES [1] together
with the dedicated processor instruction that speed up AES
encryption by more than an order of magnitude, make AES
the most ubiquitous cipher in use. Nevertheless, some legacy
systems that use outdated ciphers still need support. We are
interested here in the classical Data Encryption Standard
(DES) [2], and its 3-DES [3] variant, used in either ECB
or CBC modes of operation [4], that are still used in some
systems. One example is DOCSIS (Data Over Cable Service
Interface Specifications) [5].
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In general, DES is practically replaced by the more
modern cipher AES. Thus, software performance of DES/3-
DES is an attractive target for optimization only for better
support of legacy systems that still use DES. We note that the
performance of AES is accelerated by processor instructions
AES-NI [6, 7], which are by now ubiquitous. This makes
DES is significantly slower than AES. For example, on the
latest architecture Intel Xeon Phi Processor 7230, the DES
performance, in CBC mode is 42.77 cycles per byte (C/B
hereafter). By comparison, on the same platform, AES (in
CBC mode) performs at 2.63 C/B. Similarly, in ECB mode,
DES performs at 40.9 C/B, and AES performs at 0.63 C/B.
These were measured for a message of 8 KB, using the latest
version 1.0.2k of OpenSSL [8].

We point out that the block size of DES is 64 bits (whereas
AES operates on blocks of 128 bits). As such, the number of
blocks that can be encrypted using the same key is limited to
at most 232. Furthermore, Some cryptanalytic results on DES
are reported in [9–14].

In this paper, we present a new method for software
implementation of DES in ECB and CBC modes, when
multiple messages are processed in parallel. We show
that our implementation also has the security advantage
of being resistant to side channel attacks. Nonetheless,
while our solution described on DES, it is relevant for
3-DES, which is more practical and used today in a real
system.

21.2 Preliminaries

DES is defined in the specifications [2–4]. We describe it
only briefly here, as needed for the rest of the paper.

DES is a block cipher that operates on a block of 64
bit, using a cipher key of 56 bits (technically, the key is
embedded in a 64-bit container, where the 8 extra bits are
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used as parity bits). The construction is called a Feistel
cipher.

Let X be a plaintext block, let Y be the resulting cipher-
text, and let K be the key. DES consists of 16 identical rounds
(Gj), where, for j = 1, 2, . . . , 16, round j uses round key
Kj. Each round key Kj has 48 bits, and is derived from the
cipher key K, using some key schedule procedure. The key
schedule is independent of the processing of the data, and is
not described here. The input X goes through a sequence 19
back-to-back transformations, each one producing a 64-bit
output from a 64-bit input. The input for each transformation
is the output of the previous one, where X counts as the first
input, and Y is the output of the last transformation (IP−1 in
our case), as follows:

Y = IP−1 ◦ T ◦ G16 ◦ G15 ◦ · · · ◦ G1 ◦ IP (X)

The 3 “outer” transformations (IP, IP−1,T) do not de-
pend on the key: IP, called “initial permutation”, is a fixed
(known), IP−1 is its inverse, and T is a transformation that
switches the position of the left 32 bits of its state, with
that of the right 32 bits. To describe the rounds, let Lj − 1

and Rj − 1 denote the left and right halves of the input to
round Gj, and let Lj and Rj denote the output of the round.
Then,

Lj = Rj−1, Rj = Lj−1 ⊕ f
(
Rj−1,Kj

)

where f denotes the “Core Function” of DES. It operates on
two inputs: one (the right half of the state) of 32 bits and
the other (Kj) of 48 bits, and outputs 32 bits. It consists of 3
elements: Expansion (E), Substitution (S) and Permutation
(P). The Expansion is a fixed function that takes a 32-bit
input and expands it to 48 bits. The function computes the 48-
bit result of E (Rj − 1) ⊕ Kj. These 48 bits are viewed as 8 6-
bit elements, which pass through 8 (different) S-boxes. Each
of these S-boxes represents some nonlinear function, which
is a lookup table that maps a 6 bits input to a 4 bits output.
The details of all the functions and transformations are found
in the above specifications. CBC mode processes a plaintext
message of m blocks P1, P2, . . . Pm and produces m cipher-
text blocks C1, C2, . . . , Cm by Cj = DES (Pj ⊕ Cj − 1),
j = 1,2, . . . , m, where, by definition, C0 = IV.

We point out the fact that side channel attacks that
exploit information from memory access patterns. There-
fore, if the DES S-boxes are lookup tables that reside in
memory, and software accesses directly, the resulting imple-
mentation is considered susceptible to side channel attacks.
Indeed, this is the case with the OpenSSL implementation.
The same is true, of course, for AES, the presence of
AES-NI eliminates the need to use lookup tables for AES
(Fig. 21.1).

21.3 Multi Block Approach for DES

Processing multiple independent messages in parallel, using
modern SIMD architectures, improves the resulting per-
formance significantly. Examples with some cryptographic
algorithms are shown in [15–17] for hashing. Using SIMD
is not the only way to introduce software pipelining in order
to turn latency bounded computations to throughput bounded
computations. For example, consider AES-CBC encryption,
which is essentially a serial mode. References [6, 7] show
how to process multiple messages in parallel with this mode
(in the presence of AES-NI), to get the performance of
parallelizable modes of operation. Reference [18, 20] shows
a technique that gains a 3× speedup factor for CRC32
computations when a single message is broken (logically)
to three chunks, computations are done on these chunks
independently so that the processor’s pipeline is filled up, and
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Fig. 21.1 Outline: DES in CBC mode
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in the end, the three results are combined to a single CRC32
value by using some mathematical transformation.

We show here how to apply this approach, which we
call “Multi Block DES”, for DES (and 3-DES) cipher. Our
method processes several messages in parallel, at the cost of
some added overhead of “transposing” the inputs when they
are consumed from memory, in order to make them ready
for processing with SIMD instructions. Then, the SIMD
capabilities of modern processors can be leveraged. The
overall result is significant performance gains.

Transposing: To illustrate the transposing overhead, con-
sider a single message M, pointed to by the pointer p.
To encrypt M in CBC mode, it is possible to consume
consecutive blocks (of 64 bits) and process them. Now,
consider two message M1, M2, with two pointers p1, p2.
Suppose that we wish to encrypt both messages in parallel,
using a SIMD architecture with 128-bit registers (xmm’s).
This requires placing two 64-bit blocks B1, B2, of M1, M2,
respectively, in a single xmm register, say xmm2. B1 and B2
are read (loaded) from different pointers, into registers, say
xmm0, xmm1, populating the low halves of these registers.
Subsequently, we need to appropriately shuffle the two 64-
bit contents of xmm0, xmm1 into the single xmm2. The
following is a code sequence is an example:

vmovdqu (%rsi), %xmm0

vmovdqu (%rdi), %xmm1
vpshufd $0x4e, %xmm1, %xmm1
vpblendd $0x0c, %xmm0, %xmm1, %xmm2

Of course, a more efficient implementation would read
two blocks from each pointer, into xmm1, xmm2, and shuffle
the contents of these registers into two xmm registers with a
similar software flow. The following is a code sequence is an
example.

vmovdqu (%rsi), %xmm0
vmovdqu (%rdi), %xmm1
vpunpcklqdq %xmm0, %xmm1, %xmm2
vpunpckhqdq %xmm0,%xmm1, %xmm3

In the context of DES, the algorithm actually processes
two halves of the block independently. Denote B1 = [b1, a1]
and B2 = [b2, a2], where a1, a2, b1, b2 are the 32-bit halves.
An efficient implementation would place these halves in two
xmm registers, xmm0, xmm1, as

xmm0 = [0, 0, b2, b1], xmm1 = [0, 0, a2, a1]

Obviously, it is more efficient to read in 4 blocks and
deposit populate the respective halves in 2 xmm registers,
in a way that populates them entirely (Fig. 21.2).

Transposed PT0

R0,0

R1,0

L0,0

L1,0

K1

f-
function

K2

f-
function

R16,0

Repeat up to round 16

Transposed CT0

IV0

IV for the 1st

block; previous
ciphertext for
subsequent
blocks.

x
o
r

x
o
r

x
o
r

L16,0

Transposed PT1

Vectorized Initial Permutation

R0,1

R1,1

Repeat n buffers

L0,1

L1,1

K1

f-
function

K2

f-
function

R16,1

Repeat up to round 16

Transposed CT1

Vectorized Final Permutation

IV1
x
o
r

x
o
r

x
o
r

L16,1

Transposed PTn

R0,n

R1,n

L0,n

L1,n

K1

f-
function

K2

f-
function

R16,n

Repeat up to round 16

Transposed CTn

IVn
x
o
r

x
o
r

x
o
r

L16,n

Fig. 21.2 Outline: DES in CBC mode, with a Multi Block implementation
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vmovdqu (%rsi), %xmm0
vmovdqu (%rdi), %xmm1
vpunpckldq %xmm0, %xmm1, %xmm2
vpunpckhdq %xmm0, %xmm1, %xmm3

SIMD processing: Having the input organized in halves
blocks on several registers, allows the encryption process to
be done in parallel using SIMD instructions. Implementing
the Initial Permutation and Final Permutation on the registers
is easily done using shift, logical AND and XOR instructions
done using SIMD on double word chunks (32- bit, half block
data). The “f” core function implementation consists of three
main phases. The first phase, E-phase is done using simi-
lar SIMD instructions. Both S-phase and P-phase, requires
constants to be tailored to their use model. S-phase includes
substation of each 6-bit of input to 4-bit according to the 6-
bit element of the block. In order to prevent each element of
each block from accessing S-box table serially, we load part
of the S-box table to a register, permuting several elements
of several different blocks in parallel. Result register of this
permutation, is eventually blended in using mask registers,
deciding whether the permutation was done with the correct
part of the S-box table. Iterating through all part of the S-
box table, resulting in a final result registers, with all results
blended between all result registers, covering all S-box table
constants. This technique, available using Intel AVX512 Ex-
tension. Using AVX512, we are able to process up to 8 halves
blocks in a single register, storing each 6-bit element, in a
single bytes, eventually permuting 8 different elements of 8
different halves blocks. Using AVX512 registers, this permu-
tation can load big portions of the S-box table, and within
16 iterations of permutations, whole S-box table is fully
loaded the needed permutations covering all options of input
result with output register of the S-phase. This process can
be parallelized with more registers doing same permutations,
over the loaded S-box part each time. This process done with
preparing the S-box table of constants to fit for the SIMD
instructions used accordingly. After S-phase is done, using of
P-box prepared constants in advanced and additional SIMD
instructions implementing P-phase in parallel to all halves
blocks.

This approach eliminates the needed memory accesses
depending on input, removing all branches or cache accesses
that relies on any secret information, supplying resilience
for software side channel attacks. In comparison to different
Multi Blocks approaches implemented on other schemes,
this solution eliminate the memory access dependency as part
of the encryption algorithm itself, using the wide registers to
gain both performance and security features. This is enabled
due to the total small size of the S-box compared to the
registers size.

Remark 1: The technique detailed here is using Intel latest
AVX512 Extension, found on architecture codename Sky-
lake Server. This technique could be downgraded to fit for
AVX2 extension, first introduced on Intel architecture co-
dename Haswell. Using AVX2, will result in less parallel
streams processed, bigger number of iterations done on
processing S-phase of the “f” core function and additional
costs. These additional costs withdraw the use of DES
CBC mode of operation using Multi Block approach
from performance view. Additional security benefit is till
gained and describes later on this paper.

Remark 2: The use of AVX512, as similar to remark
1, is first introduced on Intel server processors (Intel
Architecture Codename Skylake). Additional future
AVX512 instructions, announced to public, including
AVX512 VBMI instructions. These future instructions
will give extra performance boost to the technique used
in S-phase using AVX512 instructions, allowing byte
permutations over AVX512 register (512 bit).

Remark 3: The method described in this section us re-
ferred to DES CBC mode of operation using Multi Block
approach. Similar implementation, excluding the trans-
pose costs, could be implemented on DES ECB mode
of operation for single input data stream. DES ECB
mode of operation will require additional instructions
splitting the blocks in halves and uniting them in the
end, though, this implementation will result in better
performance boost than CBC Multi Block, due to the
redundancy of the transpose costs compared to added
instructions.

21.4 Results

This section reports the performance results of our study.
For this study, we wrote new optimized code the algorithms
discussed above. The measure workload was the encryption
of 8 KB inputs, and we compare the performance to that of
the legacy code as appears in OpenSSL (version 1.0.2k). We
report results for AVX2 and for AVX512 based implementa-
tions. The experiments were carried out on an Intel server
processer, Intel Xeon Processor E3-1230-v5 (Architecture
codename Skylake), that supports all the architectural exten-
sions mentioned above.

The Results are shown in Fig. 21.3. A slowdown factor
of 0.79× is achieved by using the AVX2 solution. With
AVX512, additional ISA and wider registers result in positive
speedup factor, reaching 3.2×. The comparison is made
against the legacy code, used in the recent OpenSSL version
(1.0.2k). All experiments were conducted using Intel Xeon
PHI Processor 7230, configured with static frequency of
1.3 GHz. We note that our code executes in constant time: it
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Fig. 21.3 Optimized DES
implementations through Multi
Block processing. Measurements
taken on input messages of size
8192 Bytes (total). The results of
code that leverages AVX2 and
AVX512 are compared to the
results of the code implemented
on OpenSSL (1.0.2k)
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does not use lookup tables for computing the results of the S-
boxes. It is therefore side channel protected. Additional DES
Multi Block AVX2 solution can be implemented, gaining
extra performance speedup but lacks side channel protection
and therefore is not discussed on this paper.

21.5 Conclusions

The solution described here, provides a new implementation
for the legacy cipher DES. It offers a side channel protected
implementation which is 3.2× faster than the (unprotected)
implementation of OpenSSL. Our code was published and is
now part of the Intel IPSEC MB public code library [19].

The new approach can be adapted and adjusted to fit
for wider area of new solution and defense mechanisms for
protecting versus software side channel attacks, eventually
providing a new methodology of using the updated hardware
and architectures used in the market.
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