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Abstract

Service providers depend on the ability to host, analyze,
and exchange the personal data of users. Legal and con-
tractual frameworks aim to protect the rights of users re-
garding this data. However, a confluence of factors render
these rights difficult to guarantee. This paper evaluates the
potential of blockchain technology as a mechanism for
achieving transparency and accountability in the realm of
personal data collection.
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19.1 Introduction

Unless a user takes extraordinary protective measures, typ-
ical computer use results in the creation of vast quantities
of personal and private data and metadata [1–4]. Each day,
people upload terabytes of data to storage platforms like
Dropbox, Google Drive, and social networking sites like
Facebook. In addition, environments such as Google and
Windows 10 passively collect even greater quantities of
metadata in the form of keystroke dynamics, usage duration
logs, and the like. By applying machine learning and data
analytics to this data and metadata, service providers are able
to refine the interfaces and content of their products, and
derive profit through targeted advertising platforms such as
Google’s AdWords [3, 4, 10].
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The benefits both user and provider enjoy in this ar-
rangement are difficult to overstate. Users have access to
a wide range of robust, free-to-use internet services, and
service providers procure significant profits [5–7]. Yet, with
regular data breaches in the news and an increasing public
awareness of the depth of information that can be gained
through data mining, this arrangement has become a cause
of deep concern for users fearing that their privacy may be
compromised or their data misused.

Privacy policies and other mechanisms behold service
providers to certain practices regarding the data they collect
[1–4, 8]. These practices limit the circumstances under which
they may retain a user’s personal data, share the data with
third parties, and so on. However, several challenges impede
the efficacy of these agreements and associated enforcement
mechanisms. The users may find the privacy policies difficult
to understand and draw unwarranted conclusions about the
degree to which their data really is private. The service
provider may inadvertently or intentionally violate policy
without leaving any sort of record of having done so [9].

Our motivation is to better understand the specific data
collection and use practices of service providers according
to a close reading of the relevant policy agreements, and
propose a mechanism by which a greater degree of provider
transparency and accountability may be achieved to aid in
enforcing said policy. To this end, we will examine the appli-
cation of blockchain technology as an accounting mechanism
for personal data collection, retention, and exchange. We will
see that defining a set of data transaction types and recording
these in a publicly verifiable ledger helps to achieve this
accountability.

The organization of the paper is as follows. Section II
establishes the preliminary concepts of data collection and
blockchain technology; section III discusses the limitations
of allowable use of collected data. In the fourth section we
present the concept of our proposed solution for applying
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blockchain to personal data lineage, while in the fifth we
touch upon related research. The sixth section concludes the
paper.

19.2 Preliminaries

19.2.1 Data Collection Scope

Necessary to any proposed scheme is a realistic view of
the breadth and depth of data collected. To that end, we
examined the data collection policies of four prominent
service providers: Apple, Facebook, Google, and Microsoft.

Each of these entities differ in terms of the business model
under which they operate and the nature of services they
provide. Nonetheless, we discover a uniformly maximalist
approach to the type of data they each afford themselves
license to collect, with noteworthy differences.

All four provide cloud-based repositories for data to be
stored privately or shared with others. The providers reserve
the right to analyze both varieties. So too do each of these
providers log and analyze metadata in many or all of the
following forms: frequency and duration statistics; details
of the hardware, operating system, and file system contents
of the device used to access a service; location data; data
generated by a device’s input peripherals such as keyboards,
touch screens, microphones, and webcams; and other sources
too numerous to list exhaustively [1–4].

Many web-based services connect and interact with one
another. This offers providers additional data collection vec-
tors. For example, Facebook owns the virtual-reality plat-
form Oculus and collects data generated by use of that
platform [1]. In general, using one’s identity on one of
these platforms to access another service allows the provider
to collect and link data from each service [1, 2]. Apple
and Microsoft distinguish themselves here by enumerating
safeguards against linking the data collected from third party
or subsidiary services to the user’s identity [3, 4].

In the case of social media platforms, information pro-
vided about one user by another user may be collected.
For example, if Alice uploads a photo of Bob to Facebook,
Facebook can link the photo with information it has collected
directly from Bob [1].

Additionally, through use of “unique application num-
bers”, Google can link together multiple accounts that have
been accessed through a single app installation. This may
indicate multiple accounts held by an individual, or a con-
nection between multiple individuals who used the same
device [2]. In its own privacy policy, Microsoft specifies that
it declines to collect this particular type of data [3].

Though noteworthy differences exist, four privacy poli-
cies we examined all took a broad approach to delineating
the types of data their policies permit them to collect, and the
uses to which the data can be put.

19.2.2 Blockchain

Blockchain is the distributed ledger technology which guar-
antees the value and controls the inflation rate of Bitcoin. It
achieves this through mechanisms such as proof of work and
mutual consensus [11].

All Bitcoin transactions are recorded in the blockchain
ledger. A transaction records an amount to be transferred
from one Bitcoin “wallet” to another. Since a given wallet’s
balance is calculated as the running summation of ledger-
recorded transactions involving that wallet, the ability to
guarantee the validity of each transaction guarantees the
currency’s viability and value [11, 12].

The actual process of recording new ledger transactions
takes place in a distributed manner, with multiple nodes
competing to conduct the validation process necessary to
add the transaction to the ledger. To win the competition, a
node must solve a computationally difficult problem (“proof
of work”), the answer to which can be evaluated by other
competing nodes for correctness. Nodes will attempt to
append or “chain” new transactions to previous transactions
that they agree are correct (“mutual consensus”). Unless the
majority of blockchain nodes are controlled by hostile actors,
this system guarantees the validity of ledger transactions [11,
12].

We are particularly interested in blockchain’s ability to
facilitate trustworthy record keeping in a distributed environ-
ment.

19.3 Data Usage Limitations

We hope to propose a mechanism for ensuring transparency
and accountability regarding personal data collection. To this
end, we must understand what rights and limitations exist
regarding the data collection sphere. These are the limitations
whose enforcement we intend to support.

Insofar as a user licenses through agreement the
provider’s right to various uses of their data, we turn again
to the privacy policies of four prominent providers. We also
examine the EU-U.S. Privacy Shield, a self-certification
framework that prescribes additional obligations on the part
of the provider.
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19.3.1 Limitations Through Organization
Policy

Although the four privacy policies we examined tended
towards similarity regarding the breadth of data the providers
enjoy license to collect, greater distinction can be discovered
in the uses to which the data is put. Google and Facebook
make significant use of the ability to draw connections
between a user’s activity across different services, platforms,
and accounts in order to build a unified data profile [1, 2].
By contrast, Microsoft and Apple may decline to collect this
information; in Apple’s case, the privacy policy elaborates
the safeguards Apple employs to confound the potential of
doing so [3, 4].

Similarities exist as well. Each privacy policy reserves the
provider’s right to transfer a user’s data to a third party entity
for data processing purposes. We are assured in each case
that their privacy agreement extends to any third party thus
employed. None of the policies made it clear how the identity
of these potential third parties can be discovered [1–4].

The four providers distinguish between sensitivity levels
of the data they collect, subjecting more sensitive data to
more stringent protective measures. For example, Facebook
promises not to display advertisements based on a user’s
medical condition. Apple makes a broad distinction between
“personal” and “non-personal” data. The policies provide
little in the way of a concrete methodology for evaluating
and assigning the sensitivity level of data collected [1–4].

Regarding the issue of data retention, each provider’s
policy stipulates that the provider will remove any individual
user datum upon request. However, each also includes a
similar caveat, providing for circumstances in which they
may fail to fulfill the request. Facebook may decline to
remove data if a “good faith belief” implies that the infor-
mation could be “necessary to . . . protect ourselves, you
and others” [1]. Google may not remove information that
resides on their backup systems [2]. Microsoft may elect
to “access, transfer, disclose, and preserve personal data”
when it believes doing so will “protect our customers” and
“protect the rights or property of Microsoft” [3]. Apple can
retain data for a “longer retention period” than specified in
their privacy policy if doing so is “permitted by law” [4].
We discovered no official company documentation regarding
how the decisions to retain or delete data are made.

19.3.2 Limitations through the EU-U.S. Privacy
Shield

Many service providers transfer data across state and national
boundaries, and in doing so fall subject to a variety of

regional privacy laws too numerous to summarize here. In
general, European Union member nations possess privacy
laws of greater stringency than the U.S [13]. This presents
EU nations with the challenge of protecting the privacy rights
of its citizens while permitting them to use services that may
result in their data residing in more unrestricted nations such
as the United States. The EU-U.S. Privacy Shield framework
addresses this dilemma [8].

The framework operates under the principle of self-
certification. An organization self-certifies that it meets the
Privacy Shield’s requirements. Among other specifications,
these require a member organization to make available
a transparent and complete privacy policy, including an
exhaustive list of all the uses to which the collected data
is put. They must provide a mechanism for responding to
user complaints if deviations from the policy should be
suspected, and only transfer user data to organizations with
equal or greater privacy protection [8]. Microsoft, Facebook,
and Google are Privacy Shield member organizations; Apple
is not [14].

The specifications of the Privacy Shield strike a balance
between permissiveness and restrictiveness. This makes in-
tuitive sense. Given the intent of bounding allowable uses of
personal data, such a framework must be restrictive in some
degree in order to perform any useful function. Conversely,
fewer organizations will find their mode of operation com-
patible with overly restrictive regulations, and will decline to
adopt the certification.

It is easily understood that the Privacy Shield derives its
authority from the degree to which a broad number of U.S.
organizations attain membership. EU member nations cannot
exert any legal authority over U.S. organizations, but an EU
data protection authority (DPA) may prohibit data trade with
non-certified U.S. organizations. It becomes less advanta-
geous to exert such prohibitions in a circumstance where
few U.S. organizations are Privacy Shield members, since
it prohibits trade with a vast majority of potential business
partners. On the other hand, trade restrictions imposed by
DPAs provide a market incentive for U.S. organizations to
obtain certification.

A weakness of the Privacy Shield framework stems from
our core problem of accountability. How might a user de-
termine, for example, that their data was transferred to a
third party that failed to fulfill the “equal or greater” privacy
standard, or that the provider neglected to delete data upon
request? The framework might be strengthened by insisting
the adherence of member organizations to a mechanism
guaranteeing transparency in this regard, supposing such
a mechanism could be implemented with sufficiently non-
restrictive impact.
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19.4 Blockchain for Personal Data

How can blockchain be used to promote transparency and
accountability in the data collection sphere? Here we will
outline the general concept of how we propose to apply the
technology.

19.4.1 Premise

For our purpose, we consider the Bitcoin concept of the
“wallet”. For Bitcoin, the blockchain ledger supports two
simple wallet operations: adding or removing funds to and
from a wallet. These wallets are pseudonymous and do not
reveal the identity of their owner.

We propose to extend the concept of the “wallet” into a
hierarchy of data repositories (DRs). At the higher level, a
master data repository (MDR) refers to a service provider’s
primary or backup storage; unlike Bitcoin’s wallets, the
MDR’s owner is publicly known. Sub-DRs correspond to
the individual users whose data falls under the provider’s
possession.

In this context, our blockchain should support the follow-
ing transaction types: WRITE, COPY, ERASE, and PRO-
CESS. These transactions contain information corresponding
to the relevant DR, user datum, and transaction time. Tracing
these transactions reveals a sequential chain of custody for

each datum, allowing data lineage to be established. The ser-
vice provider exposes an interface for users or enforcement
entities to examine the ledgers and gain knowledge of these
custody chains..

Examples of how the flow of data translates into ledger
transactions can be seen in Fig. 19.1. Provider 1 (P1) col-
lects data from users, which result in a series of WRITE
transactions in the provider’s primary storage, MDRP. From
MDRP they are also stored in backup, resulting in a COPY
entry for MDRP and a WRITE entry for the backup storage,
MDRB. P1 associates its data with the users that originated
them, so we also see a series of COPY operations for
MDRP and corresponding WRITE operations for the SDRs
corresponding to each user.

Suppose P1 outsources analysis of its data to a third
party, P2. The transfer required for this outsourcing results in
COPY transactions for P1’s MDR, and WRITE transactions
for P2’s. Additionally, we will see PROCESS transactions
corresponding to P2’s MDR, indicating the nature of the
operations performed on the data.

Transactions of type PROCESS also indicate instances
where processing data results in the creation of derived
data distinct from—but based upon—the original data.
In this case, the PROCESS ledger entry will indicate
both the original data and any data derived from the
original data, allowing data lineage to be traced through
derivations.

Provider 1 Provider 2

ERASE COPY/WRITE COPY/WRITE

WRITE

User1 User2 UserN

SDRNSDR2SDR1

MDRPMDRB

PROCESS

MDR

COPY/WRITE

Fig. 19.1 How the flow of data translates into ledger transactions
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The complete contents of a ledger transaction include the
following:

1. Transaction timestamp
2. Data identifier
3. Transaction type
4. Source MDR
5. Destination MDR
6. Process performed (if applicable)
7. Derived data identifier (if applicable)

This design provides accountability for several typical
data collection scenarios.

19.4.1.1 What Data Has Been Collected?
We can examine the ledger of WRITE operations that a
given provider has recorded to see exactly what data they
have collected about us. The hierarchical nature of the data
repositories give us an access control mechanism to allow a
user to track the data belonging to their SDRs alone, whereas
an enforcement agency may be given broader access to MDR
ledger information.

19.4.1.2 Has My Data Been Deleted?
The ERASE ledger entries allows us to verify that data re-
quested for removal has indeed been removed. Since copying
data from primary storage to backup storage results in a
COPY and WRITE operation in the two respective high-level
DRs, we can verify that the data no longer resides in backup
by finding the corresponding ERASE entry in the backup DR
ledger if necessary.

19.4.1.3 WithWhomHasMy Data Been Shared?
An examination of the COPY entries allows us to trace
each instance in which our data was transferred to a third
party DR. The third party may be audited for corresponding
ERASE transactions to ensure they have not retained any
data.

19.4.1.4 HaveMultiple Accounts of Mine Been
Correlated?

Because low-level DRs must correspond to individuals, data
collected from disparate but correlated accounts must belong
to the same low-level DR. We are thus able to confirm the
extent to which our activity on various accounts and services
have been compiled into a single data profile.

19.4.1.5 What Exactly Are you Doing with My
Data?

Because Privacy Shield-compliant organizations must pub-
lish an inclusive list of applications for which our data is
being used, we speculate that each such organization could
publish a list of keywords associated with each. If Google

analyzes our search strings for use in AdWords, the corre-
sponding PROCESS ledger entry may include the keyword
“ADWORDS” or, more generally, “MARKETING”. This
allows users to verify their data are being used exclusively
for the purposes for which they have been licensed.

19.4.2 Challenges of Implementation

There exist a few generic implementation challenges when
it comes to generalizing blockchain from cryptocurrency
to other applications. Several scale-related obstacles could
affect the viability of implementing our proposal: the Bitcoin
network can handle a maximum of seven transactions per
second; each copy of the blockchain ledger occupies 50 gb of
storage space; the process of validating new transactions and
adding them to the chain consumes energy on the order of
$15 million USD per day. A blockchain capable of handling
the number and frequency of transactions associated with
big data collection and processing would be prohibitively
resource-intensive if implemented using the same strategy
[12, 15, 16].

A few strategies can be leveraged to mitigate the issue of
scale. The major factor that causes the Bitcoin network to
perform slowly and consume great amounts of energy is the
computationally intensive task necessary to validate a block
of transactions, the “proof of work” (PoW). Alternatively, we
can make use the faster and less expensive “proof of stake”
(PoS). Rather than competing to solve a computationally
difficult problem, nodes are awarded the right to add transac-
tions to the chain using a lottery-based system [12]. Kiayias
et al. present a provably secure implementation of the PoS
model [17, 20].

The Bitcoin network uses a single, permissionless ledger,
but this may not be necessary in our case. It may be rea-
sonable to allow each provider to implement a local, closed-
participation blockchain that meets a given set of require-
ments. Using such a stratified approach would help alleviate
scaling issue of the storage size required for the ledger itself,
since service provider A would not need to store a copy
of service provider B’s data transactions. This may weaken
the efficacy of the design since a provider, controlling all
of the nodes participating in the blockchain, could generate
counterfeit ledger entries. Nonetheless, an internally dis-
tributed blockchain protects against rogue individuals within
an organization attempting to falsify records, and against
security breaches in which a minority of participating nodes
fall under hostile control.

Another issue is the variety of datatypes we see collected,
which range from small strings of text to large video files.
Hashing can be used to uniformly transform these data into
a fixed, manageable size. Existing blockchain implementa-
tions make use of this strategy [15]. The strategy could be
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extended from individual data to datasets. The total set of all
data pertaining to a user hashes to a single unique value; any
subset of that data transferred or operated upon would hash
to a single value as well.

Though beyond the scope of this research, a more detailed
design would be needed in order to formally evaluate the
efficiency, and therefore viability, of our proposed system.

19.5 RelatedWorks

In the course of our research, we encountered these proposed
personal data accountability mechanisms, and applications of
blockchain besides cryptocurrency.

Mehmood et al. provide a useful survey of the various
strategies proposed and in use for augmenting privacy in
the big data context. These consist largely of cryptographic
and anonymization techniques. We store user data in an
encrypted form to protect against data breaches, and we
present data in an anonymized form so that it can be analyzed
without revealing the identity of the data’s originator. A
discussion of integrity verification obliquely touches upon
the issue of accountability, but only in terms of providing
a mechanism to guarantee the data has not been altered [18].

These concerns, while important, may at odds with the our
use cases. Generalizing and suppressing datasets inevitably
leads to a loss of integrity in the original dataset; this trade-
off may be appropriate when exposing the data to third
parties for analysis, but users expect the data we upload to the
cloud to be preserved exactly as we created it. Encryption,
especially when implemented with a multitude of keys rela-
tive to the user’s identity or attributes, introduces additional
overhead that does not lend itself well to the sort of parallel
computing strategies big data consumers use to expediently
process data.

Gao and Iwane [19] present a model for social networking
with robust privacy features. The model works by intro-
ducing trusted intermediaries between social networking
providers that guard a user’s data and only permit access
to the data as specified by the user’s preferences. These
intermediaries or “virtual-network control centers” (VCCs)
facilitate data transfer between participating social media
organizations (POs). The VCCs maintain an anonymized
copy of the user data to supply to other POs upon request,
should the request be permissible given the access controls
assigned to the user data. The participating organization must
implement connectivity with these VCCs and expose the
implementation to the user, who may decline to make use
of the system and simply expose their data directly from the
PO using the traditional approach. Though Gao and Iwane
discuss their model in terms of intentionally created data,
the approach likely generalizes to automatically collected

metadata as well; a user could, for example, toggle “location
history” as a private field in the VCC interface, which
will then block social media platforms from sharing this
information.

Gao and Iwane’s approach addresses the accountability
concern with regards to data transfer between parties: if a
social media provider wishes to transfer data to a third party
entity, it must do so through user-obedient VCCs. It does
not, however, promote transparency regarding initial data
collection or data retention. The VCC has no awareness of
what a PO may be doing with a user’s data until a situation
arises for which the VCC must act as intermediary.

A potential issue arises from how the VCCs themselves
will be implemented, whether through centralized trusted au-
thorities, or an open-participation distributed model similar
to certain blockchain implementations. Relying on a trusted
third-party to act as intermediary for the huge amounts
of data characteristic of social media may create a central
bottleneck and point of failure, whereas a distributed model
introduces security and privacy concerns.

Setting big data privacy and accountability aside [21, 22],
we examine how blockchain technology has been applied
to spheres other than cryptocurrency in order to achieve ac-
countability. The organization Everledger attempts to apply
distributed ledger technology to luxury goods such as dia-
monds and fine art. The organization Factom is developing
a protocol that they hope will be used to apply distributed
ledger methodology in any sphere where record-keeping
accountability is needed [15]. Factom and Everledger apply
to scenarios in which records are already being kept and
trustworthy records must be separated from counterfeit or
otherwise illegally-produced records. In the realm of per-
sonal data collection, we are concerned not only with the
trustworthiness of records, but with ensuring that records are
being kept in the first place, and kept in a way that provides
data lineage transparency.

As well as use and retention, one of our primary goals
is achieving to achieve accountability with regards to data
lineage. Backes et al. propose a framework for building data
lineage transparency into data exchange at the bit level. This
is achieved through “robust watermarking”. A data sender
alters the data before sending it so that the data contains
a detectable watermark uniquely associated with the data
receiver. The watermark has the following properties: it
preserves the original data’s information in such a way that
it can be processed according to the original intent, and can
coexist with multiple other watermarks such that the order in
which they were applied to the data can be discerned [23].

For data lineage, this is in ways a superior approach to our
proposed blockchain model, since it functions at the protocol
level and avoids the significant overhead of maintaining
transaction ledgers; the ledger information is instead stored
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in the data itself. Our scheme could perhaps be augmented
if the concept of robust watermarking could be extended to
describe not just data transfers, but various distinguishable
data processing operations.

19.6 Conclusion

Computer users enjoy access to a range of robust and inex-
pensive services and applications. The providers of these rely
upon the ability to collect, share, and analyze large amounts
of personal data in order to financially support themselves
and deliver quality products. Users have the expectation
that providers will adhere to a set of rules regarding the
collection, use, and retention of their data, but these rules
are difficult to enforce given the lack of a mechanism
guaranteeing transparency and accountability regarding the
life of a given piece of data.

We turn to the distributed ledger technology of blockchain
to provide such a mechanism. By suggesting a logical orga-
nization of collected data into data repositories, and defining
a simple set of data transactions between them, we have
shown how a publicly visible ledger of these transactions
would facilitate data accountability and empower enforce-
ment agencies.

References

1. Data Policy. Facebook, 2017, www.facebook.com/about/privacy
2. Apple Legal—Legal—Privacy Policy—Apple. Apple, Apple Le-

gal, 2017, www.apple.com/legal/privacy/en-ww/
3. Privacy Policy—Privacy & Terms—Google. Google, 2017,

www.google.com/policies/privacy
4. Privacy—Microsoft Privacy. Microsoft, 2017, privacy.

microsoft.com/en-US
5. Google’s ad revenue from 2001 to 2016 (in billion U.S.dollars).

Statista, 2017, www.statista.com/statistics/266249/advertising-
revenue-of-google

6. Tam, Donna. Facebook processes more than 500 TB of data daily.
CNET, 2012, www.cnet.com/news/facebook-processes-more-than-
500-tb-of-data-daily

7. J. Dean, S. Ghemawat, MapReduce: Simplified data processing on
large clusters. Commun. ACM 51(1), 107–113 (2008)

8. Privacy Shield Framework. Privacy Shield, 2017,
www.privacyshield.gov/EU-US-Framework

9. Minelli, Michael, et al., Big Data, Big Analytics: Emerging Busi-
ness Intelligence and Analytic Trends for Today’s Businesses,
Hoboken, Wiley, 2012, pp. 151–167

10. Your guide to AdWords. Google, 2017, sup-
port. google.com/adwords/answer/6146252hl=en&ref_topic=311
9071,3181080,3126923

11. Shute, Jeff, et al., F1: the fault-tolerant distributed RDBMS sup-
porting Google’s Ad business, in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, 2012,
pp. 777–778

12. Protocol Buffers. Google, 2017, developers. google.com/protocol-
buffers/docs/overview

13. C. Garcia, Demystifying MapReduce. Procedia Computer Science
20, 484–489 (2013)

14. Nakamoto, Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem, Bitcoin, 2008, bitcoin.org/bitcoin.pdf

15. Judmayer, Aljosha, et al, Blocks and Chains: Introduction to Bit-
coin, Cryptocurrencies, and Their Consensus Mechanisms, 2017

16. Greenleaf, Graham. Global Data Privacy Laws:
89 Countries, and Accelerating. Privacy Laws &
Business International Report, no. 115, 2012.,
papers.ssrn.com/sol3/papers.cfm?abstract_id=2000034

17. Participant Search. Export.gov, International Trade Administra-
tion, 2017, www.export.gov/participant_search

18. S. Underwood, Blockchain beyond Bitcoin. Commun. ACM
59(11), 15–17 (2016)

19. J. Yli-Huumo et al., Where is current research on Blockchain
technology?-a systematic review. PLoS One 11(10), e0163477
(2016)

20. A. Kiayias et al., Ouroboros: A provably secure proof-of-stake
Blockchain protocol. Advances in Cryptology 10401 (2017)

21. Mehmood, Abid, et al, Protection of big data privacy. Access,
IEEE, vol. 4, 2016, pp. 1821–1834

22. Gao, C., & Iwane, N., A social network model for big data privacy
preserving and accountability assurance. in Consumer Communi-
cations and Networking Conference (CCNC), 2015 12th Annual
IEEE, pp. 19–22

23. Backes, Michael, et al, Data lineage in malicious environments. in
Dependable and Secure Computing, IEEE Transactions On, vol.
13, no. 2, 2016, pp. 178–191

http://www.facebook.com/about/privacy
http://www.apple.com/legal/privacy/en-ww/
http://www.google.com/policies/privacy
http://microsoft.com/en-US
http://www.statista.com/statistics/266249/advertising-revenue-of-google
http://www.cnet.com/news/facebook-processes-more-than-500-tb-of-data-daily
http://www.privacyshield.gov/EU-US-Framework
http://google.com/adwords/answer/6146252hl=en&ref_topic=3119071
http://google.com/protocol-buffers/docs/overview
http://bitcoin.org/bitcoin.pdf
http://papers.ssrn.com
http://export.gov
http://www.export.gov/participant_search

	19 Protecting Personal Data with Blockchain Technology
	19.1 Introduction
	19.2 Preliminaries
	19.2.1 Data Collection Scope
	19.2.2 Blockchain

	19.3 Data Usage Limitations
	19.3.1 Limitations Through Organization Policy
	19.3.2 Limitations through the EU-U.S. Privacy Shield

	19.4 Blockchain for Personal Data
	19.4.1 Premise
	19.4.1.1 What Data Has Been Collected?
	19.4.1.2 Has My Data Been Deleted?
	19.4.1.3 With Whom Has My Data Been Shared?
	19.4.1.4 Have Multiple Accounts of Mine Been Correlated?
	19.4.1.5 What Exactly Are you Doing with My Data?

	19.4.2 Challenges of Implementation

	19.5 Related Works
	19.6 Conclusion
	References


