
101Modified Huffman Code for Bandwidth
Optimization Through Lossless Compression

Alexander Hansen and Mark C. Lewis

Abstract

In the interest of minimizing bandwidth usage, a modified
Huffman code structure is proposed, with an accompa-
nying algorithm, to achieve excellent lossless compres-
sion ratios while maintaining a quick compression and
decompression process. This is important as the usage
of internet bandwidth increases greatly with each passing
year, and other existing compression models are either too
slow, or not efficient enough. We then implement this data
structure and algorithm using English text compression as
the data and discuss its application to other data types.
We conclude that if this algorithm were to be adopted
by browsers and web servers, bandwidth usage could be
reduced significantly, resulting in cut costs and a faster
internet.

Keywords

Compression · Bandwidth · Internet · Lossless · Space
optimization

101.1 Introduction

In 2016, over 96,000 petabytes of data were transferred
across networks in the world [1]. This is up from 72,000
petabytes in 2015, and 12 petabytes in 1998. Shaving off just
a kilobyte or even a few bytes off of every server response
could have a significant impact on total bandwidth when
requests are being processed en masse. We propose a quick,
lossless compression algorithm that could work on multiple
data types and minimize bandwidth usage.

A. Hansen (�) · M. C. Lewis
Trinity University, San Antonio, TX, USA
e-mail: ahansen2@trinity.edu

As memory and data storage device prices decrease every
year, it is becoming less and less important to be efficient in
space complexity. We seek to take advantage of this modern
trend by increasing the space complexity of the standard
Huffman code in exchange for a smaller compressed file
size. The majority of all traffic on the internet is either text,
image, audio, or video and these can all be tokenized and
used in Huffman encoding schemes. Because of this, our
proposed Huffman-based encoding could work with any of
these data types. Some extremely useful examples of text-
based contexts are Javascript, HTML, and CSS. This solution
could deliver compressed web languages very quickly and
efficiently, with extremely quick decompression.

101.2 Proposed Solution

101.2.1 Modified Huffman Code

From a high level perspective, the modified version of the
Huffman code we present has two major changes. The
addition of a variable data context, and the offloading of the
Huffman code itself into the implementation specification,
so the file does not have to store the code. The addition
of a data context has been discussed before, but it has not
been as large or offloaded in such a manner as ours is [2].
We also introduce a concept of a compression benefit. That
is, the benefit of compressing something big is more than
compressing something small.

The prototypical Huffman code encrypts English and uses
letters as tokens. The code itself will never be larger than the
amount of unique letters in the document. As the size of the
code itself is not important in our system, we want to choose
a less granular symbol than letters. Sticking with English
text, we could choose a word or small phrase. With these less
granular symbols, in our case words, we can then construct
a much larger tree based on the text. This tree should not be
based on one individual file, rather, a corpus based on some

© Springer International Publishing AG, part of Springer Nature 2018
S. Latifi (ed.), Information Technology – New Generations, Advances in Intelligent Systems and Computing 738,
https://doi.org/10.1007/978-3-319-77028-4_101

761

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77028-4_101&domain=pdf
mailto:ahansen2@trinity.edu
https://doi.org/10.1007/978-3-319-77028-4_101


762 A. Hansen and M. C. Lewis

subset of the English language as a whole. These subsets
should be similar in genre, providing a more accurate tree.
As an example, if one were to construct a Huffman code
from all papers submitted to a computer science journal and
then use that code to compress the next submitted paper,
it would probably do a decent job. If that code was then
used to compress all tweets made in the past hour, it would
not. This context of academic papers is then stored in the
compression/decompression program and used to compress
similar files in the future.

There is also the consideration of benefits. If the word
“a” happens frequently, it will end up towards the top of the
Huffman code and be compressed down to a very small size.
However, if we compress the word “the” down to that same
size, even if “the” is less frequent, we could end up with
a smaller file. The benefit of compressing “the” is higher.
We calculate the benefit of a symbol as the frequency which
it occurs times the size of that symbol. We then use these
benefit values instead of the normal frequency value used by
a standard Huffman code.

Decoding a file compressed in this manner is very quick
[3]. We also considered using different branching factors to
minimize the depth of the tree, but this turned out to have no
real impact on size.

101.2.2 Implementation Specifications

An encoded file consists of the context identifier, the com-
pressed data, and then any words that were not found in the
context at the end, uncompressed. This is necessary because,
as the contexts are not generated based on the input file itself,
it is possible for an input file to have symbols in it that are
not in the context. There will be a node in the Huffman code
that is in the least likely position, a very far leaf, that will
be a placeholder. The uncontained words are then stored in
their original form at the end of the file, in respective to the
placeholders. A malicious file could circumvent all available
contexts and contain a lot of words that no context contained
and cause a file expand instead of compressing. This would
be extremely unlikely and easily preventable.

The compression and decompression program would be
a Huffman code traverser with all of the contexts loaded
into it.

101.2.3 Advantages and Disadvantages

The solution to the problem of bandwidth optimization is
the primary advantage. This algorithm can cut down on file
sizes in transmission by immense amounts. This algorithm
also can be implemented easily, without much more diffi-
culty than a normal Huffman code. This is important, as

Table 101.1 Compression results in various contexts

Wikipedia Itself Similar data

With benefits 80.0 63.3

Without benefits 79.4 60.0

Table 101.2 Compression results in various contexts

Social media Itself Similar data

With benefits 78.2 79.3

Without benefits 72.3 70.0

Table 101.3 Compression results in various contexts

News article Itself Similar data

With benefits 83.9 62.1

Without benefits 81.2 60.1

the adoption of this algorithm would require browsers to
implement decoders and servers to implement encoders. It
is also adaptable to many formats and can provide many
contexts, allowing for the context to fit the input data very
well.

The size of the program that compresses and decom-
presses could get large as it must hold all contexts, but this
is not a large concern as the implementer could mitigate
this with other forms of compression or only hold the
necessary contexts. Corner cases do exist that could cause
bad compression rates, but are unlikely.

101.2.4 Results

We did implement this program and achieve good compres-
sion results (Tables 101.1, 101.2 and 101.3).

In all examples, the compression ratios are better when
the benefits of compressing a symbol are calculated. We can
postulate the reasons for these numbers based on the inherent
properties of the text, perhaps their likelihood to use the same
word more often, or longer words, as well.

101.3 Conclusion

We hope to promote the adoption of this technique by imple-
menting a more fully featured program, with the previously
mentioned optimizations for selecting the proper context,
handling frequent short phrases as one token, and providing
resources such as browser plugins to begin using it. We also
hope to implement tokenizers for other forms of audio such
as video, audio, and images, so that it can be compressed
as well.



101 Modified Huffman Code for Bandwidth Optimization Through Lossless Compression 763

References

1. Cisco Systems. Visual Networking Index. Available at: https://www.
cisco.com/c/en/us/solutions/service-provider/visual-networking-
index-vni/index.html, Accessed 10 Mar 2018

2. M.J. Weinberger, G. Seroussi, G. Sapiro, LOCO-I: a low complexity,
context-based, loss-less image compression algorithm, in Proceed-
ings Data Compression Conference, 1996, pp. 140–149 (1996).
https://doi.org/10.1109/DCC.1996.488319

3. C. Hong-Chung, W. Yue-Li, L. Yu-Feng, Memory-efficient and
fast Huffman decoding algorithm. Inf. Process. Lett. 69(3),
119–122 (1999). ISSN: 0020–0190. https://doi.org/10.1016/S0020-
0190(99)00002-2. http://www.sciencedirect.com/science/article/pii/
S0020019099000022

https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html
https://doi.org/10.1109/DCC.1996.488319
https://doi.org/10.1016/S0020-0190(99)00002-2
https://doi.org/10.1016/S0020-0190(99)00002-2
http://www.sciencedirect.com/science/article/pii/S0020019099000022
http://www.sciencedirect.com/science/article/pii/S0020019099000022

	101 Modified Huffman Code for Bandwidth Optimization Through Lossless Compression
	101.1 Introduction
	101.2 Proposed Solution
	101.2.1 Modified Huffman Code
	101.2.2 Implementation Specifications
	101.2.3 Advantages and Disadvantages
	101.2.4 Results

	101.3 Conclusion
	References


