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Abstract. We consider reputation systems in the Universal Compos-
ability Framework where users can anonymously rate each others prod-
ucts that they purchased previously. To obtain trustworthy, reliable, and
honest ratings, users are allowed to rate products only once. Everybody
is able to detect users that rate products multiple times. In this paper
we present an ideal functionality for such reputation systems and give
an efficient realization that is usable in practical applications.
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1 Introduction

Reputation systems provide valuable information about previous transactions
and are popular tools to measure trustworthiness of interacting parties. This
measurement relies on the existence of a large number of ratings for one specific
subject. But in most practical applications the process of rating reveals, besides
the actual rating, many information about the rater. Providers of reputation
systems use this information in many different ways, e.g. for profiling users,
which are not necessarily desired by the users. Moreover, users can feel compelled
to rate “dishonestly/benevolent” when they fear negative consequences from
negative ratings. Therefore, it is important that the process of rating does not
reveal more information than the actual rating. Besides that, reputation systems
need to be protected against various attacks to provide trustworthy, reliable and
honest ratings. These attacks include self-rating attacks (also known as self-
promoting attacks), Sybil attacks, whitewashing attacks, bad mouthing attacks,
ballot stuffing attacks, and value imbalance attacks. Both the privacy concerns
and the prevention of attacks are discussed frequently in the literature, e.g.
[1,8,13,17,20,21,23,24,26,27], albeit they are not considered simultaneously.
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Further important security properties for reputation systems are anonymity,
(public) linkability, traceability, and non-frameability, as discussed in [1,6,13,27].
Anonymity means that ratings of honest users are indistinguishable, whereas
public linkability requires that anyone can decide whether or not two ratings
for the same product were created by the same user. Also, ratings need to be
traceable: the identity of any rater can be determined by a designated System
Manager. In the course of this non-frameability guarantees that honest parties
are not blamed having rated some product, when they did not. The combination
of traceability and non-frameability enables penalizing dishonest behavior.

All previously mentioned works consider reputation systems in isolation,
although reputation systems are always used in combination with other applica-
tions. In such situations stand-alone security definitions, as in [6], do not guaran-
tee security. With the Universal Composability Framework (UC) [9] there exists
a methodology that guarantees security even in composed applications. Infor-
mally, in UC the execution of a real-life protocol is compared to the execution of
an ideal protocol. If the real-life and ideal protocol executions are indistinguish-
able, then the real-life protocol is UC-secure. Based on this security definition
Canetti [9] formulates a composition theorem which states that any UC-secure
protocol is also secure when it is composed with other protocols.

Our Contribution. We present an ideal functionality for reputation systems
FRS in the Universal Composability Framework [9]. Our ideal functionality pre-
vents all previously mentioned attacks and provides anonymity, public linkability,
traceability, and non-frameability. In contrast to [6], users can rate each others
products; there is no separation of customers and providers.

Besides defining an ideal functionality we present an efficient protocol for repu-
tation systems that realizes FRS. This protocol is influenced by different techniques
known from Σ-protocols [16] and (dynamic) group signatures [2–4,7], similarly to
the scheme in [6]. But our protocol is more efficient and more flexible than the
scheme in [6] and it is secure even under concurrent composition (UC-secure).

2 The Ideal Functionality for Reputation Systems

In the first part of this section, we give some intuition to our ideal functionality
of a reputation system FRS. The second part concerns the formal definition of
FRS in the Universal Composability Framework [9]. We discuss the functionality
and its security properties in the third part of the section.

Intuition to Our Reputation System. A meaningful reputation system must
provide trustworthy, reliable, and honest ratings. Furthermore, it should be flexi-
ble in the sense that it can be combined with many different applications. There-
fore, we focus on the process of secure rating and provide a scheme that can be
combined with any high-level application. For this reason, the aggregation of
ratings and the evaluation of a specific reputation function is excluded from our
model. Specifically, we handle the actual rating-message as a placeholder for the
higher level application.
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We consider reputation systems where users within the system can rate each
others products. The term product refers to anything that can be used as a basis
for ratings. Each user in our system has to register once at a System Manager,
before a product can be rated. This prevents Sybil attacks, whitewashing attacks,
bad mouthing attacks, and ballot stuffing attacks, and gives the System Manager
the ability to punish misbehaving users. For this to work the system must prevent
users to register with different identities. When users do not want to rate other
products, a registration is not necessary - publishing products and verifying
ratings is independent of the registration, which increases trust in the system.
Analogously to registering, a product must be purchased prior to rating. This
requirement assures that ratings are only given by raters using the product. Also,
this is a protection mechanism against value imbalance attacks.

To further increase trust in the reputation system, raters must be able to rate
purchased products anonymously. Without anonymity raters may tend to rate
dishonestly when they fear negative consequences from the product owner. At
the same time a product owner must be protected against unjustified negative
ratings. This is achieved by giving the System Manager the ability to revoke the
anonymity of a rater. Of course, the System Manager must not be able to accuse
an honest user having misbehaved.

The negative side-effects of anonymity are that self-ratings, i.e. ratings for
a product from the product owner, are hard to prevent and that a single rater
who purchased a product could rate this product multiple times. Therefore we
require a reputation system to explicitly forbid self-ratings and to provide link-
able ratings: everybody - even outsiders of the system - must be able to detect
multiple ratings from the same user for the same product.

As pointed out above, the security requirements a reputation system has
to fulfill include - but are not limited to - anonymity for raters, unforgeability
and public linkability of ratings, and the ability to determine the raters’ iden-
tity. These properties have already been studied in the simpler context of group
signatures [2–4,7,18]. However, reputation systems have more security require-
ments than group signatures, as they do not consist of a single group of users.
Instead, reputation systems can be seen as a collection of multiple group signa-
ture schemes - one for each product. Moreover, a single user may offer several
products. Hence, in the definition of security properties the different group sig-
nature schemes must be considered in conjunction. Therefore, we adapt and
extend these notions and give our formal definition of a secure reputation sys-
tem in the Universal Composability Framework [9]. This framework guarantees
security even for concurrently composed protocols. Stand-alone security defini-
tions do not provide this strong guarantees, which are very important for our
reputation system, as we intend it to be combined with other applications.

Additionally to the experiment-based security definitions for reputation sys-
tems [6] and group signatures [3,4], our ideal functionality FRS is influenced by
the ideal functionalities for digital signatures FSIG [10], public-key encryption
FPKE [9] and group signatures [2].
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The Universal Composability Framework. In contrast to stand-alone secu-
rity definitions (both experiment-based and simulation-based), the Universal
Composability Framework, introduced by Canetti [9], provides security under
concurrent composition of different applications. To achieve this strong security
notion, the execution of a real-life protocol is compared to the execution of an ideal
protocol. Both protocol executions are controlled by an environment Z that tries
to distinguish whether it interacts with the real-life protocol or the ideal protocol.

The ideal protocol is described by an ideal functionality F that handles every
(cryptographic) task as a trusted party and interacts with an ideal adversary S
(also called a simulator) and all parties involved in the protocol. Every party hands
its inputs from the environment securely to F . Then F computes the parties’ out-
put and sends it back to the party. Whenever a party receives a message from F ,
the party outputs this message directly to the environment. The ideal adversary S
may corrupt some parties and can block the delivery of messages from F to a party.
The inputs a party hands to F cannot be seen by S. In the real-life execution all
parties compute their outputs by running the defined protocol. Analogously to S,
a real-life adversary A may corrupt parties within the real-life protocol execution.

We say that the real-life protocol UC-realizes the ideal protocol, if no envi-
ronment can distinguish an interaction with the real-life protocol and A from
an interaction with the ideal protocol and S. Based on this security definition
Canetti [9] formulates a composition theorem which states that any UC-secure
protocol is also secure when it is executed concurrently with other protocols.

For our proof of security we will consider black-box simulators S, denoted
by SA, that have block-box access to real-life adversaries A. Also we consider a
model with ideally authenticated channels, meaning that an adversary is able to
read the messages sent, but is unable to modify them. We refer to this commu-
nication model as the authenticated channels assumption.

2.1 The Formal Definition of FRS

Our ideal functionality interacts with the parties PIDM, P1, P2, . . . , Pn and an
ideal adversary S, which is also called a simulator. The party PIDM acts as
the System Manager, whereas the parties Pi correspond to the users within the
reputation system. Furthermore, FRS manages the lists Params, Reg, Prods,
Purch, Ratings, and Open to store important information. Before giving the
formal definition of FRS, we explain how these lists are used. We also introduce
the notation needed in the definition of FRS.

Params: This list stores all pairs of the form (PIDM, pp) containing public param-
eters the simulator S gives to FRS during KeyGen-requests. The first compo-
nent of a pair is fixed to PIDM, whereas the second component represents the
actual parameters given by S.

Reg: The list Reg stores pairs of the form (pp, Pi) containing registration infor-
mation. The first component stores the public parameters the registrated
party used in the Register-protocol, whereas the second component is the
registrated party.
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Prods: All products that are used within the reputation system are stored as
4-tuples (Pi, prod , ppk , b) in the list Prods. The first component of a tuple
declares the product owner, the second is a product identifier (a bitstring
chosen by the environment), the third specifies the corresponding product-
public key and the fourth component is a validity bit. There can exist different
products with the same product identifier, but for different product owners.
The validity bit indicates whether the product-public key matches the given
product owner and the product identifier.

Purch: When some party successfully purchased a product, this information is
stored as 4-tuple (Pi, Pj , prod , ppk) in the list Purch. For every tuple in the list
the first component represents the purchaser, whereas the other components
determine the product that was purchased (the product owner, the product
identifier and the product-public key).

Ratings: The list Ratings stores the most complex information as 10-tuples of
the form (pp, Pi, Pj , prod , ppk , m, σ, b, lid , oid). The components of each
tuple represent the following information:
1. pp - the public parameters a rating is generated for,
2. Pi - the identity of the rater ((pp, Pi) should match an entry in Reg),
3. Pj - the product owner of the product the rating is generated for,
4. prod - the product identifier of the product the rating is generated for,
5. ppk - the product-public key of the product the rating is generated for

(the tuple (Pi, Pj , prod , ppk) should match an entry in Purch),
6. m - rating message (a placeholder for high-level applications),
7. σ - the rating,
8. b - the validity bit (indicating whether the rating is valid),
9. lid - the linking-class identifier, which is managed by the algorithm

RebLDB, and
10. oid - the opening-proof identifier.
The linking-class identifier is needed to model the linkability property: two
ratings with the same linking-class identifier have the same author. The
opening-class identifier binds a list of opening-proofs to a specific rating.
Whenever a new rating is added to the list Ratings, FRS uses the current
value of a global counter lidc as the linking-class identifier and increments
the counter. The subsequent execution of RebLDB ensures that the rating
is put into the correct linking-class, according to the linkability-relation.
A more detailed explanation of this behavior and the oid -mechanism is given
in the discussion of the security properties of FRS.

Open: This list stores all opening-proofs as 4-tuples of the form (oid , τ, b, P ). The
first component is an opening-proof identifier that binds a tuple to a specific
rating with the same identifier. The second component is the actual opening-
proof. The third component is a validity bit indicating whether the proof is
valid and the fourth component is the claimed party that shall be the author
of the associated rating. The value oid = ⊥ within a rating expresses that
the rating was not opened yet and hence no opening-proof exists. To uniquely
bind opening-proofs to ratings a global counter oidc is used and incremented
whenever a new opening-proof is bound to an unopened rating.
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To manipulate the described lists, we introduce two operations:

– adding a tuple v to a list L is expressed by L.Add(v), and
– substituting a tuple vold with a tuple vnew is expressed by L.Sub(vold, vnew).

Substituting a tuple vold means that this tuple is removed from the list, while
the tuple vnew is added to the list.

The classical notation to address components of tuples is using indices, i.e.
v = (v1, v2, . . . , vn), where vi is the i’th component of tuple v. We deviate from
this notation to prevent confusion with different variables and address the i’th
component of a tuple v by v[i].

Remark 1 (Technical Details of FRS). Whenever FRS misses some information,
the symbol ⊥ is used to highlight this fact. Also the Simulator S can output this
symbol at some points to indicate that it is not able to respond to a request.
Depending on the situation, this is not necessarily a failure.

To reduce repeating code we introduce the internal activations VfyProd,
VfyRtg, LinkRtgs, and RebLDB. These activations are only used by FRS as an
internal subroutine and are not callable by parties or adversaries.

The activations for user registration (Register) and purchasing a product
(Purchase) generate outputs to multiple parties. Albeit this mechanism is rarely
used in the UC framework another example for this technique can be found in
the definition of homomorphic UC commitments FHCOM by Damg̊ard et al. [15].

With these prerequisites we now give the formal definition of FRS.
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Security Properties of FRS. As many other ideal functionalities in the UC
framework, we define FRS to work as a “registy service” to store parameters,
ratings, and opening-proofs. Using the right parameters, every party is able to
check whether ratings and opening-proofs are stored by FRS. In all activations,
FRS lets the simulator S choose the values needed to respond to the activation.
The requirements on these values are defined as restrictions for each activation.
In the following, we discuss these restrictions and the implied security properties.

Registry Key Generation: Similar to the Signature Functionality FSIG [10]
and the Public-Key Encryption Functionality FPKE [9], we do not make any
security relevant requirements on the public parameters pp.

User Registration: Being registered is a prerequisite to rate a product and cov-
ers the first step to prevent Sybil attacks, whitewashing attacks, bad mouthing
attacks, and ballot stuffing attacks. The user registration models an interac-
tive protocol between PIDM and some party Pi. In general, FRS lets the sim-
ulator S decide whether party Pi successfully registered, with the following
two restrictions: non-registered honest parties communicating with an hon-
est PIDM using the right public parameters will always be registered after
the protocol execution (b = 1) and an honest PIDM will reject a party from
registering, when wrong parameters are used (b = 0).



480 J. Blömer et al.

Product Addition and VfyProd: The NewProduct-activation is used by party
Pi to publish a new product-public key ppk for a given product prod ∈ {0, 1}∗.
The value ppk is bound to the bitstring prod and to the party requesting it,
such that every party can validate the ownership of a product. Formally this
means, that a product-public key is only valid for one specific pair (P, prod).
This is a very important requirement, because it models unforgeability of
product-public keys. Without this property any corrupted party Pj could
“copy” some ppk (that was generated by an honest party Pi) and declare
foreign ratings as own ratings: all valid ratings for (Pi, prod , ppk) would also
be valid for (Pj , prod ′, ppk ′). Since we want to have a reliable, trustworthy
and fair system such attacks must be prevented. We emphasize that VfyProd
is modeled as an internal subroutine within FRS and is implicitly used in other
activations.

Purchase: Another prerequisite to rate a product is to purchase it. This is
necessary to prevent value imbalance attacks. The purchasing protocol is an
interactive protocol between two parties: the seller Pj and the purchaser Pi.
Naturally, before purchasing a product its corresponding product-public key
is verified. Only if this is valid, the protocol will be executed. For two honest
parties the purchasing process will successfully finish, whereas the simulator
S determines the outcome of the protocol execution in any other case.

Rating a Product: When party Pi wants to rate the product prod with public
key ppk owned by party Pj , Pi must be registered, must have purchased
the specified product, and must not have rated the product before. Being
registered is necessary to open ratings, whereas having purchased the product
enables rating verifiers to detect self-ratings, bad mouthing attacks and ballot
stuffing attacks. In the case that PIDM is honest, FRS guarantees anonymity
of raters: the simulator S is asked to output a rating σ, that is valid for the
specified product, without knowing the rating party. Hence, the output rating
cannot depend on the raters’ identity. In the case that PIDM is corrupted, the
simulator S obtains the identity of the rater, because in this case anonymity
cannot be achieved.

Rating Verification and Determining the Raters’ Identity: Given the
right parameters, every rating can be verified. Note that ratings are only ver-
ified, if the specified product is valid. A valid rating guarantees the following
properties, even for maliciously generated ratings:

– Non-Self-Rating: the rater is not the owner of the product.
– Linkability: the rater purchased the product (will be discussed later in

detail).
– Traceability: the rater is registered and can be identified.

Every single property is crucial for trustworthy reputation. If self-ratings would
not be prevented, ballot stuffing attacks were possible. The same holds for link-
ability, but this will be discussed later in detail. Being able to open ratings is
also very important in practical applications, because otherwise misbehaving
parties can not be identified and punished. Hence, it must be guaranteed that
honest parties are not blamed having rated some product, when they did not.
This property is called non-frameability and is discussed later in detail.
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FRS not only asks the simulator S to validate a rating, but also to determine
the raters’ identity. This models the ability of PIDM to open every rating, not
only those for which an Open-request occurs. Furthermore, it simplifies the
definition of FRS without weakening the security properties, because VfyRtg
encapsulates all important characteristics of a valid rating in a single and
reusable procedure.

Linking Ratings and RebLDB: For every party using a reputation system it is
important to know whether two valid ratings for the same product are gen-
erated by the same party. If this is true, the rater behaved dishonestly. We
call this property linkability, which prevents bad mouthing attacks and ballot
stuffing attacks. Linkability represents an equivalence relation: Link(x, x) = 1,
Link(x, y) = Link(y, x) and Link(x, y) = 1 ∧ Link(y, z) = 1 ⇒ Link(x, z) = 1.
The value lid stored by FRS for every rating represents the equivalence class
the rating belongs to. Initially, lid is set to the current value of a global
counter lidc. The linking-class identifiers are updated by the RebLDB algo-
rithm whenever a new rating is added to the list Ratings (via Rate and Verify)
or new linking information is obtained (via Link and Judge). This algorithm
is only for internal use and not callable by any party. The RebLDB-algorithm
merges two equivalence classes in the following cases:

– Step 2 covers calls to the algorithm from Rate, Verify, and Judge (s = ⊥),
where PIDM is not corrupted and/or X1 is an uncorrupted rater (X1 �= ⊥).
In these cases RebLDB selects all valid ratings for the specified product
from the same rater X1 (the set L) and sets the value lid (�[9] for � ∈ L)
for all ratings in L to the minimal value within the selected ratings.

– Step 5 handles requests from Link where either the identity of the rater
is not known but the simulator S tells FRS that these ratings are linkable
(Step 6 of Link), or the identity of some corrupted party can be updated
for some rating, because it is linkable to another rating FRS already knows
the identity of (Step 9 in Link). According to the transitivity of the linka-
bility relation, RebLDB merges the two equivalence classes into one class
by selecting all ratings within the two classes (Step 9) and setting lid to
be the smaller of both values. Additionally, if a party identity is given in
X1 or X2 this value will be set for all ratings within the equivalence class
(Step 10).

– In Steps 11–18 RebLDB verifies that there do not exist more equivalence
classes for an honestly generated product than the party owning the prod-
uct sold. This ensures that it is only possible to rate a product once
(without being linkable) after purchasing.
When PIDM is corrupted, it is possible that no linking information is
available to FRS. In this case FRS asks the simulator S to link all ratings
for the product in question. Without this step a simple attack is possible:

• Z lets the real-world adversary A corrupt PIDM and some party Pi,
lets Pi purchase some product from an honest party Pj , generates
multiple valid ratings for this product and verifies them.
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• In this scenario FRS adds the ratings to Ratings during the Verify-
protocol, which in turn calls RebLDB. Since no linking information is
available to FRS, without Step 13 FRS outputs error, even when all
ratings are linkable. Hence, no protocol can realize FRS.

If after Step 13 there are still more equivalence classes than purchases,
this violates the security requirements of FRS.

Summarizing, the handling of equivalence classes is modeled by the RebLDB-
algorithm which uses linking information obtained from the algorithms Rate,
Verify, Link, and Judge.

Generating and Verifying Opening-Proofs: Opening-proofs are values that
enable every party to verify that a blamed party is really the author of a given
rating. This covers the property of non-frameability : no honest party can be
accused being the author of a given rating, when it is not. FRS asks the
simulator S to output valid opening-proofs and ignores the output of S, if
the given rating is invalid, a wrong identity is given or the rating has not been
opened yet. Since there can be more than one valid opening-proof, the value
oid is used to connect a rating with its list of opening-proofs. This mechanism
ensures that an opening-proof cannot be used to determine a raters identity
for other ratings.

3 Realizing FRS

Before introducing the protocol that realizes FRS, we give the required prelimi-
naries and building blocks in this section.

Preliminaries. Our realization relies on bilinear groups, the Symmetric Exter-
nal Diffie-Hellman-Assumption, and the Pointcheval-Sanders-Assumption. For
completeness, we give the respective definitions in this section.

Definition 1 (Bilinear Groups). A bilinear group GD is a set of three cyclic
groups G1,G2 and GT , each group of prime order p, along with a bilinear map
e : G1 × G2 → GT with the following properties:

1. Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp : e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: for u �= 1G1 and v �= 1G2 : e(u, v) �= 1GT

.
3. The map e is efficiently computable.

We will use pairings of Type-3 for our construction, because they allow effi-
cient implementations and the Pointcheval-Sanders-Assumption does not hold in
Type-1 and Type-2 pairing groups. Furthermore, for Type-3 pairing groups it is
believed that the Decisional-Diffie-Hellman-Problem is hard in both G1 and G2.
This assumption is often referred to as the Symmetric External Diffie-Hellman-
Assumption (SXDH) [19].

Definition 2 (Bilinear Group Generator). A bilinear group generator,
denoted by BiGrGen, is a probabilistic polynomial time algorithm that, on input
1λ, outputs a description of a bilinear group GD. We denote the output of
BiGrGen by GD = (p, G1, G2, GT , e, g1, g2).
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Definition 3 (Pointcheval-Sanders-Problem – PS1). Let GD = (p, G1,
G2, GT , e, g1, g2) be a bilinear group setting of Type-3, with generators g1 ∈
G1 and g2 ∈ G2. Further, let g ←u G1, g̃ ←u G2, X := gx, Y := gy ∈ G1 and
X̃ := g̃x, Ỹ := g̃y ∈ G2, for x, y ←u Zp. We define the oracle O(m) as follows:
on input m ∈ Zp, choose h ←u G1 and output (h, hx+m·y). Given (g, Y, g̃, X̃, Ỹ )
and unlimited access to oracle O, the Pointcheval-Sanders-Problem is to output
a tuple (m∗, s, sx+m∗·y), where s �= 1G1 and m∗ was not asked to O.

We say the Pointcheval-Sanders-Assumption holds for bilinear group gener-
ator BiGrGen if for all probabilistic polynomial time adversaries A there exists a
negligible function negl such that

Pr
[
AO(·)

(
GD, g, Y, g̃, X̃, Ỹ

)
=

(
m∗, s, sx+m∗·y

)]
≤ negl(λ),

where the probability is taken over the random bits used by BiGrGen,A, and the
random choices of x, y ←u Zp.

Building Blocks and Intuition for Our Realization. In this section we
briefly introduce the building blocks of our realization and explain how they are
combined to realize FRS. Due to lack of space, all formal definitions are given in
the full version of this paper [5].

We use Pointcheval-Sanders Signatures (PS = (KeyGen,Sign,Verify)) [25]
as certificates for registration and for purchased products. We call the certifi-
cate for registration a registration token, the certificate for purchased prod-
ucts a rating token. To obtain such tokens every user has to prove knowl-
edge of a self-chosen user-secret-key usk . We use the concurrent zero-knowledge
variant of Σ-protocols, which uses Trapdoor Pedersen Commitments (PD =
(KeyGen,Commit,Reveal,Equiv)) for this purpose.

To rate a product a user has to non-interactively prove knowledge of the
registration token, the rating token, and its personal user-secret, for which the
tokens were generated. As non-interactive proof system we use Signatures of
Knowledge [12]. Also, opening-proofs, generated by PIDM, are non-interactive
proofs of knowledge of opening tokens. These tokens are given by a user Pi to
the System Manager PIDM during the registration protocol. In our construction
it is important not to publish these tokens, because they allow to open any
rating. Hence, we encrypt opening tokens with the CCA2-secure Cramer-Shoup
encryption (CS = (KeyGen,Enc,Dec)) [14].

The Signatures of Knowledge we use need a Random Oracle, which can be
modeled as the ideal functionality FRO [22] in the UC framework. We further
need the ideal functionalities for Common Reference Strings FCRS [11] and Cer-
tification FCA [10]. FCRS is needed for secure commitment schemes like the above
mentioned Trapdoor Pedersen Commitments and FCA ensures that users cannot
register with different identities.

The output of FCRS is (GD,PD.pk ,H,H1,H2), where GD is the output of
the bilinear group generator BiGrGen(1λ), PD.pk = (u, v) ∈ G

2
1 is the pub-

lic key of the Trapdoor Pedersen Commitment scheme, and H : {0, 1}∗ → Zp,
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H1 : {0, 1}∗ → G1, and H2 : {0, 1}∗ → G2 are collision-resistant hash functions.
We assume that every party obtains the common-reference string prior to its
first activation. We write y := FRO(x) to indicate a call to FRO on input (sid , x)
and outputting y to the calling party.

A Protocol for Realizing FRS. We assume to communicate via authenticated
channels between two parties. This implies that the identities of communicat-
ing parties are known to each other and that the adversary cannot modify the
message’s payload.
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Theorem 1. Under the Authenticated Channels Assumption, the SXDH-As-
sumption, the Pointcheval-Sanders-Assumption, and the assumption that H,H1,
and H2 are collision-resistant hash functions, Protocol ΠRS UC-realizes the FRS

functionality in the (FRO,FCRS,FCA)-hybrid model, in the presence of static
adversaries.

Due to lack of space, we only sketch the proof here. The full proof is given
in the full version of this paper [5].

Proof (Sketch). To prove Theorem 1 we have to show that for any probabilistic
polynomial-time real-world adversary A there exists a probabilistic polynomial-
time ideal-world adversary S such that for any probabilistic polynomial-time
environment Z it holds:
{

EXECFRS,SA,Z(1λ, z)
}

λ∈N,z∈{0,1}∗

c≡
{

EXECFRO,FCRS,FCA

ΠRS,A,Z (1λ, z)
}

λ∈N,z∈{0,1}∗
.

We divide the proof of this statement into three parts. In the first part we
define the simulator S that interacts with FRS and simulates the cryptographic
computations. Note that during Rate-requests S does not obtain any identifying
information of the rater. Hence, S uses the zero-knowledge simulator for the
Signature of Knowledge that represents a rating. Analogously, opening-proofs are
represented by a Signature of Knowledge. Therefore, S uses the corresponding
zero-knowledge simulator to generate opening-proofs.

In the second part of the proof we define a hybrid game G and a corresponding
simulator S1 for which we prove that no environment Z can distinguish whether
it interacts with (FRS,S) or (G,S1). In this game S1 obtains all identifying
information during Rate-requests and therefore can execute the computations
as defined in Protocol ΠRS. Also opening-proofs can be generated by S1 as in
Protocol ΠRS. Hence, an environment Z is only able to distinguish (FRS,S) and
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(G,S1), if it can distinguish between simulated and real ratings and opening-
proofs. Under the SXDH-Assumption this is not possible.

In the third part of the proof we show that S1 executes exactly the same
computations as Protocol ΠRS. This implies that any environment Z that dis-
tinguishes between (G,S1) and (ΠRS,A) is able to let FRS output error, whereas
the Protocol ΠRS outputs some value, or FRS outputs 0, whereas Protocol ΠRS

outputs 1 (or vice versa). Using different reductions to the Pointcheval-Sanders-
Problem and to the CCA2-security of the Cramer-Shoup encryption scheme we
show that such environments cannot exist. Hence, ΠRS UC-realizes FRS in the
(FRO,FCRS,FCA)-hybrid model. ��
A Note on Revocation: Protocol ΠRS can be easily extended to support
verifier-local revocation, which revokes a user completely: to revoke the party
Pi the System Manager PIDM, or even Pi himself, publishes the value Ỹi as the
users’ revocation token rt i on a revocation-list RL. Then any verifier can check
whether the author of a given rating σ = (T1, T2, T3, T4, T5, ch, s) is revoked
by testing if the equation e(T5, Ỹ ) = e(H1(j, prod), rt) holds for any entry
rt ∈ RL. Analogously, during Purchase-requests the product owner can test
whether e(Mi, Ỹ ) = e(g1, rt) holds to detect a revoked user Pi. This revocation
mechanism conflicts with our definition of anonymity and it is an open problem
how to prove security when revocation is considered.

Considering Adaptive Adversaries: Theorem 1 only claims security against
static adversaries, because anonymity and linkability are conflicting security
properties, which impede the construction of UC-secure protocols in the pres-
ence of adaptive adversaries. We leave this as an open problem that needs further
research.
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