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Abstract. The security of data outsourcing mechanisms has become
a crucial aspect of today’s IT infrastructures and they are the crypto-
graphic foundations of real-world applications. The very fundamental
goals are ensuring storage integrity and auditability, confidentiality, and
access pattern hiding, as well as combinations of all of them. Despite
sharing a common setting, security analyses of these tasks are often per-
formed in a stand-alone fashion expressed in different models, which
makes it hard to assess the overall security of a protocol or application
involving several security schemes at once. In this work, we fill this gap
and propose a composable framework suitable to capture various aspects
of outsourced storage security and its applications. We instantiate the
basic client-server setting in this model, where the goal of the honest
client is to retain security in the presence of a malicious server. Three

specific contributions of this paper are:
1. We present a novel definition for secure and robust outsourcing

schemes and underline why this is needed in practice. Our defini-
tion is stronger than previous definitions for oblivious RAM or soft-
ware protection in that it assures strong security guarantees against
active attacks. Schemes meeting the definition not only assure that
an attacker cannot learn the access pattern, but guarantee resilience
to errors and the prevention of targeted attacks to specific locations.
Unfortunately, several existing schemes cannot achieve this high level
of security. For completeness, we provide a protocol based on Path
ORAM that showcases that stronger security is actually achievable.

2. We present a novel definition for auditable storage, capturing the
guarantee that a successful audit implies that the current server
state allows the client to retrieve his data. We develop an audit
mechanism, based on secure and robust outsourcing schemes, that
is similar to the construction by Cash et al. (Eurocrpyt 2013), but
is universally composable and fault-tolerant.

3. We revisit the security claim of a widely-used challenge-response
audit mechanism, in which the server has to compute a hash H(F||c)
on the file F' concatenated with a uniformly random challenge ¢
chosen by the client. Being concerned with composable security, we
prove that this audit mechanism is not secure, even in the random
oracle model, without additional assumptions. The composable secu-
rity of this basic audit scheme was implicitly assumed in Ristenpart
et al. (Eurocrypt 2011). To complete the picture, we state the addi-
tional assumptions for this audit mechanism to be provably secure
and discuss the implication on practical security.
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1 Introduction

An integral and pervasive part of today’s IT infrastructures are large amounts
of outsourced data ranging from personal data to important enterprise backups
on third-party storage providers. Depending on the various applications and
sensitivity of the data, a user paying for remote storage might not fully trust
in the provider’s content management or security. Client-side countermeasures
have to be taken into account, a prominent example of which are the protection
of confidentiality and integrity of the uploaded files, or hiding the access pattern
to files. A client further might want to audit the server storage to ensure that the
provider maintains all his data consistently and is not saving space by deleting
a fraction of the content. That is generally known as proofs of retrievability
(PoR) or provable data possession (PDP) [2,13]. Complementary to protocols
for clients to retain security against a possibly malicious server, another line of
research deals with mechanisms for secure deduplication and proofs of ownership
[11,14]. These protocols allow an honest server to reduce its storage requirements
while protecting against malicious clients that try to fool the server by accessing
files they do not possess.

In this work, our focus is on malicious server behavior. Reasons for such
dishonest behavior include ordinary failures that lead to data loss or data leak-
age, an active break-in into the provider’s infrastructure or intentional malicious
server strategies. A client can employ protection mechanisms to ensure integrity,
confidentiality, hide its access pattern to the data, or run regular audits to ensure
that the server maintains the data reliably such that the client is able to retrieve
it. Although service providers advertise availability as an important selling point,
such audits are a key tool to increase the confidence or trust in the service since it
is often not realistic to rely on the provider to inform reliably about an incident,
either due to ignorance or due to the fear of bad reputation.

Despite sharing a common setting, previous security analyses of these tasks
are often performed in different models and in a stand-alone fashion, which makes
it hard to assess the overall security of a protocol (e.g. a cloud application) that
involves several security schemes. In this work, we fill this gap and provide
a unified composable model for capturing the security of outsourced storage.
As part of this study, we justify the need for stronger security requirements
from protocols than what is typically assumed in the literature. Our approach
lets us develop outsourcing schemes in modular steps that provably achieves
stronger security than existing protocols. For completeness we give one such
example.

We formulate our model in the language of the constructive cryptography
framework (CC) [16,17]. Our results are not specific to the CC framework itself
and choosing another definitional framework like Canetti’s Universal Compo-
sition (UC) framework [7] would yield closely related findings [12]. A central
aspect of CC is that the resources available to the parties, such as communi-
cation channels or an untrusted server storage, are made explicit. The goal of
a cryptographic protocol is then to securely construct, from certain existing or
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assumed resources (often called “real world”), another, more desirable resource
(often called “ideal world”). A construction is secure if the real world is as useful
to an adversary as the ideal world, the latter world being secure by definition.
Formally, one has to construct a simulator in the ideal world to make the two
worlds computationally indistinguishable.

The resources we consider in this work are variations of so-called server-
memory resources. A typical example of a construction would be to construct
a server-memory resource providing integrity from one that does not have this
property. A constructed resource can then again be used by higher-level pro-
tocols or applications. This allows for modular protocol design and to conduct
modular security analyses by dividing a complex task into several less complex
construction steps, where each step precisely specifies what is assumed and what
is achieved, and the security follows from a general composition theorem.

1.1 Summary of Results and Contributions of This Work

A model for untrusted storage. The basic functionality we consider is an
(insecure) server-memory resource which we denote by SMR and formally spec-
ify in Sect. 3. One or several clients can write to and read from this resource via
interfaces. Clients write to the memory in units of blocks, and the resource
is parameterized by an alphabet X and the size n of blocks. The server can
access the entire history of read/write requests made by the clients. To cap-
ture the active server influence on the storage, including malicious intrusion, the
resource can be adaptively set into a special server write mode that allows the
server overwrite existing data. Within the scope of this paper, we understand
this write phase as being malicious and the server is not supposed to change
any data. However, we point out that this server write mode can be used to
capture intentional, honest server-side manipulations of the data storage, as in
de-duplication schemes or proofs of ownership. See also Fig.1 for a graphical
illustration.

The decision in which “mode” the resource resides, is given directly to the
environment (or distinguisher) and not to the adversary. The reason for this is
important for technical and motivational reasons. Assume that the capability
is provided at the malicious server interface both in the “real world” and in
the “ideal world,” then the simulator in the ideal world can always make use
of the capability of overwriting the memory content and nothing would prevent
the simulator from doing so all the time and hence trivial protocols could be
simulated. However, in this work, we want to express security guarantees in
both cases, when the resource is “under attack” and when it is not. To achieve
this, the “attack mode” is under the control of the environment and not the
adversary. Furthermore, in certain cases we only want to give explicit security
guarantees that hold only until the next attack happens (for example in the
case of audits as explained later). From a motivational point of view, assigning
the capability to the environment and not to the attacker yields more general
statements, as it also allows us to capture scenarios where the server does indeed



Composable and Robust Outsourced Storage 357

w

startWriteMode
stopWriteMode

CO —n S MR getHist

) (read, i) SH
C (read, i)
. 1 write @) ' . D (write, @, 1) S
. 1 2 n —
- SoA S[

(read, i)
-

(write, @, i)

Fig. 1. The basic server-memory resource.

not have the active choice to do so, but where an external event can provoke the
server memory to be corrupted. A basic server memory can be strengthened in
the following ways to give better guarantees to clients:

— The authentic server-memory, providing authenticity of the memory content
(meaning that clients detect adversarial modifications).

— The confidential and authentic server memory, providing secrecy (in addition
to authenticity) of the memory content.

— The secure server memory. It provides full secrecy on the entire structure
of the memory. An attacker cannot learn anything beyond the number of
accesses and cannot tamper with specific logical memory cells.

— The auditable memories, including auditable versions of all of the above, gives
the client the additional capability to check whether the memory has been
modified or deleted, without the need to read the entire memory.

We explain how to achieve each of these resources, either by giving new
protocols or showcasing how previous results are cast in this model.

A novel notion for secure and robust outsourcing schemes. Our defi-
nition of a secure server-memory resource can be seen as a novel security goal:
The specification demands secrecy of content and access pattern, resilience to
errors, and also that active attacks cannot be targeted at specific locations. On
a more technical level, our secure server-memory resource is specified as a basic
server-memory resource, but where roughly only the number of accesses leak to
the server, and in particular not the content. In addition, the active influence
by an attacker is restricted to being able to set a failure probability «. This
parameter defines with which probability a client’s read or write operation fails.
This failure probability is the same for all memory locations and each memory
location fails independently of other memory locations. This means that what-
ever the attacker does to the memory of the server, any modification will result
in clients being more or less successful in reading or updating the data. In case
of a failure, the client cannot read or update the corresponding block anymore.
We further demand that the memory, and thus any protocol achieving it, remains
operational for the faultless part of the memory and hence is robust in the pres-
ence of failures. As outlined above, this is technically enforced by not giving the
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simulator the power to always block operations and hence to abort. This makes
the functionality stronger than existing models such as [1,8,9].

Surprisingly, the existing definitions for access-pattern hiding (such as
ORAM) and software protection are insufficient for realizing secure server-
memory resources. We exemplify this by two concrete examples that do not
realize a secure server memory either because the failure probability is not the
same for all locations (as in [10]), or failures among memory locations are corre-
lated (as in [21]) and explain how this can be abused in practice as a side-channel
leaking information about the access pattern. On the positive side, we provide a
modification of an existing ORAM scheme that realizes a secure server memory.

A novel notion for audit schemes. What is generally expected from an audit
scheme is that if the test is successful, then, in principle, the data is retrievable.
Being concerned with realistic client-side security guarantees, we observe that the
position of the client is very weak: no scheme can prevent that after a successful
audit, the server denies to reveal the data. The best we can hope for in terms
of practical guarantees is therefore to formalize that if (a) the audit succeeds
and (b) the adversary does not corrupt further memory cells after the audit
(i.e., it does not prevent them from being read by the client), then the server
state is indeed sufficient for the client to reconstruct his data. We follow this
idea and propose the auditable server memory resources as a formalization of
this goal. They are, to the best of our knowledge, the first composable security
definition for audit schemes. In a nutshell, these are server-memory resources
with the additional client-side capability of asking whether the current memory
content is unchanged. This retrievability guarantee is valid if the resource is not
in “adversarial write mode”, as explained above, and holds up to the point when
the server writes or deletes a location of the memory. A new audit has to reveal
whether any change affected the client’s data.

While this notion seems at first sight to be much weaker than what is formal-
ized by proofs of retrievability or provable data possession [2,13,19], the above
guarantee is in fact not implied by existing definitions and there exist schemes
that do not provide it. An example follows in Sect. 1.2. A second issue to practi-
cal security with existing definitions of PoR and PDP is their use of knowledge-
extractors: while useful to argue about the principle of knowledge, the extractor
has a drawback: it needs the client secrets and the server strategy to recover the
data.! Both of these inputs are arguably not provided by the respective enti-
ties as this information is way too crucial and jeopardizes security. Hence, even
though such an algorithm exists that recovers the data, it cannot be applied by
the client, nor by the server in general. We give an in-depth comparison in the
full version of this work [4].

1 As for proofs of knowledge, the extractor needs the capability to “rewind” the server
an efficient number of times and would therefore need special access to the server
program, which is not covered by a typical API.
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Audits for secure memories. In the particular case of secure server-memory
resources, the audit reduces to a statistical estimate of the failure parameter «
in combination with appropriate data replication. Our simple protocol resembles
the protocol by Cash et al. [8], but is more robust against failures: While their
construction aborts when detecting an error, our scheme keeps operating even in
the presence of arbitrarily many errors. As we outline in Sect. 1.2, this robustness
is not simply a theoretical need, but a realistic desire and in fact achievable.

A critical look at hash-based challenge-response audits. A composable
formalization of storage audits in the spirit of indifferentiability and constructive
cryptography [18, Sect. 7] has been envisioned in [20] but has not, to the best
of our knowledge, been formalized. With our formalization, we are now able
to re-assess the security of the main example in [20], which is the standard
challenge-response audit mechanism in which the server computes a hash on
the current memory content concatenated with a uniformly random challenge
chosen by the client to convince the client that the data is available. We show
that this scheme is not secure even in the random oracle model, contradicting
the claimed security in [20]. We further prove that the additional assumption
needed for the hash-based audit to be secure is to restrict inputs to the random
oracle to bitstrings stored in the server memory itself. This condition is sufficient
for a “monolithic” random oracle with no particular underlying structure, and
we show that it is in general insufficient if the random oracle is replaced by a
construction (like NMAC) from ideal compression functions.

Development of efficient, provably secure schemes. Our model is
expressed in a composable language and thereby suitable for the design of prac-
tical, efficient, and provably secure protocols: In order to construct the strongest
version of a server memory, i.e., a secure and auditable server-memory resource,
one can apply a sequence of simpler modular steps as follows: (1) construct
an authentic from a basic server memory, (2) construct a confidential from an
authentic server memory, (3) construct a secure from a confidential server mem-
ory, and (4) construct an auditable secure server memory from a secure server
memory. Combining these four steps, the composition theorem directly assures
the security of the overall construction, which is a protocol that realizes an
auditable, secure server-memory resource from a basic server-memory resource.

Beyond the fact that modular steps are often simpler to analyze than an
entire protocol, this approach has a further benefit: it allows to identify sources of
inefficiency and to improve single steps in isolation without the need to re-prove
the security of the overall construction: for example, developing a more efficient
ORAM scheme—that in addition meets our stronger requirements demanded
by step (3)—directly gives an improved overall construction. As such, we put
forward this approach to provide an interface to specialized works focusing on
the individual steps, such that they can directly contribute to the development
of outsourcing schemes.

Any protocol built this way provides stronger security than typical protocols
in this realm: it is resilient against any number of errors, hides the content and
access pattern, does not allow targeted attacks under any circumstances, and
provides an audit function.
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1.2 On the Practical Importance of Composition and Robustness

In this section, we provide a comparison between the most important aspects of
this work and related literature. In the full version of this paper [4] we further
elaborate on additional relevant work in the broad area of outsourced storage to
provide a more complete picture on this topic. Our setting has similarities with
previous works that devise outsourcing schemes secure against active tamper-
ing adversaries and which build upon the foundational work by Goldreich and
Ostrovsky [9] on software protection. There is, however, a subtle and fundamen-
tal difference between the context of outsourced storage and the context of soft-
ware protection of [9] that seems to have gone unnoticed. In this paragraph, we
show how this difference necessarily leads to strictly stronger security require-
ments for outsourcing schemes and even gives rise to novel security-relevant
questions, which we answer in this work.

The context of [9] is software protection, where the goal is to prevent that
an experimenter can analyze the CPU-program and learn something he could
not deduce from the program specification alone. Technically, a simulator must
generate an indistinguishable transcript of any experiment, solely based on the
known program specification. If such a simulator exists, this means that the
program effectively defeats experiments that try to figure out secret details on
“how the program internally works”. Following this motivation, as soon as the
program encounters an error when reading a memory location, it should abort,
as the error is a sign that the software is running in a tampering experiment. In
the corresponding simulation, the simulator also aborts. Overall, this behavior
makes perfectly sense to defeat experiments since in any honest execution, no
error is expected to occur.

The context in this work is outsourcing schemes and several of the above
aspects do change in this realm. We present outsourcing schemes and the ideal-
ization they can achieve, like the secure server-memory resource, as a low-level
primitive that exports the interface of a consistent storage with certain addi-
tional guarantees. We do not allow our primitives to abort in case an access to
a location returns an error. It must stay operational for the remaining part of
the memory. The decision to abort is left to the calling protocol or application
that uses the memory abstraction. In our context, we want and should react to
errors and not stop when detecting them. This is the first important point that
makes the problem more difficult and gives rise to the question of what level of
security we can achieve in this setting. Our most secure abstraction, the secure
server-memory, answers this question in a strong way: a protocol that achieves
the secure server-memory not only remains operational (and efficient) when tam-
pering is detected (a simulator cannot “abort on error” in a simulation in our
model), it also makes sure that the subsequent behavior does not reveal which
logical locations the client accesses, and furthermore prevents that tampering
can be targeted at specific logical locations.

We illustrate two possible security issues which are overcome by using a
secure outsourcing scheme (as part of a larger system) that fulfills our strongest
notion.
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Example 1: Information leakage due to errors. Assume that a client appli-
cation stores some control information on an outsourced storage using a secure
outsourcing scheme that achieves a secure server-memory as defined in our work.
Clearly, there is no attack by which the adversary could learn when the client
accesses the control information, even if the attacker knew at which logical loca-
tion the control information is stored. And since the attacker can only introduce
failures that are equally likely for all logical locations, the occurrence of an error
during an access does not allow to infer which logical memory location was
accessed. In contrast, several existing schemes based on the notion of software
protection, do not guarantee this level of security and allow an attacker to obtain
side-channel information about the access pattern through the observed error-
pattern. This holds for example if one can approximately estimate which logical
addresses are targeted by tampering with the memory, or if errors are correlated.
Turned around, an observed error pattern can be a good indication on which
logical locations have been accessed as further discussed in Sect. 5.1.

Example 2: Implementing secure audits. Let us focus on a protocol by
Cash et al. [8] that implements a proof of retrievability using a software protec-
tion scheme S that aborts on error. The following argument is independent on
what security notion S fulfills exactly, the important thing is that if S aborts
then the entire execution aborts. Their protocol invokes S to store the encoded
data redundantly on the server, which should improve the resilience, i.e., not
detecting a few errors on the server should not let the protocol fail in retrieving
the data. However, since S aborts when detecting even a single (e.g., physical)
error, this desired resilience practically becomes ineffective and leads to weak
guarantees: consider a very weak tampering adversary that chooses just a sin-
gle, physical location on the server-memory and only tampers with this single
physical location. Then, the audit is passed with high probability (the data is
actually still there due to the encoding). However, the client protocol will abort
before the client can actually retrieve all his data, since the error is detected
beforehand, namely during a rebuild phase of S, and the execution is aborted.
And as shown above in the first example, simply letting the protocol continue
its actions can reveal information on the access pattern. This indicates that such
a patch is actually non-trivial. In particular, if S was proven to realize a secure
server-memory, then this issue is avoided.

2 Preliminaries

In this section, we succinctly present the language needed to understand the
main results of this paper. In the full version of this work [4], we additionally
provide a more detailed technical introduction.

Notation for Systems and Algorithms. We describe our systems with pseu-
docode using the following conventions: We write x < y for assigning the value y
to the variable z. For a distribution D over some set, x « D denotes sampling
x according to D. For a finite set X, z «— X denotes assigning to x a uniformly
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random value in X. Typically queries to systems consist of a suggestive key-
word and a list of arguments (e.g., (write,,v) to write the value v at location
i of a storage). We ignore keywords in writing the domains of arguments, e.g.,
(write,i,v) € [n]x X indicates that i € {1,...n} and v € X. The systems gener-
ate a return value upon each query which is output at an interface of the system.
We omit writing return statements in case the output is a simple constant whose
only purpose is to indicate the completion of an operation.

Discrete Systems. The security statements in this work are statements about
reactive discrete systems that can be queried by their environment: Each inter-
action consists of an input from the environment and an output that is given
by the system in response. Discrete reactive systems are modeled formally by
random systems [15], and an important similarity measure on those is given by
the distinguishing advantage. More formally, the advantage of a distinguisher D
in distinguishing two discrete systems, say R and S, is defined as

AP(R,S) = |[Pr[DR=1]-Pr[DS =1]|,

where Pr[DR = 1] denotes the probability that D outputs 1 when connected to
the system R. More concretely, DR is a random experiment, where the distin-
guisher repeatedly provides an input to one of the interfaces and observes the
output generated in reaction to that input before it decides on its output bit.

Construction statements. The security statements proven in this work
express that clients realize or construct a desired resource (or ideal functional-
ity), for example a secure server-memory resource denoted sSSMR, from assumed
resources (or hybrid functionalities), such as an authentic and confidential server-
memory resource, denoted cSMR, and a small (local) client storage, denoted
L. They construct the desired resource by running a protocol. This situation is
depicted in Fig. 2. We briefly discuss the involved formal expressions for this main
example.? For a construction, we need to prove the security condition of con-
structive cryptography. This condition ensures that whatever a dishonest server
can do with the assumed resource, he could do as well with the constructed
resource by using the simulator sim. Turned around, if the constructed resource
is secure by definition, there is no successful attack on the protocol. For readers
more familiar with the UC framework, this essentially corresponds to the notion
of UC secure realization (we refer to [12] for a more detailed comparison). For-
mally, we show that the distinguishing advantage of the two worlds is small (in
this case even zero), i.e.,

AP (secp[L, cSMR], sim°sSMR) = 0,

where secp[L,cSMR] denotes that the client converters are attached at their
respective interfaces. The set P denotes the set of client interfaces and secp is

2 We present here the particular instantiation of the construction notion of construc-
tive cryptography that is necessary to understand this work. We refer to the full
version for a general definition.
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Fig. 2. Illustration of the security condition in our setting.

formally a vector of converters to succinctly express the situation in Fig. 2. The
simulator is attached at the dishonest server interface.

Second, we need to satisfy the correctness (or non-triviality) condition of con-
structive cryptography that ensures that the protocol implements the required
functionality in case the server is honest. This condition is typically easy to
achieve for well-designed protocols and always ensured in this work. Formally,
honest server behavior is represented by a special protocol converter honSrv
attached at interface S. For outsourced server-memory resources this is a server
protocol that does not interfere with the client protocol. For implementing
audits, the (honest) server protocol might do some computation to support the
client, such as computing a hash. In this case, we prove

AP (honSrv® secp[L, cSMR], honSrv*sSMR) = 0.

A special role in our model takes the interface W, also denoted to as the world
interface, which models the direct influence of a distinguisher on a resource.
Hence, no converter is attached at that interface.? This interface is our method
of choice to model capabilities which should not be assigned to a party or the
attacker and which allows to derive more general statements as explained in the
introduction and already used in [6] in a different context.

3 Basic Server-Memory Resource

The basic server-memory resource allows clients to read and write data blocks,
where each block is encoded as an element v of some alphabet X' (a finite non-
empty set). An element of X' is considered a data block. At the server interface,
denoted S, the resource provides the entire history of accesses made by the clients
(modeling the information leakage via a server log file in practice), and allows
the server to overwrite existing data blocks. To syntactically separate the for-
mer capability (modeling data leakage), from the latter, capability (modeling
active influence), we formally divide interface S into two sub-interfaces which
we denote by Sg (for honest but curious) and Sy (for intrusion). The server can
only overwrite data blocks if the resource is set into a special write mode. The
distinguisher (or environment) is given the capability to adaptively enable and

3 Such a direct influence could be modeled in UC along the lines of [3] using an
additional incorruptible party.
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Initialization

INIT, ACTIVE, INTRUSION <— false
Hist « []

Interface Sy

Interface Cg

Input: init
if not iNiT then
for i =1 ton do
M[z] « A
Hist «+ Hist||(0, init)
INIT <— true

Input: (read,i) € [n]
if INIT and not AcTIVE then
Hist « Hist||(0,R, %)
return M)

Input: (write,i,z) € [n] x ¥
if INIT and not AcTIVE then
Hist « Hist||(0,W, 4, )
M[i] « =

Input: initComplete
ACTIVE <— true

Input: getHist
return Hist

Input: (read,i) € [n]
return M[i]

Interface S;

Input: (write,i,z) € [n] x X
if INTRUSION then

Interface W

Input: startWriteMode
if AcTIVE then
INTRUSION <— true

Input: stopWriteMode
if AcTIVE then
INTRUSION < false

Interfaces Ci,t € {1,...,k}

Input: (read,i) € [n]
if AcTivE and not INTRUSION then
Hist < Hist||(t, R, )

Input: (write,?,z) € [n] X ¥
if AcTiVE and not INTRUSION then
Hist < Histl|(¢, W, 4, z)

return M) M[i] « =

Fig. 3. Description of the insecure server-memory resource.

disable this write mode at the free interface W. The combination of capabilities
at interfaces W and S; allows our model to capture different types of adversarial
influence, including adaptively setting return values of client read operations, or
to model phases in which no server write access is possible at all. We present the
basic server-memory resource, called SMR’EW in detail in Fig.3. Our formal-
ization is more general than the simple client-server setting in that it takes into
account several clients that access the resource, each via their interface C;. The
parameters of the resource are the number of clients &, the alphabet X', and the
number of blocks. The interface Cy is the initialization interface and is used to
set up the initial state of the resource (for example as a first step in the proto-
col). Only after the resource is initialized, indicated by the input initComplete
at Cp, the client interfaces become active and can update the state. We assume
that (adversarial) server write operations only happen after the initialization is
complete. Interface Cy can be thought of as being assigned to a special party or
simply to a dedicated client whose first actions are to initialize the resource. The
basic server-memory resource constitutes the core element of our model and is
general enough to serve as the building block for numerous applications in the
realm of cloud storage. In this work, we are particularly interested in securing
the storage against a malicious server.
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4 Security Guarantees for Server-Memory Resources

In this section, we present server-memory resources that offer more security
guarantees for the clients in that they restrict the capabilities of the server. The
formal descriptions of these systems as pseudo-code is given in the full version
of this work [4].

Authenticity and confidentiality. An authentic server-memory resource
enhances the basic server-memory resource by restricting the capabilities at the
active interface S;. Instead of being capable to modify existing data blocks, the
server can either delete data blocks, via input (delete,i) at Sy, or restore pre-
viously deleted data blocks, via input (restore,i) at S;. A deleted data block
is indicated by the special symbol €. A client accessing the location of a deleted
data block simply receives € as an answer. The authentic server-memory resource
is denoted by aSMRkEm. This memory resource can be realized from the inse-
cure server-memory resource by standard techniques such as Blum’s protocol [5],
which we formally show in the full version [4].

A further enhancement to this is defined by the confidential and authentic
server-memory resource, denoted cSMRgn. It enhances the authentic server-
memory resource by restricting the access at the server interface Sy in that each
server read operation simply returns A € Y. Furthermore, the history of client
accesses only reveal the location, but not the value that was read or written. In
the full version of this work [4] we show that standard encryption can be used
to construct this resource from authentic server memories.

Secure (oblivious) server-memory resource. The secure (and oblivious)
server-memory resource is again a strengthening of the above and offers the
strongest guarantees for the clients. First, the access pattern does not leak to
the server apart from the number of accesses made. Second, the adversarial
influence is now limited to setting a corruption or “pollution” parameter c.
On each client read or write operation (read,i) or (write,i,z) the operation
fails with probability a and the cell i is considered deleted. This expresses the
inability of an intruder to mount a targeted attack on chosen blocks. His influence
pollutes the entire memory in the specific way of increasing (or decreasing) the
probability of a failure. In particular, our ideal functionality demands that each
cell or block fails independently and with the same probability (if it had not
failed before) Our concrete formulation of this resource, which we denote by
SSMR Jhrep , is slightly more general than just described: it is parameterized as
before by the number of clients k, the alphabet X' the size n, and additionally
by a tolerance e, (considered as the replication factor) that formalizes the
resilience against failures. Intuitively, only after .., read or write operations for
location ¢ have failed, ¢ is considered as deleted, which of course includes the
standard case t.o, = 1. This guarantee, although quite strong, seems appealing
in practice and is realizable as we prove in the next section. It further seems
to be a desriable abstraction on its own, for example in the context of data
replication where the assumption that blocks fail independently is crucial. It
further allows for straightforward statistical predictions of this error parameter.
One could imagine to weaken this resource by considering correlations among
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failures, or to allow different cells to fail with different probabilities. We only
consider the strongest variant in this paper and show how to achieve it.

4.1 Auditable Storage

For each server-memory resource one can naturally specify how an ideal storage
audit should behave.

Basic, authenticated, and confidential auditable server memory. We
observe that an audit can only provide a reasonable guarantees in a phase where
an intruder is not active. In this case, the check reveals whether the current
memory blocks are indeed the newest version that the client wrote to the stor-
age. This is formally specified in Fig.4 for the case of a basic server-memory
resource. In particular, if a single data block has changed, the ideal audit will
detect this and output an error to the client. It is obvious that in case of a
successful audit, this guarantee only holds up to the point where the server
gains write-access to the storage again, in which case a new audit has to reveal
whether modifications have been made. The goal of a scheme providing a proof
of storage is to implement this additional capability. In the full version [4], we
give standard constructions that implement the audit capability for each of the
presented server-memory resources.

Secure and auditable server memory. For the secure server-memory, it is
more difficult to specify a realistic capability to capture secure audits. Due to
the probabilistic nature of resource sSSMR, the ideal retrievability guarantee for
secure memory resources has to be a probabilistic one: based on an additional

The client interfaces have one additional capability compared to SMR%_,L:

Interfaces C,.,r € {1,...,k}

Input: audit :
if AcTiVE and not INTRUSION then
output auditReq at Sy
Let d € {allow, abort} be the returned value from Sy
if d = allow then
M’ + empty table
for i =1 ton do
if 3k, z,t : Hist[k] = (¢, W, 4, x) then
ko < max{k | 3¢,z : Hist[k] = (¢,W, ¢, 2)}
Parse Hist[ko] as (¢, W, i, o)
Ml [Z] <— o
else
M'[i] + X
if M’ = M then
return accept
else
return reject
else
return reject

Fig. 4. Specification of an ideal audit guarantee for the basic memory.



Composable and Robust Outsourced Storage 367
parameter 7, the ideal audit of resource SSMRIE?{“’’T’a”d't reveals whether the
probability that the entire memory cannot be retrieved anymore is below the
threshold 7. Stated differently, if an audit is successful, this means that the entire
memory can be retrieved with probability at least 1 — 7. Hence, the smaller the
parameter 7 is, the stronger is the retrievability guarantee. We give the formal
specification in the full version of this paper [4].

5 Implementing Secure and Robust Outsourced Storage

In this section, we show that our strongest notion is achievable. We first con-
struct a secure server storage from an authentic and confidential server storage
and make it auditable in a second step. We need to specify the protocol for the
clients by means of a converter which every client attaches to its interface. We
further have to provide a converter that describes the initialization step (gen-
erating cryptographic keys etc.) and which is attached at interface Cy. To show
that a protocol achieves a construction, we have to prove both conditions of
Constructive Cryptography as explained in Sect.2. The protocol uses a local
memory L shared among all clients. We assume that client accesses to the
resources are sequential (which is trivially true in the single client setting). If
this is not guaranteed, the clients could establish mutual exclusion by running
Dekker’s or Peterson’s algorithm via L.

Basic structure. We employ the Path ORAM protocol by Stefanov et al. [22]
and complement it with a proper error handling such that the protocol realizes
the secure server-memory resource from an authentic and confidential server-
memory resource: The protocol maintains a tree structure on the assumed server-
memory resource. For a logical memory with ¢ positions (assume /¢ is a power of
two), the binary tree has height L = log(¢) (and thus ¢ leaves). Each node N, of
the tree can hold Z memory blocks (where Z is a small constant greater or equal
to 4 [22]). As usual, the tree is stored in the server memory in linear ordering
from 1 to 2¢ — 1, where in location 1 the root node Nj is stored and where the
leaves are located at addresses ¢ to 2¢ — 1. We refer to the leaf node at address
£+ 1 —1 as the ith leaf node. For such a leaf node, the unique path to the root
of the tree is denoted P(i) and by P(i,lv) we denote the node at level v on this
path. The total number of blocks stored on the server is thus Z - (2¢ — 1).

The client stores a position map position, which is a table of size L - £ bits
and maps all logical addresses to the index of its associated leaf node. At any
time during protocol execution, the invariant holds that for any logical address
i € [{], if position[i] = x, then the correct data block (4, v) is contained in a node
on the path P(x) or in the stash S. The stash is a local buffer maintained by
the client that stores data blocks that overflow during the protocol execution.
A data block overflows if all suitable nodes in the tree are already occupied by real
memory blocks. The number of overflowing blocks is proven to be small in [22].

4 More specifically, at each interface C; of L, the usual read and write capabilities are
available. The server does not have access to this resource.
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Protocol. Initially, the tree is initialized to contain £ empty blocks of the form
(i, A) for each address ¢ € [¢]. Upon initialization, the tree is built to contain
these empty blocks. In addition, the position table and the stash are stored in
the shared memory L and to each address i, a uniformly random leaf node is
assigned, i.e., position[i] «- {1,...£}. Since each node of the tree should be a list
of exactly Z elements, each node is complemented with the necessary amount
of dummy elements which we encode as (0, \) (as opposed to real elements that
contain the normal addresses and the associated data block). The entire tree is
then written to the server storage. The formal description as pseudo-code of the
converter inits. that implements the above steps can be found in the full version
of this paper.

To access a logical address ¢ to either read or update the corresponding
value v, the client reads the associated index of the leaf node x « position[i] and
reassigns position[i] to a new uniformly random leaf. Next, the client retrieves all
nodes on the path P(z) from the server memory (from leaf to root) and all found
real elements (j,v) (j > 0) are added to the stash. In case the value at position
i is to be updated, it is assigned a new value at this point. Finally, the nodes of
P(x) are newly built and written back to the server. In this write-back phase, as
many blocks as possible from the local stash are “pushed” onto this path. To deal
with failures on a read or write-access to a logical address 7, the protocol behaves
as follows: if during the above execution, a read request to the server is answered
by e, indicating that a node is deleted, then the logical address ¢ is marked as
invalid in the local position table position[i] < €. To remain oblivious in this case,
the protocol subsequently writes back all previously retrieved nodes without any
modifications (yielding a sequence of dummy accesses). In a subsequent request
to retrieve logical block i, the protocol will detect the invalid entry in the position
table and just return e. To remain oblivious, the protocol additionally reads a
uniformly random path from the outsourced binary tree and subsequently re-
writes the very same elements without modifications (again yielding a sequence
of dummy accesses). If during these dummy accesses an error occurs, i.e., the
server-memory resource returns € upon a request, this is simply ignored.

This concludes the description of the protocol. A more precise specification
as pseudo-code can be found in the full version of this work [4]. We denote this
client converter by secgw. The security of the protocol is assured by the following
theorem proven in the full version:

Theorem 1. Let k,¢,Z € N and 2y := ({0} U[(]) x X)Z for some finite non-
empty set X. The above described protocol sec := (initsec, SECRW, - - - , SECRW )
(with k copies of secrw ) constructs the secure server-memory resource sSMR%le

from the confidential (and authentic) server-memory resource CSMR]gh% and
a local memory, with respect to the simulator simge. (described in the proof) and
the pair (honSrv, honSrv). More specifically, for all distinguishers D

AP (honSrv® secp L, cSMR’%hﬂ], honSrvSsSMR’;}Z) =0
and AP (secp[L,cSMRY, 5], sim3, sSMRY) = 0.
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Improving the resilience by replication. There is a simple protocol that
improves the resilience to losing data blocks. The protocol stores each data
block t times Within the secure server memory. Formally, this protocol constructs
resource sSMRE’ ) from sSMRE’t ;- Recall that in the former resource, only
failing to read (or write) a logical memory cell more than ¢ times implies that
the data block is not accessible any more. We provide more details in [4].

5.1 Do All ORAM Schemes Realize a Secure Server-Memory?

Our ideal system provides strong security guarantees. Especially, the failure
probabilities are required to be independent and the same for each memory
location. However, not all existing ORAM schemes satisfy this level of secu-
rity: we show in [4] that in the recursive Path ORAM scheme by Stefanov
et al. [21], failures among memory locations are correlated. This is dangerous in
applications, where such errors can be observed because the error pattern and
the access pattern are correlated. In a second case, we elaborate on the Goodrich-
Mitzenmacher ORAM scheme [10], where we show that the failure probabilities
are not the same for all (logical) memory locations. The problem in general with
hierarchical structures of ORAM is that they allow to predict at which level in
the hierarchy an element resides (recall that an element is an address-value pair).
In the full version of this work [4], we describe a concrete scenario where this
can be abused to lead to an error-pattern that correlates with the access pattern
and hence provides a side-channel to the access pattern. The attack is structural
and therefore applies also to stronger notions, for example ORAM schemes that
satisfy the NRPH-property of [8].

5.2 Implementing Audits for Secure Server-Memory Resources

In this section, we show how to construct an auditable secure server-memory
resource from a secure server-memory resource. We reduce the problem of audit-
ing secure server-memory resources to the problem of estimating the corruption
factor a. Each protocol chooses a tolerated threshold p and stores the data with
replication factor ¢,¢, that compensates data loss up to the corruption threshold
p. To make sure that all values can be retrieved with a certain probability, the
protocol tests tquq:¢+ fixed locations to estimate whether the parameter a has
already reached the tolerated threshold p. In a first variant, the audit is suc-
cessful if none of the probed locations return an error. In a second variant, we
obtain similar results if the t,,q:+ trials are used to obtain a sufficiently accurate
estimate of «. The constructions are parameterized by the tolerated threshold p
and by the desired retrievablity guarantee 7. The values of ¢yyqit and t,ep, depend
on both of these parameters. The dependency is roughly as follows: The stronger
the desired retrievability guarantee should be, the higher the value of .., needs
to be. However, the smaller the value of the tolerated threshold p is, the smaller
the value of t,., can be. On the other hand, a smaller value of the threshold
p implies a higher value of t,.qit. More specifically, the assumed resource is a
secure server-memory resource with replication tyep, and size £+ taudit/trep Whose
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values are determined in the theorem below. The desired resource is an auditable
secure server-memory resource of size £ and with retrievability guarantee 7.

The protocol. As before, the protocol consists of an initialization con-
verter statlnit, the client converter statAudit, and an honest server behavior
statSrvAudit. The server behavior is equal to the dummy behavior of the last
section. So we only describe the protocol for the client. The protocol is param-
eterized by t.uqit- For the sake of presentation, we do not explicitly write it
as it is clear from the context. On input init to statlnit, the converter calls
init and sets FLAG <« 0. The variable FLAG records whether the protocol has
ever detected an error when writing or reading to the server. If equal to one, it
signals that misbehavior has been detected and will provoke subsequent audits
to reject. The flag does not influence ordinary client read and write requests.
On (read,i) to either statlnit or statAudit, the converter outputs (read,i) to
retrieve the value at memory location ¢ or the error symbol €, and outputs this
returned value at its outer interface. In the case of an error, set FLAG <+ 1. On
(write,i,v) to either statlnit or statAudit, the converter outputs (write,i,v) to
write the value v at location i of the server. Again, if an error is observed, it
sets FLAG « 1. Finally, on input audit to converter statAudit, the converter
immediately returns reject if FLAG = 1. If FLAG = 0 the audit is executed as
follows:®, the converter issues ¢, read requests to each logical memory location
r=40¢+1,...,0+ t;“% If and only if no read instruction returned the error
symbol €, then outputp success. Otherwise, the output is reject and the flag
is updated to FLAG < 1. The security of this scheme follows from the following
theorem that is proven in [4].

Theorem 2. Let X' be an alphabet, let ¢, K, tyep, taudit,d € N such that d =
%7 and let p,7 € (0,1) such that

log(7) — log(¥) oS —K
log(p) T log(1 - p)

The above described protocol statCheck := (statlnit, statAudit, ..., statAudit)
(with k copies of statAudit) parameterized by tauai, constructs the auditable

k,t,7,audit
secure server-memory resource sSSMRY; [’a“ " from the secure server-memory
:

Kotre . )
resource SSMR g7, and a local memory (which stores the variable FLAG),

(1)

trep

with respect to the simulator simgg: (described in the proof) and the pair
(honSrv, honSrv). More specifically, for all distinguishers D performing at most
q audits,

kytrep

AP (honSrv® statCheckp[L, sSMR/s:’;7 ], honSr®sSMRY: ;=™ *'4") = 0

and AP (statCheckp[L, sSSMR'}7,], sim3, sSMR " ™)

IA

q-27".

5 From a statistical point of view, if FLAG = 0, we have t,u4it independent samples to
estimate the parameter a.



Composable and Robust Outsourced Storage 371

We refer to the full version [4] for a numerical example of the above audit
mechanism. In [4], we also give a second audit mechanism based on a direct
estimation of the corruption factor a using Chernoff-Bounds.

6 Assessment of Hash-Based Challenge-Response Audits

Our model allows for a formal assessment of the security of a very simple and
widely-used hash-based challenge-response protocol. To the best of our knowl-
edge, this scheme lacks a formal security analysis. In a nutshell, during an audit,
the server has to provide the correct hash value of the current storage content
concatenated with a uniform random challenge provided (and precomputed) by
the client. The expected security claim is that the server cannot have modi-
fied or deleted the content before answering the challenge. As we outline here,
this intuition, although seemingly convincing, is not correct in general and the
scheme requires much stronger assumptions in order to be provably secure. We
consider the setting where one client stores a single file F' (sequence of bits) on
an insecure server memory and later audits this file once.

Assumed and constructed resource. We assume an (ideal) hash function,
i.e., a random oracle, H : {0,1}* — {0,1}". The random oracle is made available
to the parties by means of a system H that has an interface for the client and
one for the server: On input (eval,x) at any of its interfaces H returns H(x) at
the same interface. We further assume a small local storage and a bidirectional
communication channel [7,16] between client and server and denote it by Ch.
Last but not least, we assume an ordinary insecure memory resource SMR127 .
where X' = {0,1} and  being the size of the challenge ¢ (note that we assume
more space here than simply ¢: the client will at some point append the challenge
to the file). The desired functionality we want to achieve is the auditable insecure
IMemory resource SMRgi}ldit.

The protocol. As usual, we specify an initialization converter hashlnit, a client
converter hashAudit, and the protocol for the honest server behavior srvHash. On
input init to hashlnit, the converter simply calls init of its connected resource.
On (write,1, F) to either hashlnit or hashAudit, where F is an {-bitstring, the
converter writes F' to the server storage. It then chooses a uniform random
challenge ¢ € {0,1}" and computes y « H(F||c) and stores ¢ and y in the local
storage. On (read, 1) to either hashlnit or hashAudit, the converter retrieves the
content of the memory and outputs the first £ bits of the received content. Finally,
on a query (audit) to converter hashAudit, if there is a challenge stored in local
memory, the protocol writes ¢ to the server memory at locations £ +1...¢ + k
and sends a notification auditReq to the server via the bidirectional channel.
On receiving a response 4’ on that channel from the server, the client protocol
outputs success if and only if ¥y = ¢'. In any case, the challenge c is deleted from
the local storage. Last but not least, the server protocol srvHash, upon receiving
an audit-request, simply evaluates H on the current memory contents and sends
the result to the client.
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The following lemma (formally proven in the full version) says that computing
the correct hash does not imply that the data is stored in the memory resource.
Hence, the protocol is in general provably not secure under this assumption.

Lemma 1. Let ¢ k,r € N, with ' = {+k, let X := {0,1}, and let H be a ran-

dom oracle (with one interface for the client and one for the server). Then, the

challenge-response protocol, specified by the client converters hashlnit, hashAudit

and the server converter srvHash, does mot provide a secure proof of storage:

there is a distinguishing strategy such that for any simulator sim it holds that
AP (hashlnit“hashAudit“ L, Ch, SMRY, ,,, H], sim*SMR ;") = 1.

In the full version of this work, we give sufficient conditions for this protocol
to be provably secure. We show that the additional assumption we have to make
in order for the scheme to become sound, is to restrict adversarial random oracle
evaluations to inputs from the server storage only, i.e., an adversarial query
consists of two indices ¢ and j (i < j) to obtain H(M]¢]||...|/M]s]). However,
whether such an assumption can be made in practice relies on trust into the
server software: the assumption seems reasonable if we trust the server to work
correctly except that in case of failures it is simply not willing to reveal this
fact (due to loss of reputation). But the scheme does not protect against a fully
cheating server as proven in the above lemma. Finally, we would like to point out
that another drawback of the scheme is that structural properties of the hash-
function could be abused. We give an in-depth explanation of this weakness and
the corresponding formal claims in the full version of this work [4].
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