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Preface

BNAIC is the annual Benelux Conference on Artificial Intelligence. In 2017, the 29th
edition of BNAIC was organized by the Institute of Artificial Intelligence and Cog-
nitive Engineering (ALICE), University of Groningen, under the auspices of the
Benelux Association for Artificial Intelligence (BNVKI) and the Dutch Research
School for Information and Knowledge Systems (SIKS).

BNAIC 2017 took place in Het Kasteel, Groningen, The Netherlands, on
November 8–9, 2017. BNAIC 2017 included invited speakers, research presentations,
posters, demonstrations, a deep learning workshop (organized by our sponsor NVI-
DIA) and a research and business session. Some 160 participants visited the
conference.

The four BNAIC 2017 keynote speakers were:

– Marco Dorigo, Université Libre de Bruxelles
“Swarm Robotics: Current Research Directions at IRIDIA”

– Laurens van der Maaten, Facebook AI Research
“From Visual Recognition to Visual Understanding”

– Luc Steels, Institute for Advanced Studies (ICREA), Barcelona
“Digital Replicants and Mind-Uploading”

– Rineke Verbrugge, University of Groningen
“Recursive Theory of Mind: Between Logic and Cognition”

Three FACt talks (FACulty focusing on the FACts of Artificial Intelligence) were
scheduled:

– Bert Bredeweg, Universiteit van Amsterdam
“Humanly AI: Creating Smart People with AI”

– Eric Postma, Tilburg University
“Towards Artificial Human-Like Intelligence”

– Geraint Wiggins, Queen Mary University of London/Vrije Universiteit Brussel
“Introducing Computational Creativity”

Authors were invited to submit papers on all aspects of artificial intelligence. This year
we received 68 submissions in total. Of the 30 submitted Type A regular papers, 11
(37%) were accepted for oral presentation, and 14 (47%) for poster presentation. Five
(17%) were rejected. Of the 19 submitted Type B compressed contributions, 17 (89%)
were accepted for oral presentation, and two (11%) for poster presentation. None were
rejected. All six submitted Type C demonstration abstracts were accepted. Of the
submitted 13 Type D thesis abstracts, five (38%) were accepted for oral presentation,
and eight (62%) for poster presentation. None were rejected. The selection was made
using peer review. Each submission was assigned to three members of the Program
Committee, and their expert reviews were the basis for our decisions.



All submissions accepted for oral or poster presentations and all demonstration
abstracts appeared in the electronic preproceedings, made available on the conference
website during the conference (http://bnaic2017.ai.rug.nl/). All 11 Type A regular
papers accepted for oral presentation (37%) appear in these proceedings, in the
Springer CCIS series.

The BNAIC 2017 conference would not have been possible without the support and
efforts of many. We thank the members of the Program Committee for their con-
structive and scholarly reviews. We are grateful to Elina Sietsema, Carlijne de Vries,
and Sarah van Wouwe, members of the administrative staff at the Institute of Artificial
Intelligence and Cognitive Engineering (ALICE), for their tireless and reliable support.
We thank our local organization team Luca Bandelli, Abe Brandsma, Tomasz
Darmetko, Mingcheng Ding, Ana Dugeniuc, Joel During, Ameer Islam, Siebert Looije,
René Mellema, Michaela Mrázková, Annet Onnes, Benjamin Shafrey, Sjaak ten Caat,
Albert Thie, Jelmer van der Linde, Luuk van Keeken, Paul Veldhuyzen, Randy Wind,
and Galiya Yeshmagambetova, all of them students in our BSc and MSc Artificial
Intelligence programs, for enthusiastically volunteering to help out in many ways. We
thank Annet Onnes for preparing the proceedings, Jelmer van der Linde for developing
the website, Randy Wind for designing the program leaflet, and Albert Thie for
coordinating the local organization.

We are grateful to our sponsors for their generous support of the conference:

– Target Holding
– NVIDIA Deep Learning Institute
– Anchormen
– Quint
– The Netherlands Research School for Information and Knowledge Systems (SIKS)
– SIM-CI
– Textkernel
– LuxAI
– IOS Press
– Stichting Knowledge-Based Systems (SKBS)
– SSN Adaptive Intelligence

Two awards were presented during the conference. The BNAIC 2017 SNN Best Paper
Award was won by Mathijs Pieters and Marco Wiering for their paper “Comparison of
Machine Learning Techniques for Multi-label Genre Classification.” The BNAIC 2017
SKBS Best Demo Award was won by Denis Steckelmacher, Hèléne Plisnier,
Diederik M. Roijers, and Ann Nowé for their demonstration entitled “Hierarchical
Reinforcement Learning for a Robotic Partially Observable Task.”

Organizing the 2017 edition of the annual BNAIC conference series was an honor
and a pleasure. We hope to meet you at a future edition.

February 2018 Bart Verheij
Marco Wiering

VI Preface
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Learning-Based Diagnosis and Repair

Nico Roos(B)

Data Science and Knowledge Engineering, Maastricht University, Maastricht,
The Netherlands

roos@maastrichtuniversity.nl

Abstract. This paper proposes a new form of diagnosis and repair based
on reinforcement learning. Self-interested agents learn locally which
agents may provide a low quality of service for a task. The correctness of
learned assessments of other agents is proved under conditions on explo-
ration versus exploitation of the learned assessments.

Compared to collaborative multi-agent diagnosis, the proposed
learning-based approach is not very efficient. However, it does not depend
on collaboration with other agents. The proposed learning based diag-
nosis approach may therefore provide an incentive to collaborate in the
execution of tasks, and in diagnosis if tasks are executed in a suboptimal
way.

1 Introduction

Diagnosis is an important aspect of systems consisting of autonomous and
possibly self-interested agents that need to collaborate [4–12,14–30,32–34,37].
Collaboration between agents may fail because of malfunctioning agents, envi-
ronmental circumstances, or malicious agents. Diagnosis may identify the cause
of the problem and the agents responsible [31]. Efficient multi-agent diagnosis of
collaboration failures also requires collaboration and requires sharing of informa-
tion. Agents responsible for collaboration failures may be reluctant in providing
the correct information. Therefore it is important to have an incentive to pro-
vide the right information. The ability to learn an assessments of other agents
without the need to exchange information, may provide such an incentive.

This paper addresses the learning of a diagnosis in a network of distributed
services. In such a network, tasks are executed by multiple agents where each
agent does a part of the whole task. The execution of a part of a task will be
called a service.

The more than 2000 year old silk route is an example of a distributed network
of services. Local traders transported silk and other goods over a small part of the
route between China and Europe before passing the goods on to other traders.
A modern version of the silk route is a multi modal transport, which can consists
of planes, trains, trucks and ships. Another example of distributed services is the
computational services on a computer network. Here, the processing of data are
the distributed services. In smart energy networks, consumers of energy may also
be producers of energy. The energy flows have to be routed dynamically through
c© Springer International Publishing AG, part of Springer Nature 2018
B. Verheij and M. Wiering (Eds.): BNAIC 2017, CCIS 823, pp. 1–15, 2018.
https://doi.org/10.1007/978-3-319-76892-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76892-2_1&domain=pdf


2 N. Roos

the network. A last example of a distributed service is Industry 4.0. In Industry
4.0, the traditional sequential production process is replaced by products that
know which production steps (services) are required in their production. Each
product selects the appropriate machine for the next production step and tells
the machine what is should do.

To describe a network of distributed services such that diagnosis can be
performed, we propose a directed graph representation. An arc of the graph
represents the provision of a service by some agent. The nodes are the points
where a task1 is transferred from one agent to another. Incorrect task executions
are modeled as transitions to special nodes.

The assumption that agents are self-interested and no agent has a global view
of the network, limits the possibility of diagnosis and repair. We will demonstrate
that it is still possible to learn which agents are reliable w.r.t. the quality of
service that they provide.

The remainder of the paper is organized as follows. In the next section, we
will present our graph-based model of a network of distributed services. Section 3
presents an algorithm for locally learning the reliability of agents providing ser-
vices. Section 4 presents the experimental results and Sect. 5 concludes the paper.

2 The Model

We wish to model a network of services provided by a set of agents. The services
provided by the agents contribute to the executions of tasks. The order of the
services needed for a task need not be fixed, nor the agents providing the services.
This suggests that we need a model in which services cause state transitions, and
in each state there may be a choice between several agent-service combinations
that can provide the next service. The service that is provided by an agent may
be of different quality levels. We can model this at an abstract level by different
state transitions. If we also abstract from the actual service descriptions, then
we can use a graph based representation.

We model a network of services provided by a set of agents Ag using
a graph G = (N,A), where the N represents a set of nodes and A =
{(ni, n

′
i, ag i) | {ni, n

′
i} ⊆ N, agi ∈ Ag}|A|

i=1 set of arcs. Each arc (n, n′, ag) ∈ A
represents a service (n, n′) that is provided by an agent ag ∈ Ag . We allow
for multiple services between two nodes provided that the associated agents are
different; i.e., several agents may provide the same service.

A set of tasks T is defined by pairs of nodes (s, d) ∈ T . Any path between
the source s and the destination d of a task (s, d) ∈ T ; i.e., a path (a1, . . . , ak)
with ai = (ni, ni+1, ag i), n1 = s and nk+1 = d, represents a correct execution of
the task.

An incorrect execution of a task (s, d) ∈ T is represented by a path that ends
in a node d′ not equal to d; i.e., a path (a1, . . . , ak) with ai = (ni, ni+1, ag i),
n1 = s and nk+1 = d′ �= d. A special node f is used to denote the complete

1 In smart energy networks the tasks are the directions in which energy must flow.
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failure of a service provided by an agent. No recovery from f is possible and no
information about this failure is made available.

To describe a sub-optimal execution of a task (s, d) ∈ T , we associate a
set of special nodes with each destination node d. These nodes indicate that
something went wrong during the realization of the task. For instance, goods may
be damaged during the execution of a transport task. The function D : N → 2N

will be used for this purpose. Beside the nodes denoting suboptimal executions,
we also include the normal execution; i.e., d ∈ D(d). Moreover, f ∈ D(d).

To measure the quality of the execution of a task (s, d) ∈ T , we associate
a utility with every possible outcome of the task execution: U(d′, d) for every
d′ ∈ D(d). Here, U(f, d) ≤ U(d′, d) < U(d, d) for every d′ ∈ D(d)\d.

The possible results of a service provided by agent ag in node n for a task
t = (s, d) with destination d, will be specified by the function E(n, d, ag). This
function E : N × N × Ag → 2N specifies all nodes that may be reached by the
provided service. The function must satisfy the following requirements:
– E(n, d, ag) ⊆ {n′′ | (n, n′′, ag) ∈ A}
We also define a probability distribution e : N × N × Ag × N → [0, 1] over
E(n, d, ag), describing the probability of every possible outcome of the provided
service; i.e.,
– e(n, d, ag , n′) = P (n′ | n, d, ag)

where n′ ∈ E(n, d, ag) and
∑

n′∈E(n,d,ag) e(n, d, ag , n
′) = 1.

There may be several agents in a node n that can provide the next service
for a task t = (s, d) with destination d. The function succ : N × N → 2Ag will
be used to denote the set of agents succ(n, d) = {ag1, . . . , agk} that can provide
the next service.

Fig. 1. An example network.

Figure 1 gives an illustration of a network of services represented as a graph.
The network shows two starting nodes for tasks, s1 and s2, two successful desti-
nation nodes for tasks, d1 and d4, two unsuccessful destination nodes for tasks,
d2 and d3, the failure node f and seven intermediate nodes.
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3 Distributed Learning of Agent Reliability

Agents may learn locally diagnostic information using feedback about the result
of a task execution. The diagnostic information learned by each agent may enable
it to pass on a task in a node to a next agent such that the task is completed in
the best possible way. So, an agent must learn the reputation of the agents to
which it passes on tasks. This reputation may depend on the node in which the
coordination with the next agent takes place as well as on all future agents that
will provide services for the task.

We could view our model of a network of services provided by agents as
a Markov Decision Process (MDP) [1,13]. In this markov decision process the
nodes in D(d) given the task (s, d), are absorbing states. Only when reaching
a node in D(d) a reward is received. All other rewards are 0. The transition
probabilities are given by e(n, d, ag , n′). If these probabilities do not depend on
the destination; i.e., e(n, d, ag , n′) = P (n′ | n, ag), then we have a standard
markov decision process for which the optimal policy can be learned using Q-
learning [35,36]. However, Q-learning requires that an agent providing a service
knows the Q-values of the services the next agent may provide. This implies that
we have a Decentralized MDP [2,3] in which collaboration is needed to learn the
optimal Q-values of services. If agents are willing to collaborate, it is, however,
more efficient to use the traditional forms of diagnosis [31]. Therefore, in this
section, we assume the agents are self-interested and do not collaborate.

To enable local learning of the agents’ reputations, we assume that for every
task t = (s, d) ∈ T one and the same agent agd is associated with all nodes in
D(d)\f . Moreover, we assume that each agent that provided a service for the
task execution, has added its signature to the task. The incentive for adding
a signature is the payment for the provided service. The agent agd uses these
signatures to make the payments and to inform the agents that provided a service
about the success of the whole task execution. The latter information enables
each service agent to assess the quality of the agents to which it passes on tasks.
If the payments depend on the quality of service of the whole chain, the agents
providing services will have an incentive to provide the best possible service and
to pass on a task to a next agent such that the quality of the next services is
maximized.

An agent ag that provided a service must pass on task t = (s, d) ∈ T to the
next agent if the task is not yet finished. There may be k agents that can provide
the next service: ag1, . . . , agk. Assuming that agent ag can identify the current
node n and thereby the quality of its own service, ag would like to learn which
of the k agents is the most suited to provide the next service for the task.

The agent agd associated with the destination d of task t = (s, d) ∈ T will
inform agent ag about the actual quality d′ ∈ D(d) that is realized for the task.
This feedback enables agent ag to evaluate the quality of the whole chain of
services starting with a next agent ag i. So, even if agent ag i is providing a high
quality service, it may not be a good choice if subsequent agents are failing.

An agent ag can learn for each combination of a task destination (the node
d) a next agent ag ′ and the current node n, the probability that the remainder
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of the task execution will result in the quality d′ ∈ D(d)\f . The probability
estimate is defined as:

pe(d′ | d, ag ′, n, i) =
Cd′ | i

i

where i is the number of times that a task t with destination d is passed on to
agent ag ′ in the node n, and Cd′ | i is the number of times that agent agd gives
the feedback of d′ for task t with destination d.

Agent ag may not receive any feedback if the execution of task t ended in a
complete failure, unless agent agd knows about the execution of t. In the absence
of feedback, agent ag can still learn the probability estimate of a complete failure:

pe(f | d, ag ′, n, i) =
Cf | i

i

where Cf | i is the number of times that no feedback is received from agent agd.
An underlying assumption is that agent agd always gives feedback when a task
is completed, and that the communication channels are failure free.

Estimating the probability is not enough. The behavior of future agents may
change over time thereby influencing the probability estimates pe(d′ | d, ag ′, n, i).
Assuming that the transition probabilities e(n, n′, ag , n′′) of provided services do
not change over time, the coordination between agents when passing on tasks
is the only factor influencing the probability estimate pe(d′ | d, ag ′, n, i). Since
agents have an incentive to select the best possible next agent when passing on a
task, we need to address the effect of this incentive on the probability estimates.
First, however, we will investigate the question whether there exist an optimal
policy for passing on a task to a next agent and a corresponding probability
P (d′ | d, ag ′, n, i).

To answer the above question, utilities of task executions are important.
With more than two possible outcomes for a task execution, i.e., |D(d)| > 2, the
expected utility of a task execution needs to be considered. Therefore, we need
to know the utility U(d′, d) of all outcomes d′ ∈ D(d). We assume that either
this information is global knowledge or that agent agd provides this information
in its feedback.

Using the utilities of task outcomes, we can prove that there exists an optimal
policy for the agents, and corresponding probabilities.

Proposition 1. Let ag be an agent that has to choose a next agent ag ′ to provide
a service for the task t = (s, d) ∈ T in node n. Moreover, let P (d′ | ag ′, d, n) be
the probability of reaching d′ given the policies of the succeeding agents.

The utility U(d, ag , n) an agent ag can realize in node n for a task t with des-
tination d, is maximal if every agent ag chooses a next agent ag∗ in every node
n in which it can provide a service, such that the term

∑
d′∈D(d) P (d′ | ag∗, d, n)·

U(d′, d) is maximal.



6 N. Roos

Proof. Given a task t = (s, d) ∈ T we wish to maximize the expected utility
agent ag can realize in node n by choosing the proper next agent to provide a
service for the task.

U(d, ag , n) =
∑

d′∈D(d)

P (d′ | d, n) · U(d′, d)

=
∑

d′∈D(d)

∑

ag′
P (d′ | ag ′, d, n) · P (ag ′ | d, n) · U(d′, d)

=
∑

ag′
P (ag ′ | d, n) ·

∑

d′∈D(d)

P (d′ | ag ′, d, n) · U(d′, d)

Here P (ag ′ | d, n) is the probability that agent ag chooses ag ′ to be the next
agent.

Suppose that the term
∑

d′∈D(d) P (d′ | ag ′, d, n) · U(d′, d) is maximal for
ag ′ = ag∗. Then U(d, ag , n) is maximal if agent ag chooses ag∗ to be the next
agent with probability 1; i.e., P (ag∗ | d, n) = 1. Therefore,

U(d, ag , n) =
∑

d′∈D(d)

P (d′ | ag∗, d, n) · U(d′, d)

We can rewrite this equation as:

U(d, ag , n) =
∑

d′∈D(d)

P (d′ | ag∗, d, n) · U(d′, d)

=
∑

d′∈D(d)

∑

n′∈E(n,d,ag∗)

P (d′ | d, n′) · P (n′ | ag∗, d, n) · U(d′, d)

=
∑

n′∈E(n,d,ag∗)

P (n′ | ag∗, d, n) ·
∑

d′∈D(d)

P (d′ | d, n′) · U(d′, d)

=
∑

n′∈E(n,d,ag∗)

e(n, d, ag∗, n′) · U(d, ag ′, n′)

Here P (n′ | ag∗, d, n) is the transition probability of the service provided by
agent ag∗, and U(d, ag∗, n′) =

∑
d′∈D(d) P (d′ | d, n′) · U(d′, d) is the expected

utility agent ag∗ can realize in node n′ by choosing the proper next agent to
provide a service.

We can now conclude that to maximize U(d, ag , n), agent ag must choose
the agent ag∗ for which the term

∑
d′∈D(d) P (d′ | ag ′, d, n) ·U(d′, d) is maximal,

and agent ag∗ ensures that U(d, ag∗, n′) is maximized. This result enables us to
prove by induction to the maximum distance to a node d′ ∈ D(d) that for every
agent ag , U(d, ag , n) is maximal if every agent ag chooses a next agent ag∗ for
which the term

∑
d′∈D(d) P (d′ | ag∗, d, n) · U(d′, d) is maximal.

– Initialization step Let the current node be d′ ∈ D(d). Then the maximum
distance is 0 and the current agent is the agent agd receiving the result of the
task. So, U(d, agd, d′) = U(d′, d).
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– Induction step Let U(d, agd, n′) be maximal for all distances less than k. Let
n be a node such that the maximum distance to a node in D(d) is k. Then
according to the above result, U(d, ag , n) is maximal if agent ag chooses
a next agent ag∗ for which the term

∑
d′∈D(d) P (d′ | ag∗, d, n) · U(d′, d) is

maximal, and for every n′ ∈ E(n, d, ag∗), U(d, ag∗, n′) is maximal. The former
condition holds according to the prerequisites mentioned in the proposition.
The latter condition holds according to the induction hypothesis. Therefore,
the proposition holds.

�

The proposition shows that there exists an optimal policy for the agents,
namely choosing the next agent for which the expected utility is maximized.
The next question is whether the agent can learn the information needed to make
this choice. That is, for every possible next agent, the agent must learn the
probabilities of every value in D(d) for a task t = (s, d) ∈ T with destination d.
Since these probabilities depend on the following agents that provide services,
the optimal probabilities, denoted by the superscript ∗, can only be learned if
these agent have learned to make an optimal choice. So, each agent needs to
balance exploration (choosing every next agent infinitely many times in order to
learn the optimal probabilities) and exploitation (choosing the best next agent).
We therefore propose the following requirements

– Every agent ag uses a probability Pi(ag ′ | d, n) to choose a next agent ag ′ for
the task with destination d. The index i denotes that this probability depends
on the number of times this choice has been made till now.

– The probability Pi(ag ′ | d, n) that agent ag will choose agent ag ′ of which the
till now learned expected utility is sub-optimal, approximates 0 if i → ∞.

–
∑

i→∞ Pi(ag ′ | d, n) = ∞
The first requirement states that we use a probabilistic exploration. The sec-
ond requirement ensures that the agent will eventually only exploit what it has
learned. The third requirement ensures that the agent will select every possible
next agent infinitely many times in order to learn the correct probabilities.

A policy meeting the requirements is the policy in which the agent ag chooses
the currently optimal next agent ag′ with probability 1 − 1

(k−1)i . Here, k is the
number of agents that can perform the next service for a task with destination
d, and i is the number of times agent ag has to choose one of these k agents for
a task with destination d. The agents that are currently not the optimal choice
are chosen with probability 1

(k−1)i .
We can prove that any approach meeting the above listed requirements will

enable agents to learn the optimal policy.

Theorem 1. Let every agent ag meet the above listed requirements for the prob-
ability Pi(ag ′ | d, n) of choosing the next agent. Moreover, let P ∗(d′ | ag , d, n) be
the optimal probability of reaching the node d′ ∈ D(d) if every agent chooses a
next agent ag∗ for which the term

∑
d′∈D(d) P (d′ | ag∗, d, n)·U(d′, d) is maximal.
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Then, every agent ag learns P ∗(d′ | ag ′, d, n) through pe(d′ | ag ′, d, n, i) if
the number of tasks with destination d for which agent ag has to choose a next
agent ag ′, denoted by i, goes to infinity.

Proof. We have to prove that: limi→∞ pe(d′ | ag ′, d, n, i) = P ∗(d′ | ag ′, d, n).
We can rewrite limi→∞ pe(d′ | ag , d, n, i) as:

lim
i→∞

pe(d′ | ag ′, d, n, i) = lim
i→∞

Cd′ | i

i

= lim
i→∞

∑

n′∈E(n,d,ag′)

Cn′ | i

i
·
Cd′ | Cn′ | i

Cn′ | i

= lim
i→∞

∑

n′∈E(n,d,ag′)

pe(n′ | ag ′, d, n, i) ·
Cd′ | Cn′ | i

Cn′ | i

=
∑

n′∈E(n,d,ag′)

P (n′ | ag ′, d, n) · lim
i→∞

Cd′ | Cn′ | i

Cn′ | i

We will prove that Cn′ | i → ∞ if i → ∞ and P (n′ | ag ′, d, n) > 0. That is,
for every x ∈ N, limi→∞ P (Cn′ | i > x) = 1.

lim
i→∞

P (Cn′ | i > x) = lim
i→∞

1 − P (Cn′ | i ≤ x)

= 1 − lim
i→∞

x∑

j=0

(P (n′ | ag ′, d, n))j · (1 − P (n′ | ag ′, d, n))i−j

= 1

So, Cn′ | i → ∞ if i → ∞. Therefore,

lim
i→∞

pe(d′ | ag ′, d, n, i) =
∑

n′∈E(n,d,ag′)

P (n′ | ag ′, d, n) · lim
j→∞

pe(d′ | d, n′, j)

The estimated probability pe(d′ | d, n′, j) depends on the probability of choosing
the next agent. This probability is a function of the j-th time agent ag ′ must
choose a next agent ag ′′ for a task with destination d in node n′.

lim
j→∞

pe(d′ | d, n′, j) = lim
j→∞

∑

ag′′∈succ(n′,d)

Pj(ag ′′ | d, n′) · Cd′ | ag′′,j

Cag′′ | j

where Cag′′ | j is the number of times that agent ag ′′ was chosen to be the next
agent, and Cd′ | ag′′,j is the number of times that subsequently node d′ was
reached.

We will prove that Cag′′ | j → ∞ if j → ∞ and Pj(ag ′′ | d, n) > 0 for every
j. That is, for every x ∈ N, limi→∞ P (Cag′′ | j > x) = 1. A complicating factor
is that Pj(ag ′ | d, n) can be different for every value of j. Let y be the index of
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the last time agent ag ′′ is chosen, and let px be the probability of all possible
sequences till index y. Then we can formulate:

lim
j→∞

P (Cag′′ | j > x) = lim
j→∞

1 − P (Cag′′ | j ≤ x)

= 1 − px · lim
j→∞

j∏

k=y+1

(1 − Pk(ag ′′ | d, n))

= 1 − eln(px)+
∑∞

k=y+1 ln(1−Pk(ag
′′ | d,n))

According to the Taylor expansion of ln(·): ln(1 − Pk(ag ′′ | d, n)) < −Pk(ag ′ |
d, n). Therefore,

lim
j→∞

P (cag′′ | j > x) = 1 − eln(px)−
∑∞

k=y+1 Pk(ag
′′ | d,n)

= 1 − eln(px)−∞ = 1

The above result implies:

lim
j→∞

pe(d′ | d, n′, j) = lim
j→∞

∑

ag′′∈succ(n′,d)

Pj(ag ′′ | d, n′) · lim
k→∞

pe(d′ | ag ′′, d, n′, k)

We can now prove the theorem by induction to the maximum distance to a
node d′ ∈ D(d).

– Initialization step. Let the current node be d′ ∈ D(d). The maximum distance
is 0 and the current agent is the agent agd receiving the result of the task.
So, limi→∞ pe(d′ | agd, d, d′, i) = P ∗(d′ | agd, d, d′) = 1.

– Induction step. Let limj→∞ pe(d′ | ag ′, d, n′, j) = P ∗(d′ | ag ′, d, n′) be maxi-
mal for all distances less than k. Moreover, let the maximum distance from
n to d′ be k.
Then, the expected utility of agent ag ′′ ∈ succ(n′, d) is:

lim
j→∞

Uj(ag ′′, d, n′) = lim
j→∞

∑

d′∈D(d)

pe(d′ | ag ′′, d, n′, j) · U(d′, d)

=
∑

d′∈D(d)

P ∗(d′ | ag ′, d, n′) · U(d′, d) = U∗(ag ′′, d, n′)

According to the requirement,

lim
j→∞

Pj(ag∗
j | d, n′) = 1 for ag∗

j = argmaxag′′Uj(ag ′′, d, n′)

So,

ag∗ = lim
j→∞

ag∗
j

= lim
j→∞

argmaxag′′Uj(ag ′′, d, n′)

= argmaxag′′U∗(ag ′′, d, n′)
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This implies:

lim
j→∞

pe(d′ | d, n′, j) = lim
j→∞

∑

ag′′∈succ(n′,d)

Pj(ag ′′ | d, n) · lim
k→∞

pe(d′ | ag ′′, d, n′, k)

=
∑

ag′′∈succ(n′,d)

P ∗(d′ | ag ′′, d, n′) · lim
j→∞

Pj(ag ′′ | d, n)

= P ∗(d′ | ag∗, d, n′) = P ∗(d′ | d, n′)

Therefore,

lim
i→∞

pe(d′ | ag ′, d, n, i) =
∑

n′∈E(n,d,ag′)

P (n′ | ag ′, d, d) · lim
j→∞

pe(d′ | d, n′, j)

=
∑

n′∈E(n,d,ag′)

e(n, d, ag ′, n′) · P ∗(d′ | d, n′)

= P ∗(d′ | ag ′, d, n)

�

The theorem shows us that each agent can learn which next agent results in
an expected high or low quality for the remainder of a task. In order to learn
this assessment, the agents must explore all possible choices for a task infinitely
many times. At the same time the agents may also exploit what they have learned
sofar. In the end the agents will only exploit what they have learned. Hence, the
learning-based approach combines diagnosis and repair.

An advantage of the learning-based approach is that intermitting faults
can be addressed and that no collaboration between service agents is required.
A disadvantage is that making diagnosis requires information about many exe-
cutions of the same task. However, as we will see in the next section, a repair is
learned quickly at the price that correctly functioning agents may be ignored.

Agents learn an assessment for each possible destination. In special circum-
stances, they need not consider the destination, and can focus on the next agent
that can provide a service for a task. First, the quality of service provided by
an agent does not depend on the destination of the task. Second, we do not use
utilities for the result of a task and only identify whether a task execution is
successful. If these conditions are met, an agent can learn for every next agent
the probability that the task execution will be successful.

4 Experiments

To determine the applicability of the theoretical results of the previous section,
we ran several experiments. For the experiments, we used a network of n2 normal
nodes organized in n layers of n nodes. Every normal node in a layer, except
the last layer, is connected to two normal nodes in the next layer. Moreover,
from every normal node in de first layer, every normal node in the last layer
can be reached. With every transition a different agent is associated. To model
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that these agents may provide a low quality of service, for every transition from
normal node n to normal node n′ representing the correct execution of a service
by an agent, there is also a transition from n to an abnormal node n′′ representing
the incorrect execution of the service. Here, the abnormal node n′′ is a duplicate
of the normal node of n′. For every normal node except the nodes in the first
layer, there is a duplicate abnormal node denoting the sub-optimal execution of
a service. In this model, no recovery is possible. Figure 2 show a 4 by 4 network.
The normal nodes that can be used for a normal execution of tasks are shown
in yellow, blue and green. The duplicate abnormal nodes representing a sub-
optimal execution are shown in orange. The transitions to the latter nodes and
the transitions between the latter nodes are not shown in the figure.

Fig. 2. The network used in the experiments. Note that the dashed arrows denote
transitions from nodes (1,4), (2,1) and (3,4) to nodes (2,1), (3,4) and (4,1) respectively.

In our first experiment we determined how often a randomly chosen service
is executed in 10000 randomly chosen tasks. We used a network of 10 by 10
nodes in this experiment. Figure 3 shows the cumulative results as a function of
the number of processed task. Figure 4 shows in which experiment the service is
used.

In the second experiment we used the same network. A fault probability
of 0.1 was assigned to the randomly chosen service. Again, we measured how
often a service is executed in 10000 randomly chosen tasks. Figure 5 shows the
cumulative results as a function of the number of experiments, and Fig. 6 shows
in which task the service is executed. We clearly see that the agents learn to
avoid the agent that provides a low quality of service.

The results show that each agent learns to avoid passing on a task to an
agent that may provide a low quality of service. An agent uses the estimated
probabilities of a successful completion of a task when passing on the task to the
next agent. Nevertheless, as shown in Fig. 6, the agents still try the low quality
service, but with an increasingly lower probability. This exploration is necessary
to learn the correct probabilities.
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Fig. 3. The number of times a selected service is chosen as a function of the number
of processed task.
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Fig. 4. The tasks in which a selected service is chosen.
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Fig. 5. The number of times a selected service is chosen as a function of the number
of processed task.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

chosen

Fig. 6. The tasks in which a selected service is chosen.

Inspection of the learned probabilities shows that the learning process is
slow w.r.t. the total number of executed tasks. Figure 7 shows the learning of
the probability that choosing an agent in a node n will result in a good quality
of service for a task with a specific destination d. The probability that must be
learned is 0.5. The agents only learn when they provided a service for a task
with destination d. In Fig. 7, the service is executed only 4 times for tasks with
destination d of 10000 executions of randomly chosen task. Although the learning
process is slow, it is not a problem for the behavior of the network of distributed
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Fig. 7. Learning of the service success probability given a destination.
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Fig. 8. Learning of the service success probability ignoring the destination.

services. However, it does result in avoiding the services provided by some agents
while there is no need for it.

In the third experiment we learned the probability that choosing an agent will
result in a good quality of service for a task, independent of the destination of
the task. Figure 8 shows the result of the learning process. Again the probability
that must be learned is 0.5. The learning process is much faster. However, as
discussed at the end of the previous section, ignoring the destination of a task
is only possible if the quality of service does not depend on the destination, and
if we only identify whether a task is successful.

5 Conclusions

This paper presented a model for describing a network of distributed services
for task executions. Each service is provided by an autonomous, possibly self-
interested agent. The model also allows for the description of sub-optimal and
failed services.

When a task is completed with a low quality, we would like to determine
which service was of insufficient quality, which agent was responsible for the
provision of this service, and how we can avoid agents that might provide a
low quality of service. To answer these questions, the paper investigated an
approach for learning in a distributed way an assessment of other agents. The
learned information can be exploited to maximize the quality of a task execu-
tion. The correctness of the learned diagnosis an repair approach is proved, and
demonstrated through experiments.

An important aspect of the distributed learning approach is that agents do
not have to collaborate. Since diagnosis of distributed services is about identify-
ing the agents that are to blame for a low quality of service, this is an important
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property. It provides an incentive for being honest if agents make a diagnosis in
a collaborative setting. Systematic lying will be detected eventually.

This research opens up several lines of further research. First, other policies
that balance exploration and exploitation could be investigated. Second, more
special cases in which the learning speed can be improved should be investi-
gated. The topology might, for instance, be exploited to improve the learning
speed. Third, since agents learn to avoid services of low quality before accu-
rately learning the corresponding probabilities, we may investigate whether we
can abstract from the actual probabilities. Fourth, as mentioned in the Introduc-
tion and above, the learned assessments provide an incentive for honesty when
agents make a collaborative diagnosis. Is this incentive sufficient for agents to
collaborate if traditional diagnostic techniques are used?
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Abstract. A paper needs to be good enough to be published; a grant
proposal needs to be sufficiently convincing compared to the other pro-
posals, in order to get funded. Papers and proposals are examples of
cooperative projects that compete with each other and require effort from
the involved agents, while often these agents need to divide their efforts
across several such projects. We aim to provide advice how an agent
can act optimally and how the designer of such a competition (e.g., the
program chairs) can create the conditions under which a socially opti-
mal outcome can be obtained. We therefore extend a model for dividing
effort across projects with two types of competition: a quota or a suc-
cess threshold. In the quota competition type, only a given number of
the best projects survive, while in the second competition type, only the
projects that are better than a predefined success threshold survive. For
these two types of games we prove conditions for equilibrium existence
and efficiency. Additionally we find that competitions using a success
threshold can more often have an efficient equilibrium than those using
a quota. We also show that often a socially optimal Nash equilibrium
exists, but there exist inefficient equilibria as well, requiring regulation.

1 Introduction

Cooperative projects often compete with each other. For example, a paper needs
to have a certain quality, or to be among a certain number of the best papers to
be published, and a grant needs to be one of the best to be awarded. Either the
projects that achieve a certain minimum level, or those that are among a certain
quota of the best projects attain their value. Agents endowed with a resource
budget (such as time) need to divide this resource across several such projects.
We consider so-called public projects where agents contribute resources to create
something together. If such a project survives the competition, its rewards are
typically divided among the contributors based on their individual investments.

Agents often divide effort across competing projects. In addition to co-
authoring articles or books [6,7,10] and research proposals, examples include
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participating in crowdsensing projects [8] and online communities [9]. Exam-
ples of quotas for successful projects include investing effort in manufacturing
several products, where the market becomes saturated with a certain number
of products. Examples of success thresholds are investing in start-ups, where a
minimum investment is needed to survive, or funding agencies contributing to
social projects, where a minimum contribution is required to make the project
succeed. Another example is students investing effort in study projects.

The ubiquity and the complexity of such competing projects calls for a
decision-support system, helping agents to divide their efforts wisely. Assum-
ing rationality of all the others, an agent needs to know how to behave given the
behavior of the others, and the designer of the competition would like to know
which rules lead to better results. In the terms of non-cooperative game theory,
the objective of this work is to find the equilibria and their efficiency.

Analyzing the NE and their efficiency helps characterizing the influence of
a quota or a success threshold on how efficient the stable strategies are for the
society and thus increase the efficiency of investing time in the mentioned enter-
prises. For example, Batchelor [4] suggests increasing the publication standards.
However, in addition to maximizing the total value of the published papers, he
considers goals such as reducing the noise (number of low quality publications).

To make things clear, we employ this running example:

Example 1. Consider scientists investing time from their time budget in writing
papers. A paper attains its value (representing the acknowledgment and all the
related rewards) if it stands up to the competition with other papers. The com-
petition can mean either being one of the q best papers, or achieving at least the
minimum level of δ, depending on the circumstances. A scientist is rewarded by
a paper by becoming its co-author if she has contributed enough to that paper.

Here, the submitters need to know how to split their efforts between the
papers, and the conference chairs need to properly organize the selection process,
e.g. by defining the quota or threshold on the papers to get accepted.

There were several studies of contributing to projects but the projects did
not compete. For example, in the all-pay auction model, only one contributor
benefits from the project, but everyone contributes. Its equilibria are analyzed
in [5], etc. A famous example is the colonel Blotto game with two players [14],
where these players spread their forces among the battlefields, winning a battle
if allocating it more forces than the opponent does. The relative number of
won battles determines the player’s utility. Anshelevich and Hoefer [2] model
two-player games by an undirected graph where nodes contribute to the edges.
A project, being an edge, obtains contributions from two players. They study
minimum-effort projects, proving the existence of an NE and showing that the
price of anarchy (PoA)1 is at most 2.

1 The social welfare is the sum of the utilities of all the players. The price of anar-
chy [11,12] is the ratio of the minimum social welfare in an NE to the maximum
possible social welfare. The price of stability [1,15] is the ratio of the maximum social
welfare in an NE to the maximum possible social welfare.
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The effort-dividing model [13] used the model of a shared effort game [3],
where each player has a budget to divide among a given set of projects. The
game possesses a contribution threshold θ, and the project’s value is equally
shared among the players who invest above this threshold. They analyzed Nash
equilibria (NE) and their price of anarchy (PoA) and stability (PoS) for such
games. However, they ignored that projects may compete for survival. We fill
this gap, extending their model by allowing the projects only to obtain their
modeled value if they stand up to a competition. To conclude, we study the yet
unanswered question of strategic behavior with multiple competing projects.

Compared to the contribution in [10], we model contributing to multiple
projects by an agent, and concentrate on the competition, rather than on shar-
ing a project’s utility. Unlike devising division rules to make people contribute
properly, studied in cooperative game theory (see Shapley value [16] for a promi-
nent example), we model given division rules and analyze the obtained game,
using non-cooperative game theory.

We formally define the following models:

1. Given a quota q, only q projects receive their value. This models the limit on
the number of papers to be accepted to a conference, the number of politicians
in a city council, the lobbyists being the agents and the politicians being the
projects, or the number of projects an organization can fund.

2. There exists a success threshold δ, such that only the projects that have a
value of at least δ actually receive their value. This models a paper or proposal
acceptance process that is purely based on quality.

Our contributions are as follows: We analyze existence and efficiency of NE
in these games. In particular, we demonstrate that introducing a quota or a
success threshold can sometimes kill existing equilibria, but sometimes allow for
new ones. We study how adjusting a quota or a success threshold influences the
contribution efficiency, and thereby the social welfare of the participants. We
derive that competitions using a success threshold have efficient equilibria more
often than those with a quota. We also prove that characterizing the existence
of an NE would require more parameters than just the quota or the threshold
and the number of the agents and the projects.

We formalize our models in Sect. 2, analyze the Nash equilibria of the first
model and their efficiency in Sect. 3, and analyze the second model in Sect. 4.
Theorems 2, 3, 5 and 6 are inspired by the existence and efficiency results for
the model without competition. Having analyzed both models of competition
between projects, Sect. 5 compares their characteristics, the possibility to influ-
ence the authors’ behavior through tuning the acceptance criteria, and draws
further conclusions. Some proofs are deferred to the AppendixA.

2 Model

We build our model on that from [13], since that is a model of investment
in common projects with a general threshold. We first present their model for
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shared effort games, which also appears in [3]. From Definition 1 on, we introduce
competition among the projects.

There are n players N = {1, . . . , n} and a set Ω of m projects. Each
player i ∈ N can contribute to any of the projects in Ωi, where ∅ � Ωi ⊆ Ω;
the contribution of player i to project ω ∈ Ωi is denoted by xi

ω ∈ R+. Each
player i has a budget Bi > 0, so that the strategy space of player i (i.e., the set
of her possible actions) is defined as

{
xi = (xi

ω)ω∈Ωi
∈ R

|Ωi|
+ |∑ω∈Ωi

xi
ω ≤ Bi

}
.

Denote the strategies of all the players except i by x−i.
The next step to define a game is defining the utilities. Let us associate each

project ω ∈ Ω with its project function, which determines its value, based on the
total contribution xω = (xi

ω)i∈N that it receives; formally, Pω(xω) : Rn
+ → R+.

The assumption is that every Pω is increasing in every parameter. The increasing
part stems from the idea that receiving more effort does not make a project
worse off. When we write a project function as a function of a single parameter,
like Pω(x) = αx, we assume that project functions Pω depend only on the∑

i∈N (xi
ω), which is denoted by xω as well, when it is clear from the context.

The project’s value is distributed among the players in Nω
Δ= {i ∈ N |ω ∈ Ωi}

according to the following rule. From each project ω ∈ Ωi, each player i gets a
share φi

ω(xω) : Rn
+ → R+ with free disposal:

∀ω ∈ Ω :
∑

i∈Nω

φi
ω(xω) ≤ Pω(xω). (1)

We assume the sharing functions are non-decreasing. The non-decreasing
assumption fits the intuition that contributing more does not get the players
less.

Denote the vector of all the contributions by x = (xi
ω)i∈N

ω∈Ω . The utility of a
player i ∈ N is defined to be

ui(x) Δ=
∑

ω∈Ωi

φi
ω(xω).

Consider the numerous applications where a minimum contribution is
required to share the revenue, such as paper co-authorship and homework.
To analyze these applications, define a specific variant of a shared effort
game, called a θ-sharing mechanism. This variant is relevant to many applica-
tions, including co-authoring papers and participating in crowdsensing projects.
For any θ ∈ [0, 1], the players who get a share are defined to be Nθ

ω
Δ={

i ∈ Nω|xi
ω ≥ θ · maxj∈Nω

xj
ω

}
, which are those who bid at least θ fraction of

the maximum bid size to ω. Define the θ-equal sharing mechanism as equally
dividing the project’s value between all the users who contribute to the project
at least θ of the maximum bid to the project.

The θ-equal sharing mechanism, denoted by Mθ
eq, is

φi
ω(xω) Δ=

{
Pω(xω)

|Nθ
ω| if i ∈ Nθ

ω,

0 otherwise.
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Let us consider θ-equal sharing, where all the project functions are linear,
i.e. Pω(xω) = αω(

∑
i∈N xi

ω). W.l.o.g., αm ≥ αm−1 ≥ . . . ≥ α1. We denote
the number of projects with the largest coefficient project functions by k ∈ N,
i.e. αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1. We call those
projects steep. Assume w.l.o.g. that Bn ≥ . . . ≥ B2 ≥ B1.

A project that receives no contribution in a given profile is called a vacant
project. A player is dominated at a project ω, if it belongs to the set Dω

Δ=
Nω \ Nθ

ω. A player is suppressed at a project ω, if it belongs to the set Sω
Δ={

i ∈ Nω : xi
ω > 0

} \ Nθ
ω. That is, a player who is contributing to a project but

is dominated there.
We now depart from [13] and model competition in two different ways.

Definition 1. In the quota model, given a natural number q > 0, only the q
highest valued projects actually obtain a value to be divided between their con-
tributors. The rest obtain zero. In the case of ties, all the projects that would
have belonged to the highest q under some tie breaking rule receive their value;
therefore, more than q projects can receive their value in this case. Formally,
project ω is in the quota if |{ω′ ∈ Ω|Pω′(xω′) > Pω(xω)}| < q, and ω is out of
the quota otherwise, and, effectively, Pω(xω) = 0.

The second model is called the success threshold model.

Definition 2. In the success threshold model, given a threshold δ, only the
projects with value at least δ, meaning that Pω(xω) ≥ δ, obtain a value, while if
Pω(xω) < δ, then, effectively, Pω(xω) = 0.

Fig. 1. Scientists contribute time to papers (arrows up), and share the value of the
accepted ones (arrows down).

Example 1 (Continued). Figure 1 depicts a success threshold model, where paper
C does not make it to the success threshold, and is, therefore, unpublished. The
other two papers are above the success threshold, and get published; such a
paper’s recognition is equally divided between the contributors who contribute
at least θ of the maximum contribution to the paper, and become co-authors.
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3 The Quota Model

In this section, we study the equilibria of shared effort games with a quota
and their efficiency. We first give an example of an NE, and generalize it to a
sufficiency theorem. Then, we provide equilibrium existence and efficiency theo-
rems for the quota model. Finally, we show that no simple setting of parameters
guarantees the existence of an equilibrium or the lack thereof.

Intuitively, introducing a quota can make previously unstable profiles become
NE, by making deviations non-profitable. This would increase the price of sta-
bility but decrease the price of anarchy. On the other hand, a profile that is an
NE without a quota can cease being so in our model, since some projects may
obtain no value because of the quota.

Having a quota can lead to counter-intuitive results. In the following example,
there can be an NE where no steep project obtains a contribution. The idea is
that any deviation from the project where everyone contributes is non-profitable,
because it would still leave the other projects out of quota.

Example 2. Given projects 1 and 2, such that α2 > α1, assume that all the
players contribute all their budgets to project 1. If α2Bn < α1

∑n−1
i=1 Bi and

q = 1, then no player can deviate to project 2, as this would still leave that
project out of the quota, and therefore, this profile is an NE.

In this NE, the social welfare is equal to α1

∑
i∈N Bi. The optimal social

welfare, achieved if and only if all the players contribute all their budgets to
project 2, is equal to α2

∑
i∈N Bi. The ratio between the social welfare in this

NE and the optimal one is α1
α2

. That ratio is an upper bound on the price of
anarchy of this game. In addition, since the optimal profile is also an NE, the
price of stability is 1.

The price of anarchy is smaller than α1
α2

if and only if some agents do not
contribute all their budgets. This can only happen in an NE if θ is positive, and
if this is the case, then we can have arbitrarily low price of anarchy, down to the
case when only agent n contributes, if θBn > Bn−1, and then, PoA = α1Bn

α2
∑

i∈N Bi
.

We now generalize these ideas to the following theorem about possible NE.

Theorem 1. Consider a θ-equal sharing game with n ≥ 2 players with budgets
Bn ≥ . . . ≥ B2 ≥ B1 (the order is w.l.o.g.), 0 < θ < 1, linear project functions
with coefficients αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1

(the order is w.l.o.g.), and quota q.
This game has a pure strategy NE, if q = 1 and Bn <

∑n−1
i=1 Bi. Addition-

ally, PoA =
αl

∑
i : Bi≥θBn

Bi

αm

∑
i∈N Bi

≤ αl

αm
, for l

Δ= min
{

j ∈ Ω : αmBn < αj

∑n−1
i=1 Bi

}
,

PoS = 1.

Proof. If all the players contribute to any single project j ≥ l, then since
Bn <

∑n−1
i=1 Bi, no player can deviate to any project, because this would still

leave this project out of the quota. Therefore, this profile is an NE.
In particular, when all the players invest all their budgets in project m, it is

an NE, and thus, PoS = 1.
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To find the price of anarchy, notice that the worst equilibrium for the social
welfare is when everyone contributes to the least profitable possible project,
i.e. l, and only those who have a reason to do so contribute. Having an incen-
tive means being not below the threshold amount, θBn. This equilibrium yields
αl

∑
i : Bi≥θBn

Bi. �

This theorem, in accord with the intuition above, shows that reducing the
quota can either facilitate an optimal NE, or a very inferior NE. Actually, every
efficiency of the form αi

αm
is possible at equilibrium, which brings us to the

question of equilibria appearing and disappearing, which we treat next.

Example 3. A game with NE can cease having equilibria after introducing a
quota. For example, consider θ ∈ (0, 1), 2 players with budgets B1 = θB2 and 2
projects with the coefficients α, (1−ε)α. This game has an NE if no quota exists,
by Theorem 3 from [13]. However, introducing the quota of q = 1 implies there
is no NE. Indeed, the only candidate profile for an equilibrium is both agents
contributing everything to the same project or when both projects obtain the
same value. In the former case, agent 2 would like to deviate, to avoid sharing,
since the projects are close for small enough an ε. In the latter case, agent 2
contributes to both projects, since for small enough an ε, agent 1 alone would
make the project be out of quota. Since there exists at least one project where
agent 1 contributes less than θB2, say project i, agent 2 would benefit from
contributing to that project all its budget. This is because she would gain at
least (1 − ε)αx2

ω while losing at most α(B1 + x2
ω)/2, which is smaller, for small

enough ε and θ.
A game can also start having equilibria after introducing a quota. For

instance, consider a game with two players, B2 = B1, αm = 1.9αm−1. Then
Theorem 3 from [13] implies that no NE exists, but if we introduce the quota of
1, then both agents contributing to project m is an NE, since a deviator would
be out of quota.

We now present an existence theorem. The theorem presents possible equi-
libria, providing advice on possible stable states. Afterwards, we study efficiency.

Theorem 2. Consider an equal θ-sharing game with n ≥ 2 players with budgets
Bn ≥ . . . ≥ B2 ≥ B1 (the order is w.l.o.g.), 0 < θ < 1, linear project functions
with coefficients αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1

(the order is w.l.o.g.), and quota q.
This game has a pure NE if one of the following holds.2

1. B1 ≥ kθBn, k ≤ q and 1
nαm−k+1 ≥ αm−k,

2. B1 ≥ qθBn, k ≥ q and Bn <
∑n−1

j=1 Bi/q;
3. Bn−1 < θ

|Ω|Bn and all the project functions are equal, i.e. αm = α1.

2 If αm−k does not exist, consider the containing condition to be vacuously true.
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The proof provides a profile and shows that no deviation is profitable.

Proof. To prove part 1, distinguish between the case where k ≤ q and k > q.
If k ≤ q, then the profile where all the players allocate 1/kth of their respective
budgets to each of the steep projects is an NE for the same reasons that were
given for the original model, since here, the quota’s existence can only reduce
the motivation to deviate.

As for the part 2, consider the profile where all the players allocate 1/qth of
their respective budgets to each of the q steep projects m,m − 1, . . . ,m − q + 1.
This is an NE, since the only deviation that is possibly profitable, besides real-
locating between the non vacant projects, is a player moving all of her contribu-
tions from some projects to one or more of the vacant projects. This cannot bring
profit, because these previously vacant projects will be outside of the quota, since
Bn <

∑n−1
j=1 Bi/q. As for reallocating between the non-vacant projects, this is

not profitable, since B1 ≥ qθBn means that suppressing is impossible. Therefore,
this is an NE.

We now prove part 3. Let every player divide her budget equally among
all the projects. No player wants to deviate, for the following reasons. All the
projects obtain equal value, and therefore are in the quota. Player n suppresses
all the rest and obtains her maximum possible profit, αm(

∑
i∈N Bi). The rest

obtain no profit, since they are suppressed whatever they do. �

We now prove an efficiency result, based on Theorem 2.

Theorem 3. Consider an equal θ-sharing game with n ≥ 2 players with budgets
Bn ≥ . . . ≥ B2 ≥ B1, 0 < θ < 1 (the order is w.l.o.g.), linear project functions
with coefficients αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1

(the order is w.l.o.g).(see footnote 2), and quota q.

1. If at least one of the following holds.
(a) B1 ≥ kθBn, k ≤ q and 1

nαm−k+1 ≥ αm−k,
(b) B1 ≥ qθBn, k ≥ q and Bn <

∑n−1
j=1 Bi/q;

Then, there exists a pure strategy NE and there holds: PoS = 1.
2. Assume Bn−1 < θ

|Ω|Bn and all the project functions are equal, i.e. αm = α1.
Then, there exists a pure strategy NE and the following holds: PoS = 1,PoA =

Bn∑
i∈{1,2,...,n} Bi

.

Proof. We first prove part 1a and 1b. According to the proof of parts 1 and 2
of Theorem 2, equally dividing all the budgets among min {k, q} steep projects
is an NE. Therefore, PoS = 1.

For part 2, recall that in the proof of part 3 of Theorem 2, we show that
everyone equally dividing the budgets between all the projects is an NE. This
is optimal for the social welfare, and so PoS = 1. We turn to find the price
of anarchy now. If player n acts as just mentioned, while the other players do
not contribute anything, then this is an NE, since all the projects are equal
and therefore, in the quota, and players 1, . . . , n − 1 will be suppressed at any
contribution. An NE cannot have a lower social welfare, since n gets at least
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αmBn in any NE, since this is obtainable alone. Therefore, the fraction between
the two social welfare values, namely αmBn

αm

∑
i∈{1,2,...,n} Bi

, is the PoA. �

The condition “k ≥ q and Bn <
∑n−1

j=1 Bi/q” in Theorem 3 does not hold
if the largest budget can be much larger than the rest, implying that we shall
ask whether our optimum NE is guaranteed by part 1a, which requires that the
quota has to be at least k. When there are many equally glorious projects to
contribute to, meaning that k is large, this constraint becomes non-trivial to
implement. The condition “k ≤ q and 1

nαm−k+1 ≥ αm−k” in Theorem 3 does
not hold if the difference between the two largest projects is not big enough, and
then the quota has to be at most k if one wants our optimum NE to follow from
part 1b. This is non-trivial when we have few most glorious (steep) projects.

We do not know a full characterization of the existence of equilibria; we do
know that it would require many parameters. We prove now that the quota with
the number of agents and projects do not determine existence.

Proposition 1. For any quota q ≥ 1, any number of agents n ≥ 2 and projects
m ≥ 2, there exists a game which possesses an NE, and a game which does not.

The proof engineers games with the given parameters with and without NE.

Proof. A game that satisfies the conditions of Theorem 2 provides evidence for
the existence.

To find a game without an NE, we first treat the case of q = 1. Let all the
project coefficient be equal to one another and let

Bn >

n−1∑
i=1

Bi, (2)

and Bn >

∑n
i=1 Bi

|{i ∈ N : Bi ≥ θBn}| . (3)

Because of the equality of all the project coefficients and of (2), in an equilibrium,
all the agents with budgets at least θBn will be together with n. Then, (3) implies
agent n will deviate, contradictory to having an equilibrium.

For quota q ≥ 2, let Bn−1 < θ
mBn. In any NE, agent n dominates all the rest

in the sense that it invests (strictly) more than Bn−1θ in any project that is in
the quota, because otherwise, the other agents could get a share at some projects,
and assuming αl(x + x

θ ) > αm(x
θ ) for every project l, agent n would prefer to

suppress that. However, if αm > αm−1, n would always prefer to move a bit more
contribution to project m, contradictory to the assumption of an NE. �

4 The Success Threshold Model

In this section, we consider the NE of shared effort games with a success threshold.
We allow success thresholds δ be at most the sum of all the budgets times αm,



Competition Between Cooperative Projects 25

to let at least one project to obtain its value, in at least one strategy profile. We
begin with an example, which inspires a theorem, and then we study existence and
efficiency with a given success threshold.

In a profile, we call a project that has a value of at least the threshold an
accepted project, and we call it unaccepted otherwise. In Example 1, the accepted
papers are A and B.

Success threshold can cause counter-intuitive results, as follows.

Example 4. Given the projects 1 and 2, such that α2 > α1, assume that all the
players contribute all their budgets to project 1. If δ > α2Bn, then no player can
deviate to project 2, as this would leave that project unaccepted, and therefore,
this profile is an NE.

The conclusions about the prices of anarchy and stability are the same as in
Example 2, besides that the price of anarchy can be even zero if α1

∑n
i=1 Bi < δ.

The exemplified ideas yield the following theorem.

Theorem 4. Consider an equal θ-sharing game with n ≥ 2 players with budgets
Bn ≥ . . . ≥ B2 ≥ B1 (the order is w.l.o.g.), 0 < θ < 1, linear project functions
with coefficients αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1

(the order is w.l.o.g.), and success threshold δ.
This game has a pure NE, if αmBn < δ. In addition, PoA ≤ α1

αm
and PoS = 1.

If α1

∑n
i=1 Bi < δ, then PoA = 0.

Proof. If all the players contribute to any single project, then since αmBn < δ,
no player can deviate to any project, because this would still leave that project
unaccepted. Therefore, this profile is an NE.

In particular, when all the players invest all their budgets in project m, it is
an NE, and thus, PoS = 1. When all the players invest in 1, it also is an NE,
showing that PoA ≤ α1

αm
, and if α1

∑n
i=1 Bi < δ, then PoA = 0. �

This theorem, in accord with the intuition above, shows that increasing the
success threshold can either facilitate an optimal NE, or an inferior NE. Actually,
every efficiency of the form αj

αm
, for j ≥ min {i : αi

∑n
l=1 Bl ≥ δ}, is possible at

an equilibrium.

Example 5 (Introducing a success threshold can kill or create new NE). The
game with θ ∈ (0, 0.5), 2 players with budgets B1 = 2θB2 and 2 projects with
the coefficients α, α has an NE if no success threshold exists, by Theorem 3
from [13]. If we introduce the success threshold of αB2, then in any NE both
agents have to contribute to the same project. Then, agent 2 will deviate. For an
emerging NE, consider a game with two players, B2 = B1, αm = 1.9αm−1. Then
Theorem 3 from [13] implies that no NE exists, but if we introduce the success
threshold of 2B1αm, then both agents contributing to project m constitute an
NE, since a deviator would be at a project below the success threshold.
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Next, we provide sufficient conditions for the existence of an NE.

Theorem 5. Consider an equal θ-sharing game with n ≥ 2 players with budgets
Bn ≥ . . . ≥ B2 ≥ B1 (the order is w.l.o.g.), 0 < θ < 1, linear project functions
with coefficients αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1

(the order is w.l.o.g.), and success threshold δ.
This game has a pure NE, if one of the following holds (see Footnote 2).

Define p
Δ=

⌊
αm

∑
i∈N Bi

δ

⌋
; intuitively, it is the number of the projects that can be

accepted.

1. B1 ≥ kθBn, k ≤ p and 1
nαm−k+1 ≥ αm−k,

2. B1 ≥ pθBn, k ≥ p ≥ 1 and αmBn < δ;
3. Bn−1 < θ

|Ω|Bn, all the project functions are equal, i.e. αm = α1.

Proof. We first prove part 1. The profile where all the players allocate 1/kth
of their respective budgets to each of the steep projects is an NE for the same
reasons that were given for the original model, since here, the requirement to be
not less than the success threshold can only reduce the motivation to deviate.

In part 2, consider the profile where all the players allocate 1/pth of their
respective budgets to each of the p steep projects m,m−1, . . . , m−p+1. This is an
NE, since the only deviation that is possibly profitable, besides moving budgets
between the non vacant projects, is a player moving all of her contributions from
some projects to one or more of the vacant projects. This cannot bring profit,
because these previously vacant projects will be unaccepted, since αmBn < δ.
Additionally, any reallocating between the non-vacant projects is not profitable,
since B1 ≥ pθB2 means that suppressing is impossible. Therefore, the current
profile is an NE.

We now prove part 3. We distinguish between the case where the condition
p ≥ |Ω| holds or not. If p ≥ |Ω|, then the proof continues as in the case of part 3
of Theorem 2, where every player divides her budget equally among all the
projects. All the projects are accepted, so no new deviations become profitable.

In the case that p < |Ω|, consider the profile where all the players allocate
1/pth of their respective budgets to each of the p projects m,m−1, . . . ,m−p+1.
This is an NE, since the only deviation that is possibly profitable is some player
j < n moving all her budget to a vacant project. However, this is not profitable,
since the project would be unaccepted, because Bj ≤ Bn−1 < θ

|Ω|Bn < θδ/αm ≤
δ/αm. The penultimate inequality stems from p < |Ω| ⇐⇒ αm

∑
i∈N Bi

|Ω| < δ.
Therefore, this is an NE. �

We now provide an efficiency result, proven in the appendix.

Theorem 6. Consider an equal θ-sharing game with n ≥ 2 players with budgets
Bn ≥ . . . ≥ B2 ≥ B1, 0 < θ < 1 (the order is w.l.o.g.), linear project functions
with coefficients αm = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥ α1 (the order
is w.l.o.g) (see Footnote 2), and success threshold δ. Define p

Δ=
⌊

αm

∑
i∈N Bi

δ

⌋
,

as in Theorem 5.
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1. If at least one of the following holds.
(a) B1 ≥ kθBn, k ≤ p and 1

nαm−k+1 ≥ αm−k,
(b) B1 ≥ pθBn, k ≥ p ≥ 1 and αmBn < δ;
Then, there exists a pure NE and there holds: PoS = 1.

2. Assume Bn−1 < θ
|Ω|Bn, all the project functions are equal, i.e. αm = α1.

Then, there exists a pure NE and PoS = 1. If, an addition, αmBn ≥ δ, then
PoA = Bn∑

i∈{1,2,...,n} Bi
.

Condition 1a of Theorem 6 implies that if the second best project is close to a
best one, then the threshold should be big enough, for condition 1b to guarantee
our optimum NE. The contrapositive of the condition 1b implies that if the
biggest player is able to make a project succeed on her own, then the threshold
should be small enough so that p is at least the number of the most profitable
projects, for our optimum NE to be guaranteed by condition 1a.

There exists no simple characterization for the NE existence when δ ≤ αmBn.

Proposition 2. For any success threshold δ ∈ [0, αmBn] and any number of
agents n ≥ 2 and projects m ≥ 2, there exists a game which possesses an NE,
and a game which does not.

The proof appears in AppendixA.

5 Conclusions and Further Research

We analyze the stable investments in projects, where a project has to comply
to certain requirements to obtain its value. This models paper co-authorship,
investment in firms, etc. The goal is to advise which investments are individually
and socially preferable. Each agent freely divides her budget of time or effort
between the projects. A project that succeeds in the competition obtains a value,
which is divided between the contributors who have contributed at least a given
fraction of the maximum contribution to the project. We model succeeding in a
competition either by a quota of projects that actually obtain their value, or by
a success threshold on the value of projects that do.

For purposes like organizing a conference, we ask which quota or success
threshold would make the behavior of the players better for the social welfare.
Theorem 1 implies that if no player has a budget as large as the total budget
of all the other players times the ratio between the least and the largest project
coefficient, then the quota of 1 makes many equilibria, including an optimal one,
possible. Theorem 4 promises the same by choosing a success threshold that dis-
ables any player to make a project successful on her own. The first problem of
this approach is that it also allows very inefficient profiles constitute equilibria,
asking for some coordination. The second problem is that the discussed equilib-
ria have all the players investing in the same project, which is understandable
because of the linear project functions but practically unreasonable in confer-
ences, though possible in other applications, such as sponsorship of large projects
like Uber, Lyft, Facebook and VKontakte.
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Comparing these models, we see from Theorems 1 and 4 that the success
threshold allows ensuring that there exists a socially optimal equilibrium while
the quota requires also assuming that the largest effort budget is less than the
sum of the other ones times the ratio of the least to the most profitable project
coefficients. In addition, comparing Theorems 3 and 6 shows that provided the
smallest budget is at least a certain fraction of the largest one, choosing large
enough a threshold or small enough a quota guarantees that an optimal profile
will be an equilibrium. Unlike in the described cases, where success threshold
seems stronger than quota, we notice that the second part of Theorem 6 actu-
ally contains an additional condition, relatively to the second part of Theorem 3,
but since the second parts of these theorems refer to the case of a single agent
being able to dominate everyone everywhere and all the projects being equally
rewarding, this is less practical. To conclude the comparison, sometimes, choos-
ing success threshold has more power, since choosing quota needs to assume an
additional relation between the budgets, in order to guarantee that socially opti-
mal equilibria exist. Intuitively, this stems from a quota needing an assumption
on what the players are able to do to increase their utility, given the quota, while
providing a success threshold can be done already with the budgets in mind.

Both a quota and a success threshold have a concentrating effect: equilibria
where the agents contribute to less projects than without any of these conditions.

Many directions to expand the research exist. First, some common projects
like papers and books have an upper bound on the maximal number of partic-
ipants. Also a person has an upper bound on the maximal number of projects
she can contribute to. The model should account for these bounds. Second,
competition can be of many sorts. For instance, a project may need to have a
winning coalition of contributors, in the sense of cooperative games. The fate of
the projects that fail the competition can also vary; for example, their value can
be distributed between the winning projects. We have extended the sufficiency
results for existence from [13], and proven the necessity to be harder for analyti-
cal analysis. Simulations or other analytical approaches may be tried to delineate
the set of Nash equilibria more clearly. Naturally, project functions do not have
to be linear, so there is a clear need to model various non-linear functions. Such
a more general model will make the conclusions on scientific investments, paper
co-authorship, and the many other application domains more precise, and enable
us to further improve the advice to participants as well as organizers. We can
look at submitting a paper to a highly-ranked conference and reducing the con-
ference level till the paper gets accepted as on a series of shared effort games
with various quotas, success thresholds and participants. If we model the cost of
each submission, then the question is to which conference to submit first.
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ship project of DIRECT (Delft Institute for Research on ICT at Delft University of
Technology). We thank anonymous reviewers for their comments.
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A Omitted Proofs

We now prove Theorem 6.

Theorem 6. Consider an equal θ-sharing game with n ≥ 2 players with budgets
Bn ≥ . . . ≥ B2 ≥ B1, 0 < θ < 1 (the order is w.l.o.g.), linear project functions
with coefficients αm = αm−1 = . . . = αm−k+1 > αm−k ≥ αm−k−1 ≥ . . . ≥
α1 (the order is w.l.o.g) (see Footnote 2), and success threshold δ. Define p

Δ=⌊
αm

∑
i∈N Bi

δ

⌋
, as in Theorem 5.

1. If at least one of the following holds.
(a) B1 ≥ kθBn, k ≤ p and 1

nαm−k+1 ≥ αm−k,
(b) B1 ≥ pθBn, k ≥ p ≥ 1 and αmBn < δ;
Then, there exists a pure NE and there holds: PoS = 1.

2. Assume Bn−1 < θ
|Ω|Bn, all the project functions are equal, i.e. αm = α1.

Then, there exists a pure NE and PoS = 1. If, in addition, αmBn ≥ δ, then
PoA = Bn∑

i∈{1,2,...,n} Bi
.

Proof. We first prove parts 1a and 1b. According to proof of parts 1 and 2 in
Theorem 5, equally dividing all the budgets among min {k, p} steep projects is
an NE. Therefore, PoS = 1.

Part 2 is proven as follows. Since all the players dividing their budgets equally
between any min {p,m} projects constitutes an NE, we have PoS = 1.

To treat the PoA, we define the number of projects player n can make
accepted on her own, r

Δ=
⌊
αm

Bn

δ

⌋
, and distinguish between the case where

m ≤ r and m > r. If m ≤ r, consider the profile where player n divides her
budget equally between all the projects, while the other players contribute noth-
ing at all. This is an NE, because all the projects are accepted, player n cannot
increase her profit and any other player will be suppressed, if she contributes any-
thing anywhere. On the other hand, if m > r, consider the profile where player n
divides her budget equally between m,m−1, . . . , m−r+1, while the other players
contribute nothing at all. The only possible deviation is player j < n contributing
to a vacant project. However, we have Bj ≤ Bn−1 < θ

|Ω|Bn < θδ/αm ≤ δ/αm.
This means that the project would be unaccepted. Therefore, this is an NE.

Therefore, PoA ≤ αmBn

αm(
∑

i∈N Bi)
. Since αmBn ≥ δ, in any NE, player n receives

at least αmBn, and therefore, PoA = Bn∑
i∈{1,2,...,n} Bi

. �

We finally prove Proposition 2.

Proposition 2. For any success threshold δ ∈ [0, αmBn] and any number of
agents n ≥ 2 and projects m ≥ 2, there exists a game which possesses an NE,
and a game which does not.
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Proof. For δ = 0, which means for no threshold, the theorem follows from The-
orem 3 from [13]. Therefore, we assume henceforth a positive success threshold.

A game that satisfies the conditions of Theorem 5 provides an example of
the existence. Notice that the p they define is positive, since δ ≤ αmBN .

To find a game that does not possess an equilibrium, let αm = α1 and let

Bn >

n−1∑
i=1

Bi, (4)

B1 = . . . = Bn−1 = θBn and δ = αBn. (5)

Because of the equality of all the project coefficients, of (4) and of the choice of
the success threshold, in an equilibrium, all the agents with budgets at least θBn

(which are 1, . . . , Bn−1 here) will be together with n on the same single project.
Then, agent n will deviate, contradictory to being in an equilibrium. �
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Abstract. Recently, a heuristic was proposed for constructing Bayesian
networks (BNs) from structured arguments. This heuristic helps domain
experts who are accustomed to argumentation to transform their reason-
ing into a BN and subsequently weigh their case evidence in a probabilis-
tic manner. While the underlying undirected graph of the BN is automat-
ically constructed by following the heuristic, the arc directions are to be
set manually by a BN engineer in consultation with the domain expert.
As the knowledge elicitation involved is known to be time-consuming, it
is of value to (partly) automate this step. We propose a refinement of
the heuristic to this end, which specifies the directions in which arcs are
to be set given specific conditions on structured arguments.

Keywords: Bayesian Networks · Structured argumentation

1 Introduction

In recent years, efforts have been made to gain a better understanding of the
relation between different normative frameworks for evidential reasoning, such as
argumentative and probabilistic approaches [9]. Argumentative approaches are
particularly suited for adversarial settings, where arguments for and against a
specific conclusion are constructed from evidence. The inferences which are used
to draw conclusions from evidence are generally defeasible, in that the conclusion
of an argument does not universally hold given the evidence. Arguments can be
attacked by other arguments; it can then be established which arguments are
accepted and which are rejected. In current argumentative approaches, however,
there is no emphasis on incorporating graded uncertainty.

In contrast, probabilistic approaches are well suited for handling graded
uncertainty. In particular, Bayesian networks (BNs) [2,3] are powerful tools to
this end. BNs are compact graphical models of joint probability distributions,
which allow for evidence evaluation by calculating the probability of the truth
c© Springer International Publishing AG, part of Springer Nature 2018
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Fig. 1. Outline of Sects. 2 and 3 of this paper.

of a proposition of interest. However, BNs are generally difficult to construct;
in fact, they are often constructed by modelers with the relevant mathematical
background, called BN engineers, in consultation with a domain expert.

Recently, a heuristic for constructing BNs from structured arguments was
proposed by Bex and Renooij [1]; in this paper, the heuristic will be referred to
as the BR heuristic. The heuristic helps domain experts who are more accus-
tomed to argumentation to transform their reasoning into a BN (cf. Fig. 1) and
subsequently weigh their case evidence in a probabilistic manner. The focus of
the BR heuristic lies on obtaining the graphical structure of the BN, called
the BN graph, which captures the independence relations between the domain
variables. While the underlying undirected graph, or skeleton, of the BN graph
can be automatically constructed by following the BR heuristic, the heuristic
prescribes that the arc directions should be set manually by a BN engineer in
consultation with a domain expert. Although the heuristic further suggests that
the commonly used notion of causality be taken as a guiding principle [3], the
resulting graph still has to be verified and refined in terms of the independence
relations it represents. This type of knowledge elicitation is known to be time-
consuming [7], however, and moreover needs to be repeated for every adjustment
to the original arguments. As a consequence, letting arc directions be set by a BN
engineer is practically infeasible in investigative contexts such as police investiga-
tions, where evidence changes dynamically. It is, therefore, of value to investigate
whether the process of setting arc directions can be (partly) automated.

Accordingly, in this paper we propose a refinement of the BR heuristic, which
specifies the directions in which the arcs should be set in a BN graph under
specific conditions on structured arguments. These conditions are identified by
applying a method called the support graph method [6]. This method essentially
works in the opposite direction of the BR heuristic, in that structured arguments
are constructed from BNs (cf. Fig. 1). By applying the support graph method
to BN graphs obtained with the BR heuristic, it is determined whether and
under which conditions the original arguments are re-obtained. If the original
arguments are not re-obtained from the thus constructed BN graph, it may be
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concluded that this graph represents the original arguments in a different, pos-
sibly incorrect, way. Our refinement of the BR heuristic now ensures that BN
graphs from which the original arguments are not returned by the support graph
method are not constructed.

The paper is structured as follows. Sections 2 and 3 provide some preliminar-
ies on structured argumentation, BNs, the support graph method and the BR
heuristic. In Sect. 4, our refinement to the BR heuristic is proposed, based on
observations from applying the support graph method. In Sect. 5, our findings
are summarized and possible directions for future research are discussed.

2 Preliminaries

In this section, structured argumentation and BNs are briefly reviewed.

2.1 Structured Argumentation

A simplified version of the ASPIC+ framework for structured argumentation [4]
is assumed throughout this paper. Let L be a non-empty propositional literal
language with the unary negation symbol ¬. Informally, L contains the basic ele-
ments which can be argued about. Given a knowledge base K ⊆ L of premises,
arguments are constructed by chaining inference rules. These rules are defined
over L and are defeasible, in that the conclusion of a defeasible rule does not uni-
versally hold given the premises, in contrast with the strict inferences of classical
logic. Let R be a set of defeasible inference rules of the form d : φ1, . . . , φn ⇒ φ,
where φ1, . . . , φn and φ are meta-variables ranging over well-formed formulas
in L. An argument A is then either: (1) φ if φ ∈ K, where the conclusion of
the argument A, denoted by Conc(A), is equal to φ; or (2) A1, . . . , An ⇒ φ
with φ ∈ L \ K, where A1, . . . , An are arguments such that there exists a rule
Conc(A1), . . . , Conc(An) ⇒ φ in R. In the first case, Conc(A) is an element
from the knowledge base, while in the second case, Conc(A) follows by applying
a defeasible rule to the conclusion(s) of arguments A1, . . . , An, which are called
the immediate sub-arguments of A. Generally, a sub-argument of an argument
A is either A itself or an argument that is (iteratively) used to construct A. The
smallest set of finite arguments which can be constructed from L, K and R is
denoted by A. An argument graph of A then graphically displays the arguments
in A and their sub-arguments. Figure 3a shows an example of an argument graph.

The general ASPIC+ framework further includes the notion of attack. Infor-
mally, an argument in A is attacked on one of its non-premise sub-arguments by
another argument in A with the opposite conclusion of that sub-argument. Due
to space limitations, the focus of the current paper lies on argument structures
without attack relations.

2.2 Bayesian Networks

BNs [3] are graphical probabilistic models which are being applied in many
different fields, including medicine and law [2]. A BN is a compact representation
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of a joint probability distribution Pr(V) over a finite set of discrete random
variables V. The random variables are represented as nodes in a directed acyclic
graph G, where each node1 can take one of a number of mutually exclusive and
exhaustive values; in this paper, we assume all nodes to be Boolean. A node A
is a parent of another node B, called the child, in G if G contains an arc from A
to B. The BN further includes, for each node, a conditional probability table, or
CPT, given its parents; this table specifies the probabilities of the values of the
node itself conditioned on the possible joint value combinations of its parents.
A node is called instantiated iff it is fixed in a specific value. Given a set of
instantiated nodes, conditional probability distributions over the other nodes in
the network can be computed using probability calculus [3].

The BN graph captures the independence relations between its variables.
Let a chain be defined as a simple path in the underlying undirected graph, or
skeleton, of a BN graph. A node V is called a head-to-head node on a chain c
if it has two incoming arcs on c. A chain c is blocked iff it includes a node V
such that (1) V is an uninstantiated head-to-head node on c without instanti-
ated descendants; (2) V is not a head-to-head node on c and is instantiated. In
addition, instantiated end-points of the chain c, that is, instantiated nodes with
at most one incoming or outgoing arc on c, serve to block the chain [5]. A chain
is inactive if it is blocked; otherwise it is called active. Two nodes A �= B are
called d-separated by a set of nodes Z if no active chains exist between A and
B given instantiations of nodes in Z. If two nodes are d-separated by Z, then
they are considered conditionally independent given Z. We note that conditional
independence thereby depends on the set of instantiated nodes [8].

An immorality in a BN graph is defined as a triple of nodes (A,B,C), where
A and C are parents of B that are not directly connected by an arc. Two BNs are
said to be Markov equivalent iff they share the same skeleton and immoralities.
Markov equivalent networks constitute an equivalence class, for which Verma
and Pearl [10] proved that any two elements represent the same independence
relations over the variables involved. Arcs between nodes that are not involved
in an immorality can thus be reversed without changing the represented inde-
pendence relations as long as no new immoralities arise. Immoralities derive
their importance from providing for intercausal reasoning [11]. Specifically, if
the head-to-head node involved in an immorality is instantiated, an active chain
arises between the parents of the node. These parents can be seen as different
causes of the same effect modeled by the head-to-head node. If one of the causes
is now observed, then the probability of the other cause being present as well
can either increase, decrease or stay the same upon updating, depending on the
probabilities in the CPT of the head-to-head node.

1 The terms ‘node’ and ‘variable’ are used interchangeably.
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3 Two Methods for Translating Between Structured
Arguments and Bayesian Networks

In this section, the support graph method [6] and the BR heuristic [1] are
reviewed; the support graph method is used to build structured arguments from
BNs, while the BR heuristic is used to construct BN graphs from structured
arguments.

3.1 The Support Graph Method

The support graph method, proposed by Timmer and colleagues [6], is a two-
phase method for constructing argument structures from BNs. The method
allows domain experts who are not familiar with BNs but are accustomed to
argumentation to understand the knowledge and reasoning patterns captured
by a BN. To this end, the method summarizes all reasoning chains from a set of
evidence to a conclusion in a given BN.

In the first phase of the method, a directed graph called the support graph
(SG) is constructed from a BN given a variable of interest V ∗; in this SG,
all reasoning chains in the BN ending in V ∗ are captured. The SG does not
depend on specific instantiations, and can thus be re-used to build argument
structures for different evidence. An SG is iteratively constructed, starting with
a graph containing only V ∗. New parents are added to existing nodes in the
SG as new inference steps are identified in the BN. Three types of inference
step are distinguished: (1) an inference step along an arc from a parent to a
child; (2) an inference step along an arc from a child to a parent; and (3) an
inference step between two parents in an immorality. The last type directly
accommodates intercausal reasoning steps which occur between the parents of
an immorality, and summarizes the inference from one parent of an immorality
to another parent via the common child. In the constructed SG, V ∗ is the only
node without children; every other node in the SG is an ancestor of V ∗.

In the second phase of the support graph method, arguments are constructed
from the SG for a given set of node instantiations. Given this evidence, the SG is
pruned such that only paths remain that start in an instantiated node. From the
thus pruned graph, arguments are constructed as follows. The logical language
L is taken to consist of all literals which correspond to the values of the nodes
in the BN; two literals φ, ψ ∈ L negate each other iff φ and ψ correspond with
the different values of the same node. Given the evidence, the knowledge base K
consists of those literals in L that correspond with the values of the instantiated
nodes. The defeasible rules in R are of the form (N1, o1), . . . , (Nk, ok) ⇒ (N, o),
where N1, . . . , Nk are parents of the node N in the pruned SG and o1, . . . , ok, o
are values of these nodes. From L, K, and R, a set of arguments A is then
constructed.
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Fig. 2. A BN graph (a) and the corresponding SG for the variable of interest Crime
(b); Twin is pruned from the SG as only Psych report and DNA match are instantiated.

Example 1. An example by Timmer and colleagues [6] from the legal domain
is reviewed to demonstrate the support graph method. In the example, the BN
graph from Fig. 2a2 is constructed for a criminal case, in which we are interested
in whether the suspect committed the crime, that is, whether Crime = true.
Evidence for this possible conclusion would be the existence of a motive, which
may be mentioned in a psychological report. A match between the suspect’s
DNA and DNA found at the crime scene would further support the proposition
that the suspect committed the crime. This finding might also be explained,
however, if the suspect had an identical twin. For the variable of interest Crime,
the SG of Fig. 2b is obtained; the node Twin is directly added as a parent of
Crime, as the triplet (Crime, DNA match, Twin) is an immorality in the BN
graph. The literals in L are the possible values of all nodes in the BN graph, that
is, L contains crime, ¬crime, motive, ¬motive, . . . . Now, if we assume that Psych
report and DNA match are instantiated with the value true conform available
evidence, and Twin is not instantiated, then the path starting at the node Twin
is pruned from the SG. The knowledge base K then consists of psych report
and dna match. Among the defeasible rules extracted from the pruned SG are
d1 : psych report ⇒ motive and d2 : dna match, motive ⇒ crime. The arguments
A1 : psych report, A2 : dna match, A3 : A1 ⇒ motive, and A4 : A2, A3 ⇒ crime
can then be constructed. Also the rules d3 : psych report ⇒ ¬motive and d4 : dna
match, ¬motive ⇒ ¬crime are extracted from the SG, from which arguments
A5 : A1 ⇒ ¬motive and A6 : A2, A5 ⇒ ¬crime are constructed. These arguments
have opposite conclusions of A3 and A4. �

It should be noted that, when using the support graph method, the reasons
pro and con a given conclusion are not distributed over separate arguments, as
is usual in argumentation, but are instead encapsulated in a single argument.

2 In figures in this paper, circles are used in BN graphs, rectangles are used in argument
graphs and rounded rectangles are used in SGs. Nodes and propositions correspond-
ing to evidence are shaded. Capital letters are used for the nodes in BN graphs and
SGs, and lowercase letters are used for propositions.
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That is, all literals that are relevant for a specific proposition are taken as the
premises of an argument for that proposition, which reflects the way in which
Bayesian networks internally weigh all evidence.

For every argument that is returned from a BN by the support graph method,
the method also returns an argument with the same ‘structure’ but with the
opposite conclusion. Timmer and colleagues [6] employ a quantitative step to
filter the set of arguments returned. As in the current paper the focus lies on
the graphical structures of BNs and not on the modeled probability distribution,
this quantitative step is not further discussed here.

3.2 The BR Heuristic for Constructing Bayesian Networks from
Structured Arguments

Bex and Renooij [1] have proposed the BR heuristic for constructing BN graphs
from structured arguments. This heuristic allows domain experts who are accus-
tomed to argumentation to translate their reasoning expressed as arguments into
a BN graph. This graph is then supplemented with CPTs to arrive at a fully
specified BN for probabilistic inference over the original arguments. Focusing on
argument structures in which no attack relations are present, from a given set
of arguments A constructed from a logical language L, knowledge base K, and
a set of defeasible rules R, BN graphs are constructed as follows:

1. For every proposition φ ∈ L used in A, the BN graph includes a single node
V such that V = true corresponds to φ and V = false corresponds to ¬φ. For
every e ∈ K, the corresponding node is instantiated at the observed value.

2. For every defeasible rule d : φ1, . . . , φn ⇒ φ ∈ R used in A, a set of undirected
edges between the node associated with φ and each of the nodes associated
with φ1, . . . , φn is created for inclusion in the BN graph.

3. The direction of the edges from the previous step is decided upon by a BN
engineer in consultation with the domain expert, where a causal direction is
chosen if possible, and an arbitrary direction otherwise. The resulting arcs
are inserted in the BN graph.

4. The BN engineer verifies that the graph is acyclic and that all chains that
should be active in the graph indeed are; if the graph does not yet exhibit
these properties, appropriate arcs are removed or reversed, once more in con-
sultation with the domain expert.

Example 2. A simple example is introduced to demonstrate the BR heuris-
tic. The logical language, knowledge base and defeasible rules involved are
L = {p,¬p, q,¬q, r,¬r}, K = {p} and R = {p ⇒ q; q ⇒ r}. The constructed
arguments are A = {A1 : p; A2 : A1 ⇒ q; A3 : A2 ⇒ r}; the argument graph of A
is depicted in Fig. 3a. Following steps 1 and 2 of the BR heuristic, the skeleton of
the BN graph corresponding to this argument structure consists of nodes P , Q
and R, with undirected edges between P and Q and between Q and R. Following
step 3, one of the BN graphs of Fig. 3b–e is obtained, depending on how the arc
directions are set. �
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Fig. 3. An argument graph with arguments from p to r via q (a); the four corresponding
BN graphs which can be constructed by following the BR heuristic (b–e).

For a given set of arguments A, the skeleton of the BN graph is automatically
constructed by following the first two steps of the BR heuristic. Step 3 then
prescribes that the directions of the arcs should be set manually by a BN engi-
neer in consultation with the domain expert, using the notion of causality as a
guiding principle (see also [3]). For example, if the domain expert indicates for
a defeasible rule d : p ⇒ q that p is a typical cause of q, then the arc is set from
node P to node Q. Since immoralities can result from following this guiding prin-
ciple, the independence relations in the constructed BN graph should be verified
manually, as prescribed by step 4 of the BR heuristic. This type of knowledge
elicitation and verification is known to be a time-consuming and error-prone pro-
cess in general [7]. Especially for larger or more densely connected BN graphs,
it quickly becomes infeasible to verify all independence relations manually, as
all possible chains for all possible combinations of instantiated variables need to
be investigated. Moreover, the elicitation and verification needs to be repeated
for every adjustment to the original argument graph. As this step is practically
infeasible in investigative contexts, such as police investigations, in which the
evidence for a case changes dynamically, the arc directions are preferably set
(semi-)automatically.

4 Refining the BR Heuristic

We propose a refinement of step 3 of the BR heuristic, which specifies the direc-
tions in which arcs should be set in a BN graph under specific conditions on
structured arguments. These conditions are identified from applying the support
graph method. To this end, the arguments to which the BR heuristic is applied
are compared to the arguments returned by the support graph method when
applied to a BN graph constructed by steps 1–3 of the BR heuristic. In order to
apply the support graph method, a variable of interest has to be chosen. In this
paper, we assume that there is a single ultimate conclusion in the input argu-
ment graph, that is, a single argument that is not an immediate sub-argument of
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another argument. The node corresponding to this ultimate conclusion is taken
as the node of interest. We further assume that the input arguments for the BR
heuristic are linked, in the sense that all premises relevant for a conclusion are
encapsulated in a single argument; Fig. 5a shows an example of an argument
graph with linked arguments only. Linked argument graphs are similar to the
type of argument graphs that are returned by the support graph method.

When applying the support graph method to a BN graph constructed by
steps 1–3 of the BR heuristic, a set of arguments is returned. This set may be
different from the set of arguments that was used as input for the heuristic. As
measures for the differences found, we distinguish between recall and precision,
which for a given BN graph respectively measure the proportion of original argu-
ments returned and the proportion of additional arguments returned. Formally,
let A be the set of input arguments for the BR heuristic, let B be a BN graph
constructed from A by steps 1–3 of the heuristic, and let A′ be the set of argu-
ments returned from B by the support graph method. We define the recall and
precision of B as follows:

– Recall(B) = |A ∩ A′|/|A|
– Precision(B) = |A ∩ A′|/|A′|
where B has maximum recall and precision if these fractions are equal to 1.

In Sect. 4.1, we propose a refinement of the third step of the BR heuristic,
which serves to increase the recall of constructed BN graphs. In Sect. 4.2, we
address precision. As argued before, Timmer and colleagues [6] propose a quan-
titative step for filtering the set of arguments returned by the support graph
method, which suggests that for improving the precision of constructed BNs,
the CPTs need to be taken into account. As in this paper, the focus lies on the
graphical structure of a BN, we propose a further refinement of the third step
of the BR heuristic based on graphical considerations only.

4.1 Refining the BR Heuristic to Improve Recall

To illustrate how the BR heuristic can be refined such that BN graphs with higher
recall are constructed, we revisit Example 2 from Sect. 3.2. By applying steps 1–3
of the heuristic to the argument graph of Fig. 3a, four possible BN graphs over
the nodes P , Q and R were constructed, as shown in Figs. 3b–e. These graphs
fall into two Markov equivalence classes; the first class consists of the BN graphs
of Figs. 3b–d, and the second class consists of the graph of Fig. 3e. Timmer and
colleagues [6] proved that for two Markov equivalent BNs and the same node of
interest, the same SG is obtained. By applying the support graph method for the
node of interest R, we now show that the recall of the original arguments from
the BN graph in the second equivalence class is lower than that of the BN graphs
in the first class. Since the logical language and knowledge base of the argument
structure returned by the support graph method are derived from the BN skeleton,
L′3 = {p,¬p, q,¬q, r,¬r} and K′ = {p} are the same for all four BN graphs. For the
3 The prime symbol is used to denote objects which result from applying the support

graph method.
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Fig. 4. The (pruned) SG obtained from the BN graphs of Figs. 3b–d (a), and the SG
obtained from the BN graph of Fig. 3e (b), where Q is pruned as only P is instantiated.

graphs in the first equivalence class, the SG of Fig. 4a is obtained. The defeasible
rules of the returned argument structure correspond to the arcs of this SG, that
is, R′ = {p ⇒ q; p ⇒ ¬q;¬p ⇒ q;¬p ⇒ ¬q; q ⇒ r; q ⇒ ¬r;¬q ⇒ r;¬q ⇒ ¬r}.
As L ⊆ L′, K = K′ and R ⊆ R′, all original arguments A1, A2, A3 ∈ A are re-
obtained from the SG. Therefore, the BN graphs of Figs. 3b–d have maximal recall.

For the BN graph in the second equivalence class, the SG of Fig. 4b is con-
structed. In this SG, node P is a direct parent of R and not of Q, as (P,Q,R)
is an immorality. We recall that an SG is meant for constructing arguments for
different sets of evidence. In the example, where just P is instantiated, node Q
is pruned from the SG. The defeasible rules corresponding to this pruned SG
are R′ = {p ⇒ r; p ⇒ ¬r;¬p ⇒ r;¬p ⇒ ¬r} and the arguments which can be
constructed are A1 : p, A′

2 : A1 ⇒ r and A′′
2 : A1 ⇒ ¬r. Timmer and colleagues

[6] employ a quantitative step using the CPTs from the original BN to filter the
set of constructed arguments; by this step, arguments A′

2 and A′′
2 are filtered

out, as P and R are independent given that Q is not instantiated. The original
arguments A2 are A3 are not returned by the support graph method. The recall
of the BN graph from Fig. 3e is 1

3 , which is lower than that of the BN graphs in
the first equivalence class. It therefore seems desirable to prohibit construction
of this BN graph when using the BR heuristic.

Generalizing from the example, let A1, . . . , An ∈ A, where Ai is an immediate
sub-argument of Ai+1 for all i ∈ {1, . . . , n − 1}, let Conc(Ai) = pi, p1 ∈ K,
and let pn be the ultimate conclusion of the argument graph of A. Further
assume that no immorality (Pi−1, Pi, Pi+1) is formed for i ∈ {2, . . . , n − 1} by
steps 1–3 of the BR heuristic. As no immoralities (Pi−1, Pi, Pi+1) are present for
i ∈ {2, . . . , n − 1}, upon constructing the SG for the node of interest Pn parents
are added iteratively, that is, Pn−1 is added as a parent of Pn, . . . , P1 is added as
a parent of P2. As P1 corresponds to an instantiated variable, the path starting
in P1 is not pruned from the SG. The support graph method, therefore, returns
the arguments A1, . . . , An, and the recall is maximal. On the other hand, if for a
given i ∈ {2, . . . , n − 1} an immorality (Pi−1, Pi, Pi+1) would be formed by steps
1–3 of the BR heuristic, then an SG would result in which Pi+1 is an ancestor
of Pn. As Pi−1 is directly added as a parent of Pi+1, the argument Ai would not
be returned, and the recall would not be maximal.
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Based on the above observations, the following refinement of step 3 of the
BR heuristic is proposed:

3′. Let A1, . . . , An ∈ A, where Ai is an immediate sub-argument of Ai+1 for
any i ∈ {1, . . . , n − 1} and where Conc(Ai) = pi. Then, the directions of
the arcs are set such that no immoralities (Pi−1, Pi, Pi+1) are formed for any
i ∈ {2, . . . , n − 1}. Taking this constraint into account, the directions of the
(remaining) arcs are set by a BN engineer in consultation with the domain
expert, where a causal direction is chosen if possible.

4.2 A Further Refinement of the BR Heuristic

While in the previous section, simple chains in an argument structure were shown
to be best translated in the BN graph by a chain without any immoralities, we
now focus on argument structures that do enforce immoralities in the BN graph
and propose a further refinement of the refined third step of the heuristic.

Example 3. We consider the linked argument graph of Fig. 5a. The logical lan-
guage, knowledge base and defeasible rules involved are L = {p,¬p, q,¬q, r,¬r,
s,¬s, t,¬t},K = {p, q}, andR = {p ⇒ r; p, q ⇒ s; r, s ⇒ t}; the constructedargu-
ments are A = {A1 : p;A2 : A1 ⇒ r;A3 : q;A4 : A1, A3 ⇒ s; A5 : A2, A4 ⇒ t}.
Steps 1 and 2 of the BR heuristic result in the BN skeleton of Fig. 5b. In order to

Fig. 5. An argument graph (a) and the corresponding BN skeleton that is constructed
by the BR heuristic (b); a corresponding BN graph with the immorality (R,P, S) (c)
and a BN graph with the immorality (R, T, S) (d).
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obtain an acyclic directed graph from this skeleton, at least one immorality has to
be created in the subgraph induced by the nodes P , R, S and T .

According to the refined third step of the BR heuristic, an immorality
(T,R, P ) should not be formed, as A1 : p is an immediate sub-argument of
A2 : A1 ⇒ r, which in turn is an immediate sub-argument of A5 : A2, A4 ⇒ t.
Similarly, the immorality (T, S, P ) should not be formed. Now, the equivalence
class of BN graphs is considered which includes just the immorality (R,P, S);
the BN graph depicted in Fig. 5c is an element of this class. With T as the node
of interest, the SG of Fig. 6 is obtained from this graph. The logical language and
knowledge base corresponding to this SG are L′ = {p,¬p, q,¬q, r,¬r, s,¬s, t,¬t}
and K′ = {p, q}, matching those of the original argument graph. The set of
defeasible rules R corresponding to the SG includes the rules p, q ⇒ s; p, s ⇒ r;
p ⇒ r; p, q, r ⇒ s and r, s ⇒ t. Among the arguments which can be constructed
from the SG are A1 : p, A2 : A1 ⇒ r, A3 : q, A4 : A1, A3 ⇒ s, A5 : A2, A4 ⇒ t,
A′

2 : A1, A4 ⇒ r, A′
4 : A1, A2, A3 ⇒ s, and A′

5 : A′
2, A

′
4 ⇒ t. While the recall of

the BN graphs from Fig. 5c is maximal, the precision is not; more specifically,
the returned arguments A′

2, A
′
4 and A′

5 were not in the original argument set A.
Now, the equivalence class of BN graphs with just the immorality (R, T, S)

is addressed; the BN graph depicted in Fig. 5d is an element of this class. From
this BN graph, again the SG of Fig. 6 is constructed for the node of interest
T , and thus the same arguments as above are returned. While the precision
of the BN graph of Fig. 5d is equal to that of the BN graph from Fig. 5c, we
note that the nodes R and S are conditionally independent given the evidence
for Z = {P,Q} in the former graph, that is, in the BN graph with just the
immorality (R, T, S). The immediate sub-argument A4 of A′

2 and the immedi-
ate sub-argument A2 of A′

4, therefore, appear to be irrelevant, as the associated
reasoning is non-existent in this BN graph. As noted before, Timmer and col-
leagues [6] employ a quantitative step to filter the set of arguments returned by

Fig. 6. The SG corresponding to the BN graph of Figs. 5c and d, with T as the node
of interest; the SG is annotated with some of the possible arguments which can be
extracted from it.
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the support graph method; specifically, as the nodes R and S are conditionally
independent given the evidence in the BN graph in Fig. 5d, A4 and A2 are fil-
tered out as immediate sub-arguments of A′

2 and A′
4 respectively. Building on the

conditional independence relations that can be inferred from the BN graph given
the set of instantiated nodes, however, irrelevance of A4 and A2 as immediate
sub-arguments of A′

2 and A′
4 can be decided upon by graphical considerations

only, without involving the CPTs of the nodes. �

Based on the above example, we propose to set the directions of arcs in a BN
skeleton such that no instantiated head-to-head nodes or head-to-head nodes
with instantiated descendants are formed, as such head-to-head nodes may intro-
duce unwarranted dependence relations. More specifically, the following refine-
ment of step 3′ of the BR heuristic is proposed, which fully specifies the directions
of the arcs in a BN graph corresponding to a set of arguments A:

3′′. The directions of the arcs in a BN graph are set in the same direction as
the arcs in the argument graph, that is, if A is an immediate sub-argument
of B, then an arc should be drawn from the node corresponding to Conc(A)
to the node corresponding to Conc(B).

We note that step 3′′ is a further refinement of step 3′, as none of the immoralities
(Pi−1, Pi, Pi+1) mentioned in that step are formed if arcs are set in the same
direction as in the argument graph. By step 3′′, arcs are guaranteed to be set
such that head-to-head nodes are not instantiated and do not have instantiated
descendants, as the premise arguments in the argument graph, and hence the
instantiated nodes in the BN graph, only have outgoing arcs. Finally, we note
that step 3′′ is not a strict specification of the directions of the arcs in a BN
graph; directions can possibly be reversed, given that an element from the same
Markov equivalence class as specified by step 3′′ is obtained.

5 Conclusion and Future Research

In this paper, we have proposed a refinement of the heuristic of Bex and Renooij
[1] for constructing BN graphs from structured arguments. This heuristic is
aimed at aiding domain experts who are accustomed to argumentation to trans-
form their reasoning into BNs and subsequently weigh their case evidence in
a probabilistic manner. Our refinement consists of fully specifying the direc-
tions in which arcs should be set in a BN graph for a given argument structure
without attack relations; more specifically, when employing the refined heuristic
for a set of arguments A, the directions of the arcs in the BN graph are set
in the same direction as the arcs in the original argument graph of A. By our
refined heuristic, BN graphs with maximal recall are constructed, that is, the
original arguments are returned by applying the support graph method to the
constructed BN graphs. Furthermore, our refined heuristic prevents the creation
of direct intercausal dependence relations between variables in the BN graph that
did not exist between the corresponding propositions in the original argument
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graph. In the near future, we will evaluate the heuristic in practice by establish-
ing, for example, the extent to which the automatically derived arc directions
match the perceived real-world causality or the judgments of domain experts.

In this paper, we focused on improving the recall of BN graphs constructed
by the BR heuristic. In our future research, we will address the construction of
BN graphs with increased precision. Furthermore, we will extend our research
to a more general framework of argumentation [4], not restricting ourselves to
linked argument graphs without attack relations.

References

1. Bex, F., Renooij, S.: From arguments to constraints on a Bayesian network. In:
Baroni, P., Gordon, T.F., Scheffler, T., Stede, M. (eds.) Computational Models of
Argument: Proceedings of COMMA 2016, pp. 95–106. IOS Press, The Netherlands
(2016)

2. Fenton, N., Neil, M.: Risk Assessment and Decision Analysis with Bayesian Net-
works. CRC Press, Boca Raton (2012)

3. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn.
Springer Verlag, Berlin (2007)

4. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argum. Comput. 1(2), 93–124 (2010)

5. Shachter, R.D.: A graph-based inference method for conditional independence.
In: D’Ambrosio, B.D., Smets, P., Bonissone, P.P. (eds.) Proceedings of the Sev-
enth Conference on Uncertainty in Artificial Intelligence, pp. 353–360. Morgan
Kaufmann Publishers Inc., San Mateo (1991)

6. Timmer, S.T., Meyer, J.-J.C., Prakken, H., Renooij, S., Verheij, B.: A two-phase
method for extracting explanatory arguments from Bayesian networks. Int. J.
Approx. Reason. 80, 475–494 (2017)

7. van der Gaag, L.C., Helsper, E.M.: Experiences with modelling issues in building
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Abstract. Consider people dividing their time and effort between
friends, interest clubs, and reading seminars. These are all reciprocal
interactions, and the reciprocal processes determine the utilities of the
agents from these interactions. To advise on efficient effort division, we
determine the existence and efficiency of the Nash equilibria of the game
of allocating effort to such projects. When no minimum effort is required
to receive reciprocation, an equilibrium always exists, and if acting is
either easy to everyone, or hard to everyone, then every equilibrium is
socially optimal. If a minimal effort is needed to participate, we prove
that not contributing at all is an equilibrium, and for two agents, also a
socially optimal equilibrium can be found. Next, we extend the model,
assuming that the need to react requires more than the agents can con-
tribute to acting, rendering the reciprocation imperfect. We prove that
even then, each interaction converges and the corresponding game has
an equilibrium.

1 Introduction

In many real-world situations people invest effort in several interactions, such as
in discretionary daily activities [16], daily communication between school pupils,
sharing files over networks, or in business cooperation. In such an interaction,
people tend to reciprocate, i.e., react on the past actions of others (sometimes
only if a certain minimum effort is invested) [10,12]. For example, users of various
social networks (Facebook, VKontakte) repeatedly interact in those projects
(networks). To recommend how to divide one’s limited efforts efficiently, we aim
to predict stable strategies for these settings and estimate their efficiency. We
study settings with and without a threshold for minimum effort.

Dividing a budget of effort is studied in shared effort games [4]. In these
games players contribute to various projects, and given their contributions, each
project attains a value, which is subsequently divided between the contributors.
In order to support decisions regarding individually and publicly good stable
strategy profiles in these games, the social welfare (total utility) of strategy
profiles is important, and in particular of Nash equilibria (NE). For this, the
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price of anarchy (PoA) [15], and stability (PoS) [1,23] are the most famous
efficiency measures. The price of anarchy is the ratio of the least social welfare
in an equilibrium to the optimal social welfare, and the price of stability is the
ratio of the social welfare in a best NE to the optimal social welfare.

Bachrach et al. [4] bound the price of anarchy, but only when a player obtains
at least a constant share of her marginal contribution to the project’s value; this
does not hold for a positive participation threshold. Polevoy et al. [20] have ana-
lyzed the Nash equilibria, and price of anarchy and stability also in the case with
a threshold. When the threshold is equal to the highest contribution, such shared
effort games are equivalent to all-pay auctions. In all-pay auctions, only one con-
tributor benefits from the project. Its equilibria are analyzed by Baye et al. [5]
and many others. Anshelevich and Hoefer [2] study graph nodes contributing
to edges, which are minimum effort projects. In the literature, the utilities are
based on the project values, which are directly defined by the contributions, such
as in contributions to online communities, Wikipedia, political campaigns [25],
and paper co-authorship [14]. Unlike the existing literature, our paper assumes
contributions to the projects determine the interactions, which define utility.

We now review the reciprocation models. Existing models of reciprocation
often consider why reciprocation has emerged. The following works consider the
emergence of reciprocation. Axelrod [3] studies and motivates direct evolution of
reciprocal behavior. Others consider a more elaborate evolution, like Bicchieri’s
work on norm emergence [6, Chap. 6] or [27]. Trivers [26] describes how altruism-
related emotions like guilt and suspicion have evolved. There exist also other
approaches to the nature of reciprocation, such as the strong reciprocation [11].
Works like [8,10,22] assume the reciprocal behavior and analyze the development
of certain interactions, modeling them as appropriate games.

With a model inspired by works on arms races [7,28] and spouses’ interac-
tion [13], Polevoy et al. [21] formally analyze lengthy repeated reciprocation and
show convergence. They define an action on an agent as a convex combination1

between one’s own last action, the considered other agent’s and all the other
agents’ last actions. They call this the floating reciprocation attitude.

The main contributions of this paper comprise of the analysis of a unifying
model of shared effort games with reciprocal projects and creating a basis for
further analysis. We define two games: one without a threshold, and another
one with a threshold. In the second game, those who are below the threshold in
an interaction, are not allowed to participate in the respective interaction. We
identify when Nash equilibria exist and find the prices of anarchy and stability.
In addition to the main part, where the initial actions are fully reciprocated by
the reciprocal agents [26], we model the situation when the budget of an agent
to invest in the various projects may fall short of satisfying the requirements
of every reciprocal interaction. This forces the agent to curb her investments in
some interactions, complicating the process, but we prove it still converges, and
therefore, generalizing the definitions to that case is well-defined. We also prove
that the corresponding reciprocation effort game and its exclusive thresholded

1 A combination is convex if it has nonnegative weights that sum up to 1.
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version have an equilibrium. We consider only pure equilibria throughout the
paper, even when we do not mention this explicitly. Since the strategies include
all the ways to divide budget among the interactions, the set of pure strategies
is already uncountably infinite.

The model of several reciprocal interactions is given in Sect. 2. Section 3 char-
acterizes the equilibria and their efficiency in a game without a threshold. Then,
we analyze the game with a threshold in Sect. 4. We prove the convergence of an
interaction with insufficient budgets and the NE existence in Sect. 5. Section 6
concludes and outlines new research directions.

2 Model

This section models dividing effort between reciprocal interactions. Adopting the
reciprocation model from [21] and the inspired by shared effort games models
from [4,20], we define a reciprocation effort game. First, we define a reciprocal
process and the agents’ utilities in this process. Next, we define a reciprocation
effort game, where agents divide their effort budgets between several such pro-
cesses. We define a thresholded variation on this game, to model the minimal
required investment, in Sect. 4.

We begin with the reciprocation model, based on models for arms race and
arguments. Given agents N = {1, . . . , n}, at any time t ∈ T

Δ= {0, 1, 2, . . .},
every agent acts on any other agent. The action by agent i ∈ N on another agent
j ∈ N at moment t is characterized by its weight, denoted by acti,j(t) : T → R.
Since only the weight of an action is relevant, we usually write “action” while
referring to its weight. For example, the weights of the actions of helping, nothing,
or insulting are in the decreasing order.

In order to define how agents reciprocate, we need the following notation. The
kindness of agent i, constant for a given reciprocal process, is denoted by ki ∈ R.
Agent i’s kindness models i’s inherent inclination to act on any other agent: the
larger the kindness, the kinder the agent acts; in particular, it determines the first
action of an agent, before the others have acted. We model agent i’s inclination
to mimic another agent’s action and the actions of all the other participants in
the project by reciprocation coefficients ri ∈ [0, 1] and r′

i ∈ [0, 1] respectively,
both staying constant for all interactions. ri is the fraction of acti,j(t) that is
determined by the previous action of j upon i, and r′

i is the fraction that is
determined by 1

n−1 th of the total action on i by all the other agents at the
previous time. Fractions sum up to 1, thus ri + r′

i ≤ 1. We denote the total
received action from all the other agents at time t by goti(t) : T → R; formally,
goti(t)

Δ=
∑

j∈N actj,i(t).
We now define the actions. At time 0, there is nothing to react to, so the

kindness determines the action: acti,j(0) Δ= ki.

Definition 1. At any positive time t, agent i’s action is a weighted average
of her own last action (inertia), of that of the other agent j (direct reaction)
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and of the total action of all the other agents divided over all the others (social
reaction):

act
i,j

(t) Δ= (1 − ri − r′
i) · act

i,j
(t − 1) + ri · act

j,i
(t − 1) + r′

i · goti(t − 1)
n − 1

.

We have defined how agents reciprocate. An agent’s utility from a given
reciprocation project at a given time is the action one receives minus effort to
act, following [19]. This is classical (see, for example, the quasilinear preferences
of auction theory [17, Chap. 9.3]). Formally, define the utility of agent i at time
t, ui,t : Rn−1 × R

n−1 → R, as

ui,t

({

act
i,j

(t)
}

i,j∈N

,

{

act
j,i

(t)
}

i,j∈N

)
Δ=

∑

j∈N

act
j,i

(t) − βi

∑

j∈N

act
i,j

(t)

where the constant βi ∈ R is the importance of performing actions relatively
to receiving them for i’s utility. The personal price of acting is higher, equal
or lower than of receiving an action if βi is bigger, equal or smaller than 1,
respectively. The minus in front of i’s actions subtracts the effort of acting from
one’s utility (unless βi is negative, where that is added). Since the presence of
negative actions would mess up this logic (since negative actions would still take
effort while increasing the above expression), we assume that actions are always
non-negative, which occurs if and only if all kindness values are non-negative.
We can have negative influence, but we assume having added large enough a
constant to all the actions, to avoid negative actions.

Every such interaction converges, as shown in [21]. To model the util-
ity in the long run, we define the asymptotic utility, or just the utility, of
agent i, as the limit of her utilities as the time approaches infinity. In for-
mulas, ui :

(
R

n−1
)∞ × (

R
n−1

)∞ → R, as ui (
⋃∞

t′=0 {acti,j(t), actj,i(t)}) Δ=
limt→∞ ui,t (acti,j(t), actj,i(t)). This is the utility we consider here. This defi-
nition of the utility of a process is equivalent to the discounted sum of utilities
when the discounting is slow enough. The proof is omitted for the lack of space.

We now define a reciprocation effort game. Our agents N participate in m
interactions Ω = {1, 2, . . . ,m}. Each of the m interactions is what we have
defined till now, with its own kindness values and actions. The kindness, the
actions, the total received action, and the utility in a concrete interaction ω ∈
Ω will be denoted, when the concrete interaction is important, by (ki)ω and
(acti,j(t))ω, (goti(t))ω, and (ui,t)ω or (ui)ω, respectively. Each player’s strate-
gies are the possible contributions to the interactions at time zero (the fur-
ther contributions are determined by the reciprocation and not by the player).
A contribution goes to the whole interaction, not to a particular action on another
agent, but it determines the kindness values of the interactions as follows.

Player i’s kindness at reciprocal interaction ω is determined by her contri-
bution to that interaction at time zero, called just “the contribution”, divided
by the number of other agents who participate in the interaction at ω, account-

ing for acting on them. This means that i’s kindness at interaction j is xi
j(0)

n−1 .
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Therefore, the sum of all the actions of agent i at time t = 0 is equal to her
contributions to all the reciprocation projects, which are bounded by her bud-
get bi. The contribution of player i ∈ N to interaction project ω ∈ Ω at a general
time t ∈ T is defined as the sum of her actions in that interaction at that time,
i.e. xi

ω(t) Δ=
∑

j∈N\{i} (acti,j(t))ω.
An agent contributes something in the beginning of a reciprocation, and from

that time on the reciprocation “automatically” uncurls according to Definition 1.
We assume that not only the sum of the contributions at t = 0, but also the sum
of the contributions at any time t > 0 is within the acting agent’s budget. Each
player i has a normal budget bi > 0 (or just a budget) to contribute from at t = 0
and an extended budget Bi ≥ bi that can be used when the actions are required
by the reciprocation process at t > 0, perhaps resulting in a higher summarized
contribution than the voluntarily chosen at t = 0. We differentiate between
these two budgets, since the need to reciprocate can urge people to act more
actively [11], and we assume that Bis are high enough to allow reciprocation.

Formally, the strategy space of player i consists of her contribu-
tions (at time zero), determining her kindness values at the interactions,{

xi = (xi
ω)ω∈Ω ∈ R

|Ω|
+ |∑ω∈Ω xi

ω ≤ bi

}
. As mentioned, a “contribution” always

means the contribution at t = 0. Since the strategy profile x = (xi)i∈N deter-
mines all the interactions, the above defined utilities in a reciprocal interaction,
namely (ui,t)ω and (ui)ω

Δ= limt→∞ (ui,t)ω, are also functions of x. The utility
ui(x) of a player i ∈ N in the game is defined to be the sum of the utilities
it obtains from the various projects, ui(x) Δ=

∑
ω∈Ω (ui(x))ω, completing the

definition of a reciprocation effort game.
An agent does not have to use up all her budget, so that the inequality∑

ω∈Ω xi
ω ≤ bi may be strict. The strategies of all the players except i are

denoted x−i. We denote the vector of all the contributions by x = (xi
ω)i∈N

ω∈Ω.
We now give a concrete example of the model.

Example 1. People choose between going to an interest club, meeting friends,
or going to a scientific reading seminar, as illustrated in Fig. 1. A player first
decides on how much she wants to invest in each interaction, determining her
kindness in each one of them. Subsequently, she reciprocates. Each of these
projects is an interaction; for instance, in an interest club, a positive action

Fig. 1. People divide their own effort between interactions.
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can be supporting another person, while showing contempt would be negative.
Interacting, a person continues her previous course of action, represented by
(1 − ri − r′

i) · acti,j(t − 1) in Definition 1, reacts on the other person’s previous
action, represented by ri ·actj,i(t−1), and reacts on the social climate, for which
r′
i · goti(t−1)

n−1 stands.

For the sake of efficiency analysis, we remind that the social welfare is defined
as SW Δ=

∑
i∈N ui(x), and the prices of anarchy [15] and stability [1,23] are

defined as min{SW(x)|x is an NE}
max{SW(x)|x is a strategy} and max{SW(x)|x is an NE}

max{SW(x)|x is a strategy} , respectively. We
define 0/0 to be 1, because 0 from 0 means no loss occurs in the social welfare
in the equilibria.

Polevoy et al. [21] prove the following theorem.

Theorem 1. In an interaction, where for any agent i, r′
i > 0 and at least one

agent i has ri + r′
i < 1, for all pairs of agents i �= j, the limit limt→∞ acti,j(t)

exists. The convergence is geometrically fast (exponential). All these limits are
equal to each other and it is a convex combination of the kindness values, namely

L =

∑
i∈N

(
1

ri+r′
i
· ki

)

∑
i∈N

(
1

ri+r′
i

) . (1)

3 Reciprocation Effort Game Without a Threshold

We first completely analyze existence of NE, and then we find all the prices of
anarchy and stability. This theorem characterizes the existence of equilibria.

Theorem 2. Assume that for any agent i, r′
i > 0, and in addition, either n > 2

or r1 + r′
1 + r2 + r′

2 < 2. The set of all the NE is exactly all the strategy profiles
where every agent with βi < 1 somehow divides all her budget among the projects
{1, . . . , m}, and every agent with βi > 1 contributes nothing. These strategies are
also dominant. In particular, there always exists an NE.

Proof. Consider an arbitrary player l, and let her strategy (her contributions2)
be xl = (xl

1, . . . , x
l
m). By Formula(s) (1), the limit of the actions at (project)

interaction j is ⎛

⎝

(
1

rl+r′
l
· (xl

j)
)

∑
i∈N

(
1

ri+r′
i

) + Cj

⎞

⎠ ,

where Cj is independent of l’s strategy. This is both given and received by
an agent w.r.t. the n − 1 other agents, so we need to multiply the limit by
(n − 1)(1 − βl). Summarizing, agent j’s utility from this strategy is

(n − 1)(1 − βl)

⎛

⎝

(
1

rl+r′
l
· (xl

1 + . . . + xl
m)

)

∑
i∈N

(
1

ri+r′
i

) + C

⎞

⎠ ,

2 Contributions by default refer to the contributions at time zero.
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for C that is independent of l’s strategy. Therefore, if βl < 1, then l’s strategy
is a best response to others’ strategies if and only if l arbitrarily divides all her
budget among the projects {1, . . . , m}. On the other hand, if βl > 1, then a
strategy is a best response if and only if all the contributions are zero. This is
true for every agent l, proving that this is an NE. Since each agent is independent
of the others, these strategies are also dominant. �

The possible variations in an NE profile are what the agents with β = 1
do. This is important for analyzing the efficiency of the NE.3 To analyze effi-
ciency, we define: N< Δ= {i ∈ N : βi < 1}, N≤ Δ= {i ∈ N : βi ≤ 1}, N= Δ=
{i ∈ N : βi = 1}. We now analyze the efficiency of the most and the least effi-
cient equilibria, comparing their social welfare to the maximum possible social
welfare.

Proposition 1. Under the assumptions of Theorem2, if (n >
∑

i∈N βi), we

have PoA =
∑

i∈N<

(
1

ri+r′
i
·bi

)

∑
i∈N

(
1

ri+r′
i
·bi

) , and the PoS is given by the same expression,

where we use N≤ instead of N<. Consequently, if (n =
∑

i∈N βi), we have
PoA = PoS = 1. If (n <

∑
i∈N βi), then:

If N< �= ∅, then we have PoA = PoS = −∞.
If N< = ∅, but N≤ �= ∅, then PoA = −∞, but PoS = 1.
If N≤ = ∅, then PoA = PoS = 1.

The proof compares the possible social welfare in equilibria with the optimum
social welfare.

Proof. The possible social welfare values that an NE can achieve are exactly

(n − 1)(n −
∑

i∈N

βi)

∑
i∈N<

(
1

ri+r′
i
· bi

)
+

∑
i∈N=

(
1

ri+r′
i
· xi

)

∑
i∈N

(
1

ri+r′
i

) ,

where 0 ≤ xi ≤ bi. The optimum social welfare is

(n − 1)(n −
∑

i∈N

βi)

∑
i∈N

(
1

ri+r′
i
· bi

)

∑
i∈N

(
1

ri+r′
i

)

if (n >
∑

i∈N βi), and 0 otherwise.
Thus, if (n >

∑
i∈N βi), we have

PoA =

∑
i∈N<

(
1

ri+r′
i
· bi

)

∑
i∈N

(
1

ri+r′
i
· bi

) and PoS =

∑
i∈N≤

(
1

ri+r′
i
· bi

)

∑
i∈N

(
1

ri+r′
i
· bi

) .

3 βi > 1 implies negative utilities that sometimes result in negative PoA and PoS.
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If (n =
∑

i∈N βi), we have PoA = PoS = 1, since the social welfare is always
zero, and we define here 0/0 = 1.

If (n <
∑

i∈N βi), then we may get negative social welfare, since zero is
optimal, while some NE yield a negative social welfare. Concretely, we have the
following subcases:

If N< �= ∅, then we have PoA = PoS = −∞, because any NE has the social

welfare of at most (n − 1)(n − ∑
i∈N βi)

∑
i∈N++

(
1

ri+r′
i
·bi

)

∑
i∈N

(
1

ri+r′
i

) .

If N< = ∅, but N≤ �= ∅, then PoA = −∞ but PoS = 1. The rea-
son is that an NE can have the social welfare from zero and down to

(n − 1)(n − ∑
i∈N βi)

∑
i∈N≤

(
1

ri+r′
i
·bi

)

∑
i∈N

(
1

ri+r′
i

) .

If N≤ = ∅, then PoA = PoS = 1, since an NE has the social welfare of zero.

�

In particular, we have shown that if all the agents find acting easy (i.e.,
all βi < 1), or if all agents really do not like acting (i.e., all βi > 1), then
PoA = PoS = 1, so that any NE is optimum for the society. Intuitively, this is
because here, all the agents have similar preferences: either everyone wants to act
and receive action, or no one does. We have also shown, that if the average agent
finds not contributing more important than receiving (i.e.,

∑
i∈N βi > n), but

still βi < 1 for some agent i, then PoA = PoS = −∞, so any NE is catastrophic to
the society. Intuitively, this stems from the differences in the agents’ preferences.
Finally, we see that if

∑
i∈N βi > n, some agents have βi = 1, but none have

β1 < 1, then PoA = −∞ but PoS = 1, requiring regulation.
Theorem 2 implies that if all the projects have β ≤ 1, then any dividing of

all the budget in cooperating is always an NE. This is unintuitive, since usually,
some groups are more efficient to interact with than some other groups. The
reason for this is that the model assumes that all agents always interact at
every project ω ∈ {1, . . . ,m}, and only their kindness depends on the strategy.
Basically, everyone attends all the interactions, and some people are passive.

4 Exclusive Thresholded Reciprocation Effort Game

We now define a variation on a shared effort game with reciprocation, where
only the agents who contribute at least the threshold may interact. First, follow-
ing [20], we define a θ-sharing mechanism. This models, for example, a minimum
invested effort to be considered a coauthor, or a minimum effort to master a tech-
nology before working with it. Define, for every θ ∈ [0, 1], the players who get a
share from project ω to be Nθ

ω
Δ=

{
i ∈ N |xi

ω ≥ θ · maxj∈N xj
ω

}
, which are those

who bid at least θ fraction of the maximum contribution to ω.
We now define an exclusive thresholded reciprocation effort game, as a recip-

rocation effort game, where exclusively the agents in Nθ
ω interact. Others do
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not obtain utility and do not even interact. If an agent ends up participating
alone at a project, he obtains zero utility from that project, since no interaction
occurs. Exclusive thresholded reciprocation effort games model situations when
joining an interaction requires contributing enough, like the initial effort it takes
to learn the required technology to contribute to Wikipedia, the effort to become
a member of a file sharing community or to start a firm.

In this section, we assume w.l.o.g. that bn ≥ . . . ≥ b1. The existence of an
equilibrium is easy, since no-one contributing constitutes an NE. Then, we show
that also less trivial equilibria exist. Finally, the harder question of equilibrium
efficiency is answered for two agents. We first notice a trivial equilibrium.

Observation 1. The profile where all agents contribute nothing is an NE.

Proof. In this profile, any agent who deviates by contributing a positive amount
to a project will be the only one to interact there, so her utility will still be zero. �

We call an NE where at any project, at most one agent interacts (reaches the
threshold) and positively contributes there, a Zero NE. There may be multiple
Zero NE. We have just shown that a Zero NE always exists. A natural question
is whether there exist non-Zero NE as well. They do.

Theorem 3. Assume that all agents have βi ≤ 1. Assume that for any agent i,
r′
i > 0 and in addition, for any pair of agents i, j we have ri + r′

i + rj + r′
j < 2.

There exists a non-Zero NE.

Proof. Consider the profile where all agents 1, . . . , n − 1 contribute their whole
respective budgets to project 1, and agent n contributes min

{
bn, bn−1

θ

}
to project

1, and nothing to other projects.
This is anNE, for the following reasons.Anyagentwouldbe alone at anyproject

other than 1 if it contributed to such a project, and therefore, it will not contribute
there. At project 1, the only agent who perhaps can increase her contribution is n,
but she will stay alone, if she does, so no deviation is profitable. �

The next question is the efficiency of the equilibria. Since we always have the
Zero NE, and by contributing to the same project the same positive amounts we
achieve a positive social welfare, we always have PoA = 0. Regarding the price
of stability, we immediately know that it is positive, since there always exists
a non-Zero NE. We now show that the price of stability for two agents is 1,
meaning that there exists a socially optimal NE.

Proposition 2. For n = 2 and under the assumptions of Theorem3, PoS = 1.

Proof. Whenwehaveonly twoplayers,we canassumew.l.o.g. that inaprofilewith
maximum social welfare, a project that receives a positive contribution, receives it
from both agents. Therefore, social welfare is maximized by maximizing the total
contribution to the projects where interaction occurs.

Then, the following profile maximizes the social welfare. Agent 1 spreads her
budget equally between all the projects. If b1 ≥ θb2, then agent 2 divides her bud-
get equally between all the projects, and otherwise, she contributes 1

θ
b1
m to every

project. Since this profile constitutes an NE, we conclude that PoS = 1. �
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5 Insufficient Budgets

Till now, we have been assuming that there is enough extended budget to allow
the agents make the contributions required by the sum of the reciprocal actions at
any time. In this section, we consider dividing effort between reciprocal projects,
where the extended budgets Bi may not suffice to reciprocate at some positive
time t, and therefore the actions have to be curbed, such that the total action
at any time is bounded by the Bi. In Example 1, this can happen if people are
unable to keep up with the others because their free time is strictly limited.
In order to justify studying the asymptotic behavior here, we prove that for
any curbing, the actions in all interactions converge, as time approaches infinity.
Then, we study the equilibria of the corresponding game.

The convergence of normal reciprocation is proven in [21], and we now prove
the convergence of curbed reciprocation. Consider the undirected interaction
graph G = (N,E) of an interaction project, such that agent i can act on j
and vice versa if and only if (i, j) ∈ E. Our model assumes that this graph is a
clique, meaning that everyone interacts, but this is not necessary for the following
theorem. At a given time, let the reciprocation from Definition 1 require actions
denoted by the column vector q ∈ R

|E|
+ , in the sense that its (i, j)th coordinate

contains acti,j (for (i, j) ∈ E). Then, the curbing is denoted by Dq · q, where
Dq is the diagonal curbing matrix. We omit the subscript q when the vector on
which we act is clear. We denote the curbing matrix at time t by D(t).

Theorem 4. Consider dividing effort between reciprocal interactions, where
every interaction has some connected interaction graph, and for all agents i,
r′
i > 0. At every interaction, if there exists a cycle of an odd length in the inter-

action graph, or at least one agent i has ri + r′
i < 1, then, for all pairs of agents

i �= j, the limit Li,j
Δ= limt→∞ acti,j(t) exists.

In our model, we assume a completely connected graph, so if at least 3 agents
interact, we have an odd cycle, namely a triangle. Therefore, then we only need
to assume that for all agents i, r′

i > 0.
The proof expresses reciprocation as matrix multiplication. Without curbing,

the convergence is proven using the Perron-Frobenius theorem. Keeping conver-
gence when curbing can occur uses the following definition and lemma.

Definition 2. We remind that a square non-negative matrix A is called primi-
tive, if there exists a positive l, such that Al > 0 (see [24, Definition 1.1]).

The following lemma, used to prove the theorem, has a value of its own as
well. Given a convergent sequence of primitive matrices, the lemma shows that
arbitrarily squeezing the matrices keeps the convergence.

Lemma 2. Given a vector p(0) ∈ R
d, a primitive matrix A ∈ R

d2
,

such that limt→∞ At exists, and a sequence of diagonal matrices {D(t)}∞
t=0,

D(t) = diag(λ1(t), . . . , λd(t)), where each λi(t) ∈ (0, 1], define the sequence
{p(t)}∞

t=0 by p(t) Δ= D(t)AD(t − 1)A . . . D(1)Ap(0). Then, limt→∞ p(t) exists.
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Proof. Assume to the contrary, that {p(t)} diverges. Define the sequence
{p′(t)}∞

t=0 by p′(t) Δ= Atp(0). Since {p(t)} diverges and {p′(t)} converges, they
differ at some point, intuitively speaking. We now formalize this argument. Since
{p(t)} diverges and the space is complete, it is not a Cauchy sequence, and so
there exists a positive ε, such that for each N > 0 there exist n,m > N , such
that |p(n) − p(m)| > ε (‖ is the Euclidean norm). Since {p′(t)} converges, it
is a Cauchy sequence, so there exists N > 0, such that for all n,m > N we
have |p′(n) − p′(m)| < ε/2. If |p(n) − p(m)| > ε and |p′(n) − p′(m)| < ε/2, we
cannot both have |p(n) − p′(n)| < ε/4 and |p(m) − p′(m)| < ε/4. Therefore, for
some integer l, |p(l) − p′(l)| > δ, for some δ > 0, depending solely on ε. Since
the product defining p(l) is like that of p′(l), but with more D(t) matrices, and
D(t) = diag(λ1(t), . . . , λd(t)), where each λi(t) ∈ (0, 1], we have 0 ≤ p(l) ≤ p′(l).
Remembering this, and that matrix A is primitive, thereby propagating a change
of an entry to every entry, we can choose l such that every coordinate of p(l) will
be at most α fraction of the corresponding coordinate of p′(l), for some α < 1.
The α can be made to depend solely on ε, because of the boundedness of all the
relevant vectors. So, we have p(l) ≤ αAlp(0).

By reiterating the same argument with p′
1(t)

Δ= Atp(l) and p1(t)
Δ= p(t +

l), we find l1 > 0, such that p1(l1) ≤ αAl1p(l). Thus, p(l1 + l) = p1(l1) ≤
αAl1p(l) ≤ αAl1αAlp(0) = α2Al1+lp(0).

Continuing in this manner, and using the boundedness of the converging
{Atp(0)}, we prove that {p(t)} converges to zero. A contradiction. 4 �

We can now prove Theorem 4.

Proof. We extend the proof of the Theorem1 from [21], which proves the conver-
gence without the curbing. We show that the curbing still keeps the convergence.
We recapitulate the used properties from there, to stay self-contained.

We express the dynamics of interaction in a matrix, and prove the theorem
by applying the Perron–Frobenius theorem [24, Theorems 1.1 and 1.2], using
the above lemma to handle the curbing of actions. Denoting the neighbors of i

as N(i), we define the dynamics matrix A ∈ R
|E|×|E|
+ as

A((i, j), (k, l)) Δ=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − ri − r′
i) k = i, l = j;

ri + r′
i

1
|N(i)| k = j, l = i;

r′
i

1
|N(i)| k �= j, l = i;

0 otherwise.

(2)

Assume that for each time t ∈ T , the column vector p(t) ∈ R
|E|
+ describes the

actions at time t. Then, p(t+1) = D(t)Ap(t), where D(t) is the diagonal matrix,
describing the curbing. We call p(t) an action vector. Initially, p(0)(i,j) = ki.

We will use the Perron-Frobenius theorem for primitive matrices. We now
prepare to use it, and first we show that A is primitive. In the proof of Theorem1,
4 The actual limit does not have to be zero; zero is just the result from the contradic-

tory assumption.
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it is shown that A is irreducible and aperiodic, and therefore primitive by [24,
Theorem 1.4]. Since the sum of every row is 1, the spectral radius is 1.

According to the Perron-Frobenius theorem for primitive matrices
[24, Theorem 1.1], the absolute values of all the eigenvalues except one eigenvalue
of 1 are strictly less than 1. The eigenvalue 1 has unique right and left eigenvectors,
up to a constant factor. Both these eigenvectors are strictly positive. Therefore,
[24, Theorem 1.2] implies that limt→∞ At = 1v′, where v′ is the left eigenvector of
the value 1, normalized such that v′1 = 1.

Now, Lemma 2 implies that Li,j exists. �

We have proven the reciprocation effort game where curbing can occur is
well defined, because all the reciprocation processes converge. We now prove
the existence of equilibria in such a game. In the exclusive thresholded model,
Observation 1 holds in the curbed case as well, so contributing nothing is an NE.
From now on, assume that no threshold exists. Since the curbing renders finding
a formula for the actions in the limit unlikely, we take an abstract approach.

Theorem 5. Consider dividing effort between reciprocal interactions, where for
all agents i, r′

i > 0. Assume that n ≥ 3 or at least one agent i has ri + r′
i < 1.

Assume that the curbing function D : Rn → R
n is a weak contraction w.r.t. norm

L∞, i.e. ||Dxx − Dyy||∞ ≤ ||x − y||∞.
Then, there exist small enough βis such that an NE exists.

Proof. By Theorem 4, the reciprocation processes converge and so the game
is well defined. We prove the existence using Proposition 20.3 from [18]. The
strategy set of every player consists of all the possible divisions of the budgets
between the projects, which is a nonempty compact convex set.

The continuity of the utility functions follows from the action limits depend-
ing continuously on the total contributions of agents to projects. To this
end, we can inductively show that at ant time t, the change in the action
is ||p′(t) − p(t)||∞ ≤ ||Δx||∞, where p′(t) represents the actions at time t if
p′(0) = p(0)+Δx. This boundedness keeps holding in the limit of time approach-
ing infinity as well, implying continuity. For the quasi-concavity of an agent’s
strategy space, notice that for small enough βi, agent i would like to increase its
contribution exactly till it can increase the limit of the actions of at least one
another agent. Finally, Proposition 20.3 implies the theorem. �

We also prove that when agents react identically, the game boils down to a
single reciprocal interaction.

Proposition 3. Assume that the curbing is determined by the sum of the
actions of an agent and that all the reciprocation coefficients are equal among
the agents, i.e. ri = rj and r′

i = r′
j ,∀i �= j. Then, the total contribution of

agent i at any time t ∈ T , i.e. xi(t) Δ=
∑

ω∈Ω xi
ω(t), and the total received

action, i.e.
∑

ω∈Ω (goti(t))ω, are fully determined by the total contributions and
the total received actions at time zero of the agents (i and others), regardless
how the actions were divided between the projects.
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Proof. We prove this by induction on time. At the basis, t = 0 and the
statement is trivial. At the induction step, assume that

∑
ω∈Ω xi

ω(t − 1) and∑
ω∈Ω (goti(t − 1))ω are fully determined by the total contributions and the

total received actions at time zero and prove this determinancy for
∑

ω∈Ω xi
ω(t)

and
∑

ω∈Ω (goti(t))ω. Indeed, xi
ω(t) is equal to

∑

j �=i

act
i,j

= (1 − ri − r′
i)

∑

j �=i

(act
i,j

(t − 1))ω + ri

∑

j �=i

(act
j,i

(t − 1))ω + r′
i(got

i
(t − 1))ω

= (1 − ri − r′
i)x

i
ω(t − 1) + ri(got

i
(t − 1))ω + r′

i(got
i

(t − 1))ω.

Sum it up over all the projects to obtain

∑

ω∈Ω

xi
ω(t) = (1− ri − r′

i)
∑

ω∈Ω

xi
ω(t− 1) + ri

∑

ω∈Ω

(got
i
(t− 1))ω + r′

i

∑

ω∈Ω

(got
i
(t− 1))ω .

Since everything on the right hand side is, by the induction hypothesis, deter-
mined by the total contribution and the total received action at time zero, the
actions on time t before curbing are determined by them as well. Furthermore,
curbing is determined by the total action of the agents, and thus, the curbed
actions are also determined by the total contribution and the total received
action at time zero.

Regarding the total received action, the derivation of the step is analogous,
but it requires moving 1 − rj − r′

j , rj and r′
j out of the parentheses, where we

use the equality of these parameters across the agents. �

6 Conclusions and Further Research

In order to predict investing effort in several reciprocal interactions, we define a
game that models dividing efforts between several reciprocal projects. We include
an analysis of a model both with and without a contribution threshold.

When no contribution threshold exists, there always exists an equilibrium,
and if acting is easy to everyone (for all i, βi < 1) or hard to everyone (for all i,
βi > 1), then every NE is socially optimal. We also show that any dividing of all
the budget when acting is easy to everyone is a Nash equilibrium. The result may
seem surprising. Intuitively, this happens because everyone participates in each
interaction, and the concrete division of the budget does not matter to the social
welfare. However, life does not often provide such situations. We also characterize
when both efficient and inefficient equilibria exist, calling for regulation.

If a minimum contribution is necessary to participate in interaction, we show
that the situation where no-one contributes is an equilibrium. This models the
case where people are very passive, and this continues since no-one can start an
interaction project on his own. In addition to this trivial equilibrium, we find an
equilibrium where all the agents contribute to the same project, like Facebook,
instead of participating in the other social networks. This describes the case
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when people interact with each other on the same topic. Such a situation is
clearly not the only option, since people often have many friendships [9]. For
two agents, there exists an equilibrium which is socially optimal.

The choices of strategies by the agents who are indifferent can significantly
influence the social welfare. For instance, this happens in the case without thresh-
old to agents for whom acting and receiving action are equally important. Making
such agents do what benefits the society can increase the social welfare.

We also model the case when the extended budgets are not big enough and
curbing is required. We show that any way of dividing effort between recipro-
cal interactions results in converging interactions, regardless of how actions are
curbed to fit the budgets. We also prove that the resulting reciprocation effort
game possesses an equilibrium, with and without threshold.

For future research, we are curious about the efficiency of the equilibria in
the game with curbing. Consecutive decisions can be modeled by the agents first
contributing to the interactions and then deciding on their reciprocation parame-
ters. Additionally, looking at interactions in large groups where not everyone can
act on everyone else would be a natural generalization of our work. Another point
is that we assumed that two agents who interact in multiple projects, interact
in these projects independently. Modeling the dependency between these inter-
actions is realistic. Analyzing a mixed set of projects, only some of which are
interaction projects, would model reality better. Also modeling and analyzing
voting to approve who else may participate in an interaction seems promising.

This work models and analyzes a ubiquitous class of interactions and lays
the basis for further research, aimed to provide more advice to the agents and
to the manager who wants to maximize the social welfare.

Acknowledgments. We thank Prof. Orr M. Shalit from the Technion, Israel for the
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DIRECT (Delft Institute for Research on ICT at the TU Delft).
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Abstract. Intelligent Virtual Agents (IVAs) become widely used for
numerous applications, varying from healthcare decision support to com-
munication training. In several of such applications, it is useful if IVAs
have the ability to take a negative stance towards the user, for instance
for anti-bullying or conflict management training. However, the believ-
ability of such ‘virtual bad guys’ is often limited, since they are non-
consequential, i.e., are unable to apply serious sanctions to users. To
improve this situation, this research explores the potential of endowing
IVAs with the ability to provide haptic feedback. This was realized by
conducting an experiment in which users interact with a virtual agent
that is able to physically ‘touch’ the user via a haptic gaming vest. The
effect on the loudness of the speech and the subjective experience of
the participants was measured. Results of the experiment suggest there
might be an effect on the subjective experience of the participants and
the loudness of their speech. Statistical analysis, however, shows no sig-
nificant effect but due to the relatively small sample size it is advisable
to further look into these aspects.

1 Introduction

Intelligent Virtual Agents (IVAs) are intelligent digital interactive characters
that can communicate with humans and other agents using natural human
modalities like facial expressions, speech, gestures and movement [19]. Recently,
IVAs have become widely used for numerous applications, varying from health-
care decision support [8] to communication training [20]. In such applications,
IVAs play various roles in which they interact with users, for instance as an
instructor, therapist or teammate [15].

In the vast majority of these cases, IVAs are friendly and supportive towards
the user. Instead, there was less attention for IVAs with a ‘negative’ or ‘aggres-
sive’ attitude towards users (i.e., ‘virtual bad guys’). This could be considered
a missed opportunity, since the concept of virtual bad guys opens up a range of
useful applications. Examples include virtual training of aggression de-escalation
skills [6], anti-bullying education [23], and Virtual Reality exposure therapy [16].
c© Springer International Publishing AG, part of Springer Nature 2018
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However, a common difficulty in the design of IVAs is to make them believable,
i.e., to provide the illusion of being alive [2]. This poses a particular challenge for
‘virtual bad guys’, since effective applications involving aggressive agents require
that users feel indeed seriously threatened or stressed by the IVA. However, IVAs
are typically non-consequential, i.e., they are unable to apply serious sanctions
to (or even physically harm) their human interlocutors. As a result, users still
perceive IVAs as rather artificial beings, which possibly also influences the way
they interact with them.

Triggered by this insight, the question addressed in this paper is how to
develop aggressive virtual agents that are taken seriously. This question is tackled
by designing and experimentally examining the effects of a threatening IVA that
is able to physically ‘touch’ users by means of haptic feedback, which is realized
by means of a haptic gaming vest. More specifically, we investigate whether
endowing an IVA with the ability to provide such a physical threat has an
impact on the verbal behaviour of users as well as their subjective experience.

The remainder of this article is structured as follows. In Sect. 2, the recent
literature on aggressive virtual agents and on haptic feedback is reviewed. Next,
in Sect. 3 the design of the performed experiment is presented, and the results are
provided in Sect. 4. These results are evaluated in detail in Sect. 5. A conclusion
is provided in Sect. 6, and Sect. 7 completes the paper with a discussion.

2 Related Work

The relevant literature for this project covers two main areas, namely aggres-
sive virtual agents and virtual touch. The state-of-the art in these two areas is
discussed in the following sub-sections.

2.1 Aggressive Virtual Agents

Research on emotions within IVAs has received much attention in recent years.
An important stream of research addresses the development of generic com-
putational models of emotion [12]. Probably the most influential approach is
EMA [13], a computational model that formalises the main assumptions behind
appraisal theory [11]. Although such models could be used to have agents gen-
erate emotional states like ‘angry’, they do not focus on agents that take a
threatening attitude towards humans.

Instead, other research has focused more explicitly on the impact of emotional
agents on humans in interpersonal settings. For example, the Sensitive Artificial
Listener paradigm enables studying the effect of agents with different personal-
ities on human interlocutors, which provided evidence that IVAs with an angry
attitude indeed trigger different (subjective and behavioural) responses than
agents with other personalities [17]. Similarly, a study in the domain of negoti-
ation led to the conclusion that IVAs expressing anger (in terms of utterances
and facial expressions) lead human negotiation partners to make larger conces-
sions [7]. Another recent study pointed out that a virtual agent that made an
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‘outburst of aggression’ (in terms of shouting to and insulting the user) was able
to trigger increased physiological responses [5].

Nevertheless, as also concluded in [5], these responses are still insufficiently
strong to be really useful for effective applications where heavy emotional stimuli
play a role, such as aggression de-escalation training systems for law enforcement
personnel [9] or public transport employees [6]. The assumption underlying the
current paper is that this is due to the inability of existing IVAs to apply serious
(e.g., physical) sanctions to human interlocutors. This is in line with research
in the domain of shooting behaviour training for police officers, which indicates
that ‘simulated threat’ is a necessary criterion to realize an adequate transfer of
training from the simulated to the real world [14].

Hence, the current paper aims to bring interactions between humans and
aggressive virtual agents to a next level of realism, which is done by introduc-
ing two technological innovations, namely immersive Virtual Reality and haptic
feedback.

2.2 Virtual Touch

The domain of virtual reality is seeing its technology applied in fields like enter-
tainment, education and even medicine. One of these applications is virtual
reality-based training, which can be used for various purposes. In order for the
effects of such training applications to be applied in the physical world it is
important that the scenarios used resemble this world as closely as possible.
This way users are offered an experience as if they were in the physical world
itself.

Since a number of years, virtual reality applications are combined with haptic
feedback, enabling users to ‘touch’ objects in the simulated environment. Most
of these applications focus on touching static objects rather than conversational
agents, for instance for surgical training (e.g., to improve performance in cadaver
temporal bone dissection) [22].

Recently, virtual touch is also applied in a more social setting, leading to
the area of ‘virtual interpersonal touch’ (e.g., [1]). For instance, research by
Cheok and colleagues explores the use of haptic technology to reproduce multi-
sensory sensations related to intimate activities like kissing [21] and hugging
[18]. Although the primary use of such technology was to enable intimate touch
sensations between humans remotely, it is also claimed to have potential in
the area of human-agent interaction. Similarly, other researchers have studied
the use of social touch with the aim to make virtual agents more ‘warm’ or
empathic (e.g., [4,10]). Nevertheless, all of these developments are in the context
of ‘positive interpersonal touch’. As far as could be determined, research into
virtual agents that may touch human conversation partners with the purpose of
intimidating or threatening them is still in its infancy.
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3 Method

To investigate the effect of touch by a threatening virtual agent on human partic-
ipants, the following experiment was set up. Participants were asked to interact
with a virtual agent in a virtual reality environment through free speech. At
some point during this interaction, the virtual agent would start threatening
the user, which was followed by a ‘push’ that was simulated through haptic
feedback. A haptic gaming vest was chosen, because this enabled the users to
be provided with a serious physical stimulus, while avoiding physically harming
them (which would be the case by using for instance electric surges), which obvi-
ously is ethically irresponsible. This section describes the experimental set-up in
detail.

3.1 Participants

A convenience sample of 47 people was recruited, most of which were academic
students. The age of the participants varied between 18 and 25 years. Participants
were randomly assigned to the experimental group that received haptic feedback
or the control group that did not receive any feedback. The experimental group
consisted of 21 participants (12 male, 9 female), and the control group consisted
of 23 participants (13 male, 10 female). Three runs of the experiment resulted
in corrupted or incomplete data and so these have been removed.

3.2 Experimental Design

Participants were placed in either a condition with haptic feedback during the
interaction (condition A) or a condition without haptic feedback (condition B).
In both conditions, participants were wearing the haptic feedback equipment
(as to eliminate any effects of the equipment itself), but they were not told in
advance what was the purpose of the equipment. In the control condition, the
haptic vest was turned off, but the participants did not know this.

The experiment used a between-participants design (where each participant
is only allocated to one condition) instead of a within-participants design (where
each participant would experience both conditions sequentially), because in the
latter case, the participants would already expect the virtual push after having
experienced the scenario once.

3.3 Tasks

The participants were asked to engage in a virtual reality scenario (displayed on
a Head Mounted Display) taking place in the context of a nightclub in which they
can freely move around. The participants were tasked with finding the bathroom
in the virtual environment, after which they were to return to the bar area they
initially started in and have a drink with their friend. However, on their way to
the bathroom the participants would encounter a virtual agent named Mason.
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Mason poses the threat in the virtual environment by acting very aggressively
towards the participants. As they walk through the corridor towards Mason, he
walks into them and so spills his drink. This sets up a situation in which the
agent behaves aggressively towards the users and at some point even physically
‘attacks’ the user. This attack has the form of a push which is transferred to the
user through the haptic feedback vest.

Throughout the nightclub several virtual agents can be seen and heard inter-
acting with each other. The users can only interact with two of the agents in
the scenario through free speech responses during a conversation. The first agent
they encounter is used to make the participants more comfortable with the free
speech interaction paradigm. The second agent, Mason, is used to analyse the
responses of the participant. Both agents have been created in such a way that
they always give the same responses, no matter what the user says. This was
done to minimize the differences across individual trials.

The responses of virtual agent Mason have been inspired by the Sensitive
Artificial Listener paradigm [17], which enables users to interact with virtual
agents using free speech. The dialogue can be set-up in such a way that the
agent always seems to respond to what the user says even if this is not the case
and the agent just follows a script.

During the conversation with Mason the participants were free to respond in
whatever way they saw fit. Participants were only limited in that they should
speak loud and clear, always respond to the agent and use at least one full
sentence to respond. The conversation consists of ten user responses which results
in a select set of data to analyse. To this end, participants were asked to respond
at all times. The participants were alerted to the fact that the microphone might
not pick up their voice if they did not speak loud and clear and this would result
in difficulties for the analysis of the data.

Both conversations in the scenario are turn-based, meaning that both the
agent and the participant take turns while speaking. Only the agents can initiate
conversations as to avoid the participants trying to start a conversation with
every agent they encounter.

3.4 Variables

Two types of dependent variables were used in this study, namely subjective
and objective variables. As subjective variable, the participants’ experience was
measured through a questionnaire they had to fill in at the end of the experiment.
This questionnaire contained the following questions, which had to be answered
using a 5-point Likert scale (from ‘not at all’ to ‘very much’):

Q1 Did you have any experience with the use of head mounted display devices
prior to this experiment?

Q2 Did you have any experience with the use of haptic feedback hardware prior
to this experiment?

Q3 Did you find the virtual scenario to be realistic?
Q4 Did you find Mason to be aggressive?
Q5 Did you find Mason to be threatening?
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In addition, the following yes-no questions were used:

Q6 Were you startled when Mason pushed you?
Q7 Did you look at Mason when he pushed you?
Q8 Did you first walk through the club before talking to Mason?
Q9 Did you react differently to Mason after he pushed you?

Some of these questions (Q1, Q2, Q7, Q8) were used as control questions,
to avoid that any differences found could be attributed to other factors. For the
other questions, the aim was to investigate whether people have a more intense
experience in the condition with haptic feedback than in the condition without
(Research Question 1).

The objective variable that was studied was the verbal behaviour of the
participants during the interaction with Mason. More specifically, we used the
loudness of their speech as an indicator for the participants’ engagement in the
scenario, as people who are excited typically speak louder [3]. The relevant data
for this were obtained through the use of a web cam that recorded the experi-
ment session. The audio from the recordings was extracted and the amplitudes
from the audio files were sampled. This way it could be analysed whether the
participants spoke louder or softer after being pushed in the virtual scenario.
Hence, the aim was to investigate if people use louder speech in the condition
with haptic feedback than in the condition without (Research Question 2).

3.5 Material and Facilities

The experiment has been conducted in a quiet room in which only the participant
and experimenter were present. This room contained a desk with the computer
that hosted the virtual environment, a four-legged chair for the participants to
sit on during the experiment and a desk with the equipment used during the
experiment. The chair on which the participants took place was selected not to
be an office chair, as these chairs can turn. When the participant is using the
Head Mounted Display to look around in the virtual environment sitting on an
office chair would mean they would be able to look behind themselves in the
environment while their virtual body would still be facing the other way.

The Virtual Environment was presented to the user using a Head Mounted
Display, in this case the Oculus Rift Developer Kit (version 2)1. Using an
advanced high-quality Virtual Environment and a Head Mounted Display
requires a high-end gaming computer with a high-end graphics card to ensure
smooth performance for an optimally effective Virtual Environment. The com-
puter used an Intel i7-4630 CPU with 16 GB DDR4 memory, a 500 GB SSD and
a Nvidia GTX-780 graphics card with 1 GB of memory. To facilitate the haptic
feedback a so-called gaming vest was used (the KOR-FX2). These vests incor-
porate vibration motors that mimic physical impact to the torso. The KOR-FX
vest uses two large vibration motors, one on left side of the chest and one on the
1 https://www3.oculus.com/en-us/dk2/.
2 http://korfx.com/.

https://www3.oculus.com/en-us/dk2/
http://korfx.com/
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right side. The vest is wirelessly connected to a control box. This control box
accepts low-voltage input (0–5 V) and is meant to accept standard sound output
of the sound card of a computer. To gain complete control over the haptic feed-
back, an Arduino One board3 has been used with an analogue line (0–5 V) as
output to the KOR-FX controller box. The Arduino accepted commands from
the Virtual Environment, via the USB connection to the computer, to activate
the vibration motors in the gaming vest. This way the Virtual Environment had
complete control over the haptic feedback to the participants. The Arduino also
used a microphone that recorded the volume level of the sound in the environ-
ment, i.e. the voice of the participant. The microphone polled from a script inside
the Virtual Environment to monitor the speech of the participant. A standard
USB game controller was used to control the virtual agent of the user. See Fig. 1
for an overview of the system’s architecture.

Fig. 1. System architecture.

3.6 Virtual Environment

The Virtual Environment has been developed in Unity Pro (version 5)4. A ready-
made model from the Unity Asset Store has been purchased for the club environ-
ment that has been used in the experiment. This model has been further adapted
in order to suit the needs of this research. Atmosphere was added by includ-
ing special lighting and additional props on the virtual stage. All the humanoid
agents in the Virtual Environment have been generated using the iClone Pipeline
software (version 6)5. The Character Creator6 has been used to generate real-
istic and unique human agents. iClone itself has been used to create the body
animations and lip-sync movements.
3 https://www.arduino.cc/en/Main/ArduinoBoardUno/.
4 https://unity3d.com/.
5 http://www.reallusion.com/iclone/default.html.
6 http://www.reallusion.com/iclone/character-creator/default.html.

https://www.arduino.cc/en/Main/ArduinoBoardUno/
https://unity3d.com/
http://www.reallusion.com/iclone/default.html
http://www.reallusion.com/iclone/character-creator/default.html
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3DXchange7 has been used to convert the agents including their anima-
tions into FBX format that could be imported into Unity Pro. Inside Unity
Pro the non-interactive characters were scripted using C#, looping animations
and speech to create a livelier atmosphere in the club. The interactive agents,
the character in the role of the friend of the participant and Mason, have been
separately scripted for more advanced actions. These two agents had a larger set
of animations and speech, plus the ability to react to speech of the participants.
The agent would monitor if the participant was speaking. If the participants
did speak the agent would wait until the participant stopped, allowing for small
pauses in speech (of 1 s), or until a maximum amount of time (of 10 s) had
elapsed. This produced a more realistic reaction of the agent.

Additional scripts made sure that once the participant entered the hallway to
the toilets, an encounter with Mason was unavoidable. Both speed and direction
of movement of the avatar of the participant were taken over by the script so
that the participant and Mason would end up directly in front of each other. A
screenshot of the application is shown in Fig. 2.

Fig. 2. Screenshot of the application.

3.7 Procedure

After entering the room the participants were asked to sign an informed consent
form, allowing for the gathered data to be saved and used for the duration of
the research project. Participants also read the health and safety warnings for
the Oculus Rift and KOR-FX gaming vest to be able to indicate whether they
could safely work with this equipment.

Next, the participants read the experiment instructions and put on the KOR-
FX gaming vest. They would take their seat behind the computer and the experi-
menter would inform them of the instructions once more, highlighting the impor-
tance of speaking loud and clear, always responding and using at least one whole
7 http://www.reallusion.com/iclone/3DXchange.html.

http://www.reallusion.com/iclone/3DXchange.html
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sentence to respond with. If the participants had no further questions they put
on the Oculus Rift and the experimenter started a tutorial scenario. In this sce-
nario participants could walk around in order to get accustomed to the controls.
The scenario is a grey plain with several blocks placed on it for orientation pur-
poses. The ‘ceiling’ of the scenario is a sky with a sun. When the participant
indicated to understand the controls the experimenter started the recording and
the virtual scenario in which all interactions took place.

The participants interacted with the first agent in the environment and then
moved on to find the bathroom as instructed. After completing their conversation
with virtual agent Mason the screen faded to black and the experimenter stopped
the recording. All equipment used was removed and the participant was asked to
fill in the questionnaire on the computer. During this the experimenter did not
answer any questions the participants had, nor respond to any of their remarks
regarding the experiment as not to influence their answers to the questionnaire.
For their participation in the experiment, participants were rewarded with a
sweet roll after completion of all tasks.

4 Results

This section describes the results of the experiment in detail. First, the subjective
measures will be presented, followed by the objective measures.

4.1 Subjective Measures

Figure 3 shows the means of the answers given by the participants to the Likert-
scale questions. For example, in condition A (the condition in which haptic
feedback was received), the mean of the answers to the question regarding expe-
rience with head mounted display devices was 2.33, whereas for condition B it
was 2.00.

To analyse whether there was a significant difference between the two con-
ditions regarding the mean answers that were provided to the Likert-scale ques-
tions, unpaired t-tests have been performed, under the assumption that the scales
reflect continuous data. The results of these tests are displayed in Table 1.

Table 1. T-test results on Likert questions (significance level = 0.05).

Question P-value Significant difference

Q1 (HMD experience) 0.37 No

Q2 (haptics experience) 0.62 No

Q3 (scenario realistic) 0.12 No

Q4 (agent aggressive) 0.76 No

Q5 (agent threatening) 0.73 No

Figure 4 displays the results for the yes-no questions for condition A and
B, respectively. As an illustration, The figure shows that in condition A, 13
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Fig. 3. Answers to the Likert-scale questions.

participants gave a positive answer to Question 6 (‘Were you startled when
Mason pushed you?’), whereas 8 participants gave a negative answer. Instead,
in condition B, 8 participants gave a positive answer to this question, and 15
participants gave a negative answer.

To analyse whether there was a significant difference between the two condi-
tions regarding the answers that were provided, a series of Chi-square tests have
been performed. The results of these Chi-square tests are displayed in Table 2.

Fig. 4. Answers to yes-no questions for condition A (with haptic feedback) and B
(without haptic feedback).

Table 2. Chi-square test results on yes-no questions (significance level = 0.05).

Question Chi-square value Variable independence

Q6 (startled by push) 0.07 Yes

Q7 (looked at agent) 0.79 Yes

Q8 (walked around) 0.99 Yes

Q9 (different after push) 0.99 Yes
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4.2 Objective Measures

Objective data were obtained by analysis of the audio recording of the exper-
iment sessions. From the audio files, obtained during the experiment sessions
using a web cam, the amplitudes of the speech sample concerned with the con-
versation with Mason have been extracted using Audacity8, an audio editing
tool. These data were then processed using a script written in Python 2.7 in
order to obtain the mean amplitude of the utterances prior to the haptic feed-
back event (i.e., the virtual push) and of the utterances after the event. This
was done to determine whether participants spoke louder or softer after being
pushed. A summary of the results is presented in Table 3.

Table 3. Comparison of speech volume before and after the virtual push.

Condition Louder Softer

A (haptic feedback) 15 6

B (no haptic feedback) 10 13

Statistical analysis of these data was performed again using Chi-square tests.
The Chi-square value of this test was 0.06.

5 Evaluation

In this section the results that have been presented in the previous section will be
evaluated in the context of the original research questions. First, the subjective
results will be evaluated (Research Question 1) and thereafter the objective
results (Research Question 2). Finally, a brief follow-up experiment is described,
along with its results.

5.1 Research Question 1

Table 1 shows there is no significant difference between the ratings for prior
experience between the experimental and control group (Q1 and Q2). The fact
that there is no significant difference between the two groups in the level of
experience with any of the devices used, indicates that any effect that is found
can not be contributed to this.

There was also no significant difference found between how aggressive (Q4) or
threatening (Q5) the participants perceived virtual agent Mason to be. Neither
was there any difference between how realistic the experience was for the par-
ticipants (Q3). This would indicate that the haptic feedback that was provided
to participants in condition A did not affect any of these factors. Participants
in the control group have indicated to have had almost the same experience as
those participants that did receive haptic feedback.
8 http://www.audacityteam.org/.

http://www.audacityteam.org/
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The Chi-square tests applied on the yes-no questions, displayed in Table 2,
show that there is variable independence between the experimental group to
which the participants were allocated (A or B) and their answers to these ques-
tions. This means that the group in which the participants were placed did not
affect their answer to these questions. Therefore, on the one hand, any effect of
the haptic feedback cannot be attributed to some of the participants looking at
Mason and others looking away (Q7) or some participants walking around in the
environment first and others heading straight for their goal (Q8). On the other
hand, this also means that no effect of haptic feedback on the reaction of the
participants (Q9) or them being startled by the virtual push (Q6) is found.

However, the statistical test performed to determine variable independence
between participants being startled and receiving haptic feedback returned a
P-value of 0.07. In addition, several people in the haptic feedback condition
mentioned that they found the feedback experience at least ‘surprising’. As this
was an experiment with a relatively low number of participants (44) and the
significance value used for this test was 0.05, it is advisable to perform a second
experiment with a larger sample size in order to determine whether there is
actually no correlation between participants receiving haptic feedback and being
startled by the virtual agent.

5.2 Research Question 2

The data obtained after processing of the audio files seem to suggest that partic-
ipants that received haptic feedback on average spoke louder after receiving this
feedback compared to participants in the control group. However, the Chi-square
test shows variable independence, indicating that the pattern could be obtained
through chance. Just as with the subjective data regarding the startling of par-
ticipants it is important to remark that the Chi-square value is 0.06. Therefore,
it would be advisable to perform a second experiment with a larger sample size
in order to determine whether there actually is no pattern between loudness of
speech and the application of haptic feedback.

5.3 Follow-Up Experiment

In order to investigate the effect of haptic feedback on the experience of being
startled (Q6) with a (slightly) larger sample, ten additional participants per-
formed the experiment at a later date. Due to problems with the equipment,
this follow-up experiment could not be conducted for the objective measures.
Since a second analysis of the data would be performed (including the data from
the first 44 participants) the significance level was adjusted to 0.025, under the
assumption that adding more participants would otherwise always lead to some
kind of significant effect.

Analysing the subjective data regarding the startling effect for all 54 par-
ticipants yielded the results presented in Table 4. After increasing the number
of participants, there still seems to be no significant effect of startling. On the
contrary: the Chi-square value has increased from 0.07 to 0.1.
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Table 4. Chi-square test results on question Q6 (54 participants, significance level =
0.025).

Condition Yes No

A (haptic feedback) 15 12

B (no haptic feedback) 9 18

Question Chi-square value Variable independence

Q6 (startled by push) 0.1 Yes

6 Conclusion

In this research the effects of negative haptic feedback in the form of a ‘push’ by
a virtual agent in a threatening scenario are explored. To this end an experiment
was set-up featuring 44 participants, distributed over two conditions. During this
experiment participants interacted with two virtual agents through free speech
in a virtual environment. For this an Oculus Rift and the KOR-FX gaming
vest have been used. Participants in the experimental group received haptic
feedback, through vibrations created by the KOR-FX vest, at a certain point
during their conversation with one of the virtual agents. At this moment in the
conversation the participants were being attacked by the virtual agent in the
form of a push that was synchronised with the haptic feedback that was received.
The participants in the control group also used both the Oculus Rift and the
KOR-FX vest, but did not receive haptic feedback during their interactions with
the virtual agent.

Subjective data were obtained from a questionnaire that was filled in by par-
ticipants after the experiment had been completed. Objective data were obtained
through a recording of the experiment session using a web cam. The audio record-
ing of the experiment was analysed in order to determine the loudness of speech
of the participants prior to- and after the haptic feedback event.

Statistical tests indicate that haptic feedback did not have any effect on the
experience of the participants in this scenario for the measured variables. The
Chi-square test that was performed on the loudness of speech resulted in a value
of 0.06, which was close to the significance level of 0.05. In the questionnaire
participants were asked whether they were startled when they were pushed in
the scenario. The statistical test performed on these answers resulted in a Chi-
square value of 0.07 for a significance level of 0.05. As this study featured 44
participants, ten additional participants performed the experiment in order to
gain better insight in the near-significant effects. A second statistical analysis
of the subjective data for the startling effect resulted in a value of 0.1. As a
consequence, no significant effects of the haptic feedback could be demonstrated
on the various subjective aspects (Research Question 1) and objective aspects
(Research Question 2) measured.
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7 Discussion

Despite the fact that no statistically significant effects of haptic feedback were
found, this research provides several useful pointers for follow-up research. First
of all, the fact that no effect on subjective experience could be demonstrated
might be related to the particular set-up of the experiment, which used a rela-
tively low number of participants, and a between-participants design. Since par-
ticipants played the scenario only once, they had no frame of reference to which
they could compare their experience, which made their Likert-scale response dif-
ficult to interpret. It might be the case that if participants would experience
both conditions (with and without haptic feedback), they would still feel a big
difference between them. This is a common problem in user experience research,
and it is worthwhile to explore this in more detail.

Secondly, although this research has explored the effect of negative hap-
tic feedback on several aspects of the experience of the user, it has not been
exhaustive in that regard. Future research might look into the effect on loudness
of speech using more participants in order to ascertain whether haptic feed-
back might have an effect or not. Other considerations for future research might
include alternative ways in which negative haptic feedback influences user expe-
rience, the role of the intensity of the feedback (possibly up to the point where
the feedback actually hurts), and providing haptic feedback multiple times.

All in all, it is concluded that the lack of significant effects found in the present
study should rather be explained by the specific design of this experiment than
by the paradigm as a whole, and that follow-up research is required to investigate
the full potential of threatening virtual agents based on haptic feedback.
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Abstract. Decision making is thought to involve a process of evidence
accumulation, modelled as a drifting diffusion process. This modeling
framework suggests that all single-stage decisions involve a similar evi-
dence accumulation process. In this paper we use decoding by machine
learning classifiers on intracranially recorded EEG (iEEG) to examine
whether different kinds of decisions (perceptual vs. memory) exhibit
dynamics consistent with such drift diffusion models. We observed that
decisions are indeed decodable from brain activity for both perceptual
and memory decisions, and that the time courses for these types of deci-
sions appear to be quite similar. Moreover, the high spatial resolution
of iEEG revealed that perceptual and memory decisions rely on slightly
different brain areas. While the accuracy of decision decoding can still
be improved, these initial studies demonstrate the power of decoding
analyses for testing computational models of cognition.

1 Introduction

Decision making is a basic cognitive process that comes to play in many dif-
ferent tasks. Most of the research on decision making focuses on simple tasks
such as detecting the direction of randomly moving dots. The theories developed
on the basis of those experiments presume that all decisions between two alter-
natives (at least those consisting of a single stage process) behave with similar
dynamics. Specifically, according to drift diffusion models (DDMs; [1]), decisions
follow a drifting diffusion process, where the random walk is driven by the deci-
sion information. The DDM starts the process of evidence accumulation at the
moment the stimulus comes on the screen, and then slowly drifts towards one
of the decision thresholds which each correspond to a particular decision option.
As soon as the decision threshold is reached, the response corresponding to the
relevant decision option is given. The model has been found to produce excellent
fits to performance in a variety of tasks, as well as the detailed shape of the
associated response time distributions. The parameters of this model each can
be interpreted as specific cognitive processes such as attention allocation in the
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drift rate parameter and speed-accuracy trade-off in the location of the deci-
sion threshold [2]. In addition to the drift rate and the decision threshold, the
third main parameter of the model is the non-decision time, which reflects non-
decision-related processes such as preparing a motor response and fixed delays
in the perceptual system. By varying the values of these parameters, subtle dif-
ferences in shapes of the response time distributions can be reproduced.

While DDMs were developed exclusively based on behavioral data, more
recently it has also been suggested that the brain may implement such diffu-
sion processes. For example, in seminal work, Shadlen and colleagues observed
monotonously increasing firing rates of neurons in the lateral intraparietal area
while monkeys were deciding about the direction of randomly moving dots [3,4].
This neural signature was modulated by the strength of the decision evidence
(the proportion of dots moving coherently) and the traces seemed to all move
up to the same final firing rate around the time of the response. Subsequent
studies on monkeys in similar tasks instead placed evidence accumulation in the
frontal eye fields [5–9]. Some of the differences between studies could be traced
back to the response modality (e.g., accumulation-like activity is more likely in
frontal eye field when monkeys use saccades to indicate their response than when
they use reaching).

In humans, accumulation processes have been studied as well, although in
that case the challenge is the trade-off between poor temporal resolution of
functional magnetic resonance imaging (fMRI) and the poor spatial resolution
of electroencephalograph (EEG). FMRI studies have suggested evidence accu-
mulation may take place in the dorsolateral prefrontal cortex [10], inferior frontal
gyrus [11–13] but as demonstrated in a meta-analysis, in fact almost the whole
brain [14]). Using EEG, we found neural correlates of evidence accumulation
in parietal 4–9 Hz theta oscillations when people were making decisions about
randomly moving dots [15]. MEG (magnetoencephalography) studies have impli-
cated different brain regions in the accumulation process, such as 14–24 Hz beta
oscillations over motor cortex; [16]. In addition to these brain oscillations, it
has been suggested that two event-related potentials–the centroparieto potential
(CPP; [17]), and the lateralized readiness potential [18]–reflect evidence accumu-
lation. While the CPP may arise from parietal cortex, the lateralized readiness
potential may come from premotor areas of the brain. However, none of this
localization is very specific since it is derived from scalp-recorded EEG, which
has poor localization.

An alternative approach to localizing the decision process in the brain has
been to use classifiers, which are increasingly popular in neuroscience. The first
studies using these methods focused on finding specific moments in time at which
decisions can be best classified, rather than tracking the complete decision pro-
cess over time. For example, Ratcliff and colleagues [19] found that a logistic
regression-based classifier in the period around 400 ms post-stimulus exhibited
behavior consistent with evidence accumulation during a face-car discrimina-
tion task–the output of this classifier covaried with between-trial differences in
the drift rate. Philliastides and colleagues [20] followed up on this in a similar
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face-house discrimination task and showed that a Fisher discriminant analysis
could also track the decision process over time and this process appeared to be
predominantly localized to parietal regions.

While these results are promising, they do not give very detailed localization
of the decision process and restrict themselves to the cortex due to the inher-
ent constraints of EEG data. Moreover, as is clear from the above discussion,
different studies have claimed that evidence accumulation occurs in many differ-
ent brain areas, dependent on the study. One potential reason for contradictory
results may be that decisions on the basis of different kinds of evidence may be
implemented by different brain regions. For this reason, it is worthwhile to exam-
ine whether evidence accumulation looks similar for different kinds of decisions,
such as perceptual decisions and decisions about remembered information.

To enhance spatial localization we decode decision information from
intracranially-recorded brain oscillations (rather than the scalp EEG used in
most previous studies). Intracranial EEG is data with a high degree of spatial
and temporal precision that can be obtained from epileptic patients who are
implanted with electrodes for clinical purposes [21]. To determine what brain
areas are involved in decision making, and where the decision information is
available over time, we ran a regularized logistic regression classifier in short
(50-ms) time bins, and assessed how classification accuracy develops for mem-
ory and perceptual decisions. We focused on classifying 4–9 Hz theta oscillations,
since we previously demonstrated that those are most informative for decision
making [15]. We then looked at the classifier weights to determine what Brod-
mann areas carry most of the decision information, and whether those differed
between perceptual and memory decisions.

2 Methods

2.1 Participants

Participants were recruited from the patients undergoing long-term invasive
monitoring for pharmacologically intractable epilepsy at Freiburg University
hospital (Germany). Sixteen individuals were recruited and participated in our
behavioral experiments.

2.2 Task

To be able to compare perceptual and memory decisions, we created a task with
perceptual and memory conditions that used the same set of stimuli. We created
synthetic face stimuli by means of the Basel Face model [22], which allowed us to
manipulate the stimulus similarity (and hence task difficulty) very precisely. In
the perceptual condition (Fig. 1(a)), participants saw two faces facing outward
and had to determine whether this face belonged to the same person (i.e., was
simply a rotated version of the same face). In the memory condition (Fig. 1(b)),
participants were first shown two faces during a 2000–2075 ms (jittered) study
period, followed by a 1000–1150 ms (jittered) blank delay period, after which
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Fig. 1. Example trials of the perceptual (a) and memory (b) condition.

a probe face was shown. Participants were then asked to indicate by a button
press whether this probe face was identical to one of the two faces presented in
the study. The jitter in the task was used to ensure that no spurious oscillatory
phase-locking could occur.

2.3 Recordings

Data were recorded with a 2000 Hz sampling rate on the clinical EEG recording
system (Compumedics). We then segmented the data into trials of 4000 ms
duration, starting 200 ms prior to the onset of the probe stimulus. We checked
for the occurrence of epileptiform activity and one of the participants’ data had
to be discarded due to epileptic spikes in a majority of the trials. Trials whose
response time exceeded the trial segment duration (3800 ms) were discarded,
and the classifier analysis was done only on correct trials. Similarly, trials with
a kurtosis larger than 15 (indicative of epileptic spikes) were removed. The total
dataset involves 1178 electrodes.

2.4 Data Analysis

Data were analyzed by means of in-house matlab code that was based on tool-
boxes developed by Jelmer Borst and Per Sederberg. First, we ensured that the
two classes to be separated (match/non-match decisions) had an equal number
of trials by randomly removing trials from the larger class. We then performed a
wavelet transform to obtain EEG time courses in the 4–9 Hz theta band, which
previously has been shown to be important for decision making [15]. Next, we
z-transformed all trials to ensure the data had an average of zero and a standard
deviation of one. We then vincentized the data–that is, we turned each trial into
an equal number of bins between the stimulus and the response (with the excep-
tion of the first 300 ms, which contains roughly the same peaks irrespective of
the response time, so this period was not stretched or compressed and simply
divided into 6 bins of 50 ms duration). The number of bins was chosen such that
on average, bin duration would be approximately 50 ms.
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For each time bin, we trained a regularized logistic regression model to distin-
guish between the match and non-match responses. Essentially, this model tries
to find a matrix W that maps between the n× p matrix of examples X (p is the
number of features, n is the number of trials) and the vector of labels (match
or non-match) Y: W = (XTX + λIp)−1XTY . In this equation, Ip is the p× p
identity matrix and λ is the regularization matrix. The regularization allows
the algorithm to deal with many correlated predictors. For each classifier the
regularization parameter lambda was determined by means of a search between
0 and 10,000 [23]. The lambda that minimized the root-mean-square prediction
error across all labels was chosen. We then assessed the classifier’s performance
using 10-fold cross-validation.

3 Results

3.1 Accuracy Across Subjects

We first examined how well decisions could be decoded from intracranial EEG
data per participant. Figure 2 illustrates the maximum accuracy across the
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Fig. 2. Maximum decision decoding accuracy for each participant, separately for per-
ceptual and memory trials. Stars indicate classification accuracies that are larger than
chance.

Table 1. DDM parameters (mean and standard error of the mean). Perceptual and
memory trials were split between low and high-similarity conditions (difficult and easy,
respectively). Decision threshold was kept fixed between all conditions. Non-decision
time was fixed between the similarity conditions. This model came out as best from a
BIC comparison of various model configurations.

Condition Drift Decision threshold Non-decision time (s)

Perception low similarity −0.41 (0.13) 0.27 (0.025) 0.92 (0.15)

Perception high similarity 0.24 (0.066) 0.27 (0.025) 0.92 (0.15)

Memory low similarity −0.11 (0.014) 0.27 (0.025) 0.50 (0.047)

Memory high similarity 0.11 (0.016) 0.27 (0.025) 0.50 (0.047)
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Fig. 3. Time courses of classification accuracy in the 4–9Hz theta band for a partici-
pant with good classification (a) and for a participant with poor classification (b). For
comparison, two other participants are also shown ((c) and (d)). Vertical lines indicate
the average time of the response for the relevant condition (blue for perception, red for
memory). (Color figure online)

decision interval (between the moment the probe stimulus came on the screen
and the response). As can be seen, there are large differences between individu-
als in classification accuracy, which ranges from close to chance (55%) to 76%.
Most accuracies significantly exceed chance according to a binomial proportion
test (see stars in Fig. 2; p < 0.016, reflecting a 5% False Discovery Rate).

Having established that decision classification is possible to some extent, we
can now examine our main question: what is the time course of these classifi-
cations, and does it differ between perceptual and memory decisions? Figure 3
demonstrates that while for some participants there is no classification possi-
ble, and the signal hovers around chance level, for others there is meaningful
classification, and consistent with the DDM, classification accuracy increases
slowly over time (the slope of the classification accuracy is larger than zero
for both memory decisions (t(14) = 2.55, p = 0.012) and for perceptual deci-
sions (t(14) = 3.04, p = 0.0044)). Unexpectedly, classification accuracy appears
to continue to increase even after the response has been made. One possible
interpretation of such a pattern is provided by recent modeling studies that sug-
gest that after the decision has been made, the accumulation process continues
with the objective of estimating decision confidence [24].
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Comparing the two conditions, classifier accuracy appears to get higher
for perception than for memory trials (Mmemory = 0.61; Mperception = 0.64;
t(14) = 2.82, p = 0.014). In short, while perceptual and memory decisions involve
quite different tasks and response times, the decodable decision information
forms quite a similar trajectory for both, consistent with the DDM predictions.
The only difference is that the classifiers start to increase at different points in
time, presumably because the response time in the perception condition is signif-
icantly longer than in the memory condition. This difference in response time is
presumably caused by the fact that in the perception condition, participants need
to first mentally rotate the images before they can make their decision. DDM
fits are consistent with this idea (see parameters in Table 1): there is a significant
effect of task on the non-decision time parameter (F (1, 60) = 14.1, p = 0.0004,
similar to previous studies of mental rotation decisions [27]). Another interest-
ing finding is that classification accuracy appears to continue increasing even
after the decision has been made. This is consistent with some findings from
experiments with monkeys suggesting that after the decision has been made,
participants continue to accumulate information to make estimates of their con-
fidence in the decision.

3.2 How Do Different Brain Areas Contribute to Classification?

Next, we asked what brain areas are involved in classification, and how these
regions differ between perceptual and memory decisions. Specifically, for every
Brodmann area, we reported the proportion of electrodes in that area that were
significantly involved in evidence accumulation (i.e., having z-scores larger than 2).

Table 2. Proportion of significant electrodes by Brodmann area for classification of
target-lure/match-nonmatch decisions on the basis of 4–9Hz theta activity. The Brod-
mann areas are ordered by proportion of significant electrodes. Only Brodmann areas
with more than 15 electrodes are included. Brodmann areas for which the proportion
of significant electrodes is zero: 9, 22, 28,40, 47 and hippocampus.

Brodmann area Memory Perception Nelectrodes Nparticipants

Brodmann area 7 0.17 0.06 18 1

Brodmann area 13 0.03 0.09 34 10

Brodmann area 20 0.01 0.07 179 13

Brodmann area 36 0.02 0.07 46 9

Brodmann area 37 0.01 0.04 98 12

Brodmann area 41/42 0.03 0.03 33 8

Amygdala 0.00 0.03 31 9

Brodmann area 21 0.01 0.03 246 13

Brodmann area 19 0.02 0.00 57 9

Brodmann area 38 0.02 0.00 101 10
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Fig. 4. Electrodes that contribute significantly (z> 2) to decision classification. Black
dots indicate electrodes that are not showing significant decision-related activity. Red:
perceptual decisions. Blue: memory decisions. The electrode locations for two partici-
pants were missing, so those are not included in this figure and in Table 1. In addition,
Brodmann areas having no electrodes in our dataset are also excluded from the table.
(Color figure online)

Figure 4 shows the electrodes that were, across participants most involved in clas-
sification, separately for perception and memory decisions. It is clear that most of
these electrodes are in lateral parietal and temporal areas. Part of the reason for
that is of course that the locations that are relevant for clinical purposes tend to
be temporal areas, which are often the sources of epileptic seizures. Table 2 demon-
strates that the Brodmann areas that have the largest proportion of electrodes car-
rying decision information are parietal areas (Brodmann area 7) and perceptual-
motor areas (Brodmann areas 1-2-3-5).

4 Discussion

We examined the time course of the availability of decision information during
a perceptual and a memory decision task. As the DDM predicted, overall the
decoded decision evidence shows similar dynamics for perceptual and memory
decisions. The difference between the two lies in the time at which they move
upwards, which is later for the perception condition than for the memory con-
dition. This is not surprising given that for the perception task the response
time is significantly longer than in the memory task. The second question we
asked was whether accumulation in the perception and memory conditions relies
on different brain regions. Because we have no full brain coverage we can only
make tentative claims, but the data so far suggest that there are differences
between those two types of decisions (see also Fig. 4). While memory decisions
rely predominantly on Brodmann area 7 (parietal cortex) and sensorimotor cor-
tex, perceptual decisions rely more on Brodmann area 13 (anterior insula) and
30 (visual area).

While we did obtain classification accuracies above chance, classification is
far from stellar. Potentially other classifiers such as lasso or artificial neural nets
could do better than these. On the other hand, such classifiers run a higher risk
of overfitting the data. Another potential approach could be to make use of the
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known similarity structure of the face stimuli. Previous studies have shown that
such decoded similarity structures can help to track memory representations in
the brain [25]. In addition, we focused here on the theta band, because that
frequency was suggested by prior studies. Nevertheless, it could easily be the
case that for these data, better decision information could be decoded from other
frequencies. Finally, there are large differences between individuals. We examined
whether individual differences in task performance (accuracy and response time)
could account for these differences in classification accuracy. We found that the
data were too unreliable to make any connection between task performance and
classifier accuracies (all Bayes Factors between 0.4 and 2.2).

Another weaker part of this study is that it did not make a direct connection
to DDM parameters. If the dynamics of the decoded decision process were to
covary with model parameter estimates [15], this would bolster our confidence
that we are in fact observing neural correlates of a drift diffusion process. One
approach that we can use in the future to examine this is to use the classifier
readout to separate the trials into low-evidence and high-evidence, and then to
fit the DDM separately to these classes of trials. Previous studies using such an
approach have demonstrated that such within-participant model verification can
be used to identify neural correlates of drift diffusion processes [19,26].

In short, we have demonstrated how decoding decision information from brain
data can help us to better understand the dynamics of decision making. This
builds on a larger body of work that uses classifiers to track covert cognitive
processes over time. As classifiers become more powerful and can deal with more
noisy data, these are very useful tools to help us uncover how the brain “does”
cognition. Moreover, we will gain a better and better time-resolved picture of
cognitive processes, which can subsequently inform computational models of
these processes.
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Abstract. One of the most remarkable phenomena in nature is mimicry,
in which one species (the mimic) evolves to imitate the phenotype of
another species (the model). Several reasons for the origin of mimicry
have been proposed, but no definitive conclusion has been found yet. In
this paper, we test several of these hypotheses through an agent based co-
evolutionary model. In particular, we consider two possible alternatives:
(1) Deception, in which mimics evolve to imitate the phenotype of models
that predators avoid to eat, and (2) Coincidence, in which models evolve
a warning color to avoid predation, which coincidentally benefits the
mimics. Our agent-based simulation shows that both these hypotheses
are plausible origins for mimicry, but also that once a mimicry situation
has been established through coincidence, mimics will take advantage of
the possibility for deception as well.

1 Introduction

One of the most remarkable phenomena in nature is mimicry, in which one species
(mimic animals) imitates the phenotype of another species (model animals).
Typically, the effect is called mimicry when the model species are dangerous to
predators. In this case, the mimic species benefits from mimicry when predators
mistake the mimic animals for model animals. Depending on characteristics of
the mimic species, the model species may benefit (Müllerian mimicry, [11]) or
suffer (Batesian mimicry, [1]) from the presence of mimic animals. In this paper,
we investigate two possible hypotheses for the origin of mimicry through an
agent-based co-evolutionary model.

The pioneer in mimicry research was Bates [1]. Bates found that there are
poisonous animals with very bright colors, and camouflaged animals which were
not poisonous. Even though the brightly colored animals are more easily detected
by predators, they were also identified as dangerous by these predators. This so-
called aposematism effect became more remarkable when Bates found animals
with similar colors and shapes as the toxic animals that were not toxic. This
type of mimicry is called Batesian mimicry, in which non-toxic animals imitate
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Fig. 1. In deception, the mimic and camouflaged animals start with the same char-
acteristics. The hypothesis states that the mimicry group will move toward the place
with low toxicity and camouflage: the mimicry place, since this place has the lowest
evolutionary cost. (Color figure online)

the phenotype of toxic animals. This effect has been found in butterflies [1,11],
snakes [12], and various other animals [9].

In Batesian mimicry, mimic animals are not toxic. As a result, whenever a
mimic animal is eaten or tasted by a predator and found to be harmless, this
gives positive feedback to the predator to eat similar animals. This results in
model animals being eaten more. Hence, the more mimic animals exist in the
habitat of the model, the lower the survival chance of the model. This results in a
negative or parasitical effect on the model. Müllerian mimicry [11], on the other
hand, involves two species of animals that are both toxic to a certain degree,
and therefore both contribute to this anti-predation mechanism.

In this paper, we investigate two possible hypotheses for the origin of Bate-
sian mimicry. A common assumption in the literature is that the mimic animals
deliberately deceive their predators by imitating model animals [7,12]. That is,
mimic animals evolve to have the same phenotype as the model animals because
this lowers predation. However, mimicry may also come about through coinci-
dence. That is, model animals may evolve a phenotype that allows predators to
distinguish them, and which happens to be the phenotype of the mimic animals.

These two hypotheses will be tested through an agent-based co-evolution
model. Agent-based modeling has proven its usefulness as a research tool to inves-
tigate how behavioral patterns may emerge from the interactions between indi-
viduals (cf. [4,5]). Among others, agent-based models have been used to explain
fighting in crowds [8], the evolution of cooperation and punishment [2,13], and
the evolution of language [3]. In this paper, we use agent-based modeling to test
two hypotheses on the origins of mimicry. We will elaborate on the hypotheses
in the next two sections.

1.1 Deception Hypothesis

The deception hypothesis reflects the typical assumption about mimicry. Accord-
ing to the deception hypothesis, mimic animals evolve to have a phenotype that
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Fig. 2. In coincidence, the toxic model animals and the camouflaged animals start with
the same characteristics. The mimicry group is already in place. The toxic population
now gets more toxic, and moves toward the lesser camouflaged site. (Color figure online)

is as similar as possible to the phenotype of model animals. This benefits mimic
animals because they are mistaken for animals that are dangerous to preda-
tors. Therefore, if model animals are less camouflaged, the mimic animals are
expected to evolve a lower level of camouflage as well.

This idea is represented graphically in Fig. 1. The figure shows three types
of prey: model animals (ToxicPop), mimic animals (MimicPop), and a control
population of camouflaged animals (CamouPop). Only the model animals are
dangerous to the predators, as shown by a high level of toxicity, while both
the control and mimic animals start out with high levels of camouflage. The
deception hypothesis predicts that, over time, the mimic animals take advantage
of the eating behavior of predators and evolve lower levels of camouflage (blue
arrow in Fig. 1), since being camouflaged has a negative influence on their chance
to reproduce. That is, the deception hypothesis describes a process of speciation,
where one population of prey splits into a population of mimic and a population
of control animals.

1.2 Coincidence Hypothesis

In contrast with the deception hypothesis, the coincidence hypothesis describes
a small role for the mimic animals. The coincidence hypothesis describes the
situation in which the mimic animals do not change their phenotype, but that
the model animals evolve a distinct phenotype, which happens to be the same
as the phenotype of the mimic animals. Note that in this situation, there is
an important role for the behavior of the predators. Predators learn to create
a discriminatory line between the model animals and the control population,
which drives the selective pressure for model animals to evolve a phenotype that
is distinct from that of the control animals. The coincidence hypothesis states
that the mimic animals may happen to be on the model animal side of this line,
and therefore experience a coincidental benefit.
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The coincidence hypothesis is described graphically in Fig. 2. The figure
shows three types of prey: model animals (ToxicPop), mimic animals (Mim-
icPop), and a control population of camouflaged animals (CamouPop). All these
populations start out with low levels of toxicity, and are therefore harmless for
the predators. In addition, the mimic animals start out with low camouflage,
while the control and model animals have high levels of camouflage. The coin-
cidence hypothesis predicts that when the model animals evolve higher levels
of toxicity, they will also decrease their level of camouflage (long green arrow
in Fig. 2). In addition, the coincidence hypothesis predicts that the mimic pop-
ulation would not increase its camouflage to more closely resemble the model
animals (short blue arrow in Fig. 2). Note that the coincidence hypothesis also
describes a process of speciation, but in this case, one population of prey splits
into a population of model and a population of control animals.

The idea behind the coincidence hypothesis is that there are relatively few
mimic animals who already have a distinctive color because of pre-adaptation [7].
The model animals experience selective pressure towards the phenotype of the
mimic animals because of the relative low population sizes of the mimic animals
compared to the population size of the control animals.

1.3 Structure of the Paper

The remainder of this paper is set up as follows. In Sect. 2, we will discuss the
simulation model, first in general terms and then in more depth. We present
our simulation results in Sect. 3. Section 4 will discuss the results and provides
directions for future research.

2 Model

While mimicry is defined in terms of the evolutionary behavior of prey animals,
mimicry also depends on the behavior of predator animals. As a result, there are
three different ways to study mimicry [10]:

– The evolutionary dynamics way, which studies the evolution of the prey but
ignores the behavior of the predators [6];

– The receiver psychology way, which focuses on the behavior of the predators,
but tends to ignore the evolution of the prey [7]; and

– The traditional natural historical way, which analyzes the behavior of both
predator and prey. In these kinds of research, the co-evolution between preda-
tors and prey is studied [1].

In this paper, we follow the traditional natural historical way by explicitly mod-
eling both the evolution of prey animals and the behavior of predator animals.
To study this co-evolution, we construct an agent-based model that models indi-
vidual prey and predator animals. In Sect. 2.1, we first give a general explanation
of our model. A more technical discussion of the model can be found in Sect. 2.2.
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2.1 Model Description

Our model of mimicry investigates the co-evolution of predator and prey animals.
Prey animals are further subdivided into three separate populations, which we
will call the toxic, camouflaged, and the mimic populations.

Predator agents perform two actions: eating prey and reproducing. A preda-
tor consists of a neural network that determines whether a predator will eat a
prey that it encounters. This network is evolved, which means that predators
do not learn over their lifetime, but instead inherit their decision function from
their parent. At each time-step of the model, the predator encounters a number
of prey. For each encountered prey, the predator decides whether or not to eat the
prey, depending on the prey’s phenotype. Eating non-toxic prey increases evolu-
tionary fitness, while eating toxic prey decreases fitness. Reproduction occurs by
selecting the agent with the highest fitness from a random sub-set of predators
as the parent. The child inherits all characteristics of this parent, subject to a
small probability of mutation, which will be elaborated on in Sect. 2.2.

Prey are defined by three characteristics: camouflage, toxicity, and pattern.
A prey’s camouflage determines the probability of being detected, so that a
higher camouflage lowers the probability of being encountered by a predator. A
prey’s pattern, on the other hand, does not influence the probability of being
encountered. A prey’s phenotype consists of its camouflage and pattern. That
is, both camouflage and pattern are observable characteristics, while toxicity is
a characteristic that cannot be observed by predators.

Prey reproduce by selecting two parents with the highest fitness from a ran-
dom subset of the population. The fitness of a prey is determined by the number
of times it is eaten by a predator. In addition, both toxicity and camouflage
decrease a prey’s fitness.

To investigate mimicry, prey animals are subdivided into three separate popu-
lations of constant size that reproduce independently. The first population, called
the toxic prey, has a small genetic drift toward higher toxicity. This population
is meant to simulate model animals. Similarly, the camouflaged prey experience
a small genetic drift towards higher camouflage, and are meant as a control
population. The third, mimic population does not experience any genetic drift.

2.2 Model Details

In this section we look at the model in more detail. In particular, we take a closer
look at the eating behavior and knowledge of the predator, the mechanism of
reproduction, and the setup of different parameters.

Eating Behavior of Predators. During every time step of the model, each
predator encounters a fixed number Yencountered of randomly selected prey ani-
mals (see also Algorithm 1). For each of these encounters, the camouflage of the
prey animal determines the probability with which the prey is found, so that
prey with a high camouflage are more likely to hide from the predators. If the
predator finds the prey, it can choose whether or not to eat the prey.
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Algorithm 1. Eating behavior of predators.
let Cy camouflage of prey y, scaled [−50, 50]
let Py pattern of prey y, scaled [−50, 50]
let NN(X, Y ) neural network function of predators
for each encountered prey y do

if random(100) > Cy then � Prey y is found
if NN(Py, Cy) > random(1) then

Eat prey y
end if

end if
end for

The predator uses a simple feed-forward neural network to propagate the
phenotype of the found prey, which results in a decision on whether or not to
eat a prey. This neural network consists of two input nodes, which represent the
prey’s camouflage and pattern; three hidden nodes; and one output node that
controls the predator’s eating decision. The output node is implemented as a
probability between 0 and 1, so that there is a low probability that predators
will try to eat prey that they believe to be dangerous.

Each node is connected to all nodes in the next layer. This results in 6
synapses from the input nodes to the hidden nodes and 3 from the hidden nodes
to the output node. The total number of synapses (weights) is thus 9 per preda-
tor. After each synapse round, an activation function is applied to scale the
values between 0 and 1. The activation function used is the sigmoid function.

Reproduction. The mechanism with which animals reproduce is different for
predators than it is for prey. However, for the selection of the parents, both types
use tournament selection.

Predators reproduce asexually, so that every child has a single parent. A
child inherits the neural network from its parent, subject to a low probability
of mutation. When a weight mutates, a value between −0.25 and 0.25 is added
to it. The value is then cut to the domain between −2 and 2. Because of the
survival of the fittest principle, the best predators evolve and anticipate on the
changes within the prey. This way of learning can be seen as a random search.

Prey, on the other hand, reproduces sexually. The two parents with the high-
est fitness are chosen with the tournament selection, and the child is a combi-
nation of these parents. Each child has camouflage, toxicity, and pattern that is
the mean of the corresponding characteristic of its two parents. The values of
the prey characteristics have a value between 0 and 100. Each characteristic has
a low probability of mutation, in which case a random number between −10 and
10 is added to it. If the new value exceeds the borders of 0 or 100, it is cut off at
that value. In the case of genetic drift, the Genetic Drift parameter is added
to the mutation value, giving more chance for an increasing mutation.

For both predators and prey, reproduction occurs in generations. After each
generation, all animals in the old generation die and are replaced by an identical



92 B. Wiggers and H. de Weerd

Table 1. Parameter settings used in the simulation runs.

Parameter Predators Toxic Camouflaged Mimic

Population size 10 300 300 30

Genetic drift - 3 3 0

Prey encounters (Yencountered) 3 -

Mutation rate 20 2

Tournament size 3 10

Lifespan 3 5

Chance-being-found 101 -

Camouflage disadvantage - 3.0

Toxicity disadvantage - 0.2

number of new individuals. This means that there are no animals older than
other animals, and that all animals die at the same moment after a predefined
number of time-steps. This number of time-steps differs between predators and
prey (see the lifespan parameter in Table 1) to reflect differences in learning.
Note that prey animals do not die due to being eaten by a predator, but only
die when their generation dies. Instead, the fitness of a prey decreases when it
is eaten by a predator, reducing the chance for reproduction.

Parameters Settings and Fitness. Within our simulation, the number of
predators is fixed, as well as the number of prey within each subpopulation. In
every run of the model, there are fewer predators than prey, corresponding to
the real world.

The predators have a lower life span than preys, to reflect that they learn
faster than the rate at which prey evolves. The prey becomes older, which makes
the difference in fitness between preys which are eaten and that are not eaten
bigger.

Each time-step, a predator encounters the number of prey divided by the
number of predators. This is multiplied by Yencountered to make the selective
pressure higher. From the point of view of the prey, it has Yencountered encounters
with predators.

In our model, each individual prey and predator represents a group of ani-
mals. For this reason, prey does not die when it is eaten. Instead, the fitness
of a prey animal y is determined by the number of times it is ‘eaten’ (Ey). In
our model, we assume both toxicity and camouflage to be detrimental to fitness.
The toxicity (Ty) and camouflage (Cy) of prey y are multiplied by the toxic
disadvantage (TD) and camouflage disadvantage (CD) parameters respectively.
For example, a prey with a toxicity of 80 and toxicity disadvantage 0.2 will
experience a 16 point penalty to its fitness. The fitness of a prey is updated
according to

Fy = −(Ty · TD) − (Cy · CD) − (500 · Ey). (1)
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Note that the most detrimental effect to the fitness of a prey is to be eaten.
In addition, a prey’s fitness is a non-positive number, with 0 being the highest
possible value.

The fitness of a predator is determined by what prey it eats, according to
the following formula

Fr =
∑

y∈Eatr

(Ty − 60). (2)

The formula shows that the fitness of the predator r(Fr) depends on the sum of
the toxicity of all the prey it has eaten (Eatr). Toxicity values are reduced by 60,
so that predators increase their fitness whenever they eat a prey with toxicity
lower than 60, and decrease their fitness otherwise.

3 Results

We used the model outlined in Sect. 2 to perform simulation runs, the results
of which are discussed in this section. The results are divided in four different
sections. In Sect. 3.1, we discuss the deception hypothesis. In Sect. 3.2, we inves-
tigate the coincidence hypothesis. For both these hypotheses, we show results
from 100 runs of 14,000 time steps each. After this, in Sect. 3.3, we will discuss
an individual run. Lastly, in Sect. 3.4 the difference between model animals and
mimic animals in the different hypotheses will be discussed.

3.1 Deception Hypothesis

For the deception hypothesis (also see Fig. 1), the mimic and camouflaged pop-
ulations start out with high camouflage. The toxic population starts at its final
position with high toxicity and little camouflage (that is, brightly colored and
toxic animals). The deception hypothesis predicts that the mimic population
would evolve to decrease its camouflage while maintaining low toxicity.

Figure 3 shows the average camouflage of the three prey populations across
100 runs. The figure shows that the mimic population indeed decreases its level
of camouflage over time. The camouflaged population also initially reduces its
level of camouflage, but later returns to high camouflage levels. This can be
explained by the genetic drift of the camouflaged population. However, the larger
population size of the camouflaged prey also slows down the evolutionary process.
In addition, predators find and eat more of the less camouflaged individuals than
the more camouflaged individuals, which gives additional selective pressure to
increase camouflage.

In contrast, Fig. 3 shows that the camouflage of the toxic population quickly
drops and remains fairly stable. Since the toxic individuals rely on the predators’
choice not to eat them, there is an evolutionary pressure to be as distinct as
possible from other prey. In this case, the other prey have high camouflage, so
the selective pressure encourages the toxic population to lower camouflage.
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Fig. 3. The average camouflage value for each of the three prey populations across
100 runs for the deception hypothesis. The mimic and camouflaged populations start
out with the same high camouflage, while the toxic population starts out with low
camouflage.

Fig. 4. The average pattern value for each of the three prey populations across 100
runs for the deception hypothesis. The mimic and camouflaged populations start out
with the same pattern, which is different from the pattern of the toxic population.

Figure 4 shows the average pattern of the three prey populations across 100
runs. In this figure, we can see that the pattern of the mimics moves toward that
of the toxic population. Both Figs. 3 and 4 support the deception hypothesis,
since the mimic moves from a position of high camouflage towards a position of
no camouflage, thereby mimicking the toxic population. In addition, the mimics
also evolve to have the same pattern as the toxic group. That is, these results
suggest that the mimics evolve to trick the predators into not eating them.
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Fig. 5. The average camouflage value for each of the three prey populations across
100 runs for the coincidence hypothesis. The toxic and camouflaged population start
out with the same high camouflage, while the mimic populations starts out with low
camouflage.

Fig. 6. The average pattern value for each of the three prey populations across 100
runs for the coincidence hypothesis. The mimic and camouflaged populations start out
with the same pattern, which is different from the pattern of the toxic population.

3.2 Coincidence

In the coincidence hypothesis, the toxic and camouflaged group start at the same
position, with low toxicity and high camouflage. The mimic population, on the
other hand, starts out with low toxicity and low camouflage. The coincidence
hypothesis predicts that, in order to distinguish itself from the camouflaged
population, the toxic population evolves to a position with high toxicity and
low camouflage, which coincidentally gives the same camouflage as the mimic
population (also see Fig. 2).

Figure 5 shows the average camouflage of the three prey populations across
100 runs. Note that while the camouflaged population maintains high cam-
ouflage, the toxic population evolves to lower its camouflage. In addition,
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Fig. 7. The pattern of an individual run in the deception hypothesis. The pattern
changes with two distinctive bumps, before being similar to the toxic population. After
this we see the toxic population moving away from the pattern of the mimics, and the
mimics chasing this pattern.

Fig. 5 shows that, on average, the mimic population does not increase its cam-
ouflage to increase resemblance with the toxic population.

Figure 6 shows the average pattern of the three prey populations across 100
runs. This figure shows that, while the mimic population does not increase its
camouflage to resemble the toxic population, the mimic population does evolve
to have a pattern that is similar to the toxic population. That is, while Fig. 5
supports the coincidence hypothesis, Fig. 6 is more suggestive of the deception
hypothesis.

3.3 Individual Run

While the average results presented in the previous sections give a good impres-
sion of the way the prey’s phenotype (i.e., camouflage and pattern) evolves over
time, closer inspection shows that the average does not fit any individual run
particularly well. For this reason, we take a closer look at a representative indi-
vidual run in this section.

Figure 7 shows the evolution of pattern for all three prey populations of a
representative individual run of 14,000 time-steps. Note that while the average
results (Figs. 4 and 6) suggest that the pattern of the mimic population gradually
evolves over 14,000 time steps, Fig. 7 suggests a more rapid evolution. Indeed,
individual runs typically show a rapid evolution of the pattern of the mimic
population. The average results show a more gradual development because the
moment at which this rapid evolution starts is different for each run.

Figure 7 shows that the pattern of the mimic population not only evolves
in the direction of the pattern of the toxic population, but also continues to
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converge on the same value. In addition, due to the differences in population
size of the mimic and toxic populations, the pattern of the mimic populations
exhibits more volatility than that of the toxic population. This corresponds well
with the idea of Holmgren and Enquist [7], who say:

“For mimicry to be established, the movement of the mimic should always
be faster than the movement of the model.”

After approximately 9000 steps in the simulation, we notice the pattern of
the model animals moves away from that of the mimic animals. When the mimics
have a higher pattern, the models get a lower pattern and vice versa. This is
consistent with the idea of [7]. In the results we can see that the pattern of
the mimics changes faster, but the models try to distinguish themselves from
the mimics. The reason for this is that model animals that are more similar
to mimic animals are more likely to be eaten by predators, since mimics are
harmless for predators. Model animals that look less like the mimics therefore
have an evolutionary advantage, a development we can observe in the individual
run of the model.

Figure 7 shows that the mimic population changes its pattern in several
bumps. These bumps can be explained by the model animals getting less toxic.
As a result, the predators start eating more model animals. When we observe
the model animals, we can see that they start losing their toxicity when the
predators do not eat them, since toxicity is detrimental to individual fitness.
However, when the toxicity becomes too low, predators start eating more model
animals. In Fig. 7, this effect is shown when the pattern of the mimics moves
away from the pattern of the model animals.

3.4 Euclidean Distance Model and Mimic

Figure 8 shows the distance in phenotype between model and mimic over time.
This graph tells us that the distance gets smaller, thus mimicry is created. The
euclidean distance is measured as the distance between the mean of the pattern
and camouflage between the mimics and the models by the following formula:

EUD =
√

(Cmim − Cmod)2 + (Pmim − Pmod)2 (3)

For the deception hypothesis, the mimic moves towards the model to trick the
predators. Over time, we can see that the mimic population becomes increasingly
more similar to the model population. This means that a lot of the simulations
evolve into mimicry. For the coincidence hypothesis, the toxic group evolves
towards the same camouflage as the mimics. After this, the mimics follow the
models over the phenotype plane. As a result, the average euclidean distance gets
smaller. Since both distances are decreasing, the model supports both hypotheses
for mimicry.
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Fig. 8. The Euclidean Distance over time for both the hypotheses. In both hypotheses,
the difference between model and mimic decreases over time, arguing for mimicry. The
coincidence hypothesis has a little less difference. Keep in mind this is an average over
100 runs, and therefore is not a representation of one run, but a probability of mimic
and model being the same.

4 Discussion

In this paper, we constructed an agent-based co-evolutionary model to inves-
tigate two possible origins of mimicry. The deception hypothesis predicts that
due to selective pressure, mimic animals change their phenotype to resemble the
model animals. In contrast, the coincidence hypothesis states that due to selec-
tive pressure, model animals change their phenotype to be different from some
control population that has high levels of camouflage, and coincidentally get a
phenotype that is similar to the mimic animals.

For both these possible origins of mimicry, we can say that they are plausible.
The deception has very clear evidence in the deception set-up, where we can
see that the mimic animals always change their phenotype to more resemble the
phenotype of the model animals. This suggests that mimic animals indeed evolve
to deceive predators. For the relatively small population of mimics, it is possible
to explore new peaks in the adaptive plane, and successfully deceive predators.
For the larger camouflage population, we can see that this population is too big
to explore new adaptive peaks.

Our model results also show evidence for the coincidence hypothesis. Given
the appropriate starting conditions, the model animals may change their pheno-
type to more resemble the mimic animals rather than vice versa. However, this
can also be explained by the assumed negative fitness contribution of camou-
flage. This alone may result in both model and mimic animals to experience a
selective pressure to reduce camouflage. Indeed, when we consider the pattern
alone, the mimics again attempt to deceive the predators by evolving a pattern
that resembles that of the model animals.

Note that we considered two different setups to determine the plausibility of
the two hypotheses for the origin of mimicry. Both of these setups resulted in
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the same ecosystem, with no possibility to determine what was the initial setup.
That is, while our results show support for both hypotheses, they do not allow us
to draw conclusions about which hypothesis matches best with biological data.

According to Holmgren and Enquist [7], the model animals always attempt
to distinguish themselves from mimic animals. By creating distance from the
mimics, the predators experience less confusion between model and mimic ani-
mals. However, since the mimics follow the phenotype of the models and evolve
faster, this is an endless cat and mouse game. In our simulation model, this
can be observed in the pattern, where the pattern of the mimic animals closely
follows the pattern of the model animals.

Our simulation model can be used to do more research on theories of mimicry.
Since the parameters can be easily adjusted, more experiments can be done.
Firstly, more experiments can be done with different starting positions of the
camouflage, toxicity and pattern values, starting with a control run. In this
case, one population without genetic drift would be created to see how preys
evolve without other animals. Another example is the toxicity and mimic group
starting in the toxic position, and the camouflage on the camouflage position.
This would make for another coincidence set-up, which assumes the speciation of
the mimicry being a sub-population from the toxic population. Alternatively, the
pattern can be altered. The pattern of the camouflage and mimic start the same
in this paper, but it can be altered to a situation where the toxic and camouflage
population start the same, and see whether the toxic population moves away.
Besides this we can see whether the mimics move toward the models, which
supports the Coincidence hypothesis.

The dynamics of the model can be altered as well. One possibility is adding
more dimensions of recognition. This would mean that instead of 1 pattern,
the model would have 50 patterns, which all can be mutated and inherited
individually. In these recognition dimensions the scale between 0 and 100 can be
removed, so the models and mimics can move through the adaptive space with
more freedom. This way, neophobia and the idea of Holmgren and Enquist [7]
can be researched in more detail. When the dimensions are implemented we
hypothesize that the models will keep evading the phenotype of the mimics and
the mimics chasing this phenotype. If the domains are removed, we expect very
high and low values in the dimensions, arguing for the very bright colors of the
animals.

In our model, we assume that prey consists of three populations of constant
size that cannot interbreed. In future work, it would be interesting to see how
removing this assumption influences our results. This would create hybrid pop-
ulations of prey, which may have interesting properties.

To research Müllerian mimicry, more populations can be added which have
intermediate values of genetic drift toward toxic. With two toxic populations, a
research can be conducted whether the animals imitate each others phenotype or
keep their own phenotype. The number dependent theory [11] can be tested in the
same way. We hypothesize that when more toxic populations are implemented,
there will be one center where all the animals converge to, to make one clear
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aposematism. The representation of knowledge can be differentiated. At the
moment, the predators have a line in their choice to eat camouflage or not. If
a more curved line, or other methods are implemented, the idea of Novelty and
Recognizability [10] can be researched in more depth. If this is combined with a
variation of punishment for toxicity, we expect that neophobia emerge from the
simulation.

Lastly, a spatial model can be created, in which agents have a x- and y-
coordinate. This way mimicry rings can be researched, which are discussed in
great depth by Holmgren and Enquist [10], and found by Bates [1]. When the
spatial model is implemented, all the aforementioned can be combined in one
simulation, since every place can evolve something else. Especially the borders
of different mimicry systems will be interesting to research. Using a bigger adap-
tation space, better knowledge of the predators and a spatial dimension in the
model, we aim to have a better understanding of the origin of mimicry in the
future.

References

1. Bates, H.W.: XXXII. Contributions to an insect fauna of the Amazon valley. Lepid.
Heliconidae Trans. Linn. Soc. Lond. 23(3), 495–566 (1862)

2. Boyd, R., Gintis, H., Bowles, S., Richerson, P.J.: The evolution of altruistic pun-
ishment. Proc. Natl. Acad. Sci. 100(6), 3531–3535 (2003)

3. Cangelosi, A., Parisi, D.: Simulating the Evolution of Language. Springer, London
(2012)

4. Epstein, J.M.: Agent-based computational models and generative social science.
Complexity 4(5), 41–60 (1999)

5. Epstein, J.M.: Generative Social Science: Studies in Agent-Based Computational
Modeling. Princeton University Press, Princeton (2006)

6. Gavrilets, S., Hastings, A.: Coevolutionary chase in two-species systems with appli-
cations to mimicry. J. Theor. Biol. 191(4), 415–427 (1998)

7. Holmgren, N.M., Enquist, M.: Dynamics of mimicry evolution. Biol. J. Linn. Soc.
66(2), 145–158 (1999)

8. Jager, W., Popping, R., van de Sande, H.: Clustering and fighting in two-party
crowds: simulating the approach-avoidance conflict. J. Artif. Soc. Soc. Simul. 4(3),
1–18 (2001)

9. Maan, M.E., Cummings, M.E.: Poison frog colors are honest signals of toxicity,
particularly for bird predators. Am. Nat. 179(1), E1–E14 (2011)

10. Mallet, J., Joron, M.: Evolution of diversity in warning color and mimicry: poly-
morphisms, shifting balance, and speciation. Annu. Rev. Ecol. Syst. 30(1), 201–233
(1999)

11. Müller, F.: Ituna and Thyridia: a remarkable case of mimicry in butterflies. Trans.
Entomol. Soc. Lond. 1879, 20–29 (1879)

12. Rabosky, A.R.D., Cox, C.L., Rabosky, D.L., Title, P.O., Holmes, I.A., Feldman,
A., McGuire, J.A.: Coral snakes predict the evolution of mimicry across new world
snakes. Nat. Commun. 7, 11484 (2016)

13. de Weerd, H., Verbrugge, R.: Evolution of altruistic punishment in heterogeneous
populations. J. Theor. Biol. 290, 88–103 (2011)



Feature Selection in High-Dimensional
Dataset Using MapReduce
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Abstract. This paper describes a distributed MapReduce implemen-
tation of the minimum Redundancy Maximum Relevance algorithm, a
popular feature selection method in bioinformatics and network infer-
ence problems. The proposed approach handles both tall/narrow and
wide/short datasets. We further provide an open source implementation
based on Hadoop/Spark, and illustrate its scalability on datasets involv-
ing millions of observations or features.

1 Introduction

The exponential growth of data generation, measurements and collection in sci-
entific and engineering disciplines leads to the availability of huge and high-
dimensional datasets, in domains as varied as text mining, social network, astron-
omy or bioinformatics to name a few. The only viable path to the analysis of
such datasets is to rely on data-intensive distributed computing frameworks [1].

MapReduce has in the last decade established itself as a reference program-
ming model for distributed computing. The model is articulated around two main
classes of functions, mappers and reducers, which greatly decrease the complexity
of a distributed program while allowing to express a wide range of computing
tasks. MapReduce was popularised by Google research in 2008 [2], and may
be executed on parallel computing platforms ranging from specialised hardware
units such as parallel field programmable gate arrays (FPGAs) and graphics
processing units, to large clusters of commodity machine using for example the
Hadoop or Spark frameworks [2–4].

In particular, the expressiveness of the MapReduce programming model has
led to the design of advanced distributed data processing libraries for machine
learning and data mining, such as Hadoop Mahout and Spark MLlib. Many of
the standard supervised and unsupervised learning techniques (linear and logistic
regression, naive Bayes, SVM, random forest, PCA) are now available from these
libraries [5–7].

Little attention has however yet been given to feature selection algorithms
(FSA), which form an essential component of machine learning and data mining
workflows. Besides reducing a dataset size, FSA also generally allow to improve
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the performance of classification and regression models by selecting the most
relevant features and reducing the noise in a dataset [8].

Three main classes of FSA can be distinguished: filter, wrapper and embedded
methods [8,9]. Filter methods are model-agnostic, and rank features according to
some metric of information conservation such as mutual information or variance.
Wrapper methods use the model as a black-box to select the most relevant fea-
tures. Finally, in embedded methods, feature evaluation is performed alongside
the model training. In this paper, feature metrics are named hereafter feature
score functions.

Early research on distributing FSA mostly concerned wrapper methods, in
which parallel processing was used to simultaneously assess different subsets of
variables [10–14]. These approaches effectively speed up the search for relevant
subsets of variables, but require the dataset to be sent to each computing unit,
and therefore do not scale as the dataset size increases.

MapReduce based approaches, which address this scalability issue by split-
ting datasets in chunks, have more recently been proposed [15–21]. In [15], an
embedded approach is proposed for logistic regression. Scalability in the dataset
size is obtained by relying on an approximation of the logistic regression model
performance on subsets of the training set. In [16], a wrapper method based on an
evolutionary algorithm is used to drive the feature search. The first approaches
based on filter methods were proposed in [17,18], using variance preservation
and mutual information as feature selection metrics, respectively. Two other
implementations of filter-based methods have lately been proposed, addressing
the column subset selection problem (CSSP) [19], and the distribution of data
by features in [20]. Recently, a filter-based feature selection framework based on
information theory [22] has been implemented using Apache Spark [21].

In this paper we tackle the implementation of minimal Redundancy Maximal
Relevance (mRMR) [23], a forward feature selection algorithm belonging to filter
methods. mRMR was shown to be particularly effective in the context of network
inference problems, where relevant features have to be selected out of thousands
of other noisy features [1,24].

The main contributions of the paper are the following: (i) design of mini-
mum Redundancy Maximum Relevance algorithm using MapReduce paradigm;
(ii) open-source implementation for Apache Spark available on a public reposi-
tory; (iii) analysis of the scalability properties of the algorithm. In an extended
version [25], we also detail how to customize the feature score function during
the feature selection process.

The paper is structured as follows. Section 2 provides an overview of the
MapReduce paradigm, and Sect. 3 describes the two main layouts along which
data can be stored. Section 4 presents our distributed implementation of mRMR.
Section 5 finally provides a thorough experimental evaluation, where we illustrate
the scalability of the proposed implementation by varying the number of rows
and columns of the datasets, the number of selected features in the feature
selection step and the number of nodes in the cluster.



Feature Selection in High-Dimensional Dataset Using MapReduce 103

2 MapReduce Paradigm

MapReduce [2] is a programming paradigm designed to analyse large volumes
of data in a parallel fashion. Its goal is to process data in a scalable way, and to
seamlessly adapt to the available computational resources.

A MapReduce job transforms lists of input data elements into lists of output
data elements. This process happens twice in a program, once for the Map step
and once for the Reduce step. Those two steps are executed sequentially, and
the Reduce step begins once the Map step is completed.

In the Map step, the data elements are provided as a list of key-value objects.
Each element of that list is loaded, one at a time, into a function called mapper.
The mapper transforms the input, and outputs any number of intermediate key-
value objects. The original data is not modified, and the mapper output is a list
of new objects.

In the Reduce step, intermediate objects that share the same key are grouped
together by a shuffling process, and form the input to a function called reducer.
The reducer is invoked as many times as there are keys, and its value is an
iterator over the related grouped intermediate values.

Mappers and reducers run on some or all of the nodes in the cluster in an
isolated environment, i.e. each function is not aware of the other ones and their
task is equivalent in every node. Each mapper loads the set of files local to
that machine and processes it. This design choice allows the framework to scale
without any constraints about the number of nodes in the cluster. An overview
of the MapReduce paradigm is reported in Fig. 1a.

Algorithms written in MapReduce scale with the cluster size, and Execution
Time (ET) can be decreased by increasing the number of nodes. The design of
the algorithm and the data layout are important factors impacting ET [26].

In ET terms, jobs perform better in MapReduce when transformations are
executed locally during the Map step, and when the amount of information
transferred during the shuffling step is minimised [27]. In particular, MapReduce
is very well-suited for associative and commutative operators, such as sum and
multiplication. These can indeed be partially processed using an intermediate
Combine step, which can be applied between the Map and Reduce stages.

The combiner is an optional functionality in MapReduce [2]. It locally aggre-
gates mapper output objects before they are sent over the network. It operates
by taking as input the intermediate key-value objects produced by the mappers,
and output key-value pairs for the Reduce step. This optional process allows to
reduce data transfer over the network, therefore reducing the global ET of the
job. An illustration of the use and advantages of the combiner is given in Fig. 1b.

3 Data Layout

In learning problems, training data from a phenomenon is usually encoded in
tables, using rows as observations, and columns as features. Let M be the number
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Fig. 1. MapReduce data flow overview with and without combiner.

of observations, and N be the number of features. Training data can be represented
as a collection of vectors, X,

X = (x1,x2, . . . ,xM )

where
xj = (xj,1, xj,2, . . . , xj,N ) ∀j ∈ (1, . . . ,M) .

We will refer to this type of structure as the conventional encoding, see Table 1.
It is however worth distinguishing two types of tables: tall and narrow (T/N)

tables, where M � N , and short and wide (S/W) tables, where M � N .
The distinction is important since MapReduce divides input data in chunks

of rows, that are subsequently processed by the mappers. MapReduce is therefore
well suited to ingest T/N table, but much less S/W tables, since data cannot
be efficiently split along columns. S/W tables are for example encountered in
domains such as text mining or bioinformatics [28,29], where the number of
features can be on the order of tens or hundreds of thousands, while observations
may only be on the order of hundreds or thousands.

In such cases, it can be beneficial to transform S/W into T/N tables, by
storing observations as columns and features as rows. We refer to this type of
structure as alternative encoding, see Table 2.
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Table 1. Conventional encoding: Obser-
vations (xi,·) are stored along rows, and
features (x·,j) are stored along columns.

x1,1 x1,2 . . . . . . x1,N

x2,1 x2,2 . . . . . . x2,N

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

xM,1 xM,2 . . . . . . xM,N

Table 2. Alternative encoding: Observa-
tion (xi,·) are stored along columns, and
features (x·,j) are stored along rows.

x1,1 x2,1 . . . . . . xM,1

x1,2 x2,2 . . . . . . xM,2

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

x1,N x2,N . . . . . . xM,N

4 Iterative Feature Selection Framework

This section first recalls the standard mRMR algorithm [23]. We then detail
our MapReduce implementation, for both conventional and alternative encod-
ings. An implementation of a custom feature score function using the Pearson
correlation coefficient is reported in the extended article [25].

4.1 minimal Redundancy Maximal Relevance

Let us define the dataset as the table X with M rows, N columns and discrete
values. We define xk as the k-th column vector of the dataset and c as the class
vector. Furthermore, let us define L as the number of features to select and ilc
and ils as the sets at step l (1 � l � L) of candidate and selected features indices,
respectively. At l = 1, we have i1c = {1, ..., N} and i1s = ∅. The pseudo-code of
the algorithm is reported in Listing 1.1.

Listing 1.1. minimum Redundancy Maximum Relevance Pseudo-code. I(·) is the
function that, given two vectors, returns their mutual information. xk is the k-th
column vector of the dataset and c is the class vector. L is the number of features to
select, ilc and ils as the sets at step l (1 � l � L) of candidate and selected features
indices.

1 i1c = {1, ..., N}
2 i1s = ∅

3 for l = 1 → L

4 for k ∈ ilc
5 Ixk,c ← I (xk, c)

6 for j ∈ ils
7 Ixk,xj ← I (xk,xj)
8 gk ← Ixk,c − 1

|ils|
∑

j∈ils
Ixk,xj

9 k∗ ← argmax(gk)

10 il+1
c ← ilc\k∗

11 il+1
s ← ils ∪ k∗

12 output iLs
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mRMR is an iterative greedy algorithm: at each step the candidate feature
is selected based on a combination of its mutual information with the class and
the selected features:

argmaxk∈ilc
gk (·)

gk (·) =

{
I (xk; c) l = 1
I (xk; c) − 1

|ils|
∑

j∈ils
I (xk;xj) l > 1

(1)

where I(·) returns the mutual information of two vectors. The feature score g (·)
is assessed in Lines 5–8 in Listing 1.1.

We redesigned the algorithm using MapReduce paradigm on Apache Spark,
distributing the feature evaluation into the cluster. Besides the core features
of MapReduce previously described, our design takes advantage of the broadcast
operator provided in Apache Spark. Broadcasted variables are commonly used in
machine learning algorithms to efficiently send additional data to every mapper
and reducer as read-only variables [30].

4.2 mRMR in MapReduce with Conventional Encoding

Let us define the dataset as a Resilient Distributed Dataset (RDD) [31] of M
tuples (x, c), where x is the input (observation) vector and c is the target class
value.

Considering the dataset with only discrete values, we represent with dc the set
of categorical values of the class, and with dv the (union) set of unique categorical
values of all features. If the dataset has binary values, then dc = dv = {0, 1}.
In case of having features with different sets of categorical values, then dv is the
union of unique categorical values of all features.

The input vector is partitioned in candidate and selected features, labeled
respectively as xc and xs (xc∪xs = x, |x| = N). Variables L, ilc and ils are defined
as in the previous section and iclass is the class column index. Listings 1.2, 1.3 and
1.4 report the MapReduce job, the mapper and reducer functions, respectively,
while an illustrative overview of the data flow is reported in Fig. 2.

Listing 1.2. mRMR MapReduce job with conventional data encoding. L is the
number of features to select, ilc and ils are the sets at step l (1 � l � L) of candidate
and selected features indices. iclass is the class column index. dc is the set of categorical
values of the class, and dv is the (union) set of unique categorical values of all features.

1 i1c = {1, ..., N}
2 i1s = ∅

3 for l = 1 → L

4 broadcast iclass, ilc, ils, dv, dc
5 scores <- mapreduce(RDD, mapper, reducer)

6 k∗ ← collectArgmax(scores)

7 il+1
c ← ilc\k∗

8 il+1
s ← ils ∪ k∗

9 output iLs
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Listing 1.3. mRMR MapReduce mapper function with conventional data encoding.
ilc and ils as the sets at step l (1 � l � L) of candidate and selected features indices.
iclass is the class column index. dc is the set of categorical values of the class, and dv
is the (union) set of unique categorical values of all features. e is a single observation
fed as input to the mapper, k and j represent column indices and contTable is the
function that creates a contingency table.

1 # broadcasted vars: iclass, ilc, ils, dv, dc
2 mapper(·, e)

3 for k ∈ ilc
4 output (k, contTable(ek, eiclass, dv, dc))

5 for j ∈ ils
6 output (k, contTable(ek, ej, dv, dc))

Listing 1.4. mRMR MapReduce reducer function with conventional data encoding.
k is a column index and t is a collection of contingency tables. The score function
process all the contingency tables associated with the column with index k and return
the feature score.

1 reducer(k, t)
2 output(k, score(t))

For every (ek, eiclass
) pair, the mapper task outputs a contingency table,

contTable, with rows defined as the categorical values in dc and columns defined
as the categorical values in dv. The element corresponding to row eiclass

and
column ek is set to 1, while all the others are set to 0. Considering the dataset in
Table 3, having one binary class column and four categorical features (with three
possible values: −2, 0, 2 ), an example of emitted contingency table is reported
in Table 4. In this example the class vector can only have two possible values:
0 and 1 ; any feature can only have three possible values: −2, 0 and 2. The
input pair (ek, eiclass

) is (2, 0), therefore the element corresponding to row 0 and
column 2 is set to 1, all the others are set to 0.

In case of (ek, ej) pair, the contingency table has both rows and columns
defined by categorical values in dv.

Table 3. Example of dataset encoded with conventional layout.

#entry Class Features

c x1 x2 x3 x4

1 0 2 0 0 −2

2 0 0 −2 2 0

3 0 0 2 0 −2

4 1 −2 0 0 0

. . . . . . . . . . . . . . . . . .
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Fig. 2. Illustrative representation of the first iteration of a MapReduce job with discrete
values using the conventional encoding. There are as many iterations as the number of
features to select. At each iteration, each mapper outputs N − l+1 contingency tables
for every combination of candidate features and class vector, and, from the second
iteration, (N − l + 1) ∗ ∣

∣ils
∣
∣ contingency tables for every combination of candidate and

selected features.

At the cost of managing discrete values only, the commutative and associa-
tive properties of the contingency table allows the use of the combiner function,
thus minimizing the amount of data exchanged across the cluster during shuf-
fling. While the single mapper outputs one or more contingency tables for each
candidate feature, those tables emitted by mappers executed on a given node
can be locally reduced via the Combine step. Assuming that the first four entries
in Table 3 are processed by four mappers in the same machine, Table 5 is the
result of the combiner after the aggregation of four contingency tables of the x1

feature produced by the mappers. In this example, the combiner performs an
element-wise sum of the contingency tables given as input.



Feature Selection in High-Dimensional Dataset Using MapReduce 109

Table 4. Contingency table emitted by
the mapper function as a result of pro-
cessing the pair (x1, c) of the first entry
in Table 3.

dv

−2 0 2

dc 0 0 0 1

1 0 0 0

Table 5. Aggregated contingency table
emitted by the combiner function as a
result of processing the pair (x1, c) of the
first four entries in Table 3.

dv

−2 0 2

dc 0 0 2 1

1 1 0 0

4.3 mRMR in MapReduce with Alternative Encoding

Data stored in alternative encoding has one column per observation and one
row per feature. In this case, let us define the dataset as a RDD of N tuples
(k,x), where x is the feature vector and k is the row index (k ∈ {1, ..., N}).
Feature and class values could be discrete and continuous as well. With respect
to the design of mRMR in MapReduce with conventional encoding, a set of
vectors are broadcasted across the cluster: vclass is the class vector, vs is the
collection of selected feature vectors and is is the collection of selected feature
indices. Variable L is defined as in the previous section and getEntry function
is a MapReduce task that retrieves the feature vector from the RDD, given a
feature index. Listings 1.5 and 1.6 report the MapReduce job and the mapper
function, respectively.

Listing 1.5. mRMR MapReduce job with alternative data encoding. RDD represents
the distributed dataset and L is the number of features to select. vclass is the class
vector, vs is the collection of selected feature vectors and is is the collection of selected
feature indices. The getEntry function retrieves the feature vector from the RDD,
given a feature index.

1 i1s = ∅

2 v1s = ∅

3 for l = 1 → L

4 broadcast vclass, ils, vls
5 scores <- mapreduce(RDD, mapper)

6 k∗ ← collectArgmax(scores)

7 v∗ <- getEntry(RDD, k∗)
8 il+1

s ← ils ∪ k∗

9 vl+1
s ← vls ∪ v∗

10 output iLs
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Listing 1.6. mRMR MapReduce mapper function with alternative data encoding.
vclass is the class vector, vs is the collection of selected feature vectors. The tuple
(k,x) is composed by the feature vector, x, and the feature index, k. The score
function processes the vectors and returns the feature score.

1 # broadcasted variables: vclass, vls
2 mapper(·, (k, x))

3 score <- score(x, vclass, vls)
4 output (k, score)

While in conventional encoding we used the contingency table as intermediate
data structure, the design of mRMR in MapReduce with alternative encoding
broadcasts at each iteration all required data for calculation to mappers. This
design provides two main advantages: it deals with both discrete and continuous
features as well, and the MapReduce job is composed by the Map step only. At
the small cost of broadcasting some variables, all operations are executed locally.
An illustrative overview of the data flow is reported in Fig. 3.

Fig. 3. Illustrative representation of a single iteration of a MapReduce job with alterna-
tive encoding. Steps 1–5 represent one iteration of the loop; there are as many iterations
as the number of features to select.

5 Results

The source code of mRMR implementation in MapReduce with both encodings is
available as a Scala library, along with examples, on a public repository (https://
github.com/creggian/spark-ifs).

https://github.com/creggian/spark-ifs
https://github.com/creggian/spark-ifs
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We studied the scalability of the implementation of mRMR in MapReduce
in both encodings in a cluster with the following specifications: Hadoop cluster
of 10 nodes, where each node has Dual Xeon e5 2.4 GHz processor, 24 cores,
128 GB RAM and 8 TB hard disk; all nodes are connected with a 1 Gb ethernet
connection. Using Apache Spark v1.5.0, we submit jobs with 4 GB of RAM for
both the driver and the executors.

For the evaluation of mRMR implementations we used binary artificial
datasets. We followed the principles of CorrAL dataset [32], in which four fea-
tures determine the class value with the following formula: c = (x1 ∧ x2) ∨
(x3 ∧ x4), one is irrelevant and the last one is partially correlated with the
class. In all our datasets, the class value (c) depends on the value of 8 features
(Formula 2); the remainings are irrelevant.

c = ((x1 ∧ x2) ∨ (x3 ∧ x4)) ∧ ((x5 ∧ x6) ∨ (x7 ∧ x8)) (2)

We assessed the scalability on the number of rows, the number of columns,
the number of selected features, and the number of nodes. We used two kinds
of dependent variables: the relative execution time per executor and the com-
putational gain. The former is the ratio between ET divided by ET of 1x, the
latter is the ratio between ET of 1-node and ET. We ran the tests three times to
assess the variability of the results; in all figures the maximum, minimum and
mean of these three values are connected through a solid vertical line.

5.1 Scalability Across the Number of Rows

We tested the scalability on the number of rows by means of four datasets, each
with 1000 columns and an increasing number of rows: 1M, 4M, 7M and 10M (M
= millions). We configured the cluster and the algorithm to select 10 features in
a distributed environment of 10 nodes (Fig. 4a).

5.2 Scalability Across the Number of Columns

We assessed the scalability on the number of columns using four datasets, each
with 1M rows and an increasing number of columns: 100, 400, 700 and 1000. We
configured the cluster and the algorithm to select 10 features in a distributed
environment of 10 nodes (Fig. 4b).

5.3 Scalability Across the Number of Selected Features

We investigated the scalability on the number of selected features using a dataset
with 1M rows and 50k (k = thousands) columns. We parametrised the cluster
to distribute the computation over 10 nodes, and the algorithm to select an
increasing number of features: 1, 2, 4, 6, 10 (Fig. 4c).
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5.4 Scalability Across the Number of Nodes

We tested the scalability across the number of nodes using a dataset with 1M
rows and 100 columns. We configure the algorithm to select 10 features, and the
cluster to distribute the work over 1, 2, 5 and 10 nodes (Fig. 4d).

By comparing the linear scalability (dotted line) with the actual perfor-
mances, results show that the scalability of mRMR in MapReduce is linear with
respect to the number of rows, as expected by MapReduce design; superlinear
with respect to the number of columns; sublinear with respect to the number of
selected features and nodes, as expected by our iterative algorithm design and
the increasing amount of data exchanged in the network with the increasing of
nodes, respectively.

In studying mRMR with conventional and alternative layouts, we chose to use
as independent variable the number of rows (columns) instead of the number of
observation (features) for the following reason: while in the conventional layout
we are able to scale across a very large number of rows, in the alternative layout
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Fig. 4. Scalability performance of the mRMR distributed algorithm across number of
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we are strictly constraint by the amount of memory available in the mapper
task to scale across the number of columns. In Figs. 4a and b, we tested up to
10 million rows and up to one thousand columns, because very high-dimensional
S/W tables raises memory errors in the cluster. Hence, even though we show the
relative execution time, it would be incorrect to plot performances by increasing
the number of observation (features).

The absolute execution time of mRMR MapReduce jobs with alternative
encoding is generally 4–6 x faster than the respective jobs with conventional
encoding.

6 Conclusion

In this work we investigated the design and scalability of mRMR algorithm in
MapReduce. We proposed two implementations depending on the data layout,
which can be easily interfaced in order to customize the feature score function.
Despite Hadoop limitations for handling data with a large number of columns,
the alternative data layout is a solution to store data from a phenomenon that
has a very large number of features. In both conventional and alternative data
layouts, we studied the scalability of mRMR in different settings: the number of
rows, columns, selected features and nodes. Our experimental results illustrated
the scalability of the proposed MapReduce implementations in a large variety of
settings.

In the future, we intend to extend the approach with continuous features,
and to provide an additional portfolio of built-in feature selection algorithms that
work with the alternative encoding. While we design and implement known FSA
for MapReduce, novel algorithms that directly take advantage of the distributed
nature of the data will be investigated as well. We also plan to extend the
scalability study to classification and network inference tasks.
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Beńıtez, J.M., Alonso-Betanzos, A., Herrera, F.: An information theory-based fea-
ture selection framework for big data under apache spark. IEEE Trans. Syst. Man
Cybern. Syst. PP(99), 1–13 (2017)

22. Brown, G., Pocock, A., Ming-Jie, Z., Luján, M.: Conditional likelihood maximi-
sation: a unifying framework for information theoretic feature selection. J. Mach.
Learn. Res. 13, 27–66 (2012)

23. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: crite-
ria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern
Anal. Mach. Intell. 27(8), 1226–1238 (2005)

24. Meyer, P.E., Lafitte, F., Bontempi, G.: minet: a R/bioconductor package for infer-
ring large transcriptional networks using mutual information. BMC Bioinform. 9,
461 (2008)

25. Reggiani, C., Le Borgne, Y.A., Bontempi, G.: Feature selection in high-dimensional
dataset using MapReduce. ArXiv e-prints, September 2017

26. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A compar-
ison of join algorithms for log processing in MapReduce. In: Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data (SIGMOD
2010), New York, pp. 975–986. ACM (2010)

27. Sarma, A.D., Afrati, F.N., Salihoglu, S., Ullman, J.D.: Upper and lower bounds on
the cost of a map-reduce computation. In: Proceedings of the VLDB Endowment,
vol. 6, pp. 277–288. VLDB Endowment (2013)

28. Ahn, J., Jeon, Y.: Sparse HDLSS discrimination with constrained data piling.
Comput. Stat. Data Anal. 90, 74–83 (2015)

29. Jay, N.D., Papillon-Cavanagh, S., Olsen, C., Hachem, N., Bontempi, G., Haibe-
Kains, B.: mRMRe: an R package for parallelized mRMR ensemble feature selec-
tion. Bioinformatics 29(18), 2365–2368 (2013)

30. Karau, H., Konwinski, A., Wendell, P., Zaharia, M.: Learning Spark: Lightning-
Fast Big Data Analytics, 1st edn. O’Reilly Media Inc., Sebastopol (2015)

31. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin,
M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. In: Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implementation (NSDI 2012), Berkeley,
p. 2. USENIX Association (2012)

32. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Feature Selection
for High-Dimensional Data. AIFTA. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21858-8

https://doi.org/10.1007/978-3-319-21858-8
https://doi.org/10.1007/978-3-319-21858-8


Simultaneous Ensemble Generation
and Hyperparameter Optimization

for Regression

David Roschewitz(B), Kurt Driessens(B), and Pieter Collins(B)

Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
d.roschewitz@student.maastrichtuniversity.nl,

{kurt.driessens,pieter.collins}@maastrichtuniversity.nl

Abstract. The development of advanced hyperparameter optimization
algorithms, using e.g. Bayesian optimization, has encouraged a depar-
ture from hand-tuning. Primarily, this trend is observed for classification
tasks while regression has received less attention. In this paper, we devise
a method for simultaneously tuning hyperparameters and generating an
ensemble, by explicitly optimizing parameters in an ensemble context.
Techniques traditionally used for classification are adapted to suit regres-
sion problems and we investigate the use of more robust loss functions.
Furthermore, we propose methods for dynamically establishing the size
of an ensemble and for weighting the individual models. The performance
is evaluated using three base-learners and 16 datasets. We show that our
algorithms consistently outperform single optimized models and can out-
perform or match the performance of state of the art ensemble generation
techniques.

Keywords: Bayesian optimization · Hyperparameter optimization
Ensemble generation · Regression

1 Introduction

Hyperparameter tuning for regression is sparsely covered in research and its com-
bination with ensemble generation appears to be entirely absent. This although
both techniques have been successfully applied to classification problems. Our
research addresses this omission by examining methods to automatically gener-
ate ensembles with tuned hyperparameters for regression problems.

Näıve search methods have commonly been used for hyperparameter opti-
mization of machine learning models. Grid search, for instance, evaluates hyper-
parameters on a grid with a predefined resolution. This, and its inefficiency in
high-dimensional space, limits the usefulness for practical applications. Random
search [2] partially alleviates this limitation, but unlike Bayesian optimization, it
does not leverage all available information in the tuning process [22]. Researchers
have expressed a need to explore both regression problems and deep learning in the
context of hyperparameter optimization to encourage the departure from hand-
tuning [3,9].
c© Springer International Publishing AG, part of Springer Nature 2018
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It is well accepted that ensemble methods, which consist of a combination
of multiple base-learners, generally outperform single models for many types of
problems [19]. Therefore, combining ensemble generation with hyperparameter
tuning is a natural step for self-optimizing algorithms. Overproduce-and-select
(OPAS) methods are a popular choice for ensemble construction, and can achieve
best-in-class performance [6]. During an OPAS procedure, the ensemble is con-
structed selecting learned models from a library of predictors, which could be
the models evaluated during a hyperparameter optimization procedure.

Lévesque et al. [15] devised a method that optimizes hyperparameters and
simultaneously constructs the ensemble for classification problems. Essentially, it
uses all previously trained models in the context of the ensemble for the Bayesian
optimization step, which computes the hyperparameters of good base-models to
add to the ensemble. They demonstrate that this way of generating ensembles
can outperform OPAS methods, with no significant increase in runtime, and the
benefit of not requiring a library of trained models.

In their investigation, Lévesque et al. showed that the optimization and
ensemble generation step can be effectively combined. Their research, however,
does not analyze the suitability of the method for regression problems, which
require different treatment. Furthermore, critical elements such as ensemble size
and the combination function of the ensemble were fixed. This paper will discuss
and develop algorithms based on the research of Lévesque et al. [15] and releases
the constraint of a fixed ensemble size. 16 small and medium sized publicly
available data sets are used to evaluate the proposed solutions.

The paper is structured as follows: Sect. 2 formally introduces Bayesian
hyperparameter optimization and ensemble generation approaches. Section 3
outlines our contributions, specifically modifications and extensions made to the
algorithm. Section 4 presents the experimental set-up, results and analysis.

2 Hyperparameter Optimization

Hyperparameter optimization minimizes a function f(γ), where γ is a set of
hyperparameters in Γ , the hyperparameter space. In this context, f(γ) can be
evaluated by training a model with parameters γ, M(γ), and computing its
performance. This can be measured using a so-called loss function L. Previous
observations, D, of the performance of parameters γ can then be used for various
optimization algorithms.

The following sections explain how Bayesian optimization is used to optimize
f(γ) and how ensembles can be generated from a set of trained models. Lastly
the combined optimization and ensemble generation procedure, on which this
research is based, is presented.

2.1 Bayesian Optimization

In contrast to näıve search methods such as grid or random search, Bayesian
optimization uses all previous observations D to create a probabilistic model,
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sometimes called a surrogate function, f̂(γ) of the objective f(γ). A so-called
acquisition function then computes the next point in Γ to evaluate. The model
is updated with the performance of this point, and the two steps are repeated.

The surrogate function is the posterior distribution over the space of functions,
induced by the prior and our observations D. The prior captures our beliefs about
the space of possible objective functions. For a more complete review of BO see,
e.g., Brochu et al. [4] or for a broader overview see, e.g., Shahriari et al. [21].

Gaussian Process Prior. Gaussian process (GP) priors are a common choice
for Bayesian optimization, due to their flexibility and tractability. A GP is a
distribution over functions of type f : Γ → R, and when combined with observa-
tions D induces a posterior over functions. GPs are defined fully by their mean
function m : Γ → R and covariance function k : Γ × Γ → R.

For hyperparameter optimization, the use of an automatic relevance detection
(ARD) Matérn 5/2 kernel is suggested in literature [22].

kM52(x, x′) = θ0 exp(−
√

5r2(x, x′))

(1 +
√

5r2(x, x′) +
5
3
r2(x, x′)). (1)

r2(x, x′) =
D∑

d=1

(xd − x′
d)

2/θ2d. (2)

The use of ARD kernels typically results in a total of D+3 GP parameters1, θ:
kernel length-scales θ1:D, kernel amplitude θ0, observation noise v and constant
mean m [22].

Acquisition Function. By construction of the GP prior, the surrogate f̂(γ)
has both a predictive mean function μ(γ) and predictive variance function σ(γ).
The acquisition function a : Γ → R

+ can then be used to determine the utility of
any point in Γ . The next set of hyperparameters to evaluate are then simply com-
puted as γn+1 = argmaxγ a(γ). Snoek et al. suggest using the Expected Improve-
ment (EI) acquisition function, which provides a tradeoff between exploitation
and exploration [22]:

aEI(γ) = σ(γ)(α(γ)Φ(α(γ)) + φ(α(γ))) (3)

α(γ) =
f(γbest) − μ(γ)

σ(γ)
(4)

where Φ(x) is the CDF and φ(x) the PDF of the standard normal distribution.
Since the mean and variance functions are dependent on the GP parameters θ,

they can be represented as μ(γ; θ) and σ(γ; θ). For the fully Bayesian treatment
1 We employ the term ‘GP parameters’ to emphasize the difference between these and

the hyperparameters subject to optimization in this paper.
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of the GP parameters a so-called integrated acquisition function will be used
throughout this paper. It is computed through a Monte Carlo estimate, using
slice sampling for efficient computation of the required samples. See [22] and
their additional material for further details on how the acquisition function is
estimated.

2.2 Ensemble Construction from Optimization Output

Post-hoc ensemble generation (PHEG) is a natural way of constructing an ensem-
ble from a library of trained models. PHEG is the selection stage of an OPAS
method. In the context of optimizing hyperparameters, the history of all trained
models serves as input for the ensemble generation.

The PHEG procedure works well in practice using a greedy selection criteria,
which can be based on a variety of performance measures such as e.g., mean-
squared-error (MSE) [6]. The procedure works as follows:

1. Begin with an empty ensemble.
2. Select the model which maximizes the ensemble performance.
3. Repeat 2 for a given number of iterations, until all models are added or until

a point of diminishing returns is reached.

Caruana et al. [6] suggest modifying the procedure to allow selection with
replacement. A noteworthy advantage of PHEG procedures, is that it can utilize
the same performance function as the final benchmark, irrespective of how the
library of models was acquired. When comparing our proposed algorithms to
PHEG, we employ selection with replacement.

2.3 Simultaneous Ensemble Generation and Optimization

Hyperparameter optimization and ensemble construction are typically treated
as separate procedures, with the possibility of coupling the techniques. Lacoste
et al. [14] propose a bootstrapped round-robin technique, where each model
of a fixed ensemble is optimized independently. Fundamentally, their ensemble
sequential model-based optimization (ESMBO) procedure allows for more com-
putationally efficient model optimization, but uses no information about the
ensemble performance in the optimization.

In 2016 Lévesque et al. [15] outlined a simultaneous ensemble generation
and optimization approach (SEGO). SEGO considers the performance of the
ensemble, E, at every iteration. The loss function, introduced earlier, can be
reformulated to evaluate the ensemble, not a single model.

Optimizing the hyperparameters of every model in E would make the objec-
tive space excessively high dimensional for large ensemble sizes. An elegant solu-
tion used by SEGO is to let the objective function f(γ|E) be the loss of the
ensemble if a model m trained with parameters γ is placed at index j of E.
Hence, the value of parameters γ is measured given the current ensemble E.

f(γ|E, j) = L(E[j] ← M(γ)) (5)
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Throughout the SEGO algorithm, all trained models and their hyperparam-
eter are stored in a history H and P respectively. The round-robin procedure
optimizes the model at index j = i mod n at iteration i and for ensemble size n.
The loss of replacing E[j] with every model in H is computed as l, using For-
mula 5. The loss of each hyperparameter in P can now be represented by l,
and the two lists serve as input to the Bayesian optimization step, which then
constructs the surrogate model f̂(γ).

The consequence of this type of loss calculation, is that for every iteration
the loss must be computed |H| times, resulting in runtime of O(|H|m) for m
prediction instances. This overhead is tolerated as the GP computation of the
surrogate model contains a matrix inversion, which runs in O(|H|3). In addition,
the assumption that training a learning algorithm is significantly more costly
holds in practice.

Algorithm 1 formalizes the SEGO algorithm, but is adjusted to follow the
notation of this paper. Note the explicit notion of the cross-validated loss com-
putation, where the loss is averaged. In our research, the loss is estimated through
5-fold cross-validation. We employ Spearmint provided by Snoek et al. [22]2 as
the implementation of Bayesian optimization for hyperparameter tuning. Con-
stant Gaussian noise is assumed.

Algorithm 1. Simultaneous Ensemble Generation and Optimization
Input : b, n, a(), L(), M()
Output: Ensemble E; history of models H

1 E, H, P ← ∅;
2 for i ← 1 to b do
3 j ← i mod n;
4 l ← cross-val([L(E[j] ← m)]m⊂H);

5 f̂(γ) ← BO(P, l);

6 γi ← argmax aEI(γ; f̂(γ));
7 mi ← M(γi);
8 l ← l ∪ {cross-val(L(E[j] ← mi))};
9 H ← H ∪ {mi};

10 P ← P ∪ {γi};
11 E[j] ← H[argminkl[k]];

12 end

The research performed by Lévesque et al. showed promising results: Their
algorithm outperforms a single optimized model. In some cases SEGO also per-
formed better than an ensemble constructed post-hoc from all models trained
throughout the procedure [15]. If a loss function different from the final ensemble
evaluation is used for the optimization, they suggest using the PHEG method
on the history H from the SEGO procedure.

2 Code available at https://github.com/JasperSnoek/spearmint.

https://github.com/JasperSnoek/spearmint
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SEGO was designed and tested for classification tasks only, an omission our
research addresses. The authors also note that the requirement of a fixed ensem-
ble size n should be investigated. Furthermore, we find that different loss func-
tions as well as ensemble weighting functions should be explored. This could
both improve the algorithm and also demonstrate its robustness. In the follow-
ing section we introduce SEGO for regression, suitable loss functions, dynamic
sizing approaches and a non-constant weighting technique.

3 SEGO for Regression

In order to apply the SEGO procedure to regression problems, the ensemble inte-
gration function (sometimes referred to as weighting or combination function) and
the loss function must be chosen. A default choice for ensembles, is to average the
results of all models. The ensemble prediction is therefore a linear combination of
all model predictions, with weights w1:n = 1

n for ensemble size n.
The residuals of a predictor can be defined as ri = ŷi − yi. A typical loss

function for regression problems is the mean-squared-error (MSE): MSE =
1
n

n∑

i=1

(ri)2. With integration and loss function defined, the baseline SEGO for

regression (SEGOR) is established.

3.1 Loss Function

The fashion with which the loss of parameters given an ensemble, f(γ|E), is
computed is instrumental to the iterative optimization of the ensemble. Firstly,
the cross-validated loss is used directly to select the next hyperparameters γi+1,
and the loss is also used to choose which model to place at index j.

A known drawback of MSE is that it places disproportionately high weights
on large errors. In the context of SEGOR this means a model might be selected
if it reduces the error on a difficult-to-predict outlier, but in fact reduces the
performance on most unseen instances.

Regularization techniques aim to reduce overfitting, usually by complement-
ing the minimization function with a regularization term. Since we are not
performing a straight-forward minimization, but using an iterative procedure,
adding such a term is non-trivial. However, there exist robust loss functions that
aim to reduce overfitting.

One such function is the Huber loss, a type of robust M-estimator. In 1964

Huber introduced the idea of a generalized M-estimator minimizing
n∑

i=1

ρ(xi)

where ρ is some function on data x [11]. Huber loss is defined as a piecewise func-
tion of residuals whose behaviour is governed by |r|. This significantly reduces
the impact of large errors, reducing the likelihood to overfit.

Lhuber(r) =

{
1
2r2 if |r| < c

c(|r| − 1
2c) otherwise
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Another, more extreme, type of robust loss function is the Tukey bisquare.
In contrast to Huber loss, for large |r|, the loss is constant. This further reduces
the weight given to large errors. Tukey’s bisquare has been used successfully as
a loss function for other regression problems [1].

Ltukey(r) =

{
c2

6 [1 − (1 − ( r
c )2)3] if |r| < c

c2

6 otherwise

The chosen values of c for Huber loss and Tukey’s bisquare are c = 1.345 and
c = 4.685, respectively. At these values of c, both loss functions are at least 95%
as accurate as least-squares if the data is sampled from a normal distribution.
Figure 1 highlights the differences in the loss functions.
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Fig. 1. Comparison of loss functions

3.2 Ensemble Size

Much of ensemble research has focused on selecting an ensemble from a library
of models [5,12]. SEGOR currently optimizes parameters given a fixed ensemble
size n. Such ensemble generating algorithms are sufficiently novel that there are
no established approaches to dynamically adjust the ensemble size throughout
the optimization procedure.

Lévesque et al. empirically selected n = 12 for their investigation, and our
work confirms that this is a reasonable choice, but this might not hold for all
types of base-models and datasets. We therefore devised multiple methods of
dynamically generating the ensemble throughout the optimization process with
no fixed size.
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The fixed ensemble size method (F) will serve as the baseline. Note that the
modifications to non-fixed ensemble sizes are performed after the BO step, and
hence do not affect the input of the hyperparameter tuning. The first proposed
method, best-growing (BG), initializes the ensemble as E = ∅, and can add any
model m ∈ H, in addition to replacing the model at index j. If a model is added
to the ensemble, the remainder of the ensemble is left unchanged. This means
that at iteration i, i models are evaluated at index j, and i models are evaluated
as additions. An additional set of losses, lgrow is computed:

lgrow = cross-val([L(E ∪ m)]m⊂H) (6)

Similarly, the best-dynamic (BD) method allows for the deletion of a model
in the ensemble in addition to growing:

lshrink = cross-val(L(E[j] ← ∅)) (7)

Each method then decides which action to perform: replace, grow (BG and
BD only) or shrink (BD only).

3.3 Integration Function

In SEGO, as it was designed for classification, a majority voting ensemble inte-
gration function was used. As the ensemble prediction in SEGOR is already a
linear combination of its component regressors, the weights w1:n for ensemble
size n are suitable for optimization [20]. If we express the set of weights wi for

i = 1 : n as w, then by finding argminwL(
N∑

i=1

(ri(x) ∗ wi)) it is possible to find

weights minimizing the validation loss, with an increased risk of overfitting the
validation set, however. For the hyperparameter tuning step mean-weighting is
used as otherwise the individual models’ equal impact on the loss-evaluation is no
longer guaranteed. We explore weighting using Python’s SciPy implementation
of BFGS [13].

4 Experiments

The objective of the experimentation is two-fold: Firstly, we want to demonstrate
the applicability of SEGO to regression and secondly highlight the performance
and robustness of our improvements. Three different types of predictors are
used as base-models for hyperparameter tuning tested on 16 small to medium
sized datasets. As each experiment requires training a significant number of
models in addition to the optimization overhead, and computational resources
were limited for this research, the scope of experimentation had to be restricted.
Therefore every dataset was limited to 2999 instances. Each experiment is 5-fold
cross validated and the number of Bayesian optimization iterations was set to
100 for every tested approach. The following shorthand will be used: method -
loss-function, where s is a single model and f represents SEGOR with a fixed
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ensemble size of 12; g and d are the BG and BD ensemble size methods from
Sect. 3.2, respectively. The loss functions m, h and t correspond to MSE, Huber
loss and Tukey’s bisquare. Lastly, the suffix ph refers to the ensemble generated
post-hoc using PHEG.

All regression models were chosen from the scikit-learn library [18]. The base-
models and their hyperparameters are:

– DecisionTree (DT):
max depth, max features, min samples split, min samples leaf

– MultiLayerPerceptron (MLP):
learning rate, activation, hidden layer sizes (max. 2 hidden layers)

– ElasticNet (EN):
alpha, l1 ratio, max iter

The datasets and the number of used features and instances can be viewed
in Table 1. Unless cited otherwise, they were retrieved from the UCI Machine
Learning Repository [16].

Table 1. Datasets

Dataset Instances Features

CPU (cpu) 209 6

Boston housing (bos) 506 13

White wine (ww) 2999 11

Red wine (rw) 1599 11

Chicago speed (csp) [24] 2999 3

MPG (mpg) 398 6

Power plant (pow) 2999 4

Solar flare (sf) 1066 23

Facebook comments (fp) 500 10

Air quality (aq) 2999 12

Concrete stength (cs) 1030 8

Cooling efficiency (ce) 768 8

Heating efficiency (he) 768 8

Math grades (mg) 395 56

Yacht resistance (yr) 308 6

Forest fire area (ffa) 517 22

A single predictor (s-m) optimized for 100 iterations and a post-hoc ensemble
generated from its history (s-m-ph) will serve as a baseline. The performance
is measured as the MSE of previously normalized values, irrespective of the
loss function used. Furthermore, the diversity of the ensemble will be measured
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by the mutual information (MI) of the individual models’ predictions. In order
to measure MI of an ensemble, the sum of all pairwise MI is taken, divided by
the ensemble size squared [8]. Low values of MI represent ensembles with diverse
predictions.

MI(Y m;Y n) = −1
2
log(1 − ρ2) (8)

where Y i is the prediction of model i, and ρ is the correlation between two
predictors:

ρ =
∑

i=1...N (ym
i − μm

Y )(yn
i − μn

Y )
√∑

i=1...N (ym
i − μm

Y )2(yn
i − μn

Y )2
. (9)

4.1 Performance Results

In order to compare the different algorithms, their performance was measured
for each of the base-models separately. We compare the combination of different
sizing methods and loss functions.

For methods using loss functions other than MSE, a post-hoc ensemble is
used to measure performance, as the PHEG procedure can utilize the same
performance-function as the final benchmark. Therefore, post-hoc results are
used where appropriate to ensure methods are not disadvantaged. An intuitive
and insightful way to compare different algorithms is to observe their mean
ranks, which are shown in Table 2.

Table 2. Mean ranks over 3 hyperparameter spaces

s-m f-m g-m d-m s-m-ph f-h-ph g-h-ph d-h-ph f-t-ph g-t-ph d-t-ph

DT 10.19 4.12 4.56 5.50 6.19 5.69 5.88 7.00 4.81 5.44 6.62

MLP 9.38 7.25 4.81 3.88 5.56 6.31 6.50 5.69 5.88 4.69 6.06

EN 7.00 6.00 6.81 6.00 6.81 6.06 6.00 5.06 5.38 5.25 5.44

In order to measure performance differences we used two procedures. The
first is a two-step process for comparing multiple methods simultaneously. First,
a Friedman test is used to test whether there is a significant difference between
all methods [7]. In principle, the test considers the mean rank, and is a non-
parametric version of the well known ANOVA test. The p-values are 2.8 × 10−5,
6.0 × 10−4 and 0.72 for DT, MLP and EN respectively. This suggests that for
elastic nets, all methods perform similarly. Further investigation revealed that
elastic nets performed worse in absolute terms compared to the other base types.

When the Friedman test shows significant differences, a post-hoc test is uti-
lized to determine which methods differ from one another. The Nemenyi test can
be used to compare all methods based on mean ranks [7], and includes a com-
pensation for multiple comparisons. Our findings show that the Nemenyi test is
more conservative, and is very sensitive to the methods selected for comparison.
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For instance, d-h-ph no longer outperforms s-m at p < 0.05 for DT space. In the
case of MLPs, f-m, f-h-ph, g-h-ph, d-h-ph, f-t-ph and d-t-ph are all above the crit-
ical p-value when compared to s-m. All performance differences are insignificant
even at p < 0.10 for elastic nets.

Table 3 shows the results of the Nemenyi post-hoc test, comparing all pro-
posed methods with the single optimized model s-m. All other comparisons
values are insignificant at p > 0.10, and are not shown but were performed
simultaneously.

Table 3. Nemenyi test p-values for both hyperparameter spaces

f-m g-m d-m s-m-ph f-h-ph g-h-ph d-h-ph f-t-ph g-t-ph d-t-ph

DT 0.00 0.00 0.00 0.03 0.00 0.00 0.13 0.00 0.00 0.04

MLP 0.77 0.00 0.00 0.05 0.24 0.33 0.06 0.10 0.00 0.15

The second procedure, the Wilcoxon signed-ranks test is a non-parametric
paired test, which can compare the performance of two algorithms given multiple
instances [7]. The methodology considers the absolute value of the performance
difference, and is therefore more representative than mean ranks. Furthermore,
it does not assume sampling from a normal distribution, as the paired t-test
would.

In summary, all methods outperform the single optimized model, with
p < 0.05 for both decision trees and multi-layer perceptrons. For elastic nets
however, all methods show insignificant improvement at p < 0.05 in the pairwise
comparison. Notable is the performance of f-m which outperforms s-m-ph at
p < 0.05 for decision trees, therefore outperforming an ensemble generated using
an OPAS method. Similarly g-m and d-m perform better than f-m for multi-
layer perceptrons. This highlights the importance of non-fixed ensemble sizing
for certain domains. Tables 4 and 5 show all pairwise p-values of the Wilcoxon
tests, the structure of the tables are such that a value in row i and column j
represents the p-value that algorithm i outperforms algorithm j.

We have excluded the weighted methods from the above comparisons, as we
can observe weak performance, likely due to overfitting on the validation data
or multi-collinearity among the predictors [17].

In conclusion, the proposed methods work well on the DT and MLP hyper-
parameter space, where the tunable parameters strongly affect the way the
regressor learns. The sizing methods performed well, with g-m and d-m trading
spots depending on the hyperparameter space. Robust loss functions did not
improve generalization accuracy overall, and the Nemenyi test indicates they do
not always perform significantly better than a single optimized regressor. We
suspect this is related to the relatively small datasets. We believe given more
diverse data or if the real loss function cannot be used for learning, robust loss
functions would be more applicable.
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Table 4. Pairwise Wilcoxon test p-values for decision trees

s-m f-m g-m d-m s-m-ph f-h-ph g-h-ph d-h-ph f-t-ph g-t-ph d-t-ph

s-m 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

f-m 0.00 0.47 0.05 0.00 0.07 0.02 0.01 0.43 0.03 0.00

g-m 0.00 0.55 0.06 0.07 0.19 0.11 0.01 0.70 0.14 0.03

d-m 0.00 0.96 0.94 0.15 0.70 0.43 0.19 0.74 0.63 0.55

s-m-ph 0.00 1.00 0.94 0.86 0.72 0.70 0.23 0.83 0.57 0.74

f-h-ph 0.00 0.94 0.83 0.32 0.30 0.08 0.01 0.75 0.45 0.03

g-h-ph 0.00 0.99 0.90 0.59 0.32 0.93 0.05 0.86 0.74 0.49

d-h-ph 0.00 0.99 0.99 0.83 0.78 0.99 0.95 1.00 0.99 0.96

f-t-ph 0.00 0.59 0.32 0.28 0.19 0.26 0.15 0.00 0.47 0.01

g-t-ph 0.00 0.97 0.87 0.39 0.45 0.57 0.28 0.01 0.55 0.15

d-t-ph 0.00 1.00 0.97 0.47 0.28 0.97 0.53 0.05 0.99 0.86

Table 5. Pairwise Wilcoxon test p-values for multi-layer-perceptrons

s-m f-m g-m d-m s-m-ph f-h-ph g-h-ph d-h-ph f-t-ph g-t-ph d-t-ph

s-m 0.99 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00

f-m 0.01 0.97 0.99 0.55 0.65 0.28 0.65 0.47 0.87 0.74

g-m 0.01 0.03 0.70 0.19 0.01 0.06 0.14 0.10 0.33 0.26

d-m 0.00 0.01 0.32 0.07 0.08 0.03 0.02 0.03 0.17 0.10

s-m-ph 0.00 0.47 0.83 0.94 0.53 0.45 0.78 0.61 0.89 0.88

f-h-ph 0.00 0.37 0.99 0.93 0.49 0.35 0.57 0.37 0.85 0.43

g-h-ph 0.01 0.74 0.95 0.98 0.57 0.67 0.28 0.53 0.94 0.55

d-h-ph 0.00 0.37 0.87 0.99 0.23 0.45 0.74 0.55 0.75 0.68

f-t-ph 0.01 0.55 0.91 0.98 0.41 0.65 0.49 0.47 0.65 0.41

g-t-ph 0.00 0.14 0.68 0.84 0.12 0.16 0.07 0.26 0.37 0.13

d-t-ph 0.00 0.28 0.75 0.91 0.13 0.59 0.47 0.33 0.61 0.88

4.2 Diversity

We can utilize the MI diversity measure to explain the poor performance of the
algorithms on the EN hyperparameter space. Table 6 highlights the much greater
mean mutual information in the ensemble of elastic nets. This corresponds with
the design of elastic nets, where the impact of different parameters has a limited
effect on the prediction. Therefore, our hyperparameter tuning focus does not
work well for such base-models, and the MI measure can be used for detecting
this situation.
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Table 6. Mean distance measures for the hyperparameter spaces

dt nn en

Mean mut. info 1.35 1.42 4.28

As all of the aforementioned experiments were conducted with a budget of 100
iterations, the ensemble methods do not converge. We conducted an experiment
using the ‘rw’ dataset for decision trees, with 300 iterations. The fixed-ensemble-
size method f-m was tested for all sizes in the range [4, 28], with sizes 25, 22 and
19 being the top performers. Our BG method g-m ranked 5th, with a final
mean ensemble size of 27.76. Interestingly, a fixed size of 24 would have resulted
in the 20th rank for f-m. This high sensitivity to the a-priori fixed ensemble
size highlights the importance of the dynamic ensemble sizing methods. Due to
computational limitations, we were unable to investigate true convergence.

5 Conclusion

We presented a method to simultaneously generate ensembles and tune the
hyperparameters of its models for regression problems. Furthermore, we intro-
duce robust loss functions and different methods of determining the size of the
ensemble on-the-fly. For models with tunable hyperparameter spaces, our pro-
posed techniques significantly outperform single regressors. The proposed sizing
methods allow the algorithm to operate without a fixed a-priori ensemble size,
a parameter which was shown to impact performance. The proposed robust
loss functions have failed to exceed the performance of procedures using MSE,
but tend to outperform single models. For models where hyperparameters only
slightly affect the diversity in predictions, the suggested methods cannot signif-
icantly improve on a single tuned predictor.

Noteworthy is the finding that depending on the chosen base-learner and
dataset, a different approach might be the most suitable, highlighted by dif-
ferences found between decision trees and multi-layer-perceptrons. Most impor-
tantly, however, our research demonstrates the suitability of hyperparameter
tuning to regression, and showcases the performance of automated meta-learning
algorithms, specifically for ensemble generation with no fixed size.

Future Research

With more computational resources available, the proposed methods could be
investigated on a greater breadth of larger datasets with more optimization iter-
ations. The utilization of a diversity or complexity term during optimization
has had mixed results in other applications [10], but could nonetheless be used
to aid in dynamic ensemble sizing. For highly complex hyperparameter spaces,
neural networks are suitable replacements for GPs [23]. Our research focused lit-
tle on ensemble weighting, but other techniques such as stacking or regularized
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weighting should not be discarded. Furthermore, the suitability of hyperparam-
eter tuning and more advanced techniques such as SEGO(R) have not been
extensively explored for deep neural networks, an area which we hope will see
increased attention in the future.

Acknowledgements. We want to thank Mediaan for supporting this research and
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Abstract. We compare classic text classification techniques with more
recent machine learning techniques and introduce a novel architecture
that outperforms many state-of-the-art approaches. These techniques
are evaluated on a new multi-label classification task, where the task
is to predict the genre of a movie based on its subtitle. We show that
pre-trained word embeddings contain ‘universal’ features by using the
Semantic-Syntactic Word Relationship test. Furthermore, we explore the
effectiveness of a convolutional neural network (CNN) that can extract
local features, and a long short term memory network (LSTM) that can
find time-dependent relationships. By combining a CNN with an LSTM
we observe a strong performance improvement. The technique that per-
forms best is a multi-layer perceptron, with as input the bag-of-words
model.

Keywords: Natural language processing
Multi-label text classification · Movie subtitles · CNN model
LSTM network · Bag-of-words model

1 Introduction

Text classification is the task of assigning specific categories to documents, exam-
ples are spam detection and sentiment analysis. Naive Bayes, a technique based
on applying Bayes’ Theorem, is frequently used as a baseline method for text
classification because it is relatively effective, fast, and easy to implement [11].
Numerous attempts have been made to tackle the poor assumptions of Naive
Bayes [8,17].

Various types of neural networks have been developed throughout the years,
many of these techniques are used for natural language processing (NLP) appli-
cations. A traditional method is the multilayer perceptron (MLP), trained on the
bag-of-words (BoW) model [1]. The BoW model is a sparse representation of texts,
ignoring both word order and semantic and syntactic features, treating texts as
unordered sets of words. In order to capture the subtleties of language, we seek a
dense representation that does capture these features. Many state-of-the-art word
c© Springer International Publishing AG, part of Springer Nature 2018
B. Verheij and M. Wiering (Eds.): BNAIC 2017, CCIS 823, pp. 131–144, 2018.
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embedding techniques [12,15] are based on the distributional hypothesis [3], stat-
ing that linguistic items with similar distributions have similar meanings. These
dense representations capture multiple degrees of similarity [14], both semantic
and syntactic, such that similar words have similar representations.

Convolutional neural networks (CNN) make use of the internal structure of
the dense representation, both in the feature domain, and the temporal (word
order) domain. CNN models have achieved remarkable results on various text
classification tasks [5,21]. Whereas CNN models make use of the word order for a
specific region size, recurrent neural networks (RNN) have the ability to capture
long-term dependencies for texts of any length. More specifically, the Long Short-
Term Memory (LSTM) architecture [4] is well suited for longer texts because of
its ability to remember information for long periods of time.

In this paper, we introduce a novel dataset which we will use for multi-label
text classification. We compare several state-of-the-art techniques, such as the
concatenation-CNN and the LSTM network, with more traditional techniques.
Furthermore, we introduce a novel architecture that applies a histogram on word
embeddings, followed by an MLP. Unlike most research, we trained our own word
embeddings, making our setup stand-alone.

In Sect. 2 we introduce our dataset, followed by Sect. 3 where we explain the
used methods. The experimental setup is described in Sect. 4, and in Sect. 5 we
show and discuss the results. We conclude the paper in Sect. 6 with a conclusion
and a proposal for future work.

2 Dataset

The dataset used in the experiment is an intra-lingual movie subtitle corpus,
collected by [9], and originates from OpenSubtitles1. We extracted the English
corpus, and removed all tokens apart from the spoken text. Subsequently, we
convert all words to lowercase and remove punctuation, see Fig. 1. We did not
apply stop word removal or stemming. The total dataset consists of 44,171 sub-
titles, with in total 135,862,112 words and 920,705 unique words. Every subtitle
is linked to at least one, and often multiple genres. In total the dataset contains
subtitles with 27 different genres, ranging from animation and comedy, to docu-
mentary. Because every subtitle can have multiple genres, the classification task
is considered a multi-label classification task. This should not be confused with
multi-class classification, where every document has exactly one label. Multi-
label classification is considered to be significantly more difficult, due to the vast
amount of possible label combinations.

Because of the limited availability of computer power we will narrow our
focus to the classification of the following genres: “Romance”, “Thriller”, and
“Action”. This subset consists of 15,500 subtitles, with in total 48,998,774 words
and 448,101 unique words. The distribution of the subtitle lengths is depicted
in Fig. 2.

1 http://www.opensubtitles.org/.

http://www.opensubtitles.org/
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Fig. 1. Text preprocessing, single sen-
tence example.

Fig. 2. Distribution of subtitle lengths

3 Methods

In this paper, we will differentiate between models that use the BoW model,
and models that use word embeddings. For the first model we have two different
methods, and for the latter we will discuss four methods.

3.1 Bag of Words

We will use the BoW model for both the Naive Bayes classifier and the multi-
layer perceptron. Let d = {d1, ..., dn} be a collection of documents, where dij
denotes the number of occurrences of word i in document j. Furthermore, let
l = {l1, ..., ln} be the according labels, where li is itself a set of possibly multiple
labels.

Multinomial Naive Bayes Transformations. We will focus on the Multi-
nomial version of the Naive Bayes model (MNB), where each word position is
assumed to be independent of every other word. We will use several improve-
ments proposed by [17], e.g. normalising the weight vectors.

To train the MNB model, we apply the transformations described in Eq. 1.
For a test document t, with word i occurring ti times, the document is labelled
according to Eq. 2 for some threshold θ.

dij
(1.1)
= dij log

∑
k 1

∑
k 1i occurs in k

dij
(1.2)
=

dij√∑
k(dkj)2

wgi
(1.3)
= log

∑

j:g∈lj

dij (1)

wg
(2.1)
=

∑

i

tiwgi (2)

wg
(2.2)
=

wg − min wg

max wg − min wg

l(t)
(2.3)
= {g : wg > θ}



134 M. Pieters and M. Wiering

In Eq. 1.1, we down-weight common words, a heuristic known as “inverse
document frequency”. Common words have little influence on the class of a
document, but small variations can cause spurious correlations. Note that in
most literature a “term frequency” heuristic precedes Eq. 1.1, we however found
that this did not improve the accuracy. Therefore as shown in Eq. 1.1 we just
use the term frequency. In order to prevent that document length affects the
classification, we normalize every document according to Eq. 1.2. Finally, in Eq.
1.3 we add the weights of all documents belonging to the same genre.

For classification we first multiply each word frequency with the weight, as
illustrated in Eq. 2.1. In standard multi-class classification, we could now assign
a label to the class with the highest score. However, since the task is multi-label
classification, we have to be able to assign multiple labels to a single document.
We do this by first normalizing the weights according to Eq. 2.2, and then
assign each label for which the weight is greater than the predefined threshold
θ. By increasing θ we can trade-off recall for precision (defined in Sect. 5.1). We
determine this threshold by means of the validation set.

Multi-layer Perceptron. The multi-layer perceptron (MLP) has been shown
to be effective on a wide variety of tasks, despite its simplicity. We use a fully
connected network, with two hidden layers. We use the ReLU activation function,
and in every layer we apply L2-normalisation before activation. The input of the
MLP is again the BoW model, with the n most frequent words. Every word
frequency is rescaled according to dij = log (1 + dij), reducing the influence of
frequently occurring words.

3.2 Skip-Gram Model

Many state-of-the-art techniques require dense word vectors as input. It is
hypothesised that the techniques developed by e.g. [12] create dense word vec-
tors that contain ‘universal’ features that can be used for various tasks. We will
focus on the Skip-gram model [13]. In this model, each current word is used
as an input, and the target is to predict the words that occur within a certain
context c before and after the center word, as illustrated in Fig. 3. Furthermore,
we use Negative sampling (NGE) as objective, where the task is to distinguish
the target word from k negative samples drawn from a noise distribution. Since
frequent words generally provide less information, we apply subsampling to all
words as described in [13]. We train the model using all subtitles in our dataset,
in Sect. 4.2 we denote the used hyperparameters. In order to explore the quality
of the word vectors we use the Semantic-Syntactic Word Relationship test set,
defined in [12]. This test set consists of five types of semantic questions and nine
types of syntactic questions. The task is to predict a word, based on the rela-
tionship between three given words. An example for the semantic test is: “What
word is similar to Oslo in the same way as France is similar to Paris?”, the
answer would be Norway. This test is performed by computing the vector x =
vector(“france”) - vector(“paris”) + vector(“oslo”), and finding the word that
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has the smallest cosine distance to this vector x (different from the three ques-
tion words). An answer is considered correct only if the closest word is identical
to the word in the question. Table 1 shows the results on the word analogy task,
indicating the effectiveness of the technique as well as generalizability of the used
dataset. For the accuracy we denote both the percentage correct, and the num-
ber of correct classified pairs combined with the total number of pairs. Note that
we used a subsection of the original test set, because some of the test words do
not occur in our dataset. We evaluated 6,067 out of the original 8,869 semantic
relations, for the syntactic relations we evaluated 10,300 out of 10,675 pairs. The
results show that for the semantic relations the categories Common capital city
and Man-Woman are learned very accurately, whereas Currency scores poorly.
We expect that this is a result of the nature of movie subtitles, relationships
(Man-Woman) and famous locations (Common capital city) play an important
part in many movies, in contrast to currencies. The syntactic relations show a
more balanced result, probably because all nine syntactic categories occur in
spoken language.

Table 1. Results of semantic-syntactic
word relationship test set.

Category Accuracy

Semantic: 43.9 % (2665/6067)

Common capital city 86.6 % (433/506)

All capital cities 43.1 % (996/2310)

Currency 7.40 % (37/502)

City-in-state 35.4 % (824/2328)

Man-Woman 89.3 % (375/420)

Syntactic: 61.8 % (6362/10300)

Adjective to adverb 31.1 % (271/870)

Opposite 25.6 % (180/702)

Comparative 81.6 % (1087/1332)

Superlative 64.4 % (723/1122)

Present participle 62.7 % (622/992)

Nationality adjective 68.6 % (1044/1521)

Past tense 61.3 % (957/1560)

Plural nouns 82.1 % (1093/1332)

Plural verbs 44.3 % (385/869)

Fig. 3. The Skip-gram architec-
ture, with a context size c of 2.

3.3 MLP on Histogram of Word Embeddings

Previous research has shown that first training a part of the model on an unsu-
pervised task can reduce the training time and increase the accuracy on the
supervised task [16]. Because the pre-trained word embeddings contain various
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features, we expect that a basic model can find relationships between several fea-
tures in order to learn a supervised task. Preliminary experiments have shown
that taking scalar indicators (such as min, max, or mean) of a single feature
over all words in combination with an MLP does not lead to satisfying results.
Both the min and max operators can be affected by single, meaningless outliers,
whereas the mean operator can potentially reduce significant positive and nega-
tive weights to a meaningless average. In order to capture more information we
propose to use a histogram, where each word-embedding feature is described by
a certain number of bins. Every bin denotes the relative frequency of a range of
values for that specific feature. We will now describe the method used to convert
a document to a word-embedding histogram, that subsequently can be used as
an input for an MLP. Let every subtitle be consisting of n words, such that

X = x1 ⊕ x2 ⊕ ... ⊕ xn (3)

where xt ∈ R
k is the k-dimensional word embedding and ⊕ is the concatena-

tion operator. Note that in most literature word embeddings are referred to by
“words”, we will use “concepts” because the word embeddings are actually the
representation of the concept of a word, and not the word itself. The concate-
nation of the word embeddings results in a matrix X ∈ R

n×k, where n and k
denote the number of words in the subtitle and dimension of the word embed-
ding respectively. In order to use this matrix in combination with a histogram,
we first need to scale the values such that we can use bins with a prefixed size
and range. We normalize the matrix X according to

Xij =
Xij − mini Xij

maxi Xij − mini Xij
(4)

We will now make a histogram along every word dimension, using s bins, where
every bin has a width of size 1/s. The range of the bins are denoted by {b1 =
[0, 1

s ), b2 = [1s , 2
s ), ..., bs = [ s−1

s , 1]}. For every bin bl and every word dimension
k we now calculate

Hlk = card({Xjk : Xjk ∈ bl}) (5)

Subsequently, we calculate the L1 norm

Hlk =
Hlk∑s
i=1 Hik

(6)

and calculate the z-score

Zlk =
Hlk − μ

σ
(7)

where μ, and σ are the mean and standard deviation of all values in H respec-
tively. The resulting matrix Z ∈ R

s×k is then used as an input for an MLP.
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3.4 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a feedforward neural network, origi-
nally used for image classification [7]. CNN models have shown to be effective on
various NLP tasks, by utilising local features of the word embeddings [6]. We will
now describe the CNN architecture. Let every document of length n be described
by a sequence as defined in Eq. 3 (padded if necessary). Let xi:i+j denote the
concatenation of concept xi up to xi+j . The convolutional filter w ∈ R

h×k is
applied to a window of h concepts, which produces a new feature ci. Note that
k denotes again the word embedding size. We could in theory slide the convo-
lution along the word-features too, there is however no reason to assume that
any specific local relationships exist between concepts. The window of concepts
xi:i+h−1 generates a new feature by

ci = f(w ◦ xi:i+h−1 + b) (8)

where ◦ is the element-wise multiplication, b ∈ R is a bias term, and f is a non-
linear function such as the sigmoid, hyperbolic tangent, etc. By applying this
filter to all possible windows, we obtain a feature map c = [c1, c2, ..., cn−h+1].
Note that we can use multiple filters, with possibly different filter widths.

In order to capture the more significant events, we subsequently apply a
max pooling operation on the feature map c. Throughout the paper we will
differentiate between two types of max pooling, namely max-over-time pooling
and 1-D max pooling.

Max-over-time Pooling. The first technique extracts a single (maximum)
scalar from each feature map. By using multiple convolutional filters, with vary-
ing filter widths, we obtain several features which are then passed on to a fully
connected layer. This architecture was introduced by [6], and is referred to as
concatenation-CNN (C-CNN). Whereas the architecture introduced by [6] uses
a final softmax layer, we adapt the network for a multi-label problem by using
a sigmoid activation output layer.

1-D Max Pooling. Max-over-time pooling reduces a feature map to a single
feature, we can also reduce the feature map to several features, for different
windows. In order to determine the maximum value for a window of size m we
define

pi = max(ci:i+m−1) (9)

with i = (1, 1+s, 1+2s, ...), where s denotes the size of the stride. In both the con-
volutional layer and the 1-D max pooling layer we can vary the stride, meaning
that instead of moving the filter one step at the time, we move the filter several
places per step. We use multiple filters for the same region, making it possible
to learn complementary features from the same regions. With l filters, the gen-
erated l feature maps are combined to create a matrix X ∈ R

l×�(n−h−m+2)/s�.
These feature maps are then used in combination with an LSTM network, as
explained in Sect. 3.6.
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3.5 Long Short-Term Memory Network

A Recurrent Neural Network (RNN) has the ability to capture time-dependent
relations between words. It does this dynamically, without the use of fixed-size
context windows. In particular, the Long Short-Term Memory Network (LSTM)
[4] excels at tasks where long term dependencies are important. This network
has received a lot of attention because of its capability of capturing important
events throughout time series, and being relatively unsusceptible of gaps between
important events. Given a sequence as described by Eq. 3, at time step t the
LSTM network updates ct and ht with input xt as follows

⎡

⎢
⎢
⎣

it
ft
ot
ĉt

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

sigm
sigm
sigm
tanh

⎤

⎥
⎥
⎦ W · [

ht−1, xt

]
(10)

ct = ft ◦ ct−1 + it ◦ ĉt (11)

ht = ot ◦ tanh(ct) (12)

where ct and ht are the memory and hidden state respectively, it, ft, ot, and ĉt
are the input gate vector, forget gate vector, output gate vector, and current cell
state vector respectively. Note that in Eqs. 10 and 12 the functions sigm and tanh
are applied element-wise. In order to map the output of the LSTM network to
the output layer, we apply mean-over-time pooling on the output gate vectors
ot, meaning that we calculate the mean of all ht values over all time steps t.
Finally, the mean-over-time pooling is followed by a fully-connected layer with
a sigmoid activation function.

The traditional LSTM network may have problems when the change of the
parameters of one layer has an effect on the distribution of the input to all
subsequent layers, also known as internal covariance shift. A solution proposed
by [2], called Batch Normalized LSTM (BN-LSTM), normalizes both the input-
to-hidden and hidden-to-hidden transformations by empirically estimating their
means and standard deviations.

3.6 CNN-BN-LSTM

We discussed that CNN leverages the local features of words, whereas LSTM
dominates in tasks where long term relations play a part. By combining the
two techniques, we hope to get the best of both worlds. We start with applying
a CNN layer, followed by a 1-D max pooling layer, as discussed in Sect. 3.4.
The resulting matrix is then used as input for the LSTM network, such that
there are �(n − h − m + 2)/s� time steps, each with dimension l. Similar to the
procedure discussed in Sect. 3.5, we subsequently apply mean-over-time pooling
on the output gate vectors, together with a fully-connected layer with sigmoid
activation. An example of this network is shown in Fig. 4.
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Fig. 4. Graphical representation of the CNN-BN-LSTM network. The hyperparameters
of this example are as follows. The word-embedding size is 6. The convolutional layer
uses a window size of 2, with a stride of 1, this is followed by 1-D max-pooling with a
window size of 3, and a stride of 1.

4 Experimental Setup

4.1 Dataset

The proposed models are tested on the dataset introduced in Sect. 2. We split
the dataset into a validation set and a train-test set of respectively 1500 and
14,000 subtitles, so that we tune the hyperparameters on the validation set and
use cross validation on the train-test set. We use 7-fold cross validation in order
to test the methods, the train set consists each time of 12,000 movies, the test
set of 2,000 movies.

4.2 Hyperparameters and Training

The following hyperparameters are all determined by performing a grid search
on the validation set. For the MNB model we only take into account words that
occur more than 3 times. We use a classification threshold θ of 0.7 for the MNB
model. For all other models we use a threshold value of 0.5.

For the BoW-MLP model we use the 50,000 most frequent words. The first
hidden layer contains 512 nodes, the second layer 256. In both layers we apply the
ReLU activation function, followed by dropout [19] with a dropout rate of 0.5.

Throughout all experiments we use a word embedding size of 300. We use
static word embeddings, we thus apply no back propagation on the word embed-
dings in any of the experiments. We trained the word-embeddings on all subtitles,
thus not only on the used subset for the multi-label classification task. The train-
ing was performed for 12 epochs, using a learning rate of 0.1, a mini-batch size
of 16, a subsample threshold of 10−3, a context size c of 5, and with 15 negative
samples.

For the MLP-Histogram model we use 25 bins, followed by 128 hidden nodes
in the first layer of the MLP, and 64 nodes in the second layer. Furthermore,
in order to prevent overfitting we add Gaussian noise to the input with a mean
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of 0, and a standard deviation of 0.02. Additionally, after each layer dropout is
applied with a rate of 0.5. Finally, in each layer the ReLU activation function is
applied.

The BN-LSTM model uses 300 hidden units, on both the input and output
connections we use dropout with a rate of 0.2. We constrain the L2-norm of the
gradient to not exceed 10, this is known as gradient clipping.

For the CNN-BN-LSTM network we use similar LSTM hyperparameters,
proceeded by a CNN. The CNN consists of 200 feature maps, with a window
size of 8, a filter stride of 2, followed by a 1-D max pool filter of size 4, with
a stride of 2. The activation function used in the CNN is the ReLU. Again we
constrain the L2-norm of the gradient to a maximum of 10.

In the C-CNN model we use filters of width 3,4 and 5, all with 128 feature maps.
We apply dropout with a rate of 0.5, and constrain the L2 norm again to 10.

For the CNN-BN-LSTM and the C-CNN model we pad the documents to a
maximum length of 4000 words. In all models we use a mini-batch size of 20. We
train the MLP-BoW and C-CNN for 6 epochs, all other models are trained for
10 epochs. We used the Adadelta update rule [20] for training, while shuffling
the mini-batches.

Throughout all experiments (apart from training the word-embeddings) we
anneal the learning rate α using exponential decay, defined by α = α0r

t/k, where
α0 is the initial learning rate, r is the decay rate, t is the iteration step, and k
indicates the decay step, such that every k steps the learning rate is decayed.
In all experiments we use a decay rate r of 0.97. For the MLP-Histogram, BN-
LSTM, and CNN-BN-LSTM we used an initial learning rate of 0.1, for the
MLP-BoW and C-CNN we use an initial learning rate of 0.005.

5 Results and Discussion

5.1 Metrics

In order to compare our models we will use the F1 score, which takes into account
both the recall and precision. Recall, precision, and the F1 score for one label
are respectively defined as:

recall =
|{relevant labels} ∩ {retrieved labels}|

|{relevant labels}| (13)

precision =
|{relevant labels} ∩ {retrieved labels}|

|{retrieved labels}| (14)

F1 = 2 · precision · recall
precision + recall

(15)

In order to calculate the final recall, precision, and F1-score of the models,
we calculate the mean scores over all three genres.
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5.2 Results

The results of our models are listed in Table 2. Our baseline method (MNB)
does not perform well. The model that performs best is the MLP-BoW model,
with an average F1-score of 0.77 ± 0.02. This is a significant higher result (P <
0.005) compared to the other models. The novel MLP-Histogram model achieves
the second highest F1-score. The BN-LSTM does not perform well on it own,
however, in combination with a CNN layer (CNN-BN-LSTM) the model obtains
the third best results. Finally, the C-CNN model is outperformed by all but two
models.

Table 2. The results on the test set, after the specified number of epochs. Both the
mean and standard deviation of the cross validation are displayed. We denote the
recall, precision, and F1-score for the three genres, together with the mean of the
recall, precision, and F1-score of the three genres.

Model Romance Thriller

Recall Precision F1-score Recall Precision F1-score

MNB 0.93 ± 0.08 0.49 ± 0.14 0.64 ± 0.10 0.02 ± 0.01 0.67 ± 0.14 0.04 ± 0.03

MLP-BoW 0.75 ± 0.13 0.77 ± 0.04 0.76 ± 0.09 0.72 ± 0.01 0.77 ± 0.01 0.74 ± 0.08

MLP-Histogram 0.61 ± 0.03 0.72 ± 0.04 0.66 ± 0.02 0.78 ± 0.04 0.77 ± 0.02 0.77 ± 0.02

BN-LSTM 0.17 ± 0.13 0.72 ± 0.10 0.25 ± 0.14 0.76 ± 0.08 0.74 ± 0.05 0.75 ± 0.02

C-CNN 0.52 ± 0.17 0.69 ± 0.09 0.56 ± 0.10 0.77 ± 0.05 0.76 ± 0.09 0.76 ± 0.05

CNN-BN-LSTM 0.54 ± 0.05 0.74 ± 0.03 0.62 ± 0.04 0.76 ± 0.04 0.79 ± 0.02 0.77 ± 0.03

Model Action Mean

Recall Precision F1-score Recall Precision F1-score

MNB 0.83 ± 0.11 0.71 ± 0.15 0.73 ± 0.08 0.59 ± 0.02 0.62 ± 0.05 0.47 ± 0.04

MLP-BoW 0.81 ± 0.06 0.82 ± 0.06 0.81 ± 0.05 0.76 ± 0.03 0.79 ± 0.03 0.77 ± 0.02

MLP-Histogram 0.80 ± 0.03 0.79 ± 0.06 0.79 ± 0.02 0.73 ± 0.01 0.76 ± 0.01 0.74 ± 0.01

BN-LSTM 0.75 ± 0.05 0.80 ± 0.06 0.77 ± 0.01 0.56 ± 0.04 0.75 ± 0.04 0.59 ± 0.04

C-CNN 0.75 ± 0.07 0.80 ± 0.08 0.77 ± 0.03 0.68 ± 0.06 0.75 ± 0.02 0.70 ± 0.04

CNN-BN-LSTM 0.78 ± 0.01 0.83 ± 0.05 0.80 ± 0.03 0.69 ± 0.03 0.78 ± 0.03 0.73 ± 0.03

5.3 Discussion

Our baseline model (MNB) does not perform well, the genre thriller has a very
low recall and therefore a low F1-score. The other two genres have however a very
high recall (higher than all other models). We expect that the poor results on the
genre thriller are caused by a combination of how the threshold is determined
and the poor assumptions of the MNB model. We also experimented with n-
grams, with n ranging from 1 to 3, but the performance decreased for n higher
than 1.

The MLP-BoW model outperformed all other (more complex) models. This
was in contrast with our expectations, because the model is relatively simple
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compared to the other machine learning models. Not only is the F1-score high,
the training time was also relatively short. The fact that this model achieves the
highest F1-score could suggest that there exist some combinations of important
‘indicator words’ that are strong predictors for certain genres. We experimented
with adding more layers to the network, but this had no significant positive effect
on the results. Removing one layer had a negative effect on the accuracy.

Considering that the MLP-Histogram model only takes into account the rela-
tive frequency of word embedding feature values the model performs remarkably
well. This is another illustration of the ‘universal’ features of word embeddings.
Similar to the MLP-BoW model, the training time is relatively short. Further-
more, this newly proposed model performed best with using the word-embeddings.

The BN-LSTM model performs rather poorly. We expect that this is due
to the length of the documents. A careful observation of Fig. 2 shows that the
genre romance has relatively long subtitles. This could explain the poor results
on this genre for models that are susceptible for document length. Although the
BN-LSTM network does suffer less from vanishing gradients compared to other
RNN networks, the network still has problems with documents of substantial
length. Another explanation for the inadequacy of the BN-LSTM model could
be that for this task word order is irrelevant and only the occurrence of certain
words is important. Preliminary experiments have shown that stacking multi-
ple BN-LSTM layers on top of each other had no effect on the final accuracy.
The accuracy increases drastically with the use of batch normalization. Adding
batch normalization also causes faster, more stable convergence. Furthermore,
the model often diverged without the use of gradient clipping.

Contrary to the MNB model, we saw that for the C-CNN model the use of
n-grams (by means of the filter widths) did increase the performance. Although
the similar model introduced in [6] achieves state-of-the-art results on various
tasks with a similar model, we find only moderate results on our task. One
main difference is that the documents in the datasets used in [6] are significantly
shorter compared to our dataset, making them less susceptible for outliers that
can affect the max-over-time pooling.

By combining a CNN model with a BN-LSTM model (into the CNN-BN-
LSTM model) we see a performance improvement compared to a separate C-
CNN or BN-LSTM model. By combining the two methods we get the powerful
feature extractor of the CNN model, and the capability of detecting long term
dependencies of the LSTM model. The downside of this method is that even more
hyperparameters have to be tuned. Exploratory research indicated that adding
a CNN layer after the BN-LSTM or CNN-BN-LSTM model did not improve the
accuracy.

6 Conclusion and Future Work

In this paper we described various techniques that can be used for multi-label
classification of movie genres based on subtitles. First, we established a base-
line using a multinomial naive Bayes (MNB) classifier combined with several
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heuristics that “tackle the poor assumptions of MNB” [17]. We trained word
embeddings on an unsupervised task, and showed that these embeddings con-
tain indicative features for genre classification. We developed a novel architecture
that combines a histogram of the word embeddings with an MLP. Despite the
simple nature of this model it outperforms several more complex models. Both
the C-CNN network and the BN-LSTM perform poorly on their own. However,
by combining both techniques we observe a drastic increase in performance. The
model that performs best is the MLP-BoW model, a surprising result given that
many papers consider this network to be a baseline method.

We observed that simple models sometimes outperform more complex, state-
of-the-art networks. The best network thus completely depends on the prob-
lem at hand. Therefore we would like to stress that exploring simpler text-
classification methods is of great importance when a new dataset is studied.
This directly relates to the principle of Occam’s razor, stating that of all pos-
sible hypotheses, the one with the fewest assumptions should be used. When
we decide to use a specific technique, we make certain assumptions about the
data. A simple technique is less prone to overfit the data compared to a more
complex technique, because it makes less assumptions about the data. With
more assumptions, it is easier to choose parameters such that they only fit the
observed data, and do not generalise well.

In follow-up work we would like to consider non-static word embeddings. In
[6] it is shown that for certain tasks the performance improves when either non-
static word embeddings, or a combination of both static and non-static word
embeddings are used. Moreover, we would like to explore the use of random
word embeddings and word embeddings trained by others, e.g. [13]. The final
F1-scores could be improved by using more advanced threshold techniques, and
in future research the number of genres should be extended (up to 27). Finally,
experiments on more datasets can be conducted, e.g. the Movie Review Senti-
ment dataset [10] and the Stanford Sentiment Treebank [18].
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Abstract. Neural networks and reinforcement learning have success-
fully been applied to various games, such as Ms. Pacman and Go. We
combine multilayer perceptrons and a class of reinforcement learning
algorithms known as actor-critic to learn to play the arcade classic Don-
key Kong. Two neural networks are used in this study: the actor and the
critic. The actor learns to select the best action given the game state;
the critic tries to learn the value of being in a certain state. First, a base
game-playing performance is obtained by learning from demonstration,
where data is obtained from human players. After this off-line train-
ing phase we further improve the base performance using feedback from
the critic. The critic gives feedback by comparing the value of the state
before and after taking the action. Results show that an agent pre-trained
on demonstration data is able to achieve a good baseline performance.
Applying actor-critic methods, however, does usually not improve per-
formance, in many cases even decreases it. Possible reasons include the
game not fully being Markovian and other issues.

Keywords: Machine learning · Neural networks
Reinforcement learning · Actor-critic · Games · Donkey Kong
Platformer

1 Introduction

Games have been a prime subject of interest for machine learning in the last few
decades. Playing games is an activity enjoyed exclusively by humans, which is
why studying them in the pursuit of artificial intelligence (AI) is very enticing.
Building software agents that perform well in an area that requires human-level
intelligence would thus be one step closer to creating strong, or: general, AI,
which can be considered one of the primary goals of the entire field.
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Reinforcement learning (RL) techniques have often been used to achieve suc-
cess in creating game-playing agents [5,7]. RL requires the use of certain func-
tions, such as a policy function that maps states to actions and a value function
that maps states to values. The values of these functions could, for example, be
stored in tables. However, most non-trivial environments have a large state space,
particularly games where states are continuous. Unfortunately, tables would have
to become enormous in order to store all the necessary function information. To
solve this problem in RL, function approximation can be applied, often using
neural networks. A famous recent example of this is the ancient board game
Go, in which DeepMind’s AI AlphaGo was able to beat the world’s best players
at their own game [7]. Besides traditional games, it was used to learn to play
video games. For example, DeepMind used a combination of convolutional neural
networks and Q-learning to achieve good gameplay performance at 49 different
Atari games, and was able to achieve human-level performance on 29 of them [5].
That study shows how an RL algorithm can be trained purely on the raw pixel
images. The upside of that research is that a good game-playing performance can
be obtained without handcrafting game-specific features. The Deep Q-Network
was able to play the different games without any alterations to the architecture of
the network or the learning algorithms. However, the downside is that deep con-
volutional networks require exceptional amounts of computing power and time.
Furthermore, one could speculate how well performance of each individual game
could be improved by incorporating at least some game-relevant features. Still,
it is impressive how the network could be generalized to very different games.

An alternative approach is to use hand-crafted game-specific features. One
such game where this was successfully applied is Ms. Pac-Man, where an AI was
trained to achieve high win rates using higher-order, game-specific features [3].
This approach shows that good performance can be obtained with a small amount
of inputs, therefore severely reducing computation time.

In this paper we present an approach to machine learning in games that
is more in line with the second example. We apply RL methods to a video
game based on Donkey Kong, an old arcade game that was released in 1981 by
Nintendo [4]. The game features a big ape called Donkey Kong, who captures
princess Pauline and keeps her hostage at the end of each stage. It is up to the
hero called Jumpman, nowadays better known as Mario, to climb all the way to
the end of the level to rescue this damsel in distress. Besides climbing ladders,
the player also has to dodge incoming barrels being thrown by Donkey Kong,
which sometimes roll down said ladders.

This game provides an interesting setting for studying RL. Unlike other
games, Donkey Kong does not require expert strategies in order to get a decent
score and/or get to the end of the level. Instead, timing is of the utmost impor-
tance for surviving. One careless action can immediately lead Mario to certain
death. The game also incorporates unpredictability, since barrels often roll down
ladders in a random way. The intriguing part of studying this game is to see
whether RL can deal with such an unpredictable and timing-based continuous
environment. We specifically focus on the very first level of the Donkey Kong



Learning to Play Donkey Kong 147

game, as this incorporates all the important elements mentioned above while
also making the learning task simpler. Other levels contain significantly differ-
ent mechanics, such as springs that can launch Mario upwards if he jumps on
it, or vertically moving platforms. We do not consider these mechanics in this
research.

For this study we used a specific RL technique called actor-critic [9]. In each
in-game step, the actor (player) tries to select the optimal action to take given a
game state, while the critic tries to estimate the given state’s value. Using these
state-value estimates, the critic gives feedback to the actor, which should improve
the agent’s performance while playing the game. More specifically, we employ a
variant of actor-critic: the actor-critic learning automaton (ACLA) [14].

Both the actor and the critic are implemented in the form of a multilayer
perceptron (MLP). Initializing the online learning with an untrained MLP would
be near-impossible: the game environment is too complex and chaotic for random
actions to lead to good behavior (and positive rewards). In order to avoid this,
both the actor and the critic are trained offline on demonstration data, which is
collected from a set of games being played by human players.

The main question this paper seeks to answer is: is a combination of neural
networks and actor-critic methods able to achieve good gameplay performance in
the game Donkey Kong? In the next sections we will first define the domain and
its features, after which we discuss our machine learning setup and methodology
and we conclude with results and discussion.

2 The Domain: A Donkey Kong Implementation

A framework was developed that allows the user to test several RL techniques
on a game similar to the original Donkey Kong. The game itself can be seen in
Fig. 1 and was recreated from scratch as a Java application.

Fig. 1. Recreation of Donkey Kong.
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The goal of the game is to let the player reach the princess at the top of
the level. The agent starts in the lower-left corner and has to climb ladders in
order to ascend to higher platforms. In the top-left corner, we find the game’s
antagonist Donkey Kong, who throws barrels at set intervals. The barrels roll
down the platforms and fall down when reaching the end, until they disappear
in the lower-left of the screen. When passing a ladder, each barrel has a 50%
chance of rolling down the ladder, which adds a degree of unpredictability to
the barrel’s course. The player touching a barrel results in an instant loss (and
“game over”), while jumping over them nets a small score. Additionally, two
power-ups (hammers) can be picked up by the player when he collides with
them by either a walking or jumping action, which results in the barrels being
destroyed upon contact with the agent, netting a small score gain as well. This
powerup is temporary. The agent can execute one out of seven actions: walking
(left or right), climbing (up or down), jumping (left or right) or doing nothing
(standing still). The game takes place in a 680 × 580 window. Mario moves to
the left and right at a speed of 1.5 pixels, while Mario climbs at a speed of 1.8
pixels. A jump carries Mario forward around 10 pixels, which implies it requires
many actions to reach the princess from the initial position.

While this implementation of the game is quite close to the original game,
there are several differences between the two versions of the game:
– The game speed of the original is slower than in the recreation.
– The barrels are larger in the original. To reduce the difficulty of our game, we

made the barrels smaller.
– The original game contains an oil drum in the lower-left corner which can be

ignited by a certain type of barrel. Upon ignition, the barrel produces a flame
that chases the player. This has been entirely left out in the recreation.

– The original game consists of several different levels. The recreation only con-
sist of one level, which is a copy of the first level from the original.

– The original game uses some algorithm for determining whether a barrel will
go down a ladder or not, which appears to be based on the player’s position
relative to the barrel and the player’s direction. The code of the original is
not available, so instead we opted for a simple algorithm where the barrels’
odds of rolling down a ladder is set to be simply 50% at any given time.

The built environment supports manual mode, in which a human player can
interact with the game, and two automated modes in which an MLP is used
to control Mario (either only using an actor network, or learning with a critic).
While there are a few notable differences between the original game and our
recreation both versions are still quite similar. It is therefore reasonable to
assume that any AI behavior in the recreation would translate to the original.

3 Generalization: Multilayer Perceptrons

The actor and critic are implemented in the form of an MLP, a simple feed-
forward network consisting of an input layer, one or more hidden layers and
an output layer. Like the game itself, the MLP was built from scratch in Java,
meaning no external packages were used.
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Fig. 2. Visualization of the vision grid
that tracks objects directly around the
agent, granting Mario local vision of
his immediate surroundings. Note that
while only one grid can be distin-
guished, there are actually three vision
grids stacked on top of each other, one
for each object type.

Fig. 3. Visualization of the level-wide
grid that tracks the current location
of the agent. While not visible in this
image, the grid spans the entire game
environment.

3.1 Feature Construction for MLP Input

This section provides an overview of how inputs for the MLPs are derived from
the game state. Two algorithms employ several varieties of grids that are used
to track the location of objects in the game. Each cell in each grid corresponds
to one input for the MLP. Besides these grids, several additional inputs provide
information about the current state of the game.

There are three types of objects in the game that the agent can interact
with: barrels, powerups and ladders. We use three different vision grids that
keep track of the presence of these objects in the immediate surroundings of
Mario. A similar method was used by Shantia et al. [6] for the game Starcraft.

First of all, the MLP needs to know how to avoid getting killed by barrels,
meaning it needs to know where these barrels are in relation to Mario. Barrels
that are far away pose no immediate threat. This changes when a barrel is on
the same platform level as Mario: at this point, Mario needs to find a way to
avoid a collision with this barrel. Generally, this means trying to jump over
it. Barrels on the platform level above Mario need to be considered as well, as
they could either roll down a ladder or fall down the end of the platform level,
after which they become an immediate threat to the agent. The second type of
objects, ladders, are the only way the agent can climb to a higher platform level,
which is required in order to reach the goal. The MLP therefore needs to know if
there are any ladders nearby and where they are. Finally, the powerups provide
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the agent the ability to destroy the barrels, making Mario invincible for a short
amount of time. The powerups greatly increase the odds of survival, meaning
it’s important that the MLP knows where they are relative to Mario.

In order to track these objects, we use a set of three grids of 7 × 7 cells, where
each grid is responsible for tracking one object type. The grids are fixed on Mario,
meaning they move in unison. During every time step, each cell detects whether
it’s colliding with the relevant object. Cells that contain an object are set to 1.0,
while those that do not are set to 0.0. This results in a set of 3 × 49 = 147
Boolean inputs. The princess is always above the player, while barrels that are
below the player pose no threat whatsoever. We are therefore not interested
in what happens in the platform levels below the agent, since there rarely is a
reason to move downwards. Because of this, these vision grids are not centered
around the agent. Instead, five of the seven rows are above the agent while there
is only one row below. An example of the vision grid is shown in Fig. 2.

The MLP requires knowledge of the location of the agent in the environment.
This way it can relate outputs (i.e. player actions) to certain locations in the
map. Additionally, this knowledge is essential for estimating future rewards by
the critic, which will be explained further in Sect. 5. The agent’s location in the
game is tracked using a 20 × 20 grid that spans the entire game environment.
Like the vision grid, each cell in the agent tracking grid provides one boolean
input. The value of a cell is 1.0 if the agent overlaps with it, 0.0 if it does not.
This agent tracking grid provides 20 × 20 = 400 Boolean inputs. An example
tracking grid can be seen in Fig. 3.

There are some additional features, such as Booleans that track whether
Mario is currently jumping or climbing. The total amount of features is the sum
of 147 vision grid cells, 400 agent tracking grid cells and 4 additional inputs,
resulting in 551 in total. The four additional inputs are extracted from the game
state as follows:

– A boolean that tracks whether the agent can climb (i.e. is standing close
enough to a ladder). This prevents the agent from trying to climb while this
is not possible.

– A boolean that tracks whether the agent is currently climbing. This prevents
the agent from trying to do any other action besides climbing while on a
ladder.

– A boolean that tracks whether the agent currently has an activated powerup.
This is used to teach the MLP that it can destroy barrels while under the
influence of a powerup, as opposed to having to jump over them.

– A real decimal number in the range [0, 1] that tracks how much time a powerup
has been active. We compute it as the ratio t

d between the time passed since the
powerup was obtained (t) and the total time a powerup remains active (d).

3.2 MLP Output

For the actor the output layer consists of seven neurons, each neuron represent-
ing one of the seven possible player actions: moving left or right, jumping left
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or right, climbing up or down, or standing still. During training using demon-
stration data, the target pattern is encoded as a one-hot vector : the target for
the output neuron corresponding to the action taken has a value of 1.0, while all
other targets are set to 0.0. During gameplay, the MLP picks an action based
on softmax action selection [9]. Here, each action is given a probability based on
its activation. Using a Boltzmann distribution, we can transform a vector a of
length n, consisting of real output activation values, into a vector σ(a) consisting
of n real values in the range [0, 1]. The probability for a single output neuron
(action) i is calculated as follows:

σ(ai) =
eai/τ

∑n
j=1 eaj/τ

for i = 1, . . . ,n (1)

where τ is a positive real temperature value which can be used to induce explo-
ration into action selection. For τ → ∞, all actions will be assigned an equal
probability, while for τ → 0 the action selection becomes purely greedy. During
each in-game timestep, each output neuron in the actor-MLP is assigned a value
using Eq. 1. This value stands for the probability that the actor will choose a
certain action during this timestep. The output layer of the critic consists of
one numerical output, which is a value estimation of a given game state. This
will be explained further in Sect. 5.2.

3.3 Activation Functions

Two different activation functions were used for the hidden layers: the sigmoid
function and the Rectified Linear Unit (ReLU) function. Given an activation a,
the sigmoid output value σ(a) of a neuron is:

σ(a) = 1/(1 + e−a) (2)

The ReLU output value is calculated using:

σ(a) = max(0, a) (3)

Both activation functions are compared in order to achieve the best performance
for the MLP. This will be elaborated upon in Sect. 6.

4 Learning from Demonstration

RL alone is sometimes not enough to learn to play a complex game. Hypothet-
ically, we could leave out offline learning and initialize both the actor and the
critic with an untrained MLP, which the critic would have to improve. In a
game like Donkey Kong however, this would lead to initial behavior to consist
of randomly moving around without getting even remotely close to the goal. In
other words: it would be hard to near-impossible for the actor to reach the goal
state, which is necessary for the critic to improve gameplay behavior. This means
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that we need to pre-train both the actor and the critic in order to obtain a rea-
sonable starting performance. For this, we utilized learning from demonstration
(LfD) [1]. A dataset of input and output patterns for the MLP was created by
letting the first two authors play 50 games each. For each timestep, an input
pattern is extracted from the game state as explained before. Additionally, the
action chosen by the player at that exact timestep (and the observed reward)
is stored. The critic uses the reward to compute a target value as is explained
later. All these corresponding input-output patterns make up the data on which
the MLPs are pre-trained.

5 Reinforcement Learning Framework

Our game is modeled as a Markov Decision Process (MDP), which is the frame-
work that is used in most RL problems [9,13]. An MDP is a tuple 〈S,A, P,R, γ〉,
where S is the set of all states, A is the set of all actions, P (st+1|st, a) represents
the transition probabilities of moving from state st to state st+1 after executing
action a and R(st, a, st+1) represents the reward for this transition. The discount
factor γ indicates the importance of future rewards. Since in Donkey Kong there
is only one main way of winning the game, which is saving the princess, the
future reward of reaching her should be a very significant contributor to the
value of a state. Furthermore, as explained in Sect. 2, the agent does not move
very far after each action selection. When contrasted with the size of the game
screen, this means that around 2000 steps are needed to reach the goal, where
7 actions are possible at each step, leading to a very challenging environment.
For these reasons, the discount factor γ is set to 0.999, in order to cope with
this long horizon, such that values of states that are, for example, a 1000 steps
away from the goal still get a portion of the future reward of saving the princess.
A value function V (st) is defined, which maps a state to the expected value
of this state, indicating the usefulness of being in that state. Besides the value
function, we also define a policy function π(st) that maps a state to an action.
The goal of the RL is to find an optimal policy π∗(st) such that an action is
chosen in each state in order to maximize the obtained rewards in the future.
The environment is assumed to satisfy the Markov property, which assumes that
the history of states is not important to determine the probabilities of state
transitions. Therefore, the transition to a state st+1 depends only on the current
state st and action at and not on any of the previous states encountered.

In our Donkey Kong framework, the decision-making agent is represented
by Mario, who can choose in each state one of the seven actions to move to a
new state, where the state is uniquely defined by the combination of features
explained earlier. Like in the work done by Bom et al. [3], we use a fixed reward
function based on specific in-game events. Choosing actions in certain states can
trigger these events, leading to positive or negative rewards. We want the agent
to improve its game-playing performance by altering its policy. Rewards give
an indication of whether a specific action in a specific state led to a good or a
bad outcome. In Donkey Kong, the ultimate goal is to rescue the princess at
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the top of the level. Therefore, the highest positive reward of 200 is given in
this situation. One of the challenging aspects of the game is the set of moving
barrels that roll around the level. Touching one of these barrels will immediately
kill Mario and reset the level, so this behavior should be avoided at all costs.
Therefore, a negative reward of −10 is given, regardless of the action chosen by
Mario. Jumping around needlessly should be punished as well, since this can
lead Mario into a dangerous state more easily. For example, jumping in the
direction of an incoming barrel can cause Mario to land right in front of it, with
no means of escape left. The entire set of events and the corresponding rewards
are summarized in Table 1.

Table 1. Game events and their corresponding rewards. A ‘needless’ jump penalty is
only given if the agent jumped, but did not jump over a barrel nor did the agent pick
up a powerup.

Event Reward

Save princess +200

Jumping over a barrel +3

Destroy barrel with powerup +2

Pick up powerup +1

Getting hit by barrel −10

Needless jump −20

5.1 Temporal Difference Learning

Our RL algorithms are a form of temporal difference (TD) learning [8,9]. The
advantage of TD methods is that they can immediately learn from the raw
experiences of the environment as they come in and no model of the environment
needs to be learned. This means that we can neglect the P -part of the MDP tuple
explained earlier. TD methods allow learning updates to be made at every time
step, unlike other methods that require the end of an episode to be reached
before any updates can be made (such as Monte Carlo algorithms). Central
to TD methods is the value function, which estimates the value of each state
based on future rewards that can be obtained, starting at this state. Therefore,
the value of a state st is the expected total sum of discounted future rewards
starting from state st:

V (st) = E
[ ∞∑

k=0

γkRt+k+1

]
(4)
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Here, st is the state at time t, γ is the discount factor and Rt+k+1 is the reward
at time t + k + 1. We can take the immediate reward observed in the next state
out of the sum, together with its discount factor:

V (st) = E
[
Rt+1 + γ

∞∑

k=0

γk+1Rt+k+2

]
(5)

We observe that the discounted sum in Eq. 5 is equal to the definition of the value
function V (st) in Eq. 4, except one time step later into the future. Substituting
Eq. 4 into Eq. 5 gives us the final value function prediction target:

V (st) = E
[
Rt+1 + γV (st+1)

]
(6)

Therefore, the predicted value of a state is the reward observed in the next state
plus the discounted next state value.

5.2 Actor-Critic Methods

Actor-critic methods are based on the TD learning idea. However, these algo-
rithms represent both the policy and the value function separately, both with
their own weights in a neural network or probabilities/values in a table. The
policy structure is called the actor, which takes actions in states. The value
structure is called the critic, which criticizes the current policy being followed
by the actor. The structure of the actor-critic model is illustrated in Fig. 4.

Fig. 4. The architecture of actor-critic methods [10].

The environment presents the representation of the current state st to both
the actor and the critic. The actor uses this input to compute the action to exe-
cute, according to its current policy. The actor then selects the action, causing
the agent to transition to a new state st+1. The environment now gives a reward
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based on this transition to the critic. The critic observes this new state and com-
putes its estimate for this new state. Based on the reward and the current value
function estimation, both Rt+1 and γV (st+1) are now available to be incorpo-
rated into both making an update to the critic itself, as well as computing a
form of feedback for the actor. The critic looks at the difference of the values of
both state st and st+1. Together with the reward, we can define the feedback δt

at time t, called the TD error, as follows:

δt = Rt+1 + γV (st+1) − V (st) (7)

When a terminal state is encountered (hit by a barrel or saving the princess) the
value of the next state, γV (st+1), is set to 0. The tendency to select an action
has to change, based on the following update rule [9]:

h(at|st) = h(at|st) + βδt, (8)

where h(at|st) represents the tendency or probability of selecting action at at
state st and β is a positive step-size parameter between 0 and 1.

In the case of neural networks, both the actor and the critic are represented
by their own multilayer perceptron. The feedback computed by the critic is
given to the actor network, where the weights of the output node of the actor
corresponding to the chosen action are directly acted upon. The critic is also
updated by δt. Since the critic approximates the value function V (st) itself, the
following equation (where the updated V ′ is computed from V ):

V ′(st) = V (st) + δt,

= V (st) + Rt+1 + γV (st+1) − V (st)

is reduced to:
V ′(st) = Rt+1 + γV (st+1), (9)

which is, once again, the value function target for the critic. We can see that as
the critic keeps updating and improves its approximation of the value function,
δt = V ′(st) − V (st) should converge to 0, which decreases the impact on the
actor likewise, which can converge to a (hopefully optimal) policy.

We employ the actor-critic algorithm called actor-critic learning automaton
[14]. This algorithm functions in the same basic way as standard actor-critic
methods, except in the way the TD error is used for feedback. As explained
before, standard actor-critic methods calculate the feedback δt and use this to
alter the tendency to select certain actions by changing the parameters of the
actor. ACLA does not use the exact value of δt, but only looks at whether or
not an action selected in the previous state was good or bad. Therefore, instead
of the value, the sign of δt is used, and a one-hot vector is used as the target.

6 Experiments and Results

In our experiments we define the performance as the percentage of games where
the agent was able to reach the princess: gamesWon

gamesPlayed . In the first experiment,
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the parameters for the MLP trained using learning from demonstration were
optimized in order to achieve a good baseline performance. We then perform 10
runs of 100 games to see how the optimized actor performs without any RL. For
the second experiment, we compare the performance of only the actor versus
an actor trained with ACLA for 5 different models. Between each model, the
performance of the Actor-MLP is varied: we do not only want to see if ACLA
is able to improve our best actor, but we want to know whether it can increase
the performance of lower-performing actors as well.

6.1 Model Selection for RL

During the RL experiments, the ACLA algorithm was applied to a few different
actor networks. The networks were selected based on their performance on the
10 × 100 games. For example, the first model we considered is an Actor trained
with the combination of the best parameters for the sigmoid activation function,
found as a result of a separate parameter optimization phase. We consider two
networks using the sigmoid activation functions and two networks using the
ReLU activation function. The fifth model differs from the other 4: this model
is only pre-trained for 2 epochs. This small amount of pre-training means that
the model is quite bad, leaving much room for possible improvement by the
critic. Besides model 5, the two sigmoid models were trained until a minimum
change in error between epochs of 0.00005 was reached, while the two ReLU
models had a minimum change threshold of 0.0007. The reason that the ReLU
models’ threshold is higher than the Sigmoid models’, is that preliminary results
have shown that the error did not decrease further after extended amounts of
training for MLPs using ReLU. Table 2 displays and details all 5 models that
we considered and tried to improve during the RL trials together with their
performance and standard error (SE).

Table 2. Details of the 5 models that were used in the RL trials. The performance
means the % of trials in which Mario gets to the Princess in 100 games. The results
are averaged over 10 simulations with MLPs trained from scratch.

Model N hidden layers N hidden nodes Learning rate Activation function Performance

1 2 200 0.01 Sigmoid 56.6% (SE: 1.08)

2 1 50 0.001 Sigmoid 29.9% (SE: 1.08)

3 1 100 0.005 ReLU 48.6% (SE: 2.02)

4 2 50 0.001 ReLU 50.6% (SE: 1.46)

5 1 80 0.01 Sigmoid 12.6% (SE: 0.90)

6.2 Online Learning Experiments

This section explains how the RL trials were set up. Each of the 5 models is
trained during one ACLA session. This learning session lasts 1000 games, where
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the temperature of the Boltzmann distribution starts at a value of 8. This tem-
perature is reduced every 200 games, such that the last 200 games are run at
the lowest temperature of 4. Preliminary results showed that most networks per-
formed best at this temperature. The ACLA algorithm is applied at every step,
reinforcing positive actions. The learning rate of the actor is set to 0.0001, so
that ACLA can subtly push the actor into the right direction. The critic also
uses a learning rate of 0.0001. Such low learning rates are required to update
the approximations (that were already trained well on the demonstration data)
cautiously. Setting the learning rate too high causes the networks to become
unstable. In this event, state values can become very negative, especially when
the actor encounters a lot of negative rewards.

After the 1000-games training sessions, the performance of the actors trained
with ACLA were compared to the performance of the actors before training with
ACLA. For each of the 5 models, both actors were tested in 10 × 100 games, both
with a fixed temperature of 4. The results of the trained actor performances are
shown in Table 3. The final results are shown in Fig. 5, where the performance
of each model’s actor versus the model’s actor trained with ACLA are shown.

Table 3. Results of the models trained with ACLA on 10 runs

Statistic Model 1 Model 2 Model 3 Model 4 Model 5

MEAN 45.8% 31.2% 44.5% 20.8% 26.4%

SE 1.45 1.46 0.76 1.34 1.59

Fig. 5. Performances of the actor trained with vs. without ACLA for each model. The
error bars show two standard errors (SE) above and below the mean
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6.3 Analysis of Results

Looking at Fig. 5, the differences in performance can be seen for each model,
together with standard error bars which have a length of 4 × SE. From this
figure, we see that the error bars of models 2 and 3 overlap. This might indicate
that these differences in performances are not significant. The other 3 models
do not have overlapping error bars, suggesting significance. In order to test for
significance, we use a nonparametric Wilcoxon rank sum test, since the perfor-
mance scores are not normally distributed. The Wilcoxon rank sum test confirms
a significant effect of ACLA on models 1 (W = 41.5, p < 0.05), 4 (W = 100,
p < 0.05) and 5 (W = 0, p < 0.05), but not on models 2 (W = 41.5, p > 0.05)
and 3 (W = 27, p > 0.05). These results seem to confirm the observations made
earlier with respect to the error bars in Fig. 5.

6.4 Discussion

Using parameter optimization, we were able to find an MLP that is able to obtain
a reasonable baseline performance by using learning from demonstration. The
best model, model 1, was able to achieve an average performance of winning the
game-level of 56.6%. In addition to this, several MLPs were trained with different
parameter settings, resulting in a total of 5 neural net models. The performance
of these 5 models varies based on how robustly the actor-critic method is able
to improve these models.

While the performance achieved by an actor that is only trained offline is
reasonable, ACLA does not usually seem to be able to improve this any fur-
ther. Even worse, the actor’s performance can start to decline over time. Only
a model that is barely pre-trained on demonstration data can obtain a signifi-
cant improvement. We therefore conclude that a combination of neural nets and
actor-critic is in most cases not able to improve on a reasonable policy that was
obtained through learning from demonstration.

7 Conclusions

We have presented our Donkey Kong simulation and our machine learning exper-
iments to learn good gameplay. We have employed LfD to obtain reasonable
policies from human demonstrations, and experimented with RL (actor-critic)
to learn the game in an online fashion. Our results indicate that the first setting
is more stable, but that the second setting has possibly still potential to improve
automated gameplay. Overall, for games such as ours, it seems that LfD can go
a long way if the game can be learned from relevant state-action examples. It
may well be that for Donkey Kong, in our specific level, the right actions are
clear from the current game state and additional delayed reward aspects play
a less influencing role, explaining the lesser effect of RL in our experiments.
More research is needed to find out the relative benefits of LfD and RL. Further-
more, in our experiments we have focused on the global performance measure of



Learning to Play Donkey Kong 159

percentage of games won. Further research could focus on more finegrained per-
formance measures using the (average) reward, and experiment with balancing
the various (shaping) rewards obtained for game events (see Table 1).

Future research could result in better playing performance than those
obtained in this research. Actor-critic methods turned out to not be able to
improve the performance of the agent. Therefore, other reinforcement learning
algorithms and techniques could be explored, such as Q-learning [12], advan-
tage learning [2] or Monte Carlo methods. A recent method has been introduced
called the Hybrid Reward Architecture, which has been applied to Ms. Pac-Man
to achieve a very good performance [11]. Applying this method to Donkey Kong
could yield better results. Additionally, it would be interesting to see whether
having more demonstration data positively affects performance. Since we only
focused on the very first level of the game, further research is needed to make
the playing agent apply its learned behavior to different levels and different
mechanics.
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