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Abstract Renewable energy electrical generationhas experienced significant growth
in the recent years. Renewable energies generate electrical energy using different nat-
ural resources, such as solar radiation and wind fields. These resources present an
unstable behavior because they depend on different meteorological conditions. In
order to maintain the balance between input and output electrical energy into the
power system, grid operators need to control and predict these fluctuating events.
Indeed, forecasting methods are completely necessary to increase the proportion of
renewable energies into the system (Heinemann et al. in Forecasting of solar radi-
ation: solar energy resource management for electricity generation from local level
to global scale. Nova Science Publishers, New York, 2006 [17], Wittmann et al. in
IEEE J Sel Top Appl Earth Obs Remote Sens 1:18–27, 2008 [46]). Reducing the
uncertainty of natural resources, operators could reduce maintenance costs, improve
the interventions in the intra-day market and optimize management decisions with
nonrenewable energies supply. Many forecasting methods are used to obtain solar
radiation forecasting for different time horizons. In this chapter, we will focus on
several solar radiation forecasting statistical methods for intra-day time horizons
using ground and exogenous data as inputs.

1 Introduction

Solar radiation forecasting could be used for different purposes with a wide range
of methods. Depending on these purposes, forecasting models are based on different
input parameters and used for several time horizons [22, 42].
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• For time horizons less than hour models based on ground-based sky images obtain
very good results. Thesemodels offer high precision information about cloud cover
variability using sky images with 180 cameras [10, 45].

• Satellite image models are considered a very useful tool to improve solar radiation
for timehorizons up to several hours ahead.Geostationarymeteorological satellites
obtain images from atmosphere and satellite models estimate solar radiation using
these images. In recent years, these models obtain accurate results with temporary
resolution less than an hour and spatial resolution around 1–5km. A review of
several satellite models is shown in Sect. 1.2.

• Statisticalmodels obtain accurate results for timehorizons up to hours ahead.These
models are not good enough to estimate the cloud motion but the high correlation
between ground solar radiation data series made them very good tools for solar
forecasting over 1 hour. The bibliography offers different statistical models for
solar radiation purposes, as autoregressive models (AR) and autoregressive mov-
ing average (ARMA) [4, 5], autoregressive-integrated moving average (ARIMA),
or several machine learning techniques such as neural networks, support vector
machines, or Gaussian process [6, 23, 26].

• For time horizons over 1 day ahead up to 15 days, numerical weather predictions
(NWP) models estimate atmosphere conditions and give different meteorological
variables as solar radiation. These models are based on physical models using
differential equations and solved with numerical methods, see Sect. 1.3.

NWP models accuracy vary depending on the temporal resolution and the geo-
graphical area. Different works are presented in bibliography showing almost no
deviation for clear sky days [17] and errors around 30–40% for different stations
between Europe, U.S.A., and Canada [33–35]. NWP data have also been used in
recent years for post-processing forecasting results with hourly ground measure-
ments from 6 h ahead onwards [12]. On the other hand, satellite images could also
provide information about cloud variability using cloud motion vectors and improve
hourly forecasting [16, 33].

This chapter is focused on solar radiation forecasting for global horizontal irra-
diance up to 6 h ahead. The statistical models provide good forecasting results for
short-time horizons with different temporal granularities (from 5min to hourly data).
Statistical models find a relation between input data and the desired forecast solar
radiation data. Many references estimate this relation using past ground solar radia-
tion data for the same time series as inputs. However, in recent years several works
have pointed out the improvement obtained combining ground measurement data
with exogenous data as inputs [11, 31, 48]. This chapter is intended to provide
a procedure to use statistical models for solar radiation forecasting using ground
measurements and exogenous data, such as NWP and satellite data. An automatic
methodology is proposed for the selection of satellite pixels using Pearson’s corre-
lation values.

http://dx.doi.org/10.1007/978-3-319-76876-2_1
http://dx.doi.org/10.1007/978-3-319-76876-2_1
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2 Ground Solar Radiation Data

As statistical models explained in this chapter are based on ground solar radiation
measurements, it is important to establish a good quality series of data. Indeed,
before applying forecasting models, a solar radiation data assessment and quality
check procedure must be used, see Sect. 1.1.2.4.

GHI data series is not considered stationary because they are affected by sev-
eral variabilities. One variability is completely predictable and it is caused by the
annual and daily solar cycle. On the other hand, motion of clouds and atmospheric
parameters such as aerosols or water vapor caused a nonpredictable variability. All
statistical models suggested in this chapter work with stationary time series of data,
so autocorrelation should be constant over the time [9].

To work with statistical models, separating solar geometry dependence from
the nondeterministic influences generated by atmospheric phenomena is considered
appropriate [13]. So, two different new variables have been introduced to get trans-
formed solar radiation temporal series in stationary series, clearness index k, and
clear sky index K∗

t .
Clearness index is calculated dividing the global solar horizontal radiation GHI

from measurement data by exoatmospheric horizontal radiation GHI0 in the same
point, see Eq.1. This index removes deterministic variability caused by solar cycle
because exoatmospheric radiation is based on solar angles.

K∗
t = GHI

GHI0
(1)

GHI0 is calculated for every day of the year over an horizontal surface with a
simple expression using slight variations of distance between the Sun and Earth.

GHI0 = I0ε0 cos(θzs) (2)

ε0 = 1.00011 + 0.034221 cos τ + 0.001280 sin τ +
+0.000719 cos 2τ + 0.000077 sin 2τ (3)

τ = 2π(n − 1)

365
(4)

where I0 represents solar energy received from sun in a specific surface outside
of the atmosphere per unit of time. The solar constant is considered normally as
I0 = 1367 W/m2. While ε0 is the variation of the distance between the Sun and
Earth over the year calculated with Eq.3, and cosθzs is zenith angle. Finally, zenith
angle equation is substituted in main equation, Eq.5.

http://dx.doi.org/10.1007/978-3-319-76876-2_1
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GHI0 = I0ε0(sin δ sinΦ + cos δ cosΦ cosω) (5)

The second variable introduced allows us to remove seasonal and atmospheric
variability from solar radiation data series. This index is called Clear sky index
K∗
t and is widely used in the bibliography for facilitating the learning process of

statistical methods. As the clear sky index includes a clear sky model, Eq. 6, some
atmospheric conditions are included in this calculation and we obtain a stationary
data series.

K∗
t = GHI

GHIc
(6)

Clear sky models estimate solar radiation GHIc in a surface taken into account
a day without any clouds. Most of the clear sky models are based on different cli-
matic variables that represent the conditions of the atmosphere in clear times, such
as aerosol optical depths (AODs), water vapor, ozone, Linke turbidity factor, or
pressure. AODs represent solar radiation attenuation for different wavelengths from
the scattering and absorption of sunlight within an atmospheric column. AODs and
water vapor could be obtained fromAERONETmeasurement stations net [19], while
ozone could be retrieved from World Ozone Monitoring Mapping provided by the
Canadian Government [8]. MACC project also provides AODs, water vapor, and
ozone data for the whole world from 2004, available in [43].

These kinds of models have been tested all over the world and good results were
obtained compared with ground measurement for clear sky times [39, 47]. One of
the most common clear sky models in solar energy community is Bird and Hulstrm
model [2]. This model is easy to implement and use water vapor column in cm,
two aerosol optical depths, for 380 nm and 500 nm respectively, and total ozone
column for the point we are estimating clear sky radiation. Based on these data,
Bird model estimates different variables, such as Rayleigh dispersion, absorption
of ozone, oxygen, carbon dioxide, and water vapor or absorption and dispersion of
aerosols.

Another example widely used in the solar energy field is a method based on the
REST2 model [15]. First version of REST, developed by Gueymard, only estimated
beam component of solar radiation for clear sky. Later, Gueymard developed REST2
as a dual-band model based on the CPCR2 model. REST2 includes spectral distri-
bution of extraterrestrial radiation, solar constant, water vapor, Angstrom turbidity
coefficient, and reduced NO2 and ozone column as inputs. In [43], is also available
data series for global horizontal irradiance (GHI), direct normal irradiance (DNI) and
diffuse horizontal irradiance (DHI) calculated with McClear clear sky model [27].
McClear data are available from 2004 to current day d − 2withminute, hourly, daily,
or monthly time step for whole world and with a spatial resolution of 1.125. This
model is based on look-up tables and radiative transfer model libRadtran using atmo-
spheric composition variables provided by the MACC projects over whole world,
such as AOD at 550 and 1240 nm, water vapor, and ozone column.
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It is important to evaluate the accuracy of the clear sky model comparing with the
measurement data for clear sky days. To evaluate thesemethods, it is necessary first to
find out cloud-free solar radiation times (clear sky). Several methods could be found
in the solar energy field to separate clear sky conditions from cloudy sky. Ineichen
method detects clear sky hours by establishing a relation between global, beam, and
diffuse, studying the stability of clearness index and the broadband aerosol optical
depth [21]. In a similar way, Lefevre et al. [27] employ clearness index, corrected
clearness index, direct normal clearness index, and diffuse fraction to detect clear
sky instants. The method is described for 1 min. data and an adaptation for hourly
data is used for Eissa to validate HelioClim-3 database in Egypt [14]. On the other
hand, to detect individual times or period of times with clear or cloudy sky conditions
only using GHI, Reno, and Hansen, [38] uses a moving window of period of times
with 1 min. data series. This methodology detects clear and cloudy sky if data series
meets certain conditions based on maximum value of GHI, mean value of GHI,
and three different parameters to study the variability of each period. If the period
studied in this window meets all the conditions, this period is considered clear sky
weather. The limits of each condition should be established experimentally with
ground measurement data in each location. Another methodology is also proposed
to separate clear and cloudy sky conditions for GHI in periods of time [36, 37].
The model compares hourly data from ground measurement stations and clear sky
model to detect whole clear sky days. For each day, the correlation coefficients
matrix between ground data and clear sky data estimated by the model is calculated,
Eq.7. The determinant of this matrix should be lower than a threshold established
experimentally once the data have been observed.

C =
[

ρGHI ,GHI ρGHI ,GHIc
ρGHIc,GHI ρGHIc,GHIc

]
=

[
1 ρGHI ,GHIc

ρGHIc,GHI 1

]
(7)

ρGHIc,GHI = Cov(GHIc,GHI)

σGHIcσGHI
(8)

Fig. 1 Hourly GHI estimated with a different clear sky models and compared with ground mea-
surement and b estimated with McClear model compared with ground measurement in a location
in Canary Island, Spain
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In Fig. 1a several clear sky models were tested for a single station in Canary
Islands, Spain. All clear sky models reproduce very good results in terms of %
rRMSE, variating from 4%withMcClear model to 8% Bird model. While in Fig. 1b,
GHI estimated with McClear compared with ground measurement data obtained in
the same location is shown. McClear reproduces accurate results comparing hourly
data.

3 Numerical Weather Prediction Model Data

NWP provided several atmospheric variables forecasting up to 15 days ahead. All
these models are operated by 15 different meteorological agencies around the world.
For global purposes, we can find the Global Forecast System (GFS) used by the US
National Oceanic and Atmospheric Administration (NOAA) and Integrated Fore-
cast System (IFS) operated by European Centre for Medium-Range Weather Fore-
cast (EDMWF). On the other hand, some mesoscale models are available only for
some zones around the world but offer better spatial resolution. In this case, we
can find MM5 developed by Pennsylvania State University and National Centre for
Atmospheric Research (NCAR) or WRF model. Accuracy of these different models
change depending on the temporal scale and geographic area, as explained in Sect. 1.

Recently, several works have been published associating NWP models predicted
data with a post-processing method to improve hourly ground solar radiation fore-
casting for time horizons hours ahead. Some other references establish a forecasting
improving using NWP models data as inputs in different statistical methods.

In this chapter, it is explained the methodology for working on the secondmanner.
NWPmodels data predicted for the next day are used as inputs in statistical models to
improve solar forecasting. In this case, the methodology is described using the Euro-
pean Centre for Medium-Range Weather Forecast (ECMWF). ECMWF-provided
data comes within 3 h intervals, so an interpolation of the value into hourly data was
necessary. ECMWF provides information about several meteorological variables for
different altitudes, however in this case, we only explained a methodology for using
the following variables described by latitude, longitude, and time:

• Total Cloud Cover (TCC), with values between 0 and 1 using a cloud index.
• Surface Solar Radiation Downwards (SSRD), for accumulative values of J/m2
within two instants.

4 Satellite Solar Radiation Data

As proposed first with NWP data, satellite-derived data will be used to improve solar
radiation forecasting accuracy with statistical models. The most important charac-
teristic of satellite data is their great spatial resolution and possibility of introducing
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many information to see the evolution of the surroundings of the desired location.
Indeed, the most important decision is the optimal selection of satellite pixels with
the best information for the forecasting performance. The analysis of satellite data
in a region surrounding the location where the solar radiation forecasting takes place
is an important issue to establish an optimal selection.

4.1 Satellite Data Analysis

Satellite data offer solar radiation data with different spatial and temporary reso-
lutions depending on the geographical area. These models provide GHI, DNI, and
some great information about clouds and atmosphere conditions. Ineichen [20] pro-
vides an assessment study of several satellite-derived data for BSRN stations with
hourly errors around 17% for global and 34% for direct normal irradiance. Anyway,
depending on the location and climatic conditions, the uncertainties and deviation
from ground measurement change significantly. Eissa [14] reports errors between
17 and 30% for different stations in Egypt, obtaining worst results for northern sta-
tions closer to the sea. Moreover, Mazorra [31] show errors with an average 12.2%
rRMSE at C0-Pozo Izquierdo and 27.8% rRMSE at C1-Las Palmas, two stations in
Gran Canaria island. The first station belongs to the southern area of the island with
more occurrence of clear sky days, while the second station is situated in northern
station with more cloudy days. Both works use satellite-derived hourly data from
Helioclim3. On the other hand, Antonanzas [1] report around 4% rRMSE for a
set of stations in Spain with yearly GHI data obtained from CMSAF database. In
Gran Canaria island, for hourly data using CMSAF database with GHI an error was
obtained from 15% in the south and 33% in the north, Fig. 2.

Calculate the error between satellite-derived data, both GHI or DNI, and ground
measurement can show us the quality of the estimation. The more accuracy provided

Fig. 2 CMSAF SIS hourly data comparison with ground data for northern station (a) and southern
station (b) in Gran Canaria, Spain
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Fig. 3 Intra-day evolution 07-07-2005 of satellite-derived data each 30min for Gran Canaria Island
[31]

by the satellite derived, the more improvement in solar radiation forecasting will be
obtained, instead of using only ground data. Moreover, an observation of satellite
data all over the years could give an overview of the quality of the dataset. We can
observe if satellite data represent specific climatic conditions in the location we are
studying. Figure3 shows that satellite data could estimate a particular behavior of
known meteorological pattern in Canary Islands during summer. The northern part
of the island presents an accumulation of clouds brought by the predominant trade
winds. In this case, satellite-derived data used was obtained from the Helioclim-3
database version 5 (HC3v5). All this information has been processed by the Heliosat-
2 method using images from the Meteosat geostationary [2, 3]. The selected area
contains the entire island of Gran Canaria as well as a significant portion of sea at
the north–east, motivated by the knowledge and influence of the trade winds in the
Canary Islands. This area is defined, in decimal degrees, by the coordinates’ latitude
[+28.7500 to +27.2500], and longitude [−16.0000 to −14.5000], resulting in a grid
of 61× 55 pixels of information, where each pixel possesses a spatial resolution of
3× 3 km2.

In the same way, satellite-derived data obtained from the Satellite Application
Facility on Climate Monitoring (CM SAF) showed the same good results for repre-
senting the cloud cover during summer. CMSAF information has been processed
using images taken from the Meteosat Second-Generation (MSG) geostationary
satellite network with SEVIRI sensor on board and NOAA polar satellites with
AVHRR sensor [40]. These data are converted into global solar radiation and direct
normal irradiance using Heliosat method and the Magic approach, validated with
BSRN ground stations and provided in SARAH-2 database [41, 44]. The selected
area contains the entire Canary Islands aswell as a significant portion of sea. This area
is defined, in decimal degrees, by the coordinates latitude [+27.0000 to +30.0000],
and longitude [−19.0000 to −13.0000], where each pixel possesses a spatial reso-
lution of 5× 5 km2 (Fig. 4).
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(a) july (b) october

Fig. 4 CMSAF SIS monthly means of gridded satellite data for Canary Islands, between July and
October 2010

4.2 Spatiotemporal Correlation Analysis

Statistical models usually forecast GHI data using only ground clear sky data as
inputs. As explained, the aim is to improve statistical models hourly forecasting
using different satellite information as well as ground data. Satellite-gridded data
includes a huge amount of pixels, so statistical model computation would be very
difficult using the whole radiation data. In order to introduce in these models the
most representative information, one of the most important decisions is to select the
optimal pixels from the total set. The variable used to establish the best satellite pixel
is the Pearson correlation between ground data of each station and satellite data of
the selected area [11, 31, 48]. Pearson correlation provides information about the
weather relationship and establish a useful tool to enhance a prediction.

The higher Pearson correlation factor between a satellite pixel and the soil ground
data at the studied location is, the more information about the surroundings provide
this pixel. Indeed, pixels chosen to improve further prediction are those with the
higher correlation factor. As proposed in [31, 48], clear sky index is the variable
used for studying the correlation factor. To evaluate correlations between both the
parameters, satellite and ground data sets, in different temporal moments a time lag
is established. This time lag provides information about the best closest reactions
in the area and gives us an important overview between ground data at the present
moment and solar radiation from the surroundings in the past and possible incoming
events, Eq.9. It is suggested a selection of four time lags, for hourly data the time
lags go from the same temporal moment to a 3 h earlier maximum. From 3 to 6 h,
intercorrelation between satellite and ground dataset obtain values below 0.5, so the
relation is not considered relevant in the studied cases.
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CK∗
t
(i, j)h = corr(K∗

t,ground (t),K
∗
t,satellite(t − h)) para h = 0, 1, 2 & 3 (9)

In Figs. 5 and 6, it is shown an example for two stations in Gran Canaria Island
(Spain). Figure5 represents the correlation between each pixel in the whole grid for
each time lag with a station in the south. Each image corresponds to a correlation
calculation using the whole time-lagged satellite grid and the ground measurements
at the present time. In the same way, Fig. 6 shows the correlation with a northern
station. In both the cases the results provided by the calculation resemble with the
expected behavior. The higher correlated pixels belong to the part of the island
surrounding each station and the correlation decreases while time lag increases. All
these observations lead to dividing islands into two different zones and allows a
better comprehension of islands’ microclimate. North part of the island is heavily
influenced by clouds created by trade winds and the complicated orography. On

Fig. 5 Intercorrelation annual map for clear sky index between ground measurement and each
satellite pixel around the measurements at station C0 Pozo Izquierdo for time lag h = 0, 1, 2, & 3 h
[31]
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the other hand, south sector remains protected from these clouds by the mountains.
The empirical information about the island suggests that northern part possesses
more cloudy days than south area and it is confirmed by the results obtained with
Pearson’s correlation. Indeed, correlated values estimated with satellite pixels and
ground stations give us coherent information for selecting the best ones to improve
solar forecasting.

Annual correlation is calculated using the whole year of each data set, both for
satellite grid andgroundmeasurement station. The results provide climatic conditions
information fromsatellite grid radiation data in this area but it represents the statistical
average on a whole year. Moreover, Zagouras et al. [48] propose a correlation using
a temporal frame in order to evidence specific climatic conditions along the year. In
this case, a correlation between satellite and ground data using different data sets for
each meteorological quarters is shown, so the weather patterns where more coherent
and accurate.

Fig. 6 Intercorrelation annual map for clear sky index between ground measurement and each
satellite pixel around the measurements at station C1 Las Palmas for time lag h = 0, 1, 2, & 3 h [31]



182 L. Mazorra-Aguiar and F. Díaz

Fig. 7 Intercorrelation summer map for clear sky index between ground measurement and each
satellite pixel around the measurements at station C1 Las Palmas for time lag h = 0, 1, 2, & 3 h [31]

For the example of northern station in Gran Canaria Island, Fig. 7 represents the
correlation for summer data and Fig. 8 the correlation for autumn data. Both quarterly
time-lagged correlation images offer climatic information consistencywith empirical
observations in all the seasons. In summer, due to the strong effect of trade winds,
which creates a big area in the north of the island with a similar behavior. It is also
important to remark the shelter provided but the orography, giving other climatic
conditions to south of the Island. This shelter generates also a trail with similar
climatic conditions on the sea, where we can also find clouds. In autumn and rest
of the seasons, the Island is still divided into two regions but the higher correlations
value correspond to pixels more concentrated around the ground station. In this
season, the presence of winds is not so strong and there is not also influence in the
surroundings.

The results obtained give us a similar behavior to the empirical climatic conditions
in this region. Indeed, Pearson’s correlation factor with time-lagged grid data give
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Fig. 8 Intercorrelation fal map for clear sky index between ground measurement and each satellite
pixel around the measurements at station C1 Las Palmas for time lag h = 0,1, 2, & 3 h

us an important information for different time frames for selecting the most related
pixels with the solar radiationwewant to predict in the ground station. This technique
will be used later to estimate the pixels to introduce in statistical models as inputs.

In the explained case, the time-lagged correlation was estimated using clear sky
index data, both from satellite grid and ground data. In an attempt to get more addi-
tional data to enhance the prediction, Dambreville et al. [11] proposed a calculation
using step by step clear sky index difference, Eqs. 10 and 11. This information should
offer the direction of significant incoming patterns in the weather of the island, there-
fore, annual and quarterly analysis where made as in the previous case. These works
were based on 15-min solar radiation data sets, instead of hourly data sets used by
Mazorra et al. [31] and Zagouras et al. [48].

ΔK∗
t = K∗

t (t + 1) − K∗
t (t) (10)
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CΔK∗
t
(i, j)h = corr(ΔK∗

t,ground (t),ΔK∗
t,satellite(t − h)) para h = 0, 1, 2 & 3 (11)

The results report a stretched area around the groundmeasurement station, indeed
giving a more precise information about the most important pixels to improve the
forecasting. However, these correlation values are not high, so the difference between
selected and not selected pixels is not so relevant. The time-lagged images show
a different behavior between east and west area (with higher correlated pixels in
the west while lag increases), confirmed by the fact that wind mainly blows from
west. Indeed, by selecting the most correlated pixels in each time lag we are giving
information to the statistical models about incoming clouds.

5 Forecasting Statistical Models

The main purpose of this chapter is to explain a methodology to improve solar
radiation forecasting for several hours ahead. As it was explained in Sect. 2, statistical
models work with stationary data series. Hence, in this case the variable used in
solar radiation forecasting models is the clear sky index. However, for calculating
and discussing results and errors, the variable used is the global solar radiation GHI,
estimated with Eq.12.

ˆGHI = ˆ(K∗
t ) · GHIc (12)

The general function used to connect input and outputs is Eq. 13.

K̂∗
t (t + h) = F[K∗

t,g(t), . . . ,K
∗
t,g(t − i),K∗

t,e1(t), . . .

K∗
t,e1(t − j), . . . ,K∗

t,en(t), . . . ,K
∗
t,en(t − j)] (13)

where K̂∗
t (t + h) is the clear sky index calculated for time horizon h, K∗

t,g(t − i) is
clear sky index from ground data set at the location for i past values and K∗

t,en(t − j)
corresponds to the n exogenous data with a j time lag. The number of exogenous data
could vary depending on the selection of satellite pixels and NWP variables. One
the most important decisions for the modeler is to choose the number of ground past
data, number of satellite pixels, and NWP variables. Irrelevant inputs may unnec-
essarily increase model complexity and as a consequence may hamper the model
performance. The general function F depends on the statistical model used and it
is established during the training process. It is important to split measurement data
set in training and testing sets. First one is used to establish the optimal function to
relate input and output values, while testing set let us to calculate the accuracy of the
model when new data are presented and controlled the overfitting.
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5.1 Simple Forecasting Models

It is normal to compare any statistical model or methodology developed to improve
solar radiation forecasting with a simple model. These simple models, naïve models,
establish a reference forecasting limit that the new model should improve.

Two simple models for GHI hourly forecasting and different time horizons are
suggested. Naïve models presented in this chapter only work with ground past values
data, using clear sky index series. The first is the simple persistence (Pers) model
[28], Eq.14.

K̂∗(t + h) = K∗(t) (14)

Persistence model is based on the assumption that atmospheric conditions remain
invariant in two consecutive instants, indeed, that clear sky data for t + h only depend
on clear sky for the previous data. An easy improvement of this model is the smart
persistence (smart pers). It consists of the forecast of the clear sky index for time
horizon h using only the mean of h previous clear sky index with the ground data
[18], Eq.15.

K̂∗(t + h) = mean[K∗(t), ...,K∗(t − h)] (15)

5.2 Linear Models

Statistical linearmodels have beenwidely developed for temporary series estimation.
In this case, two different linear models are used for solar radiation forecasting using
past ground data as inputs. The procedure explained in this chapter is based on linear
models regression as described by Boland [4, 5] for solar radiation estimation in
Australia using hourly and daily data.

• Autoregressive models (AR), a regression linear model based only on ground clear
sky past data to forecast solar radiation for time horizon h, Eq. 16.

K̂∗
t (t + h) =

p−1∑
i=0

[
Φi+1K

∗
t (t − i)

] + εt+h (16)

• Autoregressive moving average (ARMA), based on two linear models, an autore-
gressive model (AR) and a moving averages model (MA). This model estimates
solar radiation forecast using a linear combination of different numbers of past
data and error, Eq. 17.

K̂∗
t (t + h) =

p−1∑
i=0

[
Φi+1K

∗
t (t − i)

] + εt+h +
q−1∑
j=0

[
Θj+1εt−j

]
(17)
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In both the equations, K̂∗
t (t + h) represents the solar radiation forecasting for time

horizon h in terms of clear sky index, ε is a white noise and K∗
t (t − i) are the ground

clear sky past data from the measurement station used as inputs in AR model. For
the AR model, Φi+1 for i = 1, 2, ...., p displays the autoregresive parameters and
established the relation between clear sky past ground data and output data. While,
for the MA model Θj+1 for j = 1, 2, ...., q shows moving average parameters that
accompany the errors in MA regression. Both kind of values, Φ and Θ , are obtained
during the training process. The methodology used to obtain both parameters is least
square regression resulting from comparison of the set of past data used as input and
future data that you want to predict.

The order p for the AR model shows the number of past data used to predict. One
of the most important decisions during the training process is the model complexity.
In this case, the optimal order p is obtained by calculating the partial autocorrelation
function (PACF) and the Bayesian information criterion (BIC). Indeed, the model
is defined by AR(p) depending on the number of past inputs used to obtain the best
forecast data. On the other hand, the optimal order q for theMAmodel is obtained by
calculating the autocorrelation function (ACF) and define the number of errors used
during the prediction. In case of ARMA model, the optimal p and q orders should
be established during the training process and the model is defined as ARMA(p,q).

These models are widely used for solar radiation forecasting because of the flexi-
bility for working with temporary series depending on model orders. In many cases,
very good results are described using AR and ARMAmodels with low-order param-
eters [7], which means not a long number of past clear sky values as inputs.

5.3 Artificial Neural Networks

Machine learning techniques have been described as very useful models for solar
radiation forecasting. The method of machine learning explained in this chapter
is artificial neural networks (ANN) [3]. However, many other techniques, such as
Gaussian process or support vector machines, have been described in many papers
with very good results and the methodology would be similar. ANNs is a statistical
model that establishes a relation between a group of inputs and outputs during a
training process. The model is based in a group of units, called neurons, that generate
an output and received inputs from a group of input data or from other units. The units
are connected between them by an associated weight. Each unit, neuron, receives
the sum of different variables affected by these connection weights and produces
an output. The output is obtained using a nonlinear activation function of transfer
function to limit its amplitude and the input sums. The activation function used in
this case is the hyperbolic tangent function, Eq.18.

f (x) = ex − e−x

ex + e−x
(18)
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The neural network used in this case is the multilayer perceptron (MLP), as
described inmany engineering and forecasting applications.MLP consists of a group
of input data, which makes up the input layer, connected by weights with at least
one layer of neurons, called hidden layer, finally connected with the output layer
neurons. The input layer is not neurons because it only contains the meteorological
input data. On the other hand, neurons in hidden layer present a nonlinear transfer
function (hyperbolic function), while the final output neuron uses a linear activation
function. The output layer consists of a single neuron with the solar radiation (in
terms of clear sky data) data for the time horizon we want to forecast, K̂∗

t (t + h).
Each variable in the input layer is connected with each neuron in hidden layer by a
first group of weights. All hidden layer outputs are also connected with the single
output by a second group of weights, Eq. 19.

K̂∗
t (t + h) =

H∑
j=1

ω2
sjfj[

T−1∑
i=0

(ω1
jiK

∗
t (t − i) + ω1

0] + ω2
0 (19)

where K̂∗
t (t + h) is the forecast solar radiation for time horizon h, ω2

sj is the group
of weights that connect the output of hidden layer neurons with general output, ω1

ji
is the group of weights that connect each input i with each hidden unit j, K∗

t (t − i)
represents the inputs variables for the ANN and ω1

0 and ω2
0 are the biases for hidden

and output layers. Input variables K∗
t (t − i) could be only ground measurement past

data or also other meteorological, satellite, or NWP data.

5.3.1 Backpropagation Training Process

Both groups of weights, ω1 and ω2, associated to each connection between input,
hidden, and output layer are modified during the training process. The optimal group
of weights is obtained byminimizing a cost function. Themean square error between
the target forecast data K∗

t (t + h) and the estimated data obtained with ANN is one
the most common methods K̂∗

t (t + h), Eq. 20.

E(ω) = 1

2

N∑
i=1

[K̂∗
i (t + h) − K∗

i (t + h)]2 (20)

The backpropagation algorithm is the optimizing method used to minimize the
cost function. In this algorithm, first the ANN weight vectors are randomly initial-
ized. During the training process, the weights ωk are changed with each iteration by
calculating a new group ωk+1 by minimizing E(ω) with a gradient descent process,
Eq. 21.Where η is the learning parameter. Scaled conjugate gradient gives us an opti-
mal solution to estimate gradient direction and learning parameter in each iteration.
In this way, we get the optimal solution faster.
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ωk+1 = ωk − η
∂E

∂ωk
(21)

5.3.2 Regularization Techniques

The network architecture is one of the most important issues to obtain the optimal
accuracy of ANNs to approach continuous functions. If ANNs obtain very good
results with the training data set and approximate the noise of the function, poor
accuracy will be obtained when new data are presented. This problem is called over-
fitting. So, ANNs structure will determine the possibility of the function to be useful
with a general data set. It is widely described the use of regularization techniques to
avoid overfitting problem [3, 25]. This complexity control has been treated with dif-
ferent regularization techniques, as pruningmethods [24], regularization coefficients,
or Bayesian regularization framework [30]. Classical regularization techniques need
to estimate the regularization coefficients using a cross-validation method. Control
model complexity reduces the computational load and find inputs without any influ-
ence to improve forecasting, because their associated weights are pruned.

In this case, the number of hidden units and inputs are decided by using Bayesian
regularization framework. This method controls the complexity of the model.
Bayesian framework considers a probability density function over the weight space.
Indeed, the optimal group of ANNs weight values agree to the maximum probability
density function. In practice, Bayesian framework [29, 30] introduces two hyper-
parameters, α and β, to the cost function in order to control the model complexity,
Eq. 22. Term Eω in the cost function induces a decay in unnecessary weights, so
at the end of training process it is possible to prune weights under a certain value.
Bayesian framework permits to estimate hyperparameters at the same time that we
are training our network.

S(ω) = β

2
ED + α

2
Eω (22)

Eω(ω) = 1

2

m∑
j=1

(ω2
j ) (23)

where m is the number of parameters of the whole ANN structure. Bayesian frame-
work permits to estimate hyperparameters at the same time that we are training our
network. So, not only overfitting is controlled but also it is studied the complexity of
themodel to reduce hidden and input units. As described in [25], Bayesian framework
approach uses an iterative procedure to estimate hyperparameter’s optimal values, α
and β, and optimal group of weights ωMP . This iterative procedure takes place only
in the training dataset.

1. Hyperparameters α y β are initialized using small values and vector of weights is
randomly set using a Gaussian distribution. In this iteration number k, estimated
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weights ωk and defined hyperparameters αk and βk give us first an ANN output
and calculate the error function Sk(ω), Eq. 22.

2. The optimal vector of weights ωk+1
MP is obtained in this step using an optimization

algorithm, as scaled conjugate gradient. The number of iterations in this step
depends on the convergence criterion decided for backpropagation process. With
this optimal weight, we estimate cost function for iteration k + 1, Ek+1

ω y Ek+1
D .

3. In this step hyperparameters, αk+1 and βk+1, are recalculated using the following
steps:

a. γ k+1 =
m∑

p=1

(
λp

λp + αk

)
, where λp are eigenvalues of error Hessian matrix

without regularization term, H = βk∇∇ED.
b. αk+1 = γ k+1

2Ek+1
ω

.

c. βk+1 = Nγ k+1

2Ek+1
D

.

4. Repeat step 2 using new parameters ωk+1, αk+1, and βk+1, calculated in the
previous step until reaching the convergence criterion.

These steps are repeated until the regularized error is equal to half of the number
of data points. The theory states that S(w) = N/2 when α = αMP and β = βMP . It is
also possible to study the hyperparameters α and β and parameter γ in each iteration
k and decide the convergence when they are almost constant.

Bayesian framework gives also the possibility to study the number of inputs
and hidden units, model complexity. To study the number of inputs, we study the
weights associated to each input to decide the influence in the final result. We can
divide weights into different sets, one group for weights associated to each input,
one for second layer of weights (connect hidden units with output), and one for each
layer biases. Each group is controlled for an independent hyperparameter αg . This
technique is called automatic relevance determination (ARD). As different hyper-
parameters are assigned to each group of weights, during the training process it is
possible to determine the most relevant inputs. Weights associated to a large αg are
supposed to be small. In this case, input related to this weight and hyperparameter
is not relevant for network results and can be eliminated.

To control the number of hidden units, Bayesian framework estimates the proba-
bility for eachmodel, called evidence of themodel. Different ANNs are trained using
several numbers of hidden units and the network with the highest evidence provides
us the best one [24, 30, 32]. To calculate evidence of each model the final expression
is Eq.24 that calculate the log of evidence. Where N is the number of inputs, m
is the total number of parameters, γ is the number of well-determined parameters
(weights not close to zero), and |A| is the determinant of the Hessian matrix of the
total (regularized) error function S(w).



190 L. Mazorra-Aguiar and F. Díaz

logP(Mi|D) = −αMPEMP
ω − βMPEMP

D − 1
2 log|A| + m

2 logαMP +
+N

2 logβMP + 1
2 log

(
2
γ

)
+ 1

2 log
(

2
N−γ

)
(24)

6 Numerical Statistical Models Implementation

Once the theoretical approach of statistical models has been explained, in this section
it is described the implementation using different data sets (ground measurement,
satellite-derived, and NWPs data). In case of linear models and ANNs, one of the
most important decisions is the model complexity. Following sections explain how
to work with both statistical models in order to choose the optimal model complexity
and number of inputs. As it is necessary to split data sets into training and testing
set, both groups should represent the same climatic conditions and seasonal events to
work with similar relations between input and output data (for example, one whole
year for each set).

6.1 Linear Models Complexity and Results

The model complexity is one of the most important issues to take into account by
the modeler. The complexity of a linear model consists of the number of inputs for
the AR model and the number of error terms for the MA model. This complexity is
settled by estimating the order q and p of the model. If the model uses a great number
of unnecessary parameters, the general accuracy could be worse. As explained in
Sect. 5, to study the model complexity we use the sample of partial autocorrelation
function (PACF), the sample of the autocorrelation function (ACF) and the Bayesian
information criterion (BIC).

Partial autocorrelation function (PACF) sets the correlation between two instants
of time series with a ρ delay. The sample PACF for the different time lags gave us
the number of past values relevant for the forecasting. The maximum order p of the
model is established within a range of 95% of this sample, Fig. 9.

Following the same criterion, the maximum q order is selected using the sample
autocorrelation function (SACF). Once the maximum orders have been decided, for
AR models we calculated several simulations using order p from 1 to maximum for
all time horizons in order to select the optimal number of parameters. In case of
ARMAmodel, we calculate different situations using all possible combinations with
order p and q from 1 to maximum.

Finally, to decide the best option between all simulations theBayesian information
criterion (BIC) and the error of the model %rRMSE (with testing data set) give us
the optimal solution. For each time horizon AR model, optimal solution is obtained
with different p orders.
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Fig. 9 Sample partial autocorrelation factor (SPACF) using solar radiation clear sky index. In this
case, the maximum order was selected in p = 12

In the same way, ARMAmodel optimal solution was established calculating BIC
and %rRMSE for all scenarios. In most cases, optimal model shown by BIC gives
us different results of p and q orders. However, in many cases when compared with
the optimal solution obtained with BIC to a simple ARMA model using p = 2 and
q = 1, there is not a substantial improvement in terms of error%rRMSE. The optimal
solution could need different orders for each time horizons and a huge number of
input data (i.e., p order around 11), while ARMA(2,1) is a very simple model using
only past input data to obtain a solar radiation forecasting.

6.2 ANNs Optimal Selection Using Ground Data

ANNs complexity in one of the most important issues to obtain the optimal fore-
casting accuracy. As explained in Sect. 5.3.2 we focus in selecting the number of
inputs and hidden units. Bayesian framework gives us the possibility of selecting the
number of inputs with ARD technique and the number of hidden units calculating
the log of evidence.

Moreover, Bayesian framework controls the overfitting of the model [24].
Figure10 shows the final result obtained with training and testing datasets fore-
casting using classical NN (a) and bayesian NN (b). In the first case, it is possible
to observe a major dispersion in testing set because the model has overfitted the
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(a) Classical ANN (b) Bayesian NN

Fig. 10 Measured data versus forecasted data for the training and testing (right) datasets using
classical ANN (a) and Bayesian NN (b)

training set (overfitting problem). While with Bayesian NN the dispersion in train-
ing and testing sets remain almost similar, overfitting problem is not present.

In case of using only ground data, the number of inputs of eachmodel corresponds
to the number of past ground measurement using to forecast the solar radiation for
time horizon h. ARD assigns a different hyperparameter αg to each group of weights
associated with one input. At the end of the training session, the weights with a
large αg are close to zero. In this case, the corresponding input is considered not
relevant for the network and can be eliminated. In practice, each hyperparameter is
represented in a figure with his variance. Inputs with a low bar comparde with other
hyperparameters associated to the rest of inputs is considered irrelevant and could
be eliminated. Figure11a shows the result obtained with six past clear sky index
inputs. Sometimes, pruned inputs are considered irrelevant with ARD technique, as
the second input in Fig. 11, do not reproduce more accurate results and it is better to
use all inputs. It is advisable to check the general error of the model when we prune
these inputs.

The number of hidden units is settled once it is decided the number of inputs
that give us the optimal results. Bayesian framework calculates the log of evidence
between several ANNs with different number of hidden units, Eq. 24, to establish
the optimal one. The ANNs with the higher Log of evidence is considered the best
one. As in Fig. 11b, most of results show low number of units. As explained with
ARD technique, log of evidence give us information about the best number of units
but it is recommended to calculate the error of several models around the best one to
establish the optimal number.

6.3 Exogenous Data Optimal Selection

The aim of using exogenous data is to improve ANN’s hourly forecasting obtained
only with ground data. Exogenous data used in this case are NWP’s data and a grid of
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(a) ARD (b) Log of Evidence

Fig. 11 ARD information for six ground data (a) and log of evidence for different hidden units (b)

satellite-derived data. These exogenous data will be added to the number of ground
measurement inputs obtained in Sect. 6.2.

NWPs data suggested are total cloud cover (TCC) and surface solar radiation
downwards (SSRD) obtained for the location of study. Both data are the one day
ahead prediction for the hour we want to predict, k∗

t (t + h), estimated by a NWP
model.

Moreover, it is proposed to use also satellite-derived data in order to include
information of the surroundings to the ANN. Satellite-gridded data includes a huge
amount of pixels, so ANN computation would be very difficult using the whole
radiation data. In order to introduce the most representative information obtained
from satellite data, one of the most important decisions is to select optimal pixels
from the total set. The variable used to establish the best satellite pixel is the Pearson
correlation between satellite-gridded data and ground data, [11, 31, 48].

This Pearson correlation is calculated for each station between ground data at the
present time and satellite pixel with time lags. During the training proces, we used
time lags from t = 0 to a maximum of 3 h obtaining four time-lagged images. This
correlation quantifies a relation between ground data and satellite for different time
lags. After 3 h, the correlation between present ground data and past satellite data
is not representative. Consequently, Pearson correlation gives us information about
meteorological event incoming from the surroundings included in satellite images.

In that way, we can select pixels from the surroundings that represent the high-
est relation with ground station data for different time lags. ANN improves solar
forecasting depending on the satellite information we use as inputs. The selection of
optimal group of pixels is one the most important issues in this field. Dambreville
et al. [11] proposes to use Pearson correlation of clear sky index variation between
satellite and ground data with a time lag from 15 to 60 min. each 15 min. It is sug-
gested to use a fixed number of pixels from each time-lagged image to improve solar
forecasting with a linear statistical model. While Zagouras et al. [48] choose the 100
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most correlated pixels from all time-lagged images. They work with hourly data and
choose the best pixel using clear sky index Person correlation between satellite and
ground data. Number of optimal pixels in each time- lagged image is settled with the
genetic Algorithm.

Mazorra et al. [31] considered amaximumnumber of 30 satellite-derived radiation
data. During the training process, six different tests at each station based on selecting
different pixels were made. For the first test, the number of pixels over 0.5 correlation
values were retrieved for each image and later the distribution of pixels between the
four time-lagged images was computed. The considered 30 satellite pixels are the
highest correlated for each image according to this percentage distribution (e.g., in
Test-1 56%of pixels at time lag t = 0; 30% at t = −1; 8% at t = −2 and 6% at t = −3
should be selected, which means to retrieve 17, 9, 2, and 2 pixels respectively). As
most of the optimal pixels were taken from first two time-lagged images, it was
considered five tests using different percentage distributions of pixels. Test-2 and
Test-3 estimated a new distribution taking into account more pixels from the other
two images. While Test-4 only added satellite pixels only from time lags, t = 0
and t = −1. Finally, Test-5 formulates the same procedure as Test-1 but calculates
a different distribution for every quarterly group of images for each station. Test-
6 composes a new distribution using the best previous percentage distribution but
selecting pixels from quarterly images.

The huge amount of satellite-derived data makes the computation difficult, so a
median filter for each 3× 3 satellite pixels is applied. Consequently, a superpixel
was created computing GHI median value of every 3× 3 group of pixels, Fig. 12.

To improve the previous work that use a different distribution of pixels for each
test, it is suggested an automatic methodology. The estimation of the optimal number
of pixel is based on the same Pearson correlation calculation. Instead of selecting a fix
limit correlation value (0.5) to generate the distribution, it was considered different
tests changing this limit. The percentile of the whole Pearson correlation distribution
for all time-lagged images was established as the limit. In that way, it is possible to
change the distribution of pixel from the four images depending on the percentile
considered. During the training process, different percentiles from 0.1 to 0.9 were

Fig. 12 Superpixel (3× 3) selection at station in Gran Canaria (Spain) for time-lagged correlation
images, t = 0, 1, 2, & 3 h. Black area shows selected superpixels
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suggested. For the first one, more pixels from first images (time lag 0 and 1 h) are
selected, while for the second one more pixels from latest images were extracted.

Once selected a different test,ANNsare trainedusinggroundpast data and satellite
data for each test. Comparing forecasted hourly GHI with measured data for the
testing dataset using the relative root mean square error, the best ANN’s architecture
and the optimal satellite information is selected for each case. In each location,
this procedure should be repeated for the different time horizons’ solar radiation
forecasting.

6.4 Solar Radiation Forecasting Results

Statistical forecasting models explained in this chapter should be validated with
measurement data. It is possible to find several error metrics suggested in specialized
bibliography to establish the accuracy of each model. The error of the models are
calculatedwith testing data set, because it is necessary to evaluate the capacity of each
model to generalize the results with unknown data. All metrics are expressed in terms
of GHI (W/m2) even if clear sky model was the variable used during the training
season. The most common error metrics are root mean square error (RMSE), mean
absolute error (MAE), or mean bias error (MBE) and their relative metrics calculated
dividing by the generally measuredmean for the testing data set. It is also widespread
the use of SKILL metric. This metric calculates the difference of each model with
a simple model used as a reference. In this case, it is explained SKILL error metric
compared with persistence model. Indeed, this value gives us how the described
model improves a simple persistence model. This chapter shows some examples
obtained using two measurement stations in Gran Canaria (Spain), calculating the
accuracy of each model using %rRMSE, Eq.25, and SKILL, Eq.26. The models in
terms of these error metrics are the following:

• Persistence Model—Pers
• Smart Persistence Model—Smart Pers
• Autoregressive Moving average with orders (2,1)—ARMA(2,1)
• Artificial Neural Networks with ground data—NN
• Artificial Neural Networks with ground data, satellite data and NWP data—
NN+ECMWF+SAT Model

RMSEmodelo =
√√√√ 1

N

N∑
i=1

( ˆGHIg,i − GHImeasure,i)2 (25)

SKILL(%) =
(
1 − RMSEmodelo

RMSEpersistence

)
x100 (26)



196 L. Mazorra-Aguiar and F. Díaz

Table 1 RMSE for time horizons h = 1...6 in two stations in Gran Canaria (Spain)

Stations Models 1 h 2 h 3 h 4 h 5 h 6 h

C0 Persistence 92.47 128.04 149.88 168.08 176.17 177.26

Smart persistence 92.47 124.64 140.10 144.44 141.50 138.69

ARMA(2,1) 85.78 109.30 119.77 126.64 129.32 130.38

NN 88.20 113.39 125.13 127.12 131.68 130.03

NN+ECMWF+SAT media
IGH = 543.10 Wm−2

84.00 106.17 110.51 114.93 118.89 120.43

C1 Persistence 118.95 167.03 195.15 213.39 224.71 228.18

Smart persistence 118.95 169.11 190.69 195.34 190.21 182.18

ARMA(2,1) 111.44 145.14 159.90 167.17 170.65 171.49

NN 110.63 143.90 157.06 162.11 162.09 162.88

NN+ECMWF+SAT media
IGH = 433.79 Wm−2

104.75 134.37 142.82 145.41 147.31 147.88

Table1 shows the results in terms of RMSE in (W/m2) and the ground measure-
ment mean for the testing dataset. While, Fig. 13 describes the results in terms of
%rRMSE. Both of them give the results for time horizons between 1 and 6h ahead
and for two ground measurement stations. First station (C0) is located to the south
of the island and presents better results because the weather is more stable along the
year with more presence of clear sky day. On the other hand, C1 station is on the
north of the island a presents more cloudy and unstable days during the year, so error
metrics areworse. As it is obvious, all themodels obtain better results for shorter time
horizons and get worse results while increase time horizon. In case of persistence
simple models this growth is much more pronounced, while ARMA and NN with or
without exogenous data control the error for large time horizons. Even if smart per-
sistence presents an improvement compared to persistence, in larger time horizons
it presents still some problems. ARMA(2,1) and NN only use ground measurement
past data as inputs get similar results in terms of RMSE for both the stations and
time horizons. Both the models improve significantly as simple models. Moreover,
the inclusion of exogenous data in NN as inputs improve also the model and obtain
the best accuracy for both stations and time horizons.

In Fig. 14 it is possible to see the SKILL(%) parameter for both the stations and
all time horizons. In this figure, it is shown the different combinations of NN inputs
in order to discuss the importance of everyone: NN only with ground data, NN with
ground and satellite, NN with ground and NWP data, and NN with ground and
all exogenous data. The SKILL forecast increases with time horizon, which means
that the more far ahead in time, the better results we get with ANN+ECMWF+SAT
method compared with persistence model. For both the stations the best model is the
neural networks with ground, satellite and NWP data as inputs. Moreover, it is also
observable that satellite data (NN+SAT) give better results for the first three time
horizons, from 1 to 3h, while NWP data (NN+ECMWF) is the best model from time
horizon 4 to 6h. It could also be interesting the results separating testing data sets in
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Fig. 13 %rRMSE results using testing data set for two different stations in Gran Canaria (Spain)
with several forecasting models. C0 Station (up) & C1 Station (down)

(a) C0 Station (b) C1 Station

Fig. 14 SKILL(%) results for two different stations in Gran Canaria (Spain) using exogenous data
with ANNs

the different seasons of the year or type of days (i.e., cloudy or sunny days). In this
way, it is possible to establish a different model depending on the weather conditions
or the time of the year.
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7 Conclusions

The main conclusion of this chapter is that ANN and ARMA model present very
good results in solar radiation hourly forecasting compared with persistence simple
models. On the other hand, when exogenous data, as satellite data and NWP data,
are introduced to the ANN as inputs we obtain an important improvement. In this
case, we used solar radiation from several pixels around the measurement station
with time lagged from t = 0 h to t = −3 h compared to present time. NWP data
used to improve solar radiation forecasting are 24h ahead the prediction of total
cloud cover and surface solar radiation forecasting for the time step we want to
forecast. One of the most important decision in order to obtain more accurate results
is to find the optimal satellite pixels. A huge number of pixels without relevant
information for solar radiation forecasting causes a high computation costwithANNs
and worse estimation errors. Pearson’s correlation between ground and satellite data
give us critical information to select optimal satellite pixels. The architecture of
neural networks influences the final result of the estimation. The Bayesian methods
explained in this section are considered an adequate tool to estimate the number
of inputs and hidden neurons. With this method, it is possible to avoid overfitting
problem and obtain accurate prediction results with both training and testing data.
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