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Abstract Probabilistic wind forecasting is a methodology to deal with uncertainties
in numerical weather prediction models (NWP). In this chapter, we describe the need
for ensemble forecasting, the different techniques used to generate the different initial
conditions, and the operational ensemble models that are used nowadays in meteo-
rological agencies. Then, we develop an ensemble method designed for the down-
scaling wind model described in Chap.4 coupled with the AROME–HARMONIE
mesoscale model, a non-hydrostatic dynamic forecast model described in Chap. 5.
As we have explained in Chap.4, some parameters need to be estimated since we
do not know its exact value. These parameters are, basically, the roughness length
and the zero plane displacement (explained in Chap.2), as well as the Gauss moduli
parameter (α) used in the diagnostic wind model. This estimation is the main source
of uncertainties in the model; therefore we will estimate some of these parameters
using different forecast values of the AROME–HARMONIE. Finally, an example of
the approach is applied in Gran Canaria island with a comparison of the ensemble
results with experimental data from AEMET meteorological stations.
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1 Probabilistic Forecasting

Up to this point, we have described deterministic weather models. These models are
governed by the initial state, and the errors in this state grow as the model predicts
the future, since the models are unstable systems characterized by nonperiodicity.
So, the accuracy of the forecast depends on the initial state which is uncertain.

This relationship between the initial state and the deterministic prediction was
discovered by Edward Lorenz and is discussed in his book “The Essence of Chaos”
[24]. In 1962 [22], he simulated the evolution of the atmospheric state using the
geostrophic form of the two-layer baroclinic model proposed in [21] consisting of
12 ordinary differential equations in 12 variables. It used a linear regression from the
output of amodel.When he ran the simulations, he found out that some solutionswere
drastically different. Analyzing the results, he found out that, in some experiments,
he had truncated the model output to three digits accuracy while the original values
had a precision of six digits. Just this small change lead to significant differences in
the forecast results. These differences imply that observations need a precision up to
the three decimal places to obtain a reliable forecast.

This result prompted the scientific community to determine a procedure to deter-
mine which is the best forecast of the atmosphere state according to the available
data. Nowadays, there are several meteorological agencies worldwide running their
numerical weather prediction models (NWP), each one different from the others.
The results from these models are consistent with the observed data but they differ
between them, so we cannot say which model is the “correct one”. Instead, we can
think of each forecast as a member of an ensemble of atmospheric states that are
consistent with the observations.

With this idea, Epstein realized that the atmosphere is deterministic since it obeys
the fundamental laws of hydrodynamics, but its state can only be known in a proba-
bilistic way. Therefore, in [11], he proposed a “stochastic dynamic” (SD) approach
consisting in using the continuity equation for probability [14] in the observations
data. He compared the results of the SD model with the results of a deterministic
model that used as the initial condition the ensemble mean from the Monte Carlo
method.

The problem with SD is that it is expensive; the number of equations for SD
prediction is equal to the number of spectral components raised to the power of
the number of moments. Philip Thompson [34] proposed a more efficient model by
using variances directly instead of covariances; this way the number of equations
was reduced.

With the advent of parallel machines, researchers developed different approaches
to deal with the uncertainty of the initial state. Murphy [26] ran an experiment using
the hemispheric version of the Meteorological Office (UKMO) five-level general
circulation model. Initial conditions were obtained by perturbing a given state. Seven
individual perturbations were used, and the ensemble forecast consisted of their
integration.
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To obtain the perturbed initial state,Murphy considers two different methods: ran-
dom perturbation and lagged-averaged forecast. The random perturbation generates
the seven initial states by adding independent perturbations to the known initial state.
These perturbations are consistent with some analysis errors. This random pertur-
bation method is similar to the Monte Carlo method. The lagged-averaged forecast
method uses past observations to generate each member of the ensemble.

The Monte Carlo (or random perturbation) approach has some limitation; for
example, the perturbed parameters can lead to imbalances in the atmospheric state.
Another issue is that the perturbations in the Monte Carlo approach were random,
while the parameters should have certain preferred directions. With this ideas, dif-
ferent strategies for perturbing dynamical prediction models were studied. The two
more used methods nowadays are the singular vector decomposition (SV) [1, 10,
28] used by the European Centre for Medium-Range Weather Forecasts (ECMWF)
[19] and the Breeding Vector technique (BV) used by the National Centers of Envi-
ronmental Prediction (NCEP) [36]. A comparison between the two methods using
the ECMWF Integrated Forecast System is described in [25].

These advances, along with more powerful parallel machines, and improvements
in deterministic forecasting [33], led to the birth of Ensemble Prediction Systems
(EPSs). EPSs are operational systems that provide probabilistic forecasts based
on ensemble members. The method to create these ensemble members is differ-
ent between systems. The Meteorological Service of Canada (MSC) uses a Monte
Carlo approach, and, as said previously, ECMWF uses SV, and NCEP uses BV [4].

More recently, a new approach to ensemble forecasting has been developed, the
multimodel ensemble forecast. This approach uses forecasts from different models
as ensemble members. The ensemble may be composed of deterministic forecasts or
from ensemble prediction systems (called superensemble). The idea is to combine
the strengths and weaknesses of each model and obtain a more reliable prediction
[9, 16].

The THORPEX Interactive Grand Global Ensemble (TIGGE) [3] is a multimodel
ensemble system that combines the predictions of the following models: ECMWF,
UKMetOffice (UKMO),National Centre forMediumRangeWeather Forecasting—
India (NCMRWF),CMA, JapanMeteorologicalAgency (JMA),NationalCenters for
Environmental Prediction (NCEP-USA), Meteorological Service of Canada (CMC),
Bureau of Meteorology Australia (BOM), Centro de Previsao Tempo e Estudos Cli-
maticos Brazil (CPTEC), Korea Meteorological Administration (KMA), and Mete-
oFrance (MF) global models. Apart from this global initiative, there is the North
American Ensemble Forecasting System (NAEFS) [7] that combines the systems
from the Canadian Meteorological Centre (CMC) and the National Centers for
Environmental Prediction (NCEP); and an European initiative: the Development
of a European Multimodel Ensemble System for Seasonal to Interannual Prediction
project (DEMETER) [27].

If the reader is interested in these developments, JohnM. Lewis [20] wrote a more
thorough review of the history of ensemble models.
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1.1 Initial State Perturbation Methods

In this subsection, we describe the two most used methods to perturbate the ini-
tial state. A simple way of converting a deterministic forecast into a probabilistic
forecast would be to modify the deterministic result using a probability distribution
constructed from previous forecast errors. This strategy would not work because the
underpinning dynamical equations are nonlinear, then the errors at the initial state do
not relate directly to the predicted result. Sowe need to perturbate the initial state. The
Monte Carlo approach is to create a random perturbation of the initial state according
to their known error characteristics. However, this leads to underdispersive forecast
ensembles [5]. The reason for this is that there are many unrepresented sources of
uncertainty not explicitly represented in a Monte Carlo forecast.

For this reason, new techniques were required to represent the nonlinearity of
the dynamical equations in the ensemble predictions. Two of the most commons
techniques will be discussed in this sections; the Singular Vector decomposition, and
the Breeding Vector technique.

1.1.1 Singular Vector Decomposition

The main idea behind Singular Vector decomposition is the singular value decompo-
sition of the forward tangent linear operator. This can be physically interpreted as the
fastest growing perturbations. Therefore, SVs give information about the direction
and dynamics of rapidly growing instabilities and perturbations.

The method was devised by Lacarra and Talagrand in [18] where they were inter-
ested in identifying the perturbations that lead to the maximum difference between
the simulated state and a reference one. They defined x(0) as the vector containing
the initial state information. The model is defined as M : Rn → R

n . Therefore the
state at time t is defined as

x(t) = M(x(0)) (1)

Since they were interested in knowing the perturbations that differed more from a
reference state they need to know how the state evolves. For this reason, they define
the resolvent of M as

F(x) = dx
dt

(2)

If the perturbed initial state is defined as (x(0) + χ(0)), then the time evolution of
the perturbed state can be written as

d

dt
(x(t) + χ(t)) = F(x(t) + χ(t)) = F (x(t)) + ∂F

∂x

∣
∣
∣
∣
x(t)

χ(t) + O
(

χ2(t)
)

(3)
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the second-order term can be neglected, and the derivative of χ is

d

dt
(x(t) + χ(t)) = ∂F

∂x

∣
∣
∣
∣
x(t)

χ(t) (4)

This linear system of equations is called the tangent linear system ofM in the vicinity
of the particular solution x(t). It describes the temporal evolution of the perturbation
χ(t), to first order concerning the initial perturbation χ(0). We can rewrite Eq. (4)
as

χ(t) = L(0, t)χ(0) (5)

where the operator L(0, t) is the forward tangent linear operator or the linear propa-
gator. So the perturbations that will maximize the difference can be found using the
singular value decomposition of L(0, t).

L = WΛY∗ (6)

where Λ is a diagonal matrix with the singular values of L (λ1, λ1, . . . ). Y∗ is
the conjugate transpose of Y. The columns of Y correspond to the initial (or right)
singular vectors. The columns of W are the evolved (or left) singular vectors.

The singular vectors of L are the same as the eigenvectors of L∗L. And, specifi-
cally, Y and W are related in the following manner:

L∗Lyi = λ2
i yi (7)

LL∗wi = λ2
i wi (8)

To find the perturbations with the maximum amplitude growth, we need to com-
pute them. To this end, we can use any norm E

||χ ||E = 〈χ,Eχ〉 (9)

where E is a matrix operator that defines the inner product.
For a linear operator L, exists its adjoint L∗ such that 〈χ,Ly〉 = 〈L∗χ, y〉. Its

possible to choose different norms at the initial and the final time

||χ(t0)||2E0
= 〈χ(t0), E0χ(t0)〉 (10)

||χ(t)||2Et
= 〈χ(t), Etχ(t)〉 (11)

The objective is to maximize the growth rate, or amplification factor, defined as
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λ2 = ||χ(t)||2Et

||χ(t0)||2E0

= 〈χ(t), Etχ(t)〉
〈χ(t0), E0χ(t0)〉

= 〈Lχ(t0), EtLχ(t0)〉
〈χ(t0), E0χ(t0)〉 = 〈L∗EtLχ(t0), χ(t0)〉

〈χ(t0), E0χ(t0)〉
(12)

To maximize λ2, we solve the following eigenvalue problem:

(

L∗EtL
)

yi (t0) = λ2
i E0yi (t0) (13)

We can rewrite this equation using the variable transformation yi (t0) = E
− 1

2
0 γi (t0):

(

E
− 1

2
0 L∗EtLE

− 1
2

0

)

γi (t0) = λ2
i γi (t0) (14)

This equation has the same form as Eq. (7); comparing them we can conclude

that the eigenvectors of E
− 1

2
0 L∗EtLE

− 1
2

0 =
(

E
− 1

2
0 L∗E

1
2
t

) (

E
1
2
t LE

− 1
2

0

)

= L∗
sLs are

the initial singular vectors ofLs ; and they represent the perturbationswith amaximum
amplification factor in the time interval (t0, t).

When used in real numerical weather prediction models, the calculation of the
singular vector is difficult because the definition of the modelM has to be computed
analytically. In operational ensemble prediction systems, this calculation is made
using tangent linear and adjoint models and an iterative Lanczos algorithm [6, 12].
A review of the method with applications to El Niño as well as decadal forecast-
ing is presented in [29]. Also, Diaconescu and Laprise [8] review the applications
such as forecast error estimation, ensemble forecasting, target adaptive observations,
predictability studies and growth arising from instabilities.

1.1.2 Breeding Vector

This method is the most computationally inexpensive [38]. There are two different
versions of this method: the simple breeding [35], and the masked breeding [36].

The main idea of the method is that the choice of the initial perturbation has to
cover all the space of possible analysis errors. In an operational NWP, the pertur-
bation of the initial state is reduced by the use of observations. Therefore, the most
important errors are those associated with the evolution of the model. The breeding
method modifies the perturbation using the difference between the perturbed and the
unperturbed forecast. Using this technique, all random perturbations develop into the
structure of the leading local (time-dependent) Lyapunov vectors (LLVs; see [37])
of the atmosphere after a transient period.
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Toth and Kalnay [36] describe the main steps of the breeding method as

1. add a small, arbitrary perturbation to the atmospheric analysis (initial state) at a
given day t0

2. integrate the model from both the perturbed and unperturbed initial conditions
for a short period t1

3. subtract one forecast from the other
4. scale down the difference field so that it has the same norm as the initial pertur-

bation
5. add this difference into the analysis corresponding to the following period t1

By construction, this method “breeds” the nonlinear perturbations that grow fastest.
Therefore, independent perturbations will converge to the same perturbations after
enough time steps. This perturbation is related to LLVs. LLVs have been used to
characterize the behavior of dynamical systems. The Lyapunov exponents(λi ) are
defined as

λi = lim
t→∞

1

t
log2

(
pi (t)

pi (0)

)

(15)

where p is a linear perturbation spanning the phase space of the system with orthog-
onal vectors.

Each Lyapunov exponents can be associatedwith a perturbation vector. The vector
associated to the largest exponent has the property that any random perturbation
introduced an infinitely long time earlier develops into it. Lorenz [23] described this
property; he noted that initially random perturbations had a strong similarity after 8
days of integration. The breeding method converges to this LLVs after 3 or 4 days
of integration.

The masked breeding is the same as the simple breeding described before, but
taking into account the geographically dependent uncertainty.

1.2 Multimodel Ensemble Methods

The rationale behind multimodel ensemble methods is that collective information is
better than single information, especially the more complex the process. In the con-
crete case of short- and medium-range weather forecasting Sanders, it was demon-
strated that combining different forecast could be beneficial [2, 15, 32]. Combining
multiple models, Fritsch et al. [13] suggested that the superiority of the forecast
relied on the variations in model physics and numerics between models leading to a
substantial role in generating the full spectrum of possible solutions.

However, we should note that model physics and numerics is not enough, another
source of uncertainty is the initial state of the atmosphere. This kind of uncertainties
is handled by Ensemble Prediction Systems using a technique to perturbate the initial
state (such the ones described in Sect. 1.1). So, a good idea could be to combine both
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models. Palmer et al. [27] developed aEuropeanmultimodel ensemble systemknown
as DEMETER.

When developing a multimodel ensemble system, there are several choices to be
made. For example, we can consider all the individual forecasts equal, so we just
combine them with the same weight. However, more complex methods of optimally
combining the single-model output have been described [17, 30, 31]. Another aspect
is how the initial state is perturbed; is it better to use the same perturbation in all
models? Or we should use the default perturbation technique for each model?

In the concrete case of DEMETER, from each model, except that of the Max-
Planck Institute (MPI), uncertainties in the initial state are represented through an
ensemble of nine different ocean initial conditions. Three different ocean analyses; a
control ocean analysis is forced with momentum, heat, and mass flux data from the
ECMWF 40-yr Reanalysis, and two perturbed ocean analyses are created by adding
daily wind stress perturbations to the ERA-40 momentum fluxes. The wind stress
perturbations are randomly taken from a set of monthly differences between two
quasi-independent analyses. Also, to represent the uncertainty in SSTs, four SST
perturbations are added and subtracted at the start of the hindcasts. As in the case of
the wind perturbations, the SST perturbations are based on differences between two
quasi-independent SST analyses. Atmospheric and land surface initial conditions are
taken directly from ERA-40.

Palmer [27] concludes that the multimodel ensemble is a viable, pragmatic
approach to the problemof representingmodel uncertainty in seasonal-to-interannual
prediction, and leads to a more reliable forecasting system than that based on any
one single model.

A study of the superiority of multimodel ensemble systems has been done by
Hagedorn et al. in [9, 16].

2 Ensemble Model for Diagnostic Wind Field

Given the importance of introducing the uncertainties in the prediction of the wind
field, in this chapter, we describe a simple ensemble method designed for Wind3D,
the diagnostic wind model presented in Chap. 4. In the same spirit as Wind3D, the
ensemble approach described in this section is a fast procedure designed for the
microscale.

Schematically, in any NWP, the main sources of uncertainty comes from obser-
vations, model parameters, data assimilation procedures, and boundary conditions.

In the wind model described in Chap.4, we have detected the parameters with
more uncertainty, namely: Gauss moduli parameter (α), roughness length (z0), and
displacement height (d).If we categorize these uncertain parameters in the four cat-
egories defined above, α belongs to the model parameters while z0 and d belong to
boundary conditions. An evolutionary algorithm has been presented to characterize
these parameters. However, it has been noted that even the “best estimation” has

http://dx.doi.org/10.1007/978-3-319-76876-2_4
http://dx.doi.org/10.1007/978-3-319-76876-2_4
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some uncertainty; in Sect. 4.2 several evolutionary algorithms have been run leading
to different parameter estimations.

Another source of uncertainty in Wind3D comes from the observations. Please,
remember that these observations can originate from measurement stations or the
forecast of a deterministic NWP. In the case of the measurement data, the errors
are related to the machine and the daily conditions whereas in the deterministic
NWP forecast, we are using the “best forecast” provided by the NWP, but we have
already seen that this forecast may be inaccurate. Moreover, due to the differences in
horizontal resolution between the local scale diagnostic wind model and the NWP,
the height of the grid points between models can be inconsistent. In this case, we do
not know if these points are reliable for Wind3D. So, we may ask ourselves “Which
are the reliable NWP forecast points?”

Since the method described is an ensemble forecast system, the wind model is
used in conjunction with an NWP to have the predictability capability. In this case,
to be able to estimate the variables, we need two different sets of data, the set used
to run the wind model and the set of observations the results are compared against.
Instantly another question arises “How do we generate these sets?”.

The ensemble model described here tries to answer the two doubts that have
arisen. The model chooses the valid NWP points based on the difference between
their height; when the difference between the NWP height and the diagnostic height
is lower than a threshold, the point is valid. Oncewe have chosen the viable points, we
construct the two subsets (model observations and validation data) using a random
selection. Once the two subsets are created, we estimate the best values for α, ε, z0,
and d using thememetic algorithm discussed in Sect. 4.2. Figure1 shows the diagram
of the method.

Fig. 1 Diagram of the ensemble system

http://dx.doi.org/10.1007/978-3-319-76876-2_4
http://dx.doi.org/10.1007/978-3-319-76876-2_4


138 A. Oliver et al.

This method can also be used with various NWP forecast emulating a multimodel
ensemble. For example, we can have some ensemblemembers fromECMWFmodel,
other members from NCEP, and the rest from AROME–HARMONIE.

3 Numerical Experiment

In this section, we present an application of the presented methodology. The appli-
cation is in Gran Canaria island. The ensemble forecast is generated from AROME–
HARMONIE forecast with a horizontal resolution of 2.5 km. The ensemble model
is validated against measured data from the AEMET network stations. The day of
the simulation is February 20, 2010.

The mesh created for this application is created with the Meccano method
(Chap.3) from a digital terrain model of the Gran Canaria island. The height of
the domain is 10.000m., and the resulting mesh has 251.808 nodes and 1.090.366
tetrahedra (Fig. 2)

Figure3 shows the terrain height in the Meccano mesh and the AROME–
HARMONIE grid. We can observe the differences between the height considered by
theWind3D and AROME–HARMONIE. The maximum height is around 1.000 m in
the AROME–HARMONIE discretization and 2.000 m in theWind3D discretization.
This big height difference indicates that, at some points, the AROME–HARMONIE
10m velocity may not be appropriate. For this reason, instead of using all the 10m
data, we have selected a subset of points attending to a height difference criteria.

Once a set of points has been chosen, we randomly divide them into two different
subsets. One subset is used as observations in Wind3D, and the other subset is used
by the evolutionary algorithm to compute the fitting function. The fitting function is
the Root Mean Square Error (RMSE) between the forecast values by Wind3D and
the data in the second subset. In this case, we have selected the points which height
difference is less than 50 m. These selected points are shown in Fig. 4 (left). The two
randomly generated subsets can be seen in Fig. 4 (right); green points are used as
observations for Wind3D, and red points are used to compute the RMSE.

Fig. 2 Terrain discretization

http://dx.doi.org/10.1007/978-3-319-76876-2_3
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(a) AROME–HARMONIE grid (b) Meccano mesh

Fig. 3 Terrain heights (m.)

(a) Selected points based on height    
differences

(b) Random selection of subsets: observations   
(green) and control points (red)

Fig. 4 AROME–HARMONIE points used in simulation

Now we have generated all the members of the ensemble. Then, we estimate the
best values of α, ε, z0 and d, and with these best values, we compute the forecast
wind using the Wind3D model.

Finally, to validate the method, we compare the ensemble forecast results with the
observed data measured in the AEMET network of automatic stations. Each station
provides two data; the average and the maximum wind velocity of the last 10min.
Their UTM coordinates are summarized in Table1, and their position in a map is
shown in Fig. 5.

Figure6 shows the comparison of measured data and the ensemble box plot fore-
cast.We show themost representative comparisons from four stations. The first thing
that we can notice is that, in general, the mean value of the ensemble forecast is rea-
sonably similar to the measured wind velocity. In some cases, the forecasted velocity
is close to the maximum (C625O, C639Y), in some others, it is close to the average
velocity (C619X), and sometimes it is in between (C635B).

Another observation is that the variation of themeanvalue of the ensemble forecast
is smoother than themeasured velocity. In contrast, themeasured data exhibits abrupt
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Table 1 Location of measurement stations (UTM coordinates)

Station X (m) Y (m)

C619X 429.982 3.108.577

C629Q 429.966 3.073.034

C635B 443.504 3.088.472

C639X 455.377 3.076.514

C639Y 443.283 3.070.534

C625O 436.499 3.081.522

Fig. 5 Location of the
AEMET measurement
stations

changes among time steps. These abrupt changes are not captured by any member
of the ensemble.

A more detailed inspection of the comparatives shows interesting remarks. For
example, the ensemble forecast in station C619X has many outliers in all time steps.
C639Y also has some of them, but they are close to the mean values. However,
C635B andC625Odo not have outliers in all the time steps. These outliers sometimes
can provide interesting information, for example, in station C619X from 0–7h they
capture the total variation between the average data and the maximum.

C625O station deserves a special mention. Analyzed carefully, we can observe
that, between 11 h and midnight, the difference between maximum and average
measured data increases. This increase is captured in the ensemble forecast by the
higher dispersion of the box plot. This agreement between ranges shows that the
resulting ensemble probability can be useful in predicting the uncertainty of the
wind velocity.
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(a) C619X measurement station

(b) C635B measurement station

Fig. 6 Comparison of the average and maximummeasured data and the ensemble box plot forecast
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(c) C639Y measurement station

(d) C625O measurement station

Fig. 6 (continued)
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4 Conclusions

In this chapter, we have seen the necessity of a probabilistic approach to numerical
weather prediction is necessary. It is introduced with a brief review of the progress
done in this area: the discovery of the need for a probabilistic approach and the
development of these techniques. Then we go into more detail with the description
of two of the more used methods to perturbate the initial state; Singular Vector
decomposition and Breeding Vectors. To finish the introduction, we describe the
basis of a multimodel ensemble method.

Next, we describe an ensemble forecast method specially designed for the
microscale. This method is based on the estimation of the uncertain parameters
using an evolutionary algorithm. The uncertain parameters are both model param-
eters, i.e., α and ε, and physical parameters, namely the roughness length (z0) and
the displacement height (d). The evolutionary algorithm minimizes the error of the
predicted wind field by a microscale wind model and the forecast of an NWP. The
NWP forecast is used for the input data of the model and the control data to compute
the fitting function of the evolutionary algorithm. The selection of these two subsets
is random and generates the different members of the ensemble system.

Finally, to illustrate the methodology and validate the model, we present a numer-
ical experiment. In this experiment, we use the microscale model Wind3D described
in Chap.4 coupled with the AROME–HARMONIEmodel described in Chap.5. The
experiment is located in Gran Canaria island during February 20, 2010. The results
have shown that, at any predicted time and station, the forecast ensemble probability
lies between the average and the maximum velocity, usually closer to the maximum.
Also, the range of the forecast increases when the difference between the maximum
and average velocity raises, providing a tool to predict variability in the wind field.
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