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Foreword

A central challenge in assessing renewable energy resources consists in elaborating
operational previsions of their temporal and regional fluctuations. Without adequate
forecasting methods, the degree of penetration of these energies in the power grid
will not meet the expectations triggered by climate change and geopolitical issues.
Consequently, the present volume describes recent advances in both deterministic
and probabilistic forecasting of wind fields and solar radiation, with focus on
complex terrain conditions that are frequently encountered in practice.

The first two chapters expose and characterize the geophysical and meteoro-
logical data and parameters upon which the methods presented rely: requirements
for spatial and temporal resolution, and availability of multichannel remote sensing
from space as operational data sources. Low altitude orbiting satellites provide land
cover and albedo data, as well as digital terrain elevation grids, where traditional
land-based sources do not exist. Geostationary satellites provide operational
meteorological data such as cloud cover with high temporal resolution, as well as
atmospheric soundings used as input for numerical weather prediction models, that,
in turn, yield the primary data for wind field forecasts.

Orographic representation is one of the features to which wind simulations are
very sensitive. Hence, Chapter “Discretization of the Region of Interest” introduces
a technique for shaping all involved solids, natural and built, to the required scale in
a given region. Chapter “Wind Field Diagnostic Model” describes a wind field
diagnostic model for downscaling initial, irregular, or coarsely gridded fields, and
underlines the methods’ sensitivity to its input parameters. Deterministic wind field
prediction is addressed in Chapter “Wind Field Deterministic Forecasting”, where
regional numerical weather prediction models, with resolution between 1 and 3 km,
are presented as adequate providers of the requested information. The probabilistic
prediction of wind fields is defined in Chapter “Wind Field Probabilistic
Forecasting” as an ensemble methodology designed for the downscaling wind
model introduced in Chapter “Wind Field Diagnostic Model”. The procedure leans
on ensemble forecasting, a methodology used by major meteorological services for
dealing with the uncertainties inherent to numerical weather predictions.
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An example of the approach for Gran Canaria Island, validated with ground
observations, concludes the wind resource part of this inspiring survey.

The, not less forward-looking, solar radiation part begins with Chapter “Solar
Resource Variability”, where the instability of the resource over different scales is
quantified by mean of a predictable variability-smoothing space-time continuum. Its
implications for solar penetration on the power grid and variability mitigation
strategies are also discussed. Chapter “Solar Radiation Forecasting with Statistical
Models” deals with deterministic forecasting and focuses on several statistical
methods for intraday time horizons. Probabilistic forecasting is introduced in
Chapter “Solar Radiation Probabilistic Forecasting” with two approaches for pro-
ducing intraday predictions with lead times ranging from one to 6 hours.
Verification metrics developed by the meteorological verification community are
used to evaluate their performances. Chapter “Solar Radiation Maps” concludes the
survey, focusing on the assessment of the resource per se, rather than the assess-
ment of its variability. Terrain-following mapping of surface irradiation is presented
as an established discipline, in which advances mainly rely on the growth of
computing power. This procedure is applicable for any point on the earth’s surface
and for any desired timescale.

Emeritus, MeteoSwiss
February 2018

Dr. Antoine Zelenka
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Part I
Analysis and Characterization

of Geographical and Meteorological Data

The aim of this book is to describe different methodologies for solar radiation and
wind fields characterization and forecasting. In Part II and III of this book it is possi-
ble to find wind fields and solar radiation methodologies respectively. These Chap-
ters describe variability models, deterministic forecasting, probabilistic forecasting
or the methodology for generating natural resources maps.

The Chapters in this Part are dedicated to introduce different data and tools needed
for the explained models. Forecasting and variability models need accurate ground
measurement for modeling performance and for calculating accuracy. Indeed, solar
radiation and wind field groundmeasurement gauges, NumericalWeather Prediction
data and Satellite derived data are described, as well as quality check procedures. On
the other hand, to elaborate natural resources maps, some geographical and mete-
orological information involved in the numerical modeling need to be presented.
Moreover, the meccano method developed to construct simultane- ously tetrahedral
meshes and volumetric parameterizations of solids is introduced focusing on the
application of the method to build tetrahedral meshes over complex terrain, that are
interesting for simulation of environmental processes.



Acquisition and Analysis
of Meteorological Data

Javier Calvo Sánchez, Gema Morales Martín and Jesús Polo

Abstract Wind and solar radiation observations are required for renewable energy
modeling and forecasting. High-quality ground measurements are essential for
renewable energy studies. Ideal wind measurement devices should respond to slight-
est breezes, be strong enough to stand up high winds, give a fast and accurate answer
for turbulent fluctuations, andhave a linear output and a simple dynamic performance.
The solar radiation reaching the earth’s surface contains several components, beam,
diffuse, and reflected (albedo) radiation, as a consequence of the interaction with
atmospheric particles. The instruments for measuring solar radiation are classified
according to the working principle (mainly thermoelectric or photoelectric sensors)
and to the component of solar radiation to be measured. Ground measurements give
information about solar radiation or wind fields in a specific location. On the other
hand, in many applications for the modeling and prediction of natural resources,
meteorological data with a greater spatial distribution are needed. Satellite models
offer meteorological data estimated from satellite images with a high spatial and
temporary resolution. In the same way, Numerical Weather Predictions models give
information about several meteorological variables with a great spatial resolution.

1 Ground Measurement Data

Wind observations are required in awide range of activities. For example, monitoring
wind speed and wind direction is a vital issue when it comes to safe transportation.
Adverseweather conditions affect all types of transport: private, public, and industrial
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or business transport. High winds pose a particular threat, especially for tall, high-
sided vehicles such as the lorries that use road systems to deliver.

Buildingsmay be damaged by stronger wind events for which theywere designed.
However, except for tornadoes, most damage occurs because various building ele-
ments have limited wind resistance due to inadequate design, application, material
deterioration, or roof system abuse. Wind data is also needed to run transport models
and for the production of weather forecasts based on numerical weather prediction
(NWP) models. In agricultural purposes, strong winds affect the plant’s life both
mechanically and physiologically and, as a consequence, affect crops production.
Wind also has its importance in the dispersion of air pollution conditions, which is
crucial related to health warnings to population. In sport and other leisure activities,
the wind can be an issue as it may prevent from developing particular activities.

1.1 Wind Data

Following [55], one of the definitions of wind is a three-dimensional vector quantity
with small-scale random fluctuations in space and time superimposed upon a larger
scale organized flow.

As the vertical component of the wind speed is usually small near the earth’s
surface, in most applications, the measured wind is the horizontal component. Some-
times the instruments determine the two horizontal north and east components. Alter-
natively, it is possible to measure speed and direction directly, from which we can
derive the components if necessary. In any case, the direction of the wind is referred
to the direction from which the wind is blowing measured in degrees clockwise from
north. In specific applications such as turbulence research, it is important measuring
the vertical component of the wind too. Then, the wind might be expressed using the
three components of the vector or, alternatively, the speed, the horizontal direction,
and the elevation angle.

As it can be inferred from the definition of wind, this meteorological variable can
be described in terms of mean flow and gustiness or variation about the mean. For
practical purposes, more useful concepts derived from the general definition of wind
are the following:

• Averaged quantities are those wind quantities averaged over a period of time.
Depending on the application, the period used often range from 10min, for
forecasting purposes, up to hours or days for climatological studies. Some mea-
surements averaged below 10min are sometimes required in certain aeronautical
activities.

• Peak gust, which is the maximum observed wind speed over a specified time inter-
val. This quantity is very important for transport activities, specially for aircraft
take-off and landing.

• Gust duration, which is the duration of the observed peak gust.
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According to the World Meteorological Organization (WMO) standards, wind
speed should bemeasured to the nearest unit (meters per second, kilometers per hour,
or knots) and wind direction should be measured in degrees from north direction and
reported to the nearest 10 degrees. The meteorological requirements are summarized
in [1] but for horizontal speed, an accuracy of 0.5 ms−1 below 5 ms−1 and better
than 10 percent above 5 ms−1 is usually sufficient. For wind direction, it should be
measured with an accuracy of 5◦.

1.1.1 Measurement Devices

As mentioned in [7], the ideal wind-measuring instrument would respond to the
slightest breeze yet be strong enough to stand up in hurricane-force winds, respond
to rapidly changing turbulent fluctuations, have a linear output, and exhibit simple
dynamic performance. Of course, it is almost impossible to build instruments that
meet all these requirements. Rather, the sensors are designed to work optimally for
particular exposure conditions or specific needs.

Traditional wind measurements
Although the best approach for measuring wind is the use of instruments, sometimes
measurements are not available for different reasons: the equipment is not working
temporarily, the place is not accessible to install the instrumentation, or the mea-
surement is not representative of an extended area. In these cases, indirect ways to
estimate the wind have to be used and, unfortunately, errors in values might be large.

For wind speed, the estimation is made by observing the effects of wind in objects,
people, or buildings around the observer. The Beaufort scale is an empirical measure
for describing wind intensity according to the observation of surrounding conditions
(seeTable5.1 and 5.2 of Part I in [1]). Similarly, thewind directionmight be estimated
by observing the drift of smoke from a chimney, the movement of flags, leaves, etc.

However, for nearly all applications, a precise value of wind speed and direction
is necessary, particularly useful are the averaged quantities. Thus, a wind-measuring
system is usually needed, comprising a sensor itself as well as a processing and
recording system.

The simplest, and low cost, equipment consists of handheld anemometers for
wind speed and simple vanes, mounted on a pole, for wind direction. The wind
velocity measurement should be taken from a point well exposed to the wind, far
apart from obstructions. Regarding the vane, the measurement alignment should be
the one pointing the nearest compass direction. Both cases need a human observer
to read the values (Fig. 1).

Following the same principle than the simplest devices, cup and propeller sensors
are the most common instruments to provide wind velocity. The wind velocity is
determined as a function of the angular velocity of the cup or propeller rotor (Fig. 2).
Cup and propeller anemometers are linear over most of their range, with a notable
exception at the lower end. Very small winds could not overcome the internal friction
of the gauges to start the rotation. Consequently, there is a threshold wind speed,
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Fig. 1 Left. Handheld anemometer which should face directly to the wind. Right. Simple vane
indicating where the wind comes from

Fig. 2 Cup anemometer (left) and propeller vane (right)

below which the anemometer will not turn. There is also an upper limit for the
maximum wind speed above which the anemometer cannot keep going without any
damage to the probe.

The response of the cup and propeller wind sensors to changes in wind speed is
characterized by the response length, which depends on the geometry of the device
and the materials used. Usually, the response is faster for acceleration than for decel-
eration, so that the average speed of these devices overestimates the actual average
wind speed [9, 14]. It even depends on the vertical wind conditions. This overspeed-
ing, which in some cases might be as much as 10% of the measurement, has to be
quantified as it might be considered for some applications.

Asmentioned before, forwind direction,more or less sophisticated vanes are used.
They are flat plate or airfoil that can rotate about a pole and, in static equilibrium, is
oriented along thewind vector. There is a counterweight to balance the vane about the
bar where it is mounted [7]. The vanes are devices that have to ensure two premises:
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it must not have a preferred direction and the instrument has to be well aligned to
the true north. It is a concern the response of the vane to rapid changes in wind
direction. Usually, it is more problematic for low winds where the measurements
might oscillate considerably about the true direction but not so noticeable for large
winds. More details about this limitation can be found in [50, 55].

Other wind sensors
There are other sensors more sophisticated, which provide wind values derived from
different physical principles. They use faster response sensors so the wind can be
sampled at higher frequencies. Thus, they are suitable for turbulence measurements
which usually need to sample data at higher rates than 1 measure per second.

Pitot tube anemometers Theymeasure overpressure in a tube that is kept aligned
with the wind vector (Fig. 3). The wind speed is related to the root square of
the overpressure value. Actually, its major requirement is the need for a high-
quality differential pressure sensor to convert it to wind values. Pitot tubes are
simple, reliable, inexpensive, and suited for a variety of environmental conditions,
including extremely high temperatures and a wide range of pressures. However,
they provide erroneous values for very low and very high winds. They are used
on aircraft as speedometers. A full description of this sensor can be found in [32,
79].

Sonic anemometers They measure the time between emission and reception of
an ultrasonic pulse traveling over a fixed distance [42]. Their response to wind
changes is linear but, as it depends on the sound velocity in air, measurements
are sensitive to changes in temperature and humidity. Further information about
how sonic anemometers derive the components of wind may be found in [7].
The sonic anemometer is fairly expensive compared to a simple mechanical
sensor and requires considerably more power. There can be signal loss due to
heavy rain or wet snow. However, these gauges are able to take measurements
at very high frequencies (usually at 20Hz) which makes them suitable for fun-

Fig. 3 Pitot tube anemometer mounted in an aircraft
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damental research on turbulence. Its use is widely spread all over the scientific
community.

Hot-wire anemometers They measure the cooling on thin heated wires because
of the action of the wind (Fig. 4). The cooling depends on the mass flow rate, i.e.,
the speed and density of the flow past the sensing element. Thermal anemometry
became popular because the technique involves the use of very small probes. They
offer very high spatial resolution and excellent frequency response characteristics.
The basic principles of the technique are relatively straightforward and the probes
are difficult to damage if reasonable care is taken. These sensors are well suited
to measurement of atmospheric turbulence because they work at a high rate.
However, they are quite sensitive to the external conditions so their use is not
very common, specially in wet environments. In these situations, they tend to
overestimate the wind speed. Another shortcoming is that hot-wires are expensive
and they must be calibrated as they are susceptible to drift. They also have the
problem that they are too sensitive at low wind speeds (extended reading on this
can be found in [7]).

Hot-disk anemometers They measure the gradient of temperature across a chip
device. It provides both wind speed and direction. Their use is not wide extended
since they are recently developed and their limitations are similar to the hot-wire
anemometers.

Remote wind sensors Devices such as the sodar, lidar, and radar, measure distant
winds from the place where the equipment is set. Their methodology is based
in sound, light, and electromagnetic wave propagation and backscatter detection
(Doppler shift). They are quite useful for those places of interest where no devices
can be installed for different reasons. Additionally, they are essential to measure
upper winds.

Fig. 4 Hot-wire anemometer
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Usually, we need the combination of two different devices in order to measure
wind speed and direction. A cup anemometer and vane combination or a propeller-
vane equipment is often the preferable systems, which can be used also to derive the
velocity components from the wind speed and direction. If needed, sometimes the
association of two propellers in orthogonal configuration is used for the same pur-
pose. A more sophisticated instrument is the sonic anemometer with the transducers
pointing at the three directions of space (Fig. 5). The disadvantage of measuring the
wind components using the same instrument is that if the device stops working, wind
information is missed completely. On the other hand, having just one gauge makes
the equipment maintenance easier (Fig. 6).

At the end, it is a user decision to install a particular measurement equipment
according to their needs.

Fig. 5 Two different types of sonic anemometers to measure the three components of wind

Fig. 6 Global Observing System of the World Weather Watch Program comprises all types of
observation available to monitor the atmosphere and the environment. Source http://www.wmo.int

http://www.wmo.int
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1.1.2 Data Processing Methods

Taking apart turbulent studies, typical meteorological operations need averagedwind
quantities more than instantaneous wind values. Although from amathematical point
of view, the average of a sample is a simple concept, there are some considerations to
be taken into account when the wind measurements are averaged. The mean vector
speed in the averaged wind direction is less than the average of all instantaneous
wind speeds [50, 92]. Usually, the differences between these two quantities are
small. However, in situations such as strong turbulent conditions close to the ground,
it might be a concern the way the wind is averaged. It also may depend on the sensor
dynamic response characteristics or the sensor sensitivity to relative wind direction.

Consequently, the optimum wind system is the one which provides the two com-
ponents of the horizontal wind, preferably using fast-response sensors like sonics or
thermal wind gauges. It calculates the time average on every component of the wind
vector and then compound the averaged wind speed and direction.

Not only the averaged speed has to be calculated cautiously, it is also a concern for
thewind direction the discontinuity between 0 and 360◦. It causes a problemwhenwe
average directions around north point, leading sometimes to erroneous values.1 This
can be solved by applying a correction to the direction record (adding or subtracting
360◦ when necessary, for example) to overcome this problem.

In some cases, the interesting magnitude to process is the peak gust of winds.
In transportation activities, for example, when values of wind gusts are above a
threshold, it may be decided to interrupt the service because of security reasons.
Sometimes peak gusts are more dangerous than sustainable high winds. Other areas
where gust values are relevant is in construction. The standard deviation of wind
direction and wind speed is used as a complement of the gust information because it
provides an estimation of how the wind fluctuates. Unfortunately, the computation
of both, the gust and the standard deviation, are extremely sensitive to the dynamic
response of the measurement system. Slowly responding systems flatten out the
extremes and provide gusts with small amplitude. On the contrary, fast-response
systems record high and narrow peaks. Standard deviation of wind direction and
wind speed can be computed by an equipment taking samples at least at a rate of 1
Hz [1].

1.1.3 Installation and Recommendations

According to the World Meteorological Organization (WMO), the standard height
for wind measurements is at 10 m. At this height, the optimum wind observation
location is the one where the observed wind is representative over an area of at least
a few kilometers. Ideally, the anemometer should be installed in an open terrain such
as the distance between the sensors, and any obstruction is at least 10 times the height

1For example, the average of two measurements of 10◦ and 350◦ is 180◦, which is just the opposite
direction to the actual wind.



Acquisition and Analysis of Meteorological Data 11

of the obstruction (preferably 20 times) (see [1]). However, sometimes the terrain
is not so flat or homogeneous for considering the measurement representative. In
these cases, it should be chosen the site where the perturbation of the measurements
is minimum. There are methods to determine how the local topography affect the
wind values and how to make some corrections in order to derive the best estimation
of the wind at 10 m [91]. The measurement errors, associated with a not suitable
site according to the WMO recommendations, are usually much larger than those
coming from the intrinsic characteristics of the probe. Because of this, it is very
important that including the observations, a good description of the place around the
measurement station should be available [93]. In this way, we can assess whether
there is any preferable direction for the wind or the existence of any obstacle that
might perturb the wind speed.

Not only the characteristics of the site where the equipment is installed may
prevent from taking good measurements. The masts or the tower itself where the
instruments are anchored can perturb the measurement as well. In those cases where
the device cannot be installed at the top of the mast, it should be suspended in a side
boom with a length of at least three mast or tower widths [31]. Finally, when the
anemometer must be installed in a building, it should be placed on the top of it and
additionally raised in a mast.

Some extra considerations should be taken when meteorological conditions are
adverse. The well-designed equipment are robust enough to work properly in a wide
range of weather conditions. However, the sensors are specially affected by freezing
weather. The snow or hail may deteriorate the exposed parts of the device and might
become out of operation. For these situations, there are special wind instruments
with shields to minimize the damage.

Anemometers installed at sea deserve special attention. Measurements taken at
10 m at sea account for additional inconveniences. It is almost impracticable to take
data at this height as it depends on the state of the sea and the influence of the tides.
Despite this fact, in [21], it is concluded that it is much more important than the
standard height the influence of the ship, buoy, or platform where the instrument is
mounted.

1.1.4 Maintenance and Calibration

When the wind sensors are used at the open-air, they are prone to deteriorate over
time. The continuous exposure of the equipment to the friction of air, high tempera-
tures, high wind gusts, humidity, dust, etc., turns out to deterioration of plastic parts,
fatigue of the sensor components, corrosion, and other physical issues that change
the original design of the probe. All these problems necessarily spoil the quality of
the measurements and the users should be aware of it.

Inconveniencesmight be incorrect zero of the sensor, noise and low sensitivity, and
irregular or reduced variability of recordedwind. In thosemore sophisticated devices,
there are also electronic failures thatmay produce erroneousmeasurements Thus, it is
recommended to inspect the equipment for physical damages and periodically check
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out the functionality of the sensors. The fully reliable calibration of an anemometer
should be done in a wind tunnel along with a suitable reference instrument. This
wind tunnel must be large enough to provide a steady flow that is uniform across
the tunnel. Sometimes these reference instruments are used in situ to calibrate other
devices and check the functionality of the sensors without uninstalling the operating
system.

1.1.5 Surface Measurement Networks

One of the core programs of the WMO is the World Weather Watch (WWW) (http://
www.wmo.int/pages/prog/www/index_en.html). Established in 1963, its main goal
is to sharemeteorological information around theworld, joining resources and efforts,
to monitor the atmosphere and the environment. One of the components of this
program is the Global Observing System (GOS) (http://www.wmo.int/pages/prog/
www/OSY/GOS.html), which intends to coordinate methods and facilities for mak-
ing meteorological and other environmental observations on a global scale.

The GOS comprises observing facilities on land, at sea, in the air, and in outer
space. These facilities are owned and operated by the Member countries of WMO.
These countries are committed to operate the observing systems following theWMO
recommendations in order to have a global network of comparable measurements
(further information about the station requirements is detailed in [2]). There are about
11,000 stations on land making observations at or near the earth’s surface, at least
every 3 hours and often hourly, of meteorological parameters such as atmospheric
pressure, wind speed and direction, air temperature, and relative humidity. Some
4000 of these stations comprise the Regional Basic Synoptic Networks (RBSNs) and
over 3000 stations comprise the Regional Basic Climatological Networks (RBCNs).
Data from these stations are exchanged globally in real time.

The observation systems that take part of these networks should follow the guide-
lines stated by the WMO according to installation, calibration, and maintenance
specifications.

Apart from this global measuring network, every meteorological service has its
own observation network which should be set up following the WMO standards.
However, not always it is possible to follow the rules when a measurement device is
installed. That is the reason why there is a classification ranging from 1 to 5, for every
variable and every site, to describe how far the location is from the WMO guides.
Class 1 corresponds to those places following the recommendations, whereas class
5 describes a site inappropriate for standard observations. Usually, these classes are
associated with an estimation of the measured error.

http://www.wmo.int/pages/prog/www/index_en.html
http://www.wmo.int/pages/prog/www/index_en.html
http://www.wmo.int/pages/prog/www/OSY/GOS.html
http://www.wmo.int/pages/prog/www/OSY/GOS.html
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1.2 Solar Radiation Data

The solar radiation reaching the earth’s surface contains several components as a
consequence of the interaction with the atmospheric constituents. The solar global
irradiance incoming to a specific surface is the sum of the direct normal irradiance
(DNI) that comes from the sun disk without suffering any interaction through the
media, the diffuse irradiance from the whole sky as a result of scattering, and the
reflected irradiance from the surrounding surfaces (which becomes zero for hori-
zontal surfaces). When DNI is referred to as the solar irradiance measured by a
pyrheliometer (which normally subtends a viewing angle slightly larger than the sun
disk), it contains both the radiation from the sun and a narrow annulus of sky around
the sun disk which is commonly called circumsolar radiation [5]. The circumsolar
radiation results from the Mie scattering processes along the sun director vector. The
instruments for measuring solar radiation are classified according to the working
principle (mainly thermoelectric or photoelectric sensors) and to the component of
solar radiation to be measured [28].

1.2.1 Thermopile Devices

Thermopile radiometers measure solar irradiation essentially through detecting the
difference between the temperature of an illuminated and shadowed area (Seebeck
effect). They have a very flat spectral response to the irradiance in the wavelength
range of around 300–3000 nm. For broadband hemispherical solar radiation, the
thermopile instrument is called thermopile pyranometer. The thermopile sensor is
protected by one or two glass domes. Pyranometers can be used for measuring global
horizontal and tilted irradiance and also for diffuse irradiance if a proper shadowing
device is used for blocking the direct normal radiation. Figure7 shows severalmodels
of thermopile pyranometers.

DNI is measured by a pyrheliometer which is a thermopile radiometer with a 5
field of view and a flat window. This instrument requires continuous tracking of the
solar disk in the sky and thus is mounted on a solar tracker system. Figure8 shows
several models of pyrheliometers mounted in a solar tracking device.

According to ISO-9060, thermopile pyranometers can be classified into three
groups in precision decreasing order: secondary standard, first class, and second
class pyranometers. The uncertainty of thermopile radiometers is around 5% for
global irradiance, 3% for direct normal irradiance, and 7% for diffuse irradiance
if maintenance requirements (regular cleaning of domes and windows and good
alignment for pyrheliometers) are kept [90].
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Fig. 7 Thermopile pyranometers

Fig. 8 Pyrheliometers

1.2.2 Photovoltaic Devices

Silicon-based sensors essentially measure the short-circuit current, which is
proportional to the solar irradiance. These sensors can be grouped into two cate-
gories: photodiode pyranometer and reference cells. They have a faster response
time and lower cost compared to thermopile radiometers but lower accuracy and
limited spectral responsivity (around 300–1100 nm). Therefore, the reference cells
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in outdoor conditions need to account for temperature corrections and spectral mis-
match. Figure9 shows pictures of different silicon-based sensors.

1.2.3 Surface Measurement Networks

There are many different networks of ground stations of different nature with mea-
surements of solar irradiance or insolation. Most countries usually have a national
network of solar radiation measuring stations managed by the national meteoro-
logical institutions. The World Radiation Data Center (WRDC, wrdc.mgo.rssi.ru),
sponsored by the World Meteorological Organization (WMO), is a repository of
most of the data coming from the national meteorological institutions to ensure the
availability of these data for research by the international scientific community. The
WRDC collects data since 1964 to present for over 1000 stations primarily as daily

Fig. 9 Silicon-based sensors for measuring solar radiation
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sums of global horizontal irradiance (GHI) and sunshine duration. At the top level of
international solar radiation networks are the Baseline Surface Radiation Network
(BSRN, bsrn.awi.de) and the Atmospheric RadiationMeasurement (ARM) program.
TheBSRNnetwork is a project of theWorld Climate Research Program (WCRP) and
the Global Energy and Water Experiment (GEWEX). BSRN ground data includes
in most cases GHI, DNI, and diffuse (DHI) irradiance data of very high quality up to
1-min. Figure10 shows a map of the locations of BSRN stations.

The ARM program was created by the US Department of Energy to develop
several highly instrumented ground stations to study cloud formation processes and
radiative transfer phenomena [62]. A complete and automated algorithm for quality
check is used to detect erroneous data [48]. There are also some local networks that
offer high-quality solar radiation data. For instance, the Solar Radiation Monitoring
Laboratory (SRML) of Oregon University supplies high-quality solar resource data
on at 30 sites in the Northwest US (http://solardata.uoregon.edu/).

1.2.4 Quality Checks and Procedures for Solar Radiation Data

The quality considerations of a solar radiation measuring system refer to both the
design and setup phase and the measuring period. Proper setup is essential because
even the best quality checks cannot improve poorly observed data [27]. Therefore,
proper sitting, calibration procedures, sampling and averaging, maintenance, and
recording of data are as important as the accuracy of the instruments. Once the

Fig. 10 BSRN ground stations (Source bsrn.awi.de) [44]

http://solardata.uoregon.edu/
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measuring station is working complete quality checks must be done before the use
of the data, and a good flagging criterionmust be selected to help the best exploitation
of the recoded data [25]. The BSRN establishes a standard quality check of solar
radiation measurements divided into three levels [82]: physically possible limits,
extremely rare limits, and cross-comparison among the different components. In a
similar way, the EU-MESOR projects proposed a quality check based on three levels
[34]. Another well-known procedure for quality of solar radiation measurements
was developed by NREL and referred to as SERI QC [54]. Recently, additional
procedures and software have been developed for complete quality assurance of solar
radiation data including filling the gaps. One example of this procedure is proposed
by the Royal Meteorological Institute of Belgium RMIB [41]. Another example that
follows the international best practices was recently developed for the Indian Solar
Radiation Resource Assessment (SRRA) network [85]. Sengupta et al., within the
framework of the Tasks 36 and 46 of IEA-SHC, made a thorough review of solar
radiation measurements including instrument selection, installation, and operation
and maintenance [87].

2 Satellite-Derived Data

The need of long-term solar radiation data and the limitations on the availability
of solar radiation measurements produced the development of methods and models
for estimating solar radiation components from weather satellites. These methods
started to appear in parallel to the availability of meteorological satellites and have
evolved a lot as a result of more than 30years of experience. Thus, the methodologies
for computing solar irradiance from meteorological satellite imagery have acquired
high maturity and reliability, being nowadays a widely used source of datasets for
many solar energy, environmental, and climatology studies. Geostationary satellites
are observing and monitoring the earth in operational way for over 30years. A geo-
stationary satellite circles around the earth at an orbit more than 36000km above
the equator. The geostationary orbit allows the continuous monitoring of clouds
over a wide geographical extent, and thus, the imaging sensors aboard geostationary
satellites are the major source of satellite-derived solar radiation data. The tempo-
ral resolution is very high (up to 15 min) and the spatial resolution can reach 1km
at nadir. Figure11 shows the position of the main geostationary weather satellites
available at NOAA’s geostationary satellite server.

Geostationary weather satellites have onboard sensors, named radiometers, which
essentially make measurements of the upwelling electromagnetic radiance in sev-
eral spectral ranges: visible channel (0.5–1.1 m), thermal infrared band (10.5–12.5
m), and water vapor infrared channel (5.7–7.1 m). The spectral channels of the
radiometers have been increasing with the new generation of instruments. Thus,
Meteosat first generation MVIRI sensor has three spectral channels, second gener-
ation SEVIRI radiometer includes 12, and third generation will expand to a set of
six satellites (four imaging and two sounder, www.eumetsat.int). Likewise, the last

www.eumetsat.int
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Fig. 11 Position of geostationary weather satellites available at NOAA’s server

generation of GOES satellite includes a sounder with 19-channel radiometer and the
GOES imager five channel radiometer (http://noaasis.noaa.gov/NOAASIS/). Simi-
larly, the Japanese satellite Himawari-8 and -9 have the Advanced Baseline Imager
instrument with 16 spectral channels in different bands from 0.43 to 13.4 m (www.
data.jma.go.jp). There are many methods proposed elsewhere for deriving solar radi-
ation data from satellite images using both geostationary and polar-orbiting satel-
lites. However, those based on the use of geostationary satellites provide long-term
time series of solar irradiance at high temporal resolution (up to 15min) with broad
spatial coverage. First methodologies proposed the use of normalized reflectance
measured by the satellite sensor to determine de cloud transmission [10, 56, 69].
The different models have been historically classified as pure statistical and physical
satellite models depending on how they model the solar radiation attenuation and
solve the radiative transfer through the earth’s atmosphere [59, 60]. Nevertheless,
many of the recently proposed and currently used methodologies might be defined
as semi-empirical methods since they normally use physical transmittance models
for computing solar irradiance under clear-sky conditions [75]. A satellite image is
essentially a measure of the upwelling radiation traveling from the earth-atmosphere
system to the onboard sensor at a specific time instant and within a spectral range
determined by the sensor channel. This radiation consists of both the reflected radi-
ation from the earth-atmosphere system and the backscattered radiation from the
atmosphere, Fig. 12. Therefore, the calibrated information from the image can be
related with the state of the atmosphere from clear sky to overcast situations and
incident solar irradiance can be retrieved accordingly. This is the fundamentals of
the semi-empirical models for satellite-derived solar radiation.

http://noaasis.noaa.gov/NOAASIS/
www.data.jma.go.jp
www.data.jma.go.jp
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Fig. 12 Components of solar radiation measured by a satellite sensor

2.1 Semi-empirical Models

The most well-known semi-empirical models for estimating solar irradiance from
satellite imagery are the Heliosat method developed initially to work with Meteosat
visible images [10, 19, 80] and the SUNY (State University of New York) model
that was formerly conceived to work with GOES imagery [63, 66]. Both are based
on the cloud index concept as a parameter for normalizing the reflectance measured
by the satellite sensor. The cloud index is defined as

n = ρ − ρg

ρc − ρg
(1)

where ρ is the instantaneous reflectance measured by the satellite sensor, ρg is the
ground albedo (i.e., the reflectance of the darkest pixel), and ρc is the cloud albedo
(i.e., the reflectanceof the brightest pixel). Thedenominator in the abovedefinition for
the cloud index is denoted as dynamic range, Fig. 13; thus, the cloud index represents
a way to normalize the satellite reflectance (offset corrected) by the dynamic range.
Consequently, for complete overcast conditions, the satellite albedo tends to be close
to the cloud albedo and the cloud index should be the unity; on the contrary, for clear-
sky conditions, cloud index should be zero because the satellite albedo equals the
ground albedo. Cloud index is related to the clear-sky index (K ∗

t ), defined as the ratio
of global irradiance at ground to the global irradiance under clear-sky conditions,
to estimate solar global irradiance, see Chap. 8. The first Heliosat version proposed
a linear relationship between clearness index and cloud index. Later on, the use of
clear-sky indexwas better proposed instead of clearness index [4]. Thus, inHeliosat-2
model, the proposed relationship was [33, 80].

K ∗
t = G H I

G H Ic
=

⎧
⎪⎪⎨

⎪⎪⎩

1.2 n < −0.2
1 − n −0.2 ≤ n < 0.8
2.0667 − 3.6667n + 1.6667n2 0.8 ≤ n < 1.1
0.05 1.1 ≤ n

⎫
⎪⎪⎬

⎪⎪⎭

(2)

http://dx.doi.org/10.1007/978-3-319-76876-2_8


20 J. Calvo Sánchez et al.

Fig. 13 Satellite sensor reflectance versus the co-scattering angle

Several modifications were proposed in the last years on both the Heliosat-2
method scheme [11, 15, 84] and on the correlation between clear-sky and cloud index
[94], where G H Ic corresponds to global solar radiation for a horizontal surface for
a clear-sky model.

New formulations for cloud index and clear-sky transmittance calculations were
proposed in the Heliosat-3 model as a revision and improvement of the earlier meth-
ods for adapting themethodology toMeteosat SecondGeneration visible channel [16,
17, 57]. Some of themain novelties ofHeliosat-3methodwere the computation of the
instantaneous satellite albedo taking into account the backscattered radiation from
the atmosphere as a function of the co-scattering angle (the angle subtended by the
sun and satellite director vectors) and the algorithm for ground albedo computation.
The Heliosat-3 method was later modified by proposing a dynamic model for esti-
mating the ground albedo as a function of the co-scattering angle (improving thus the
limitations of earlier versions for high reflective areas) and extending the application
to other geostationary satellites [71, 73].All thesemodifications and the possibility of
using different clear-sky models and atmospheric-derived input resulted in a model
called Intisat Lib [72]. The MagicSol algorithm used in the Satellite Application
Facility on Climate Monitoring (CM SAF, www.cmsaf.eu) surface radiation product
is also a modified version of Heliosat-2 method [77, 83]. The main modifications
are the implementation of a self-calibration method to account for satellite switches
and sensor degradation and the use of MAGIC (Mesoscale Atmospheric Global Irra-
diance Code) for fast clear-sky irradiance computation using look-up tables. Latest
version of this method includes improvements in the radiative transfer modeling
(SPECMAGIC model) and in cloud index estimations (denoted as effective cloud
albedo) to deliver a new dataset product called SARAH that covers over 30years of
observations based onMeteosat first and second generation [3, 58, 81]. This method-
ology is also integrated into thePVGIS (http://re.jrc.ec.europa.eu/pvgis/)web service
offering solar resource and performance of photovoltaic technologies [3, 35]. The

www.cmsaf.eu
http://re.jrc.ec.europa.eu/pvgis/
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SUNY model uses also the cloud index concept and it calculates it from the pixel
brightness that is considered proportional to the earth’s radiance sensed by the satel-
lite [65, 66]. The main difference with Heliosat family models, in terms of cloud
index concept, is that SUNY method works directly with the raw pixel brightness
instead of estimate the satellite sensor reflectance. The raw pixel is first normalized
by the cosine of solar zenith angle to account for first-order solar geometry effect.
The relationship proposed for the clear-sky index was

K ∗
t = G H I

G H Ic
= 0.02 + 0.98(1 − n) (3)

The second version of the SUNY model was used to produce the National Solar
Resource Data Bases (NSRDB) of the National Renewable Energy Lab (NREL) and
the model was also adapted to be used with Meteosat IODC images over the Indian
Ocean [68]. The SUNY model version 3 makes use of both visible and infrared
channels imagery [20]. The latest version is the fourth with notable performance
improvement over the preceding versions, which have been improved in better source
of aerosol optical depth, short-term forecast scheme integrated into the model, and a
better empirical method for estimating the dynamic range [67]. The SUNY model is
also the basis of the SolarAnywhere database. On the other hand, the SolarGISmodel
is based also on SUNY incorporating additional features for terrain effects, clear-sky
index calibration adapted to each satellite characteristics, and dynamic computation
of the dynamic range upper bound [11, 12, 64].

2.2 Physical Models

Physical model approach consists of solving the radiative transfer equation in the
atmosphere and requires detailed information of the main atmospheric constituents.
Theyuse satellite data for retrieving cloudproperties or cloudoptical depth.Neverthe-
less, despite this conceptual different philosophy, the differenceswith semi-empirical
models are not so significant for practical purposes. The first physical-based method
was based on energy conservation within an earth-atmosphere column where the
cloud effects were calculated from the measured satellite visible brightness [29].
Later a model based on the radiation budget for the tropical Western Pacific Ocean
was proposed by [61], which is the base of a modified method focused on estimating
solar radiation from satellite imagery in Southeast Asia [38–40]. BRASIL-SR is a
physical model that employed the two-stream approach to solve the radiative trans-
fer equation. The information on cloud optical depth was obtained from satellite
imagery. Incident global horizontal irradiance is obtained from

G H I = G H I0[(τc − τcloud)(1 − n) + τcloud ] (4)
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where G H I0 is the irradiance at the top of the atmosphere, τc is the clear-sky trans-
mittance, and τcloud is the overcast sky transmittance [51, 52]. This model was later
modified to be adapted to the specific conditions of Chile creating a version named
Chile-SR [24]. The latest version of Heliosat family, Heliosat-4, is a fully physi-
cal model composed of two models mostly based on look-up tables [78]: McClear
model for solar irradiance under clear-sky and McCloud model for determining the
extinction of irradiance due to clouds. The McClear model is the result of mul-
tiple radiative transfer computations with libRadtran [22, 23] for selected values
of the inputs [47]. It basically consists of look-up tables and interpolation func-
tions. The input data regarding aerosol optical depth, aerosol type, ozone column,
and water vapor is obtained from CAMS (Copernicus Atmosphere Monitoring Ser-
vice, https://atmosphere.copernicus.eu/) which is a freely available operation ser-
vice evolved from the former MACC (Monitoring Atmospheric Composition and
Climate) project. McCloud model is aimed at computing clear-sky index for both
global and beam irradiance as a function of cloud properties. The inputs to McCloud
are essentially the bidirectional reflectance distribution function (BDRF) derived
from MODIS [6], and several cloud properties (cloud optical depth, cloud type, and
cloud coverage) that are derived from satellite images using the APOLLO (AVHRR
Processing scheme Over cLouds, Land and Ocean) scheme [45].

2.3 Satellite-Derived Solar Radiation Databases and Products

The high maturity level and large experience in methods for deriving solar radiation
from satellite imagery can be measured by a large number of services and databases
(both private and public) that are available nowadays. Table1 lists some of the most
well-known services for solar radiationdata.Most of these databases are continuously
evolving to updated ormodified versions and expanding the spatial coverage by using
additional satellite imagery.

2.4 Model Assessment and Uncertainties

Satellite-derived solar radiation methods have been being evaluated in parallel to
their development. However, the assessment of models is limited to the availability
of quality ground data which is still limited both in spatial distribution of ground
station and in temporal coverage. The comparison of uncertainties in hourly satellite
estimations with interpolation of neighboring ground station showed that satellite-
derived information was more accurate than the use of 20–30 km distance stations
[95]. A thorough assessment study of several satellite products and databases was
performed under the framework of the Task 36 SHC-IEA (Solar Heating and Cooling
program of the International Energy Agency) with quality ground data from several
BSRN (BaseLine Surface Radiation Network) stations concluding that uncertainties

https://atmosphere.copernicus.eu/


Acquisition and Analysis of Meteorological Data 23

Table 1 Services and databases of satellite-derived solar radiation data

Name Time basis Coverage Website

NASA SRB 3-hourly World http://gewex-srb.larc.
nasa.gov/

DLR-ISIS 3-hourly World http://www.pa.op.dlr.
de/ISIS/

HelioClim hourly Europe–Africa http://www.soda-is.
com/eng/helioclim/

SOLEMI hourly Europe–Africa–Asia http://wdc.dlr.de/data-
products/SERVICES/
SOLARENERGY/

SolarGIS 30-min World http://solargis.info/

EnMetSol hourly Europe–Africa https://www.uni-
oldenburg.de/en/
physics/research/ehf/
energiemeteorology/
enmetsol/

IrSOLaV hourly World http://irsolav.com/

CM SAF (SARAH) hourly Europe–Africa http://www.cmsaf.eu/

SolarAnywhere 30-min North America http://www.
solaranywhere.com/

CAMS 15-min World http://atmosphere.
copernicus.eu/
catalogue/

PVGIS hourly Europe–Africa–Asia http://re.jrc.ec.europa.
eu/pvgis/

Vaisala hourly World http://www.vaisala.
com

Australian Bureau of
Meteorology

hourly Australia http://www.bom.gov.
au/climate/data-
services/solar-
information.shtml

for hourly values were around 17% for global and 34% for direct normal irradiance
[37]. Nevertheless, the uncertainties may vary significantly among the sites and
climatology.

Extensive validation of other satellite products is also found in the literature for
lower temporal resolution (monthly or daily) due to the limitations of ground avail-
able data [83]. In this sense, comparisons among several datasets and numerical
models also are available elsewhere [76]. In addition, sensitivity analysis has shown
the most influencing input parameters in some models [26, 70]. Even though the
uncertainties in the satellite-based models may vary among the different models,
in general, difficulties come mostly from the treatment of clouds (radiative effect
and optical properties are not completely well defined), aerosol optical depth, and
other atmospheric constituents that input the model, terrain effects and high reflec-

http://gewex-srb.larc.nasa.gov/
http://gewex-srb.larc.nasa.gov/
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tive albedo of deserts and snow, and spatial and temporal resolution [11, 12]. These
sources of uncertainty produce systematic deviations, bias, or seasonal errors that
cannot be avoided in most cases. In the last few years, several authors have pro-
posed and developed methods for correcting bias or systematic errors in satellite
retrievals with the use of short-term measurements at site [74]. Thus, with the help
of a short period of ground measurements, it is possible to find a correction method
to improve the accuracy (and consequently the bankability) of long-term time series
of satellite-derived solar irradiance for a specific site.

3 Numerical Weather Prediction

Before the computer era, in the 1920s Richardson developed the first weather predic-
tion model and had the dream that in the future numerical weather prediction models
would be able to produce forecasts faster than the movement of the weather sys-
tems [49]. The first computer-based forecast was produced in 1950 and the biggest
improvements came in the 1970s when computer capacity started to grow rapidly.
There have been significant improvements over the past decades due to the increase
of computer power, the improvement of the initial state by usingmany different types
of observations, including remote sense observations and the scientific developments
of the models. Although the equations describing the atmosphere are well known,
they do not have analytic solution so they need to be approximated numerically. The
level of complexity retained in the approximated equations depends on the purpose
of the model.

The prediction process starts with an estimation of the initial state of the atmo-
sphere using observations; this is known as analysis. The observations covering the
globe are received by the processing centers almost in real time and, for operational
weather prediction models, the integrations should be finished in a short period so
that the predictions can be useful. The combination of analysis and forecast is often
called a deterministic run of the model.

The error in the estimation of the initial state and the errors introduced by the dif-
ferent approximations can be amplified rapidly by the nonlinear equations describing
the atmosphere. In other words, there is a limit in the predictability of the atmosphere
that depends on the day. In order to estimate the predictability of an atmospheric state,
ensemble approaches are used. This means that several integrations of the model are
performed including perturbations of the initial state and also perturbing the model
either by using different configurations, the model tendencies or using different
boundary conditions. The results from the ensemble runs need to be interpreted in a
probabilistic way.
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Fig. 14 The global model discretizes the atmosphere over the whole globe whereas Limited Area
Model focus in a regional domain allowing an increase of the resolution. The calculations in the
vertical are performed over independent discretized columns

3.1 Global and Regional Models

There are two big groups of atmospheric models, the global models covering the
whole globe (Fig. 14) and the Limited Area Models (LAM), covering regional
domains, which allow an increase of the resolution. Global models are needed for
medium and longer forecast ranges. Besides, different target forecast lengths need
different complexity of the processes. For instance, medium-range forecast models
need more complex radiation parametrization than short range models because in
the later the assimilation is able to correct the possible biases of the models. Another
example is the need of a coupled oceanic model that is very important for long and
seasonal ranges. Currently, there is a tendency to build seamless models capable of
been run at different resolutions and for different purposes. This approach is achieved
by including a few scale-dependent parameters.

In order to run global models operationally, big computer resources are needed
and only a few processing centers have this capability. Among the global models
with highest resolution are National Centers for Environmental Prediction—Global
Forecasting System (NCEP-GFS, 13 km horizontal resolution),United Kingdom Met
Office—Unified Model (UKMO-UM, 10 km) and the European Center for Medium-
Range Weather Forecasts—Integrated Forecasting System (ECMWF-IFS, 9 km).

On the other hand, most LAM are currently run at convection-permitting scales
using resolutions of 4 km and below. These models are Non-Hydrostatic and deep
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convection is either treated explicitly or including a special parametrization to take
into account that the parametrized and the resolved convection is not well separated.
LAM tend to be run at regional scales and can include local data in their assimilation
system as radar data. Usually, they wait less time for observation arrival because it is
important to deliver their output rapidly in order to use them for warning purposes.
In principle, these regional models improve the simulation of severe weather. One
of the limitations of the LAM is that they need boundary conditions in the border of
their domains that should be provided by a global model and this is always a source
of error. For this reason, it is better to use large domains in order to have boundaries
far from the area of interest and it is not worth to run LAMs for very long forecast
lengths because after some time boundary conditions would dominate the model
solution. Typical forecast lengths for LAMs are 48 h.

3.2 Data Assimilation

In order to launch the model, an estimation of the initial state of the atmosphere
is needed. A huge amount of observations spread over the globe are used for this
purpose. These observations are distributed almost in real time or with short delivery
times, and they are exchanged between the different processing centers through a
Global Telecommunication System (GTS).A schematic viewof the observations used
by the models can be seen in Fig. 6. Several times per day, sounding balloons are
launched; many different types of satellites, either geostationary or polar, provide
huge amount of data from different sensors; aircrafts provide observations during
their fly; and there is a dense surface network whose observations are shared through
the GTS.

Despite the huge amount of observations, they are not enough to estimate the initial
state of the atmosphere in each grid point of the model. The models discretize the
atmosphere in thousands of small elements going from the surface to the stratosphere
and the value of the atmospheric variables in all these elements should be set. The
method used to solve this problem is to use a previous short-term integration from
the model as first guess and then correct it using the available observations. Data
assimilation is the process of combining statistically the observations with the first
guess, producing an analysis that will be used to initiate the model [18, 43]. The big
amount of different observations needing specific treatment and quality control and
the complex process of combining properly all the information they provide with the
model data make the assimilation processes a very complex issue. It should be taken
into account that observations are irregularly distributed and that many observations
are not in model space (for instance, satellite radiances) so specific observatory
operators should be constructed in order to transform frommodel space to observation
space. In the analysis process, the statistics of model errors and observation errors
should be taken into account.

Operative atmosphericmodels usually have implemented one of the two following
methods:
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3DVar method Manymodels, specially LAM, use this method in the assimilation
process. The analysis is started after some waiting time in order to collect the
observations (cutoff time). This cutoff time depends on the purpose of the model.
Medium-range forecast models may wait six hours for the observations whereas
nowcasting models may just wait 10min. In order to estimate the atmospheric
state, a cost function, J (x), is minimized

J (x) = (
x − xb

)
B−1 (

x − xb
)

︸ ︷︷ ︸
JB

+ (y0 − H(x)) R−1 (y0 − H(x))
︸ ︷︷ ︸

J0

(5)

where
y =observation vector,
x =model state vector,
H =observation operator,
B =covariance matrix for the first guess errors, and
R =covariance matrix for the observation errors.

The cost function relates the distance between the first guess and the model state
weighted with the precision of the first guess (B) plus the distance between the
observations and the model state weighted with the precision of the observations
(R). A problem is that the B matrix is static, so the same one is used for all
the atmospheric conditions, and it is known that the model errors depend on the
atmospheric flow. In order to assimilate more observations and that these are close
to the analysis time, frequent assimilation cycles are performed (Fig. 15).

4DVar method It is a more accurate method because the observations can be used
at their exact time. An optimization processes is performed in which the model is
run back and forth in time in order to obtain a forecast which adjust optimally to
the observations. The final analysis is the one that achieves the better adjustment.
Forward integrations are performed with the complete model whereas backward
integrations are performedwith a simplified linearized version of themodel.Many
global models use 4DVar in their assimilation system.

3.3 Dynamics

The equations describing the atmospheric flow are well known [13]. Generally, the
equations used are the Euler equations, the thermodynamic equation (energy conser-
vation), the continuity equation (mass conservation), and the perfect gas law. These
equations are quite general and are capable of describing a great variety of scales
and atmospheric processes including non-hydrostatic processes. In order to describe
moist processes, other conservation equations are added for water vapor, liquid, and
ice water and for different precipitation species. Depending on the purpose of the
model, different approximations are considered as the hydrostatic approximation.
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Fig. 15 Example of 3DVar assimilation cycles every 3 h. All the observations performed within a
time window are considered valid for the analysis time. The analysis is built using the first guess
from the previous cycle

The primitive system of equations The equations generally used by global mod-
els are the primitive equations that simplify the Euler equations taken into account
the hydrostatic approximation (see [13]),

dVh

dt
= − f k × Vh − RT

p
Cp (6)

dT

dt
= RT

C p p

dp

dt
(7)

dp

dt
= p

1 − R/C p

(

V · Vh + ∂w

∂z

)

(8)

∂p

∂z
= p

RT
g (9)

where the temporal derivatives (prediction variables) allow the estimation of the
evolution of the atmosphere. With the hydrostatic approximation, the vertical
velocity is not a prediction variable, and the pressure is estimated using the hydro-
static equation.

Non-hydrostatic equations Most regional models are currently operating at res-
olutions of a few kilometers. At these scales, hydrostatic hypothesis is no longer
valid. There are different approaches to take into account non-hydrostatic (NH)
effects [89]. Some widely used are:

• Laprise method [46].
• Anelastic approximation. The atmospheric variables are made function of basic
hydrostatic state and deviations from this state. Density fluctuations are neglected
except in the buoyancy terms [36].
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In the Laprise method, the continuity equation [13] for a general vertical coordi-
nate can be written as

∂

∂t

(

ρ
∂z

∂s

)

= −divs

(

ρ
∂z

∂s
V

)

− ∂

∂s

(

ρ
∂z

∂s

∂s

∂t

)

(10)

Choosing a coordinate, s, for which ρ ∂z
∂s is constant, the continuity equation will

take a diagnostic form. A coordinate with this property is the hydrostatic pressure

∂π

∂s
= −ρg (11)

Usingπ as vertical coordinate, the Euler equations, which include compressibility
effects, have a similar form as the primitive equation in p coordinates. The algorithms
and methods used to solve primitive equations can be used for the non-hydrostatic
case. In the NH equations, the pressure is a prognostic variable as is the vertical
velocity. For stability reasons, instead of using p and w as prognostic variables, the
following variables are used:

P = (p − π)

π
(12)

d = − gp

RT

(
∂w

∂z
− ∇Φ

∂s

∂π

)

(13)

where Φ is the geopotential. This method [8] is used in ALADIN, AROME, and
currently in the NH version of the IFS model. There are many different methods to
solve these equations depending on the selected geometry, the vertical coordinate,
and the spatial and temporal discretization methods.

Finite differences method It is frequently used for spatial and temporal dis-
cretization of the atmospheric equations. The partial derivatives of a function,
f (x, y, z, t) in a point are computed using the values of the function in the neigh-
bor points.

∂ f

∂x
= f (x + Δx) − f (x − Δx)

Δx
(14)

where Δx is the length between grid points.
Spectral method Instead of using the value of the model variables in the com-

putation grid, the variables are expressed as a linear combination of some basic
functions chosen to facilitate the resolution of the differential equations. The spec-
tral method tends to be applied in the horizontal, and the functions chosen are the
spherical harmonics. Any variable could be expressed in the following form:

f (λ, μ, t) =
∑

n,m

an,mYn,m ((λ, μ) (15)
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Fig. 16 Processes parameterized in most atmospheric numerical weather prediction models

For the actual computations, a finite number of basic functions should be retained
what it is known as model truncation. For a model with triangular truncation
T1279, the maximumwave number would be 1279. The spectral approach is used
by most global models. Although less common, LAM can also use the spectral
approximation. For this purpose, a halo should be added to the domain of interest
in order to achieve bi-periodization.

3.4 Parameterization of Physical Processes

The processes that occur at spatial or temporal scales not solved by themodel dynam-
ics should be treated in an approximated manner. The goal is to represent the col-
lective effects of these unresolved processes in the variables resolved by the model,
something that is known as physical parameterizations [88]. The type of processes
and the complexity that need to be included depend on the scale and purpose of the
model. Some processes as the radiation are also parameterized (simplified) because
they are too complex for being treated in full detail. The main physical parameteri-
zations included in atmospheric models are turbulence, radiation, surface processes,
large-scale clouds, convective clouds, and orographic processes (Fig. 16). Generally,
the effects of the different processes are computed individually using the informa-
tion in a model column (one-dimensional parameterizations), and then the different
tendencies produced are added to the model equations.
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Fig. 17 Radiation parametrization. The computations are divided into short wave (yellow) and long
wave (blue) emitted by the earth surface, the atmosphere, and the clouds. The biggest uncertainty
comes from the cloud prediction

Radiation It estimates the radiative fluxes between the different model levels and
the surface. The solar radiation entering the atmosphere is partially absorbed by
atmospheric gases, mainly oxygen, nitrogen, and ozone, and also is dispersed by
the atmospheric gases and the aerosols. The clouds produce diffusion and reflec-
tion of the radiation and absorb a small part of the solar radiation. Part of the
radiation that finally reaches the surface is absorbed whereas the rest is reflected
back to the atmosphere (depending on the surface albedo).
Besides, the surface, the atmospheric gases, and the clouds emit long-wave radi-
ation depending on their temperature and emissivity. In contrast with solar radia-
tion, most part of the long-wave radiation is absorbed by the atmosphere mainly
due to the carbon dioxide, the water vapor, and the ozone.
The radiative transfer equations are well known and the radiative fluxes could
be computed accurately but with a computer cost that it is not feasible for an
operational model. The goal of the radiation parametrization is to find efficient
approximations. Among the atmospheric particles that influence in the radiation
computations, the water vapor and the clouds are predicted by the model whereas
for other gases, climatological values are considered.Currently, there is a tendency
to include ozone and aerosols as forecast variables initialized in the assimilation
process.
The radiation computations are divided into short wave and long wave (Fig. 17).
Besides only the main spectral bands of absorption and emission are considered.
Despite the approximations, the errors in clear sky are small, and the biggest source
of error in the radiation prediction comes from the errors in cloud forecasting.

Orographic processes Mountains exert a significant influence on the atmospheric
flow. In general, models use a mean orography that depends on its horizontal res-
olution, underestimating the height of the orographic obstacles and the terrain
irregularities. Many models parameterize the orographic effects which are not
resolved explicitly such as the orographic gravity waves, the blocking effect, and
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small-scale turbulence produced by the terrain variability. As model resolution
increases, the mesoscale orographic effects are resolved by the model, and gen-
erally below 4km, only the small-scale turbulence needs to be parameterized.

Surface processes The surface parameterization estimates heat, humidity, and
momentum fluxes, which are boundary conditions for the atmosphere. These
fluxes have a significant impact on important meteorological variables as 2 m
temperature and 10 m wind, and module other atmospheric processes such as
turbulence, radiation, and clouds. Surface processes play an important role in cli-
matic models that require more sophisticated schemes than operational models.
In order to compute the fluxes, the schemes need to compute the evolution of
the temperature and humidity in the different possible soil and vegetation types
(Fig. 18). The models include also assimilation for the surface variables using
satellite data and surface observations or inferring the surface values from the
screen level observations.

Turbulence The lower part of the troposphere is strongly influenced by the earth
surface and responds rapidly to the surface drag and the heat and moisture fluxes.
The turbulent eddies generated by these exchanges condition significantly the
atmospheric evolution. Near the ground, the wind shows a logarithmic profile
crossing the isobars toward lower pressures, and above the surface, the influence
decreases. In order to estimate the surface fluxes and the profiles of the vari-
ables near the surface, the Monin–Obukhov Similarity theory is generally used.
Above the surface layer, a method widely used is the turbulent kinetic energy
parametrization.
Besides, the fluxes are functions of the atmospheric stability. During the night
or when the surface temperature is lower than the atmospheric temperature, the
boundary layer stabilizes producing only small eddies and small turbulent fluxes.
On the other hand, during the day or with a surface warmer than the atmosphere,
big eddies are generated that can modify the atmosphere up to several hundreds
of meters. When the wind is strong, also big turbulent fluxes are generated due
to the shear generated by the surface drag. Overall, the biggest parametrization
errors are produced in stable situations. This is the reason why fog is very difficult
to represent in the models.

Clouds Clouds are one of the most important atmospheric phenomena but its sim-
ulation limits the atmospheric predictability. Atmospheric models split the cloud
representation into two parts:

Clouds in layers. Also called large-scale or stratiform clouds. They include the
large atmospheric systems that take place at scales resolved by the model so they
can be simulated by the model dynamics. Nonetheless, the microphysical pro-
cesses that module the different condensation processes and the evolution of the
water species need to be parametrized (microphysics parametrization, Fig. 19).
Convective clouds. An example is the thunderstorm clouds. They are generated
because the atmosphere is unstable so vertical currents are generated that tend to
stabilize the atmosphere and may produce big precipitation amounts in a short
time period. Convection plays a very important role in the atmospheric flow, pro-
ducing big heat, moisture, andmomentum fluxes. Besides, convection develops in
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Fig. 18 Components of the surface scheme SURFEXwhich includes different models for different
surfaces types [53]. Source CNRM: http://www.umr-cnrm.fr/surfex

a great variety of scales, from shallow cumulus to hurricanes.Mostmodels param-
eterize convection using a mass flux approach. In this type of parametrization, the
convective circulations are simplified considering the updrafts, the downdrafts
associated with precipitation evaporation, and the subsidence in the cloud envi-
ronment. The convection consumes the Convective Available Potential Energy

http://www.umr-cnrm.fr/surfex
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Fig. 19 Microphysical processes parameterized in the AROME model [86]

(CAPE) and may produce very intense and localized precipitation. There are
two possible approaches of convective clouds depending on the resolution of the
model:

• Convection-permittingmodels. Asmodel resolution increases, the deep convective
clouds start being resolved by the model, and generally, deep convection parame-
terization is deactivated so that convective clouds are represented explicitly by the
dynamics and the microphysics. At what resolution convective clouds are resolved
is not clear but probably, at least 1 km resolution is needed. Nonetheless, many
models already switch off deep convection parameterization at 4 km resolution.
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• Grey convection scales. In the range 2 to 10 km resolution, it can be considered that
deep convection is partially resolved by the model but not completely. For these
scales, a few convection schemes have been developed that are able to take into
account this effect (see, for instance, [30]). These parameterizations aremuchmore
complex than the ones used in larger scales and should include new prognostic
variables such as the convective cloud fraction and the vertical velocity in the
convective currents.

3.5 Modeling Consortia

Numerical Weather Prediction models are the main tool for weather prediction and
they have improved significantly over the past decades. Development and mainte-
nance of these complex models represent a huge effort and in order to achieve this,
the international collaboration is a key aspect. An example of this collaboration is the
ECMWF which is an international independent organization funded by 34 countries
and which has a clear leadership in medium-range weather forecast. Another way
to strengthen the collaboration in NWP is by creating international Consortia. There
are several such Consortia in Europe devoted mainly to LAM developing for oper-
ational use. ALADIN and HIRLAM are examples of such Consortia (http://hirlam.
org, http://www.umr-cnrm.fr/aladin)
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Characterization of Geographical
and Meteorological Parameters

Gustavo Montero, Eduardo Rodríguez and Albert Oliver

Abstract This chapter is devoted to the introduction of some geographical and
meteorological information involved in the numerical modeling of wind fields and
solar radiation. First, a brief description of the topographical data given by a Digital
Elevation Model and Land Cover databases is provided. In particular, the Informa-
tion System of Land Cover of Spain (SIOSE) is considered. The study is focused on
the roughness length and the displacement height parameters that appear in the log-
arithmic wind profile, as well as in the albedo related to solar radiation computation.
An extended literature review and characterization of both parameters are reported.
Next, the concept of atmospheric stability is introduced from the Monin–Obukhov
similarity theory to the recent revision of Zilitinkevich of the Neutral and Stable
Boundary Layers (SBL). The latter considers the effect of the free-flow static stabil-
ity and baroclinicity on the turbulent transport of momentum and of the Convective
Boundary Layers (CBL), more precisely, the scalars in the boundary layer, as well
as the model of turbulent entrainment.

1 Geographical Data

The main geographical information for wind and solar radiation modeling may be
classified into two general databases, the topographical data related to the orography
of the region to be studied and the land cover databases containing the information
of the land uses. In this section, both are introduced.
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1.1 Topographical Information

To study the orography of a surface, it is usual to start from aDigital ElevationModel
(DEM) that contains elevation data on a uniform grid (height map). For example,
the National Geographic Institute of Spain provides a 25 m × 25 m grid with a
precision of 5m in height for all the national territory (MDT25). In Spain, the geodetic
Cartesian reference frame used is the European Terrestrial Reference System 1989
(ETRS89) in the Peninsula, Balearic Islands, Ceuta and Melilla, and REGCAN95
in the Canary Islands (both systems are compatible with WGS84). UTM projection
in the corresponding time zone is also applied, with an extended time zone 30 for
sheets of time zones 29 and 31. This DEM was obtained by interpolation from land
cover data obtained with LIDAR of the National Plan of Aerial Orthophotography
(PNOA), except for the sheets of Ceuta, Melilla, and Alboran Island (1110, 1111,
1078B). They were constructed by automatic stereo-correlation of photogrammetric
flies (PNOA) with a resolution from 25 to 50 cm/pixel, revised and interpolated with
break lines where it was viable.

1.2 Land Cover Databases

The characterization of both the aerodynamic roughness length (z0) and the displace-
ment height (d) is critical when modeling the wind field using the log vertical profile.
It is known that the values of these parameters depend on weather conditions and
land coverage. Thus, many authors have studied its relationship, providing typical
values for each land cover. In this chapter, we have performed a comprehensive lit-
erature review to collect the intervals of z0 and d values for each land coverage [60].
In particular, we have focused on the coverages present in the “Information System
of Land Cover of Spain” (SIOSE).

Shape factors and atmospheric conditions can influence the aerodynamic param-
eters of surfaces and, hence, the vertical wind profiles (see, e.g., [54] showing the
influence of z0 in wind speed). Therefore, it is essential to know the roughness length
and the displacement height to define the wind state in numerous applications, such
as the wind field, air quality, and forest fire spread modeling. The values of z0 and d
are generally related to the vegetation and topographical characteristics so that they
are affected by the land coverage variations; for example, the change of season (espe-
cially in vegetation cover), construction or demolition of buildings, etc. In addition,
for each coverage, z0 and d estimations may vary according to the wind speed and
direction, and the atmospheric stability, see, e.g., [7]. Under this assumption, maps
of z0 and d are built for each weather conditions. As a rule of thumb, we can compute
their values as a function of the height of the surface morphology characteristics (h).
For instance, for a crop or forest canopy [10] proposes a value of d between 0.67
and 0.75h, and a value of z0 about 0.12h. However, these approximations cannot be
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applied if the surface is not homogeneous. In such cases, a more detailed analysis of
the land coverage is required [47, 48].

For this reason, during the last five decades, many authors have proposed parame-
terizations for several land coverages. In these first approaches, the characteristics of
the surface elements were used to estimate the roughness parameters for the various
canopies. For example, with regard to crop canopies, [42] estimated z0 according to
h and d for harvested wheat; [93] obtained z0 and d as a function of h for olives
orchards; and [41] parameterized z0 from wind measures using the wind profile. In
forests, [100] estimated z0 and d according to the tree crown and structure, while
[63] obtained them from wind observations and canopy structure. On the other hand,
[20] performed a parameterization from measures in a desert with artificial vegeta-
tion, whereas [99] did it from wind speed, temperature, and turbulent flow measures
in bare soils. Moreover, in urban terrains, [30] compared several formulae of these
parameters, and [56] carried out a parameterization of z0 and d in a heterogeneous
surface that was validated using a wind tunnel and empirical data. In wetlands, [61]
obtained z0 and d from the minimization of a least square difference function based
on the log wind profile equation for near-neutral stability; in wet grasslands and reed
beds, [1] estimated z0 from eddy correlation measurements; and [78] used specific
parameterizations for a Siberian bog. For water surfaces, some approaches were
gathered, such as the estimation of z0 for the sea that was validated in the laboratory
by [39]; the comparison of two parameterizations for oceans by [22]; and the param-
eterization of z0 for the sea by [25]. Finally, some authors have also parameterized z0
and d for general land coverage: [92] proposed changes in Raupach parameterization
using a list of values from the literature; [29] compared three previous methods and
proposed to use the median; and, in the model of the European Wind Atlas [90], a
parameterization of z0 and d was introduced in four classes of coverages.

Some other authors estimated z0 and d values according to canopy form. For
example, [8] used catastral databases, whereas [14] applied a characterization of
buildings in urban terrains. In particular, [84] estimated d in Tokyo considering
buildings of different heights. Most of these methods require costly field works.
However, the methodology proposed here avoids measuring problems related to
the evaluation of roughness parameters. In other approaches, the wind profile is
directly used to estimate z0 and d from wind measurements at different heights over
a homogeneous surface fromwithin the inertial sublayer. In theirwork, [52] estimated
z0 and d for cotton, orchards, and desert covers from wind measures using the wind
profile; [36] obtained z0 and d frommeasures of different instruments; [5] calculated
z0 and d from wind measures and wind profile with radar in desert; [68, 73] used
anemometer measures at different heights for cliff coverage; [11] estimated z0 and
d from field measures in peatlands; [83] obtained z0 and d from friction velocity
(u�) measures using the wind profile; [13] used different measure equipment and
compared results with other authors in desert; [67] presented a regression of data
obtained with radio-wind probes in forest; and [45] obtained d from simultaneous
scintillation measurements at two heights. Both parameters can be estimated by
solving the nonlinear wind profile equations: see, e.g., [26] for seas and land, and
[18] for forest canopy.
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Some applications of particular models and their database have been considered
in this study. In [82], z0 and d were estimated with several numerical models and
measured data for cotton, scrub, and grass canopies; [57] used a computational fluid
dynamics (CFD) simulation and the land cover database of theNational LandAgency
of Japan; [38] performed a simulation with COAMPS W-UCM for several episodes
in New York; [44] used the model COSMO to parameterize z0 in urban terrains; [91]
applied the LGN3 database in Rotterdam; [55] compared results of z0 and d from the
National LandCoverDatabase (NLCD) for theConterminousUnited States [24]with
field measures in floodplain surfaces; and [97] presented a project for evaluating the
annual wind energy production with a CFD code, a digital land model and three land
cover databases. Relevant summaries extracted from several sources may be found
in [34], where an extended review of many estimations of z0 and d is provided, and
in [28], where a useful list of parameter values is presented.

Special attention is paid to studies involving the use of remote sensing. On the one
hand, the use of aircraft Lidar surveyswas presented in [31]where z0 was obtained for
roads; in [37], describing a totally automated approach to the generation of z0 values
from Lidar terrain data; in [88], using a combination of low and high density airborne
Lidar and satellite SPOT-5 HRG data, in conjunction with ground measurements of
forest structure, to parameterize four models for d and z0 over cool-temperate forests
in an inland river basin; and also in [15] for an application in an inland river basin.
On the other hand, in the last 25 years, several projects on land cover mapping have
been developed mainly using satellite images. They characterize both parameters for
each surface type. For example, the LGN7 model that uses several databases in The
Netherlands with NSD (National Satellite Data) and aerial photos [35]; the LGN3
land cover database of The Netherlands that combines satellite and ancillary data
[98]; the NLCD [24]; the CORINE land cover database [6]; and the SIOSE land
cover database of Spain [64] that has been used in this work.

In general, most of the previous methods estimate fixed values of z0 and d of
particular land coverages. The final aim of constructing roughness parameter maps
is to improve the mesoscale predictions using a downscaling model, allowing to
obtain a more accurate estimation of the wind power that may be generated in a
region.

1.3 SIOSE Land Cover Database

In 1990, the first land cover database encompassing the whole national territory was
constructed in Spain on a scale of 1 : 100.000. It was developed in the framework
of the CORINE Land Cover (CLC) European project. In the year 2000, there was
a need to update the database to homogenize and improve its utility for developing
territorial analysis and European policies. The resulting database is known as Image
and CORINE Land Cover 2000. This update led to a new land cover database for
the entire European continent. Other CLC updates have been produced in 2006 and
2012. In short, it consists of an inventory of land cover in 44 classes. The CLC uses
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a Minimum Mapping Unit (MMU) of 25 hectares (ha) for areal phenomena and a
minimumwidth of 100m for linear phenomena. The time series are complemented by
change layers, which highlight changes in land cover with anMMUof 5 ha. The CLC
is produced by the majority of countries, by visual interpretation of high-resolution
satellite imagery. In a few countries, semiautomatic solutions are applied, using
national in situ data, satellite image processing, GIS integration, and generalization.
In comparison with the NLCD of the United States of America, the CLC has the
advantage that it contains vectorized polygon data instead of the raster data of the
NLCD. Also, some layers of the CLC, like fruit trees or olive groves, are missing in
the NLCD. However, the NLCD brings some better aspects like up-to-date data, a
very high resolution of 30 m/pixel and an available companion dataset with canopy
density.

The project SIOSE (Spanish acronym for Information System of Land Cover of
Spain) was created in 2005 by the National Reference Center on Land Cover and
on Land Use and Spatial Planning to integrate the local information available from
the Autonomous Communities and the General State Administration. It uses the
geodetic Cartesian reference frame ETRS89 with UTM Projection on time zones
28, 29, 30 and 31, and INSPIRE Directive. Since the requirements at the Spanish
national level were higher than those supplied by the European project, the SIOSE
generated a new land cover database for all the country on a 1 : 25.000 scale. It was
based on reference images from 2005, with a MUM of 0.5 to 2 ha (SIOSE 2005) and
a planimetric accuracy of 5 m or better. The project was updated in 2009 and 2011,
see [64]. Other important differences with the CLC are the land classification and
the hierarchy levels, which are much more simplified in the CLC than in the SIOSE.

The SIOSE inventory is based on reference information, satellite SPOT5 imagery,
as geometrical and time reference, and orthophotographs of the National Aerial
Orthophotography Plan (PNOA). It uses the cadastre; the Integrated Water Infor-
mation System (SIA); the Geographical Information System of Agricultural Parcel
(SIGPAC); the database of boundary lines between Autonomous Communities from
the Central Register of Cartography of the National Geographic Institute; orthopho-
tographs and satellite imagery; databases and thematicmaps related to the land cover;
the Spanish Forest Map (MFE); and the Map of Crops and Utilization (MCA) pro-
vided by theAutonomousCommunities, previously approved by the Project National
Direction.

The SIOSE database consists of different basic and compound coverages. A com-
pound coverage ismade up of a combination of basic or compound coverages. Specif-
ically, it considers eight general groups of basic coverages (Crops, Grassland, Forest,
Scrubs, NoVegetation, Artificial Coverage,Wet Coverage, andWater Coverage) that
are further refined into forty specific classes of basic land coverage, see, e.g., [65].
Therefore, at any point of the terrain, the land cover is defined as a weighted average
of these forty basic coverages. The spatial unit is the polygon. Each polygon must
contain a basic or compound coverage. The coverages that represent at least 5% of
the polygon surface should be considered. In practice, each point of the DEM grid
is labeled with the types of SIOSE polygon where it belongs. Figure1 shows the
polygons of the land cover classes in Gran Canaria (6, 983) and La Palma (2, 470).
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(a) Gran Canaria (b) La Palma

Fig. 1 SIOSE land cover polygons for the Islands of Gran Canaria and La Palma, respectively

1.4 Roughness Length and Displacement Height: Literature
Review

The search spaces of z0 and d must be defined to obtain the appropriate values
of them. Here, we present a methodology to generate a table with the ranges of
z0 and d values for each land coverage. Particularly, the methodology is applied to
Gran Canaria and La Palma Islands, but it is suitable to any other location. To find the
ranges of possible z0 and d values for each land cover, we have carried out a literature
review. Table1 summarizes it and the specific references are listed in the caption.
The first and second columns show the SIOSE code and a description for each of the
distinct land coverages. The third and fourth, and the fifth and sixth columns present
the nominal value and the range of the parameter z0 and d, respectively. When data
are not available, we have used the rule of thumb to obtain the z0 and d values from
the canopy height h, see [10]. Also, it is worth remarking that d is assumed to be
zero for water surfaces (ACU, AEM, AES, ALC, ALG, AMO, and LAA classes).

Table1 considers both general and local characteristics of the land coverage. On
the one hand, for the most common coverage types in Gran Canaria, we have used
the largest interval from those proposed by a wide list of authors. On the other hand,
due to the particular characteristics of some land coverages in Gran Canaria, we
have used a more specific study in some cases. For instance, the works of [24, 73]
have been employed to characterize sea cliffs. The former study proposes a value of
d = 3.3m for a cliff of 40m. Using this same ratio, the value for the Andén Verde
(690m) and the Risco de Faneque (1027m) cliffs are 57m and 85m, respectively.
These values have been taken as lower bound (3.3m), nominal value (57m), and
upper bound (85m). Another specific land coverage of Gran Canaria is the LOC
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class (Other Woody Crops). In Gran Canaria, it refers to Aloe Vera plantations. In
this case, [58] studied the typical canopy height ranges for the Aloe Vera. Using these
ranges and the rule of thumb, we have obtained the z0 and d ranges and nominal
values.

We have searched in the literature the minimum and the maximum values of each
parameter and canopy. In addition, the values more used by different authors have
been selected as nominal values, but these are not used in our approach. In fact,
we used the ranges of Table1 as searching space for the solution of each parameter
in each characteristic wind situations. Then, we performed an extended literature
review on the assigned values of the roughness parameters of each coverage. For this
reason, in general, we think that the proposed ranges completely cover the variation
interval of z0 and d corresponding to each coverage, respectively, not only for the
region studied in this paper but also for any region if the specific coverage is included
in that literature review. Nevertheless, some ranges have been defined according to
the local characteristics of certain coverages. This is the case of the high sea cliffs in
Gran Canaria, for example, where the range of z0 and d have been adapted to such
heights. Another case is Other Woody Crops related to Aloe Vera plantations on the
island. For the latter, we have used the standard morphological characteristics. So,
in general, these are the only particular cases to review for the application of ranges
given in Table1 to any other region.

The bibliography of Table1 may be classified according to the procedure used
to obtain z0 and d. Several authors proposed parameterizations of the roughness
parameters from measures of the wind and other physical magnitudes. This is the
case of [10] which is used here in many coverages; [90] in water surfaces; [51] in
screes; [79] in screes, conifers, and citrus fruit trees; [86, 87] in conifers; [46] in rice
crops; [30] in low buildings; [93] in olive groves; [40] in vineyards; [74] in water
surfaces; and [32] in artificial coverages.

Some other works are based on the canopymorphology, such as [12] used in water
and saline coverages; [53] in deciduous forests, wetlands, and scrubs; and [58] in
Aloe Vera crops. Another extended approach is the use of measurements and wind
profile: [73] used in cliffs; [13] in screes; [5] in Quaternary lava flow; [18, 36, 67]
in conifers; [83] in rice crops; [41] in crops different from rice; [70] in no citrus fruit
trees; [72, 95] in vineyards; [26] in scrubs; and [96] in soils without vegetation and
artificial coverages.

Also in Table1, there are some values of z0 and d arising from applications of
specific numerical models with their land cover databases. For example, [75] used
them in lakes and lagoons; [101] in rocky outcrops and rocks, evergreen forests, salt
marshes, wetlands, bare soils, and artificial coverages; [21] in evergreen forests; [57]
used in no citrus fruit trees; [82] in grasslands; and [81] in ravine and road, parking,
or unvegetated pedestrian areas.

Some papers dealingwith collections of data fromother authors, in particular from
old publications, were useful too. In particular, the one by [4] used in estuaries, seas
andoceans, and soilswithout vegetation; [23] in crops different from rice and artificial
coverage; [89] in buildings, evergreen forests, glaciers and perpetual snow, scrubs,
meadows, grasslands and artificial green area and urban trees; [28] in deciduous and
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evergreen forests; and [59] in crops different from rice, woody crops, meadows and
grasslands. Also, some early publications were used for constructing Table1, such as
[16], used in crops different from rice; [17] in glaciers and perpetual snow, meadows,
and grasslands; and [9, 43] in citrus fruit trees.

Finally, some of the current land cover databases based on remote sensing surveys
(specifically, aircraft lidar and satellite images) that were taken into account are [24]:
the NLCD database used in cliffs; [3]: the 1-km land cover data set DISCOVER
(IGBP-DIS) for watercourses; [6]: the CLC database applied in many coverages;
and [98]: the LGN3 database used in rocky outcrops and rocks, salt marshes, soils
without vegetation, and artificial coverages.

1.5 Roughness Length and Displacement Height
Characterization

The SIOSE project uses a vectorial format, but, for convenience, we will translate it
to a raster format. For this, we will define a grid with np points and, for each point,
we will look for the mean value of basic coverages. Once we have the values of z0
and d for each basic coverage, we can compute the specific z0 and d values at any
point using an appropriate weighted mean. This way, the SIOSE database will let us
create a matrix with the percentage of the basic coverages at any point. This matrix
is defined as follows: let M be an np × nb matrix, with components mi, j , where nb
is the number of basic coverages. For each row i of M , mi, j is the fraction of the
basic coverage j at the point ni (mi, j < 1 and

∑nb
j=1 mi, j = 1).

When the ranges of z0 and d are set for each basic land coverage, we can compute
its values at any point of the terrain. Assuming that the values of z0 and d are a certain
mean of the values of the basic coverages z0 j and d j , j = 1, . . . , nb, we can compute
their values at any point.A simpleweighted averagemayproduce differenceswith the
effective roughness of one order of magnitude. The study by [76] for the effective
roughness length improves the formula proposed by [85], taking into account a
nondimensional patchiness parameter to consider the textural information about the
spatial dependence of the primitives (regions with specific properties) characterizing
the surface inhomogeneity. However, generally the coverage information provided
by the land cover databases (e.g., SIOSE) does not include the spatial distribution
of basic coverages in a composed one, but only the fraction of the area covered
by each surface type. So, in this case, only Taylor’s formula was applied; in this
approach, for a coverage i composed by nb basic canopies with roughness length
z0 j ; j = 1, . . . , nb on a fraction mi j of the area, respectively, an approximation to
the effective roughness length is given by computing the weighted geometric mean
roughness length z0:
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z0 =
nb∏

j=1

z
mi j

0 j . (1)

Regarding the displacement height, d, [76, 85] did not study its estimation. In
any case, the above mean formula is not appropriate for d, since, in the case of a
basic coverage with displacement height equal to zero, it would produce a mean
z0 = 0 independently of the z0 j values of the other basic coverages. Some other
works have studied the variation of d in several specific coverages, e.g., in urban
[56] and vegetation [62, 100] canopies. One important conclusion is that the effective
displacement height of a heterogeneous coverage can exceed the surfacemean canopy
height significantly. Taking this into account, we propose to use aweighted rootmean
square to obtain the highest mean value:

d =
√
√
√
√

nb∑

j=1

mi jd2
j , (2)

where d j andmi j are the displacement height and the fraction of the basic coverage j
in the composed one i , respectively. Figures2a and b show the resulting composed z0
and d values in Gran Canaria and La Palma Islands, considering the nominal values
of the basic coverages given in Table1. We remark that a weighted average version
of that proposed by [69]

d = exp

⎡

⎣
nb∑

j=1

mi j

ln d j

⎤

⎦

−1

, (3)

which must be evaluated in the limit if any d j = 0 or d j = 1, is not appropriate in
the case of any d j = 1 since the average result of d would always be equal to 1,
independently of the other d j values. Similar conclusions may be reached from its
application in the calculation of z0 if any z0 j = 1. It can be noted that the application
of this methodology to another database is straightforward.

1.6 Literature Review and Characterization of Albedo

The ranges of albedo ρ for each land cover have been obtained from a literature
review. Table2 summarizes it, and the specific references are listed in the caption.
Here again, the first and second columns show the SIOSE code and a description for
each land coverages. The third and fourth columns present the nominal value and the
range of ρ. Following the same procedure as for z0 and d, we have taken the largest
interval from those proposed by a wide list of authors.
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(a) Roughness length map of Gran Canaria (b) Roughness length map of La Palma

(c) Displacement height map of Gran Canaria (d) Displacement height map of La Palma

Fig. 2 Roughness length and displacement height maps of Gran Canaria and La Palma islands (m)
corresponding to the nominal values stated in Table1 and using the mean values given in (1) and
(2), respectively

Using the same nomenclature as in the roughness parameter characterization, we
propose to compute the effective albedo at any point of a SIOSE polygon with an
average of the mean values of the basic coverage albedo,

ρ =
nb∑

j=1

mi jρ j , (4)

where ρ j and mi j are the albedo and the fraction of the basic coverage j in the
composed one i , respectively.
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Table 1 Nominal values and ranges of z0 and d for the land cover classes provided by SIOSE. The
superindex indicates the source: (a) [24], (b) [73], (c) [3], (d) [90], (e) [6], ( f ) [10], (g) [12], (h) [4],
(i) [75], ( j) [98], (k) [101], (l) [51], (m) [13], (n) [79], (o) [5], (p) [18], (q) [36], (r) [67], (s) [86,
87], (t) [83], (u) [46], (v) [16], (w) [41], (x) [23], (y) [74], (z) [89], (α) [30], (β) [53], (γ ) [28],
(δ) [21], (ε) [17], (ζ ) [57], (η) [9], (θ) [43], (ι) [59], (κ) [70], (λ) [58], (μ) [93], (ν) [72], (ξ) [40],
(σ ) [95], (τ ) [26], (φ) [32], (χ) [82], (ψ) [81], (ω) [96]

Code Land cover z0 (m) z0min z0max d (m) dmin–dmax

ACM Sea Cliffs 0.05(a) 0.05(b) 0.19(b) 57(b) 3.3(b)–85(b)

ACU Watercourses 0.00025(c) 0.0001(d) 0.01(e) 0( f,y) –

AEM Water Body.
Reservoirs

0.00025(d) 0.0001(d) 0.005(g) 0( f,y) –

AES Estuaries 0.0002(h) 0.0001(d) 0.01(e) 0( f,y) –

ALC Coastal
Lagoons

0.005(g) 0.0001(d) 0.01(e) 0( f,y) –

ALG Water Body.
Lakes and
Lagoons

0.0005(i) 0.0001(d) 0.005(g) 0( f,y) –

AMO Seas and
Oceans

0.0002(h) 0.0001(d) 0.03(a) 0( f,y) –

ARR Rocky Outcrops
and Rocks

0.005(e) 0.0003( j) 0.18(k) 0.03( f ) 0( f )–0.96( f )

CCH Screes 0.1(a) 0.05(l) 0.15(m) 0.6(n) 0.56(n)–0.66(n)

CLC Quaternary
Lava Flow

0.0286(o) 0.0013(o) 0.0735(o) 0.15( f ) 0( f )–0.4( f )

CNF Forest. Conifers 1.28(p) 0.25(q) 1.93(r) 13.1(s) 4.87(r)–22(n)

CHA Herbaceous
Crops. Rice

0.072(t) 0.001(u) 0.11(t) 0.85(t) 0.1(t)–1.55(t)

CHL Herbaceous
Crops. Different
from Rice

0.1(v) 0.004(w) 0.74(x) 0.25(w) 0.1(w)–3(ι)

EDF Artificial
Coverage.
Buildings

1.5(z) 0.7(z) 3.7(x) 14(z) 7(z)–19.73( f )

FDC Forest. Leafy.
Deciduous

1(β) 0.18(β) 1.4(a) 11.8(γ ) 3(γ )–21.6(γ )

FDP Forest. Leafy.
Evergreen

0.72(k) 0.6(c) 2.65(δ) 9.7(γ ) 3(γ )–31(z)

GNP No Vegetation.
Glaciers and
Perpetual Snow

0.001(e) 0.00001(ε) 0.012(z) 0.01( f ) 0( f )–0.06( f )

HMA Salt Marshes 0.11(k) 0.0002( j) 0.17( j) 0.6( f ) 0( f )–0.93( f )

HPA Wetlands 0.1(e) 0.005(β) 0.55(k) 0.55( f ) 0.03( f )–3( f )

HSA Salt Mines 0.01(e) 0.0005(e) 0.04(g) 0.05( f ) 0( f )–0.22( f )

HSM Salt Lakes 0.01(e) 0.0005(e) 0.04(g) 0.05( f ) 0( f )–0.22( f )

HTU Peat Bogs 0.03(e) 0.0005(e) 0.03(e) 0.16( f ) 0( f )–0.16( f )

(continued)
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Table 1 (continued)

Code Land cover z0 (m) z0min z0max d (m) dmin–dmax

LAA Artificial
Coverage.
Artificial Water
Body

0.0001(e) 0.0001(e) 0.005(g) 0(e,y) –

LFC Woody Crops.
Citrus Fruit
Trees

0.31(η) 0.03(d) 0.4(θ) 3(n) 0(ι)–4(ι)

LFN Woody Crops.
No Citrus Fruit
Trees

0.25(e) 0.03(d) 1(ζ ) 0.92(κ) 0(ι)–4(ι)

LOC Other Woody
Crops

0.0615(λ, f ) 0.0369(λ, f ) 0.0861(λ, f ) 0.33(λ, f ) 0.2(λ, f )–
0.47(λ, f )

LOL Olive Groves 0.48(μ) 0.25(e) 0.61(μ) 2.67(μ) 2(μ)–3(μ)

LVI Vineyards 0.2(ν) 0.08(ξ) 0.55(ν) 0.75(ν) 0.31(ξ)–1.4(σ )

MTR Scrubs 0.16(β) 0.016(β) 1(a) 4.8(τ ) 0.9(z)–7.1(τ )

OCT Artificial
Coverage. Other
Buildings

0.5(e) 0.06(k) 1(e) 4(α) 2(α)–14(z)

PDA No Vegetation.
Beaches, Dunes
and Sandy
Areas

0.0003(e) 0.0003(e) 0.06( j) 0( f ) 0( f )–0.33( f )

PRD Crops.
Meadows

0.03(e) 0.001(ε) 0.1(e) 0.013(z) 0.007(ι)–0.035(z)

PST Grasslands 0.09(ε) 0.001(ε) 0.15(ε) 0.171(χ) 0.013(z)–0.66(ι)

RMB No Vegetation.
Ravines

0.0012(ψ) 0.0003(d) 0.005(ω) 0.03(h, f ) 0( f )–0.03( f )

SDN No Vegetation.
Bare Soil

0.001( j) 0.0002(ω) 0.04(k) 0.03(h, f ) 0( f )–0.22( f )

SNE Artificial
Coverage.
Unbuilt Land

0.0003( j) 0.0002(ω) 0.04(a) 0( f ) 0( f )–0.22( f )

VAP Artificial
Coverage.
Road, Parking
or Unvegetated
Pedestrian
Areas

0.03(e) 0.0035(ψ) 0.5(e) 1(y,φ) 0.02(φ)–2.5(φ)

ZAU Artificial
Coverage.
Artificial Green
Area and Urban
Trees

0.4(d) 0.03( j) 1.3(x) 3.5(y,φ) 3.5(z)–14(z)

(continued)
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Table 1 (continued)

Code Land cover z0 (m) z0min z0max d (m) dmin–dmax

ZEV Artificial
Coverage.
Extraction or
Waste Areas

0.1(e) 0.0003( j) 0.18(k) 0.16(ω, f ) 0( f )–1( f )

ZQM No Vegetation.
Burnt Areas

0.6(e) 0.1(e) 1.1( j) 3.27( f ) 0.54( f )–6( f )

Table 2 Albedo nominal values and ranges for SIOSE land cover classes. The superindex indicates
the source: (a) [2], (b) [50], (c) [80], (d) [66], (e) [33], ( f ) [94], (g) [19], (h) [49], (i) [27]

Code Land cover ρ ρmin ρmax

ACM Sea Cliffs 0.2(a) 0.05(b) 0.7(b)

ACU Watercourses 0.14(c) 0.03(d) 1(d)

AEM Water Body. Reservoirs 0.14(c) 0.03(d) 1(d)

AES Estuaries 0.1(a) 0.03(d) 1(d)

ALC Coastal Lagoons 0.1(a) 0.03(d) 1(d)

ALG Water Body. Lakes and Lagoons 0.14(c) 0.03(d) 1(d)

AMO Seas and Oceans 0.1(a) 0.03(d) 1(e)

ARR Rocky Outcrops and Rocks 0.2(a) 0.1(b) 0.4(b)

CCH Screes 0.2(a) 0.05(b) 0.7(b)

CLC Quaternary Lava Flow 0.1(e) 0.05( f ) 0.15( f )

CNF Forest. Conifers 0.14(e) 0.05(d) 0.15(d)

CHA Herbaceous Crops. Rice 0.12(e) 0.11(e) 0.25(d)

CHL Herbaceous Crops. Different from Rice 0.2(a) 0.18(d) 0.25(d)

EDF Artificial Coverage. Buildings 0.18(a) 0.18(a) 0.35(a)

FDC Forest. Leafy. Deciduous 0.16(a) 0.10(e) 0.5(a)

FDP Forest. Leafy. Evergreen 0.12(a) 0.09(c) 0.35(a)

GNP No Vegetation. Glaciers and Perpetual Snow 0.6(a) 0.2(d) 0.95(d)

HMA Salt Marshes 0.14(c) 0.14(a) 0.3(a)

HPA Wetlands 0.14(c) 0.14(a) 0.3(a)

HSA Salt Mines 0.5(g) 0.166(e) 0.5(g)

HSM Salt Lakes 0.5(g) 0.166(e) 0.5(g)

HTU Peat Bogs 0.14(c) 0.14(a) 0.3(a)

LAA Artificial Coverage. Artificial Water Body 0.14(c) 0.03(d) 1(a)

LFC Woody Crops. Citrus Fruit Trees 0.18(a) 0.13(h) 0.22(h)

LFN Woody Crops. No Citrus Fruit Trees 0.18(a) 0.13(h) 0.22(h)

LOC Other Woody Crops 0.18(a) 0.13(h) 0.22(h)

LOL Olive Groves 0.18(a) 0.13(h) 0.22(h)

LVI Vineyards 0.18(a) 0.14(a) 0.5(a)

MTR Scrubs 0.25(a) 0.14(c) 0.5(a)

(continued)
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Table 2 (continued)

Code Land cover ρ ρmin ρmax

OCT Artificial Coverage. Other Buildings 0.16(a) 0.16(a) 0.45(a)

PDA No Vegetation. Beaches, Dunes and Sandy Areas 0.35( f ) 0.15( f ) 0.45(g)

PRD Crops. Meadows 0.2(a) 0.1(e) 0.6(a)

PST Grasslands 0.18(a) 0.08(e) 0.6(a)

RMB No Vegetation. Ravines 0.16(c) 0.147(i) 0.173(i)

SDN No Vegetation. Bare Soil 0.16(c) 0.147(i) 0.173(i)

SNE Artificial Coverage. Unbuilt Land 0.18(a) 0.15(a) 0.6(a)

VAP Artificial Coverage. Road, Parking or Unvegetated
Pedestrian Areas

0.18(a) 0.18(a) 0.35(a)

ZAU Artificial Coverage. Artificial Green Area and Urban
Trees

0.15(c) 0.15(a) 0.6(a)

ZEV Artificial Coverage. Extraction or Waste Areas 0.2(a) 0.13(a) 0.6(a)

ZQM No Vegetation. Burnt Areas 0.097(i) 0.089(i) 0.098(i)

2 Meteorological Parameters

The wind is produced, firstly, as a consequence of spatial differences of barometric
pressure, generally caused by the absorption of the solar radiation. In a horizontal
plane, thewind flows from high-pressure zones to low-pressure ones, while vertically
from low-pressure zones to high-pressure ones. Wind speed is proportional to the
pressure variation per unity of length or pressure gradient. Zones of same pressures
are represented in the weather maps joined by imaginary lines (isobars). The closer
the isobars are to each other, the stronger the wind is.

A second factor that affects the air movement is the Coriolis force, caused by
the Earth rotation. The term f = 2� sen φl is called Coriolis parameter, where � =
7.292 × 10−5 s−1 is the Earth rotation velocity and φl is the latitude. It is considered
positive in the North Hemisphere, null in the Equator, and negative in the South
Hemisphere.

Thirdly, a centripetal acceleration may appear when the wind turns around a
center. Finally, also the friction because of the air movement must be considered.
Winds affected by the pressure gradient and the Coriolis force are called geostrophic
winds.

The Monin–Obukhov similarity theory leads to a division of the lowest layer of
the atmosphere into several sublayers where the vertical wind profile is constructed
in different ways. So, the planetary boundary layer is located at a height z pbl over
the terrain, and it is the layer under the free atmosphere that is directly affected by
the friction of the Earth surface. In this case, z pbl is defined such that wind velocity
is considered to be constant over it [77],
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Table 3 Pasquill stability classes depending on surface wind speeds and isolation. Strong isolation
corresponds to the typical sunny noon of the middle summer in England; light isolation, to similar
conditions in middle winter. Night is referred to the period between one hour before sunset and
one hour after sunrise. Neutral class D should also be used for overcast skies during the day or the
night, and for any sky condition during the preceding and following night hours defined above

Pasquill stability class

Isolation Night

Surface wind
speed (m/s)

Strong Moderate Light Overcast ≥4/8
clouds

≤3/8 clouds

< 2 A A-B B – –

2 − 3 A-B B C E F

3 − 5 B B-C C D E

5 − 6 C C-D D D D

> 6 C D D D D

For A-B, take the average of A and B values, etc.

z pbl = γ |v∗|
f

, (5)

where γ is a constant between 0.15 and 0.45 that depends on the atmospheric stability
(Table 3), and v∗ is the friction velocity that is computed from wind measures or
predictions.

The mixing layer, also called convective layer, is the atmospheric layer affected
by convective phenomena caused by the surface heat. The air is well mixed, that is,
the wind and the potential temperature are almost constant with height. The height
of the mixing layer hm is approximated by

hm = γ ′
√

|v∗| L
f

, (6)

where usually γ ′ = 0.4 [102] and L is the Monin–Obukhov length, that is computed
with the Liu formulae [71],

1

L
= azb0, (7)

where a and b are defined by the Pasquill stability class (see Table4).
The surface layer, located at a height zsl over de terrain, is the lowest layer of

the planetary boundary layer, just joining the terrain surface layer, where the drag
friction force is dominant. The height of the surface layer is usually obtained [102],

zsl = hm
10

. (8)
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Table 4 Values of the parameters a and b to calculate Monin–Obukhov length depending on the
Pasquill stability class

Pasquill stability class a b

A (Extremely unstable) −0.08750 −0.1029

B (Moderately unstable) −0.03849 −0.1714

C (Lightly unstable) −0.00807 −0.3049

D (Neutral) 0.00000 0.0000

E (Lightly stable) 0.00807 −0.3049

F (Moderately stable) 0.03849 −0.1714

The atmospheric stability is related to the atmospheric turbulence as well as with
the temperature gradient and the thermal inversion. It provides a qualitative measure
of the air density variations because of pressure and temperature changes, and other
phenomena that affect certain atmospheric movements.

The stability of the atmosphere may be classified as follows:

• Stable atmosphere. If a mass of air goes up, it will be surrounded by hotter air
and thus, less dense than it. This will make go down. If It goes down, it will be
surrounded by colder air (denser) and will tend to go up. This air trend of staying
in the same layer is called stability of the atmospheric stratification.

• Unstable atmosphere. Under unstable conditions, the potential temperature
decreases with height, increasing the vertical movements, that is, if the air goes up,
it will be surrounded by colder and denser air and it will tend to continue going up;
and if it goes down, it will find hotter and lighter air, and it will tend to continue
going down.

• Neutral atmosphere. If a mass of air (after a vertical movement in an atmospheric
layer without mixing with the surrounding air) experiments a null vertical net
force, the ascending movements will not be affected by the thermal gradient, and
the atmosphere layer is assumed to be neutrally stratified. Under such conditions,
this mass of air does not tend to regret to its original position (stable atmosphere)
nor accelerates going away from it (unstable stratification).

The atmospheric stability was usually characterized by the Table3 including the
Pasquill stability classes.

Usually, the anemometers provide measures of turbulence intensity that may help
to complete the information about the type of atmospheric stability of the region.
The turbulence intensity i is defined as the square root of the sum of the variances,
σ 2
u , σ 2

v , σ 2
w, of the three components of the wind velocity u0, v0, w0, respectively,

divided by the average of the measured wind speeds,

i =
√

σ 2
u + σ 2

v + σ 2
w

|v0| . (9)
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Table 5 Pasquill stability classes depending on the surface wind speed and the turbulence intensity

Pasquill stability class

Surface wind
speed (m/s)

Isolation Night

i > 0.35 0.35 ≥
i > 0.25

0.25 ≥
i > 0.15

0.15 ≥ i i > 0.075 0.075 ≥
i > 0.03

0.03 ≥ i

|v0| < 2 A B B B F F F

2 ≤ |v0| < 3 A B C C E E F

3 ≤ |v0| < 5 B B C C D E E

|v0| ≥ 5 C C C D D D D

In practice, we only have measures of intensity variations of the speed but not of the
direction. In such cases, Eq. (9) yields:

i = σv0

|v0| , (10)

where σv0 represents the standard deviation of the measured wind intensities.
An unstable atmosphere means a high level of turbulence, with a range of turbu-

lence intensities between 0.2 and 0.4, approximately. However, a stable atmosphere,
with a small turbulence or an almost null one, is characterized by intensities between
0.05 and 0.01. Table5 illustrates the relation of the turbulence intensity and the
atmospheric stability.

The concepts of Neutral and Stable Boundary Layers (SBL) have been revised to
consider the effect of the free-flow static stability and baroclinicity on the turbulent
transport of momentum and scalars in the boundary layer, as well as the model of
turbulent entrainment for Convective Boundary Layers (CBL) [104]. Accordingly,
different types of SBL regimes can be distinguished: truly neutral (absence of any
buoyancy effects throughout the PBL); conditionally neutral (buoyancy flux at the
surface is negligible); short-lived nocturnal (separated from the free atmosphere
by near-neutral residual layers); and long-lived (immediately adjoining the stably
stratified free atmosphere). The SBL height, h, may be evaluated according to the
expression recently introduced by [103]. This expression represents a multi-limit
equation for the equilibrium PBL height that covers the types mentioned earlier of
neutral and stable conditions in the atmosphere. In contrast to the stable and neutral
cases, the estimation of the CBL height is not straightforward, since our model is
diagnostic and the recommended parameterizations are prognostic. To overcome
this problem, some prognostic data must be used. In this approach, the CBL height
is obtained from the results of the mesoscale model, e.g., HARMONIE-AROME
model.
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The estimation of the PBL height is calculated separately for stable/neutral con-
ditions and convective conditions. For this, the Brunt–Väisälä frequency N in the
PBL and the surface buoyancy flux Bs allow to characterize atmospheric stability:

N 2 = g

T

(
∂T

∂z
+ �d

)

, (11)

g being the gravity acceleration, T a reference value of the air absolute temperature, z
the height variable, and�d = 9.8 × 10−3 K/m the dry adiabatic lapse rate. If N 2 ≥ 0,
the atmosphere is considered stable/neutral. However, N 2 < 0 indicates a CBL.

In stable/neutral atmosphere (SBL), the formula to compute the SBL height was
proposed by [103]

h = γ u∗/ f, (12)

where u∗ is the surface friction velocity, f the Coriolis parameter defined as f =
2ω sin φ (ω is the Earth rotation and φ the latitude), and γ is a function of the
imposed-stability parameter μN = N2h−h/ f in the free atmosphere:

γ = γ0

(

1 + γ 2
0 CuN

C2
s

μN

)−1/2

. (13)

Experimental data suggest γ0 = 0.5, CuN/C2
s = 0.6; N2h−h is the free-flow Brunt-

Väisälä frequency in the free atmosphere immediately above the SBL (h < z < 2h).
In particular, the stable/neutral PBLmaybe classified as: truly neutral (TN) atμN = 0
(Bs and N2h−h = 0); conditionally neutral (CN) usually at 0.5 × 102 < μN < 3 ×
102 (Bs ≥ 0 and N2h−h > 0); nocturnal stable (NS) at (Bs < 0 and N2h−h = 0); and
long-lived stable (LS) at (Bs < 0 and N2h−h > 0).

3 Conclusions

Some essential data and parameter definitions for wind and solar radiation modeling
have been introduced in this chapter. From the geographical point of view, one must
have information about the orography of the surface involved in the simulation and
the land cover distribution of such surface. On the one hand, nowadays, DEM allows
to construct meshes adapted to a terrain surface to be used in the discretization of
a problem. On the other hand, the study of the roughness parameters associated to
an accurate knowledge of the land coverages provides a valuable tool for a better
wind field description. In the same way, the setting up of each land coverage albedo
is important to obtain reliable values of reflection in solar radiation modeling.
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Discretization of the Region of Interest

J. Manuel Cascón, José María Escobar and Rafael Montenegro

Abstract Themeccanomethodwas recently introduced to construct simultaneously
tetrahedral meshes and volumetric parameterizations of solids. The method requires
the information of the solid geometry that is defined by its surface, a meccano,
i.e., an outline of the solid defined by connected polyhedral pieces, and a tolerance
that fixes the desired approximation of the solid surface. The method builds an
adaptive tetrahedral mesh of the solid (physical domain) as a deformation of an
appropriate tetrahedral mesh of the meccano (parametric domain). The main stages
of the procedure involve an admissible mapping between the meccano and the solid
boundaries, the nested Kossaczký’s refinement, and our simultaneous untangling
and smoothing algorithm. In this chapter, we focus on the application of the method
to build tetrahedral meshes over complex terrain, that is interesting for simulation
of environmental processes. A digital elevation map of the terrain, the height of
the domain, and the required orography approximation are given as input data. In
addition, the geometry of buildings or stacks can be considered. In these applications,
we have considered a simple cuboid as meccano.
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1 Introduction

Mesh generation is one of the most time-consuming processes in numerical simula-
tions of engineering problems based on partial differential equations. On one hand,
an accurate discretization of the physical domain is fundamental to obtain a realistic
simulation. On the other hand, it is well known that the quality of the mesh plays a
crucial role in the accuracy and stability of the numerical computation.

Many authors have devoted a great effort to solving the automaticmesh generation
problem in different ways [3, 12, 13, 24]. Along the past, the main objective has
been to achieve high-quality adaptive meshes of complex solids with minimal user
intervention and low computational cost. At present, it is well known that most
mesh generators are based on Delaunay triangulation and advancing front technique,
but problems, related to mesh quality or mesh conformity with the solid boundary,
can still appear for complex geometries. In addition, an appropriate definition of
element sizes is demanded for obtaining good-quality elements and mesh adaption.
Particularly, local-adaptive refinement strategies have been employed tomainly adapt
the mesh to singularities of numerical solution. These adaptive methods usually
involve remeshing or nested refinement [4, 14, 16, 17, 23].

In this direction, we have introduced the meccano technique in [5, 6, 18–20]
for constructing adaptive tetrahedral meshes of solids. This algorithm requires a
coarse computational domain, then builds a surface parameterization and combines
refinement and mesh optimization to produce an adaptive tetrahedral mesh of the
input domain. As a result, a piecewise linear volumetric parameterization is obtained.
The name of the method is due that the process starts from a coarse approximation
of the solid, i.e., a meccano composed by connected polyhedral pieces.

The rest of the chapter is structured as follows. In Sect. 2,we overview themeccano
method for a general solid. In Sect. 3, we detail the algorithm to the construction of
the tetrahedral meshes over complex terrain. Finally, in Sect. 4, we present several
examples that illustrate the capabilities of the method.

2 The Meccano Method

Themeccanomethod is a tetrahedralmesh generator [6, 18–20]. Themethod requires
a surface triangulation of the solid boundaries and a computational domain that
coarsely approximates the solid. This computational domain is called meccano. The
procedure builds an adaptive tetrahedralmesh in themeccano and deforms it tomatch
the physical domain. For this purpose, the method combines several procedures: an
automatic mapping from the boundary of the meccano to the boundary of the solid, a
3-D local refinement algorithm, and a simultaneous mesh untangling and smoothing.
It is important to point out that this method also provides a continuous element-wise
linear volumetric parameterization from the computational domain to the solid.
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Algorithm 1 Meccano tetrahedral mesh generation.
1: function MeccanoMesher(Solid Ω , Real ε)
2: Meccano M ← getMeccano(Ω)
3: Mapping Π ← getBoundaryMapping(M , Ω)
4: Mesh T ← getInitialMesh(M , Π)
5: while distance(∂T , ∂Ω) > ε do
6: TriangleList R ← getTrianglesToRefine(T , Ω , ε)
7: TriangleList ̂R ←refineTriangles(R)
8: projectNewNodesToBoundary( ̂R, Π)
9: end while
10: qualityOptimization(T )
11: end function

The construction of the meccano (the computational domain) is not automatic for
complex solids (genus bigger than zero) and requires user intervention. However, in
this chapter, we focus on the generation of tetrahedral meshes over complex terrain,
that are interesting for simulation of environmental processes, and whose boundary
is genus zero. Therefore, the meccano algorithm is a fully automatic procedure.

Themain steps of themeccano tetrahedral mesh generation algorithm are summa-
rized in Algorithm 1. The input data is a solid, Ω , defined by its boundary represen-
tation (surface triangulation or CAD model), and a given precision to approximate
its boundary, ε.

The first step of the procedure, Line 2, is to construct a meccano,M , that approxi-
mates the solid, by connecting polyhedral pieces. Then, in Line 3, a discretemapping,
Π, between the boundary of the meccano and the boundary of the solid is computed
using a procedure based on the mean value parametrization proposed by Floater in
[10, 11]. Note that this parameterization is a continuous and element-wise linear
mapping. In Line 4, an initial coarse mesh of the meccano is generated, and the
boundary nodes are located on the solid boundary using the mapping Π. In Lines 5–
9, we obtain a mesh that approximates the solid boundary with the given tolerance ε.
Specifically, in Line 6,we get the list of triangles that do not correctly approximate the
boundary of the solid, and then, in Line 7, we refine those triangles by dividing their
adjacent tetrahedra using the Kossaczký method [16]. In Line 8, we project the new
nodes onto the boundary of the solid using the mapping Π. We iterate this process
until there are no triangles to refine. Note that when the nodes are mapped onto the
solid boundary, low-quality and inverted elements may appear. Thus, a simultaneous
untangling and smoothing procedure [8] is applied in order to obtain a valid and
high-quality tetrahedral mesh. As commented before, the meccano method automat-
ically provides a volumetric parameterization from the computational domain to the
solid. We show in Fig. 1 an example, where different steps of the meccano algorithm
are sumarized.
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Fig. 1 The different meccano steps. a Parametric space, b adaptive triangulation of the meccano
boundary, c tangled interior elements after surface mapping, d optimized mesh, e resulting surface
mesh, f frontal view
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3 Meccano Method for the Construction of 3D Meshes
over Complex Topography

In this section, we describe, in detail, the meccano method for the discretization of
three-dimensional domain that is limited in its lower part by a complex terrain, and
in its upper part by a rectangular horizontal plane region placed at a given height.
The lateral walls are formed by four vertical planes. The generated tetrahedral mesh
is appropriated for finite element simulations of environmental processes, such as
weather forecasting, wind field (see Chap.4), fire propagation [22], or atmospheric
pollution [21].

In this case, the meccano consists of a simple cuboid. A digital elevation map of
the terrain and the required orography approximation are given as input data. The
mapping between the meccano and domain boundaries is obtained by applying an
automatic Floater’s parameterization [10, 11].

3.1 Meccano

As we commented before, a simple cuboid,M , is defined as meccano. Its upper face
coincides with the upper boundary of the domain, and its lower face is placed at the
minimum terrain height of the rectangular region.

We now divide the surface of the domain into six trivial patches (lower and upper
bound and lateral walls), and associate then with counterparts in the meccano bound-
ary. This correspondence must be compatible, in the sense, that if two patches of the
domain have nonempty intersection, their corresponding images on meccano bound-
ary also satisfy this property.

3.2 Parametrization of the Domain Boundary

Once themeccano is fixed, we have to determine amapping between the cuboid faces
and the domain boundary. For that purpose, a discrete mapping from each surface
patch to the corresponding cuboid face is built using themean value parameterization
proposed in [11]. In order to get an admisible mapping, we note that the discrete
mappings have to coincide on the intersection of their associate patches.

We now describe how the parametrization Πb of the lower bound ∂Ωb of the
physical space, can be obtained. The other ones (upper bound and lateral walls) are
simpler, and could be generated in the same way. In fact, in this particular case, the
parametrization of the upper bound is the identity. The method was introduced by
Floater [11], and provides a parametrization of a simply connected surface triangu-
lation.

http://dx.doi.org/10.1007/978-3-319-76876-2_4


70 J. M. Cascón et al.

We assume that the digital elevation map, that captures the orography, is given by
a triangular mesh embedded in 3D, that we denoteTb. The bottom cuboid face ∂Mb

will be the parametric space. Then, we find a mapping

Πb : ∂Mb → ∂Ωb

continuous and piecewise linear, where τb = (Πb)
−1 (Tb) will be the planar trian-

gulation of ∂Mb associated to Tb. Note that the construction of the mapping is
equivalent to find an admissible localization of nodes of the planar triangulation τb.
The Floater solution first fixes the boundary nodes of τb and then the position of the
inner ones is given by the solution of a linear system based on convex combinations.

Formally, let {x1, . . . , xn} be the inner nodes and {xn+1, . . . , xN } be the boundary
nodes of Tb, respectively, where N denotes the total number of nodes of Tb. Fixed
the position of boundary nodes {yn+1, . . . , yN } of τb, the position of its inner nodes
{y1, . . . , yn} is given by the solution of the system:

yk =
N

∑

l=1

λklyl , k = 1, . . . , n.

The values of {λkl}l=1,...,N
k=1,...,n are the weights of the convex combinations, such that

λkl = 0, if xk and xl are not connected

λkl > 0, if xk and xl are connected
N

∑

l=1

λkl = 1, for k = 1, . . . n.

The quality parametrization depend on the weights λkl . In [10] three alternatives
are analyzed: uniform parametrization, weighted least squares of edge lengths and
shape preserving parametrization. Another choice, called mean value coordinate, is
presented in [11]. The goal is to obtain an approximation of a conformal mapping.

Finally, we remark that in order to get an admissible mapping between meccano
boundary, ∂M , and domain boundary, ∂Ω , the boundary nodes that the Floater
algorithm fixes for the parameterization of each face, must coincide on their common
cuboid edges.

In Fig. 2 we show a surface triangulation, that approximates the orography of an
area of Comunidad deMadrid (Spain), and its corresponding parameterization space
obtained by the procedure described in this section.
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Fig. 2 Orography of an area of Comunidad de Madrid (Spain) and its corresponding parameteri-
zation space

(a) (b) (c) (d)

Fig. 3 Refinement of a cube by usingKossaczký’s algorithm: a cube subdivision into six tetrahedra,
b bisection of all tetrahedra by inserting a new node in the cube main diagonal, c new nodes in
diagonals of cube faces and d global refinement with new nodes in cube edges

3.3 Coarse Tetrahedral Mesh of the Meccano

We build a coarse and high-quality tetrahedral mesh,T0(M ) by splitting the cuboid
in cubes, and each cube is subdivided into six tetrahedra [16]. For this purpose, it is
necessary to define a main diagonal on the cube and corresponding diagonal on its
faces, see Fig. 3a. The resultingmesh can be recursively and globally bisected [16] for
fixing a uniform element size in the whole mesh. Three consecutive global bisections
for a cube are presented in Figs. 3b–d. The resulting mesh of Fig. 3d contains 8 cubes
similar to the one shown in Fig. 3a. Therefore, the recursive refinement of the cube
mesh produces similar tetrahedra to the initial ones.
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3.4 Approximation of the Orography: Refinement
and Distance Evaluation

The next step of themeccano algorithm is to approximate the orography of the terrain
with a prescribed tolerance ε. In fact, according to the choice of the meccano, see
Sect. 3.1, we only need to impose the approximation criteria on the bottom face of
the meccano, ∂Ωb.

In order to obtain this approximation, the initial mesh T0(M ), is recursively
refined. Specifically, we select the set of triangles on the bottom of the meccano,
T ∈ ∂T (Mb), that do not correctly approximate the terrain of the domain, that is

T ≡ 〈v0, v1, v2〉 ∈ ∂T (Mb), d( 〈Π(v0),Π(v1),Π(v2)〉 , ∂Ωb) > ε (1)

where, 〈Π(v0),Π(v1),Π(v2)〉 denotes the triangle that has as vertices {Π(vi )}2i=0.
Then we refine those triangles by dividing their adjacent tetrahedra using the Kos-
saczký method [16]. This procedure is iterated until the prescribed tolerance is
reached.

We use the following strategy for a practical computation of the distance. Given
T ∈ ∂T (Mb), let {qi }ki be a set of Gauss quadrature points, then d(Π(T ), ∂Ωb) is
estimated as

d( 〈Π(v0),Π(v1),Π(v2)〉 , ∂Ωb) ≈ max
i=1,...,k

d( 〈Π(v0),Π(v1),Π(v2)〉 ,Π(qi )).

(2)
Once the final tetrahedral meshT (M ) is generated in the cuboid, their boundary

nodes are mapped byΠ onto the boundary of the domain. After this step, low-quality
and inverted elements may appear.

3.5 Relocation of Inner Nodes

There would be several strategies for defining a reasonable position for each inner
node of the domain: Laplacian smoothing, Coons patches, radial basis functions, etc.

Another effective possibility hinges on the volumetric mapping that produces the
meccano method (see Sect. 3.7). However, this information is not known a priori.
In fact, we will reach this piecewise linear volume mapping at the end of the mesh
generation.

In practice, a good strategy is: we start meshing the solid by using a high value
of ε (a coarse tetrahedral mesh of the solid is obtained) and we continue decreasing
it gradually. In the first step of this strategy, no relocation is applied. In this case, the
number of nodes of the resulting mesh is low and the mesh optimization algorithm,
that we describe below, is fast. In the following steps a relocation of inner nodes is
applied by using the mapping (volumetric parameterization) that is defined by the
previous iteration.
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3.6 Simultaneous Untangling and Smoothing

Since the current mesh could be not valid (it could contain inverted element), it is
necessary to optimize it. The process that we describe in this section [8, 9], must be
able to smooth and untangle the mesh and is crucial in the proposed mesh generator.

Usual techniques to improve the quality of a valid mesh, that is, one that does not
have inverted elements, are based upon local smoothing. In short, these techniques
consist of finding the new positions that the mesh nodes must hold, in such a way
that they optimize an objective function. Such a function is based on a certain mea-
surement of the quality of the local submesh N (q), formed by the set of tetrahedra
connected to the free node q. Usually, objective functions are appropriate to improve
the quality of a valid mesh, but they do not work properly when there are inverted
elements. This is because they present singularities (barriers) when any tetrahedron
of N (q) changes the sign of its Jacobian.

Most of what is stated below are taken from [8], where we developed a procedure
for untangling and smoothing tetrahedral meshes simultaneously. For that purpose,
we use a suitable modification of the objective function such that it is regular all over
R3. When a feasible region (subset of R3 where q could be placed, being N (q) a
valid submesh) exists, the minima of both the original and the modified objective
functions are very close, and when this region does not exist, the minimum of the
modified objective function is located in such a way that it tends to untangle N (q).
The latter occurs, for example, when the fixed boundary of N (q) is tangled.With this
approach, we can use any standard and efficient unconstrained optimization method
to find the minimum of the modified objective function, see for example [1].

3.6.1 Objective Functions

Several tetrahedron shape measures could be used to construct an objective function.
Nevertheless, those obtained by algebraic operations [15] are specially indicated for
our purpose because they can be computed very efficiently and they allow us to
choose the shape of the tetrahedra to optimize. Our objective is to relocate the nodes
of T in positions where not only the mesh gets untangled, but also the distortion
introduced by the parameterization is minimized.

Let T be a tetrahedral element ofT whose vertices are xk = (xk, yk, zk)
T ∈ R3,

k = 0, 1, 2, 3 and TR be the reference tetrahedron with vertices u0 = (0, 0, 0)T ,
u1 = (1, 0, 0)T , u2 = (0, 1, 0)T and u3 = (0, 0, 1)T . If we choose x0 as the trans-
lation vector, the affine map that takes TR to T is x =Au + x0, where A is
the Jacobian matrix of the affine map referenced to node x0, and expressed as
A = (x1 − x0, x2 − x0, x3 − x0).

Let us consider that TI is our ideal or target tetrahedron whose vertices are v0, v1,
v2 and v3. If we take v0 = (0, 0, 0)T the linear map that takes TR to TI is v =Wu,
whereW = (v1 − v0, v2 − v0, v3 − v0) is its Jacobian matrix. As the parametric and
real meshes are topologically identical, each tetrahedron of T has its counterpart in
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CK . Thus, in order to reduce the distortion in the volumetric parameterization we
will fix the target tetrahedra of N (q) as their counterparts of the local mesh in the
parametric space.

The affine map that takes TI to T is x =AW−1v + x0, and its Jacobian matrix
is S = AW−1. Note that this weighted matrix S depends on the node chosen as
reference, so this node must be the same for T and TI . We can use matrix norms,
determinant or trace of S to construct algebraic quality metrics of T . For example,

the mean ratio, Q = 3σ
2
3

|S|2 , is an easily computable algebraic quality metric of T ,
where σ = det (S) and |S| is the Frobenius norm of S. The maximum value of Q is
the unity, and it is reached when A = μRW , where μ is a scalar and R is a rotation
matrix. In other words, Q is maximum if and only if T and TI are similar. Besides,
any flat tetrahedron has quality measure zero.We can derive an optimization function
from this quality metric. Thus, let x = (x, y, z)T be the position of the free node, and
let Sm be the weighted Jacobian matrix of the m-th tetrahedron of N (q). We define
the distortion, ηm , of the m-th tetrahedron as the inverse of its quality:

ηm = |Sm |2
3σ

2
3
m

(3)

Then, the corresponding objective function for N (q) is constructed by using the
p-norm of (η1, η2, . . . , ηM) as

∣

∣Kη

∣

∣

p (x) =
[

M
∑

m=1

ηp
m (x)

]
1
p

(4)

where M is the number of tetrahedra in N (q). We obtain the optimal position of the
free node by minimizing (4).

Although this optimization function is smooth in those points where N (q) is a
valid submesh, it becomes discontinuous when the volume of any tetrahedron of
N (q) goes to zero. It is due to the fact that ηm approaches infinity when σm tends
to zero and its numerator is bounded below. In fact, it is possible to prove that |Sm |
reaches its minimum, with strictly positive value, when q is placed in the geometric
center of the fixed face of them-th tetrahedron. The positionswhere q must be located
to get N (q) to be valid, i.e., the feasible region, is the interior of the polyhedral set P

defined as P =
M
⋂

m=1
Hm ,where Hm are the half-spaces defined by σm (x) ≥ 0. This set

can occasionally be empty, for example, when the fixed boundary of N (q) is tangled.
In this situation, function

∣

∣Kη

∣

∣

p stops being useful as an optimization function.
Moreover, when the feasible region exists, that is int P 
= ∅, the objective function
tends to infinity as q approaches the boundary of P . Due to these singularities, it
is formed a barrier which avoids reaching the appropriate minimum when using
gradient-based algorithms, and when these start from a free node outside the feasible
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region. In other words, with these algorithms we cannot optimize a tangled mesh
N (q) with the above objective function.

3.6.2 Modified Objective Functions

We proposed in [8] a regularization in the previous objective function (4), so that the
barrier associated with its singularities will be eliminated and the new function will
be smooth all overR3. An essential requirement is that theminima of the original and
modified functions are nearly identical when int P 
= ∅. Our modification consists
of substituting σ in (3) by the positive and increasing function

h(σ ) = 1

2
(σ +

√

σ 2 + 4δ2) (5)

being the parameter δ = h(0). Thus, the new objective function here proposed is
given by

∣

∣K ∗
η

∣

∣

p
(x) =

[

M
∑

m=1

(

η∗
m

)p
(x)

]
1
p

(6)

where

η∗
m = |Sm |2

3h
2
3 (σm)

(7)

is themodified objective function for them-th tetrahedron.With thismodification,we
can untangle the mesh and, at the same time, improve its quality. An implementation
of the simultaneous untangling and smoothing procedure for an equilateral reference
tetrahedron is freely available in [9].

3.7 Volumetric Parameterization

One of the consequences of the meccano method is that it produces automatically
a volumetric parametrization of the domain. This mapping Π is an extension of the
surface parameterization Π built at Sect. 3.2:

Π : M → T ≈ Ω (8)

where a point p included in a tetrahedron of M is mapped, preserving barycentric
coordinates, into a point q belonging to the transformed tetrahedron of T .
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3.8 Meccano as Surface Mesher

Numerical simulation of some engineering/environmental problem, such as solar
radiation (see Chap.10), only requires a surface mesh. The meccano algorithm, that
we describe along this section, can be particularized to generate triangular meshes
of complex terrains. In this case, the meccano is a rectangle, that plays the role of
parametric space of the surface defined by the elevation map of the terrain. Then,
Floater’s strategy (Sect. 3.2) allows to build a mapping between the meccano and the
terrain surface. Finally, an analogous approximation strategy to Sect. 3.4 provides
the final surface mesh.

Since the Floater’s parameterization is a quasi-conformalmapping, the smoothing
step can be avoided in general. Nevertheless, the surface smoothing [7] could be used
to improve the mesh quality.

4 Numerical Examples

The performance of our new mesh generator is shown in the following applications.
The first corresponds to a domain placed at La Palma (Canary Islands, Spain), of
10 × 30 km. In the second example, we discretize a bigger domain: Gran Canaria
(Canary Island, Spain), 60 × 70 km, and we analyze several approximations for
different values of ε parameter. Finally, in the third example, we include a chimney
in a region of Gran Canaria Island and build the associated mesh. In all cases, the
topography is given by a digitalization of the area where heights are defined over
a uniform grid with a spacing step of 25 m in directions x and y (raster data). The
computations were done on a MacBook Pro with two processors, 3.5 GHz, Intel
Core, and 16 Gb RAM memory.

4.1 La Palma

We first consider a rectangular area in Isla de La Palma (Canary Islands, Spain) of
10 × 30 km. The upper boundary of the domain has been placed at 3 km. To define
the topography we use a digitalization of the area where heights are defined over
a uniform grid with a spacing step of 25 m in directions x and y. Therefore, the
associated meccano is a cuboid of dimension 10 × 30 × 3 km. After computing a
boundary mapping, Π between the boundary of the meccano and the boundary of
the domain (see Sect. 3.2 for details), we divided it into 5 × 15 × 1 cuboids. Each
cuboid is subdivided into six tetrahedra by using the subdivision proposed in [16],
see Fig. 3. Then, we fix ε = 5 m, and begin the approximation procedure described
at Sect. 3.4.

http://dx.doi.org/10.1007/978-3-319-76876-2_10
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Fig. 4 a Clip of the mesh along the algorithm: b After node boundary projection, c After inner
node relocation, d After smoothing (final mesh)

Fig. 5 Detail of Isla de La Palma (Canary Island): Surface of the final mesh

The resulting mesh has 75320 tetrahedra and 17664 nodes and it nears the terrain
surface with an error less than ε = 5 m. The adaptive procedure performs 18 refine-
ment steps (bisection). Besides, we relocate the inner nodes using the volumetric
parameterization produced by a coarse ε (ε = 100 m.), and reduce the number of
inverted tetrahedra from 23612 to 5266. Finally, we apply the optimization process
of Sect. 3.6. The node distribution is hardly modified after 12 steps, resulting in a
valid and high- quality mesh (the mesh is untangled after 8 iterations). We remark
that we have not relocated those nodes placed on the terrain during this optimization
process. In Fig. 4 we show several clips of the tetrahedral mesh along the generation
procedure and in Fig. 5 the surface of the final mesh is presented.

The evolution of the mesh quality during the optimization process is shown in
Fig. 6. These curves are obtained by sorting the elements in increasing order of
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Fig. 6 Quality curves for the initial (blue line) and optimized meshes after 8th (red line) and 12th
(orange line) iterations for the domain of La Palma (Canary Island)
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Fig. 7 a Cumulative frequency polygon of the final mesh; for a given quality value x ∈ (0, 1) the
line represents the percentage of elements that have a quality ≤ x . b Quality histogram of the final
mesh. The height of each bar is the relative number of tetrahedra with quality associate to the bar

its quality. This measure tends to stagnate quickly. Note that the quality curves
corresponding to the eighth and twelfth optimization steps are very close. The average
quality measure increases to qκ = 0.75. After this optimization process, the worst
quality measure of the optimized mesh tetrahedra is 0.25. In addition, we present in
Fig. 7a the ‘cumulative frequency polygon’ of the generated mesh, for a given value
of x ∈ (0, 1) the line represents the percentage of elements that have a quality ≤ x
and in Fig. 7b the quality histogram of the final mesh: where the height of each bar
is the relative number of tetrahedra with quality associate to the bar. We note that the
80% of tetrahedra have a quality bigger than 0.70.

The total CPU time for themesh generation is less than 20 s. In particular, the com-
putational cost of the simultaneous untangling and smoothing procedure is about 8 s.
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Fig. 8 Initial meccano of Gran Canaria Island (a) and its corresponding intial mesh (b)

Table 1 Main features of meshes of Gran Canaria Island for several values of the discretization
parameter ε

ε (m) Tetrahedra Nodes Ref.
level

SUS iter.
(untang.+smooth.)

qmin qmax CPU
Time
(s.)

200 8760 2127 12 3 + 6 0.45 0.77 ≈13

100 39800 9191 17 3 + 6 0.30 0.76 ≈22

75 70572 16231 18 2 + 5 0.31 0.76 ≈33

50 153252 35092 21 2 + 5 0.31 0.76 ≈71

35 278674 63740 24 3 + 6 0.32 0.76 ≈145

25 478420 109315 24 3 + 6 0.26 0.75 ≈212

4.2 Gran Canaria

We now approximate the orography of Gran Canaria (Canary Islands, Spain). We
consider a rectangular area of 60 × 70 km, and fix the upper bound of the domain to
11 km. As in the previous case, the topography is defined by a rasted data, with 25
m as discretization step. In Fig. 8 we show the corresponding meccano and its initial
triangulation, respectively.

We generate several meshes of Gran Canaria, for several values of the discretiza-
tion parameter ε. Table1 reports theirmain features. The volumetric parameterization
that induces a tetrahedral mesh is used to relocate the inner nodes of the following
finer mesh. Note that neither the number of optimization steps nor the minimum
quality depend drastically on ε. The CPU time includes surface parameterization,
approximation, and smoothing.

In Fig. 9 we show the surface of the final mesh for ε = 25 m and some details of
the discretization of Gran Canaria topography.
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Fig. 9 Surface of the final mesh of Gran Canaria Island, for ε = 50m., and several details

4.3 Industrial Chimney

In this last example, we show that meccano algorithm allows to include the geometry
of building or stacks. We now consider an area located at north east of Gran Canaria,
Spain (see Fig. 10a), where we introduce a chimney of a power plant. The dimension
of the domain is 15 × 25 × 10 km, and the chimney has 5m. of radius and a height of
100 m. In order to get a good approximation of the chimney we define the tolerance
ε as:

ε(x) =
{

0.5m. if the distance from x to the chimney is less than 100 m.
5m. otherwise
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Fig. 10 a Map of the Gran Canaria’s north east, and 2D mesh of the surface

Fig. 11 Surface of the final mesh of Gran Canaria’s north east

The adaptive procedure performs 96 refinement step (bisection) to reach the pre-
scribed tolerance. The resulting mesh has 695678 tetrahedra and 159166 nodes and
its surface is shown in Fig. 11.
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Fig. 12 Details of the chimney discretization

In Fig. 12 some details of the chimney discretization are presented. Note that the
features of the structure are property approximated by our algorithm.

After relocating the inner nodes, using the volumetric parameterization produced
by a coarse ε, the optimization process only required 16 steps to untangle and smooth
the mesh. The average quality measure of the final mesh is qκ = 0.70. We present in
Fig. 13a the ‘cumulative frequency polygon’ of the generated mesh, for a given value
of x ∈ (0, 1) the line represents the percentage of elements that have a quality ≤ x
and in Fig. 13b the quality histogram of the final mesh: where the height of each bar
is the relative number of tetrahedra with quality associate to the bar. We note that the
90% of tetrahedra has a quality bigger than 0.7. The CPU time to generate the final
mesh is about 600 s. We remark that this time can be drastically reduced by using a
parallel algorithm of the simultaneous untangling and smoothing procedure [2].



Discretization of the Region of Interest 83

0 0.2 0.4 0.6 0.8 1

Quality

0

10

20

30

40

50

60

70

80

90

100
P

er
ce

nt
ag

e
(a) (b)

Fig. 13 a Cumulative frequency polygon of the final mesh; for a given quality value x ∈ (0, 1) the
line represents the percentage of elements that have a quality ≤ x . b Quality histogram of the final
mesh. The height of each bar is the relative number of tetrahedra with quality associate to the bar

5 Conclusions

We have established the main aspects to generate a tetrahedral mesh able to adapt
to the topography of a rectangular area with a minimum intervention of users. Our
three-dimensional domain is limited on its lower part by the terrain and on its upper
part by a horizontal plane placed at a height where the magnitudes under study may
be considered steady. The lateral walls are formed by four vertical planes. The main
input data consist on a digital elevation map of the terrain and its desired approxima-
tion. The adaptive mesh is efficiently built by using the Meccano Method, that was
previously introduced by the authors. The node distribution is obtained automatically
in the domain under study, able to get the irregular topographic information of the
terrain, and with a decreasing density as altitude increases in relation to the terrain. In
addition, the meshes can be generated on a laptop with a low CPU time. Our proce-
dure constructs high-quality meshes that are appropriated to simulate environmental
problems over complex terrain, in particular, those analyzed in this book: Wind sim-
ulation and solar radiation. In this last case, a surface adaptive triangulation of the
terrain is only necessary in the numerical model. The mesh generation procedure can
also consider the inclusion of stacks for air pollution simulation.
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Part II
Wind Field Diagnostic and Forecasting

Wind fields knowledge is required for renewable energy modeling and forecasting.
The electrical power generation using wind energy is affected by the natural resource
variability. This fluctuations could be estimated and forecasted using different deter-
ministic and probabilistic models. The knowledge of wind fields behaviour may lead
grid operators to increase renewable energy integration.

In the following three Chapters this book will focus in different diagnostic and
forecasting models. Chapter 4 describes Wind3D governing equations, the solver of
the corresponding linear system and a numerical experiment over complex terrain.
WIND3D is a mass-consistent diagnostic model with an updated vertical wind pro-
file and atmospheric parameterization. While Chaps. 5 and 6 focus in wind fields
deterministic and probabilistic forecasting. First one describes Regional Numeri-
cal Weather Prediction models and offers a snapshot of how HARMONIE-AROME
model deals with NWP issues to derive a formulation for the 10 mwind. Last chapter
describes the need for ensemble forecasting, the different techniques used to generate
the different initial conditions, and the operational ensemble models that are used
nowadays in meteorological agencies.

http://dx.doi.org/10.1007/978-3-319-76876-2_4
http://dx.doi.org/10.1007/978-3-319-76876-2_5
http://dx.doi.org/10.1007/978-3-319-76876-2_6


Wind Field Diagnostic Model

Eduardo Rodríguez, Gustavo Montero and Albert Oliver

Abstract This chapter describes Wind3D, a mass-consistent diagnostic model with
an updated vertical wind profile and atmospheric parameterization. First, a descrip-
tion of Wind3D is provided, along with their governing equations. Next, the finite
element formulation of the model and the description of the solver of the correspond-
ing linear system are presented. The model requires an initial wind field, interpolated
from data obtained in a few points of the domain. It is constructed using a logarithmic
wind profile that considers the effect of both stable boundary layer (SBL) and the
convective boundary layer (CBL). One important aspect of mass-consistent models
is that they are quite sensitive to the values of some of their parameters. To deal with
this problem, a strategy for parameter estimation based on a memetic algorithm is
presented. Finally, a numerical experiment over complex terrain is presented along
with some concluding remarks.

1 Mass-Consistent Model

Diagnostic models apply conservation of mass, momentum, and energy singularly or
fully, considering the terrain effects on an initial flow field. Although these models
are used to obtain wind fields at a given time, the results usually represent winds of a
time-averaged period. Diagnostic models are limited in comparison with prognostic
models because they do not take into account the transient and thermal effects so
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they cannot simulate the evolution of the boundary layer; however, the computational
requirements of the former are much lower than the latter.

Diagnosticmodels can be classified into three different categories according to the
conservation laws applied. The first category comprises the diagnostic models that
are based only on the conservation of mass; see, e.g., [1–3]. These models obtain a
divergence-free flow that minimizes the differences with an initial known wind field.
Mass-consistent models have been applied to the dynamical-downscaling of NWP
models for local and regional scale wind forecasting, e.g., the WindNinja model [4].
The second category considers a linearized momentum equation [5, 6]. Nonlinear
momentum effects in steep terrain are not represented by thesemodels [7]. Compared
to the mass-consistent models, computational cost is comparable providing similar
results [8, 9]. Nevertheless, mass-consistent models are better suited than linearized
models for some atmospheric dispersion problems where a fast response is required
[10]. The third type of diagnostic model applies conservation of both mass and
momentum to some form of turbulence closure [7, 11–13], and even conservation
of energy [14]. The RANS RNG k − ε turbulence model has handled nonlinear
flow effects better than mass-consistent models [7] but it is computationally more
expensive.

Wind3Duses the logarithmicwind profile to construct the initial wind field. Under
this profile, the value of z0 is the height above ground level where the wind speed
follows the logarithmic law and below that height the wind speed is considered zero.
The value of d preserves the logarithmic law above tall obstacles [15]. Both z0 and d
determine the effect of the land cover to the near-surface airflow [16]. Therefore, the
values of these parameters are directly related to the vegetation and topographical
characteristics of the terrain, which can be defined by the land coverage of the terrain,
as explained in Chap. 2.

1.1 Governing Equation

We consider a mass-consistent model [2, 3, 17, 18] to compute a wind field u in
a domain Ω with a boundary Γ = Γa ∪ Γb, which satisfies the mass continuity
equation in Ω , for an incompressible flow, and the impermeability condition on the
terrain Γa:

∇ · u = 0 in Ω (1)

n · u = 0 in Γa (2)

where n is the outward-pointing normal unit vector and Γb the free boundary. The
model formulates a least-squares problem in the domain Ω to find a wind field
u(̃u, ṽ, w̃) such that it is adjusted as much as possible to an interpolated wind field
v0(u0, v0, w0). The adjusting functional for a field u(̃u, ṽ, w̃) is defined as

http://dx.doi.org/10.1007/978-3-319-76876-2_2
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E (̃u, ṽ, w̃) =
∫

Ω

[α2
1

(

(̃u − u0)
2 + (̃v − v0)

2
)

+ α2
2(w̃ − w0)

2] dΩ (3)

being α1 and α2 the Gauss Precision moduli, considered equal for the horizontal
direction. Mass-consistent models are very sensitive to the values chosen for α1 and
α2, so special care must be taken in its selection. Dividing Eq.3 by α2

2 leads to the
so-called stability parameter α,

α = α1

α2
(4)

Note that coefficients α1 and α2 are the adjusting weights for the horizontal and
vertical components of wind velocity. For α � 1, vertical wind component has more
weight, sowind tends to pass over terrain barriers; withα � 1wind tends to surround
such barriers. In particular, there is pure vertical adjustment forα → ∞, whileα → 0
means pure horizontal adjustment.

In order to find the wind field v(u, v, w) the following problem must be solved:
“Find v ∈ K such that,

E(v) = min
u∈K E(u), K = {

u;∇ · u = 0, n · u|Γb = 0
}

” (5)

This problem is equivalent to finding the saddle point (v, φ) of Lagrangian [19],

L(u, λ) = E(u) +
∫

Ω

λ∇ · u dΩ (6)

The Lagrange multiplier technique can be used to obtain the saddle point of
Eq. (6), L(v, λ) ≤ L(v, φ) ≤ L(u, φ), such that the solution field v can be obtained
from Euler–Lagrange equations,

v = v0 + T∇φ (7)

being φ Lagrange multiplier and T = (Th, Th, Tv) the diagonal transmissivity tensor

Th = 1

2α2
1

, Tv = 1

2α2
2

y
Tv
Th

= α2 (8)

If α1 and α2 are considered constant in the whole domain, variational formulation
leads to an elliptic equation defined in φ. Substituting Eq. (7) in (1) results in

− ∇ · (T∇φ) = ∇ · v0 (9)

which can be completed with null Dirichlet condition in the permeable boundaries
of the domain (vertical boundaries)
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φ = 0 in Γa (10)

and aNeumann condition in the non-permeable boundaries (terrain and upper bound-
ary)

n · T∇φ = −n · v0 in Γb (11)

Taking into account that the initial wind field v0 is horizontal in the upper bound-
ary, condition (11) becomes

n · T∇φ = 0 (12)

Considering Th and Tv as constants, Eq. (9) becomes

∂2φ

∂x2
+ ∂2φ

∂y2
+ α2 ∂2φ

∂z2
= − 1

Th

(

∂u0
∂x

+ ∂v0
∂y

+ ∂w0

∂z

)

(13)

1.2 Finite Element Formulation

The classic formulation given in Eqs. (9), (10) and (11) is solved using the finite
element method (FEM) and tetrahedral meshes (see Chap.3).

Note that in the variational formulation of the problem, integrals in the boundary
with Neumann condition are canceled using Eq. (11), while those corresponding to
Dirichlet conditions are eliminated canceling out the corresponding test function.

This leads to a set of elemental matrices of dimension 4 × 4 associated to the
elementΩe, being ψ̂i the shape function corresponding to the i-th node, i = 1, 2, 3, 4,
defined in the reference element Ω̂e and |J| the Jacobian of the transformation of Ωe

into Ω̂e,

{

Ae
}

i j =
∫

Ω̂e

{

(

∂ψ̂i

∂ξ

∂ξ

∂x
+ ∂ψ̂i

∂η

∂η

∂x
+ ∂ψ̂i

∂ϕ

∂ϕ

∂x

)(

∂ψ̂ j

∂ξ

∂ξ

∂x
+ ∂ψ̂ j

∂η

∂η

∂x
+ ∂ψ̂ j

∂ϕ

∂ϕ

∂x

)

+
(

∂ψ̂i

∂ξ

∂ξ

∂y
+ ∂ψ̂i

∂η

∂η

∂y
+ ∂ψ̂i

∂ϕ

∂ϕ

∂y

)(

∂ψ̂ j

∂ξ

∂ξ

∂y
+ ∂ψ̂ j

∂η

∂η

∂y
+ ∂ψ̂ j

∂ϕ

∂ϕ

∂y

)

+ (14)

+ Tv
Th

(

∂ψ̂i

∂ξ

∂ξ

∂z
+ ∂ψ̂i

∂η

∂η

∂z
+ ∂ψ̂i

∂ϕ

∂ϕ

∂z

)(

∂ψ̂ j

∂ξ

∂ξ

∂z
+ ∂ψ̂ j

∂η

∂η

∂z
+ ∂ψ̂ j

∂ϕ

∂ϕ

∂z

)

}

· |J| dξ dη dϕ

and elemental vectors of dimension 4 × 1,

http://dx.doi.org/10.1007/978-3-319-76876-2_3
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{

be
}

i
=

∫

Ω̂e

− 1

Th

{

u0

(

∂ψ̂i

∂ξ

∂ξ

∂x
+ ∂ψ̂i

∂η

∂η

∂x
+ ∂ψ̂i

∂ϕ

∂ϕ

∂x

)

+

+ v0

(

∂ψ̂i

∂ξ

∂ξ

∂y
+ ∂ψ̂i

∂η

∂η

∂y
+ ∂ψ̂i

∂ϕ

∂ϕ

∂y

)

+ (15)

+w0

(

∂ψ̂i

∂ξ

∂ξ

∂z
+ ∂ψ̂i

∂η

∂η

∂z
+ ∂ψ̂i

∂ϕ

∂ϕ

∂z

)

}

· |J| dξ dη dϕ

1.3 Linear System Resolution

The application of finite element method to these problems leads to the resolution of
large and symmetric linear systems of equations with a sparse matrix of coefficients
(stiffness matrix):

Ax = b (16)

Using iterative solvers is an appropriate strategy to solve such linear systems. In par-
ticular, the conjugated gradient method [20] is the most efficient Krylov’s subspace
method for solving symmetric linear systems.

In the case of a sparse matrix, major memory requirement reductions can be
achieved by storing only the nonzero entries in the computer memory. In particular,
the compressed storage row technique uses three one-dimensional arrays to represent
the stiffness matrix that respectively contain nonzero values, the extents of rows and
column indices. An storage of order 3 × n (being n the matrix dimension) is needed,
in contrast to n2 needed for the whole representation (including zero coefficients).
The trade-off is that accessing the individual elements becomes more complex and
additional structures are needed to be able to recover the original matrix unambigu-
ously.

The solution, φ, of the linear system is used to obtain the wind field with Eq.7.
The rate of convergence of methods based on Krylov subspaces, and conjugated

gradient in particular, can be improved with the use of preconditioning techniques.
In general, they consist of replacing the original system of equations (16) by another
one with identical solution, in such a way that the condition of the matrix of the
new system is lower than that of A. In general, a preconditioning matrix M−1 is
considered, being M an approximation of A,

M−1Ax = M−1b (17)

such that, κ
(

M−1A
)

< κ (A).
The lowest value corresponds to ideal caseM = A, κ

(

A−1A
) = 1, with the sys-

tem converging in one iteration, but the computational cost of obtaining A−1 would
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be equivalent to solve the system by means of a direct method. The objective is to
calculate a matrixM as close to A as possible with low computational cost.

MatrixM should also be easily invertible in order to have a reasonable computa-
tional cost in M−1–vector products in the preconditioned algorithms.

The preconditioning may be carried out in three different ways,

M−1Ax = M−1b (Left preconditioning)
AM−1Mx = b (Right preconditioning)
M−1

1 AM−1
2 M2x = M−1

1 b (Both sides preconditioning)
(18)

ifM can be factorized asM = M1M2. Preconditioned Conjugated Gradient method
is shown in Algorithm 1.

A number of preconditions have been developed and widely used in several appli-
cation fields; see, e.g., [21]. Despite, we have achieved good results in our simulations
withWind3D using the Jacobi precondition, i.e.,M = diag(A), in [22] can be found
a specific precondition for this wind problem.

Algorithm 1 Preconditioned Conjugate Gradient (PCG).
1: Initial approximation x0. r0 = b − Ax0;
2: Solve Mz0 = r0, p0 = z0;
3: while ‖ r j ‖ / ‖ r0 ‖≥ ε ( j = 0, 1, 2, 3, . . .) do

4: α j =
〈

r j , z j
〉

〈

Ap j ,p j
〉 ;

5: x j+1 = x j + α jp j ;
6: r j+1 = r j − α jAp j ;
7: Solve Mz j+1= r j+1;

8: β j =
〈

r j+1, z j+1
〉

〈

r j , z j
〉 ;

9: p j+1 = z j+1 + β jp j ;
10: end while

1.4 Construction of the Interpolated Wind Field

Thefirst step ofWind3D is to create an initialwindfield usingwinddata available only
in a few locations on the domain. Data is typically obtained from wind measurement
stations or from large-scale numerical weather models with coarse grids. With this
data, a suitable interpolation is performed in order to construct a wind field on the
whole domain, using a logarithmic vertical profile.

At this stage, we want to interpolate the available wind data at any point located
at a height zm over zt + d, where zt is the terrain surface height. If we have a set of
dispersed data, a simple technique for this interpolation is formulated as a weighted
sum of the inverse-square law and the height difference interpolation [2]:
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u0(zm) = ξ

nh
∑

i=1

uhi
δ2i

nh
∑

i=1

1

δ2i

+ (1 − ξ)

nh
∑

i=1

uhi
|Δhi |

nh
∑

i=1

1

|Δhi |
, (19)

where the value of uhi is the wind velocity at the point i ; nh is the number of available
points; δi is the horizontal distance between point i and the point of interest; |Δhi | is
their height difference, and ξ is a weighting parameter (0 ≤ ξ ≤ 1) that determines
to what degree the focus is put on the inverse-square law or the height difference
interpolation.

When a grid of wind data is available, e.g., downscaling HARMONIE-AROME
or ECMWF wind results, it is preferable to interpolate the wind field with a simple
bilinear Lagrange interpolation in the cell containing the studied point.

The next step is the construction of the vertical wind profile.We have implemented
the log wind profile proposed in [23] for stable/neutral conditions (see Chap. 2):

u = u∗
k

(

ln
ζ

ζ0
+ b1 (ζ − ζ0) + b2 (ζ − ζ0)

2 + b3 (ζ − ζ0)
3

)

, (20a)

v = −u∗
k

δ
(− (ζ − ζ0) ln (ζ − ζ0) + a1 (ζ − ζ0) + a2 (ζ − ζ0)

2 + a3 (ζ − ζ0)
3
)

,

(20b)

for z > d + z0, where u and v are the components of the horizontal wind velocity
along the x and y axis of a right-hand Cartesian coordinate system with the x-axis
along the surface stress; ζ = (z − d)/h and ζ0 = z0/h are dimensionless heights;
k ≈ 0.4 is the von Kármán constant; δ = f h/(ku∗) = γ /k is the dimensionless
rotation rate parameter; a1 = 4/δ2 + Π , a2 = − 3

2Π , a3 = 1
3

(

1 − 4/δ2 + 2Π
)

, b1 =
Π − 3, b2 = − 3

2Π , b3 = 2
3 (Π + 1), with Π = CRδ2 + CL

kh
L + CN

Nh
u∗ and Π =

CRδ2 + CL
kh
L + CN

Nh
u∗ ; and L = −u3∗/(kBs) is the Monin–Obukhov length. This

model uses the values of estimates of the dimensionless constants obtained by [23] on
the basis of empirical and numerical (LES) data:CR = 7,CL = 4.5,CN = 0.4,CR =
0, CL = −7, CN = −1. In addition, the original expression in [23] has been slightly
modified to verify u(z) = 0 and v(z) = 0 at z = d + z0. The vertical component w

of the wind velocity is assumed to be zero. From (20a), the surface friction velocity
may be computed using the horizontal wind velocity interpolated at z = zm , u0(zm):

ln
zm − d

z0
u3∗ −

[

ku0(zm) −
(

CR
γ

k2
+ CN N2h−h

f
− 3

γ

)

f (zm − (d + z0))

]

u2∗

− CLk
2Bs(zm − (d + z0)) = 0,

(21)
where the squared and cubic terms of the wind profile were neglected at z = zm .

The estimation of the CBL height is provided by the mesoscale model estimations
(see Chap.2). If the ratio between the mechanical velocity scale V∗ = (2Uu∗)1/3 and
the convective velocity scaleW∗ = (Bsh)1/3 is negligible, i.e., V∗/W∗ � 1, we have

http://dx.doi.org/10.1007/978-3-319-76876-2_2
http://dx.doi.org/10.1007/978-3-319-76876-2_2
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a Purely Convective Layer (PCL). Otherwise, it is a Mechanically Convective Layer
(MCL) [24]. The log wind profile in the CBL was given in [25] as follows:

|u| =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

u∗
k
ln
z − d

z0
z0 + d < z <

ζu |L|
k + d, (22a)

u∗
k

[

au + Cu

(

k(z − d)

L

)− 1
3 + ln

−L

kz0

]

ζu |L|
k + d ≤ z ≤ h, (22b)

where ζu ≈ 0.1, au ≈ 0.7 and Cu ≈ 1.4 are dimensionless constants (see [1]). The
angle of wind turn in the boundary layer is given by the expression:

sinα = sin (αs − αh−0) = aα

k

(

hk

|L|
)− 1

3 u∗
|u| sign f, (23)

where αs and αh−0 are the angles between the wind direction and x-axis at the terrain
and z = h, respectively. The estimation of aα = 3 was proposed in [25]. The mean
wind velocity |u| in the CBL is obtained from

|u| = |u|h−0 = u∗
k

[

au + ln
−L

kz0

]

, (24)

if we consider h � |L|. In practice, we assume that thewind turn angle varies linearly
with height and reaches zero at the top of the CBL Finally, note that in the CBL wind
profile, the calculation of the surface friction velocity u∗ from the horizontal wind
velocity interpolated at z = zm , u0(zm), is generally straightforward using (22a):

u∗ = k |u0(zm)|
ln
zm − d

z0

. (25)

In the case that zm ≥ ζu |L|
k

+ d, we have to use (22b).

2 Parameter Estimation

The results of the mass-consistent modeling have proved to be very sensitive to the
values of α, ξ , z0, and d. Thus, an accurate definition of these parameters is critical
to obtain a reliable downscaling wind field. We have to estimate a value of α and ξ

for the whole domain [18], and a value of z0 and d for each land cover class. This
means that the number of unknowns depends on the number of the different land
covers in the region of interest.
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The objective of the optimization is to find the values of the parameters such that
the wind computed with the model is the most similar to a known wind at some
control points. The wind values at the control points can be known from a NWP
model (i.e., HARMONIE-AROME) or from measurement stations. To measure the
error between the model and the known data, we use the RMSE, i.e.,

RMSE =
√

√

√

√

1

nc

nc
∑

i=1

(uxi − ucxi )
2 + (uyi − ucyi )

2 + (uzi − uczi )
2, (26)

where nc is the number of control points, (uxi , uyi , uzi ) and (ucxi , u
c
yi , u

c
zi ) are, respec-

tively, thewind velocity obtainedwith themass-consistentmodel and the knownwind
at the i th control point. So, the parameter estimation consists of the minimization of
the RMSE. Note that for each evaluation of the fitness function, the wind model has
to be executed.

Evolutionary algorithms are a family of heuristic optimization methods using
techniques inspired in biology to find out optimal configuration for a specific system
within given constraints. For this reason, they can be used to estimate the parameters
stated above.Wehave successfully used a classic genetic algorithm [26, 27] algorithm
to estimate parameters of a simplified version of Wind3D that does not consider
any land cover parameters. In the next section, we present a memetic algorithm to
optimize the fitness function (26).

Note that the values of z0 and d obtained in a particular numerical experiment are
not representative values for a given land cover; they only represent the optimal solu-
tion compared to the available wind measurements for the land covers in the domain
of interest. However, the general methodology can be applied to any combination of
regions, databases, and downscaling wind models. So, the final aim of the proposed
strategy is to improve the results of a downscaling wind model by estimating the
optimum aerodynamic parameters values.

2.1 Memetic Algorithm

As stated before, an evolutionary algorithm is a suitable technique to find the optimal
values of the parameters of the wind field model. A population of individual repre-
senting different values of the parameters is allowed to evolve during a number of
iterations (generations). In each one, the selected individuals, according to the fitness
function, are combined to create the next population. During the process, some of the
individuals can go under mutation. Finally, the fittest individual is chosen as solution
of the optimization problem.

The generic denomination of Memetic Algorithms (MAs) is used to encompass
a broad class of metaheuristics (i.e., general purpose methods aimed to guide an
underlying heuristic). In this case, we propose a memetic method composed of three
tools: the differential evolution algorithm (DE) [28], a Rebirth Operator (RBO) [29],
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and the L-BFGS-B algorithm [30]. DE is an evolutionary algorithm that utilizes a
population composed of a fixed number nv of D-dimensional parameter vectors pi,g
for each generation g; g = 1, . . . , ng . The initial population, which must cover the
parameter searching space, is chosen randomly. The mutation procedure modifies an
existing vector by adding to itself a weighted difference between two other vectors.
In the crossover step, these mutated vectors are mixed with another target vector to
obtain the so-called trial vector. If the trial vector yields a lower fitness function value
than the target vector, the target vector is replaced by the trial vector (selection). Each
population vector has to serve as target vector at least once, so nv competitions will
take place per generation.

The accuracy of the results obtained using DE may be insufficient. To increase it,
we have run ne DE experiments and have performed a statistic analysis of the results
obtained for each one. This analysis will allow us to reduce the search interval. Let
p j
i,ng

( j = 1, . . . , ne; i = 1, . . . , nu) be the estimation of the nu unknown parameters
obtained in eachof thene experiments.Wecan compute its average pi,ng , and standard
deviation σi,ng . Then, the search interval can be reduced to the confidence interval
of each variable, i.e., pi,ng ± σi,ng√

ne
Tne−1, τ

2
, where 1 − τ is the confidence coefficient

and T , the Student’s t-distribution. If one extreme of the new interval exceeds the
old extreme, the latter is preserved. This allows the rebirth of a new population to
restart DE. This procedure may be repeated as many times as required. Note that the
ne DE experiments can be run in parallel.

When the last generation of the last reborn population is evaluated, the best param-
eter vector among all the DE experiments is selected to be the starting point of the
L-BFGS-B algorithm. This algorithm is a procedure for solving large nonlinear opti-
mization problems with simple bounds. It is based on the gradient projection method
and uses a limited memory BFGS matrix to approximate the Hessian of the fitness
function. The results of this final minimization will be the estimated parameters.

3 Numerical Experiment

In this section, we characterize the roughness length and displacement height in
the island of Gran Canaria (N27◦58′ W15◦36′), Spain. To this end, a map of z0
and d is constructed. Many authors have concluded that the roughness length and
height displacement values depend on the wind speed and direction, as well as on the
atmospheric stability class. Therefore, the characterization is performed for different
typical meteorological episodes. For this reason, we have studied the characteristics
of the wind in Gran Canaria for the summer months of 2015, i.e., from June to
September.

Figure1 represents the wind roses of Gran Canaria in the selected months. For
convenience, we have separated daytime and nighttime. Based on this classification
in speeds and directions, we have selected eight characteristic winds that represent
about 71.90% of daytime and 77.88% of nighttime.
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(a) Daytime (b) Night-time

Fig. 1 Wind Rose of Gran Canaria at 10m relating to the period from June 1 to September 30 of
the year 2015

Table1 displays the chosen episodes. The AROME/HARMONIE forecast wind
speeds and directions are taken at a representative point located in the sea in the NE
of the island with a height of 10m above the sea. The Pasquill stability class has been
obtained from the daytime incoming solar radiation and the nighttime cloud amount
[31].

So, we are going to estimate the parameters α, ξ , as well as z0 and d for each of
the 30 basic land covers of Gran Canaria for each of the eight episodes. The land
use of Gran Canaria is obtained from the SIOSE database. According to it, in the
island there are 5237 different zones with its particular linear combinations of these
30 basic classes; see Fig. 2.

In addition, wind measures at 7 stations of the State Meteorological Agency of
Spain (AEMET) network are available. Its UTM coordinates and heights above sea
level are given in Table2 and shown in Fig. 3.

The application is solved in a region of 76×85km2 that contains the island ofGran
Canaria and is limited by an upper plane at a height of 4 km. We have generated a
tetrahedral mesh adapted to the terrainwith local refinement around themeasurement
stations and the shoreline; see a detail of the terrain triangulation in Fig. 4. The
mesh contains 1492804 tetrahedra and 326101 nodes. To compute the interpolated
wind field, we have used the AROME/HARMONIE predictions of wind velocities at
10m above the terrain. Finally, we have estimated the parameters using the memetic
method described in Sect. 2.1. We have chosen 11 control points: the measurements
from the seven stations and four AROME/HARMONIEwind forecast values located
at 10m over the sea in the corners of the mesh. Remember that for each evaluation
of the fitness function (RMSE) the mass-consistent model has to be applied.

The results obtained for each wind episode are presented in Tables3 and 4
for daytime and nighttime, respectively. In all of the eight episodes, using the
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Table 1 Most frequent wind speeds and directions in the island of Gran Canaria during the summer
months

Cases Daytime

Surface
wind
direction

Surface
wind speed
range (m/s)

AROME/HARMONIE
10m wind speed

AROME/HARMONIE
10m wind direction

Incoming
solar
radiation

Pasquill
stability
class

NNE >6 7.61 32.89 530.85 D

NE >6 9.01 37.29 583.39 D

N >6 7.11 349.53 494.75 D

NE 5–6 5.57 40.50 665.60 C

N 3–5 4.16 4.26 797.14 B

NNE 5–6 5.88 12.76 771.82 C

NNE 3–5 3.54 12.70 586.43 C

N 5–6 5.39 350.28 695.26 C

Cases Nighttime

Surface
wind
direction

Surface
wind speed
range (m/s)

AROME/HARMONIE
10m wind
speed

AROME/HARMONIE
10m wind
direction

Cloud
amount
(oktas)

Pasquill
stability
class

NNE >6 9.87 25.75 4.59 D

NE >6 8.07 34.16 3.39 D

N >6 6.82 355.35 7.04 D

NE 5–6 5.10 42.58 2.24 D

N 3–5 4.99 359.27 6.45 D

NNE 5–6 5.13 19.94 0.61 D

NNE 3–5 4.90 12.56 0.00 E

N 5–6 5.62 353.72 1.86 D

estimated parameters, the wind predicted by the mass-consistent model has reduced
the AROME/HARMONIE error. This reduction has gone from 4.97 to 56.21% in
the daytime, and from 22.49 to 58.93% in the nighttime. However, this approach is
strongly dependent on the forecast values of the mesoscale model, which determines
the quality of the predicted wind.

The literature points to a relationship between these parameters and the atmo-
spheric state (wind speed, direction, and its stability). However, from the results
presented here it is difficult to obtain a correlation between them. Particular conclu-
sionsmay be drawn for some specific parameters. For example, zARR0 decreases when
the wind direction goes fromN to NE. Another outcome is that the range of variation
of many of the parameters is considerably shorter than that given in Table2.1. This
is the case, e.g., for the values of z0 corresponding to HMA, HSM, LAA, LVI, SNE
and ZQM, and d in CNF, HMA, HSM, LFC, LFN, LOC, LVI, MTR, PST, RMB,
SDN, SNE, ZEV, and ZQM.What is clear from these experiments is that the optimal

http://dx.doi.org/10.1007/978-3-319-76876-2_2
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Fig. 2 SIOSE land cover
polygons in the Island of
Gran Canaria

Table 2 Location in UTMzone 28N coordinates and height above the sea level of the anemometers
used in the numerical application in Gran Canaria

Code Name x(m) y(m) z(m)

C619X Agaete 429982 3108624 15

C629Q Mogán, Puerto Rico 429927 3073056 20

C648N Telde, Centro Forestal Doramas 454970 3095890 354

C649R Telde, Melenara 462854 3095804 19

C656V Teror 446227 3105674 693

C659M Plaza de la Feria 458627 3109809 25

C669B Arucas 450225 3113015 96

C689E Maspalomas 441057 3068075 35

values of z0 and d are different from the nominal values found in the literature. So,
it is convenient to correct them for the region of the Canary Islands.

Concerning the values of α, there is no direct conclusion from the results. It seems
that α is normally lower at nighttime than daytime, where it is more irregular, but
further experiments should be carried out. Regarding ξ , it often reached values near 1.

Another important aspect to be considered is a sensibility study of all the involved
parameters in the resulting wind field. This analysis may lead to a reduction of the
number of unknowns by not considering those parameters with a negligible effect on
the final result. One of the limitations of this approach is that one basic coverage may
affect different regions with very different characteristics. However, in the current
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Fig. 3 Location of the wind
measurement stations

Fig. 4 Detail of the terrain
of the adaptive mesh of Gran
Canaria island
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implementation each parameter is represented by a single value, but their optimal
values could be different in each region. For this reason, if the sensibility analysis
determines that the results of the model are highly dependent on those parameters,
one can split them and consider different unknowns for each region.

Finally, this methodology can be applied to construct a reduced basis for its use
in wind forecasting, but a larger period must be studied (at least one year) so that
we can analyze all the wind condition types (speed, direction, stability) occurring in
Gran Canaria.

4 Conclusions

This chapter presents Wind3D, a mass-consistent diagnostic model with an updated
vertical wind profile and atmospheric parameterization which uses an initial wind
field with a logarithmic wind profile that consider the effect of both stable boundary
layer (SBL) and the convective boundary layer (CBL).

The strategy adopted to deal with the sensitivity of the models to the value of
some of its parameters is to estimate their values using a memetic algorithm.

A numerical experiment over Gran Canaria island shows that this model is a
suitable tool to study wind fields over complex terrains.
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Wind Field Deterministic Forecasting

Javier Calvo Sánchez and Gema Morales Martín

Abstract Regional Numerical Weather Prediction (NWP) models are nowadays
integrated at resolutions between 1 and 3 km. They are non-hydrostatic models,
generally run with explicit deep convection. These models have achieved a signifi-
cant improvement on high-impact weather simulation comparing with synoptic scale
models. Modeling at these scales needs big computer resources. Wind simulations
are very sensitive to different features of the model: space resolution, orography
representation, surface physiography, and flux exchanges between the surface and
the atmosphere. Different formulations and parameterizations are followed to take
into account all these topics depending on the stability and the surface properties.
This chapter offers a snapshot of howHARMONIE-AROMEmodel deals with these
issues to derive a formulation for the 10 m wind.

1 Introduction

Numerical Weather Prediction (NWP) models have improved significantly over the
last decades (see Sect. 3). For wind prediction, model resolution is a key aspect. Cur-
rently, Limited Area Models (LAM) are run operationally at horizontal resolutions
around 1–3 km, but these resolutions may not be enough to represent local wind with
complex terrain. There are several methods to further enhance the NWP output but
they rely on the quality of the mesoscale model: evolution of the pressure systems,
stability of the atmosphere, representation of regional winds and local circulations,
etc. When convection takes place, the uncertainty of the model predictions increases
and it is recommended to use ensemble methods to estimate the predictability of the
forecasts.
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2 HARMONIE-AROME Model

The HARMONIE-AROME non-hydrostatic convection-permitting model is a par-
ticular configuration of theALADIN-HIRLAMshared system resulting from the col-
laboration between ALADIN and HIRLAMConsortia. This configuration described
in [4] is based on the AROME-France model [34].

The model performance is very sensitive to the initial state that is estimated by its
assimilation system, based on the 3D-Var scheme developed in ALADIN [8], which
shares most of the code with the ECMWF and ARPEGE models. A summary of its
main features can be found in [17]. A 4DVar system, under construction, will allow
to account for flow-dependent forecast errors, improving the use of observations
and diminishing model spin up. Moreover, ensemble assimilation techniques are
under development. Currently, the analysis of screen level variables is done using a
statistical interpolation algorithm [36]. In the near future, assimilation of other soil
parameters as soil moisture and leaf area index will be included using an extended
Kalman filter approach.

The spectral dynamical core uses a two-time level semi-implicit semi-Lagrangian
discretization based on SETTLS approach [19] which allows long time steps (75
s for a 2.5 km resolution). In order to enhance stability, an upper level nesting
is applied using Davies relaxation. The non-hydrostatic component is based on
ALADIN dynamics [3, 10].

The physics is adapted fromMeso-NH researchmodel [7] as it is described in [34].
Surface processes are treated within an externalized surface model called SURFEX
[23] (Surface Externalisée, in French), developed by Météo-France in cooperation
with the scientific community. Turbulence scheme follows a turbulent kinetic energy
approach [13] and convection in the boundary layer uses the EDMF-M schemewhich
combines eddy diffusivity and mass flux scheme for shallow convection [24, 33].
Deep convection processes are treated explicitly so the microphysics package plays
a very important role in the model performance. The package known as ICE3 is a
one-moment bulk scheme which uses a three-class ice parametrization [22, 32].

3 Parameterization of Surface Processes. Wind
Representation

The surface fluxes which are input to the atmospheric turbulence and radiation
schemes are computed within SURFEX [23, 29], which represents surface hetero-
geneity dividing each grid box in four surfaces (tiles): nature, water (lake), urban
areas, and sea. The fraction of each surface is extracted from a global data base
named ECOCLIMAP [28]. The fluxes passed to the atmosphere are the averaged
fluxes for each subtype weighted by their relative fraction in the grid cell. All the
tiles experiment the same forcing by the mean atmospheric variables and radiative
fluxes (Fig. 1).
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Fig. 1 Tiling approach used in the parameterization of surface processes where fluxes are computed
independently in each tile. The grid is divided into 4 tiles and the nature tile is subdivided into 12
patches. The atmosphere feels the averaged fluxes in the grid cell. On the other hand, atmospheric
variables and radiative fluxes are sent to the surface where all the tiles receive the same forcing.
Source CNRM: http://www.umr-cnrm.fr/surfex, [29]

3.1 Soil and Vegetation (ISBA Scheme)

The prognostic equations for surface and soil temperatures and humidities are based
on the force-restore method. The soil is divided into several layers including a root
zone from which vegetation can extract humidity. Soil freezing effects may play an
important role in the energy and humidity fluxes. Vegetation leaves may retain water
from precipitation or dew deposition that could be evaporated later. Generally, a one
layer snow scheme is used [14].

Following [23], the surface momentum fluxes can be expressed using drag coef-
ficients: (

u′w′)
s = −CDu |V| (1)

(
v′w′)

s = −CDv |V| (2)

http://www.umr-cnrm.fr/surfex
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where u, v, w are the wind components, |V| =
√
u2 + v2 the horizontal wind speed

evaluated at first model level, subindex s means evaluated at the surface and CD

a drag coefficient based on Louis formulation [25], modified to consider different
roughness lengths for heat z0h and momentum z0 [26]

CD = CDN Fm (3)

where the neutral drag coefficient is

CDN = k2

[ln (z/z0)]
2 (4)

being k the Von Karmann constant and the stability function Fm is computed as

Fm = 1 − 10Ri

1 + Cm
√|Ri | i f Ri ≤ 0 (5)

Fm = 1

1 + 10Ri√
1+5Ri

i f Ri > 0 (6)

which are the function of the gradient Richardson number Ri . The coefficient Cm of
the unstable case is computed using

Cm = 10C∗
mCDN (z/z0)

pm (7)

C∗
m = 6.8741 + 2.6933 × μ − 0.3601 × μ2 + 0.0154 × μ3 (8)

pm = 0.5233 + 0.0815 × μ − 0.0135 × μ2 + 0.0010 × μ3 (9)

with
μ = ln (z/z0h) (10)

that depends on roughness lengths for momentum and heat.
Vegetation diversity is represented using 12 vegetation types in three categories:

• Bare soil, rocks, permanent snow and ice (bare soil types).
• C3 crops, C4 crops, irrigated crops, natural herbaceous temperate, natural herba-
ceous tropics, wetland herbaceous, and irrigated grass (herbaceous types).

• needleleaf trees, evergreen broadleaf trees, and deciduous broadleaf trees (woody
trees).

Each vegetation type cover has defined parameters obtained from ECOCLIMAP
data base [28]. A summary of the different roughness lengths can be found in Table1.
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Table 1 Roughness lengths for different surface and vegetation types [28]. LAI is the Leaf Area
Index derived from satellite data and having an annual cycle, h is the typical tree height which is 2
m for bushes and ranges from 15–30 m for forests

Surface/Vegetation type Roughness length (m)

Sea 0.015(u2∗/g)
Ice/snow 0.0013

Bare soil 0.013

Rocks 0.13

C3 crops 0.13 min [1, e(L AI−3.5)/1.3]
C4 crops and irrigated crops 0.13 min [2.5, e(L AI−3.5)/1.3]
Herbaceous veg 0.13L AI/6

Forest 0.13h

3.2 Water Surfaces

For sea and lakes, all the prognostic variables are kept constant. The roughness length
is given by Charnock’s formula:

z0sea = 0.015
u2∗
g

(11)

and with ice (SST < −2 ◦C) the roughness length is the one used for snow

z0ice = 10−3 (12)

Momentum fluxes follow Louis approach [25] as described for the ISBA scheme.

3.3 Urban Surfaces

The Town Energy Budget (TEB) scheme [27] is based on the canyon approach where
the energy budgets are computed for three components: roofs, roads, and walls. If
snow is present, two additional budgets are considered for snow on roofs and roads. A
spatial average of town characteristics is needed so the parameterization performance
is quite sensitive to a proper description of the main town features. The parameters
of the scheme depend on building shapes and construction materials.

The problem is that the roughness sublayer can be above the first model level
(typically around 10 m). Anyway, the momentum fluxes are computed with the
roughness length and the stability coefficients using [26]

z0town = h

10
(13)
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where h is the typical building height for the entire surface area with a maximum
value of 5 m. There are several types of urban surfaces (dense urban, suburban, urban
parks, etc.) each one with specific characteristic parameters.

3.4 Coupling Between the Different Surfaces
and the Atmosphere. 10 m Wind

Simple interpolation between the lowest level and the surface
The interpolation is done usingMonin Obukov diagnostic profile functions including
the roughness length and the surface fluxes computed in the surface parameterization.
Thesewindprofile functions followa logarithmic profile corrected for stability effects
(Fig. 2, left). The lowest model level is supposed to be high enough to be in the
inertial sublayer (constant flux layer). This method is appropriate over the ocean and
for homogeneous and smooth surfaces.

Surface Boundary Layer scheme (CANOPY scheme)
Another approach for the surface atmosphere coupling consists on dividing the
surface-1st model level layer into different sublayers and run a simplified one col-
umn model scheme in these layers [30] (Fig. 2, right). In this model, the momentum
tendencies and the turbulent kinetic energy tendency have additional terms, function
of the LAI, and the vegetation height to account for the vegetation drag.

The same method is also used for urban canopies [18]. This method achieves
a finer description of the profiles of the mean variables and fluxes in the surface

Fig. 2 Coupling between the surface and the first model level using a simple interpolation scheme
using a logarithmic profile correcting for stability (left) or using the SBL scheme that divides the
layer into several sublayers and runs a 1D turbulence scheme accounting for canopy or urban drag
right
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boundary layer that are function of the wind speed and the stability. The method
retrieves the logarithmic profile in neutral conditions. In general, it allows a better
representation of 2 m variables and 10 m wind. The major improvements are found
in stable conditions and for mountainous regions.

3.5 Sub Grid Scale Orography (SSO) Parameterization

There are several options for the orographic drag parameterization in SURFEX. The
effects of the small scale orography are parameterized as a momentum sink (drag).
The larger scale effects such as mountain blocking and gravity wave breaking are
supposed to be resolved at convection-permitting scales (1–3 km resolution).

Z01D
The orographic drag is function of the orographic roughness length z0 (between 1–60
over orography) that does not depend on wind direction

∂
(
u′w′)

z01D

∂z
= ρ2

⎡

⎣ 0.4

ln
(

z
z0

)

⎤

⎦

2

|V| (14)

with z the height of the atmospheric forcing level, |V| the horizontal wind speed and
the roughness length has a maximum value of z/2.

Z04D
The same method as Z01D but with the roughness length function of the wind direc-
tion.

BE04
Following [2], the drag is not function of the roughness but of the sub-grid orography
variance σ 2

SO ∂
(
u′w′)

BE04

∂z
= C σ 2

SO z−1.2e−[ z
1500 ]

1.5 |V| (15)

where z is the height, |V| the horizontal wind speed and the other parameters are
constants [2].

Currently, there is no consensus about the benefits of activating the SSO parame-
terization in HARMONIE-AROME and some operational configurations activate it
and others do not.

4 Verification of Operational Wind Forecast

The State Meteorological Agency of Spain (AEMET) runs HARMONIE-AROME
at 2.5 km horizontal grid spacing over two domains (Iberian Peninsula-Balearic
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Islands and the Canary Islands). The vertical discretization includes 65 levels with
15 levels below 1000 m and the model top at 10 hPa. The model analysis updates
the atmospheric and surface variables every 3 h using a cutoff time of 1 h and 10
min for the observations, including convectional and aircraft data as well as GNSS
zenith total delay and ATOVS satellite data. Other satellite observations and radar
data will be included in the near future. The boundary conditions are provided by
the ECMWF-IFS integrations corresponding to a cycle 6 h earlier than the Limited
Area Model cycle. The HARMONIE-AROME 2.5 kmmodel significantly improves
local and extreme forecasts of coarser grid models like HIRLAM or ECMWF [31].

Verification of wind forecast against observations is a key aspect on model valida-
tion. In the traditional point verification, model output is interpolated to observation
locations and different statistics are computed in order to assess forecast quality [15,
20, 37]. A new model version is only implemented when it is able to improve sta-
tistical scores. Comparison of models with different resolutions is a complex issue
because double penalty problems take place [15]. A simple way to compare various
models or several model versions is comparing the distribution of events in a fore-
cast observation plot as it is done in Fig. 3 for HARMONIE-AROME (HARM) and
ECMWF deterministic model. HARM shows a better distribution especially for the
strongest winds where ECMWF has a clear tendency to underestimate these events.

Wind velocity shows a clear diurnal cycle as can be seen in Fig. 4 where mean
values as function of the hour of the day are plotted for observed values and for
several model versions. It should be taken into account that this plot is dominated by
low winds that indeed are the ones that occur more frequently.

In order to take into account the uneven distribution of observations, it is very use-
ful to split the verification into different categories corresponding to different intervals
of observed wind speed and then compute categorical scores on these intervals. An
example of this type of categorical verification is shown in Fig. 5 where Kuiper Skill
Score is calculated. HARMONIE-AROME improves ECMWF forecasts for all the
forecasting categories.

Fig. 3 Comparison of observation forecast events for ECMWF (upper) andHARMONIE-AROME
(below)model for 1 year of forecasts. Narrower distribution and closer to the diagonal implies better
forecasts. The biggest differences are found for strong wind cases
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Fig. 4 Comparison of mean values of forecasts and observations plotted as function of the hour
of the day showing strongest winds at 15 UTC. Red and green curves correspond to two HARM
version whereas green curves correspond to ECMWF forecasts. Basically the models are able to
reproduce the diurnal cycle

Fig. 5 Kuiper Skil Score comparing ECMWF forecasts (blue) with two versions of HARMONIE
model (red and green curves) for 1 year of forecasts. Bigger scores mean better predictions. The
differences for wind speeds below 5 m/s are small but the improvement is significant for bigger
categories
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5 Wind Forecast Case Studies

Mountain ranges exert a significant influence in the atmospheric flow affecting the
dynamics of the synoptic systems, producing regional winds and a variety of local
effects. Several observation field campaigns have been carried out to improve the
understanding of orographic processes [5, 6, 21]. Generally, NWP models use a
grid averaged orography what implies a smoothing of the real topographic height
and an underestimation of the orographic obstacles. Coarse resolution models, as
global models, include a parameterization of orographic processes (blocking effects
and breaking of orographic waves) to overcome this limitation. Higher resolution
models, as convection-permitting models, resolve better these processes and only
include a parameterization for subgrid scale turbulence generated by the topography.
Generally, synoptic models (above 10 km resolution) underestimate the orographic
drag and the mountain effects [16]. Figure6 shows a simulation with HIRLAM
model at 10 km resolution, using an effective roughness length and no additional
parameterization of the orographic processes. The blocking effect of the mountain
and regional winds are underestimated in the simulations.

Another example of strong orographic effects took place during the passage of
the Tropical Storm Delta over the Canary Islands. In order to simulate this large low
pressure system, large modeling domains are necessary and also a good assimilation
system, otherwise neither the trajectory nor the intensity can be reproduced. Finally,
the major damages in the Islands took place due to downslope windstorms originated

Fig. 6 Comparison of 10 m wind field simulated by HIRLAM model (green flags) at 10 km
resolution with the observations (blue) from the PYREX field campaign [5]. Red curves indicate
the 1000 and 2000 m topographic height as well as the cost lines. Blocking effects and regional
winds are underestimated at this resolution
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Fig. 7 Comparison of the evolution of the wind speed during 28-11-2005 for two leeward stations
(black) compared with forecasts at different resolutions. Although the evolution of the wind is
generally well represented, the peak in several locations as the Tenerife/Sur station was greatly
underestimated even at 1 km resolution

when the flow crossed perpendicularly to the main mountain ranges. Indeed many
infrastructures were destroyed and the observations were interrupted due to a gen-
eralized power cut. In order to simulate this phenomena, model resolution is a key
aspect (Fig. 7):

6 Wind Gust Estimation

Whereas wind field components are forecast variables in the model, wind gust is
generally diagnosed using model wind and information from the turbulence scheme
[11, 12, 35]. Moreover, the processes leading to gust formation such as deep convec-
tion, boundary layer, and orographic processes are generally not well resolved by the
models and tend to show a chaotic behavior. Figure8 shows an example of different
methods for estimating gusts associated with the pass of Storm Klaus trough the
north of the Iberian Peninsula. The evolution of the gusts is well captured because
the evolution of the storm was well reproduced.

However, the errors in the gusts estimation are bigger for purely convective events.
Synoptic models use simple parametrization for convective gust but the skill of these
estimations is small [1]. On the other hand, convection-permittingmodels resolve the
convective circulations and have more chances of representing better the convective
gusts. Nevertheless, at current operational horizontal resolutions, deep convection is
not completely resolved what leads to too intense vertical circulations and a general
overestimation of the convective gusts.

7 Kilometer and Sub-kilometer Resolutions

Currently, most AROMEconfigurations are run at 2.5 km resolution althoughMeteo-
France is already running the model operationally at 1.3 km including assimilation
[9]. Nevertheless, it is important to take into account that the model effective reso-
lution, which is the one of the processes actually resolved, may be six times bigger
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Fig. 8 Extremely intense winds and hurricane force gusts were reported in many places of the
Iberian Peninsula whenKlaus swept the Peninsula producing several casualties. Themodel estimate
was relatively good because the synoptic evolution of the system was well captured

than the model grid spacing. The AROME system is also run at high resolution in
nowcasting mode with very frequent assimilation cycles, going from 10 min to 1 h
frequency and performing short forecast lengths (typically up to 6 h). Nowcasting
applications normally need ensemble approaches as uncertainty at these scales is big.

Several implementations in the range of 1 km to 500 m are under construction
but this is a big challenge because several processes need to be reformulated in the
model. At these scales, shallow convection start being resolved by the model (gray
scales for shallow convection) so it needs to be redesigned. Besides, to represent tur-
bulence below 500m, there is need to account for 3D fluxes which implies significant
modifications in the current operational codes. Also, the resolution of the physio-
graphic data needs to be enhanced. This includes soil and vegetation characteristics
that currently have a resolution around 1 km.

Additionally, high-resolution modeling needs big computer resources, as dou-
bling the model resolution typically implies to increase 8 times the computer cost.
Currently, optimization of the models in the context of massive parallel systems is a
key aspect and an active field of research (ESCAPE https://www.ecmwf.int/escape
and SCALABILITY https://www.ecmwf.int/en/about/what-we-do/scalability pro-
grams).

https://www.ecmwf.int/escape
https://www.ecmwf.int/en/about/what-we-do/scalability
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8 Conclusions

Wind simulation has improved significantly using NWPmodels at convective scales.
This is specially the case when orographic processes play an important role. These
models generally represent deep convection explicitly having more chances to
improve the circulations associated with convection but it should be taken into
account that these resolutions are still too broad to resolve completely deep con-
vection. When convection takes place, the predictability decreases and it is advised
to follow ensemble approaches to estimate the prediction uncertainty.

The complexity of surface processes is large, in particular in the representation of
the wind profile. Different surface covers are taken into account being particularly
important the representationof vegetation effects and thepresenceofwater, sea/ice, or
urban surfaces. There is no general consensus about the needof an effective roughness
length or a subgrid scale orographic parameterization to enhance the orographic
effects at convective scale NWP modeling.
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Wind Field Probabilistic Forecasting

Albert Oliver, Eduardo Rodríguez and Luis Mazorra-Aguiar

Abstract Probabilistic wind forecasting is a methodology to deal with uncertainties
in numerical weather prediction models (NWP). In this chapter, we describe the need
for ensemble forecasting, the different techniques used to generate the different initial
conditions, and the operational ensemble models that are used nowadays in meteo-
rological agencies. Then, we develop an ensemble method designed for the down-
scaling wind model described in Chap.4 coupled with the AROME–HARMONIE
mesoscale model, a non-hydrostatic dynamic forecast model described in Chap. 5.
As we have explained in Chap.4, some parameters need to be estimated since we
do not know its exact value. These parameters are, basically, the roughness length
and the zero plane displacement (explained in Chap.2), as well as the Gauss moduli
parameter (α) used in the diagnostic wind model. This estimation is the main source
of uncertainties in the model; therefore we will estimate some of these parameters
using different forecast values of the AROME–HARMONIE. Finally, an example of
the approach is applied in Gran Canaria island with a comparison of the ensemble
results with experimental data from AEMET meteorological stations.
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1 Probabilistic Forecasting

Up to this point, we have described deterministic weather models. These models are
governed by the initial state, and the errors in this state grow as the model predicts
the future, since the models are unstable systems characterized by nonperiodicity.
So, the accuracy of the forecast depends on the initial state which is uncertain.

This relationship between the initial state and the deterministic prediction was
discovered by Edward Lorenz and is discussed in his book “The Essence of Chaos”
[24]. In 1962 [22], he simulated the evolution of the atmospheric state using the
geostrophic form of the two-layer baroclinic model proposed in [21] consisting of
12 ordinary differential equations in 12 variables. It used a linear regression from the
output of amodel.When he ran the simulations, he found out that some solutionswere
drastically different. Analyzing the results, he found out that, in some experiments,
he had truncated the model output to three digits accuracy while the original values
had a precision of six digits. Just this small change lead to significant differences in
the forecast results. These differences imply that observations need a precision up to
the three decimal places to obtain a reliable forecast.

This result prompted the scientific community to determine a procedure to deter-
mine which is the best forecast of the atmosphere state according to the available
data. Nowadays, there are several meteorological agencies worldwide running their
numerical weather prediction models (NWP), each one different from the others.
The results from these models are consistent with the observed data but they differ
between them, so we cannot say which model is the “correct one”. Instead, we can
think of each forecast as a member of an ensemble of atmospheric states that are
consistent with the observations.

With this idea, Epstein realized that the atmosphere is deterministic since it obeys
the fundamental laws of hydrodynamics, but its state can only be known in a proba-
bilistic way. Therefore, in [11], he proposed a “stochastic dynamic” (SD) approach
consisting in using the continuity equation for probability [14] in the observations
data. He compared the results of the SD model with the results of a deterministic
model that used as the initial condition the ensemble mean from the Monte Carlo
method.

The problem with SD is that it is expensive; the number of equations for SD
prediction is equal to the number of spectral components raised to the power of
the number of moments. Philip Thompson [34] proposed a more efficient model by
using variances directly instead of covariances; this way the number of equations
was reduced.

With the advent of parallel machines, researchers developed different approaches
to deal with the uncertainty of the initial state. Murphy [26] ran an experiment using
the hemispheric version of the Meteorological Office (UKMO) five-level general
circulation model. Initial conditions were obtained by perturbing a given state. Seven
individual perturbations were used, and the ensemble forecast consisted of their
integration.
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To obtain the perturbed initial state,Murphy considers two different methods: ran-
dom perturbation and lagged-averaged forecast. The random perturbation generates
the seven initial states by adding independent perturbations to the known initial state.
These perturbations are consistent with some analysis errors. This random pertur-
bation method is similar to the Monte Carlo method. The lagged-averaged forecast
method uses past observations to generate each member of the ensemble.

The Monte Carlo (or random perturbation) approach has some limitation; for
example, the perturbed parameters can lead to imbalances in the atmospheric state.
Another issue is that the perturbations in the Monte Carlo approach were random,
while the parameters should have certain preferred directions. With this ideas, dif-
ferent strategies for perturbing dynamical prediction models were studied. The two
more used methods nowadays are the singular vector decomposition (SV) [1, 10,
28] used by the European Centre for Medium-Range Weather Forecasts (ECMWF)
[19] and the Breeding Vector technique (BV) used by the National Centers of Envi-
ronmental Prediction (NCEP) [36]. A comparison between the two methods using
the ECMWF Integrated Forecast System is described in [25].

These advances, along with more powerful parallel machines, and improvements
in deterministic forecasting [33], led to the birth of Ensemble Prediction Systems
(EPSs). EPSs are operational systems that provide probabilistic forecasts based
on ensemble members. The method to create these ensemble members is differ-
ent between systems. The Meteorological Service of Canada (MSC) uses a Monte
Carlo approach, and, as said previously, ECMWF uses SV, and NCEP uses BV [4].

More recently, a new approach to ensemble forecasting has been developed, the
multimodel ensemble forecast. This approach uses forecasts from different models
as ensemble members. The ensemble may be composed of deterministic forecasts or
from ensemble prediction systems (called superensemble). The idea is to combine
the strengths and weaknesses of each model and obtain a more reliable prediction
[9, 16].

The THORPEX Interactive Grand Global Ensemble (TIGGE) [3] is a multimodel
ensemble system that combines the predictions of the following models: ECMWF,
UKMetOffice (UKMO),National Centre forMediumRangeWeather Forecasting—
India (NCMRWF),CMA, JapanMeteorologicalAgency (JMA),NationalCenters for
Environmental Prediction (NCEP-USA), Meteorological Service of Canada (CMC),
Bureau of Meteorology Australia (BOM), Centro de Previsao Tempo e Estudos Cli-
maticos Brazil (CPTEC), Korea Meteorological Administration (KMA), and Mete-
oFrance (MF) global models. Apart from this global initiative, there is the North
American Ensemble Forecasting System (NAEFS) [7] that combines the systems
from the Canadian Meteorological Centre (CMC) and the National Centers for
Environmental Prediction (NCEP); and an European initiative: the Development
of a European Multimodel Ensemble System for Seasonal to Interannual Prediction
project (DEMETER) [27].

If the reader is interested in these developments, JohnM. Lewis [20] wrote a more
thorough review of the history of ensemble models.
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1.1 Initial State Perturbation Methods

In this subsection, we describe the two most used methods to perturbate the ini-
tial state. A simple way of converting a deterministic forecast into a probabilistic
forecast would be to modify the deterministic result using a probability distribution
constructed from previous forecast errors. This strategy would not work because the
underpinning dynamical equations are nonlinear, then the errors at the initial state do
not relate directly to the predicted result. Sowe need to perturbate the initial state. The
Monte Carlo approach is to create a random perturbation of the initial state according
to their known error characteristics. However, this leads to underdispersive forecast
ensembles [5]. The reason for this is that there are many unrepresented sources of
uncertainty not explicitly represented in a Monte Carlo forecast.

For this reason, new techniques were required to represent the nonlinearity of
the dynamical equations in the ensemble predictions. Two of the most commons
techniques will be discussed in this sections; the Singular Vector decomposition, and
the Breeding Vector technique.

1.1.1 Singular Vector Decomposition

The main idea behind Singular Vector decomposition is the singular value decompo-
sition of the forward tangent linear operator. This can be physically interpreted as the
fastest growing perturbations. Therefore, SVs give information about the direction
and dynamics of rapidly growing instabilities and perturbations.

The method was devised by Lacarra and Talagrand in [18] where they were inter-
ested in identifying the perturbations that lead to the maximum difference between
the simulated state and a reference one. They defined x(0) as the vector containing
the initial state information. The model is defined as M : Rn → R

n . Therefore the
state at time t is defined as

x(t) = M(x(0)) (1)

Since they were interested in knowing the perturbations that differed more from a
reference state they need to know how the state evolves. For this reason, they define
the resolvent of M as

F(x) = dx
dt

(2)

If the perturbed initial state is defined as (x(0) + χ(0)), then the time evolution of
the perturbed state can be written as

d

dt
(x(t) + χ(t)) = F(x(t) + χ(t)) = F (x(t)) + ∂F

∂x

∣
∣
∣
∣
x(t)

χ(t) + O
(

χ2(t)
)

(3)
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the second-order term can be neglected, and the derivative of χ is

d

dt
(x(t) + χ(t)) = ∂F

∂x

∣
∣
∣
∣
x(t)

χ(t) (4)

This linear system of equations is called the tangent linear system ofM in the vicinity
of the particular solution x(t). It describes the temporal evolution of the perturbation
χ(t), to first order concerning the initial perturbation χ(0). We can rewrite Eq. (4)
as

χ(t) = L(0, t)χ(0) (5)

where the operator L(0, t) is the forward tangent linear operator or the linear propa-
gator. So the perturbations that will maximize the difference can be found using the
singular value decomposition of L(0, t).

L = WΛY∗ (6)

where Λ is a diagonal matrix with the singular values of L (λ1, λ1, . . . ). Y∗ is
the conjugate transpose of Y. The columns of Y correspond to the initial (or right)
singular vectors. The columns of W are the evolved (or left) singular vectors.

The singular vectors of L are the same as the eigenvectors of L∗L. And, specifi-
cally, Y and W are related in the following manner:

L∗Lyi = λ2
i yi (7)

LL∗wi = λ2
i wi (8)

To find the perturbations with the maximum amplitude growth, we need to com-
pute them. To this end, we can use any norm E

||χ ||E = 〈χ,Eχ〉 (9)

where E is a matrix operator that defines the inner product.
For a linear operator L, exists its adjoint L∗ such that 〈χ,Ly〉 = 〈L∗χ, y〉. Its

possible to choose different norms at the initial and the final time

||χ(t0)||2E0
= 〈χ(t0), E0χ(t0)〉 (10)

||χ(t)||2Et
= 〈χ(t), Etχ(t)〉 (11)

The objective is to maximize the growth rate, or amplification factor, defined as
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λ2 = ||χ(t)||2Et

||χ(t0)||2E0

= 〈χ(t), Etχ(t)〉
〈χ(t0), E0χ(t0)〉

= 〈Lχ(t0), EtLχ(t0)〉
〈χ(t0), E0χ(t0)〉 = 〈L∗EtLχ(t0), χ(t0)〉

〈χ(t0), E0χ(t0)〉
(12)

To maximize λ2, we solve the following eigenvalue problem:

(

L∗EtL
)

yi (t0) = λ2
i E0yi (t0) (13)

We can rewrite this equation using the variable transformation yi (t0) = E
− 1

2
0 γi (t0):

(

E
− 1

2
0 L∗EtLE

− 1
2

0

)

γi (t0) = λ2
i γi (t0) (14)

This equation has the same form as Eq. (7); comparing them we can conclude

that the eigenvectors of E
− 1

2
0 L∗EtLE

− 1
2

0 =
(

E
− 1

2
0 L∗E

1
2
t

) (

E
1
2
t LE

− 1
2

0

)

= L∗
sLs are

the initial singular vectors ofLs ; and they represent the perturbationswith amaximum
amplification factor in the time interval (t0, t).

When used in real numerical weather prediction models, the calculation of the
singular vector is difficult because the definition of the modelM has to be computed
analytically. In operational ensemble prediction systems, this calculation is made
using tangent linear and adjoint models and an iterative Lanczos algorithm [6, 12].
A review of the method with applications to El Niño as well as decadal forecast-
ing is presented in [29]. Also, Diaconescu and Laprise [8] review the applications
such as forecast error estimation, ensemble forecasting, target adaptive observations,
predictability studies and growth arising from instabilities.

1.1.2 Breeding Vector

This method is the most computationally inexpensive [38]. There are two different
versions of this method: the simple breeding [35], and the masked breeding [36].

The main idea of the method is that the choice of the initial perturbation has to
cover all the space of possible analysis errors. In an operational NWP, the pertur-
bation of the initial state is reduced by the use of observations. Therefore, the most
important errors are those associated with the evolution of the model. The breeding
method modifies the perturbation using the difference between the perturbed and the
unperturbed forecast. Using this technique, all random perturbations develop into the
structure of the leading local (time-dependent) Lyapunov vectors (LLVs; see [37])
of the atmosphere after a transient period.
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Toth and Kalnay [36] describe the main steps of the breeding method as

1. add a small, arbitrary perturbation to the atmospheric analysis (initial state) at a
given day t0

2. integrate the model from both the perturbed and unperturbed initial conditions
for a short period t1

3. subtract one forecast from the other
4. scale down the difference field so that it has the same norm as the initial pertur-

bation
5. add this difference into the analysis corresponding to the following period t1

By construction, this method “breeds” the nonlinear perturbations that grow fastest.
Therefore, independent perturbations will converge to the same perturbations after
enough time steps. This perturbation is related to LLVs. LLVs have been used to
characterize the behavior of dynamical systems. The Lyapunov exponents(λi ) are
defined as

λi = lim
t→∞

1

t
log2

(
pi (t)

pi (0)

)

(15)

where p is a linear perturbation spanning the phase space of the system with orthog-
onal vectors.

Each Lyapunov exponents can be associatedwith a perturbation vector. The vector
associated to the largest exponent has the property that any random perturbation
introduced an infinitely long time earlier develops into it. Lorenz [23] described this
property; he noted that initially random perturbations had a strong similarity after 8
days of integration. The breeding method converges to this LLVs after 3 or 4 days
of integration.

The masked breeding is the same as the simple breeding described before, but
taking into account the geographically dependent uncertainty.

1.2 Multimodel Ensemble Methods

The rationale behind multimodel ensemble methods is that collective information is
better than single information, especially the more complex the process. In the con-
crete case of short- and medium-range weather forecasting Sanders, it was demon-
strated that combining different forecast could be beneficial [2, 15, 32]. Combining
multiple models, Fritsch et al. [13] suggested that the superiority of the forecast
relied on the variations in model physics and numerics between models leading to a
substantial role in generating the full spectrum of possible solutions.

However, we should note that model physics and numerics is not enough, another
source of uncertainty is the initial state of the atmosphere. This kind of uncertainties
is handled by Ensemble Prediction Systems using a technique to perturbate the initial
state (such the ones described in Sect. 1.1). So, a good idea could be to combine both
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models. Palmer et al. [27] developed aEuropeanmultimodel ensemble systemknown
as DEMETER.

When developing a multimodel ensemble system, there are several choices to be
made. For example, we can consider all the individual forecasts equal, so we just
combine them with the same weight. However, more complex methods of optimally
combining the single-model output have been described [17, 30, 31]. Another aspect
is how the initial state is perturbed; is it better to use the same perturbation in all
models? Or we should use the default perturbation technique for each model?

In the concrete case of DEMETER, from each model, except that of the Max-
Planck Institute (MPI), uncertainties in the initial state are represented through an
ensemble of nine different ocean initial conditions. Three different ocean analyses; a
control ocean analysis is forced with momentum, heat, and mass flux data from the
ECMWF 40-yr Reanalysis, and two perturbed ocean analyses are created by adding
daily wind stress perturbations to the ERA-40 momentum fluxes. The wind stress
perturbations are randomly taken from a set of monthly differences between two
quasi-independent analyses. Also, to represent the uncertainty in SSTs, four SST
perturbations are added and subtracted at the start of the hindcasts. As in the case of
the wind perturbations, the SST perturbations are based on differences between two
quasi-independent SST analyses. Atmospheric and land surface initial conditions are
taken directly from ERA-40.

Palmer [27] concludes that the multimodel ensemble is a viable, pragmatic
approach to the problemof representingmodel uncertainty in seasonal-to-interannual
prediction, and leads to a more reliable forecasting system than that based on any
one single model.

A study of the superiority of multimodel ensemble systems has been done by
Hagedorn et al. in [9, 16].

2 Ensemble Model for Diagnostic Wind Field

Given the importance of introducing the uncertainties in the prediction of the wind
field, in this chapter, we describe a simple ensemble method designed for Wind3D,
the diagnostic wind model presented in Chap. 4. In the same spirit as Wind3D, the
ensemble approach described in this section is a fast procedure designed for the
microscale.

Schematically, in any NWP, the main sources of uncertainty comes from obser-
vations, model parameters, data assimilation procedures, and boundary conditions.

In the wind model described in Chap.4, we have detected the parameters with
more uncertainty, namely: Gauss moduli parameter (α), roughness length (z0), and
displacement height (d).If we categorize these uncertain parameters in the four cat-
egories defined above, α belongs to the model parameters while z0 and d belong to
boundary conditions. An evolutionary algorithm has been presented to characterize
these parameters. However, it has been noted that even the “best estimation” has

http://dx.doi.org/10.1007/978-3-319-76876-2_4
http://dx.doi.org/10.1007/978-3-319-76876-2_4
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some uncertainty; in Sect. 4.2 several evolutionary algorithms have been run leading
to different parameter estimations.

Another source of uncertainty in Wind3D comes from the observations. Please,
remember that these observations can originate from measurement stations or the
forecast of a deterministic NWP. In the case of the measurement data, the errors
are related to the machine and the daily conditions whereas in the deterministic
NWP forecast, we are using the “best forecast” provided by the NWP, but we have
already seen that this forecast may be inaccurate. Moreover, due to the differences in
horizontal resolution between the local scale diagnostic wind model and the NWP,
the height of the grid points between models can be inconsistent. In this case, we do
not know if these points are reliable for Wind3D. So, we may ask ourselves “Which
are the reliable NWP forecast points?”

Since the method described is an ensemble forecast system, the wind model is
used in conjunction with an NWP to have the predictability capability. In this case,
to be able to estimate the variables, we need two different sets of data, the set used
to run the wind model and the set of observations the results are compared against.
Instantly another question arises “How do we generate these sets?”.

The ensemble model described here tries to answer the two doubts that have
arisen. The model chooses the valid NWP points based on the difference between
their height; when the difference between the NWP height and the diagnostic height
is lower than a threshold, the point is valid. Oncewe have chosen the viable points, we
construct the two subsets (model observations and validation data) using a random
selection. Once the two subsets are created, we estimate the best values for α, ε, z0,
and d using thememetic algorithm discussed in Sect. 4.2. Figure1 shows the diagram
of the method.

Fig. 1 Diagram of the ensemble system

http://dx.doi.org/10.1007/978-3-319-76876-2_4
http://dx.doi.org/10.1007/978-3-319-76876-2_4
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This method can also be used with various NWP forecast emulating a multimodel
ensemble. For example, we can have some ensemblemembers fromECMWFmodel,
other members from NCEP, and the rest from AROME–HARMONIE.

3 Numerical Experiment

In this section, we present an application of the presented methodology. The appli-
cation is in Gran Canaria island. The ensemble forecast is generated from AROME–
HARMONIE forecast with a horizontal resolution of 2.5 km. The ensemble model
is validated against measured data from the AEMET network stations. The day of
the simulation is February 20, 2010.

The mesh created for this application is created with the Meccano method
(Chap.3) from a digital terrain model of the Gran Canaria island. The height of
the domain is 10.000m., and the resulting mesh has 251.808 nodes and 1.090.366
tetrahedra (Fig. 2)

Figure3 shows the terrain height in the Meccano mesh and the AROME–
HARMONIE grid. We can observe the differences between the height considered by
theWind3D and AROME–HARMONIE. The maximum height is around 1.000 m in
the AROME–HARMONIE discretization and 2.000 m in theWind3D discretization.
This big height difference indicates that, at some points, the AROME–HARMONIE
10m velocity may not be appropriate. For this reason, instead of using all the 10m
data, we have selected a subset of points attending to a height difference criteria.

Once a set of points has been chosen, we randomly divide them into two different
subsets. One subset is used as observations in Wind3D, and the other subset is used
by the evolutionary algorithm to compute the fitting function. The fitting function is
the Root Mean Square Error (RMSE) between the forecast values by Wind3D and
the data in the second subset. In this case, we have selected the points which height
difference is less than 50 m. These selected points are shown in Fig. 4 (left). The two
randomly generated subsets can be seen in Fig. 4 (right); green points are used as
observations for Wind3D, and red points are used to compute the RMSE.

Fig. 2 Terrain discretization

http://dx.doi.org/10.1007/978-3-319-76876-2_3
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(a) AROME–HARMONIE grid (b) Meccano mesh

Fig. 3 Terrain heights (m.)

(a) Selected points based on height    
differences

(b) Random selection of subsets: observations   
(green) and control points (red)

Fig. 4 AROME–HARMONIE points used in simulation

Now we have generated all the members of the ensemble. Then, we estimate the
best values of α, ε, z0 and d, and with these best values, we compute the forecast
wind using the Wind3D model.

Finally, to validate the method, we compare the ensemble forecast results with the
observed data measured in the AEMET network of automatic stations. Each station
provides two data; the average and the maximum wind velocity of the last 10min.
Their UTM coordinates are summarized in Table1, and their position in a map is
shown in Fig. 5.

Figure6 shows the comparison of measured data and the ensemble box plot fore-
cast.We show themost representative comparisons from four stations. The first thing
that we can notice is that, in general, the mean value of the ensemble forecast is rea-
sonably similar to the measured wind velocity. In some cases, the forecasted velocity
is close to the maximum (C625O, C639Y), in some others, it is close to the average
velocity (C619X), and sometimes it is in between (C635B).

Another observation is that the variation of themeanvalue of the ensemble forecast
is smoother than themeasured velocity. In contrast, themeasured data exhibits abrupt
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Table 1 Location of measurement stations (UTM coordinates)

Station X (m) Y (m)

C619X 429.982 3.108.577

C629Q 429.966 3.073.034

C635B 443.504 3.088.472

C639X 455.377 3.076.514

C639Y 443.283 3.070.534

C625O 436.499 3.081.522

Fig. 5 Location of the
AEMET measurement
stations

changes among time steps. These abrupt changes are not captured by any member
of the ensemble.

A more detailed inspection of the comparatives shows interesting remarks. For
example, the ensemble forecast in station C619X has many outliers in all time steps.
C639Y also has some of them, but they are close to the mean values. However,
C635B andC625Odo not have outliers in all the time steps. These outliers sometimes
can provide interesting information, for example, in station C619X from 0–7h they
capture the total variation between the average data and the maximum.

C625O station deserves a special mention. Analyzed carefully, we can observe
that, between 11 h and midnight, the difference between maximum and average
measured data increases. This increase is captured in the ensemble forecast by the
higher dispersion of the box plot. This agreement between ranges shows that the
resulting ensemble probability can be useful in predicting the uncertainty of the
wind velocity.
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(a) C619X measurement station

(b) C635B measurement station

Fig. 6 Comparison of the average and maximummeasured data and the ensemble box plot forecast



142 A. Oliver et al.

(c) C639Y measurement station

(d) C625O measurement station

Fig. 6 (continued)
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4 Conclusions

In this chapter, we have seen the necessity of a probabilistic approach to numerical
weather prediction is necessary. It is introduced with a brief review of the progress
done in this area: the discovery of the need for a probabilistic approach and the
development of these techniques. Then we go into more detail with the description
of two of the more used methods to perturbate the initial state; Singular Vector
decomposition and Breeding Vectors. To finish the introduction, we describe the
basis of a multimodel ensemble method.

Next, we describe an ensemble forecast method specially designed for the
microscale. This method is based on the estimation of the uncertain parameters
using an evolutionary algorithm. The uncertain parameters are both model param-
eters, i.e., α and ε, and physical parameters, namely the roughness length (z0) and
the displacement height (d). The evolutionary algorithm minimizes the error of the
predicted wind field by a microscale wind model and the forecast of an NWP. The
NWP forecast is used for the input data of the model and the control data to compute
the fitting function of the evolutionary algorithm. The selection of these two subsets
is random and generates the different members of the ensemble system.

Finally, to illustrate the methodology and validate the model, we present a numer-
ical experiment. In this experiment, we use the microscale model Wind3D described
in Chap.4 coupled with the AROME–HARMONIEmodel described in Chap.5. The
experiment is located in Gran Canaria island during February 20, 2010. The results
have shown that, at any predicted time and station, the forecast ensemble probability
lies between the average and the maximum velocity, usually closer to the maximum.
Also, the range of the forecast increases when the difference between the maximum
and average velocity raises, providing a tool to predict variability in the wind field.
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Part III
Solar Radiation Diagnostic

and Forecasting

The electrical power generation using solar energy is driven by the fluctuation of
solar radiation. This variability is caused by the weather conditions and the seasonal
effect, both daily and yearly seasons. The second one is totally predictable but the first
one comes frommoving clouds and other climatological events. Grid operators need
to understand to this unstable behavior to improve this kind of energy integration
into power grid and enable an increasing.

The following chapters try to deal with solar radiation using different points
of view. Chapter 7 characterizes and models solar radiation temporal and spatial
variability. Once solar radiation variability had been discussed the next two Chapters
aim to improve solar radiation forecasting. Chapter 8 try to establish a methodology
for point forecast solar resource for using different statistical models. The work is
focused in hourly forecasting and offers the possibility to improve the forecasting
using satellite and NWP data as inputs in the models. On the other hand, Chap. 9
aims to explained different methods andmodels for probabilistic forecasting. Finally,
the last Chapter gives the possibility to develop a Solar Map. The model takes into
account solar radiation data, terrain surface conditions and cast shadows using a 2-D
adaptive triangles meshes.
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Abstract This chapter aims at characterizing and modeling solar resource variabil-
ity. It is shown that understanding solar energy variability requires a definition of the
temporal and spatial context for which variability is assessed. This research describes
a predictable, quantifiable variability-smoothing space–time continuum from a sin-
gle point to thousands of kilometers and from seconds to days. Implications for solar
penetration on the power grid and variability mitigation strategies are also discussed.
Models for predicting intra-day or intra-hourly variability as a function of insolation
conditions are also depicted.
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1 Introduction

The output of solar power plants is driven by weather and by the cycle of days and
seasons. This output can vary from zero to full power outside the control of plant
operators. Therefore, understanding solar resource’s variability is key to optimally
integrate it onto electrical grids and enable its high penetration.

Variability has two causes. One is fully predictable. It is the result of the apparent
seasonal and daily motion of the sun in the sky and the earth’s distance from the
sun. The other is less predictable. It is the result of the motion of clouds and weather
systems.

In this chapter, we examine how temporal and spatial scales influence variability
and how these scales matter to developing effective variability mitigation strategies.

2 Temporal and Spatial Scales

Beginning with an intuitive example for the temporal scale, a single location on a
given partly cloudy day will experience a high degree of variability, due to changes
in the sun’s position and the motion of clouds. However, solar energy cumulated
over several days at that same location exhibits less variability. Variability becomes
insignificant as the temporal integration increases to 1 year and beyond [12]. Figure1
illustrates this intuitive example. Similarly in the spatial realm, increasing the solar
generation footprint from a single location to a region, and further, to a continent
reduces intermittency considerably. Increasing this footprint to the entire planet elim-
inates it almost entirely (Fig. 2). This spatial integration effect is often referred to as
the smoothing effect [38].

Fig. 1 Comparing the variability of global irradiance time series in a North American location,
as a function of integration time. The figure includes 1 day’s worth of 1-min data, 4days worth of
hourly data, 26weeks worth of weekly data, and 16years worth of yearly integrated data
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Fig. 2 Comparing the variability of daily global irradiance time series for 1 year as a function of
the considered footprint

3 Quantifying Variability

How is variability quantified? An appropriate metric should adapt to a wide range
of temporal and spatial scales and embed: (1) the physical quantity that varies, (2)
the variability time scale, and (3) the time span over which variability is assessed. In
some cases, condition-specific characterizations of variability may be appropriate,
e.g., localized variability induced by Cumulus Fields [64].

Physical quantity: For energy producers and grid operators the pertinent quan-
tity is the power output, p, of a power plant or of a fleet of power plants at a given
point in time. Power output variability reflects the underlying variability of irradiance
impinging on the plant(s). Therefore, understanding and quantifying the variability
of irradiance amounts to quantifying and understanding the variability of p. Irra-
diance is fully quantified by global horizontal irradiance (GHI) and direct normal
irradiance (DNI). DNI variability is relevant for concentrating technologies, while
GHI variability is representative of flat plate technologies. This chapter focuses on
the latter.

Solar geometry-induced variability is fully predictable. Here, we will concentrate
on cloud/weather-induced variability that is stochastic in nature, hence not fully
predictable. In order to better understand this variability component, it is useful to
first remove the solar geometry effects. The clearness index, Kt (ratio of GHI to
extraterrestrial irradiance) or the clear sky index,Kt∗ (ratio ofGHI to clear skyGHI)
both embed the stochastic variability of irradiance, but are largely independent of
solar geometry, see Chap.8. Many authors prefer Kt∗ because it more effectively
removes solar geometry effects at lower solar elevations (e.g., see [51]) and because
it has a more representative zero-to-one range (1 = clear, and 0 = full extinction by
thick clouds).

Timescale: The intuitive temporal example presented above suggests that the
temporal scale of the selected physical quantity’s time series, Δt, is a fundamental
factor. Depending on the application, Δt can range from a few seconds to hours and
more. The change of Kt∗ corresponding to the selected time scale Δt is noted as
ΔKt∗Δt . This change is often referred to as the ramp rate.

http://dx.doi.org/10.1007/978-3-319-76876-2_8
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Time span: A proper measure of variability should include ramp events covering
a statistically significant time span. This time span should be a large multiple of Δt.

Nominal variability metric: Nominal variability refers to the variability of the
selected dimensionless clear sky index. Themaximum ormeanΔKt∗Δt ramp rate over
a given time span has been proposed as such a measure (e.g., see [17]). However,
most authors have recently settled on the ramp rate’s variance, or its square root,
the ramp rate standard deviation, over a given time span as the preferred metric for
variability.

Nominal V ariability = σ(ΔKt∗Δt) =
√
Var

[
ΔKt∗Δt

]
. (1)

Earlier authors, in particular, Skartveit and Olseth [60] had proposed the standard
deviation of Kt, σ(Kt), rather than σ(ΔKt) or σ(ΔKt∗) as a measure of variability.
However, σ(Kt) is not the most appropriate gauge of variability for a given timescale
over a given time span, because it can be driven by one single ramp event—consider,
for instance, the case of perfectly clear conditions (i.e., no variability) followed by a
one-time change to uniform, heavily overcast conditions (i.e., again, no variability.)
In this case, σ(Kt) would be the same as if conditions were highly variable and
changing from clear to cloudy at every Δt. On the other hand, σ(ΔKt∗) would
capture the difference between the two situations, reflecting low variability in the
first case and high variability in the second.

Power output (absolute) variability metric:Equation1describes a nominal dimen-
sionless metric. When dealing with power generation, it is necessary to scale up the
nominal metric and quantify power variability in absolute terms. This is expressed
by Eq.2:

Power V ariability = σ(ΔpΔt) =
√
Var

[
ΔpΔt

]
. (2)

Recall that p can be modeled from Kt∗, via extraction of GHI, extrapolation of
plane of array irradiance, and inclusion of PV specs, i.e., without changing the inher-
ent cause of variability. Therefore Eq.2 does not include additional intrinsic variabil-
ity information relative to Eq.1, but only a scaling up from a nominal dimensionless
value to a physical value.

4 Variability Mitigation—The Smoothing Effect

When considering a fleet of multiple solar electric installations, the power variability
of N plants is given by [18, 48]:

Fleet Power Variability = σ

( N∑
n=1

ΔpnΔt

)
=

√√√√Var
[ N∑
n=1

ΔpnΔt

]
. (3)
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In Eq.3, pnΔt represents the power output time series of the nth plant in the fleet.
Uncorrelated locations: In the limit case where all the plants in the fleet are iden-

tical, exhibit the same variability σ(ΔpΔt), and their power output time series are
uncorrelated, Eq.3 simplifies to

Fleet Power Variability =
√
NVar

[
ΔpΔt

] = √
Nσ(ΔpΔt). (4)

In this limit case, the relative variability defined as the ratio of power variability to
installed capacity is given by

Fleet Relative Variability =
√
Nσ(ΔpΔt)

NPinstalled
. (5)

Pinstalled is the installed capacity of each identical plant. Therefore, the relative vari-
ability of a fleet of identical power plants with uncorrelated power outputs, but
experiencing the same level of individual variability, equals each individual plant’s
relative variability divided by the square root of the number of plants.

Fleet Relative Variability = (Single Plant Relative Variability)√
N

. (6)

In nominal terms, Eq.6 can be applied to quantify the resulting variability of N
locations experiencing identically variable, but uncorrelated Kt∗ time series.

σN
ΔT = σ 1

ΔT√
N

, (7)

where σN
ΔT is the nominal variability resulting from the ensemble of N uncorrelated

locations and σ 1
ΔT is a single location’s nominal variability.

This relative variability reduction as a function of
√
N underlies the well-known

spatial smoothing effect noted by many authors, e.g., [35, 38, 66, 68, 69].
General case nonzero correlation: Nearby locations are highly correlated, experi-

encing the same ramp rates at the same time and varying in sync; in this case a dense
fleet of neighboring systems would exhibit nearly the same relative variability as the
individual systems. Distant locations’ time series are uncorrelated; hence the fleets
relative variability is reduced by

√
N . Between these two extremes lie a general case,

where fluctuations correlation are partially correlated. Considering a single pair of
stations experiencing the same nominal variability σ 1

ΔT , Eq. 7 may be generalized to
the case when the two locations are partially correlated, leading to

σ
pair
ΔT =

√
ρ + 1√
2

σ 1
ΔT , (8)
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where σ
pair
ΔT is the nominal variability of the pair and ρ is the correlation between

each time series.
How does correlation evolve as a function of location distance and other factors?

A considerable amount of work has been devoted to this issue in recent years—
e.g., [3–5, 10, 13, 15, 16, 21–23, 26, 29, 31, 33, 36, 40, 50, 53, 54, 58, 59, 62,
67]—leading to the assertion that the correlation of ΔKt∗ΔT time series between two
locations depends upon

• The distance, d , between the two locations,
• The considered time scale, ΔT ,
• The speed, V , of the variability-inducing clouds/weather systems1

The influence of time, speed, and distance had been identified by [17]. They pos-
tulated that a dimensionless dispersion factor,D, captures the variability relationship
between a single point and a dispersed PV fleet. The dispersion factor is given in
Eq.9 for a homogeneous fleet of systems, where L represents the linear dimension
of the fleet in the wind direction.

D = L

VΔT
. (9)

They identified three possible fleet configurations (see Fig. 3):

1. A crowded configurationwhere the number of systems,N , exceeds the dispersion
factor. In this case, the relative variability of the fleet equals the single point’s
relative variability divided by D.

2. An optimum configuration where D equals N and where the fleets variability
equals the single point’s variability divided by N .

3. A dispersed configurationwhereD is larger thanN andwhere the fleets variability
asymptotically tends toward the single point’s variability divided by

√
N as D

N
increases.

The dispersion factor model reflects the underlying correlation (or inverse corre-
lation) existing between any two points within the fleet.

The dependence of ρ upon ΔT , d , and V has been empirically inferred from a
growing base of experimental observations.

Mills and Wiser [37] analyzed 20 second data from the 32-station ARM network
[63]. They observed the exponential decay of station pair correlation as a function
of station distance and noted that the rate of decay was a continuous function of
the considered time scale. Hoff and Perez [18] used 10-km hourly satellite-derived
irradiances over the continental US. They observed a similar asymptotic decay with
distance and a predictable dependence of this decay upon ΔT for time intervals of
1, 2, and 3h. They also noted that the rate of decrease of correlation with distance
was different for different US regions and attributed these differences to prevailing

1This velocity is a priori defined as the vector in the direction of the two considered locations.
However, as will be discussed below, empirical evidence shows that a mean, local—directionless—
velocity, can be an adequate input for assessing regional station pair correlations.
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Fig. 3 Relative output variability as a function of the Dispersion Factor for a fleet of N identical
PV systems experiencing the same individual variability [17]

regional cloud speeds. Hoff and Norris [15] analyzed high-frequency data (seconds)
from a 25-station modular network and confirmed that asymptotic decay with dis-
tance was a strong function ofΔT depending on cloud speed that they had estimated
independently from satellite-derived cloud motion vectors. They proposed the fol-
lowing relationship between linking distance, time interval, and cloud speed:

ρ = 1

1 + d
(ΔT )(V )

. (10)

Perez et al. [50] analyzed high-resolution high-frequency satellite-derived irradi-
ances (1km, 1min) in climatically distinct regions of North America and Hawaii to
investigate site-pair correlation decay as a function of distance, timescale, and mean
monthly regional cloud speed (see Fig. 4) independently derived from satellite cloud
motion vectors. They proposed an alternate formulation for ρ given in Eq.11:

ρ = e
d ln (0.2)

1.5(ΔT )(V ) . (11)

Lave and Kleiss [28] and Lave et al. [30] analyzed high-resolution distributed
irradiance measurements with a variety of statistical tools such as spectra, coherence
spectra, wavelet, correlations, probability density functions, and spatial and temporal
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Fig. 4 Site-pair correlation as a function of time period and distance for sample regions in North
America and Hawaii. Meanmonthly cloud speed was estimated from satellite-derived cloud motion
vectors computed for each data point [50]

averaging with the objective of developing a model for simulating the power output
of large power plants from single-point measurements. Thewavelet variabilitymodel
(WVM)was then proposed in [31] and it useswavelet decomposition of the irradiance
signal into different timescales (duration of shading from clouds or clouds systems),
that were proven to be associated with different amounts of variability reduction.
The associated preliminary spatiotemporal correlation function dictates the amount
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Fig. 5 Comparing correlation decay with distance as formulated in Eqs. 10, 11, and 12 for 1-min
data and a cloud speed of 20 km/h

of variability reduction and uses a parameter A that scales the correlation function
and that had to be determined from a sensor network collecting high- frequency
irradiance data.

ρ = exp
( − d

At

)
. (12)

Through a virtual cloudmodel, Lave et al. [29] inferred that the parameter A in Eq.12
could be approximated to 1

2V for station pairs in the direction of the cloud speed.
Figure5 illustrates and contrasts the formulations in Eqs. 10, 11, and 12 for an

example with a timescale of 1 min and a cloud speed of 20 km/h. Note that the
difference between Eqs. 11 and 12 may be traceable to the fact that V represents a
monthly prevailing cloud speed in the first case and a time-coincident cloud speed in
the second, further noting that Eq.10 was derived empirically without consideration
whether pairs were located along or across wind direction.

Formulations such as Eq.10 or 11 that define cloud speed in the direction of a
station pair, do not explain the variability and correlation reduction with distance
that is nevertheless observed when speed is zero, i.e., in crosswind directions, e.g.,
see [14, 32]. As an attempt to describe correlation anisotropy with respect to cloud
speed, Arias-Castro et al. [2] applied a kinematic-stochastic model based upon given
cloud cover fraction λn, cloud size r, stream-wise and cross-stream distance, cloud
speed, and time difference. Through dimensional analysis, the correlation functions
were expressed through just 4 independent variables: cloud cover fraction, the along-
wind and crosswind distance normalized by cloud diameter, and the distance of cloud
motion within the ramp interval Δt relative to the cloud diameter (see [2] for details
regarding the correlation functions).

Further, David et al. [8] noted that the three key factors governing the correlation
decay—timescale, cloud speed, and distance—are not fully independent variables.
David et al. [8] analyzed station pair correlations from an irradiance measurement
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Fig. 6 Mean distance to reach a 10% (left) and a 25% (right) correlation threshold as a function of
the time interval of observations in La Reunion (ground and satellite) [8]

network in the Island of La Reunion. Whereas exponential formulation in Eqs. 10
and 11 would imply that, for a given cloud speed, a linear relationship should exist
between the distance at a given correlation level and timescale, with the slope depend-
ing on cloud speed [50], they observed that the time scale versus distance slope tended
to diminish as a distance increased (Fig. 6). This dependence can be explained by
the fact that cloud speed evolves as a function of the considered spatial and temporal
scales. Indeed for the smallest scales, the variability drivers are cloud substructures.
As the spatial scale increases, the drivers become cloud fields, and further, entire
weather systems. Because the speed of these drivers is known to decrease with scale,
the observed relationships are nonlinear. The cloud speed dependence upon time
scale becomes fully apparent when considering very large spatiotemporal scales.
Perez and Fthenakis [44, 45] analyzed millions of possible pair correlations from the
NASA SSE data set [61] for the entire planet. Figure7 compares the observed expo-
nential correlation decay for ΔT of 1 and 7 days respectively. It is remarkable that
these results are fully consistent with the much lower spatiotemporal scales shown in
Fig. 7. This observation could be an expression of the underlying self-similar (fractal)
nature of clouds and cloud systems at all scales [34]. At these large scales, as for
smaller scales, decorrelation distances are a function of prevailing cloud/weather sys-
tem speed. It is helpful to compare East–West pairs and North–South pairs (Fig. 8):
decorrelation distances are considerably shorter for the latter. A likely explanation
is the fact that weather systems tend to move in East–West directions and have lim-
ited, slower, North–South motion. Finally, as noted in Fig. 6 for small scales, it is
also apparent that the cloud system velocity underlying variability decreases with
timescale. For instance, cloud system speeds inferred from Fig. 8 using Eq.10 would
indicate that the speed of the East–West weather system for daily ΔT is of the order
of 20km/h. For ΔT of 7 days the prevailing of systems of weather systems is of the
order of 8km/h.
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Fig. 7 Site-pair correlation as a function distance for daily and weekly time periods. Station pairs
are selected to have a predominantly East–West orientation [45]

Fig. 8 Impact of prevailing cloud speed on correlation decay for time periods ranging from 1 to 30
days contrasting East–West pairs (prevailing direction of weather systems) and North–South pairs
[45]

5 Variability as a Function of Insolation Conditions

Predicting intra-day or intra-hourly variability: Another elementary characteristic of
variability is its dependence upon insolation conditions. Intuitively, we know that
clear sky conditions will exhibit very little nominal variability, while partly cloudy
conditions are inherently variable. Indeed, empirical evidence shows that the prevail-
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Fig. 9 1-minute σ
∣∣ΔKt∗

∣∣ as a function of hourly Kt∗, Kb∗ and σspace. Each gray line represents an
individual site. The bold black line represents the mean trend derived for all sites [53]

ing insolation conditions quantified by the clear sky index over a given time interval
are good indicators of the variability within this time interval. In Figs. 9 and 10, we
show two examples relating respectively (a) intra-hour variability (Δt = 1 minute)
and the clear sky index for that hour [53], and (b) intra-day variability (Δt = 1 hour)
and the clear sky index for that day [27]. These observations have led to the devel-
opment of simple empirical models to infer short-term variability when knowing
overall conditions over a given time span. Skartveit and Olseth [60] pioneered this
approach in Task 9 of the IEA, by proposing a model to produce 1min data from
hourly data. More recently, Perez et al. [53] proposed a similar parameterization that
also takes into account the spatial hourly variability accessible from gridded satellite
data. Lauret et al. [27] introduced an approach to generate hourly time series from a
day’s clear sky index.

These simplemodels are useful because high-frequency (e.g., 1-minute)measured
data are not as commonly available than lower frequency (e.g., hourly) data. The use
of daily inputs to produce hourly variabilitymay also be useful in specific applications
such as estimating variability for day-ahead forecasts. Indeed, Numerical Weather
prediction (NWP) models tend to underestimate short-term variability to deliver best
overall performance.Hour-to-hour variabilitymaybe inferred from these forecasts by
applying a day-to-hour decomposition model such as described by [27] and based on
Fig. 10 ’s observations. It is also noteworthy to mention that the models developed
in the 1980s to produce synthetic time series data [1, 46], for e.g., the European
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Fig. 10 Hourly σ(ΔKt∗) as a function of daily KT ∗. Each thin line represents an individual site.
The bold black line represents the mean trend derived for all sites [27]

solar radiation database [9] indirectly exploit the relationship that inherently exists
between hour-to-hour, or day-to-day variability and long-term insolation conditions
respectively daily, and monthly.

6 Applied Tools and Models for Power Grid Management

Understanding the fundamentals of solar resource variability’s spatiotemporal char-
acteristics have led to the development of methodologies for addressing operational
solar power generation issues. One issue, in particular, is the prediction of the vari-
ability and ramp rates of spatially extended PV fleets from a limited number of input
data points.

Predicting variability of an extended source from a single or multiple
measurement points:Wepresent examples of direct applicationof the spatial/temporal
variability correlations presented above. An approach depicted in Fig. 11 and devel-
oped by [31] applies the wavelet analysis to decompose the irradiance signal into
different timescales to simulate a power plant’s output given (1) a spatiotemporal
correlation function (e.g., from Eq.12, (2)) measurements from a single irradiance
sensor, (3) the power plant footprint andPVdensity, (4) a time and location-dependent
scaling parameter (parameter A in Eq.12). The WVM uses these inputs to estimate
the variability ratio over the area of the plant. The simulated power plant may have
any density of PV coverage: it may be distributed generation with low PV density
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Fig. 11 Wavelet variability model (WVM) for modeling reduction in PV power output variability
through geographic smoothing [31]

(i.e., a neighborhood with rooftop PV), centrally located PV as in a utility-scale
power plant with high PV density, or any combination thereof.

Another operational approach proposed by [18] is based upon expressing Eq.3 as
the sum of the covariance of all possible plant pair combinations in a PV fleet.

σ
fleet
ΔT =

√√√√Var

[ N∑
n=1

ΔpnΔt

]
=

√√√√Var

[ N∑
i=1

N∑
j=1

COV
(
ΔpiΔt,ΔpjΔt

)]
(13)

The covariance between any two plants equals the standard deviations of each
of the location’s times the correlation coefficient between the two locations (i.e.
COV

(
ΔpiΔt,ΔpjΔt

) = σ i
ΔTσ

j
ΔTρ

i,j
ΔT . Therefore, the standard deviation of the

changes in fleet output can be defined entirely by the standard deviation of the change
in plant output at each location and the correlation between the locations (obtained
e.g., from Eq.10). This method can be applied by deriving nominal variability from
a small sample of instrumented power plant and assuming that sampled variability is
representative of nearby locations. Kato et al. [24] proposed a comparable approach
to determine fluctuation of high-penetration photovoltaic power generation systems
dispersed over a large area. His approach is known as the representative blocks
method. PV is distributed over a number of subgroups each consisting of N blocks
with a given installed capacity and a given variability. The size of each block is set
such that block-to-block correlation is negligible and a form of Eq.5, accounting
for different system sizes, may be applied to aggregate blocks and determined the
variability of the ensemble.

Inferring spatial variability from high- resolution gridded data sources: Recent
years have seen the development of instruments and models capable of producing
accurate irradiance data on extended spatial grids. Sky imagers can yield high spatial
and temporal resolution data on footprints approaching 100 km2 (e.g., [39]). Satellite
models (e.g., [55]) can produce gridded data for entire continents. The spatial and
temporal resolution of satellites is lower than sky imagers’ but now approach a few
100m and a few minutes for the most recent geostationary satellites. With this type
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Fig. 12 Comparing 1-minute satellite-derived and measured global irradiance

of input, and within their domain of applications, the problem of applying models to
infer spatially extended variability does not pose itself since the extended variability
information is inherent the gridded data. In addition, the methodologies developed
to understand variability have contributed to the enhancement of these instruments
andmodels. The sky imager functionality has been greatly enhanced [65], to produce
high- frequency (seconds) locally gridded irradiance data (5km radius) and cloud
speed can bemeasured as input to variabilitymodels [6, 7, 11]. Satellite-to-irradiance
models (see Fig. 12) were also enhanced to produce high-resolution (1km) data with
a timescale approaching 1-minute [50]. In addition to producing the experimental
data that led to a better understanding of variability, these new capabilities, in par-
ticular, the satellite capability, have also led to a direct, massive approach of PV
fleet simulation to directly evaluate and manage variability issues for timescales in
excess of a few minutes and spatial scales of a few kilometers, by directly simulating
any dispersed PV fleets from satellite-derived irradiance time series [57]. In addi-
tion, combining the high-resolution satellite data capability with an understanding
and parameterization of underlying variability and localized spatiotemporal correla-
tions could lead to improved short-term solar forecasts under high variability (partly
cloudy) conditions [72].

Other approaches, e.g., spatiotemporal kriging: It is sometimes useful to describe
time site-specific situations (decorrelation trends, directional effects traceable to
localized conditions). Kriging offers the means of doing so from a limited num-
ber of measured data points [25]. This method is useful for spatial and temporal
scale below what can be achieved by remote sensing today, where a deterministic
use of high-resolution gridded data would be a straightforward way to proceed, also
noting both spatial and temporal resolution of remote sensing will be improving in
the future. A detailed description of spatiotemporal kriging applied to solar resource
variability determination is available in [47].
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Fig. 13 Nominal variability of a 1 kW power plant as a function of its footprint [49]

Solar resource variability and power grid management: The spatiotemporal char-
acteristics of solar resource variability have direct relevance to PV power generation
and its impact on the power grid. These characteristics should be front-and-center
in the discussion shaping and optimizing future grid operation and regulations in an
inevitable high PV penetration paradigm. This is in full agreement with the conclu-
sions of the International Energy Agency’s PVPS Task 14 conclusions [56].

Observations andmodels describe a space–timecontinuumunderlying the smooth-
ing effect of solar resource variability: shortest term variability matters for the small-
est spatial scales while the minimum relevant timescale gradually increases with the
size of the considered footprint. This is illustrated in Fig. 13where the absolute power
variability of a nominal 1kW PV power plant (from Eq.2) is plotted as a function of
the resource’s footprint from a single point up to 200 × 200km [49].

The solar generation footprint and timescale should, therefore, be the primary
concerns of grid operators as they pose different load management challenges and
imply different solutions: for single distribution systems and large centralized plants,
1-minute fluctuations are relevant as they may create voltage control issues. For
grid balancing areas including both fleets of large and small distributed systems,
variability effects below 30min should be of no concern, while hourly and above
timescales remain relevant.

Likewise variability mitigation solutions should reflect the solar resource time–
space context.

• Up to a few tens of meters small and medium PV installations—ramp rates of
the order of seconds are relevant in particular over-irradiance issues, where ramps
can exceed power ratings by up to 50% [41, 71] and can create voltage control
issues at interconnection points. These are generally passively mitigated by the
installations’ hardware that curtails excess spikes. For very large systems, buffering
via capacitors may be warranted to minimize curtailment losses.
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• From hundreds of meters to a few km—distribution feeders and large PV plants—
minute ramps are relevant, with impact on distribution system voltage, or trans-
mission system voltage for large centralized power plants. In the latter case, active
output buffering via capacitor or battery storage could be considered some util-
ities impose maximum allowable 1-minute ramp rate requirements [42]. How-
ever, these should only be warranted for very large plants or very dense PV fleets
where solar production is of the order of the base demand energy flow on the
local power grid. For most distributed systems, as long as penetration remains
reasonable, experience shows that the ramping noise induced by PV systems on
distribution grids is less than the background demand-side ramp noise that utilities
have been accustomed to handle for a long time [19, 20]. For very large dispersed
penetration—exceeding local demand—grid management would be similar to a
centralized plant case and would require buffering.

• From 5 to 20Km substations, cities—1min variability vanishes while 10min and
longer ramps remain. Depending on penetration, local regulation via storage may
be needed.

• For 50km large cities and dense transmission networks—15–30min fluctuations
and above are still a concern. Solutions include contingency stand-by generation,
storage, or load management in order to react to ramps and ensure a balance
between supply and demand—note that these solutions need not be collocated
with PV installations.

• For 100’s km regional transmission organization’s balancing areas fluctuations of
less than 1 h should not be of concern. Variability mitigation at these scales can
be effectively handled by an optimized basket of active generation, storage, load
management, PV output curtailment, and increased interconnection bandwidth
[43].

For all temporal and spatial scales where active variability mitigation would be
needed, it has been shown that solar forecasting could substantially reduce mitiga-
tion measures and operational cost [49]. For small centralized scales, minutes-ahead
forecasts could be obtained from sky imaging sensors [70], while for a few km
and more, satellite-derived (1–2h ahead) and numerical weather prediction forecasts
(5+h ahead) would be warranted [52].

7 Conclusions

This chapter presented observations and results assembled from a large body of work
from recent years. The underlying narrative of this body of work is the remarkable
continuity and self-similarity of the relationships linking spatial footprint and tempo-
ral variability across a very large range of spatial and temporal scales, from seconds
to days and from meters to thousands of kilometers. The long-observed smoothing
effect implying that variability is mitigated over space can be appropriately quanti-
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fied from the knowledge of (1) the temporal scale, (2) the spatial scale, and (3) the
motion of clouds or cloud systems.

This implies that a proper understanding of how solar energy’s resource variability
impacts energy systems require a definition of both temporal and spatial contexts for
which variability is assessed. The shortest relevant timescale for which variability
should be assessed is a direct function of the considered solar generation footprint,
and, to a lesser extent, the speed of the clouds/weather systems inducing variability.
When developing strategies to mitigate the impact of solar variability on electric
power grids, defining this context is critical: indeed, whether 1-minute ramps would
be relevant for large centralized plants injecting solar kWh on the grid, focusing on
these short-term ramps would be irrelevant for fleets of small and medium power
plants distributed over a utility service area, where mitigation occurs naturally.

The understanding of underlying variability structures has led to development
of methodologies and models capable of extrapolating the resulting variability on
arbitrarily defined spatial footprints (e.g., an ensemble of power plants) from a small
sample of point measurements. These models fill a gap in high temporal and spatial
scales, improving the temporal/spatial resolution of gridded solar data resources
where all relevant variability information would be included in the data themselves
without the need for models. The current limit of gridded data sources is of the order
of a few minutes on the temporal scale and a few km on the spatial scale. New
satellite-derived data are pushing this operational boundary towards finer spatial and
temporal resolutions.

Acknowledgement This chapter includes material originally developed for articles written in col-
laboration with Jan Kleissl of University of San Diego, California.
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Solar Radiation Forecasting
with Statistical Models

Luis Mazorra-Aguiar and Felipe Díaz

Abstract Renewable energy electrical generationhas experienced significant growth
in the recent years. Renewable energies generate electrical energy using different nat-
ural resources, such as solar radiation and wind fields. These resources present an
unstable behavior because they depend on different meteorological conditions. In
order to maintain the balance between input and output electrical energy into the
power system, grid operators need to control and predict these fluctuating events.
Indeed, forecasting methods are completely necessary to increase the proportion of
renewable energies into the system (Heinemann et al. in Forecasting of solar radi-
ation: solar energy resource management for electricity generation from local level
to global scale. Nova Science Publishers, New York, 2006 [17], Wittmann et al. in
IEEE J Sel Top Appl Earth Obs Remote Sens 1:18–27, 2008 [46]). Reducing the
uncertainty of natural resources, operators could reduce maintenance costs, improve
the interventions in the intra-day market and optimize management decisions with
nonrenewable energies supply. Many forecasting methods are used to obtain solar
radiation forecasting for different time horizons. In this chapter, we will focus on
several solar radiation forecasting statistical methods for intra-day time horizons
using ground and exogenous data as inputs.

1 Introduction

Solar radiation forecasting could be used for different purposes with a wide range
of methods. Depending on these purposes, forecasting models are based on different
input parameters and used for several time horizons [22, 42].
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• For time horizons less than hour models based on ground-based sky images obtain
very good results. Thesemodels offer high precision information about cloud cover
variability using sky images with 180 cameras [10, 45].

• Satellite image models are considered a very useful tool to improve solar radiation
for timehorizons up to several hours ahead.Geostationarymeteorological satellites
obtain images from atmosphere and satellite models estimate solar radiation using
these images. In recent years, these models obtain accurate results with temporary
resolution less than an hour and spatial resolution around 1–5km. A review of
several satellite models is shown in Sect. 1.2.

• Statisticalmodels obtain accurate results for timehorizons up to hours ahead.These
models are not good enough to estimate the cloud motion but the high correlation
between ground solar radiation data series made them very good tools for solar
forecasting over 1 hour. The bibliography offers different statistical models for
solar radiation purposes, as autoregressive models (AR) and autoregressive mov-
ing average (ARMA) [4, 5], autoregressive-integrated moving average (ARIMA),
or several machine learning techniques such as neural networks, support vector
machines, or Gaussian process [6, 23, 26].

• For time horizons over 1 day ahead up to 15 days, numerical weather predictions
(NWP) models estimate atmosphere conditions and give different meteorological
variables as solar radiation. These models are based on physical models using
differential equations and solved with numerical methods, see Sect. 1.3.

NWP models accuracy vary depending on the temporal resolution and the geo-
graphical area. Different works are presented in bibliography showing almost no
deviation for clear sky days [17] and errors around 30–40% for different stations
between Europe, U.S.A., and Canada [33–35]. NWP data have also been used in
recent years for post-processing forecasting results with hourly ground measure-
ments from 6 h ahead onwards [12]. On the other hand, satellite images could also
provide information about cloud variability using cloud motion vectors and improve
hourly forecasting [16, 33].

This chapter is focused on solar radiation forecasting for global horizontal irra-
diance up to 6 h ahead. The statistical models provide good forecasting results for
short-time horizons with different temporal granularities (from 5min to hourly data).
Statistical models find a relation between input data and the desired forecast solar
radiation data. Many references estimate this relation using past ground solar radia-
tion data for the same time series as inputs. However, in recent years several works
have pointed out the improvement obtained combining ground measurement data
with exogenous data as inputs [11, 31, 48]. This chapter is intended to provide
a procedure to use statistical models for solar radiation forecasting using ground
measurements and exogenous data, such as NWP and satellite data. An automatic
methodology is proposed for the selection of satellite pixels using Pearson’s corre-
lation values.
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2 Ground Solar Radiation Data

As statistical models explained in this chapter are based on ground solar radiation
measurements, it is important to establish a good quality series of data. Indeed,
before applying forecasting models, a solar radiation data assessment and quality
check procedure must be used, see Sect. 1.1.2.4.

GHI data series is not considered stationary because they are affected by sev-
eral variabilities. One variability is completely predictable and it is caused by the
annual and daily solar cycle. On the other hand, motion of clouds and atmospheric
parameters such as aerosols or water vapor caused a nonpredictable variability. All
statistical models suggested in this chapter work with stationary time series of data,
so autocorrelation should be constant over the time [9].

To work with statistical models, separating solar geometry dependence from
the nondeterministic influences generated by atmospheric phenomena is considered
appropriate [13]. So, two different new variables have been introduced to get trans-
formed solar radiation temporal series in stationary series, clearness index k, and
clear sky index K∗

t .
Clearness index is calculated dividing the global solar horizontal radiation GHI

from measurement data by exoatmospheric horizontal radiation GHI0 in the same
point, see Eq.1. This index removes deterministic variability caused by solar cycle
because exoatmospheric radiation is based on solar angles.

K∗
t = GHI

GHI0
(1)

GHI0 is calculated for every day of the year over an horizontal surface with a
simple expression using slight variations of distance between the Sun and Earth.

GHI0 = I0ε0 cos(θzs) (2)

ε0 = 1.00011 + 0.034221 cos τ + 0.001280 sin τ +
+0.000719 cos 2τ + 0.000077 sin 2τ (3)

τ = 2π(n − 1)

365
(4)

where I0 represents solar energy received from sun in a specific surface outside
of the atmosphere per unit of time. The solar constant is considered normally as
I0 = 1367 W/m2. While ε0 is the variation of the distance between the Sun and
Earth over the year calculated with Eq.3, and cosθzs is zenith angle. Finally, zenith
angle equation is substituted in main equation, Eq.5.

http://dx.doi.org/10.1007/978-3-319-76876-2_1
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GHI0 = I0ε0(sin δ sinΦ + cos δ cosΦ cosω) (5)

The second variable introduced allows us to remove seasonal and atmospheric
variability from solar radiation data series. This index is called Clear sky index
K∗
t and is widely used in the bibliography for facilitating the learning process of

statistical methods. As the clear sky index includes a clear sky model, Eq. 6, some
atmospheric conditions are included in this calculation and we obtain a stationary
data series.

K∗
t = GHI

GHIc
(6)

Clear sky models estimate solar radiation GHIc in a surface taken into account
a day without any clouds. Most of the clear sky models are based on different cli-
matic variables that represent the conditions of the atmosphere in clear times, such
as aerosol optical depths (AODs), water vapor, ozone, Linke turbidity factor, or
pressure. AODs represent solar radiation attenuation for different wavelengths from
the scattering and absorption of sunlight within an atmospheric column. AODs and
water vapor could be obtained fromAERONETmeasurement stations net [19], while
ozone could be retrieved from World Ozone Monitoring Mapping provided by the
Canadian Government [8]. MACC project also provides AODs, water vapor, and
ozone data for the whole world from 2004, available in [43].

These kinds of models have been tested all over the world and good results were
obtained compared with ground measurement for clear sky times [39, 47]. One of
the most common clear sky models in solar energy community is Bird and Hulstrm
model [2]. This model is easy to implement and use water vapor column in cm,
two aerosol optical depths, for 380 nm and 500 nm respectively, and total ozone
column for the point we are estimating clear sky radiation. Based on these data,
Bird model estimates different variables, such as Rayleigh dispersion, absorption
of ozone, oxygen, carbon dioxide, and water vapor or absorption and dispersion of
aerosols.

Another example widely used in the solar energy field is a method based on the
REST2 model [15]. First version of REST, developed by Gueymard, only estimated
beam component of solar radiation for clear sky. Later, Gueymard developed REST2
as a dual-band model based on the CPCR2 model. REST2 includes spectral distri-
bution of extraterrestrial radiation, solar constant, water vapor, Angstrom turbidity
coefficient, and reduced NO2 and ozone column as inputs. In [43], is also available
data series for global horizontal irradiance (GHI), direct normal irradiance (DNI) and
diffuse horizontal irradiance (DHI) calculated with McClear clear sky model [27].
McClear data are available from 2004 to current day d − 2withminute, hourly, daily,
or monthly time step for whole world and with a spatial resolution of 1.125. This
model is based on look-up tables and radiative transfer model libRadtran using atmo-
spheric composition variables provided by the MACC projects over whole world,
such as AOD at 550 and 1240 nm, water vapor, and ozone column.
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It is important to evaluate the accuracy of the clear sky model comparing with the
measurement data for clear sky days. To evaluate thesemethods, it is necessary first to
find out cloud-free solar radiation times (clear sky). Several methods could be found
in the solar energy field to separate clear sky conditions from cloudy sky. Ineichen
method detects clear sky hours by establishing a relation between global, beam, and
diffuse, studying the stability of clearness index and the broadband aerosol optical
depth [21]. In a similar way, Lefevre et al. [27] employ clearness index, corrected
clearness index, direct normal clearness index, and diffuse fraction to detect clear
sky instants. The method is described for 1 min. data and an adaptation for hourly
data is used for Eissa to validate HelioClim-3 database in Egypt [14]. On the other
hand, to detect individual times or period of times with clear or cloudy sky conditions
only using GHI, Reno, and Hansen, [38] uses a moving window of period of times
with 1 min. data series. This methodology detects clear and cloudy sky if data series
meets certain conditions based on maximum value of GHI, mean value of GHI,
and three different parameters to study the variability of each period. If the period
studied in this window meets all the conditions, this period is considered clear sky
weather. The limits of each condition should be established experimentally with
ground measurement data in each location. Another methodology is also proposed
to separate clear and cloudy sky conditions for GHI in periods of time [36, 37].
The model compares hourly data from ground measurement stations and clear sky
model to detect whole clear sky days. For each day, the correlation coefficients
matrix between ground data and clear sky data estimated by the model is calculated,
Eq.7. The determinant of this matrix should be lower than a threshold established
experimentally once the data have been observed.

C =
[

ρGHI ,GHI ρGHI ,GHIc
ρGHIc,GHI ρGHIc,GHIc

]
=

[
1 ρGHI ,GHIc

ρGHIc,GHI 1

]
(7)

ρGHIc,GHI = Cov(GHIc,GHI)

σGHIcσGHI
(8)

Fig. 1 Hourly GHI estimated with a different clear sky models and compared with ground mea-
surement and b estimated with McClear model compared with ground measurement in a location
in Canary Island, Spain
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In Fig. 1a several clear sky models were tested for a single station in Canary
Islands, Spain. All clear sky models reproduce very good results in terms of %
rRMSE, variating from 4%withMcClear model to 8% Bird model. While in Fig. 1b,
GHI estimated with McClear compared with ground measurement data obtained in
the same location is shown. McClear reproduces accurate results comparing hourly
data.

3 Numerical Weather Prediction Model Data

NWP provided several atmospheric variables forecasting up to 15 days ahead. All
these models are operated by 15 different meteorological agencies around the world.
For global purposes, we can find the Global Forecast System (GFS) used by the US
National Oceanic and Atmospheric Administration (NOAA) and Integrated Fore-
cast System (IFS) operated by European Centre for Medium-Range Weather Fore-
cast (EDMWF). On the other hand, some mesoscale models are available only for
some zones around the world but offer better spatial resolution. In this case, we
can find MM5 developed by Pennsylvania State University and National Centre for
Atmospheric Research (NCAR) or WRF model. Accuracy of these different models
change depending on the temporal scale and geographic area, as explained in Sect. 1.

Recently, several works have been published associating NWP models predicted
data with a post-processing method to improve hourly ground solar radiation fore-
casting for time horizons hours ahead. Some other references establish a forecasting
improving using NWP models data as inputs in different statistical methods.

In this chapter, it is explained the methodology for working on the secondmanner.
NWPmodels data predicted for the next day are used as inputs in statistical models to
improve solar forecasting. In this case, the methodology is described using the Euro-
pean Centre for Medium-Range Weather Forecast (ECMWF). ECMWF-provided
data comes within 3 h intervals, so an interpolation of the value into hourly data was
necessary. ECMWF provides information about several meteorological variables for
different altitudes, however in this case, we only explained a methodology for using
the following variables described by latitude, longitude, and time:

• Total Cloud Cover (TCC), with values between 0 and 1 using a cloud index.
• Surface Solar Radiation Downwards (SSRD), for accumulative values of J/m2
within two instants.

4 Satellite Solar Radiation Data

As proposed first with NWP data, satellite-derived data will be used to improve solar
radiation forecasting accuracy with statistical models. The most important charac-
teristic of satellite data is their great spatial resolution and possibility of introducing
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many information to see the evolution of the surroundings of the desired location.
Indeed, the most important decision is the optimal selection of satellite pixels with
the best information for the forecasting performance. The analysis of satellite data
in a region surrounding the location where the solar radiation forecasting takes place
is an important issue to establish an optimal selection.

4.1 Satellite Data Analysis

Satellite data offer solar radiation data with different spatial and temporary reso-
lutions depending on the geographical area. These models provide GHI, DNI, and
some great information about clouds and atmosphere conditions. Ineichen [20] pro-
vides an assessment study of several satellite-derived data for BSRN stations with
hourly errors around 17% for global and 34% for direct normal irradiance. Anyway,
depending on the location and climatic conditions, the uncertainties and deviation
from ground measurement change significantly. Eissa [14] reports errors between
17 and 30% for different stations in Egypt, obtaining worst results for northern sta-
tions closer to the sea. Moreover, Mazorra [31] show errors with an average 12.2%
rRMSE at C0-Pozo Izquierdo and 27.8% rRMSE at C1-Las Palmas, two stations in
Gran Canaria island. The first station belongs to the southern area of the island with
more occurrence of clear sky days, while the second station is situated in northern
station with more cloudy days. Both works use satellite-derived hourly data from
Helioclim3. On the other hand, Antonanzas [1] report around 4% rRMSE for a
set of stations in Spain with yearly GHI data obtained from CMSAF database. In
Gran Canaria island, for hourly data using CMSAF database with GHI an error was
obtained from 15% in the south and 33% in the north, Fig. 2.

Calculate the error between satellite-derived data, both GHI or DNI, and ground
measurement can show us the quality of the estimation. The more accuracy provided

Fig. 2 CMSAF SIS hourly data comparison with ground data for northern station (a) and southern
station (b) in Gran Canaria, Spain
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Fig. 3 Intra-day evolution 07-07-2005 of satellite-derived data each 30min for Gran Canaria Island
[31]

by the satellite derived, the more improvement in solar radiation forecasting will be
obtained, instead of using only ground data. Moreover, an observation of satellite
data all over the years could give an overview of the quality of the dataset. We can
observe if satellite data represent specific climatic conditions in the location we are
studying. Figure3 shows that satellite data could estimate a particular behavior of
known meteorological pattern in Canary Islands during summer. The northern part
of the island presents an accumulation of clouds brought by the predominant trade
winds. In this case, satellite-derived data used was obtained from the Helioclim-3
database version 5 (HC3v5). All this information has been processed by the Heliosat-
2 method using images from the Meteosat geostationary [2, 3]. The selected area
contains the entire island of Gran Canaria as well as a significant portion of sea at
the north–east, motivated by the knowledge and influence of the trade winds in the
Canary Islands. This area is defined, in decimal degrees, by the coordinates’ latitude
[+28.7500 to +27.2500], and longitude [−16.0000 to −14.5000], resulting in a grid
of 61× 55 pixels of information, where each pixel possesses a spatial resolution of
3× 3 km2.

In the same way, satellite-derived data obtained from the Satellite Application
Facility on Climate Monitoring (CM SAF) showed the same good results for repre-
senting the cloud cover during summer. CMSAF information has been processed
using images taken from the Meteosat Second-Generation (MSG) geostationary
satellite network with SEVIRI sensor on board and NOAA polar satellites with
AVHRR sensor [40]. These data are converted into global solar radiation and direct
normal irradiance using Heliosat method and the Magic approach, validated with
BSRN ground stations and provided in SARAH-2 database [41, 44]. The selected
area contains the entire Canary Islands aswell as a significant portion of sea. This area
is defined, in decimal degrees, by the coordinates latitude [+27.0000 to +30.0000],
and longitude [−19.0000 to −13.0000], where each pixel possesses a spatial reso-
lution of 5× 5 km2 (Fig. 4).
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(a) july (b) october

Fig. 4 CMSAF SIS monthly means of gridded satellite data for Canary Islands, between July and
October 2010

4.2 Spatiotemporal Correlation Analysis

Statistical models usually forecast GHI data using only ground clear sky data as
inputs. As explained, the aim is to improve statistical models hourly forecasting
using different satellite information as well as ground data. Satellite-gridded data
includes a huge amount of pixels, so statistical model computation would be very
difficult using the whole radiation data. In order to introduce in these models the
most representative information, one of the most important decisions is to select the
optimal pixels from the total set. The variable used to establish the best satellite pixel
is the Pearson correlation between ground data of each station and satellite data of
the selected area [11, 31, 48]. Pearson correlation provides information about the
weather relationship and establish a useful tool to enhance a prediction.

The higher Pearson correlation factor between a satellite pixel and the soil ground
data at the studied location is, the more information about the surroundings provide
this pixel. Indeed, pixels chosen to improve further prediction are those with the
higher correlation factor. As proposed in [31, 48], clear sky index is the variable
used for studying the correlation factor. To evaluate correlations between both the
parameters, satellite and ground data sets, in different temporal moments a time lag
is established. This time lag provides information about the best closest reactions
in the area and gives us an important overview between ground data at the present
moment and solar radiation from the surroundings in the past and possible incoming
events, Eq.9. It is suggested a selection of four time lags, for hourly data the time
lags go from the same temporal moment to a 3 h earlier maximum. From 3 to 6 h,
intercorrelation between satellite and ground dataset obtain values below 0.5, so the
relation is not considered relevant in the studied cases.
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CK∗
t
(i, j)h = corr(K∗

t,ground (t),K
∗
t,satellite(t − h)) para h = 0, 1, 2 & 3 (9)

In Figs. 5 and 6, it is shown an example for two stations in Gran Canaria Island
(Spain). Figure5 represents the correlation between each pixel in the whole grid for
each time lag with a station in the south. Each image corresponds to a correlation
calculation using the whole time-lagged satellite grid and the ground measurements
at the present time. In the same way, Fig. 6 shows the correlation with a northern
station. In both the cases the results provided by the calculation resemble with the
expected behavior. The higher correlated pixels belong to the part of the island
surrounding each station and the correlation decreases while time lag increases. All
these observations lead to dividing islands into two different zones and allows a
better comprehension of islands’ microclimate. North part of the island is heavily
influenced by clouds created by trade winds and the complicated orography. On

Fig. 5 Intercorrelation annual map for clear sky index between ground measurement and each
satellite pixel around the measurements at station C0 Pozo Izquierdo for time lag h = 0, 1, 2, & 3 h
[31]
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the other hand, south sector remains protected from these clouds by the mountains.
The empirical information about the island suggests that northern part possesses
more cloudy days than south area and it is confirmed by the results obtained with
Pearson’s correlation. Indeed, correlated values estimated with satellite pixels and
ground stations give us coherent information for selecting the best ones to improve
solar forecasting.

Annual correlation is calculated using the whole year of each data set, both for
satellite grid andgroundmeasurement station. The results provide climatic conditions
information fromsatellite grid radiation data in this area but it represents the statistical
average on a whole year. Moreover, Zagouras et al. [48] propose a correlation using
a temporal frame in order to evidence specific climatic conditions along the year. In
this case, a correlation between satellite and ground data using different data sets for
each meteorological quarters is shown, so the weather patterns where more coherent
and accurate.

Fig. 6 Intercorrelation annual map for clear sky index between ground measurement and each
satellite pixel around the measurements at station C1 Las Palmas for time lag h = 0, 1, 2, & 3 h [31]
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Fig. 7 Intercorrelation summer map for clear sky index between ground measurement and each
satellite pixel around the measurements at station C1 Las Palmas for time lag h = 0, 1, 2, & 3 h [31]

For the example of northern station in Gran Canaria Island, Fig. 7 represents the
correlation for summer data and Fig. 8 the correlation for autumn data. Both quarterly
time-lagged correlation images offer climatic information consistencywith empirical
observations in all the seasons. In summer, due to the strong effect of trade winds,
which creates a big area in the north of the island with a similar behavior. It is also
important to remark the shelter provided but the orography, giving other climatic
conditions to south of the Island. This shelter generates also a trail with similar
climatic conditions on the sea, where we can also find clouds. In autumn and rest
of the seasons, the Island is still divided into two regions but the higher correlations
value correspond to pixels more concentrated around the ground station. In this
season, the presence of winds is not so strong and there is not also influence in the
surroundings.

The results obtained give us a similar behavior to the empirical climatic conditions
in this region. Indeed, Pearson’s correlation factor with time-lagged grid data give
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Fig. 8 Intercorrelation fal map for clear sky index between ground measurement and each satellite
pixel around the measurements at station C1 Las Palmas for time lag h = 0,1, 2, & 3 h

us an important information for different time frames for selecting the most related
pixels with the solar radiationwewant to predict in the ground station. This technique
will be used later to estimate the pixels to introduce in statistical models as inputs.

In the explained case, the time-lagged correlation was estimated using clear sky
index data, both from satellite grid and ground data. In an attempt to get more addi-
tional data to enhance the prediction, Dambreville et al. [11] proposed a calculation
using step by step clear sky index difference, Eqs. 10 and 11. This information should
offer the direction of significant incoming patterns in the weather of the island, there-
fore, annual and quarterly analysis where made as in the previous case. These works
were based on 15-min solar radiation data sets, instead of hourly data sets used by
Mazorra et al. [31] and Zagouras et al. [48].

ΔK∗
t = K∗

t (t + 1) − K∗
t (t) (10)
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CΔK∗
t
(i, j)h = corr(ΔK∗

t,ground (t),ΔK∗
t,satellite(t − h)) para h = 0, 1, 2 & 3 (11)

The results report a stretched area around the groundmeasurement station, indeed
giving a more precise information about the most important pixels to improve the
forecasting. However, these correlation values are not high, so the difference between
selected and not selected pixels is not so relevant. The time-lagged images show
a different behavior between east and west area (with higher correlated pixels in
the west while lag increases), confirmed by the fact that wind mainly blows from
west. Indeed, by selecting the most correlated pixels in each time lag we are giving
information to the statistical models about incoming clouds.

5 Forecasting Statistical Models

The main purpose of this chapter is to explain a methodology to improve solar
radiation forecasting for several hours ahead. As it was explained in Sect. 2, statistical
models work with stationary data series. Hence, in this case the variable used in
solar radiation forecasting models is the clear sky index. However, for calculating
and discussing results and errors, the variable used is the global solar radiation GHI,
estimated with Eq.12.

ˆGHI = ˆ(K∗
t ) · GHIc (12)

The general function used to connect input and outputs is Eq. 13.

K̂∗
t (t + h) = F[K∗

t,g(t), . . . ,K
∗
t,g(t − i),K∗

t,e1(t), . . .

K∗
t,e1(t − j), . . . ,K∗

t,en(t), . . . ,K
∗
t,en(t − j)] (13)

where K̂∗
t (t + h) is the clear sky index calculated for time horizon h, K∗

t,g(t − i) is
clear sky index from ground data set at the location for i past values and K∗

t,en(t − j)
corresponds to the n exogenous data with a j time lag. The number of exogenous data
could vary depending on the selection of satellite pixels and NWP variables. One
the most important decisions for the modeler is to choose the number of ground past
data, number of satellite pixels, and NWP variables. Irrelevant inputs may unnec-
essarily increase model complexity and as a consequence may hamper the model
performance. The general function F depends on the statistical model used and it
is established during the training process. It is important to split measurement data
set in training and testing sets. First one is used to establish the optimal function to
relate input and output values, while testing set let us to calculate the accuracy of the
model when new data are presented and controlled the overfitting.
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5.1 Simple Forecasting Models

It is normal to compare any statistical model or methodology developed to improve
solar radiation forecasting with a simple model. These simple models, naïve models,
establish a reference forecasting limit that the new model should improve.

Two simple models for GHI hourly forecasting and different time horizons are
suggested. Naïve models presented in this chapter only work with ground past values
data, using clear sky index series. The first is the simple persistence (Pers) model
[28], Eq.14.

K̂∗(t + h) = K∗(t) (14)

Persistence model is based on the assumption that atmospheric conditions remain
invariant in two consecutive instants, indeed, that clear sky data for t + h only depend
on clear sky for the previous data. An easy improvement of this model is the smart
persistence (smart pers). It consists of the forecast of the clear sky index for time
horizon h using only the mean of h previous clear sky index with the ground data
[18], Eq.15.

K̂∗(t + h) = mean[K∗(t), ...,K∗(t − h)] (15)

5.2 Linear Models

Statistical linearmodels have beenwidely developed for temporary series estimation.
In this case, two different linear models are used for solar radiation forecasting using
past ground data as inputs. The procedure explained in this chapter is based on linear
models regression as described by Boland [4, 5] for solar radiation estimation in
Australia using hourly and daily data.

• Autoregressive models (AR), a regression linear model based only on ground clear
sky past data to forecast solar radiation for time horizon h, Eq. 16.

K̂∗
t (t + h) =

p−1∑
i=0

[
Φi+1K

∗
t (t − i)

] + εt+h (16)

• Autoregressive moving average (ARMA), based on two linear models, an autore-
gressive model (AR) and a moving averages model (MA). This model estimates
solar radiation forecast using a linear combination of different numbers of past
data and error, Eq. 17.

K̂∗
t (t + h) =

p−1∑
i=0

[
Φi+1K

∗
t (t − i)

] + εt+h +
q−1∑
j=0

[
Θj+1εt−j

]
(17)
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In both the equations, K̂∗
t (t + h) represents the solar radiation forecasting for time

horizon h in terms of clear sky index, ε is a white noise and K∗
t (t − i) are the ground

clear sky past data from the measurement station used as inputs in AR model. For
the AR model, Φi+1 for i = 1, 2, ...., p displays the autoregresive parameters and
established the relation between clear sky past ground data and output data. While,
for the MA model Θj+1 for j = 1, 2, ...., q shows moving average parameters that
accompany the errors in MA regression. Both kind of values, Φ and Θ , are obtained
during the training process. The methodology used to obtain both parameters is least
square regression resulting from comparison of the set of past data used as input and
future data that you want to predict.

The order p for the AR model shows the number of past data used to predict. One
of the most important decisions during the training process is the model complexity.
In this case, the optimal order p is obtained by calculating the partial autocorrelation
function (PACF) and the Bayesian information criterion (BIC). Indeed, the model
is defined by AR(p) depending on the number of past inputs used to obtain the best
forecast data. On the other hand, the optimal order q for theMAmodel is obtained by
calculating the autocorrelation function (ACF) and define the number of errors used
during the prediction. In case of ARMA model, the optimal p and q orders should
be established during the training process and the model is defined as ARMA(p,q).

These models are widely used for solar radiation forecasting because of the flexi-
bility for working with temporary series depending on model orders. In many cases,
very good results are described using AR and ARMAmodels with low-order param-
eters [7], which means not a long number of past clear sky values as inputs.

5.3 Artificial Neural Networks

Machine learning techniques have been described as very useful models for solar
radiation forecasting. The method of machine learning explained in this chapter
is artificial neural networks (ANN) [3]. However, many other techniques, such as
Gaussian process or support vector machines, have been described in many papers
with very good results and the methodology would be similar. ANNs is a statistical
model that establishes a relation between a group of inputs and outputs during a
training process. The model is based in a group of units, called neurons, that generate
an output and received inputs from a group of input data or from other units. The units
are connected between them by an associated weight. Each unit, neuron, receives
the sum of different variables affected by these connection weights and produces
an output. The output is obtained using a nonlinear activation function of transfer
function to limit its amplitude and the input sums. The activation function used in
this case is the hyperbolic tangent function, Eq.18.

f (x) = ex − e−x

ex + e−x
(18)
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The neural network used in this case is the multilayer perceptron (MLP), as
described inmany engineering and forecasting applications.MLP consists of a group
of input data, which makes up the input layer, connected by weights with at least
one layer of neurons, called hidden layer, finally connected with the output layer
neurons. The input layer is not neurons because it only contains the meteorological
input data. On the other hand, neurons in hidden layer present a nonlinear transfer
function (hyperbolic function), while the final output neuron uses a linear activation
function. The output layer consists of a single neuron with the solar radiation (in
terms of clear sky data) data for the time horizon we want to forecast, K̂∗

t (t + h).
Each variable in the input layer is connected with each neuron in hidden layer by a
first group of weights. All hidden layer outputs are also connected with the single
output by a second group of weights, Eq. 19.

K̂∗
t (t + h) =

H∑
j=1

ω2
sjfj[

T−1∑
i=0

(ω1
jiK

∗
t (t − i) + ω1

0] + ω2
0 (19)

where K̂∗
t (t + h) is the forecast solar radiation for time horizon h, ω2

sj is the group
of weights that connect the output of hidden layer neurons with general output, ω1

ji
is the group of weights that connect each input i with each hidden unit j, K∗

t (t − i)
represents the inputs variables for the ANN and ω1

0 and ω2
0 are the biases for hidden

and output layers. Input variables K∗
t (t − i) could be only ground measurement past

data or also other meteorological, satellite, or NWP data.

5.3.1 Backpropagation Training Process

Both groups of weights, ω1 and ω2, associated to each connection between input,
hidden, and output layer are modified during the training process. The optimal group
of weights is obtained byminimizing a cost function. Themean square error between
the target forecast data K∗

t (t + h) and the estimated data obtained with ANN is one
the most common methods K̂∗

t (t + h), Eq. 20.

E(ω) = 1

2

N∑
i=1

[K̂∗
i (t + h) − K∗

i (t + h)]2 (20)

The backpropagation algorithm is the optimizing method used to minimize the
cost function. In this algorithm, first the ANN weight vectors are randomly initial-
ized. During the training process, the weights ωk are changed with each iteration by
calculating a new group ωk+1 by minimizing E(ω) with a gradient descent process,
Eq. 21.Where η is the learning parameter. Scaled conjugate gradient gives us an opti-
mal solution to estimate gradient direction and learning parameter in each iteration.
In this way, we get the optimal solution faster.



188 L. Mazorra-Aguiar and F. Díaz

ωk+1 = ωk − η
∂E

∂ωk
(21)

5.3.2 Regularization Techniques

The network architecture is one of the most important issues to obtain the optimal
accuracy of ANNs to approach continuous functions. If ANNs obtain very good
results with the training data set and approximate the noise of the function, poor
accuracy will be obtained when new data are presented. This problem is called over-
fitting. So, ANNs structure will determine the possibility of the function to be useful
with a general data set. It is widely described the use of regularization techniques to
avoid overfitting problem [3, 25]. This complexity control has been treated with dif-
ferent regularization techniques, as pruningmethods [24], regularization coefficients,
or Bayesian regularization framework [30]. Classical regularization techniques need
to estimate the regularization coefficients using a cross-validation method. Control
model complexity reduces the computational load and find inputs without any influ-
ence to improve forecasting, because their associated weights are pruned.

In this case, the number of hidden units and inputs are decided by using Bayesian
regularization framework. This method controls the complexity of the model.
Bayesian framework considers a probability density function over the weight space.
Indeed, the optimal group of ANNs weight values agree to the maximum probability
density function. In practice, Bayesian framework [29, 30] introduces two hyper-
parameters, α and β, to the cost function in order to control the model complexity,
Eq. 22. Term Eω in the cost function induces a decay in unnecessary weights, so
at the end of training process it is possible to prune weights under a certain value.
Bayesian framework permits to estimate hyperparameters at the same time that we
are training our network.

S(ω) = β

2
ED + α

2
Eω (22)

Eω(ω) = 1

2

m∑
j=1

(ω2
j ) (23)

where m is the number of parameters of the whole ANN structure. Bayesian frame-
work permits to estimate hyperparameters at the same time that we are training our
network. So, not only overfitting is controlled but also it is studied the complexity of
themodel to reduce hidden and input units. As described in [25], Bayesian framework
approach uses an iterative procedure to estimate hyperparameter’s optimal values, α
and β, and optimal group of weights ωMP . This iterative procedure takes place only
in the training dataset.

1. Hyperparameters α y β are initialized using small values and vector of weights is
randomly set using a Gaussian distribution. In this iteration number k, estimated
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weights ωk and defined hyperparameters αk and βk give us first an ANN output
and calculate the error function Sk(ω), Eq. 22.

2. The optimal vector of weights ωk+1
MP is obtained in this step using an optimization

algorithm, as scaled conjugate gradient. The number of iterations in this step
depends on the convergence criterion decided for backpropagation process. With
this optimal weight, we estimate cost function for iteration k + 1, Ek+1

ω y Ek+1
D .

3. In this step hyperparameters, αk+1 and βk+1, are recalculated using the following
steps:

a. γ k+1 =
m∑

p=1

(
λp

λp + αk

)
, where λp are eigenvalues of error Hessian matrix

without regularization term, H = βk∇∇ED.
b. αk+1 = γ k+1

2Ek+1
ω

.

c. βk+1 = Nγ k+1

2Ek+1
D

.

4. Repeat step 2 using new parameters ωk+1, αk+1, and βk+1, calculated in the
previous step until reaching the convergence criterion.

These steps are repeated until the regularized error is equal to half of the number
of data points. The theory states that S(w) = N/2 when α = αMP and β = βMP . It is
also possible to study the hyperparameters α and β and parameter γ in each iteration
k and decide the convergence when they are almost constant.

Bayesian framework gives also the possibility to study the number of inputs
and hidden units, model complexity. To study the number of inputs, we study the
weights associated to each input to decide the influence in the final result. We can
divide weights into different sets, one group for weights associated to each input,
one for second layer of weights (connect hidden units with output), and one for each
layer biases. Each group is controlled for an independent hyperparameter αg . This
technique is called automatic relevance determination (ARD). As different hyper-
parameters are assigned to each group of weights, during the training process it is
possible to determine the most relevant inputs. Weights associated to a large αg are
supposed to be small. In this case, input related to this weight and hyperparameter
is not relevant for network results and can be eliminated.

To control the number of hidden units, Bayesian framework estimates the proba-
bility for eachmodel, called evidence of themodel. Different ANNs are trained using
several numbers of hidden units and the network with the highest evidence provides
us the best one [24, 30, 32]. To calculate evidence of each model the final expression
is Eq.24 that calculate the log of evidence. Where N is the number of inputs, m
is the total number of parameters, γ is the number of well-determined parameters
(weights not close to zero), and |A| is the determinant of the Hessian matrix of the
total (regularized) error function S(w).
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logP(Mi|D) = −αMPEMP
ω − βMPEMP

D − 1
2 log|A| + m

2 logαMP +
+N

2 logβMP + 1
2 log

(
2
γ

)
+ 1

2 log
(

2
N−γ

)
(24)

6 Numerical Statistical Models Implementation

Once the theoretical approach of statistical models has been explained, in this section
it is described the implementation using different data sets (ground measurement,
satellite-derived, and NWPs data). In case of linear models and ANNs, one of the
most important decisions is the model complexity. Following sections explain how
to work with both statistical models in order to choose the optimal model complexity
and number of inputs. As it is necessary to split data sets into training and testing
set, both groups should represent the same climatic conditions and seasonal events to
work with similar relations between input and output data (for example, one whole
year for each set).

6.1 Linear Models Complexity and Results

The model complexity is one of the most important issues to take into account by
the modeler. The complexity of a linear model consists of the number of inputs for
the AR model and the number of error terms for the MA model. This complexity is
settled by estimating the order q and p of the model. If the model uses a great number
of unnecessary parameters, the general accuracy could be worse. As explained in
Sect. 5, to study the model complexity we use the sample of partial autocorrelation
function (PACF), the sample of the autocorrelation function (ACF) and the Bayesian
information criterion (BIC).

Partial autocorrelation function (PACF) sets the correlation between two instants
of time series with a ρ delay. The sample PACF for the different time lags gave us
the number of past values relevant for the forecasting. The maximum order p of the
model is established within a range of 95% of this sample, Fig. 9.

Following the same criterion, the maximum q order is selected using the sample
autocorrelation function (SACF). Once the maximum orders have been decided, for
AR models we calculated several simulations using order p from 1 to maximum for
all time horizons in order to select the optimal number of parameters. In case of
ARMAmodel, we calculate different situations using all possible combinations with
order p and q from 1 to maximum.

Finally, to decide the best option between all simulations theBayesian information
criterion (BIC) and the error of the model %rRMSE (with testing data set) give us
the optimal solution. For each time horizon AR model, optimal solution is obtained
with different p orders.
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Fig. 9 Sample partial autocorrelation factor (SPACF) using solar radiation clear sky index. In this
case, the maximum order was selected in p = 12

In the same way, ARMAmodel optimal solution was established calculating BIC
and %rRMSE for all scenarios. In most cases, optimal model shown by BIC gives
us different results of p and q orders. However, in many cases when compared with
the optimal solution obtained with BIC to a simple ARMA model using p = 2 and
q = 1, there is not a substantial improvement in terms of error%rRMSE. The optimal
solution could need different orders for each time horizons and a huge number of
input data (i.e., p order around 11), while ARMA(2,1) is a very simple model using
only past input data to obtain a solar radiation forecasting.

6.2 ANNs Optimal Selection Using Ground Data

ANNs complexity in one of the most important issues to obtain the optimal fore-
casting accuracy. As explained in Sect. 5.3.2 we focus in selecting the number of
inputs and hidden units. Bayesian framework gives us the possibility of selecting the
number of inputs with ARD technique and the number of hidden units calculating
the log of evidence.

Moreover, Bayesian framework controls the overfitting of the model [24].
Figure10 shows the final result obtained with training and testing datasets fore-
casting using classical NN (a) and bayesian NN (b). In the first case, it is possible
to observe a major dispersion in testing set because the model has overfitted the
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(a) Classical ANN (b) Bayesian NN

Fig. 10 Measured data versus forecasted data for the training and testing (right) datasets using
classical ANN (a) and Bayesian NN (b)

training set (overfitting problem). While with Bayesian NN the dispersion in train-
ing and testing sets remain almost similar, overfitting problem is not present.

In case of using only ground data, the number of inputs of eachmodel corresponds
to the number of past ground measurement using to forecast the solar radiation for
time horizon h. ARD assigns a different hyperparameter αg to each group of weights
associated with one input. At the end of the training session, the weights with a
large αg are close to zero. In this case, the corresponding input is considered not
relevant for the network and can be eliminated. In practice, each hyperparameter is
represented in a figure with his variance. Inputs with a low bar comparde with other
hyperparameters associated to the rest of inputs is considered irrelevant and could
be eliminated. Figure11a shows the result obtained with six past clear sky index
inputs. Sometimes, pruned inputs are considered irrelevant with ARD technique, as
the second input in Fig. 11, do not reproduce more accurate results and it is better to
use all inputs. It is advisable to check the general error of the model when we prune
these inputs.

The number of hidden units is settled once it is decided the number of inputs
that give us the optimal results. Bayesian framework calculates the log of evidence
between several ANNs with different number of hidden units, Eq. 24, to establish
the optimal one. The ANNs with the higher Log of evidence is considered the best
one. As in Fig. 11b, most of results show low number of units. As explained with
ARD technique, log of evidence give us information about the best number of units
but it is recommended to calculate the error of several models around the best one to
establish the optimal number.

6.3 Exogenous Data Optimal Selection

The aim of using exogenous data is to improve ANN’s hourly forecasting obtained
only with ground data. Exogenous data used in this case are NWP’s data and a grid of
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(a) ARD (b) Log of Evidence

Fig. 11 ARD information for six ground data (a) and log of evidence for different hidden units (b)

satellite-derived data. These exogenous data will be added to the number of ground
measurement inputs obtained in Sect. 6.2.

NWPs data suggested are total cloud cover (TCC) and surface solar radiation
downwards (SSRD) obtained for the location of study. Both data are the one day
ahead prediction for the hour we want to predict, k∗

t (t + h), estimated by a NWP
model.

Moreover, it is proposed to use also satellite-derived data in order to include
information of the surroundings to the ANN. Satellite-gridded data includes a huge
amount of pixels, so ANN computation would be very difficult using the whole
radiation data. In order to introduce the most representative information obtained
from satellite data, one of the most important decisions is to select optimal pixels
from the total set. The variable used to establish the best satellite pixel is the Pearson
correlation between satellite-gridded data and ground data, [11, 31, 48].

This Pearson correlation is calculated for each station between ground data at the
present time and satellite pixel with time lags. During the training proces, we used
time lags from t = 0 to a maximum of 3 h obtaining four time-lagged images. This
correlation quantifies a relation between ground data and satellite for different time
lags. After 3 h, the correlation between present ground data and past satellite data
is not representative. Consequently, Pearson correlation gives us information about
meteorological event incoming from the surroundings included in satellite images.

In that way, we can select pixels from the surroundings that represent the high-
est relation with ground station data for different time lags. ANN improves solar
forecasting depending on the satellite information we use as inputs. The selection of
optimal group of pixels is one the most important issues in this field. Dambreville
et al. [11] proposes to use Pearson correlation of clear sky index variation between
satellite and ground data with a time lag from 15 to 60 min. each 15 min. It is sug-
gested to use a fixed number of pixels from each time-lagged image to improve solar
forecasting with a linear statistical model. While Zagouras et al. [48] choose the 100
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most correlated pixels from all time-lagged images. They work with hourly data and
choose the best pixel using clear sky index Person correlation between satellite and
ground data. Number of optimal pixels in each time- lagged image is settled with the
genetic Algorithm.

Mazorra et al. [31] considered amaximumnumber of 30 satellite-derived radiation
data. During the training process, six different tests at each station based on selecting
different pixels were made. For the first test, the number of pixels over 0.5 correlation
values were retrieved for each image and later the distribution of pixels between the
four time-lagged images was computed. The considered 30 satellite pixels are the
highest correlated for each image according to this percentage distribution (e.g., in
Test-1 56%of pixels at time lag t = 0; 30% at t = −1; 8% at t = −2 and 6% at t = −3
should be selected, which means to retrieve 17, 9, 2, and 2 pixels respectively). As
most of the optimal pixels were taken from first two time-lagged images, it was
considered five tests using different percentage distributions of pixels. Test-2 and
Test-3 estimated a new distribution taking into account more pixels from the other
two images. While Test-4 only added satellite pixels only from time lags, t = 0
and t = −1. Finally, Test-5 formulates the same procedure as Test-1 but calculates
a different distribution for every quarterly group of images for each station. Test-
6 composes a new distribution using the best previous percentage distribution but
selecting pixels from quarterly images.

The huge amount of satellite-derived data makes the computation difficult, so a
median filter for each 3× 3 satellite pixels is applied. Consequently, a superpixel
was created computing GHI median value of every 3× 3 group of pixels, Fig. 12.

To improve the previous work that use a different distribution of pixels for each
test, it is suggested an automatic methodology. The estimation of the optimal number
of pixel is based on the same Pearson correlation calculation. Instead of selecting a fix
limit correlation value (0.5) to generate the distribution, it was considered different
tests changing this limit. The percentile of the whole Pearson correlation distribution
for all time-lagged images was established as the limit. In that way, it is possible to
change the distribution of pixel from the four images depending on the percentile
considered. During the training process, different percentiles from 0.1 to 0.9 were

Fig. 12 Superpixel (3× 3) selection at station in Gran Canaria (Spain) for time-lagged correlation
images, t = 0, 1, 2, & 3 h. Black area shows selected superpixels
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suggested. For the first one, more pixels from first images (time lag 0 and 1 h) are
selected, while for the second one more pixels from latest images were extracted.

Once selected a different test,ANNsare trainedusinggroundpast data and satellite
data for each test. Comparing forecasted hourly GHI with measured data for the
testing dataset using the relative root mean square error, the best ANN’s architecture
and the optimal satellite information is selected for each case. In each location,
this procedure should be repeated for the different time horizons’ solar radiation
forecasting.

6.4 Solar Radiation Forecasting Results

Statistical forecasting models explained in this chapter should be validated with
measurement data. It is possible to find several error metrics suggested in specialized
bibliography to establish the accuracy of each model. The error of the models are
calculatedwith testing data set, because it is necessary to evaluate the capacity of each
model to generalize the results with unknown data. All metrics are expressed in terms
of GHI (W/m2) even if clear sky model was the variable used during the training
season. The most common error metrics are root mean square error (RMSE), mean
absolute error (MAE), or mean bias error (MBE) and their relative metrics calculated
dividing by the generally measuredmean for the testing data set. It is also widespread
the use of SKILL metric. This metric calculates the difference of each model with
a simple model used as a reference. In this case, it is explained SKILL error metric
compared with persistence model. Indeed, this value gives us how the described
model improves a simple persistence model. This chapter shows some examples
obtained using two measurement stations in Gran Canaria (Spain), calculating the
accuracy of each model using %rRMSE, Eq.25, and SKILL, Eq.26. The models in
terms of these error metrics are the following:

• Persistence Model—Pers
• Smart Persistence Model—Smart Pers
• Autoregressive Moving average with orders (2,1)—ARMA(2,1)
• Artificial Neural Networks with ground data—NN
• Artificial Neural Networks with ground data, satellite data and NWP data—
NN+ECMWF+SAT Model

RMSEmodelo =
√√√√ 1

N

N∑
i=1

( ˆGHIg,i − GHImeasure,i)2 (25)

SKILL(%) =
(
1 − RMSEmodelo

RMSEpersistence

)
x100 (26)
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Table 1 RMSE for time horizons h = 1...6 in two stations in Gran Canaria (Spain)

Stations Models 1 h 2 h 3 h 4 h 5 h 6 h

C0 Persistence 92.47 128.04 149.88 168.08 176.17 177.26

Smart persistence 92.47 124.64 140.10 144.44 141.50 138.69

ARMA(2,1) 85.78 109.30 119.77 126.64 129.32 130.38

NN 88.20 113.39 125.13 127.12 131.68 130.03

NN+ECMWF+SAT media
IGH = 543.10 Wm−2

84.00 106.17 110.51 114.93 118.89 120.43

C1 Persistence 118.95 167.03 195.15 213.39 224.71 228.18

Smart persistence 118.95 169.11 190.69 195.34 190.21 182.18

ARMA(2,1) 111.44 145.14 159.90 167.17 170.65 171.49

NN 110.63 143.90 157.06 162.11 162.09 162.88

NN+ECMWF+SAT media
IGH = 433.79 Wm−2

104.75 134.37 142.82 145.41 147.31 147.88

Table1 shows the results in terms of RMSE in (W/m2) and the ground measure-
ment mean for the testing dataset. While, Fig. 13 describes the results in terms of
%rRMSE. Both of them give the results for time horizons between 1 and 6h ahead
and for two ground measurement stations. First station (C0) is located to the south
of the island and presents better results because the weather is more stable along the
year with more presence of clear sky day. On the other hand, C1 station is on the
north of the island a presents more cloudy and unstable days during the year, so error
metrics areworse. As it is obvious, all themodels obtain better results for shorter time
horizons and get worse results while increase time horizon. In case of persistence
simple models this growth is much more pronounced, while ARMA and NN with or
without exogenous data control the error for large time horizons. Even if smart per-
sistence presents an improvement compared to persistence, in larger time horizons
it presents still some problems. ARMA(2,1) and NN only use ground measurement
past data as inputs get similar results in terms of RMSE for both the stations and
time horizons. Both the models improve significantly as simple models. Moreover,
the inclusion of exogenous data in NN as inputs improve also the model and obtain
the best accuracy for both stations and time horizons.

In Fig. 14 it is possible to see the SKILL(%) parameter for both the stations and
all time horizons. In this figure, it is shown the different combinations of NN inputs
in order to discuss the importance of everyone: NN only with ground data, NN with
ground and satellite, NN with ground and NWP data, and NN with ground and
all exogenous data. The SKILL forecast increases with time horizon, which means
that the more far ahead in time, the better results we get with ANN+ECMWF+SAT
method compared with persistence model. For both the stations the best model is the
neural networks with ground, satellite and NWP data as inputs. Moreover, it is also
observable that satellite data (NN+SAT) give better results for the first three time
horizons, from 1 to 3h, while NWP data (NN+ECMWF) is the best model from time
horizon 4 to 6h. It could also be interesting the results separating testing data sets in
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Fig. 13 %rRMSE results using testing data set for two different stations in Gran Canaria (Spain)
with several forecasting models. C0 Station (up) & C1 Station (down)

(a) C0 Station (b) C1 Station

Fig. 14 SKILL(%) results for two different stations in Gran Canaria (Spain) using exogenous data
with ANNs

the different seasons of the year or type of days (i.e., cloudy or sunny days). In this
way, it is possible to establish a different model depending on the weather conditions
or the time of the year.
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7 Conclusions

The main conclusion of this chapter is that ANN and ARMA model present very
good results in solar radiation hourly forecasting compared with persistence simple
models. On the other hand, when exogenous data, as satellite data and NWP data,
are introduced to the ANN as inputs we obtain an important improvement. In this
case, we used solar radiation from several pixels around the measurement station
with time lagged from t = 0 h to t = −3 h compared to present time. NWP data
used to improve solar radiation forecasting are 24h ahead the prediction of total
cloud cover and surface solar radiation forecasting for the time step we want to
forecast. One of the most important decision in order to obtain more accurate results
is to find the optimal satellite pixels. A huge number of pixels without relevant
information for solar radiation forecasting causes a high computation costwithANNs
and worse estimation errors. Pearson’s correlation between ground and satellite data
give us critical information to select optimal satellite pixels. The architecture of
neural networks influences the final result of the estimation. The Bayesian methods
explained in this section are considered an adequate tool to estimate the number
of inputs and hidden neurons. With this method, it is possible to avoid overfitting
problem and obtain accurate prediction results with both training and testing data.
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Solar Radiation Probabilistic Forecasting

Mathieu David and Philippe Lauret

Abstract In contrast to deterministic forecasts, probabilistic forecasts give
additional information about the inherent uncertainty embodied in weather predic-
tions. In the realm of solar forecasting, prediction intervals are especially important
to assess risks in grid operations and to optimize the energy storages needed to ensure
the supply–demand balance. Even if the development of probabilistic solar forecasts
is relatively recent, the main available methods come from other fields of meteorol-
ogy, particularly from the wind domain. This chapter reviews some of the methods
used to generate probabilistic solar forecasts. A special emphasis is put on short term
(from several hours to several days) and very short term (from several minutes to sev-
eral hours) forecasts. As the verification of the quality of the probabilistic forecasts
is of major interest, graphical tools like reliability diagram and rank histogram are
depicted. These diagnostic tools are relevant for assessing the good calibration of the
probabilistic forecasts. In addition, a quantitative score, the CRPS, is also proposed.
The CRPS takes into account the different sources of uncertainties and as a proper
score, the CRPS is useful to rank competing forecasting methods.

1 Nature of a Probabilistic Forecast

As shown by Lorenz [42], the atmosphere is a chaotic system with flow-dependent
error growth. Indeed, an initial state of the atmosphere can lead to extremely different
weathers in the future. This characteristic of the atmosphere is well-known and is
commonly referred as the butterfly effect.As a consequence, no deterministic forecast
is perfect. We can even say that a forecast is uncertain by nature. Thus, prediction
intervals are necessary to assess the uncertainty associated to the point forecasts.
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Regarding the high penetration of solar renewables in energy grids, the knowledge
of the uncertainty of the solar forecasts is of high importance. Indeed, the prediction
intervals of the power output of the solar systems allow assessing the risk related to
the scheduling of energy sources and to the planning of units commitment. Thus,
they should be key feature for the optimization of the operations of such grids.

1.1 Sources of Uncertainties in Solar Forecasts

The main source of uncertainties is the chaotic behavior of the atmosphere. From
analog initial conditions, a small event could trigger important weather changes. The
main effects could be predicted, but important details might lie forever beyond cal-
culation [56]. As many of other weather variables, the cyclic and seasonal evolution
of the solar irradiance can be accurately reproduced [31]. The clear sky models were
developed to predict this periodic and deterministic component. Therefore, most of
the forecasting models are built to predict the clear sky index (see Chap.8), i.e., the
stochastic component of the solar irradiance variability.

Another source of uncertainty originates from the forecasting models themselves.
Their uncertainty partly lies in their approximate reproduction of the atmospheric
phenomena, in the inaccuracy of the initial conditions or in the assumption of analogy
between past and future events.

As data from environmental monitoring are used to build the forecasting models,
a last source of error is the measurement noise. This source of uncertainty is constant
in time and in space. It depends only on the technology of the sensors. In the field of
solar energy, the most common sensors are photopiles (pyranometers) and calibrated
PV cells. It must be noted, however, that the accuracy of the current state of the art
forecastingmodels is largely worse than the accuracy of these sensors. Consequently,
here we will not address the issue related to the measurement noise.

Regardless of the time horizon and the used model, forecast accuracy is strongly
dependent on the temporal variability of the sky conditions. Forecasting errors
increase with the temporal variability. This behavior has been highlighted for short-
term forecasts done by a NWP [37] and very short-term forecasts done by learning
machine techniques [38].

1.2 Quantifying the Uncertainties of a Forecast

Probabilistic forecasts correspond to the estimation of the statistical distribution of
the forecast error. Without any assumption on the distribution of the forecast error,
a probabilistic forecast is provided as a set of quantiles spanning the unit interval.
This type of probabilistic forecast is usually called predictive distributions [47]. For
example, during the Global Energy Forecasting Competition 2014 (GEFCom 2014)
[30], the solar forecasts were expressed in the form of 99 quantiles with various
nominal proportions between zero and one.

http://dx.doi.org/10.1007/978-3-319-76876-2_8
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Fig. 1 Example of probabilistic solar forecasts: 2 days of measured GHI at the University of
KuwaZulu-Natal Westville (South Africa) [9] and associated forecasts with prediction intervals
provided by ECMWF-EPS

Let us consider F the cumulative distribution function of a random variable X ,
such that F(x) = Pr(X ≤ x). The quantile qτ , at probability level τ ∈ [0, 1] is
defined as follows:

qτ = F−1(τ ) = in f {y : F(y) >= τ }, (1)

A quantile qτ indicates that there is τ probability that the observation falls below
the quantile qτ . As mentioned above, a set of quantiles represents the predictive
distribution of the variable to predict. Thus, prediction intervals (or interval forecasts)
with different nominal coverage rates can be inferred from this set of quantiles.
Prediction intervals give a range of possible values within which the true value of the
variable to forecast is expected to lie with a certain probability, that is, its nominal
coverage rate [47]. To completely characterize a coverage rate, it is also necessary
to define the way it should be centered on the probability density function [47].
The most common way is to center the prediction interval on the median (Fig. 1).
Consequently, there is the same probability of risk below and above the median. We
will implicitly use this convention in this chapter. Thus, the (1 − α)100% central
prediction interval is generated by taking the α/2 quantile as the lower bound and
the 1 − α/2 quantile as the upper bound. More precisely, a prediction interval with
(1 − α)100% nominal coverage rate is estimated by:

̂P I(1−α)100% = [

q̂τ=α/2, q̂τ=1−α/2
]

(2)

2 Ensemble Prediction System (EPS)

In the realm of meteorology, an ensemble forecast is a set of forecasts that depicts
the range of future weather possibilities. Each forecast of this ensemble is called
a member. Thus, in the field of solar radiation, an ensemble forecast is a set of
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predictions of the solar irradiance at the same horizon. The cumulative distribution
function of the forecasts can be inferred from the ensemble by ranking themembers in
ascending order. For example, with an odd number of members, the median (qτ=0.5)
is the middle-ranked member.

2.1 EPS and Numerical Weather Predictions (NWP)

With a NWPmodel, an ensemble forecast corresponds to a perturbed set of forecasts
computed by slightly changing the initial conditions of the control run and of the
modeling of unresolved phenomena [39]. An EPS allows representing the uncertain-
ties of the prediction scheme. For example, the European Centre of Medium-range
Weather Forecasts (ECMWF) provides an ensemble forecast from the Integrated
Forecasting System (IFS) model. It consists in 1 control run and 50 “perturbed”
members. Today, the main meteorological facilities (NCEP in the US, Met Office
in the UK, Météo France, China Meteorological Association, etc.) make their own
ensemble weather forecasts at a global scale (i.e., worldwide).

As the generation of ensemble forecasts by a NWP is extremely computationally
intensive, their resolution is coarser than the deterministic forecasts. Table1 provides
a comparison between the resolutions of the deterministic forecasts and the ensemble
forecasts of the operational system of the ECMWF that can be considered as the finest
globalNWPof themoment in terms of resolutions.As expected, the spatial resolution
of the ensemble forecasts is two times coarser than the point forecasts.

With the THORPEX Interactive Grand Global Ensemble (TIGGE), a new step
has been reached. Indeed, the TIGGE dataset consists of ensemble forecasts from
10 global NWP centers that are freely available for scientific research since October
2006 [7]. Thorey et al. [54] built probabilistic solar forecasts from a part of this huge
ensemble forecast (i.e., 158 members) and compared them with GHI maps derived
from satellite images.

When considering complex terrain, the coarse resolution of the global NWPmod-
els are not able to reliably take into account the small-scale phenomena. Regional or
mesoscale NWPs were developed to produce high-resolution (until 1km2) weather
forecasts for a limited area. The boundary conditions of the considered area are set

Table 1 Overview of the operational forecasts of the Global Horizontal Irradiance (GHI) provided
by the ECMWF (IFS Cycle 43)

HRES (Deterministic) EPS (Ensemble)

Spatial resolution 0.1◦ × 0.1◦ 0.2◦ × 0.2◦

Time step T0 to T0+144h hourly 3h

T+150h to T0+240h 6h 6h

T+246h to T0+360h – 6h

Number of analysis per day 2 (00–12h) 2 (00–12h)
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by a global NWP and the regional model performs a downscaling. Some national
meteorological services maintain mesoscale models that cover their countries (e.g.,
AROME for France,NAMfor theUnited States, COSMOfor several European coun-
tries, etc.). However, being freely available, the Weather Forecasting and Research
(WRF) model [50] which is developed by NCAR is the most utilized mesoscale
model by the solar forecasting community.

If mesoscale models are extensively used to provide deterministic solar forecasts,
their use remains today almost unexplored for ensemble predictions in the field of
solar energy.Nevertheless, several approaches, originatedmainly fromother research
fields, are available but they do not totally respect the strict definition of an ensemble
forecast given at the beginning of this subsection. First, it is possible to downscale
the perturbed members of an EPS provided by a global NWP. MeteoSwiss uses this
approach to provide probabilistic forecasts for the Alpine region of Europe. The
mesoscale model COSMO is used to downscale the members of the ECMWF-EPS.
Figure2 provides a sketch of their approach. A second way to proceed is to gather the
deterministic forecasts provided by different mesoscale models for the same area.
Meteoblue uses this method in combination with global NWP-EPS for ten regions
around the world [1]. Unfortunately, for these two first approaches, no comparison
with measured solar data has been published. A last approach, the Lagged Average
Forecast (LAF) [29], allows generating ensemble forecasts from the deterministic
runs of a NWP. Each ensemble member of the LAF is computed with different initial

Fig. 2 The numerical
weather forecasting models
COSMO-E from
MeteoSwiss, which are
embedded within the
ECMWF models. Source
http://www.cosmo-model.
org/

ECMWF-EPS

http://www.cosmo-model.org/
http://www.cosmo-model.org/
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conditions corresponding to different initial time. This method has been set up with
WRF to produce probabilistic solar forecasts in Japan [40].

Global and regional NWPs are designed to forecast a large variety of weather vari-
ables and they are not focused on the accurate generation of the different component
of the solar radiation. As a consequence, probabilistic forecasts of the solar irradi-
ance done the NWPs suffer from a lack of accuracy. Thus, raw ensemble forecasts
are systematically refined by post-processing techniques.

2.2 Probabilistic Forecasts Derived from Post-processing
of NWP

Two approaches are proposed in the literature to generate probabilistic forecasts from
the refinement of the outputs of the NWPs. On one hand, the forecasted weather
parameters of the deterministic run are used as explanatory variables to create a
conditional distribution. On another hand, a transformation is applied to ensemble
forecasts in order to improve their calibration.

2.2.1 From Deterministic to Probabilistic Forecasts

For the first approach, we will only give here a brief summary of the main meth-
ods already proposed for solar forecasting. As these methods contribute to a more
generic framework in the field of probabilistic forecasting, details will be given in
the following Sects. 3 and 4. Indeed, most of the models used to post-process the
deterministic forecasts of a NWP are also used alone or in combination to provide
probabilistic forecasts for various lead times (e.g. very short-term or long-term).

Lorenz et al. [41] proposed a parametric model assuming a normal distribution
with a zero mean of forecast errors. In their method, only the standard deviation
has to be forecasted to assess the whole distribution. They estimate the standard
deviation in dependence on the cosine of solar zenith angle and on the forecasted
clear sky index (from the NWP) by a polynomial function of fourth order. More
sophisticated methods based on a non-parametric approach are most common and
illustrated by the models used during the Global Energy Forecasting Competition
2014 (GEFCom 2014) [30]. The aim of the competition was to compute 99 quantiles
of the power output of the PV fields on a rolling basis for 24h ahead. 12 weather
variables (including GHI) from the ECMWF-HRES were made available to the
participants and were taken as explanatory variables inside their models. The main
methods used were the quantile regression (see Sect. 4.2) [33], the gradient boosting
techniques (see Sect. 4.4), and the quantile regression forest (see Sect. 4.3) [45]. An
original method was also proposed by Alessandrini et al. [2] to post-process the
forecasts of a mesoscale NWP (RAMS). They applied an analog ensemble approach
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to a set of predicted weather variables (GHI, cloud cover, air temperature, etc.) to
derive the quantiles of the forecast errors.

2.2.2 Calibration of Ensemble Forecasts

The second approach, which is less common than the first one, is based on the
direct use of ensemble forecasts. The aim is to apply a statistical calibration to the
PDF drawn by the initial ensemble forecasts in order to optimize a specific metric
(see Sect. 5) used to assess the quality of probabilistic forecasts. Indeed, as well
as having a coarse resolution, the ensemble forecasts from the NWPs are known
to be underdispersive (see Fig. 8), i.e., they exhibit a lack of spread [39]. For this
purpose, Sperati et al. [51] proposed two different methods already used in the realm
of wind forecasting. Even if these methods cannot be considered as parametric, they
are based on the characteristics of a normal distribution. Indeed, such a distribution
is appealing because it can be assessed with only two parameters: the mean and the
standard deviation that are, respectively, related to the average bias and the spread of
the ensemble. Thus, in order to reproduce a Gaussian distribution, a logit function
is first applied to each member of the ensemble. The following equation details the
logit function:

e∗ = log(
k

1 − k
) with k = e − emin

emax − emin
(3)

e is a member of the ensemble forecast and e∗ is the corresponding member after
the logit transform. emin and emax are respectively thememberswith theminimumand
the maximum values. The inverse logit function is then applied to the new ensemble
produced by one of the calibration methods described below.

The first method of calibration, initially designed by Buizza et al. [12], set up a
calibration of the spread of the ensemble. The aim is to fit the standard deviation of
the new ensemble similar to the standard deviation calculated from a training set of
past observed data.

To do so, a new ensemble ˜E∗ = (̃e∗
1, ..., ẽ

∗
n) is created from the ensemble E∗ =

(e∗
1, ..., e

∗
n) by modifying each member with the Variant Deficit (VD) procedure

described by the Eqs. 4 and 5.

ẽ∗
i = e∗ + vd(e∗

i − e∗) (4)

The initial ensemble and the calibrated ensemble have the same size n. e∗
i and ẽ

∗
i

are the members, respectively, of the initial and of the calibrated ensemble. Finally,
e∗ is the ensemble mean.

vd =
√

1
N

∑N
j=1(e

∗
j − o j )2

1
N

∑N
j=1 σ ∗

j

(5)
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vd is the Variance Deficit coefficient that quantifies the lack of spread of the
initial ensemble. o j , σ ∗

i and N represents, respectively, the observations, the standard
deviation of the members of the ensemble and the size of the training data set.

The second method of calibration used by Sperati et al. [51] was first proposed by
Gneiting et al. [22] and it is called Ensemble Model Output Statistic (EMOS). The
aim of this method is to create a new Gaussian distribution from the logit transform
of the ensemble forecast E∗ = (e∗

1, ..., e
∗
n). The mean and the standard deviation of

this calibrated distribution are obtained using two linear functions. This new PDF is
drawn from the following normal distribution:

N
(

a + b1e
∗
1 + ... + bne

∗
n, c + dσ ∗2), (6)

where σ ∗ is the standard deviation of E∗. A minimization of the Continuous Rank
Probability Score (CRPS) allows estimating the coefficients a, b1, ..., bn , c and
d. The CRPS can be considered as a probabilistic extension of the mean absolute
error (MAE) usually used for assessing the accuracy of deterministic solar forecasts.
Section5.3 gives a detailed presentation of the CRPS. Finally, n equally spaced
quantiles with probabilities i

1+n (with i = 1, ..., n) are derived from the Cumulative
Distribution Function (CDF) to build the calibrated ensemble.

We briefly present here, a last method of calibration based on the rank histogram
and initially proposed by Hamill and Colucci [26] for forecasts of precipitation.
Zamo et al. [58] applied this method to theMétéo France’s EPS (PEARP) to generate
probabilistic solar forecasts. The rank histogram is a verification tool that assesses
the consistency of ensemble forecasts. Section5.2 gives a detailed presentation of
this graphical tool. The aim of this last method is to build a calibrated CDF from the
rank histogram derived from past forecasts and observations. The transformation of
the initial ensemble forecasts lies on two principles:

• Between two ranks, the new CDF is built from a linear interpolation.
• As the rank histogram does not give any information about the tails of the distri-
bution (below the first rank and above the last rank), specific functions have to be
fixed to generate the tails of the new CDF.

The tails of an error distribution hold important quantiles (e.g., 0.05, 0.1, 0.9, and
0.95). Thus, the functions that will generate the tails must be in agreement with the
physics of the considered parameters. For the case studied by Zamo et al. [58], linear
functions have been used. Appendix of the article of Hamill and Colucci [26] gives
details regarding the implementation of this procedure.

3 Parametric Models

Parametric models assume that the uncertainty associated with solar irradiance fore-
casts follows a known law of distribution (e.g., a normal law). As a consequence,
this particular class of models needs only few parameters to predict the whole
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distribution. They are attractive for operational purpose because they can run very
fast with a low computational effort. This approach was used by the first operational
solar forecasting system developed in Germany by Lorenz et al. [41].

3.1 Error Distribution of Point Forecasting Methods

When dealing with parametric models, the aim is to forecast a Probability Density
Function (PDF) that follows a parametric law. Thus, the first question to ask is—
Does the uncertainty of a forecasting system followaknownprobabilistic law?Figs. 3
and 4 show the PDFs of the errors of two types of deterministic solar forecasts with
different lead times: short-term from aNWP (3) and very short-term from a statistical
model (4). These different cases clearly show that the uncertainty of these forecasting
systems does not agree with the hypothesis of a normal distribution. Figure3 presents
the distribution of the errors of a NWP for three distinct sky conditions (clear, cloudy,
and overcast). We can observe that the shape of the three resulting PDFs depends on
the sky conditions. Thus, a unique parametric law will not be able to reproduce the
uncertainty of the considered forecasting method.

3.2 Example of Forecasts with a Parametric Model: GARCH

Probabilistic forecasts of financial products are frequently generated using the
Generalized Autoregressive Conditional Heteroscedasticity model (GARCH). First
proposed byBollerslev [6], the GARCHmodel is extensively documented in the field
of econometrics. This time-series model is commonly associated with an autoregres-
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for three different sky conditions and for the site of Saint-Pierre (21.34◦S, 55.491◦E), Reunion in
2012. Red dashed line represents the fitted normal PDF
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sive process that generates the main trend of the exchange market. As it assumes a
normal distribution of the forecast errors, the GARCH model belongs to the class of
parametricmodels. Its particularity comes from taking into account the heteroscedas-
tic nature of a time series [18]. That is to say, the time series exhibits periods of low
variability and periods of high variability. This behavior is also met for time series of
clear sky indices, stable when the sky is clear or overcast and highly variable when
the sky is partially cloudy.

In GARCHmodels, the conditional variance is a linear function of lagged squared
error terms and also lagged conditional variance terms [53]. The general formulation
of a GARCH(p, q) model, with p error terms, q conditional variance terms is given
by the Eqs. 7 and 8 [55]. To clarify the equations, we used the following notation. y
is the variable to predict, also called the predictand. x is the explanatory variable or
a vector of explanatory variables. A variable with a hat (i.e., ŷ) is a forecast or an
estimate. h is the horizon of forecast also called the lead time. Finally, t denotes the
time when the forecasts are generated.

ŷ(t + h) = ε(t).̂σ (t + h), (7)

where ε is a random variable uniformly distributed with a zero mean and a unitary
variance.

σ̂ 2(t + h) = α0 +
p

∑

i=1

αi .ε
2(t − i + 1) +

q
∑

j=1

βi .σ
2(t − j + 1) (8)

with the error term ε(t) = ŷ(t) − y(t).
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An application of the econometric approach presented above to the solar field
has been proposed by David et al. [16]. They implemented a combination of an
AutoRegressive and Moving Average model (ARMA) with a GARCH model inside
a recursive framework to generate probabilistic forecasts of the clear sky index. Their
work highlights the strengths and the weaknesses of the use of parametric models.

As the GARCH model assumes a Gaussian distribution of the error of the under-
lying autoregressive process (i.e., an ARMA process in our study case [16]), we only
need to forecast a mean and a standard deviation (8). Thus, this method requires only
two parameters to estimate the whole PDF of a forecast. The main advantage of this
parametric approach is based on its simplicity.

As shown in Figs. 3 and 4, PDFs of the error of different point forecastingmethods
do not seem to follow a normal law or any other laws of distribution. The distribution
of the error depends on the model, on the sky conditions, and on various other
parameters. As a consequence, a method based on a unique parametric law will not
be able to reproduce a realistic distribution of the forecast errors. In the case studied
in [16], the normal law systematically produces symmetrical prediction intervals
around the median. Figure3 shows an evidence while dealing with solar radiation.
When the sky is clear, it is very uncommon to observe an even more clear sky and
conversely with an overcast sky. Therefore, the distribution of the forecast errors of a
clear sky or of an overcast sky cannot be symmetrical around the median. In addition,
it is strongly different when the sky is partially cloudy. As a conclusion, parametric
models suffer from a lack of calibration (see Sect. 5).

4 Nonparametric Models

Acommonway toproduceprobabilistic forecasts is to buildmodelswithout imposing
any parametric assumptions on the underlying distribution. Considering the issues
highlighted by the parametric approach (see Sect. 3), most of the solar probabilistic
forecasting systems are based on nonparametric models. In that way, they avoid
the lack of calibration induced by a fixed law of distribution. However, their set
up is generally more complex and their run is more computationally intensive. In
this section, we will give an overview of some of the most common nonparametric
methods in the field of solar forecasting.

4.1 Bootstrap

Bootstrap methods are widely used to estimate the statistical distribution of a quan-
tity from a limited number of observations [17]. The following sentence, written by
Singh and Xie [49], gives a good overview of the concept of bootstrap: “The idea
behind bootstrap is to use the data of a sample study at hand as a ‘surrogate pop-
ulation’, for the purpose of approximating the sampling distribution of a statistic;
i.e. to resample (with replacement) from the sample data at hand and create a large
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number of ‘phantom samples’ known as bootstrap samples. The bootstrap method
for a one-sample problem is summarized by the following three steps [17]:

1. Build the PDF ̂F of a sample X at hand with a finite number of n elements:
X = (x1, x2, ..., xn).

2. Draw a “bootstrap sample” X∗ with replacement of size n from the initial sample
X . In other words, construct a new sample X∗ by choosing randomly n elements
inside the initial sample X . Thus, an element xk of X can be repeated more than
once in X∗.

3. Approximate the sampling distribution ̂F by the bootstrap distribution ̂F∗.

With the current computational capacities, the bootstrap method presented above
is frequently iterated thousands or tens of thousand times to approximate more accu-
rately a PDF from a limited number of observations. Bootstrap methods are also
commonly combined with time-series models to assess their prediction intervals
[11]. In the field of solar forecasting, Grantham et al. [24] proposed to used the
sieve bootstrap approach. This specific method of bootstrap was initially proposed
by Bühlman [10] and extended to the forecasting of time series by Alonso et al. [3].
The sieve bootstrap enjoys a nice nonparametric property, beingmodel-free in a class
of linear processes. However, it must be stressed that the sieve bootstrap method only
works in combination with linear time series models (AR, MA, ARMA, etc.). As an
example of the application of the bootstrap to the solar forecasting, we reproduce
here the methodology proposed by Grantham et al. [24].

Let us consider a time series y(t). It can be described by an autoregressive (AR)
process of order p. For a finite sample of y(t), the residual ε(t) of the process can
be formulated as follows:

ε(t) =
p

∑

k=0

−αk(y(t − k) − y), with α0 = −1. (9)

y is the mean of y(t), αk is a vector of parameters and ε(t) are i.i.d. random
variables with zero mean and finite variance. Once the vector of parameters αk

is estimated, we compute the resulting centered residuals ε̃(t) = ε(t) − ε and we
construct their empirical distribution F ε̃(x) as follows:

̂F̃ε(x) = 1

n − p

n
∑

t=p+1

1{̃ε(t)≤x} (10)

The indicator function 1{u} has the value of 1 if its argument u is true and 0
otherwise. We draw a resample ε∗(t) of i.i.d. observations from the distribution ̂F̃ε

of the centered residuals ε̃(t). Finally, we construct a sieve bootstrap sample of the
forecasts ŷ∗(t) by the following recursion:

ŷ∗(t) − y =
p

∑

k=1

αk(y
∗(t − k) − y) − ε∗(t) (11)
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In their method, Grantham et al. [24] also assume a conditional distribution of
the forecast errors done by the AR model. Thus, they proposed to bin the centered
residuals, according to two parameters of the solar path: sun elevation and hour angle.
The resample is then done using only the centered residuals corresponding to the
past observations, where the values of these two parameters are equivalent to the date
and the time of the forecast.

4.2 Quantile Regression Methods

Quantile regression methods provide discrete quantile information about a variable
to forecast, named predictand. The basic idea of these specific methods of regression
is to estimate the parameters of functions that link the predictand quantiles with
explanatory variables. Different types of functions have been previously testedwithin
this framework: linear models [35, 36, 58], quantile regression Forest [43, 58],
and neural networks [13, 52]. In this subsection, we will briefly present three of
these methods: Linear Model in Quantile Regression (LMQR), Weighted Quantile
Regression (WQR), and Quantile Regression Neural Network (NNQR).

A simple method based on linear functions (LMQR) was proposed by Koenker
and Bassett [35]. This method provides, at time t , the τ th quantiles yτ (t) of the
variable to forecast y(t), establishing a linear relation with a vector of explanatory
variables x(t):

yτ (t) = βτ x(t) + ε, (12)

where ε is a random error term.
In classical regression, the vector of parameters βτ is estimated by minimizing

the sum of squared errors. In quantile regression, conditional quantiles are estimated
applying asymmetric weights to the mean absolute error. Koenker and Bassett [35]
described a loss function ρτ to achieve this goal:

ρτ (u) =
{

τu, if u ≥ 0
(τ − 1)u, if u < 0

(13)

Then the τ th sample quantile of y(t) may be defined thanks to any solution of the
following minimization problem:

̂βτ = argmin(β)

[

N
∑

i=1

ρτ (y(i) − βx(i))

]

, (14)

where N is the size of the considered sample, i.e., the number of pairs of explanatory
variables x and of corresponding observed predictand y.
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ŷτ (t) is the τ th quantile estimate, forecasted by the regression function ̂βτ x(t).
The quantile regression provides the quantile distribution estimating each quantile
separately. Calculating each quantile independently, could lead one to obtain quantile
curves intersect, that is to say crossing quantiles (ŷτ1(t) > ŷτ2(t) when τ1 < τ2). A
CDF should be a monotonically increasing function with τ , so the quantile crossing
problem should be corrected. For avoiding this crossing quantiles a simple rearrange-
ment could be applied to the estimated quantiles. For example, Chernozhukov et al.
[14] proposed to rank in ascending order the estimated quantiles and to permute the
corresponding probability, τ if necessary.

Using exactly the same framework, a research team of the Danmark Tekniske
Universitet (DTU) proposed a variant of the classical quantile regression named
WeightedQuantile Regression (WQR) [4, 44]. This is a nonparametric method based
on a Gaussian kernel smoother. Considering a sample of an explanatory variable
xi (i = 1, ..., N ) the kernel smoother k is defined as follows:

k(xt , xi ) = e− 1
2 (

xt−xi
Sw

)2

∑N
i=1 e

− 1
2 (

xt−xi
Sw

)2
, with the screen width Sw (15)

The problem is reduced to estimating the τ th quantile ŷτ (t) as a local constant for
each possible value of y. The quantile ŷτ (t) is then found by applying the classical
quantile regression approach to the previous kernel smoother as follows:

ŷτ (t) = argmin(γ )

[

N
∑

i=1

k(xt , xi ) · ρτ (y(i) − γ )

]

(16)

xt is an explanatory variable that can be the point forecast itself. The screen width
Sw is a tuningparameter that defines the smoothness of theGaussiankernel.A suitable
value should provide a good compromise between smoothness and overfitting of the
Gaussian kernel. Unfortunately, there is nomethod to directly estimate this parameter
and a cross-validation is thus necessary. This method is able to reduce drastically the
computation cost in comparison with the other quantile regression methods. Indeed,
in specific cases, it is sufficient to compute and store the conditional quantiles for a
binned set of the explanatory variable.

Another alternative method to the classical quantile regression is the Quantile
RegressionNeuralNetworks (QRNN) based on thework of Taylor [52] and described
by Cannon [13] for precipitation data. This method establishes a nonlinear relation
between input–output pairs of data, without any previousmodel specifications. Based
on a multilayer perceptron, the method can be implemented with the qrnn R-package
[13]. The τ th quantile forecasted by the regression is computed as follows:

ŷτ (t) = f

⎛

⎝

m
∑

j=1

[

w j · g
( d

∑

i=1

w j i · xt + b j

)

]

+ b0

⎞

⎠ (17)
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b j and bo are the input and output layer bias, respectively, g() is the transfer
function related to each neuron and f () is the output transfer function. The output
layer commonly uses a ramp activation function and, as solar radiation or clear sky
index could not be a negative value, this function must have a left censored limit to
zero. The weights of the NN are optimized during the training phase by minimizing
a cost function [5]. To obtain the conditional quantiles, QRNN combines a nonlinear
relation between input–output data and the quantile regression loss function (see
Eq.13). As the loss function used for the quantile regression is not differentiable in
zero, qrnn package uses Huber norm to construct smooth approximations.

A key issue of the NN is the control of their complexity, i.e., the number of
neurons of the hidden layer. Indeed, the number of hidden units affects the NN
accuracy. If a NN obtains very good results for the training set but poor results for
the testing data set, this NN is not establishing a generalized relation between input
and output data. This problem is called overfitting and it is usually avoided by using
regularization techniques for controllingNNnumber of units [27]. The regularization
technique uses a new parameter called weight decay term. This parameter controls
the contribution of the regularization term and penalizes large weights. To estimate
the optimal weight decay parameter and the number of hidden units, cross-validation
technique has to be used for each quantile. The training set must be divided at least
in N-folds. For each training phase N-1 folds are used for training and the last fold
for validation. Cross-validated errors were calculated for different models using an
increasing number of hidden units. Once the optimal number of hidden units and
weight decay value were selected, the model is trained again with the whole training
dataset and finally used to forecast conditional quantiles of the testing dataset.

4.3 Quantile Regression Forest (QRF)

Quantile Regression Forest (QRF) [43] is an extension of random forest (RF) [27]
to quantile regression. For regression problems, RF provides an estimation of the
conditional mean of a response variable while QRF leads to the estimation of the
conditional distribution function of Y , given X = x , i.e., F(y|X = x). RF (and by
extension QRF) is constructed by growing many binary decision trees called classi-
fication and regression trees (CART) [27].

4.3.1 Regression Tree

Regression trees are simple models that divide the input (or feature) space into a
set of rectangular regions and then associate to each region a constant value (also
called terminal-node mean value) corresponding to the average of the targets Y i of
the training set that fall in this region. A recursive greedy top-down algorithm is used
to partition the input space into regions. The interested reader can refer to [27] for
details regarding the stratification of the input space. Following the notation given
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(a) Recursive partitioning 
of the feature space

(b) Tree example (c) Tree perspective

Fig. 5 a Recursive binary splitting of the feature space. b Tree corresponding to the previous
partition. c A perspective plot of the prediction surface. In this example, there is d = 4 splits
corresponding to five regions. Illustrations taken from [27]

by [8], a tree is denoted by T (θ). θ is a random parameter vector that determines
how a tree is grown, i.e., how the input space is stratified in terms of split variables,
split locations, and terminal-node mean values. T (θ) partitions the input space into
L distinct regions {Rl}Ll=1. Using the N independent observations of the training set
(Xi ,Y i ), i = 1, 2, · · · , N , the prediction ŷ(x) (or equivalently the conditional mean
of Y ) of a single tree T (θ) for a new data point X = x is obtained by averaging over
the training observations that fall in the region Rl(x, θ) of the input space to which
x belongs:

Ê(Y |X = x) = ŷ(x) =
N

∑

i=1

ωi (x, θ)Yi , (18)

where theweightsωi (x, θ) are given by:ωi (x, θ) = 1{Xi ∈Rl(x,θ)}
#{ j :X j∈Rl(x,θ)} . The indicator func-

tion1{u} has the value of 1, if its argument u is true and 0 otherwise. Figure5 illustrates
the construction of a regression tree to model a function of two variables (also called
covariates) y = f (X1, X2).

4.3.2 Random Forest

RF is a collection or committee of K trees that are built on bootstrapped training
subsets. In addition, a random sample of input variables is considered at each split
of the tree. Using RF, the conditional mean E(Y |X = x) is approximated by the
averaged prediction of K single trees:

Ê(Y |X = x) = ŷ(x) =
N

∑

i=1

ωi (x)Yi , (19)

where ωi (x) = 1
K

∑K
t=1 ωi (x, θt ).
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4.3.3 Estimation of the CDF by the QRF Method

Just as E(Y |X = x) is approximated by a weighted mean over the observations of
Y , the CDF can be estimated by the weighted mean over the observations of 1{Y≤y}.
Using the same weights as for random forests ωi (x) defined above, the CDF can be
approximated by

F̂(y|X = x) =
N

∑

i=1

ωi (x)1{Yi≤y}. (20)

Finally, estimates Ŷτ of the conditional quantiles are obtained from the estimated
distribution F̂(y|X = x). Unlike the LMQR method, the QRF technique does not
suffer from the problem of crossing quantiles. However, on the other hand, QRF is
not capable of estimating a quantile higher than the maximum clear sky index in the
training sample.

4.4 The Gradient Boosting (GB) Technique

Boosting is a general approach that can be applied to many statistical learning meth-
ods for regression or classification [19, 27]. For regression problems, given a training
data set, the goal is to find a function f (x) such that a specified loss function is min-
imized. Boosting approximates f (x) by an additive expansion of the form

f̂ (x) =
M

∑

m=0

βmh(x, θm), (21)

where the functions h(x, θm) are simply functions of x parameterized by θm . h(x, θm)

are called “base learners” or “weak learners” [19]. The expansion coefficients βm

and the parameters θm are fit to the training data in a forward “stagewise” manner
(i.e., without adjusting the previous expansion coefficients and parameters of the base
learners that have already been added). Here, we restrict the application of boosting
to the context of regression trees (i.e., the base learner h(x, θ) is a tree T (θ)). For
that purpose, boosting builds an ensemble of trees iteratively in order to optimize a
loss function �.

The generic gradient tree boosting algorithm [27] is depicted below. The training
set contains N samples (Xi ,Y i ), i = 1, 2, · · · , N and � is the loss function to
minimize. To compute the prediction for a point X = x , the GB algorithm follows
the steps:

1. Initialize f (x) to be a constant, f̂0(x) = argminγ [∑N
i=i �(Yi , γ )]

2. FOR m = 1 to M :
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(a) Compute the negative gradient of the loss function� (also called the pseudo-
residuals ỹim):

ỹim = −
[

∂�(Yi , f (Xi ))

∂ f (Xi )

]

f (x)= f̂m−1(x)

(22)

(b) Fit a tree T (θ)with d splits predicting the pseudo-residuals ỹim from covari-
ates xi . T (θ) partitions the input space into L = d + 1 distinct regions Rlm .

(c) Compute the optimal node predictions, l = 1, 2, · · · , L

γlm = argminγ

⎡

⎣

∑

Xi∈Rlm

�(Yi , fm−1(Xi ) + γ )

⎤

⎦ (23)

(d) Update the estimates of f (x):

f̂m(x) = f̂m−1(x) + νγlm1{x∈Rlm } (24)

3. ENDFOR

In Eq.24, ν is called the shrinkage parameter. This parameter controls the rate at
which boosting learns. Gradient boosting models must be finely tuned to prevent
overfitting. Some tuning parameters or hyperparameters are adjustable by the users
to control the model’s complexity, including M , ν, d:

• The number of trees (or iterations) M . Boosting can overfit if M is too large.
• The shrinkage parameter ν. Typical values are 0.01 or 0.001, and the right choice
can depend on the problem. Smaller values of ν require larger numbers of iterations
(M) to converge.

• The number d of splits (also called the interaction depth) in each tree, which
controls the complexity of the boosted ensemble.

The Stochastic gradient boosting [19] is a variant of the generic algorithm
described above. It consists in taking, at each iteration of the process, a subsample of
the data drawn at random (without replacement) from the full training database. Line
2b (fitting of the tree) and Eq.24 (model update) of the GB algorithm make use of
this subsample instead of the full training data set. [19] showed that the introduction
of this randomization step improves the accuracy of the GB algorithm. Estimates of
the conditional quantiles are obtained by plugging the quantile loss function ρτ in
the preceding algorithm (i.e. � = ρτ ).

5 Assessment of Probabilistic Forecasts

Three main properties characterize the quality of a probabilistic forecasting system
namely reliability, sharpness, and resolution.
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• Reliability or calibration refers to the statistical consistency between the forecasts
and the observations. As noted by [47], reliability is seen as a primary requirement
when verifying probabilistic forecasts, since a lack of reliability would introduce
a systematic bias in subsequent decision-making.

• In the atmospheric sciences literature [32, 57], the sharpness property character-
izes the ability of a forecasting system to produce forecasts that are able to deviate
from the climatological mean probabilities of the variable to predict (called predic-
tand). However, some authors like [20, 47] proposed a pragmatic approach, where
the sharpness property refers to the concentration of the predictive distributions.
In the following subsections, we used this second meaning of the sharpness.

• Resolution is related to the capacity of a forecasting system to generate different
predictive distributions. The meaning of the resolution attribute consists of eval-
uating the ability of the forecast system to issue different predictive distributions
not only in relation with the level of the predict and but also in relation with the
external forecast conditions [47].

For instance, in the case of GHI, the level of uncertainty may vary according to
the sun’s position in the sky (see, for instance, the work of [24]). Notice also that
reliability can be improved by statistical techniques called calibration techniques
[22], whereas this is not possible for sharpness and resolution.

In theweather verification community, several diagnostic tools are used to evaluate
these required properties of reliability, resolution, and sharpness. One can cite among
others the reliability diagram [46, 57] and the rank histogram [25, 57] for assessing
the reliability property.

The sharpness attribute can be evaluated through the use of sharpness diagrams.
For instance, [20] proposed to summarize the distribution of the width of the inter-
val forecasts with box-plots while others like [34, 47] summarized sharpness with
only the mean of the width of the prediction interval. More precisely, [47] proposed
δ−diagrams that plot the mean of the width of the prediction interval in relation to
the nominal coverage rate. Similarly, [34, 47] used a metric called PINAW for pre-
diction interval normalized average width. Care must be taken when one analyzes the
sharpness diagrams. This visual inspection should be done in relation to the reliabil-
ity analysis. Indeed, as mentioned by [57], anyone can produce sharp forecasts, but
the difficult task is to ensure that these forecasts correspond well to the subsequent
observations. Put differently, [20] stressed that a consistent evaluation framework
should be based on the paradigm of maximizing the sharpness of the predictive dis-
tributions subject to calibration. It must be stressed also that no forecast system can
reduce to zero the uncertainty due to the chaotic nature of the atmosphere.

In addition to these tools that permit to visually assess the quality of a forecasting
system, a metric called continuous ranked probability score (CRPS) [28] is used to
objectively quantify the quality of the probabilistic forecasts. The CRPS is a proper
score [21], which means that this metric ensures that the best forecasts are given the
best score value. Furthermore, this type of scoring metric is attractive as it provides
a simultaneous assessment of reliability and sharpness. In other words, the CRPS
provides an evaluation of the global skill of the probabilistic models.
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Finally, a comparison with a naive reference model can give a useful added value
about the efficiency of a model. The persistence ensemble model can be considered
as a suitable benchmark model for probabilistic solar forecasts evaluation because it
has already been used inside various works [2, 16, 23, 24, 36]. The members of the
persistence ensemble are derived from the N + 1 last measurements. Thus, the PDF
of the forecasted variable ŷt+h at time t with a lead time h is

PDF(ŷt+h) = PDF(yt , yt−1, ..., yt−N ) (25)

5.1 Reliability Diagrams

The reliability diagram is a graphical verification display used to verify the reliability
component of a probabilistic forecast system. For instance, a probabilistic forecasting
system based on quantile forecasts is reliable if, statistically, the nominal proportions
of the quantile forecasts are equal to the proportions of the observed value. In other
words, over a testing set of significant size, the difference between observed and nom-
inal probabilities should be as small as possible [46]. This representation is appealing
because the deviations from perfect reliability (the diagonal) can be visually assessed
[46]. However, due to the finite number of pairs of observation/forecast and also due
to possible serial correlation in the sequence of forecast-verification pairs, it is not
expected that observed proportions lie exactly along the diagonal, even if the density
forecasts are perfectly reliable. [46] proposed amethod to add consistency bars to the
reliability diagram. This adding of consistency bars to the reliability diagrams may
help the user to have more credibility in his (possibly subjective) judgment regarding
reliability of the different models. Figure6 shows an example of reliability diagram
with consistency bars. In this example, the forecasts cannot be considered as reliable
because the line corresponding to the forecasts falls out of the consistency bars.

5.2 Rank Histograms

The rank histogram [57] is another graphical tool for evaluating ensemble forecasts
consistency. Rank histograms are useful for determining the statistical consistency
of the ensemble, that is, if the observation being predicted looks statistically just like
another member of the forecast ensemble [57]. A necessary condition for ensemble
consistency is an appropriate degree of ensemble dispersion leading to a flat rank
histogram [57]. In other words, a flat rank histogram shows that the members of
an ensemble system are statistically indistinguishable from the observations. If the
ensemble dispersion is consistently too small (underdispersed ensemble), then the
observation (also called the verification sample) will often be an outlier in the dis-
tribution of ensemble members. This will result in a rank histogram with a U-shape.
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Fig. 6 Example of reliability diagram with consistency bars

Conversely, if the ensemble dispersion is consistently too large (overdispersed ensem-
ble) then the observation may too often be in the middle of the ensemble distribution.
This will give a rank histogram with a hump shape.

In addition, asymmetric rank histograms may suggest that ensemble may possess
some unconditional biases. Ensemble bias can be detected from overpopulation of
either the smallest ranks, or the largest ranks, in the rank histogram (Fig. 7). An
overforecasting bias will correspond to an overpopulation of the smallest ranks while
an underforecasting bias will overpopulate the highest ranks. As a consequence, rank
histograms can also reveal deficiencies in ensemble calibration or reliability [57].

Again, care must be taken when analyzing rank histograms when the number of
verification samples is limited. In addition, as demonstrated by [25], a perfect rank
histogram does not mean that the corresponding EPS is reliable.

To obtain a verification rank histogram, one needs to find the rank of the obser-
vation when pooled within the ordered members of the ensemble. Then, a histogram
shows the frequency of apparition of the rank of the observation. Thus, for a number
of members M , the number of ranks of the histogram is M + 1. If the consistency
condition is met, this histogram of verification ranks will be uniform with theo-
retical relative frequency of 1

M+1 . Figure8 plots the rank histograms of the NWP
models gathered in the TIGGE (see Sect. 2). As shown by Fig. 8 the NWPs lead to
under-dispersed ensemble (i.e., over-confident models).
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Fig. 7 Example of rank histograms: persistence ensemble (9 members) and persistence ensemble
corrected by the Variance Deficit method (see Sect. 2.2). Forecasts of hourly GHI with a 6h lead
time for Oahu, Hawaii [48]

Fig. 8 Rank histograms of
ensemble solar forecasts
provided by six global NWPs
and available in the TIGGE.
Illustration taken from [54]
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5.3 CRPS

The CRPS measures the difference between the predicted and observed cumulative
distributions functions (CDF) [28]. The formulation of the CRPS is

CRPS = 1

N

N
∑

i=1

∫ +∞

−∞
[P̂ i

f cst (x) − Pi
x0(x)]2dx, (26)

where P̂ i
f cst (x) is the predictive CDF of the variable of interest x (here GHI) and

Pi
x0(x) is a cumulative-probability step function that jumps from 0 to 1 at the point

where the forecast variable x equals the observation x0 (i.e., Px0(x) = 1{x≥x0}). The
squared difference between the two CDFs is averaged over the N ensemble fore-
cast/observation pairs. The CRPS has the same dimension as the forecasted variable.
The CRPS is negatively oriented (smaller values are better), and it rewards concen-
tration of probability around the step function located at the observed value [57].
Thus, the CRPS penalizes lack of sharpness of the predictive distributions as well as
biased forecasts (Fig. 9).
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Fig. 9 Relative CRPS as a function of the lead time. This plot presents a comparison of eight
models that provide probabilistic forecasts of the GHI at six locations with different climates (Two
sites in continental US, two sites in La Reunion, Hawaii, and Guadeloupe). Illustration taken from
[15]
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6 Conclusions

Considering an increasing rate of solar renewables in the energy mix, probabilistic
forecasts of the solar irradiance are useful for grid operations and storages manage-
ment. Indeed, they allow assessing the risk associated to future decisions. Depending
on the forecast horizon, different methods to generate forecasts with prediction inter-
vals are already available. For short-term (from 6h and up to several days ahead),
the methods based on the post-processing of Ensemble Prediction Systems (EPS)
of Numerical Weather Prediction models (NWP) are the most suitable. Regarding
very short-term (from several minutes to several hours ahead), statistical approaches
combined with point forecasts are the most promising. When dealing with complex
terrains, a fine spatial resolution is needed to take into account the high variability
of the climate conditions. Therefore, downscaling methods or statistical refinement
are necessary to achieve this goal.

Finally, to ensure the quality of probabilistic forecasts, it is of great importance to
assess their different properties (i.e., reliability, resolution, and sharpness). The first
aspect to check is the reliability. Indeed, even if one prefers to have sharp prediction
intervals, it is more important that the distribution of the forecasts corresponds well
to the observations. The reliability diagram and the rank histogram are designed for
this purpose. In addition to these graphical tools, the CRPS provides an evaluation
of the global skill of probabilistic models.
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Solar Radiation Maps

Felipe Díaz, Gustavo Montero and Luis Mazorra-Aguiar

Abstract Solar maps are very interesting tools to describe the characteristics of a
region from the solar radiation point of view, and can be applied in atmospheric sci-
ences and for energy engineering. Tomake them possible, a solar radiation numerical
model is proposed. This one allows us to estimate radiation values on any point on
earth. The model takes into account the terrain surface conditions and the cast shad-
ows. The procedure uses 2-D adaptive triangles meshes built refining according to
surface and albedo characteristics. Solar irradiance values are obtained for clear sky
conditions. Using clear sky index as a conversion factor, real sky values are com-
puted in terms of irradiance or irradiation with a desired time step. Finally, the solar
radiation maps are obtained for all the domain.

1 Introduction

Solar radiation is important in several disciplines like agronomy, meteorology,
medicine, or engineering. Knowledge about solar radiation is essential for solar
power generation and we all know the growing importance of these renewable ener-
gies. In literature, we can find mainly two kinds of spatial solar radiation models:

• Those obtained through satellite observation [1]
• Those obtained using geometrical, physical, and atmospheric conditions [2–6]
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For the purpose of this chapter, we will focus on the second ones. These models
take into account the interaction between radiation, Earth’s atmosphere and terrain,
in other words [5, 6]:

1. Geometry of Earth (latitude, solar hour angle,...)
2. Terrain characteristics (surface inclination and orientation, elevation, albedo)
3. Atmospheric attenuation caused by gases, particles, and clouds

The model with no clouds attenuation gives clear sky irradiance values. On the
contrary, when attenuation is considered, computed values will be those of real
sky irradiance. Some GIS-based models [5, 6] are being used with an important
computational cost when dealing with high accuracy. Starting from these ones, other
numerical models have been developed with a lower computational cost [7, 8]. To
reach this goal, the geographical domain is discretized using a 2-D adaptive mesh
as described in Chap.3 having as a reference the elevation, the inclination, and the
albedo of the terrain.

Another important issue to be considered is the shadowing effect that appears
over a surface. Many researchers like Zakšek et al. [9] or Niewienda et al. [10], who
propose a geometrical shading coefficient to compute the effect of cast shadows,
have studied this geometrical problem. As a result of the use of a regular grid, a high
computational cost is obtained. Other researchers [11] do not consider solid surfaces
so that higher density of sample points is needed. Recently, new approaches [12] for
computing shadows have been developed.

2 Terrain and Shadows Modeling

2.1 Terrain Mesh

The problem of computing solar radiation over the earth’s surface begins with the
discretization of the terrain. So, first, we need to define a geographical domain where
computations will be done. As said above in this book, we have faced the problem
on complex terrains. In Chap.3, the process to build the meshes for the terrain has
been explained. An adaptive method for mesh refinement and derefinement can be
applied using two different parameters, one for orography and another for albedo.
Different meshing strategies may be used as can be seen in Chap.3.

As grid examples, we present several domains where we have applied some com-
putations explained in this chapter. In Fig. 1, an adaptivemesh forGranCanaria Island
is shown. On the other hand, Fig. 2 shows a mesh for the Tatra Mountains between
Poland and Slovakia. Both are fine meshes that describe quite well the orography.
However, for solar radiation purposes, coarser meshes can be used. In fact, for Gran
Canaria Island (1560km2), good results are obtained with a 5866 nodes and 11683
triangles mesh.

http://dx.doi.org/10.1007/978-3-319-76876-2_3
http://dx.doi.org/10.1007/978-3-319-76876-2_3
http://dx.doi.org/10.1007/978-3-319-76876-2_3
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Fig. 1 Adaptive mesh for Gran Canaria Island

On the other hand, the shadowing problem is a geometrical one. The approach to
this issue should take into account the cast shadows by the complex orography in
each time step, and the shadows cast by the clouds on the terrain.

2.2 Shadowing by Orography

It is easy to think of a general technique to detect which triangles in the mesh are
shadowed in an instant of time [7, 8]. A triangle will be under a cast shadow when,
looking at the mesh from the Sun, we can find a triangle that covers it. To do that,
a reference system with the East in the x-axis direction, and the North in the y-axis
direction (see Fig. 3) is used. To determine the triangles that are behind another one,
seen from the Sun, the reference system is changed to that of x′, y′, and z′, with z′
in the direction of the beam radiation. Now the domain mesh has to be projected on
the x′y′ plane to find out which triangles are overlapped (Fig. 4).

To build this reference system transformation, we need to know the position of
the Sun respect to the Earth, for each time step. This function is named the solar
vector, and has been studied by many authors [13, 14]. For every single time step,
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Fig. 2 Adaptive mesh for Tatra Mountains
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Fig. 4 Mesh from the Sun and projected one

all the triangles need to be analyzed and assigned a shading level which is called the
light factor, Lf , and that allows the user to diminish the solar radiation values in the
shadowed triangle, according to the triangle proportion that is shadowed by other
mesh elements. A triangle Δ has a light factor computed as

Lf = nwp − i

nwp
(1)

with i = 0, 1, . . . , nwp being the number of warning points inside other triangles that
are in front of Δ. These warning points are the ones used to check which parts of a
triangle are shadowed. The factorwill be applied to the estimation of diffuse and beam
irradiance. To implement this procedure, a 4-T Rivara’s refinement algorithm [15]
is applied every time step to the intersected triangles (see Fig. 5). The number of
warning points depends upon the need of accuracy in the shadows determination
process on the terrain.

1

2

4

3

Fig. 5 Warning points
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The presented procedure is simple and easy but, when the analyzed domain is big,
the computational cost becomes unacceptable.

2.2.1 Triangles Filtering Process

Because of the abovementioned high computational cost, the need of a filtering
process arises in order to choose the triangles which are likely to be shadowed and
avoid the analysis on triangles that are impossible to be shaded. A triangle may be
under shadows due to its own or self-shadows, or due to the shadows cast by another
one. When a surface is back to the Sun, it will be under its own or self-shadows as
can be observed in Fig. 6. A good way to compute this possibility is making use of
the incidence angle1 (δexp) as its value should be greater than π/2.

This way, a Self-Shadows Light Factor (Lfss) can be defined:

0 If
∣
∣δexp

∣
∣ > (π/2) (2)

1 If (π/2) ≥ ∣
∣δexp

∣
∣ ≥ 0 (3)

Now we are ready for the first filtering process, which means that the analysis
on all back to Sun triangles can be avoided. A first conclusion can be done: only
self-shadowed triangles are able to cast shadows (see Fig. 7), so they will be called
potential 1 triangles. Now the second filtering process begins projecting the mesh,
referenced on the new plane x′ − y′, towards z′, forming parallelepipeds that we have
called cubes (see Fig. 8). Cubes depend on the studied time step, this is, the lower
the Sun is, the more triangles will be included in one cube. At this stage, we need

Incidence angles Sun 

Back to Sun triangle

Probably 
illuminated triangle

Fig. 6 Incidence angle and self-shadows

1Angle between the solar vector and the normal to a triangle surface.
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Back to Sun 
triangles

Triangles with 
cast shadows

Sunny 
triangles

Fig. 7 Cast and self-shadows

Mid day Morning

Cube

Cube 
triangles

Fig. 8 2nd filtering: cubes

to remember that each triangle Δ needs to be analyzed to find other triangle(s) Δ′
that intersects Δ and is before it respect to the Sun (coordinate z′ of the intersection
point is bigger for Δ′ than for Δ).

Cubes are built in the plane x′ − y′ in a way that the sides of their bases have to be
equal or greater than the maximum value of the distance from the center to any of its
nodes for all the grid triangles. So, the nodes of themesh largest triangle do not extend
beyond the eight parallelepipeds surrounding the cube which contains its center.
Figure9 shows the analysis of a time instant. Every potential 1 triangle is associated
to a cube containing its gravity center.When studying any of the illuminated triangles,
the analysis is now limited to those back to Sun triangles placed into those cubes
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Analysed triangle

Cubes that include 
the triangle 

Cubes immediate
surroundings

Illuminated triangles

Potential 1 triangles
(back) 

Potential 2 triangles
(back and close) 

Fig. 9 Envelope and potential 2 triangles

Discarded potential 
2 triangle

Potential 3 triangle

Analysed triangle

Intersection between 
domains

Fig. 10 Cubic domains

which are around2 them. At this stage, the potential 2 triangles are defined as in
Fig. 9. So, now and for an illuminated triangle Δ, potential 1 triangles far from our
Δ, are discarded.What happens to potential 2 triangles?. These ones and the analyzed
illuminated triangle are embedded into cubic domains as shown in Fig. 10. Now, we
can find potential 2 triangles with cubic domains intersected with the domain of
Δ, what will be called potential 3 triangles (back to Sun, in close cubes, and with
intersected domains), and other potential 2 triangles, not intersected. These last ones
are discarded too, making the third filtering process.

2The eight nearer cubes.
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Potential 3

Analysed triangle

Illuminated Warning Point

Shadowed Warning Point

Sun

Fig. 11 Warning points analysis

Now it is time to face the final decision on the quantity of shadowing that our
illuminated triangle, Δ, has. As said above, the process is finished checking the
projection of shadows on a small set of points,warning points (wp). Awarning point
is shaded when (Fig. 11):

1. The warning point, projected on the plane x′ − y′, is into the projection of any
potential 3 triangle.

2. The warning point is farther from the Sun than point q in the potential triangle.

Cast shadows light factor, Lfcs will be computed as above:

Lfcs = nwp − i

nwp
(4)

where i = 0, 1, . . . , nwp is the number of warning points which are shaded, and nwp
the total number of warning points. Including the possibility of considering self-
shadows, the final light factor, Lf , is

Lf = Lfcs · Lfss (5)

As examples, simulations on orographic shadows have been done onGranCanaria
and Tenerife islands (Canary Islands–Spain). Vectors (red or blue) in the Figs. 12,
13 and 14 represent the solar vector direction for time and date of the simulation.
As said above, the quantity of shadow is represented in a gray scale, from 0 to 1,
according to the number of shaded warning points (Lf ). See Figs. 12, 13, and 14.
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Fig. 12 Orographic shadows on Gran Canaria Island. January, 1st, 8:00 UTC

Fig. 13 Orographic shadows on Tenerife. February, 15th, 8:00 UTC
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Fig. 14 3D orographic shadows on Tenerife. February, 15th, 8:00 UTC

2.3 Shadowing by Clouds

As we all know, clouds can cast shadows over the terrain and, considering their
influence on the terrain is not an easy problem to solve because we do not know
where and when clouds will be at any moment. Because of this, pictures of the actual
clouds are interesting, what means that satellite images are a powerful tool for it.
Statella and da Silva [16] or Fisher [17] are authors who have treated this issue.
The Landsat dataset [18] is used in this chapter. Images come from sensors OLI and
TIRS:

• Operational Land Imager (OLI)
• Thermal Infrared Sensor (TIRS) (bands 10 and 11)

OLI and TIRS sensors of the LANDSAT-8 images include 30 meters resolution
nine spectral bands for bands 1–7 and 9. The panchromatic band (8) has a resolution
of 15 meters. On the other hand, both thermal bands (10 and 11) are very interesting
for surface temperatures, and have a resolution of 100 m. The Quality Control Band
offers additional data, useful for determining the presence of snow, water, or ice.
Cirrus and clouds can be determined too with different levels of confidence. Starting
from an image like the one in Fig. 15, wewill develop a cloud detection strategy based
on the use of the satellite quality bands [19]. Assessing the shadows that come from
clouds needs the estimate of radiance values from the image and the conversion of
these ones into brightness temperature for, finally, computing the actual temperature
that is used to assess clouds altitude and the shadow length (see Fig. 16).
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Fig. 15 RGB composition on Tatra Mountains image. Bands 5, 6, 7

Fig. 16 Shadows from clouds flowchart

According to [19], data from OLI and TIRS can be rescaled to the top of the
atmosphere radiance values, using Eq.6.

Lλ = ML · Qcal + AL (6)
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where Lλ is the top of the atmosphere (TOA) spectral radiance (W/(m2 · srad · um)),
ML is the multiplicative scaling factor, AL is the additive scaling factor, and Qcal is
the standard product quantified and calibrated pixel values.

Brightness temperature (K) [19] is calculated as

Tb = K2

ln
(
K1
Lλ

+ 1
) (7)

Tb is the apparent brightness temperature (K), and K1 and K2 are specific conversion
constants for bands 10 and 11. Real Land Surface Temperature is assessed through
Eq.8:

Ts = c0 + Ti + c1 · (Ti − Tj) + 2c2 · (Ti − Tj) + (c3 + wc4) · (1 − ε) + (c5 + wc6) · Δε

(8)
with the coefficients computed according to [20, 21],
As indicated in [22, 23], Brightness Cloud Temperature obtained from thermal

bands is assumed to be the Real Cloud Temperature. This way, the pixels group that
makes a cloud, is assigned an average temperature to estimate its altitude, computed
through Henning’s formula (Eq.9) [24].

H (m) = 125 · (T − Td ) (9)

where T is surface temperature and Td is cloud temperature. Computing the shadows
length (L) is easy [25, 26]:

L = H

tan h0
(10)

where h0 is the elevation angle (see Fig. 3).

Fig. 17 Shadows mask. Band 10
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The case of the TatraMountains (see Fig. 15) is presented as an example of finding
shadows on the terrain caused by clouds. We have used two shadow masks bands:
number 10 and number 11, and finally chose number 10 because of its better behavior
(see Fig. 17).

Now it is time to move this mask into the mesh, and find what triangles are
affected by shadows from clouds. Figure18 shows our mesh with the new shadows.
Light factor for each triangle is computed using the above mentioned strategy of the
warning points.

Fig. 18 Shadows estimation onto mesh

Fig. 19 Shadows borderline
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Drawing the actual shadows borderline with the estimation on the mesh (Fig. 19)
serves as a proof of how good is this approach that gives a good estimation for each
time step with an affordable computational cost.

3 Solar Radiation Model

In this approach, aswe have the domain discretized through a trianglesmesh, the solar
radiation model constructed on the terrain grid needs to compute the solar radiation
values on each triangle, for every time step. In short, the model explained here will
be built on a clear sky radiation3 model whose results will be corrected using a clear
sky index (K∗

t ) (Eq. 11) which takes into account all the measurements available for
the analyzed domain. This way real sky radiation values can be obtained.

G = K∗
t · Gc (11)

where G is real sky radiation and Gc is clear sky radiation.
Aswe have somemathematical clear sky radiationmodels available (see Chap. 8),

the actual problem to be solved is the computation of the conversion factor, this is,
K∗
t . To get the radiation map of the studied domain, we need to do the following:

1. TMY calculation in the available measurement stations
2. Solar radiation calculation for all the mesh, assuming clear sky conditions
3. Calculation of K∗

t for all the mesh
4. Correction of clear sky solar radiation values usingK∗

t to obtain real sky radiation

Of course, all steps are computed for each time step except step one which is done
just once. Computation of K∗

t can be done for each time step, or for a considered
time interval, let us say, a day, a month, etc.

In step one, a TypicalMeteorological Year (TMY) is computed for all the available
measurement stations in the domain. There are different approaches for determining
this TMY, and the chosen one appears in [7, 27].

3.1 Clear Sky Solar Radiation Model

In this chapter, the ESRA4 clear sky model is used [5, 6]. This model gives solar
irradiance values in terms of their three components: beam, diffuse, and reflected
irradiances, being the global irradiance the addition of the three components. The
beam irradiance is not scattered and reaches any surface directly with an associated

3Omitting cloud attenuation, clear sky radiation values are obtained.
4European Solar Radiation Atlas.

http://dx.doi.org/10.1007/978-3-319-76876-2_8
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direction. Diffuse irradiance is the scattered one. The reflected irradiance is the one
reflected from one surface onto another. It depends on the ground albedo.

3.1.1 Beam Radiation

The first step is computing the extraterrestrial irradiance G0:

G0 = I0ε (12)

where ε depends on the day angle, and the solar constant I0 is 1367 (W/m2) [28] The
direct normal irradiance on earth surface in clear sky conditions, DNIc (W/m2), is
attenuated by the cloudless atmosphere, and computed as

DNIc = G0 exp{−0.8662TLKmδR(m)} (13)

The term 0.8662TLK is the corrected [29] dimensionless Linke atmospheric turbidity
factor. The parameterm is the relative optical air mass [30], and δR(m) is the Rayleigh
optical thickness at air mass m.

On a horizontal surface, the beam irradiance, of course for clear sky conditions
Gbc(0), is

Gbc(0) = (DNIc) · Lf · sin h0 (14)

where Lf is the light factor that takes into account the shadows (Eq.5), and h0 is the
solar altitude angle. On an inclined surface, Gbc(β) is

Gbc(β) = (DNIc) · Lf · cos δexp (15)

where δexp is the solar incidence angle measured between the characteristic vector
of an inclined surface and the sunbeam direction, and β is the angle between the
inclined surface and the horizontal.

3.1.2 Diffuse Radiation

On horizontal surfaces, this component is estimated with

DHIc = Gdc(0) = G0Tn(TLK )Fd (h0) (16)

It depends on the diffuse transmission Tn which depends on the Linke turbidity factor
TLK . FunctionFd , in turn, depends on the solar altitude h0 [31]. On a inclined surface,
Gdc(β), both, sunlit and shadowed surfaces have to be considered as in [32].
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3.1.3 Reflected Radiation

According to [33], the ground reflected irradiance Gr(β) is computed as

Gr(β) = ρgGHIcrg(β) (17)

where

rg(β) = (1 − cosβ)

2
(18)

GHIc = Gbc(0) + DHIc (19)

being ρg the mean ground albedo and rg(β) the fraction of ground viewed by an
inclined surface.

3.2 Computing the Clear Sky Index. Real Sky Solar
Radiation Model

At this stage, irradiance values in clear sky conditions have been obtained. However,
it is obvious that real sky conditions, considering the clouds, are the actual goal. To
reach these real sky radiation values, the clear sky index (see Eq.11), is very useful.
Now it depends upon the available measurement data to compute the K∗

t . If we have
instantaneous irradiance measurements in any station, we will have instantaneous
clear sky indexes for that station (s) at any time step (i) as seen in Eq.20.

K∗
ts,i = Gs

Gc,s
(20)

But sometimes the available data in a measurement station is irradiation (Hs)
along a time period. In this case, clear sky index for a station (s) and for that time
period is obtained this way:

K∗
ts = Hs

Hc,s
= Hs(0)

Hc,s(0)
(21)

where

Hc,s(0) =
∫ T

0
Gc,s(0) dt (22)

As measurement equipments usually work on a horizontal plane (β = 0), com-
puting K∗

ts will be as in Eq. 21. All these clear indexes are those computed for any
of the available measurement stations in the domain. Of course, any computed K∗

ts
is for the triangle where the measures were taken. But in the domain we will have
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Fig. 20 Solar radiation model

hundreds of triangles with no measures. In these ones, an interpolation procedure is
implemented to estimate the value ok K∗

t . A formula for complex orography [34] is
applied,

K∗
t = ε

∑N
n=1

K∗
tn

d2
n

∑N
n=1

1
d2
n

+ (1 − ε)

∑N
n=1

K∗
tn

|Δhn|
∑N

n=1
1

|Δhn|
(23)

where K∗
t is the clear sky index at each mesh triangle, K∗

tn is the clear sky index at
measurement stations, dn is the horizontal distance and |Δhn| is the altitude difference
between station n and the studied point, N is the number of stations in the interpo-
lation, and ε is a fitting parameter between 0 and 1. Of course, Eq. (23) continuity is
guaranteed assuming the measured values at the stations.

Now, for any triangle of the mesh, irradiance in real sky conditions is easily
computed as follows:

GHI = G(0) = K∗
t · GHIc (24)

As a summary, an outline of the process is presented in Fig. 20

4 Numerical Experiments. Solar Maps

Talking about solar radiation maps is usually talking about irradiation distribution
on a terrain. As an example, several numerical experiments in some of the Canary
Islands are presented. The Canary Islands is an archipelago of seven islands placed
in the northwestern part of Africa, in a latitude around 28, with a subtropical climate.
In fact, we have already seen some shadowing examples for Tenerife and Gran
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Canaria Island. Figure21 shows the Gran Canaria Island elevation map, with all the
measurements stations available (see characteristics in Table1).

First, the correct determination of the ε parameter in Eq.23 is sought. For that,
it is necessary a good knowledge about the climate conditions of the domain, this
is, of the zone under study. In this case, the Canary Islands are under the influence
of the Trade Winds which come from the Northeast full of humidity, and that get
stopped by the mountains of the islands producing a different behavior between the
northeast and the southwest of the isles. Varying ε, we obtain a K∗

t distribution map
for January and July (see Figs. 22 and 23).

Fig. 21 Gran Canaria Island elevation map

Table 1 Available measurement stations in Gran Canaria Island

Station Label Latitude (N) Longitude (W) Altitude

Pozo Izquierdo C0 27.8175 15.4244 47

Las Palmas de G. C. C1 28.1108 15.4169 17

La Aldea de San Nicolás C2 27.9901 15.7907 197

San Fernando de M. C4 27.7716 15.5841 265

Santa Brígida C5 28.0337 15.4991 525

Mogán (village) C6 27.8839 15.7216 300

Sardina de Gáldar C7 28.1681 15.6865 40
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Fig. 22 K∗
t distribution for January. ε = 0.5 and ε = 0.9

Fig. 23 K∗
t distribution for July. ε = 0.5 and ε = 0.9

Both figures show a false behavior of K∗
t with ε = 0.5, while with that param-

eter equal to 0.9, the behavior of the clouds fits what is known about the Canary
Islands climate. This means that clouds depend on the horizontal displacements on
the domain, more than on the vertical ones. With this ε, we compute K∗

t in all the
triangles, and obtain the real sky irradiance as a correction of the clear sky one. To
complete the maps, it is only needed to integrate the irradiance in all the domain,
along a time period, and represent it. As an example, Figs. 24 and 25 show a monthly
average irradiation map for all the clear sky components in a TMY January. It is
really interesting to watch the influence of K∗

t comparing pictures in Fig. 26. The
first one presents the clear sky irradiation map for TMY July, and the second one is
the real sky irradiation map for the same month. This is a month with an important
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Fig. 24 Clear sky irradiation (J/m2) maps for Gran Canaria in January. Diffuse and Beam

Fig. 25 Clear sky irradiation (J/m2) maps for Gran Canaria in January. Reflected and Global

influence of the Trade Winds, that can be observed in the north and northeast side of
the island, with lower irradiation values than on the south face.

It can be clearly observed that cloudiness and orographic shadows have been
taken into account. To observe better this fact, Fig. 27 is presented, with a three-
dimensional view of the island irradiation map. Please note that relation between
vertical and horizontal scales has been exaggerated.

Themorphology of this island (GranCanaria) is very radial so, this is an advantage
to apply Eq.23. Moreover, it works perfectly when applying to other islands with
more complex orography and with a morphology quite different from the radial one.
As an example, numerical experiments in Tenerife Island are presented in Fig. 28.
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Fig. 26 Clear and real sky irradiation (J/m2) maps for Gran Canaria in July

Fig. 27 3D real sky annual irradiation map for Gran Canaria Island
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Fig. 28 Clear and real sky irradiation (J/m2) maps for Tenerife Island in July
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5 Constructing Predictive Solar Maps

In previous sections, how to build a solar map using punctual ground solar radiation
measurements has been explained. This procedure results in a characterization of
the domain (i.e., an island), which is very helpful to understand the solar radiation
behavior for agronomic, biological, or engineering purposes. In this last aspect,
electrical energy production highlights. Regarding to this, power systems stability
and planning need a great knowledge about the future electrical production of the
different generators involved in the grid. So, if there are big solar power facilities
injecting energy, an efficient and accurate prediction tool for solar radiation is needed.
Because of this, we have presented some solar radiation prediction tools in this book
(see Chaps. 8 and 9).

In this section, we will convert our solar maps generation code in a prediction
tool [35], making use of a Numerical Weather Prediction (NWP) model like Har-
monie, ECMWF or other. In this example, model MM55 is used. The methodology
applied is the one explained in this chapter but, using MM5 predicted data instead
of the TMY measurement stations data. This NWP model assesses irradiances on a
grid whose horizontal projection is not uniform. These data have to be transported
to our adaptive mesh interpolating the results to the centers of the triangles.

We have to adapt our model according to the NWP used. In example, MM5 does
not take into account the actual domain orography, nor the casting of shadows. On
the other hand, as said above, determining the clear sky index for every node in the
MM5 grid (transposed to the mesh) is needed. As the NWP grid changes their values
depending on time, we will have to use a clear sky index for each node and time
step (K∗

ti ).

K∗
ti = G(0)

Gcss(0)
(25)

where Gcss(0) is the horizontal clear sky irradiance, considering only self-shadows.
Later, the final real sky predicted irradiancewill be computed using thisK∗

ti andGc(0)
considering the self- and cast shadows. Computing the clear sky index includes these
steps:

1. Make an MM5 grid triangulation where the nodes are those from the MM5 grid,
and are assigned the predicted radiation for every time step

5National Center for Atmospheric Research (Pennsylvania State University -USA-) mesoscale fifth
generation model.

http://dx.doi.org/10.1007/978-3-319-76876-2_8
http://dx.doi.org/10.1007/978-3-319-76876-2_9
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Fig. 29 Predicted irradiance transpose to mesh

2. The new MM5 triangulated grid overlaps the orography adaptive mesh. If we
take a look at Fig. 29, we can see that every orography triangles are assigned the
interpolated irradiance using Eq. (26)

⎡

⎣

x
y
z

⎤

⎦ =
⎡

⎣

x0
y0
z0

⎤

⎦ + K1 ·
⎡

⎣

V1x
V1y
V1z

⎤

⎦ + K2 ·
⎡

⎣

V2x
V2y
V2z

⎤

⎦ (26)

Three equations in three unknowns, K1, K2 and z, that is the predicted irradiance
for the adaptive mesh triangle

3. Clear sky index (K∗
ti ) is computed for each triangle and time step, using self-

shadows clear sky irradiance

ComputingK∗
ti will be donewithEq.23 for each and every triangle of themesh, and

for every time step.As a summary, Fig. 30 shows an outline of the procedure to follow,
where measurements have been substituted by predictions in the determination of
K∗
ti .
A numerical simulation using this methodology is done in two locations of Gran

Canaria: Temisas6 and Lomo Carbonero.7 As the clear sky index is computed for
each time step, the daily cloudiness evolution can be addressed through this parameter

627.917◦N 15.491◦W.
728.033◦N 15.533◦W.
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Fig. 31 Clear sky index prediction for Temisas and Lomo Carbonero

(see Fig. 31). Starting from this distribution, the predicted irradiance for every time
step can be computed (see Fig. 32).

The example has been done for different locations in the domain. If we compute
it for all the triangles and for one instant, we will obtain an irradiance predicted
map and, for different time steps, we will get a family of maps with the predicted
evolution of the irradiance. In case that daily (or monthly,...) irradiation values are
needed, integration of the predicted irradiance will have to be previously performed.
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Fig. 32 Temisas and Lomo Carbonero horizontal predicted irradiance

6 Conclusions

This chapter is devoted to the explanation of the methodology used in making solar
maps. These maps are usually done with monthly or annual irradiation values but
sometimes it is interesting to have irradiance maps, especially when we are talking
about solar radiation predictions. The discretization of the complex terrain orography
has been done using adaptive triangular meshes which allow to build surfaces that
cast shadows. Moreover, this method is more efficient from the computational point
of view when compared to the use of digital elevation maps or uniform meshes.

Values for real sky conditions are obtained from those computed using a clear sky
solar radiation model, affected by the clear sky index. This one is valid for a triangle
and a time step. The key issue, therefore, is computing K∗

ti . A TMY is very useful to
get monthly or annual solar irradiation maps.
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