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Abstract Vibration of flexible panel induced by flow and acoustic processes in a
duct can be used for silencer design, but it may conversely generate noise if struc-
tural instability is induced. Therefore, a complete understanding of fluid–structure
interaction is important for effective noise reduction. A new time-domain numerical
methodology has been developed for the calculation of the nonlinear fluid–structure
interaction of an excited panel in internal viscous flow. This paper reports its vali-
dation with two experiments. The first aims to validate that the methodology is able
to capture flow-induced structural instability and its acoustic radiation. The second
one is to show that the methodology captures the aeroacoustic–structural interaction
in a low-frequency silencer and its response correctly. The importance of inclusion
of viscous effect in both cases is also discussed.
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Nomenclature

C Structural damping coefficient
D Bending stiffness
E Total energy
Ep Modulus of elasticity
Ĥ Duct width and cavity height
Kp Stiffness of foundation
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L p Panel length
M Mach number
Nx Internal tensile stress of panel
Pr Prandtl number
R̂ The specific gas constant
Re Reynolds number
S Duct cross-sectional area
T Temperature
Tx External tensile stress of panel
T L Transmission loss
Û Inlet mean flow speed
W Acoustic power
a Characteristic dimension of a duct cross section
c0 Speed of sound
dx Grid size in x-direction
dy Grid size in y-direction
f Frequency

h p Panel thickness
k Wave number
l Size of the fluid volume in normal direction with panel deflection
l ′′ End correction
li Dimensions of duct in three directions, i = 1, 2, and 3
ni Mode numbers along three directions, i = 1, 2, and 3
p Pressure

pA Amplitude of incident wave
pex Net pressure exerted on panel
qx Heat flux in x-direction
qy Heat flux in y-direction
t Time
t1 Time of one period
u Fluid velocity in x-direction
û0 The reference velocity
v Fluid velocity in y-direction

vη Fluid velocity in η-direction
vξ Fluid velocity in ξ -direction
w Panel displacement
ẇ Panel velocity
ẅ Panel acceleration
γ The specific heat ratio
δ Size of the fluid volume in normal direction without panel deflection
η Normal direction of the undeflected panel
θ Phase
μ Viscosity
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ξ Tangential direction of the undeflected panel
ρ Density of fluid

ρp Density of panel

Subscripts

l f ace Lower fluid–panel interface
lower Fluid element beneath panel
u f ace Upper fluid–panel interface
upper Fluid element above panel

Superscript

ˆ Dimensional quantities

1 Introduction

A good understanding of the fluid–structure interaction is important in the design
of effective flow duct noise control in many aeronautic, automotive, and building
service engineering systems. When the flow unsteadiness and/or the duct geometry
are changed, acoustic waves are generated which may propagate back to the source
region andmodify the flowprocess generating it. Such aeroacoustic processes always
appear in the flow duct. Since the duct wall is constructed by thin panels, it may
be excited to vibrate by the aeroacoustic processes and in turn modify the source
aeroacoustic processes. There is a nonlinear coupling between the aeroacoustics of
the fluid and the structural dynamics of the panel. If the design of flow duct noise
control is developed with only one media (fluid or panel) in the consideration, it may
be completely counteracted by the dynamics occurring in another media through
the nonlinear coupling. A complete understanding of the nonlinear fluid–structure
interaction and its acoustics is necessary for devising an effective design.

To control the noise generation and its propagation in air flow ducts, a thick
layer of acoustic liner is commonly used that covers the duct to absorb noise and
prevent the noise in the duct breaks through the duct walls and annoy the people
in the surrounding. However, this kind of noise control method is not effective in
low frequency range. A drum-like silencer concept was introduced by Huang [1] in
which the nonlinear fluid–structure interaction of flexible panels was used to control
low-frequency noise. Huang reported that this design is effective in low frequency
range and claimed it gives low-pressure loss when flow is present. However, the
effect of mean flow is not considered in his theoretical study [1]. Later, Fan et al. [2,
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3] attempted to study numerically the aeroacoustic–structural response of the panel
in this design in an inviscid flow framework. The presence of inviscid mean flow
produces a completely different response from the case without flow. The fluid–
structure interaction was found to play a very important role in the noise reduction.
The silencer performance was found strongly reduced in the presence of flow. In
real application, viscous flow effect may be another important factor that affects the
silencing performance. The viscous flow may excite the flexible panel to vibrate and
cause structural instability. An experimental study by Liu [4] on the similar design
showed that the instability of the panel can be induced. Probably additional noise
will be generated by the vibration which reduces the effectiveness of the silencer.
Therefore, it is necessary to investigate the nonlinear fluid–structure interaction in
viscous flow.

A numerical methodology that facilitates better understanding of fluid–structure
interaction in viscous compressible duct flow for advancing design of silencer with
flexible panel has recently been developed. In order to minimize the error generated
by the numerical coupling procedure that connects the fluid and structure domains,
a treatment that combines all governing equations of different physical domains and
solved by a single solver is introduced. The new methodology has to be proven
able to resolve the nonlinear fluid–structure interaction and its acoustic problems
important to achieving a better design of the drum-like silencer concept for practical
use. This paper reports the results of such validationwith calculations of two pertinent
experiments.

2 A Brief of the Numerical Methodology

The aeroacoustic–structural interaction problem involves the interplay between the
flow dynamics, acoustics, and structural dynamics. The effects of all three parts play
equally important roles. Since acoustic motion is a kind of unsteady flow motions
that a fluid medium supports [5], both the acoustic field and its source unsteady
flow must be calculated and accurately resolved simultaneously by the numerical
model for fluid medium. In addition, the inherent nonlinear interaction between
the acoustics and the unsteady flow must be accurately accounted for solving the
problem. The generated acoustic waves inside a duct experience multiple reflection
and scattering which may then propagate back and alter the unsteady flow dynamics
and the panel structural vibration. These nonlinear interactions cannot be ignored.
Thus, direct aeroacoustic simulation (DAS) approach [6, 7] is adopted in modeling
the aeroacoustics in fluid medium. At the fluid–structure interface, both flow and
panel structural responses are simultaneously involved so proper governing equations
that describe these responses are needed. They are however usually not available.
Therefore, the responses at the interface are resolved by iterating the aeroacoustic
and panel dynamic models by Newton’s method. Here only the key components in
the formulation of the numerical methodology are described. The details of their
numerical implementation are referred to Fan [8].
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2.1 Aeroacoustic Model

In DAS, the aeroacoustics of the fluid medium is modeled by solving the two-
dimensional compressible Navier–Stokes equations together with ideal gas law for
calorically perfect gas. The normalized Navier–Stokes equations without source can
be written in the strong conservation form as,

∂U
∂t

+ ∂ (F − Fv)

∂x
+ ∂ (G − Gv)

∂y
= 0, (1)

where U = [ρ ρu ρv ρE], F = [ρu ρu2 + p ρuv (ρE + p)u], G = [ρv

ρuv ρv2 + p (ρE + p)v], Fv = (1/Re)[0 τxx τxy τxxu + τxyv − qx ], Gv =
(1/Re)[0 τxy τyy τxyu + τyyv − qy], ρ is the density of fluid, u and v are the
velocities in x and y-directions, respectively, t is the time, normal and shear stresses
τxx = (2/3)μ (2∂u/∂x − ∂v/∂y), τxy = μ (2∂u/∂y − ∂v/∂x), τyy = (2/3)μ
(2∂v/∂y − ∂u/∂x),μ is the viscosity, total energy E = p/ρ(γ − 1) + (u2 + v2)/2,
pressure p = ρT/γ M2, T is temperature, heat flux qx = [

μ/(γ − 1)PrM2
]

(∂T/∂x), qy = [
μ/(γ − 1)PrM2

]
(∂T/∂y), the specific heat ratio γ = 1.4, the ref-

erenceMach numberM = û0/ĉ0 where û0 is the reference velocity, ĉ0 = (γ R̂T̂0)1/2,
the specific gas constant for air R̂ = 287.058 J/(kgK), the reference Reynolds num-
ber Re = ρ̂0ĉ0 L̂0/μ̂0, and Prandtl number Pr = ĉp,0μ̂0/k̂0 = 0.71. All the dimen-
sional quantities are indicated with caret.

The conservation element and solution element (CE/SE) method [9] is adopted to
solve the DAS governing equations. It has been proven that the inherently low dissi-
pation of CE/SE method allows accurate calculation of the acoustic and flow fluctu-
ations which usually exhibit large disparity in their energy and length scales [7]. Its
numerical framework relies solely on strict conservation of physical laws and empha-
sis on the unified treatment of fluxes in both space and time. Lam [7] showed that
CE/SE method is capable of resolving the low Mach number interactions between
the unsteady flow and acoustic field accurately by calculating the benchmark aeroa-
coustic problems with increasing complexity. The formulation of the CE/SE method
is not given in this paper. The details can be referred to in the works of Lam [7].

2.2 Structural Dynamic Model

The one-dimensional dynamic response of the flexible panel can be modeled by the
simplified nonlinear Von Karman’s theory on Kelvin foundation [10, 11]. The panel
is assumed to be of uniform small thickness h p = ĥ p/L̂ p and initially flat. Using the
same set of reference parameters adopted in the aeroacoustic model, the normalized
governing equation for panel displacement w(x) = ŵ/L̂0 can be written as,
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D
∂4w

∂x4
− (Tx + Nx )

∂2w

∂x2
+ ρph p

∂2w

∂t2
+ C

∂w

∂t
+ Kpw = pex , (2)

where Nx = (Eph p/2L p)
∫ L p

0 (∂w/∂x)2 dx , D = D̂/(ρ̂0ĉ20 L̂
3
0) is the bending stiff-

ness, Tx = T̂x/(ρ̂0ĉ20 L̂0) is the external tensile stress resultant per unit length in
the tangential direction, Nx is the internal tensile stress in the tangential direction
induced by stretching, Ep = Ê pĉ20/(ρ̂0 L̂4

0) is the modulus of elasticity, L p = L̂ p/L̂0

is the length of panel, ρp = ρ̂p/ρ̂0 is the density of panel,C = Ĉ/(ρ̂0ĉ0) is the struc-
tural damping coefficient, Kp = K̂ p L̂0/(ρ̂0ĉ0) is the stiffness of foundation, and
pex = p̂ex/(ρ̂0ĉ20) is the net pressure exerted on the panel surface.

To satisfy the tangency condition, four equivalent relationships between the fluid
at the interface and the panel can be derived [12]. They are equivalents of stress,
acceleration, velocity, and displacement. When the fluid element size and the normal
velocity are small (M < 0.3) [13], the local viscous effect and compressibility of
fluid can be ignored. Therefore, the normal pressure difference can be simply given
by Newton’s second law as ∂p/∂η = −ρ(∂vη/∂t) = −ρẅ (Fig. 1). Then, the panel
acceleration is found as ẅ = −(∂p/∂η)/ρ. The panel velocity and displacement can
also be obtained by integrating ẅ and ẇ over time, i.e., ẇ = ∫

ẅdt and w = ∫
ẇdt .

2.3 Boundary Conditions

All solid surfaces obey the tangency condition and the normal pressure gradient
condition. At no-slip boundary surface, zero tangential velocity vξ = 0 is applied.

ξ

η Upper fluid element

Flexible panel segment

Lower fluid element

pupper τηη,upper

puface τηη,uface

plower τηη,lower

plface τηη,lface

lupper = δupper − w

llower = δlower + w

Fig. 1 Small fluid volumes on two sides of the flexible panel
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Isothermal condition T = T0 is applied to all solid surfaces, and zero normal velocity
vη = 0 is applied to all rigid surfaces. At the fluid–panel interface, the normal veloci-
ties are set as ẇ. Pinned conditions are prescribed at both edges for the flexible panel
where the displacement and bending moment are set zero, i.e., w = ∂2w/∂x2 = 0.

2.4 Fluid–Panel Coupling

During the time-marching of the numerical solution, aeroacoustics and structural
responses occur at the fluid–panel interface. Consider two adjacent infinitely small
control volumes of fluid on both sides of flexible panel and their total stress
on the normal direction as shown in Fig. 1 in which ξ and η are the tangen-
tial and normal directions of the undeflected panel surface, respectively. δ and
l are defined as the size of the fluid volume in normal direction without and
with panel deflection, respectively. p is the pressure acting from the surround-
ing on the surface of the fluid volume. The viscosity-induced normal force may
be expressed as τηη = (2/3)μ

(
2∂vη/∂η − ∂vξ/∂ξ

)
, where vξ and vη are the fluid

velocities in tangential and normal directions [14]. On the no-slip panel surface,
∂vξ/∂ξ = 0 and τηη = (4/3) μ

(
∂vη/∂η

)
. When the fluid is driven by the panel,

the additional forces applied within the fluid volume are the difference in stresses
over the control volume given by (pu f ace − τηη,u f ace) − (pupper − τηη,upper ) and
(pl f ace − τηη,l f ace) − (plower − τηη,lower ). Meanwhile, the net external force applied
to the panel is pex = (pl f ace − τηη,l f ace) − (pu f ace − τηη,u f ace).

Since variation of viscous stress with fluid volume is very small compared to
the pressure, it can be assumed that τηη,u f ace − τηη,upper = τηη,l f ace − τηη,lower = 0.
The additional force per unit volume can thus be written as (pu f ace − pupper )/ lupper
and (pl f ace − plower )/ llower , and the corresponding mechanical power is vη,upper

(pu f ace − pupper )/ lupper and vη,lower (pl f ace − plower )/ llower , respectively. These
forces arising from the vibrating fluid–panel interface are responsible for driving
the aeroacoustics solution in the neighborhood of the panel. Therefore, it is better
to resolve their effects by expressing them as a source term Q in the homogeneous
Eq.1 originally for fixed domain boundary. Thus, the DAS governing equation can
now be written as,

∂U
∂t

+ ∂ (F − Fv)

∂x
+ ∂ (G − Gv)

∂y
= Q, (3)

where Q = [− sin θQ′ cos θQ′ vηQ′ 0],Q′
upper = (pu f ace − pupper )/ lupper and

Q′
lower = (plower − pl f ace)/ llower . Thismodified equation is solved togetherwith the

dynamic equation (Eq.2) by means of an iterative method to resolve the nonlinear
fluid–panel coupling. This new approach appears to give a faster convergence than
before. The details of the implementation of the numerical treatment of resolving
fluid–panel coupling are referred to Fan [8].
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Û
p̂0, ρ̂0, T̂0, ĉ0

L̂p4.16L̂p 2.5L̂p

Ĥ

Ĥ

Fig. 2 Schematic configuration of the experiment setting of Liu [4] (not-to-scale)

3 Flow-Induced Structural Instability

In order to validate the capability of the numerical methodology of solving fluid–
panel interaction, the experimental study carried out by Liu [4] on the instability of
flexible panel installed on thewall of a duct carrying a low-speed uniform Û = 35m/s
is selected as the benchmark for the validation. In the experiment, a 0.025-mm-
thick steel sheet was flush-mounted in a section of rigid flow duct and backed by
a rigid cavity as shown in Fig. 2. The entire test section was installed in a closed-
loop acoustic wind tunnel. When the flow was turned on, the vibrating velocity
of the sheet was measured. The same set of physical parameters are taken for the
present calculation: the panel and cavity length L̂ p = 300 mm, the duct width and
cavity height Ĥ = 100 mm, the upstream and downstream length are 1250 mm
and 750 mm, respectively, the panel density ρ̂p = 7800 kg/m3, the panel thickness
ĥ p = 0.025 mm, Young’s modulus Ê p = 193 GPa, the panel tension T̂x = 40 N,
and the mean flow speed Û = 35 m/s. Since the background noise level within the
entire wind tunnel was highly suppressed in its design, the panel vibration was found
solely induced by the unsteady viscous effects on its surface flow. All variables
are normalized by L̂0 = panel length L̂ p, ambient acoustic velocity ĉ0 = 340m/s,
time t̂0 = L̂0/ĉ0, ambient density ρ̂0 = 1.225 kg/m3, pressure ρ̂0ĉ20, and ambient
temperature T̂0. Uniform mesh is used with grid sizes dx = 0.02 and dy = 0.0067
for both x and y directions.

Before carrying out the calculation of panel instability, it is important to realize
how accurate the aeroacoustic model can capture the background mean velocity
profile of the duct flow. It is because under the action of fluid viscosity a wrong
velocity profile on duct wall would induce a wrong wall shear stress which might in
turn drive a wrong panel instability mode. Liu [4] reported in his work a structural
instability experiment at Û = 35 m/s but only provided a mean velocity profile
measurement at Û = 30 m/s. So an additional case with Û = 30 m/s has to be
calculated for appropriate comparisonwith the experimental data in Fig. 3. The figure
shows the numerical velocity profile agrees favorably well with experimental data.
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Fig. 3 Mean velocity profile
at the inlet. —–, numerical
result; – – –, experimental
data

y
/H

u/U

The normalized velocity boundary thickness from calculation is 0.039 which agrees
verywell with that of 0.037 obtained from the experiment. In the very close proximity
to duct wall, i.e., y/H ≤ 0.02, the two profiles overlap fully. It provides further
support that the aeroacoustic model is able to generate correct mean velocity profile
for initiating the flow-induced panel structural instability observed in experiment.

Liu [4] reported the emergenceof dynamic instability, knownasflutter, of the panel
in his experiment with duct flow velocity Û = 35 m/s. In essence when the panel
deflection gets large enough, the panel will exhibit a post-flutter oscillation known
as limit cycle oscillation. Such phenomenon arises when the effective panel stiffness
is so strengthened by panel deformation up to a level that is strong enough to balance
the external force exciting the panel oscillation. The time traces of vibrating velocity
at two locations, at x = −0.17 and 0, obtained from numerical calculation are shown
in Fig. 4. After the onset of instability, the amplitudes of panel vibration grow and
become saturated after t ≈ 200. Eventually they enter into time stationary states after
t ≈ 800, and the limit cycle oscillations occur. Axial mode analysis established in
Fan et al. [2] is conducted to derive the spatial responses of panel vibration during
limit cycle oscillation (Fig. 5). Evidently, the panel response is dominated by the
second in vacuo bending mode with k = 1. Its first and second harmonics are also
resolved.

Figure6 shows a comparison of the arithmetic average of the calculated vibration
spectra distributed along the panel with the corresponding one reported in experi-
ment. The numerical result shows a favorable agreement with the experimental data.
The first numerical peak emerges at frequency f0 = 0.07 which shows a −13.5%
frequency shift compared to the experiment result. The difference may be attributed
to the limitation of one-dimensional assumption in the calculation of panel dynam-
ics (Eq.2). The lack of vibration freedom along spanwise direction tends to promote
panel resonant vibrations at low frequencies as easily seen from existing analytical
solutions [15]. The overall vibration amplitude at dominant frequency appears to be
much stronger than that observed in experiment. This might be due to the fact that in
experiment the distribution of vibration amplitude over the two-dimensional panel
was not uniform so certain canceling effects prevailed in the averaging of spectra.
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ẇ

t

ẇ

t

(a)

(b)

Fig. 4 Time traces of vibrating velocity. a At x = −0.17. b At x = 0

ẇ
r
m
s

k

ẇ
r
m
s

x

(a) (b)

Fig. 5 Panel spatial response. a The modal spectrum of panel velocity. b The distributions of panel
velocity amplitude

Furthermore, it is easy to observe in Fig. 6 that there are two peaks showing up in the
experimental spectrum but not in the calculation. After careful investigation, their
emergence is found that related to the excitation of wind tunnel duct acoustic modes
during the execution of experiment.

The frequency of acoustic resonance within an open-ended duct with rectan-
gular cross section can be estimated from the equation [16, 17] as fn1,n2,n3 =
(c0/2)[n12/(l1 + 2l ′′)2 + n22/l22 + n32/l32]1/2, where c0 is the speed of sound, l1,
l2, and l3 are the length, height, and width of the duct, respectively, n1, n2, and n3 are
the mode numbers along respective directions, and l ′′ is the end correction. When
resonance occurs, the fluid medium at each open end oscillates and the pressure
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ẇ

f

Fig. 6 Frequency spectrum of the vibration velocity on the whole panel. —, numerical result with
viscous flow; · · · · · · , numerical result with inviscid flow; – – –, experimental data; − · − · −, duct
mode frequencies

there is not constant. Thus, the effective length for resonant oscillation inside the
duct will be a bit longer than its physical length [16, 17] and an end correction
is required. For ka < 0.5, the end correction can be approximately determined as
l ′′ = 0.613a [17], where a = (S/π)1/2 is the characteristic dimension of the duct
cross section with area S, and k = 2π/λ. The normalized length of the wind tun-
nel duct section from the nozzle to the diffuser is 7.67 which gives the frequency
of the second mode f2,0,0 = 0.13. This value matches exactly the second peak in
the experimental spectrum in Fig. 6. Besides, Liu [4] opened two openings, each
with dimension 50 mm × 50 mm, upstream and downstream of the test section in
his experiment so as to simulate a mean pressure drop along test section similar to
those commonly observed in practical ventilating systems. However, that way might
introduce extra possibility of open-ended duct resonance between these two new
openings. According to Liu [4], the normalized separation between two openings
was approximately 5.56. It is not difficult to determine the frequency of second res-
onant duct mode as f2,0,0 = 0.18. Coincidently, this value matches exactly the third
peak observed in the experimental spectrum in Fig. 6. Therefore, it is not surprised to
see the two identified resonant ductmodes, rather than flow-induced instability,might
effectively excite the panel to give the two peaks in the spectrum. In our numerical
calculation, both the duct inlet and outlet are modeled with truly anechoic boundary
conditions so resonance along duct length is impossible. On the other hand, the mean
pressure drop in time stationary solution is similar to that in realistic systems so no
additional opening is required. These explain why no similar extra peak is observed
in the numerical spectrum.

Using inviscid flow assumption, the same problem is also calculated to highlight
the importance of fluid viscosity in the onset of flow-induced structural instability.
In essence, Fv = Gv = 0 are set in Eq.1 and impose sliding condition on all duct
walls and panel surface in the calculation. Evident in Fig. 6, the inviscid solution
gives the worst agreement with the experiment. Its first peak occurs at a frequency
f = 0.065 which is 19.8% lower than that observed in the experiment, a much
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t/
t 1

x

Fig. 7 Pressure fluctuation along the duct centerline within one period of the dominant vibrating
frequency, t1 = 1/ f0

larger difference with viscous solution. Furthermore, several more peaks show up
in the inviscid spectrum but none of them agrees with experimental data. It is also
interesting to see it is the inviscid second peak, rather than the first one, which
dominates the spectrum. All these observed discrepancies may be attributed to the
fact that duct wall boundary layer does not develop due to the lack of fluid viscosity
and the pressure along the duct maintains more or less constant. This also leads to
stronger net normal force acting on the panel than in viscous calculation. All these
changes altogether contribute to a different exciting force, so a different structural
instability result prevails.

The flow-induced vibrating panel radiates acoustic waves to upstream and down-
stream. The acoustic pressure fluctuation along the duct centerline within one period
of the dominant frequency, t1 = 1/ f0 = 14.3, is shown in Fig. 7. The upstream radi-
ation is in the form of simple plane wave and is much stronger than the downstream
radiation. The acoustic powerW radiated by the panel can be determined by integrat-
ing the acoustic intensity passing through duct cross section enclosing the panel [18],
asW = ∫ H

0 (ρ̄u′ + p′ū/c2)(p′/ρ̄ + ūu′ + v̄v′)dy, where ρ̄, ū, v̄ are the mean values
of density and velocities in x- and y-directions, respectively, and p′, u′, v′ are their
fluctuations. The average acoustic powers over t1 in upstream and downstream are
−1.5 × 10−9 (through x = −2.5) and 3.6 × 10−8 (through x = 2.5), respectively.
The acoustic power radiated to upstream is 5.9db larger.

In addition to acoustic radiation, the excited panel also produces flow fluctuations
at the same frequency which convect downstream. When the fluid impinges the
lower wall, it is forced to turn its direction from negative to positive y; for example,
at x ≈ 1.3 in Fig. 8a, an high-pressure zone is created as shown in the same location
(Fig. 8b). On the contrary, a low-pressure zone is created on the wall following fluid
motion toward the wall, for example at x ≈ 1. Together with the acoustic wave, the
convecting flow fluctuations create a staggered pressure distribution downstream of
the panel.
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y
y

x

(a)

(b)

Fig. 8 Snapshot at t/t1 = 0.2. a Velocity fluctuation in y-direction. b Pressure fluctuation

4 Aeroacoustic–Structural Interaction in Practical Silencer
Design

An experimental study of the transmission loss of a drum-like silencer installed in
a low-speed duct [19] is selected as the benchmark case for the evaluation of the
accuracy of the numerical methodology in solving aeroacoustic–structural interac-
tion in realistic situation. According to Fan et al. [2], aeroacoustic–structural inter-
action refers to a nonlinear problem to which the unsteady flow, acoustics, and
structural dynamics contribute equally in a fully coupled manner. The acoustical
performance of the drum-like silencer in the selected experimental study fits this
context of aeroacoustic–structural interaction very well. The noise reduction of the
silencer cannot be deduced accurately by resolving the flow–structure interaction
first.

Figure9 shows a two-dimensional computational domain that replicates key fea-
tures of the silencer design in the experiment. The silencer is constructed as two
opposing side branch cavities each of which is covered by a flexible panel. An acous-
tic wave propagates along the duct from left to right along with the flow. Each panel
responds to the excitation of the convected acoustic wave and vibrates. The induced
vibration reflects the incident acoustic wave and modifies the dynamics of flow in
its vicinity. As seen from a previous study assuming inviscid duct flow [2], such
aeroacoustic–structural interaction plays a critical role in determining the effective-
ness of acoustic reflection by the panels and consequently the overall silencer trans-
mission loss performance. However, viscous flow prevails in all practical situation
and the effect of viscosity is not understood. The same set of experiment parame-
ters are taken for the calculation: the panel and cavity length L̂ p = 500 mm, the duct
width and cavity height Ĥ = 100mm, the upstream and downstream length are 1000
and 870 mm, respectively, and the panel mass per unit area ρ̂pĥ p = 0.17 kg/m2. The
range of frequency of interest goes from 20 to 1000Hz. The normalization used in the
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Û
p̂0, ρ̂0, T̂0, ĉ0

L̂p2L̂p 1.74L̂p

Ĥ

Ĥ

Ĥ

Fig. 9 Schematic configuration of the drum-like silencer (not-to-scale)

calculation is same as that in Sect. 3. The ambient density, pressure, and temperature
are fixed at the outlet. No-slip condition is applied for all rigid duct walls and flexible
panel surfaces. A broadband incident acoustic plane wave covering frequency range
f from 0.0294 to 1.4706 with a resolution Δ f = 0.0147 is introduced into the duct
domain. Its excitation function is expressed as p′

inc = pA
∑99

n=1 sin(2π t fn + θn),
where pA = 4.5 × 10−4 (∼110 dB) is constant to all fn , and θn is uniformly dis-
tributed random phase generated by random number generation function in MAT-
LAB. A uniform flow profile is applied at the inlet to let the duct boundary layer
develop freely. A full rigid duct case is first calculated to develop the proper mean
flow profile in the whole flow field. The steady solution is then used as the initial
condition for the calculation with flexible panel. The initial pressure in the cavity is
set as same as the mean pressure in the duct over the panel to avoid large deflection of
the panel by the static pressure that affects the panel response. In the mesh, uniform
grid distribution is used for both x and y directionswith dx = 0.02 and dy = 0.0033.

The instantaneous distribution of vibrating velocities of a tensioned panel with
Tx = 0.108 (8213.38 N) excited by an acoustic wave convecting with a flow
M = 0.026 (Û = 9 m/s) was measured in the experiment [19]. Figure10 shows
a comparison between the calculated transmission loss T L with excitation frequen-
cies f = 0.294 (200 Hz) and 0.618 (420 Hz) and the experimental data. The numer-
ical results have good agreement with the experimental data at both frequencies.
The maximum difference is 5.2 and 10.8% in the results of f = 0.294 and 0.618,
respectively.

A comparison of the calculated transmission loss T L with Tx = 0.116 (8821.78N)
and M = 0.045 (û0 = 15m/s) and the experimental data is illustrated in Fig. 11. An
excellent agreement between the numerical result with viscous flow and the exper-
imental data is found except the peak at f = 0.36. It is underpredicted by approx-
imately 5 db. The difference at this frequency can be explained by an investigation
of possible wind tunnel duct modes. In the experiment, the test section outlet is con-
nected to a diffuser. The sudden change in area there may cause acoustic reflection.
On the other hand, as confirmed in our previous study (Fan et al. [2]), the panel lead-
ing edge is responsible for the reflection of incident wave to upstream due to the sharp
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Fig. 10 Comparison of instantaneous distribution of vibrating velocities with Tx = 0.108 and
M = 0.026. a f = 0.294 (200Hz). b f = 0.618 (420Hz). —, numerical result; – – –, experimental
data

Fig. 11 Comparison of the T L spectra of numerical results to experimental data. —, numerical
result with viscous flow; − · − · −, numerical result with inviscid flow; ©, experimental data;
– – –, duct mode frequency f2,0,0

area change created by the vibrating panel. Reflection of upstream going acoustic
wave to downstream is also possible. If the duct section between these two locations
is taken as an open-ended duct, it is not difficult to see that its length equal to 2.74
gives a frequency of the second mode f2,0,0 = 0.36, which matches the observed
peak in the experiment well. In the presence of his mode inside the wind tunnel,
the nodal point was just 15mm away from the microphone in the experiment. The
microphone then received a very weak acoustic signal that an over-estimated trans-
mission loss was deduced. However, the numerical calculation does not suffer such
duct mode problem. All these observations show clearly that the experimental T L
at f = 0.36 in Fig. 11 is erroneous and not reliable. However, the data at other fre-
quencies is still trustworthy because neither matches any other possible open-ended
wind tunnel duct modes. If the data at f = 0.36 is ignored, the maximum difference
between numerical and experimental T L is only 0.5 db. Such excellent agreement
firmly establishes the strong capability of the present numerical methodology in
capturing the nonlinear aeroacoustic–structural interaction in the problem correctly.
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The other difference in the T L levels might be attributed to two reasons. One is due
to the fact that the present two-dimensional calculation does not replicate fully the
three dimensionality of the experiment. Some three-dimensional panel vibration and
duct acoustic modal behaviors are not properly included. Another is the mesh is not
fine enough to capture small-scale flow instability. Any acoustic reactive response
caused by the panel vibration in response to such instability in the experiment cannot
be captured fully.

The importance of the inclusion of viscous effect is also highlighted in Fig. 11
in which a comparison of T L derived from viscous and inviscid solutions is also
shown. They show similar overall trends, but the inviscid solution shows obvious
overprediction at around f = 0.5–0.6 and at the peak at f = 0.32. The difference
between inviscid solution and experimental data at the peak is as large as 5.7 db.

5 Concluding Remarks

A numerical methodology has been introduced to study the nonlinear fluid–structure
interaction and its acoustics in internal viscous flow. It is solving the coupled govern-
ing equations that include both fluid and structural dynamics at the fluid–structure
interface. Two experimental studies are selected as the benchmark cases for valida-
tion of the methodology.

The first case is to study the flow-induced structural instability of a thin flexible
panel flush-mounted in a duct and backed by cavity. Under a subsonic flow, the vibra-
tion of the panel is induced and becomes the limit cycle oscillation. The numerical
result has a favorable agreement with the experimental data that validated the capa-
bility of the numerical methodology for capturing the fluid–structural interaction.
An interesting acoustic response is found that the upstream radiation by the panel
vibration is 5.9 db larger than the downstream in terms of acoustic power. The result
also shows the viscous effect strongly affects the structural response and inviscid
assumption can lead to incorrect result.

Another case is a study on a practical silencer design that makes use of a flexible
duct segment constructed by elastic panels. Both acoustic and structural responses
are validated with excellent agreement with the experiment. On the other hand, the
viscous solution also gives a more accurate prediction than the inviscid solution on
the aeroacoustic–structural responses.
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