
Simultaneous Finite Element
Computation of Direct and Diffracted
Flow Noise in Domains with Static
and Moving Walls

Oriol Guasch, Arnau Pont, Joan Baiges and Ramon Codina

Abstract Curle’s acoustic analogy allows one to compute aerodynamic noise due to
flowmotion in the presence of rigid bodies. However, the strength of the dipolar term
in the analogy depends on the values of the total flow pressure on the body’s surface.
At low Mach numbers, that pressure cannot be obtained from the computational
fluid dynamics (CFD) simulation of an incompressible flow, because the acoustic
component cannot be captured. To circumvent this problem, and still being able to
separate the flow and body noise contributions at a far-field point, an alternative
approach was recently proposed which does not rely on an integral formulation.
Rather, the acoustic pressure is split into incident and diffracted components giving
rise to two differential acoustic problems that are solved together with the flow
dynamics, in a single finite element computational run. In this work, we will revisit
the acoustics of that approach and show how it can be extended to predict the flow
noise generated in domains with moving walls.

Keywords Computational aeroacoustics · Flow noise · Finite elements
Arbitrary Lagrangian–Eulerian · Diffraction · Acoustic analogy

1 Introduction

For low Mach number flows, hybrid approaches have become the most widespread
formulations in computational aeroacoustics (CAA) (see e.g. [3]). The reason is that,
along with the computational cost, the strong disparity between the flow speed and
the speed of sound leads to convergence problems when attempting direct noise
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computations (DNC), which rely on the full compressible Navier–Stokes equations
(see e.g. [4]). As opposed to this, hybrid approaches consist of a first computational
fluid dynamics (CFD) simulation of the incompressible Navier–Stokes equations.
This serves to determine the source terms of an acoustic analogy, Lighthill’s being
themost celebratedone [29].The analogy is then solvedusing an integral formulation,
making use of Green functions. If rigid bodies are present within the flow, one usually
resorts to Curle’s analogy [12] and, if those can move, to its generalization, namely
the Ffowcs Williams–Hawkings equation [36].

From a computational point of view, hybrid approaches imply working with two
codes; typically a finite element method (FEM) one for the CFD and a boundary
element method (BEM) for the acoustics. If one is not interested in the solution at
large distances from the aeroacoustic sources, the two codes can be avoided and one
can simply use FEM to get the flow and the acoustic fields (see e.g. [19, 20, 28, 31]).
This has the advantage of only needing one computational code, but the disadvantage
is that one can no longer separate the noise contributions, at a far-field point, from
the unsteady flow (quadrupolar term in Curle’s analogy), and from the rigid body
itself (dipolar term in Curle’s analogy). However, Curle’s analogy is not free of
problems in low Mach number simulations. This is because only incompressible
pressure fluctuations can be recovered from incompressible CFD computations, not
the acoustic ones. Unfortunately, the latter are also needed on the rigid surface for a
proper implementation of Curle’s analogy.

To circumvent this difficulty, make use of a single FEM code for both the flow
and the acoustic fields, and be able to distinguish between the direct flow and the
body noise contributions, a different approach was proposed in [21]. In that work,
advantagewas taken from the fact that the dipolar term inCurle’s analogy corresponds
to the turbulent noise diffracted by the rigid body (see e.g. [17]). The acoustic pressure
in Lighthill’s acoustic analogy was split into a direct plus diffracted components
as in classical diffraction problems. At every time step of a single FEM run, the
incompressible Navier–Stokes equations were first solved. The resulting velocity
field was then inserted as a source term in a wave equation for the direct incident
acoustic pressure, and that was finally used in the boundary conditions of another
wave equation for the diffracted acoustic pressure. Some benchmark cases to test
the methodology were presented in [21], and in [33] the approach has been recently
applied to voice production, for better understanding the generation mechanisms of
sibilant [s].

In this work, we will revisit the main results in [21] and show how they can be
extended to account for the prediction of flow noise in domains with moving walls.
Focus will be placed on the acoustics formulation rather than on the CFD. Working
with moving domains will require setting the governing equations in an arbitrary
Lagrangian–Eulerian (ALE) frame of reference. As we shall see, the irreducible
wave equation will be no longer valid in this case, and we will have to work with the
wave equation in mixed form (see e.g. [7]). The splitting into incident and diffracted
components in [21]will be applied to theALEmixedwave equation andwewill show
how to solve it resorting to the stabilized FEM in [18]. Some numerical examples
will be presented. First, we will briefly summarize the case with static boundaries
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in [33], which consists of a large-scale three-dimensional CAA simulation for the
production of the sibilant [s]. Second, we will present a case with moving walls
which comprises a flow exiting a two-dimensional duct, with a teeth-shaped obstacle
at its end that evolves from an almost closed aperture to an open one.

2 Diffracted Sound and Curle’s Analogy

To begin with, let us consider the problem depicted in Fig. 1. A low Mach flow is
impinging on a rigid body Ωb, which we assume stationary for the moment, and
a wake develops past the body. As a result, aerodynamic noise is generated due to
unsteady flow motion. At a far-field point in Ωac, the acoustic pressure, p(x, t), will
have a contribution directly stemming from the flowmotion and a contribution arising
from the diffraction of the flow noise by the body. Assuming that one has already
performed a CFD computation to get the flow velocity and pressure, Curle’s analogy
can be used to determine those acoustic contributions with the sole use of the free-
space Green function for the wave equation. Curle’s final integral formulation [12]
for the acoustic pressure reads (neglecting the viscous stress tensor contributions),

p (x, t) = ρ0∂
2
i j

∫
Ωac

1

4π |x − y|
[
u0i u

0
j

]
t ′ d

3 y − ∂i

∫
Γb

1

4π |x − y| [P]t ′nid2 y. (1)

Following the convention for retarded potentials, the squared brackets in the equa-
tion stand for evaluation at the retarded time t ′ := t − |x − y|/c0. The parameters

Fig. 1 Computational domain. The body Ωb(t) can change its shape with time and consequently
so does Ωac(t)
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c0 and ρ0 respectively denote the speed of sound and the mean air density, whereas
∂i designates the first-order spatial derivative with respect to the component xi , and
∂2
i j represents the second-order cross-derivative with respect to xi and x j .
The first integral in (1) provides the direct flow noise contribution to p(x, t)

assuming the low Mach number approximation to Lighthill’s tensor, namely S0 =
ρ0∂

2
i j (u

0
i u

0
j ), with u0(x, t) denoting the incompressible flow velocity. The second

integral contains the contribution from the sound diffracted by the rigid body [10,
13, 17, 21].While u0(x, t) in thefirst integral can be obtained froman incompressible
CFD simulation, the problem is that this is not possible for the pressure P(x, t) in
the second integral, because P(x, t) accounts for the total compressible pressure at
the body’s boundary.

3 Splitting the Acoustic Pressure into Incident and
Diffracted Components

3.1 General Linear Acoustic Wave Operator

To avoid the difficulties with Curle’s analogy described in the preceding section and
still being able possible to separate the direct and diffracted flow noise contributions
using a single FEM code, an alternative was proposed in [21]. To introduce it, let us
consider a more general situation for the aeroacoustic problem presented in Fig. 1,
also in the framework of acoustic analogies.

Assume again that we have already computed an aeroacoustic source term S
from a CFD simulation of the incompressible Navier–Stokes equations (for the time
being not necessarily the low Mach approximation to Lighthill’s tensor). We will
first state the problem of computing the aerodynamic noise generated by such a
term in an acoustic computational domain Ωac. Suppose that the acoustic wave
propagation is driven by a linear wave operator L acting on the acoustic pressure p
(explicit indication of dependence on space and time will be hereafter omitted), that
Bb represents another linear operator defining the boundary conditions on the body
immersed in the flow, and that B∞ stands for a third linear operator accounting for
a non-reflecting boundary condition at Γ∞ (see Fig. 1). The acoustic pressure p in
Ωac can be obtained from the solution of

Lp = S in Ωac, t > 0, (2a)

∇ p · n = Bb p on Γb, t > 0, (2b)

∇ p · n = B∞ p on Γ∞, t > 0, (2c)

p (x, 0) = 0, ∂t p (x, 0) = 0 in Ωac, t = 0. (2d)

To determine, at a given position, the separate acoustic pressure contribution of
the direct sound generated by the aeroacoustic source S, say pi , from that diffracted
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by the rigid body, pd , we can split the total acoustic pressure as p = pi + pd and
substitute into (2). This results in the following problem for pi ,

Lpi = S in Ωac ∪ Ωb, t > 0, (3a)

∇ pi · n = B∞ pi on Γ∞, t > 0, (3b)

pi (x, 0) = 0, ∂t pi (x, 0) = 0 in Ωac ∪ Ωb t = 0, (3c)

which once solved can be used to obtain pd ,

Lpd = 0 in Ωac, t > 0, (4a)

∇ pd · n − Bb pd = −∇ pi · n + Bb pi on Γb, t > 0, (4b)

∇ pd · n = B∞ pd on Γ∞, t > 0, (4c)

pd (x, 0) = 0, ∂t pd (x, 0) = 0 in Ωac, t = 0. (4d)

Note that we can recover the original problem (2) from the summation of prob-
lems (3) and (4). To solve (3), we need to removeΩb from the computational domain
and make the computations as if the body was absent. Once we get pi , we include the
body back in the computational domain and use pi at its boundary Γb, to compute
the diffracted pressure pd .

The above splitting procedure is nothing but the standard way to deal with diffrac-
tion and scattering problems in acoustics (see e.g. [30]). As explained in the Introduc-
tion, the novelty in [21] consisted in exploiting that factorization in CAA to avoid the
problems encountered when applying Curle’s analogy to low-speed subsonic flows.

3.2 Domains with Static Walls

A first application of the splitting approach (3)–(4) is that of finding the incident and
diffracted flownoise contributions at a far-field point. Let us take the irreduciblewave
equation as the linear operator in (2), i.e. L ≡ c−2

0 ∂2
t t − ∇2, and suppose the body to

be acoustically rigid. Assume once more that we have obtained an incompressible
pressure field, p0, and an incompressible velocity field, u0, from the solution of the
incompressibleNavier–Stokes equations.We could then build an aeroacoustic source
term by taking, for instance, S0 = ρ0∂

2
i j (u

0
i u

0
j ), which as said before is nothing but

the approximation to Lighthill’s tensor at low Mach numbers. In the case of sound
propagating in non-quiescent flow areas, however, convective and refraction effects
should be removed from the source term and incorporated into the wave operator.
Otherwise, non-acoustic pressure fluctuations that do not correspond to proper sound
could manifest in the solution (this is usually referred to as pseudosound, see e.g.
[11]). Several options exist to remedy the situation that range from the linearized
Euler equations (LEE) [2], to the acoustic perturbation equations (APE) which filter
the LEE to get rid of its entropy and vorticity modes [15]. A simplified version
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of the APE for low Mach numbers can be found in [22, 23]. In the case of almost
negligible convection velocities, the latter reduces toRoger’s acoustic analogy in [34]
with source term S0 = c−2

0 ∂2
t t p

0. The latter allows one to filter some pseudosound
and will be considered in this work together with Lighthill’s one.

With the above considerations, the splitting into incident and diffracted compo-
nents yields the following particular cases of problems (3) and (4),

1

c20
∂2
t t pi − ∇2 pi = S0 in Ωac ∪ Ωb, t > 0, (5a)

∇ pi · n = 1

c0
∂t pi on Γ∞, t > 0, (5b)

pi (x, 0) = 0, ∂t pi (x, 0) = 0 in Ωac ∪ Ωb t = 0, (5c)

and

1

c20
∂2
t t pd − ∇2 pd = 0 in Ωac, t > 0, (6a)

∇ pd · n = −∇ pi · n on Γb, t > 0, (6b)

∇ pd · n = 1

c0
∂t pd on Γ∞, t > 0, (6c)

pd (x, 0) = 0, ∂t pd (x, 0) = 0 in Ωac, t = 0. (6d)

Note that (5b) and (6c) correspond to the Sommerfeld radiation condition that
prevents outward propagating waves to be reflected back from the outer boundaries
of the computational domain.

The above formulation was used in [21] to compute the turbulent and diffracted
components of sound generated past a two-dimensional cylinder (aeolian tones), and
also to determine the incident and diffracted flow noise contributions of an obstacle
placed at the exit of a three-dimensional duct.More recently, themethodology in [21]
has been applied to voice production in [33] to determine the contributions of the
sound diffracted by the upper teeth in the generation of sibilant /s/ (see Sect. 5.1).

3.3 Domains with Moving Walls

The main goal of the present work is to show how to extend the above splitting
procedure to the case of flow noise generated in domains with moving walls. As
mentioned, an example could be that of the aeroacoustics of a flow emanating from
a duct with a time-varying exit section. Typical cases also arise once more in voice
production, for example, when pronouncing a syllable that involves a sibilant sound.

When dealing with acoustic waves propagating in moving domains, it becomes
no longer possible to resort to the acoustic wave equation in irreducible form. The
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linearized continuum andmomentum conservation equations used to derive the latter
need to be expressed in anALE frameof reference,which precludes obtaining a scalar
wave equation for the acoustic pressure [18]. One is then forced to work with the
linearized momentum and continuity equations, sometimes referred to as the wave
equation in mixed form (see e.g. [7]). This reads,

1

ρ0c20
∂t p + ∇ · u = Q, (7a)

ρ0∂tu + ∇ p = f , (7b)

where p stands anew for the acoustic pressure while u represents the acoustic particle
velocity. Q denotes a volume source distribution and f an external body force per
unit volume.

To express (7) in an ALE domain, a quasi-Eulerian approximation is often
used [24, 27], which basically consists in expressing the time derivative of any
fluid property, say g, in a referential frame moving with the domain, i.e. replacing
∂t g ← ∂t g − udom · ∇g, while keeping the spatial derivatives Eulerian. udom denotes
the domain velocity and it will be hereafter termed the mesh velocity, because it cor-
responds to the mesh node velocities in the computational implementation. The ALE
counterpart of (7) becomes

1

ρ0c20
∂t p − 1

ρ0c20
udom · ∇ p + ∇ · u = Q, (8a)

ρ0∂tu − ρ0udom · ∇u + ∇ p = f . (8b)

The source terms corresponding to Lighthill’s analogy and the Roger one in [34]
are given by,

Roger’s analogy: f = 0, Q = −(1/ρ0c
2
0)

[
∂t p

0 − udom · ∇ p0
]
, (9a)

Lighthill’s analogy: fi = −ρ0∂ j (u
0
i u

0
j ), Q = 0. (9b)

To solve (8) in a computational domain Ωac(t), t > 0, we need to supplement
the equation with appropriate boundary conditions and initial conditions. Assuming
again a rigid body for simplicity, we get

u · n = 0 on Γb(t) t > 0, (10a)

u · n = 1

Z0
p on Γ∞ t > 0, (10b)

p (x, 0) = 0 u (x, 0) = 0, in Ωac(t), t = 0 (10c)

where (10b) is the Sommerfeld radiation condition for the wave equation in mixed
form (see e.g. [14]) and Z0 = ρ0c0.
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We can next apply the splitting strategy into incident and diffracted fields for the
ALE mixed wave Eq. (8). Notice that the general linear operator L in (2) herein
acts both on the acoustic pressure p and on the acoustic particle velocity u. Taking
u = uin + ud and p = pin + pd in (8), we get the incident field problem

1

ρ0c20
∂t pin − 1

ρ0c20
udom · ∇ pin + ∇ · uin = Q in Ωac(t) ∪ Ωb(t), t > 0, (11a)

ρ0∂tuin − ρ0udom · ∇uin + ∇ pin = f in Ωac(t) ∪ Ωb(t), t > 0, (11b)

uin · n = 1

Z0
pin on Γ∞, t > 0, (11c)

pin (x, 0) = 0, uin (x, 0) = 0, in Ωac(t) ∪ Ωb(t), t = 0, (11d)

and the diffracted field one,

1

ρ0c20
∂t pd − 1

ρ0c20
udom · ∇ pd + ∇ · ud = 0 in Ωac(t), t > 0, (12a)

ρ0∂tud − ρ0udom · ∇ud + ∇ pd = 0 in Ωac(t), t > 0, (12b)

ud · n = −uin · n on Γb(t), t > 0, (12c)

ud · n = 1

Z0
pd on Γ∞, t > 0, (12d)

pd (x, 0) = 0, ud (x, 0) = 0, in Ωac(t), t = 0. (12e)

The source terms Q and f in (11) need to be obtained from the solution of
the incompressible Navier–Stokes in an ALE framework. Our objective is to solve
the latter together with (11) and (12) in a single finite element computational run,
following the strategy in [21].

4 Numerical Discretization for Waves in Moving Domains

4.1 Continuous Weak Form

The FEM discretization of Eqs. (11) and (12) relies on their weak formulation rather
than on the differential one. The continuous weak forms of the equations can be
found multiplying Eqs. (11a) and (12a) with a scalar test function q, and Eqs. (11b)
and (12b) with a vector test function v, and then integrating over the respective com-
putational domainsΩac(t) ∪ Ωb(t) andΩac(t). Let us denote by ( f, g) := ∫

Ω
f gdΩ

the integral of the product between two arbitrary functions f and g, and assume
that we want to solve the problem in a given time interval [0, T ]. The variational
problems for the incident and diffracted acoustic pressure and velocity can be posed
as follows.
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First, find pin ∈ W in
p ([0, T ], V in

p ) and uin ∈ W in
u ([0, T ], V in

u ) such that

1

ρ0c
2
0

(∂t pin, q) − 1

ρ0c
2
0

(udom · ∇ pin, q) + (∇ · uin, q) = (Q, q) ∀ q ∈ V in
p , (13a)

ρ0(∂tuin, v) − ρ0(udom · ∇uin, v) + (∇ pin, v) = ( f , v) ∀ v ∈ V in
u , (13b)

where W in
p , W in

u , V
in
p and V in

u denote appropriate functional spaces in Ωac(t) ∪
Ωb(t), not to be detailed herein (see e.g. [18] for more details). As for the diffracted
fields, we will have to find pd ∈ Wd

p([0, T ], V d
p ) and ud ∈ Wd

u([0, T ], V d
u) such

that

1

ρ0c20
(∂t pd , q) − 1

ρ0c20
(udom · ∇ pd , q) + (∇ · ud , q) = (Q, q) ∀ q ∈ V d

p , (14a)

ρ0(∂tud , v) − ρ0(udom · ∇ud , v) + (∇ pd , v) = ( f , v) ∀ v ∈ V d
u, (14b)

withWd
p ,Wd

u, V
d
p and V d

u standing now for appropriate functional spaces inΩac(t).
The Dirichlet boundary conditions (11c), (12c) and (12d) are to be imposed

strongly on Γb(t) and Γ∞. Alternatively, one could integrate the terms (∇ · uin, q)

in (13a) and (∇ · ud , q) in (14a) to impose the conditions weakly. The consequences
of such an option are detailed in [1].

4.2 Finite Element Spatial Discretization

The Galerkin FEM solution to variational mixed problems like (13) and (14) is
known to exhibit strong oscillations if equal order interpolations are used for the
pressure and velocities (see e.g. [7, 8, 18]). One could prevent them by resorting to
stabilized FEM strategies like the variational multiscale (VMS) method in [25, 26].
In this work, orthogonal subgrid scales (OSS), see [6, 9], will be used to stabilize the
Galerkin FEM approach to (13) and (14), following the strategy depicted in [18].

Let us consider the finite element spaces Vph ⊂ Vp and Vuh ⊂ Vu constructed
from a finite element partition Ωe(t) of Ω(t), where the index e ranges from 1 to the
number of elements nel . The discrete stabilized FEM approach to the incident prob-
lem (13) consists in finding pinh ∈ W in

ph ([0, T ], V in
ph ) and uinh ∈ W in

uh
([0, T ], V in

uh
)

such that
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1

ρ0c20
(∂t pinh , qh) − 1

ρ0c20
(udom · ∇ pinh , qh) + (∇ · uinh , qh)

+
nel∑
e=1

(τpP
[ − 1

ρ0c20
udom · ∇ pinh + ∇ · uinh − Q

]
,− 1

ρ0c20
udom · ∇qinh

+ ∇ · vh)Ωe(t) = (Q, qh), (15a)

ρ0(∂tuinh , vh) − ρ0(udom · ∇uinh , vh) + (∇ pinh , vh)

+
nel∑
e=1

(τuP
[ − ρ0udom · ∇uinh + ∇ pinh − f

]
,−ρ0udom · ∇vh + ∇qh)Ωe(t)

= ( f , vh), (15b)

for all qh ∈ V in
ph and vh ∈ V in

uh
.

The first and fourth rows in the above equations contain the Galerkin FEM terms,
whereas the second and fifth rows account for the stabilization terms.P in (15) stands
for a projection to be applied either to scalars or vectors depending on the argument.
In the OSSmethod,P is computed asP = I − Πh , with I being the identity andΠh

the L2-projection onto the corresponding finite element space. On the other hand,
the following expressions can be obtained for the stabilization parameters τp and τu,
(see [18])

τp = ρ0c20h

C1|ud | + c0C2
,

τu = h

C1ρ0|ud | + ρ0c0C2
, (16)

with C1 and C2 being constants to be determined from numerical experiments (a
value of C1 = C2 = 100 was taken in [18]).

Analogously, the discrete stabilized FEMapproach to the diffraction problem (14)
is that of finding pdh ∈ Wd

ph ([0, T ], V d
ph ) and udh ∈ Wd

uh
([0, T ], V d

uh
) such that

1

ρ0c20
(∂t pdh , qh) − 1

ρ0c20
(udom · ∇ pdh , qh) + (∇ · udh , qh)

+
nel∑
e=1

(τpP
[ − 1

ρ0c20
udom · ∇ pdh + ∇ · udh − Q

]
,− 1

ρ0c20
udom · ∇qh

+ ∇ · vh)Ωe(tn) = (Qn+1, qh), (17a)

ρ0(∂tudh , vh) − ρ0(udom · ∇udh , vh) + (∇ pdh , vh)

+
nel∑
e=1

(τuP
[ − ρ0udom · ∇udh + ∇ pdh − f

]
,−ρ0udom · ∇vh + ∇qh)Ωe(t)

= ( f , vh), (17b)

for all qh ∈ V d
ph and vh ∈ V d

uh
.
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4.3 Fully Discrete Numerical Scheme

To get the final numerical scheme, we need to discretize Eqs. (15) and (17) in time. To
that purpose, we split the time interval [0 T ] into N equal steps 0 < t1 < t2 < · · · <

tn < · · · < t N ≡ T with Δt := tn+1 − tn the time step size. For a time-dependent
function g(t), gn will denote its evaluation at tn = nΔt .A second-order backwarddif-
ferentiation formula (BDF2) will be used to approximate the first-order time deriva-
tive of g, which results in δt gn+1 := (1/2Δt)(3gn+1 − 4gn + gn−1).

The time discrete version of the incident problem (15) then becomes

1

ρ0c20
(δt p

n+1
inh

, qh) − 1

ρ0c20
(udom · ∇ pn+1

inh
, qh) + (∇ · un+1

inh
, qh)

+
nel∑
e=1

(τpP
[ − 1

ρ0c20
udom · ∇ pn+1

inh
+ ∇ · un+1

inh
− Qn+1

]
,− 1

ρ0c20
udom · ∇qh

+ ∇ · vh)Ωe(tn+1) = (Qn+1, qh), (18a)

ρ0(δtu
n+1
inh

, vh) − ρ0(udom · ∇un+1
inh

, vh) + (∇ pn+1
inh

, vh)

+
nel∑
e=1

(τuP
[ − ρ0udom · ∇un+1

inh
+ ∇ pn+1

inh
− f n+1],−ρ0ud · ∇vh + ∇qh)Ωe(tn+1)

= ( f n+1, vh). (18b)

Note that P(δt ph) = 0 and P(δtuh) = 0 in (18) because we are considering
orthogonal subscales.

Similarly, the time discrete version of the diffraction problem (17) is given by

1

ρ0c20
(δt p

n+1
dh

, qh) − 1

ρ0c20
(udom · ∇ pn+1

dh
, qh) + (∇ · un+1

dh
, qh)

+
nel∑
e=1

(τpP
[ − 1

ρ0c20
udom · ∇ pn+1

dh
+ ∇ · un+1

dh
− Qn+1

]
,− 1

ρ0c20
udom · ∇qh

+ ∇ · vh)Ωe(tn+1) = (Qn+1, qh), (19a)

ρ0(δtu
n+1
dh

, vh) − ρ0(udom · ∇un+1
dh

, vh) + (∇ pn+1
dh

, vh)

+
nel∑
e=1

(τuP
[ − ρ0udom · ∇un+1

dh
+ ∇ pn+1

dh
− f n+1],−ρ0ud · ∇vh + ∇qh)Ωe(tn+1)

= ( f n+1, vh). (19b)

Finally, let us mention that the motion of the computational mesh in the numerical
examples of the forthcoming sections has been driven through the solution of an
elastic problem [5]. Though efficient remeshing strategies are currently available
(see e.g. [32]), they can be avoided if the deformations are not very large, which
saves a considerable amount of computational cost.
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5 Numerical Examples

5.1 Generation of a Sibilant /s/

As an example to show the performance of the proposed splitting strategy in the
case of stationary domains (see Sect. 3.2), we will briefly summarize the results
reported in [33] concerning the generation of sibilant fricative /s/. This sound is
produced when the turbulent jet flow leaving the glottis becomes accelerated in the
palatal constriction, passes through the incisors gap and finally impinges in the cavity
between the lower incisors and the lower lips. In Fig. 2a, we can observe the portion
of the vocal tract needed for the numerical production of /s/. A snapshot of the flow
accelerating through the palatal constriction and impinging on the lower lips, which
results in a highly developed turbulent flow, is shown in Fig. 2b. Figure2c depicts the
emission of acoustic wavefronts in a semi-hemisphere, which propagate outwards
to infinity. Finally, in Fig. 2d we present the acoustic pressure for the total, incident

(a) (b)

(c)
(d)

Fig. 2 Generation of sibilant /s/: a vocal tract geometry,b snapshot of the velocity profile, c acoustic
front-waves, d spectra of the incident, diffracted and total acoustic pressure for a point at the far
field
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and diffracted acoustic pressure for a point located at the far field. The total pressure
exhibits the typical wideband spectral content of an /s/ that usually peaks between
8–10 kHz, as observed on human speakers (see e.g. [16, 35]). The incident field
directly originated by the flow motion dominates the spectrum up to 2 kHz; both the
incident and diffracted components have similar contributions from 2 to 8 kHz, and
the diffracted component dominates the spectrum for frequencies higher than 8 kHz.

The above three-dimensional simulations are computationally costly. To perform
them, we have used a computational mesh of 45 million linear tetrahedral elements
with equal interpolation for all variables. A total of three problems have been solved
in the same finite element computational run (the incompressible Navier–Stokes
equations plus the wave equations for the incident and diffracted acoustic pressure).
A domain decomposition with an MPI distributed memory scheme has been carried
out so as to run the problem at the MareNostrum computer cluster, of the Barcelona
Supercomputing Centre (BSC). A period of 10.8 ms with a time step of Δt = 5 ×
10−6 s has been simulated. The reader is referred to [33] for full details on the
numerical simulations and the above-outlined results.

5.2 Aeroacoustics of an Opening Teeth-Shaped Obstacle

To demonstrate the extended splitting approach for domains with moving boundaries
(see Sect. 3.3), and to test as well the numerical proposal in Sect. 4, we have consid-
ered a two-dimensional example. This consists of a duct with a teeth-shaped obstacle
near to its exit, which evolves from a minimum opening of 3mm to a maximum one
of 18 mm (see Fig. 3). A velocity of U0 = 2.4m/s is imposed at the duct entrance
and no-slip conditions are considered for the flow at the duct walls. The latter are also

Fig. 3 Scheme of the
computational domain close
to the duct exit. The obstacle
evolves from minimum to
maximum opening
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(a) (b)

(c) (d)

Fig. 4 Opening teeth-shaped obstacle: a velocity snapshot at minimum opening, b velocity profile
at maximum opening, c incident acoustic pressure at minimum opening, d diffracted acoustic
pressure at minimum opening

considered as being acoustically rigid, and a Sommerfeld non-radiating condition is
imposed at the outer boundaries of the computational domain.

The results of the simulations are presented in Fig. 4. When the opening is mini-
mum, an oscillating jet is developed after the obstacle, which results in the generation
of intense flow noise after the obstacle. A snapshot of the velocity field at minimum
opening is shown in Fig. 4a. As the teeth open, the jet stops oscillating and transi-
tions to a fully developed turbulent flow, which radiates in a much weaker fashion
(see Fig. 4b for a velocity snapshot at maximum opening). In Fig. 4c, we have plotted
the incident pressure field for theminimum opening situation, when radiation is more
intense, whereas a snapshot of the diffracted one is given in Fig. 4d. The diffracted
component clearly dominates at the far field, as expected.

6 Conclusions

In this book chapter, we have first revisited a strategy for CAA at lowMach numbers,
which allows one to compute the separate contributions of the incident flow noise,
and of the noise diffracted by a stationary rigid body, on the acoustic pressure at
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a point far away from the aeroacoustic sources. The strategy avoids some of the
difficulties of Curle’s analogy when resorting to incompressible computational fluid
dynamics to compute the acoustic source terms, and only requires a single FEM
code, as opposed to hybrid approaches to CAA. As an application, we have shown
how the method could be used to produce a fricative sound like /s/, providing useful
information of its underlying generation mechanisms.

Yet, the core of this work has consisted in extending the above approach to deal
with aerodynamic sound generation in domains with moving boundaries. The stan-
dard irreducible wave equation has proved inadequate for such purposes, and the
splitting strategy into incident and diffracted acoustic components has consequently
been applied to the wave equation in mixed form. Hence, not only the pressure but
also the acoustic particle velocity has become split into components. However, the
Galerkin FEM for mixed problems is known to fail if an equal interpolation is used
for both the acoustic pressure and velocity fields, so a stabilization approach has been
presented to remedy this problem. Finally, an example consisting of a flow imping-
ing on a teeth-shaped obstacle placed close to the exit of a duct, and transitioning
from a minimum gap opening to a bigger one, has illustrated the potential of the
formulation.
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