
Chapter 9
Coherent Spaces

A. Vourdas

Abstract Coherent spaces spanned by a finite number of coherent states are studied.
They have properties analogous to coherent states (resolution of the identity, closure
under displacement transformations, closure under time evolution transformations,
etc.). The set of all coherent spaces is a distributive lattice and also a Boolean ring
(Stone’s formalism).Theworkprovides the theoretical foundation, for the description
of quantum devices that operate with coherent states and their superpositions.

9.1 Introduction

Coherent states [1–3] play an important role in quantum mechanics, quantum optics
and quantum information. In a recent paper [4] we introduced the concept of coherent
spaces and the corresponding coherent projectors. They are finite-dimensional sub-
spaces of the Hilbert space, spanned by a finite number of coherent states. They have
properties analogous to those of coherent states (compare Propositions 9.1 and 9.2
for coherent states below, with Propositions 9.3 and 9.4 for coherent spaces and the
corresponding coherent projectors). The set of all coherent spaces Lcoh is a distribu-
tive lattice, and is a sublattice of the Birkhoff-von Neumann lattice [5–7]L of closed
subspaces of the harmonic oscillator Hilbert space (or more generally a separable
Hilbert space) which is not distributive.

Stone [8–10] has shown that there are deep links between distributive lattices, and
some idempotent rings known as Boolean rings [11, 12]. In [4], we used this general
result in the present context, to describe the distributive latticeLcoh of coherent spaces,
as a Boolean ring. This provides theoretical computer science foundation, for the
description of quantum gates operating with coherent states. In particular we studied
in detail CNOT gates with coherent states (previous work [13, 14] studied CNOT
gates with coherent states which are far from each other, and used the approximation
that they are orthogonal).
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In the present work we review this formalism, with different emphasis. In partic-
ular:

• We explain that the theory of rings introduces a structure similar to the standard
arithmetic for coherent spaces. This can be used in the study of complex circuits
with CNOT gates and other devices operating with coherent states.

• Westudy the statistical properties of densitymatriceswhich are coherent projectors
divided by their trace (every projector divided by its trace, is a density matrix).
This can motivate experimental realization of these density matrices.

In Sect. 9.2 we introduce briefly coherent states, in order to define the notation.
In Sect. 9.3 we introduce the Birkhoff-von Neumann lattice L, with emphasis on its
non-distributivity. In Sect. 9.4 we define coherent spaces and study their properties.
In Sect. 9.5 we study the statistical properties of density matrices related to coherent
projectors. In Sect. 9.6 we study the set Cfin of finite sets of complex numbers, as
a distributive lattice, which is isomorphic to the lattice Lcoh of coherent spaces,
studied in Sect. 9.7. This means that there is a bijective map g between the lattices
Cfin and Lcoh, which preserves the lattice structure (i.e., g(a) ∨ g(b) = g(a ∨ b) and
g(a) ∧ g(b) = g(a ∧ b)). We conclude in Sect. 9.8, with a discussion of our results.

9.2 Coherent States

Let H be the harmonic oscillator Hilbert space. Also, let

a = x + i p√
2

; a† = x − i p√
2

(9.1)

be the annihilation and creation operators, and D(A) the displacement operators

D(A) = exp(Aa† − A∗a); A ∈ C. (9.2)

Coherent states [1–3] are defined as

|A〉 = D(A)|0〉 = exp

(
−|A|2

2

) ∞∑
N=0

AN

√
N ! |N 〉; a|A〉 = A|A〉 (9.3)

where |N 〉 are number eigenstates. Let Π(A) be the corresponding ‘coherent pro-
jector’:

Π(A) = |A〉〈A|. (9.4)

The following proposition (which is well known and we give without proof), sum-
marizes three important properties of coherent states and coherent projectors:
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Proposition 9.1 (1) Resolution of the identity:

∫
C

d2A

π
Π(A) = 1. (9.5)

(2) Closure under displacement transformations:

D(z)Π(A)[D(z)]† = Π(A + z). (9.6)

(3) Closure under time evolution:

exp(i ta†a)Π(A) exp(−i ta†a) = Π [A exp(i t)]. (9.7)

Let

| f 〉 =
∑
N

fN |N 〉;
∑
N

| fN |2 = 1 (9.8)

be an arbitrary state. Then

f (z) = exp

( |z|2
2

)
〈z∗| f 〉 =

∑
N

fN zN√
N ! (9.9)

is an analytic function in the complex plane, called Bargmann function. For example,
the coherent state |A〉 is represented with the function exp

(
Az − 1

2 |A|2).
If the state | f 〉 is orthogonal to the coherent state |A〉, then A∗ is a zero of the

function f (z) (i.e., f (A∗) = 0).
A finite number of coherent states, are linearly independent. To show this, we

consider the coherent states |A1〉, ..., |An〉 and the relation

λ1|A1〉 + · · · + λn|An〉 = 0. (9.10)

From this follows that

n∑
j=1

λ j exp

(
−1

2
|A j |2

)
AN

j√
N ! = 0. (9.11)

Here we have an infinite number of equations with a finite number of unknowns, and
the only solution is λ1 = · · · = λi = 0.

Definition 9.1 A set of states {|si 〉} is called total, if there is no state inH, which is
orthogonal to all |si 〉.
Definition 9.2 Let f (z) be an entire function, and M(R) the maximum value of
| f (z)| on the circle |z| = R. The growth of f (z) is described by the order ρ and the
type σ
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ρ = lim sup
R→∞

ln lnM(R)

ln R
; σ = lim

R→∞
M(R)

Rρ
. (9.12)

This means that for large R, we get | f (z)| ≈ exp(σRρ).

Definition 9.3 Consider a sequence of complex numbers A1, A2, ... such that

lim
N→∞ |AN | = ∞ (9.13)

Let n(R) be the number of terms of this sequence within the circle |A| < R. The
density of this sequence is described with the numbers

η = lim sup
R→∞

ln n(R)

ln R
; δ = lim

R→∞
n(R)

Rη
(9.14)

The number of terms of this sequence in a large circle with radius R is n(R) ≈ δRη.

We say that the density (η, δ) of a sequence is greater than (η1, δ1) if η > η1 and also
if η = η1 and δ > δ1 (lexicographic order).

The resolution of the identity shows that the set of all coherent states

Σcoh = {|A〉 | A ∈ C}, (9.15)

is a total set. But there are many subsets of Σcoh which are also total sets, as shown
in the following proposition.

Proposition 9.2 (1) A subset of Σcoh which is uncountably infinite, is a total set of
coherent states.

(2) Let A1, A2, ... be a sequence of complex numbers.

(a) If the sequence An converges to some point A, then the countably infinite
set of coherent states {|A1〉, |A2〉, ...} is a total set.

(b) If the sequence |An| diverges, and its density is greater than (2, 1), then the
countably infinite set of coherent states {|A1〉, |A2〉, ...} is a total set.

Proof The proof of the parts (1) and (2a) of the proposition, is based on the fact that
the zeros of analytic functions (in our case of Bargmann functions), are isolated from
each other. The proof of the part (2b), is based on the relationship between the growth
of Bargmann functions and the density of their zeros. We refer to the literature for
the details of these proofs (e.g., [15, 16] and references therein).

There are other well known properties of coherent states (e.g., related to the
uncertainty relation). In this paper, the term coherence refers to the properties in the
two Propositions9.1 and 9.2 above, and we will study other more general structures
which are coherent in the sense that they obey these properties.
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9.3 The Birkhoff-von Neumann Lattice L

We consider the setL of closed subspaces of the harmonic oscillator Hilbert spaceH
(or more generally a separable Hilbert space). The zero-dimensional subspace that
contains only the zero vector is an element of L which we denote as O. The space
H is also an element of L.

For any elements h1, h2 of L, we define the following operations:

• The conjunction or logical AND operation, denoted with ∧:

h1 ∧ h2 = h1 ∩ h2. (9.16)

• The disjunction or logical OR operation, denoted with ∨:

h1 ∨ h2 = span[h1 ∪ h2]. (9.17)

This is the closed subspace that contains all superpositions of vectors in the sub-
spaces h1, h2. The overline indicates closure.

• The negation or logical NOT operation, denoted with ¬:

¬h = h⊥. (9.18)

h⊥ is the orthocomplement of h, i.e., an orthogonal space to h such that h ∨ h⊥ =
H.

The set L with these operations is the Birkhoff-von Neumann orthomodular lattice,
that describes the logic of quantum mechanics [5–7].

We note that:

• The partial order in this lattice is ‘subspace’. We use the notation h1 ≺ h2 to
indicate that h1 is a subspace of h2.

• Let Π(h) be the projector to the subspace h. Then

Π(h1)Π(h2) = 0 → h1 ∧ h2 = 0. (9.19)

The converse is not true in general. However, if the Π(h1), Π(h2) commute, then
the h1 ∧ h2 = 0 implies that Π(h1)Π(h2) = 0.

• In any lattice the following distributivity inequalities hold:

(h1 ∧ h2) ∨ h0 ≺ (h1 ∨ h0) ∧ (h2 ∨ h0)

(h1 ∨ h2) ∧ h0 � (h1 ∧ h0) ∨ (h2 ∧ h0) (9.20)

They become equalities in distributive lattices. L is not a distributive lattice. The
following projectors can detect deviations from distributivity [17]:
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P1 = Π [(h1 ∨ h0) ∧ (h2 ∨ h0)] − Π [(h1 ∧ h2) ∨ h0]
P2 = Π [(h1 ∨ h2) ∧ h0] − Π [(h1 ∧ h0) ∨ (h2 ∧ h0)] (9.21)

Measurements with these projectors which give a non-zero result, prove the non-
distributive nature of the lattice L.

9.4 Coherent Spaces

9.4.1 Coherent Projectors of Rank n

We define coherent subspaces ofH, and denote them with upper case H , in order to
distinguish them from general closed subspaces, which we denoted with lower case
h. H(A1) is the one dimensional coherent subspace that contains the coherent state
|A1〉.
Definition 9.4 LetA = {A1, ..., An} be a finite set of complex numbers. The coher-
ent subspace of H denoted as H(A), is the n-dimensional subspace

H(A) = H(A1, ..., An) = H(A1) ∨ ... ∨ H(An), (9.22)

and contains all the superpositions λ1|A1〉 + · · · + λn|An〉 (which as we explained
earlier are linearly independent). If A = ∅, the H(∅) = O.

In the Bargmann representation, H(A) contains the functions

H(A) =
{
f (z) =

∑
λi exp(Ai z)|Ai ∈ A; λi ∈ C

}
, (9.23)

where the sum is finite. We note that the growth of all these functions has order 1. A
function with different order of growth, does not belong in any of the coherent H(A).
Examples are, the number states which have order of growth 0, and the squeezed
states which have order of growth 2.

WecallΠ(A) = Π(A1, ..., Ai ) the projector to the space H(A) = H(A1, ..., Ai ),
and

Π⊥(A) = Π⊥(A1, ..., Ai ) = 1 − Π(A1, ..., Ai ). (9.24)

For practical calculations, we can find theΠ(A1, ..., Ai ) inductively using the Gram-
Schmidt orthogonalization algorithm:

Π(A1, ..., Ai ) = Π(A1, ..., Ai−1) + �(Ai |A1, ..., Ai−1)

�(Ai |A1, ..., Ai−1) = Π⊥(A1, ..., Ai−1)Π(Ai )Π
⊥(A1, ..., Ai−1)

Tr[Π⊥(A1, ..., Ai−1)Π(Ai )] (9.25)
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The linear independence of a finite number of coherent states ensures that the denom-
inator is different from zero. For example,

Π(A1, A2) = Π(A1) + Π⊥(A1)Π(A2)Π
⊥(A1)

Tr[Π⊥(A1)Π(A2)] (9.26)

The following proposition generalizes Proposition 9.1 to coherent projectors:

Proposition 9.3 (1) Resolution of the identity:

∫
C

d2A

nπ
Π(A, A + d2, ..., A + dn) = 1. (9.27)

Here the d2, ..., dn are fixed complex numbers.
(2) Closure under displacement transformations:

D(z)Π(A1, ..., An)[D(z)]† = Π(A1 + z, ..., An + z). (9.28)

(3) Closure under time evolution:

exp(i ta†a)Π(A1, ..., An) exp(−i ta†a) = Π [A1 exp(i t), ..., An exp(i t)]. (9.29)

Proof The proof has been given in [4].

A state |s〉 is orthogonal to the coherent subspace H(A1, ..., Ai ) (i.e., Π(A1, ...,

Ai )|s〉 = 0), if and only if the A∗
1, ..., A

∗
i are zeros of its Bargmann function s(z)

(i.e., s(A∗
j ) = 0 for j = 1, ..., i).

Definition 9.5 A set of subspaces {hi } is called total, if there is no state in L, which
is orthogonal to all hi .

The following proposition generalizes Proposition 9.2, to coherent projectors:

Proposition 9.4 (1) A set of coherent subspaces which is uncountably infinite, is a
total set.

(2) LetAi = {Ai1, ..., Aiki } with i = 1, 2, ..., be a countable collection of finite sets
of complex numbers. Using a lexicographic order, we relabel the Ai j as An.

(a) If the sequence An converges to some point A, then the countably infinite
set of coherent spaces H(Ai ) is a total set.

(b) If the sequence |An| diverges and it has density greater than (2, 1) then the
countably infinite set of coherent spaces H(Ai ) is a total set.

Proof The proof has been given in [4].

Example 9.1 The uncountably infinite set of coherent spaces

Σ
(n)
coh = {H(A, A + d2, ..., A + dn) | A ∈ C}, (9.30)

is a total set. Here the d2, ..., dn are fixed complex numbers.
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Proposition 9.5 LetA = {A1, ..., An} be a finite set of complex numbers, and g(A)

the n × n Hermitian matrix of rank n, with elements

gi j (A) = 〈Ai |A j 〉 = exp

(
A∗
i A j − 1

2
|Ai |2 − 1

2
|A j |2

)
. (9.31)

Also let G = g−1 be its inverse matrix (it exists because the coherent states are
linearly independent). Then

Π(A) =
∑
i, j

Gi j (A)|Ai 〉〈A j |. (9.32)

Proof The proof has been given in [4].

The diagonal elements of g are equal to 1. In the limit minki, j (|Ai − A j |) → ∞
the off-diagonal elements of the matrix g become zero and g → 1 (the set of the n
coherent states becomes ‘almost orthonormal’).

9.5 Physical Applications

9.5.1 The Density Matrix 1
nΠ(A1, ..., An)

The operator

R(A1, ..., An) = 1

n
Π(A1, ..., An) (9.33)

is a density matrix. Using its eigenvectors as a basis, this density matrix becomes

R(A1, ..., An) = 1

n

(
1n,n 0n,∞
0∞,n 0∞,∞

)
(9.34)

where the notation is self-explanatory. R represents a mixed state with

Tr{[R(A1, ..., An)]2} = 1

n
, (9.35)

and von Neumann entropy

− Tr[R(A1, ..., An) log R(A1, ..., An)] = log n. (9.36)

We calculated the average position and momentum
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〈x〉 = Tr[x R(A1, ..., An)] =
√
2

n
Re

(∑
Ai

)

〈p〉 = Tr[pR(A1, ..., An)] =
√
2

n
Im

(∑
Ai

)
. (9.37)

We also calculated the uncertainties for the special case R(A1, A2):

(Δx)2 = Tr[x2R(A1, A2)] − {Tr[x R(A1, A2)]}2

= 1

2
+ σ(|A1 − A2|) + 1

2
[Re(A1 − A2)]2, (9.38)

and

(Δp)2 = Tr[p2R(A1, A2)] − {Tr[pR(A1, A2)]}2

= 1

2
+ σ(|A1 − A2|) + 1

2
[Im(A1 − A2)]2, (9.39)

where

σ(|A|) = |A|2
exp(|A|2) − 1

= 1

1 + |A|2
2! + |A|4

3! + ...
. (9.40)

Furthermore, we calculated the average number of photons Tr(Ra†a) and the
second order correlation

g(2)
R = Tr[(a†)2a2R]

[Tr(a†aR)]2 (9.41)

for the special case R(A1, A2). We get:

Tr
[
R(A1, A2)a

†a
] = 1

2
[|A1|2 + |A2|2 + σ(|A1 − A2|)] (9.42)

Also

g
(2)
R = 1 + (|A1|2 − |A2|2)2 − [σ(|A1 − A2|)]2 + 2(A∗

1A2 + A∗
2A1)σ(|A1 − A2|)

[|A1|2 + |A2|2 + σ(|A1 − A2|)]2
(9.43)

In the special case A2 = −A1 it reduces to

g(2)
R = 1 − σ(2|A1|)

2|A1|2 + σ(2|A1|) . (9.44)

It is seen that g(2)
R can take values less than 1, and in these cases we get antibunching.
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9.5.2 Generalized Q and P Functions

If ρ is a density matrix, Q(A1, ..., An|ρ) = Tr[ρΠ(A1, ..., An)] is the probability
that a measurement with the projector Π(A1, ..., An) will give ‘yes’. The function
Q(A1, ..., An) is a generalized Q-function (or Husimi function). From (9.27) it fol-
lows that

∫
C

d2A

nπ
Q(A, A + d2, ..., A + dn|ρ) = 1. (9.45)

The various Π(A1, ..., An) do not commute, and Q(A1, ..., An) is not a true proba-
bility distribution. It is a quasi-probability distribution of a quantum particle being
at the point A1, OR at the point A2,..., OR at the point An in phase space. We stress
that this is the quantum OR in (9.17) that involves superpositions, and it is different
from the classical OR in Boolean algebra (which corresponds to union of sets).

It is important for the emerging subject of quantum computation, to involve the
OR, AND, NOT logical operations in many practical calculations, and perform
related experiments. This ‘applied quantum logic’ might lead to novel quantum tech-
nologies. This is especially true, for the OR operation which involves superpositions,
and consequently is very different from its classical counterpart which is union of
sets.

The generalized Q-function Q(A1, ..., An|ρ) contains the OR operation, and
deserves further study within a generalized phase space formalism, that also defines
a generalized P-function:

ρ =
∫
C

d2A

nπ
P(A, A + d2, ..., A + dn|ρ)Π(A, A + d2, ..., A + dn). (9.46)

In the case of coherent states (i.e., projectors of rank 1) it is known that the P-function
can be highly singular (e.g., for squeezed states), and it is interesting to study this
for projectors of rank n.

9.6 The Set Cfin of Finite Sets of Complex Numbers

Stone [8–10] has shown that there are deep links between three apparently different
areas:

• distributive lattices
• a class of idempotent rings known as Boolean rings
• topological spaces

We use the definition of a ring, which does not require the existence of unity. If the
ring has a unity, we indicate this explicitly with the term ring with a unity.
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We consider the set Cfin of all finite subsets A of C (including the empty set ∅).
Cfin is a subset of the powerset 2C which contains all (finite and infinite) subsets of
C.

Using Stone’s formalism, we show that Cfin can be viewed as distributive lattice,
and as a Boolean ring (we do not discuss the topological aspects). Later these results
will be extended to the lattice of coherent spaces, which is isomorphic to Cfin.

9.6.1 Cfin as a Distributive Lattice

In Cfin, we define as disjunction (logical OR) and conjunction (logical AND), the
union and intersection correspondingly:

A1 ∨ A2 = A1 ∪ A2; A1 ∧ A2 = A1 ∩ A2 (9.47)

These operations are performed only a finite number of times, so that the result
is a finite set, i.e., an element of Cfin. With these operations Cfin is a distributive
lattice. Cfin has least element (denoted as 0) which is the empty set ∅, but does not
have greatest element (denoted as 1). Therefore negation (complementation) is not
defined, and Cfin is not a Boolean algebra. The partial order associated to this lattice
is subset (denote as ≺ or ⊆). A general property (which actually holds in every
lattice) is

A1 ≺ A2 → A1 ∨ B ≺ A2 ∨ B
A1 ≺ A2 → A1 ∧ B ≺ A2 ∧ B. (9.48)

LetC1 be the subset ofCfin that contains all sets {A}with cardinality one (A ∈ C).
C1 is dense in Cfin, in the sense of the following equivalent statements:

• for every A ∈ Cfin, there is some {A} ∈ C1 such that {A} ≺ A.
• If we consider all {Ai } ∈ C1 such that {Ai } ≺ A (with i = 1, ..., N ), then

A = {A1} ∪ ... ∪ {AN }. (9.49)

9.6.2 Cfin as a Boolean Ring

In the set Cfin we define multiplication and addition of two elements A1, A2, as the
intersection and symmetric difference:

A1 · A2 = A1 ∩ A2; A1 + A2 = (A1 \ A2) ∪ (A2 \ A1) (9.50)
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In comparison with lattice theory, we replace here A1 ∪ A2 (i.e., the logical OR
operation), with the A1 + A2 (which is the logical XOR operation). The A1 · A2 =
A1 ∩ A2 (i.e., the logical AND operation), is an operation in both lattice formalism
and Boolean ring formalism.

With these operations (which are performed a finite number of times), Cfin is a
commutative ring (without unity), with the extra property of idempotent multiplica-
tion:

A1 · A1 = A1. (9.51)

The ∅ plays the role of additive zero. The additive inverse of A is A itself:

− A = A. (9.52)

A ringwhich has idempotentmultiplication is commutative, and it is called aBoolean
ring [8, 10].

Boolean rings with a unity are Boolean algebras. Cfin does not have a unity and
as we explained earlier is not a Boolean algebra. The partial order ‘subset’ obeys the
property (9.55)

A1 ≺ A2 → A1 · B ≺ A2 · B, (9.53)

but A1 ≺ A2 does not imply A1 + B ≺ A2 + B.
Remark 9.1 If we only consider subsets A of a finite set Ω of complex numbers,
then the Boolean ring has a unity, which is Ω = 1.

9.7 The Set Lcoh � Cfin of Coherent Subspaces

The Birkhoff-von Neumann lattice L is not distributive. Here we consider its sub-
lattice Lcoh that contains the coherent subspaces of L, and we show that it is a
distributive lattice, isomorphic to Cfin. This can be interpreted as an indication of
the semi-classical nature of coherent states (because distributivity is a property of
classical logic described with Boolean algebras).

We note that Lcoh contains superpositions of coherent states, which are non-
classical states (e.g., theWigner function for |A1〉 + |A2〉 showsquantum interference
in phase space). And yet the classical property of distributivity, holds in the lattice
Lcoh.

Like Cfin, the Lcoh is also a Boolean ring. Many of the results in this section are
analogous (isomorphic) to the ones in the previous section. The formalism in this
section, provides the theoretical foundation for computation with coherent states,
e.g., for quantum gates with coherent states.
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9.7.1 Lcoh as a Distributive Lattice

Lcoh is the set of coherent subspaces H(A), where A is a finite subset of C. The
H(∅) = O is an element of Lcoh.

Proposition 9.6 The disjunction and conjunction of coherent subspaces are given
by

H(A1) ∨ H(A2) = H(A1 ∪ A2); H(A1) ∧ H(A2) = H(A1 ∩ A2). (9.54)

Proof We start from the definitions for conjunction and disjunction in (9.16) and
(9.17), and we use the fact that the sets A1,A2 are finite, and therefore the corre-
sponding coherent states are linearly independent.

As above, only a finite number of disjunctions and conjunctions are considered.Lcoh

has the H(∅) = O as least element, but does not have a greatest element and it is not
a Boolean algebra. The latticesLcoh andCfin are isomorphic to each other. Therefore
Lcoh is a distributive lattice, in contrast to the Birkhoff-von Neumann latticeLwhich
is not distributive.

If H(A1) ∧ H(A2) = O, the coherent spaces H(A1), H(A2), have no vectors in
common, or equivalently, they have no coherent states in common. The equivalence
is based on the fact that a finite number of coherent states are linearly independent.

The partial order associated to this lattice is ‘subspace’ (denoted as ≺). Then

H(A1) ≺ H(A2) → H(A1) ∨ H(B) ≺ H(A2) ∨ H(B)

H(A1) ≺ H(A2) → H(A1) ∧ H(B) ≺ H(A2) ∧ H(B). (9.55)

Let L1 be the subset of Lcoh that contains all one-dimensional coherent spaces
H(A). L1 is dense in Lcoh, in the sense of the following equivalent statements:

• for every H(A) ∈ Lcoh, there is some H(A) ∈ L1 such that H(A) ≺ H(A).
• If we consider all H(Ai ) ∈ L1 such that H(Ai ) ≺ H(A) (with i = 1, ..., N ), then

H(A) = H(A1) ∨ ... ∨ H(AN ). (9.56)

9.7.2 Lcoh as a Boolean Ring

Proposition 9.7 The set of vectors H(A)minus the set of vectors H(B), is equal to

H(A) \ H(B) = H(A \ B) (9.57)

Proof We assume that a vector in H(A)

|sA〉 =
∑

λi |Ai 〉; Ai ∈ A; λi �= 0, (9.58)
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is equal to a vector in H(B)

|sB〉 =
∑

μi |Bi 〉; Bi ∈ B; μi �= 0. (9.59)

The fact that a finite number of coherent states are linearly independent, implies
that the coherent states |Ai 〉 = |Bi 〉 (and λi = μi ). Therefore the subtraction of the
vectors from H(A) which also belong to H(B), is equivalent to the subtraction of
the coherent states from H(A), which also belong to H(B).

In Lcoh we define addition as

H(A1) + H(A2) = [H(A1) \ H(A)2] ∪ [H(A2) \ H(A1)] = H(A1 + A2)

(9.60)

The proof of the equality follows immediately from Proposition 9.7. We also define
multiplication as:

H(A1) · H(A2) = H(A1 · A2) = H(A1) ∧ H(A2). (9.61)

Only finite sums and finite products, are considered. Lcoh with these operations is a
ring with idempotent multiplication:

H(A1) · H(A1) = H(A1). (9.62)

H(∅) = O is the zero in this ring. There is no unity element. The additive inverse of
H(A) is H(A) itself:

− H(A) = H(A). (9.63)

Lcoh is a Boolean ring, isomorphic to Cfin.
In analogy to (9.53)

H(A1) ≺ H(A2) → H(A1) · H(B) ≺ H(A2) · HB). (9.64)

But H(A1) ≺ H(A2) does not imply H(A1) + H(B) ≺ H(A2) + H(B).

Example 9.2 Let

A1 = {A, B,C}; A2 = {C, D}; A, B,C, D ∈ C. (9.65)

In the Bargmann representation, H(A1) ∨ H(A2) contains the functions

f (z) = λ1 exp(Az) + λ2 exp(Bz) + λ3 exp(Cz) + λ4 exp(Dz); λi ∈ C, (9.66)

H(A1) ∧ H(A2) = H(A1) · H(A2) contains the functions
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f (z) = λ exp(Cz); λ ∈ C (9.67)

and H(A1) + H(A2) contains the functions

f (z) = λ1 exp(Az) + λ2 exp(Bz) + λ3 exp(Dz); λi ∈ C. (9.68)

Remark 9.2 If we only consider subsets A of a finite set Ω of complex numbers,
then the Boolean ring has a unity, which is H(Ω) = 1.

Remark 9.3 Let U be a unitary transformation and UH(A) the space of all states
U |s〉, where |s〉 belongs to H(A). We denote as ULcoh the lattice of all spaces
UH(A), with A ∈ Cfin. Then ULcoh is a distributive lattice and a Boolean ring,
isomorphic to Lcoh.

9.7.3 Applications

Coherent spaces (rather than individual states) could be used as an ‘alphabet’ for
quantum communication purposes. In this case noise which changes an individual
state into another individual state within the same coherent space, does not produce
an error. This might be useful in areas like quantum error correction and coding.

For this reason, we consider quantum gates or other devices that have as inputs
and outputs states in a coherent space (i.e. coherent states or finite superpositions
of coherent states). In the Bargmann representation, states in coherent spaces are
described with functions that have order of growth 1. An arithmetic-like structure
that treats coherent spaces like ordinary numbers, can be very useful in the study of
these devices.

Such a device with M inputs and N outputs, can be described as a function from
(Lcoh)

M to (Lcoh)
N :

f :
⎛
⎝ H(A1)

. . .

H(AM)

⎞
⎠ →

⎛
⎝H(B1)

. . .

H(BN )

⎞
⎠ , (9.69)

Here H(A1), ..., H(AM ), H(B1), ..., H(BN ) are elements of the Boolean ring Lcoh.
For example the CNOT gate, defined in the present context as

f :
(
H(A1)

H(A2)

)
→

(
H(A1)

H(A1) + H(A2)

)
. (9.70)

Here the two outputs are any states in the coherent spaces H(A1), H(A2), and the
two outputs are any states in the coherent spaces H(A1), H(A1) + H(A2).

As an example, we consider the sets A1 and A2 in (9.65). In this case the two
inputs are one of the states (in the Bargmann representation)
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f1(z) = λ1 exp(Az) + λ2 exp(Bz) + λ3 exp(Cz)

f2(z) = λ1 exp(Cz) + λ2 exp(Dz); λi ∈ C. (9.71)

and the two outputs

f3(z) = λ1 exp(Az) + λ2 exp(Bz) + λ3 exp(Cz)

f4(z) = λ1 exp(Az) + λ2 exp(Bz) + λ3 exp(Dz); λi ∈ C. (9.72)

As we explained earlier, if all the A1,A2 are subsets of a finite set of complex
numbers Ω , then the Boolean ring Lcoh has a unity, which is the H(Ω) = 1. In this
case we can write (9.70), in a matrix form as

f :
(
H(A1)

H(A2)

)
→

(
1 O
1 1

)(
H(A1)

H(A2)

)
. (9.73)

We can then use matrices, with elements in the Boolean ringLcoh, to describe circuits
that involve many CNOT gates. This is an example of the merit of having a ring
structure for the coherent subspaces.

9.8 Discussion

Given a finite set of complex numbers A, a coherent space H(A) is a subspace
of the Hilbert space, spanned by the |A| coherent states |Ai 〉 where Ai ∈ A. A
finite number of coherent states are linearly independent, and therefore H(A) is an
|A|-dimensional space. The corresponding coherent projectors, have the coherence
properties in Propositions 9.3 and 9.4 (resolution of the identity, etc.).

The set of all coherent spaces form the distributive latticeLcoh,which is a sublattice
of the Birkhoff-von Neumann lattice L (which is not distributive). Using Stone’s
formalism that links distributive lattices to Boolean rings, we have studied Lcoh

as a Boolean ring. This provides an arithmetic-like structure, which treats coherent
Hilbert spaces like ordinary numbers. This can be very useful in the study of quantum
gates and other devices that operate with coherent states or finite superpositions of
coherent states.

The relationship between the non-distributive lattice L, with its distributive sub-
lattice Lcoh, requires further study. Distributivity is a property that holds in Classical
Physics, but does not hold in Quantum Physics. But distributivity holds in sublat-
tices of L like Lcoh. This might be interpreted as semi-classical nature of the states
in coherent spaces, but we stress that Lcoh also contains superpositions of coherent
states which are usually viewed as non-classical states.

Coherent states have been studied for a long time, but we believe that the present
work presents novel features.
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