
Chapter 15
Coherent States and Their
Generalizations for a Charged Particle
in a Magnetic Field

Viktor V. Dodonov

Abstract This is a brief review of various families of coherent and squeezed states
(and their generalizations) for a charged particle in a magnetic field, that have been
constructed for the past 50 years. Although the main attention is paid to the Gaussian
states, various families of non-Gaussian states are also discussed, and the list of
relevant references is provided.

15.1 Introduction

Superposition states (wave packets) of charged particles moving in a magnetic field
attracted attention of many researchers for many reasons. First, some of them can be
considered as the simplest non-trivial two-dimensional generalizations of the coher-
ent states of a harmonic oscillator of the Schrödinger–Klauder–Glauber–Sudarshan
type. Second, there exist many different families of coherent and other superposition
states, originating from the infinite degeneracy of the energy spectrum in the absence
of a confining potential. Also, such states are interesting from the point of view of
quantum mechanics on the non-commutative plane. The goal of this chapter is to
describe main achievements in this ample area, trying to follow the historical order.
We consider mainly the case of a homogeneous (uniform) magnetic field. The papers
related to inhomogeneous fields are cited in Sect. 15.5.6.

The main physical system under study is a quantum spinless particle with mass
M and charge e, moving in the xy-plane under the action of a uniform magnetic
fieldH = (0, 0, H0) = rotA(r), directed along z-axis. Some oscillator-like potential
V (x, y) = k1x2 + k2y2 can be also added. The Hamiltonian reads

Ĥ = 1

2M

[
p̂ − e

c
A(x, y)

]2 + V (x, y). (15.1)
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15.1.1 The Early History: Before 1968

Solutions of the stationary Schrödinger equation Ĥψ(x, y) = Eψ with Hamiltonian
(15.1) were found for the first time by Fock [1] for the so called “circular” (or
“symmetric”) gauge of the vector potential As = [H × r]/2 = (H0/2)(−y, x) and
V (x, y) = Mω2

0

(
x2 + y2

)
/2. In this case Hamiltonian (15.1) can be written also as

Ĥ = 1

2M
p̂2 + M

2
ω̃2r̂2 − ωL L̂z, ωL = eH0

2Mc
, ω̃2 = ω2

0 + ω2
L , (15.2)

where L̂ z = x̂ p̂y − ŷ p̂x is the canonical angular momentum operator. Normalized
orthogonal solutions in polar coordinates can be expressed in terms of the generalized
Laguerre polynomials (hereafter μ ≡ Mω̃/�):

ψnr l(r,ϕ) =
√

μnr !
π (nr + |l|)!

(
μr2

)|l|/2
L(|l|)
nr

(
μr2

)
exp

(
− μ

2
r2 + ilϕ

)
. (15.3)

The radial and angular momentum quantum numbers determine the energy levels

Enr l = �ω̃ (1 + |l| + 2nr ) − �ωLl, nr = 0, 1, 2, . . . , l = 0,±1,±2, . . . .

(15.4)
This problem was analyzed by Darwin in [2]. The special case of V = 0 was solved
also by Page [3], although the Laguerre polynomial structure of the solutions was
not recognized by him.

Landau [4] obtained solutions in terms of the Hermite polynomials for V = 0,
choosing the gaugeA = H0(−y, 0) (called now as “Landau gauge”). The remarkable
feature of solutions with V = 0 (the “free particle” case) is the infinite degeneracy
of the energy spectrum, which results in many interesting consequences.

The first example of non-spreading Gaussian packets in the presence of a homo-
geneous magnetic field (with V = 0) was given at the dawn of quantum mechanics
by Darwin [5]. The quantum mechanical propagator in this case was obtained by
Kennard [6]. Another interesting example was given later by Husimi [7]. The role of
constants of motion was emphasized and elucidated by Johnson and Lippmann [8].

15.1.2 Main Achievements Since 1968: The Content of This
Chapter

The first coherent states of a charged particle in a uniform stationary magnetic field
were constructed by Malkin and Man’ko [9] as straightforward generalizations of
the Glauber coherent states [10] of a one-dimensional harmonic oscillator to the case
of two spatial dimensions. These states are discussed in Sect. 15.3, together with
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similar states introduced by other authors a little later. The further generalizations: to
the case of a time-dependent magnetic field and for relativistic particles, described
by the Klein–Gordon and Dirac equations,—are also considered in this section.

From the modern point of view, the Malkin–Man’ko coherent states (MMCS)
can be considered as the simplest special case of a large family of coherent states
introduced by Klauder [11] (and later by Perelomov [12]). These states have the form

exp
[
i Q̂

]
| f 〉, where | f 〉 is some “fiducial” state and Q̂ is some linear combination

of generators of a Lie group. Namely, the MMCS are obtained from | f 〉 = |0〉 (the
vacuum state) by applying to it the operator exp

[
i Q̂1

]
, where Q̂1 is a linear combina-

tion of the annihilation and creation operators. The next step is to act on the coherent

(or some other) states by the operator exp
[
i Q̂2

]
, where Q̂2 is some quadratic form

of the annihilation and creation operators. Such states became very popular under
the name of “squeezed” states since 1980s [13], although they were considered, as a
matter of fact, much earlier [6, 7, 14, 15]. These states have the form of more or less
generic Gaussian wave packets (in the case of fiducial coherent states). Squeezed
states of non-relativistic particles in a homogeneous magnetic field are considered in
Sect. 15.4. A special attention there is paid to the so called “geometrical” squeezed
states and the Gaussian packets with a fixed mean value of the angular momentum.

Non-Gaussian wave packets are another wide family of quantum superpositions.
They can be created using different procedures. One of them is to apply the Klauder
scheme to non-vacuum (non-coherent) fiducial states. This line takes its origin from
the displaced Fock states of Plebansky [16]. The second direction is to look for
eigenstates of squares or products of the annihilation operators. It takes its origin
from the paper by Barut and Girardello [17]. One of the simplest examples of such
states are even and odd coherent states [18], which are eigenstates of the operators
â2. Specific features of analogs of these states for two space dimensions in the
presence of a magnetic field (including some inhomogeneous fields) are discussed
in Sect. 15.5. Concrete subfamilies of non-Gaussian states, considered there, include
“partially coherent” and “semi-coherent” states, “photon-added states”, various kinds
of “nonlinear coherent states”, “supersymmetric coherent states”, and some others.

15.2 Basic Equations and Their Integrals of Motion

The equations of motion for a free charged particle in a homogeneous magnetic field
are as follows (they are the same both in the classical case and for the Heisenberg
operators in the quantum case):

ẍ = ωc ẏ, ÿ = −ωc ẋ, (15.5)
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where ωc = eH0/Mc is the cyclotron frequency. If this frequency does not depend
on time, then a consequence of (15.5) is the existence of linear integrals of motion

X = x + πy/(Mωc), Y = y − πx/(Mωc), (15.6)

whereπ = p − eA/c = Mv is the kinetic momentum. These constants of motion are
nothing but the coordinates of the center of a circle which the particle rotates around.
Such an interpretation was crucial for the derivation of the famous formula of the
Landau diamagnetism [4]. Later on, the significance of integrals of motion (15.6)
was emphasized in [8, 19–22]. In particular, they are important for the construction
of coherent and squeezed states. The coordinates of the relative motion (with respect
to the center of trajectory) are proportional to the kinetic momenta. In the operator
form they can be written as

ξ̂ = x̂ − X̂ = −π̂y/(Mωc), η̂ = ŷ − Ŷ = π̂x/(Mωc). (15.7)

The kinetic momenta operators do not commute:
[
π̂x , π̂y

] = i�Mωc. Consequently,
the following commutation relations hold:

[
ξ̂, η̂

] = − [
X̂ , Ŷ

] = i�

Mωc
,

[
ξ̂, X̂

] = [
ξ̂, Ŷ

] = [
η̂, X̂

] = [
η̂, Ŷ

] = 0. (15.8)

Another consequence of (15.5) is the existence of the quadratic integral of motion,
which can be considered as the generalized angular momentum:

L = xπy − yπx + Mωc
(
x2 + y2

)
/2. (15.9)

It coincides formally with the canonical angular momentum Lcan = xpy − ypx in
the case of “circular” gauge of the vector potential. The Hamiltonian (15.1) and the
angular momentum (15.9) can be written in terms of “geometric” coordinates as
follows:

H = Mω2
c

(
ξ2 + η2

)
/2, L = Mωc

(
X2 + Y 2 − ξ2 − η2

)
/2. (15.10)

In addition, the Hamiltonian is proportional to the “intrinsic” angular momentum

J = ξπy − ηπx = −2H/ωc, (15.11)

which is important for constructing coherent states [23].
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15.2.1 Annihilation and Creation Operators in the Magnetic
Field

The main ingredients for building coherent states of the Glauber type [10] are
the annihilation and creation operators, satisfying the boson commutation relations[
â, â†

] =
[
b̂, b̂†

]
= 1. There are many possibilities to construct such operators as

linear combinations of four operators x̂ , ŷ, p̂x , p̂y . But in view of commutation
relations (15.8), the most natural choice seems to be [9]

b̂ =
√

Mωc

2�

(
X̂ − i Ŷ

)
, â =

√
Mωc

2�

(
η̂ − i ξ̂

)
= π̂x + i π̂y√

2�Mωc
. (15.12)

We assume hereafter that ωc > 0. Then the following relations hold:

Ĥ = �ωc

(
â†â + 1

2

)
, L̂ = �

(
b̂†b̂ − â†â

)
,

[
L̂, âb̂

]
=

[
L̂, â†b̂†

]
= 0.

(15.13)
It is worth noting that the sign of L̂ should be inverted if ωc < 0.

[One should be careful with the sign of cyclotron frequency ωc: many confusions
appear in various papers due to the negative sign of the electron charge. In view of
equations of motion (15.5), if ωc < 0, then one should replace ωc with |ωc| and make
the rotation by 90◦ in the coordinate plane: x → y, y → −x .]

15.3 Malkin–Man’ko Coherent States

Malkin and Man’ko [9] have introduced the two-dimensional coherent states |α,β〉,
which are common eigenstates of operators â and b̂ defined by relations (15.12):

â|α,β〉 = α|α,β〉, b̂|α,β〉 = β|α,β〉. (15.14)

They found the following expression for the function Φαβ(x, y) = 〈x, y|α,β〉:

Φ
(MM)

αβ =
√

Mωc

2π�
exp

[
−ζζ∗ + √

2βζ + i
√
2αζ∗ − iαβ − 1

2

(|α|2 + |β|2)
]

,

(15.15)

ζ =
√

Mωc

4�
(x + iy), â = − i√

2

(
ζ + ∂

∂ζ∗

)
, b̂ = 1√

2

(
ζ∗ + ∂

∂ζ

)
.

(15.16)
Perhaps, it is worth noting here, that if one has a vector operator Â = (

â1, . . . âN
)
,

whose components satisfy the relations
[
â j , â

†
k

]
= δ jk and

[
â j , âk

] = 0, then the
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most simple way to obtain the eigenfunction of Â is to solve the following set of 2N
coupled equations for the function f (r;α) = 〈r|α〉 exp (|α|2/2) [24, 25]:

Â f (r;α) = α f (r;α), Â† f (r;α) = ∂ f (r;α)/∂α. (15.17)

The same coherent states (15.14)–(15.15) were constructed a little later by Feld-
man and Kahn [26]. In both papers, [9, 26], the circular gauge of the vector potential
was used. An arbitrary choice of gauge was considered by Tam [27]. However, the
transformation from the gauge As(r) to another gauge A(r) = As(r) + ∇g(r) is
quite simple: Φ

(g)

αβ (x, y) = Φ
(MM)

αβ (x, y) exp [ieg(r)/(�c)]. The Landau gauge was
used in [28, 29]. The transition to the free particle (the zero magnetic field limit)
in the coherent states (15.15) was studied in [30, 31]. Some generalizations were
considered recently in [32].

The decomposition of the coherent state (15.15) over eigenstates of operators â†â
and b̂†b̂ has the standard form

|α,β〉 = exp
[− (|α|2 + |β|2) /2

] ∞∑
n,m=0

αnβm

√
n!m! |n,m〉, (15.18)

â†â|n,m〉 = n|n,m〉, b̂†b̂|n,m〉 = m|n,m〉, L̂|n,m〉 = �(m − n)|n,m〉.
(15.19)

Mean values of the energy and angular momentum are given by the formulas

〈E〉 = �ωc
(|α|2 + 1/2

)
, 〈L〉 = �

(|β|2 − |α|2) . (15.20)

Fluctuations of the angular momentum are described by the variance

σL = 〈L̂2〉 − 〈L̂〉2 = �
2 (|β|2 + |α|2) , (15.21)

and they can be very large if |β| = |α| � 1, although 〈L〉 = 0 for such states. In view
of (15.10), the quantum numbers n and m give quantized eigenvalues of operators
of squares of the relative radius ξ2 + η2 and the center of orbit radius X2 + Y 2 [8]:

(
ξ2 + η2

)
n = �

Mωc
(2n + 1),

(
X2 + Y 2

)
m = �

Mωc
(2m + 1). (15.22)

The first equality means that the magnetic flux through the circular orbit of a charged
particle is quantized: Φn ≡ H0π

(
ξ2 + η2

)
n = (hc/e)(n + 1/2).
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15.3.1 Applications and Similar Constructions

Since coherent states form a complete set, they can be used to find the quantum prop-
agator G(r; r′; t) ≡ 〈r|Û (t)|r′〉 by means of a simple Gaussian integration. Using
this approach, one does not need any knowledge of energy eigenstates and the bilin-
ear summation formulas for the orthogonal polynomials (such as Mehler’s formula).
If Û (t) = exp(−i Ĥ t/�), then the Wick rotation t = −iβ� yields immediately the
equilibrium density matrix ρ̂eq = exp(−β Ĥ). In turn, the knowledge of the density
matrix enables one to calculate the equilibrium statistical sum and all equilibrium
average values: the mean energy, magnetization, etc. This approach was used for the
first time by Feldman andKahn [26], who applied coherent states (15.15) for a simple
derivation of the famous Landau formula for the diamagnetic susceptibility of a free
particle in a homogeneous magnetic field. Analogous calculations were performed in
[33]. The emission of electromagnetic radiation in the transition between two coher-
ent states in the homogeneous magnetic field (synchrotron radiation) was calculated
in [34–36]. In particular, it was concluded in [35] that “the average energy absorbed
from the radiation field when the cyclotron oscillators are initially in an n quantum
state is considerably less than when the initial state is a coherent superposition of
number states.” MMCS were used to calculate fluctuations of thermomagnetic cur-
rents in [37]. The oscillation (de Haas–van Alphen) effects in the magnetization were
considered in the framework of the approach based on the coherent states by Pavlov
et al. [38–40]. This subject was discussed in detail in [24] and later in [41]. For
other applications see [42–44], where the states similar to the Malkin–Man’ko ones
were used, in particular, in connection with the problem of dissipation in the pres-
ence of a homogeneous magnetic field. Further generalizations (magneto-electric,
bi-coherent and vector-coherent states) were considered in [45–47]. For the most
recent publications see, e.g., [48].

15.3.2 Time Dependent Coherent States

Coherent states in the case of time-dependent homogeneous magnetic fields were
constructed in [28, 49–54]. The main idea belongs to Lewis and Riesenfeld [49],
who showed that solutions to the nonstationary problem can be found as eigenstates
of some time-dependent integrals of motion (quantum invariants), i.e., operators
Î (t) satisfying the equation i�∂ Î/∂t − [Ĥ , Î ] = 0. They found quadratic invari-
ants (with respect to the coordinates and momenta operators) for the quantum oscil-
lator with a time-dependent frequency and the charged particle in a time-dependent
homogeneous magnetic field. The next important step was made byMalkin, Man’ko
and Trifonov [50–53], who showed that the calculations can be greatly simplified,
if one looks for linear integrals of motion. This idea was further developed in [28,
54–56].
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Hamiltonians (15.1) and (15.2) are special cases of the general quadratic
Hamiltonian (without linear terms for the sake of simplicity)

H = 1

2

2N∑
j,k=1

Bjk(t)q jqk ≡ 1

2
qB(t)q, B =

∥∥∥∥
b1 b2
b3 b4

∥∥∥∥ , b3 = b̃2,

where q = (p, r) is the 2N -dimensional vector, combining N -dimensional vectors
p and r, whereas B is a 2N × 2N symmetric matrix consisting of N × N blocks
(the tilde means the transposed matrix). Looking for N -dimensional linear integrals
of motion in the form Â(t) = λp(t)p̂ + λr (t)r̂, one can arrive at the set of coupled
ordinary linear differential equations for the complex N × N matrices λp and λr ,

λ̇p = λpb3 − λr b1, λ̇r = λpb4 − λr b2. (15.23)

To construct the time dependent coherent states, the initial conditions should be
chosen in such a way that Â(0) = â, where â is the vector operator describing the
selected set of initial annihilation operators. Then the time-dependent coherent state,
satisfying the equation Â|α〉 = α|α〉, has the following form in the coordinate rep-
resentation [24, 25, 56] (here α is the N -dimensional vector):

〈r|α〉 =
(
2π�

2
)−N/4

(
det λp

)1/2 exp

(
− i

2�
rλ−1

p λrr + i

�
rλ−1

p α + 1

2
αλ∗

pλ
−1
p α − 1

2
|α|2

)
.

(15.24)
For Hamiltonian (15.1) or (15.2), we have b1 = M−1E2, where E2 is the 2 × 2

unit matrix. Moreover, b4 = Mb̃2b2 in the absence of an additional potential, while
the structure of matrix b2 depends on the choice of gauge of the vector potential. For
the symmetric (S) and Landau (L) gauges we have, respectively,

b(S)
2 = ΩS(t)

∥∥∥∥
0 1

−1 0

∥∥∥∥ , b(L)
2 = ΩL(t)

∥∥∥∥
0 1
0 0

∥∥∥∥ , ΩL(t) = 2ΩS(t) = ωc(t).

It is easy to verify that in the case of symmetric gauge, due to the property b3 = −b2,
the solutions to (15.23) can be found in the form

λp = ε(t)FU (t), λr = −M ε̇(t)FU (t), U (t) = exp

[
1

2

∫ t

0
(b3 − b2) dτ

]
,

where F can be an arbitrary constant matrix and the scalar function ε(t) can be
any solution to the classical equation of motion for the harmonic oscillator with the
time-dependente frequency Ω = ΩS(t):

ε̈ + Ω2(t)ε = 0. (15.25)



15 Coherent States and Their Generalizations for a Charged Particle … 319

The explicit form of the unitary matrix U (t) is as follows,

U (t) =
∥∥∥∥
cos(φ) − sin(φ)

sin(φ) cos(φ)

∥∥∥∥ , φ =
∫ t

0
ΩS(τ )dτ .

To construct the coherent states, it is convenient to choose the complex solution to
(15.25), satisfying the condition

ε̇ε∗ − ε̇∗ε = 2i. (15.26)

If Ω = const > 0, then the required solution has the form ε(t) = Ω−1/2 exp(iΩt).

In this case, Â(0) =
(
â, b̂

)
[where â and b̂ are given by (15.12)] if

F = (2
√
M�)−1

∥∥∥∥
1 i
i 1

∥∥∥∥ , FU = (2
√
M�)−1

∥∥∥∥
eiφ ieiφ

ie−iφ e−iφ

∥∥∥∥ .

Then general formula (15.24) yields the following generalization of (15.15) to the
case of the time-dependent symmetric gauge of the vector potential:

〈x, y|α,β〉 = (
π�ε2/M

)−1/2
exp

[
i ε̇

2ε
|ζ̃|2 + ε−1

(
iα e−iφ ζ̃∗ + β eiφ ζ̃

)

−iαβε∗/ε − 1

2

(|α|2 + |β|2)
]

, ζ̃ ≡
√

M

�
(x + iy). (15.27)

Formula (15.27) was obtained (in slightly different forms) in [50–53]. Similar results
were found later, e.g., in [57]. Additional time-dependent homogeneous electric
fields were considered in [28, 53, 58]. Explicit expressions for the function ε(t) in
some special cases were found in [59] (see also [25] for the list of known explicit
solutions). Integrals ofmotion and their eigenfunctions in the case of non-commuting
coordinate operators,

[
x̂, ŷ

] = iϑ, were studied in [60] (for the symmetric gauge of
the time-dependent vector potential). The case of time-dependent Landau gauge is
more complicated [28].

Approximate quasiclassical packets, whose centers move along classical trajecto-
ries in arbitrary (inhomogeneous) electro-magnetic fields, were studied in [61, 62].
The case of homogeneousmagnetic fieldwas considered in the frame of this approach
in [63]. More general constructions were considered in [64]. A method of generation
of electron Gaussian coherent packets was proposed in [65].

15.3.3 Relativistic Coherent States on the Null Plane

The main difficulty for constructing coherent states in the relativistic case (for
the Klein–Gordon or Dirac equations) is the non-equidistant energy spectrum.
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For example, the spectrum of the Dirac particle in the homogeneous magnetic field,
first obtainedbyRabi [66], has the form En = ±√

M2c4 + p2z c
2 + 2Mc2�ωc(n + 1).

For this reason, superpositions defined as in (15.18) do not preserve their form with
time. A possibility to overcome this difficulty was found in [67–69]. Let us con-
sider, following [68], the Klein–Gordon equation for a charged particle of mass M
in uniform magnetic field B, directed along the z axis. Introducing the “null plane
operators” ξ̂3 = p̂0 − p̂z and η̂4 = (

p̂0 + p̂z
)
/2 (with p̂0 = i∂/∂t), one can rewrite

the equation in the form

[
−ξ̂3η̂4 + 1

2

(
π̂2
x + π̂2

y

) + 1

2
M2

]
ψ = 0. (15.28)

Here we assume e = c = � = 1 and use the pseudo-euclidean metric with g00 =
−gaa = 1, where a = 1, 2, 3.

The operator ξ̂3 ≡ Î is the integral of the motion for (15.28). Therefore in the
space of eigenfunctions of this operator with the fixed eigenvalue I, this equation can
be considered as the usual Schrödinger equation, if one introduces the “new time”
s = (t − z)/I . Then one can write ξ̂3η̂4 = i∂/∂s, so that the integrals of the motion,
generating coherent states, can be chosen as Â = â exp(iωcs) and b̂, where â and b̂
are given by (15.12). Their eigenstates are the Gaussian packets with respect to the
transverse coordinates (in the circular gauge of the vector potential) [68]:

ψαβ I (x, y, z, t) = (2π)−2
√
B exp

{
− is

2

(
B + M2

)
− 1

2
I (z + t) − B

4

(
x2 + y2

)

+
√

B

2
[αs(x − iy) + β(x + iy)] − αsβ − 1

2

(
|α|2 + |β|2

)}
, (15.29)

where αs = α exp(−i Bs). The case of homogeneous electric field and the field of a
plane wave was studied in [69] using the “null plane” formalism. Further develop-
ments in this direction can be found in [70, 71].

Approximate coherent states of the Dirac particle in a uniform magnetic field
were constructed in [72] in the case of high mean excitation quantum numbers, n =
〈â†â〉 � 1, when the energy spectrum can be considered as effectively equidistant.
Quasiclassical “trajectory coherent” states for a charged relativistic particle obeying
theKlein–Gordon equationwere considered in [73–75],whereas the case of theDirac
particle was studied in [76]. Gaussian wave packets for the Klein–Gordon particle in
the Foldy representation were constructed in [77]. Coherent-like superpositions of
energy states for the Dirac particle in a uniform magnetic field were considered in
[78], using some analogies with the famous Jaynes–Cummings model of quantum
optics. The dynamics of such packets was studied also in [79].
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15.4 Squeezed States and Gaussian Packets

Time dependent Gaussian packets of [28, 50–54], discussed in Sect. 15.3.2, can be
interpreted nowadays as two-dimensional squeezed states. Such packets were studied
also in [80]. However, one of the first examples was given in 1953 byHusimi [7], who
found the following time-dependent packets for the circular gauge of the constant
magnetic field (in dimensionless units):

ψ(r, t; a,β) =
√
sinh(2β)/(2π)

sinh(β + i t)
exp

{
−1

2
coth(β + i t)(r − a)2

−[r × a]z − a2 coth(2β)
}
. (15.30)

Explicit words “squeezed states in the magnetic field” were used, e.g., in papers
[81–87]. Evolution of squeezed states in the presence of a magnetic field was

considered in [88]. The most general construction exp
[
i Q̂2

]
|α〉 for the parti-

cle in a magnetic field was studied in detail in [89] under the name “correlated
coherent states”. Similar states, defined as common eigenstates of the operators

Â =
(
â − λb̂†

)
/
√
1 − |λ2 and B̂ =

(
b̂ − λâ†

)
/
√
1 − |λ2, were studied recently

in [90].

15.4.1 “Geometrical” Squeezed States

In many papers [81–88], the squeezing phenomena were considered with respect
to the canonical pairs of variables, such as x, px and y, py . However, the physical
meaning of the numerous formulas for the variances of these variables is not quite
clear. Therefore it was suggested in [89, 91, 92] to analyze the variances in the pairs
(X,Y ) (the center of orbit coordinates) and (ξ, η) (the relative motion coordinates).
The states possessing variances of any element of the pairs (X,Y ) or (ξ, η) less
than �/2mω0 were named “geometrical squeezed states” (GSS) in [92], in order to
emphasize that all the observables (X,Y, ξ, η) have the meaning of coordinates in
the usual (“geometrical”) space, and not in the phase space. The squeezed states
with respect to the X − Y pair were constructed in [93] as common eigenstates
of the Hamiltonian and the operator X̂ cos(Φ) + Ŷ sin(Φ), where Φ is a complex
parameter with negative imaginary part. Applications of the squeezed states in the
magnetic field to charged electron–hole systems were considered in [94, 95].

An interesting problem raised in [92] is how one could create GSS, starting from
coherent states of the Malkin–Man’ko type? For the single-mode systems such a
problem can be solved effectively by using quadratic Hamiltonians with time depen-
dent coefficients [24, 25, 96, 97]. But whether this can be done using time-dependent
magnetic fields in two dimensions? It appears that the answer depends on the choice
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of time-dependent gauge (or, from a more physical point of view, on the structure of
the induced electric field).

Let us suppose that the magnetic field varies in time at 0 < t < τ , assuming
the same constant value H0 for t < 0 and for t > τ . In such a case, it is possible
to achieve any degree of squeezing in x − px or y − py pairs, starting from any
coherent state [81–86]. However, the situation becomes quite different when one
considers squeezing in the X − Y or ξ − η pairs.

The strength of quantum fluctuations is characterized usually by the values of the
variances σαβ = 1

2 〈α̂β̂ + β̂α̂〉 − 〈α̂〉〈β̂〉 (where α,β = X,Y, ξ, η), combined into
the variance matrix σ = ‖σαβ‖. If the magnetic field does not depend on time, the
Hamiltonian Ĥ = π̂2/2m = mω2

c

(
ξ̂2 + η̂2

)
/2 does not contain operators X̂ and Ŷ .

Then the X − Y variances are constant in time, while the ξ − η variances perform
harmonic oscillations. For example, for t > τ ,

σξξ(t) = σξξ(τ ) cos2 (ω[t − τ ]) + σηη(τ ) sin2 (ω[t − τ ]) + σξη(τ ) sin (2ω[t − τ ]) .

It is not difficult to find the minimum of this expression as function of t :

σ
(min)
ξξ = 1

2

[
T −

√
T 2 − 4d

]
, T = σξξ + σηη, d = σξξσηη − σ2

ξη.

(15.31)
Formula (15.31) was derived for the first time in [98] under the name “principal
squeezing”. The physical meaning of invariants T and d was clarified in [24, 25, 99].
T is nothing but the double energy of quantum fluctuations. It is conserved for time–
independent Hamiltonians, but it varies in time for the nonstationary Hamiltonians.
As to the parameter d, it is conserved in time for any nonstationary (one–mode)
Hamiltonian: the only restriction is that the Hamiltonian must be quadratic with
respect to operators ξ̂ and η̂ [24, 25, 100]. The importance of this parameter is
explained by two reasons. First, it satisfies the generalized uncertainty relation d ≥
dmin ≡ (�/2mωc)

2. Secondly, for theGaussian states described by the densitymatrix
�̂, parameter d characterizes the degree of mixing of the quantum state, due to the
relation [101] Tr(�̂2) = (dmin/d)1/2 (we assume the normalization of the density
matrix Tr�̂ = 1). If we deal with a one–mode system, d(t) = dmin = const for any
initial coherent state. Then an arbitrary parametric excitation of the mode yields
T (t) > Tin = 2

√
dmin, and the systemoccurs automatically in a squeezed state. But in

the case of interactingmultimode systems the “degree of mixing” of every subsystem
can increase upon the interaction, so that no squeezing will arise.

To calculate the elements of the variancematrix at t > 0,we introduce the operator
vector q̂ = (

X̂ , Ŷ , ξ̂, η̂
)
. Since the Hamiltonian is quadraticwith respect to the com-

ponents of vector q̂, the Ehrenfest equations of motion for the mean values of these
components are linear. Consequently, we have a linear relation 〈̂q〉(t) = Λ(t)〈̂q〉(0),
where Λ(t) is some 4 × 4 symplectic matrix. Moreover, the initial variance matrix
σ(0) and the final one σ(t) are related by means of the same matrix Λ(t) as follows:
σ(t) = Λ(t)σ(0)ΛT (t). Here ΛT is the transposed matrix.
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Explicit expressions for the elements of matrix Λ(t) in the special cases of sym-
metric (“circular”) and Landau gauges were given in [92]. The following formulas
were obtained in the symmetric case for the initial coherent states:

σξη = σXY = 0, σξξ = σηη = σXX = σYY = �

8ω2
cm

[
ω2
c |ε|2 + 4|ε̇|2] , (15.32)

where function ε(t) is defined according to (15.25) and (15.26). Therefore

σξξ ≥ �|εε̇|
2ωcm

≥ �Im(ε∗ε̇)
2ωcm

= �

2ωcm
.

This result means that a time–dependent magnetic field with the axial symmetry of
the accompanying vortex electric field is not able to “squeeze” an initial coherent
state with respect to the ξ − η and X − Y pairs. This can be explained by an effective
“thermalization” of the ξ − η and X − Y subsystems, since we have T = 2

√
d and

d ≥ dmin in the final state for each subsystem. Moreover, it can be shown that for any
initial squeezed state the finalminimal variances (in the sense of (15.31)) of both the
guiding center and relative coordinates will be greater than the initial ones.

The case of time–dependent Landau gauge is more complicated [28]. In this
case one needs the solutions to the equation ε̈ + ω2

c (t)ε = 0 (note the change in
the effective frequency, compared with the case of symmetric gauge), satisfying
the normalization condition (15.26) (so that ε(t) = ω

−1/2
c exp(iωct) for t < 0, when

ωc = const).However, differently from (15.32), the (co)variances are not determined
completely by the instant values of functions ε(t) and ε̇(t) only. The following
additional functions of time appear in the final formulas:

σ =
∫ t

0
ω(τ )ε(τ ) dτ − iω−1/2

c , s = Im
(
εσ∗) , κ =

∫ t

0
[1 − ω(τ )s(τ )] dτ .

Introducing the dimensionless variances σ̃αβ ≡ 2mωcσαβ/�, one can obtain the fol-
lowing formulas for the variances at t > 0 (for the initial coherent state) [92]:

σ̃XX = 1 + (ṡ − ωcκ)2 + |ωcσ + ε̇|2 /ωc, σ̃YY = 1, σ̃XY = ṡ − ωcκ.

σ̃ξξ = ṡ2 + |ε̇|2/ωc, σ̃ηη = (ωcs − 1)2 + ωc|ε|2, σ̃ξη = −ṡ (ωcs − 1) − Re
(
ε̇ε∗) .

Two exactly solvable examples of function ω(t) were considered in [92]. The
first one was the step–like variation, when ω = ωc for t < 0 and t > τ , and ω =
ωcΘ = const for 0 < t < τ . It was shown that squeezing in ξ-component is possible
for Θ < 1. But the minimal possible variance σ̃ξξ was only 1/2. Another simple
example was the δ-kick of frequency: ω2(t) = ω2

c + 2γδ(t) with γ > 0. But in this
case, again, the inequality 1 > σ̃(min)

ξξ > 1/2 was shown to hold. Therefore it was
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questioned in [92], whether it is possible to achieve an arbitrary strong squeezing of
the geometric coordinates?

Here we can show that the answer is positive for the ξ − η pair in the case of
periodical variation of the magnetic field in the form ω(t) = ωc [1 + 2γ cos(2ωct)]
(the standard example of the parametric resonance). For |γ| � 1 we have an approx-
imate solution (using, e.g., the method of averaging over fast oscillations [102] or
the method of slowly varying amplitudes and neglecting terms of the order of O(γ)

in the amplitude coefficients) [103]

ε(t) = ω−1/2
c

[
cosh (ωcγt) e

iωct − i sinh (ωcγt) e
−iωct

]
.

Then σ(t) = ω
−1/2
c

[−i cosh (ωcγt) eiωct + sinh (ωcγt) e−iωct
] = −ε̇(t)/ωc, so that

s(t) = 1/ωc, κ(t) = 0. Consequently σ̃ξξ(t) = cosh(2ωcγt) + sinh(2ωcγt)
sin(2ωct). Hence any desired degree of squeezing can be obtained for the ξ − η
pair:

σ̃(min)

ξξ (t) = exp (−2ωcγt) .

However, no squeezing is observed for the X − Y pair in this case: σ̃XX = σ̃YY = 1
and σ̃XY = 0. It could be interesting to find limitations on the minimal degrees of
squeezing for the ξ − η pair in the case of the “intermediate” gauge of the time
dependent vector potential A(t) = (H0(t)/2) (−y(1 + β), x(1 − β)), varying the
asymmetry parameter β from 0 to 1.

15.4.2 Minimum Energy Gaussian Packets with a Fixed
Mean Angular Momentum in a Constant Magnetic
Field

Coherent states (15.15) possess nonzero mean values (15.20) of the angular momen-
tum operator. This means that charged quantum particles described by such wave
functions perform some rotation in the xy plane. Rotated Gaussian packets or Gaus-
sian packets in rotating frames were considered with different purposes in many
papers [104–111]. The Gaussian packets possessing the minimal possible energy for
a fixed mean values of the angular momentum operator were found in [112]. They
have the following form in the polar coordinates r,ϕ (in this subsection we consider
the case of a time-independent magnetic field, using the symmetrical gauge of the
vector potential):

ψmin(r, ϕ) = √
μ/π(1 − ρ2)1/4 exp

(
− μ

2
r2

[
1 + ρ exp(2iλϕ − iλu)

]

+ √
μ |Lc| r (exp [iλc(ϕ − v)] + ρ exp[iλ(ϕ + v − u)]) − Φ

)
. (15.33)
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Here

ρ =
√

|Li |
1 + |Li | , Φ = |Lc| [1 + ρ cos(u − 2v)] /2. (15.34)

The equivalent form in the Cartesian coordinates x = r cos(ϕ) and y = r sin(ϕ) is

ψ(x, y) = √
μ/π(1 − ρ2)1/4 exp

[−μ
(
ax2 + bxy + cy2

) + Fx + Gy − Φ
]
,

(15.35)

a = 1

2

[
1 + ρ exp(−iλu)

]
, c = 1

2

[
1 − ρ exp(−iλu)

]
, b = iλρ exp(−iλu),

(15.36)
F = √

μ |Lc| {exp (−iλcv) + ρ exp [iλ(v − u)]} , (15.37)

G = i
√

μ |Lc| {λc exp (−iλcv) + λρ exp [iλ(v − u)]} . (15.38)

To understand the meaning of parameters in (15.33)–(15.38), one should remem-
ber that the first order mean values 〈r〉 and 〈p〉 are totally independent from their
(co)variances in the Gaussian states. As a consequence, both the mean angular
momentum and mean energy can be written as sums of two independent terms,

〈L̂ z〉 ≡ �L = � (Lc + Li ) , E = Ec + Ei ,

where Lc and Ec are determined completely by the mean values 〈r〉 and 〈p〉, whereas
Li andEi depend only onfluctuations of these variables through their covariances. For
the fixed value Lc, the “classical” part of energy attains the minimal value Emin

c =
� |Lc| for the points belonging to the circle |〈r〉| = √

μ |Lc|. Parameter λc = ±1
determines the sign of Lc = λc |Lc|. Similarly, Li = λ |Li |. Parameters u and v are
nothing but angles defining the orientation of the ellipse of constant probability
|ψ(x, y)|2 = const and the position of the center of this ellipse in the circle |〈r〉| =√

μ |Lc|. The minor axis of this ellipse is inclined by angle u/2 with respect to x-
axis. The major and minor axes of the ellipse are proportional to (1 ∓ ρ)−1/2, and the
ellipse eccentricity equals ε = [2ρ/ (1 + ρ)]1/2. For the free particle in the uniform
magnetic field with ωL > 0 (without an additional oscillator potential), the angles
vary with time as follows,

u(t) = u0 + 2ωL t (λ − 1), v(t) = v0 + ωL t (λc − 1) . (15.39)

The mean energy of the packet (15.33) equals

E = �ωL [1 + |Li | (1 − λ) + |Lc| (1 − λc)] . (15.40)

The absoluteminimumEmin = �ωL is achieved for all packetswithλ = λc = 1. Such
packets do not rotate at all, although they can possess arbitrary values of “external”
(Lc) and “internal” (Li ) angular momenta. Of course this is explained by the well
known infinite degeneracy of energy eigenstates in the homogeneous magnetic field.
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The following expressions were found [112] for the energy and angular momen-

tum variances σE = 〈Ĥ 2〉 − 〈Ĥ〉2 and σ̃L =
(
〈L̂2〉 − 〈L̂〉2

)
/�

2:

σ̃L = |Lc| + 2 |Li | (1 + |Li |) + (1 + λλc) |Lc|
[
|Li | − √|Li | (1 + |Li |) cos(2w)

]
,

σE/(�ωL)
2 = 2 (1 − λc) (1 − λ) |Lc|

[
|Li | − √|Li | (1 + |Li |) cos(2w)

]

+2 |Lc| (1 − λc) + 4 |Li | (1 + |Li |) (1 − λ) , (15.41)

wherew = λ(v − u/2). We see that results depend on the product λλc = ±1, which
is positive in the case of “co-rotation” of the packet center and ellipse axes and
negative for “anti-rotating” packets. The phase difference w does not influence the
angular momentum variance (as well as its mean value) in the “anti-rotating” case:

σ̃L = |Lc| + 2 |Li | (1 + |Li |) , λλc = −1.

But this phase is important in the case of “co-rotation” (we assume that Li > 0):

σ̃L = L + Li (1 + 2L) − 2Lc

√
Li (1 + Li ) cos(2w), λλc = +1, L = Li + Lc.

The energy variance equals zero for all packets whose directions of “internal” and
“external” rotations coincide with the direction of the Larmor rotation: λ = λc = 1.
The relative phase w is important if only λ = λc = −1 (packets performing “co-
rotation” in the direction opposite to the Larmor rotation).

Covariances of coordinates and canonical momenta for the minimum energy
Gaussian packets were calculated in [112]). Using that results, the following expres-
sions for the covariances can be obtained (for ωc > 0):

σXX

σYY

}
= �

2Mωc
[1 + (|Li | + Li ) (1 ∓ cos(u)/ρ)] , (15.42)

σξξ

σηη

}
= �

2Mωc
[1 + (|Li | − Li ) (1 ∓ cos(u)/ρ)] . (15.43)

We see that there is no squeezing in the ξ − η pair if Li > 0, as it must be for the
states with the absolute minimum of the energy. At the same time, the X − Y pair
becomes squeezed, and the degree of squeezing can be arbitrarily large for |Li | � 1.
For example, if cos(u) = 1, then σXX ≈ �/ (8MωcLi ) and σYY ≈ 2�Li/ (Mωc) for
Li � 1. Note that σXXσYY ≡ [�/ (2Mωc)]

2 for any Li > 0 if | cos(u)| = 1, so that
in this case we have the minimal uncertainty state for the X − Y pair with respect to
the commutation relations (15.8). For Li < 0, we have no squeezing in the X − Y
pair, whereas an arbitrary squeezing can be achieved for the ξ − η pair, if |Li | � 1.

Further studies on rotational Gaussian packets were performed in [113, 114].
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15.5 Non-gaussian States

15.5.1 “Partially Displaced” States

Coherent states |α,β〉 (15.18) are special superpositions of all stationary states
|n,m〉. Taking specific sums over the single quantum number n or m one can con-
struct various “partially coherent” states. Malkin and Man’ko [9] have constructed
two such families of states. The states with a well-defined energy and the Poissonian
distribution over the quantum number m have the form

|n,β〉 = exp
(−|β|2/2)

∞∑
m=0

βm

√
m! |n,m〉, (15.44)

〈x, y|n,β〉 =
√

Mωc

2π�n! i
n
(√

2ζ∗ − β
)n

exp
(
−ζζ∗ + √

2βζ − |β|2/2
)

. (15.45)

Such states were considered also in [115] in order to elucidate the infinite degeneracy
of the energy levels in the case of a uniform magnetic field.

Another family of “partially coherent” states considered in [9] is

|α,m〉 = exp
(−|α|2/2)

∞∑
n=0

αn

√
n! |n,m〉, (15.46)

〈x, y|α,m〉 =
√

Mωc

2π�m!
(√

2ζ − iα
)m

exp
(
−ζζ∗ + i

√
2αζ∗ − |α|2/2

)
.

(15.47)
Obviously

|α,β〉 = exp
(−|α|2/2)

∞∑
m=0

αn

√
n! |n,β〉 = exp

(−|β|2/2)
∞∑

m=0

βm

√
m! |α,m〉.

Similar displaced Landau states were considered later, e.g., in [46, 116–120].

15.5.2 Coherent States with a Fixed Angular Momentum

The states |α,β〉, |n,β〉 and |α,m〉 do not possess a definite value of the angular
momentum L . However, taking superpositions of the states |n,m〉 (15.19) with a
fixed value l = m − n one can construct various families of coherent states with a
definite angular momentum. An explicit example was given in [121]:
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|z, l〉 = N
∞∑

m=max(0,l)

zm√
(m − l)!m! |m − l,m〉, |N |−2 = |z|−|l| I|l|(2|z|),

(15.48)
where Iq(x) is the modified Bessel function of the first kind. (The sign of l in the
above formula is opposite to that in [121], due to the different choice of the electric
charge sign.)

Since the state |z, l〉 is an eigenstate of the operator L̂ (15.13), it satisfies the
equation (

b̂†b̂ − â†â
)

|z, l〉 = l|z, l〉. (15.49)

But it is easy to see that, in addition, the state |z, l〉 is an eigenstate of operator âb̂:

âb̂|z, l〉 = z|z, l〉. (15.50)

Actually, the states defined by the equalities (15.49) and (15.50) were introduced
earlier in [122], where the operator b̂†b̂ − â†â was interpreted as the “charge oper-
ator”. Therefore the state (15.48) was named there “charged coherent state”. It can
be obtained from the coherent state (15.18) by means of the integration [122]:

|z, l〉 = zl/2

2π
e|z|N

∫ 2π

0
dϕe−ilϕ|√ze−iϕ,

√
zeiϕ〉. (15.51)

Then using (15.15) we obtain the following wave function in the coordinate space:

〈x, y|z, l〉 =
√

Mωc

2π�
N (

i zζ/ζ∗)l/2 Jl
(
2|ζ|√2z e−iπ/4

)
exp

(−|ζ|2 − i z
)
,

(15.52)
where Jl(x) is the usual Bessel function.

In view of relation (15.50), the states |z, l〉 can be considered as some kind of
two-dimensional generalizations of the Barut–Girardello coherent states [17]. The
explicit constructions can be found in [123, 124].

15.5.3 su(1, 1) and su(2) Coherent States

Using products and squares of the linear annihilation operators â and b̂ (15.12),
together with their creation partners, one can construct various sets of new operators,
satisfying the commutation relations between the generators of the su(1, 1) or su(2)
algebras, K̂± and K̂0. For example, the su(2) case corresponds to the choice [125]
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K̂− = â†b̂, K̂+ = b̂†â, K̂0 =
(
b̂†b̂ − â†â

)
/2, (15.53)

[
K̂+, K̂−

]
= 2K̂0,

[
K̂0, K̂±

]
= ±K̂±. (15.54)

The su(1, 1) algebra arises for the choice [124]

K̂− = âb̂, K̂+ = b̂†â†, K̂0 =
(
â†â + b̂b̂†

)
/2, (15.55)

[
K̂+, K̂−

]
= −2K̂0,

[
K̂0, K̂±

]
= ±K̂±. (15.56)

Then, using the Klauder–Perelomov scheme [11, 12], one can construct different
families of states of the form exp(ζ+ K̂+ + ζ− K̂− + ζ0 K̂0)| f 〉, frequently called as
the su(1, 1) and su(2) coherent states. Various explicit examples were studied in
detail, e.g., in [90, 123–128].

15.5.4 Semi-coherent States

In 1973,Mathews andEswaran [129] introduced the notion of “semi-coherent states”,
defining themas those states of a harmonic oscillatorwhich possess time-independent
values of the quadrature variances σx and σp, different from the vacuum (or coherent
state) values. The necessary and sufficient condition for such states is

〈â2〉 = 〈â〉2, (15.57)

where â = (x̂ + i p̂)/
√
2 is the usual bosonic annihilation operator (in the units with

� = M = ω = 1). The condition (15.57) is obviously satisfied for the usual coherent
states |α〉, as soon as â|α〉 = α|α〉. Another trivial example is the Fock state |n〉, for
which 〈n|â2|n〉 = 〈n|â|n〉 = 0. A nontrivial example, given in [129], is a normalized
superposition of two coherent states of the form

|α ⊥ β〉 = |α〉 − |β〉〈β|α〉(
1 − |〈β|α〉|2)1/2

. (15.58)

The notation |α ⊥ β〉 emphasizes that the state (15.58) is orthogonal to the state |β〉:
〈β|α〉 = 0. Therefore, the Mathews–Eswaran state |α ⊥ β〉 can be considered [129]
as an orthogonal projection of the coherent state |α〉 on another coherent state |β〉.
The statistical properties of the state (15.58) were studied in detail in [130].

The two-dimensional generalizations of semi-coherent states (15.58) of the form
|(αβ) ⊥ (α′β′)〉 (where |(αβ)〉 are the Malkin–Man’ko coherent states) were intro-
duced in [131]. Taking some arbitrarily chosen values of parameters α′ and β′ (e.g.,
α′ = 0.1 and β′ = 0.05), the authors have shown that the new states possess the
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sub-Poissonian statistics and squeezing (with respect to the canoniacal momenta)
for some values of parameters α and β. However, they did not study the squeezing
properties with respect to the geometrical pairs (ξ, η) and (X,Y ). Therefore, further
studies of states |(αβ) ⊥ (α′β′)〉 would be interesting, especially the search for the
most interesting combinations of four complex parameters α,β,α′,β′.

15.5.5 Nonlinear Coherent States

The general concept of “nonlinear coherent states” (NLCS) was introduced (for a
single degree of freedom) in [132, 133], although various special cases of such states
have been known much earlier under other names (see reviews [99, 134] for details).
These states were defined as eigenstates of the product of the boson annihilation
operator â and some function f (n̂) of the number operator n̂ = â†â:

â f (n̂)|α, f 〉 = α|α, f 〉. (15.59)

The decomposition of the state |α, f 〉 over the Fock states reads as [133]

|α, f 〉 = N
∞∑
n=0

αn

√
n![ f (n)]! |n〉, [ f (n)]! ≡ f (0) f (1) · · · f (n), (15.60)

where N is the normalization factor. Therefore the NLCS are close to the Gazeau–
Klauder coherent states introduced in [135].

Two-dimensional NLCS for a charged particle moving in a uniform magnetic
field were introduced by Kowalski and Rembieliński [23]. These states were defined
according to the relations

b̂|ζ,β〉 = β|ζ,β〉, exp
(
â†â

)
â|ζ,β〉 = ζ|ζ,β〉, (15.61)

so that their decomposition over the states |n,m〉 (15.19) reads as

|ζ,β〉 = N
∞∑

n,m=0

ζnβm

√
n!m! exp

[
−1

2
(n − 1/2)2

]
|n,m〉. (15.62)

It was shown in [23] that, according to some criteria, the states (15.62) can be better
approximations of the phase space than the Malkin–Man’ko coherent states (15.18).
The comparison between these two families of coherent stateswasmade also in [136].
The generalization to the case, where the operator exp(n̂) in (15.61) is replaced by
exp(λn̂) with an arbitrary parameter λ ≥ 0, was studied in [137].

Other kinds of NLCS were constructed in papers [138, 139]. Their authors con-
sidered the Klein–Gordon equation in the Feshbach–Villars representation [140].
Eigenstates of the even part of the annihilation operator â, describing the relative
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motion in the plane perpendicular to the magnetic field, were found in the form
(15.59) with the nonlinear function

f (n) = E(n − 1) + E(n)

2
√
E(n − 1)E(n)

, E(n) =
√
1 + (2n + 1)�ωc/(Mc2)

(the existence of the second quantum number m was not taken into account).
One more example is the “angular momentum-phase coherent state” [141],

i.e., an eigenstate of the operator Â =
√
â†â − b̂†b̂

√(
b̂ + i â†

) (
b̂† − i â

)−1
, with

operators â and b̂ defined in (15.12) (the circular gauge of the vector potential
was assumed). This operator can be interpreted (in dimensionless variables) as√
L̂ z + 1eiϕ, where ϕ is the polar angle in the xy plane.

15.5.5.1 “Photon-Added States”

One of many subfamilies of the NLCS contains the so called “photon-added states”
|α, q〉, introduced (for the 1D harmonic oscillator) by Agarwal and Tara [142]:

|α, q〉 = â†q |α〉√〈α|âq â†q |α〉 , (15.63)

where q is a non-negative integer. It was shown in [134] that these states obey
the eigenvalue equation f (n̂, q)â|α, q〉 = α|α, q〉 with f (n̂, q) = 1 − q(1 + n̂)−1.
The two-dimensional generalization |α,β; q〉 = N â†q |α,β〉, where |α,β〉 is the
Malkin–Man’ko coherent state, was studied in [143].

15.5.6 Coherent States for Inhomogeneous Magnetic Fields

Coherent states for the combination of homogeneous andAharonov–Bohmmagnetic
fields,

Hz = H0 + Φδ(x)δ(y), Ax = −y

(
Φ

2πr2
+ H

2

)
, Ay = x

(
Φ

2πr2
+ H

2

)
,

were studied in [144–147]. Trajectory-coherent states for this geometry were consid-
ered in [148]. The nonuniform magnetic field Bz = −β/x2 was considered in [128].
The Morse-like (exponentially decaying) inhomogeneous magnetic fields were con-
sidered in [149, 150].
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15.5.7 Supersymmetric Coherent States, Non-commutative
Planes and Non-euclidean Geometries

Supersymmetric coherent states for a charged particle in a uniform constant magnetic
field were studied in [151–154]. These states take into account the spin degrees of
freedom.The case of time-dependent uniformmagnetic fieldwas considered in [155].
Generalizations to the case of motion on a non-commutative plane were considered
in [60, 156, 157]. Non-Euclidean geometries were discussed in [158–162].
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