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10.1	 �Introduction

Congenital factor FVII (FVII) deficiency is a rare autosomal recessive bleeding 
disorder with the estimated prevalence of 1 per 500,000 in the general population, 
without ethnic or gender predilection [1, 2], but the prevalence is higher in regions 
with the high rate of consanguinity marriage [1, 3]. Clinical pictures in these patients 
range from asymptomatic condition to severe life-threatening hemorrhages [4, 5]. 
There is a relatively poor correlation between FVII coagulant activity (FVII:C) and 
bleeding tendency and mutation profile in congenital FVII deficiency [3, 6]. Severe 
clinical symptoms usually present in patients with less than 1% FVII:C, but some 
patients with severe deficiency don’t experience severe bleeding episodes. The com-
plete absence of functional FVII in knockout mice is incompatible with life, sug-
gesting FVII deficiency is not associated with complete absence of functional FVII, 
but patients with residual FVII level can survive and are able to prevent lethal bleed-
ing [7, 8]. The disorder is accompanied with a wide spectrum of bleeding problems 
including mild symptoms such as mucous membranes and skin hemorrhages and 
life-threatening hemorrhages such as central nervous system (CNS) bleeding. Iron 
deficiency due to menorrhagia is common in women with FVII deficiency [3]. This 
disorder can be managed by different therapeutic options including fresh frozen 
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plasma (FFP), prothrombin complex concentrate (PCC), plasma-derived FVII (pd-
FVII) products, and recombinant activated FVII (rFVIIa).

10.2	 �Factor VII Structure and Function

FVII is a low molecular weight protein (50 kDa) composed of 406 amino acids that 
is synthesized as single-chain molecule in the endoplasmic reticulum of hepato-
cytes. FVII has homology with FIX, FX, and protein C on the catalytic site and 
amino-terminal region [9]. In hepatocytes, FVII has a signal peptide that is required 
for secretion and a propeptide (removed intracellularly) that is necessary for 
γ-carboxylation of all glutamate residues within ~45 amino acids in N-terminus of 
FVII protein [10]. Coagulation FVII consists of four domains including one gamma-
carboxyglutamic acid (Gla) domain on the N-terminal with ten glutamic acid resi-
dues (at residues 6, 7, 14, 16, 19, 20, 25, 26, 29, and 35). These ten glutamic acid 
residues undergo post-translational modification; convert to γ-carboxyglutamic acid 
with calcium-binding capacity. Binding of calcium to Gla domain leads to confor-
mational changes and exposure of new epitopes that facilitate its subsequent bind-
ing to TF and phospholipid. Other FVII domains are two epidermal growth 
factor-like domains (EGF1, EGF2) and a catalytic serine protease (SP) domain in 
C-terminal (Fig. 10.1) [1, 10].

FVII in zymogen has the plasma half-life of 5 h that is the shortest half-life 
among the clotting factors, but the half-life of free FVIIa is 2 h, whereas the plasma 
half-life of most other activated coagulation factors is very short [1, 10]. FVII 
reversibly in a Ca2+-dependent manner can bind to membranes with negatively 
charged phospholipids such as phosphatidylserine or phosphatidic via Gla domain 
[11, 12]. The majority of plasma FVII circulates as the single-chain inert zymogen 
(10 nmol/L (0.5 μg/mL)), and the minority circulates in the plasma as two-chain 
active protein (~10 to 110 pmol/L) [1, 3, 10, 13]. The key event in the activation of 
FVII is proteolysis of a single peptide bond between Arg-c15 (amino acid 152) and 
Ile-c16 (amino acid 153) in the connecting region of EGF2 and SP domains. This 
results in formation of two polypeptide chains: heavy chain with 254 amino acids 
(30 kDa) (residues 153–406), comprised of serine protease domain with Trypsin 
homology at C terminus, and light chain with 152 amino acids (20 kDa) (residues 
1–152), composed of Gla and 2 EGF-like domains [1, 10, 14–16].

FVII chiefly interacts with TF via the Gla and EGF1 domains; however, two other 
domains can also interact with TF [15, 17]. FVII/TF complex is necessary for the 
restructuring of active site and full enzymatic activity of FVIIa, because free FVIIa has 
very weak catalytic activity [14, 15]. In addition to FVII/TF complex, several other 
coagulation factors including FXa, FIIa, and FIXa contribute to FVII activation; how-
ever, it seems that membrane-bound FXa is the most effective [18]. Once formed, the 
TF/FVIIa complex results in proteolytic activation of FIX and FX to FIXa and FXa, 
respectively, and generating few amount of thrombin that is able to produce a strong 
feedback amplification of coagulation cascade [10, 19]. Tissue factor pathway inhibitor 
(TFPI) and antithrombin (AT) are inhibitors of FVIIa, but only in complex form (FVIIa/
TF) can it inhibit FVII [20, 21]. The TFPI is a Kunitz-type proteinase inhibitor and 
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Fig. 10.1  The cartoon 
representation of activated 
factor VII (FVIIa)/soluble 
tissue factor (sTF) 
complex. FVII has four 
domains including 
gamma-carboxyglutamic 
acid (Gla), two epidermal 
growth like factor (EGF1, 
EGF2) domains, and serine 
protease domain. sTF 
contains two fibronectin 
type III domains (TF1 and 
TF2 represent of N- and 
C-terminal of sTF)

attaches to membrane surface via glycophosphatidylinositol (GPI)-linked. TFPI mainly 
is expressed by endothelial cells and partly by platelets [22]. The TFPI/FXa complex 
can inhibit FVIIa/TF complex and prevents further FX activation via inactivation of 
tetra-molecular (TF-FVIIa-TFPI-FXa) complex formation that rapidly inhibits the 
extrinsic coagulation pathway [20, 22]. Inhibitory function of TFPI/FXa, at least in part, 
is by  inducing of TF-expressing cells to internalize the TF/FVIIa complexes, which 
leads to degradation of the majority of FVIIa [22, 23]. TFPI is synthesized by microvas-
cular endothelial cells, megakaryocytes, and the liver [3, 24]. Heparin and various plate-
let agonists can increase the release of TFPI from the surface of endothelial cells. AT 
reaction is heparin dependent, and its reactivity with FVIIa is increased after FVIIa/TF 
complex formation. After binding of AT to FVIIa/TF complex, the affinity of FVIIa to 
TF is decreased and then FVIIa/AT complex releases into the bloodstream (Fig. 10.2) [3, 
20]. FVIIa/AT complex is increased in many prothrombotic situations  
and seems to be the early marker of coagulation cascade activation [20].
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FVII with the initiation of coagulation pathway following complex formation 
with TF at injury site has a critical role in the coagulation cascade. This complex is 
an important activator of both extrinsic and intrinsic coagulation pathways by acti-
vating FVII, FIX, and FX [4]. It was shown that complete deletion of F7 gene leads 
to mouse perinatal death, while mice and human with very low FVII level could 
survive [7, 25, 26]. Although the normal perinatal course was observed in FVII 
knockout mouse, major abdominal and intracranial hemorrhages (ICH) lead to 
death in such cases at birth or shortly after birth [8]. Generally, it is accepted that 
absence of FVII is incompatible with life [3, 19, 27].

TF also known as thromboplastin, coagulation FIII, or CD142 is a glycosylated, 
transmembrane protein that doesn’t require proteolysis for activation [10]. It is well 
known that normal hemostasis process in some tissues with high TF-expression 
such as the brain, bowel, uterus, placenta, lungs, and heart mainly depends on the 
extrinsic pathway; therefore, decrease or absence of FVII can result in bleeding in 
some of these tissues [4, 7]. In addition to well-known role of TF in coagulation 
process, in complex with FVIIa, other functions including embryonic angiogenesis, 
oncogenic angiogenesis, tumor progression, leukocyte diapedesis, and regulation of 
inflammation and sepsis are described. This complex can also change cellular phys-
iology in the TF-expression cells [28, 29].

10.3	 �Congenital Factor VII Deficiency

Congenital FVII deficiency (OMIM 227500) is an autosomal recessive bleeding 
disorder, for the first time described by Alexander in 1951 in a 4-year-old white girl 
who experienced prolonged umbilical cord bleeding at birth [30]. This bleeding 
disorder with a prevalence of 1 per 500,000 individuals is the most common rare 
bleeding disorders (RBD) [1, 5, 30]. Although the disorder has distributed over the 
world, it is more frequent in some areas such as the United Kingdom, United States, 
Brazil, Turkey, Italy, Slovak Republic, and Iran, according to the annual global sur-
vey of World Federation of Hemophilia (WFH). Although consanguinity is the main 
cause for high rate of disorder, in some countries like the United Kingdom, this was 
attributed to noticeable grow up of hygienic surveillance and the improved quality 
of life. The number of patients with congenital FVII deficiency might be underesti-
mated probably due to undiagnosed asymptomatic patients and those with the mild 
bleeding tendency. FVII deficiency is categorized in two groups, including type I 
(quantitative deficiencies), which is characterized by simultaneous decreases in 
FVII activity and antigen levels, and type II (qualitative defects) with only decreases 
in factor activity with normal or near-normal FVII antigen level (Table 10.1) [5]. 
Clinical manifestations of the disorder are highly variable both in severity and type 
of bleeding, with poor correlation between residual plasma factor activity and sever-
ity of bleeding [4, 31]. The FVII reference range is between 70% and 140%, and 
usually, less than 2% FVII activity (FVII:C) is related to increased risk of severe 
bleeds during the newborn and young childhood periods [1, 6]. The disorder is due 
to mutations in F7 gene, and a wide spectrum of mutations has been identified 
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within this gene. Most of the identified mutations are new and restricted to the spe-
cial area or specific family and could be used for carrier detection, precise diagno-
sis, and prenatal diagnosis in affected families.

The presence of abnormal bleeding, accompanied by isolated prolonged PT, is 
the first clue for suspicion to FVII deficiency, but in general, clinical presentations, 
physical examination, family history, and laboratory assessments can be used for 
precise diagnosis of the disorder. Several therapeutic options such as fresh frozen 
plasma (FFP), plasma-derived FVII (pd-FVII), prothrombin complex concentrate 
(PCC), activated PCC (aPCC), and more recently recombinant FVIIa (rFVIIa) are 
available for patients with FVII deficiency.

10.4	 �Acquired Factor VII Deficiency

Acquired FVII deficiency can be present as the isolated or combined deficiency as 
a part of vitamin K-dependent coagulation factors deficiency [1, 32, 33]. Acquired 
isolated FVII deficiency is an extremely rare disorder, but the frequency was under-
estimated, because clinical symptoms of the disorder may be mild to moderate with 
slightly prolonged PT [32–34]. Different conditions such as malignancies, severe 
systemic sepsis, infectious agents, drugs (penicillin), and aplastic anemia as well as 
stem cell transplantation and presence of an inhibitory antibody may be accompa-
nied with acquired isolated FVII deficiency [1, 33, 35, 36]. In some cases, no under-
lying condition of FVII deficiency (idiopathic) was identified [33]. The pathogenesis 
and the possible mechanism of FVII deficiency are not clear in these situations [33]. 
Simultaneous deficiency of FVII with other coagulation factors may arise in differ-
ent conditions including [1]:

•	 Problem in synthesis, particular in liver failure that leads to decrease of all coag-
ulation factors.

•	 A defective synthesis, especially during hypovitaminosis K syndrome caused by 
insufficient intake, malabsorption, or anticoagulant therapy with vitamin K antag-
onists such as warfarin, acenocoumarol (Sinthromin), and phenprocoumon 
(Marcoumar). These conditions only lead to vitamin K-dependent coagulation 
factor deficiency (FII, FVII, FIX, and FX) and the decrease of protein C and pro-
tein S levels. Warfarin inhibits the vitamin K-dependent reductase and the vitamin 
K-dependent quinone reductase and leads to disturbing in the recycling of vitamin 
K to its enzymatically active form and its carboxylation activity (Fig. 9.4).

Table 10.1  Classification of congenital factor VII deficiency and results of coagulation tests

aPTT PT FVII:C FVII:Ag
Normal people Normal Normal Normal Normal
FVII deficiency (type I) Normal Prolonged Decreased Decreased
FVII deficiency (type II) Normal Prolonged Decreased Normal or nearly normal

aPTT activated partial thromboplastin time, PT prothrombin time, FVII:C factor VII coagulant 
activity, FVII:Ag factor VII antigen

M. Shams and A. Dorgalaleh
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•	 Consumption syndromes, especially disseminated intravascular coagulation 
(DIC) or hyperfibrinolysis that leads to consuming of all coagulation factors.

As mentioned, FVII has the shortest plasma half-life among clotting factors; 
thus, decrease in plasma level of FVII occurs faster than other coagulation factors. 
Therefore, diagnosis of isolated FVII deficiency should be made with caution [1].

10.5	 �Clinical Manifestations

Patients with congenital FVII deficiency have variable bleeding diathesis with poor 
correlation between FVII activity and bleeding tendency [1, 33]. The clinical phe-
notype is very heterogeneous and ranges from asymptomatic condition to life-
threatening diathesis. The clinical phenotype of these patients could be categorized 
into two main categories [1, 3, 37]:

•	 Asymptomatic that composed about one-third of patients
•	 Symptomatic with two subgroups:

–– Nonsevere: Mild to moderate with mucocutaneous bleeding (mimic platelet 
disorders) including approximately two-third of affected patients. These 
patients usually don’t require medical intervention.

–– Severe with life- or limb-threatening hemorrhages (CNS bleeding, gastroin-
testinal (GI) bleeding, or hemarthrosis) that composed about 10–15% of 
patients [1, 3, 37].

Asymptomatic patients might be randomly diagnosed or identified during family 
studies, especially in cases with other affected family member (s). According to a 
large study, 71% of homozygous and 50% of compound heterozygous patients are 
symptomatic, while only 19% of heterozygous subjects are symptomatic [2]. Based 
on another large study, most common bleeding features among patients with FVII 
deficiency are epistaxis, easy bruising, gum bleeding, hematoma, hemarthrosis, 
post-operative bleeding, and menorrhagia, and less common bleeding features are 
hematuria, GI bleeding, and CNS bleeding (Table 10.2) [2, 6, 27, 37–40]. Severe 
clinical presentations generally occur at young ages (soon after birth or when they 
are toddler) in severely affected patients [9, 37]. Severe chronic iron deficiency due 
to menorrhagia is common in women with FVII deficiency [3]. Patients with plasma 
FVII level <2% may present severe bleeding, while those with >20% are generally 
asymptomatic. Interestingly, bleeding can be observed among patients with plasma 
levels between 20% and 50%, while asymptomatic subjects with plasma level <1% 
were also reported [9]. Prediction of hemorrhagic risk may not be possible, even in 
the presence of laboratory assays such as thrombin generation test, FVIIa and FVII 
antigen level (FVII:Ag) assays, and TFPI measurement [41]. CNS bleeding is less 
common condition and is an important problem, mainly in children under 6 months 
with severe FVII deficiency and associated with high rate of morbidity and mortal-
ity [3, 9]. Bleeding episodes in FVII deficiency may mimic hemophilia (hemophilia 
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type) with the present of hemarthrosis and hematoma or may mimic primary hemo-
stasis defects with menorrhagia, epistaxis, or ecchymosis [9]. In addition to bleed-
ing episodes, thrombotic events with the unknown mechanism (particularly deep 
vein thrombosis) also may occur in ~3% of patients with severe FVII deficiency, 
especially those patients undergoing surgical interventions or those under replace-
ment therapy; however, spontaneous thrombosis also may occur [42, 43]. Although 
severe clinical events were observed in homozygous or compound heterozygotes, 
heterozygous are usually asymptomatic [2, 27].

10.6	 �Diagnosis

The first case with congenital FVII deficiency was described by prolonged PT in 
1951 [30]. The diagnosis was made based on clinical presentations, physical exami-
nation, family history, and laboratory assessments [38]. Occasionally, the disorder 
could be identified during routine work up. In general, the mean age of diagnosis in 
inherited FVII deficiency is 8 years [1]. FVII deficiency is usually suspected by the 
presence of isolated prolonged PT that is corrected by 50:50 mixing of patient’s 
plasma with normal pooled plasma. In this setting, the activated partial thromboplas-
tin time (aPTT), thrombin time (TT), fibrinogen concentration, and platelet count are 
usually normal. Evaluation of FVII coagulant activity (FVII:C) (with twice repeat-
ing) leads to confirmation of disorder [3, 38]. In general, the mainstay in the diagno-
sis of FVII deficiency is FVII:C assay. Exclusion of vitamin K deficiency or other 
acquired causes of clotting factor deficiencies is useful, but not necessary, because 
concomitant prolongation of aPTT is observed in these conditions [3].

Table 10.2  Clinical manifestations of patients with congenital factor VII deficiency

Mariani 
et al. (n: 
174a) (%)

Mariani 
et al. (n: 
139b) (%)

Mariani 
et al. (n: 
228) (%)

Herrmann 
et al. (n: 
217) (%)

Peyvandi 
et al. (n: 
28) (%)

Mariani 
et al. (n: 
24) (%)

CNS bleeding 4.6 6.5 7 1 17 –
GI bleeding 13.8 14.4 14 9 – 17
Hemarthrosis 16.1 21.6 22 12 21 67
Epistaxis 56.3 66.2 83 58 64 62
Easy bruising 47.7 43.2 62 37 32 29
Gum bleeding 33.9 25.9 42 25 – 33
Menorrhagia 62.9 – – 57 (of 106 

female)
60 (of 10 
female)

90 (of 10 
female)

Hematomas 16.1 20.9 21 20 12 46
Hematuria 5.2 12.2 12 7 10 29
Post-operative 
bleeding

29.8 30.4 34 – 55 –

Thrombosis 3 – – – – –

CNS central nervous system, GI gastrointestinal
aThe incidence of menorrhagia has been reported in female aged >10 and <50 years and all of 
patients are female
bOnly males

M. Shams and A. Dorgalaleh
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In patients with acquired isolated FVII deficiency, isolated prolongation of PT 
was occurred, while aPTT is normal. However, prolonged aPTT might have occurred 
in some patients with the presence of lupus anticoagulant (LA). In this situation, 
FVII:C should be determined and isolated FVII deficiency should be confirmed. 
Evaluation of other vitamin K-dependent clotting factors might be helpful to rule 
out other disorders. For further investigation, mixing study should be performed. 
After mixing study, if PT was prolonged, the presence of specific FVII inhibitor is 
suspected, and the Bethesda assay could confirm the presence of specific FVII 
inhibitor [33]. In this way, the absence of bleeding history, the presence of malig-
nancy (or other underlying conditions), as well as absence of family history of con-
genital FVII deficiency could be useful during the process of diagnosis.

10.6.1	 �Factor VII Coagulant Activity

FVII:C should be performed for diagnosis of FVII deficiency. FVII:C usually deter-
mines by one-stage prothrombin time-based assay [44]. The source of thromboplas-
tin, calibration materials, and quality of the reagents can affect the results of FVII:C 
[45]. Three types of thromboplastin reagents with different sensitivities including 
rabbit brain, ox1 brain, or human recombinant thromboplastin are available [44, 46].

According to the type of thromboplastin, different results might be obtained; 
however, variability that is caused by qualitative FVII defects such as FVII Padua, 
FVII Nagoya, and FVII Tondabayashi is more profound. For example, in Padua 
variant (Arg304Gln in exon 8) which usually associates with no bleeding history 
and the normal range of FVII:Ag, disparate results toward different thromboplastins 
could be obtained, so that normal results using ox brain thromboplastin and abnor-
mal results by use of rabbit brain thromboplastin might be obtained [1, 47]. It should 
be noted that variable reactivity of different thromboplastins only occurs in type II 
deficiency such as Padua, not type I deficiency [1, 47]. In this setting, based on 
structural similarity of recombinant thromboplastins and human TF, use of this 
product is more reliable than other thromboplastins for FVII assay.

In spite of the presence of certified reference materials for the accuracy of cali-
brators, the different calibration materials may have variable interlaboratory preci-
sion, especially in cases with FVII level below 20% [1].

The quality of the FVII-deficient reagents impresses accuracy of FVII:C assay, 
especially when FVII-deficient plasma has residual FVII:C. This issue can lead to 
overestimation of FVII:C in patients with low plasma level of FVII [45]. According 
to 2016 Clinical and Laboratory Standards Institute (CLSI) document H48-Ed2, the 
mean activity of FVII-deficient plasma in the one-stage clotting assay should be less 
than 1% [48]. Indeed, contamination of thromboplastin with small amounts of 
FVIIa can decrease sensitivity to patient’s plasma FVII:C, while it increases sensi-
tivity to patient’s plasma level of FV, FX, and prothrombin [1, 49]. Finally, it should 
be noted that plasma FVII level is raised in some circumstances, such as female 
gender, increasing age, and hyperlipidemia, especially hypertriglyceridemia [50].

1 Ox is derived from oxen and commonly referred as castrated adult male cattle.

10  Congenital Factor VII Deficiency



248

10.6.2	 �Factor VIIa Assay

In addition to the pivotal role of TF-FVIIa pathway in the initiation of the coagula-
tion cascade, it has the important effect on the inflammatory pathway, regulation of 
inflammation and sepsis [28].

When recombinant activated FVII (rFVIIa) was introduced for treatment of 
patients with hemophilia having inhibitor, FVII deficiency, and other bleeding 
events such as retropubic prostatectomy, the interest for concentrates FVIIa assay 
was increased [1, 51, 52]. Although PT and FVII:C assay could also be used for 
monitoring of rFVIIa treatment, but as mentioned above, the FVII:C and PT 
results vary greatly among laboratories (mostly due to type of thromboplastin), 
even if different assays used thromboplastins with similar sensitivity. Therefore, 
FVIIa assay may be more effective than PT and FVII:C for monitoring of these 
patients [1, 51]. FVIIa assay is not recommended for diagnosis of FVII deficiency 
[1, 51]. The assessment of FVIIa could be performed by different methods: the 
first method relies on clotting-based assay using recombinant soluble mutant TF 
molecule (sTF1–219), a TF without transmembrane and cytoplasmic domains. 
STF cannot activate FVII, but its FVIIa cofactor activity is conserved [53, 54]. 
Normal plasma FVIIa level using this technique is 0.5–8.4 ng/mL (mean 3.6 ng/
mL), encompassing 1–3% of the total inactive zymogen form [3, 54], based on the 
specificity of the FVIIa assay [55]. The second method is based on enzyme linked 
immunosorbent assay (ELISA), using the high specific antibody against two-
chain FVIIa that cannot reactive with FVII.  An obvious discrepancy might be 
observed between results of these two methods [54, 55]. The ELISA can detect 
approximately 0.0125 ng/mL (±0.01 ng/mL) of FVIIa, but the correlation between 
both methods is excellent [3].

The FVII:Ag could be determined by different methods including ELISA or 
immunoturbidimetric assays (IRMAs) with epitope-specific monoclonal antibodies 
against free-circulating FVII. Distinguish between type I and II defects is feasible, 
by using the FVII:Ag assay. The FVII:Ag level is not a good predictor of severity of 
bleeding tendency, but it can help understanding of mutational mechanisms of FVII 
deficiency [1, 38].

10.7	 �Molecular Basis

The F7 gene spans 12.8 kb on chromosome 13q34 and contains nine exons and five 
short tandem repeats. These minisatellite DNA sequences cover more than a quar-
ter of the intron sequence and more than one-third of 3′ untranslated region (UTR) 
of mRNA. The F7 gene is located approximately 2.8 kb upstream of the F10 gene 
and located near another vitamin K-dependent protein Z gene [4, 16, 27, 56]. F7 
gene and protein are structurally homologous with other vitamin K-dependent 
coagulation factors, particularly FIX, FX, and protein C. The overall base compo-
sitions of the F7 gene in exons and introns are similar (60% G-C and 40% A-T), 
which is similar to the protein C and the F10 genes [16]. F7 gene consists of nine 
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exons. Exons 1a and 1b (the latter is an alternatively spliced target in 90% of factor 
VII mRNA transcripts) and a part of exon 2 encode 5′ UTR and mainly a part of 
the pre-pro leader. Exon 2 encodes Gla domain. Exon 3 encodes the hydrophobic 
aromatic stack, exons 4 and 5 encode two epidermal-like growth factor (EGF) 
domains, exons 6 and 7 are responsible for encoding of activation region, and, 
finally, exon 8 encodes the catalytic domain and 3′ UTR including poly (A) tail 
(Fig. 10.3) [3].

A wide spectrum of mutations was identified within F7 gene, and whole gene 
sequencing including exons, introns, boundaries, and the promoter regions is rec-
ommended for mutation detection in patients with congenital FVII deficiency. This 
is mostly due to a large number of identified mutations within F7 gene, the short 
length of the gene, and merely possibility in detection of a recurrence mutation [1]. 
In general, 90–92% of mutated alleles could be identified with the current routine 
direct sequencing methods, and ~10% of gene mutation could not be found. 
Although new techniques, such as next-generation sequencing (NGS), certainly can 
improve this situation, some of the cases with congenital FVII deficiency may occur 
due to mutations in different another genes that can make FVII deficiency still an 
open question [1, 19]. A wide spectrum of normal gene variations and disease-
causing mutations, including missense, nonsense, splice site mutations, and inser-
tions/deletions, were observed in F7 gene. Several functional and nonfunctional 
polymorphisms have also been observed (Table 10.3) [3, 19, 57–64]. For example, 
functional promoter polymorphism at position −402 (G > A) of the ATG codon 
leads to increased FVII:C, while promoter polymorphism at position −401 (G > T) 
associated with decreased plasma FVII level [58]. Arg413Gln substitution in exon 7 
(classically known as R353Q variant) arises from G to A substitution at nucleotide 
10,976 and generally associated with another polymorphism, a decanucleotide (10-
bp sequence) insertion at position −323 in the 5′-flanking region of the F7 gene, 
resulting in 20 to 30% reduction in FVII level [3, 58]. In vitro functional analysis 
of two adenine (g.11293_11294insAA) insertion polymorphisms located in the 3’ 
UTR of F7 gene revealed the steady-state decreases of FVII mRNA level [57].

According to available data, most of the mutations in F7 gene, similar to other 
congenital bleeding disorders, are point mutation. Missense mutations (79%) are 
the most frequent while nonsense mutations are the rarest mutations (4%) (Fig. 10.4). 
Exon 8 as the largest exon (1.6 kb) [16] in F7 gene that is responsible for encoding 
of the catalytic domain has a considerable number of mutations.

Prenatal diagnosis (PND) can be used in patients with congenital FVII defi-
ciency, but it is more suitable for those families with severe factor deficiency and 
history of life-threatening bleeding such ICH [1, 65].

10.8	 �Management

Due to highly variable clinical presentations and low correlation between severity 
of clinical presentations and FVII:C level, bleeding risk prediction and management 
of these patients remained debated. The mainstay of treatment in patients with 
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Fig. 10.3  F7 gene and FVII protein structures and spectrum of gene mutations in F7 gene. (a) F7 
gene contains nine exons that encode FVII protein. Exon 1b, usually alternatively spliced in 90% 
of FVII mRNA transcript. (b) The FVII protein contains pre-pro sequence, Gla, EGF1, EGF2, and 
catalytic serine protease domains. (c) Cleavage at Arg152-Ile153 location, leads to generation of 
two-chain active molecule which join together by a disulfide bond between Cys135 and Cys236. 
Light chain contains residues +1 to 152 and heavy chain contains residues 153 to 406. FVII factor 
VII, Gla gamma-carboxyglutamic acid, EGF epidermal growth factor
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Table 10.3  F7 gene polymorphisms

Polymorphism type Location Frequency
Effect on 
FVII:C

Decanucleotide [CCTATATCCT] insert 5′ region (−323) 0.77
0.23

Decreasea

G/T dimorphism 5′ region (−401) 0.91
0.09

Decrease

G/A dimorphism 5′ region (−402) 0.71
0.29

Increase

Intron 1a (G73A) Intron 1a 0.79
0.21

Decreasea

Dimorphism (his 115) Exon 5 0.80
0.20

–

VNTR repeat (37 bp monomer repeat, 
9716ins)

Intron 7 0.30
0.70

Increaseb

G/A dimorphism Intron 7 0.82
0.18

NM

Arg353Gln polymorphism Exon 8 0.80
0.20

Decreasea

G/A dimorphism (Ser 333) Exon 8 0.99
0.01

–

2 adenine (g.11293_11294 insAA) insert 3′ UTR 0.85
0.15

Decreasec

NM not mentioned
aThe 10 bp insertion, and the Arg353Gln polymorphism indicate a strong linkage disequilibrium 
and therfore it is not clear whether the G73A allele or 10 bp insertion contributed per se to lowering 
FVII:C
bThe high mRNA expression in quantitative mRNA analysis has shown that this polymorphism 
probably is associated with incresed plasma FVII level, although there are contradictory results in 
this regard
cThe effect of other polymorphisms was not excluded

congenital FVII deficiency is on-demand replacement therapy that means the stop 
of bleeding as soon as possible after the occurrence of bleeding. In patients with the 
history of life-threatening bleeding such as ICH, secondary prophylaxis is recom-
mended. Primary prophylaxis could be used for those patients with severe factor 
deficiency and risk of life-threatening bleeding. Different therapeutic choices 
including FFP, pd-FVII, PCC, aPCC, and rFVIIa are available for patients with 
FVII deficiency (Table 10.4) [1, 27].

The recommended dose and therapeutic target levels of FVII for on-demand, 
prophylaxis, and in surgeries are summarized in Table 10.5 [66].

rFVIIa (eptacog alfa) is the structurally similar product to plasma-derived coagu-
lation factor VIIa but is manufactured using DNA biotechnology [67, 68]. The first 
report of successful treatment with rFVIIa was in 1988 with NovoSeven® (rFVIIa; 
NovoSeven, Novo Nordisk, Copenhagen, Denmark) in patient with severe 
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79%

9%

8%
4%

Mutation prvalence of FVII gene

Missense Small Ins/Del

Splice sites (<10 bp from exon) Nonsense

Fig. 10.4  Mutation 
prevalence of F7 gene. 
Most common mutations 
of F7 gene are missense 
mutations (79%), while 
small Ins/Del (9%), splice 
sites (8%), and nonsense 
(4%) mutations form other 
mutations in F7 gene

Table 10.4  Available therapeutic options for patients with factor VII deficiency

Factor Advantage Disadvantage
FFP Easily available, cheap Limited effectiveness, need to high volumes for 

treatment, fluid overload, risk of viral transmission
Pd-FVII Effective; suitable for surgery Unavailable in some countries, other vitamin 

K-dependent factor concentrations are higher than 
factor VII, risk of viral transmission, risk of TE

rFVIIa Very effective
Low dosage requirement for 
treatment
No risk of viral transmission
Not immunogenic in patients 
with hemophilia
Not produces an anamnestic 
response in hemophilia 
patients with inhibitors
Very low thrombogenicity

Risk of TE, expensive

PCC Suitable for surgery Risk of TE, concentration of other vitamin 
K-dependent factors is higher than factor VII and 
presence of activated factors
Variable amount of factor VII

Pd-FVII plasma-derived FVII, FFP fresh frozen plasma, rFVIIa recombinant FVIIa, TE throm-
botic events, PCC prothrombin complex concentrates
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hemophilia A during synovectomy [69]. AryoSeven™ as a new generic rFVIIa 
claimed that it has biosimilarity with NovoSeven® and is similar in clinical safety 
and efficacy with NovoSeven® [70–72]. rFVIIa has been approved for treatment of 
patients with congenital FVII deficiency, congenital hemophilia B with high-
responding inhibitors, acquired hemophilia, and Glanzmann thrombasthenia with 
refractoriness to platelet transfusions, with or without antibodies to platelets and 
recommended as the first-line therapeutic option for hemophilia A patients with 
high-responder inhibitors [67, 68]. rFVIIa also was used in surgical bleeding related 
to dilutional or consumptive coagulopathies or in patients with impaired liver func-
tion [73]. In addition, the rFVIIa could be used in various conditions, such as spon-
taneous bleeding, hemarthrosis, and major surgical procedures. Inhibitor 
development is one of the most important problems in the administration of rFVIIa 
[74]. According to FDA report, the risk of the thrombotic events associated with 
rFVIIa is 2% of treated patients in rFVIIa clinical trials. The very low frequency of 
thrombotic events, no virus transmission, and scarce production of inhibitory anti-
bodies are advantages of rFVIIa, and expensiveness and short half-life of rFVIIa 
even than FVII and FVIIa are disadvantages of rFVIIa [1].

PCC is another therapeutic choice for patients with FVII deficiency. PCC usually 
contains FII (prothrombin), FIX, FX, and the variable amount of FVII. In general, 
two commercially types of PCC are available, including 3-factor PCC (with absent 
or low levels of FVII) and 4-factor PCC (with high level of FVII) (Table  10.6), 
[75–81] and another form is activated PCC (FEIBA) which contains 4-factors in 

Table 10.5  Recommended dose and therapeutic target levels for factor VII on on-demand and 
prophylaxis treatment in patients with factor VII deficiency

Recommended 
and 
maintaining 
level

Plasma 
half-
life

On-demand 
dosages Major surgery Minor surgery

Long-term 
prophylaxis 
dosages

>20% 2–4 h Pd-FVII 
concentrate 
(30–40 U/
kg)

rFVIIa:
Before surgery: 
15–30 μg/kg
After surgery: 
continue the 
same dose for 
first day with 
4–6 h interval, 
and then change 
interval to 
8–12 h or
Pd-FVII 
concentrate: 
8–40 IU/kg 
with similar 
intervals

Tranexamic acid 
15–20 mg/kg or 
1 g 4 times daily 
or 
antifibrinolyticsa

FFP: 
10–15 mL/
kg 2 times/
week
Pd-FVII: 
30–40 U/kg 
3 times/
week

Pd-FVII plasma-derived FVII, FFP fresh frozen plasma, rFVIIa recombinant FVIIa
aThis recommendation needs further research because the quality of evidence is moderate
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inactive (FII, FIX, and FX) and activated (FVII) forms [82–84]. The amount of FVII 
is variable in different manufactured PCC that is usually indicated by the manufac-
turer; thus, after requirement calculation could be administered [3]. Some PCC may 
contain the additional components such as anticoagulants, protein C, protein S, pro-
tein Z, and antithrombin III as well as heparin, to mitigate thrombotic risk [83, 85, 
86]. Overall clotting factors of these concentrates are approximately 25 times higher 
than normal plasma [87]. Some advantages of PCC over the FFP include relatively 
constant high level of vitamin K-dependent coagulation factors (FII, FVII, FIX and 
FX), a more rapid decrease in INR value, and no need for matching the blood 
groups, or thawing the product [84, 88]. Several reports indicated both venous and 
arterial thrombosis associated with PCC; therefore, utilization of these concentrates 
in patients with liver disease and major trauma and neonates (because of relatively 
immature livers) is not recommended. The incidence of thrombotic events in 
patients treated with 4-factor and 3-factor PCC is 1.8% and 0.7%, respectively [84]. 
Another disadvantage of PCC is high concentration of other vitamin K-dependent 
factors than FVII [1, 27, 89–91].

The pd-FVII is the useful product for prophylaxis in children with severe FVII 
deficiency and for long-term prophylaxis in the range of 30–40 U/Kg, 3 times/week. 
Pd-FVII was successfully used for surgery with doses ranging from 8 to 40 U/Kg 
every 4–6 h. For major surgeries, FVII level must be kept above 20 U/dl. Similar to 
PCC, FVII concentration of pd-FVII is less than other vitamin K-dependent coagu-
lation factors [3, 27, 92]. Acquired FVII deficiency is usually treated as same as 
inherited FVII deficiency by FFP, PCC, aPCC, and pd-FVII or rFVIIa. However, in 
these cases, underlying disease should be treated.
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