
Nora Cuppens
Frédéric Cuppens
Jean-Louis Lanet
Axel Legay
Joaquin Garcia-Alfaro (Eds.)

 123

LN
CS

 1
06

94

12th International Conference, CRiSIS 2017
Dinard, France, September 19–21, 2017
Revised Selected Papers

Risks and Security
of Internet and Systems

Lecture Notes in Computer Science 10694

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

Nora Cuppens • Frédéric Cuppens
Jean-Louis Lanet • Axel Legay
Joaquin Garcia-Alfaro (Eds.)

Risks and Security
of Internet and Systems
12th International Conference, CRiSIS 2017
Dinard, France, September 19–21, 2017
Revised Selected Papers

123

Editors
Nora Cuppens
IMT Atlantique
Cesson Sévigné
France

Frédéric Cuppens
IMT Atlantique
Cesson Sévigné
France

Jean-Louis Lanet
LHS Rennes
Rennes
France

Axel Legay
Inria
Rennes
France

Joaquin Garcia-Alfaro
Télécom SudParis
Evry Cedex
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-76686-7 ISBN 978-3-319-76687-4 (eBook)
https://doi.org/10.1007/978-3-319-76687-4

Library of Congress Control Number: 2018934357

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-7453-4393

Preface

This volume contains the papers presented at the 12th International Conference on
Risks and Security of Internet and Systems (CRISIS 2017), which was held in Dinard,
France, September 19–21, 2017. Each submission was reviewed by at least three
committee members. The review process was followed by intensive discussions over a
period of one week. The Program Committee selected 17 regular papers. The accepted
papers cover diverse research themes, ranging from classic topics, such as vulnerability
analysis, access control and filtering, or cloud security to emerging issues, such as
cyber threat intelligence, human-centric security, or apps security. The program was
completed with three excellent invited talks given by Thomas Jensen (Inria Rennes),
Gérard Le Comte (Société Générale), and Arnaud Tisserand (Lab-STICC Lorient) and
one thrilling tutorial by Ronan Lashermes (Inria Rennes). Finally, the conference
included a panel between the four Brittany chairs on cybersecurity: Chair CNI on
Cybersecurity of Critical Infrastructures, Chair Cyberdefense and Cybersecurity of
Saint-Cyr-Sogeti-Thales, Chair Cyberdefense of Naval Systems, and Chair on Threat
Analysis.

Many people contributed to the success of CRISIS 2017. First, we would like to
thank all the authors who submitted their research results. The selection was a chal-
lenging task and we sincerely thank all the Program Committee members, as well as the
external reviewers, who volunteered to read and discuss the papers. We greatly thank
the tutorial and publication chair, Joaquin Garcia-Alfaro (Telecom SudParis), and the
publicity chairs, Ronan Lashermes (Inria) and Reda Yaich (IMT Atlantique). We
would like to thank most warmly the local organization chair, Ghislaine Le Gall (IMT
Atlantique), for her great efforts to organize and manage the logistics during the
conference. We also cannot forget our sponsors including the Brittany Region, the
Chair Cyber CNI on Cybersecurity of Critical Infrastructures and the Laboratoire de
Haute Sécurité for their support. Last but not least, thanks to all the attendees. As
security becomes an essential property in the information and communication tech-
nologies, there is a growing need to develop efficient methods to analyze risks and
design systems providing a high level of security and privacy. We hope the articles in
this proceedings volume will be valuable for your professional activities in this area.

January 2018 Nora Cuppens
Frédéric Cuppens
Jean-Louis Lanet

Axel Legay

Organization

General Chairs

Nora Cuppens IMT Atlantique, France
Jean-Louis Lanet LHS Rennes, France

Program Co-chairs

Frédéric Cuppens IMT Atlantique, France
Axel Legay Inria, France

Publications Chair

Joaquin Garcia-Alfaro Télécom SudParis, France

Publications Chairs

Ronan Lashermes Inria, France
Reda Yaich IMT Atlantique, France

Program Committee

Esma Aimeur University of Montreal, Canada
Luca Allodi Eindhoven University of Technology, The Netherlands
Jocelyn Aubert Luxembourg Institute of Science and Technology,

Luxembourg
Christophe Bidan Centrale-Supelec, France
Fabrizio Biondi Inria Rennes, France
Anis Bkakria IMT Atlantique, France
Yu Chen State University of New York - Binghamton, USA
Jorge Cuellar Siemens AG, Germany
Frédéric Cuppens IMT Atlantique, France
Nora Cuppens IMT Atlantique, France
Roberto Di Pietro Bell Labs, France
José M. Fernandez Ecole Polytechnique de Montreal, Canada
Simone Fischer-Hübner Karlstad University, Sweden
Simon Foley IMT Atlantique, France
Joaquin Garcia-Alfaro Telecom SudParis, France
Bogdan Groza Politehnica University of Timisoara, Romania
Ruan He Orange Labs, France
Christos Kalloniatis University of the Aegean, Greece

Sokratis Katsikas Center for Cyber and Information Security, NTNU,
Norway

Nizar Kheir Thales Group, France
Barbara Kordy INSA Rennes, France
Igor Kotenko St. Petersburg Institute for Informatics and Automation

of the Russian Academy of Sciences (SPIIRAS),
Russia

Marc Lacoste Orange Labs, France
Costas Lambrinoudakis University of Piraeus, Greece
Jean-Louis Lanet Inria Rennes, France
Axel Legay Inria Rennes, France
Javier Lopez University of Malaga, Spain
Raja Natarajan Tata Institute of Fundamental Research, India
Stephen Neville University of Victoria, Canada
Kai Rannenberg Goethe University Frankfurt, Germany
Michael Rusinowitch Inria Nancy, France
Ketil Stoelen SINTEF, Norway
Nadia Tawbi Laval University, Canada
Lingyu Wang Concordia University, Canada

Additional Reviewers

Cristina Alcaraz
Andrew Bedford
Olivier Decourbe
Mike Enescu
Gencer Erdogan
David Harborth
Majid Hatamian
Angeliki Kitsiou

Christos Lyvas
Patrick Murmann
Maria Mykoniati
Aida Omerovic
Atle Refsdal
Stavros Simou
Ahmed Seid Yesuf
Nikos Yfantopoulos

VIII Organization

Contents

Vulnerability Analysis and Classification

Automatic Vulnerability Classification Using Machine Learning 3
Marian Gawron, Feng Cheng, and Christoph Meinel

A Semantic Approach to Frequency Based Anomaly Detection of Insider
Access in Database Management Systems . 18

Muhammad Imran Khan, Barry O’Sullivan, and Simon N. Foley

Towards a Security Event Data Taxonomy . 29
Gustavo Gonzalez-Granadillo, José Rubio-Hernán,
and Joaquin Garcia-Alfaro

Apps Security

Unraveling Reflection Induced Sensitive Leaks in Android Apps 49
Jyoti Gajrani, Vijay Laxmi, Meenakshi Tripathi, Manoj S. Gaur,
Daya Ram Sharma, Akka Zemmari, Mohamed Mosbah,
and Mauro Conti

Remotely Assessing Integrity of Software Applications
by Monitoring Invariants: Present Limitations and Future Directions 66

Alessio Viticchié, Cataldo Basile, and Antonio Lioy

Using Data Integration to Help Design More Secure Applications 83
Sébastien Salva and Loukmen Regainia

Access Control and Filtering

MA-MOrBAC: A Distributed Access Control Model Based on Mobile
Agent for Multi-organizational, Collaborative and Heterogeneous Systems . . . 101

Zeineb Ben Yahya, Farah Barika Ktata, and Khaled Ghedira

A Vehicle Collision-Warning System Based on Multipeer Connectivity
and Off-the-Shelf Smart-Devices . 115

Bogdan Groza and Cosmin Briceag

Cloud Security

Design and Realization of a Fully Homomorphic Encryption Algorithm
for Cloud Applications. 127

Khalil Hariss, Hassan Noura, Abed Ellatif Samhat,
and Maroun Chamoun

A Study of Threat Detection Systems and Techniques in the Cloud. 140
Pamela Carvallo, Ana R. Cavalli, and Natalia Kushik

Cyber-Insurance and Cyber Threat Intelligence

Preventing the Drop in Security Investments for Non-competitive
Cyber-Insurance Market . 159

Fabio Martinelli, Albina Orlando, Ganbayar Uuganbayar,
and Artsiom Yautsiukhin

Towards an Anonymity Supported Platform for Shared Cyber
Threat Intelligence. 175

Thomas D. Wagner, Esther Palomar, Khaled Mahbub,
and Ali E. Abdallah

Human-Centric Security and Trust

Phishing Attacks Root Causes . 187
Hossein Abroshan, Jan Devos, Geert Poels, and Eric Laermans

Domain Name System Without Root Servers . 203
Matthäus Wander, Christopher Boelmann, and Torben Weis

Data Hiding on Social Media Communications Using Text Steganography. . . 217
Hung-Jr Shiu, Bor-Shing Lin, Bor-Shyh Lin, Po-Yang Huang,
Chien-Hung Huang, and Chin-Laung Lei

Risk Analysis

Privacy Scoring of Social Network User Profiles Through Risk Analysis 227
Sourya Joyee De and Abdessamad Imine

A Method for Developing Qualitative Security Risk
Assessment Algorithms . 244

Gencer Erdogan and Atle Refsdal

An Empirical Analysis of Risk Aversion in Malware Infections 260
Jude Jacob Nsiempba, Fanny Lalonde Lévesque,
Nathalie de Marcellis-Warin, and José M. Fernandez

Author Index . 269

X Contents

Vulnerability Analysis and Classification

Automatic Vulnerability Classification
Using Machine Learning

Marian Gawron(B), Feng Cheng, and Christoph Meinel

Hasso Plattner Institute (HPI), University of Potsdam, 14482 Potsdam, Germany
{marian.gawron,feng.cheng,christoph.meinel}@hpi.de

Abstract. The classification of vulnerabilities is a fundamental step to
derive formal attributes that allow a deeper analysis. Therefore, it is
required that this classification has to be performed timely and accurate.
Since the current situation demands a manual interaction in the classifi-
cation process, the timely processing becomes a serious issue. Thus, we
propose an automated alternative to the manual classification, because
the amount of identified vulnerabilities per day cannot be processed man-
ually anymore. We implemented two different approaches that are able to
automatically classify vulnerabilities based on the vulnerability descrip-
tion. We evaluated our approaches, which use Neural Networks and the
Naive Bayes methods respectively, on the base of publicly known vulner-
abilities.

Keywords: Vulnerability analysis · Security analytics · Data mining
Machine learning · Neural Networks

1 Introduction

Nowadays, the overall number of possible combinations of applications and oper-
ating systems and the complexity of each piece of software results in an inability
to manually survey the configuration of modern systems. Thus, the maintenance
and recognition of all components and their reported vulnerabilities requires a
tremendous effort. In the current situation, the huge amount of vulnerabilities
complicates the administration and protection of modern IT infrastructures.
Therefore, it is desirable to automatically process vulnerability information.
Common Vulnerability Scoring System (CVSS) parameters [7] of the vulner-
ability are usually used to enrich vulnerability information with additional met-
rics that allow automatic processing. Some of the parameters can be used to
derive an estimation of the severity and the effect of a vulnerability. In partic-
ular, the attack range and the impact on the basic security principles, namely
availability, confidentiality, and integrity, are crucial to analyze the
vulnerability.

The identification and assignment for the CVSS [7] base metrics is a time-
consuming action that requires expert knowledge. Usually, professional analysts

c© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 3–17, 2018.
https://doi.org/10.1007/978-3-319-76687-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_1&domain=pdf

4 M. Gawron et al.

from the National Institute of Standards and Technology (NIST) have to per-
form this scoring manually [4]. They try to match the new vulnerability to a
predefined template. But if the description of the vulnerability is ambiguous, an
even more time consuming manual analysis has to be performed. Then, already
analyzed vulnerabilities are identified that have similar information or keywords
in their descriptions. The scores and attributes of these vulnerabilities are used
as a guidance to perform the final evaluation and scoring of the new vulnera-
bility. This process [4] reveals that also the human experts start their investiga-
tion with the textual description of the vulnerability. Commonly used services
to report newly identified vulnerabilities, e.g. the vulnerability report form of
Carnegie Mellon [2], limit the information to a textual description. So, the human
experts do not initially receive more comprehensive information. Although they
might benefit from additional background information from the common knowl-
edge, we can identify a direct dependency between textual description and CVSS
attributes within the evaluation procedure of a new vulnerability.

Since this scoring method requires advanced knowledge and a manual inves-
tigation, the scoring procedure sometimes leads to a delay in the attribution.
Consequently, there are vulnerabilities, which have been released without CVSS
metrics. The missing metrics are usually integrated later. This duration could be
crucial for analytic systems that rely on these metrics to evaluate or even detect
the vulnerability. The delay of the scoring could amount to several days. For
example, the vulnerability in OpenSSH with the identifier CVE-2016-0777 was
published on the 14th of January in 2016, whereas the CVSS attributes were
released on the 19th of January 2016. Thus, there have been 5 days without
the possibility of a classification or an automatic processing of the vulnerability.
This delay could also not be explained with the low usage and minor distribu-
tion of the software, since OpenSSH is a commonly used program, which is also
pre-installed in many Linux distributions. We believe that this delay and the
manual workload of the vulnerability analysts could be dramatically reduced
with an automatic classification of the vulnerability. Therefore, we will propose
machine learning approaches to perform the classification based on the textual
description.

The paper will begin with an introduction to illustrate the problem and its
importance. Afterwards, some related ideas and approaches will be introduced
and described. However, the problem is currently not widely explored, which
results in the lack of numerous approaches that tackle the problem. Then, our
own approaches will be explained in Sect. 3. We will describe a Neural Network
approach and the Naive Bayes approach that both learn to classify the vulner-
abilities based on extracted features of the description. In Sect. 4 our evalua-
tion results are presented and illustrated. Thereafter, we will mention additional
steps, which we plan to pursue in the future. Finally, we will conclude our work
and summarize the contributions.

Automatic Vulnerability Classification Using Machine Learning 5

2 Related Work

Early ideas to use textual data, which is accumulated in vulnerability data-
bases was already presented in [15]. The authors refer to different data mining
algorithms to benefit from the diverse knowledge inside various vulnerability
databases. However, they state that immense effort should be invested into the
normalization and compatibility to benefit from vulnerability information of dif-
ferent sources. Furthermore, they want to use data mining to be able to predict
and avoid vulnerabilities in future software products. The authors of [15] claim
that learned classifiers should be able to identify vulnerability patterns in soft-
ware before the code is included in productive software. Therefore, formal vul-
nerability characteristics should be constructed to train the mining algorithms.

Another application of machine learning to the field of vulnerabilities could be
observed in [13]. The authors applied text mining algorithms to the source code
of different software components. Then, they predict the likelihood of each com-
ponent to contain vulnerabilities. This method allows them to highlight compo-
nents that should be reviewed by security analysts, since it is very likely that the
components are vulnerable. In [6], another method to identify vulnerabilities in
software is presented. Beside the source code evaluation, the authors of [6] also
propose the usage of metrics of version control systems and the architecture of
the software itself to improve the prediction of vulnerabilities. The authors of [10]
also investigated the possibility to apply machine learning algorithms on vulner-
abilities. They tried to predict vulnerabilities in software components based on
similarities to other software components. They also integrated the approach into
an existing tool, which is called Vulture. The major difference is that they used
vulnerability databases as a source to find vulnerabilities in programs, which they
identified by using the CPE-IDs (Common Platform Enumeration IDs) [8]. They
did not try to predict characteristics of the vulnerability itself.

Another paper utilized machine learning approaches to predict the likeli-
hood for the existence of an up-to-now undiscovered vulnerability in a piece of
software using data from the National Vulnerability Database (NVD) [9]. The
authors of [18] applied several machine learning algorithms, but concluded that
the prediction capability of their models based on the data from NVD is poor.
Their goal to build a prediction model for the time-to-next disclosed vulnera-
bility per application was unfeasible as they encountered several problems. For
instance, they found that new vulnerabilities affect all previous versions, which
results in an unusable versiondiff feature. Finally they conclude that the data
from NVD might not be designed to be used for machine learning approaches
at all.

Furthermore, an interesting approach of vulnerability classification and iden-
tification is presented in [17]. The authors utilized text mining methods to iden-
tify characteristics in the description of vulnerabilities and bugs. Their idea is to
classify bug reports in two categories, namely regular bugs and hidden impact
bugs. The major difference is that the hidden impact bugs could violate security
policies. Thus, these hidden impact bugs are usually related to vulnerabilities.
So, the procedure can be used to identify vulnerabilities from bug reports.

6 M. Gawron et al.

The classification of vulnerabilities was also investigated in [1]. The authors
tried classify vulnerabilities based on the fact if the vulnerability was exploited
or not. In contrast to our approach they based their findings on a different subset
of vulnerabilities and used the OSVDB (Open Source Vulnerability Database).
They concentrated on the fact if an exploit is available or if it is rumored or
unavailable, which dramatically decreases the amount of usable data. In addition,
they also regarded textual features as binary representations in a bag-of-words
style. So they will have a high-dimensional vector for textual attributes that
represents the words that are present in the corresponding field. This approach
is similar to our approach, which was used in the preprocessing step for Naive
Bayes. For our Neural Network we did not simply chose a binary representation
for the words but the GloVe [11] tool to also retain semantic meanings.

3 Classification Approach

The classification of vulnerability information is a fundamental step in the pro-
cess of an automatic processing. As it was described, the information about
newly identified vulnerabilities rarely contains sufficient details to automatically
process the impact of an exploit or fully understand the prerequisites. Usually
the reports contain a description of the vulnerability, information about the
affected software, and a rough textual description about a possible impact or
even less information. The descriptions are submitted in natural language and
information about the affected product could be specified by CPE-IDs (Common
Platform Enumeration Identifiers) [8] or by keywords. A well-known example is
the submission form of the CERT [2]. This process requires a manual investiga-
tion and translation to formal vulnerability attributes, such as CVSS metrics [7].
The formal metrics could then be used in an automatic analysis of existing vul-
nerabilities, since the information can be interpreted by machines.

Our idea aims at an automation of this translation to formal attributes.
Therefore, we wanted to investigate the possibilities of a machine-learning app-
roach to derive the formal attributes from the description of the vulnerability.
We wanted to solve two interesting questions. The first question was if it is
possible to derive the previously mentioned characteristics. The other question
was, if the accuracy of the automated approach is sufficient to classify the vul-
nerability autonomously. We implemented two different classification methods
to evaluate the accuracy and discuss advantages between the approaches. We
will begin with our Neural Network approach and introduce the Naive Bayes
classification afterwards.

3.1 Neural Network

We chose a Neural Network as one of our approaches, since it is a common choice
for multi-label classification and classification problems with a high complexity.
We believe that the approach is well suited to work with descriptions in natural

Automatic Vulnerability Classification Using Machine Learning 7

Fig. 1. Workflow of the classification

language if the domain is limited and a sufficient amount of training data is avail-
able. In our case both requirements can be met with already classified vulnera-
bilities. We can use the descriptions of 72,000 older vulnerabilities to train our
network. Additionally, we found that the number of distinct words in all descrip-
tions accumulate to 104,000 words. Thus, we could build our limited vocabulary
and collected already classified data for our training set. The overall workflow to

8 M. Gawron et al.

classify vulnerabilities based on their description using Neural Networks is illus-
trated in Fig. 1. We will describe the individual steps according to the illustration.

The first step, which was illustrated as the preparation phase in Fig. 1, was
to remove unnecessary information from the descriptions. Since the description
is created with natural language, it contains words that do not provide any
additional benefit to the overall meaning. Thus, we removed stop words with the
help of a predefined list of well-known stop words that we gathered from [16].
Furthermore, we used word stemming methods to overcome the differences of
words that are produced by declination and conjugation. Additionally, every
word with capital characters is transformed to lower case. This will resolve any
differences that arise from word orders inside the sentences. So, every description
is transformed into a list of substantial words.

In the next step the input data for our network has to be derived from
the preprocessed descriptions. This step was integrated into our workflow as
the transformation of input values. Since Neural Networks are usually not able
to work on textual data, this additional transformation has to be performed.
Therefore, we chose GloVe [11], which is an unsupervised learning algorithm
to derive vector representation from given input words. The distinctive feature
of this algorithm is the capability to identify words with similar meanings and
to retain the relationship between multiple pairs of words. For example the
difference of the vectors for “king” and “queen” and the difference of the vectors
for “man” and “woman” have a high similarity. The algorithm assigns a 50
dimensional vector to each of the identified words. This dictionary can then be
used to replace the vectors for each word in the description. In the final step, this
algorithm creates a list of vectors out of our previously processed descriptions.
Thus, each description consists of 50 floating point values multiplied by the
number of words in the description. Even though the average number of words
per description is 37, we have to consider the maximum number of words of all
descriptions to create our list of word vectors. This requirement arises from the
condition of uniform input values to the Neural Network. If we would work with
the average number of words, we would have to omit several words for some
descriptions, which could lead to a loss of knowledge about those. Thus, we
decided to expand all descriptions to the maximum word count. Therefore, we
enlarge the shorter descriptions with null vectors to equalize the different lengths
of the individual descriptions. For our experiments we identified a maximum
length of around 400 words and enlarged smaller descriptions accordingly. So we
end up with around 2,000 input values per description that originate from 400
words and 50 floating point values for each word.

Finally, we only have to translate the formal values of the CVSS [7] attributes
to numbers to completely work in the numerical space and feed the data into
our Neural Network.

This final translation strongly depends on the attributes which should be
predicted. First we need to identify all possible values for the selected attribute.
Then we can simply enumerate the possible values and use this mapping to trans-
late the textual information to numbers. For the single attribute predictions, such

Automatic Vulnerability Classification Using Machine Learning 9

as integrity or attack-range, we identified the distinct values None, Partial,
Complete and Unknown, Local, Adjacent Network, Network respectively.

For our combined predictions the possible combinations of the selected
attributes had to be considered. So the combination of confidentiality, integrity,
and availability (CIA) results in 27 distinct values. For our overall combina-
tion we added the attack-range which means that we would have to work with
108 different values. The mapping itself has to be persisted to allow the back
translation, which we perform as our final step of the workflow 1.

At this point we can feed our data into the Neural Network. We decided to
use 80% of the data to train the network and the remaining 20% for testing.
The Neural Network was configured with a learning rate of 0.001 and it runs
for 100 epochs. Additionally, we tested various configurations for the number
of hidden layers as well as the number of units per layer. The most promising
results have been achieved with a network of 3 layers and 1200, 700, and 50
units for the respective layers. During the evaluation, which will be described in
the next chapter, we encountered the problem of overfitting of our network. We
tackled the problem with the specification of a dropout rate. This rate describes
a probability that an individual node is kept or dropped from propagation. Thus,
not all nodes of each layer influence the output anymore. This method is also
illustrated in the Neural Network of our workflow in Fig. 1. It is shown that the
nodes marked with an “X” do not propagate their results to the following layers
of the network.

Afterwards the results are extracted and the numerical values can be mapped
back to human readable values of the CVSS attributes. Thus, we can create the
single attribute value or the combination of attributes from a description. So we
can use the approach to automatically classify vulnerabilities according to the
specified attribute. This final step concludes the workflow that is illustrated in
Fig. 1.

3.2 Naive Bayes

Beside Neural Networks, we implemented another method to derive CVSS [7]
attributes of vulnerabilities automatically. We implemented a Naive Bayes [12]
classifier that can predict the selected attribute based on the associated descrip-
tion. We chose the Naive Bayes classification method, since we believe that it is
a widely known and applied algorithm for classification problems. It was already
thoroughly studied and investigated and could therefore serve well as a compar-
ison and reference value to the Neural Network approach.

First of all, we have to perform some preparation steps similar to the Neural
Network approach. We determine the most meaningful words of the descrip-
tions from all vulnerabilities depending on the individual feature. Therefore, we
choose to create our features based on a bag-of-words model that uses the exis-
tence of words in descriptions. The overall dictionary was created out of 72,000
descriptions resulting in a list of around 104,000 words. In an initial training
round the meaningful words are collected automatically. Hence, the corpus of all
vulnerability descriptions has to be cleansed from stop-words and we also use

10 M. Gawron et al.

word stemming to resolve differences that arise by declination and conjugation.
Afterwards the remaining words are ranked by importance, which is measured by
the impact that an existence of a word in a vulnerability description has to the
classification result. Therefore, we separated the previously cleansed descriptions
based on the value of the attribute that should be predicted. So we create one set
of descriptions that is correlated with a remote attack range and a different set
that is correlated with a local attack range for example. Afterwards, we compute
the term frequency and the inverse document frequency to find the most promis-
ing candidates that could indicate a special value of the attribute. We believe
that the term frequency is a well suited method to find these candidates, since it
is more likely that a word has a higher impact on the characteristic if it appears
more often in the respective set of descriptions. Another observation was based
on the differentiation of descriptions based on the attribute that should be inves-
tigated. We found that words with a high frequency in one group of descriptions
and a low frequency in the other group of descriptions have a strong impact
on the classification. This observation can also be generalized since we know of
the effect of domain specific vocabulary and keyphrase extraction [3]. In natural
languages we usually use a specific vocabulary to describe scenarios in a certain
domain. Thus, it is possible to evaluate the utilized vocabulary to derive the
domain and try to predict the meaning of the description. So we compared the
term frequencies group wise and selected the words with the highest discrep-
ancies. For example, words like “remote”, “message”, or “connection” have a
strong indication that the attack range of a vulnerability is remote. Whereas,
words, such as “crash” or “denial” suggest a violation of availability.

For the final classification we found out that using the 500 most significant
words per attribute is sufficient to achieve satisfying results. This limitation also
reduces the computation time dramatically. The approach of an automatically
generated list of meaningful words has the benefit that the features are compre-
hensible and a manual verification is possible. The final features that are used
within the Naive Bayes classifier are binary representations of the existence of
the previously identified meaningful words. So we iterate through the list of our
previously created set of meaningful words and flag the existence or the non-
existence. These features are then passed to the Naive Bayes classifier to train
the model.

The workflow for each description is similar to our Neural Network approach.
First we prepare the descriptions by removing stop-words and applying word
stemming. Afterwards we transform the individual words to numerical features,
which are binary in the Naive Bayes approach. The transformation will produce
a binary vector that represents the existence of each meaningful term. Finally
we feed the vector into our classifier and receive the classification result in a
textual format.

4 Classification Results

We used real descriptions of already published vulnerabilities for our experiment.
So we gathered all available vulnerabilities with their descriptions and CVSS [7]

Automatic Vulnerability Classification Using Machine Learning 11

attributes that have been published before the 1st of January 2016. Thus, the
collection consists of 72,490 vulnerabilities with known CVSS attributes. We
used 80% to train the algorithm and 20% of the descriptions as a testing set. The
division between training and testing data is performed with a shuffling before
the partition to let the algorithm train independent of the chosen training data.
Because of this random arrangement in the data the test results may vary for
each classifier creation. Thus we executed our classifier creation several times and
used the average measurements for our evaluation. Additionally, we used 2,400
vulnerabilities that have been published in 2016 as a validation set to evaluate
the trained algorithm. This allows us to test our classifiers more thoroughly on
data that was definitely not used in any of the training steps. It is even more
important in the Neural Network approach since the testing data will be used
to adjust and fine-tune the parameters in each iteration of the network. So the
descriptions of the validation set did not have any impact on the training of
the Neural Network. When the network has to predict the selected attributes
the result represents the accuracy that can also be achieved on newly discovered
vulnerabilities.

Our CVSS attribute prediction focused on the most important attributes
attack range, availability, confidentiality, and integrity. We built sep-
arate classifiers for each of these attributes. Furthermore, we implemented a clas-
sifier for a combination of confidentiality, integrity, and availability, which we
refer to as CIA classifier. Finally, a classifier for the combination of all attributes
was constructed as well. The combined classifiers were created with separate
Neural Networks or Naive Bayes classifiers respectively. We combined the pri-
mary values of each attribute that is part of the combination and derived a list
of possible value combinations for each attribute. Then, the combinations and
the vulnerability descriptions are fed into our algorithms to build the combined
classifiers.

Because of the different distributions of the attribute values in our data set,
we had to adjust the training data to end up with a balanced set of descriptions
for the selected attributes. For example the availability attribute divides the
overall amount of around 72,000 vulnerabilities into 17,700 vulnerabilities with
a complete, 31,900 vulnerabilities with a partial, and 22,800 vulnerabilities
with a unaffected specification. The difference is even more significant in the
attack range. More than 80% of the vulnerabilities can be exploited remotely.
This imbalance results in a major problem of machine learning capabilities. Usu-
ally, the application of machine learning algorithms requires the precondition of
a well-balanced set of training data. So, that the algorithm is not influenced by
the pure majority of attribute characteristics during the classification process.
Thus, we adjust our training set to be more balanced and reduce the num-
ber of considered vulnerabilities. For example, our availability classifier will
not use all 72,000 descriptions, but it will use 17,700 descriptions from each
of the characteristics, namely complete, partial, and unaffected, because of
the before mentioned balancing method. This leads to the final training set of
53,100 vulnerabilities, which is well-balanced. Hence, the classification should

12 M. Gawron et al.

only depend on the descriptions themselves and not on the difference in the
amount.

Furthermore, our results mainly focus on the accuracy of the tested
approaches, which slightly varies from the accuracy of a linear classifier that
has to decide in a two-dimensional space. Therefore, our accuracy computation
was derived from the Hamming score. The classifier accuracy is computed over
all labels to correctly evaluate the effectiveness of our multi-label classification
as also described in [14]. The formula to compute the accuracy is shown in Eq. 2.

CorrectlyClassified =
⋂

Label∈SelectedLabels

{v ∈ V ulns|v.Label = result}

(1)

ClassificationAccuracy =
|CorrectlyClassified|

|AllDescriptions|
(2)

4.1 Naive Bayes

The first results and the initial impression, if it is possible to create an automatic
classification approach for vulnerability descriptions was produced by a Naive
Bayes classification. We chose the Naive Bayes approach because this method is
commonly used for classification problems. Additionally, Naive Bayes could also
be used to perform a multi-label classification, which was one of our require-
ments. We also believe that the Naive Bayes with its wide distribution is well
suited to be a candidate to compare results from other approaches. We applied
the Naive Bayes classification as it was described in Sect. 3.2.

So we created 4 separate classifiers that apply the Naive Bayes approach to
each single attribute of our data set. The results are shown in Table 1. As we
already expected the results of the training data are similar to the results of
the test data. Because we randomly select the 20% test data at the beginning
of each execution anew, there is no difference between test and training data.
Furthermore, the validation set also produces similar results, which are also
promising.

Table 1. Accuracy of the Naive Bayes approach

CVSS attribute Train data Test data Validation data

Attack vector 89.9% 90.8% 92.3%

Availability 68.4% 68.0% 70.0%

Confidentiality 73.2% 72.4% 69.1%

Integrity 74.2% 73.6% 68.3%

Automatic Vulnerability Classification Using Machine Learning 13

Besides the mentioned results, the Naive Bayes classifier also offers an addi-
tional metric that describes the confidence of the classification result. We mod-
ified our algorithm to only perform the classification if the confidence value
amounts to at least 0.75. The results that have been produced using the confi-
dence do not differ significantly from the already listed findings in Table 1. We
found that the accuracy of the attack vector classification drops by 2%, whereas
the accuracy of the availability, confidentiality, and integrity classifiers increases
by 3%. But the modified version omits 56, 419, 428, 321 vulnerabilities respec-
tively. Nevertheless if the Naive Bayes approach would be used to automatically
classify the descriptions in practice the confidence value should be included. If
the confidence is not satisfying a manual classification should be considered to
achieve accurate results.

4.2 Neural Networks

As it was already described in Sect. 3, we implemented a second approach that
is based on Neural Networks. Our Neural Network was created with Tensorflow
version 0.101 and Glove 1.2 [11]. Since we wanted to produce comparable results
to our first approach we created different networks for the individual attributes.
So, at first we also created one network for each of the four CVSS attributes.
Each experiment was executed 10 times and we computed the accuracy accord-
ing to the formula of Eq. 2. In the case of a single attribute the formula can be
reduced to the fraction of correctly classified descriptions and overall number of
descriptions. For the Neural Network we divided our input data set into training
data and test data, similar to out Naive Bayes approach. We chose 80% of the
data for the training set and the remaining 20% for the test data set. The differ-
ence is that the test data is already considered during the training of the model.
We configured our network to run for 100 epochs. The network itself consists
of 3 hidden layers with 1200, 700, and 50 units respectively. The classification
results are illustrated in Table 2.

Table 2. Accuracy of the Neural Network approach

CVSS attribute Train data Test data Validation data

Attack vector 99% 88.9% 80.3%

Availability 99% 80.7% 70.0%

Confidentiality 99% 81.1% 70.2%

Integrity 99% 81.9% 69.8%

The results also indicate the problem that arose with the Neural Network
approach. As it was already mentioned in Sect. 3, we encountered the overfitting
effect that often occurs with Neural Network approaches. The algorithm has
1 https://www.tensorflow.org/.

https://www.tensorflow.org/

14 M. Gawron et al.

been able to adjust too much to the training data. Thus, the high accuracy for
the training data results in a poor accuracy of the test data. A commonly used
method against overfitting is the utilization of a dropout rate. We described the
working principle of the dropout rate in Sect. 3 and it is also illustrated in Fig. 1.

4.3 Combined Classifiers

We described the results for the two implemented classifiers in the previous sec-
tions and the comparison shows that both approaches are capable to classify
vulnerabilities in consideration of single CVSS attributes. The two results for
each of the attributes are comparable and therefore neither the Naive Bayes nor
the Neural Network could achieve significantly better results than the other app-
roach. But, our overall goal was to create an approach that is able to perform
a detailed classification of multiple CVSS attributes. Therefore, we considered
the attribute triple of confidentiality, integrity, and availability, which is com-
monly abbreviated as CIA. The results for the CIA-classification are illustrated in
Table 3. We produced the results according to previously described methods. The
major difference was to create the different value combinations of the attribute
triples. Those combinations are considered to construct the possible labels for
our data. Then, the workflow will be similar to the single-attribute based app-
roach that was described earlier. So we trained our two classification methods
on our training data set and applied the resulting models to the evaluation data
set. The process was reiterated 10 times and the average accuracy was com-
puted. Now the computation has to consider the individual number of Labels to
compute the correct accuracy, which means we now use the MultiLabelAccuracy
from Eq. 2.

Table 3. Accuracy of Naive Bayes and Neural Network on combined attributes

CVSS attribute combination Naive Bayes Neural Network

CIA test data 63.9% 71.2%

CIA validation data 51.6% 53.4%

Overall test data 61.4% 59.3%

Overall validation data 48.1% 49.1%

Moreover, the Overall classification includes the attack range in the pro-
cess. Then we are able to produce predictions for availability, integrity,
confidentiality, and attack range, which is usually sufficient for a deep anal-
ysis of the requirements and impacts of a vulnerability. The results are illustrated
in Table 3. Finally, we can observe that it is possible to use machine learning
techniques for an automated vulnerability classification to save processing time
for vulnerability experts. In addition, we can see that the Neural Network per-
forms slightly better in the combined classification.

Automatic Vulnerability Classification Using Machine Learning 15

5 Future Work

The presented approaches represent the first attempts to automatically classify
vulnerabilities. This would allow a faster analysis of requirements and impacts
of known vulnerabilities. Usually, the time period that is required to manually
process the information from the description is crucial, since attackers could
also use the information in this time frame. Therefore, we plan to continue this
work to achieve still higher accuracy rates and enhance the classification process
that it could be applied on public vulnerability databases, such as, National
Vulnerability Database (NVD) [9], HPI-VDB [5]. The possibility of an automatic
classification of incoming vulnerability descriptions should increase processing
performance, because the experts still manually extract the attributes. Then,
delays, as the delay of vulnerability CVE-2016-077, should not occur to often
anymore.

Furthermore, we could use the trained models on public security forums to
find discussions and insights about vulnerabilities. From time to time the com-
munity discusses information about vulnerabilities before the vulnerability itself
becomes officially or publicly known. Thus, the attackers might have an advan-
tage, since they could already interpret the content and benefit from the gained
information. We believe that the trained models could be applied on natural
language posts, discussions, or other texts. If a vulnerability classification was
possible or if the used vocabulary is similar to the already known vocabulary
from other vulnerability descriptions, it is very likely that the topic of the discus-
sion or the text is a vulnerability. Finally, one could use the classification results
to evaluate if the discussed vulnerability describes an already known vulnera-
bility or if the description belongs to an unknown vulnerability, which increases
the importance considerably.

6 Conclusion

This paper describes an approach to deal with delay in vulnerability classifica-
tion that is caused by manual interaction. The problem arises because the report
about a newly detected vulnerability contains human readable information about
the vulnerability. This information will be converted to the vulnerability descrip-
tion in natural language. Nevertheless most of the analytic tools require formal
attributes to determine the requirements and the impact of the vulnerability.
We propose an automatic approach to classify vulnerabilities and their natural
language descriptions into those formal attributes. Therefore, the first goal was
to investigate the feasibility of an automated approach and secondly evaluate
the accuracy. Thus, we implemented two different approaches that are capable
of an automated classification. We used Naive Bayes [12] as one approach, since
it is a widely distributed method to solve classification problems. For the other
approach we rely on Neural Networks, as modern natural language processing
systems utilize Neural Networks as well.

At first, we identified the most important characteristics of vulnerabilities,
namely the CVSS attributes availability, integrity, confidentiality, and

16 M. Gawron et al.

attack range. Then we created our training, testing, and validation data sets
and trained our model on the vulnerability description. Both approaches required
some additional preprocessing steps, as it was already described in Sect. 3. The
application of the Naive Bayes classification has the advantage that it could
directly work with natural language, whereas the Neural Network required
one additional transformation step. After the training we evaluated the two
approaches on the test data set. In addition to the test data set we also cre-
ated one validation data set, since the Neural Network approach also uses the
test data to train the model or adjust the parameters. So the most important
evaluation metric is the accuracy of the validation data set, since it was not
used during the training procedure. We found that the automated classification
is possible and the accuracy for single attributes, which was around 70% to 90%
depending on the attribute and the data set, is also satisfying. The important
metric of the combined attributes results in lower accuracy, but it was still pos-
sible to achieve an accuracy of 60% to 70% on the test data and around 50%
on the validation data. Since those attribute combinations accumulate to more
than 100 possible combinations we believe that an accuracy of around 50% is an
acceptable result. Furthermore it turned out that the result between test data
and validation data differ for both methods. This fact could also indicate that
the language of vulnerability descriptions in those sets differ as well. It could be
possible that the vulnerabilities that have been published later use a different
style to describe the impact of the vulnerability. Nevertheless the possibility to
benefit from an automated classification approach has been shown.

References

1. Bozorgi, M., Saul, L.K., Savage, S., Voelker, G.M.: Beyond heuristics: learning
to classify vulnerabilities and predict exploits. In: Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
105–114. ACM (2010)

2. Carnegie Mellon University: Cert/cc vulnerability report form (2017). Accessed 12
Mar 2017

3. Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., Nevill-Manning, C.G.:
Domain-specific keyphrase extraction. In: 16th International Joint Conference on
Artificial Intelligence (IJCAI 99), vol. 2, pp. 668–673. Morgan Kaufmann Publish-
ers Inc., San Francisco (1999)

4. Franklin, J., Wergin, C., Booth, H.: CVSS implementation guidance. Nat. Inst.
Stand. Technol. NISTIR-7946 (2014). http://nvlpubs.nist.gov/nistpubs/ir/2014/
NIST.IR.7946.pdf

5. Hasso Plattner Institute: HPI vulnerability database (2017). Accessed 26 Mar 2017
6. Hein, D., Saiedian, H.: Predicting attack prone software components using repos-

itory mined change metrics. In: Proceedings of the 2nd International Conference
on Information Systems Security and Privacy, ICISSP, vol. 1, pp. 554–563 (2016)

7. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system.
Secur. Priv. IEEE 4(6), 85–89 (2006)

8. Mitre Corporation: CPE - Common Platform Enumeration (2017). Accessed 11
Mar 2017

http://nvlpubs.nist.gov/nistpubs/ir/2014/NIST.IR.7946.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2014/NIST.IR.7946.pdf

Automatic Vulnerability Classification Using Machine Learning 17

9. National Institute of Standards and Technology: National vulnerability database
(2017). Accessed 22 Feb 2017

10. Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A.: Predicting vulnerable soft-
ware components. In: Proceedings of the 14th ACM Conference on Computer and
Communications Security, pp. 529–540. ACM (2007)

11. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: Empirical Methods in Natural Language Processing (EMNLP), pp.
1532–1543 (2014)

12. Russell, S.J., Norvig, P., Canny, J.F., Malik, J.M., Edwards, D.D.: Artificial Intel-
ligence: A Modern Approach, vol. 2. Prentice Hall, Upper Saddle River (2003)

13. Scandariato, R., Walden, J., Hovsepyan, A., Joosen, W.: Predicting vulnerable
software components via text mining. IEEE Trans. Softw. Eng. 40(10), 993–1006
(2014)

14. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. Mach. Learn. 37(3), 297–336 (1999)

15. Schumacher, M., Haul, C., Hurler, M., Buchmann, A.: Data mining in vulnerability
databases. Comput. Sci., 12–24 (2000)

16. Text Fixer: Common English Words List (2017). Accessed 11 Mar 2017
17. Wijayasekara, D., Manic, M., McQueen, M.: Vulnerability identification and clas-

sification via text mining bug databases. In: IECON 2014–40th Annual Conference
of the IEEE Industrial Electronics Society, pp. 3612–3618. IEEE (2014)

18. Zhang, S., Ou, X., Caragea, D.: Predicting cyber risks through national vulnera-
bility database. Inf. Secur. J. Glob. Perspect. 24(4–6), 194–206 (2015)

A Semantic Approach to Frequency
Based Anomaly Detection of Insider

Access in Database Management Systems

Muhammad Imran Khan1(B), Barry O’Sullivan1, and Simon N. Foley2

1 Insight Centre for Data Analytics, Department of Computer Science,
University College Cork, Cork, Ireland

{imran.khan,barry.osullivan}@insight-centre.org
2 IMT Atlantique, LabSTICC, Université Bretagne Loire, Rennes, France

simon.foley@imt-atlantique.fr

Abstract. Timely detection of an insider attack is prevalent among
challenges in database security. Research on anomaly-based database
intrusion detection systems has received significant attention because of
its potential to detect zero-day insider attacks. Such approaches differ
mainly in their construction of normative behavior of (insider) role/user.
In this paper, a different perspective on the construction of normative
behavior is presented, whereby normative behavior is captured instead
from the perspective of the DBMS itself. Using techniques from Sta-
tistical Process Control, a model of DBMS-oriented normal behavior
is described that can be used to detect frequency based anomalies in
database access. The approach is evaluated using a synthetic dataset
and we also demonstrate this DBMS-oriented profile can be transformed
into the more traditional role-oriented profiles.

Keywords: Anomaly detection · Database intrusion detection
Insider threats · Cybersecurity

1 Introduction

Database Management Systems (DBMS) is one of the essential elements of an
organization that enables management and storage of personal data. However,
management and storage of such data raises privacy concerns. As has been rou-
tinely demonstrated in the popular press, a data breach can cause an organiza-
tion to suffer from damages in-terms of reputation and financial loss, when an
individual’s privacy is compromised. Data breaches can be caused by an external
attacker (outsider attack) or an internal attacker (insider attack). Many security
defenses have been proposed to deal with outsider attack, including host-based
access controls, intrusion detection systems, and access control mechanisms.

Internal attacks, on the other hand, are caused by an insider, a member of
an organization who is authorized to access a range of data and services. It is

c© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 18–28, 2018.
https://doi.org/10.1007/978-3-319-76687-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_2&domain=pdf

A Semantic Approach to Frequency Based Anomaly Detection 19

reported that malicious insiders are the cause of the costliest cybercrimes [1],
and in one study 89% of respondent organizations were vulnerable to insider
attacks [3]. A further study reports that a significant level (43%) of data exfil-
tration was caused by insiders and half of which was intentional [2]. A challenge in
insider attack detection is that they often go unnoticed for months and years [4].
An Intrusion Detection System (IDS) can play a role in detecting insider attacks.
Misuse detection systems (misuse-based IDSs) are helpful in detecting previously
known attacks by looking for well-known attack patterns [10]. Anomaly detec-
tion systems (anomaly-based IDSs) [7,11], on the other hand, have the potential
to detect previously unknown, or zero-day, attacks [15] by looking for deviation
from normal behavior. We are interested in the latter to detect insider attacks.

In this paper, we are interested in detecting frequent observation attacks
by insider(s). A frequent observation attack is an attack whereby an insider,
or group of insiders, has made numerous malicious accesses to same record in
the DBMS. Real-world examples of frequent observation attacks [5,16] report
insiders (hospital staff) looking up the medical records of patients in the public-
eye. In the context of frequent observation attacks, determination of an exact
attack pattern before the attack is carried out is a challenging task. The frequent
observation attack does not follow a concrete pattern, as an attacker can devise
multiple ways to access a record by constructing same effective query in different
ways. Our hypothesis is that an anomaly-based IDS can be used to detect such
attacks. In an anomaly-based IDS, a profile of a user or a role is constructed.
This profile is an approximation of normative behavior of a user or a role. The
effectiveness of an anomaly-based IDS relies on what behavior is captured in a
user’s or role’s profile. Existing anomaly-based IDS, while constructing user/role
profiles, misses aspects of user’s behavior that enable the detection of frequent
observation attacks thus existing techniques are unable to detect frequent obser-
vation attacks carried out by insiders.

In this paper, we propose the notion of DBMS-oriented profiles, as compared
to traditional role/user-oriented profiles. The goal of constructing a DBMS-
oriented profile is to capture an approximate normal behavior of the DBMS,
whereas the goal of role/user-oriented profile is to have an approximation of
normative behavior of a user or a role.

The majority of anomaly-based IDSs consider syntax-centric features when
constructing role/user-oriented profiles [6,12,17]. Syntax-centric features are
based on syntax of the SQL query, and include but are not limited to, the
attributes in a projection clause, the relations queried, the attributes in a selec-
tion clause, and the type of SQL command. However, as mentioned above, a
query can be articulated in many different ways to get the same result and this
is a major drawback of anomaly-based IDSs based on syntax-centric features.
Thus we are interested in constructing DBMS-oriented profiles by considering
data-centric features that include the data returned in the response to a query.
Data-centric features include, but are not limited to, the amount of data returned
or any other statistics related to the resultant data. Profiles constructed by con-
sidering data-centric features can be referred to as semantic approaches.

20 M. I. Khan et al.

In order to detect frequent observation attacks by insiders, we propose an
anomaly-based IDS that constructs DBMS-oriented profiles by considering data-
centric features that are based on the frequency of records being accessed. Thus,
we refer to the constructed profiles as data-centric DBMS-oriented profiles. Sta-
tistical Process Control (SPC) [14] is used in the construction of our model.
We also demonstrate that one can transform the data-centric DBMS-oriented
profile construction model into a data-centric Role-oriented profile construction
model. The paper is organized as follows. Section 2 describes the related work.
Section 3 outlines the proposed model, followed by the discussion in Sect. 4. We
demonstrate the model in Sects. 5 and 6 concludes the paper.

2 Related Work

Several anomaly-based IDS construct user/role-oriented profiles [6,8,11,17]. As
mentioned above, most anomaly-based IDSs construct user/role-oriented profiles
by considering syntax-centric features [8]. However, there are few anonmaly-
based IDS that construct user/role-oriented profiles by considering context-
centric features [6] and data-centric features [13] (sometimes referred to as result-
centric in the literature). In the case of syntax-centric features, the constructed
profiles are based on the syntax of the SQL query, for example, the attributes
in a projection clause, the relations queried, the attributes in a selection clause,
or the type of SQL command. In case of data/result-centric features, the con-
structed profiles are based on the data returned in response to a SQL query.
For example, one could use the amount of information returned in response to
a query or the returned values of attributes to generate profiles. In the case of
context-centric features, profiles are based on information related to the context
of a query. For example, the time of access or the time at which the query was
made, the user ID of the person making the query, or the number of queries
made in a specified time period. There are techniques in literature that con-
sider a combination of data-centric, context-centric and syntax-centric features
to construct profiles [6,17].

The approach in [17] considers syntax-centric and data-centric features to
construct profiles during the training phase from logs containing user/role activ-
ities. The proposed approach transforms a SQL query into a SQL query signa-
ture/abstraction called a quadruplet Q which is composed of the following ele-
ments Q(C,PR, PA, SR): C is the command type; PR and PA are lists of accessed
relations and attributes, respectively; SR represents the amount of selected infor-
mation from a relation. Naive Bayesian classifier was used to predict the role of
a user submitting queries while multi-labeling classifier was used in case of an
overlap of roles that results in more than one role. In the case where there are
no roles, COWEB clustering algorithm was employed. An approach considering
data-centeric features is proposed [13] where it was argued that syntax-centric
features of a query alone are a poor discriminator of intent. Syntactically differ-
ent queries can give the same result while syntactically similar queries can yield
different results, resulting in an increase in false positives and false negatives

A Semantic Approach to Frequency Based Anomaly Detection 21

respectively [13]. User profiles are user clusters that are specified in terms of
an S-Vector that provides a statistical summary of results (tuples/rows) from
columns accessed. An S-Vector represents statistical measurements for queried
attributes in the relation. In the case of numeric attributes, the S-Vector con-
sists of maximum value, minimum value, standard deviation, median and mean
for each numeric attribute in the query. In the case of non-numeric attributes,
the S-Vector consists of the total count of values, along with the number of dis-
tinct values. In the detection phase, if the query belongs to the cluster then it
is considered normal, otherwise it is considered anomalous.

Existing anomaly-based IDSs can certainly be used to detect individual
queries or query sequences that are different from normal (similar queries or
similar query sequences), however, they are unable to detect frequent observa-
tion attacks by insiders in their user/role-oriented profiles: queries made to access
records in frequent observation attacks by insiders appear as normal queries.

In this paper, we propose the construction of DBMS-oriented profiles that
capture the frequency of records being accessed in profiles of normal behavior.
Compared to existing approaches in literature, the proposed DBMS-oriented
approach has the advantage that anomalies can be detected if multiple roles or
users are accessing the same record while individually they are not raising any
alarm.

3 DBMS-Oriented Model for Normative Behavior

In this section, we propose a model for DBMS-oriented profiles of normal behav-
ior. Let D represent a relational database with a table T. For ease of exposition,
we assume that each record/tuple r in T is unique. The proposed approach con-
sists of a learning phase (alternatively known as training phase) and a detection
phase. In the learning phase, a DBMS-oriented normal profile is constructed
by determining a range for the number of times records are accessed in T. A
time period t is user-defined which is dependent on the nature of the target
application.

For example, in the case of an hospital where a record of a specific patient
is queried frequently compared to an electricity billing system where a specific
record might be queried twice or thrice in a six months period. For the purposes
of this paper we assume that the time-period is user-defined.

We wish to determine the number of times a record (or any attribute of
the record) is queried in the time period t. Let Fi be a numeric counter for
the ith record ri in T. When the ith record, or any attribute value in the ith

record, is accessed then the value of Fi is incremented by one. We store these
values of Fi for each day. The decision of selecting the value of time period t
is left on the organization and the nature of the application where the mecha-
nism is deployed. For the purposes of exposition, we set the time period to 24 h.
We collect values of Fi over the time period in order to get an approximation
of the times a record is accessed and this provides a training set. The collec-
tion of the values of Fi can be done for a longer duration (for multiple days).

22 M. I. Khan et al.

In this paper, we assume that the frequency at which each record is accessed in
table T is uniformly distributed. However, in the case where the frequency at
which each record is accessed in table T is not uniformly distributed then one
variant of the model we are proposing can be to collect values of Fi for a couple
of days, then taking an average of these values over the number of days to get
an approximation of the number of time a record is accessed. This can be one
variant of the model we are proposing in this paper, however to present our basic
model we exclude this variant of the model.

We call the set of values generated for the training data-set (learning phase)
L, and Li is the frequency value of the ith record in the training data-set. Here,
an outlier is a value of Fi that is significantly different from the rest of the values
of Fi. The aim of the training phase is to have a fair approximation of normal
behavior from this training set Li. It is possible that we may miss behaviors
(values of Fi), but it is also possible that we may include those behaviors that
are unusual and infrequent (unusual values for Fi) that we call outliers. Thus,
in order to determine the spectrum of normal values for Fi, we consider two
scenarios, one that is free from outliers and the other that is susceptible to
(with) outliers.

3.1 With-Outlier Scenario

In this scenario, where data is influenced by outliers, Median Absolution Devia-
tion (MAD) is used to determine the spectrum of normal values for Fi. MAD is
based on the median and this is typically preferred to other measures of central
tendency in the case of outliers. Let m(L) denote the median value for training
set L. Let mAD(L) denote the median absolute deviation for L.

Statistical Process Control (SPC) [14] originated from performance moni-
toring in manufacturing processes. Control charts are at the heart of SPC and
provide the history of a running process about which decision are made. Differ-
ent types of control charts have been studied in the literature. We use Shewhart
chart [14] for the outlier-free scenario. Shewhart charts rely on the mean and
standard deviation for their specification limits (upper and lower specification
limits). For training data with-outliers we generate a modified version of a control
chart using median and median absolute deviation as upper/lower specification
limits. The modified control chart is generated for each record. A sample mod-
ified control chart is shown in Fig. 3. In the detection phase, for this scenario,
the counter Fi for each record starts with the value zero at the beginning of a
day and is then reset to zero at the end of the day. Every time a record ri or any
attribute in the record is accessed, the value of the associated counter with that
record Fi is incremented by one. The values of Fi are plotted on the modified
control chart. For with-outlier scenario, we chose upper specification limits and
lower specification limit +2mAD(L) and −2mAD(L), respectively. Thus, any
value of Fi above and below +2mAD(L) and −2mAD(L), respectively, are an
indication of an anomaly.

A Semantic Approach to Frequency Based Anomaly Detection 23

3.2 Outlier-Free Scenario

For the outlier-free scenario, the mean μ and standard deviation σ are used to
determine the upper/lower specification limits. We have functions μ() and σ()
that compute the mean and standard deviation, respectively. Thus μ(L) and
σ(L) gives us the mean and standard deviation for L, respectively. As compared
to the with-outlier scenario, in this scenario, we use mean and standard deviation,
instead of median and median absolute deviation. A control chart is generated
for each record, sample chart is shown in Fig. 2. Similar to the above scenario,
in the detection phase for this scenario, the counter Fi, starts with the value
zero at the beginning of the day and is reset to zero for each record at the end
of the day. Value for Fi are plotted for each day on the control chart. For upper
specification limit and lower specification limit, we chose +3σ(L) and −3σ(L),
respectively. Values of Fi above and below +3σ(L) and −3σ(L), respectively,
are an indication of an anomaly.

In both scenarios, the anomalies can be further inspected by a security officer.
Reporting anomalies and anomaly response is a separate body of research [9]
thus details regarding anomaly response are out of the scope of this work. The
aim of the detection mechanism is to detect records that are frequently queried
as appeared in incidents [5,16]. However, the proposed approach also enables
the detection of records that are less frequently queried as compared to what is
normal/usual. As a use-case for instance, it may be the scenario in a hospital
where a doctor/nurse missed a daily check up of a patient.

In the above sections, an approach for modeling normative behavior of DBMS
is presented. The DBMS-oriented profiles initially contains specification limits
computed using training data-set for instance in outlier-free scenario the DBMS-
oriented profiles contains the values for μ(L), +3σ(L) and −3σ(L). In the detec-
tion phase, control chart of each record is added to DBMS-oriented profile. In
other words, the value for F for each record is added to DBMS-oriented profile.
The reason to do so is to evolve the initially constructed DBMS-oriented profile.
Let says, the values for F for a ith record is results in too many false positives
thus one could re-compute the specification limits for ith record by looking at
the past values of F, plotted on control chart, for this record.

3.3 Translating DBMS-Oriented Model into Role-Oriented Model

The above DBMS-oriented profile model does not consider roles, that is, which
role is accessing the record. The advantage of the DBMS-oriented model is when
several roles/users (employees) are accessing the same record, as in [5,16], it is
easier to detect anomalous behavior of the collaboration. In other words, the
DBMS-oriented model enables detection of collaborative frequent observation
attacks. However, a fine-grained role-oriented profile construction model can
be derived from the above model. The role-oriented construction of normative
behavior can alternatively be considered the traditional approach to the con-
struction of normal profiles.

24 M. I. Khan et al.

With the DBMS-oriented construction of a profile, F provides a counter for
each record. However in a role-oriented approach, each record ri has several
counters Frole

i , one for each role. For example, Fdoctor
i gives a count of accesses

to record i by a user in the doctor role.
In the training phase, a normal profile is constructed by determining a range

for the number of times records are accessed by a specific role, for instance it
is determined how frequently the role doctor accesses r3 in T. Similar to the
above-mentioned DBMS-oriented profile construction approach, a time period t
is defined. The number of times a record (or any of the attribute in the record) is
queried in time period t by each role is determined. Every time a record or any
attribute value in the record is queried, the value of F is incremented by one.
The profiles are constructed in a similar manner as mentioned in the DBMS-
oriented approach, with the difference in the DBMS-oriented profile construction
approach is having a control chart for each record, however, in this approach a
separate control chart for each role for every record is generated.

The detection phase is similar to the detection phase in the DBMS-oriented
approach. For the with-outlier scenario, values of Frole

i above and below +2mAD

and −2mAD, respectively, are an indication of an anomaly and in outlier-free
scenario, values of Frole

i above and below +3σ and −3σ, respectively, are an
indication of an anomaly.

4 Discussion

In this paper, we introduced the notion of DBMS-oriented profiles. The pre-
sented DBMS-oriented models of normative behavior is easy to be integrated
with existing systems because of their simplicity, as well as they can compliment
other detection systems. The proposed models enables the detection of frequent
observation attacks, where these attacks can be carried out in isolation, that
is, when an insider carries out the attack or collectively where several insiders
carry out the attack. It is possible that these insider may not be collaborating
while accessing a particular record with malicious intentions. Another base of
this work is the utilization of control charts from SPC to build our model. SPC
was originally proposed with its application in manufacturing industries where
it was used to observe if the process is working as expected during production
in order to detect defective products. SPC is a analytical decision making tool
that enables monitoring the quality of the processes.

In SPC, measurements are computed from samples (that are subset of item
produce/manufactured). These measurements are then used in establishing spec-
ification limits, that are, upper specification limits and lower specification limits.
In our case, the samples are the values of the number of time each record is
accessed. As mentioned in above section, control charts are the heart of SPC.
Control charts are graphs that show measurements and variation among the
measurements, that are plotted against predetermined specification limits, dur-
ing a specific time period. This time period is the time during which the process
was being observed. The purpose of control charts is to monitor processes, and

A Semantic Approach to Frequency Based Anomaly Detection 25

the resultant information by monitoring the processes is then used to make
improvements in-terms of quality. In our case, we computed specification limits
using training data-sets and the measurements plotted against these predeter-
mined specification limits are the values of number of times a specific record is
accessed in a certain time period. Control charts are of various types, however,
we utilized Shewhart chart, and a modified version of Shewhart chart in which
median and median absolute deviation is used to compute specification limits.

Fig. 1. Sample table T from patients database.

In the detection phase of our approach, the graphical representation, in-terms
of control chart, shows the pattern of access to a record over a horizon of time
give us insights that can be subsequently be used to update the specification
limits for a particular record. The concept is analogous to a feedback loops
in control systems where feedback loops considers the output of the system
thus enabling the system to fine-tune its performance. For example, lets say the
mean, the upper specification limit and the lower specification limit for record
r7 were 33.5, 49.25 and 17.75, respectively. In the detection phase, the value of
the number of times r7 was accessed in one day was plotted each day up-till 30
days. After 30 days, a pattern emerged that the value for the number of times
r7 accessed was always above 40.25. Using this insight, specification limits for
r7 can be re-calculated using the values of number of times r7 was accessed each
day. Thus this approach of monitoring the past behavior even in detection phase
enables to fine-tune existing DBMS-oriented profile.

5 Detecting Anomalies

In order to evaluate our work, we generated a synthetic training data-sets that
are training data-set for the outlier-free scenario LOF , for the outlier-free sce-
nario LWO, for the with-outlier scenario when roles are considered LOFR

RoleName

26 M. I. Khan et al.

and for the with-outlier scenario when roles are considered LWOR
RoleName. The syn-

thetic training data-sets consisted values for number of times each record in table
T was accessed each day for the duration of 10 days. Where the patient record
table T in the scenario of a hospital with roles including specialist, house offi-
cer, consultant, nurse, IT administrator, clinical specialist, and medical record
clerk was generated with random attribute values. The sample table is shown
in Fig. 1. Table T consisted of 100 randomly generated records, thus 100 values
were contained in each training data-set.

Fig. 2. A control chart for outlier-free training data is shown. Additionally, anomalies
are indicated in red circles. (Color figure online)

We first demonstrate how an anomaly is detected for DBMS-oriented model
without considering roles. We carried out experiment in order to construct
an example DBMS-oriented normal profile for T. The computed mean μ,
+3*standard deviation (+3 ∗ σ) and −3*standard deviation (−3 ∗ σ) for LOF

are 274.7 , 318.4 and 231.2 respectively. We carried attacks where frequent obser-
vation accesses were made to specific records.

The control chart in Fig. 2 is generated with outlier-free training data-set
LOF . Access to records 1 to 5 and record 18 for 30 days are shown for the
purpose of demonstration in this paper. It can be seen that record 4 is accessed
more than usual on day 1 and day 5 and record 3 is accessed more than usual
on day 5 and 21. In the case of record 18, it is observed from days 1 to 15 that
the number of times record 18 is accessed is above 330 or above +3 ∗ σ(LOF).
Refined specification limits for record 18 are computed by looking at the past
behavior of record for days 1 to 15 provided that this behavior is inspected by
the security officer and is concluded as a safe behavior. The refined specification
limits for record 18 are μ(LOF

record18) = 361.6, +3 ∗ σ(LOF
record18) = 444.9 and

−3 ∗ σ(LOF
record18) = 278.2. These refined specification limits are used for record

18 from day 16 and on-wards.

A Semantic Approach to Frequency Based Anomaly Detection 27

Fig. 3. A control chart for the role of medical record clerk is shown. The training data
in this scenario is with-outliers.

Figure 3 show the control chart, for role of Medical Record Clerk in the with-
outlier scenario. The control chart in Fig. 3 is generated with training data-set
having outliers LWOR

MedicalRecordClerk thus median and median absolute deviation
are used for the determination of Upper Specification Limit and Lower Speci-
fication Limit. The computed median m and median absolute deviation mAD

for role of Medical Record Clerk in the with-outlier scenario are 157.5 and 43,
respectively. We carried attacks where frequent observation accesses were made
to specific records from the role Medical Record Clerk. Figure 3 shows anomalous
access to record 3 on day 5 and day 6, record 1 on day 7.

6 Conclusions and Future Work

This paper introduced a novel notion of DBMS-oriented model of normative
behavior for construction of normal profiles that considers data-centric features.
The construction of the profiles utilizes Control Charts from Statistical Process
Control as a way to detect anomalies. We considered two scenarios, in the first
scenario, the training data contains outlier and in the second scenario the train-
ing data is free from outliers. The initial experiments have demonstrated the
effectiveness of the proposed approach in the detection of frequent observation
attacks as well as anomalies introduced due to human negligence/errors (that is
the case where the doctor/nurse missed a the daily check up of a patient). It is
also demonstrated, in the paper, that the proposed model for the construction
of DBMS-oriented profiles can be transformed into a model for construction of
role-oriented profiles. In future work, we plan to further evaluate these models
using non-synthetic systems.

28 M. I. Khan et al.

Acknowledgments. This work was supported by Science Foundation Ireland under
grant SFI/12/RC/2289.

References

1. 2015 cost of cyber crime: global. Technical report, Ponemon Institute (2015)
2. Grand Theft Data. Data exfiltration study: actors, tactics, and detection. Technical

report, Intel Security and McAfee (2015)
3. Insider threat report: insider threat security statistics, vormetric. Technical report,

Vormetric (2015)
4. 2016 data breach investigations report. Technical report, Verizon (2016)
5. Carr, J.: Breach of britney spears patient data reported, SC magazine for IT secu-

rity professionals (2008). https://www.scmagazine.com/breach-of-britney-spears-
patient-data-reported/article/554340/

6. Costante, E., den Hartog, J., Petkovic, M., Etalle, S., Pechenizkiy, M.: A white-box
anomaly-based framework for database leakage detection. J. Inf. Secur. Appl. 32,
27–46 (2017). http://www.sciencedirect.com/science/article/pii/S221421261630
2629

7. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense of self for unix
processes. In: Proceedings 1996 IEEE Symposium on Security and Privacy, pp.
120–128, May 1996

8. Hussain, S.R., Sallam, A.M., Bertino, E.: Detanom: detecting anomalous database
transactions by insiders. In: Proceedings of the 5th ACM Conference on Data and
Application Security and Privacy, CODASPY 2015, pp. 25–35. ACM, New York
(2015). https://doi.org/10.1145/2699026.2699111

9. Kamra, A., Bertino, E., Nehme, R.: Responding to anomalous database requests.
In: Jonker, W., Petković, M. (eds.) SDM 2008. LNCS, vol. 5159, pp. 50–66.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85259-9 4

10. Kemmerer, R.A., Vigna, G.: Intrusion detection: a brief history and overview.
Computer 35(4), 27–30 (2002)

11. Khan, M.I., Foley, S.N.: Detecting anomalous behavior in DBMS logs. In: Cuppens,
F., Cuppens, N., Lanet, J.-L., Legay, A. (eds.) CRiSIS 2016. LNCS, vol. 10158, pp.
147–152. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54876-0 12

12. Lee, S.Y., Low, W.L., Wong, P.Y.: Learning fingerprints for a database intrusion
detection system. In: Gollmann, D., Karjoth, G., Waidner, M. (eds.) ESORICS
2002. LNCS, vol. 2502, pp. 264–279. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45853-0 16

13. Mathew, S., Petropoulos, M., Ngo, H.Q., Upadhyaya, S.: A data-centric approach
to insider attack detection in database systems. In: Jha, S., Sommer, R., Kreibich,
C. (eds.) RAID 2010. LNCS, vol. 6307, pp. 382–401. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15512-3 20

14. Oakland, J.S.: Statistical Process Control, 6th edn. Routledge, London (2011)
15. Pieczul, O., Foley, S.N.: Runtime detection of zero-day vulnerability exploits in

contemporary software systems. In: Ranise, S., Swarup, V. (eds.) DBSec 2016.
LNCS, vol. 9766, pp. 347–363. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41483-6 24

16. Report C: 27 suspended for Clooney file peek (2007). http://edition.cnn.com/2007/
SHOWBIZ/10/10/clooney.records/index.html?eref=ew

17. Sallam, A., Fadolalkarim, D., Bertino, E., Xiao, Q.: Data and syntax centric
anomaly detection for relational databases. Wiley Interdisc. Rev. Data Mining
Knowl. Discov. 6(6), 231–239 (2016). https://doi.org/10.1002/widm.1195

https://www.scmagazine.com/breach-of-britney-spears-patient-data-reported/article/554340/
https://www.scmagazine.com/breach-of-britney-spears-patient-data-reported/article/554340/
http://www.sciencedirect.com/science/article/pii/S2214212616302629
http://www.sciencedirect.com/science/article/pii/S2214212616302629
https://doi.org/10.1145/2699026.2699111
https://doi.org/10.1007/978-3-540-85259-9_4
https://doi.org/10.1007/978-3-319-54876-0_12
https://doi.org/10.1007/3-540-45853-0_16
https://doi.org/10.1007/3-540-45853-0_16
https://doi.org/10.1007/978-3-642-15512-3_20
https://doi.org/10.1007/978-3-319-41483-6_24
https://doi.org/10.1007/978-3-319-41483-6_24
http://edition.cnn.com/2007/SHOWBIZ/10/10/clooney.records/index.html?eref=ew
http://edition.cnn.com/2007/SHOWBIZ/10/10/clooney.records/index.html?eref=ew
https://doi.org/10.1002/widm.1195

Towards a Security Event Data Taxonomy

Gustavo Gonzalez-Granadillo1, José Rubio-Hernán2,
and Joaquin Garcia-Alfaro2(B)

1 Atos Research & Innovation, Cybersecurity Laboratory,
C/ Pere IV, 291-307, 08020 Barcelona, Spain

gustavo.gonzalez@atos.net
2 Institut Mines-Télécom, Télécom SudParis, CNRS UMR 5157 SAMOVAR,

9 Rue Charles Fourier, 91011 Evry, France
{jose.rubio herman,joaquin.garcia alfaro}@telecom-sudparis.eu

Abstract. The information required to build appropriate impact mod-
els depends directly on the nature of the system. The information dealt
by health care systems, for instance, is particularly different from the
information obtained by energy, telecommunication, transportation, or
water supply systems. It is therefore important to properly classify the
data of security events according to the nature of the system. This paper
proposes an event data classification based on four main aspects: (i)
the system’s criticality, i.e., critical vs. non-critical; (ii) the geographical
location of the target system, i.e., internal vs. external; (iii) the time at
which the information is obtained and used by the attacker i.e., a priory
vs. a posteriori; and (iv) the nature of the data, i.e., logical vs. physical.
The ultimate goal of the proposed taxonomy is to help organizations in
the assessment of their assets and events.

Keywords: Security event taxonomy · Data classification
Risk assessment · Countermeasure selection

1 Introduction

Visualization models have been widely proposed to help operators in the eval-
uation and selection of security countermeasures against cyber attacks [1–3].
Most of the approaches rely on statistical data and expert knowledge to fill the
parameters composing the model. A great level of accuracy and detail is required
to compute the impact of malicious actions detected on the target system and
therefore, to determine the most suitable solution.

Geometrical models [4–6] have been previously proposed to represent graph-
ically the impact of cyber security events (e.g., attacks, countermeasures), as
geometrical instances (e.g., polygons, cubes, prisms). The approaches consider
information of many kinds (e.g., logical, physical, internal, external, etc.) to fill
up the model and compute the shape and size of the cyber event. As a result, it
is possible to determine the impact (e.g., size, coverage, residual risk, collateral
damage) of single and/or multiple events occurring on the target system through
geometrical operations (e.g., union, intersection).
c© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 29–45, 2018.
https://doi.org/10.1007/978-3-319-76687-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_3&domain=pdf

30 G. Gonzalez-Granadillo et al.

One issue that confronts the impact assessment of cyber security events is
the identification of the type of information required to feed the model. Each
system provides information according to the nature of the event (e.g., energy
system provides data about power consumption, blackouts, voltage, etc.; Dam
systems provide data related to the level of water, turbidity, volume, etc.). It is
therefore important to properly classify the data of security events according to
the nature of the system.

This paper is an attempt towards a security event data taxonomy. We propose
to classify the information of events based on the criticality of the system (critical
vs. non-critical), the time at which the information is obtained (a priory vs. a
posteriori), the geographical location of the target system (internal vs. external),
and the nature of the data itself (logical vs. physical). This classification is not
intended to be exhaustive, but a guide to help organizations in the assessment
of their assets and events.

The remaining of the paper is structured as follows: Sect. 2 defines secu-
rity event data. Section 3 discusses about the information of critical and non-
critical systems. Section 4 discusses about internal versus external data. Section 5
compares the a priori information versus the a posteriori information. Section 6
details logical versus physical data. Section 7 proposes a Security Event Data
Matrix. Related work are presented in Sect. 8. Finally, conclusions and perspec-
tive for future work are presented in Sect. 9.

2 Security Event Data

Considering that an event is defined as any observable action in a system or net-
work that indicates the occurrence of an incident; and information is defined as
any communication or representation of knowledge (e.g., facts, data, opinions in
any medium or form, including textual, numerical, graphic, cartographic, narra-
tive, or audiovisual) [7], we define Security event data as all relevant information
considered to have potential security implications to the system or network.

This article aims at organizing the information of security events based on
their nature and usefulness. We consider any information that can potentially
impact organizational operations (e.g., mission, functions, image, reputation),
assets (physical or logical resources), or individuals (personnel, providers, cus-
tomers) through an information system via unauthorized access, destruction,
disclosure, modification of information, and/or denial of service.

Security event data are useful to identify threats, define risks, and determine
the impact of malicious actions (e.g., attacks) and benign actions (e.g., coun-
termeasures) in an information system. We identify relevant data for critical
and non-critical systems. Information about critical systems is divided accord-
ing to the system’s nature (e.g., energy, water, telecommunications, finance,
health, transportation), and further classified as cyber systems (based on ICT
solutions); and physical systems (composed of physical processes managed
by, e.g., control-theoretic solutions). Information about non-critical systems is
divided into internal information, further classified as logical and physical data;

Event Data Taxonomy 31

and external information, further classified as a priori and a posteriori data. The
remaining of the paper details each type of data from our proposed classification.

3 Critical vs. Non-critical Systems Data

This section details the types of data required for critical and non-critical systems
to analyze risks, assess events, draw conclusions, and select countermeasures.

3.1 Information About Critical Systems

Critical Infrastructures rely on the Supervisory Control And Data Acquisition
(SCADA) technology to monitor industrial and complex infrastructures based
on Networked Control Systems (NCSs). They include sectors that account for
substantial portions of national income and employment such as energy, ICT,
finance, health, food, water, transport, and government. Most of these sectors use
Industrial Control Systems (ICSs), e.g., Supervisory Control And Data Acquisi-
tion (SCADA) in order to provide control of remote equipment (using typically
one communication channel per remote station) [8]. For space constraints, we
develop in this section the required and additional cyber and physical data for
energy distribution and water supply infrastructures.

3.1.1 Energy Distribution
This category includes the production, storage, transportation, and refining of
electrical power, gas and oil. The information used in the energy distribution pro-
cess includes classification of losses as technical and non-technical. The former
originates due to physical reasons and depend on the energy flowing through the
network, the nature of transmission lines, and transformers. The latter includes
measurement errors, recording errors, theft, and timing differences [9]. Examples
of technical losses are underground cables and overhead lines. The information on
this category includes the type of conductor (e.g., copper, aluminum); conductor
temperature (e.g., 0 Celsius, resistance temperature, heating effect, losses due to
heating); energy demand (e.g., 100 MWh/year); energy consumption (e.g., esti-
mated annual consumption, real energy consumption, thresholds, kWh, kVAh);
load (e.g., heating load, peak load, load factor); peak load times (e.g., winter
afternoons). In addition, technical losses can be originated due to the fact that
electricity is transported over long distances and the quality of records can be
low. Examples of data retrieved in this category include transformer distance
(e.g., Kms); transformer material (e.g., iron); power voltage (e.g., high voltage,
medium voltage, 400/230 V, 132,000 V); transformer temperature (e.g., heating
level, fixed losses, mean temperatures).

Examples of non technical losses include errors (e.g., reading errors, positive
error, negative error, timeswitch errors); timing differences (e.g., meter reading
period, meter reading frequency, absolute differences); profiling (e.g., profile coef-
ficient, half hourly periods, street lighting profiles, domestic consumers profile,

32 G. Gonzalez-Granadillo et al.

business consumers profile); data collection frequency (e.g., monthly, quarterly,
annually); reconciliation (e.g., reconciliation run, settlement reconciliation, post-
final reconciliation run); service status (e.g., active, idle, energisation).

Other types of data found in energy distribution systems include meter iden-
tification (meter point administration service, meter point administration num-
ber); meter type (e.g., passive, dynamic); Calculation Factor (Group Correction
Factor, Loss Factor, Peak Load Factor, Power Factor, Half Hourly Consumers
Factor); agents (e.g., distributors, suppliers, collectors); wiring system for sup-
plying electricity (e.g., three phase, single phase); sources (source of technical
losses, potential source of error); electrical equipment (e.g., transformers, electri-
cal switches); media type (e.g., fiber optics, leased line, Public Switch Telephone
Network - PSTN, Global System for Mobile communications - GSM, General
Packet Radio Service - GPRS, Terrestrial Trunked Radio - TETRA); commu-
nication protocols (e.g., Long-Term Evolution - LTE, High Performance Radio
LAN - Hyperlan); Human Machine Interface (e.g., video wall, client console);
switch brand (e.g., Cisco, HP, DIGI); Distribution Management System (e.g.,
high voltage, medium voltage, low voltage), security device (e.g., firewall, load
balancer, IDS, IPS, anti-virus, SIEM).

3.1.2 Water Supply
This category includes services that maintain, store, pump, and process water
used primarily for drinking.

Several parameters are monitored to assess the safety of a water supply
infrastructure (i.e., dam) and foresee possible failures or anomalies [10,11]. Each
parameter is measured using different sensors (e.g., Wireless Sensor Networks
- WSN). The most common sensors used in monitoring applications are: incli-
nometers and tiltmeters, used for the measurement of lateral earth movements
and wall tilt/rotation which could result in walls failures; crackmeters, used to
monitor movement of cracks and joints on the dam surface and are installed on
opposite sides of wall cracks to foresee cracks enlargements; jointmeters, deployed
across joints to monitor expansion and contraction of a joint, e.g., between adja-
cent blocks of a concrete dam; earth pressure cells, used to measure the total
pressure for embankment dams; piezometers, used to measure fluids pressure in
the embankments or in the boreholes, as well as to monitor the seepage, measure
uplift pressure and evaluate the shear strength; turbidimeters, used to measure
the water turbidity and to identify signs of internal erosion and piping that can
lead to the failure of the dam’s walls; thermometers, used to measure water tem-
perature and for environmental thermal monitoring to prevent damages to the
water life habitat.

In addition to sensors, other components take part of a water supply infras-
tructure. Examples of such components are: Programmable Logic Controllers -
PLCs (e.g., integrated, compact, modular, small, medium-sized, large); data col-
lectors (e.g., human machine interaction interfaces, data storing units, command
and data gateways, signal buses); control devices (e.g., workstation, database,
Human Machine Interface, shared resource); monitoring device (e.g., Master

Event Data Taxonomy 33

Control Unit - MCU, Remote Master Unit - RMU). These components use stan-
dard protocols (e.g., TCP/IP, Collection Tree Protocol - CTP, USB serial com-
munication port, Modbus, Distributed Network Protocol - DNP3, Inter-Control
Center Communications Protocol - ICCP); they are connected to a public net-
work for exchanging information and data with remote sites a connecting links
(e.g., satellite and radio links, telephone lines, Internet). They are protected
using security mechanisms (e.g., Firewalls, VPNs, Intrusion Detection Systems,
Intrusion Protection Systems); such mechanisms allow for software controls (e.g.,
patching, automatic updates, component changes).

3.2 Information About Non-critical Systems

The primary data needed for a risk assessment should include the organization’s
mission statement, a list of programs they have developed in support of that
mission, a list of assets by classification that support the programs, the orga-
nization’s functional organization chart, the relationship between the business
functions and the physical property, existing countermeasures used to protect
those assets, and any historical data relating to past security events [12].

The identification of methods in the system are proposed by Howard et al.
[13] and further detailed by Manadhata and Wing [14]. An information system
communicates with its environment through methods. These latter are entry/exit
points that receive/send data directly or indirectly from/to the environment.
Examples of a web server’s direct entry points are the methods in the web server’s
API and the web server’s methods that read configuration files. An example of
exit points are methods that write to a log file.

Other types of data in non-critical systems include penetrating methods
(e.g., password cracking, social engineering, masquerading); biometrics and phys-
ical tokens (e.g., fingerprint, iris, voice recognition, signatures); defeating mech-
anisms and policies (e.g., challenges related to authentication, authorization,
access controls and policies); and malicious code (e.g., virus, bugs, coding prob-
lems) [15].

For events originating in Mobile Ad hoc Networks (MANETs), data can
be defined based on the legitimacy of attacking node (e.g., internal, external
node); based on the number of nodes involved (e.g., single, multiple), based
on the exploited vulnerability (e.g., lack of security boundaries, lack of central
management, scalability, cooperativeness); based on the targeted victim (e.g.,
host, network); based on the security violation (e.g., availability, confidential-
ity, integrity). More details on each type of data can be found in the work of
Noureldien [16].

Information about non-critical systems is further classified as internal and
external data.

4 Internal vs. External Data

Internal and external information are required to analyze the impact of a cyber
security event. Internal information represents all logical and physical data from

34 G. Gonzalez-Granadillo et al.

the local network or from the information system, such as assets, vulnerabilities,
defense mechanisms, etc. External information is related to entities outside the
information system such as customers, providers, competitors, attackers. These
latter can be identified according to their knowledge, motivation, and capabilities
to exploit a given vulnerability from the target system. This section details both
information from the target system and from outsiders.

4.1 Internal Data (Information About the Target)

Considering the characteristics of access control models [17], we identify three
types of information associated to a particular event: User account - a unique
identifier for users in the system that allows them to connect and interact with
the system’s environment (e.g., super admin, system admin, standard user,
guest, internal user, nobody); Resource - either a physical component, (e.g.,
host, server, printer), or a logical component, (e.g., files, records, database), of
limited availability within a computer system; and Channel - the way to execute
actions, (e.g. connect, read, write, etc.). Channels can also regroup IP addresses,
port numbers, protocols and all other kind of TCP/IP connections. More infor-
mation about these data types are found in the research of Gonzalez-Granadillo
et al. [4].

In addition, we consider the notion of contexts proposed in the Organiza-
tion based Access Control (OrBAC) model [18], such as temporal conditions -
granted privileges only during specific periods of time (working time, day time,
night time, weekdays, weekends) or considering actions performed at a given
time slot (e.g., connection time, detection time, time to react, time to completely
mitigate the attack, recovery time, etc.); spatial conditions - granted privileges
when connected within specific areas (e.g., user’s location, security areas, spe-
cific buildings, a country, a network or sub-network); and historical conditions -
granted privileges only if previous instances of the same equivalent events were
already conducted. For instance, in order to access a web-server (resource) of a
given organization, an external user (user account) connects remotely (spatial
condition) to the system by providing his/her log-in and password (channel) at
nights (temporal condition).

Information security properties (e.g., confidentiality, integrity, availability)
are also a key aspect in the analysis of a cyber security event. An event can be
associated to a particular issue compromising the system’s confidentiality (e.g.,
unauthorized access to sensitive information, disclosure resources, etc.), integrity
(e.g., unauthorized change of the data contents or properties, etc.), or availability
(e.g., unavailable resources, denial of service, etc.).

Internal information is further classified as Logical and Physical. Section 6
details each type of data.

4.2 External Data (Information About the Attacker)

All information systems interact with people: internals, when they belong to the
organization; and externals, otherwise. External people can have direct contact

Event Data Taxonomy 35

to the organization (e.g., vendors, visitors, customers) or indirect contact with
the organization (e.g., competitors, intruders, attackers). For people with direct
contact with the organization, we need to identify their occupancies (where they
work and interact), the hours of occupancy, tasks, uses of hazardous materials
or equipment, their needs for access, and their frequency of access [12]. It is also
important to note any classic or specific threats against these people. People
with indirect contact to the organization are seen as adversaries.

According to Krautsevich et al. [19], adversaries can be either (i) omniscient,
when they know all vulnerabilities and all possible patches of the system; (ii)
deterministic, when they have a belief knowledge of the system and they choose
the best possible action to break into the system; or (iii) adaptive, when they
adapt the strategy to complete the attack, using updated knowledge about the
system. In reality, attackers do not have the knowledge of all the system’s vul-
nerabilities. We concentrate, therefore, in deterministic and adaptive attackers.
Data coming from these type of entities are considered in Sect. 5 as a priori and
a posteriori data.

5 A Priori vs. A Posteriori Data

This section discusses two types of information that can be used for a malicious
entity in the execution of an attack. A priori data, which considers information
before the attack is realized, and a posteriori data, which considers information
discovered by the attacker once the attack is in place. The remaining of this
section presents examples of each data type.

5.1 A Priori Data

This classification considers the set of information about the system, possessed
by an attacker before exploiting a given vulnerability. If the attacker has a priori
knowledge about the operation of the entire system, he/she would be able to
inflict a much severe attack. We distinguish two types of a priori knowledge: the
knowledge about the information system, and the knowledge about the attack.
The former considers the understandings that the attacker has about the system,
whereas the latter considers the skills and experience of the attacker in executing
a given attack.

About the information system: Following the common vulnerability system
scoring method (CVSS) [20], we consider in this category, the known vulnerabil-
ities of the information system that can be exploited by an attacker to access the
system (e.g., access vector, complexity, authentication type, required privilege,
exploitability, report confidence, potential collateral damage, user interaction).

The access vector category considers the way a vulnerability can be exploited
by an attacker in the system (e.g., physical, local access, adjacent network access,
network access). The access complexity includes the complexity level required for
an attacker to exploit a vulnerability once he/she has gained access to the target
system (e.g., high, medium, low). The authentication type category considers the

36 G. Gonzalez-Granadillo et al.

number of times an entity must authenticate to a target in order to exploit a vul-
nerability (e.g., multiple, single, none). The required privilege category describes
the level of privileges needed for an attacker to successfully exploit a vulnerability
in the system (e.g., none, low, high). The exploitability category considers level
of difficulty at which a vulnerability can be exploited (e.g., unproven, proof of
concept, functional, high, not defined). The report confidence category identifies
the degree of confidence in the existence of the vulnerability and the credibility of
the known technical details (e.g., unconfirmed, uncorroborated, confirmed, not
defined). The potential collateral damage category considers the potential for loss
of life or physical assets through damage or theft of property or equipment (e.g.,
low, low-medium, medium, medium-high, high, not defined). The user interac-
tion category considers the requirement for a user, other than the attacker, to
participate in the successful exploitation of a vulnerability (e.g., none, required).

About the attack: Based on the taxonomy of cyber events proposed in [21],
and the research proposed by Cayirci and Ghergherehchi [2], we consider in this
category information about the attacker (e.g., type, location, quantity, motiva-
tion, technique, mobility), and the attack (e.g., cause, affected service, objective,
impact).

The attacker type classification includes all threat agents that are primarily
responsible for the cyber event (e.g., malicious agents, organizations, foreign
governments, natural disasters, or human errors). In terms of location, attackers
can be located within the network (i.e., insider), or outside the network (i.e.,
outsider). The quantity category defines three types of attackers: single, multiple,
or coordinating multiple. These latter defines the case when multiple attackers
collaborate with each other. The attacker’s motivation as proposed by Bielecki
and Quirchmayr [1], and Shinder [22] considers the different goals (motives) that
can encourage an attacker to exploit a vulnerability on the system such as low
(e.g., no motivation, just for fun), medium (e.g., political motives), and high (e.g.,
for monetary profit; anger, revenge and other emotional drivers; sexual impulses;
psychiatric illness). The technique includes all types of actions used to achieve
the attacker’s objective (e.g., system compromise, protocol compromise, resource
exhaustion, hardware failure, software crash). In terms of mobility, attackers can
be fixed or mobile.

The attack cause classification differentiates between effects directly or indi-
rectly caused by an event (e.g., disruption within service, cascade disruption from
a service). The affected services classification considers the priority of service
nodes (e.g., primary service node, intermediate service node, secondary service
node). The objective of the attack considers how the malicious entity attempt
to achieve its goal (e.g., data corruption, data fabrication, data destruction,
data disclosure, data discovering, no objective). The attack impact considers
the effects in terms of confidentiality, integrity and availability (e.g., none, low,
medium, high, extreme).

Event Data Taxonomy 37

5.2 A Posteriori Data

A set of information gained by the attacker after a successful exploitation of a
system’s vulnerability [19]. The system can release information that improves
the attacker’s knowledge to exploit vulnerabilities or to overcome the security
controls set by the system, however, the adversary knowledge is generally incom-
plete. In this section we study the attacker’s knowledge with respect to the
system evolution (e.g., deployment of countermeasures).

About the countermeasures: From the adversary point of view, the ability to
penetrate a system does not necessarily implies the ability to break into a system.
Breaking a system means making the system to fail and keep on failing. It is
more hostile, and more difficult than penetrating into the system, since it requires
an understanding of what makes the system fail [23]. However, penetrating the
system is the first step for an attacker to improve his/her knowledge about the
system.

According to Krautsevich et al. [19], an attacker observes a system and can
influence its behavior by making actions at a given moment. The system responds
to an action probabilistically. Attackers do not make decisions about actions
blindly. Instead, they take into account past, current, and possible future states
of the system, as well as possible rewards that are connected with the actions.
The goal of the attacker is to maximize the expected total reward according to
a sole criterion.

We define the attacker’s a posteriori knowledge based on the actions the
defender performs to protect the system against a given attack (e.g., imple-
menting security countermeasures). Security measures can be performed auto-
matically by the system and can be soft (e.g., reducing credit limits, restarting
the system, requesting password change), moderate (additional authentication
method, temporal access denial, temporary fix, alarms) or aggressive (e.g., vul-
nerability patching, blocking user account, admin rights request). Depending on
the decisions available to the attacker, he/she will be able to change its behavior
and adapt to the system or quit his/her initial goal.

The Incident Object Description Exchange Format (IODEF) [24] classifies
the actions taken a system as a defense mechanism. Examples of such actions
are: nothing (i.e., no action is required); contact-source-site (i.e., contact the site
identified as the source of the activity); investigate (i.e., investigate the systems
listed in the event); block-host/network/port (i.e., block the host/network/port
listed as sources in the event); status-triage (i.e., conveys receipts and the triaging
of an incident).

In addition, physical countermeasures consider all security actions taken to
prevent, protect, or react against a malicious physical event that originates
in the system. Examples of physical countermeasures include blocking/open-
ing doors, disabling/enabling hardware, disconnecting/connecting equipment,
repairing/replacing hardware, turning on/off devices, posting banners and/or
security messages within the organization’s infrastructure, installing video
surveillance and/or biometric systems.

38 G. Gonzalez-Granadillo et al.

6 Logical vs. Physical Data

As previously stated, internal information (i.e., related to the system and its
entities) is classified according to its nature in Logical when the information is
intangible (i.e., digital data) and Physical otherwise. This section details each
type of data.

6.1 Logical Data

Logical information corresponds to all intangible data associated to the target
system that can be used by an adversary to execute an attack. Examples of
logical data are proposed by Howard et al. [13] as business records, applica-
tion’s information, and security issues. In terms of business records, we consider
the organization’s proprietary Information (e.g., proprietary business processes,
strategic plans, customer lists, vital records, accounting records).

Application’s information considers resource consumption (e.g., CPU cycles,
memory capacity, storage capacity, and I/O bandwidth); communication chan-
nels (e.g., sockets, RPC connections, named pipes, files, directories, and reg-
istries); and process targets (e.g., browsers, mailers, and database servers).

Security issues consider alerts or alarm signals, access control violations,
photo-ID alteration, noise in voice and video records. Examples of this cate-
gory include the use of security mechanisms such as Transport Layer Security
(TLS), expressing that the application uses HTTPS, or server side input vali-
dation; the use of cookies (considering the maximum number of cookies and the
number of foreign cookies from other sites that the application sets during a ses-
sion); the access control method required (e.g., unauthenticated, authenticated,
or root); and the access right required (e.g., read, write, execute, root).

In addition, Howard et al. [13] have identified several attack vectors to deter-
mine a relative attack surface of different Windows applications. Examples of
such vectors include open sockets (e.g., TCP or UDP sockets on which at least
one service is listening), active web handlers (e.g., http, nntp), dynamic web
pages (e.g., .exe files, .asp (Active Server Pages) files, and .pl (Perl script) files),
VBScript enabled (whether applications, such as Internet Explorer and Outlook
Express, are enabled to execute Visual Basic Script).

For event notification messages using the Syslog protocol [25], useful infor-
mation is associated to the facility responsible of the message (e.g., kernel, user,
mail system, clock daemon, log alert); to the severity associated to the mes-
sage (e.g., emergency, alert, critical, error, warning, debug), to the identified
machine that originally sent the message (e.g., Fully Qualified Domain Name,
IP address, hostname), and to the time at which the message was originated
(i.e., timestamp).

The Intrusion Detection Message Exchange Format (IDMEF) [26] identifies
other fields of interest in the event data classification. The alert has been fired by
an analyzer, from which we can derive the source, the target, the time at which
the alert was created, the time at which the event was detected, the impact
assessment, and information about the node or user that appears to be causing

Event Data Taxonomy 39

the event. In addition, we can also consider the information about the completion
of the event (e.g., failed, succeeded); the confidence on the evaluation of the
event (e.g., low, medium, high); and the algorithm used for the computation of
the checksum (e.g., MD4, MD5, SHA1, SHA2-256, Gost).

6.2 Physical Data

Physical information corresponds to all tangible elements that interact directly or
indirectly with the target system and whose intrinsec vulnerabilities can be used
by an adversary to execute an attack. Examples of physical data are proposed
by Norman [12] as people, technical and non-technical devices.

People, represents all internal user accounts (e.g., Key Senior Management,
Management and Employees, Contractors, Vendors, Visitors, Customers).

Hi-tech devices correspond to information technology systems (e.g., PCs,
servers, laptops, tablettes, pads, mobile phones); office equipment (e.g., copiers,
printers, furniture, cash registers); and security devices (e.g., sensors, intrusion
detection systems, security information and event management systems, biomet-
rical systems, physical access control systems).

Non-technical devices represent documents or equipment with low or no
technical attributes. Examples of such devices are: lo-tech devices (e.g., Access-
controlled and non-access-controlled gates, doors, and barriers, lighting, signage,
property-marking system, key-control system); no-tech devices (e.g., Policies and
procedures, guard patrols and posts, investigation programs, law enforcement
liaison program, security awareness program, emergency preparedness program,
disaster recovery program).

In addition, it is useful to identify the physical location of people (e.g., net-
work administrator’s room, employees offices, guests rooms), physical location
of high-tech devices (e.g., server’s room, control operation center’s location),
physical location of network elements (e.g., router location, sensor’s physical
location), information about the network topology (e.g., interconnection of net-
work elements), location of lo-tech devices (e.g., printer’s location, lighting con-
trol room), location of no-tech devices (e.g., drawer that stores disaster recovery
programs, policies and procedures).

7 Security Event Data Matrix

Based on the information presented in previous sections, we propose a matrix
that organizes the event information based on four main aspects: (i) system
criticality, (ii) asset location, (iii) event time, and (iv) event nature. Table 1
shows a cyber and physical-based data classification of two critical infrastructure
systems (i.e., energy production, water distribution). Table 2 shows a logical and
physical-based data classification of internal and external sources of non-critical
infrastructure systems.

In order to illustrate the applicability of the event data classification, we
consider an issue originated in an infrastructure-less network that uses a Mobile

40 G. Gonzalez-Granadillo et al.

T
a
b
le

1
.
C

ri
ti

ca
l
in

fr
a
st

ru
ct

u
re

sy
st

em
s

cl
a
ss

ifi
ca

ti
o
n

E
n
e
rg

y
d
is

tr
ib

u
ti

o
n

W
a
te

r
su

p
p
ly

R
e
q
u
ir

e
d

A
d
d
it

io
n
a
l

R
e
q
u
ir

e
d

A
d
d
it

io
n
a
l

C
y
b
e
r

sy
st

e
m

s
T
e
c
h
n
ic

a
l
lo

ss
e
s

(e
.g

.,
c
ir

c
u
it

s,

m
e
te

rs
,
tr

a
n
sf

o
rm

e
rs

);
n
o
n
-t

e
c
h
n
ic

a
l

lo
ss

e
s

(e
.g

.,
e
rr

o
rs

,
p
ro

fi
li
n
g
);

ty
p
e

o
f

c
o
n
d
u
c
to

r
(e

.g
.,

c
o
p
p
e
r)

;
d
a
ta

c
o
ll
e
c
ti

o
n

fr
e
q
u
e
n
c
y

(e
.g

.,
a
n
n
u
a
ll
y
);

re
c
o
n
c
il
ia

ti
o
n

(e
.g

.,
se

tt
le

m
e
n
t

re
c
o
n
c
il
ia

ti
o
n
);

p
ro

to
c
o
ls

(e
.g

.,

D
N

P
3
,
IE

C
-6

0
8
7
0

1
0
1
,
IE

C
-6

0
8
7
0

1
0
4
)

T
ra

n
sf

o
rm

e
r

m
a
te

ri
a
l
(e

.g
.,

ir
o
n
);

ti
m

in
g

d
iff

e
re

n
c
e
s

(e
.g

.,
a
b
so

lu
te

d
iff

e
re

n
c
e
s)

;
p
ro

fi
li
n
g

(e
.g

.,
p
ro

fi
le

c
o
e
ffi

c
ie

n
t)

;
m

e
te

r
id

e
n
ti

fi
c
a
ti

o
n

(m
e
te

r
p
o
in

t
a
d
m

in
is

tr
a
ti

o
n

n
u
m

b
e
r)

;
m

e
te

r
ty

p
e

(e
.g

.,
p
a
ss

iv
e
);

m
e
d
ia

ty
p
e

(e
.g

.,
fi
b
e
r

o
p
ti

c
s)

;

c
o
m

m
u
n
ic

a
ti

o
n

p
ro

to
c
o
ls

(e
.g

.,

L
o
n
g
-T

e
rm

E
v
o
lu

ti
o
n

-
L
T

E
);

H
u
m

a
n

M
a
c
h
in

e
In

te
rf

a
c
e

(e
.g

.,

c
li
e
n
t

c
o
n
so

le
);

sw
it

c
h

b
ra

n
d

(e
.g

.,

C
is

c
o
);

se
c
u
ri

ty
d
e
v
ic

e
(fi

re
w

a
ll
)

S
e
c
u
ri

ty
lo

g
s

(e
.g

.,
lo

g
s

p
ro

v
id

e
d

b
y

fi
re

w
a
ll
);

p
ro

to
c
o
ls

(e
.g

.,
M

o
d
b
u
s)

;

re
so

u
rc

e
s

(e
.g

.,
a
v
a
il
a
b
le

b
a
n
d
w

id
th

);

v
ir

tu
a
l
d
is

tr
ib

u
ti

o
n

m
a
p

(e
.g

.,

v
ir

tu
a
l
d
is

tr
ic

t
m

e
te

ri
n
g

a
re

a
)

P
L
C

ty
p
e

(i
n
te

g
ra

te
d

P
L
C

);
d
a
ta

c
o
ll
e
c
to

rs
(e

.g
.,

d
a
ta

st
o
ri

n
g

u
n
it

s)
;

c
o
n
n
e
c
ti

n
g

e
le

m
e
n
ts

(e
.g

.,
sa

te
ll
it

e

li
n
k
s)

;
se

c
u
ri

ty
m

e
c
h
a
n
is

m
s

(e
.g

.,

F
ir

e
w

a
ll
);

so
ft

w
a
re

c
o
n
tr

o
ls

(e
.g

.,

p
a
tc

h
in

g
)

P
h
y
si

c
a
l
sy

st
e
m

s
L
o
a
d

(e
.g

.,
h
e
a
ti

n
g

lo
a
d
);

p
e
a
k

lo
a
d

ti
m

e
s

(e
.g

.,
w

in
te

r
a
ft

e
rn

o
o
n
s)

;

c
o
n
d
u
c
to

r
te

m
p
e
ra

tu
re

(e
.g

.,

C
e
ls

iu
s)

;
e
n
e
rg

y
d
e
m

a
n
d

(e
.g

.,
1
0
0

M
W

h
/
y
e
a
r)

;
C

a
lc

u
la

ti
o
n

F
a
c
to

r

(e
.g

.,
L
o
ss

F
a
c
to

r)
;
e
n
e
rg

y

c
o
n
su

m
p
ti

o
n

(e
.g

.,
K

W
/
h
);

tr
a
n
sf

o
rm

e
r

d
is

ta
n
c
e

(e
.g

.,
K

m
s)

;

p
o
w

e
r

v
o
lt

a
g
e

(e
.g

.,
h
ig

h
v
o
lt

a
g
e
);

se
rv

ic
e

st
a
tu

s
(e

.g
.,

id
le

);
e
rr

o
rs

(e
.g

.,
re

a
d
in

g
e
rr

o
rs

);
so

u
rc

e
s

(e
.g

.,

p
o
te

n
ti

a
l
so

u
rc

e
o
f
e
rr

o
r)

;

tr
a
n
sf

o
rm

e
r

te
m

p
e
ra

tu
re

(e
.g

.,

h
e
a
ti

n
g

le
v
e
l)

E
le

c
tr

ic
a
l
e
q
u
ip

m
e
n
t

(e
.g

.,

tr
a
n
sf

o
rm

e
rs

);
D

is
tr

ib
u
ti

o
n

M
a
n
a
g
e
m

e
n
t

S
y
st

e
m

(e
.g

.,
m

e
d
iu

m

v
o
lt

a
g
e
);

w
ir

in
g

sy
st

e
m

fo
r

su
p
p
ly

in
g

e
le

c
tr

ic
it
y

(e
.g

.,
th

re
e

p
h
a
se

):
a
g
e
n
ts

(e
.g

.,
c
o
ll
e
c
to

rs
);

P
M

U
(p

h
a
so

r

m
e
a
su

re
m

e
n
t

u
n
it

)

S
e
n
so

rs
(e

.g
.,

W
S
N

);
in

c
li
n
o
m

e
te

r

(e
.g

.,
la

te
ra

l
e
a
rt

h
m

o
v
e
m

e
n
ts

);

ti
lt

m
e
te

r
(e

.g
.,

w
a
ll

ti
lt

/
ro

ta
ti

o
n

le
v
e
l)

;
c
ra

c
k
m

e
te

r
(e

.g
.,

m
o
v
e
m

e
n
t

o
f

c
ra

c
k
s

a
n
d

jo
in

ts
o
n

th
e

d
a
m

su
rf

a
c
e
)

jo
in

tm
e
te

r
(e

.g
.,

e
x
p
a
n
si

o
n

a
n
d

c
o
n
tr

a
c
ti

o
n

o
f
a

jo
in

t)
;
e
a
rt

h

p
re

ss
u
re

c
e
ll

(e
.g

.,
to

ta
l
p
re

ss
u
re

fo
r

e
m

b
a
n
k
m

e
n
t

d
a
m

s)
;
p
ie

z
o
m

e
te

r

(e
.g

.,
fl
u
id

s
p
re

ss
u
re

in
th

e

e
m

b
a
n
k
m

e
n
ts

o
r

in
th

e
b
o
re

h
o
le

s)
;

tu
rb

id
im

e
te

r
(e

.g
.,

w
a
te

r
tu

rb
id

it
y

le
v
e
l)

;
th

e
rm

o
m

e
te

r
(e

.g
.,

w
a
te

r

te
m

p
e
ra

tu
re

)

M
o
n
it

o
ri

n
g

d
e
v
ic

e
(e

.g
.,

M
C

U
);

a
u
to

m
a
te

d
m

e
te

r
re

a
d
in

g
(A

R
M

);

a
c
o
u
st

ic
m

e
a
su

re
s

(b
a
se

d
o
n

h
y
d
ro

p
h
o
n
e

se
n
so

rs
o
r

o
n

a
c
c
e
le

ro
m

e
te

rs
,
e
.g

.,
to

d
e
te

rm
in

e

le
a
k

p
o
si

ti
o
n
s)

;
b
io

se
n
so

rs
m

e
a
su

re
s

(e
.g

.,
b
e
h
a
v
io

r
o
f
li
v
in

g
o
rg

a
n
is

m
s

in

th
e

w
a
te

r)

Event Data Taxonomy 41

T
a
b
le

2
.
N

o
n
-c

ri
ti

ca
l
in

fr
a
st

ru
ct

u
re

sy
st

em
s

cl
a
ss

ifi
ca

ti
o
n

In
te

rn
a
l

E
x
te

rn
a
l

A
p
ri

o
ri

A
p
o
st

e
ri

o
ri

R
e
q
u
ir

e
d

A
d
d
it

io
n
a
l

R
e
q
u
ir

e
d

A
d
d
it

io
n
a
l

R
e
q
u
ir

e
d

A
d
d
it

io
n
a
l

L
o
g
ic

a
l

U
se

r
a
c
c
o
u
n
t

(e
.g

.,

a
d
m

in
);

re
so

u
rc

e

(e
.g

.,
fi
le

);
C

h
a
n
n
e
l

(e
.g

.,
IP

a
d
d
re

ss
);

c
o
n
fi
d
e
n
ti

a
li
ty

(e
.g

.,

u
n
a
u
th

o
ri

z
e
d

a
c
c
e
ss

);

in
te

g
ri

ty
(e

.g
.,

u
n
a
u
th

o
ri

z
e
d

c
h
a
n
g
e

o
f
d
a
ta

c
o
n
te

n
t)

;

a
v
a
il
a
b
il
it
y

(e
.g

.,

d
e
n
ia

l
o
f
se

rv
ic

e
);

se
c
u
ri

ty
m

e
c
h
a
n
is

m
s

(e
.g

.,
T

L
S
);

a
c
c
e
ss

c
o
n
tr

o
l
m

e
th

o
d

(e
.g

.,

a
u
th

e
n
ti

c
a
te

d
);

a
c
c
e
ss

ri
g
h
t

(e
.g

.,
re

a
d
);

e
v
e
n
t

se
v
e
ri

ty
(e

.g
.,

a
le

rt
)

T
e
m

p
o
ra

l
c
o
n
d
it

io
n
s

(e
.g

.,

d
e
te

c
ti

o
n

ti
m

e
);

sp
a
ti

a
l

c
o
n
d
it

io
n
s

(e
.g

.,
u
se

r’
s

lo
c
a
ti

o
n
);

p
ro

p
ri

e
ta

ry
In

fo
rm

a
ti

o
n

(e
.g

.,

a
c
c
o
u
n
ti

n
g

re
c
o
rd

s)
;
re

so
u
rc

e

c
o
n
su

m
p
ti

o
n

(e
.g

.,
m

e
m

o
ry

c
a
p
a
c
it
y
);

p
ro

c
e
ss

ta
rg

e
ts

(e
.g

.,

b
ro

w
se

rs
);

c
o
o
k
ie

s
(e

.g
.,

n
u
m

b
e
r

o
f
fo

re
ig

n
c
o
o
k
ie

s)
;
o
p
e
n

so
c
k
e
ts

(e
.g

.,
T

C
P
),

a
c
ti

v
e

w
e
b

h
a
n
d
le

rs

(e
.g

.,
h
tt

p
);

d
y
n
a
m

ic
w

e
b

p
a
g
e
s

(e
.g

.,
.e

x
e

fi
le

s)
;
fa

c
il
it
y

(e
.g

.,

k
e
rn

e
l)

;
se

n
d
e
r

(e
.g

.,
F
u
ll
y

Q
u
a
li
fi
e
d

D
o
m

a
in

N
a
m

e
);

a
n
a
ly

z
e
r

(e
.g

.
so

u
rc

e
);

e
v
e
n
t

c
o
m

p
le

ti
o
n

(e
.g

.,
fa

il
e
d
);

c
o
n
fi
d
e
n
c
e

(e
.g

.,
h
ig

h
);

a
lg

o
ri

th
m

u
se

d
(e

.g
.,

S
H

A
1
)

A
c
c
e
ss

c
o
m

p
le

x
it
y

(e
.g

.,

h
ig

h
);

a
u
th

e
n
ti

c
a
ti

o
n

ty
p
e

(e
.g

.,
m

u
lt

ip
le

);
re

q
u
ir

e
d

p
ri

v
il
e
g
e

(e
.g

.,
h
ig

h
);

u
se

r

in
te

ra
c
ti

o
n

(e
.g

.,

re
q
u
ir

e
d
);

a
tt

a
c
k
e
r

ty
p
e

(e
.g

.,
m

a
li
c
io

u
s

a
g
e
n
ts

);

a
tt

a
c
k
e
r’

s
lo

c
a
ti

o
n

(e
.g

.,

in
si

d
e
r)

;
q
u
a
n
ti

ty
(e

.g
.,

m
u
lt

ip
le

);
te

c
h
n
iq

u
e

(e
.g

.,

re
so

u
rc

e
e
x
h
a
u
st

io
n
);

a
ff
e
c
te

d
se

rv
ic

e
s

(e
.g

.,

p
ri

m
a
ry

);
o
b
je

c
ti

v
e

(e
.g

.,

d
a
ta

c
o
rr

u
p
ti

o
n
);

a
tt

a
c
k

im
p
a
c
t

(e
.g

.,
e
x
tr

e
m

e
)

E
x
p
lo

it
a
b
il
it
y

(e
.g

.,

p
ro

o
f
o
f
c
o
n
c
e
p
t)

;

re
p
o
rt

c
o
n
fi
d
e
n
c
e

(e
.g

.,
u
n
c
o
n
fi
rm

e
d
);

p
o
te

n
ti

a
l
c
o
ll
a
te

ra
l

d
a
m

a
g
e

(e
.g

.,
h
ig

h
);

a
tt

a
c
k
e
r’

s
m

o
ti

v
a
ti

o
n

(e
.g

.,
m

o
n
e
ta

ry

p
ro

fi
t)

;
m

o
b
il
it
y

(e
.g

.,

fi
x
e
d
);

a
tt

a
c
k

c
a
u
se

(e
.g

.,
d
is

ru
p
ti

o
n

w
it

h
in

se
rv

ic
e
)

D
e
fe

n
se

m
e
c
h
a
n
is

m

(e
.g

.,
b
lo

c
k
-h

o
st

/

n
e
tw

o
rk

/
p
o
rt

),

c
o
n
fi
rm

a
ti

o
n

a
b
o
u
t

th
e

a
c
c
e
ss

c
o
m

p
le

x
it
y
,

a
u
th

e
n
ti

c
a
ti

o
n

ty
p
e
,

re
q
u
ir

e
d

p
ri

v
il
e
g
e

a
n
d

th
e

u
se

r
in

te
ra

c
ti

o
n

re
q
u
ir

e
d

b
y

th
e

sy
st

e
m

S
o
ft

c
o
u
n
te

rm
e
a
su

re
s

(e
.g

.,
re

st
a
rt

in
g

th
e

sy
st

e
m

),
m

o
d
e
ra

te

c
o
u
n
te

rm
e
a
su

re
s

(t
e
m

p
o
ra

l
a
c
c
e
ss

d
e
n
ia

l)
;
a
g
g
re

ss
iv

e

c
o
u
n
te

rm
e
a
su

re
s

(e
.g

.,

b
lo

c
k
in

g
u
se

r

a
c
c
o
u
n
t)

,

c
o
n
fi
rm

a
ti

o
n

a
b
o
u
t

th
e

e
x
p
lo

it
a
b
il
it
y

o
f

th
e

sy
st

e
m

’s

v
u
ln

e
ra

b
il
it

ie
s

P
h
y
si

c
a
l

P
e
o
p
le

(e
.g

.,

e
m

p
lo

y
e
e
s)

;
h
i-
te

c
h

d
e
v
ic

e
s

(e
.g

.,
se

rv
e
rs

);

h
i-
te

c
h

a
c
c
e
ss

o
ri

e
s

(e
.g

.,
U

S
B

d
ri

v
e
r)

o
ffi

c
e

e
q
u
ip

m
e
n
t

(e
.g

.,

p
ri

n
te

rs
);

se
c
u
ri

ty

d
e
v
ic

e
s

(e
.g

.,

In
tr

u
si

o
n

D
e
te

c
ti

o
n

S
y
st

e
m

s)
,
p
h
y
si

c
a
l

a
c
c
e
ss

c
o
n
tr

o
ls

(e
.g

.,

fi
n
g
e
rp

ri
n
t

sc
a
n
n
e
rs

)

L
o
-t

e
c
h

d
e
v
ic

e
s

(e
.g

.,
li
g
h
ti

n
g

sy
st

e
m

s)
;
n
o
-t

e
c
h

d
e
v
ic

e
s

(e
.g

.,

d
is

a
st

e
r

re
c
o
v
e
ry

p
ro

g
ra

m
)

A
c
c
e
ss

v
e
c
to

r
(e

.g
.,

lo
c
a
l

a
c
c
e
ss

),
p
h
y
si

c
a
l
lo

c
a
ti

o
n

o
f
p
e
o
p
le

(e
.g

.,
n
e
tw

o
rk

a
d
m

in
is

tr
a
to

r’
s

ro
o
m

),

p
h
y
si

c
a
l
lo

c
a
ti

o
n

o
f

h
ig

h
-t

e
c
h

d
e
v
ic

e
s

(s
e
rv

e
r’

s

ro
o
m

),
p
h
y
si

c
a
l
lo

c
a
ti

o
n

o
f
n
e
tw

o
rk

e
le

m
e
n
ts

(e
.g

.,

ro
u
te

r
lo

c
a
ti

o
n
)

N
e
tw

o
rk

to
p
o
lo

g
y

(e
.g

.,
in

te
rc

o
n
n
e
c
ti

o
n

o
f
n
e
tw

o
rk

e
le

m
e
n
ts

),

lo
c
a
ti

o
n

o
f
lo

-t
e
c
h

d
e
v
ic

e
s

(l
ig

h
ti

n
g

c
o
n
tr

o
l
ro

o
m

),

lo
c
a
ti

o
n

o
f
n
o
-t

e
c
h

d
e
v
ic

e
s

(e
.g

.,
d
ra

w
e
r

th
a
t

st
o
re

s
th

e

d
is

a
st

e
r

re
c
o
v
e
ry

p
ro

g
ra

m
)

C
o
u
n
te

rm
e
a
su

re
s

in

p
la

c
e

(e
.g

.,
re

p
la

c
e

h
a
rd

w
a
re

),

c
o
n
fi
rm

a
ti

o
n

a
b
o
u
t

a
c
c
e
ss

v
e
c
to

rs
,

lo
c
a
ti

o
n

o
f
p
e
o
p
le

,

lo
c
a
ti

o
n

o
f
h
i-
te

c
h

d
e
v
ic

e
s,

a
n
d

lo
c
a
ti

o
n

o
f
n
e
tw

o
rk

e
le

m
e
n
ts

C
o
n
fi
rm

a
ti

o
n

a
b
o
u
t

th
e

n
e
tw

o
rk

to
p
o
lo

g
y
,

th
e

p
h
y
si

c
a
l
lo

c
a
ti

o
n

o
f
lo

-t
e
c
h

a
n
d

n
o
-t

e
c
h

d
e
v
ic

e
s

42 G. Gonzalez-Granadillo et al.

ad-hoc Network to connect devices wirelessly in a continuing self-configuring
way. A malicious event has been detected on 2017-03-23 T 15:22 UTC, from
an external node that compromised two internal nodes from the network (i.e.,
Node1: WEB SRV03, ID 718bc323-9d78-4ada-9629-8176f42a9703; and Node2:
FTP SRV01, ID e470baab-5d88-4b20-ac28-61ea42b37da3). The malicious node
exploits a resource exhaustion vulnerability to originate a DoS attack. The
source IP address is unknown, and the target IP addresses are identified as
192.168.1.125, and 192.168.4.315.

– Internal logical data (Required): channel (IP address); node IP address
(192.168.1.125, 192.168.4.315); node identification (718bc323-9d78-4ada-
9629-8176f42a9703, e470baab-5d88-4b20-ac28-61ea42b37da3); security viola-
tion (availability);

– Internal logical data (Additional): number of nodes involved (multiple); detect
time (2017-03-23 T 15:22 UTC); targeted victim (Node1, Node2).

– Internal physical data (Required): technical device (web server, ftp server);
– External logical a priori data (Required): legitimacy of attacking node (exter-

nal node); exploited vulnerability (resource exhaustion); consequence (denial
of service).

8 Related Work

Classification of cyber and physical security events has been widely researched
in the past two decades. While some researches propose attack taxonomies, some
others concentrate in countermeasure taxonomies, and some others present for-
mats and standards for event messages. Classification of attacks is extensively
proposed in the bibliography. Noureldien [16], for instance, proposes a taxonomy
of MANET attacks. Such classifications, although well developed, they lack on
information about security actions to mitigate the attacks.

The classification of security countermeasures have been studied by Norman
[12] and Abbas et al. [15]. The former proposes a classification of assets for
physical security countermeasure analysis; the latter proposes an approach to
designing internet security taxonomies. Both researches concentrate on logical
and physical security controls, leaving aside different attack scenarios.

Few research works have been dedicated to the classification of both benign
and malicious events. Harrison and White [21], for instance, propose a taxon-
omy of cyber events affecting communities. The taxonomy classifies threats and
countermeasures based on multiple criteria but it does not provide information
on cyber-physical systems as a whole, nor they consider the time at which the
information is detected and used by the attacker.

Howard et al. [13] propose an attack surface model with several attributes to
be used in the analysis of the criticality of similar operating systems. The app-
roach has been extended by Manadhata et al. [14] to compare different software
systems based on entry points, methods, and channels. More recently, Gonzalez-
Granadillo et al. [5] propose a geometrical approach to evaluate the impact of

Event Data Taxonomy 43

security events based on a multi-dimensional tool. Even though the models are
useful in the evaluation and analysis of the criticality of systems and events, they
require to identify event relevant information to compute the results.

Based on the aforementioned limitations we propose an event data classifica-
tion matrix that considers data formats, standards, and protocols (e.g., IDMEF
[26], IODEF [24], Syslog [25], CVSS [20], as well as several other approaches
used in the classification and assessments of cyber and physical events.

9 Conclusions and Future Work

We have proposed in this paper an event data taxonomy to be used in the
identification of key axes and/or dimensions in the impact assessment of cyber
security events. The taxonomy considers required and additional information
about all entities involved in the identified event. As such, the proposed matrix
separates critical from non-critical systems. The former details the useful data to
model cyber and physical events in energy distribution systems and water sup-
ply infrastructures. The latter details the useful information related to internal
and external entities affected to the events. The proposed matrix goes further by
classifying the logical and physical data associated to internal entities (e.g., tar-
get system); as well as, the a-priori and a-posteriori data associated to external
entities (e.g., attackers). As a result, it is possible to identify the main axes com-
posing geometrical models to assess the impact of malicious and benign cyber
security events.

Future work will focus on extending the classification matrix to other critical
infrastructures (e.g., transportation, health, finance, etc.) and to use the outcome
of this matrix to build and populate the axes of a geometrical model for impact
assessment and countermeasure selection.

References

1. Bielecki, M., Quirchmayr, G.: A prototype for support of computer forensic anal-
ysis combined with the expected knowledge level of an attacker to more efficiently
achieve investigation results. In: International Conference on Availability, Reliabil-
ity and Security, pp. 696–701 (2010)

2. Cayirci, E., Ghergherehchi, R.: Modeling cyber attacks and their effects on decision
process. In: Winter Simulation Conference (2011)

3. Kotenko, I., Doynikova, E.: Countermeasure selection in SIEM systems based on
the integrated complex of security metrics. In: 23rd Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing (2015)

4. Granadillo, G.G., Garcia-Alfaro, J., Debar, H.: Using a 3D geometrical model
to improve accuracy in the evaluation and selection of countermeasures against
complex cyber attacks. In: Thuraisingham, B., Wang, X.F., Yegneswaran, V.
(eds.) SecureComm 2015. LNICST, vol. 164, pp. 538–555. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28865-9 29

https://doi.org/10.1007/978-3-319-28865-9_29

44 G. Gonzalez-Granadillo et al.

5. Gonzalez-Granadillo, G., Rubio-Hernan, J., Garcia-Alfaro, J., Debar, H.: Consid-
ering internal vulnerabilities and the attacker’s knowledge to model the impact of
cyber events as geometrical prisms. In: Conference on Trust, Security and Privacy
in Computing and Communications (2016)

6. Gonzalez-Granadillo, G., Garcia-Alfaro, J., Debar, H.: An n-sided polygonal model
to calculate the impact of cyber security events. In: Cuppens, F., Cuppens, N.,
Lanet, J.-L., Legay, A. (eds.) CRiSIS 2016. LNCS, vol. 10158, pp. 87–102. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-54876-0 7

7. Kissel, R.: Glossary of key information security terms, Revision 2. National Insti-
tute of Standards and Technology. U.S. Department of Commerce (2013)

8. Gordon, K., Dion, M.: Protection of critical infrastructure and the role of invest-
ment policies relating to national security. OECD, White paper (2008)

9. Sohn Associates: Electricity Distribution System Losses. Non Technical Overview,
White paper (2009)

10. Singapore, Public Utilities Board: Managing the water distribution network with
a smart water grid. Int. J. @qua - Smart ICT Water (Smart Water) 1(4), 1–13
(2016)

11. Coppolino, L., D’Antonio, S., Formicola, V., Romano, L.: Integration of a system
for critical infrastructure protection with the OSSIM SIEM Platform: a dam case
study. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS,
vol. 6894, pp. 199–212. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24270-0 15

12. Norman, T.L.: Risk Analysis and Security Countermeasure Selection. CRC Press,
Taylor & Francis Group, Boca Raton (2010)

13. Howard, M., Pincus, J., Wing, J.M.: Measuring relative attack surfaces. In: Com-
puter Security in the 21st Century, pp. 109–137 (2005)

14. Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Trans. Softw. Eng.
37(3), 371–386 (2010)

15. Abbas, A., Saddik, A.E., Miri, A.: A comprehensive approach to designing internet
security taxonomy. In: Proceedings of the Canadian Conference on Electrical and
Computer Engineering, pp. 1316–1319 (2006)

16. Noureldien, A.: A novel taxonomy of MANET attacks. In: Conference on Electrical
and Information Technologies ICEIT (2015)

17. Li, N., Tripunitara, M.: Security analysis in role-based access control. Trans. Inf.
Syst. Secur. 9(4), 391–420 (2006)

18. Cuppens, F., Cuppens-Boulahia, N.: Modeling contextual security policies. Int. J.
Inf. Secur. 7(4), 285–305 (2008)

19. Krautsevich, L., Martinelli, F., Yautsiukhin, A.: Towards modelling adaptive
attacker’s behaviour. In: Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N.,
Miri, A., Tawbi, N. (eds.) FPS 2012. LNCS, vol. 7743, pp. 357–364. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37119-6 23

20. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system Ver-
sion 2.0, Specification Document, June 2007

21. Harrison, K., White, G.: A taxonomy of cyber events affecting communities. In:
Proceedings of the 44th Hawaii International Conference on System Sciences (2011)

22. Shinder, D.: Scenes of the Cybercrime. Computer Forensics Handbook. Syngress
Publishing Inc., Burlington (2002)

23. Libicki, M.: Brandishing cyberattack capabilities. National Defense Research Insti-
tute, white paper (2013)

https://doi.org/10.1007/978-3-319-54876-0_7
https://doi.org/10.1007/978-3-642-24270-0_15
https://doi.org/10.1007/978-3-642-24270-0_15
https://doi.org/10.1007/978-3-642-37119-6_23

Event Data Taxonomy 45

24. Danyliw, R., Meijer, J., Demchenko, Y.: The incident object description exchange
format (IODEF), RFC5070, December 2007

25. Gerhards, R., Adiscon GmbH: The syslog protocol. Network Working Group (2009)
26. Debar, H., Curry, D., Feinstein, B.: The intrusion detection message exchange

format (IDMEF), RFC4765 (2007)

Apps Security

Unraveling Reflection Induced Sensitive
Leaks in Android Apps

Jyoti Gajrani1(B) , Vijay Laxmi1, Meenakshi Tripathi1, Manoj S. Gaur1,
Daya Ram Sharma2, Akka Zemmari3, Mohamed Mosbah3, and Mauro Conti4

1 MNIT, Jaipur, India
{2014rcp9542,vlaxmi,mtripathi.cse,gaurms}@mnit.ac.in

2 GEC Ajmer, Ajmer, India
dayasharma96@gmail.com

3 LaBRI, Bordeaux INP, CNRS, University of Bordeaux, Bordeaux, France
{zemmari,mohamed.mosbah}@labri.fr
4 University of Padua, Padua, Italy

conti@math.unipd.it

Abstract. Reflection is a programming language feature that permits
analysis and transformation of the behavior of classes used in programs
in general, and in apps in particular at the runtime. Reflection facilitates
various features such as dynamic class loading, method invocation, and
attribute usage at runtime. These language features allow the develop-
ment of apps that may obtain and exchange information that is unavail-
able at compile time. Unfortunately, malware authors leverage reflection
to subvert the malware detection by static analyzers as reflection can
hinder taint analysis used by static analyzers for analysis of sensitive
leaks. Even the latest, and probably the best performing static analyzers
are not able to detect information leaks in the malware via reflection.
In this paper, we propose EspyDroid, a system that combines dynamic
analysis with code instrumentation for a more precise detection of leaks
in malicious apps via reflection with code obfuscation. The evaluation
of EspyDroid on the benchmark, VirusShare, and Playstore apps shows
substantial improvement in detection of sensitive leaks via reflection.

Keywords: Android · Instrumentation · Reflection · Runtime
Malware · Dynamic analysis · Leaks

1 Introduction

Reflection is the ability of an app to examine and modify the structure and
behavior of an object at runtime. Reflection facilitates language features such
as inspecting class of objects, constructing objects of class, examining fields of
class, invoking methods of an object, changing accessibility flags of constructors,
methods, and fields at runtime.

Unfortunately, malware authors are using reflection to subvert their detection
by static analyzers. Through an analysis spanned across four years, Andrubis [18]
c© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 49–65, 2018.
https://doi.org/10.1007/978-3-319-76687-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_4&domain=pdf
http://orcid.org/0000-0002-8223-5975

50 J. Gajrani et al.

reported that reflection is employed by 57.08% of Android malware samples.
Instead of utilizing usual programming language syntax, reflection passes class-
name, methodname etc. as parameters to reflection APIs. Also, these parameters
can be constructed dynamically or supplied at runtime. Malware families Obad
and FakeInstaller are the two most sophisticated malware families that combine
reflection and code obfuscation to hide their malicious behaviors from detection
by static analysis techniques.

Moreover, Android provides Inter-Component Communication (ICC) feature
for communication among components of the application. ICC is a feature pro-
vided by Android to encourage component reuse. Intent [5] is a message passing
object to request an action from a component (from the same or different app) to
facilitate ICC. Unfortunately, malware authors misuse the feature to distribute
the leaks over multiple components of given apps [20]. Techniques developed for
analyzing single component based leaks may not work for ICC based leaks [10].

Listing 1.1 shows the code of Onlytelephony reverse1 app from the well-
known DroidBench [4] test-suite for Android. This app uses reflection APIs and
ICC (lines 7–9). The class android.Telephony.TelephonyManager define the
method getDeviceId(). MainActivity instantiates the object of this class using
Class.forName reflection API (line 3). However, the method name is constructed
dynamically by using the reverse() function (line 2). Then, it passes this
dynamically constructed method name to getMethod() reflection API (line 5)
which creates the method object. Finally, it invokes the method getDeviceId()
using reflection API invoke() (line 6) which return IMEI value. MainActivity
passes the IMEI value to Activity2 using Android Intent (lines 7–9), and
Activity2 performs leakage of IMEI using SMS.

Listing 1.1. Exploitation of Reflection APIs for leaks

1 String cls="android.Telephony.TelephonyManager";
2 String reverse=new StringBuffer("dIeciveDteg").reverse().toString();
3 Class c=Class.forName(cls);
4 tM = (TelephonyManager) this.getSystemService (Context.TELEPHONY SERVICE);
5 Method method = c.getMethod(reverse, new Class<?>[0]);
6 String id=(String) method.invoke(tM);
7 Intent i=new Intent(this, Activity2.class);
8 i.putExtra("imei", id);
9 startActivity(i);

$MainActivity$
10 Intent im = getIntent();
11 String value= getIntent().getExtras().getString("imei");
12 SmsManager sm = SmsManager.getDefault();
13 sm.sendTextMessage(phoneNo,null,value,null,null);

$Activity2$

The method reverse() here is just an example, where in other cases more
complicated methods are applied such as encryption, substring, concatenation
etc. to subvert static analysis. Analysis results of the example by FlowDroid [8],

1 https://github.com/secure-software-engineering/DroidBench/tree/develop/apk/Re
flection\ ICC/OnlyTelephony\ Reverse.apk.

https://github.com/secure-software-engineering/DroidBench/tree/develop/apk/Reflection\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}ICC/OnlyTelephony\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}Reverse.apk
https://github.com/secure-software-engineering/DroidBench/tree/develop/apk/Reflection\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}ICC/OnlyTelephony\protect \unhbox \voidb@x \kern .06em\vbox {\hrule width.3em}Reverse.apk

Unraveling Reflection Induced Sensitive Leaks in Android Apps 51

IccTA [16], AmanDroid [25], and DroidSafe [14] static analysis tools do not
capture any privacy leak as reflection hindered taint analysis. Reflection-aware
static analysis approach DroidRA [17] also fails to identify the leak in application.
This failure is because that app constructs the method name at runtime. The
dynamic construction of targets of reflection APIs is very trivial and can be
done using various ways like concatenation, encryption, statically unresolved
Intents, and substring generation. Further, not only classes or methods can be
called through reflection but Intents also. Listing 1.2 shows another motivating
example from DroidBench2 where Intent reflection is used.

Listing 1.2. Intent Reflection

1 Class<?> i = Class.forName("android.content.Intent");
2 Constructor c = i.getConstructor(Context.class, Class.class);
3 Object intent = c.newInstance(this, A2.class);
4 Method m = intent.getClass().getMethod("put"+"Extra", params);
5 Object[] obj = { "imei", id };
6 m.invoke(intent, obj);
7 startActivity((Intent) intent);

Instead of normal Intent creation as in Listing 1.1 (lines 7–9), this app creates
object of Intent (lines 1–3), invoke the method to pass the IMEI to A2 (lines
4–6), and starts A2 Activity (line 7), all with reflection APIs. Intent reflection is
used here by malware to hide the communication between two components.

Analysis results of various apps implementing any type of non-constant use
of parameters in reflection concludes that even static reflection-aware analysis
approaches based on constant string analysis of reflection APIs fail in identifica-
tion of leaks. This highly imposes the requirement of a reflection aware runtime
analysis approach with ICC support.

Contributions. The major contributions of this work are as follows:

– This paper proposes EspyDroid: A system that combines dynamic analy-
sis with code instrumentation to unfold the hidden leaks performed by the
app using reflection and obfuscation or encryption of parameters. EspyDroid
resolves the actual parameters of reflection calls and automatically instru-
ments the app with equivalent non-reflection calls using runtime parameters
to produce an instrumented app.

– EspyDroid can detect leaks distributed over multiple components through
Intents and also, where Intents themselves are called through reflection.

– We tested EspyDroid on widely used DroidBench [4] benchmark, 75 Play-
Store apps, and 277 randomly selected apps from VirusShare [7]. The results
show that analyzing EspyDroid’s instrumented apps instead of original apps
improves the precision and accuracy of static analyzers in finding information
leaks.

– To facilitate the use by other researchers and practitioners in this direction,
we plan to release EspyDroid as open-source tool with user documentation.

2 https://github.com/secure-software-engineering/DroidBench/blob/develop/apk/
Reflection ICC/OnlyIntent.apk.

https://github.com/secure-software-engineering/DroidBench/blob/develop/apk/Reflection_ICC/OnlyIntent.apk
https://github.com/secure-software-engineering/DroidBench/blob/develop/apk/Reflection_ICC/OnlyIntent.apk

52 J. Gajrani et al.

Organization. The rest of the paper is organized as follow: Sect. 2 provides the
brief overview of the reflection APIs and categories. We discuss the proposed
solution in Sect. 3. Section 4 reports evaluation results. Section 5 describes the
limitations of our proposal. We include Related work in Sect. 6 and conclude the
paper in Sect. 7.

2 Background

This section provides the classification of reflection APIs and examples of usages
of these APIs for performing information leaks. A source is any method that
accesses user’s private data, and a sink is any method which can potentially leak
this data outside the application. The malicious Android apps use reflection APIs
for hiding invocation of sensitive sources and sinks. The reflection APIs belong
to four major categories [1]. We next cover these categories and how each of this
category can be used for leakage.

– Constructing class’s object or examining object’s class
Malicious apps instantiate the classes corresponding to source and sink meth-
ods reflectively to hide the identification of leaks. An analysis technique must
correctly identify instantiated classes to capture access to private informa-
tion. Listing 1.3 reflectively creates the object of class ConcreteClass using
forName reflection API and instantiates it using newInstance reflection API
(line 2). The classname ConcreteClass is not present directly in app byte-
code. It stores DeviceId to imei field of this class (line 3) to perform leak.

Listing 1.3. Reflective Class Instantiation

1 String cls = "preConcreteClasspost".substring(3, 16);
2 BaseClass bc = (BaseClass) Class.forName(cls).newInstance();
3 bc.imei = telephonyManager.getDeviceId(); //source

– Examining or invoking class methods
Malicious apps use reflective invocation of methods to hide the sensitive
sources (sinks) accessing (leaking) user’s data. Listing 1.4 from DroidBench
invokes setImei (lines 4 and 5) method reflectively using getMethod and
invoke APIs. setImei method of ReflectiveClass calls the sink method
sendtextMessage() to leak the DeviceId.

Listing 1.4. Reflective Method Invocations

1 String imei = telephonyManager.getDeviceId(); //source
2 Class c = Class.forName("ReflectiveClass");
3 Object o = c.newInstance(); //No class type information
4 Method m = c.getMethod("setIme" + "i", String.class);
5 m.invoke(o, imei);

– Examining or setting fields of class
The value is assigned to the field of class through reflection API set() and
the value is retrieved using reflection API get().

Unraveling Reflection Induced Sensitive Leaks in Android Apps 53

Listing 1.5 first stores the sensitive value, i.e., DeviceId in imei field of class
(lines 4–5) and then retrieves (lines 6–7) with reflection APIs. The application
sends refdeviceId to sink instead of deviceId (the case where analysis will
able to identify leak) to hide the leak.

Listing 1.5. Field-based reflective access

1 String deviceId = telephonyManager.getDeviceId(); //source
2 Class<?> c = this.getClassLoader().loadClass("ConcreteClass");
3 Object o = c.getConstructor(String.class).newInstance();
4 Field f1 = c.getField("imei");
5 f1.set(o, deviceid);
6 Field f2 = c.getField("imei");
7 String refdeviceId = (String) f2.get(o);

– Getting constructor of class and instantiating constructor
The specific constructor of class may be obtained through getConstructor()
API. Malicious apps store sensitive data in the class field through a construc-
tor and later read out again and perform leaks. The analysis must be able to
handle constructor-based reflective class instantiations. The example of List-
ing 1.6 reflectively instantiates the object of BaseClass using the constructor
of ConcreteClass (line 3) and stores deviceId in it.

Listing 1.6. Constructor based Reflective Class Instantiation

1 String deviceId = telephonyManager.getDeviceId(); //source
2 Class<?> cls = Class.forName("ConcreteClass");
3 BaseClass bc = (BaseClass) cls.getConstructor(String.class).newInstance(deviceId);

We prepared list of various reflection APIs belonging to four categories. This
is used in all phases of EspyDriod.

3 Proposed Solution: EspyDroid

EspyDroid is a system that combines dynamic analysis with code instrumen-
tation to unravel the potential hidden leaks implemented through the use of
reflection and runtime data dependency. The overall architecture of EspyDroid
is as shown in Fig. 1. The complete system of EspyDroid consists of four main
modules: App Hooking, Dynamic Analyzer, Log-Tracer, and Instrumentation.

EspyDroid first searches for the presence of reflection APIs in the apk. Espy-
Droid assumes that reflection APIs itself are not obfuscated. We use Andro-
Guard [3] for checking the presence of reflection, which is a static analysis tool
written in Python and works directly on apk files. After the confirmation of the
presence of reflection, the app undergoes further analysis. As seen from moti-
vating examples, the information of parameters and return values of reflection
APIs can not be inferred statically if parameters have any runtime dependency.
The aim of App Hooking and Dynamic Analyzer is to get this information by
monitoring the reflection APIs related to four categories mentioned in Sect. 2.

54 J. Gajrani et al.

Fig. 1. EspyDroid system architecture

3.1 App Hooking and Dynamic Analyzer

The Dynamic Analyzer module uses APIMonitor [2] tool to add the monitoring
code for the reflection APIs. The monitoring code is like a wrapper to the reflec-
tion APIs which logs the APIs in Android logcat along with pre-defined tag as
and when the specified APIs are invoked during repackaged app execution. For
automatic UI exploration of the app, Intelligent UI exploration module from our
earlier work [13] is used which is Depth-First based black-box testing approach
extended using Robotium framework [6]. The exploration time depends on the
complexity of app GUI. The average exploration time for the experimental data-
set of 40 apps worked in [6] is 6 min. Note that the detailed explanation is too
large to be included in this paper. However, interested reader can refer to [13].
Various reflection APIs belonging to four reflection categories are given as input
to APIMonitor and REFLECTIONCALL is set as the tag. The constraint of
APIMonitor is that it logs the APIs with its parameters type, value and return
type, value but it does not add any information regarding the calling (wrapper)
class or method in which the APIs are present. The information of wrapper class
and method of reflection APIs is necessary for instrumentation. The more details
of why it is required are in next section. To achieve the same, EspyDroid first
hooks the apk using Soot [15] such that whenever a reflection API got logged, the
information of its wrapper class and method also gets logged with pre-defined
tag WRACLASS-METHOD. The Fig. 2 shows the logs obtained corresponding

Unraveling Reflection Induced Sensitive Leaks in Android Apps 55

to motivating example of Listing 1.1 after App Hooking and Dynamic Analysis.
Runtime analysis and monitoring enables EspyDroid to resolve the reflection
calls with runtime parameter dependency, encryption or obfuscation.

Fig. 2. Logs of motivating example

3.2 Log-Tracer

Log-Tracer processes raw logs and stores them in appropriate data structures in
processed form. We use separate HashMap data structures for storing various
runtime values belonging to four categories of reflection. Log-Tracer reads each
line of log and checks for one of the two tags. If it finds WRACLASS-METHOD
tag then saves the corresponding wrapper classname/methodname value as the
key of HashMap. Next, it process the log statement with tag REFLECTION-
CALL and stores the data in corresponding data structure. We use following six
HashMap data structures:
<String, ArrayList<ArrayList<String>>> mapWraToClasses
<String, ArrayList<ArrayList<String>>>mapWraToMethodDeclared
<String, ArrayList<ArrayList<String>>> mapWraToFieldDeclared
<String, ArrayList<ArrayList<String>>> mapWraToFieldGetSet
<String, ArrayList<ArrayList<String>>> mapWraToConsGet
<String, ArrayList<ArrayList<String>>> mapWraToConsInstantiation

HashMaps mapWraToClasses for class reflection, mapWraToMethodDeclared
for method declaration and invocation, mapWraToFieldDeclared for field dec-
laration, and mapWraToConsGet for field value set/get, mapWraToConsGet for
constructor reference creation, and mapWraToConsInstantiation for construc-
tor instantiation related information storing are used.

Figure 3 shows the structure of these HashMaps in general. Here, the Jimple
classname/methodname (e.g., JC1/M1) in which this reflection call is present
serves as the key and various runtime values of the calls are stored in cor-
responding ArrayLists as values. The reason behind choosing key as wrapper
classname/methodname is to assist at the time of instrumentation in the way
that all reflections present in specific class and method will be resolved in that
class only. The ArrayLists in HashMap are list of different parameters stored at
runtime like reflectively called class or method name, method specifier, method
parameters, etc. Figure 4 shows the HashMap data structures corresponding to
logs of Fig. 2.

56 J. Gajrani et al.

Fig. 3. Structure of HashMaps

Fig. 4. HashMaps for Fig. 2

3.3 Instrumentation

The purpose of this module is to instrument reflection call with an equivalent non-
reflection call to make the further analysis possible by static analyzers. We have
chosen Jimple, an intermediate representation (IR) of Soot for instrumentation.
Soot is a framework which was originally designed to analyze and transform Java
bytecode and has also been extended to Android. The variables of Java correspond
to Locals of Jimple. The original reflection calls are not eliminated to preserve the
semantics. The important concept here is to construct the non-reflection state-
ment in a way to maintain data-flow precision. For e.g., to be able to catch the
leakage, it is necessary that non-reflection statement assigns results to same Local
where reflection statement assigning its results. Also the Locals corresponding to
parameters of reflection call must be same in instrumented non-reflection calls.

Soot translates all classes of apk to Jimple for instrumentation. Algorithm 1
depicts higher level concepts of instrumentation. The module traverses each Jim-
ple of an apk and check for various reflection statements belonging to four reflec-
tion categories (lines 1–3). It constructs equivalent non-reflection statements
in Jimple using runtime information of parameters and return values which
are parsed from logs in HashMaps by Log-Tracer. The runtime construction
of non-reflection statement depends on the category of reflection API. There-
fore, it performs the check of category (lines 5, 9, 17, and 22). However, in
all cases respective HashMap is used to get the runtime information. In all
cases, key of HashMap is Jimple classname/methodname in which the reflection
call is present to ensure that reflections belonging to any Jimple class/method
will be resolved in that Jimple class only. Next, indices in ArrayList are used
to ensure that within the method, information of same reflection statement
is being accessed. Therefore, during instrumentation, we first obtain Jimple

Unraveling Reflection Induced Sensitive Leaks in Android Apps 57

Algorithm 1. EspyDroid’s Instrumentation Algorithm
Result: Instrumented app

1 for each Jimple class JC of apk do
2 for each statement S of JC do
3 if S is reflection call then
4 Do instrumentation based on the category of reflection;
5 if S is Class Reflection then
6 Obtain aclassname from mapWraToClasses HashMap;
7 Instrument “$r = new aclassname” statement after S;

8 end
9 if S is Method Declaration Reflection then

10 Instrument “$r = new aclassname” statement before S;
11 Find the runtime details of actual methodname,

parameter-types, return-types from mapWraToMethodDeclared

HashMap ;
12 Find the locals corresponding to parameters by using backward

flow analysis.;
13 Construct the non-reflection statement from the information

obtained in above two steps;
14 Find the invoke statement in JC corresponding to this method

declaration using data-flow analysis;
15 Instrument the constructed statement after this invoke

statement in a way to maintain data-flow accurate;

16 end
17 if S is Constructor Call Reflection then
18 Find classname from mapWraToConsGet HashMap and parameter

types using mapWraToConsInstantiation HashMap;
19 Find the locals corresponding to parameters by using backward

flow analysis from S;
20 Construct and Instrument a non-reflection constructor call

statement from the information obtained above after S;

21 end
22 if S is Field Reflection then
23 Find field-name, its classname from mapWraToFieldDeclared

HashMap;
24 Construct non-reflection field access statement using the above

information and based on whether field is static or non-static.
Also the statement construction depends on whether the field’s
value is retrieved or assigned;

25 end

26 end

27 end

28 end

classname and methodname in which this reflection call is present with Soot
APIs. This information is used as the key to map runtime values from corre-
sponding HashMap.

58 J. Gajrani et al.

The first category is class reflection where it can use any of
forName/loadClass/getClass API for instantiating class. The class name is
the parameter of these APIs which is generally obfuscated by malicious apps.
The module uses mapWraToClasses HashMap to get actual runtime value
aclassname of classname (line 6) and construct a “$r = new aclassname”
statement and instrument it after class-reflection statement (line 7). Here, this
is ensured that $r is Local of aclassname type. Therefore, this Local declaration
statement also gets instrumented.

The second category is method reflection where it can
use getMethod/getDeclaredMethod API for creating the object of method and
then invoke API to invoke the method. To construct the non-reflection state-
ment, runtime values of reflection call’s, method’s classname, specifier, return
type, parameter type, Jimple Locals corresponding to parameters are required
along with Jimple class and wrapper method. All the information except vari-
ables corresponding to parameters is obtained from mapWraToMethodDeclared
HashMap. In method reflection statement, parameters to method are passed in
the form of object array while in corresponding non-reflection, these are required
as individual Local. To get these Locals, backward data-flow analysis is imple-
mented which calculates individual Locals which constituted the object array
(line 12). The non-reflection statement will be instrumented after the invoke of
this method declaration. It may be the case that set of method declarations may
be followed by the set of invokes. Also, these invokes may be interleaved. For
e.g., declaration of methods M1, M2, M3 may be followed by invocation in order
M3, M2, M1. To handle such interleaved invocations, we also implemented for-
ward data-flow analysis which finds the invoke corresponding to current method
declaration and instrument non-reflection statement after that invoke only. To
perform accurate data-flow analysis by static analyzers, it is ensured that the
non-reflection statement gets assign the result to Local where reflection state-
ment was assigning the result.

The third category is constructor call reflection where the name of method
is always <init> but its classname and parameters type, variables corre-
sponding to parameters are required for construction of non-reflection state-
ment. Classname is obtained from mapWraToConsGet and parameter type from
mapWraToConsInstantiationHashMap. The similar approach of backward data-
flow analysis is used for obtaining variables corresponding to method parameters.

The fourth category is field reflection where reflection APIs may be used
either getting the value from the field or assigning the value to it. Construction
of non-reflection statement require fieldname, its class and Jimple local corre-
sponding to field. The first two pieces of information are obtained from HashMap
while the last from current Jimple only. Instrumentation is done after current
field reflection keeping data-flow accurate.

Intent reflection as shown in Listing 1.2, Intent itself is class whose method
putExtra is used for sending data to another component. As seen from the
approach, reflection belonging to any component will be done in that component

Unraveling Reflection Induced Sensitive Leaks in Android Apps 59

of app only. Here, Intent reflection itself will be taken as class and method
reflection and instrumentations will be done accordingly.

4 Evaluation

We evaluate EspyDroid against both open-source apps taken from benchmarks
and apks available in bytecode format from PlayStore and VirusShare. The major
usage of reflection in the experimental data-set is identified as follows:

1. Reflective instantiation of classes to hide sensitive leaks.
2. Reflective instantiation of constructors to hide leaks present in constructors.
3. Reflective invocations of methods to hide the malicious methods invoked.
4. Reflective access of fields to either set the fields with the malicious information

to be leaked or to get malicious information from the fields.
5. For complicating analysis further, Inheritance feature is used where the class

instantiated is derived while the fields/methods are accessed from base-class.
6. All above cases with leaks distributed over multiple components.
7. Reflective invocation of Intent to hide communication between components.
8. Obfuscated/runtime dependent parameters of reflective APIs to fail even

reflection aware static analysis based techniques.

Furthermore, in the experimental dataset the leaks were also distributed over
multiple components of the app. In multiple component based leaks, two or more
components communicate through ICC mechanism.

4.1 Open-Source Apps

Open-source apps are selected from DroidBench benchmark, DroidRA - the most
similar work in the field and some apps which are modified version of DroidRA to
include encryption/obfuscation. DroidBench is an open test suite for evaluating
the effectiveness of both static and dynamic tools specifically for Android apps.
The benchmark is used by various research papers including recent works such
as [21,24,26,27] for evaluation.

We use FlowDroid [8] static analyzer to find sources, sinks and leakage paths
of apps both with and without EspyDroid. Table 1 shows the results of EspyDroid
for open-source apps highlighting identified sources and sinks. The results depicts
that FlowDroid missed to identify sources, sinks, and paths in original apps hav-
ing reflection but the same tool could identify these missed leaks in instrumented
apps. In the original representative dataset, FlowDroid could detect 19 leakage
paths while the same tool could detect 51 leakage paths in the instrumented
apps generated from EspyDroid. Not only the leakage paths, but the number of
detected sources and sinks is also improved significantly. FlowDroid could detect
108 sources and 35 sinks while FlowDroid along with EspyDroid could detect
130 sources and 42 sinks. DroidRA could detect 119 sources, 39 sinks, and 38
leakage paths. The numbers show that DroidRA has less precision compared
to EspyDroid. As the source code of these apps was available, we could verify

60 J. Gajrani et al.

that EspyDroid detected all sources, sinks, and paths for DroidBench apps. The
information which missed by FlowDroid in the analysis of original apps is leaking
private information of the user through sinks like SMS and Logs. The leaked data
may further include user’s sensitive information like financial details, location,
etc. which, if exploited, may cause data ex-filtration and monetary loss. Except
single app with reflection APIs called in loop, EspyDroid catched all leaks in
DroidBench dataset.

Table 1. Results on open-source apps having confirm reflection

Sno #App Repository FlowDroid EspyDroid+ FlowDroid

Sources Sinks Paths Sources Sinks Paths

1 18 DroidBench 73 21 16 92 28 37

2 9 DroidRA 23 10 1 26 10 10

3 2 DroidRA with
encryption

12 4 2 12 4 4

Total 108 35 19 130 42 51

4.2 APKs in Bytecode

We downloaded random 75 apps from playstore for analysis by EspyDroid. Espy-
Droid could find two apps as shown in Table 2 in which FlowDroid captured
additional leaks in instrumented apps. EspyDroid shows improvement in the
results for the VirusShare apps. Out of 277 apps under analysis 167 apps are
investigated which were using reflection. Although the results of these apps do
not show improvements in leaks detection concerning sources, sinks, and paths
because of complex obfuscation with multi-level of encryption and reflection.
However, a significant improvement in forward edges, backward edges, and paths
of call-graph is observed for three apps in EspyDroid’s instrumented apps by
FlowDroid. FlowDroid uses IFDS framework [22] to reduce the program anal-
ysis problem to graph reachability problem. IFDS framework first reduces the
app into call-graph and calculates forward and backward edges and then builds
the paths between sources and sinks. Table 3 show the improvement in results.

Table 2. Results on PlayStore apps

Sno App name FlowDroid EspyDroid+ FlowDroid

Sources Sinks Paths Sources Sinks Paths

1 air.com.productmadness.
atlas

119 59 23 119 59 25

2 com.productmadness.
hovmobile

12 95 62 95 62 72

Unraveling Reflection Induced Sensitive Leaks in Android Apps 61

Table 3. Evaluation results on apps from VirusShare

App MD5 FlowDroid EspyDroid+ FlowDroid

Forward edges Backward edges Forward edges Backward edges

0fa1d7a9ef7011ca
8976910b07347732

311748 115400 460679 181660

eedaf39b21aca987b
315f1e5d0e4cba6

108015 29017 110693 29441

ddc75a9aea5ac4933
bcdf6001c0ef817

323104 123781 343234 128386

The app3 instantiates class doom.androidquickfaster849.R$layout reflec-
tively and accesses its field where the classname is dynamically constructed. This
runtime construction of classname requires an approach like EspyDroid involv-
ing dynamic analysis. FlowDroid missed the leak to sink StartActivity() from
sources getDeviceId() and getCountry() in this app which EspyDroid could
identify. FlowDroid constructed 20 connections between sources and sinks in
original app while for EspyDroid’s instrumented app, FlowDroid constructed
22 connections. The results demonstrate that with EspyDroid, the precision of
static analysis tool gets improved for reflection-employed apps.

5 Limitations of EspyDroid

Despite the fact that EspyDroid can improve the state-of-art static analyzers by
avoiding false negatives arising out of reflection, the technique has certain limita-
tions. The proposed automatic dynamic analysis module may miss the coverage
of some complex views like custom actionbars, custom views, etc. facilitated by
Android for rich Graphical User Interface. Consequently, our proposal likely to
miss some uses of reflection which are behind these views. In future work, we
would develop and integrate improved intelligent techniques to achieve improved
code coverage. In some cases, different runs may result in different runtime value
for some parameters of reflection APIs. However, practically it may not be possi-
ble to get all possible values of these parameters dynamically. Another limitation
is that currently, EspyDroid cannot resolve loop based invocation of reflection
APIs.

6 Related Work

As on today, most of the best performing static analyzers [8,11,14,16,20,25]
shown their limitation in handling reflection. Reflection aware analysis for Java
applications is proposed by Bodden et al. in [9]. However, the solution can not be
applied to Android apps directly as their approach is based on load-time instru-
mentation that the Android platform does not currently support. DroidRA [17]

3 MD5-0fa1d7a9ef7011ca8976910b07347732.

62 J. Gajrani et al.

models the identification of reflective calls as a composite constant propaga-
tion problem through the COAL declarative language [19]. However, depen-
dency on constant string inference fails the approach when the parameters of
reflection APIs have runtime dependency like passing getDeviceId indirectly as
dIeciveDteg.reverse() has failed DroidRA in identification of leakages.

Ripple [28] is a reflection aware analysis technique that adds type inference
in DroidRA to get more sound results in cases where direct string analysis of
reflection parameters is not sufficient. However, being static in nature, Ripple
will also fail when reflection combines with runtime dependency of parameters.

Hybrid analysis to handle reflection in Android has been performed in the
past few years. Authors in StaDyna [29] focus on addressing dynamic code load-
ing and reflection using the hybrid approach. The static analysis first constructs
the Method Call Graph (MCG) of application, and then expands it with addi-
tional information captured at runtime. However, evaluation is done only in
terms of increased number of nodes and edges without any focus to privacy
leakage. It needs modified Android OS which makes it installation and use com-
plex. At present implementation is only done for Android OS version 4.1.2 r2
which limits the scalability. It does not provide a way to directly benefit existing
static analyzers, i.e., to support them in performing reflection-aware analyses.
BPS Rocha et al. introduced lightweight hybrid static-runtime mechanism for
information flow control [23].

Rasthofer et al. in [21] present harvester tool based on the hybrid approach
to automatically extract runtime values from Android applications. First, it pre-
pares a reduced apk using static backward slicing, and this reduced apk is exe-
cuted on the emulator. Runtime values of reflective call targets resolved during
the dynamic execution are manifested as ordinary method calls in the appli-
cation’s bytecode. The main limitation is that the current implementation of
slicing is limited to single Android component. Therefore, any sample using
inter-component communication (ICC) can not be analyzed. In contrast, Espy-
Droid’s also work on malware using ICC. Due to unavailability of its source code,
we are not able to practically work with Harvester4.

This paper is an extension of our poster work in ASIACCS [12] with signif-
icant improvements. First, we added HashMap based data structures, forward
data-flow analysis to make interleaved APIs instrumentation accurate. Second,
we added App hooking module, which ensures reflection calls belonging to spe-
cific class and method will be non-reflectively instrumented in that class and
method only. Third, we extended the evaluation dataset with PlayStore and
VirusShare apps.

7 Conclusion

In this paper, we propose EspyDroid, a reflection aware hybrid analysis technique
for Android app analysis. Through experimental evaluation, we demonstrate that
4 We contacted authors for code. They mentioned that their legal department is work-

ing on a proper license for Harvester.

Unraveling Reflection Induced Sensitive Leaks in Android Apps 63

EspyDroid is resilient against encryption, obfuscation or any kind of runtime
dependency of reflection parameters. The solution can also detect malware that
uses Inter-Component Communication to distribute leaks over multiple com-
ponents in a single application. The results demonstrate that static analyzers
result in large number of false negatives in the presence of reflection. EspyDroid
improves the precision by capturing the leaks missed by static analyzers alone.
We plan to release EspyDroid as an open-source tool with benchmark results.
In future work, we plan to develop and integrate improved intelligent techniques
to achieve improved code coverage and thus reduce false negatives in capturing
sensitive leaks done by malicious apps.

Acknowledgments. This work is partially supported by Security Analysis Frame-
work for Android Platform (SAFAL, Grant 1000109932) by Department of Electronics
and Information Technology, Government of India. The work is also partially sup-
ported by CEFIPRA project. Mauro Conti is supported by EU TagItSmart! Project
(agreement H2020-ICT30-2015-688061) and IT-CNR/Taiwan-MOST 2016-17 “Verifi-
able Data Structure Streaming”.

References

1. https://docs.oracle.com/javase/tutorial/reflect/
2. https://github.com/pjlantz/droidbox/tree/master/APIMonitor
3. Androguard. https://github.com/androguard/androguard
4. DroidBench. https://github.com/secure-software-engineering/DroidBench/tree/

develop
5. Intents and Intent Filters. https://developer.android.com/guide/components/

intents-filters.html
6. RobotiumTech/robotium. https://github.com/RobotiumTech
7. VirusShare. https://virusshare.com/
8. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,

Octeau, D., McDaniel, P.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. ACM SIGPLAN Not. 49(6),
259–269 (2014)

9. Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., Mezini, M.: Taming reflection:
aiding static analysis in the presence of reflection and custom class loaders. In:
Proceedings of the 33rd International Conference on Software Engineering, pp.
241–250. ACM (2011)

10. Elish, K.O., Yao, D., Ryder, B.G.: On the need of precise inter-app icc classification
for detecting android malware collusions. In: Proceedings of IEEE Mobile Security
Technologies (MoST), in Conjunction with the IEEE Symposium on Security and
Privacy (2015)

11. Feng, Y., Anand, S., Dillig, I., Aiken, A.: Apposcopy: semantics-based detection
of android malware through static analysis. In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp.
576–587. ACM (2014)

12. Gajrani, J., Li, L., Laxmi, V., Tripathi, M., Gaur, M.S., Conti, M.: Poster: detection
of information leaks via reflection in android apps. In: Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, pp. 911–913. ACM
(2017)

https://docs.oracle.com/javase/tutorial/reflect/
https://github.com/pjlantz/droidbox/tree/master/APIMonitor
https://github.com/androguard/androguard
https://github.com/secure-software-engineering/DroidBench/tree/develop
https://github.com/secure-software-engineering/DroidBench/tree/develop
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/components/intents-filters.html
https://github.com/RobotiumTech
https://virusshare.com/

64 J. Gajrani et al.

13. Gajrani, J., Tripathi, M., Laxmi, V., Gaur, M., Conti, M., Rajarajan, M.: Spectra:
a precise framework for analyzing cryptographic vulnerabilities in android apps.
In: 2017 14th IEEE Annual Consumer Communications & Networking Conference
(CCNC), pp. 854–860. IEEE (2017)

14. Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N., Rinard, M.C.: Infor-
mation flow analysis of android applications in droidsafe. In: NDSS. Citeseer (2015)

15. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The soot framework for java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infastructure Work-
shop (CETUS 2011), vol. 15, p. 35 (2011)

16. Li, L., Bartel, A., Bissyande, T.F., Klein, J., Le Traon, Y., Arzt, S., Rasthofer, S.,
Bodden, E., Octeau, D., McDaniel, P.: IccTA: Detecting inter-component privacy
leaks in android apps. In: Proceedings of the 37th International Conference on
Software Engineering, vol. 1, pp. 280–291. IEEE Press (2015)

17. Li, L., Bissyandé, T.F., Octeau, D., Klein, J.: Droidra: taming reflection to support
whole-program analysis of android apps. In: Proceedings of the 25th International
Symposium on Software Testing and Analysis, pp. 318–329. ACM (2016)

18. Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Van Der
Veen, V., Platzer, C.: Andrubis-1,000,000 apps later: a view on current android
malware behaviors. In: 2014 Third International Workshop on Building Analysis
Datasets and Gathering Experience Returns for Security (BADGERS), pp. 3–17.
IEEE (2014)

19. Octeau, D., Luchaup, D., Jha, S., McDaniel, P.: Composite constant propagation
and its application to android program analysis. IEEE Trans. Softw. Eng. 42(11),
999–1014 (2016)

20. Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., Le Traon,
Y.: Effective inter-component communication mapping in android: an essential
step towards holistic security analysis. In: Presented as part of the 22nd USENIX
Security Symposium (USENIX Security 2013), pp. 543–558 (2013)

21. Rasthofer, S., Arzt, S., Miltenberger, M., Bodden, E.: Harvesting runtime values in
android applications that feature anti-analysis techniques. In: Proceedings of the
Annual Symposium on Network and Distributed System Security (NDSS) (2016)

22. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pp. 49–61. ACM (1995)

23. Rocha, B.P., Conti, M., Etalle, S., Crispo, B.: Hybrid static-runtime information
flow and declassification enforcement. IEEE Trans. Inf. Forensics Secur. 8(8), 1294–
1305 (2013)

24. Rubinov, K., Rosculete, L., Mitra, T., Roychoudhury, A.: Automated partitioning
of android applications for trusted execution environments. In: Proceedings of the
38th International Conference on Software Engineering, pp. 923–934. ACM (2016)

25. Wei, F., Roy, S., Ou, X., et al.: Amandroid: a precise and general inter-component
data flow analysis framework for security vetting of android apps. In: Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
pp. 1329–1341. ACM (2014)

26. Wong, M.Y., Lie, D.: Intellidroid: a targeted input generator for the dynamic anal-
ysis of android malware. In: Proceedings of the Annual Symposium on Network
and Distributed System Security (NDSS) (2016)

27. Zhang, M., Duan, Y., Feng, Q., Yin, H.: Towards automatic generation of security-
centric descriptions for android apps. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, pp. 518–529. ACM (2015)

Unraveling Reflection Induced Sensitive Leaks in Android Apps 65

28. Zhang, Y., Tan, T., Li, Y., Xue, J.: Ripple: reflection analysis for android apps
in incomplete information environments. In: Proceedings of the Seventh ACM on
Conference on Data and Application Security and Privacy, pp. 281–288. ACM
(2017)

29. Zhauniarovich, Y., Ahmad, M., Gadyatskaya, O., Crispo, B., Massacci, F.: Sta-
dyna: addressing the problem of dynamic code updates in the security analysis
of android applications. In: Proceedings of the 5th ACM Conference on Data and
Application Security and Privacy, pp. 37–48. ACM (2015)

Remotely Assessing Integrity of Software
Applications by Monitoring Invariants:

Present Limitations and Future
Directions

Alessio Viticchié(B), Cataldo Basile, and Antonio Lioy

Politecnico di Torino, Torino, Italy
{alessio.viticchie,cataldo.basile,lioy}@polito.it

Abstract. Invariants monitoring is a software attestation technique
that aims at proving the integrity of a running application by checking
likely invariants, which are predicates built on variables’ values. Being
very promising in literature, we developed a software protection that
remotely checks invariants. However, we faced a series of issues and lim-
itations. This paper, after presenting an extensive background on invari-
ants and their use, reports, analyses, and categorizes the identified lim-
itations. Our work suggests that, even if it is still promising, further
studies are needed to decree if invariants monitoring could be practically
used as a remote protection of software applications.

1 Introduction

Software attestation is a category of protection techniques that allows a moni-
toring system to verify that a program, which is running on another system, is
behaving as expected. This verification is performed by checking the integrity
of the program memory against modifications made by malicious code [3]. As
opposed to the remote attestation defined by the Trusted Computing Group
[9,28], software attestation does not rely on secure hardware to establish a root
of trust, rather is built on peculiar properties of the software to monitor. There-
fore, software attestation is better suited for scenarios where hardware is hetero-
geneous or when secure hardware features are not available, like often happens
for embedded systems and Internet of Things devices.

Invariants monitoring (IM) is a technique proposed in literature to perform
software attestation [22]. Invariants, borrowed from software engineering, are
logical assertions that are held to be true during the execution of (some parts of)
the application. Introduced and used for software maintenance and verification
purposes (assertions, programming by contract) [16,20,21], invariants have been
used to detect programming errors and incorrect implementations [10,19].

Unfortunately, user specified invariants are often nearly absent in applications
[14], hence a defender wanting to protect selected code areas from tampering,
may experience an insufficient number of invariants. For this reason, the works
c© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 66–82, 2018.
https://doi.org/10.1007/978-3-319-76687-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_5&domain=pdf

Remotely Assessing Integrity of Software Applications 67

in literature about IM resorted to dynamically-extracted likely-invariants. Likely
invariants, as opposed to the “true” invariants described before, are inferred
from the analysis of traces collected by executing the applications on selected
inputs [14]. Usually, several likely invariants can be inferred for every part of the
application whose integrity needs to be ensured.

Being very promising on paper, we have designed and implemented an IM
technique. A client-side Attester sends to a trusted remote server the values of
selected variables, among the ones in memory. On the server, an integrity Verifier
uses the received values to check invariants and establish trustworthiness of the
target application. Moreover, we have created a tool chain that, after having
identified likely invariants, instruments target applications to be protected with
IM. Apart from the selection of the invariants to use and the adaptation of the
compilation options, which are human assisted, all the phases are automatically
performed by the tool chain, which also generates all the server-side processes.

Unfortunately, we have soon experimented limitations of this protection.
Some limitations are related to the use of invariants. For instance, likely invari-
ants, which are true for the analysed traces, are not true in general. Therefore,
for protection purposes, likely invariants generate false positives, i.e., violations
of invariants are not related to attacks. Other limitations depend on the tech-
nology, mainly on the tool that extracts the invariants. For instance, the most
known and used tool, Daikon [15], does not infer invariants on matrices, struc-
tures, and inner scope variables. Finally, additional issues relate to the assump-
tions to use IM for protection purposes. The assumption that a defender could
tell compromised applications from original ones by verifying invariants is not
proven. Determining a positive inference between attacks and invariants’ viola-
tions would require an empirical assessment because invariants are also subject
to false negatives, i.e., attacks may compromise applications without violating
invariants.

This paper presents the following contributions. (1) It reviews the literature
on invariants monitoring, presents and categorizes the limitations that affect this
technique. (2) Then, it introduces the IM tool we have developed that checks the
integrity application at runtime and presents how some limitations have been
overcome. (3) Furthermore, it presents a tool chain that automatically applies
IM to target applications. (4) Finally, especially for the limitations that have
not been addressed, it discusses the issues to solve and research to perform to
allow the use of IM to protect real applications from real attackers.

The paper is organized as follows. Section 2 introduces the background on
invariants and limitations of likely invariants and Daikon. Section 3 presents
the IM technique we have implemented and Sect. 4 shows how to instrument a
target application to be protected with IM. Section 5 presents the use cases and
Sect. 6 discusses the limitations of invariants monitoring. Finally, Sect. 7 draws
conclusions and sketches future works.

68 A. Viticchié et al.

2 Background on Invariants and Related Works

Invariants: definitions and early works. Invariants are known in computer sci-
ence since long time, as they were used to identify program bugs before they
revealed during application working, and to assist development and mainte-
nance [20]. As Gries demonstrated, a program can be formally derived from
its specifications [16], hence software engineers defined axioms that describe
correct executions and properties in terms of constraints. Several works in lit-
erature exploited invariants as axioms to identify and locate faults and prob-
lems in software implementation [5,6,8,13,23]. Indeed, in these works invariants
were explicitly deduced from the theoretical specifications of the program, then
checked against the actual implementation.

Likely invariants and their use in non-security contexts. In practice, it could hap-
pen that invariants are absent or too little to be useful. Therefore, researchers
proposed to dynamically extract invariants from target applications by observ-
ing the execution of an application and inferring a set of relations, which are
then used as invariants. Dynamically extracted invariants are not axioms, rather
constraints that can fail, by chance, even if the program is sound. Hence, the
term likely invariants has been introduced to identify these empirically deduced
constraints.

One of the most widespread tools for likely invariants detection is Daikon,
which is free and open source1. Daikon tests potential invariants against observed
runtime values, taken from traces collected trough a front-end instrumentation
if the target application [14,15]. Daikon uses a statistical approach to minimize
invariants that may generate false positives. That is, only the true relations
whose probability to be a mere coincidence is under a user-definable threshold
become invariants. Moreover, Daikon can improve its effectiveness with abstract
type information [17].

Daikon has been used by several authors for software maintenance purposes.
Xie et al. used Daikon to extract invariants for automatic unit test generation
without any a priori specification [34]. Csallner et al. proposed DSD-Crasher,
a tool that automatically finds software bugs by combining dynamic analysis
(i.e., likely invariants inferred with Daikon) with static analysis and dynamic
verification [11]. Schuler et al. proposed a tool to infer class contracts with Daikon
[30]. Schiller et al. proposed VeriWeb, a web-based IDE that uses Daikon to infer
clauses used to help users when they have to write verifiable specifications [29].
Sahoo et al. exploit Daikon-generated likely invariants to locate elements in
the code that may lead to failures. Likelihood failure is assessed via dynamic
backward slicing and heuristic filtering [27]. Lemieux et al. introduced Texada,
a tool for extracting specifications in linear temporal logic that once combined
with Daikon infers likely data-temporal properties [24].

1 Daikon is the subject of a number of publications, which is maintained at https://
plse.cs.washington.edu/daikon/pubs/.

https://plse.cs.washington.edu/daikon/pubs/
https://plse.cs.washington.edu/daikon/pubs/

Remotely Assessing Integrity of Software Applications 69

Beside Daikon, several other tools and methodologies have been developed for
likely invariant detection. DIDUCE by Hangal et al., performs dynamic invari-
ants detection on online Java applications at run time [19]. It automatically
detects program errors and their causes (e.g., errors in handling corner cases,
errors in inputs, and misuse of APIs) by analysing the detected invariants. Csall-
ner et al. proposed DySy, a dynamic invariants detector that combines concrete
executions and symbolic executions of test cases [12] to deduce symbolic invari-
ants, which not only depend on execution traces but also on text structure of
the program. Along with academic progresses, industrial invariants detection
solutions have appeared: Ackermann et al. proposed a tool that infers invariants
based on data-mining techniques [2], IODINE is a tool to detect invariants from
hardware design [18], and Agitator is a commercial tool inspired by Daikon [7].

Invariants monitoring for software protection purposes. In terms of software
security, invariants have been used as a measure of software integrity (data or
code). Lorenzolli et al. proposed FFTV, a self-protecting technique that uses
invariants to analyse and react to failures [25]. The technique infers likely invari-
ants from the contexts that generate failures. Hence, whenever invariants from
failing contexts are valid, FFTV applies a protection mechanism to prevent the
failure either by correcting the execution issue or by avoiding the execution of
the faulty code. Perkins et al. proposed ClearView which analyses a running
system and uses Daikon to describe its behaviour in terms of likely invariants
[26]. Clearview, in case of failures, automatically detects the failed invariants and
proposes patches that re-establish the invariants’ validity. Therefore, ClearView
may protect from some attacks, such as code-injection.

Kil et al., proposed ReDAS, a software attestation mechanism to monitor
dynamic system properties [22]. ReDAS first extracts likely invariants from
global variables values collected during system call invocations. Then, by evalu-
ating invariants at runtime, they claim the system is able to offer protection from
tampering and limited protection from runtime memory corruption. Beliga et al.,
proposed Gibraltar, a solution to detect kernel-level rootkits based on violation
of inferred likely invariants [4]. Gibraltar, during an inference phase, observes
data structures and values (e.g., entropy pool, processes list, page sizes) of the
Linux kernel, thus it deduces invariants that are monitored during the detec-
tion phase. Wei et al. proposed an attestation mechanism that uses “scoped
invariants”, likely invariants valid in specific scopes inside the program, to spot
anomalies [33].

2.1 Limitations of Likely Invariants

The use of invariants is subject to limitations that depend on the technique itself,
regardless of tool used to extract them, the reason for using invariants, and the
target application.

First of all, for attestation purposes, likely invariants can generate false
positives (L1)2, which are failures of invariants for applications that are not
2 All the found limitations have been labelled as (Li) to ease reference.

70 A. Viticchié et al.

compromised. While theoretically avoidable with complete execution traces, false
positives are very “likely” in practice.

Then, the verification of invariants must be done with variable values taken
from the memory at the same time (L2). Values from correct but different exe-
cutions may invalidate invariants.

For instance, given the code snippet below:

for(i=0;i<100;i++){

j=100-i;

/* do something with i and j */}

A tool could deduce i+j==100, but this invariant can only be verified with values
of i and j acquired from memory simultaneously. This also leads to classical
concurrency issues: data consistency must be ensured when variable values are
extracted from memory (e.g., by stopping the execution).

2.2 Limitations of Daikon

Daikon checks for invariants when procedures are entered and exited, likely
invariants are thus pre- and post-conditions (L3). This is a feature for software
maintenance purposes, but a limitation from the attestation point of view, as an
attestation request may arrive in the mid of the procedure execution.

Furthermore, Daikon neglects the execution history. When a request arrives
the application may have walked any path in its control flow graph, thus the call
stack may contain data from several functions. Hence, it would be interesting
evaluating invariants that involve variables from different functions (L4).

Daikon is unable to inspect all the variables (L5). It only considers global
variables and variables passed as inputs to functions but it does not inspect the
inner local variables. Furthermore, Daikon is unable to correctly manage data
structures (struct), it only shows a minimum ability to treat mono-dimensional
arrays, and it simply ignores multidimensional data structures (L6).

Daikon checks for 75 different types of invariants (L7), furthermore, addi-
tional types of invariants can be specified by expert users. Checking a large
number of invariants increases the chances that the output contains the facts
that are needed by a human or a tool; however, it also increases the run time of
the invariant detector algorithm.

In addition, to improve the often very frustrating performance of the tool
extracting traces (Kvasir for x86 platforms), Daikon invariants’ research scope
can be limited to specific portions of the application code (L8). Theoretically,
the “quality” of invariants extracted should not be affected.

3 Remotely Monitoring Invariants at Runtime

We have designed an IM system where a client-side Attester is able to send the
value of selected variables present in memory to a trusted remote server. On the
server, a Verifier uses the received values to decree the integrity of the target
application (see Sect. 3.1). Moreover, we have developed a tool chain to protect
a client application with IM (see Sect. 4).

Remotely Assessing Integrity of Software Applications 71

Fig. 1. Architecture of our IM implementation.

3.1 Our IM Implementation at Run-Time

Our implementation of the IM technique uses the architecture in Fig. 1. We
assume that, when an application is launched, it notifies a server, regardless of
the fact that it may need the execution of some server-side logic. We also assume
that client and server perform a mutual authentication phase and, strongly sug-
gested, negotiate a secure channel.

The Remote Attestation Manager (imRAM) is the server-side component that
starts an attestation transaction with application client and logs all the trans-
actions data in a local DB. Attestation requests are generated periodically at
random time intervals (with a constant average time). An attestation request is
a message that only conveys a random 256 bit nonce N .

The Attester (imATT) is the client-side component in charge of processing
the attestation requests. It collects the values of selected variables among the
ones available in memory at the moment of the attestation request. Then, it
prepares the attestation responses that are sent to the server.

The Verifier (imVER) is the server-side component that uses the attestation
responses received from the imATT to decree the integrity of the application. It
extracts from the responses the variable values, use them to evaluate invariants,
and logs into the DB all the evaluation results, both positives and negatives.

Since our research aims at investigating the detective abilities of invariants,
we did not consider the reactions. However, we mention that a server-side compo-
nent, the Reaction Manager, is needed to decide, according to a policy3, when an
application needs to be punished. Moreover, at client-side, a Reaction Enforcer
may be useful to enforce the reactions that cannot be enforced on the server
(e.g., graceful memory data corruption [31]).

The imATT needs to extract the value of the variables in memory. Variables
can be stored in the stack, in the data segment, in a register, in a known loca-
tion in memory, in a memory location referenced by a register, or it can be
translated as a constant value. In addition, the storage location of a variable
may change depending on the execution point of the program. To this purpose,

3 The policy may take decisions based on the type of the invariants failed and the
frequency of failure as well user and business information, like the type of contract.

72 A. Viticchié et al.

we use DWARF4 information, at instrumenting time, to predict where, at run-
time, variables will be located for each execution point of the application. We
recall that DWARF symbols are additional data inserted by the compiler into
the executable binary of an application for debugging purposes. Indeed, DWARF
symbols associate the location of a variable with an instruction pointer range,
which specifies the code segment for which the location is valid. DWARF symbols
depends on the compiler (e.g., gcc vs. llvm) and, obviously, the information asso-
ciated to symbols depends on the destination platform of the application (e.g.,
x86 or ARM).

Moreover, variables are uniquely identified during the instrumentation phase
to allow the imVER to unambiguously recognise them. Unique IDs and DWARF
information are used to build the Variables Data Structure (VDS), injected dur-
ing the instrumentation phase.

Therefore, based on the VDS, the imATT : (1) stops the execution of the tar-
get application; (2) unwinds the call stack and, for each stack frame, reads the
instruction pointer and deduces the associated function; (3) for each deduced
function and depending on the instruction pointer, identifies and locate the
extractable variables; (4) collects the variables values. Finally, the imATT builds:

d = n‖(vID(vi),Value(vi))‖ . . . ‖(vID(vi),Value(vi))

where n is a 16 bit integer that counts the total number of collected variables,
vID(vi) is the unique identifier of the variable and Value(vi) is the value of the
variable found in memory and sends to the imVER the response:

r = d‖H‖(dN‖ID | S)

where H is a hash function of choice (we support SHA1, SHA256, and Blake2),
ID are optional data that unequivocally identifies the running application, and
S are data that relate the client to the server (e.g., secrets shared during the
mutual authentication).

Then, during the verification, the imVER first checks the correctness of the
received hash. Then, it reads the Pi in r, uses the vID(vi) to determine the
invariants that can be verified (which are the ones for which all the variables vID
are in r), then employs the values Value(vi) to actually evaluate the invariants.

3.2 Limitations of Monitoring Invariants at Runtime

Our implementation presents some limitations, mainly due to the fact that it is
just a prototype we implemented to test IM.

First, the current implementation simply sends all the variables values (L9)
available in memory that are involved in at least one invariant, that is, the
variables in the VDS. This simplified approach introduces a risk: attestation
responses may be too big, e.g., when the target application has too many global

4 DWARF is a standard produced by the DWARF Standards Committee available at
http://dwarfstd.org/.

http://dwarfstd.org/

Remotely Assessing Integrity of Software Applications 73

Fig. 2. IM tool chain.

variables (always accessible thus always sent by the imATT) and when the vari-
able size is large (e.g., big data buffers or big data structures).

Furthermore, in our implementation the imATT needs to access the same
memory areas as the original application, therefore, the imATT cannot be an
external entity (L10), thus we injected it in the client application. To ease the
implementation (i.e., avoid source code modifications), the imATT is launched
before the main, thus immediately recognizable and easy to disable. Indeed,
the imATT initialisation function is given the constructor attribute (which
is valid both for gcc and llvm) and tells the compiler to insert the function
invocation before the main function call or before the dynamic library is loaded
(L11). It is worth mentioning, it is our first (not so) quick and dirty prototype
implementation.

Moreover, another limitation is very important for the practical use invariants
as a software attestation technique: there is not a precise link between attacks
and invariants. That is, there is not a clear way to assume that an attack com-
promising the target application will violate invariants. This is a case of false
negatives (L12), the most dangerous issue for a technique aiming at attesting the
integrity of application from modifications. The presence of false negatives has
been revealed also on the use cases we have instrumented and tested, as shown in
Sect. 5. However, even though it has been discovered during the implementation,
this is a general limitation of invariants.

4 Instrumenting an App to Be Protected with IM

We developed a tool chain to automatically apply the IM implementation pre-
sented in Sect. 3.1 to target applications, which is illustrated in Fig. 2. The tool
chain identifies the invariants, generates the client- and server-side components,
and prepares the necessary server-side infrastructure. This is a key point to make
a protection technique usable, as it should be easy to apply also by software
developers and not only for experts.

74 A. Viticchié et al.

The application of IM starts with an unprotected application (app) for which
the source files are given. The areas to monitor for integrity need to be explicitly
indicated (either with source code annotation or by discarding the functions
Kvasir has to monitor).

The app source code is taken as input by two processes: discovery of likely
invariants, extraction of DWARF information.

To overcome the limitations of Daikon and monitor inner local scope vari-
ables, we created an Injector, as suggested by Daikon maintainers. This com-
ponent analyses the source code and, for each inner scope found, it (1) lists the
variables, (2) generates an ad hoc function (with an empty body) that takes as
input all the listed variables, and (3) inserts a call to the generated function at
the exit of the inner scope. In this way, Daikon, which considers values passed to
functions, can also consider inner scopes variables. For instance, for this function:

double a(int a, int b){

int c; double d;

c=a+b;

d=(double)a/c;

return d;}

the Injector finds the c and d variables and generates the function:

void _____injectedFunction_rand (int c, double d){}

where rand is a random string added to make the function name unique. Finally,
it injects a call in the original function and the function definition:

void _____injectedFunction_rand (int c, double d){}

double f(int a, int b){

int c; double d;

c=a+b;

d=(double)a/c;

_____injectedFunction_rand (c, d);

return d;}

This component also outputs a description file where it links the injected
functions to the function where they have been injected, to allow reconstructing
each invariant from the output Daikon will produce in a later step.

The output of the Injector is then processed with the standard compiler
to generate a binary that can be traced by Kvasir5. The compiler is run with
debugging options enabled (i.e., -g -gdwarf-2) and optimisation options dis-
abled (i.e., -O0). Then, the Invariants Extractor launches Kvasir to collect
execution traces and, subsequently, it calls Daikon to analyse the traces. The
Invariants Extractor produces two outcomes: the invariants detected by Daikon
that serve for monitoring purposes, which can be (optionally) manually filtered

5 Note that Kvasir works for x86 architectures, unfortunately, for other architectures
we experienced major limitations in using Daikon.

Remotely Assessing Integrity of Software Applications 75

by users, and the list of the variables to retrieve at runtime to verify the selected
invariants.

The second process also starts from the unprotected application sources. The
application, together with the imATT files, is compiled by standard compiler.
Starting from the obtained binary, the DWARF Parser analyses the DWARF
symbols and collects the information (location descriptions) needed to retrieve
variables values at run-time. Furthermore, it assigns a unique ID (a progressive
integer) to all the variables to monitor, and stores all these data in the DB
(variables formalisation). The parser also produces the VDS as a binary file.

Finally, an Invariant Interpreter uses the output of the Invariants Extrac-
tor and variables’ info to optimise the invariants representation for fast verifica-
tion and obtain the invariants formalisation then stored in the DB.

In the end, the application is compiled without debugging symbols together
with the imATT code (and the logic to communicate with the server). Then the
VDS is injected in the resulting binary, thus delivering the protected application.

4.1 Limitations of our IM Application

The toolchain and our approach has an important limitation: the instrumented
application contains the VDS (L13). Information about monitored variables is
sensitive for an attacker trying to compromise IM.

Another limitation is related to the compilation. Our tool chain may auto-
matically apply IM, but only after the compiler options for Daikon and its
trace collection helpers have been properly identified (L14). Since there is not
any standard way to build all kinds of C applications, these options can only
be found manually for each application to protect (e.g., by analysing makefiles
and scripts). Moreover, compiler optimizations need to be disabled to allow the
imATT to deterministically find the location of variables (L15). Currently, we
have no alternatives, even if we imagine that future advancements will allow the
reconstruction of the variables’ location also with optimization.

5 Use Cases

We protected with IM the following open source applications written in C: Lynx,
a command line web browser (http://lynx.browser.org), Bzip2, a command line
compression tool (http://www.bzip.org), and MOC (Music On Console), a com-
mand line music player (http://moc.daper.net).

We just report here the analysis of MOC, which is representative of the others
and highlights features and limitations of the IM. Table 1 reports the number
of files and the LOCs of each use case, together with the invariants (total and
distinct) discovered by Daikon with and without the injector enabled. Moreover,
it reports the invariants we have manually selected for the IM.

MOC is made of 91 C source files, 43478 LOC. MOC plays and pauses songs
that can also be organized in playlists reproduced in linear or random order. To
have a more realistic use case, we modified the original MOC code to have two

http://lynx.browser.org
http://www.bzip.org
http://moc.daper.net

76 A. Viticchié et al.

versions. We assumed that the original MOC application as a Premium version
and created a Free version that introduces limitations: it only allows playing
playlists in random order (shuffle mode always on), and it does not allow skipping
tracks or navigating the playlists (inspired by Spotify). The changes have been
implemented as if statements based on a preprocessor define, named PREMIUM:

if(PREMIUM){ /* perform original task */

}else{ /* write a message */ }

Both the unused branch of the statements and the PREMIUM define are removed
by the compiler and do not appear in the final binaries. Practically, we prevented
the execution of the next, previous and toggle shuffle commands at user interface
level, where the requested operations are forwarded to the proper player com-
ponent. Additionally, we modified the player; the branch of the function that
jumps to the next song in a playlist points to the random skip.

First, by analysing the call graph, we identified the functions to monitor,
starting from the modified ones6. We then protected with IM the Free version
with our toolchain, executed on an i7-4910MQ@2.90 GHz with 16 GB RAM. We
manually modified the original MOC makefile to adapt the Kvasir compilation
parameters (added -gdwarf-2, substituted -O2 with -O0). Daikon discovered
8553 invariants, most of them were redundant (e.g., identically repeated pre-
post-conditions). In the end, only 246 invariants were distinct, and most of them
related to global variables. In fact, MOC largely uses global variables whose
value do not change during the execution (thus not interesting for monitor-
ing purposes). Running Kvasir with the option --ignore-globals reduced the
traces collected, the collection time, and Daikon found only 24 invariants. In the
end, we manually selected 38 invariants to monitor. Then, we ran Kvasir and
Daikon with the Function Injector enabled. Unfortunately, Daikon was not able
to infer additional invariants. We were expecting a limited number of new invari-
ants, as MOC makes limited use of inner scope variables, but none at all was
surprising. We have carefully debugged our code to exclude our responsibility
then we investigated the reason for this result. We discovered that Kvasir cor-
rectly reports in the traces the call to the injected functions but Daikon is unable
to infer more invariants with the injector also when we reduced the threshold for
accepting invariants. We experienced the same issue with the other use cases.

Then we simulated an attacker wanting to use Premium features on a Free
app. By attaching a debugger to the running application, we were able to
test IM against two different attacks: (1) toggle the shuffle mode to enable
ordered playlist reproduction (by forcing the value of the shuffle variable in
the go_to_another_file function), and (2) enable the next function (by trapping
the call to go_to_another_file function and executing the (previously remove)
code to jump to the next track in the playlist).

We ran the attacks and then we analysed, for each one, 100 attestation
responses. The first attack is always detected by IM: the alteration of the shuffle

6 Namely, the functions are the main in main.c, go_to_another_file, audio_play,
and audio_queue_move in audio.c, go_file, play_it, cmd_next, menu_key, and
options_get_int in interface.c.

Remotely Assessing Integrity of Software Applications 77

Table 1. Statistical information on the use cases (∅ indicates that no invariants were
extracted after 24 h execution).

app Files-functions-LOC Invariants Monitored

Lynx 264-1890-193625 ∅ (585) 52

Bzip2 1-106-7010 5770 (193) 13

MOC 91-1215-43478 8553 (246) 38

value revealed the tampering (100% detection). On the other hand, the second
attack is never detected by IM (100% false negatives). Indeed, the attack is
mounted without altering variable values (L16).

By running our experiments, we discovered another limitation of IM. As said
before, the inferred invariants are pre- post-conditions associated to functions,
hence, they are only evaluable when the associated functions are executed, even
for invariants only based on global variables. By chance, we have selected appli-
cations that are in the idle state most of the time waiting for user input. During
the idle period, very few functions are being executed, often just the main (or
the library functions that play tracks), thus few variables are in the call stack.
Hence, the risk is that either IM evaluates almost always the same invariants,
or checks no invariants at all, if the idle functions are not monitored (L17).

6 Discussion

We have categorized the limitation identified in the previous sections in two
classes. Limitations that are Specific of invariants (labelled with S) are issues
intrinsic to the use of invariants. In this class we have preferred to explicitly mark
(with P) limitations related to the use of invariants for software protection. On
the other hand, technological limitations (T) depend on the current technological
infrastructure used to extract invariants and use them for remote monitoring
purposes (extraction, evaluation, implementation details). We have associated
every limitation to a severity level, in the high (h), medium (m), low (l) range,
to express how hard should be to overcome it. In this way, we have a compact
classification of limitations in the form [Li=(classes; severity)].

[L1 = (S;m)]. False positives can be reduced by increasing the traces used
to infer invariants. Theoretically, with full coverage no false positive should be
found, however, the number of likely invariants could decrease.

[L2 = (S;m)]. Limitations on the concurrent extraction of variables’ values
could be mitigated by considering data dependency information. Our guess is
that some invariants could be verified with values from different executions while
others will only be evaluable with values taken at the same time, regardless of
the technological improvements. Further research is needed in this field.

[L3 = (S;m)]. To overcome the limitation related to when Daikon collects
variables’ values (i.e., only pre- and post-conditions), invariants could be inferred
within functions’ body, e.g., by injecting code (as for the inner scope) or waiting

78 A. Viticchié et al.

for new tools to do it. However, the impact of this improvement needs an esti-
mation. It may only be beneficial for large functions when variables have more
complex lifecycles. Moreover, data dependency graph info should be considered.

[L4 = (S;m)]. Also lack of studies on inter-function invariants can be miti-
gated with further research that also considers data dependency. Indeed, evalu-
ating invariants with variables from different functions may improve the quality
of the verification (if values can be taken in different moments in time).

[L5 = (S;m)]. Limitations related to variables’ types considered by Daikon
(only global variables and inputs to functions, no data structures, no inner scope)
are important but not severe, as enough invariants can be found already. Waiting
for limitations to be eliminated in next versions of the extraction tools, our tool
already tried (but failed) to overcome the limitation on inner scope variables
and we are working to inject code to process structures.

[L6 = (S;m)]. Limitations related to the impossibility to infer invariants on
arrays are more difficult to overcome. Indeed, despite the technological evolu-
tion, arrays and matrices may contain data that are difficult to correlate and
may increase false positives. It some cases, it could be useful to instrument the
application to flatten multi-dimensional arrays. Further studies are in order.

[L7 = (S;m)]. Limitations on the inferred invariants types are not alarming.
The list of invariants types considered by Daikon is big enough and extensible.

[L8 = (S;m)]. Limitations related to the invariants’ research scope are also
not alarming, as they only depend on limits in the current trace extractor.

[L9 = (S;m)]. Since our imATT sends all the variables involved in invariants
it may be problematic for bandwidth consumption, further research is needed.
Attestation requests that explicitly ask for a set of variables have been considered
but discarded. Indeed, all variables but the global ones are only available in mem-
ory when a specific part of the code is executed. Thus, the imATT is legitimate
to answer that a variable is not in memory, and an attacker may legally bypass
the protection by always answering that no variables are available in memory.
Developing an imATT that only sends specific variables (e.g., only the ones that
changed since the last attestation) or a subset of the global variables requires
the solution of data dependency to allow sending values in different moments.
Moreover, a security analysis must establish such an IM could be circumvented.

[L10 = (S;m)]. Getting variables values with an external imATT requires
a process working at higher level of privileges (e.g., with VM introspection).
However, it looks feasible even if this introduces other security and privacy issues
(may it monitor the whole client?).

[L11 = (S;m)]. Also avoiding the use of the constructor option to load the
imATT should be easily overcome with limited engineering (but it’s not research).

[L12 = (S;m)]. The most serious issue and the most difficult to overcome,
is certainly related to false negatives, a fundamental limitation to use IM for
protection purposes. Establishing a clear inference among violation of invariants
and attacks that actually compromise application assets is a research issue of
primary importance. An empirical assessment with humans (being or playing
the role of hackers) can determine if successful attack may not be discovered

Remotely Assessing Integrity of Software Applications 79

with IM, as done with other techniques [32]. Additionally, a formal model of the
assets to protect (e.g., with control and data flow graphs), and their relations
to variables used by invariants can show what be monitored with IM. Such a
model may help determining the functions to monitor and the ones that require
different protections.

[L13 = (S;m)]. We did not find an effective solution to avoid the injection
of the VDS. Certainly, the VDS can be better hidden in the application binaries
(e.g., with obfuscation) but needs to be made available at the client.

[L14 = (S;m)]. The manual effort needed to compile for Kvasir and Daikon
is not a major issue and appears sustainable (but boring).

[L15 = (S;m)]. Analogously, overcoming the limitations on compiler opti-
mization both for Daikon and memory management, seems feasible with better
extractors or extensions of the existing ones, and with more modern standards.

[L16 = (S;m)]. Unfortunately, there is nothing to do when attacks can be
mounted by attaching a debugger without altering variables values.

[L17 = (S;m)]. The limitation on the availability of invariants to monitor
point seems possible to overcome with guidelines on the selection of the functions
to monitor (like “include the functions executed during the idle phases”).

We can conclude that, if the impact of false negatives on the effectiveness of
the protection can be actually precisely estimated, all the other issues and lim-
itations can be (completely or partly) addressed to make invariants monitoring
a protection technique that can work in practice, provided it is associated to
techniques that avoid attaching debuggers [1].

7 Conclusions and Future Work

This paper has presented the Invariants Monitoring protection technique, which
aims at remotely monitoring the integrity of a running application by checking
likely invariants. We have analysed the literature on invariants and presented the
foundations of the invariants monitoring technique, our implementation of IM,
and the tool chain we have used to automatically protect an arbitrary applica-
tion. We have also analysed and categorised all the found limitations to identify
the research and technology effort needed to overcome them. Our analysis con-
firmed that IM is a promising technique, as several practical and technological
limitations can be overcome, for instance, by companies wanting to commer-
cialise IM. However, our work identified the need for further studies to decree if
invariants monitoring can be practically used to protect software applications,
the most important issues being related to false negatives. From the theoret-
ical point of view, a formalization of IM may allow better understanding and
improvement of this protection technique.

As future work, we will improve IM to reduce the impact of its security
weaknesses. We planned to empirically evaluate IM by means of experiments
with participants trying to attack and circumvent IM. We expect to draw more
solid conclusions on the benefits and limitations of IM, especially on the relations
among assets to protect, invariants, and attacks to prevent. It could be worth

80 A. Viticchié et al.

investigating the use of data dependency and data flow analysis techniques to
improve the semantic of the inferred statements. Moreover, IM must evolve to
integrate with techniques aiming at modifying and reconfiguring applications at
runtime (e.g., code mobility). Combining these techniques could be a valuable
direction for improvements and practical application of IM.

References

1. Abrath, B., Coppens, B., Volckaert, S., Wijnant, J., De Sutter, B.: Tightly-coupled
self-debugging software protection. In: Proceedings of the 6th Workshop on Soft-
ware Security, Protection, and Reverse Engineering, SSPREW, pp. 7–10. ACM
(2016)

2. Ackermann, C., Cleaveland, R., Huang, S., Ray, A., Shelton, C., Latronico, E.:
Automatic requirement extraction from test cases. In: Barringer, H., Falcone, Y.,
Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann,
N. (eds.) RV 2010. LNCS, vol. 6418, pp. 1–15. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-16612-9 1

3. Armknecht, F., Sadeghi, A.-R., Schulz, S., Wachsmann, C.: A security framework
for the analysis and design of software attestation. In: Proceedings of the 2013
ACM SIGSAC Conference on Computer & communications security, pp. 1–12.
ACM (2013)

4. Baliga, A., Ganapathy, V., Iftode, L.: Detecting kernel-level rootkits using data
structure invariants. IEEE Trans. Dependable Secure Comput. 8(5), 670–684
(2011)

5. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
ACM Sigplan Notices, vol. 42, pp. 300–309. ACM (2007)

6. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.,
Monniaux, D., Rival, X.: A static analyzer for large safety-critical software. In:
ACM SIGPLAN Notices, vol. 38, pp. 196–207. ACM (2003)

7. Boshernitsan, M., Doong, R., Savoia, A.: From daikon to agitator: lessons and
challenges in building a commercial tool for developer testing. In: Proceedings of
the 2006 International Symposium on Software Testing and Analysis, pp. 169–180.
ACM (2006)

8. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03359-9 2

9. Committee, T., et al.: Trusted computing platform alliance (TCPA) main specifi-
cation v1. Technical report, 1b TCPA Alliance (2002)

10. Cristian, F.: Exception handling and software fault tolerance. IEEE Trans. Com-
put. 31(6), 531–540 (1982)

11. Csallner, C., Smaragdakis, Y., Xie, T.: DSD-Crasher: a hybrid analysis tool for
bug finding. ACM Trans. Softw. Eng. Methodol. (TOSEM) 17(2), 8 (2008)

12. Csallner, C., Tillmann, N., Smaragdakis, Y.: DySy. In: 30th ACM/IEEE Interna-
tional Conference on Software Engineering, ICSE 2008, pp. 281–290. IEEE (2008)

13. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. IEEE Trans. Softw. Eng. 30(12), 859–872 (2004)

https://doi.org/10.1007/978-3-642-16612-9_1
https://doi.org/10.1007/978-3-642-16612-9_1
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-03359-9_2

Remotely Assessing Integrity of Software Applications 81

14. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Trans. Softw. Eng.
27(2), 99–123 (2001)

15. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The daikon system for dynamic detection of likely invariants. Sci. Com-
put. Program. 69(1), 35–45 (2007)

16. Gries, D.: The Science of Programming. Springer, New York (1981). https://doi.
org/10.1007/978-1-4612-5983-1

17. Guo, P.J., Perkins, J.H., McCamant, S., Ernst, M.D.: Dynamic inference of abstract
types. In: Proceedings of the 2006 International Symposium on Software Testing
and Analysis, pp. 255–265. ACM (2006)

18. Hangal, S., Chandra, N., Narayanan, S., Chakravorty, S.: IODINE: a tool to auto-
matically infer dynamic invariants for hardware designs. In: Proceedings of the
42nd Annual Design Automation Conference, pp. 775–778. ACM (2005)

19. Hangal, S., Lam, M.S.: Tracking down software bugs using automatic anomaly
detection. In: Proceedings of the 24th International Conference on Software Engi-
neering, pp. 291–301. ACM (2002)

20. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

21. Jazequel, J.-M., Meyer, B.: Design by contract: the lessons of Ariane. Computer
30(1), 129–130 (1997)

22. Kil, C., Sezer, E.C., Azab, A.M., Ning, P., Zhang, X.: Remote attestation to
dynamic system properties: towards providing complete system integrity evidence.
In: Proceedings of the IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, DSN 2009, pp. 115–124. IEEE (2009)

23. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al.: seL4: formal ver-
ification of an OS kernel. In: Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, pp. 207–220. ACM (2009)

24. Lemieux, C., Park, D., Beschastnikh, I.: General LTL specification mining (t).
In: Proceedings of the 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 81–92. IEEE (2015)

25. Lorenzoli, D., Mariani, L., Pezze, M.: Towards self-protecting enterprise applica-
tions. In: The 18th IEEE International Symposium on Software Reliability, ISSRE
2007, pp. 39–48. IEEE (2007)

26. Perkins, J.H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M.,
Pacheco, C., Sherwood, F., Sidiroglou, S., Sullivan, G., et al.: Automatically patch-
ing errors in deployed software. In: Proceedings of the 22nd ACM SIGOPS Sym-
posium on Operating Systems Principles, pp. 87–102. ACM (2009)

27. Sahoo, S.K., Criswell, J., Geigle, C., Adve, V.: Using likely invariants for automated
software fault localization. In: ACM SIGARCH Computer Architecture News, vol.
41, pp. 139–152. ACM (2013)

28. Sailer, R., Zhang, X., Jaeger, T., Van Doorn, L.: Design and implementation of a
TCG-based integrity measurement architecture. In: USENIX Security Symposium,
vol. 13, pp. 223–238 (2004)

29. Schiller, T.W., Ernst, M.D.: Reducing the barriers to writing verified specifications.
ACM SIGPLAN Not. 47(10), 95–112 (2012)

30. Schuler, D., Dallmeier, V., Zeller, A.: Efficient mutation testing by checking invari-
ant violations. In Proceedings of the 18th International Symposium on Software
Testing and Analysis, pp. 69–80. ACM (2009)

https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1007/978-1-4612-5983-1

82 A. Viticchié et al.

31. Tan, G., Chen, Y., Jakubowski, M.H.: Delayed and controlled failures in tamper-
resistant software. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P.
(eds.) IH 2006. LNCS, vol. 4437, pp. 216–231. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-74124-4 15

32. Viticchié, A., Regano, L., Torchiano, M., Basile, C., Ceccato, M., Tonella, P., Tiella,
R.: Assessment of source code obfuscation techniques. In: 2016 IEEE 16th Interna-
tional Working Conference on Source Code Analysis and Manipulation (SCAM),
pp. 11–20. IEEE (2016)

33. Wei, J., Pu, C., Rozas, C.V., Rajan, A., Zhu, F.: Modeling the runtime integrity
of cloud servers: a scoped invariant perspective. In: Pearson, S., Yee, G. (eds.)
Privacy and Security for Cloud Computing. CCN, pp. 211–232. Springer, London
(2013). https://doi.org/10.1007/978-1-4471-4189-1 6

34. Xie, T., Notkin, D.: Tool-assisted unit test selection based on operational viola-
tions. In Proceedings of the 18th IEEE International Conference on Automated
Software Engineering, pp. 40–48. IEEE (2003)

https://doi.org/10.1007/978-3-540-74124-4_15
https://doi.org/10.1007/978-3-540-74124-4_15
https://doi.org/10.1007/978-1-4471-4189-1_6

Using Data Integration to Help Design
More Secure Applications

Sébastien Salva(B) and Loukmen Regainia

LIMOS CNRS UMR 6158, Clermont Auvergne University,
Clermont-Ferrand, France

{sebastien.salva,loukmen.regainia}@uca.fr

Abstract. Security patterns are reusable solutions, which enable the
design of maintainable systems or applications that have to meet security
requirements. The generic nature of security patterns and their growing
number make their choices difficult, even for experts in software design.
We propose to contribute in this issue by presenting a methodology of
security pattern classification based upon data integration. The classi-
fication exhibits relationships among 215 software attacks, 66 security
principles and 26 security patterns. It expresses pattern combinations,
which are countermeasures to a given attack. This classification is semi-
automatically inferred by means of a data-store integrating disparate
publicly available security data. Besides pattern classification, we show
that the data-store can be used to generate Attack Defence Trees. In our
context, these illustrate, for a given attack, its sub-attacks, steps, tech-
niques and the related defences given under the form of security pattern
combinations. Such trees make the pattern classification more readable
even for beginners in security patterns.

Keywords: Security patterns · Classification · Attack
Attack defence tree

1 Introduction

In the domain of software security, many documents (knowledge bases, papers,
etc.) are now publicly available to help developers design and code more secure
applications. For instance, the notion of security patterns, which is one of the
topics of this paper, aims at providing guidelines to help in design secure systems
[17]. Schumacher postulates that a security pattern intuitively relates counter-
measures to threats and attacks in a given context [11]. As developers cannot be
expert in all security fields, this plethora of (often complex) documents exposes
them to the difficult choice of the most suitable security solutions for a given
context. From these resources, several works recently proposed to organise them
in order to help developers in their understanding and usage. Security patterns
were arranged into different categories, e.g., by security principles [3,18], by
application domains [4] (software, network, user, etc.), by vulnerabilities [2] or
by attacks [2,15].
c© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 83–98, 2018.
https://doi.org/10.1007/978-3-319-76687-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_6&domain=pdf

84 S. Salva and L. Regainia

Despite the benefits brought by these classifications, they all are confronted to
several limitations, which prevent their adoptions in the industry. Firstly, these
classifications were manually devised, by directly comparing textual descriptions
of different security concepts (patterns, principles, vulnerabilities, attacks, etc.).
As these descriptions are generic and have miscellaneous abstraction levels, the
categorisation of a pattern can be performed only when there is an evident
relation between it and another security property. In addition, as these classifi-
cations are not deterministic (no strict definition of the classification process [3]),
it often becomes delicate to upgrade them. Yskout et al. also reported that the
security pattern adoption is limited possibly due to a sub-optimal quality of the
documentation [19]. We indeed believe that many security pattern classifications
lack of Navigability and Comprehensibility, which are quality criteria, proposed
in [3] and respectively related to: the ability to direct a software designer among
collaborative and related patterns; the ease to understand patterns by both a
novice and expert developer.

From these observations, we propose to contribute to the security pattern
classification by proposing a strict and precise classification process based on
the concept of data integration. To make this classification navigable and com-
prehensible, we propose to automatically infer attack-defence trees (ADTrees
[7]), which illustrate the security pattern combinations that can be used to pre-
vent an attack on an application. More precisely, the contributions of this paper
can be summarised by the following points:

– we propose a data integration methodology, built on six steps. These extract
data from various Web and publicly accessible sources and store them into
a data-store composed of relationships among attacks, attack steps, security
principles and security patterns;

– we automatically derive a security pattern classification from the data-store,
which can be updated after every data modification. For an attack, the clas-
sification expresses the security pattern combinations that can be used in
the software design stage to later prevent the attack from being successfully
carried out on the application;

– we generate Attack-Defence Trees (ADTrees [7]), which aim at supplement-
ing the classification with illustrations depicting, for a given attack, its (more
concrete) sub-attacks, steps and techniques along with defences preventing
the attacks expressed here with security patterns combined with logic opera-
tions. Such ADTrees aim at improving the navigability and understanding of
the previous classification.

We have generated a data-store and a security pattern classification spe-
cialised to the Web application domain, which is composed of 215 attacks, 26
security patterns and 66 security principles covering various security aspects.
This classification and the ADTree generator are available here1.

1 http://regainia.com/research/database.html.

http://regainia.com/research/database.html

Using Data Integration to Help Design More Secure Applications 85

The remainder of the paper is organised as follows: Sect. 2 presents some
related work and the motivations of our approach. The method, which aims at
integrating data to build a data-store, is given in Sect. 3. Section 4 shows how
we automatically extract the pattern classification and ADTrees from the data-
store. We finally discuss on the resulting classification and conclude in Sects. 5
and 6.

2 Related Work

Several classifications were proposed to ease the pattern choice in the catalogues
available in the literature, e.g., [1,19], totalling around 180 patterns. The clas-
sifications proposed in [2,12,13,15] focus on the attacker side. This choice of
categorisation seems quite interesting and meaningful as attacks are more and
more known and examined by designers. Wiesauer et al. initially presented a
short taxonomy of security design patterns manually made from links between
attack textual descriptions and security pattern purposes [15]. Tondel et al. pre-
sented in [12] the combination of three formalisms of security modelling (misuse
cases, attack trees and security activity graphs) in order to give a more com-
plete security modelling approach. In particular, they link some activities of
attack trees with attacks; they also connect some activities of SAGs (security
activity graphs) with security patterns. The relationships among security activ-
ities and security patterns are manually extracted from documentation and are
not explained. Alvi et al. presented a classification scheme for security patterns
putting together attacks and security patterns [2]. They analysed some security
pattern templates available in the literature and proposed a new text section
for completing the CAPEC classification [9]. After inspection, we observed that
this section is seldom available, which limits its interest. Finally, Uzunov et al.
proposed a taxonomy of security threats and patterns specialised for distributed
systems [13]. This classification includes a library of threats and their relation-
ships with security patterns.

Some papers reviewed these classifications and established a comparative
study to point out their positive and negative aspects. Alvi et al. outlined 24
pattern classifications, including security pattern classifications, and established
a comparative study to point out their positive and negative aspects [3]. They
chose 29 classification attributes (purpose, abstraction levels, life-cycle, etc.) and
compared the classifications against a set of desirable quality criteria (Navigabil-
ity, Comprehensibility, Usefulness, etc.). They observed that several classifica-
tions were built in reference to a unique classification attribute, which appears
to be insufficient. They indeed concluded that the use of multiple attributes
enables the pattern selection in a faster and more accurate manner. Bunke et
al. presented a systematic literature review of the papers dealing with security
patterns between 1997 and 2012. In addition, they listed a set of classification cri-
teria and compared design pattern and security pattern classifications [4]. They
finally proposed a classification based upon the application domains of patterns
(software, network, user, etc.).

86 S. Salva and L. Regainia

We observed that the main problem of the above classifications lies in the
fact that these all are manually conceived by directly finding relations in tex-
tual documents. Justifying these classifications or updating them is difficult. We
also observed that they often lack of either Navigability or Comprehensibility or
both. Relations among patterns are often not given, yet we noticed that some
patterns are compatible together and that others are conflicting. As a conse-
quence, a designer may be still confused about the pattern choice. As in [2],
we propose a pattern classification expressing which patterns can be used to
counter an attack step. Our classification proposes a more precise and accurate
mapping between patterns and attacks. It is more accurate in the sense that we
translate the meaning of the patterns and attacks into smaller properties. We
establish relations among these properties with respect to security principles,
which identify the meaning of these relations. In addition, the classification is
completed with inter-pattern relationships. Our data integration process also
offers the advantage to justify the pattern classification and reduces the efforts
required to update it. Finally, the generation of ADTrees makes the classification
precise and readable even for novice in patterns or security.

3 Data Integration

We present below the architecture of the data-store we devised and an example of
data integration for attacks and security patterns related to the Web application
domain. Beforehand, we recall some basic fact about security patterns.

3.1 Security Patterns

Security patterns provide guidelines for secure system design and evaluation
[17]. They often are presented textually or with schema (UML diagrams) and
are characterised by a set of structural and behavioural properties.

Several security pattern catalogues are available on the Internet and litera-
ture, e.g., [1,19], themselves extracted from other papers. The quality of a pat-
tern and its classification can be established by means of its strong points, which
are properties expressing pattern key design features. Besides, a security pattern
may have different relationships with other patterns. These new properties may
noticeably help combine patterns and not to devise unsound composite patterns.
Yskout et al. proposed a listing of pattern relations with the following annota-
tions [18]: “depend”, “benefit”, “impair” (the functioning of the pattern can be
obstructed by the implementation of a second one), “alternative”, “conflict”.

Application Firewall is a security pattern example whose primary objective
is to filter out undesired messages given or produced by an application, by means
of access control policies. Figure 1 depicts the UML class diagram of this security
pattern. This schema shows that it forces to structure an application in such a
way that the filtering logic is centralised and decoupled from the functional logic
of the application. This also corresponds to a strong point of the pattern.

Using Data Integration to Help Design More Secure Applications 87

Fig. 1. Security pattern “Application Firewall”

3.2 Data-Store Architecture Presentation

The classification purpose is to ease the design of more secure applications. To
do so, we propose to arrange security patterns in such a way that the result-
ing classification provides the set of patterns that can be used as countermea-
sures against a given attack (in reference to the security pattern definition of
Schumacher [11]) and relations among patterns.

To infer a precise classification, we chose to anatomize attacks and security
patterns into more detailed properties that can be interconnected in an explicit
manner. After reviewing the literature and some attack bases, we observed that
attacks are documented with more concrete attacks, which can be themselves
segmented into steps; These steps can be performed with techniques and can
be prevented with countermeasures. We did not found smaller properties in the
literature. On the other hand, security patterns can be characterised with some
sub-properties, e.g., forces, consequences or strong points. A strong point is a
pattern key feature that is extractable from its forces or consequences.

In both sides, countermeasures and strong points refer to the notion of attack
prevention. But directly finding relations among them is still an obscure task as
these properties have different purposes and abstraction levels. To solve this
issue, we propose the option of gathering countermeasures into clusters (groups)
to reach roughly the same abstraction level as strong points. Indeed, counter-
measures are often much more detailed. Then, to link clusters and strong points,
we chose to focus on security principles as mediators. We indeed observed that
security patterns and strong points are classifiable w.r.t. security principles like
most of the security techniques. Since countermeasures aim at preventing attack
steps, it sounds natural that countermeasure clusters and strong points belong
at least to one principle.

88 S. Salva and L. Regainia

All the security properties considered here and their relations are structured
with the meta-model illustrated in Fig. 2 as explained before. The entities refer
to security properties, the relations formally express associations among them.
This meta-model finally structures our data-store.

Fig. 2. The proposed mapping metamodel

3.3 Data Integration and Consolidation Steps

We present, in this section, the different steps for integrating security properties
into the data-store. The data integration is divided into six steps, which aim at
collecting security properties and establishing the different relations presented
in Fig. 2. Steps 1 to 5 give birth to databases, and Step 6 consolidates them so
that every entity of the meta-model is related to the other ones as expected.
These steps offer the strong advantage to semi-automatically achieve a data-
store, which can be updated.

We implemented these steps mostly by means of Talend,2 an ELT (Extrac-
tion, Load, Transform) tool that allows an automated processing of data inde-
pendently from the type of its source or destination. We applied these steps
on attacks, patterns and principles related to the Web application context. We
provide some quantitative results related to this context with each step. But,
these can also be applied to other kinds of systems as long as documentation
is available. We integrate data coming from different sources: the CAPEC base
[9], several papers dealing with security principles [8,10,14] and the pattern cat-
alogue given in [19].

Step 1: Extraction of attacks, steps, techniques and countermeasures
We chose to focus on the CAPEC base to extract information about security
attacks. The Common Attack Pattern Enumeration and Classification (CAPEC)
is an open database offering a catalogue of attacks in a comprehensive schema.
Attack patterns are descriptions of common approaches that attackers take to
attack software or systems. An attack pattern, which we refer here as documen-
tation (to avoid the confusion with security pattern), consists of several textual
2 https://talend.com/.

https://talend.com/

Using Data Integration to Help Design More Secure Applications 89

sections. For instance, the section “Related attack patterns” shows interdepen-
dence among attacks, having different levels of abstractions.

We extracted attacks of the CAPEC base and organised them into a single
tree, which describes a hierarchy of attacks from the most abstract to the most
concrete ones so that, we can get all the sub-attacks of a given attack. To reach
that purpose, we rely on the relationships among attack descriptions found in
the CAPEC section “Related Attack Patterns”. By scrutinising all the CAPEC
documents, it becomes possible to develop a hierarchical tree whose root node
is unlabelled and connected to the attacks of the type “Category”. These nodes
may also be parent of attacks that belong to the type “Meta Attack pattern”
and so on. The leaves are the most concrete attacks of the type “Detailed attack
pattern”. Then, for every attack, we collected from the CAPEC base (section
“Attack Execution Flow”) its steps, which may be composed of more concrete
sub-steps, and for each step, the corresponding techniques and security controls,
which correspond to countermeasures.

This data extraction is automatically performed with a tool, which yields
a database DB1. From the CAPEC base Version 2.8, we extracted these ele-
ments for the Web application context and collected 215 attacks, 209 steps,
448 techniques and 217 countermeasures, knowing that attacks can share steps,
techniques, etc.

Step 2: Countermeasure hierarchical clustering
The countermeasure number grows quickly while reading the attacks of the
CAPEC base. Many of them have a close meaning though, which can be
explained by the number of different contributors that added them. These coun-
termeasures can be hence grouped into families to be later associated with a
security principle.

We semi-automated this process by applying a hierarchical clustering tech-
nique of documents. We firstly used the tool KHcoder3, which is a reputed tool
performing quantitative content analysis or text mining. In short, we applied the
tool as follows:

1. The Stanford (Part-of-speech) POS tagger is called to sort the keywords found
in the countermeasure descriptions (log, input, credentials, etc.) by their fre-
quencies and types (noun, verb, adverb, etc.);

2. From the frequencies, weights are computed and scaled with the Jaccard coef-
ficient (the dissimilarity between sample sets) to measure a distance among
countermeasures. The distance between two security controls is minimised
when they have more common keywords.

Afterwards, we used the method Ward to automatically yield a hierarchy of
countermeasure clusters [16]. We chose Ward because it offers the possibility to
merge groups, piece by piece, instead of directly providing big clusters. In our
case, this second solution would tend to build big clusters covering too much

3 http://khc.sourceforge.net/en/.

http://khc.sourceforge.net/en/

90 S. Salva and L. Regainia

security aspects, which would be later associated with too much security princi-
ples. Finally, the level to consider in the cluster organisation (and implicitly the
number of clusters to keep) is manually chosen, as the choice of the number of
clusters is always supervised with Ward. To get a coherent clustering, we chose
the most suitable level after some iterations by checking whether the counter-
measures obtained in the clusters refer to the same security principle or set of
principles.

The resulting clusters are stored into the database DB2. The 217 security
controls collected by the previous step, are aggregated into 21 clusters.

Step 3: Security patterns and strong points integration
We manually collected security patterns and their strong points from the cat-
alogue given in [19]. Strong points often have to be deduced in the sections
referring to the forces and consequences of the patterns. Then, we manually
established two relations among patterns and strong points:

1. The first one is a many-to-many relation between security patterns and strong
points, each pattern being characterised by a set of strong points that can
be shared with other patterns. For example, the patterns “Authorization
enforcer” and “Container managed security” share the strong point “Pro-
viding the application with authorization mechanism”;

2. The second relation is related to the annotations “depend”, “benefit”,
“impair” or “alternative” defined among patterns [18]. With P a set of pat-
terns, this relation is defined as a mapping from P 2 to the annotation set
“depend”, “benefit”, “impair”, “alternative”, which provides for a pair of
patterns (p1, p2) an annotation about the relationship between p1 and p2.

These data and relations, which provide connections among security patterns
and between patterns and strong points, are encoded into the database DB3.
For the domain of Web applications, we gathered 26 security patterns and 36
strong points.

Step 4: Security principle integration
We chose to organise security principles into a hierarchy, from the most abstract
to the most concrete principles. We collected 66 security principles related to
Web applications found in [8,10,14] and manually established dependencies in
relation to the nature of each security principle, often described with text. The
current hierarchy, which has four levels, is certainly not exhaustive. But it covers
all the security patterns given in [19]. This security principle hierarchy is stored
in the database DB4.

This principle organisation gives a complete hierarchical view on security
mechanisms, which are in the meantime required to prevent an attack step and
which are provided by strong points. As principles are hierarchically organised
from the most abstract to the most concrete ones, we can find relations between
strong points and countermeasure clusters even if they do not exactly have the
same level of abstraction.

Using Data Integration to Help Design More Secure Applications 91

Step 5: Mapping between strong points, security principles and coun-
termeasure clusters
In this step, we established the many-to-many relation between strong points
and security principles. This step was manually done because strong points and
principles are mostly presented in an abstract manner. During this step, we
observed that the abstraction level of the strong points better fit with the most
concrete principles, which are the leaves of our hierarchical organisation.

In the same way, we established the many-to-many relation between counter-
measure clusters and security principles. In Step 3, clusters include countermea-
sures sharing the same security aspects, e.g., Input validation, Authentication
or Authorisation. Once these aspects are deduced, linking clusters and security
principles becomes straightforward.

These relations are materialised with the database DB5, which combines 21
clusters, 36 strong points and 66 principles.

Step 6: Data consolidation
This automatic step integrates the previous databases DB1 to DB5 into a single
one. On the one hand, DB1, DB2 and DB5 store the relations among attacks,
steps, countermeasures and principles. On the other hand, DB3 and DB5 store
the relations among security patterns, strong points and principles. It is now
manifest that the security principle hierarchy becomes the central point that
helps map attacks onto security patterns.

This step is automatically performed by the tool Talend by means of the
meta-model given in Fig. 2. The step produces the final database DBf .

4 Security Pattern Classification and ADTree Generation

4.1 Security Pattern Classification

The database DBf holds all the data and relations among attacks, steps, secu-
rity principles and security patterns allowing to extract a security pattern clas-
sification. We have chosen to catalogue the combinations of patterns that are
countermeasures against an attack. Given an attack Att, the following data and
relations are hence extracted from DBf :

– the information about Att (name, identifier, description);
– the tree T (Att), whose root is Att, if Att is not a leaf of the attack tree derived

in Step 1. For every attack found in T (Att), we also extract its attack steps
and techniques;

– for each step st, the complete hierarchy of security principles Sp(st) by means
of the successive relations established among st, countermeasure clusters and
security principles. Sp(st) represents the complete hierarchy of security prin-
ciples related to a step, i.e., if a principle sp associated to the step st is not
a leaf of our hierarchical organisation, then we also extract all the principle
sub-tree whose root is sp;

92 S. Salva and L. Regainia

– for each principle sp in Sp(st), the set of security patterns Psp, the set of
patterns P2sp not in Psp that have relations with any pattern of Psp, and the
nature of these relations defined for couples of patterns by the annotations in
“depend”, “benefit”, “impair”, “alternative”, “conflict”.

Fig. 3. Data extraction for the attack CAPEC-34

Figure 3 depicts an extraction example for the CAPEC attack 34 “HTTP
Response Splitting”. The first column gives the ID of the chosen attack. This
attack belongs to the category “Detailed” of the CAPEC, therefore it has no
sub attacks (otherwise, the next columns would list them too). Columns 2 to 4
index the attack steps and techniques. Due to lack of room, we only illustrate
the step “Experiment” here. The security patterns allowing to prevent the step
are given in Column 5. These four patterns have to be contextualised in the
application model and implemented to prevent the attack. The last two columns
add the security patterns being associated with the patterns of Column 5 and
their relations. For instance, Fig. 3 shows that “Application Firewall” and “Input
guard” are alternative patterns, hence using one of them is enough (although
using both is not incorrect).

The classification extraction is achieved once all the attacks stored in the
database DBf are covered. This extraction is automatically performed with a
tool based upon Talend. This tool can be re-executed every time the data-store
is updated. The classification remains up-to-date accordingly.

At this stage, we think that Comprehensibility, which refers to the ability to
use the classification by experts or novices, is not yet totally satisfied. Indeed,

Using Data Integration to Help Design More Secure Applications 93

the classification is given under a tabular form only, which does not appear to
be the most user-friendly way to represent a classification. This is why we also
propose to generate ADTrees.

4.2 Attack-Defence Tree Generation

Attack Defence Trees “are graphical representations of possible measures an
attacker might take in order to attack a system and the defences that a defender
can employ to protect the system” [7]. We recall that ADTrees have two different
kinds of nodes: attack nodes (red circles) and defence nodes (green squares).
A node can be refined with child nodes using conjunctive or disjunctive refine-
ments. The former is recognisable by edges going from a node to its children.
The latter is graphically distinguishable by connecting these edges with an arc.
Here, we extend these two refinements with the sequential conjunctive refine-
ment of attack nodes, defined by the same authors in [5]. This operator expresses
the execution order of child attack nodes. Graphically, a sequential conjunctive
refinement is depicted by connecting the edges going from a node to its children
with an arrow.

Keeping in mind that we use ADTrees to help developers design more secure
applications, we propose to generate them with the general form illustrated in
Fig. 4(a). This ADTree points out how an attack is sequenced with steps and
how to prevent them with countermeasures given under the form of security
pattern combinations. An ADTree root node is labelled by an attack. If the
attack is linked to sub-attacks, the root node is also connected to child attack
nodes expressing these sub-attacks. When an attack is defined with steps and
techniques, its corresponding node has child nodes expressing them. A node
labelled by an attack step has a child defence node, which is the root of a
defence sub-tree expressing combinations of security patterns.

We automatically generate ADTrees from the data-store as follows:

1. Every CAPEC attack found in DBf has its own ADTree whose root node is
labelled by its identifier. This root node is linked to other attack nodes with
a disjunctive refinement if the attack has sub-attacks. This step is repeated
for every sub-attack;

2. For each attack Att of the preceding tree, we collect its sequence of steps.
The node labelled by Att is refined with a sequential conjunction of attack
nodes, one for each step. We repeat this process if a step is itself composed of
steps. In the same way, for each step St, the related techniques are extracted
from the classification and are associated to the node labelled by St with a
disjunctive refinement;

3. For each step St, we extract the set P of security patterns that are counter-
measures of St. Given a couple of patterns (p1, p2) ∈ P , we illustrate these
relations with new nodes and logic operations as follows. If we have:

– (p1 R p2) with R a relation in {depend, benefit}, we build three defence
nodes, one parent node labelled by p1 R p2 and two nodes labelled by p1,
p2 combined with this parent defence node by a conjunctive refinement;

94 S. Salva and L. Regainia

(a) ADTree general form (b) Conflicting pattern repre-
sentation with ADTree

Fig. 4. General forms of the ADTrees generated by our approach. (Color figure online)

– (p1 alternative p2), we build three defence nodes, one parent node
labelled by p1 alternative p2 and two nodes labelled by p1, p2, which
are linked by a disjunctive refinement to the parent node;

– (p1 R p2) with R a relation in {impair, conflict}. In this particular case,
we would want to use the xor operation. Unfortunately, the latter is not
available with the ADTree model. Therefore, we replace the operator by
the classical formula (A xor B) −→ ((A or B) and not (A and B)). The
not operation is here replaced by an attack node meaning that two con-
flicting security patterns used together might constitute a kind of attack.
The node “Potential attack” expresses a kind of negation. The corre-
sponding sub-tree is depicted in Fig. 4(b);

– p1 having no relation with any pattern p2 in P , we add one parent defence
node labelled with p1.

The parent defence nodes, resulting from the above steps, are combined to
a defence node labelled by “Pattern Composition” with a conjunctive refine-
ment. This last defence node is linked to the attack node labelled by St.

We implemented the ADTree generation with a tool, which takes as input an
attack identifier and yields an ADTree, which is stored into an XML file. These
files can be used with the editing tool given in [6]. As a consequence, ADTrees
can be modified or updated as the developer wishes.

Figure 5 illustrates the ADTree obtained from the attack CAPEC 34. The
root of the tree is the main goal of the attacker. Its second and third levels
relate to the attack steps. These nodes are sequential conjunctive refinements of
the root node. For instance, the step Exploit is achieved if both steps 3.1 and
3.2 are successfully executed in the right order (from left to right). An attack

Using Data Integration to Help Design More Secure Applications 95

Fig. 5. ADTree of the Attack CAPEC-34

step has a disjunctive refinement of attack nodes labelled by techniques. The
step is achieved if one of the attack techniques is applied with success. Defence
nodes (square nodes) illustrate security pattern combinations. For instance, the
step “1.1 Spider” refers to the Web application exploration through Graphical
user interfaces in order to get all the URLs of the application. This step can be
prevented by designing the application with both patterns “Audit interceptor”
and “Secure logger”. “Audit interceptor” can be used to detect the application
crawling and to warn an administrator. The audit logs are secured by means
of “Secure logger”, which guarantees that the audit logs cannot be accessed or
altered by unauthorised users. This example illustrates that a designer can easily
follow the concrete materialisations of an attack in an ADTree and can directly
choose security patterns.

5 Classification Discussion

Our security pattern classification associates attacks, security principles and
security patterns in order to help developers in the choice of the most suitable
pattern combinations to design and code secure applications. The current classifi-
cation is founded on 215 CAPEC attacks, 26 security patterns and 66 principles
related to the Web application context. It enables multi-attribute based deci-
sions insofar as patterns can be selected according to the provided inter-pattern
relations and/or according to the attack steps.

96 S. Salva and L. Regainia

Fig. 6. Percentage of fixed attacks per pattern

Alvi et al. proposed in [3] some criteria for measuring classification quality.
Among these criteria, we have noted that our classification meets:

– Navigability: our classification, accompanied by ADTrees, satisfies this cri-
terion as it exhibits the hierarchical refinements of an attack and, for every
attack step, the combinations of patterns, which should be integrated in the
application model. In addition, the classification provides the relationships
among security patterns, which help choose the most appropriate pattern
combination;

– Determinism: the classification is clearly defined by means of the method
steps. All these steps justify the soundness of the classification;

– Unambiguity/Comprehensibility: patterns are classified w.r.t. defined cate-
gories, i.e., attacks, steps, and security principles. This organisation, which
is illustrated by means of ADTrees, makes our classification readable and
comprehensible even for novices in security patterns;

– Usefulness: we believe the classification can be used in practice since it is
based upon a known security pattern catalogue [19] and upon the CAPEC
base, which is more and more employed in the industry;

– Repeatability: the classification is generic and can be reused. Furthermore,
the data-store and the classification can be updated and generated semi-
automatically.

Besides, a variety of statistical information can be automatically extracted
from the data-store. For instance, Fig. 6 depicts a pie chart, which shows the

Using Data Integration to Help Design More Secure Applications 97

ratios of attacks that can be partially prevented per security pattern. These
kinds of charts, which are automatically generated from the data-store, seem
quite useful to guide designers towards security analysis, good practices and
education. For instance, with the above chart, a designer can observe that 2
patterns seem to emerge for partly countering a large part of the 215 attacks
covered by the classification, namely “Input Guard” and “Application firewall”.
It is manifest that if we complete the data-store with more data, e.g., patterns
or attack risks, such charts could be more refined and adapted to the developer
needs.

Our classification and data integration process present some limitations,
which could lead to future works. Firstly, we did not consider the notion of
attack combination. Such a combination could be seen as several attacks or as
one particular attack. Furthermore, the classification is not yet exhaustive: it
includes 215 attacks out of 569 (for any kind of application) and 26 security
patterns out of around 180. We also do not take into consideration the ADTree
size. This is a strong limitation since large trees are usually unreadable, which
contradicts the classification purposes. The ADTree reduction could be a first
solution on this problem. But, reducing such trees remains a hard problem as
the node meaning must be taken into account in the node aggregating process.

6 Conclusion

We have proposed a security pattern classification method associating attacks,
security principles and security patterns in order to help designers understand
the inner workings of attacks and choose the most suitable pattern combinations
to design secure applications. This method integrates data obtained from various
sources and subdivides attacks and patterns into detailed properties, which are
associated in accordance with security principles. The pattern classification is
then automatically generated from the data-store. The data-store and the clas-
sification can be upgraded by following some steps only. We also proposed to
portray this classification by means of ADTrees showing attack scenarios (steps,
techniques, etc.) and countermeasures given as security pattern combinations.

In future research, we will firstly focus on the automation of some data inte-
gration steps. Indeed, it could be relevant to investigate whether some text min-
ing techniques would help partially automate the extraction and integration
of the security pattern properties without adding ambiguity. As our ADTrees
exhibit concrete attack scenarios composed of sequences of steps, we also intend
to use them for the test case generation to check whether an implementation
is protected against the attacks given in an ADTree or if security patterns are
correctly contextualised and implemented w.r.t. the application context.

Acknowledgement. Research supported by the industrial chair on Digital Confi-
dence http://confiance-numerique.clermont-universite.fr/index-en.html.

http://confiance-numerique.clermont-universite.fr/index-en.html

98 S. Salva and L. Regainia

References

1. Security pattern catalog. http://www.munawarhafiz.com/securitypatterncatalog/
2. Alvi, A.K., Zulkernine, M.: A natural classification scheme for software security

patterns. In: 2011 IEEE Ninth International Conference on Dependable, Auto-
nomic and Secure Computing, pp. 113–120 (2011)

3. Alvi, A.K., Zulkernine, M.: A comparative study of software security pattern clas-
sifications. In: 2012 Seventh International Conference on Availability, Reliability
and Security, pp. 582–589 (2012)

4. Bunke, M., Koschke, R., Sohr, K.: Organizing security patterns related to secu-
rity and pattern recognition requirements. International Journal on Advances in
Security 5 (2012)

5. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 23

6. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: security analysis with
attack–defense trees. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 173–176. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40196-1 15

7. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. Journal
of Logic and Computation p. exs029 (2012)

8. Meier, J.: Web application security engineering. IEEE Secur. Priv. 4(4), 16–24
(2006)

9. Mitre corporation: Common attack pattern enumeration and classification (2015).
https://capec.mitre.org/

10. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems.
Proc. IEEE 63(9), 1278–1308 (1975)

11. Schumacher, M.: Security Engineering with Patterns: Origins, Theoretical Models,
and New Applications. Springer-Verlag New York Inc., Secaucus (2003)

12. Tøndel, I.A., Jensen, J., Røstad, L.: Combining misuse cases with attack trees and
security activity models. In: International Conference on Availability, Reliability,
and Security, 2010, ARES 2010, pp. 438–445. IEEE (2010)

13. Uzunov, A.V., Fernandez, E.B.: An extensible pattern-based library and taxonomy
of security threats for distributed systems. Comput. Stand. Interfaces 36(4), 734–
747 (2014)

14. Viega, J., McGraw, G.: Building Secure Software: How to Avoid Security Problems
the Right Way. Portable Documents, Pearson Education (2001)

15. Wiesauer, A., Sametinger, J.: A security design pattern taxonomy based on attack
patterns. In: International Joint Conference on e-Business and Telecommunica-
tions, pp. 387–394 (2009)

16. Willett, P.: Recent trends in hierarchic document clustering: a critical review. Inf.
Process. Manag. 24(5), 577–597 (1988)

17. Yoder, J., Yoder, J., Barcalow, J., Barcalow, J.: Architectural patterns for enabling
application security. In: Proceedings of PLoP 1997, vol. 51, p. 31 (1998)

18. Yskout, K., Heyman, T., Scandariato, R., Joosen, W.: A system of security patterns
(2006)

19. Yskout, K., Scandariato, R., Joosen, W.: Do security patterns really help designers?
In: Proceedings of the 37th International Conference on Software Engineering -
Volume 1, pp. 292–302. ICSE 2015. IEEE Press, Piscataway (2015). http://dl.
acm.org/citation.cfm?id=2818754.2818792

http://www.munawarhafiz.com/securitypatterncatalog/
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-642-40196-1_15
https://doi.org/10.1007/978-3-642-40196-1_15
https://capec.mitre.org/
http://dl.acm.org/citation.cfm?id=2818754.2818792
http://dl.acm.org/citation.cfm?id=2818754.2818792

Access Control and Filtering

MA-MOrBAC: A Distributed Access Control
Model Based on Mobile Agent

for Multi-organizational, Collaborative
and Heterogeneous Systems

Zeineb Ben Yahya1(&) , Farah Barika Ktata2, and Khaled Ghedira3

1 National School of Computer Science of Tunisia (ENSI),
Complex Outstanding Systems Modeling Optimization and Supervision

(COSMOS), University of Manouba, Manouba, Tunisia
zeineb.benyahya@ensi-uma.tn

2 Higher Institute of Applied Sciences and Technology of Sousse (ISSATSO),
Complex Outstanding Systems Modeling Optimization and Supervision

(COSMOS), University of Sousse, Sousse, Tunisia
farah.ktata@gmail.com

3 Complex Outstanding Systems Modeling Optimization and Supervision
(COSMOS), National Agency for Promotion of Scientific Research of Tunisia,

Tunis, Tunisia
khaled.ghedira@isg.rnu.tn

Abstract. Facing the current evolution of networks infrastructure and the
expansion of the information system in organizations and businesses, protecting
data and resources against unauthorized access and unauthorized disclosure, is
an important requirement of any information management system. In this con-
text, diverse security issues are amplified. Particularly, access control seems of
main importance because it ensures diverse security services, such as, authen-
tication, identification, confidentiality and integrity. Several works are devoted
for designing access control models. In this paper, we work to improve
Multi-OrBAC model by introducing a new distributed access control model
based on Mobile Agent.

Keywords: Security � Distributed access control � Multi-OrBAC model
Mobile agent

1 Introduction

Recently in this age of dynamic technological change, protecting information and data
is a more challenge that an organization or a group of organizations are often called to
collaborate with other organizations in order to benefit or provide services, to com-
municate, to access or deliver information.

Globally, the heterogeneous and distributed environments can be seen as a set of
interconnected organizations involving different actors and stakeholders using hetero-
geneous logical and physical information and communication systems and networks,
exhibiting different levels of security threats and protection mechanisms.

© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 101–114, 2018.
https://doi.org/10.1007/978-3-319-76687-4_7

http://orcid.org/0000-0002-5054-5266
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_7&domain=pdf

One of the most important challenges that needs to be solved throughout this
collaboration, is the resources access control, thus we need a lightweight, flexible and
scalable method to control the access to data and resources in general.

Offering pertinent services tomultiple users at different locations is necessary because
any unsecured access may engender numerous critical problems, such as, unauthorized
access, loss of governance, divulgation of sensitive data or privacy violation. To avoid
these problems, several models have been proposed, like Discretionary Access Control
(DAC) [1], Mandatory Access Control (MAC) [2], Role Based Access Control (RBAC)
[3], and Organization Role Based Access Control (OrBAC) [4]. However, all these
models are not suited for heterogeneous and distributed environments.

In this paper, we propose a modular solution that traces a new access control model
using the technology of mobile agents that acts as a portable and secure middleware to
interconnect diverse heterogeneous organizations. We initiate a novel research line by
adopting mobile agents to model a well-designed access control mechanism that sat-
isfies security requirements of all levels (network, system, application) of an infor-
mation system. The proposed model takes benefit from the mobility aspect of agents to
avoid drawbacks of classical Client/Server communications, and it makes use of
cryptographic mechanisms such as encryption and digital signature to ensure authen-
tication, identification, confidentiality and integrity.

For this purpose, the remainder of our paper is organized as follows. We present, in
Sect. 2, the necessary background for distributed access control. In Sect. 3 we describe
our comparative study of distributed access control strategies. In Sect. 4, we present
our access control model based on mobile agent technology: the MA-MOrBAC model.
Through this section, we present the motivation for a Multi-organization Access
Control Approach and the MA-MOrBAC components. Then, we present the authen-
tication process and a detailed example that aims to clarify our contributions and the
functioning of our model.

Finally, in Sect. 5 we conclude the paper and present our future work.

2 Background

Access control [5] is a necessary condition for a variety of services to work together
and implement a distributed environment; it is a mechanism that limits the actions that
a legitimate user of a computer system can perform.

2.1 Distributed Access Control

In distributed and heterogonous systems, users access to several services after verifi-
cation of their identity. The access control is to determine what a user can do directly
around an object. Compared to traditional systems, the distributed and heterogeneous
environment is much more dynamic and distributed, and security for such environment
poses many challenges. Therefore, the access control in distributed environments is
required to cross the borders of security domains, to be implemented between

102 Z. Ben Yahya et al.

heterogeneous systems [6]. According to the literature, various strategies have been
employed to improve the distributed access control. A comprehensive study of different
access control models is presented in Sect. 3.

2.2 Mobile Agent Technology

In open service-oriented systems, it is necessary to establish interactions among several
applications through the network. This increases the need of autonomous entities able
to resolve the complex problems related to networks. In this context, researchers are
gradually more interested in the use of mobile agent technology as it brings significant
gains for several application areas.

Ferber has demonstrated in [7] that, Multi-agent systems are systems in which we
make cooperation between a set of entities having intelligent behavior called Agents,
and that have the power to coordinate their purposes and action plans to solve a
problem or achieve an objective. The agents are characterized by certain unique
properties to be different from the standard programs; the following are the most
important properties [8, 9]: Autonomy, Reactivity, Pro-activity, Communication,
Cooperation, Mobility, Learning and Adaptability.

The main advantages of the mobile agent based systems are: 1. Reduce the network
load 2. Minimize the network latency 3. Execute in asynchronous and autonomous
mode 4. Adapt dynamically and 5. Robust and fault tolerant [10].

3 Related Work

In the literature, several theories have been devoted to the study of access control
models, in order to achieve a satisfactory level of security for any environments.
Various access control models have been proposed. To describe these models we class
them in two main pools: Distributed access control models and Distributed access
control models based on mobile agent.

3.1 Distributed Access Control Models

In literature, various strategies have been used to improve the distributed access con-
trol. This part, throws light on the research activities in the area of distributed access
control, by analyzing the works carried out by the researchers.

The work carried out in [11] presented an adaptive access control algorithm for
cloud environments. In this work the authors introduced the concept of trust into cloud
computing to decide the access control to the resources using an improved RBAC
technique.

The authors in [6] proposed an Attributed and Role Based Access Control model
(ARBAC) for service-oriented environment. This model introduces the notion of
Service Role (SR) and Business Role (BR) in order to create a flexible, coupled access
control solution for service oriented environment. In this work, access negotiation
mechanism is not added into ARBAC model.

MA-MOrBAC: A Distributed Access Control Model 103

Sun and Wang, in [12] proposed a semantic access control system to authenticate
users of health systems based on anthologies in the distributed environment. Particu-
larly, this system implements a distributed access control system in semantic web
environments.

Furthermore, in [4], the authors proposed to use an access control based organi-
zation (ORBAC) that is based on the first order logic, which aims to improve
inter-organizational access control and provide solutions to specify such contextual
security policies. In this work, several issues have not been addressed, such as the fact
that conflicts may appear in the security policy and they do not define how to specify
security properties in this model.

Then, a hybrid access control model by configuring the functionality of MAC and
RBAC has been proposed in [13]. The authors proposed a systematic approach for
developing a hybrid access control model using feature modeling with the aim of
reducing development complexity and error-proneness.

Moreover, a collaborative access control framework called PolyOrBAC has been
proposed in [14]. This approach offers, to each organization taking part in the Critical
Information Infrastructure (CII), the capacity of collaborating with the other ones,
while maintaining a control on its resources and on its internal security policy. The
interactions between organizations participating in the CII are implemented through
web services (WS).

3.2 Distributed Access Control Based on Mobile Agent

Other researchers were interested to use the mobile agent technology to improve the
distributed access control and are described below.

The most interesting approach of distributed access control based on mobile agent
RBAC-MA has been proposed by [15], as a distributed access control model in the
inter-organizational environments. They used the RBAC model applied with the
mobile agent paradigm to ensure authentication and identification of system entities, as
well as to guarantee confidentiality and integrity of data. In this work, several criteria
were not dealt: time, performance, persistence and security attacks.

In [16] authors proposed an agent-based approach for the distributed access control
in cloud environments for mediating the access requests of cloud consumers, consid-
ering the present day requirements of the cloud computing paradigm In this work, they
also proposed a workflow model for the proposed agent-based approach for the dis-
tributed access control in cloud.

In [17], researchers proposed an intra-organizational access control based on
mobile agent in order to improve interoperability and flexibility of RBAC model. They
presented a modified RBAC. They proposed a RBAC mobile agent access control
model supported by a specially managed public key infrastructure for mobile agent’s
strong authentication and access control. The main contribution of this work was to
guarantee a secure communication channel between health institutions by the means of
a strong access control for mobile agents.

In [18], authors discussed the authorization issues in the distributed computing
environment. Then, they presented a security agent-based approach for solving these
issues. In this work, the security agents are deployed to manage the privileges for the

104 Z. Ben Yahya et al.

distributed authorization. However, this work does not consider the dynamic nature of
the access control. The authors proposed also a distributed access control architecture
based on the concept of distributed, active authorization entities [18]. But, this archi-
tecture lacks also of the dynamic trust management and the security policy conflict
management when various users in the organization access the cloud resources
simultaneously.

3.3 Discussion

As is clear from the comparative study presented above, neither of these models is
entirely satisfactory the exigencies of communication and collaboration difficulties
encountered between or within organizations.

Also, proposed models do not offer mechanism to detect a violation security policy
and do not propose the decision to be taken in such case.

Moreover they do not proposed any technique to secure interactions in a collab-
orative session between users, to satisfy the security requirements identified by all
stakeholders of heterogynous environments. Furthermore, the consistency of security
policy is not as well checked.

Finally, we believe that a proper solution for the issue of access control in the
distributed environments needs extensive research in the area of conflict management
of organizational access control policies.

In the following we will decried our proposed approach that deals with these
limitations.

4 Proposed Model: MA-MOrBAC Model

4.1 Motivation for Multi-organization Based Access Control

OrBAC model is a centralized approach and many extensions of that model has been
developed to address the need for secure collaborations, we cite mainly Multi-OrBAC
[19]. Multi-OrBAC is a dynamic and adaptable model of security, allowing one side to
specify different security policies in each organization and the other side to impose
rules for interactions between organizations that are consistent with the policies of each
organization.

Multi-OrBAC keeps the methodology of OrBAC and adapts it to create
multi-organizational architectures, cooperative, distributed and interoperable.
Multi-OrBAC defines the concepts of role, activity, view and context in relation with
organization, giving the organization an important flexibility and scalability.

However, it remains inadequate to secure interaction between users in collaborative
systems, and do not meet the security requirements identified in all stakeholders of
distributed and collaborative environment.

Moreover, in the context of distributed and collaborative environment, Multi-
OrBAC presents several weaknesses. In fact, it offers the possibility to define local
rules and accesses for external roles that belongs to another organization, without
having any information about who plays these roles and how the rules and the security

MA-MOrBAC: A Distributed Access Control Model 105

policies are managed in the remote organization. This causes a serious problem of
liability: who is responsible in case of remote abuse of privileges? How can the
organization to which belongs the object have total confidence in the organization to
which belongs the user? How we manage the assignment permissions in multi-context,
multi-user, multi-organization multi-resource to do multi-action at the same time?

The Multi-OrBAC logic is thus not adapted to all kind of heterogeneous and
collaborative systems where competitive organizations can naturally be mutually sus-
picious. Moreover, in Multi-OrBAC the access control decision and enforcement are
done by each organization, which means that the global security policy is in fact
defined by the set of the organizations security policies. In that case, it is difficult to
enforce and maintain the consistency of the global security policy, in particular if each
organization’s security policy evolves independently.

4.2 MA-MOrBAC Goals

In this context, in our proposed MA-MOrBAC model, collaboration and interactions
between organizations are made through the use of the mobile agent technology, which
provides platform-independent protocols and standards for exchanging heterogeneous
interoperable data services. Software applications written in various programming
languages and running on various platforms can use mobile agents to exchange data
over computer networks in a manner similar to inter-process communication on a
single computer.

In the proposed MA-MOrBAC model, we integrate mobile agent technology and
Multi-OrBAC to achieve these objectives:

• Ensure the consistency of different access control policies.
• Improve the detection of violation security policies.
• Facilitate the adaptability of Multi-OrBAC in the distributed and collaborative

environments.
• Handle multiple security policies associated to various organizations.
• Provide authentication, integrity and confidentiality of data exchanged in collabo-

rative systems.
• Provide secure interaction with a high level of confidence.

4.3 MA-MOrBAC Functional Architecture

MA-MOrBAC is a new reliable, adaptable, flexible and robust access control model.
Our model is intended for multi-organizational systems for distributed environment.
Thus, our innovative new access control model is backboned on mobile agent
technology.

Owing to the properties of heterogeneous and distributed environment and
agent-based systems, and also because of the advantages of an agent-based approach,
we consider that it would be an efficient and secure approach to combine the two
paradigms so that the access requests could be mediated through the agents.

106 Z. Ben Yahya et al.

We propose a distributed access control model based on Multi-OrBAC model and
mobile agents. Our objective is to have a multi-level access control mechanism that
involves many entities and uses a multi-organizational architecture able to manage
various security policies, provides an overall level of homogeneous and sufficient
security, and guarantees coherence of the various access control policies associated
with different organizations.

For this purpose, we adapt the Multi_OrBAC [19] model knowing that it, allows
specifying in a homogeneous framework, several security policies for heterogeneous
organizations in front to cooperate. This model treated the problem that if a user, in a
multi-organizational context, can play multiple roles; it does not necessarily have the
right to play them in any of the organizations. Moreover, we use a different mechanism
of integrity and flexibility and we apply an algorithm for detecting and managing
conflict access control policies in order to achieve the integrity and flexibility of
MA-MOrBAC.

In our approach, we use the advantages of mobile agent paradigm to enhance the
flexibility and robustness of the Multi-OrBAC model. We simulate the hierarchy
architecture of that model using agents that cooperate to achieve the distributed access
control purposes.

As represented in Fig. 1, our architecture includes 6 agents:

1. Access Manage Agent: Is the central node of the platform of an organization. This
agent is responsible for managing agents of the organizational platform; it is
responsible for creating, activating and sending agents. It supervises their operation.

2. Security Policy Agent: Is the agent responsible of the management and the update
of policies and security rules for each organization and its sub organizations. It
provides control according to the Multi-OrBAC rules. Knowing that a rule can be a
permission, prohibition, recommendation or obligation.
The security policy Agent, is the one who will grant or reject an access request after
the security policy interrogation, in order to have a response to queries of type

Fig. 1. Functional architecture of MA-MOrBAC

MA-MOrBAC: A Distributed Access Control Model 107

“who has privileges (and which ones) on a given object (s), and in what context and
for which organization?”. It also ensures the consistency of security policies such as:

• Political security rules are contradictory (one action is both permitted by one rule
and prohibited by another).

• The operating rules of the system are incompatible with the security rules.
• The management of security policies fusion problems. For example in the

context of restructuring between two organizations. A first aspect concerns the
definition of compatible organizational roles and structures. Another aspect,
relates to the detection of conflicts in the policy obtained by fusion, and the
proposal of a method for solving these conflicts.

3. Requester Agent: Is an interface Agent that is responsible for receiving and inter-
preting queries, preparing and submitting responses to the requester (user, organi-
zation). This agent is responsible for the following tasks:

• Treats the queries of requesters.
• Shows to the requester the information about the treatment of the request and

follow the execution process of the request.
• Visualizes responses in the format required by the requester.

4. Security Agent: It performs the verification and authentication of the agent requester
to ensure its integrity. In fact, a process of sharing key is running between the two
“Security Agent” of both Frameworks. This process makes use of Diffie-Hellman
Exchange Key Protocol in a novel form that avoids Man-In-Middle attack [20].
This allows it to obtain a common shared key. It is a key of 256 bits introduced in
an encryption process between the both sides, using the cryptographic algorithm
AES [21].

5. Observer Agent: It is responsible for sending procedures (dispatching) of the agent.
It is also responsible for managing and monitoring the changes in the network.
Moreover, it reports all events of network occurrences and periodically transmits
them to the Access Manage Agent.

6. Notifications Agent: It is an agent that is responsible for automatic notifications of
organizations across platforms; it can send a notification to the requester (Organi-
zation, User) at the time the recipient organization agrees to process the request.
This notification is useful for tracking the mobile agent.

4.4 MA-MOrBAC Authentication Process

In order to easily understand how to apply MA-MOrBAC, we first describe the
authentication process of our proposed scheme (Fig. 1). We present the following
scenario:

The requester sends a request for access with a set of parameters as its RiO (Role in
Organization) and the invoked object. The Access Manager Agent launches the cre-
ation of the Requester Agent. The security policy agent interprets this request by
interrogating the Security Policy that can be contained in different kind (database, XML
file) and generates an evidence of authorization, in order to guarantee its identification
at the external organization as shown in Table 1.

108 Z. Ben Yahya et al.

After sending the evidence to the Security Agent, a process of sharing key is
running between the two Security Agents of both platforms. This process makes use of
Diffie-Hellman Exchange Key Protocol in a novel form that avoids Man-In-Middle
attack [20]. This allows obtaining a common shared key that we name “Session Key
(T)”. It is a key of 256 bits, using the cryptographic algorithm AES [21].

Thereafter, the security Agent encrypts the evidence of authorization with the
public key of the external organization Security Agent. It supports also the verification
and the authentication of the Requester Agent to ensure that did not become a mali-
cious agent. Once the Requester Agent is ready to migrate, the Observer Agent sends it
to the external organization. After that, it analyzes network changes and sends a report
to the Access Manage Agent.

If the Requester Agent has been accepted, a notification “good received” is sent to
the source organization Notification Agent. When the Requester Agent returns at its
source place, it goes to state “Hold”, and the authentication process will be launched
again, to prevent against the fact that behaviors are changed during its mission.

Table 1. Evidence of authorization

Parameters Description

Subject id The subject id is used to identify the subject who is making the
request

Rules details Is a set of attributes used to inform an external organization of the
permissions, obligation, recommendation and Prohibition details that
the requester has in his home organization

Data This attribute is composed by a set of queries that requests the
necessary information. The size of this set may varies according to
the number of visiting organization. Each one of these queries is
ciphered with a respective public key according to its organization’s
destination

Agent code This attribute is to identify the visitor agent in the multiple
organizations

Emergency level Represents the emergency level of the request (non-emergency = 0;
emergency = 1)

Action deadline This attribute represents the execution action time, is measured in
milliseconds. Once this time expires the mobile agent returns to its
home with the obtained results since requested information loses its
value after expire date is reached

List of external
organizations

This list is composed by a set of attributes that include: the visiting
organization, host addresses and their respective certificates

Description This is an optional open attribute. This attribute should be filled every
time the requester considers that an additional justification is required

Requester signature This is an optional attribute depending on the organization policies
Organization
signature

The organization validates the whole set of attributes by signing it.
This signature is essential for the mobile agent since external
organization only accept signed mobile agent that falls in their circle
of trust

MA-MOrBAC: A Distributed Access Control Model 109

For security reasons, our system must ensure requester access authentication,
integrity and confidentiality of security policies. Each agent must be encrypted before
migrating by the “Security Agent” and decrypted as soon as it arrives at the sender. All
transactions between organizations are encrypted using the “session key” generated by
the protocol “Key Exchange protocol (Diffie-Hellman).” Communications between
organizations are performed through messages using ACL (Agent Communication
Language) with MTP (Message Transport Protocol). The agents’s migration process is
provided by the ACC (Agent Communication Channel).

4.5 Requester Agent: Creation and Migration Process

In the following, an example of a real practice scenario expressed within a hospital. The
example aims, in one hand, to ease the understanding of our model and on the other
hand to show clearly the limitations of the Multi-OrBAC model and how our extension
helps covering them.

Requester agent creation process
When a user (e.g. healthcare professional, Doctor) requests clinical information from an
external health institution, a Requester Agent is created and sent to the external health
institution. This agent is associated with several attributes, in the form of evidence of
authorization (Table 1) in order to guarantee its identification at the external institution.
This evidence of authorization is generated by the Security Policy Agent and encrypted
by the Security Agent with the public key of the external organization Security Agent.

Requester agent reception process
When a mobile agent (Requester Agent) arrives at an external health institution the
Security Agent decrypt him and checks the mobile agent identity by the usage of the
Sharing Key (Diffie-hellman, AES256). After this process the Security Agent verified
the mobile agent evidence of authorization in order to define which permissions will be
granted to the visitor agent according to the access control policy of the visited health
institution.

Depending on the type of request the external access control could need an
approval from an internal member (Security Policy Agent) of the institution in order to
process the request. In such cases the Security Agent provides to the visitor Agent an
identification number that could be used later to query the status of its requirement.
This identification number improves the visitor Agent flexibility since this mobile agent
could continue his itinerary to other external health institutions and return later to
consult the request status.

In special cases where the emergency level is important and an internal member
approval is needed the Security Agent will activate a special mechanism known as
Break The Glass (BTG) to directly obtain the requested medical information. The BTG
mechanism [22] is used to break or override the access controls in a controlled manner.
In other words this should allow a user to override the access control rules stated by the
access control manager and access what he requests, even thought he was not previ-
ously authorized to do it. When this is done, BTG rules come into play reporting the
user’s actions, thus making him responsible for his requests and oblige him to justify
his request.

110 Z. Ben Yahya et al.

This is an important mechanism to mobile agents when an emergency scenario
happens. For example, when a Requester Agent is in an external health institution and
does not have enough permission to access crucial medical information that a healthcare
professional needs to save a patient. The BTG also works as a non-repudiation mech-
anism since the requester is strongly audited after deciding to proceed with the BTG and
all involved parties are notified.

Indeed, access control is not a complete solution for securing a system. It must be
coupled with auditing. Audit controls concern a posteriori analysis of all the requests
and activities of users in a system, this process ensure that authorized users do not
misuse their privileges [5]. Thus, extensive auditing is important to ensure traceability
of user actions, and in our case actions are mobile agent actions.

4.6 MA-MOrBAC Model Components

MA-MOrBAC is a Multi-OrBAC extension that provide secure collaborations, address
the need for dynamic access control and guarantee integrity. MA-MOrBAC keeps the
organization as the central entity. MA-MOrBAC is therefore based on its predecessor
entities, predicates, language and axioms. In what follows, we keep considering, within
Org, s 2 Subject, r 2 Role, o 2 Object, a 2 ACtivity and c 2 Contexte.

We describe the new expressions that we introduced to extend MA-MOrBAC.

– Lorg, Lr, Ls, Lv, La, Lc: sets of priority levels for, respectively, organization, role,
subjects, views, activities and contexts.

In addition, we affect priority levels to the previously identified entities. These
parameters are important and needed to determine the priority level to impose on each
rules in the security policy.

The modifications are then as follows:

– Permission (Org, r, v, ay, c) becomes Permission (Org, r, v, ay, c, Lp),

Where Lp: is the value of the priority level affected to permission predicate. The
others access mode predicates [i.e., Obligation(), Recommendation() and Prohibition()]
have also get the same modification.

– Use (Org, o, v) becomes Use (Org, o, v, Lu), where Lu: is the value of the priority
level affected to predicate Use.

– Consider (Org, ac, ay) becomes Consider (Org, ac, ay, LC), where LC: is the value
of the priority level affected to predicate Consider.

– Empower (Org, s, r) becomes Empower (Org, s, r, Le), where Le: is the value of the
priority level affected to predicate Empower.

– Define (Org, s, o, ac, c) becomes Define (Org, s, o, ac, c, Lf), where Lf: is the value
of the priority level affected to predicate Define.

To Ensure the MA-MOrBAC integrity, we introduce a set of parameters to grant
decisions to take into account five major parameters: the predicate priority levels the
permission Lp, Use Lu, Consider LC, Empower Le and the Define Lf.

Knowing these parameters, we can decide which access requests are appropriate to
perform the action, based on the priority level of an access request.

MA-MOrBAC: A Distributed Access Control Model 111

4.7 Case Scenario

As an example of application of MA-MOrBAC, we propose this case scenario: “An old
male patient named Ali from Gasrin, has been moved from the regional hospital of
Gasrin to undergo urgent surgery on the heart at the university hospital Sahloul. Due to
the emergency situation, they forgot his medical records. The Supervisor Dr. Ahmed of
the condition’s patient applies to the regional hospital of Gasrin to check information
on the file (blood analysis, Image of medical scanner and magnetic resonance imaging
files). Moreover, he will need to ask for access after the surgery to deposit the results of
the operation in the file of this patient in his original hospital”.

Figure 1 demonstrates the necessary steps since the agent is created until the agent
return.

So the details of access request are:
Org: The Gasrin’s regional hospital
Role(r): Doctor
View (v): Medical Record of Ali
Activity (ac): Consulting
Subject (s): Dr. Ahmed
Context (c): Emergency in Sahloul.

Step1: The access request is sent by a subject (Dr. Ahmed) and is captured by the
Access Manager Agent of University Hospital Sahloul platform, which transmit it to
the Security Policy Agent. When the doctor triggers this request a Mobile Agent named
Requester Agent is created (steps 1, 2 and 3 in Fig. 1).

Step2: The Security Agent then ask the Security Policy Agent about the different rules
details associated to the subject (Dr. Ahmed). Whose goal is to have the adequate
response to the access request, and to proceed to the encryption process (step 4 in
Fig. 1).

Step3: In turn the Security Policy Agent interprets this request by performing the
following tasks:

• Interrogates Security Policy (contained in a database or xml file).
• Extracts the rules for deciding in the current cases (which contains the rules RiO

sent the query parameters).
• Combines the various possible rule sequences and evaluates the request parameters

in these rules.
• Resolves any conflicts.
• Takes a decision (is that the action is allowed, prohibited, obligation or recom-

mended?) and affect a p = 1 as a priority level of rule. Affect a priority to rule will
provide more flexibility while developing the policy.

• Generates an evidence of authorization as shown in Table 1, and send it to the
Security Agent.

Step4: The Security Agent received the access decision (evidence of authorization). If
Dr. Ahmed had sufficient permissions to execute the action, else if he do not have
enough permissions, the Security Policy Agent refuse the request.

112 Z. Ben Yahya et al.

Then a process of sharing key is running between the two “security Agent” of both
platforms. Thereafter it encrypts the evidence of authorization using the public key of
the recipient organization Security Agent. Once the Requester Agent is ready to be
migrated, the Observer Agent, send it to the recipient organization (Steps 7, 8, 9 in
Fig. 1).

Step5: Requester Agent arrives to the recipient organization (Gasrin regional hospital),
the latter’s Security Agent run the process Authentication, to verify if it have or not the
permission to run its code. Since the process Authentication succeeded the recipient
organization platform provide it all the resources needed for its action and a notification
“Good received” is sent to the university hospital Sahloul platform Notification Agent
(10, 11, 12, 13).

Step 6: Once finished, the Requester Agent receives the results of the query and depart
from external organization back to its home organization.

5 Conclusion and Future Work

In this paper, we presented an extension of the Multi-OrBAC access control model,
called Mobile Agent Multi-OrBAC, which aims to guarantee a secure communication
between organizations and satisfy the security requirements. This work is an initial
proposal, implementation and evaluation of our proposed model using System for
Mobile Agent Jade are in process.

References

1. Lampson, B.: Protection. In: 5th Princeton Symposium on Information Sciences and
Systems, pp. 437–443, March 1971

2. Bell, D.E., LaPadula, L.J.: Secure computer systems: unified exposition and multics
interpretation. Technical report ESD-TR-73-306, The MITRE Corporation, March 1976

3. Kuhn, D.F.: Role-based access controls. In: 15th National Computer Security Conference,
pp. 554–563 (1992)

4. EI Kalam, A.A.: ORBAC: un modèle de contrôle d’accès basé sur les organisations (2003)
5. Sandhu, R.S., Samarati, P.: Access controls, principles and practice. IEEE Commun. Mag.

32(9), 40–48 (1994)
6. Wei, Y., Shi, C., Shao, W.: An attribute and role based access control model for

service-oriented environment. In: Proceedings of the Chinese Control and Decision
Conference, pp. 4451–4455 (2010)

7. Ferber, J.: Multi-agent Systems An Introduction to Distributed Artificial Intelligence.
Addison – Wesley, Boston (1999)

8. Manvi, S.S., Venkataram, P.: Applications of agent technology in communications: a
review. Comput. Commun. 27, 1493–1508 (2004)

9. Magedanz, T., Rothermel, K.: Intelligent agents: an emerging technology for next generation
telecommunications. In: Proceedings of the IEEE Globecom, London, UK, pp. 464–472
(1996)

MA-MOrBAC: A Distributed Access Control Model 113

10. Lange, D.B., Oshima, M.: Dispatch your agents; shut off your machine. Commun. ACM 42
(3), 88–89 (1999)

11. Wang, W.: The design of a trust and role access control model in cloud. IEEE (2011)
12. Sun, L., Wang, H.: Semantic access control for cloud computing based on e-Healthcare. In:

Proceedings of the 2012 IEEE 16th International Conference on Computer Supported
Cooperative Work in Design (CSCWD), pp. 512–518. IEEE (2012)

13. Kim, S.: Building hybrid access control by configuring RBAC and MAC features. Inf.
Softw. Technol. 56, 763–792 (2014)

14. El Kalam, A.A., Deswarte, Y., Baïna, A., Kaâniche, M.: PolyOrBAC: a security framework
for critical infrastructures. Int. J. Crit. Infrastruct. Prot. 2(4), 154–169 (2009)

15. Idrissi, H.: Access control using mobile agents. In: International Conference on Multimedia
Computing and Systems ICMCS (2014)

16. Thomas, M.V.: Agent-based approach for distributed access. In: International Conference on
Advances in Computing, Communications and Informatics, ICACCI 2013 (2013)

17. Varadharajan, V., Kumar, N., Mu, Y.: Security agent based distributed authorization: an
approach. In: Proceedings of the 21st National Information Systems Security Conference
(NISSC), USA, pp. 315–328 (1998)

18. Antonopoulos, N., Koukoumpetsos, K., Shafarenko, A.: Access control for agent-based
computing: a distributed approach. Internet Res. 11(1), 55–64 (2001)

19. El Kalam, A.A., Deswarte, Y.: MultiOrBAC: a new access control model for distributed,
heterogeneous and collaborative systems. In: IEEE Symposium on Systems and Information
Security, Sao Paulo, Brazil (2006)

20. Biswas, B., Basuli, K.: A novel process for key exchange avoiding man-in-middle attack.
Int. J. Adv. Res. Technol. (IJOART) I(4), 75–79 (2012)

21. Standard NIST-FIPS: Announcing the Advanced Encryption Standard (AES). Federal
Information Processing Standards Publication, vol. 197. NIST (2001)

22. Ferreira, A., Chadwick, D., Zao, G., Farinha, P., Correia, R., Chilro, R., Antunes, L.: How
securely break into RBAC: the BTG-RBAC model. In: Proceedings from 25th Annual
Computer Security Applications Conference - ACSAC (2009)

114 Z. Ben Yahya et al.

A Vehicle Collision-Warning System
Based on Multipeer Connectivity
and Off-the-Shelf Smart-Devices

Bogdan Groza(B) and Cosmin Briceag

Politehnica University of Timisoara, Timisoara, Romania
bogdan.groza@aut.upt.ro, briceagcosmin@gmail.com

Abstract. Traffic related deaths and injuries take high tolls each year
and vehicular collision warning systems can make the future safer. To
deploy such systems there are strong efforts from the industry in the
development and standardization of Car2X communication technologies,
e.g., the 802.11p suite. However, it is unlikely that modern infrastruc-
tures will cover all areas of the world and even less likely for all cars
to attain communication capabilities in the short term. In this work we
study the development of a system that is based on existing off-the-shelf
smart-phones and facilitates the creation of ad-hoc networks based on
the existing Multipeer technology developed by Apple. This is a non-
restrictive approach since similar ad-hoc networking technologies from
competitors exists, e.g., WiFi-Direct on Android.

1 Introduction and Motivation

As traffic related deaths and injuries take high tolls each year, vehicular collision
warning systems may play a crucial role in the future. To give more motivation
some data on road safety from the World Health Organization [11] may be use-
ful. The highest death rates are in countries with less developed infrastructure,
e.g., Africa, Asia and the Southern Americas. The distribution of traffic casu-
alties by type of road user shows that even in the most developed countries,
e.g., the USA or Western Europe, about half of the casualties occur among the
drives and passengers of 4-wheeled vehicles. It is thus clear that more research
in this direction and faster introduction of such technologies may be beneficial.
Nonetheless, the increasing number of reported attacks on vehicular systems
[2,6,7] may bring adversaries that target traffic safety by manipulating vehi-
cle electronics. This should trigger even more attention toward developing more
advanced safety mechanisms.

To deploy Car2X communication, i.e., Car2Car and Car2Infrastructure com-
munication, an appropriate network infrastructure is needed. Recently emerged
standards, such as the 802.11p, are a proof of the continuous development efforts
by the industry. Still, it is unlikely that this infrastructure will quickly cover all
areas worldwide and it is hard to forecast an extensive use of modern vehicular
communication technologies in less developed parts of the world (this is easier to
c© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 115–123, 2018.
https://doi.org/10.1007/978-3-319-76687-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_8&domain=pdf

116 B. Groza and C. Briceag

project for smartphones which are cheap and available everywhere). Moreover,
it is also unlikely for all cars to be equipped with such systems in the short run
since cars commonly have lifespans of a decade or more.

Motivated by these, we study the development of a system that is based
on existing off-the-shelf iPhones that facilitate the creation of ad-hoc networks
based on an existing communication layer, i.e., Multipeer. While this technology
is present in all Apple products, alternatives exists for Windows and Android
based devices with ad-hoc networking technologies such as WifiDirect. Thus, our
proposal is not restricted to the iOS share of the market. We experiment with
iPhones only for convenience, but the concepts are general. Mobile phones are
cheap and ubiquitous devices while similar capabilities are expressed by after-
market infotainment units which are a popular choice among consumers for
upgrading older vehicles. Such items cost in the order of several hundred euros
and are affordable for most users. Also, they will become even cheaper as pro-
duction increases. While such gadgets become ubiquitous, the challenge remains
in designing suitable solutions. There are numerous constraints both from the
existing communication layers, e.g., an ad-hoc networking layer is needed, and
also from the computational capabilities of the device. Nonetheless, delays are
crucial and the implementation of security mechanisms, which is mandatory for
making the solution suitable for real-world needs, comes at a cost. We discuss
all these aspects in the forthcoming sections.

1.1 Related Work

A survey on security implications and requirements for Car2X communications
can be found in [9]. In our system we do account for basic security objectives
such as authentication and cope with real-time needs. Wi-Fi Direct as a commu-
nication layer has been previously used for warning systems to avoid collisions
with pedestrians and bicyclists in [4]. We believe that the range of Wi-Fi or of
the related Multipeer technology, i.e., up to 200 m, is also sufficient for deploying
ad-hoc vehicle networks and help in preventing collisions. Another system for col-
lision signaling and avoidance is discussed in [3]. Trajectory predictions has been
previously explored by the use of visual information, a survey can be found in
[8]. However, the use of visual information requires more demanding algorithms
for image processing that we find to be unsuitable for our application setup
(image processing requires too much computational time and can also drain the
phone’s battery). Such algorithms may be of interest as future work in order
to corroborate between existing GPS data and also to spot potential malicious
reports that contradict visual evidence. A more recent work in [10] provides and
excellent survey over intersection monitoring and algorithms for predicting vehi-
cle behaviour. This provides useful information for one of our target scenarios,
i.e., a crossroad. In [5] some models are provided for estimating the effectiveness
of V2X systems in preventing collisions (in the forthcoming section we briefly
discuss the effectiveness of our approach on similar metrics/scenarios).

A Vehicle Collision-Warning System Based on Multipeer Connectivity 117

2 Addressed Scenarios and Constraints

We first discuss on the setup that we address by presenting two relevant sce-
narios. We also elaborate on the impact of delays which are the most significant
constraint of our problem.

veh1

veh2

veh3

d2

d1

prox. data

prox. data

global data

global data

global data

Fig. 1. A vehicle intersection scenario Fig. 2. A highway lane based scenario

2.1 Addressed Scenarios

While we generally target any traffic related scenario, we do theoretically analyze
the effectiveness of the mechanism on two target settings: an intersection as
depicted in Fig. 1 and a highway as depicted in Fig. 2. These scenarios are useful
for assessing the effectiveness of the mechanism (which translates in the number
of collisions that can be avoided). Nonetheless, these scenarios provide two of
the most prevalent practical setups as crossroads and highways are a common
place for vehicle crashes. We now give some metrics on how a collision warning
system may help in these scenarios.

Crossroad. For the vehicle crossroad, we consider that the column starting with
vehicle veh1 is departing at green light while vehicle veh2 is speeding up to
takeover the other cars without noticing the red light. The braking distance can
be easily computed as: d = v2/(2μg)+1.5v. Here 1.5 s is the driver reaction time
and is a standard value in traffic modelling (reaction time may get under 1 s
or increase over 2 s depending on driver experience, age, etc.). To provide some
hints on the braking distance due to reaction time, in Fig. 3 we show the braking
distance due to a reaction time of 2 s at various speeds 5, 10 and 15 km/h and in
Fig. 4 the braking distance at 1 s given a speed from 30 to 70 km/h. As depicted
in Fig. 3, for a vehicle departing at green light, assuming reaction time of 1.5 s
and and a speed of at most 10 km/h, the braking distance d1 stays in the order
of several meters and is below a reasonable 5 m to the center of the intersection.
For the second vehicle however, the braking distance d2 may be well above 30 m
even at speed of around 50 km/h. Vehicle veh3 may easily beacon both vehicles
veh1 and veh2 to signal the potential collision and thus it can be prevented.

118 B. Groza and C. Briceag

Fig. 3. Braking distance
at 0–2 s for speeds of 5,
10 and 15 km/h

Fig. 4. Braking distance
in 1 s reaction for speed
3–70 km/h

Fig. 5. Case of the i-th
vehicle on the highway
lane

This happens because signalling will take several hundred milliseconds added to
driver’s reaction time which lead to a under 2 s response time. According to Fig. 3
the driver of veh1 could still stop in the 5 m to the center of the intersection if
his speed is around 10 km/h (this is realistic for a car departing at green light).

Highway lane. Figure 2 depicts a scenario where a potential chain-collision
between vehicles may take place. We assume that for some reason vehicle veh1

slows down and veh2 collides with it due to insufficient distance. In the light of
this event, we analyze the impact of a chain-collision due to poor reaction of the
rest of the drivers from the lane. The distance between the i-th car in the for-
mation and the front car is ib where b is the recommended 2-s distance between
vehicles (at 130 km/h we have b=72 m). The braking distance of the i-th vehicle
accounts for the time of the driver to react, that is: d(i) = 1.5iv + v2/(2μg).
From Fig. 5 it is easy to see that only vehicle 8 may have sufficient distance
to stop until the collision point. However, in case of Multipeer/WiFi-Direct the
delay of 1.5i becomes δdirect = 1.5 + 0.1i (which considers the driver reaction
time and a 100 s propagation delay between each car) and for 3G considering
a 2 s delay δ3G the 3-rd car may stop within safe distance. Consequently, both
Multipeer/WiFi-Direct and 3G significantly reduce the number of cars from 7
to 3.

3 Setup and Results

3.1 Practical Considerations and Addressed Setup

Having in mind the required periodicity of 1 status message every 100 ms [9],
each vehicle will need to be able to sign/authenticate 10 messages each second for
its position alone. In addition, the vehicle must receive and verify messages from
the other participants. It is uneasy to estimate the exact number of messages to
be verified each second since this is highly dependent on the concrete scenario,
but current research places the number of messages that needs to be verified
from several hundreds up to 5000 [9].

This leads to a high amount of signing and verification operations each second
and we need to adjust to these needs. Since verification is done more often than

A Vehicle Collision-Warning System Based on Multipeer Connectivity 119

Table 1. Computational overhead for
authentication tags

Function Time (ms) for input size (bytes)
16 32 64 128 256 512

HMAC-SHA1 0.015 0.002 0.001 0.001 0.001 0.004
HMAC-SHA256 0.004 0.001 0.002 0.001 0.001 0.001

Table 2. Computation time for signing
and verification

Function Time (ms) for input size (bytes)
16 32 64 128 256 512

RSA-1024 sign 1.713 1.698 1.843 1.875 1.730 1.713
RSA-1024 verify 0.044 0.045 0.044 0.044 0.044 0.045

signing, RSA seems to be a natural choice due to its higher verification speed. In
Table 1 we give some computational timings (in milliseconds) for hash functions
and in Table 2 for RSA on an iPhone 6 s. The computational time is short-enough
for allowing the requested 5000 signature verifications/second and 10 signatures.
Similar collision warning systems, e.g., WiFiHonk [4], do not implement security
mechanisms but we believe that the lack of security is not desirable.

We choose to separate between location and authentication data which allows
more flexibility in choosing to use (which we recommend) or ignore the authen-
tication data. This leads to a frame having the structure suggested in Fig. 6. The
location frame in Fig. 6(i) starts with the length of the frame, followed by the
ID of the sender, a fixed value set to 0x00h, a timestamp, current vehicle loca-
tion. The ID of the other participants follows along with their location. In the
authentication frames from Fig. 6(ii) we start again with frame length, sender
ID, a fixed value 0xFF to separate from location frames, a timestamp and a sig-
nature. Then short Message Authentication Codes (MAC) follow to authenticate
data for short-range peers. Moreover, authentication data includes both digital
signatures as well as faster MACs which can be used for short-range peers.

Fig. 6. Structure of location frames (i) and authentication frames (ii)

To save some computational time one can prefer a MAC-based solution but
this would require a secret key that is shared between participants. We believe
that such a solution may be preferable whenever vehicles clusters are formed, e.g.,
on a highway. From a security perspective this simply requires an authenticated
key-exchange protocol for sharing the key. Coming up with a new authentication
protocol per paper is not desirable since it is known that authentication protocols
are prone to subtle security flaws. The automotive domain is industry driven and
the industry targets standardized solutions which makes it preferable to stay
closer to standards. The work in [1] did a careful analysis by formal verification

120 B. Groza and C. Briceag

of ISO standardized protocols for key agreement and recommended several fixes.
Such protocols can be safely used for sharing keys between two vehicles. Besides
these we do of course recommend that the 3G/4G communication with the server
is done inside a SSL/TLS channel which is again a standard solution for remote
connectivity.

3.2 Implementation and Experiments

The multipeer framework makes the physical transport of data transparent, i.e.,
switching between both Wi-Fi and Bluetooth. Indeed, once connected over Blue-
tooth, the range of collision prediction becomes lower than Wi-Fi and thus Wi-Fi
is preferable. Connectivity with the server is maintained via 3G and Multipeer
facilitates direct connection between 2 peers as soon as they are in close range.
According to the documentation up to 8 peers can be connected by Multipeer
with rapid switching between these connections.

The development environments that helped us to develop a proof of concept
were numerous. Amongst the most used tools were Xcode 8.0 which helped us
to design and to implement the application deployed later on iPhone. We also
made use of Eclipse CDT which allowed us to implement the server application.
The hardware that we used consists in two iPhones (4s respectively 6s), one of
them running iOS 9.3 and the other one running iOS 10.3.

Having in mind the requirements for a system able to accomplish V2x com-
munication, we designed two redundant mechanisms in order to eliminate any
dead time that could occur during a transmission initiated by one peer and dis-
connected by an interference. On one side, we have the Multipeer framework
which makes possible advertising (broadcast a service to the other traffic partic-
ipants) and browsing (finding services put by other traffic participants) in the
same time without the need of an Access Point.

On the left side of Fig. 7 we present the flowchart of the client application
which begins with a fork from which all the others components start. The iOS
application is broken into three main blocks: Location Updater, LTE Handler
and MP Handler. Each of these has a well established purpose that is suggested
by its: updating the location of the vehicle, handler the LTE or the Multipeer
connectivity. The Location Updater updates the coordinates of the current loca-
tion and converts them from Latitude/Longitude to Easting/Northing since it
is more convenient to use such coordinates in 2D Cartesian system. The second
one, is specialized in handling both incoming and outgoing packets by LTE, it
connects to the server then sends and receives frames. The third block handles
the Multipeer connections. The application starts by advertising and browsing
for nearby peers. In advertising mode, it exposes v2x-service to other peers and
it is waiting for incoming invitations. Once the invitation has arrived, the appli-
cation checks for its signature and it accepts or denies the invitation. In browsing
mode, the application is looking for nearby services. Once found, it sends an invi-
tation for connection and if the invitation was accepted, it starts to send data.
The right side of Fig. 7 depicts the server application which takes the incoming
frames from the clients and sends back all the neighbors in a range of 200 m.

A Vehicle Collision-Warning System Based on Multipeer Connectivity 121

Fig. 7. Flowchart of client (left) and server (right) applications

The server is used for data transfer in LTE mode when the Multipeer connection
is not available. The server application starts its life cycle listening on a local
port which is set to 5555. For experimental purposes we used port forwarding
mechanisms allowing us to run the server on a local machine without the need
of having a registered domain. The previously suggested structure for location
and authentication frames, i.e., from Fig. 6, can be used for data sent between
devices, i.e., by Multipeer connectivity, or received by devices from the server,
i.e., by 3G connectivity.

We now discuss experimental results. First, in Fig. 8 we show the trace for
two moving persons. We chose this, rather then recording the trace of two cars,

Fig. 8. Trace for two individuals with
iPhones (Color figure online)

Fig. 9. Trace for two cars with iPhones
(Color figure online)

122 B. Groza and C. Briceag

to get more flexibility in testing the application. As the individuals approach
each other the blue dots on the plot mark a collision warning reported by the
application. Secondly, Fig. 9 depicts a trace for two moving vehicles. For safety,
we run this while two vehicles were moving inside a parking lot. Again the
application correctly identifies and signals a potential collision that is marked
by red dots. Based on experiments, the accuracy of the GPS localization was
very good reaching at around 1 m in some situations which is excellent for our
application.

4 Conclusion

Our practical deployment and experiments showed that collision-warning sys-
tems based on smart-phones can be an effective technology. In this work we only
explored the proposal as a concept, showing key advantages of such a solution
and proving that it can be implemented in practice. Our results so far rely only
on small scale experiments but we believe that a real-world deployment of such
applications while challenging it is still within reach. This would require large-
scale simulation/experiments, formal verification of the security suite, interest
from car owners and nonetheless cooperation from the industry. We may pursue
such direction as future work.

Acknowledgement. This work was supported by a grant of the Romanian National
Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project number
PN-II-RU-TE-2014-4-1501 (2015–2017).

References

1. Basin, D., Cremers, C., Meier, S.: Provably repairing the ISO/IEC 9798 standard
for entity authentication. J. Comput. Secur. 21(6), 817–846 (2013)

2. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T., et al.: Comprehensive experi-
mental analyses of automotive attack surfaces. In: USENIX Security Symposium,
San Francisco (2011)

3. Chen, L.-W., Chou, P.-C.: BIG-CCA: Beacon-less, infrastructure-less, and GPS-
less cooperative collision avoidance based on vehicular sensor networks. IEEE
Trans. Syst. Man Cybern. Syst. 46(11), 1518–1528 (2016)

4. Dhondge, K., Song, S., Choi, B.-Y., Park, H.: WiFiHonk: smartphone-based beacon
stuffed WiFi Car2X-communication system for vulnerable road user safety. In: 2014
IEEE 79th Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2014)

5. Joerer, S., Segata, M., Bloessl, B., Cigno, R.L., Sommer, C., Dressler, F.: To crash
or not to crash: estimating its likelihood and potentials of beacon-based IVC sys-
tems. In: 2012 IEEE Vehicular Networking Conference (VNC), pp. 25–32. IEEE
(2012)

6. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., et al.: Experimental security analysis
of a modern automobile. In: 2010 IEEE Symposium on Security and Privacy (SP),
pp. 447–462. IEEE (2010)

A Vehicle Collision-Warning System Based on Multipeer Connectivity 123

7. Miller, C., Valasek, C.: A survey of remote automotive attack surfaces. Black Hat,
USA (2014)

8. Morris, B.T., Trivedi, M.M.: A survey of vision-based trajectory learning and anal-
ysis for surveillance. IEEE Trans. Circ. Syst. Video Technol. 18(8), 1114–1127
(2008)

9. Schütze, T.: Automotive security: cryptography for Car2X communication. In:
Embedded World Conference, vol. 3 (2011)

10. Shirazi, M.S., Morris, B.T.: Looking at intersections: a survey of intersection mon-
itoring, behavior and safety analysis of recent studies. IEEE Trans. Intell. Transp.
Syst. 18(1), 4–24 (2017)

11. World Health Organization: Road traffic deaths. Technical report (2013). http://
www.who.int/gho/road safety/mortality/en/.

http://www.who.int/gho/road_safety/mortality/en/.
http://www.who.int/gho/road_safety/mortality/en/.

Cloud Security

Design and Realization of a Fully
Homomorphic Encryption Algorithm

for Cloud Applications

Khalil Hariss1,3(B) , Hassan Noura1,2, Abed Ellatif Samhat1,
and Maroun Chamoun3

1 Faculty of Engineering - CRSI, Lebanese University, Hadath, Lebanon
hnnoura@gmail.com, samhat@ul.edu.lb

2 Telecom ParisTech, 46, rue Barrault, 75013 Paris, France
3 Saint Joseph University, ESIB-CIMTI, Mar Roukoz, Lebanon
khalil.hariss@net.usj.edu.lb, maroun.chamoun@usj.edu.lb

Abstract. Cloud Computing is a kind of internet-based computing that
provides shared storage and processing resources. One main drawback of
this technique is that users and companies will give the permission to
a third party to access their sensitive data. Homomorphic Encryption
scheme came as a new cryptographic research topic to resolve the con-
cerned problem by preserving the privacy in the cloud settings. In this
paper, we propose a new efficient symmetric lightweight Fully Homo-
morphic Encryption algorithm, called “NOHE”, which profits from the
simplicity of the logic NOT and the homomorphic behavior of Morgan
Theorem. The proposed algorithm is explained in detail and evaluated.
The security performance results show an acceptable execution time with
no storage overhead and high immunity to attack.

Keywords: Cloud · Storage · Homomorphic encryption

1 Introduction

Cloud Computing is a new efficient and promising technique for storing and
processing data, by giving better opportunities for out-sourcing of storage and
computation. In this technique all users will allow their data to be stored and
processed by a third party. Unfortunately a lot of users retain from risking
their own sensitive data to a cloud because not any third party is trusted; the
question is: how can we leverage the cryptographic techniques in order to enable
the privacy preserving in the cloud settings? Here classical encryption is limited
or inefficient, and Homomorphic Encryption (HE) is proposed to achieve this
goal.

A Homomorphic Encryption algorithm (HE) is an algorithm that allows pro-
cessing over the ciphertext. HE is a new cryptographic research topic, that was
introduced for resolving the security issues including cloud scenario. It allows

c© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 127–139, 2018.
https://doi.org/10.1007/978-3-319-76687-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_9&domain=pdf
http://orcid.org/5695-6974-1265-8412

128 K. Hariss et al.

Fig. 1. Secure cloud querying

users to encrypt their data in the cloud, and also allows the cloud to process
over encrypted data; the data is kept encrypted in the cloud and there is no need
to ship it back to be decrypted. HE also allows users to send encrypted queries
to any cloud, which can process encrypted queries over encrypted data to return
to the users encrypted answers, then the user can decrypt and get the required
result as shown clearly in Fig. 1.

In fact any electrical circuit boolean function is simply a set of additions
and multiplications. Thus, the main idea of homomorphic encryption is that any
untrusted party should compute E(x + y) and E(x × y) from E(x) and E(y)
without knowing any information about x and y. Two basic properties should be
satisfied to build fully homomorphic encryption algorithm, which are described
in the following:

EK(x1) + EK(x2)modN = EK(x1 + x2,modN) (1)

EK(x2) × EK(x2)modN = EK(x1 × x2,modN) (2)

where x1, x2 ∈ ring ZN , E is the encryption function and K is a secret key.
Several works such as [1–12] have considered the design and the realization of

Homomorphic Encryption algorithms. The existing homomorphic algorithms are
decomposed into two groups: asymmetric (such as Gentry [5], RSA [6], Pallier [7]
and DGHV [8]) or symmetric (such as MORE [9,10], PORE [10] and Domingo
Ferrer [11,12]).

In this paper, we propose NOHE (Not Operation for Homomorphic Encryp-
tion): a new dynamic lightweight homomorphic scheme that profits from the sim-
plicity of the logic NOT and the homomorphic behavior of the Morgan theorem
to build a symmetric FHE (Fully Homomorphic Encryption) that provides effi-
ciency in implementation and high immunity to attacks. The proposed work can
be considered as a good candidate for existing homomorphic schemes. The rest
of this paper is organized as follows. Section 2 briefly introduces an overview
about the two symmetric homomorphic approaches: MORE and PORE. In
Sect. 3, we present our new symmetric homomorphic algorithm NOHE and its
implementation. Security analysis and performances of the resultant algorithm
and its comparison with the MORE and the PORE are given in Sect. 4 while
conclusions are drawn in Sect. 5.

Design and Realization of a FHE Algorithm for Cloud Applications 129

2 The MORE and The PORE Approaches

In [9,10] the authors introduced the MORE approach (Matrix Operation for
Randomization and Encryption) that benefits from the matrix operations for
building a FHE algorithm. It is summarized in Table 1.

In [10], the authors explained the PORE approach (Polynomial Operations
for Randomization and Encryption). The PORE Approach is FHE Algorithm
that satisfies both properties, Addition and Multiplication. The proposed algo-
rithm is summarized in Table 2. While the Homomorphic behavior of the MORE
and the PORE is proved in [9,10], the two algorithms present high storage over-
head and low immunity to attacks.

Table 1. MORE approach

Secret key Secret invertible matrix K in a ring ZN

Public parameters No public parameters

Plain-text space Set of x in a ring ZN

Encryption process Enc(x) =K

[
x 0

0 r

]
K−1, r random

Cipher-text space Set of matrices C = [cij], cij ∈ ZN

Decryption process

[
x 0

0 r

]
=K−1Enc(x)K

Fully homomorphic Verified by a matrix calculations

Table 2. PORE approach

Secret key K = (v1, v2)

Public parameters
b = −(v1 + v2)mod(N)

c = (v1v2)mod(N)

Plain-text space Set of x in a ring ZN

Encryption process Enc(x) = (a, d) that satisfies
av1 + d = x

av2 + d = r

r is a random integer

Cipher-text space Set of (a, d) ∈ ZN × ZN

Decryption process x= (av1 + d)mod(N)

Fully homomorphic b and c should be exposed to the cloud

3 FHE NOHE

3.1 Logic NOT and Homomorphic Behavior

Let us define the function f over the bit level

f : {0, 1} → {0, 1}
x → x̄

130 K. Hariss et al.

The Proposed function f can lead to a homomorphic encryption algorithm
based on Morgan theorem:

f(x ⊕ y) = x ⊕ y = x̄y + xȳ = x̄ ⊕ ȳ = f(x) ⊕ f(y) (3)

f(x • y) = x • y = x̄ + ȳ = f(x) + f(y) (4)

where (⊕ is Logic XOR), (• is Logic AND) and (+ is Logic OR).

3.2 Proposed FHE Algorithm: NOHE

NOHE is built without altering the homomorphic behavior of the f function.
The encryption algorithm is divided into three main parts that will be described
in detail.

– Bits Permutation (P-box): Consider a binary plain-texts vector X of size
l. The bits permutation is realized at the message level (all the bits of X) to
ensure better resistance against exhaustive research attacks such as chosen
plaintext attack.

– Secret NOT positions: The binary plain-texts vector X is divided into
H blocks, where H = � l

n�, n is the block size. The function f (or the logic
NOT) is applied over a certain secret bit positions in the blocks of X.

– Secret Circular Shift operation: A secret circular shift is applied over the
blocks of X.

To ensure higher resistance against attacks, P − box, secret NOT positions
and circular shifts are renewed for each new session. The diagram of Fig. 2 shows
the different steps of NOHE algorithm:

Fig. 2. FHE NOHE flow chart

Design and Realization of a FHE Algorithm for Cloud Applications 131

1. Dynamic Key Generation: A Dynamic Key of 64 bytes (DK) =
SecureHash(Secretkey, IV) is built, then three secret keys (DKp, DKd,
DKs) are picked from it (Fig. 2) to form three cipher layers as follows:

– DKp: Dynamic Key for Permutation formed of 23 bytes.
– DKd: Dynamic Key for Diffusion formed of 16 bytes.
– DKs: Dynamic Key for Selection formed of 23 bytes.

2. Permutation Box: Using DKp, a key dependant P − box is generated and
applied over the bit streams to strengthen our implementation as in [13,14],
since it preserves the homomorphic properties.
Suppose that we have π = [pi]1≤i≤N , a P − box of dimension N . Two plain-
texts X and Y of dimension N are given: X = [xi]1≤i≤N and Y = [yi]1≤i≤N .
After permutation π(X) = [xpi

]1≤i≤N and π(Y) = [ypi
]1≤i≤N .

Suppose that � is a law defined over the plain-texts by:
X � Y = [xi]1≤i≤N � [yi]1≤i≤N = [xi � yi]1≤i≤N = [zi]1≤i≤N = Z.
π(X � Y) = π(Z) = [zpi

]1≤i≤N = [xpi
� ypi

]1≤i≤N .
And π(X) � π(Y) = [xpi

]1≤i≤N � [ypi
]1≤i≤N = [xpi

� ypi
]1≤i≤N .

Since π(X �Y) =π(X)�π(Y), we can deduce the homomorphic behavior of
π. As a practical example, an input plain-text X = [1, 0, 0, 1, 1, 0, 0, 1, 1, 0] is
taken, and a permutation box [3, 6, 9, 2, 7, 5, 10, 1, 4, 8], the permuted plain-
text is [0, 0, 1, 0, 0, 1, 0, 1, 1, 1].

3. Dynamic Block Encryption: At this level, the bits permuted plain-texts
vector is divided into a block format. For each block, using DKd and a stream
cipher algorithm like RC4, a secret sequence of bits having the same length of
the block is generated. Each position in the secret sequence with bit equal to
1 is translated into a NOT position in the block. In addition, a circular shift
for each block is chosen from a secret bank based on the position index of
the block using a dynamic selection algorithm built using DKs. In the exam-
ple of the previous section the permuted plain-text [0, 0, 1, 0, 0, 1, 0, 1, 1, 1] is

decomposed for example into the following block format:
[
0 0 1 0 0
1 0 1 1 1

]
.

Based on the Dynamic encryption implementation suppose that for each block
the security parameters are built as in Table 3. The resultant cipher text is:
Output Cipher of X = [0, 1, 1, 1, 1, 1, 0, 1, 1, 0].

4. Dynamic Key Selection Algorithm: To achieve the circular shift, the
dynamic key selection algorithm is creating another permutation box Δ =
[δi]1≤i≤H that has the length of the number of blocks. The circular shift
selection is done based on the block number as shown in Fig. 3. Similar to
P − box homomorphic behavior, we can show that any circular shift is also
homomorphic.

Table 3. Dynamic block encryption

Block Nb DKd, RC4 NOT positions DKs, selection algorithm

Block 1 [10100] Not pos. = (1, 3) Secret circular shift = 3

Block 2 [01001] Not pos. = (2, 5) Secret circular shift = 4

132 K. Hariss et al.

Fig. 3. Dynamic selection algorithm

3.3 Decryption Process

The Decryption process is the inverse of the encryption process listed in Fig. 2
since the scheme is symmetric. The decryption process is based on the following
three steps:

1. Inverse Circular shift: The dynamic key selection algorithm is built from DKs,
and using it the receiving end can select for each block the inverse circular
shift from the shared circular shift bank.

2. Secret NOT positions: Based on DKd and RC4 algorithm, the same secret
bit sequence that represents the secret NOT positions can be generated and
the NOT on each block can be removed.

3. Inverse Permutation: The destination produces the inverse secret permutation
vector π−1 by using DKp and the following transformation:

π−1[π[X]] = X (5)

3.4 FHE NOHE Homomorphic Implementation

Based on the proposed FHE NOHE, we can achieve the homomorphic implemen-
tation in two different scenarios: Trusted Cloud or Untrusted Cloud, depending
on the level of the trust given to the cloud. The trusted cloud may know the
secret NOT positions, but the untrusted one should not know anything about
the security parameters. In the following, we give an example to explain the two
different implementations. Let X and Y be two plain-texts and their ciphers
respectively are Enc(X) and Enc(Y) given using NOHE:

1. Bits Permutation: let π(X) = [1, 1, 0, 0, 1] and π(Y) = [0, 1, 0, 0, 1], be the
permuted plain-texts vectors for X and Y .

2. Secret NOT positions: Suppose that the secret NOT positions are first
and fourth positions (1 and 4, shown in bold below), as a result we have:
f(π(X)) = [0, 1, 0,1, 1] and f(π(Y)) = [1, 1, 0,1, 1].

Design and Realization of a FHE Algorithm for Cloud Applications 133

3. Secret Circular Shift operation: suppose that the secret circular t is 3, in
this case we have to apply 3 times a circular shifts and the final cipher-text
is given:

– First circular shift for f(π(X)) and f(π(Y)) respectively: [1,0, 1, 0,1] and
[1,1, 1, 0,1]

– Second circular shift: [1, 1,0, 1, 0] and [1, 1,1, 1, 0].
– Third circular shift: Enc(X) = (f(π(X)) >> t) = [0,1, 1,0, 1] and

Enc(Y) = (f(π(Y)) >> t) = [0,1, 1,1, 1].

First Scenario - Trusted Cloud. Since the cloud here is trusted, it is possible
to know the bold secret NOT positions. In this case, we define the FHE by these
two operations: Homomorphic XOR and Homomorphic AND. Homomorphic
XOR: The Homomorphic XOR requires the calculation of Enc(X ⊕ Y) from
Enc(X) and Enc(Y) without knowing any information about X and Y . Given
that π(X ⊕ Y) = [1, 0, 0, 0, 0] after applying FHE NOHE applied on X and Y ,
we obtain Enc(X ⊕ Y) = [0,1, 0,0, 0].
Enc(X) = [0,1, 1,0, 1] and Enc(Y) = [0,1, 1,1, 1] are stored at the cloud
side. In this scenario the trusted cloud can distinguish the bold positions (secret
NOT) from the normal ones, and it will process the normal ⊕ over the normal
bits and the homomorphic ⊕ over the bold bits as given in this expression:
CloudXORProcess = [g1, g2, g1, g2, g1], where g1(b1, b2) = b1 ⊕ b2 and
g2(b1, b2) = g1(b1, b2) based on Eq. (3). The result of the Cloud processing
is given by [g1(0, 0), g2(1, 1), g1(1, 1), g2(0, 1), g1(1, 1)] = [0,1, 0,0, 0] which is
equal to Enc(X ⊕Y). In this Homomorphic XOR we calculate at the cloud side
the Enc(X ⊕ Y) knowing Enc(X) and Enc(Y) only.

Homomorphic AND: The same operations are repeated in this sce-
nario using the homomorphic AND explained in Eq. (4), the CloudANDPro-
cess = [g1, g2, g1, g2, g1], where g1(b1, b2) = b1 • b2 and g2(b1, b2) = b1 + b2.

Second Scenario - Untrusted Cloud. In this scenario, since the cloud is
untrusted, the FHE scheme should be accomplished in a different way to avoid
any attacks.
Enc(X) and Enc(Y) are stored at the cloud side, and the bold positions are not
known by the cloud. The cloud will process the normal XOR and the homomor-
phic XOR over the two cipher-texts as shown below:

Homomorphic XOR:

– Normal XOR: Enc(X) ⊕ Enc(Y) = [0,0, 0,1, 0].
– Homomorphic XOR:Enc(X) ⊕ Enc(Y) = [1,1, 1,0, 1].

The two values of Enc(X) ⊕ Enc(Y) and Enc(X) ⊕ Enc(Y) are shipped back
to the host side. The host knows all the cipher layers including the secret NOT
positions. Thus the host will choose the normal bits from Enc(X)⊕Enc(Y) and
the bold bit positions from Enc(X) ⊕ Enc(Y) to get [0,1, 0,0, 0] which is equal
to Enc(X ⊕ Y). In this scenario, we also build Enc(X ⊕ Y) from Enc(X) and
Enc(Y).

134 K. Hariss et al.

Homomorphic AND:
The same procedure is repeated in this scenario with Homomorphic AND using
Eq. (4).

4 Security Analysis and Performances

Security analysis is a set of tests used to evaluate the security performances of
the proposed FHE NOHE scheme. Several tests are done as listed in [15], where
a set of plain-texts in the ring Z256 are picked as integers and then transformed
into binary for the NOHE implementation. We compare the execution time and
the storage overhead of MORE and PORE with NOHE. As for the security
analysis, NOHE outperforms MORE and PORE because it is well known that
these two FHE algorithms are vulnerable to attacks as shown in [16].

4.1 Resistance Against Statistical Attacks

The independence and uniformity are two important properties should be sat-
isfied by any encryption scheme to ensure high resistance against statistical
attacks. Different tests are employed to verify these two properties: Uniformity
(Distribution Test, Entropy Test), Independence (Recurrence Test, Difference
Test, Correlation Test).

Uniformity

1. Distribution Test: To resist statistical attacks, the frequency counts of the
cipher-text should be close to the uniform distribution to prevent any useful
information that can permit this kind of attacks to break the cipher system.
The distribution of a plain-text and its corresponding cipher-text distribution
are shown in Fig. 4(a) and (b), respectively. The distribution of the cipher-text
after applying NOHE is close to uniform distribution.

2. Entropy Test: The information entropy of a source message m is a metric
that measures the level of uncertainty in a random variable. The entropy is
defined by the following equation:

H(m) =
2M−1∑
i=0

p(mi)log2
1

p(mi)
(6)

where p(mi) represents the probability of occurrence of symbol mi and 2M

is the total state of information source. A truly random source entropy is
equal to M , since the plain-text is chosen from a ring Z256, the ideal value
of the entropy should be equal to 8 (28 = 256). In Fig. 4(c), the entropy
value is calculated for 10000 cipher-texts. The obtained result gives a mean
value equal to 7.942 which is very close to 8 with a low standard deviation
(Std = 0.005169). Therefore, the cipher-text ensures a high entropy value.
This confirms the previous result regarding the uniformity and the obtained
cipher-text space can be considered as a truly random source.

Design and Realization of a FHE Algorithm for Cloud Applications 135

Fig. 4. Distribution test: (a)- Original message, (b)-Cipher message, (c) Entropy test.

Independence Property

1. Recurrence Test: The recurrence plot serves to measure the evolution of
randomness by estimating the correlations among the data of a sequence as in
considering a packet sequence xi = x(i,1), x(i,2), x(i,3), ..x(i,m), a vector with
delay t ≥ 1 can be constructed by xi(t) = x(i,t), x(i,2t), x(i,3t),x(i,mt). In
Fig. 5(a) and (b) the variation between xi(t) and xi(t+1) from the original and
the encrypted plain-texts respectively are shown. A plain-text is generated
using a normal distribution with a mean value equal to 128 and a standard
deviation equal to 16 as shown in Fig. 5-(a). After applying the proposed FHE
NOHE, one can see in Fig. 5-(b) that the obtained cipher-text presents a non-
linearity since no clear pattern is shown after the encryption process. This test
demonstrates that the proposed cipher presents a high level of randomness.

2. Difference Test: This test is done to calculate the percent of difference at
the bit level between the cipher-texts and the plain-texts. Any cipher should
ensure a difference percent close to 50% between the cipher-texts and the
plain-texts at the bit level to be considered secure. In Fig. 5(c), the difference
at bit level between each couple of cipher-text and plain-text is calculated for
10000 times. One can see in Fig. 5(c) that the obtained values are close to the
ideal ones with a mean value close to 50 with a low standard deviation equal
(0.3095). Consequently, the proposed cipher satisfies the different required
cryptographic performances.

3. Correlation Test: Any encryption scheme should provide a low correlation
between the original and the encrypted plain-texts. The correlation coefficient
between the original and the encrypted plain-texts is:

ρx,y =
cov(x, y)√

D(x) × D(y)
where cov(x, y) = E[{x − E(x)}{y − E(y)}];

E(x) =
1
n

×
n∑

k=1

xi and D(x) =
1
n

×
n∑

k=1

{xi − E[x]}2

The correlation test for 10000 iterations is shown in Fig. 5(d), and the
obtained results are always close to zero with a mean value equal to
3.107×10−5 and a standard deviation equal to 0.01752. The proposed cipher
achieves a low correlation between the cipher-texts and the plain-texts and
consequently ensures the independence propriety.

136 K. Hariss et al.

Fig. 5. Recurrence test: (a)- Original message, (b)-Cipher message, (c) Difference test,
(d) Correlation test.

4.2 Resistance Against Several Kinds of Key Attacks

The Proposed scheme presents a high immunity against different type of key
attacks. The weakness in any dynamic key will not affect the previous and the
next processed data since the proposed key derivation function produces a set
of dynamic sub-keys with a high degree of randomness. This provides a good
resistance degree against the weak keys. In addition the size of the secret key
(128,196, 256) bits such as AES and the size of DK 512 bits, are sufficient enough
to protect the proposed cipher against the brute force attacks.

Key Sensitivity Test. To confirm resistance against key attacks, this test is
used to compute the percent of change in the cipher-text due to a slight change
in the encryption key. The cipher should ensure a value of key sensitivity close
to 50. Indeed, the sensitivity test for the wth secret key (K ′

w) is calculated as
follows:

KSw =
∑T

k=1 EKw
⊕ EK′

w

T
× 100%, w = 1, 2, . . . , 1000. (7)

where all the elements of K ′
w are equal to those of Kw, except a random Least

Significant Bit (LSB) of a random byte, and T is the length of the original and
cipher plain-text (in bits). The KS test is done for 10000 iterations; the mean
value is also close to 50 with a low standard deviation equal to 0.3128 as shown
in Fig. 6(a).

4.3 Lack of Avalanche Effect

In any robust cipher, the “Avalanche Effect” property should be ensured
to attain the required resistance against chosen/known plaintext/cipher-text
attacks. Avalanche effect means that if a one bit change in the plain-text exists,
at least half of the cipher-text bits should change. In our proposed algorithm,
one bit change in the plain-text will change only one bit in the cipher text.

Design and Realization of a FHE Algorithm for Cloud Applications 137

Fig. 6. (a) Key sensitivity, (b) Storage overhead comparison.

Overcoming the Lack of Avalanche Effect. Suppose that Trudy
is an intruder trying to do a known plain-text/cipher-text attack over
our FHE NOHE explained previously. If Trudy sends the input plain-
text = [1, 0, 0, 1, 1, 0, 0, 1, 1, 0] to the FHE NOHE the Output cipher-text will
be A = [0, 1, 1, 1, 1, 1, 0, 1, 1, 0]. If Trudy sends the same plain-text by changing
one bit like [0, 0, 0, 1, 1, 0, 0, 1, 1, 0], by applying the same security parameters of
the FHE NOHE the Output Cipher in this case is B = [0, 1, 1, 1, 1, 1, 0, 0, 1, 0].
To accomplish his attack, Trudy should XOR the two cipher-texts A and B to
obtain the following:
A⊕B = [0, 1, 1, 1, 1, 1, 0, 1, 1, 0]⊕[0, 1, 1, 1, 1, 1, 0, 0, 1, 0] = [0, 0, 0, 0, 0, 0, 0,1, 0, 0].
After doing this XOR operation, Trudy can compare the cipher-text and the
plain-text to recover the first bit in the plain-text as shown below in Fig. 7. If
we examine carefully Trudy attack, we can notice that recovering the 10 bits
plain-text from the 10 bits cipher-text requires 10 iterations. In general, recov-
ering a plain-text formed of n bits requires n iterations. To overcome the lack
of Avalanche effect, the Dynamic key DK should be used for short encryption
sessions in addition to the dynamic key approach and in this case we can avoid
Trudy’s attack.

Fig. 7. First bit uncover

138 K. Hariss et al.

4.4 Storage Overhead

The comparison between the storage overhead of MORE and PORE with
NOHE is given in Table 4.

Table 4. Storage overhead comparison

Input plaintext size MORE PORE NOHE

n bytes n × m × m bytes 2 × n bytes n bytes

A simple comparison for the storage overhead between the different encryp-
tion algorithms is given in Fig. 6(b). It is very clear that FHE NOHE has a null
storage overhead giving a better performance than other FHE algorithms, while
the MORE presents the highest one because it is storage overhead is related to
the matrix size (m × m).

4.5 Execution Time

MORE (4 × 4 matrix), PORE and NOHE implementation are done under
MATLAB using Toshiba Laptop having the following specifications: Processor
Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz, 2301Mhz, 2 Core(s), 4 Logical
Processor(s). The execution time is given for different plain-texts size as shown
in Table 5. Based on the execution time, MORE and PORE are better than
NOHE. However, MORE and PORE are not well secure [16].

Table 5. Execution time in seconds

Plaintext size in bytes 800 3200 5600 8000

NOHE execution time 0.0302 s 0.1202 s 0.2512 s 0.3106 s

MORE execution time 0.0200 s 0.0544 s 0.0950 s 0.1361 s

PORE execution time 0.0116 s 0.0434 s 0.0762 s 0.1119 s

5 Conclusion

In this paper, we present a new lightweight FHE algorithm called NOHE. It
is based on symmetric primitives to ensure efficiency, robustness in addition
to homomorphic proprieties. A practical use of the proposed cipher is for cloud
system. NOHE has a dynamic structure and designed to be implemented in two
different scenarios, where each one is based on the trust level given to the cloud.
The security analysis of the proposed cipher indicates a high level of robustness.
Different countermeasures are used to overcome the lack of Avalanche Effect.
The main advantage of the FHE NOHE that makes it practical for real world
applications is its null storage overhead with an acceptable execution time.

Design and Realization of a FHE Algorithm for Cloud Applications 139

References

1. Aguilar-Melchor, C., Fau, S., Fontaine, C., Gogniat, G., Sirdey, R.: Recent advances
in homomorphic encryption: a possible future. IEEE Signal Process. Mag. 30(2),
108–117 (2013)

2. Chan, AC-F.: Symmetric-key homomorphic encryption for encrypted data process-
ing. In: 2009 IEEE International Conference on Communications, pp. 1–5. IEEE
(2009)

3. Fau, S., Sirdey, R., Fontaine, C., Aguilar-Melchor, C., Gogniat, G.: Towards practi-
cal program execution over fully homomorphic encryption schemes. In: 2013 Eighth
International Conference on P2P, Parallel, Grid, Cloud and Internet Computing
(3PGCIC), pp. 284–290. IEEE (2013)

4. Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists.
EURASIP J. Inf. Secur. 2007(1), 1–10 (2007)

5. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

6. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

7. Nassar, M., Erradi, A., Malluhi, Q.M.: Paillier’s encryption: implementation and
cloud applications. In: 2015 International Conference on Applied Research in Com-
puter Science and Engineering (ICAR), Beirut, pp. 1–5 (2015)

8. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

9. Xiao, L., et al.: An Efficient Homomorphic Encryption Protocol for Multi-User
Systems. IACR Cryptology ePrint Archive, Report 2012/193

10. Kipnis, A., Hibshoosh, E.: Efficient methods for practical fully-homomorphic
symmetric-key encryption, randomization, and verification. IACR Cryptology
ePrint Archive, Report 2012/637

11. Ferrer, J.D.: A new privacy homomorphism and applications. Inf. Process. Lett.
60(5), 277–282 (1996)

12. Ferrer, J.D.: A provably secure additive and multiplicative privacy homomorphism.
In: Chan, A.H., Gligor, V. (eds.) ISC 2002. LNCS, vol. 2433, pp. 471–483. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45811-5 37

13. Noura, H., Courrousé, D.: HLDCA-WSN:homomorphic lightweight data confiden-
tiality algorithm for wireless sensor network. Int. Assoc. Cryptogr. Res. IACR
2015, 928 (2015)

14. Zhang, P., Jiang, Y., Lin, C., Fan, Y., Shen, X.: P-coding: secure network coding
against eavesdropping attacks. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9.
IEEE (2010)

15. Noura, H., Samhat, A.E., Harkous, Y., Yahiya, T.A.: Design and realiza-
tion of a neural block cipher. In: 2015 International conference on Applied
Research in Computer Science and Engineering (IACR), Beirut, pp. 1–6 (2015).
https://doi.org/10.1109/ARCSE 2015.7338131

16. Vizer, D., Vaudenay, S.: Cryptanalysis of chosen symmetric homomorphic scheme.
Stud. Sci. Math. Hung. 52(2), 288–306 (2015)

https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/3-540-45811-5_37
https://doi.org/10.1109/ARCSE 2015.7338131

A Study of Threat Detection Systems
and Techniques in the Cloud

Pamela Carvallo1,2(B), Ana R. Cavalli1,2, and Natalia Kushik1

1 SAMOVAR, Télécom SudParis, CNRS, Université Paris-Saclay, Évry, France
{pamela.carvallo,ana.cavalli,natalia.kushik}@telecom-sudparis.eu

2 Montimage, Paris, France

Abstract. This paper presents a study of existing threat detection tech-
niques in cloud computing, together with an experimental evaluation of
a subset of them. We consider the threats defined in the Cloud Security
Alliance (CSA) report as well as the techniques for their detection, start-
ing from classical signature-based approaches and finishing with recent
machine learning based techniques. This paper also contains an analysis
of original results presented in international conferences, published as
journal papers, Internet resources, and standards. The main contribu-
tions of the study include: 1. providing a closer relationship between top
threats in cloud computing and known detection techniques; 2. evaluat-
ing existing detection techniques concerning cloud computing principles
and security challenges nowadays; and 3. reviewing commonly utilized
datasets and their association with threats in the last five years. As exist-
ing detection techniques tend to target specific threats (or their groups),
we also present the experimental evaluation of the applicability of known
detection approaches against non-targeted threat groups.

Keywords: Cloud computing · Security · Cloud-related threats
Detection systems

1 Introduction

Cloud computing opens new possibilities for more flexible and efficient services.
However, one of the issues of migrating to the cloud is that it involves a third-
party implementation and enforcement of security policies [38]. In such environ-
ments, many security aspects must be faced, including risk management, data
privacy and isolation, security-by-design applications, vulnerability scans, among
others. Besides preventive solutions (e.g., encryption, firewalls), it also becomes
necessary to have a system that interrelates all monitored security mechanisms
from different points of observation. On the other hand, new attacks emerge
every day and thus, threat detection systems start playing a key role in security
schemes, identifying possible attacks.

Cloud-based threat detection techniques are commonly divided into three
groups, namely pattern-based, behavior-based and hybrid (first two combined).
c© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 140–155, 2018.
https://doi.org/10.1007/978-3-319-76687-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_10&domain=pdf

A Study of Threat Detection Systems and Techniques in the Cloud 141

In the first case, attacks are described as rules or expressions in related grammar
(signatures) and the new collected data of the system under test are verified with
respect to the set of such signatures. For behavior-based techniques, “normal”
system actions are somehow defined, and the monitoring system can later serve
for concluding if the monitored environment is differing from the defined behav-
ior. In this case, different statistical models, as well as self-learning techniques,
can be effectively utilized. Nevertheless, some proposed algorithms commonly
suffer from high false-positive detection rates, encouraging the use of hybrid
approaches by companies and academic institutions.

In this paper, we provide a review of existing techniques and tools for effec-
tive threat detection in cloud environments. In our study, we have analyzed 47
publications consisting of well-ranked scientific journals and conferences from
2012 up to this year, as well as industry standards and security working groups’
guidelines. These scientific publications are indexed by digital scientific databases
such as the ACM Digital Library, Elsevier, IEEE Xplore, DBLP and Springer.
We assessed the following methodology: We covered the topics of detection sys-
tems and detection techniques in the cloud. Also, we specifically searched the
mentioned keywords together with each of the threats studied. The selection of
works derived in both a systematic review of the detection architectures and
the second in a detailed examination of the detection techniques. We note that
despite the indirect impact non cloud-specific studies may have, we excluded
these works as they do not directly examine any cloud property.

As the topic of providing security in the cloud remains essential, it is worth
mentioning that the survey presented in this work is not the first covering
this subject. However, existing works (e.g., [22,24,26,34,35,37]) mostly focus
on either analyzing system requirements and cloud security gaps, or describing
detection techniques along with some attacks. It is required then to combine
both approaches to provide a broad view of the state of the art of the problem.
Below, we briefly sketch some existing works summarizing security issues in the
cloud and discuss the motivation for expanding the research on this field.

A systematic review of detection system issues is presented by the authors
of [37], comparing advantages and disadvantages of Intrusion Detection Sys-
tem (IDS) components, e.g., type of time detection —real or non-real time,
data collection types —distributed or centralized, node positioning —network or
host based, response type —active or passive, and structural implementation —
individual or collaborative. Derfouf et al. [9] provided a comparison between the
major architectures and proposed a smart intrusion detection model, based on
the principle of collaboration between many IDSs. Khorshed et al. [26] addressed
implementation challenges for threat remediations and applied Naive Bayes,
Multilayer Perceptron (MLP), Support Vector Machines (SVMs) and Decision
Trees. They used the WEKA data-mining tool for testing against attacks target-
ing shared memory, Denial of Service (DoS), malicious insiders, phishing and vir-
tual machine side-channels. Additionally, the authors of [35] extensively revised
the Distributed DoS (DDoS) and DoS methods following the same detection
taxonomy broadly categorized in signature, anomaly and hybrid-based.

142 P. Carvallo et al.

Detection techniques have their particular challenges. Therefore different
researchers such as Modi et al. [34] and Jouad et al. [22] have studied and com-
pared their advantages and limitations. Modi et al. followed a classification based
on signature, anomaly, Artificial Neural Networks (ANN), fuzzy logic, associa-
tion rule, SVM and hybrid-based approaches. The same classification was also
considered in [24] where several detection techniques were described.

Nevertheless, we note the following aspects are missing in the cloud-related
surveys listed above, therefore constituting the motivation of this paper: 1.
Deeper analysis of the relation between detection techniques and different types
of threats; and 2. Experimental evaluation of techniques used for threats of one
category, comparing their detection performance against other threat categories.

The structure of the paper is as follows. Section 2 contains preliminaries.
Section 3 summarizes existing detection techniques and its discussion (Sect. 3.4).
Section 4 shows experimental results on suitable techniques presented in the
paper against different types of threats. Finally, Sect. 5 concludes the paper.

2 Preliminaries

2.1 Security Issues in the Cloud

According to the National Institute of Standards and Technology [32], cloud com-
puting is a model for enabling ubiquitous, elastic, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services). Its service models, known as Software as a Service
(SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) have
specific and shared security challenges. The first provides a Cloud Service Client
(CSC) the capability to use applications running on a cloud infrastructure by
a Cloud Service Provider (CSP). PaaS provides the CSC with tools to deploy
their applications on top of the cloud infrastructure. The latter gives provision
to the CSC in processing, storage, networks, and other fundamental comput-
ing resources where the consumer can deploy and run arbitrary software, which
can include operating systems and applications. Security challenges reside in the
coexistence since PaaS, as well as SaaS services, are hosted on top of IaaS.

We further enumerate critical cloud aspects trying to provide the expla-
nations how these elements can influence the design of a cloud-based threat
detection system. In particular, we consider:

– Virtualized environment. Brings elasticity by allowing multiple Virtual
Machines (VMs) management and pooling in the same physical resources.

– Multi-tenancy. Enables the use of a single resource by multiple customers
that may or may not belong to the same organization.

– Data life cycle. Defines no fixed infrastructure and security boundaries on
applications and data on the cloud.

– Network dynamics. Concerns non-linear, non-stationary and complex
dynamical characteristics of the network flows.

A Study of Threat Detection Systems and Techniques in the Cloud 143

– Access. Takes into account the fact that data are transmitted using the
Internet and may require credentials, authentication, identity management
and anonymization.

2.2 Threat Overview

Following the European Network and Information Security Agency [10] we con-
sider a threat as an event that can exploit a vulnerability, intentionally or acci-
dentally, and obtain, damage, or destroy an asset. An attack is a sequence of
components and interfaces that a threat actor or a condition can use to achieve
a threat against an asset. The threat actor or actors gain access to the assets
via attack vectors and vulnerabilities present in the technology components that
host or provide direct access to the targeted assets. Threat detection systems are
deployed in cloud environments with the intent to prevent, address and mitigate
the attacks pursued by the threat actors, thereby protecting the assets.

Common threat guidelines have been proposed reflecting the current con-
cerns among experts [8,10,12,17], resulting in data threats such as breaches
or losses, account hijacking, insecure application programming interfaces, DoS,
malicious insiders, abuse of cloud services and shared technology. These have
been previously reviewed in [43], together with the relevant vulnerabilities and
countermeasures analysis [17]. From the preceding sources, we list below the
considered group of threats in this work, along with two threat groups gathered
from the aforementioned studies: Other attacks (corresponding to known attack
patterns from network datasets, such as port scan) and Malware (e.g., Kelihos
and Zeus), illustrated in Fig. 1.

– Data-related threats. Treated as the top threats among industry experts
[8]. A data breach is an incident in which protected or confidential information
is released, viewed, stolen or processed by an entity not authorized to do so.
It concerns IaaS, PaaS and SaaS as they all keep sensitive data.

– Account Hijacking. Specified as a process in which an individual or orga-
nizations cloud account is stolen or hijacked by an attacker. This threat is
relevant to cloud architectures since attackers can often access critical areas
of deployed cloud computing services, allowing them to compromise the con-
fidentiality, integrity and availability of IaaS, PaaS and SaaS services.

– Malicious Insider. Defined as a threat to an organization occasioned by a
current or former employee, contractor, or another business partner who has
or had authorized access to an organization network, system, or data. This
action intentionally exceeded or misused the access in a manner that nega-
tively affected the confidentiality, integrity, or availability of the organization
information or information systems.

– Denial of Service. Meant to prevent components from being available in a
cloud environment; that concerns, for example addressing to APIs for SaaS
outage or specific DDoS at the infrastructural layer [1].

– Shared Technology threats. Existent in all delivery models, including
multi-tenant architectures (IaaS), re-deployable platforms (PaaS), or multi-
customer applications (SaaS) [8].

144 P. Carvallo et al.

3 Cloud Threat Detection Systems

Threat detection systems usually correspond to a hardware device or software
application that monitors an activity (e.g., from network, VM host, user) for
malicious policy violations. Previous works (e.g., [37,44]) have stated several
features of detection systems; among those, fault-tolerance, real-time execution,
self-monitoring, minimum operational, interoperability, self-adaptiveness, scal-
ability. A multi-criteria analysis of IDSs was presented in [50], following these
and other cloud computing requirements such as performance and availability
along with CSA-inspired criteria, such as service level expectations, secured and
encrypted communication channels, detection methods used and their accuracy.

System architectures may vary if they are distributed, centralized, agent-
based [20] or collaborative; the positioning of various observation points also
defines different types of architectures. The monitoring layers can be classified
as follows: 1. network-based monitor activity of network traffic —mostly IP and
transport layer; 2. host-based monitor application or service activities operating
on top of VM’s operative systems; 3. hypervisor-based monitor virtual machine
introspection to gather system-specific features (e.g., process list, threats count,
number of open ports); 4. cross layer-based monitor in the form of any combi-
nation of the previously mentioned. In general, data collection and preparation
are performed through a sensor or existing dataset. This information works as
an input for the data analysis and detection, which corresponds to the module
of the algorithms implemented to detect suspicious activities, detailed in the
following sections.

3.1 Pattern-Based Approach and Related Techniques

Also known as “signature-based”, “knowledge-based” or “misuse-based”, this
approach operates over a set of rules that define a threat pattern or a known
authorized pattern. They are known to have a high level of accuracy [42], but
are limited to only known rules and attacks. Therefore, pattern-based techniques
cannot detect variants of known or unknown attacks. Moreover, keeping signa-
ture or knowledge databases updated may be a hard task.

Latest research focuses on facilitating to cloud administrators the determi-
nation of new attack patterns by updating signature databases more efficiently.
To assess this automatic and offline analysis, Hamdi et al. [16] proposed Induc-
tive Logic Programming, while Huang et al. [18] used Growing Hierarchical Self
Organizing Maps (GHSOM) for the characterization of attack signatures. Other
techniques that we further discuss are grouped as so-called rule-based.

Rule-based. For known or variants of known attacks, rule-based context meth-
ods have been considered in a number of works.

Watermarking was studied for data breaches detection by Garkoti et al. [14].
Threats may occur in any stage of the data cycle (Sect. 2.1) and digital water-
marking is a reviewed technique for detecting data tampering. Specifically, the

A Study of Threat Detection Systems and Techniques in the Cloud 145

authors introduced spatial domain watermarking, encryption and logging mod-
ules for clinical data. Concerning insider threats and further potential data-
related threats, Kumar et al. [28] considered a method related to the well-known
Bell-LaPadula model, which aims to determine the organization employee who
leaked the data. This model is built on the concept of subjects and objects (i.e.,
a file). They define levels where subjects have access to objects following security
policies. Various cryptographic and watermarking techniques are later applied
to identify the internal user involved in the leakage.

Fingerprinting was considered for malicious insider threat detection by
Gupta et al. [15] through the analysis of commonly used programs by a VM.
They assumed that the signature of frequent executions remains reasonably con-
stant and detects malicious modifications of the system call sequences executed
from the VM to the hypervisor.

Provable Data Possession (PDP), formalized in [2], is related to data losses
and preserving data integrity. Basically, a CSC uploads data for storage and
keeps meta-data for later verification. The classical idea behind this technique
can only be applied to static (or append-only) files. Hence, Erway et al. [11] pre-
sented a framework based on Dynamic Provable Data Possession, which extends
the PDP traditional approach. It supports provable updates to the stored data,
using a new version of authenticated dictionaries based on rank information.

Sequence alignment, commonly used in bioinformatics, was proposed by Khol-
idy and Baiardi [25] to detect account or service hijacking threats, specifically
for masquerade attacks. They introduced Heuristic Semi-Global Alignment algo-
rithm, which tests matching patterns of user’s session sequences (e.g., mouse
movements, system calls, opened windows titles, written commands, opened file
names) with the previously stored arrays.

Dependency Graphs were proposed by Yaseen et al. [47]. Based on applying
knowledge and dependency graphs one can detect and predict malicious insid-
ers in relational databases. The authors considered the network overhead and
system performance for variables, including the number of queries per insider,
the number of insiders and percentage of accessibility for data items in relational
databases.

3.2 Behavior-Based Approach and Related Techniques

Also known as anomaly-based detection, this approach involves the collection of
data in order to construct a model of normal behavior and then to test newly
observed behaviors against potential anomalies. As this is a sophisticated task,
some works have proposed a mixed approach (e.g., [23,36,46]) where the follow-
ing statistical and machine learning methods are combined. We have differen-
tiated existing techniques in statistical, machine learning-based and clustering
techniques. We hereafter assume that statistical methods mostly use specific
formulas or functions to compute the corresponding characteristics of the data
attributes; machine learning, on the other hand, “works” when such functions
cannot be derived, and thus, it utilizes more complex relationships between the
data for further threat prediction.

146 P. Carvallo et al.

Fig. 1. Relationship between the threats and reviewed detection techniques

Statistical. These approaches are in general predefined by a threshold, first
order statistics or probabilities, in order to identify anomalies. As an example
one can consider a type of DoS — Economic Denial of Sustainability (EDoS)
— issued by [3], where the authors compared user demands against thresholds
of duration parameters as the maximum number of requests beyond when the
auto-scaling feature is activated.

Non-parametric techniques take place when the system observes the activity
of subjects in terms of statistical distribution and creates profiles which represent
their behaviors for later similarity comparison. Bates et al. [4] addressed covert-
side channel threats by detecting network flow’s watermarking. In particular,
they modeled packet arrivals by a Poisson distribution and applied the non-
parametric Kolmogorov-Smirnov test. DoS was studied by Shamsolmoali et al.
[40] in a two-stage detection: extracting the Time-to-Live values from incoming
IP packets, computing the number of hops the packet had traveled and using
Jense-Shannon divergence searching for anomaly in the normal trained database.

Entropy-based techniques focus on measuring the uncertainty or randomness
associated with a variable. For network flows, comparing the rate of entropy
of some packet header fields with other samples of the same nature provides a
mechanism for detecting changes in the randomness. For DDoS attack detection,
Jeyanthi et al. [21] proposed a cross-layer implementation where the first compo-
nent analyzes incoming traffic rate and is handed to a Hellinger Distance-based
entropy profiler in case it exceeded a threshold. Sharma et al. [41] utilized incom-
ing network packets and studied the entropy of source MAC address also with

A Study of Threat Detection Systems and Techniques in the Cloud 147

a threshold-based analysis. Same threat concern and approach were followed in
[5] where the authors investigated the VM CPU usage and network interfaces,
arguing on the fact that malicious VMs share similar attack patterns.

Principal Component Analysis (PCA) was used by Marnerides et al. [31] for
DoS and netscan detection, not only for reducing datasets dimensionality but
also to separate the normal data from anomalous.

Signal analysis such as Ensemble Empirical Mode Decomposition was pre-
sented in [30]. The authors proposed a data-driven method for malware, moti-
vated by the fact that the algorithm can decompose the data as signals and
describe clouds’ non-linear and non-stationary network traffic and hypervisor
information.

Catastrophe theory studies the way systems respond to the continuous mod-
ifications from the variables that control them, producing sudden changes from
one system state to another (e.g., from normal state to anomalous). Xiong et
al. [46] introduced a catastrophe function to describe network traffic anomalies
in cloud communications.

Machine learning-based. These methods allow improving the performance of
their objective by learning from previous results. This subsection is illustrated
in Fig. 1, where we group these techniques with their underlying models for
detecting security threats in the cloud.

Decision trees are used in [7], where they preprocessed unlabeled data with an
unsupervised clustering algorithm. After labeling, a model based in incremental
tree inducer is trained, therefore updating itself.

SVM technique for could threat detection was proposed by Watson et al.
[45]. The authors studied an online novelty implementation of a supervised one-
class SVM algorithm, an extension of traditional two-class SVM which outputs
either a known class (VM normal behavior) or unknown classes to the classifier,
for each particular input vector.

Artificial Neural Networks expose their accuracy based on the configura-
tion of their hidden layers and training phase. Pandeeswari and Kumar [36]
preprocessed hypervisor attributes with Fuzzy C-Means clustering and utilized
feed-forward neural networks with back-propagation algorithm for each of them.
They later combined the results of the ANNs with a fuzzy aggregation module.
A Synergetic Neural Network (SNN) was addressed by Xiong et al. [46], given
the dynamics of the network’s traffic. Their argument relied on the fact that
under some situations, the changing trend of the cloud-based network traffic is
only determined by a few primary factors and less contribution of others.

GHSOM techniques were also addressed by Li et al. [29], by proposing a
cluster system that identified Nmap malicious behaviors in VMs through system
call distributions in order to derive rules for SVM detection.

Clustering. These techniques are utilized under the assumption that normal
data instances lie distance-wise closer to a given centroid of a cluster, whereas

148 P. Carvallo et al.

anomalous data points are recognized due to their much longer distance. Density-
based approaches rely on the fact that normal data instances belong to large
and dense clusters, while anomalies either belong to small or sparse clusters.

K-means technique was followed by Marnerides et al. [31], while showing the
clustering method is directly affected by live-migrations. In this testbed, they
detected DoS and netscan threats successfully when arose, but also achieved high
scores when only migration and normal traffic occurred. Additionally, it was uti-
lized for detecting shared technologies threat, as seen in Fig. 1. For example, in
[48], the authors combined a two-stage detection mode based on statistical sim-
ilarity tests from the cache miss times from hosts, CPU and memory utilization
collected from VMs, for later clustering.

Density-based technique was proposed by Shirazi et al. [42] where they
divided all measured variables into clusters and evaluated mean and standard
deviation, based on the Euclidean distance threshold. The same clustering idea
was used with the dimension reasoning technique (based on Local Outlier Factor)
for memory leakage and malicious port scan, by Huang et al. [19].

3.3 Hybrid-Based Approach and Related Techniques

Depending on the architecture and a set of threats to be detected, the use of
techniques in cloud architecture can require a hybrid approach.

While signature-based approach is more rigorous in its detection, behavior-
based methodology is able to “learn” new threats. Therefore, the combination of
previously mentioned approaches in Sects. 3.1 and 3.2 may reach a more extensive
and accurate detection. As an example, Modi and Patel [33], used SNORT [6] for
signature-based detection, whereas for anomaly-based detection they focused on
Bayesian, associative and decision tree classifiers. Some of the studies addressing
both approaches can be found in [25,33,40,49].

3.4 Discussion

The classification described in the previous sections shows that signature-based
methods commonly relate to content-based detection techniques since they test
known patterns or accepted actions. Data-related, malicious insider and account
hijacking threats (e.g., confidential documents leakage, allowed user behaviors)
are mostly studied in this category. For a visual representation of these depen-
dencies, links are depicted in Fig. 1, where rule-based groups only share relations
with the previously mentioned threats and are not associated with DoS, shared
technology threats or malware.

As usual, detection techniques discussed above have their unique strengths
and weaknesses. From the results of this study (Fig. 1 and Sect. 3.2), one can
see that the most reviewed group of techniques are the statistical-based and
machine learning, often utilized for network traffic and DoS detection. The first
relies on the assumption that normal data instances fit a statistical model and
anomalies are compared to this model through inference tests, which may be
unhandy for diverse data. Entropy-based techniques offer a deeper examination

A Study of Threat Detection Systems and Techniques in the Cloud 149

as they consider the irregularities in the information content of the data being
collected. Machine learning algorithms are also efficient due to their self-learning
capability. Other approaches such as clustering, add an interesting enhancement
since they automatically create and label clusters for future classification.

Also, evaluating the effectiveness of a given detection technique against a par-
ticular threat (or a group of them) is mainly performed through corresponding
experimentation. For that reason, it is highly relevant building proper datasets
that contain heterogeneous normal and abnormal realistic behaviors with a
broad spectrum of threat patterns. Consequently, it may be intuitive to han-
dle combined datasets, as mentioned in the previously cross layer-based system.
This implies selecting relevant features, focusing on minimizing used bandwidth
during monitoring, improving detection performance and removing redundant
data, while keeping lower computational complexity (e.g., machine learning tech-
niques, where the time taken to train the classifier is dataset size dependent).

Literature regarding this matter has used self-generated testbeds [19,21,31,
42,45] while others the well-known datasets: KDD [7,36,40] and DARPA [7,46].
These last two correspond to the group of threats with more references in Fig. 1.
However, they suffer from several deficiencies for testing in cloud environments as
they do not include behaviors such as stated in Sect. 2.1. Accordingly, a dataset
with new malware patterns was used and is presented in the next section.

4 Experimental Evaluation

The aim of the experimental evaluation was to study the missing relation between
some threats and a technique of each group. These connections were formerly
determined by the reviewed publications where Fig. 1 graphically illustrates
which set of techniques have been utilized for detecting different threat cate-
gories (from Sect. 2.2). We conducted experiments to estimate the effectiveness
of these techniques against other threat types, therefore contributing by adding
new links to our study. To the best of our knowledge, such experiments were
not performed before for the following detection algorithms against the utilized
dataset: SVM, MLP feed-forward Neural Network, and Long Short-Term Mem-
ory (LSTM) Recurrent Neural Network, K-means and entropy-based. We have
selected one technique of each group to perform a more exhaustive analysis.
The first is commonly used as benchmark experiments outperforming in most
cases [26,37]; hence, it is of our interest to see how it performs for the chosen
dataset’s attacks. The second and third techniques enhance the dynamic classifi-
cation requirement, presented in Sect. 3. Moreover, the study targeted the usage
of techniques with self-learning capabilities (i.e., that handle new data after the
training phase). Following this idea, MLP and LSTM present relevant character-
istics. The last two techniques belong to the clustering and statistical categories,
respectively. K-means is a learning algorithm that groups attribute vectors in
clusters, based on the notion of similarity. We considered botnets as threats
worth of studying since cloud virtualization and service models may allow an

150 P. Carvallo et al.

Table 1. Average detection performance for SVM, MLP, LSTM, K-means and entropy-
based techniques.

Metric (%) SVM MLP LSTM K-means Entropy

Recall 88.255 80.956 81.168 83.431 99.202

Precision 98.506 99.367 79.431 94.071 97.105

FPR 3.773 2.170 4.131 1.547 1.576

Accuracy 89.077 83.530 69.515 65.370 96.407

easier path to their execution. Moreover, we aim to provide another experimen-
tal evaluation to the given found studies [31,45] regarding this threat. We uti-
lized the CTU-13 Dataset [13], which comprehends real network traffic capture
of more than 5000 hosts labeled in background, normal and botnet behaviors.
In particular, this traffic concerns different types of DDoS, port scanning, C&C
attacks, among others, there is no single threat vector, and our experimental
schema relied on the trial of arbitrary techniques against this range of attack
patterns. Training and testing distributions were respectively 83.39% (50.57%
and 49.43% for normal and botnet traffic) and 16.61% (13.95% and 86.04% for
normal and botnet traffic), accounting more than 90 million packets. Results
were analyzed by widely used metrics Precision, Recall, Accuracy and False
Positive Rate (FPR).

Data preparation consisted in reading NetFlows1, selecting and normaliz-
ing their attributes in header-based features (e.g., source IP address, destination
IP address and port, protocol), content-based features (e.g., source bytes) and
time-based features (e.g., session duration). As we are trying to simulate the
monitoring of continuous data streaming flows arriving from the cloud, all tech-
niques were implemented using online learning, by feeding the algorithms with
timely ordered dataset in batches.

In particular, SVM was used as a binary classifier. We applied it with lin-
ear kernel, taking into account good experimental results presented in [26]. For
MLP, experiments consisted of finding hyper-parameters values and analyzing
their impact against the detection metrics mentioned. Given the low standard
deviation while changing the number of training iterations, we proceeded exper-
iments with this parameter fixed at 50 epochs. Model setup was a two-layer
hidden network, with 36 hidden neurons each. The variability of the latter con-
sisted in increasing the number of neurons, obtaining higher recall and precision
values, but also raising the FPR.

For LSTM, we also experimented with various training parameters and
topologies. Hidden layer consisted of two LSTM memory blocks, with two cells
each and peephole connections. Adam algorithm [27] was considered as the opti-
mizer while MSE as a loss function. We applied an arbitrary exponential learning

1 Network protocol developed by Cisco for the collection and monitoring of network
traffic flow data generated by NetFlow-enabled routers and switches.

A Study of Threat Detection Systems and Techniques in the Cloud 151

Fig. 2. Experimental results

decay of 0.97. Time step size, batch size and epoch in ranges from [10, 200], [50,
500], [50, 800] respectively, while modifying the learning rate from 0.0001 to 0.1.

For K-means technique we applied the Mini Batches function, a faster approx-
imate version of the more “expensive” K-means clustering [39]. Configuration
was set for the algorithm to create two clusters, normal and abnormal (botnet
traffic). Given the assumption that normal connections are frequent whereas
attacks are very rare, the clustering algorithm should create large clusters for
normal connections and small isolated clusters for anomalies.

Lastly, we used an entropy-based detection following an information theo-
retic perspective. We calculated the entropy H(i, k) for each streaming batch
i of k traffic features. Every network flow was treated as a point in a 6-
dimensional space with coordinates 〈Hi〉 = 〈H(srcip),H(srcbytes),H(dstip),
H(dstport),H(proto),H(dura)〉. To analyze this multivariate vector in a sim-
pler single-dimension representation, we re-scaled each sample 〈Hi〉 to ‖〈Hi〉‖ in
ranges of [50, 2000] samples per batch. Consequently, normal behavior is defined
as the projection of the data onto this subspace and abnormal behavior is defined
as any significant deviation of the data from this subspace. The static threshold
is defined as the norm of all the calculated 〈Hi〉 training entropies and tried
against the testing dataset.

We summarize our experimental results in Table 1 and in Fig. 2. The perfor-
mance of SVM showed to be more stable than the others for all the metrics, while
Artificial Neural Network-based techniques depended on the topology and train-
ing parameters. One can see from Table 1 that overall the techniques perform
above 79% for Recall and Precision indicators. Nevertheless, LSTM and Entropy
techniques do it also by increasing the FPR. The latter is probably due to our
static threshold configuration and that chosen features may have dismissed or
not fully exploited the dataset threat behavior.

152 P. Carvallo et al.

5 Conclusion

In this paper, we studied the relation between security threats and detection
techniques in cloud environments. As a result, we conclude that data-related
threats and malicious insider activities are mostly pursued by rule-based detec-
tion techniques. On the other hand, network-based threats such as DoS and
botnet attacks can be effectively tackled with statistical and machine learning
techniques. Likewise, whenever behavior-based or hybrid approaches are used,
training data phase remains crucial to establish a wide spectrum of normal
behaviors in cloud architectures. In this sense, more research needs to be per-
formed to correctly discriminate them from real threats.

Through Fig. 1 we have granted a visually synthesized comprehension of
which algorithms have been studied for specific threats. However, we noted
the absence of some links between them, raising questions regarding the use
of certain techniques for threat detection. We think this may be because “well-
accepted” methods have proven to be effective to known attack patterns in the
past (e.g., SVM and DoS). On the other hand, the existent links are due to the
tryout of novel techniques against classic threat patterns or the use of traditional
techniques on top of cloud-environment settings.

The latter motivated to study the applicability of existing detection
approaches against new threats. Consequently, we attempted at experiment-
ing with an SVM, two ANNs, a statistical and a clustering method; performed
an online detection and obtained results to counteract these unseen techniques
with a dataset of recent malware vectors. In particular, it was proven that SVM
behaves well as an “all-around” classifier, keeping good accuracy while low false
alarm rates. In contrast, we observe additional studies should be pursued for
neural network detectors as they rely on more parameters. This characteristic
adds more complexity at the moment of detecting different types of threats, as
they are commonly tuned for a particular testbed.

Also, we note that although many of detection techniques have evaluated
their accuracy given FPR, Precision; only a few studies are testing their perfor-
mance in a holistic approach that contemplates specific cloud computing char-
acteristics (named in Sect. 3), such as scalability or fault-tolerance.

Furthermore, high throughput interfaces and maintainable knowledge data-
base repositories demand a scalable solution. At the same time, cloud-dynamic
behavior varies regarding CSC needs, and it can imply the discovery function-
ality for modified IaaS, PaaS or SaaS configurations. Therefore, it is important
to keep in mind a flexible implementation approach that can detect anomalies
adapted to each new requirement.

Finally, this survey also proves the absence of a universal approach for iden-
tifying various threats of different nature. Additionally, focusing on multiple
cloud service features will provide an integral perspective of different behaviors
working together. Developing such approach or at least making steps towards
deriving a broader yet effective cloud threat detection system, without a doubt,
form a group of hot topics for future research work.

A Study of Threat Detection Systems and Techniques in the Cloud 153

Acknowledgment. The project leading to this paper has received funding from the
European Union Horizon 2020 research and innovation program under grant agreement
No. 644429 - MUSA project.

References

1. Akamai: Akamai’s state of the internet/Security Q3 2015 report. Technical report
(2015)

2. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner, L., Peterson, Z., Song,
D.: Provable data possession at untrusted stores. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security, CCS 2007 (2007)

3. Baig, Z.A., Binbeshr, F.: Controlled virtual resource access to mitigate economic
denial of sustainability (EDoS) attacks against cloud infrastructures. In: 2013 Inter-
national Conference on Cloud Computing and Big Data (CloudCom-Asia), pp.
346–353 (2013)

4. Bates, A., Mood, B., Pletcher, J., Pruse, H., Valafar, M., Butler, K.: Detecting co-
residency with active traffic analysis techniques. In: CCSW 2012, pp. 1–12. ACM
Press, New York (2012)

5. Cao, J., Yu, B., Dong, F., Zhu, X., Xu, S.: Entropy-based denial of service
attack detection in cloud data center. In: 2014 Second International Conference
on Advanced Cloud and Big Data, pp. 201–207, November 2014

6. Caswell, B., Foster, J.C., Russell, R., Beale, J., Posluns, J.: Snort 2.0 Intrusion
Detection. Syngress Publishing, Rockland (2003)

7. Chou, H.H., Wang, S.D.: An adaptive network intrusion detection approach for
the cloud environment. In: 2015 International Carnahan Conference on Security
Technology (ICCST), pp. 1–6. IEEE (2015)

8. Cloud Security Alliance (CSA): The Notorious Nine: Cloud Computing Top
Threats in 2013 (2013)

9. Derfouf, M., Eleuldj, M., Enniari, S., Diouri, O.: Smart intrusion detection model
for the cloud computing. In: Rocha, Á., Serrhini, M., Felgueiras, C. (eds.) Europe
and MENA Cooperation Advances in Information and Communication Technolo-
gies. AISC, vol. 520, pp. 411–421. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-46568-5 42

10. ENISA: ENISA Threat Landscape 2015. Technical report, January 2016
11. Erway, C.C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data

possession. ACM Trans. Inf. Syst. Secur. (TISSEC) 17(4), 15 (2015)
12. Fernandes, D.A.B., Soares, L.F.B., Gomes, J.V., Freire, M.M., Inácio, P.R.M.:

Security issues in cloud environments: a survey. Int. J. Inf. Secur. 13, 113–170
(2014)

13. Garćıa, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet
detection methods. Comput. Secur. 45, 100–123 (2014)

14. Garkoti, G., Peddoju, S.K., Balasubramanian, R.: Detection of insider attacks
in cloud based e-healthcare environment. In: 2014 International Conference on
Information Technology (ICIT), pp. 195–200. IEEE (2014)

15. Gupta, S., Kumar, P., Sardana, A., Abraham, A.: A fingerprinting system calls
approach for intrusion detection in a cloud environment. In: 2012 Fourth Inter-
national Conference on Computational Aspects of Social Networks (CASoN), pp.
309–314. IEEE (2012)

https://doi.org/10.1007/978-3-319-46568-5_42
https://doi.org/10.1007/978-3-319-46568-5_42

154 P. Carvallo et al.

16. Hamdi, O., Mbaye, M., Krief, F.: A cloud-based architecture for network attack
signature learning. In: 2015 7th International Conference on New Technologies,
Mobility and Security (NTMS). IEEE (2015)

17. Hashizume, K., Rosado, D.G., Fernández-Medina, E., Fernandez, E.B.: An analysis
of security issues for cloud computing. J. Internet Serv. Appl. 4(1), 5 (2013)

18. Huang, S.Y., Suri, N., Huang, Y.: Event pattern discovery on IDS traces of cloud
services. In: 2014 IEEE International Conference on Big Data and Cloud Comput-
ing (BdCloud), pp. 25–32. IEEE (2014)

19. Huang, T., Zhu, Y., Wu, Y., Bressan, S., Dobbie, G.: Anomaly detection and
identification scheme for VM live migration in cloud infrastructure. Future Gener.
Comput. Syst. 56, 736–745 (2016)

20. Idrissi, H., Hajji, S.E., Ennahbaoui, M., Souidi, E.M., Souidi, E.M.: Mobile agents
with cryptographic traces for intrusion detection in the cloud computing. Procedia
Comput. Sci. 73, 179–186 (2015)

21. Jeyanthi, N., Iyengar, N.C.S.N., Kumar, P.C.M., Kannammal, A.: An enhanced
entropy approach to detect and prevent DDoS in cloud environment. IJCNIS 5(2),
110 (2013)

22. Jouad, M., Diouani, S., Houmani, H., Zaki, A.: Security challenges in intrusion
detection. In: 2015 International Conference on Cloud Technologies and Applica-
tions (CloudTech), pp. 1–11. IEEE (2015)

23. Katz, G., Elovici, Y., Shapira, B.: CoBAn: a context based model for data leakage
prevention. Inf. Sci.: Int. J. 262, 137–158 (2014)

24. Kene, S.G., Theng, D.P.: A review on intrusion detection techniques for cloud
computing and security challenges. In: 2015 2nd International Conference on Elec-
tronics and Communication Systems (ICECS), pp. 227–232. IEEE (2015)

25. Kholidy, H.A., Baiardi, F.: CIDS: a framework for intrusion detection in cloud
systems. In: 2012 Ninth International Conference on Information Technology: New
Generations (ITNG). IEEE (2012)

26. Khorshed, M.T., Ali, A.B.M.S., Wasimi, S.A.: A survey on gaps, threat remediation
challenges and some thoughts for proactive attack detection in cloud computing.
Future Gener. Comput. Syst. 28(6), 833–851 (2012)

27. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR (2014)
28. Kumar, N., Katta, V., Mishra, H., Garg, H.: Detection of data leakage in cloud

computing environment. In: 2014 International Conference on Computational Intel-
ligence and Communication Networks (CICN), pp. 803–807. IEEE (2014)

29. Li, Y.H., Tzeng, Y.R., Yu, F.: VISO: characterizing malicious behaviors of virtual
machines with unsupervised clustering. In: 2015 IEEE 7th International Conference
on Cloud Computing Technology and Science (CloudCom). IEEE (2015)

30. Marnerides, A.K., Spachos, P., Chatzimisios, P., Mauthe, A.U.: Malware detection
in the cloud under ensemble empirical mode decomposition. In: 2015 International
Conference on Computing, Networking and Communications (ICNC), pp. 82–88.
IEEE (2015)

31. Marnerides, A.K., Shirazi, N., Hutchison, D., Simpson, S., Watson, M., Mauthe,
A.: Assessing the impact of intra-cloud live migration on anomaly detection. In:
2014 IEEE 3rd International Conference on Cloud Networking (CloudNet) (2014)

32. Mell, P.M., Grance, T.: SP 800–145. The NIST Definition of Cloud Computing.
Technical report, Gaithersburg, MD, USA (2011)

33. Modi, C.N., Patel, D.: A novel hybrid-network intrusion detection system (H-
NIDS) in cloud computing. In: 2013 IEEE Symposium on Computational Intel-
ligence in Cyber Security (CICS), pp. 23–30 (2013)

A Study of Threat Detection Systems and Techniques in the Cloud 155

34. Modi, C., Patel, D.R., Borisaniya, B., Patel, H., Patel, A., Rajarajan, M.: A survey
of intrusion detection techniques in cloud. JNCA 36(1), 42–57 (2013)

35. Osanaiye, O., Choo, K.K.R., Dlodlo, M.: Distributed denial of service (DDoS)
resilience in cloud: review and conceptual cloud DDoS mitigation framework. J.
Netw. Comput. Appl. 67, 147–165 (2016)

36. Pandeeswari, N., Kumar, G.: Anomaly detection system in cloud environment using
fuzzy clustering based ANN. Mob. Netw. Appl. 21, 1–12 (2015)

37. Patel, A., Taghavi, M., Bakhtiyari, K., Celestino Júnior, J.: An intrusion detection
and prevention system in cloud computing: a systematic review. J. Netw. Comput.
Appl. 36(1), 25–41 (2013)

38. Rosado, D.G., Gómez, R., Mellado, D., Fernández-Medina, E.: Security analysis in
the migration to cloud environments. Future Internet 4(4), 469–487 (2012)

39. Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th International
Conference on World Wide Web. In: WWW 2010, pp. 1177–1178. ACM (2010)

40. Shamsolmoali, P., Alam, M.A., Biswas, R.: C2DF: high Rate DDOS filtering
method in cloud computing. Int. J. Comput. Netw. Inf. Secur. 6(9), 43–50 (2014)

41. Sharma, P., Sharma, R., Pilli, E.S., Mishra, A.K.: A detection algorithm for DoS
attack in the cloud environment. In: Compute 2015, pp. 107–110 (2015)

42. Shirazi, S.N., Simpson, S., Gouglidis, A., Mauthe, A., Hutchison, D.: Anomaly
detection in the cloud using data density. In: 2016 IEEE 9th International Confer-
ence on Cloud Computing (CLOUD), pp. 616–623, June 2016

43. Vaquero, L.M., Rodero-Merino, L., Morán, D.: Locking the sky: a survey on IaaS
cloud security. Computing 91(1), 93–118 (2011)

44. Vasilomanolakis, E., Karuppayah, S., Mühlhäuser, M., Fischer, M.: Taxonomy and
survey of collaborative intrusion detection. CSUR 47(4), 33 (2015). Article no. 55

45. Watson, M.R., Shirazi, N., Marnerides, A.K., Mauthe, A., Hutchison, D.: Malware
detection in cloud computing infrastructures. TDSC 13(2), 192–205 (2016)

46. Xiong, W., Hu, H., Xiong, N., Yang, L.T., Peng, W.C., Wang, X., Qu, Y.: Anomaly
secure detection methods by analyzing dynamic characteristics of the network traf-
fic in cloud communications. Inf. Sci. 258, 403–415 (2014)

47. Yaseen, Q., Althebyan, Q., Panda, B., Jararweh, Y.: Mitigating insider threat in
cloud relational databases. Secur. Commun. Netw. 9, 1132–1145 (2016)

48. Yu, S., Gui, X., Lin, J.: An approach with two-stage mode to detect cache-based
side channel attacks. In: 2013 International Conference on Information Networking
(ICOIN), pp. 186–191. IEEE (2013)

49. Yu, W., Moulema, P., Xu, G., Chen, Z.: A cloud computing based architecture for
cyber security situation awareness. In: 2013 IEEE Conference on Communications
and Network Security (CNS), pp. 488–492. IEEE (2013)

50. Zbakh, M., Elmahdi, K., Cherkaoui, R., Enniari, S.: A multi-criteria analysis of
intrusion detection architectures in cloud environments. In: 2015 International Con-
ference on Cloud Technologies and Applications (CloudTech), pp. 1–9. IEEE (2015)

Cyber-Insurance and Cyber
Threat Intelligence

Preventing the Drop in Security
Investments for Non-competitive

Cyber-Insurance Market

Fabio Martinelli1, Albina Orlando2, Ganbayar Uuganbayar1,
and Artsiom Yautsiukhin1(B)

1 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy
artsiom.yautsiukhin@iit.cnr.it

2 Istituto per le Applicazioni del Calcolo “Mauro Picone”,
Consiglio Nazionale delle Ricerche, Naples, Italy

Abstract. The rapid development of cyber insurance market brings for-
ward the question about the effect of cyber insurance on cyber security.
Some researchers believe that the effect should be positive as organisa-
tions will be forced to maintain a high level of security in order to pay
lower premiums. On the other hand, other researchers conduct a theo-
retical analysis and demonstrate that availability of cyber insurance may
result in lower investments in security.

In this paper we propose a mathematical analysis of a cyber-insurance
model in a non-competitive market. We prove that with a right pricing
strategy it is always possible to ensure that security investments are at
least as high as without insurance. Our general theoretical analysis is
confirmed by specific cases using CARA and CRRA utility functions.

1 Introduction

It is widely recognised that cyber security incidents are much more than just
unpleasant events. Such incidents may cause huge losses (e.g., see effect of the
latest two data breaches discoveries by Yahoo on its deal with Verizon1) and
put in danger lives of people (e.g., cyber attacks on critical infrastructures).
Therefore, the best risk management practices point out the need of considering
cyber risk as a component of the overall risk management routine [6,21,23].

Unfortunately, installation of various countermeasures and adopting best
cyber security practices do not guarantee freedom from cyber incidents, regard-
less their significant cost. In other words, organisations always face some residual
cyber risks. The only option which was left for organisations so far was simply
to accept this risk, i.e., acknowledge that such a problem may happen and,

This work was partially supported by projects H2020 MSCA NeCS 675320 and
H2020 MSCA CyberSure 734815.

1 http://www.euronews.com/2017/02/21/yahoo-pays-the-price-for-massive-data-
breaches-in-verizon-deal.

c© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 159–174, 2018.
https://doi.org/10.1007/978-3-319-76687-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_11&domain=pdf
http://www.euronews.com/2017/02/21/yahoo-pays-the-price-for-massive-data-breaches-in-verizon-deal
http://www.euronews.com/2017/02/21/yahoo-pays-the-price-for-massive-data-breaches-in-verizon-deal

160 F. Martinelli et al.

maybe, put some money aside to compensate the losses if the threat occurs
(self-insurance). An alternative to these risk treatment options was introduced
20 years ago [12,13]. This alternative is cyber insurance, a risk transfer option
which allows insureds to shift their residual cyber risks to insurers.

Cyber insurance is believed to have a number of advantages, next to the
obvious one, i.e., covering residual risks and smoothing possible losses. Cyber
insurance is a means to collect statistics on cyber events and use it to evaluate
security strength of various systems. The assigned premiums may serve as indi-
cators of security strength [1]. Cyber insurance should increase the demand for
cyber security standards [5]. Last but not least, cyber insurance is believed to be
an intensive for organisations to invest in security in order to get lower premiums
[1,12,17]. Unfortunately, some papers [15,16,20] show that without regulatory
constraints competitive insurance is not an incentive for self-protection. In fact,
the insureds prefer to insure their risks instead of mitigating them with invest-
ments. This puts other members of digital society under higher risks [8].

Several proposals were considered to find a solution for the problem and the
best option found was “fine and rebate” regulation mechanism, which addition-
ally fines insurers with low security and rebates the ones with high security, next
to security discriminating strategy for assigning the premiums [11,16]. These
works consider an oversimplified model of security investment: an agent may
invest in security a certain amount to get 100% protection of direct attack (but
it still can be attacked indirectly, though contagion).

In this work, we propose another way of regulating cyber insurance mar-
ket looking at the problem from the insured’s point of view. We determine the
minimal level of insurer’s interests (loading factor) which guarantees that invest-
ments in insured’s protection are as high as in case of no insurance available and
insureds are still interested in transferring some (non-zero) part of their risks.
Such enforcement may be introduced by the government as a tax for insurer, or
by enforcing a law requiring the smallest insurer interest. We use a continuous
model of security investments (similar to the one of Ogut et al. [15]) and consider
a very generic class of utility functions for modelling insureds’ satisfaction.

The result of our theoretical study is a system of two equations with two
variables, i.e., it is solvable. On the other hand, because of generality of our
approach the unique final formula is very hard to find (if possible at all). Nev-
ertheless, if the utility function is known, it is possible to find the solution. We
demonstrate this with our case studies using classical CARA and CRRA func-
tions. In addition, we conduct several experiments to investigate the effect of
security interdependence on insurance parameters.

The paper is structured as follows. Section 2 discusses the current achieve-
ments in the area and underlines the advantages of our approach. Section 3 intro-
duces the basic insurance model, considering two cases: with cyber insurance
available and without it. Section 4 contains our core contribution and describes
how security investments can be raised with raise of premium. Section 5 shows
two specific examples to confirm the theory. Section 6 outlines conclusions.

Preventing the Drop in Security Investments 161

2 Related Work

Recently, cyber insurance has gained much attention in the scientific literature
[2,13]. Specific attention is devoted to the analysis of the effect of interdependent
security on cyber insurance [9,10,15,16,19]. In fact, strong influence of security
interdependency is one of the main features that make cyber insurance a specific
insurance case.

Ogut et al. [15] provided an analysis in depth of the interdependent security
and immaturity of the market on cyber insurance. In particular, the authors
investigated how investments in self-protection change. They have found that
these investments in self protection reduce with growth of the interdependence
and these investments rise with growth of immaturity of insurance market. More-
over, the authors considered the effect of enforcement of liability for contagion.
They have found, that investments in self-protection in this case rise even higher
than the optimal level. The results of the study are limited because of the fol-
lowing assumptions: (1) the authors use only CARA as a utility function; (2)
the losses are considered to be too small with respect to the wealth of insureds.
The last assumption is particularly dangerous for insurance, since it significantly
reduces the effect of risk averseness of insureds. In contrast, we provide a generic
approach without the outlined assumptions (we use CARA as the utility func-
tion only as an example). Moreover, we show how it is possible to compute the
loading factor value to achieve the desired level of self-investment.

A number of authors considered the problem of reducing self-protection
level if cyber insurance is available [10,16,19] and whether the optimum level
of investments can be reached [18,20]. The solution for the problem found by
several authors is additional fines/rebates for the users with low/high security
[3,10,11,16]. Naturally, in this case the insurer has to know exactly the level of
investments by insureds, i.e., no information asymmetry is allowed (similar to our
assumption). Here we should point out that in these cases the authors consider
a discrete model of investments, which has two levels (with low protection and
fully protected against direct attacks) and specific level of investments required
to jump from one level to another one. In reality investments in cyber security
have more levels or have continuous impact on probability of an incident.

An interesting method was proposed by Naghizadeh and Liu [14] for spec-
ifying the optimal level of investments. In the proposed model the insurer col-
lects the proposals of all its insureds (the whole society) about the desired level
of investments and adjusts the policies (i.e., premiums) correspondingly. The
authors show that they are able to reach the optimal level with this approach,
if participation of all agents in such schema is mandatory. In contrast, we con-
sider voluntary participation and ensure that with specified price of insurance
the agents are still interested in buying the policy (I ≥ 0).

3 Basic Formalisation

Before we go into the discussion of our basic problem, we specify the basic
formalisation. We define only the concepts required for our paper and refer the
reader interested in the comprehensive definition of basic terms to [13].

162 F. Martinelli et al.

Let W 0 be the amount of wealth an agent possesses now. The agent tries to
predict its wealth after some period of time (typically, in a year). Naturally, the
agent does not know if a threat causing losses to him/her will occur during the
considered period, but it may invest some amount of money x to decrease the
probability of the incident. Because of the uncertainty about the final outcome,
the value is random (and is denoted as W), but it is possible to make some
predictions about it if the probability of pr(x) and the loss L caused by the
incident are known. We see that pr(x) depends on x, i.e., the probability of
the incident depends on the amount of investments2. It is natural to assume
that higher investments lead to lower probability of occurrence: pr′(x) < 0; but
lower initial investment level requires less additional investments to decrease the
probability of occurrence by the same value: pr′′(x) < 0. The final loss in this
case is also a random variable L and is equal either to L, if the threat occurs,
or to 0, otherwise.

The expected wealth E[W] after the considered period could be computed
as3:

E[W] = W 0 − E[L] − x = W 0 − pr′(x)(L) + (1 − pr′(x))(0) − x. (1)

Let U(W) be a function of wealth, and can be seen as the satisfaction of agents
to posses a certain amount of money. The utility function is not linear, and in
many situations, increase in satisfaction is lower for higher amount of wealth
possessed [22]. Such behaviour of an agent is called risk averseness and can be
modelled with a utility function satisfying the following conditions: U ′(W) > 0
and U ′′(W) < 0. Instead of expected wealth (Eq. 1), we should look now for the
expected utility of wealth:

E[U(W)] = pr(x) ∗ UL(W 0 − L − x) + (1 − pr(x))UN (W 0 − x). (2)

In this paper, we use a similar formalisation to Ogut et al. [15], which is
very generic. Nevertheless, in our work losses could be very high, and the utility
function is not bound to be a constant absolute risk aversion (CARA) function
only.

3.1 No-Insurance Case

First, we consider the situation when insurance is not available for agents. Let,

UNN = U(W 0 − x) if no incident occurs; (3)

UNL = U(W 0 − L − x) if an incident occurs. (4)

2 We acknowledge that in reality effect of investments on probability of occurrence
is more complex and an incident may occur more than once but we would like to
underline that this standard (for cyber investment models [7,8,10,13,16] and general
insurance [4]) modelling is an approximation of reality which reduces the complexity
of computations and allows to analyse the core insights [7].

3 Although, the Eq. 1 can be simplified, we leave it in this form to underline the
similarity with the following step in the discussion.

Preventing the Drop in Security Investments 163

The expected utility in this case is:

E[U(W)] = pr(x) ∗ UNL + (1 − pr(x))UNN . (5)

We take the first order condition (FOC) for x and look for optimal solution xN .

∂E[U(W)]
∂x

= pr′(xN)UNL − pr(xN)U ′
NL − (1 − pr(xN))U ′

NN − pr′(xN)UNN = 0; (6)

pr′(xN)(UNL − UNN) = pr(xN) ∗ U ′
NL + (1 − pr(xN))U ′

NN ; (7)

pr′(xN) =
pr(xN) ∗ U ′

NL + (1 − pr(xN))U ′
NN

(UNL − UNN)
. (8)

The solution to Eq. 8 will provide us with the optimal amount of money an
agent should invest in self-protection if insurance is not available.

3.2 Competitive Insurance Market

Now, we consider the situation when insurance is available to agents. An insurer
agrees to bare some part of insured’s loss, called an indemnity I (I ≤ L), in case
an incident occurs. An insured pays the premium P as a fee for this service. The
premium is usually linked to indemnity by the following relation:

P = (1 + λ) ∗ pr(x)I; (9)

where λ is the degree of market immaturity. This degree can be seen as the
amount of money the insurer may ask for the service it provides. If insurance
market is mature, i.e., it is a competitive market, it is assumed that no insurers
are able to provide a better insurance product than others already do, and λ = 0.

First we introduce the utility functions for insurance case.

UIN = U(W 0 − pr(x)(1 + λ)I − x) if no incident occurs; (10)

UIL = U(W 0 − L + I − pr(x)(1 + λ)I − x) if an incident occurs. (11)

The expected utility in this case is

E[U(W)] = pr(x) ∗ UIL + (1 − pr(x))UIN . (12)

In case of a competitive insurance market and using Eq. 12, it is possible to
find the optimal level of investment, which is equal to4

xI = − 1
L

. (13)

4 See the proof in [15] or [4].

164 F. Martinelli et al.

Comparing insurance xI and no-insurance cases xN we would like to be sure
that security investments will increase the security level of insured. Formally,

pr′(xN) ≤ pr′(xI) or pr′(xN) ≤ − 1
L

. (14)

We see that if this condition holds, security investments, even in case of a
competitive market, are higher than in case of no-insurance. On the contrary,
many studies [15,16,20] show that cyber insurance tends to reduce the invest-
ments and

pr′(xN) > − 1
L

. (15)

In other words, the presence of (competitive) insurance worsens the security
investment level for an agent.

Our goal is to investigate the possibility to raise the security investments
up to the level of no-insurance, by raising loading factor. The later can be
achieved by special taxes applied to insurer to ensure that the loading factor
λ is high enough to incentivise insureds to invest in cyber security. Moreover,
we will ensure that agents would like to buy insurance regardless the increased
price, i.e., the coverage (indemnity) I > 0.

4 Raising Security Investment Level with Insurance

Since an insured would like to maximise its utility her/she will set up the best
I and x. In other words, we should consider the first order conditions of Eq. 12
for I and x and find the optimal values I� and x�.

∂E[U(W)]
∂I

= pr(x) ∗ U ′
IL(1 − pr(x)(1 + λ)) − (1 − pr(x))(1 + λ)pr(x)U ′

IN = 0. (16)

From Eq. 16 it follows that:

U ′
IL

U ′
IN

=
(1 − pr(x))(1 + λ)
1 − pr(x)(1 + λ)

or (17)

1 + λ =
U ′

IL

U ′
IN (1 − pr(x)) + pr(x)U ′

IL

. (18)

We can do the similar analysis for investments.

∂E[U(W)]
∂x

= pr′(x�) ∗ UIL − pr(x�) ∗ U ′
IL(pr′(x�)(1 + λ)I + 1)

− (1 − pr(x�))U ′
IN (pr′(x�)(1 + λ)I + 1) − pr′(x�)UIN = 0. (19)

Preventing the Drop in Security Investments 165

With some simple transformations, we come to the following form:

(UIL − UIN)
(pr(x�)U ′

IL + (1 − pr(x�))U ′
IN)

− 1
pr′(x�)

= (1 + λ)I. (20)

Our goal is to achieve the same level of security investments as in case of no
insurance available, i.e., x� = xN . Moreover, in this case the amount of insurance
bought must be optimal I = I�. Naturally, the solution to our problem (λ, I�)
is the solution to the following system of equations:{

1 + λ = U ′
IL

U ′
IN (1−pr(x�))+pr(x�)U ′

IL
;

(UIL−UIN)
(pr(x�)U ′

IL+(1−pr(x�))U ′
IN) − 1

pr′(x�) = (1 + λ)I�.
(21)

Although this is a system of two equations with two variables, its solution is
not easy to find in the current form. As we will show in the following (see Sect. 5),
the solution is not simple (but is possible) even when all functions and values
are precisely defined. The main question we would like to answer is whether this
system has a non-zero solution for indemnity, i.e., I� > 0 if (λ, I�) is the solution
for Eq. 21.

Theorem 1. If the level of investments in self-protection for the competitive
cyber insurance market is lower than in case of no insurance available and if the
utility function of insured is a of decreasing absolute risk aversion (DARA) type,
there is such a setting of λ for non-competitive cyber insurance market which
ensures that

1. the level of investments is equal to the case of no insurance (x� = xN);
2. the amount of insurance bought is higher than zero (I� > 0).

Proof. First, lets put Eq. 18 to Eq. 20:

(UIL − UIN)
(pr(x�)U ′

IL + (1 − pr(x�))U ′
IN)

− 1
pr′(x�)

=
U ′

IL

U ′
IN (1 − pr(x)) + pr(x)

I; (22)

− 1
pr′(x�)

+
(UIL − UIN − I�U ′

IL)
(pr(x�)U ′

IL + (1 − pr(x�))U ′
IN)

= f(I�) = 0. (23)

Now we investigate the function f(I�). If we consider x� = xN , it is easy
to see that I� = 0 is a solution to the Eq. 23. Trivially, if an agent decides not
to buy insurance (I� = 0) then its optimal investment level is the same as in
case when no insurance is available. What we are interested in is whether there
is another solution for Eq. 23 on the interval I� ∈ [0, L].

Another important observation we can make is for the other extreme, when
I� = L, i.e., full insurance case. We see from Eqs. 10 and 11 that in this case:
UIL = UIN and the right summand of f(I�) is equal to −L. Recalling the
assumption from Eq. 15, we see that:

1
pr′(x�)

=
1

pr′(xN)
< −L. (24)

166 F. Martinelli et al.

From Eq. 24 it follows that f(I�)|I�=L > 0. Although I = L is not a solution,
we get some information about the behaviour of f(I�) function.

We have found that f ′(I�)|I�=0 < 05. Since, we know, that f(I�)|I�=L > 0
and the function is continuous (on the interval I� ∈ [0;L]6), then according
to the Intermediate Value Theorem there must be at least one more point with
I� > 0 which is the solution to Eq. 23 (the point, where function f(I�) = 0 for
I� ∈ (0;L)).

Insureds prefer to buy insurance. We have shown above that there are at least
two solutions to our problem: with I∗ = 0 and I∗ > 0.

Insurers, clearly, would like to have I∗ > 0, and thus, set λ to ensure this
choice of the insured. Consider this problem also from the insured point of view.
The insured will always select the strategy which maximises its utility E[U(W)].
Moreover, since the strategy “do not buy insurance” is always available in our
settings, we would like to be sure that the solution for I∗ > 0 is preferable.
Compare these two cases:

E[U(W)]|I� �=0 − E[U(W)]|I�=0

= pr(xN)UIL + (1 − pr(xN))UIN − pr(xN)UNL − (1 − pr(xN))UNN

= pr(xN)(UIL − UNL) + (1 − pr(xN))(UNN − UIN). (25)

Now, we recall that UIL ≥ UNL and UNN ≥ UIN , while the utility function
is convex, i.e., UIL − UNL < U ′

IL(I�(1 − pr(xN)(1 + λ))) and UNN − UIN >
U ′

IN (I�pr(xN)(1 + λ)). Finally, using Eq. 17 we find that the result is greater
than 0.

E[U(W)]|I� �=0 − E[U(W)]|I�=0

≥ pr(xN)U ′
IL(I�(1 − pr(xN)(1 + λ))) − (1 − pr(xN))U ′

IN (I�pr(xN)(1 + λ)) = 0.
(26)

We conclude that, for any I�, E[U(W)]|I� �=0 ≥ E[U(W)]|I�=0, i.e., an insured
always prefers to buy some insurance if the settings are as specified by solution
of Eq. 21.

It is easy to see that if λ = 0 than I� = L. Now, if I� = 0, then

λ =
(U ′

NL − U ′
NN)(1 − pr(x))

(U ′
NL − U ′

NN)pr(x) + U ′
NN

. (27)

Out of Eq. 27, we conclude that the loading factor to force the security level to
be equal to xN belongs to the interval [0; (U ′

NL−U ′
NN)(1−pr(x))

(U ′
NL−U ′

NN)pr(x)+U ′
NN

].

5 See the proof in the Appendix.
6 f ′(I�) is continuous on the interval I� ∈ [0; L] since neither pr′(x�) = 0 nor

(pr(x�)U ′
IL + (1 − pr(x�))U ′

IN) = 0 for realistic values.

Preventing the Drop in Security Investments 167

Using Eq. 17 for I �= 0 and for I = 0 it is easy to find that the loading factor
in the first case is always lower:

(1 − pr(x))
pr(x) + 1

U′
NL

U′
NN

−1

≥ (1 − pr(x))
pr(x) + 1

U′
IL

U′
IN

−1

, since U ′
IL ≥ U ′

NL and U ′
IL ≤ U ′

NL. (28)

4.1 Interdependence of Security

Until now we considered only an independent case, i.e., security level of one
agent did not depend on the security level of another one. In the cyber world
this is not usually the case. Thus, we should change our model of probability to:

pri(xi,X−i) = 1 − (1 − πi(xi)) ∗ Π−i. (29)

where Π is the degree of the network security. In other words, Π determines the
probability that the agent will be compromised indirectly, i.e., through other
member of the network. In cyber insurance literature it is usually equals to:

Π−i =
∏
∀j �=i

(1 − q ∗ πj(xj)). (30)

In this paper, we focus on the effect of the overall network security on a con-
crete insured. Therefore, in our study insurance (as a risk treatment option) is
available only for this insured. Thus, we omit indexes i and −i and skip X−i.

It is easy to see that the procedure for finding I and λ does not change much,
we simply should use Eq. 30 instead of simple pr(i).{

1 + λ = U ′
IL

U ′
IN ((1−π(x�))∗Π)+(π(x�)∗Π)U ′

IL
;

(UIL−UIN)
U ′

IN ((1−π(x�))∗Π)+(π(x�)∗Π)U ′
IL

− 1
π′(x�)∗Π = (1 + λ)I�.

(31)

5 Examples and Analysis of CARA and CRRA

Since the found solution is quite complex in its generic view, in this section
we will demonstrate how the finding can be applied in specific cases of the
two DARA utility functions most frequently applied for cyber insurance [13]:
Constant Absolute Risk Aversion (CARA) and Constant Relevant Risk Aversion
(CRRA) functions. We would like to underline that CARA and CRRA utility
functions are only useful examples, while the findings from Sect. 4 are valid for
any concave utility function.

5.1 CARA Utility Function

Constant Absolute Risk Aversion (CARA) utility function is a function for which
the following relation holds:

−U ′′(W)
U ′(W)

= σ; σ > 0. (32)

168 F. Martinelli et al.

The unique function satisfying this relation is the exponential function:

U(W) = 1 − exp−σW ; U ′(W) = σ exp−σW ; U ′′(W) = −σ2 exp−σW . (33)

If we apply this utility function to our Equation system 21, then using the
first equation, we can find that:

eσ(L−I�) =
(1 + λ)(1 − pr(x�))
(1 − pr(x�)(1 + λ))

or (34)

I� = L − 1
σ

ln

[
(1 + λ)(1 − pr(x�))
(1 − pr(x�)(1 + λ))

]
. (35)

The second equation from the system can be changed to:

1
σ

1 − eσ(L−I�)

1 − pr(x�) + pr(x�)(eσ(L−I�))
− 1

pr′(x�)
= (1 + λ)I� or (36)

1
σ

λ

1 − pr(x�)
− 1

pr′(x�)
= (1 + λ)I�. (37)

f(I�) function from Eq. 23 assumes the following form:

1
σ

λ

1 − pr(x�)
− 1

pr′(x�)
− (1 + λ)I� = f(I�). (38)

Now, it is possible to see that the loading factor (λ) we are looking for is the
solution of the following equation.

1
σ(1 + λ)

λ

1 − pr(x�)
− 1

pr′(x�)(1 + λ)
= L − 1

σ
ln

[
(1 + λ)(1 − pr(x�))
(1 − pr(x�)(1 + λ))

]
. (39)

Equation 39 is still hard to solve theoretically. Viable approaches are graphic
solutions or approximation algorithms.

5.2 CRRA Utility Function

Constant Relative Risk Aversion (CRRA) utility function is a function for which
the following relation holds:

−U ′′(W)
U ′(W)

=
σ

W
; σ > 0. (40)

The utility function itself can be defined as follows:

U(W) =
{

W 1−σ

1−σ for σ �= 1
log(W) for σ = 1

; U ′(W) = W−σ; U ′′(W) = −σ
W−σ

W
. (41)

Without loss of generality, we assume that σ �= 1.

Preventing the Drop in Security Investments 169

If we apply this utility function to our Equation system 21, then using the
first equation, we can find that:(

W 0 − pr(x�)(1 + λ)I� − x�

W 0 − L + I − pr(x�)(1 + λ)I� − x�

)σ

=
(1 + λ)(1 − pr(x�))
(1 − pr(x�)(1 + λ))

= α or (42)

I� =
L σ

√
α − (W 0 − x�)(σ

√
α − 1)

σ
√

α − pr(x�)(1 + λ)(σ
√

α − 1)
. (43)

The second equation from the system can be changed to:

1
1 − σ

(W 0 − pr(x�)(1 + λ)I� − x�)(α − 1) − αL + αI�

pr(x�)α + (1 − pr(x�))
− 1

pr′(x�)
= (1 + λ)I�;

I� =
pr′(x�)((W 0 − x�)(α − 1) − αL) − β

pr′(x�)((1 + λ)β + pr(x�)(1 + λ)(α − 1) − α)
, (44)

where β = (1 − σ)(pr(x�)α + (1 − pr(x�))).

f(I�) function from Eq. 23 assumes the following form:

f(I�) =
(W 0 − pr(x�)(1 + λ)I� − x�)(α − 1) − αL + αI�

(1 − σ)(pr(x�)α + (1 − pr(x�)))
− 1

pr′(x�)
− (1 + λ)I�.

(45)

Now, it is possible to see that the loading factor (λ) we are looking for is the
solution of the following equation.

L − (W 0 − x�)(σ
√

α − 1)
σ
√

α − pr(x�)(1 + λ)(σ
√

α − 1)
=

pr′(x�)((W 0 − x�)(α − 1) − αL) − β

pr′(x�)(1 + λ)β + pr(x�)(1 + λ)(α − 1) − α
.

(46)

Equation 46 is still hard to solve theoretically. Viable approaches are graphic
solutions or approximation algorithms.

5.3 Numerical Analysis

Finally, we would like to demonstrate the correctness of our theoretical app-
roach with a couple of numerical examples. The initial wealth is assumed to be
20 (thousand) euro, and a possible loss estimated to be around 10 (thousand)
euro. In both considered cases (for CARA and CRRA utility functions) we use
the same σ = 0.1. We define the probability function as follows (ensuring that
pr′(x) < 0 and pr′′(x) < 0):

pr(x) =
0.2

(1 + x)
. (47)

With these settings, we are now able to find the resulting λ and I.

170 F. Martinelli et al.

Fig. 1. f(I) for CARA and CRRA examples.

CARA. We start with the example of CARA utility function with σ = 0.1.
First of all we solve Eq. 8 to obtain xN , which is also our target level of security
investments in the insurance case xN = x�. Now, when the probability function
is known (Eq. 47), Eq. 8 can be transformed to a quadratic equation with one
solution always negative. The second solution in our case is xN ≈ 0.69. If we
compute pr′(xN) we will see that it satisfies condition stated in Eq. 15 pr′(xN) ≈
−0.07 > −1/10 = −0.1.

First, consider the auxiliary function f(I�) and its behaviour (see Eq. 38).
The left part of Fig. 1 shows the behaviour of the function. As we found out in
our reasoning in Sect. 4, the function crosses the line f(I�) = 0, when I� = 0
and λ ≈ 1.26. Moreover, there is also at least one more intersection with this
line for I� ≈ 3, 5946 �= 0 and λ ≈ 0.7153.

Naturally, there is no need to consider this auxiliary function looking for the
optimal values. It is more convenient to consider Eq. 39 and find the intersection
points of left and right parts of the equation. The left part of Fig. 2 shows these
functions. In order to find the resulting values of I� and λ we applied a simply
hybrid root-finding algorithm7.

CRRA. We conducted a similar analysis for CRRA utility function with the
same σ = 0.1. The found level of investment is xN ≈ 0.43, which also satisfies
condition in Eq. 15 pr′(xN) ≈ −0, 0978 > −1/10 = −0.1.

Then, we found f(I�) using Eq. 45 (the right part of Fig. 1) and intersection
of left and right hand parts of Eq. 46 (the right part of Fig. 2). This function
also crosses the line f(I�) = 0, when I� = 0 and λ ≈ 0.063, plus, there is an
intersection for I� ≈ 3.4586 �= 0 when λ ≈ 0.0267.

Effect of Interdependency. Consider now the effect of interdependency (using
the degree of network security Π from Eq. 30) on the incentive to buy cyber

7 First, we cut the considered interval into small pieces and found the pieces with
border values of different signs. Then, we applied bisection method, cutting the
piece in half and checking the signs of the function on border values, always leaving
the half with different signs of the function on the border until the last half is shorter
than the allowed error.

Preventing the Drop in Security Investments 171

Fig. 2. Intersections of I(λ) for Eqs. 39 (left) and 46 (right).

Fig. 3. f(I) for CARA (left) and CRRA (right) examples with different degree of
interdependency.

insurance. We conducted an analysis with three coefficients: Π = 1,Π = 0.9,
and Π = 0.8. Figure 3 shows the result.

It is important to note that with the fall of security of the overall network and
the growth of the interdependence (causing the fall of Π) the agents are more
willing to buy insurance. This can be seen in the graphs, as the point where f(I)
line crosses axis I (i.e., f(I) = 0) shifts left, and the agent prefers to buy more
insurance. Moreover, there is the required increase in the insurance cost (i.e., λ)
is lower: for CARA λ = 0.1131 and for CRRA λ = 0.00947 if Π = 0.8 vs. for
CARA λ = 0.7153 and for CRRA λ = 0.0267 if Π = 1.

Finally, we see that our function gets lower and lower with increase of inter-
dependency effect, and, eventually, its right end gets below 0. This indicates that
the optimal investments in case of buying cyber insurance with fair price become
higher than in optimal investments in case cyber insurance is not available.

6 Conclusion

In the paper we have studied the possibility to ensure that investment level with
available cyber insurance is at least as high as if cyber insurance was not avail-
able. This was achieved by the means of increasing the costs of cyber insurance.
Our generic analysis have shown that the equal level with no-insurance case
is always possible and regardless the higher prices insureds are still interested
in buying some portion of insurance. Here we would like to underline, that in

172 F. Martinelli et al.

contrast to other researchers [15] our analysis has much less assumptions for the
modelling. The high enough price for insurance can be enforced by the regulatory
body either as a minimal price or with some special tax.

We conducted some numerical experiments with two case studies, where
CARA and CRRA functions have been used. The experiments support our
findings. Moreover, we were able to find that agents are more eager to buy
more insurance with increase of interdependency effect. Furthermore, although
the investments in self-protection fall with increase of interdependency effect,
agents also become more incentivised by cyber insurance in comparison with
no-insurance case. The latest observation requires more thorough theoretical
research to prove the dependency for all cases, but we leave it for the future
work.

As a future work, we see great potential in the considered model to study the
possibility to affect investment level with adjusting the price. For example, we
are able to raise investment level even higher than in no-insurance case. Thus,
it would be nice to find the maximal value of investments which can be reached.
Moreover, currently we considered the network as something that is not affected
by available cyber-insurance. In the future, we would like to consider how the
security investments change if other participants of the network also have the
possibility to insure themselves. Last but not least, we would like to investigate
how the analysed mechanism behaves in the models with information asymmetry,
i.e., where moral hazard and adverse selection problems have place.

Appendix

We prove that f ′(I�)|I�=0 < 0.

Proof

df

dI�

=

[
(1 − (1 + λ)pr(x�) − pr(x�)I dλ

dI�)U ′
IL − U ′

IL

]
[pr(x�)U ′

IL + (1 − pr(x�))U ′
IN]

(pr(x�))U ′
IL + (1 − pr(x�))U ′

IN)2

+

[
(1 + λ)pr(x�) + pr(x�)I dλ

dI�)
]
U ′

IN [pr(x�)U ′
IL + (1 − pr(x�))U ′

IN]

(pr(x�))U ′
IL + (1 − pr(x�))U ′

IN)2

− I�
[
1 − (1 + λ)pr(x�) − pr(x�)I dλ

dI�

]
U ′′

IL [pr(x�)U ′
IL + (1 − pr(x�))U ′

IN]

(pr(x�))U ′
IL + (1 − pr(x�))U ′

IN)2

− [UIL − UIN − I�U ′
IL] pr(x�)

[
1 − (1 + λ)pr(x�) − pr(x�)I dλ

dI�

]
U ′′

IL

(pr(x�))U ′
IL + (1 − pr(x�))U ′

IN)2

− [UIL − UIN − I�U ′
IL] pr(x�)(1 − pr(x�))

[−(1 + λ)pr(x�) − pr(x�)I dλ
dI�

]
U ′′

IN

(pr(x�))U ′
IL + (1 − pr(x�))U ′

IN)2
.

(48)

What we are interested in is the sign of the first derivative when I� = 0.
Since the divisor is clearly grater than zero, we focus on the dividend only.

Preventing the Drop in Security Investments 173

UIL|I�=0 = UNL and UIN |I�=0 = UNN and derivatives. We reduce the first part
of Eq. 48 by U ′

IL inside the first brackets. The third part is 0, as well as all
subparts with dλ

dI� . In the last part we move out pr(x�)(1 − (1 + λ)pr(x�)). We
get:

(1 + λ)pr(x�)(−U ′
NL + U ′

NN)(pr(x�)U ′
NL + (1 − pr(x�))U ′

NN)

+ (UNN − UNL)pr(x�)(1 − (1 + λ)pr(x�))[(U ′′
NL − (1 − pr(x�))(1 + λ)

(1 − (1 + λ)pr(x�))
U ′′

NN)]

= (1 + λ)pr(x�)(−U ′
NL + U ′

NN)(pr(x�)U ′
NL + (1 − pr(x�))U ′

NN)

+ (UNN − UNL)pr(x�)(1 − (1 + λ)pr(x�))[(U ′′
NLU ′

NN − U ′′
NNU ′

NL)]
1

U ′
NN

.

(49)

We know, that U ′
NL > U ′

NL and the first derivative is positive. Thus, the first
summand is negative. Also U ′

NL < U ′
NL and utility function is always positive.

Also, 1 > (1 + λ)pr(x�), otherwise an insured should pay more premium than
the identity it gets in case of an incident. The only part left for consideration is
(U ′′

NLU ′
NN − U ′′

NNU ′
NL).

We would like to recall that for the utility functions in use a coefficient of
absolute risk aversion is defined as:

A(W) = −U ′′(W)
U ′(W)

. (50)

Moreover, the experimental and empirical evidence mostly confirm the decreas-
ing absolute risk aversion (DARA). For the sake of generality, here we assume
non-increasing risk aversion (CARA and DARA):

∂A(W)
∂W

≤ 0. (51)

In other words A(WNL) ≥ A(WNN), where WNL is the financial position of an
insured in case of incident, while WNL is the financial position of an insured in
case no incident happens.

Thus, (U ′′
NLU ′

NN −U ′′
NNU ′

NL) = U ′
NNU ′

NL[A(WNN)−A(WNL)] ≤ 0 and the
second summand in the overall formula is negative or zero.

References

1. Anderson, R., Böhme, R., Claytin, R., Moore, T.: Security economics and
the internal market, January 2008. https://www.enisa.europa.eu/publications/
archive/economics-sec/at download/fullReport. Accessed 15 Jan 2016

2. Böhme, R., Schwartz, G.: Modeling cyber-insurance: towards a unifying framework.
In: Proceedings of the 9th Workshop on the Economics in Information Security
(2010)

3. Bolot, J., Lelarge, M.: A new perspective on internet security using insurance. In:
Proceedings of the 27th IEEE International Conference on Computer Communi-
cations, Phoenix, AZ, USA, pp. 1948–1956, April 2008

https://www.enisa.europa.eu/publications/archive/economics-sec/at_download/fullReport
https://www.enisa.europa.eu/publications/archive/economics-sec/at_download/fullReport

174 F. Martinelli et al.

4. Ehrlich, I., Becker, G.S.: Market insurance, self-insurance, and self-protection. In:
Dionne, G., Harrington, S.E. (eds.) Foundations of Insurance Economics, pp. 164–
189. Springer, Dordrecht (1992). https://doi.org/10.1007/978-94-015-7957-5 8

5. ENISA: Incentives and barriers of the cyber insurance market in Europe, June
2012. goo.gl/BtNyj4. Accessed 12 Dec 2014

6. EY: Global insurance outlook (2015). goo.gl/uyFzQ4. Accessed 11 Aug 2015
7. Gordon, L., Loeb, M.: The economics of information security investment. ACM

Trans. Inf. Syst. Secur. 5(4), 438–457 (2003)
8. Laszka, A., Felegyhazi, M., Buttyan, L.: A survey of interdependent information

security games. ACM Comput. Surv. 47(2), 23:1–23:38 (2014)
9. Laszka, A., Johnson, B., Grossklags, J., Felegyhazi, M.: Estimating systematic risk

in real-world networks. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS,
vol. 8437, pp. 417–435. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45472-5 27

10. Lelarge, M., Bolot, J.: Network externalities and the deployment of security fea-
tures and protocols in the internet. SIGMETRICS Perform. Eval. Rev. 36(1),
37–48 (2008)

11. Lelarge, M., Bolot, J.: Economic incentives to increase security in the internet: the
case for insurance. In: Proceedings of the 28th IEEE International Conference on
Computer Communications, Rio de Janeiro, pp. 1494–1502, April 2009

12. Majuca, R.P., Yurcik, W., Kesan, J.P.: The evolution of cyberinsurance. The Com-
puting Research Repository, pp. 1–16 (2006)

13. Marotta, A., Martinelli, F., Nanni, S., Orlando, A., Yautsiukhin, A.: Cyber-
insurance survey. Comput. Sci. Rev. 24, 35–61 (2017)

14. Naghizadeh, P., Liu, M.: Voluntary participation in cyber-insurance markets. In:
Proceedings of the 2014 Workshop on Economics in Information Security (2014)

15. Ogut, H., Menon, N., Raghunathan, S.: Cyber insurance and it security invest-
ment: impact of interdependent risk. In: Proceedings of the 4-th Workshop on the
Economics of Information Security (2005)

16. Pal, R., Golubchik, L., Psounis, K., Hui, P.: Will cyber-insurance improve network
security? A market analysis. In: Proceedings of the 2014 INFOCOM, pp. 235–243.
IEEE (2014)

17. Schneier, B.: Insurance and the computer industry. Commun. ACM 44(3), 114–115
(2001)

18. Schwartz, G., Shetty, N., Walrand, J.: Cyber-insurance: missing market driven by
user heterogeneity. In: WEIS (2010)

19. Schwartz, G.A., Sastry, S.S.: Cyber-insurance framework for large scale interde-
pendent networks. In: Proceedings of the 3rd International Conference on High
Confidence Networked Systems, HiCoNS 2014, pp. 145–154. ACM (2014)

20. Shetty, N., Schwartz, G., Walrand, J.: Can competitive insurers improve network
security? In: Acquisti, A., Smith, S.W., Sadeghi, A.-R. (eds.) Trust 2010. LNCS,
vol. 6101, pp. 308–322. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13869-0 23

21. Vaughan, E.J., Vaughan, T.M.: Fundamentals of Risk and Insurance, 11th edn.
Wiley, Hoboken (2014)

22. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour,
3rd edn. Princeston University Press, Princeston (1953)

23. World Economic Forum: Global risks 2014. 9th edn (2014). http://www.
droughtmanagement.info/literature/WEF global risks report 2014.pdf. Accessed
3 Jan 2017

https://doi.org/10.1007/978-94-015-7957-5_8
http://goo.gl/BtNyj4
http://goo.gl/uyFzQ4
https://doi.org/10.1007/978-3-662-45472-5_27
https://doi.org/10.1007/978-3-662-45472-5_27
https://doi.org/10.1007/978-3-642-13869-0_23
https://doi.org/10.1007/978-3-642-13869-0_23
http://www.droughtmanagement.info/literature/WEF_global_risks_report_2014.pdf
http://www.droughtmanagement.info/literature/WEF_global_risks_report_2014.pdf

Towards an Anonymity Supported
Platform for Shared Cyber Threat

Intelligence

Thomas D. Wagner(B) , Esther Palomar, Khaled Mahbub,
and Ali E. Abdallah

Birmingham City University, Birmingham, West Midlands B4 7XG, UK
{thomas.wagner,esther.palomar,khaled.mahbub,ali.abdallah}@bcu.ac.uk

Abstract. Over the last few years, cyber defense strategies in large orga-
nizations have gradually shifted from being reactive to being increasingly
pro-active. In the latter mode threats are anticipated and correspond-
ing mitigations are actionable. An essential component of this strategy
is the ability to share threat intelligence from multiple sources ranging
from crowd sourcing to closed circles of trusted stakeholders and their
supply chains. This paper presents a collaborative platform that sup-
ports sharing of cyber threat intelligence in which anonymity is a key
component. The component has been compared to existing threat intel-
ligence sharing solutions. The design of the component is examined and
a prototype of the supporting tool has been implemented.

Keywords: Advanced persistent threat · Cyber threat intelligence
Threat sharing · Anonymity

1 Introduction

A more systematic response to Advanced Persistent Threats (APT) and timely
response to new attacks is required [14]. The sharing of Cyber Threat Intelli-
gence (CTI) can significantly benefit organizations (and also states) as a way to
understand where risk events are occurring and realize their financial implica-
tions. Indeed, threat sharing revolutionizes current risk management procedures
by improving situational awareness exchange and hence, mitigating attacks [8].
Situational awareness achieved through cyber threat intelligence enhances the
collective understanding of threats and how to remedy vulnerabilities.

This work pays special attention to the prototype implementation of the
anonymizing tool for anonymous and automated sharing of threat intelligence.
We also introduce the implementation decisions of the aforementioned tool,
within a preliminary working prototype of a collaboration platform based on
the Malware Information Sharing Platform (MISP).

The rest of the paper is organized as follows. Section 2 introduces our generic
collaborative platform for CTI sharing. Section 3 presents the anonymity pro-
totype. Section 4 shows an analysis and, compares and evaluates our model to
existing solutions. Section 5 concludes our work.
c© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 175–183, 2018.
https://doi.org/10.1007/978-3-319-76687-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_12&domain=pdf
http://orcid.org/0000-0003-4120-8740

176 T. D. Wagner et al.

2 A Generic Cyber Threat Sharing Platform

In this section we overview the building block of the proposed platform, namely
the anonymity prototype (Fig. 1).

Fig. 1. TIP architecture

The open-source and community driven MISP (2.4.55) is used to manage
and exchange CTI in human and machine readable form [16]. The platform is
installed on Oracle’s Virtual Box with Linux Ubuntu Server (14.04) and stores
CTI in the Structured Threat Information Expression (STIX) format. To develop
a Threat Intelligence Platform (TIP) independent function, the tool is developed
outside the MISP environment and connects remotely to MISP’s SQL database.
This gives us the option to scale and apply the tool to other TIP’s in the future.

2.1 Anonymity Filter

Generated CTI is stored in a local knowledge base and then anonymized through
the prototype which uploads it to the MISP instance for sharing. To anonymize
the content, regular expressions in Java are used to mask confidential details
that could reveal Personal Identifiable Information (PII). A properties file stores
the regular expressions which can be expanded and modified. Table 1 lists some
truncated regular expressions that have been used for testing. The full list of
regular expressions can be found here1. For example, the regular expression
for e-mails ensures that only real e-mail addresses are anonymized. CTI could
contain an “@” sign instead of having “at” written out and will ergo not be
anonymized.

Exceptions to the regular expressions are implemented to avoid that core
information of CTI is anonymized. For instance, information about Phishing
sites and SPAM contain IP addresses which should not be anonymized. We are
using MISP’s tagging system for Phishing (ID 35), and SPAM (ID 31) to create
exceptions for these types of information. Other exception or tagging id’s can be
added and customized to stakeholder preferences.

1 https://github.com/X2018X/CTISharing/wiki.

https://github.com/X2018X/CTISharing/wiki

Towards an Anonymity Supported Platform for Shared CTI 177

Fig. 2. Anonymity tool

Table 1. Regular expressions

Type Regular expression

IP addresses (([0–1]?[0–9]{1,2} \\)?\\
NI numbers (([a-zA-Z]){2}()?([0–9])

E-mail (?:[a-z0-9!#$%& ’*+/=?ˆ

Credit cards \\+?1?*\\(?-*\\
SSN ((?!000—666)[0–9][0–9]

UK postcodes ([A-PR-UWYZ](([0–9]((

US zip codes ([0-9]5(?:-[0–9]4

PII is masked with four asterisk characters as shown in Fig. 2. The anonymity
prototype uses the Traffic Light Protocol (TLP) to define the anonymity level
where white has the highest anonymity level because it is publicly shared.
Anonymity for green, amber, and red labeled CTI has to be defined accord-
ing to the stakeholders and groups exchange policy. Repositories such as “Hail-
a-Taxii”2 allow anonymous connections without the need for authentication.
Masking PII is imperative but not enough to provide sufficient anonymity. To
enhance the anonymity of CTI we also have to anonymize the path. We therefore
tunnel the connection through the TOR network3 to hide our identity and con-
nect to the repositories where white labeled CTI is shared. Applications can also
be routed through TOR to allow anonymous connections. We use the Whonix
gateway4 to connect to the network. Tunneling the data through the TOR net-
work will avoid service providers and stakeholders to identify the location or
origin of the stakeholder.

Our prototype provides a masking function before the content is shared out-
side of a stakeholder’s premises, which mitigates the risk of revealing PII to the
service provider, if any, and stakeholder. Exceptions to the anonymization pro-
cess avoid that core information is being hidden. Results of accuracy are shown
in Table 2.

The anonymization rules are based on the regular expressions and the TLP
presented in the previous subsection. For instance, the regular expression to
anonymize e-mails is enabled when the TLP ID is white. If it is green, amber,
or red, the regular expression is disabled. E-mail addresses are not anonymized
when the tag ID is 43 which stands for Phishing. The reason is that the Phishing
e-mail is a core attribute of the CTI. The rational behind the set of rules is that
the depicted attributes are a common set of PII that should never be shared.
The anonymization rules can be modified according to individual requirements.
I.e., regular expressions may be added or disabled, the TLP anonymity level

2 http://hailataxii.com.
3 https://www.torproject.org.
4 https://www.whonix.org.

http://hailataxii.com
https://www.torproject.org
https://www.whonix.org

178 T. D. Wagner et al.

Table 2. Anonymity results

Anonymization Data sets Accuracy False negatives

E-mail addresses 1,110 1,105 (99.54%) 5

IP addresses 1,003 1,002 (99.9%) 1

Credit card numbers 1,002 1,002 (100%) 0

Social security numbers 1,001 1,001 (100%) 0

National insurance numbers 100 82 (82%) 18

UK postcodes 1,000 1,000 (100%) 0

US zip codes 1,002 1,002 (100%) 0

may be modified. The test run of the prototype has shown a high percentage of
successfully anonymized PII. Ergo, the prototype has proven a high degree of
anonymity in our test environment.

3 Anonymity Filter: First Prototype

Most of the platforms are typically tied to specific security product lines, service
offerings, or community-specific solutions. Nonetheless, there are ongoing efforts
to create and refine the community-based development of sharing and structur-
ing cyber threat information. For instance, the MITRE Corporation is engaging
organizations and experts across a broad spectrum of industry, academia, and
government towards the provision of standardized, structured representations of
this information. The Structured Threat Information Expression (STIX), Cyber
Observable Expression (CybOX), and Trusted Automated Exchange of Indicator
Information (TAXII) represent the most recognized languages in the threat infor-
mation sharing community [3–5,9]. In particular, STIX aims to extend indicator
sharing to enable the management and exchange of significantly more expres-
sive sets of indicators as well as other full-spectrum cyber threat information
[2]. Software solutions should provide intuitive user interface masking back-end
STIX and TAXII complexities according to the high acceptance of these lan-
guages by the community like government, organizations, and vendors.

The common desire of many organizations to exchange information automat-
ically as much as possible but yet not lose the human judgment and control is
largely a phenomenon of many information sharing programs [13].

3.1 A Note on Anonymity Techniques

Information about vulnerabilities can contain sensitive attributes like client or
organizational data. Therefore, CTI has to be anonymized to avoid reputation
deterioration which is a drawback in information sharing [7]. Even internally
shared information should not reveal any PII to employees who do not possess

Towards an Anonymity Supported Platform for Shared CTI 179

adequate permission. Stakeholders have to analyze which information is sen-
sitive and should be masked [12]. Privacy techniques for data anonymization
have been presented in k-anonymity where data records are indistinguishable
from other records. For example, the age of a patient only shows that they are
younger or older than 40 years [15]. l-diversity was presented in [11] which suc-
cessfully defends anonymity against diversity and background knowledge attacks.
l-diversity uses a 3-diverse version of a table which makes it impossible to exactly
know which information relates to which identity. t-closeness was presented in
[10] to provide anonymity beyond k-anonymity and l-diversity by reducing the
granularity of a data representation. The authors correctly identified that most
privacy-preserving methods assume that all attributes are categorical. Another
technique for sanitation is pseudonymized data which sanitizes data before its
release [1]. The work is presented as a general approach to data anonymization,
nevertheless, this work could be used to anonymize CTI in our model. Further
research is presented in [6] as a prototype implementation called PRACIS, a pro-
tocol that provides privacy-preserving and aggregatable CTI sharing and uses
STIX as its standard message format. This protocol is very useful for encrypting
CTI and could extend our anonymity model for trusted sharing.

3.2 System Model

Generated CTI is stored in the local knowledge base in STIX format. The stake-
holder decides whether to share the information and labels the information
according to the TLP. The anonymity prototype anonymizes the information
according to the color of TLP synchronized with the MISP tagging system where
the color white has the ID 1 in the “tags” table, green has ID 3, amber ID 44, and
red ID 45. As an example we chose the TLP color white which has the highest
anonymity level because the consuming stakeholder can share the information
publicly. The information is processed through the anonymity prototype which
detects the ID 1 in the “tags” table and therefore applies a pre-defined set of reg-
ular expressions, discussed in Subsect. 2.1 to mask confidential attributes. The
regular expressions are accessed from a properties file which makes requirement
adjustments simpler instead of modifying the Java code. Some attributes are
critical to the usefulness of the intelligence such as e-mails in Phishing attacks.
The prototype has therefore exceptions implemented which allows the filtering
process to ignore specific attributes. We implemented 2 exceptions for SPAM
with the ID 31 and Phishing with the ID 35 from the MISP “tags” table. If the
prototype encounters these ID’s then the anonymization process for e-mails is
disabled. Untagged information is ignored by the prototype, hence full disclosure
of the intelligence. The MISP instance connects to the repositories through the
TOR network utilizing the Whonix gateway to establish an anonymous connec-
tion for information sharing.

180 T. D. Wagner et al.

3.3 Preliminary Evaluation and Threat Model

The evaluation of the tool was set up in the test environment and run with vari-
ous data sets. The tool was tested against accuracy and false negatives. The first
test run of the prototype had satisfactory results regarding the accuracy of mask-
ing PII shown in Subsect. 2.1. More exceptions have to be added in the future
to render the tool more accurate and powerful. The TOR connection provides
anonymous connections which makes it difficult for consuming stakeholders to
re-identify our identity. Our system has shown to be vulnerable to background
knowledge attacks. For example, if an adversary knows that an organization was
breached with a 0-day attack, then shared information about that particular
event can reveal the identity of the providing stakeholder. The acquisition of the
background knowledge could have been gained through the media.

Attacks on anonymity such as de-anonymization can reveal personal infor-
mation even after the anonymization process. The literature in Subsect. 3.1 dis-
cusses various anonymity techniques and attacks. If the hacker has background
knowledge of the stakeholder then she can correlate the knowledge with the
visible information. Background attacks such as infeasibility and probabilistic
attacks are described in [1]. k-anonymity provides anonymity by obfuscating
table attributes to render it impossible to identify an entity. Nevertheless, suc-
cessful homogeneity and background knowledge attacks on k-anonymity were
proven by [11].

4 Analysis of Threat Intelligence Platforms

30 threat intelligence platforms have been analyzed and compared, to the best
of our knowledge, pertaining to anonymity (Table 3). The methods used for the
evaluation were direct testing where possible. We did not have access to all
platforms, therefore we analyzed the academic literature, white/gray literature
such as technical reports, and company websites for the evaluation.

We have identified 3 platforms that enable different approaches to anonymity
in threat intelligence sharing. Alien Vault’s anonymity function does not iden-
tify stakeholders identity including system’s data and internal IP traffic. If a
contribution is made, external IP addresses, traffic patterns, timestamps, and
Indicator of Compromise (IOC) activity data are collected. Therefore, in this
hub-to-spoke model an anonymity function is provided. Nevertheless, it does
not provide any anonymity pertaining to the content. I.e., removing or masking
of PII which has to be conducted manually before CTI is shared.

The HP Threat Central platform enables a preprocessing of the data as
to remove specific information before it is being shared with the commu-
nity. Although, stakeholders have to advise HP which information should be
anonymized. The platform encrypts the communication channel over HTTPS.
Moreover, it provides a comprehensive policy setting to decide with whom to
share.

Towards an Anonymity Supported Platform for Shared CTI 181

Table 3. Threat intelligence platforms: adenotes direct access, bdenotes white/gray
literature.

Threat intelligence platforms Anonymity

Malware Information

Sharing Platform (MISP)a —

NC4 CTX/soltra edgea —

ThreatConnecta —

Microsoft interflowb —

HP threat centralb X

Facebook threat exchangeb —

IBM X-force exchangea —

Alien vault Open Threat Exchange (OTX)a X

Anomali Threat Stream (STAXX)b —

LookingGlass ScoutPrime (Cyveillance)b —

Cisco talosb —

Crowd strike falcon platformb —

Norm shieldb —

ServiceNow - bright point securityb —

NECOMAtter (NECOMAtome)b —

Splunka —

CyberConnectorb —

Last Quarter Mile Toolset (LQMT)b —

Health information trust alliance

- Cyber Threat XChange (CTX)b —

Defense security information exchangeb —

Retail cyber intelligence sharing

Center (R-CISC) intelligence sharing portalb —

Accenture cyber intelligence platformb —

Anubis networks cyberfeedb —

Comilionb X

McAfee threat intelligence exchangeb —

ThreatQuotientb —

ThreatTrack ThreatIQb —

Eclectic IQb —

Infoblox threat intelligence data exchangeb —

Cyber-security information sharing partnershipa —

By contrast, Comilion provides anonymization at the architecture level mak-
ing the sender untraceable. This is a valuable and imperative function, neverthe-
less, the sharing stakeholder could be de-anonymized by analyzing the unmasked

182 T. D. Wagner et al.

PII. We conclude that only HP Threat Central provides a content masking func-
tion which is conducted on site.

Our tool provides a content anonymity and connection function which has
not been found, in such form, in any of the analyzed platforms.

5 Conclusion

In this paper, we introduced a generic cyber threat sharing platform that enables
sharing of cyber threat intelligence. There is currently a lot of interest in develop-
ing systems that automate the exchange of security information as well as in the
need of standards to develop as to ensure machine-readability and interoperabil-
ity. The building base for our model is anonymity. An analysis was conducted of
30 threat sharing platforms regarding anonymity. Immediate work focused on the
implementation and evaluation of the anonymity prototype as proof-of-concept
for automation of the processes involved in real-time.

References

1. Bagai, R., Malik, N., Jadliwala, M.: Measuring anonymity of pseudonymized data
after probabilistic background attacks. IEEE Trans. Inf. Forensics Secur. 12(5),
1156–1169 (2017)

2. Barnum, S.: Standardizing cyber threat intelligence information with the struc-
tured threat information eXpression (STIX). MITRE Corp. 11, 1–22 (2012)

3. Burger, E.W., Goodman, M.D., Kampanakis, P., Zhu, K.A.: Taxonomy model for
cyber threat intelligence information exchange technologies. In: Proceedings of the
2014 ACM Workshop on Information Sharing & Collaborative Security, pp. 51–60.
ACM (2014)

4. Connolly, J., Davidson, M., Richard, M., Skorupka, C.: The trusted automated
eXchange of indicator information (TAXII) (2012)

5. Fransen, F., Smulders, A., Kerkdijk, R.: Cyber security information exchange to
gain insight into the effects of cyber threats and incidents. e & i Elektrotechnik
und Informationstechnik 132(2), 106–112 (2015)

6. de Fuentes, J.M., González-Manzano, L., Tapiador, J., Peris-Lopez, P.: PRACIS:
privacy-preserving and aggregatable cybersecurity information sharing. Comput.
Secur. 69, 127–141 (2016)

7. Garrido-Pelaz, R., González-Manzano, L., Pastrana, S.: Shall we collaborate?: A
model to analyse the benefits of information sharing. In: Proceedings of the 2016
ACM on Workshop on Information Sharing and Collaborative Security, pp. 15–24.
ACM (2016)

8. Goodwin, C., Nicholas, J.P., Bryant, J., Ciglic, K., Kleiner, A., Kutterer, C.,
Sullivan, K.: A framework for cybersecurity information sharing and risk reduction.
Technical report, Microsoft Corporation, Technical report (2015)

9. Kampanakis, P.: Security automation and threat information-sharing options.
Secur. Priv. IEEE 12(5), 42–51 (2014)

10. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity
and l-diversity. In: Proceedings of the 23rd International Conference on Data Engi-
neering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15–20, 2007, pp.
106–115 (2007)

Towards an Anonymity Supported Platform for Shared CTI 183

11. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
privacy beyond k-anonymity. TKDD 1(1), 3 (2007)

12. Mohaisen, A., Al-Ibrahim, O., Kamhoua, C., Kwiat, K., Njilla, L.: Rethinking
information sharing for actionable threat intelligence. CoRR abs/1702.00548 (2017)

13. Philip, R., et al.: Enabling Distributed Security in Cyberspace. Department of
Homeland Security (2011)

14. Sigholm, J., Bang, M.: Towards offensive cyber counterintelligence: adopting a
target-centric view on advanced persistent threats. In: 2013 European Intelligence
and Security Informatics Conference (EISIC), pp. 166–171. IEEE (2013)

15. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl. Based Syst. 10(5), 557–570 (2002)

16. Wagner, C., Dulaunoy, A., Wagener, G., Iklody, A.: MISP: the design and imple-
mentation of a collaborative threat intelligence sharing platform. In: Proceedings
of the 2016 ACM on Workshop on Information Sharing and Collaborative Security,
pp. 49–56. ACM (2016)

Human-Centric Security and Trust

Phishing Attacks Root Causes

Hossein Abroshan(&) , Jan Devos, Geert Poels ,
and Eric Laermans

Ghent University, 9000 Ghent, Belgium
{hossein.abroshan,jang.devos,

geert.poels,eric.laermans}@ugent.be

Abstract. Nowadays, many people are losing considerable wealth due to
online scams. Phishing is one of the means that a scammer can use to deceitfully
obtain the victim’s personal identification, bank account information, or any
other sensitive data. There are a number of anti-phishing techniques and tools in
place, but unfortunately phishing still works. One of the reasons is that phishers
usually use human behaviour to design and then utilise a new phishing tech-
nique. Therefore, identifying the psychological and sociological factors used by
scammers could help us to tackle the very root causes of fraudulent phishing
attacks. This paper recognises some of those factors and creates a cause-and-
effect diagram to clearly present the categories and factors which make up the
root causes of phishing scams. The illustrated diagram is extendable with
additional phishing causes.

Keywords: Phishing � Scam � Root causes � Behaviour

1 Introduction

Human life has significantly changed as a result of online services including
e-shopping and e-banking, etc. Although these services offer great convenience, they
are accompanied by an increase in cybercrimes and present new security threats. An
online phishing is a cybercrime to steal credentials from users, such as login and credit
card details, “by masquerading as trustworthy entities in electronic communication”
[1]. Then the attacker usually uses the collected information to sign into the genuine
reputable website, such as those that are used for internet banking, to steal from the
victim’s online account [2]. In recent years, many researchers have focused on phishing
attacks in order to offer an anti-phishing solution for protecting sensitive financial data
from phishers. However, phishing still works, and every day brings with it new
phishing websites and techniques which steal personal credentials.

By reviewing the existing anti-phishing techniques, we understand that most of
them are trying to technically detect and/or prevent phishing attacks. We are of the
opinion that focusing on the human psychological and sociological factors that
attackers use to scam people would be an effective way to fundamentally tackle
phishing attacks. We believe that current anti-phishing solutions are useful though
insufficient, as phishers always use people’s psychological weaknesses to design new
types of phishing attacks. Several studies [3, 4] have already identified some of the

© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 187–202, 2018.
https://doi.org/10.1007/978-3-319-76687-4_13

http://orcid.org/0000-0001-9315-4428
http://orcid.org/0000-0001-9247-6150
http://orcid.org/0000-0002-1811-9419
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_13&domain=pdf

above-mentioned factors, but none of them have carried out a root cause analysis to list
all the possible psychological factors at play and the tricks that scammers use to fool
people.

The objective of this research is to identify human and psychological factors which
phishers can use to scam people and make a successful phishing attack. Listing and
categorising these root causes will enable us to develop improvement programmes for
each factor. If we know that a psychological reason, for instance gullibility, is one of
the root causes of phishing attacks then we can detect users’ gullibility level, for
example by using a psychological test and/or a trust game, as well as develop some
improvement and treatment programmes, in the form of specific trainings for example,
to improve gullibility level of to those who easily trust others. We hope that such
programmes could help reduce the number of successful phishing attacks by treating
the phishing root causes as identified in this paper. It is possible to systematically
identify users’ behaviour by monitoring their online activities, using online tests, and
providing them relevant trainings based on the detected weaknesses. Therefore, these
anti-phishing solutions can be automated.

For this purpose, we initially reviewed anti-phishing solutions to find out which
techniques are being applied to deal with phishing attacks. We also used anti-phishing
studies to figure out how the targeted phishing attacks work and what phishing tactics
are being used by attackers. We then reviewed other studies, especially scam-related
psychological articles, to identify which cognitive factors can be used by phishers to
fool people and to design phishing attacks. We then identified tricks that a phisher
might use to scam people. We focused on a selection of tricks from the reviewed
studies, particularly anti-phishing studies. Finally, we illustrated the root causes,
including the identified human factors and the tricks used via a cause-and-effect dia-
gram. Such a diagram presents a clear and easily comprehensible picture of the issue at
hand.

For conducting our literature review we used the Webster and Watson [5] struc-
tured approach. We therefore started with searching Phishing Attacks, Anti-phishing
techniques, Social Engineering Attacks and Online Scam literatures. We performed our
queries on journal databases such as Science Direct, Google Scholar, and WorldCat,
and browsed seventy journals such as MIS Quarterly, ACM Transactions on Infor-
mation and System Security, International Journal of Security and Its Applications,
Journal of Personality and Social Psychology, etc. We also queried and examined
related conference papers. We selected articles that explained and defined phishing
methods, root causes, and other useful information and references for our study. Then
we went through the citations of the selected articles to determine whether there were
more publications that we should review. In the last stage, we used the Web of Science
to identify more articles citing the key articles we had identified in our earlier stage.

The paper starts with reviewing the existing anti-phishing techniques. It then pre-
sents several phishing attacks. Next, it explains psychological factors which can
influence a phishing process and describes tactics scammers use to trick people.
Finally, it comes up with a cause-and-effect diagram and provides concluding remarks.

188 H. Abroshan et al.

2 Anti-Phishing Techniques

The existing anti-phishing approaches are classified as either server based and/or client
based [6], where most of the client side anti-phishing systems are plug-ins or web
browser toolbars. In recent years, many research efforts have been conducted in
developing anti-phishing systems to detect and prevent phishing emails and/or web-
sites. Table 1 indicates some existing anti-phishing techniques and grouped them into
five anti-phishing categorises based on their technical and/or non-technical approaches
to detect or prevent Phishing. Those techniques which are using webpage features like
URL and web ranking to detect phishing attacks are not able to recognise all phishing
websites. Heuristics and machine learning methods use webpage features for phishing
detection, however they mostly have “high complexity” and “high false positive rates”
issues [7]. The blacklists and whitelists need to be frequently updated. Blacklists are
only useful to detect the detected phishing websites and emails and are not agile in
responding to “zero-hour attacks” [8]. Using time-sensitive tokens works until the
criminals implement real-time attacks.

Table 1. Anti-phishing categories and techniques.

Category Techniques

Phishing emails
(Detection and
prevention)

Features processing [11–15]
Identification and authentication [16]

Heuristics method [13, 17]
Hybrid methods [18, 19]

Phishing websites
(Detection and
prevention)

Content-based detection [20]
Visual and layout similarity [21–24]
Heuristics [25, 26]
URL evaluation [27, 28]

User activities [29]
Evaluation and ranking [30]
Whitelists [31–33]
Blacklists [34, 35]
Hybrid [36, 37]

Network-based
(Detection and
prevention)

Authentication [38–41]
Network security elements [42]
Password management tools [41, 43]

Fraudulent activity detection
(Transaction and log analysis) [44–46]
Honeypot/phisher tracer [42, 47, 48]

Improvement of user
knowledge

Knowledge evaluation and training systems [49, 50]
Warning effectiveness [51]

Prosecution Sending phishing messages [52]:
CAN-SPAM Act (18 U.S.C. § 1037) (US)
E-Privacy Directive (EU)
General Data Protection Regulation (GDPR)
(Regulation (EU) 2016/679) [53]
Directive (EU) 2016/680 [53]
Anti-phishing Act of 2005 [54]
Fraud Act 2006 (UK) [55]
Deterrence of identity theft [52]:
Crime Ordinance (Cap. 200) (HK)
Theft Ordinance (Cap. 210)
Identity Theft and Assumption Deterrence Act
(18 U.S.C. § 1028) (US)
Credit card fraud (18 U.S.C. § 1029) (US)
Bank fraud (18 U.S.C. § 1344) (US)
Computer fraud (18 U.S.C. § 1030(a)(4)) (US)
Computer-related fraud (Article 8, Convention
on Cybercrime)
Fraud Act 2006 (UK) [55]

Data privacy [52]:
Personal Data (Privacy) Ordinance (Cap. 486)
(HK)
Telecommunication Ordinance (Cap. 106)
(HK)
Telecommunication Privacy Directive (EU)
E-Privacy Directive (European Union)
Data Interference (Article 4, Convention on
Cybercrime)
System interference (Article 5, Convention on
Cybercrime)
General Data Protection Regulation (GDPR)
(Regulation (EU) 2016/679) [53]
Directive (EU) 2016/680 [53]
Fraud Act 2006 (UK) [55]
Rundschreiben 4/2015 (BA) (Germany) [56]
Fake websites [52]:
Copyright Ordinance (Cap. 528) (HK)
Wire fraud (18 U.S.C. § 1343) (US)
Infringements of copyright (Article 10,
Convention on Cybercrime)

Phishing Attacks Root Causes 189

The phishing attacks will not disappear with “one solution” and at “one level” [9].
A study shows that even by utilising modern anti-phishing techniques, over 11% of
users read the spoofed messages and enter their credentials [10].

3 Phishing Attacks

In recent years, researchers and organisations have categorised phishing attacks in
similar or sometimes in different ways. Some examples of the mentioned categorisa-
tions of phishing tactics are “Deceptive Phishing” [57], “Malware-based Phishing” [11,
57–59], “Key-loggers” and “Screen-loggers” [57, 58], “Session Hijacking” [57], “Web
Trojans” [57], “Hosts File Poisoning” [57], “System Reconfiguration” attacks [57, 59],
“Data Theft” [57], “DNS-based Phishing” (Pharming) [57–59], “Content-injection
Phishing” [57, 58], “Man-in-the-Middle Phishing” [57, 58], “Search Engine Phishing”
[57, 59], “Website Forgery” [58], “Social Engineering” [11], “Mimicry” [11], “Email
Spoofing” [11], “URL Hiding” [11], “Invisible Content” [11], “Image Content” [11].

By using the above tactics, scammers try to gain access to victims’ sensitive
information by masquerading as a reputable organisation or person. Figure 1 presents
an example of a spear phishing attack. In this example, the phisher obtains basic
information such as the name and email address of the targeted users by creating a real
website that looks like the genuine website, or by hacking a real website. The fake or
real website could be, for example, a promotional website, a lottery website, an e-shop,
or any other website which asks for a user’s personal information. Phishers can also
obtain basic user information via public data or social media. In that case, the phisher
uses the obtained information to create a phishing email.

Thus, a phisher relies on building trust, so that the victim believes that s/he is in
contact with a reputable entity. A phisher might use tricks, persuasion, visceral influ-
ence, and/or any other technique to gain a user’s trust.

4 The Influence of Cognitive Factors in the Phishing Process

Social engineering and technical tricks are two mechanisms phishers use to steal
personal and financial credentials [60]. Social engineering targets individuals and the
result of attacks depends on human decision, trust, and other cognitive factors. “Fraud
is a human endeavor, involving deception, purposeful intent, intensity of desire, risk of
apprehension, violation of trust, rationalization, etc. So, it is important to understand
the psychological factors that might influence the behavior of fraud perpetrators” [61].
Therefore, to analyse the root causes of phishing attacks, we should study psycho-
logical and sociological factors to find out the main reasons why a user gets caught in a
phishing net.

190 H. Abroshan et al.

4.1 Suspicion

A recent study [4] shows that suspicion is one of the determinative factors in the email
phishing attacks. The study also indicated that the users determine suspicion based on
how they process emails, systematically or heuristically.

If the users believe that their cyber action is risky then they will systematically
process the email but in case the users believe that their cyber action is safe then they
will heuristically process it.

The heuristic-systematic model [62] proposes two information processing modes.
In systematic processing, independent variables such as “source factors” directly
impact on “argument acceptance process”. In heuristic processing, on the other hand,
those independent variables may directly impact on accepting the message itself
without paying enough attention to the arguments.

Based on the heuristic-systematic model, we conclude that people who highly
involve the received email messages usually employ a “systematic processing” strategy
which cause high suspicion about the phishing emails, whereas those who weakly
involve the messages usually employ a “heuristic processing” strategy which cause low
suspicion about the phishing emails.

For instance, a user who think that cyber activities are very risky usually has focus
on the email’s message cues, where a user who think that cyber activities are quite safe
usually has not enough focus on content cues.

Fig. 1. Example of a phishing attack flow

Phishing Attacks Root Causes 191

4.2 Trust

Trust is defined in this context as the “willingness of taking a risk”, which means
sometimes people trust a beneficiary when they believe that this trust will be beneficial
for them, even though they know that it is possible to lose something in this relation
[63]. That is one of the reasons why a victim trusts a scammer.

Moreover, characteristics of both the trustor and the beneficiary and the situation of
trustor are several important factors of trust. People with different cultural background,
experiences, and personal character have different propensity to trust. Some people
trust others more easily, whereas others do not trust people or entities in many situa-
tions [63]. However, the beneficiary’s previous behaviour as well as his/her character
are crucial factors [64, 65]. For instance, if someone had positive experiences with an
e-shop, then the person will trust that e-shop much more than an e-shop associated with
a negative previous experience.

As mentioned above, trust is one of the factors that affect a phishing attack.
Therefore, it is crucial to consider the conditions of trust, which are “availability,
competence, consistency, fairness (perceived equity), integrity, loyalty (perceived
benevolence), openness, overall trust, promise fulfilment, and receptivity” [65].

Sometimes people trust a predictable person or entity, more than they would others.
However, predictability is not enough to build trust, as maybe the reason of that
predictability was something else, such as “controls” [63]. In addition, we cannot
necessarily expect that a person is being fully rational when s/he trusts people or
organisations, as people might trust entities based on limited information and in many
cases “biased information” [66]. People usually trust a source of information which
they perceive to be similar to themselves, such as family members or friends for
example [64]. Thus, people cannot be sure that their trust in an email or on a website is
completely justified. Phishers might use affective trust factors and as conditions to
encourage victims to trust them.

4.3 Decision-Making

A phishing attack, especially in the case of spear phishing, is a scamming process.
Usually there are at least two steps in this process where a victim makes decisions.
Figure 2 illustrates an example of the role of decision-making in a phishing attack. In
some cases, people decide “either to trust or not trust” others [67, 68], so the first step is
when the victim decides to trust the attacker and the second step is right before sharing
sensitive information with the attacker.

There are several parameters which influence the victim’s decision to trust an
attacker, including beliefs, values, and behaviours [69]. Decision-making is a process
in itself and a sub-process of a phishing attack. Decision-making consists of the fol-
lowing phases: “perception activity”, “mental representation”, “data processing”,
“problem solving”, and “choice of solution” [70]. Thus, a user’s abilities in each phase
can affect the result of the decision and eventually, affect the outcome of a phishing
attack. For instance, a user with better data processing knowledge and skill is more
likely to make a wiser decision. However, sometimes the decision-making process does
not play a major role in a phishing attack. In some cases, users do not have enough

192 H. Abroshan et al.

awareness of the risks of sending personal information to a phisher, or they are not
sensitive to potential losses. In such cases, phishing (A) is neutral, but making some
money (B) is considerable. When a phisher tries to attract a victim by offering an
impressive result, the user evaluates B-A as earned money [71]. Based on a previous
study [71], we can define the following possible effects of the decision-making factor in
a phishing attack:

• If the person believes that the probability of gain is high, then the effect of the
decision is low.

• If the person believes that the probability of loss is high, then the individual most
likely will not go for it, so the effect of the decision is low.

• If the person believes that the probability of gain or loss is low, then the effect of the
decision is high.

Hence, decision-making can play a major role in a phishing attack when the user
believes that the chance of either utility or loss is low.

4.4 Prediction

Phishers increase their resemblance with the targeted organisation in order to encourage
the victim to believe that the phisher is who s/he claimed. This happens because people
“predict by similarity” [72].

The individual’s previous experience, as well as the person’s knowledge, infor-
mation, and/or experience with this particular type of phishing or the phisher, will
affect the user’s prediction in a given phishing attempt. However, the level of indi-
vidual’s “expected accuracy of prediction” will affect the effectiveness of evidences and
his/her prior information about the particular phishing attack/attacker [72]. For

Fig. 2. Decision-makings in phishing attacks

Phishing Attacks Root Causes 193

instance, if the user’s opinion or guess about a specific phishing is that it probably is
not an attack, then the person might predict that it is a normal communication, even
when the user has a degree of knowledge about phishing attacks. When a user is at the
stage of making a decision to share or not to share sensitive data with a phisher, then
some examples of the individual’s prior information and other factors which can affect
his/her prediction can be considered to be:

• Previous awareness and information about cybercrimes, especially phishing attacks,
previous phishing experience, level of trust to the entity, knowledge about sensitive
data, and risks of sharing the sensitive information with others.

• Similarity of the phisher to the claimed person or entity, how attractive is the
phisher’s offer, the phisher enforcement, real-time information, the user’s impres-
sion of the offer, and the user’s Emotional Quotient (EQ).

Where descriptions of what may influence a person’s prediction are not available or
are very limited, it is possible that the person makes a prediction based on a base rate
information [72]. If a person does not receive any awareness about phishing attacks or
no guidance or alarm is provided to warn of a phishing attack, or this person does not
take advantages of a safeguard which is in place, then the individual might only rely on
her/his prior understanding and knowledge of phishing attacks and/or the attacker.

5 Phisher’s Tactics

Phishing scammers use an individual’s behavioural weaknesses to offer attractive
promotions as well as other techniques to trick the person into fulfilling the desired
actions.

5.1 Scams and Tricks

The root causes of digital social engineering scams are very similar to the scams that
happen in the real world. In both cases, the scammers use techniques and tricks to gain
the victim’s trust. They target the victims’ psychological behaviours, and use the
weaknesses of those behaviours to build a strong trust. They use the discovered psy-
chological behaviours to design and create a scam. For instance, a phisher may find out
that the victim is a person who usually tends to help others, then the scammer running a
scam by feigning that they need a person to help them [73].

One of the reasons why phishing still works is because some people desire to take a
gamble [74]. Therefore, an attractive prize or promotion could be enough to get them
into a trap.

There are some “motivational and cognitive sources of errors” when people assess a
phishing or a phisher. A phisher can use errors such as “visceral influences”, “reduced
motivation for information processing”, “preference for confirmation”, “lack of
self-control”, “mood regulation and phantom fixation”, “sensation seeking”, “liking and
similarity”, “reciprocation”, “commitment and consistency”, “reduced cognitive abili-
ties”, “positive illusions”, “background knowledge and overconfidence”, “norm acti-
vation”, “false consensus”, “authority”, “social proof”, “alter casting” [74], to phish.

194 H. Abroshan et al.

5.2 Persuasion and Influence

There are individuals who usually desire to say yes to demands made by others,
because they like reacting to “assertions of authority” [75]. They respond to others’
demands even to someone who does not have the related authority. They prefer to fulfil
a request or a demand, instead of investigating and verifying the authenticity of the
demander. That is why when a phisher sends a fake email, e.g. from a bank, and
informs them that “you need to change your password”, then they do exactly what the
phisher told them to do.

Moreover, “people have a natural tendency to think that a statement reflects the true
attitude of the person who made it”, and also some people usually tend to do what
others do or to say what others say, which “may prompt them to take actions that is
against their self-interest without taking the time to consider them more deeply” [75].

There are two ways that a phisher may choose to push a victim to fulfil the demand
[75]:

• “Central route to persuasion”
The phishing message contains very “systematic and logical” reasoning which
motivates the victim to rationally think and cogitate on the statements, and in the
end to do whatever the phisher wants. The phisher has carefully designed the
scenario and the argument, and knows the victim’s conclusion.

• “Peripheral route to persuasion”
A phisher leads the victim to do the request without thinking about it. The phisher
uses “mental shortcuts to bypass logical argument”. For example, the victims
receive an email informing them that they won thousands of dollars and a very
expensive laptop in a recent lottery promotion. This fantastic prize would stimulate
many people to give personal information about themselves and can cause people to
fall into the phishing trap.

5.3 Visceral Influence

A visceral motivation can cause less thinking about the legitimacy of transactions, as
the person’s focus is on activities that could satisfy the visceral needs. In this situation,
instead of rationally thinking about a given situation and analysing it accordingly,
people usually do not care about the outcomes of their actions and make gut-feeling
decisions. The influences of visceral factors are categorised to “low-level, middle-level,
and high-level” [76] as defined below:

• Low-level: reasonable behaviour;
• Middle-level: people behaving in an opposite way to their actual interests, leading

to them being upset with what they did, as they believe that they made an unrea-
sonable decision;

• High-level: not making reasonable decisions.

Phishers create messages containing a scam reward and scam cues. Two types of
scam rewards are “reward proximity” and “vividness” [77]:

Phishing Attacks Root Causes 195

• Reward proximity: if the phisher offers an easily and quickly-achievable reward,
then it makes the individual hungrier than when a reward is not quickly-achievable,
even if the value of the reward which is not quickly-achievable is higher.

• Vividness: when the phisher offers a very tangible reward, then it will be highly
attractive for the victim. Professional phishers create different rewards for different
targets groups to make each reward more clear and understandable for the related
group of victims.

A person with low visceral influence is more likely to focus on scam cues, whereas
one with high visceral influence is more likely to focus on the scam rewards. A victim
who has high focus on the scam reward might get hooked by the phishing attack if s/he
has low self-control, for example, and a victim who focuses on scam cues might get
hooked if s/he has a low attention to the cues, in addition to having a high level of
“social isolation”, “cognitive impairment”, “gullibility”, “susceptibility to interpersonal
influence”, and/or low level of “skepticism”, and/or “scam knowledge” factors [77].

However, even people with enough scam knowledge may follow a phishing cue if
they enjoy activities such as gambling, for example. One of the reasons why those who
have scam knowledge may still fall into a phishing trap is that sometimes experience is
in opposition to knowledge, and that abnormal conditions may increase the effect of
feelings on judgments [78]. That is a reason why some people process all the received
emails even when they know about phishing attacks. It is therefore important to focus
on the conditions which lead to decision-making. It is of crucial importance to keep in
mind that visceral factors can influence behaviour even without “conscious cognitive
mediation” [79]. For example, a person who is not hungry but starts eating just because
someone is eating a sandwich in front of them [80].

6 Discussion

One of the techniques that scammers utilise to obtain individuals’ sensitive data is
social engineering [60]. The focus of this article is on the root causes of social engi-
neering subterfuge in phishing attacks. A series of potential psychological and socio-
logical effects have been identified.

There are several methods for root-causes analysis such as “Events and Causal
Factors Charting”, “Tree Diagrams”, “Why-Why Chart”, “Storytelling”, and “Reali-
tycharting” [81]. The Ishikawa Fishbone diagram [82] is a cause and effect analysis
technique, which is useful for arranging the causes of a problem by focusing on
potential factors in an organised way [83]. All the root cause analysis techniques and
methods have useful features, however the Ishikawa Fishbone diagram was chosen to
present the root causes of phishing attacks, which have been identified in this paper, as
it is deemed to be a suitable technique to structure, categorise, as well as clearly
illustrate all the extracted root causes.

Figure 3 presents the recognised root causes of phishing scams. This diagram
consists of a main body, seven branches, and three sub-branches representing the
grouped causes that are investigated in this paper. The presented extendable
cause-and-effect diagram is a starting point, and future phishing causes could be added
to the diagram.

196 H. Abroshan et al.

Ph
ish

in
g

A
tta

ck

W
ill

in
gn

es
s o

f t
ak

in
g

a
ri

sk

E
as

ily
 tr

us
t o

th
er

s

(E
le

m
en

ts
:c

ul
tu

re
s,

ex
pe

ri
en

ce
s,

an
d

pe
rs

on
a)

Pi
sh

er
's

ch
ar

ac
te

r
an

d
pr

ev
io

us
 b

eh
av

io
rs

A
pp

ro
pr

ia
te

 tr
us

t c
on

di
tio

n

Pr
ed

ic
ta

bl
e

L
im

ite
d

or
 b

ia
se

d
in

fo
rm

at
io

n

C
lo

se
 r

el
at

io
ns

 o
r

si
m

ila
ri

ty

to
 th

e
ph

is
he

r (
e.

g.
fa

m
ily

)

R
es

po
ns

iv
e

to
 a

ss
er

ti
on

s
of

 a
ut

ho
ri

ty

St
at

em
en

t r
ef

le
ct

 th
e

st
at

er
's

tr
ue

 a
tt

itu
de

M
ir

ro
ri

ng
 b

eh
av

io
r

(w
ith

ou
t d

ee
pl

y
co

ns
id

er
in

g
th

at
 a

ct
io

n)

C
en

tr
al

 r
ou

te

to
 p

er
su

as
io

n

Pe
ri

ph
er

al
 r

ou
te

to

 p
er

su
as

io
n

Pe
rs

ua
si

on
 a

nd
In

flu
en

ce

L
ow

 p
er

ce
pt

io
n

Po
or

 m
en

ta
l r

ep
re

se
nt

at
io

n Po
or

 d
at

a
pr

oc
es

si
ng

 a
bi

lit
y

C
ho

os
in

g
w

ro
ng

 s
ol

ut
io

n

N
ot

 se
ns

iti
ve

 to
 p

ot
en

tia
l l

os
se

s

Is
 s

im
ila

r
to

 th
e

re
al

or

ga
ni

za
tio

n
N

o/
lo

w
 p

re
vi

ou
s

ph
is

hi
ng

ex
pe

ri
en

ce
N

o/
lo

w
 I

nf
or

m
at

io
n

ab
ou

t
ph

is
hi

ng
 a

tt
ac

ks

N
o/

lo
w

 k
no

w
le

dg
e /

in
fo

rm
at

io
n

ab
ou

t t
hi

s
ph

is
hi

ng
/p

hi
sh

er

N
o

ex
pe

ri
en

ce
 w

ith
 th

is

pa
rt

ic
ul

ar
 p

hi
sh

in
g/

ph
is

he
r

H
ig

h
lik

el
ih

oo
d

of
 th

e
ph

ish
in

g

Ph
ish

er
's

hi
gh

 e
nf

or
ce

m
en

t

L
ow

 E
Q

L
ac

k
of

 s
el

f-
co

nt
ro

l

Se
ns

at
io

n
se

ek
in

g

R
ec

ip
ro

ca
tio

n

R
ed

uc
ed

 c
og

ni
tiv

e
ab

ili
tie

s

Po
si

tiv
e

ill
us

io
ns

R
ed

uc
ed

 m
ot

iv
at

io
n

fo
r

in
fo

rm
at

io
n

pr
oc

es
sin

g

Fa
ls

e
co

ns
en

su
s

So
ci

al
 p

ro
of

T
he

 p
er

so
n

te
nd

s t
o

he
lp

 o
th

er
s

T
he

 p
er

so
n

de
si

re
s

to
ta

ke
 g

am
bl

e

T
ak

in
g

ac
tio

ns
 w

hi
ch

 a
re

op

po
si

tio
n

to
w

ar
ds

 k
no

w
le

dg
e

A
bn

or
m

al
 c

on
di

tio
ns

(w

he
n

m
ak

in
g

th
e

de
ci

si
on

)
H

ig
h

so
ci

al
 is

ol
at

io
n

L
ow

 a
tt

en
ti

on
 to

 th
e

cu
es

H
ig

h
co

gn
iti

ve
 im

pa
ir

m
en

t
H

ig
h

gu
lli

bi
lit

y

H
ig

h
su

sc
ep

tib
ili

ty
 to

in

te
rp

er
so

na
l i

nf
lu

en
ce

L
ow

 s
ke

pt
ic

ism

L
ow

 s
ca

m
 k

no
w

le
dg

e

Pe
rs

on
 w

ith
 h

ig
h

vi
sc

er
al

 in
flu

en
ceR
ew

ar
d

pr
ox

im
ity

F
ig
.
3.

Fi
sh
bo

ne
di
ag
ra
m

of
ph

is
hi
ng

at
ta
ck
s

Phishing Attacks Root Causes 197

Mitigating the identified causes will reduce the probability of phishing scams. Thus,
focusing on the root causes to find and utilise appropriate mitigating techniques and
solutions is fundamental to tackle phishing attacks from the root.

By using a psychological test, we can measure a specific cognitive behavior of a
user. Then we can test the user’s vulnerability to a simulated phishing attack which is
founded on one of the listed root-causes. By choosing a sample of random internet
users and testing different root-causes, we can describe the degree of relationship
between different types of phishing attacks and their related cognitive behaviors.

If we identify an individual’s weaknesses, for example by measuring his/her
behaviors on one or some root-causes, then we would be able to design and provide
improvement programs, such as specific trainings, to immune the person against that
type of phishing attacks.

7 Conclusion

Many techniques, solutions, and tools have been developed to prevent or at least reduce
the number of successful phishing attacks. Some of these techniques try to stop
phishing emails or websites, whereas others try to notify or alert the user. There are also
other solutions available, such as improving people’s awareness of phishing scams.
However, none of these solutions have so far managed to prevent phishing attacks a
hundred per cent. Phishers are always developing new scams that the current
anti-phishing techniques cannot detect and/or stop. Furthermore, they use human
cognitive and behavioral attributes to design new tricks. This paper has identified and
attempted to categorise some of the factors that phishers might use to phish the victims.

Future studies may recognise other root causes of phishing which can then be added
to the cause-and-effect diagram presented in this paper. Meanwhile, the root causes
identified can already be used to develop new anti-phishing techniques which can
proactively prevent the future phishing scam, whether focused on the tools used by
phishers or on the users who ultimately make the decisions.

References

1. Chang, E.H., Chiew, K.L., Sze, S.N., Tiong, W.K.: Phishing detection via identification of
website identity. In: International Conference on IT Convergence and Security (ICITCS),
pp. 1–4 (2013)

2. Li, S., Schmitz, R.: A novel anti-phishing framework based on honeypots. In: eCrime
Researchers Summit, eCRIME 2009, pp. 1–13 (2009)

3. Harrison, B., Vishwanath, A., Rao, R.: A user-centered approach to phishing susceptibility:
the role of a suspicious personality in protecting against phishing. In: 2016 49th Hawaii
International Conference on System Sciences (HICSS), pp. 5628–5634. IEEE (2016)

4. Vishwanath, A., Harrison, B., Ng, Y.J.: Suspicion, cognition, and automaticity model of
phishing susceptibility. Commun. Res. (2016). https://doi.org/10.1177/0093650215627483

5. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature
review. MIS Q. 26, xiii–xxiii (2002)

198 H. Abroshan et al.

http://dx.doi.org/10.1177/0093650215627483

6. Tayade, P.C., Wadhe, A.P.: Review paper on privacy preservation through phishing email
filter. Int. J. Eng. Trends Technol. (IJETT) 9, 4 (2014)

7. Zhuang, W., Jiang, Q., Xiong, T.: An intelligent anti-phishing strategy model for phishing
website detection. In: 2012 32nd International Conference on Distributed Computing
Systems Workshops, pp. 51–56 (2012)

8. Hong, J.: The state of phishing attacks. Commun. ACM 55, 74–81 (2012)
9. Lynch, J.: Identity theft in cyberspace: crime control methods and their effectiveness in

combating phishing attacks. Berkeley Technol. Law J. 20, 259 (2005)
10. Jakobsson, M., Ratkiewicz, J.: Designing ethical phishing experiments: a study of (ROT13)

rOnl query features. In: Proceedings of the 15th International Conference on World Wide
Web, pp. 513–522. ACM, Edinburgh (2006)

11. Bergholz, A., De Beer, J., Glahn, S., Moens, M.-F., Paaß, G., Strobel, S.: New filtering
approaches for phishing email. J. Comput. Secur. 18, 7–35 (2010)

12. Chandrasekaran, M., Karayanan, K., Upadhyaya, S.: Towards phishing e-mail detection
based on their structural properties. In: New York State Cyber Security Conference (2006)

13. Rigoutsos, I., Huynh, T.: Chung-Kwei: a pattern-discovery-based system for the automatic
identification of unsolicited E-mail messages (SPAM). In: CEAS: First Conference on Email
and Anti-Spam (2004)

14. Fette, I., Sadeh, N., Tomasic, A.: Learning to detect phishing emails. In: Proceedings of the
16th International Conference on World Wide Web, pp. 649–656. ACM, Banff (2007)

15. Toolan, F., Carthy, J.: Phishing detection using classifier ensembles. In: eCrime Researchers
Summit, eCRIME 2009, pp. 1–9 (2009)

16. Herzberg, A.: DNS-based email sender authentication mechanisms: a critical review.
Comput. Secur. 28, 731–742 (2009)

17. Yu, W.D., Nargundkar, S., Tiruthani, N.: PhishCatch - a phishing detection tool. In: 33rd
Annual IEEE International Computer Software and Applications Conference, COMPSAC
2009, pp. 451–456 (2009)

18. Hamid, I.R.A., Abawajy, J.: Hybrid feature selection for phishing email detection. In: Xiang,
Y., Cuzzocrea, A., Hobbs, M., Zhou, W. (eds.) ICA3PP 2011. LNCS, vol. 7017, pp. 266–
275. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24669-2_26

19. Ma, L., Ofoghi, B., Watters, P., Brown, S.: Detecting phishing emails using hybrid features.
In: Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing, UIC-ATC
2009, pp. 493–497 (2009)

20. Zhang, Y., Hong, J.I., Cranor, L.F.: Cantina: a content-based approach to detecting phishing
web sites. In: Proceedings of the 16th International Conference on World Wide Web,
pp. 639–648. ACM, Banff (2007)

21. Chen, T.-C., Dick, S., Miller, J.: Detecting visually similar web pages: application to
phishing detection. ACM Trans. Internet Technol. 10, 1–38 (2010)

22. Rosiello, A.P., Kirda, E., Ferrandi, F.: A layout-similarity-based approach for detecting
phishing pages. In: Third International Conference on Security and Privacy in Communi-
cations Networks and the Workshops, SecureComm 2007, pp. 454–463. IEEE (2007)

23. Liu, W., Deng, X., Huang, G., Fu, A.Y.: An antiphishing strategy based on visual similarity
assessment. IEEE Internet Comput. 10, 58 (2006)

24. Zhou, Y., Zhang, Y., Xiao, J., Wang, Y., Lin, W.: Visual similarity based anti-phishing with
the combination of local and global features. In: 2014 IEEE 13th International Conference
on Trust, Security and Privacy in Computing and Communications, pp. 189–196 (2014)

25. Chen, T.-C., Stepan, T., Dick, S., Miller, J.: An anti-phishing system employing diffused
information. ACM Trans. Inf. Syst. Secur. (TISSEC) 16, 16 (2014)

26. Chou, N., Ledesma, R., Teraguchi, Y., Mitchell, J.C.: Client-side defense against web-based
identity theft. In: NDSS. The Internet Society (2004)

Phishing Attacks Root Causes 199

http://dx.doi.org/10.1007/978-3-642-24669-2_26

27. Garera, S., Provos, N., Chew, M., Rubin, A.D.: A framework for detection and measurement
of phishing attacks. In: Proceedings of the 2007 ACM Workshop on Recurring Malcode,
pp. 1–8. ACM, Alexandria (2007)

28. Nguyen, L.A.T., To, B.L., Nguyen, H.K., Nguyen, M.H.: A novel approach for phishing
detection using URL-based heuristic. In: International Conference on Computing, Manage-
ment and Telecommunications (ComManTel), pp. 298–303 (2014)

29. Wu, M., Miller, R.C., Little, G.: Web wallet: preventing phishing attacks by revealing user
intentions. In: Proceedings of the Second Symposium on Usable Privacy and Security,
pp. 102–113. ACM (2006)

30. Kim, Y.-G., Cho, S., Lee, J.-S., Lee, M.-S., Kim, I.H., Kim, S.H.: Method for evaluating the
security risk of a website against phishing attacks. In: Yang, C.C., et al. (eds.) ISI 2008.
LNCS, vol. 5075, pp. 21–31. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-69304-8_3

31. Cao, Y., Han, W., Le, Y.: Anti-phishing based on automated individual white-list. In:
Proceedings of the 4th ACM Workshop on Digital Identity Management, pp. 51–60. ACM,
Alexandria (2008)

32. Dong, X., Clark, J.A., Jacob, J.L.: Defending the weakest link: phishing websites detection
by analysing user behaviours. Telecommun. Syst. 45, 215–226 (2010)

33. Likarish, P., Eunjin, J., Dunbar, D., Hansen, T.E., Hourcade, J.P.: B-APT: Bayesian
anti-phishing toolbar. In: International Conference on Communications, ICC 2008,
pp. 1745–1749. IEEE (2008)

34. Prakash, P., Kumar, M., Kompella, R.R., Gupta, M.: PhishNet: predictive blacklisting to
detect phishing attacks. In: 2010 Proceedings IEEE, INFOCOM, pp. 1–5 (2010)

35. Whittaker, C., Ryner, B., Nazif, M.: Large-scale automatic classification of phishing pages.
In: NDSS. The Internet Society (2010)

36. Bo, H., Wei, W., Liming, W., Guanggang, G., Yali, X., Xiaodong, L., Wei, M.: A hybrid
system to find & fight phishing attacks actively. In: Proceedings of the 2011
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent
Technology, vol. 1, pp. 506–509. IEEE Computer Society (2011)

37. Marchal, S., Armano, G., Grondahl, T., Saari, K., Singh, N., Asokan, N.: Off-the-Hook: an
efficient and usable client-side phishing prevention application. IEEE Trans. Comput. PP, 1
(2017)

38. Braun, B., Johns, M., Koestler, J., Posegga, J.: PhishSafe: leveraging modern JavaScript
API’s for transparent and robust protection. In: Proceedings of the 4th ACM Conference on
Data and Application Security and Privacy, pp. 61–72. ACM, San Antonio (2014)

39. Dhamija, R., Tygar, J.D.: The battle against phishing: dynamic security skins. In:
Proceedings of the 2005 Symposium on Usable Privacy and Security, pp. 77–88. ACM,
Pittsburgh (2005)

40. Huang, C.-Y., Ma, S.-P., Chen, K.-T.: Using one-time passwords to prevent password
phishing attacks. J. Netw. Comput. Appl. 34, 1292–1301 (2011)

41. Yee, K.-P., Sitaker, K.: Passpet: convenient password management and phishing protection.
In: Proceedings of the Second Symposium on Usable Privacy and Security, pp. 32–43.
ACM, Pittsburgh (2006)

42. Husák, M., Cegan, J.: PhiGARo: automatic phishing detection and incident response
framework. In: 2014 Ninth International Conference on Availability, Reliability and
Security, pp. 295–302 (2014)

43. Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.C.: Stronger password
authentication using browser extensions. In: Usenix Security, pp. 17–32. Baltimore (2005)

200 H. Abroshan et al.

http://dx.doi.org/10.1007/978-3-540-69304-8_3
http://dx.doi.org/10.1007/978-3-540-69304-8_3

44. Bignell, K.B.: Authentication in an internet banking environment: towards developing a
strategy for fraud detection. In: International Conference on Internet Surveillance and
Protection (ICISP 2006), p. 23 (2006)

45. Steel, C.M., Lu, C.-T.: Impersonator identification through dynamic fingerprinting. Digit.
Investig. 5, 60–70 (2008)

46. Ramachandran, A., Feamster, N., Krishnamurthy, B., Spatscheck, O., Van der Merwe, J.:
Fishing for phishing from the network stream. Technical report (2008)

47. Li, S., Schmitz, R.: A novel anti-phishing framework based on honeypots. In: 2009 eCrime
Researchers Summit, pp. 1–13 (2009)

48. Han, X., Kheir, N., Balzarotti, D.: PhishEye: live monitoring of sandboxed phishing kits. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1402–1413. ACM (2016)

49. Alnajim, A., Munro, M.: An evaluation of users’ anti-phishing knowledge retention. In:
International Conference on Information Management and Engineering, ICIME 2009,
pp. 210–214. IEEE (2009)

50. Kumaraguru, P., Rhee, Y., Acquisti, A., Cranor, L.F., Hong, J., Nunge, E.: Protecting people
from phishing: the design and evaluation of an embedded training email system. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 905–
914. ACM (2007)

51. Yang, W., Xiong, A., Chen, J., Proctor, R.W., Li, N.: Use of phishing training to improve
security warning compliance: evidence from a field experiment. In: Proceedings of the Hot
Topics in Science of Security: Symposium and Bootcamp, pp. 52–61. ACM, Hanover
(2017)

52. Bose, I., Leung, A.C.M.: Unveiling the mask of phishing: threats, preventive measures, and
responsibilities. Commun. Assoc. Inf. Syst. 19, 24 (2007)

53. European Commission: Reform of EU data protection rules (2016)
54. https://www.congress.gov/bill/109th-congress/senate-bill/472/text. Accessed 11 May 2016
55. UK Legislation: Fraud Act 2006. UK Legislation (2006)
56. BaFin: Rundschreiben 4/2015 (BA): Bundesanstalt für Finanzdienstleistungsaufsicht

(BaFin) (2015)
57. PCWorld. http://www.pcworld.com/article/135293/article.html. Accessed 09 Nov 2015
58. Suryavanshi, N., Jain, A.: Phishing detection in selected feature using modified SVM-PSO.

IJRCCT 5, 208–214 (2016)
59. Chaudhry, J.A., Chaudhry, S.A., Rittenhouse, R.G.: Phishing attacks and defenses. Int.

J. Secur. its Appl. 10, 247–256 (2016)
60. Anti-Phishing Working Group: http://docs.apwg.org/reports/apwg_trends_report_q2_2016.

pdf. Accessed 11 Aug 2106
61. Ramamoorti, S., Olsen, W.: Fraud: the human factor; many discount behavioral explanations

for fraud, but as the incidence of fraud continues to grow, placing the spotlight on behavioral
factors may be an important approach not only to detection, but to deterrence as well. Financ.
Exec. 23, 53–56 (2007)

62. Chaiken, S.: Heuristic versus systematic information processing and the use of source versus
message cues in persuasion. J. Pers. Soc. Psychol. 39, 752–766 (1980)

63. Mayer, R.C., Davis, J.H., Schoorman, F.D.: An integrative model of organizational trust.
Acad. Manag. Rev. 20, 709–734 (1995)

64. Alesina, A., La Ferrara, E.: Who trusts others? J. Public Econ. 85, 207–234 (2002)
65. Butler, J.K.: Toward understanding and measuring conditions of trust: evolution of a

conditions of trust inventory. J. Manag. 17, 643–663 (1991)
66. Khodyakov, D.: Trust as a process a three-dimensional approach. Sociology 41, 115–132

(2007)

Phishing Attacks Root Causes 201

https://www.congress.gov/bill/109th-congress/senate-bill/472/text
http://www.pcworld.com/article/135293/article.html
http://docs.apwg.org/reports/apwg_trends_report_q2_2016.pdf
http://docs.apwg.org/reports/apwg_trends_report_q2_2016.pdf

67. Klein, D.B.: Knowledge and Coordination: A Liberal Interpretation. Oxford University
Press, Oxford (2011)

68. Huang, J., Nicol, D.: A Formal-Semantics-Based Calculus of Trust. IEEE Internet Comput.
14, 38–46 (2010)

69. Oliveira, A.: A discussion of rational and psychological decision making theories and
models: the search for a cultural-ethical decision making model. Electron. J. Bus. Ethics
Organ. Stud. 12, 12–13 (2007)

70. Bezerra, S., Cherruault, Y., Fourcade, J., Veron, G.: A mathematical model for the human
decision-making process. Math. Comput. Model. 24, 21–26 (1996)

71. Tversky, A., Kahneman, D.: Rational choice and the framing of decisions. J. Bus. 59, S251–
S278 (1986)

72. Kahneman, D., Tversky, A.: On the psychology of prediction. Psychol. Rev. 80, 237 (1973)
73. Mitnick, K.D., Simon, W.L.: The Art of Deception: Controlling the Human Element of

Security. Wiley, Hoboken (2011)
74. Lea, S., Fischer, P., Evans, K.: The psychology of scams: provoking and committing errors

of judgement. Report for the Office of Fair Trading (2009). www.oft.gov.uk/shared_oft/
reports/consumer_protection/oft1070.pdf

75. Rusch, J.J.: The “social engineering” of internet fraud. In: Internet Society Annual
Conference (1999). http://www.isoc.org/isoc/conferences/inet/99/proceedings/3g/3g_2.htm

76. Loewenstein, G.: Out of control: visceral influences on behavior. Organ. Behav. Hum. Decis.
Process. 65, 272–292 (1996)

77. Langenderfer, J., Shimp, T.A.: Consumer vulnerability to scams, swindles, and fraud: a new
theory of visceral influences on persuasion. Psychol. Mark. 18, 763–783 (2001)

78. Strack, F., Neumann, R.: “The spirit is willing, but the flesh is weak”: beyond mind-body
interactions in human decision-making. Organ. Behav. Hum. Decis. Process. 65, 300–304
(1996)

79. Bolles, R.C.: Theory of Motivation. HarperCollins Publishers, New York (1975)
80. Pribram, K.H.: Emotion: a neurobehavioral analysis. In: Approaches to Emotion, pp. 13–38

(1984)
81. Gano, D.L.: Comparison of common root cause analysis tools and methods. In: Apollo Root

Cause Analysis-A New Way of Thinking (2007)
82. Ishikawa, K.: Introduction to Quality Control. Productivity Press, Cambridge (1990)
83. Juran, J.M., Godfrey, A.B.: Quality Handbook. Republished McGraw-Hill, New York

(1999)

202 H. Abroshan et al.

http://www.oft.gov.uk/shared_oft/reports/consumer_protection/oft1070.pdf
http://www.oft.gov.uk/shared_oft/reports/consumer_protection/oft1070.pdf
http://www.isoc.org/isoc/conferences/inet/99/proceedings/3g/3g_2.htm

Domain Name System Without Root
Servers

Matthäus Wander(B) , Christopher Boelmann, and Torben Weis

University of Duisburg-Essen, Duisburg, Germany
matthaeus.wander@uni-due.de

Abstract. We present a variation to the infrastructure of the Domain
Name System (DNS) that works without DNS root servers. This allows
to switch from a centralized trust model (root) to a decentralized trust
model (top-level domains). By dropping DNS root in our approach, users
have one entity less that they must trust. Besides trust issues, not rely-
ing on DNS root means that DNS root servers are no longer a central
point of failure. Our approach is minimally invasive, builds on established
DNS architecture and protocols and supports the DNS Security Exten-
sions (DNSSEC). Furthermore, we designed our approach as an opt-in
technology. Thus, each top-level domain operator can decide whether to
support rootless DNS or not.

The challenge of a rootless DNS is to keep track of changing IP
addresses of top-level domain servers and to handle key rollovers, which
are part of normal DNSSEC operation. Top-level domains opting in to
rootless DNS must follow constraints regarding the frequency of changes
of IP addresses and DNSSEC keys. We conducted a four-year measure-
ment to show that 82% respectively 72% of top-level domains fulfill these
constraints already.

Keywords: Domain Name System · DNSSEC · Infrastructure security

1 Introduction

The Domain Name System (DNS) is a critical infrastructure for the whole Inter-
net. In order to resolve a domain name, clients iterate through the hierarchical
namespace from root to the leaf. The availability of the DNS thus depends on
a reliable operation of the root. With the DNS Security Extensions (DNSSEC),
the root also serves as trust anchor for authorizing cryptographic keys that are
used for signing domain name entries. The security of DNSSEC thus depends
on a trusted and proper root key management.

In this paper we explore the design of a rootless Domain Name System. The
objective of this system is to have independent top-level domains (TLDs), which
do not depend on a root authority. The trust is distributed to coequal TLD
operators, whose control is limited to their respective namespace. We argue
that the dependency on root can be eliminated with little technical changes for
c© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 203–216, 2018.
https://doi.org/10.1007/978-3-319-76687-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_14&domain=pdf
http://orcid.org/0000-0001-9513-2097

204 M. Wander et al.

most TLDs and without introducing new attack vectors. The two components of
this approach—priming and trust anchor updates—have been originally designed
to work on root level, but we show that they are also applicable for TLDs.
The proposed approach is minimally invasive and reuses the existing network
protocol, methods and infrastructure. Unlike peer-to-peer-based approaches, this
allows for an incremental deployment and shares the performance and usability
characteristics of the proven-in-practice DNS.

2 Motivation

Trust. This work is motivated by removing the trust dependency upon root
without lessening the security guarantees of DNSSEC. The DNS root has the
technical authority to answer any domain or to delegate any domain to another
organization. The root key is configured as trust anchor in validating DNSSEC
clients. A compromised root key thus allows an attacker to fabricate malicious
responses with a valid DNSSEC signature, e.g. as part of a man-in-the-middle
attack. Apart from the threat of key theft, the organizations handling the root
key are entrusted not to misuse the key for actions that are not in accordance
with objectives of the global DNS community. This includes not to use the root
authority as a political instrument for influencing Internet governance. Name
resolution without root removes this burden of trust in influential institutions.

Reliability. Another factor is reliability, as the availability of DNS depends on
the availability of the root. Techniques like caching and anycast [1] are used to
reduce the load on root or add redundancy. Though this cushions the impact
of malfunctions or denial of service attacks, the threat remains in principle.
A rootless name resolution can serve as backup mechanism to ensure DNS service
availability in case of severe failures of the root.

Use case. One of the possible use cases of a rootless DNS are redundant
domain names. For example, consider the name “www.example.br+pl+cz” as
three distinct names www.example.br, www.example.pl and www.example.cz
that should all evaluate to the same IP address. Whenever a client resolves a
redundant name, e.g. in a weblink or in the configuration of an email client, the
client performs a majority voting over all three domains. With rootless DNS
and redundant domain names, there is no single entity that has the power to
misdirect the name resolution.

3 Background

3.1 DNS and DNSSEC

The DNS architecture consists of resolvers (clients) and name servers. The hier-
archical namespace is structured as a tree, which is cut into non-overlapping
zones. A zone is a collection of domain names below a particular part of the
namespace, e.g. com or example.net. Zones contain either the actual data enti-
ties or delegate subparts of the namespace to other name servers. The root of the

Domain Name System Without Root Servers 205

Root

Top-level

2nd level

Fig. 1. DNSSEC trust model.

DNS tree comprises the root zone, which delegates TLDs like com or uk to the
corresponding TLD name servers. A delegation consists of a set of authoritative
name servers for the child zone and their IP addresses.

The DNS Security Extensions (DNSSEC) introduce public-key cryptography
into that system. The trust model builds on top of the hierarchical namespace,
as shown in Fig. 1. Domain name records are signed with the private key of the
zone administrator and resolvers verify the signature after the corresponding
public key has been authenticated. Delegations additionally contain the finger-
print (hash value) of the public key of the child zone. Thus, resolvers authenticate
zone keys by following the chain of keys up to the root, which is signed by a key
known to the resolver. Such a well-known key serves as trust anchor.

3.2 Root Zone Management

Several entities are involved in the management and operation of the root zone.
TLD operators request changes of TLD delegations from the Internet Corpora-
tion for Assigned Names and Numbers (ICANN) respectively its close affiliate
Public Technical Identifiers (PTI), who manages the TLD contacts and delega-
tions [2]. ICANN/PTI vets change requests for technical and formal correctness
and forwards them to Verisign, who implements the change in the root zone and
distributes it to the operators of the 13 root name servers. ICANN is a U.S.-
based non-profit organization and Verisign is a U.S.-based corporation. 7 root
name servers are operated by U.S.-based organizations, 3 are operated by U.S.
governmental or military agencies, and the operators of the remaining 3 servers
are located in Sweden, the Netherlands and Japan, respectively. Historically, the
U.S. government oversaw the root zone operation, but stepped back from this
role in October 2016.

There are two root DNSSEC keys: the root Key Signing Key (KSK) is con-
figured as trust anchor on DNSSEC validators worldwide. ICANN stores the
private part of the root KSK at two redundant colocation facilities and uses it
for authorization of the root Zone Signing Key (ZSK), which is replaced regu-
larly in the root zone. Verisign owns the private part of the root ZSK and uses
it for signing the root zone contents, which have been provided and approved by
ICANN respectively its affiliate PTI. Both the root KSK and ZSK are technically
eligible for signing and authenticating any domain or any TLD delegation.

206 M. Wander et al.

Root

TLD

Domain

Resolver

delegation

delegation

Recurring updates:
• Server addresses
• Trust anchors

Fig. 2. Name resolution without asking root. Resolvers query TLD servers regularly
for the current TLD server set (priming) and the current TLD key set (trust anchor
update).

4 Approach

The name resolution that we intend in our approach is shown in Fig. 2: resolvers
skip the root and start name resolution at top level, which is one level below
root. The resolvers must hold the information that would be otherwise served
by root: the names of the TLDs, the set of authoritative name servers and their
IP addresses, and the copy or a secure fingerprint of the TLD public key. The
challenge of our approach is for resolvers to keep this information up-to-date, as
TLD delegations occasionally change. We show that it is possible to update the
TLD server addresses (Sect. 4.2) and trust anchors (Sect. 4.3) without asking or
trusting root.

4.1 Bootstrapping

Bootstrapping is the process of initializing a rootless resolver with the TLD del-
egation data required for resolving domain names. The secure retrieval of trust
anchors is sensitive in particular because a successful attack at this point com-
promises the security of DNSSEC. The bootstrapping must be performed once
at the installation time of a DNS resolver. At this point the user or system
administrator relies on their operating system vendor or a DNS software vendor
to retrieve the resolver software. This is a trusted path to ensure that the behav-
ior of the resolver is not manipulated, otherwise this would nullify any security
mechanisms like DNSSEC validation. In present-day DNS, the resolver software
is shipped with the IP addresses of the root name servers and the root KSK
as trust anchor. Our approach complements this existing bootstrapping channel
with a list of TLDs, each with an initial set of TLD servers and a TLD trust
anchor. The system can bootstrap from aged data within certain limitations (cf.
Sect. 4.4), e.g. from a USB stick or another physical storage medium obtained
from a software vendor.

An alternative bootstrapping channel is by manual intervention, i.e. a person
inspects and copies the TLD trust anchor and server addresses from a source
deemed to be trusted. TLD operators should foster the dissemination of their

Domain Name System Without Root Servers 207

TLD delegation data over several publication channels, e.g. on their website, by
sending changes via email or snail mail to subscribers, or by offering voice mes-
sage via telephone. Though none of these individual methods is inherently secure,
each of them contributes to a human decision whether the data is sufficiently
trusted. Manual bootstrapping is cumbersome and we expect that the general
user base will not use it, though individual operators of high-value resolvers
e.g. in industry or government networks have the possibility to do so. The tar-
get audience of manual bootstrapping are vendors of DNS software and network
appliances, who redistribute the TLD data over their automated software update
mechanisms.

4.2 Priming

Resolvers perform priming to initialize an empty cache after startup with infor-
mation about which server to ask first during name resolution. In present-day
DNS, resolvers send priming queries to one of the root name servers [3], with the
IP addresses given in a configuration file root.hints or built into the resolver
software. The query asks for the set of authoritative name servers for the root
domain (“. IN NS”). The response contains the root server names together with
their IPv4 and IPv6 addresses (so called glue records). In our approach, resolvers
skip root and ask each TLD for their authoritative name servers (“tld IN NS”).
The TLD server addresses have been initially retrieved during bootstrapping.
When the priming query times out due to an IP address change in the mean-
time, the resolver retries with another known TLD server address. The prim-
ing response will be cached for the time interval indicated by the Time-to-Live
(TTL) field. Subsequent queries for another name under the same TLD will be
thus served without priming. When different TLDs are being queried, each TLD
will be primed once and remain in cache until the TTL times out or the resolver
shuts down.

The priming response contains the set of name servers that are currently
authoritative for the TLD, together with the glue records of these servers. In our
approach, priming responses are supposed to be signed with DNSSEC and are
validated with the trust anchor for the respective TLD, which has been retrieved
during bootstrapping. Though the server names are signed, the IP addresses
are not because DNSSEC does not sign glue records by design. Our approach
does not intend to change the DNSSEC signing or validation semantics; instead,
resolvers emit follow-up resolution attempts for each server name to one of the
TLD servers. Thus, resolvers will validate all contents of the priming response,
including the authenticity of the name-to-IP-address mapping at the cost of
additional network queries (one per each server name).

Once the priming response has been received and all server names have been
resolved and validated, resolvers store the new server addresses locally for later
access. Whenever the TLD operator adds or replaces a server IP address, the
change will be distributed to all resolvers with the next priming query and
response. Thereby the TLD server addresses, which may change over time, are
kept up-to-date with an in-band update mechanism.

208 M. Wander et al.

4.3 Updating Trust Anchors

In the rootless approach, resolvers use locally stored TLD public keys as trust
anchors. DNSSEC-signed responses are validated by authenticating the chain of
keys from some leaf domain www.example.tld up to a TLD trust anchor. In
normal operation, trust anchors and other keys must be replaced periodically to
avoid that a key is broken eventually. The key replacement procedure is called
key rollover and does not replace keys at an instant of time, but gradually
introduces a new key and then withdraws the old key. RFC 5011 [4] specifies
an automated update mechanism for trust anchors, which we utilize to keep the
TLD trust anchors up-to-date. Resolvers regularly retrieve the set of all TLD
keys by querying for “tld IN DNSKEY”. The TLD operator may introduce new
keys into the set, as long as the set is signed by the established TLD trust anchor.
The new key cannot be used for signing zone data for a hold-down time of 30 days
while resolvers learn of the new key soon to be used. The resolver will thus store
two redundant trust anchors for a TLD, both authorized for signing operations.
In order to remove a deprecated trust anchor, the TLD operator sets a revocation
flag in the key set to indicate which key is ought to be deleted. Resolvers check
the integrity and authenticity of the revocation flag during DNSSEC validation.

4.4 Opt-In and Commitment

The rootless name resolution is designed as opt-in service for both, TLD opera-
tors and resolver operators. Our motivation for an optional service is as follows:

– It allows gradual and parallel deployment in the existing DNSSEC ecosystem.
– TLD operators that opt-in are making a commitment to serve stable parame-

ters over an extended period of time. If they cannot or do not want to commit,
they should not opt-in.

– Resolver operators decide whether the rootless approach is useful to them,
e.g. subject to a trust assessment in root.

a
b
c

k
l

m

t0 t0 t

Fig. 3. IP address update scheme for TLDs.

TLD operators indicate support by setting a flag in a special-purpose DNS
record in the TLD zone, e.g. by reutilizing the TXT record or by specifying a

Domain Name System Without Root Servers 209

dedicated AUTONOMOUS record type. Furthermore, TLD operators cooperate
with DNS software vendors to publish their bootstrapping data. When the opt-
in flag is set, the TLD operator commits to operate long-lived name servers
and trust anchors. The commitment period Δt is configurable per TLD in the
above-mentioned record. The commitment applies to server IP addresses and
trust anchors so that resolvers will know when to refresh a TLD before potential
expiration.

When a TLD operators intends to replace all server IP addresses, they
must continue to operate at least one server on an old IP address for at least
Δt. However, with n server addresses, up to n − 1 addresses can be removed
or replaced without any special considerations. An example is shown in Fig. 3:
addresses a and b are removed, while address c is held back for Δt. Thus the
priming succeeds and resolvers will learn of newly introduced server IP addresses
k, l and m, which they can subsequently use.

TLD operators must retain a trust anchors for signing for at least Δt
(though different Δt values can be used for IP addresses and trust anchors).
Unlike server IP addresses, there is typically only one established trust anchor for
a domain, but otherwise the same considerations as above apply. When replacing
trust anchors periodically, there must be an overlap of Δt of the old and new key
so that resolvers will authenticate newly introduced keys with the trust anchor
previously known to them.

We can formalize the commitment period as

∃x ∈ RESP : active(x) > Δt, (1)

where RESP is the set of parameters publicly released in priming or trust anchor
responses, active(x) is the lifetime of a parameter x (IP address or trust anchor)
before changing or removing it. The rootless approach will be self-sustaining if
resolvers manage to run the priming and trust anchor update every Δu ≤ Δt.
Our recommendation is to specify an ample commitment period of Δt = 1 year
to account for extended offline times of resolvers running on end-user devices.
Most TLDs already fulfill this commitment as we show in the feasibility study
in Sect. 6. If a resolver is offline for >Δt, it may miss an update and will need
to bootstrap the TLD data from scratch.

5 Security Discussion

Trust. By cutting off root, we have eliminated a single point of trust. The trust
model is still a hierarchical one, separately for each TLD. Each TLD is a point
of trust on its own, because each operator is able to tamper with their registered
domains. However, this has been true before, thus our approach does not create
any new attack vector. The authority of a TLD operator is limited to their own
namespace, whereas the authority of root includes all TLDs. Domain registrants
can choose between several operators independent of each other, which are based
in different countries and jurisdictions. This allows for decentralized domain
setups, e.g. redundant domains under different TLDs.

210 M. Wander et al.

TLD or resolver operators do not need to cooperate with root to deploy the
rootless approach. A trusted bootstrapping channel is required to securely ini-
tialize a TLD, which constitutes a weak point of our approach. We suggest to
involve the operating system or DNS software vendor for this purpose because
we can reuse the existing trust relationship and communication channel that is
used for distributing software security updates. Again, this does not introduce
a new attack vector in addition to potential attacks that are already possible.
Once bootstrapped, the system will update in-band via DNSSEC-secured com-
munication with TLD servers. The approach is designed as opt-in service, which
means that resolvers will continue to rely on root for those TLDs that have not
opted-in, but the influence of root is confined to those TLDs.

Key rollovers. The commitment period Δt limits the frequency of trust anchor
rollovers for TLDs. For those TLDs, which roll the key more often, this imposes
a security degradation. With appropriately sized keys, a rollover every one or
two years is sufficiently secure. Unscheduled emergency rollovers, though, will
lead to a service degradation and resolvers will have to bootstrap that TLD
again. Unscheduled key rollovers are exceptional events that should not occur
on a regular basis. However, they potentially degrade the availability compared
to using the root as backup authority.

Privacy. As a side effect, omitting root accounts for one fewer authority that
is able to inspect query contents. This slightly improves the privacy of clients,
albeit to a small degree, because queries are still transmitted in cleartext to
TLDs. The effect is not identical but roughly comparable to DNS query name
minimization [5], which also attempts to hide the query name from root, amongst
others.

6 Feasibility Study

In this section we provide a feasibility study for our approach to a rootless DNS
by analyzing the root zone development over a time period of 4 years from April
2013 to May 2017. We collected data almost daily by downloading the root
zone from ICANN servers and querying TLD servers directly to gather the TLD
Key Signing Keys (KSK), which are our trust anchors. The measurement period
overlaps with ICANN’s introduction of new generic TLDs [6]; out of 1549 TLDs
in our data, the majority has been introduced since October 2013. We discard
TLDs that appeared for less than one year in our data because we require longer
periods of time for evaluation of long-term behavior. This yields a data set of
1317 TLDs for this study, composed of 306 old and 1011 new TLDs.

6.1 Frequency of IP Address Changes

First we determine the period after when a TLD has replaced all of their server IP
addresses. This enables us to approximate a threshold of how long a resolver may
be offline until it will be unable to find the servers of a TLD using priming when

Domain Name System Without Root Servers 211

0 %

2 %

4 %

6 %

8 %

10 %

12 %

14 %

16 %

18 %

 0 200 400 600 800 1000 1200 1400

TL
D

 ra
tio

 (c
um

ul
at

iv
e)

Time in days

All IPs changed

Fig. 4. Duration after when TLDs replaced all IP addresses (N = 1317).

getting back online. If the resolver looses track of the current server IP addresses,
it will need to bootstrap again with the mechanism explained in Sect. 4.1.

Figure 4 shows the cumulated amount of TLDs, whose set of IPv4 and IPv6
addresses had completely changed after a period shown on the x-axis. Altogether
233 TLDs (17.7%) changed their server IP addresses completely during the mea-
surement. Most of these were new TLDs, whose operations may not have matured
yet; 26 old TLDs (2%) changed their whole server address set. For the other 1084
TLDs (82.3%) at least one IP address lasted for the whole measurement dura-
tion. The majority of TLDs would have thus been reachable with rootless DNS
even without any recurring priming queries during our measurement period.

Considering the lifetime of IP addresses, 943 TLDs (71.6%) kept each of
their addresses for ≥1 year. Thus, the majority overfulfills our requirement of
committing to at least one IP address for Δt ≥ 1 year.

Whether a TLD becomes unavailable for a rootless resolver depends on
its update interval Δu. The update interval limits the maximum tolerable
offline time of a resolver, since the device must be powered on and connected
to the Internet to perform the update. We now simulate different intervals
Δu ∈ {365, 90, 14, 7, 1} (in days) for the periodic priming queries. The simu-
lation is driven with our real-world measurement data and checks all possible
offsets, e.g. for Δu = 14 days we conduct 14 simulations starting on day 1, 2,. . . ,
14. We consider the worst-case result, i.e. a TLD is unavailable if at least one of
simulation offsets looses track of the server IP addresses.

Figure 5 shows the result subject to different Δu. Running priming once
in year slightly improves the availability over running no updates at all, but
221 TLDs (16.8%) become unavailable eventually. Reducing the update interval
steadily decreases the amount of TLDs that the resolver would have lost track
of. However, even with daily priming 147 TLDs (11.2%) would have become

212 M. Wander et al.

0 %

5 %

10 %

15 %

20 %

TL
D

 ra
tio

Update intervals

No Updates
365 days

90 days
14 days

7 days
1 day

Fig. 5. Ratio of unavailable TLDs subject to resolver update intervals.

unavailable because they replaced all server IP addresses at once. Note that
these are conservative estimations because our data does not cover whether the
TLD operator continued to serve the old IP addresses after switching to new
addresses. It is good operational practice to maintain servers on both IP address
sets for a transition period (e.g. used by the D-root server operator [7]) and this
might actually mitigate an outage of our rootless approach.

6.2 Frequency of Trust Anchors Rollover

In the following study we analyze how often TLD operators replaced the trust
anchor (i.e. the public Key Signing Key or KSK) within our 4-year observation.

Note that not all TLDs are already signed with DNSSEC: we consider 1174
TLDs (89.1%) in this study that were signed for at least part of our observation
period.

Figure 6 shows the average lifetime of a KSK before being replaced. The first
thing to notice is that 351 TLDs (29.9%) never replaced the KSK during our
observation period. An additional 488 TLDs (41.6%) replaced the KSK, but
less often than once a year, i.e. maintained one key for more than one year on
average. Thus, 839 TLDs (71.5%) satisfy our proposed commitment period Δt
in our observation on average.

A minority of TLDs rolls their keys very frequently: 175 TLDs (14.9%)
replaced their KSK every 90 days or less. These operators would have to roll
their KSK less often if they chose to opt-in. Instead, the operators could increase
the KSK bit length to compensate for long-lived keys.

Domain Name System Without Root Servers 213

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

 200 400 600 800 1000 1200

TL
D

 ra
tio

 (c
um

ul
at

iv
e)

Average time in days

KSK change interval

Fig. 6. KSK change interval of TLDs (N = 1174).

6.3 Efficiency

The rootless approach requires periodic retrieval of TLD server IP addresses
and trust anchors. However, regular domain name lookups below a TLD require
these queries anyway. When a TLD is in active use, the message overhead for
the rootless approach will be insignificant compared to regular DNS operations.
We leave it to future studies to validate this claim with a quantification.

The message size of TLD trust anchors increases because the rootless app-
roach requires a continuous overlap during the commitment period when intend-
ing to replace keys regularly. This disadvantage can be mitigated by using
elliptic-curve signatures, which are considerably shorter than RSA signatures
with a similar level of security [8].

7 Related Work

Alternative DNS roots have emerged in the past, which were operated inde-
pendently from the ICANN-coordinated root. Mueller [9] explained in 2002 that
competing DNS roots were caused by a disjunction between the demand for and
supply of new TLDs. ICANN introduced 15 new generic TLDs in 2000, 2004
and 2011 and is in the process of introducing more than thousand new TLDs [6]
since 2013. The Open Root Server Network (ORSN) [10] is an alternative DNS
root that was created explicitly for strategical reasons only and without serving
any other data than the ICANN root. The objective of ORSN is to create a
counterpart, independent of any influence from the ICANN root. Our approach
differs from the concept of competing roots by eliminating the need for a central
root authority.

214 M. Wander et al.

Peer-to-peer-based naming systems have been proposed to address the cen-
tralization of the Domain Name System, e.g. CoDoNS [11], Namecoin, GNS [12]
and others [13–15]. These systems are entirely different than the DNS, allowing
to take interesting technological approaches to improve certain aspects, but are
weaker in other aspects than a server-based system. Peer-to-peer-based systems
require a decentralized overlay network, e.g. a distributed hash table (DHT), to
achieve its function cooperatively without a central instance. Typical weak spots
of DHT-based systems are higher lookup latency, loss of locality and loss of resis-
tance against sybil attacks. Our solution in this paper is a small improvement
but one that can be gradually deployed in the well-established DNS, sharing
the existing namespace, infrastructure and performance characteristics. While
we omit the central root authority, we do not achieve the same degree of decen-
tralization like peer-to-peer-based systems, because each TLD operator is still
an authority for their part of the domain namespace. Thus, our approach is a
compromise between the degree of decentralization/control achieved by peer-
to-peer-based systems and performance/stability of the existing Domain Name
System.

Massey et al. [16] identified that the tree-based DNSSEC trust model is
detrimental due to a single point of failure and undesirable trust relationships.
They discussed the web of trust and mesh of trust approaches, which allow for
trust relationships that do not follow the hierarchical namespace.

Malone [17] suggested to distribute a copy of the root zone to resolvers for
improving performance and scalability. There is no trust improvement because
the root zone is copied from the root authority without changes.

Kuerbis and Mueller [18] proposed to distribute the root signing authority
to different actors to increase transparency and eliminate the threat of political
interference. ICANN is using a centralized root signing procedure instead, but
they invite community representatives to participate as independent bystanders
or recovery key holders [2] for the sake of transparency. With our rootless app-
roach, the power of the root authority is inherently distributed to independent
TLD operators.

8 Conclusions

Our analysis has shown that a rootless DNS/DNSSEC can be implemented with
minimal changes to the existing infrastructure. Already today, most TLD opera-
tors are handling IP address updates (82%) and key rollovers (72%) in sufficiently
large intervals. Those TLD operators who change IP addresses or keys more fre-
quently could continue to do so, because our approach is entirely opt-in. Both,
TLD providers and client-side resolver operators can decide whether or not to
use the rootless name resolution. This allows a smooth phase-in of our proposed
approach and coexistence in the same DNS ecosystem without having to switch
to another naming system.

The benefit of rootless DNS is that we moved from a centralized to a decen-
tralized trust model. That means there is no longer a single entity controlling the

Domain Name System Without Root Servers 215

entire namespace. The primary stakeholders are providers and users of country-
code TLDs, who are able to operate a stable naming infrastructure autonomously
without potential interference from root. Though we are focusing on top-level
providers, the rootless approach could be used on lower levels in the DNS hier-
archy as well.

In a next step, we want to evaluate how such a system performs when the
DNS resolvers are located on end-user devices. As of today, clients typically
rely on their network operator to resolve and validate domain names. Name
resolution on user devices allows end-to-end security with DNSSEC, for example
when authenticating digital certificates via DNS-Based Authentication of Named
Entities (DANE). However, this increases the load on TLD servers since each
client has to run the update procedure as described in this paper. It would
be interesting to quantify the efficiency of the rootless approach with practical
evaluations.

References

1. Abley, J., Lindqvist, K.: Operation of Anycast Services. RFC 4786 (Best Current
Practice), Internet Engineering Task Force, December 2006. http://www.ietf.org/
rfc/rfc4786.txt

2. Root Zone KSK Policy Management Authority: DNSSEC Practice Statement for
the Root Zone KSK Operator, October 2016. https://www.iana.org/dnssec/icann-
dps.txt

3. Koch, P., Larson, M., Hoffman, P.: Initializing a DNS Resolver with Priming
Queries. RFC 8109, March 2017. http://www.ietf.org/rfc/rfc8109.txt

4. St.Johns, M.: Automated Updates of DNS Security (DNSSEC) Trust Anchors.
RFC 5011, Internet Engineering Task Force, September 2007. http://www.ietf.
org/rfc/rfc5011.txt

5. Bortzmeyer, S.: DNS Query Name Minimisation to Improve Privacy. RFC 7816
(Experimental), Internet Engineering Task Force, March 2016. http://www.ietf.
org/rfc/rfc7816.txt

6. Internet Corporation For Assigned Names and Numbers: New Generic Top-Level
Domains. https://newgtlds.icann.org

7. Lentz, M., Levin, D., Castonguay, J., Spring, N., Bhattacharjee, B.: D-mystifying
the D-root address change. In: Proceedings of the 2013 Conference on Internet
Measurement Conference, IMC 2013, pp. 57–62. ACM, New York (2013)

8. van Rijswijk-Deij, R., Sperotto, A., Pras, A.: Making the case for elliptic
curves in DNSSEC. SIGCOMM Comput. Commun. Rev. 45(5), 13–19 (2015).
http://doi.acm.org/10.1145/2831347.2831350

9. Mueller, M.L.: Competing DNS roots: creative destruction or just plain destruction.
J. Netw. Ind. 3, 313 (2002)

10. Open Root Server Network. http://www.orsn.org
11. Ramasubramanian, V., Sirer, E.G.: The design and implementation of a next gen-

eration name service for the internet. In: ACM SIGCOMM Computer Communi-
cation Review, vol. 34, no. 4, pp. 331–342. ACM (2004)

12. Wachs, M., Schanzenbach, M., Grothoff, C.: A censorship-resistant, privacy-
enhancing and fully decentralized name system. In: Gritzalis, D., Kiayias, A.,
Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 127–142. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12280-9 9

http://www.ietf.org/rfc/rfc4786.txt
http://www.ietf.org/rfc/rfc4786.txt
https://www.iana.org/dnssec/icann-dps.txt
https://www.iana.org/dnssec/icann-dps.txt
http://www.ietf.org/rfc/rfc8109.txt
http://www.ietf.org/rfc/rfc5011.txt
http://www.ietf.org/rfc/rfc5011.txt
http://www.ietf.org/rfc/rfc7816.txt
http://www.ietf.org/rfc/rfc7816.txt
https://newgtlds.icann.org
http://doi.acm.org/10.1145/2831347.2831350
http://www.orsn.org
https://doi.org/10.1007/978-3-319-12280-9_9

216 M. Wander et al.

13. Cox, R., Muthitacharoen, A., Morris, R.T.: Serving DNS using a peer-to-peer
lookup service. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002.
LNCS, vol. 2429, pp. 155–165. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45748-8 15

14. Theimer, M., Jones, M.: Overlook: scalable name service on an overlay network.
In: Proceedings of the 22nd International Conference on Distributed Computing
Systems, pp. 52–61 (2002)

15. Danielis, P., Altmann, V., Skodzik, J., Wegner, T., Koerner, A., Timmermann, D.:
P-DONAS: a P2P-based domain name system in access networks. ACM Trans.
Internet Technol. 15(3), 11:1–11:21 (2015). http://doi.acm.org/10.1145/2808229

16. Massey, D., Lewis, E., Gudmundsson, O., Mundy, R., Mankin, A.: Public key vali-
dation for the DNS security extensions. In: Proceedings of the DARPA Information
Survivability Conference & amp; Exposition II, DISCEX 2001, vol. 1, pp. 227–238.
IEEE (2001)

17. Malone, D.: The root of the matter: hints or slaves. In: Proceedings of the 4th
ACM SIGCOMM Conference on Internet Measurement, IMC 2004, pp. 15–20.
ACM, New York (2004)

18. Kuerbis, B., Mueller, M.: Securing the root: a proposal for distributing signing
authority. Paper IGP07-002 (2007)

https://doi.org/10.1007/3-540-45748-8_15
https://doi.org/10.1007/3-540-45748-8_15
http://doi.acm.org/10.1145/2808229

Data Hiding on Social Media Communications
Using Text Steganography

Hung-Jr Shiu1, Bor-Shing Lin2, Bor-Shyh Lin3, Po-Yang Huang1,
Chien-Hung Huang4(&), and Chin-Laung Lei1

1 DCNS Laboratory, Graduate Institute of Electrical Engineering,
National Taiwan University, Taipei 10617, Taiwan

2 Department of Computer Science and Information Engineering,
National Taipei University, New Taipei City 23741, Taiwan

3 Institute of Imaging and Biomedical Photonics,
National Chiao Tung University, Tainan 71101, Taiwan

4 Department of Computer Science and Information Engineering,
National Formosa University, Huwei 63201, Yunlin County, Taiwan

chhuang@nfu.edu.tw

Abstract. This research work proposes a steganography on social media
communications. Nowadays, people frequently use messenger or social network
such as Skype, Line, Facebook, Whatsapp and Twitter, etc. to communicate
with other people and these platforms become popular to be used to exchange
secrets or preserve personal information. Personal information like accounts and
passwords might not be seen and embedded to cover objects when two clients
communicate to each other. Those objects shall be pictures, music, or text
messages. The proposed scheme will be deployed on the cover text. A strategy
is designed to increase the capacity of hidden data and try to make any simple
piece of text to be the cover text; such as letters, article of news or the common
messages. The new approach – Extended Line will be adopted, and then
together with White Space between to increase the capacity of a text. The
simulation results disclose that the algorithm not only increases the capacity, but
also increases the efficiency of decoding. Moreover, it still works on any kind of
cover text.

Keywords: Information protection � White space � Extended line
Text steganography � Social media

1 Introduction and Related Work

Data hiding schemes are used to hide secrets in cover media, producing stego-media.
The approach enables users to discover attempts by intruders to replace original
messages with fabricated content. The objective of data hiding is to increase hiding
capacity while reducing the likelihood that intruders identify anything is hidden [1, 2].

Numerous researchers prefer to use popular multimedia as cover media because
they are always being transmitted over the Internet and so their use minimizes the risk
that intruders become aware of the stego-media that are generated from them [3].
Popular multimedia includes images, audio, video and text [4–7].

© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 217–224, 2018.
https://doi.org/10.1007/978-3-319-76687-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_15&domain=pdf

In the past years, there are many strategies proposed for text steganography [8–13].
All of them suffer OCR programs. Roy and Manasmita proposed a new hybrid model
using special character, line shifting and word shifting coding techniques of text
steganography [14]: for each line of the test, if two spaces exist simultaneously in the
text, there are “01” embedded; if there is a special character is present after a space in
the text, there are “10” embedded; if line size is smaller than the standard line size,
there are “00” embedded; if line size is larger than the standard line size, there are “11”
embedded. According to this method, it could be used to hide two bits for each line of a
text, however, it still suffer the destruction of using OCR programs on the stego-text.
Another drawback is that this method will fully depend on a structure of the cover text:
it always uses the cover texts which are one sentence per line, but these texts are not so
common in our daily life.

2 Methods and Algorithms

This section introduces the methodologies and algorithms of the proposed scheme.
First, White-Space and Extended-Line will be described and then the steganography is
provided. Finally, an example will be illustrated to understand.

2.1 White Space and Extended-Line

The White-Space has always been used to hide information by adding extra space in
the text. White spaces could be placed between words, at the end of a line, or the end of
a paragraph. Figure 1 demonstrates an example of White-Space method. The above is
cover text and the following is stego text with white spaces added in the end of the text.

Extended-Line is a new method to hide data in text by comparing the length of a
line. Suppose the text is n-bits wide, the length of each line could be longer of shorten
than n bits for hiding information in text. Consider Fig. 2, the line which longer than a
length c, there is a bit ‘1’ embedded inside; and there is a bit ‘0’ embedded inside if the
line is shorter than c.

2.2 Algorithms

The algorithms will be presented under a detail form as a program like. Algorithm
1 presents the embedding algorithm and Algorithm 2 presents the extracting algorithm.

Fig. 1. An example of white space method. Fig. 2. An illustration of extended line.

218 H.-J. Shiu et al.

Algorithm 1. The data embedding algorithm.
Input: cover text, secret message, L: bits of a line
Output: Stego-text
Variables: array pw[], array word[], done = 0, lengthOfLine = 0
Step 1. transform the secret message into binary code by referencing ASCII;
Step 2. check whether the stego text is done.

if done == 1, goto Step 11;
Step 3. if the message is end of file

set all pw[] = 0;
else

store the first three bits of secret message in array pw[0], pw[1], and
pw[2];

Step 4. if pw[0] == 1, then L = bits of a line – 1;
Step 5. read a word from the cover text, store it in word[i], and lengthOfLine =

lengthOfLine + length of word[i] + 1;
Step 6. if lengthOfLine > 1

temp = word[i];
else

go to Step 5;
Step 7. if pw[0] == 1

Print the array word[] sequentially with original whitespace, and add
an extra whitespace between words;

else
print word[] sequentially with original whitespace;

Step 8. if pw[1] == 1
print temp at the end of line; lengthOfLine = 0; i = 0;

else
word[0] = temp; i = 1; lengthOfLine = length of word[0];

Step 9. if pw[2] == 1
add an extra space to the end of line and wrap to the next line;

else
wrap to the next line;

Step 10. If the cover text is end of file
done = 1;

go to step 2;
Step 11. end;

Algorithm 2. The data extracting algorithm
Input: Stego-text, default length of a line L
Output: Secret message
Step 1. set pw[0] = 0, pw[1] = 0, pw[2] = 0
Step 2. read the line from the stego text;
Step 3. If the last character of the first line is white space, then pw[2] = 1;
Step 4. If the length of the line is larger than L, then pw[1] = 1;
Step 5. if there is a white space between two words, the pw[0] = 1;
Step 6. write the pw[] array in to the password file;
Step 7. if the stego text is not end of file, then goto step 1;
Step 8. transfer the password file from binary code to character by ASCII table;

Data Hiding on Social Media Communications 219

3 Results

This section demonstrates a real example of the proposed scheme by using the Face-
book messenger. Figure 3 is the original cover text. Figure 4 is the original cover text
after setting the default length of a line.

In this section, the secret message “NTUEE” is going to be hidden. Use ASCII to
transform “NTUEE” to 010011100101010001010101 with ‘N’ = 78 = 01001110,
‘T’ = 84 = 01010100 and ‘U’ = 85 = 01010101, ‘E’ = 69 = 01000101. Figure 5 pre-
sents the stego-text after embedding the secret messages.

The detail data embedding goes as follows.

1. The binary value of the secret values are calculated and concatenated to
0100111001010100010101010100010101000101.

2. Check the binary text three bits at once, e.g., 010.
3. Read the cover text, and set the value L (the bits of a line), e.g., the cover text,

L = 32.
4. If the first bit is ‘1’, then it will add an extra white space at the random place

between two words at the line.
If the second bit is ‘1’, then it will read one more word from cover text to let the
length of line larger than L.
If the third bit is ‘1’, then it will add a white space at the end of line.
Otherwise, the line of the cover text will output normally, in the other word, there
are no extra white spaces in the line, and the length of the line will be less than L.

The corresponding extraction procedure goes as follows.

1. The stego file is take as Fig. 6.
2. Read the line from the stego text.
3. If the last character of the first line is white space, then pw[2] = 1. e.g. pw[2] = 0

at first time.
4. If the length of the line is larger than L, then pw[1] = 1. e.g. pw[1] = 0 at first line.
5. If there is a white space between two words, the pw[0] = 1. e.g. pw[0] = 0.
6. Save the first three bits according to pw[0], pw[1], and pw[2]. e.g. the first three bits

are “010”.

Fig. 3. The original cover text.

220 H.-J. Shiu et al.

7. Go to step 2 until the stego text is end of file.
8. Transfer the binary code to character by ASCII table and print out.

We exploited the technology on Facebook, which is one of the most popular social
media communication tools. The experiment is implemented using Sikuli script. The
transmitted cover text is the same of the above example and the secret messages are
also “NTUEE”. The developed script procedures go as follows. Figure 7 demonstrates
the stego transmission of the Facebook messager.

Moreover, the application does not need to transfer the stego-text to image file such
that it can be deployed on social media messenger or communication tools. Also,
without using OCR, the efficiency of encoding and decoding would be higher and the
disadvantages of using OCR will no longer exist.

Fig. 4. Cover text. Fig. 5. Stego-text after embedding “NTUEE”

Fig. 6. Stego text with white space and L.

Data Hiding on Social Media Communications 221

4 Discussions

This section provides performance analysis and comparisons to related works. At first,
suppose that the average number of letters per word is 5, and the average number of
words per sentence is 15, thus the average number of characters per sentence is as
follows: the average number of characters per sentence = the average number of letters
per word � the average number of words per sentence + the average number of white
space between words per sentence + the size of new line character = 90. The data rate
is as follow: data rate = the number of hidden bits per sentence/the average number of
bits per sentence = the number of hidden bits/(8 � 90). According to some existing
algorithms [10] based on White-Space between words or White-Space at the end of
line, the drawback of the algorithm is inefficient because it needs a large amount of text
to encode a few bits and then one bit per sentence is equal to the data rate of one bit per
720 bits approximately. Algorithms proposed in [14] is a hybrid mode using special
character, Line-Shifting and Word-Shifting coding techniques of text steganography.
They are used to hide two bits per sentence. Algorithms proposed here are used to hide
two bits in a sentence while the data rate will perform better than other methods when
the length of a line is small. Table 1 presents the data rate between [10, 14] and the
proposed scheme. Figure 8 illustrates the differences between data rate and the number
of words in a line. The proposed algorithm hides two bits per line, not two bits per
sentence. It means that if L (the number of characters per line) is smaller, the capacity
of the same cover text will be larger. Just like the example provided, the L is assign
roughly 32, and the data rate will be raised to 2 bits per 256 bits which is almost 8 times
to 1 bit per 720 bits. In general, assume that the number of words per line is n, and the
capacity of the proposed algorithm is as follows: data rate = the number of hidden bits
per line/the number of bits per line = 2/(8 � the average number of characters per
line) = 3/8(6n-1). By changing the number of words per line, obviously, the data rate
increases when the number of words per line decreases.

Fig. 7. An experimental example of the proposed scheme on Facebook messenger.

222 H.-J. Shiu et al.

Distortion issues such as PSNR are often provided to evaluate the performance of the
proposed research works, however, the application here does not based on image. Text
steganography will also consider the distortion evaluation of digital media because some
stego-texts are finally transformed to images. Here the proposed scheme does not output
image but purely text files. In order to evaluate the same concepts of distortion, another
measurement is provided here, that is, the change of size between cover text and
stego-text. Suppose the number of words per line in cover text is 15, so the number of
white spaces between words per line in cover text is 15 − 1; the size of new-line character
is one byte. Hence, the file size of cover text is 5� 15þ 15� 1ð Þþ 1ð Þ � h ¼ 90h,
where h is the number of lines in the cover text. Assume the probability of adding a white
space between words each line and adding a white space end of line each line are both½,
the expected value of an extra space is 1, i.e. 12 � 2. Thus, the file size of stego-text is:
1
2 � 2þ 5� nþ n� 1ð Þþ 1ð Þ� �

15
n h ¼ 15 6nþ 1ð Þh

n , where n is the number of words per line
in stego-text. Finally, the change rate of file size is as follows: the change rate of file

size = the file size of stego-text/the file size of cover text =
15 6nþ 1ð Þh

n
90h ¼ 1þ 1

6n. By changing
the number of words per line, obviously the change rate of file size decreases when the
number of words per line increases as shown in Fig. 9.

5 Conclusions

In this paper, a new approach for text steganography is proposed. A binary bitstream
transformed from secret messages by referencing ASCII is embedded in a cover text.
Adopting White-Space between words and Extended-Line makes the capacity high and
flexible under modifying the length per line. Experiments demonstrate the feasibility of
the scheme and the performance is analyzed and compared between related works. The
results disclose that the proposed scheme performs better than others under short line of
a cover text.

Table 1. The capacity comparison of the proposed and related

Method Shahreza et al. [13] Roy et al. [14] Proposed method

data rate (bits/bits) 1/720 2/720 2/720 (minimum)

Fig. 8. Data rate comparisons. Fig. 9. Change rate curve.

Data Hiding on Social Media Communications 223

References

1. Katzenbeisser, S., Petitcolas, F.A.P.: Information Hiding Techniques for Steganography and
Digital Watermarking. Artech House, Norwood (2000)

2. Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Information hiding: a survey. Proc. IEEE
(Spec. Issue) 87, 1062–1078 (1999)

3. Li, B., He, J., Huang, J., Shi, Y.Q.: A survey on image steganography and steganalysis.
J. Inf. Hiding Multimedia Signal Process. 2, 142–172 (2011)

4. Bender, W., Morimoto, N., Lu, A.: Techniques for data hiding. IBM Syst. J. 35, 313–336
(1996)

5. Shiu, H.J., Tang, S.Y., Huang, C.H., Lee, R.C.T., Lei, C.L.: A reversible acoustic data
hiding method based on analog modulation. Inf. Sci. 273, 233–246 (2014)

6. Shiu, H.J., Lin, B.S., Cheng, C.W., Huang, C.H., Lei, C.L.: High-capacity data-hiding
scheme on synthesized pitches using amplitude enhancement-a new vision of non-blind
audio steganography. Symmetry 9(6), 92–111 (2017)

7. Shiu, H.J., Ng, K.L., Fang, J.F., Lee, R.C.T., Huang, C.H.: Data hiding methods based upon
DNA sequences. Inf. Sci. 180, 2196–2208 (2010)

8. Rafat, K.F.: Enhanced text steganography in SMS. In: 2nd International Conference on
Computer, Control and Communication (2009)

9. Shirali-Shahreza, M., Shirali-Shahreza, M.H.: A new approach to Persian/Arabic text
steganography. In: 5th IEEE/ACIS International Conference on Computer and Information
Science (2006)

10. Shirali-Shahreza, M., Shirali-Shahreza, M.H.: Text steganography in SMS. In: 2007
International Conference on Convergence Information Technology (2007)

11. Shirali-Shahreza, M., Shirali-Shahreza, M.H.: A new synonym text steganography. In:
International Conference on Intelligent Information Hiding and Multimedia Signal
Processing (2008)

12. Shirali-Shahreza, M., Shirali-Shahreza, M.H.: Text steganography in chat. In: 3rd IEEE/IFIP
International Conference in Central Asia on Internet (2007)

13. Shirali-Shahreza, M.: Test steganography by changing words spelling. In: 10th International
Conference on Advanced Communication Technology (2008)

14. Roy, S., Manasmita, M.: A novel approach to format based text steganography. In: 2011
International Conference on Communication, Computing and Security (2011)

224 H.-J. Shiu et al.

Risk Analysis

Privacy Scoring of Social Network User
Profiles Through Risk Analysis

Sourya Joyee De2(B) and Abdessamad Imine1,2(B)

1 Lorraine University, Nancy, France
abdessamad.imine@loria.fr

2 LORIA-INRIA Nancy Grand-Est, Villers-lès-Nancy, France
sourya-joyee.de@inria.fr

Abstract. The social benefit derived from online social networks (OSNs)
can lure users to reveal unprecedented volumes of personal data to a social
graph that is much less trustworthy than the offline social circle. Although
OSNs provide users privacy configuration settings to protect their data,
these settings are not sufficient to prevent all situations of sensitive infor-
mation disclosure. Indeed, users can become the victims of harms such as
identity theft, stalking or discrimination. In this work, we design a pri-
vacy scoring mechanism inspired by privacy risk analysis (PRA) to guide
users to understand the various privacy problems they may face. Con-
cepts, derived from existing works in PRA, such as privacy harms, risk
sources and harm trees are adapted in our mechanism to compute privacy
scores. However, unlike existing PRA methodologies, our mechanism is
user-centric. More precisely, it analyzes only OSN user profiles taking into
account the choices made by the user and his vicinity regarding the visi-
bility of their profile attributes to potential risk sources within their social
graphs. To our best knowledge, our work is the first effort in adopting PRA
approach for user-centric analysis of OSN privacy risks.

Keywords: Online social networks (OSN) · Privacy harms
Privacy score · Harm trees · Privacy risk analysis (PRA)

1 Introduction

Users reveal personal data, build their social graphs and affiliate to groups to
derive various social benefits (such as connecting to offline friends, establishing
new connections) from their online social network (OSN) profiles. It is possible
to infer various personal data of a user not only from the values of the OSN pro-
file attributes (such as birth year, home address, work place, education) revealed
by the user himself, but also from those revealed by his friends and from group
affiliations [2,14,24]. Moreover, members of the social graph may be complete
strangers, future employers, colleagues, relatives, etc., from whom various pri-
vacy risks may arise. For example, in his workplace, an employee may withhold

This work is partially funded by MAIF Foundation.

c© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 227–243, 2018.
https://doi.org/10.1007/978-3-319-76687-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_16&domain=pdf

228 S. J. De and A. Imine

some information about himself and maintain an image that is different from his
personal life [11]. An OSN profile may reveal these otherwise hidden information
to colleagues leading to poor impression or hurting professional growth. Users
can also become the victims of harms such as identity theft, stalking, discrim-
ination, or sexual predation. In the absence of additional support, the privacy
settings provided by OSNs are not enough to mitigate these privacy problems.
So, there is a need to guide users to: (1) understand the privacy problems they
may face due to their actions on OSNs (such as the personal data they reveal, the
social circle they build) and (2) adopt suitable preventive measures. Designing
such a guidance tool is our broad aim. In this work, we focus on the first step,
i.e., design a privacy scoring mechanism to compute for the users the privacy
risks of their OSN profiles and social graphs.

Computation of the privacy level of an OSN user’s profile in terms of privacy
metrics has recently drawn the attention of researchers [13,15,17,18,20,22]. In
contrast to these works, our privacy scoring mechanism is inspired by privacy
risk analysis (PRA) [3–5,9]. A PRA methodology helps service providers to
assess the privacy risks of information systems that process personal data. Such
methodologies are gaining focus as the EU General Data Protection Regulation
(GDPR) mandates the conduction of a data protection impact assessment1 for
service providers with certain categories of personal data processing.

In this work, we adopt the PRA approach in designing our privacy scoring
mechanism to assist users (instead of the service provider), borrowing concepts
like privacy harms, risk sources and harm trees from [5–7]. Unlike existing PRA
methodologies, we do not consider the entire OSN system or risk sources like
hackers or the service provider and ignore privacy weaknesses [5] introduced by
the service provider’s choices during system design and implementation. Instead,
we focus on the choices made by the user and his friends regarding the visibility of
their profile attributes to potential risk sources already in their social graph. To
the best of our knowledge, our work is the first effort in utilizing PRA concepts
for user-centric analysis of OSN privacy risks based on the visibility of attribute
values.

We introduce the main ingredients of our privacy scoring mechanism in Sect. 2
and discuss attribute visibility from an OSN user profile in Sect. 3. In Sect. 4 we
present our privacy scoring mechanism. Finally, in Sect. 5 we discuss related
works and conclude with future directions in Sect. 6.

2 Model Ingredients

Users may publish various personal data in their OSN profiles. Various actors
in the OSN may become risk sources processing the revealed personal data to
cause a variety of threats that ultimately lead to privacy harms for the user. In
what follows, we define these concepts, which form the building blocks of our
privacy scoring mechanism, more formally and provide appropriate examples.
1 The technical details of a privacy impact assessment (PIA) are referred to as privacy

risk analysis (PRA) [5,6].

Privacy Scoring of Social Network User Profiles Through Risk Analysis 229

We represent the OSN as a graph G = (V,E), where V is the set of nodes
representing the users of the OSN and E is the set of edges representing the
friendship links among the users. ei,j ∈ E represents a friendship link between
the nodes vi and vj . The target user, denoted by vT , represents the OSN user
for whom the privacy score is being computed. We also assume that the target
user has at least one friend.

Attributes and Other Personal Data. Some personal data are made avail-
able by the target user and his friends in their OSN profiles. We call these
personal data user attributes that can be defined as:

Definition 1. A user attribute is a personal data2 item considered as a part
of the user profile information. It helps to present this user to other users of the
same OSN.

Each user has a set A of profile attributes. We consider the following elements
of set A: 1. Birth year (B.Yr); 2. Birthday (B.Dt); 3. Gender (Gen); 4. Phone
number (Ph); 5. Gender interests (G.Int); 6. Home address (H.Add); 7. Work-
place (W.Pl); 8. Work designation (W.desig); 9. Political views (Pol); 10. Reli-
gious views (Rel); 11. Relationship status (RStat); 12. Interests (Int). Each user
attribute may assume different values. Other personal data such as work locality
(W.Loc) can be obtained by inference from these attributes. Other attributes
may also be revealed in different OSNs, but we consider only this set for the
current discussion. We also assume that providing a name is mandatory and can
be seen by everyone on the OSN. So we do not consider it as an attribute.

Privacy Harms. We adapt the definition of privacy harm from [5–7] in the
context of an OSN.

Definition 2. A privacy harm is the negative impact of the use of an OSN
on the target user as a result of one or more privacy breaches.

Over the years, many types of privacy harms have been observed in real
life as well as found to be possible by different research works [10–12,16,21]
from the data revealed from OSNs. In this work, we consider two harms: (1)
stalkers use the target user’s profile to assess him as a potential victim (H.1)
and (2) identity fraud/theft (H.2). Of course, the harms presented here are not
exhaustive and only involve a subset of the user attributes provided above. Other
harms, involving different user attributes, are possible and can be analyzed in
the same way as we will show in the next sections for these representative harms.

Risk Sources. We adapt the definition of risk sources from [5–7] in the context
of an OSN.

Definition 3. A risk source is any entity (individual or organization) that
may process (legally or illegally) data belonging to the target user and whose
actions may directly or indirectly, intentionally or unintentionally lead to privacy
harms.
2 According to the GDPR (General Data Protection Regulation) of European Union.

230 S. J. De and A. Imine

In this work, we focus on the user’s social graph to find out the relevant
risk sources which include: (1) friends of the target user (A.1); (2) the friends of
friends of the target user (A.2); (3) the friends of friends of friends of the target
user (A.3); (4) the strangers to the target user (degrees of relationships higher
than 3) (A.4). These risk sources only process data already made visible to them
by the user leading to various harms. For example, the colleagues of the user
who are his friends in the OSN (A.1) can form a negative impression about him
based on his political and/or religious views or based on his interests, sexual
orientation, etc., which may negatively affect him at his work-place. We ignore
risk sources such as the OSN service provider, the government and hackers.

Threats. We define threats in the context of an OSN as:

Definition 4. A threat is an action of a risk source with respect to one or more
pieces of personal data resulting in a privacy harm.

In the context of an OSN, threats include unintended inference of data (FE.1)
(e.g., strangers infer the gender of the target user from the genders of his friends),
direct access to data by unintended audiences due to similar attributes revealed
by the user (FE.2) (e.g., friends of friends come to know the user’s phone num-
ber), and the undesirable reactions from intended audiences (FE.3) (e.g., col-
leagues respond negatively to the target user’s political views) [11,16,21]. We
only consider threats resulting from inappropriate privacy settings used by the
target user and his friends for their attributes and ignore threats originating
from the service provider’s design and/or implementation choices (e.g., lack of
anonymization, poor protection of data stores) as we only focus on the analysis
of the OSN user profile and not the entire system.

Inference of Personal Data. The attributes revealed by the target user or his
friends can reveal other personal data of the target user. The attributes used for
the inference could be of the same type. For example, the gender (Gen) of the
target user’s friends can be used to infer the gender (Gen) of the target user. It
is also possible to use other types of attributes to reveal a particular personal
data. For example, the work place (W.Pl), a data about the user’s profession,
is an indicator of the target user’s work location (W.Loc), which is a location
data. Sometimes, multiple attributes can be used to infer a personal data item.
For example, the sexual orientation (SO) of a target user can be inferred from
his gender interests (G.Int) and gender (Gen). These different types of inference
methods can thus be categorized based on three criteria as follows: (1) whether
the personal data is inferred directly, i.e., from attribute(s) revealed by the target
user himself or indirectly, i.e., from attribute(s) revealed by the friends of the
target user; (2) whether a single or multiple attribute(s) are used for the infer-
ence; (3) whether the attribute(s) used for the inference constitutes a similar
type of personal data as the one that is being inferred or are completely dif-
ferent. Here, we only consider direct/indirect, single and similar attribute infer-
ence for user attributes and direct/indirect, single/multiple and similar/different
attribute inference for other personal data not included as user attributes.

Privacy Scoring of Social Network User Profiles Through Risk Analysis 231

Table 1 presents the attributes that can be used to infer various types of per-
sonal data through some of the above inference methods3. The types of personal
data (such as contact data, location data, identification data) we use are inspired
from [6]. A particular personal data can be inferred using one or more inference
methods. The choice of inference method depends on the availability of attribute
values and the desired accuracy of inference.

Table 1. Inferring user attributes and other personal data

Personal data
type

Code User attribute or
other personal data

User attribute
(Target user)

User attribute
(Friends)

Inference Types

Contact data M.1 Phone no. (Ph.) Phone no. (Ph.) × Direct, single,
similar attribute

M.2 Home address
(H.Add)

Home address
(H.Add)

× Direct, single,
similar attribute

Location data M.3 Home locality
(H.Loc)

Home address
(H.Add)

Home address
(H.Add)

Direct/indirect,
single, different
attribute

M.4 Work locality
(W.Loc)

Workplace (W.Pl) Workplace
(W.Pl)

Direct/indirect,
single, different
attribute

Identification
data

M.5 Gender (Gen) Gender (Gen) Gender (Gen) Direct/indirect,
single, similar
attribute

M.6 Age (Age) Birth year (B.Yr) Birth year
(B.Yr)

Direct/indirect,
single, similar
attribute

M.7 Date of birth
(DoB)

Birth year (B.Yr),
Birth day (B.Dt)

× Direct, multiple,
similar attribute

3 Attribute Visibility

After assigning values to the attributes in their OSN profiles, users can select
from a range of privacy settings to ensure that the attribute values are visible
to desirable audiences in their social graph. Here, we consider that the user can
choose from the following privacy settings, inspired from those used in Facebook:

1. “private”: makes an attribute value visible to no one;
2. “friends”: makes an attribute value visible to friends only;
3. “friends of friends”: makes an attribute value visible to friends and friends

of friends;
4. “public”: makes an attribute value visible to all users of the OSN.
3 In Table 1, neither the list of inference methods nor the personal data that can

be inferred from the given set of attributes nor the personal data types that must
be considered is exhaustive. Other inferred personal data, personal data types and
inference methods can be easily incorportated in our framework.

232 S. J. De and A. Imine

The visibility matrix M of a target user vT displays the visibility values of
all the attributes in A (the set of user attributes, see Definition 1) as given by
their privacy settings chosen by vT and his friends. Each element of the matrix
is a set that denotes the members of the OSN to whom the jth attribute aj is
visible. These members are assigned based on the privacy setting of the attribute
selected either by vT or a friend of vT . Entry M(1,j) represents the visibility of
the jth attribute, vT .aj , as set by vT . As for M(i,j), with i > 1, it represents
the visibility of the jth attribute, vi.aj , as set by the ith friend (i �= 1) of vT
(but, with respect to vT and not themselves)4. Other types of privacy settings
used in other OSNs can also be used to fill in M.

For i = 1, i.e., for vT himself, M(i,j) is assigned values as follows:

1. M(i,j) = {}, if the privacy setting of vT .aj is “private”;
2. M(i,j) = {A.1}, if the privacy setting of vT .aj is “friends”;
3. M(i,j) = {A.1, A.2}, if the privacy setting of vT .aj is “friends of friends”;
4. M(i,j) = {A.1, A.2, A.3, A.4}, if the privacy setting of vT .aj is “public”.

For i > 1, i.e., for the friends vi of vT , M(i,j) is assigned values as follows:

1. M(i,j) = {}, if the privacy setting of vi.aj is “private”;
2. M(i,j) = {A.1, A.2}, if the privacy setting of vi.aj is “friends”5;
3. M(i,j) = {A.1, A.2, A.3}, if the privacy setting of vi.aj is “friends of friends”;
4. M(i,j) = {A.1, A.2, A.3, A.4}, if the privacy setting of vi.aj is “public”.

The true visibility V istrue(vT .aj) of a target user’s attribute is the same as
M(1,j). However, its observed visibility V isobs(vT .aj) depends on the values of
M(i,j), for all i. For our purpose, we assume that V isobs(vT .aj) is the set M(i,j)
that has the maximum number of risk sources for a given attribute aj over all i,
i.e., the observed visibility is the same as the weakest privacy setting among all
the privacy settings assigned to the attribute by the target user and his friends.
For some attributes whose value cannot be inferred from the attribute values of
the friends due to the nature of the attribute (for example, birth day (B.Dt),
phone no. (Ph), etc.), V isobs(.) = V istrue(.).

We now show how the visibility matrix and the true and observed visibility
values are computed for a target user Ana, for the attribute B.Yr, given her
friendship network and the disclosure of this attribute by her and her friends in
Fig. 1.

Figure 2 presents Ana’s visibility matrix. The first row of the matrix,
M(1,B.Yr), corresponds to Ana’s privacy setting for B.Yr. The subsequent rows
represent the privacy settings of her friends (but, with respect to her) for B.Yr.
For example, Fig. 1 shows that Ana’s friend Emma reveals her B.Yr to her friends.
Thus, apart from Ana herself and her mutual friends with Emma, Emma’s B.Yr is

4 Notation wise, for simplicity, we assume that the target user is the first friend for
himself, i.e., when i = 1, vi = vT .

5 A.2 is included because a friend of vi (i �= 1) is a friend of friend of the target user.

Privacy Scoring of Social Network User Profiles Through Risk Analysis 233

Fig. 1. The target user and its vicinty for the revelation of the attribute B.Yr

visible to Emma’s friends who are friends of friends with respect to Ana. There-
fore, in the visibility matrix, we fill up the row corresponding to Emma for B.Yr
with the value {A.1, A.2} (and not {A.1}, because it is filled up from Ana’s point
of view). Ana’s friend Bob reveals his B.Yr to his friends of friends. From Ana’s
point of view, Bob’s B.Yr is visible to Ana’s friends of friends of friend. So we fill
up the corresponding cell in the visibility matrix with the value {A.1, A.2, A.3}.
Ana’s friend Joey reveals his B.Yr to the public (i.e., beyond friend of friend),
i.e., {A.1, A.2, A.3, A.4} with respect to Ana. The true visibility of Ana’s B.Yr is
given by V istrue(vAna.B.Y r) = {} and the observed visibility of Ana’s B.Yr is
given by V isobs(vAna.B.Y r) = {A.1, A.2, A.3, A.4}.

Fig. 2. Visibility matrix for the target user Ana for B.Yr

4 Privacy Scoring Mechanism

The discussions in Sects. 2 and 3 form the basis of the privacy scoring mechanism
that we describe in this section. As discussed in the Introduction, the mechanism
ultimately informs users of an OSN about the privacy risks of their profiles and
social graphs. In brief, the privacy scoring mechanism consists of the following
steps, each of which we discuss in details with appropriate examples in the rest
of this section:

234 S. J. De and A. Imine

1. Construction of a harm tree for each privacy harm.
2. Pruning harm trees based on attribute visibilities.
3. Computation of the accuracy values for each attribute value.
4. Pruning harm trees based on the accuracy values.
5. Evaluation of the likelihood of each harm.

4.1 Construction of Harm Trees

The first step in deriving the privacy score is to construct the harm tree for each
privacy harm. A harm tree [5–7] describes the relationship among the privacy
harms, threats, risk sources and the personal data/attributes of the target user.
The root node of a harm tree denotes a privacy harm. Leaf nodes represent the
exploitation of personal data (user attributes or other personal data) by risk
sources. Intermediate nodes represent the threats caused by the risk sources.
Child nodes can be connected by: (1) an AND node if all of them are necessary
to give rise to the parent; (2) an OR node if any one of them is sufficient to give
rise to the parent and (3) a k-out-of-n node if any k of the n child nodes are
sufficient to give rise to the parent node.

In case of some harms, the personal data that can be exploited may vary
from risk source to risk source or a particular occurrence of the harm to another
one. For example, a potential employer may assess the target user’s profile based
on political views, religious views, sexual orientation, interests and relationship
status or a subset of these data. In such cases, we present n of the most probable
attributes leading to the harm in the harm tree. Out of these n attributes, any
k may be used by the risk source leading to the harm.

The harm tree for H.1 in Fig. 3 represents that a target user’s profile can be
assessed for suitability for stalking by a friend of a friend of a friend (A.3) or
a stranger (A.4). The stalker can use either the gender (Gen) or the age (Age
derived from the attribute B.Yr) or both of a target user to assess the profile.
The risk source also needs to know a more or less precise location data for the
user given by the home locality (H.Loc derived from H.Add) or the work locality
(W.Loc derived from W.Pl). These data can be either accessed directly (FE.2)
or can be inferred (FE.1). Figure 4 presents the harm tree for H.2.

The harm trees can be constructed by privacy experts beforehand and stored
in a database. The latter can be updated when new harms are discovered. Exist-
ing harm trees can also be modified based on new information. This step can be
performed once (and the database can be updated once in a while) and can be
reused for each target user.

4.2 Pruning Harm Trees Based on Attribute Visibility

The observed visibilities V isobs(.) of the target user’s attributes are derived from
the visibility matrix M(i, j). Table 2 represents the true and the observed visibil-
ities (derived from the visibility matrix of the corresponding user) of an example
target user T (accuracy is discussed in Sect. 4.3 and the column for accuracy
is used in Sect. 4.5). The branches of the harm trees using the attributes for

Privacy Scoring of Social Network User Profiles Through Risk Analysis 235

F
ig
.
3
.
H

a
rm

tr
ee

fo
r

H
.1

236 S. J. De and A. Imine

Fig. 4. Harm tree for H.2

Table 2. True and observed visibility sets and the accuracy values for T

Attribute
(vT .aj)

True visibility
V istrue(vT .aj)

Observed visibility
V isobs(vT .aj)

Accuracy

B.Dt {} {} A.1, A.2, A.3, A.4 : 0

B.Yr {} {A.1, A.2, A.3, A.4} A.1, A.2 : 0.45;A.3 : 0.4;A.4 : 0.4

Gen {} {A.1, A.2, A.3, A.4} A.1, A.2 : 0.8;A.3 : 0.7;A.4 : 0.6

Ph {} {} A.1, A.2, A.3, A.4 : 0

H.Add {} {} A.1, A.2, A.3, A.4 : 0

W.Pl {} {A.1, A.2, A.3, A.4} A.1, A.2 : 0.45;A.3 : 0.4;A.4 : 0.3

which |V isobs(.)| = 0 can be pruned as these attributes or personal data are
neither disclosed by the user nor can they be inferred from his friends. So, for
the target user T , the branches in the harm tree for H.2 (see Fig. 4) correspond-
ing to DoB (since |V isobs(T.B.Dt)| = 0 for B.Dt and both B.Dt and B.Yr are
required to obtain DoB), H.Add (since |V isobs(T.H.Add)| = 0) and Ph (since
|V isobs(T.Ph)| = 0) can be pruned (pruning shown by × in Fig. 5).

Next, a second level of pruning can be carried out based on whether a harm
tree uses the exploitation of personal data by a risk source who does not have
access to it. For example, suppose that for the attributes B.Dt, H.Add and Ph
of another target user T ′, V isobs(.) = {A.1}, implying that the risk sources A.2,
A.3 and A.4 do not have access to these attribute values nor can they infer the
required personal data (e.g. DoB) to cause the harm. In the harm tree for H.2
(see Fig. 4), the risk source A.4 must have access to DoB, Ph. and H.Loc. So, for
T ′, the corresponding branches are pruned in the harm tree for H.2. In contrast,
if the observed visibility values of B.Dt, B.Yr, H.Add and Ph for a target user T ′′

are given by V isobs(.) = {A.1, A.2, A.3, A.4}, the corresponding branches of the
harm tree for H.2 cannot be pruned.

The harm tree for H.2 becomes non-existent for the target users T and T ′

as the personal data necessary to cause H.2 are not available to the risk source
A.4. So the privacy settings of T and T ′ and those of their friends protect them
from H.2 but the privacy settings of T ′′ and his friends do not. The harm tree
for H.1 (given in Fig. 3) can be pruned similarly (see Fig. 6).

Privacy Scoring of Social Network User Profiles Through Risk Analysis 237

Fig. 5. Pruning of harm tree for H.2 for T and T ′ based on visibility (Color figure
online)

4.3 Accuracy of Attribute Values

The accuracy of an attribute in having a particular value depends on the true
and the observed visibility of the attribute(s) from which it can be derived. If for
an attribute, |V istrue| > 0, the target user has himself revealed the attribute. So,
when the target user reveals an attribute to his friends (i.e., V istrue = {A.1}), to
his friends of friends (i.e., V istrue = {A.1, A.2}) and to strangers (i.e., V istrue =
{A.1, A.2, A.3, A.4}), then the corresponding risk sources know the value of the
corresponding attribute with full accuracy6. When there is a difference in the
observed and the true visibility sets, then at least some risk sources do not know
the value with full accuracy and therefore infer the value with some accuracy.
We consider a simple measure of accuracy for the jth attribute of the target user
vT as derived by the kth risk source A.k given as:

Acc(vT .aj)A.k = Maxl(Pr[vT .aj = sl|∀i, i > 1, vi.aj = sl, eT,i ∈ E,A.k ∈ M(i,j)])

= Maxl(
|vi.aj |vi.aj=sl,i>1,Ak∈M(i,j)

|vi.aj |i>1
)

where, sl is the lth value that can be assumed by the attribute aj of the target
user vT or his friend vi, M is the visibility matrix and Ak is the kth risk source.
|vi.aj |i>1 denotes the total number of friends vi (we assume that the target user
has at least one friend) and |vi.aj |vi.aj=sl,i>1,Ak∈M(i,j) denotes the number of
friends vi for whom vi.aj = sl and Ak ∈ M(i,j). The range of values (sl for
all l) assumed by an attribute can be obtained from the values assigned to the
attribute by friends of vT or from an accepted set of values (e.g., cities in France).

The above formula can be used to compute the accuracy value for attributes
that assume a categorical value. For example, Gen can assume a value from
{Male, Female}, RStat can assume a value from {Single, Married, Divorced} etc.
For some attributes such as B.Yr, instead of inferring the exact value, the risk
source may infer the range within which the value lies.

We illustrate the computation of accuracy values with an example. Suppose
the target user T ′ does not reveal his B.Yr. He has a 100 friends and 60 of those
friends reveal their B.Yr to strangers (i.e., M(i,B.Yr) = {A.1, A.2, A.3, A.4},
1 < i ≤ 61), 5 of them reveal it to their friends of friends (i.e., M(i,B.Yr) =
6 The accuracy values lie between 0 (no accuracy) and 1 (full accuracy).

238 S. J. De and A. Imine

{A.1, A.2, A.3}, 61 < i ≤ 66) and 10 reveal it to their friends (i.e., M(i,B.Yr) =
{A.1, A.2}, 66 < i ≤ 76). The rest, i.e., 25 do not reveal it at all (i.e.,
M(i,B.Yr) = {}, 76 < i ≤ 101). We further assume that of the first 60 friends,
70% are in the range of 1980 to 1990, 20% are earlier than 1980 and remaining
later than 1990. For all the other groups, 20% are in the range of 1980 to 1990,
40% earlier than 1980 and remaining later than 1990. Then the accuracy with
which A.1 (mutual friends) can infer about the B.Yr of T ′ is:

Acc(vT ′ .B.Yr)A.1 = Max(Pr[1980 ≤ vT ′ .B.Yr ≤ 1990|∀i, 1980 ≤ vi.B.Yr ≤
1990, eT ′,i ∈ E,A.1 ∈ M(i,B.Yr)], P r[vT ′ .B.Yr < 1980|∀i, vi.B.Yr < 1980, eT ′,i ∈
E,A.1 ∈ M(i,B.Yr)], P r[vT ′ .B.Yr > 1990|∀i, vi.B.Yr > 1990, eT ′,i ∈ E,A.1 ∈
M(i,B.Yr)]) = Max(0.45, 0.18, 0.12) = 0.45.

The computation of the accuracy value is inspired by the friend-aggregated
model in [24]. However, as discussed in [24], other types of computations of the
accuracy value are also possible, depending upon the inference method being
used. Different risk sources may choose different inference methods based on
their capabilities. The computation method presented above provides a lower
bound to the achievable accuracy values – risk sources, using better inference
methods, can achieve better accuracy. Our aim is to provide the user with a base
level for the score (improving the inference method is not our focus), implying
that the privacy risk is at least equal to the privacy score that we present.

4.4 Pruning the Harm Trees Based on Accuracy

Once the accuracy values are known, a third stage of pruning can be carried out
based on which attributes in the harm trees are known with full accuracy and
which ones are to be inferred. We show this step for T and the harm H.1 in Fig. 7.
For T , the attributes B.Yr and Gen have to be inferred from what T ’s friends
reveal by the risk sources A.3 and A.4 (FE.1) as similar attributes have not
been disclosed by T himself (FE.2). So the branches of this harm tree for these
attributes and FE.2 are pruned. Similarly, H.Add and W.Pl must be inferred
from what T ’s friends have disclosed (FE.1) as similar attributes have not been
disclosed by T himself (FE.2), by both risk source A.3 and A.4. So whenever an
attribute value is known with full accuracy7 by a risk source, the corresponding
branch (FE.2) in the tree is left untouched while the branch for inferring the
value of the attribute (FE.1) by that risk source is pruned. Otherwise branches
with FE.1 are retained and those with FE.2 pruned. We also fix the values for k
and n. In the worst case (for the user), each risk source uses only the attribute
having the maximum accuracy for the harm. Then, we substitute all nodes with
k-out-of-n by OR nodes [23]. In the best case (for the user), each risk source uses
all the attributes for the harm. In this case, we substitute all k-out-of-n nodes by
AND nodes. There may be intermediate cases, where risk sources use different
number and combinations of attributes. For example, one intermediate scenario
is where the attributes with the top k accuracy values are used by the risk source.
7 The value of an attribute is known with full accuracy only when the value is dis-

closed by the target user himself, i.e., only for some cases of direct, similar attribute
inferences (e.g., a risk source comes to know vT ’s gender because vT reveals it).

Privacy Scoring of Social Network User Profiles Through Risk Analysis 239

F
ig
.
6
.
P

ru
n
in

g
o
f
h
a
rm

tr
ee

fo
r

H
.1

fo
r
T

b
a
se

d
o
n

v
is

ib
il
it
y

F
ig
.
7
.
P

ru
n
in

g
o
f
th

e
h
a
rm

tr
ee

fo
r

H
.1

fo
r
T

b
a
se

d
o
n

a
cc

u
ra

cy

240 S. J. De and A. Imine

4.5 Evaluation of Harm Likelihoods

Once accuracy values are assigned to all the leaf nodes in a harm tree, they
must be combined to obtain the overall likelihood of the harm. The combination
uses the following rules, inspired from [23], where Acci is the accuracy value of
the ith attribute (i.e., ith child node):[R1.] AND node:

∏
i Acci, i = 1, . . . , n

(assuming independence of child nodes); [R2.] OR node: Maxi(Acci); [R3.] k-
out-of-n node:

∏
i Acci, i = 1, . . . , k, where the k attributes are the ones with

the top k accuracy values (assuming independence of child nodes). The above
rules are applied bottom-up on the harm tree. We illustrate the computation of
the likelihood of H.1 for T using the example accuracy values in Table 2 for the
worst case in Fig. 8. The accuracy values and the likelihood value for the relevant
nodes are presented inside curly brackets beside each node. The likelihood of H.1
is 0.28. The likelihoods for other harms can be similarly computed.

Fig. 8. Likelihood computation based on worst case harm tree for H.1 for T

5 Related Works

One of the earliest privacy scoring models is the one by Liu and Terzi [13]. In
their work, privacy score is a monotonically increasing function of the visibility
of attribute values and their sensitivity. It has been assumed that the privacy
settings assigned to an attribute depend on its sensitivity and hence a response
matrix that records the privacy settings of different attributes by a number of
users has been used to estimate the value of sensitivity of each attribute. The
visibility of the attribute value is influenced by the privacy setting of the user and
his position in the network. The probability that an attribute is truly visible is
estimated using the observed visibility values (i.e., the privacy settings) recorded
in the response matrix using the Item Response Theory. In contrast, we do not
assume that users consider the “sensitivity” of personal data when they specify
their privacy settings, nor do we use sample data to compute the privacy scores.

Wang and Nepali [20] introduce the privacy index as a measurement of the
exposure of the privacy of a participant in an OSN based on known attributes.
In [15,22], they use it for their social network model for privacy monitoring and

Privacy Scoring of Social Network User Profiles Through Risk Analysis 241

ranking. Both sensitivity and visibility of attributes are taken into account in
the computation of the privacy index. We only consider visibility of attribute
values as a contributor to the computation of privacy scores. The sensitivity
of the attributes are implicitly revealed by their popularity in the harm trees.
In the recent PScore framework [18], the scoring mechanism can be linked to
any inference algorithm. Any inference algorithm could also be plugged into
our method and the only adjustment required while doing so is to update the
calculation of the accuracy value. However, in contrast to [18], our mechanism
is concrete yet simple.

Some works [1,17,19] also focus on the rating of the user’s OSN friends based
on their attitudes towards privacy, helping him to make an informed decision
of sharing information with them. We do not consider the ranking of the user’s
friends or the active disclosure of the target user’s data by the risk sources, but
rather focus on privacy risks that arise from what the target user or his friends
willingly disclose about themselves. In our approach, the user does not need to
provide any input that may require any awareness about privacy problems.

In most works, the implicit assumption is that if the user prefers to disclose
or has no problems in allowing the propagation of some data then it is less
sensitive to him than if he prefers otherwise. We assume that the user is not
a privacy expert and may end up disclosing data that may cause him a lot of
harm. Therefore, our privacy scores serve to warn the user about the imminent
dangers of revealing personal data on the OSN. None of the previous works on
privacy scores draw inspiration from privacy risk analysis.

Privacy harms, threats and risk sources specific to OSNs and their relation-
ship with various personal data must be obtained from previous research. Infor-
mation disclosed in OSNs can significantly affect others’ impression of the user
[16] and hiring decisions [12,16]. Other harms include thieves or sexual preda-
tors tracking, monitoring, locating and identifying a user as a potential victim,
political parties targetting a user through ads and data mining [12] and identity
theft [10]. OSN users often regret sharing information on alcohol and drug use,
sex, religious and political opinions, personal and family issues, work etc., chiefly
due to undesirable reactions from other users and unintended audience [21].

Our work is inspired by privacy risk analysis (PRA), a review of which can
be found in [5,6]. Harm trees linking privacy weaknesses and risk sources to
harms, via feared events have been introduced and widely used in [5–7]. Here, we
adopt these concepts to our setting. PRA methodologies help the service provider
to evaluate systems processing personal data for privacy risks, thus helping to
design and implement these systems in the least privacy invasive way. Deng et al.
[8] provide an example of using their LINDDUN risk analysis framework [9] for
analyzing social networks. Our mechanism differs from these PRA methodologies
in a number of ways: (1) our aim is to guide users instead of service providers;
(2) we analyze each user’s OSN profile and social graph to uncover the privacy
risks, instead of the entire OSN system; (3) we consider risk sources that are
already within the user’s social graph and who process personal data that are
already made visible to them by the user and do not consider hackers, OSN
service providers, the government etc.; (4) we consider only the choices made

242 S. J. De and A. Imine

by the user and his friends regarding the visibility of their profile attributes,
but not privacy weaknesses [5,6] originating from the service provider’s choices
during system design and implementation (such as insufficient protection of data
store, lack of anonymization techniques) (5) since OSN profiles are user-specific,
counter-measures suggested based on the privacy scores will differ from user to
user, based on privacy risks of their profiles and their requirements regarding
social benefit. In addition, unlike [7], the harm trees do not consider system
components (generic or specific) but only the data elements and the risk sources
and the pruning of harm trees takes place based on attribute visibility and the
accuracy of the inferred attribute values rather than system architectures and
the implementation context. To our best knowledge, our work is the first effort in
utilizing PRA concepts for user-centric analysis of privacy risks of OSN profiles.

6 Conclusion and Future Works

We designed a privacy scoring mechanism for OSN profiles inspired by privacy
risk analysis (PRA). The privacy scores can be used to inform the user about
the privacy risks of his OSN profile. Our model can form the basis of designing a
user interface to effectively communicate privacy scores and conduct a usability
study to understand their effect on the user’s privacy awareness. Based on the
scores, we can also suggest counter-measures to users, taking into account the
trade-off between the privacy risks and the social benefits of using OSNs. Such
counter-measures include: (1) the selection of the right privacy setting for each
profile attribute; (2) a decision on which friendships to continue based on their
effects on the user’s privacy scores and/or the negotiation of a privacy setting
allowing both the user and his friends to maintain privacy and derive the social
benefits of using an OSN. We leave these as future work.

References

1. Akcora, C., Carminati, B., Ferrari, E.: Privacy in social networks: how risky is your
social graph? In: 2012 IEEE 28th International Conference on Data Engineering
(ICDE), pp. 9–19. IEEE (2012)

2. Al Zamal, F., Liu, W., Ruths, D.: Homophily and latent attribute inference: infer-
ring latent attributes of Twitter users from neighbors. In: ICWSM, vol. 270, pp.
387–390 (2012)

3. Commission Nationale de l’Informatique et des Libertes (CNIL): Privacy Impact
Assessment (PIA) Methodology (How to Carry Out a PIA) (2015)

4. Commission Nationale de l’Informatique et des Libertes (CNIL): Privacy Impact
Assessment (PIA) Tools (templates and knowledge bases) (2015)

5. De, S.J., Le Métayer, D.: PRIAM: a privacy risk analysis methodology. In: 11th
International Workshop on Data Privacy Management (DPM). IEEE (2016)

6. De, S.J., Le Métayer, D.: Privacy risk analysis. In: Synthesis Series. Morgan &
Claypool Publishers (2016)

7. De, S.J., Le Métayer, D.: A Risk-based Approach to Privacy by Design (Extended
Version). Number RR-9001, December 2016

Privacy Scoring of Social Network User Profiles Through Risk Analysis 243

8. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: LINDDUN: running
example-Social Network 2.0

9. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A Privacy threat
analysis framework: supporting the elicitation and fulfilment of privacy require-
ments. Requirements Eng. 16(1), 3–32 (2011)

10. Gross, R., Acquisti, A.: Information revelation and privacy in online social net-
works. In: Proceedings of the 2005 ACM Workshop on Privacy in the Electronic
Society, pp. 71–80. ACM (2005)

11. Huang, L., Wang, D.: What a surprise: initial connection with coworkers on Face-
book and expectancy violations. In: Proceedings of the 19th ACM Conference on
Computer Supported Cooperative Work and Social Computing Companion, pp.
293–296. ACM (2016)

12. Johnson, M., Egelman, S., Bellovin, S.M.: Facebook and privacy: it’s complicated.
In: Proceedings of the Eighth Symposium on Usable Privacy and Security, p. 9.
ACM (2012)

13. Liu, K., Terzi, E.: A framework for computing the privacy scores of users in online
social networks. ACM Trans. Knowl. Disc. Data (TKDD) 5(1), 6 (2010)

14. Mislove, A., Viswanath, B., Gummadi, K.P., Druschel, P.: You are who you know:
inferring user profiles in online social networks. In: Proceedings of the Third ACM
International Conference on Web Search and Data Mining, pp. 251–260. ACM
(2010)

15. Nepali, R.K., Wang, Y.: SONET: a social network model for privacy monitoring
and ranking. In: 2013 IEEE 33rd International Conference on Distributed Com-
puting Systems Workshops (ICDCSW), pp. 162–166. IEEE (2013)

16. Ollier-Malaterre, A., Rothbard, N.P., Berg, J.M.: When worlds collide in
cyberspace: how boundary work in online social networks impacts professional
relationships. Acad. Manag. Rev. 38(4), 645–669 (2013)

17. Pergament, D., Aghasaryan, A., Ganascia, J.-G., Betgé-Brezetz, S.: FORPS:
friends-oriented reputation privacy score. In: Proceedings of the First Interna-
tional Workshop on Security and Privacy Preserving in e-Societies, pp. 19–25.
ACM (2011)

18. Petkos, G., Papadopoulos, S., Kompatsiaris, Y.: PScore: a framework for enhancing
privacy awareness in online social networks. In: 2015 10th International Conference
on Availability, Reliability and Security (ARES), pp. 592–600. IEEE (2015)

19. Vidyalakshmi, B.S., Wong, R.K., Chi, C.-H.: Privacy scoring of social network
users as a service. In: 2015 IEEE International Conference on Services Computing
(SCC), pp. 218–225. IEEE (2015)

20. Wang, W., Zhuo, L.: Cyber security in the Smart Grid: survey and challenges.
Comput. Netw. 57(5), 1344–1371 (2013)

21. Wang, Y., Norcie, G., Komanduri, S., Acquisti, A., Leon, P.G., Cranor, L.F.: I
regretted the minute I pressed share: a qualitative study of regrets on Facebook.
In: Proceedings of the Seventh Symposium on Usable Privacy and Security, p. 10.
ACM (2011)

22. Wang, Y., Nepali, R.K., Nikolai, J.: Social network privacy measurement and sim-
ulation. In: 2014 International Conference on Computing, Networking and Com-
munications (ICNC), pp. 802–806. IEEE (2014)

23. Yager, R.R.: OWA trees and their role in security modeling using attack trees. Inf.
Sci. 176(20), 2933–2959 (2006)

24. Zheleva, E., Getoor, L.: To Join or not to join: the illusion of privacy in social
networks with mixed public and private user profiles. In: Proceedings of the 18th
International Conference on World Wide Web, pp. 531–540. ACM (2009)

A Method for Developing Qualitative
Security Risk Assessment Algorithms

Gencer Erdogan(B) and Atle Refsdal

SINTEF Digital, Oslo, Norway
{gencer.erdogan,atle.refsdal}@sintef.no

Abstract. We present a method for developing qualitative security risk
assessment algorithms where the input captures the dynamic state of the
target of analysis. This facilitates continuous monitoring. The intended
users of the method are security and risk practitioners interested in devel-
oping assessment algorithms for their own or their client’s organization.
Managers and decision makers will typically be end users of the assess-
ments provided by the algorithms. To promote stakeholder involvement,
the method is designed to ensure that the algorithm and the underlying
risk model are simple to understand. We have employed the method to
create assessment algorithms for 10 common cyber attacks, and use one
of these to demonstrate the approach.

Keywords: Security risk assessment · Risk assessment algorithms
Qualitative risk assessment

1 Introduction

Decision makers need to understand security risks to determine how to deal
with them. Many managers, particularly at the business level, expect quantified
assessments of risks in terms of estimated likelihood and monetary loss. Unfor-
tunately, providing trustworthy numbers is very difficult. This requires not only
insight into the systems, threats, vulnerabilities and business processes of the
organization, but also access to good empirical data and statistics to serve as a
foundation for quantified estimates. Such data is often unavailable. Even if we
can obtain it, analyzing the data to understand its impact on the assessment is
a major challenge [15].

This means that providing good quantitative assessments is not always fea-
sible. In such cases, a qualitative approach can be a good alternative. By qual-
itative, we mean that we use ordinal scales, for which the standard arithmetic
operators are not defined, to provide assessments. Each step is usually described
by text, such as {Very low; Low; Medium; High; Very high}. More informative
descriptions of each step can of course be given. Ordinal scales allow us to order
values, thereby making it possible to monitor trends. Since security risk assess-
ment is costly when performed manually, we need to find ways to reduce the
effort required to update assessments.
c© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 244–259, 2018.
https://doi.org/10.1007/978-3-319-76687-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_17&domain=pdf

A Method for Developing Qualitative Security Risk Assessment Algorithms 245

The contribution of this paper is a method for creating executable algorithms
for qualitative security risk assessment. The input to the algorithms captures
the current state of the target of analysis, such as the presence of vulnerabilities,
suspicious events observed in the application or network layer, and the potential
consequence of security incidents for the business processes. The output from
the algorithms is an assignment of qualitative risk values to all identified risks.
Hence, an updated risk assessment can be obtained by rerunning the algorithms
with new input. This facilitates continuous monitoring of the risk level.

Our goal is to create a method that does not require programming skills
or extensive effort, ensures that the underlying risk models are documented
in a comprehensible format, and results in transparent algorithms that can be
understood by all stakeholders. We combine a graphical risk modeling technique,
extended with a construct to capture dynamic factors, with a decision modeling
technique to define the algorithm. The novelty of our approach lies in the inte-
gration of these techniques in an overall method that exploits their strengths.
Both techniques are well-established, supported by freely available tools, and
designed to provide models that can be easily understood.

In Sect. 2, we give an overview of the method, which consists of three steps.
The next three sections explain each step. We then relate our method to other
approaches in Sect. 6. Finally, in Sect. 7, we discuss the approach and report on
initial experiences before concluding in Sect. 8.

2 Method Overview

Our method is illustrated in Fig. 1. In relation to the general security risk man-
agement process documented in ISO 27005 [10], the method starts at the risk
assessment phase. That is, we assume that the context has been established,
including purpose, scope, and target of analysis.

Step 3: Validate
security risk

assessment algorithm

Step 2: Develop
security risk

assessment algorithm

Step 1: Create
security risk model

Validated security risk
assessment algorithm

Security risk
assessment algorithm

Security risk model
with indicators

Description of
target of analysis

Fig. 1. Method overview.

Step 1 takes as input a description of the target of analysis, which may be
in the form of system diagrams, use case documentation, system manuals etc.
Based on the description, we create a risk model to identify and document the
assets, risks, threats and vulnerabilities of relevance for the target of analysis.
At this point, estimates of likelihood and consequence values are represented by
parameters. We also identify indicators that capture dynamic factors influencing
the risk level, such as the presence or absence of a certain vulnerability, or the

246 G. Erdogan and A. Refsdal

expected consequence for an asset if a given incident occurs. The indicators rep-
resent the input to the final security risk assessment algorithm, as each indicator
will define one input variable. The output from Step 1 is a security risk model
with indicators, as well as parameters representing likelihood and consequence
estimates.

In Step 2, we develop the security risk assessment algorithm based on the
security risk model. This is done in a modular fashion. We exploit the structure
of the risk model developed in Step 1 and transform each part of the risk model
to a corresponding part of the algorithm. The output of this step is an initial
version of the security risk assessment algorithm.

In Step 3, we validate the risk assessment algorithm based on expert judgment
to check if it produces correct output, and adjust as necessary. The output of
this step is a validated security risk assessment algorithm.

3 Step 1: Create Security Risk Model

For creating security risk models, we have chosen to use CORAS [12], which is
a graphical risk modeling language that has been empirically shown to be intu-
itively simple for stakeholders with very different backgrounds [18]. Moreover,
CORAS comes with a method that builds on established approaches, in particu-
lar ISO 31000 [9]. The method includes detailed guidelines for creating CORAS
models, which can be applied to carry out Step 1.

Figure 2 illustrates a CORAS risk model, which we use as a running example
throughout the rest of this paper. This risk model is one of 10 risk models we
developed in the WISER project [20]. These models were primarily intended for
an arbitrary European SME. The risk model describes a Hacker carrying out an
HTTP Verb tampering attack or a reflection attack in the authentication proto-
col to gain access to restricted files/folders. The risk is that the server provides
access to restricted files/folders, which in turn has an impact on confidentiality.
The dashed arrows, which are not themselves part of the CORAS model, are used
to point out the different model elements. The unbroken arrows are relations in
CORAS. There are three kinds of relations used to connect different nodes. The
initiates relation goes from a threat to a threat scenario or an unwanted inci-
dent. The leads to relation goes from a threat scenario or an unwanted incident
to a threat scenario or an unwanted incident. The impacts relation goes from an
unwanted incident to an asset.

Notice that the risk model represents likelihoods, conditional likelihoods,
and consequences as parameters. For example, the likelihood l S2 represents
the likelihood of threat scenario S2. Our naming convention for parameters and
other risk model elements is provided in AppendixA. We use the parameters
later in the process to create the assessment algorithm.

Having created the risk model, next we identify indicators and attach them to
the relevant risk model element. An indicator may be assigned to any risk-model
element. We distinguish between four different types of indicators: business con-
figuration (represented by the color blue in Fig. 2), test (green), network-layer

A Method for Developing Qualitative Security Risk Assessment Algorithms 247

S1: Ini ate HTTP
Verb Tampering

[l_S1]

S2: Ini ate reflec on
a ack in authen ca on

protocol
[l_S2]

U1: Server provides
access to restricted
files/folders
 [l_U1]Hacker A1: Confiden ality

[c_U1_A1]

Likelihood

Unwanted
incident

Conditional
likelihood

IN-C1: What is the
consequence of U1 on
the asset Confiden ality,
given that U1 occurs?

[cl_S1_to_U1]

[cl_S2_to_U1]

IN-8: Does the web server
provide access to otherwise
restricted data by changing
the HTTP verb variable?

IN-4: Does the applica on in
any situa ons authen cate a
user using HTTP Verbs (POST,
GET, TRACE, etc.)?

IN-19: Are there any
requests containing HTTP
Verbs other than GET/
POST in the web log?

IN-14: Is there a new connec on
request to the web server and
almost immediately a new
connec on with the same user?

IN-5: Does your
authen ca on protocol rely
on a challange-handshake
or similar mechanism?

IN-20: Does the
server use outdated
authen ca on
schemes?

Threat

Threat
scenario

Indicator

Vulnerability

Consequence

Asset

V1: Authen ca on bypass
by assumed-immutable data

V2: Incorrect implementa on of
authen ca on algorithm (outdated

authen ca on schemes/mechanisms)

Initiates
relation

Leads to relation

Impacts
relation

Fig. 2. CORAS risk model. (Color figure online)

monitoring (yellow, not included in the example), and application-layer monitor-
ing (red). Values for the business configuration indicators are obtained by asking
business related questions. The indicator values are thus based on expert knowl-
edge. Values for the test indicators are obtained by carrying out vulnerability
tests. Values for the network-layer monitoring indicators and the application-
layer monitoring indicators are obtained by monitoring the network layer and
the application layer, respectively. However, all indicator types are treated the
same in the guidelines presented in the next section.

4 Step 2: Develop Security Risk Assessment Algorithm

In this section, we show how to build an assessment algorithm from a CORAS
model. But first we introduce the tool we use for algorithm definition and
execution.

4.1 A Brief Introduction to DEXi

DEXi [7] is a computer program for development of multi-criteria decision models
and the evaluation of options. We use DEXi because it has been designed to
produce models that are comprehensible to end users [6]. The comprehensibility
of DEXi seems to be confirmed by the fact that it has been applied in several
different domains, involving a wide range of stakeholders [4–6]. For a detailed
description, we refer to the DEXi User Manual [3].

A multi-attribute model decomposes a decision problem into a tree (or graph)
structure where each node in the tree represents an attribute. The overall prob-
lem is represented by the top attribute. All other attributes in the tree represent
sub-problems, which are smaller and less complex than the overall problem.

248 G. Erdogan and A. Refsdal

Each attribute is assigned a value. The set of values that an attribute can take
is called the scale of the attribute. DEXi supports definition of ordinal scales;
typically, each step consists of a textual description.

Every attribute is either a basic attribute or an aggregate attribute. Basic
attributes have no child attributes. This means that a basic attribute represents
an input to the DEXi model, as its value is assigned directly, rather than being
computed from child attributes. When using DEXi as a standalone tool, the user
manually selects values for all basic attributes.

Aggregate attributes are characterized by having child attributes. The value
of an aggregate attribute is a function of the values of its child attributes. This
function is called the utility function of the attribute. The utility function of
each aggregate attribute is defined by stating, for each possible combination
of its child attribute values, what is the corresponding value of the aggregate
attribute. The DEXi tool automatically computes the value of all aggregate
attributes as soon as values have been assigned to the basic attributes. Hence,
a DEXi model can be viewed as an algorithm where the basic attribute values
constitute the input and the values of the aggregate attributes constitute the
output. A java library and a command-line utility program for DEXi model
execution is also available [7], meaning that functionality for executing DEXi
algorithms can be easily integrated in software systems.

Figure 3 shows an example of a DEXi model which consists of three aggre-
gate attributes and three basic attributes; the latter are shown as triangles. The
top attribute, which is an aggregate attribute, is named Risk and has two child
attributes (Likelihood and Consequence) that are also aggregate attributes. The
Likelihood attribute has in turn two basic attributes as child attributes (Likeli-
hood indicator 1 and Likelihood indicator 2), while the Consequence attribute
has one basic attribute as child attribute (Consequence indicator 1).

Aggregate
attribute

Basic
attribute

Fig. 3. DEXi model.

In the remainder of Sect. 4, we show how to build a security risk assessment
algorithm, in the form of a DEXi model, based on a CORAS model. We use the
model in Fig. 2 as an example. This means that the decision problem represented
by the top attribute in the DEXi model concerns deciding the risk level. We start
by explaining how each fragment of the CORAS model can be schematically
translated to a corresponding fragment of the DEXi model in Subsects. 4.2 to 4.7.
A summary of the schematic translation is provided in AppendixA. Having thus
shown how to build the DEXi model structure, we provide guidelines for defining
scales and utility functions in Subsect. 4.8.

A Method for Developing Qualitative Security Risk Assessment Algorithms 249

4.2 Risk

CORAS representation. For any risk, the risk level depends on the likelihood
of the unwanted incident and its consequence for the asset in question. A risk
corresponds to a pair of an unwanted incident and an asset, including the impacts
relation from the incident to the asset. In Fig. 2, this corresponds to the unwanted
incident U1 and the impacts relation to asset A1. The likelihood of U1 is denoted
by l U1, while the consequence of U1 for asset A1 is denoted by c U1 A1.

DEXi representation. A risk is represented as a top (i.e. orphan) attribute
that has two child attributes, one representing the likelihood of the incident and
one representing the consequence for the asset in question. Figure 4(a) shows the
corresponding DEXi-representation of the CORAS fragment described above.
We use the variable/node names in the risk model to express the correspond-
ing DEXi fragment to make it easier to understand the connection between a
CORAS risk model and its corresponding representation in DEXi. Hence, the
top attribute R1 in Fig. 4(a), which represents the risk, has the two child nodes
l U1 and c U1 A1. Notice that R1 does not occur as a separate name in the
CORAS diagram, as a risk is represented by the combination of the incident,
the asset, and the relation between them, rather than by a separate node.

4.3 Node with Incoming Leads-to Relations

CORAS representation. Figure 2 shows that the unwanted incident U1 has
two incoming leads-to relations, one from S1 and one from S2. This means that
the likelihood of U1 depends on the likelihood contributions from S1 and S2.

DEXi representation. The likelihood of a node with incoming leads-to
relations1 is represented by an attribute with one child attribute for every incom-
ing leads-to relation. The attribute l U1 in Fig. 4(b), which represents the likeli-
hood of U1, therefore has two child attributes, l S1 to U1 and l S2 to U1, repre-
senting the likelihood contributions from S1 and S2 via their outgoing leads-to
relations.

4.4 Node with Outgoing Leads-to Relation

CORAS representation. The contribution from a leads-to relation to a target
node depends on the likelihood of the source node and the conditional likelihood
that an occurrence of the source node will lead to an occurrence of the target
node. The latter is assigned to the leads-to relation. Figure 2 includes two leads-to
relations, one from S1 to U1 and one from S2 to U1. The likelihood contribution
from the relation from S1 depends on the likelihood of S1 and the conditional
likelihood that S1 leads to U1, and similarly for S2.
1 Recall from Sect. 3 that threat scenarios and unwanted incidents are the only node

types that may have incoming leads-to relations.

250 G. Erdogan and A. Refsdal

Fig. 4. Screenshots from the DEXi tool.

DEXi representation. The likelihood contribution from a leads-to relation
is represented by an attribute with two child attributes, one representing the
likelihood of the source node and one representing the conditional likelihood that
an occurrence of the source node will lead to the target node. As illustrated in
Fig. 4(c), the attribute l S1 to U1 representing the likelihood contribution from
S1 to U1 therefore has two child attributes, l S1 representing the likelihood of
S1 and cl S1 to U1 representing the conditional likelihood of S1 leading to U1
(and similarly for l S2 to U1).

4.5 Node with Attached Indicators

CORAS representation. Indicators can be attached to a node to show
that the indicators are used as input for assessing the likelihood of the node.

A Method for Developing Qualitative Security Risk Assessment Algorithms 251

Figure 2 shows that indicator IN-19 is attached to threat scenario S1, while
indicators IN-5 and IN-14 are attached to threat scenario S2.

DEXi representation. Indicators attached to a node are represented as basic
attributes under the attribute representing the node. Figure 4(d) shows the com-
plete DEXi tree structure derived from the CORAS risk model in Fig. 2. The
basic attributes in Fig. 4(d) correspond to the indicators in Fig. 2. As shown
in Fig. 4(d), we add the indicator IN-19 as a child attribute of l S1 and the
indicators IN-5 and IN-14 as child attributes of l S2.

Notice that we may have cases where a node has incoming leads-to relations
in addition to attached indicators. In such cases, the attribute representing the
node can have child attributes representing the incoming branches, as explained
in Subsect. 4.3, as well as the child attributes representing indicators.

4.6 Leads-to Relation with Attached Indicators

CORAS representation. Indicators can be attached to a leads-to relation
from one node to another to show that the indicators are used as input for
assessing the conditional likelihood of an occurrence of the source node leading
to the target node. This is typically done by attaching the indicators to a vul-
nerability on the relation, as such indicators normally say something about the
presence or severity of the vulnerability.

Figure 2 shows that indicator IN-20 is attached to vulnerability V2 and thus
on the leads-to relation going from S2 to U1. Similarly, indicators IN-4 and IN-8
are attached to vulnerability V1.

DEXi representation. Indicators attached to a leads-to relation are repre-
sented by basic attributes under the attribute representing the conditional like-
lihood assigned to the relation. For example, two basic attributes representing
IN-4 and IN-8 are children of cl S1 to U1. Hence, the conditional likelihood
cl S1 to U1 depends on the indicators IN-4 and IN-8.

4.7 Other CORAS Model Fragments

We have not provided separate guidelines for threats, initiates relations, and
indicators attached to impacts relations. For the latter, the reason is that a
CORAS model does not provide any support for consequence assessment beyond
the assignment of a consequence value to the impacts relation from an unwanted
incident to an asset. All indicators relevant for consequence assessments are
therefore represented as basic attributes directly under the attribute representing
the consequence, as illustrated by c U1 A1 in Fig. 4(d). In our example, the
single indicator attached to the impacts relation from U1 actually provides the
consequence value directly, which means that the IN-C1 attribute could have
been attached directly under R1, without the intermediate c U1 A1 attribute.
We chose to include c U1 A1 to illustrate the general structure.

252 G. Erdogan and A. Refsdal

Concerning threats and initiates relations, we rarely assign likelihoods to
these CORAS elements in practice, as estimating threat behavior is very difficult.
Instead, we assign a likelihood directly to the target node of the initiates relation.
An indicator assigned to a threat or to an initiates relation can therefore be
handled as if it was assigned directly to the target node, following the guidelines
of Sect. 4.5.

4.8 Defining Scales and Utility Functions

Before defining utility functions, we need to define scales for the attributes. We
strongly recommend using ordered scales consistently such that increasing the
value implies increasing the (contribution to) the risk level, as this simplifies the
definition of the utility functions. For all aggregate attributes in our running
example, we use the scale {Very low; Low; Medium; High; Very high}.

We also make sure to follow the same scale order for the basic attributes
representing the indicators. For example, consider the indicator IN-19: Are there
any requests containing HTTP Verbs other than GET/POST in the web log?
attached to S1. Since this is a yes/no question, the scale for the indicator only
has two steps: Yes and No. A positive answer may indicate that someone has
tried to prepare for an attack, and hence an increased likelihood. Therefore, for
this indicator scale, the order from lowest to highest value should be {No; Yes}.

Assuming we have ordered all scales in this manner, increasing the value of
a child attribute should never lead to a decrease in the value of its parent. The
following restriction therefore guides the definition of utility functions:

Utility function restriction 1. The value of an attribute should be monotoni-
cally increasing in all its child attributes. It does not have to be strictly increasing.

For example, the risk R1 should be monotonically increasing in the likelihood
l U1 and the consequence c U1 A1. Figure 5 illustrates an example of how a
utility function fulfilling this restriction might be defined.

For the likelihood contribution from a leads-to relation, we also need to con-
sider that the conditional likelihood of the source node leading to the target
node will only affect the target node to the extent that the source node actually
occurs. We therefore add the following restriction:

Utility function restriction 2. The value of the attribute representing the
likelihood contribution from a leads-to relation should not be higher than the
value of the attribute representing the likelihood of the source node.

For example, l S1 to U1 should never be higher than l S1. The screenshot
from the DEXi tool in Fig. 4(e) shows a definition of the utility function of
l S1 to U1 that respects both utility function restrictions presented above.

For a threat scenario or unwanted incident with incoming leads-to relations,
the likelihood can clearly not be lower than the highest contribution from the
incoming relations. We therefore add the following restriction:

A Method for Developing Qualitative Security Risk Assessment Algorithms 253

Very low

Low

Medium

High

Very high

Risk level

Fig. 5. Example of risk level defined as a monotonically increasing function of likelihood
and consequence.

Utility function restriction 3. The value of an attribute representing the
likelihood of a node with one or more incoming leads-to relations should be at
least as high as the highest value of the attributes representing the contributions
from the incoming leads-to relations.

For example, l U1 should be at least as high as the highest of l S1 to U1 and
l S2 to U1. Restrictions 2 and 3 apply under the assumption that the same scale
is used for the attributes representing likelihood of nodes.

If a node has several incoming leads-to relations and/or attached indicators,
combinatorial explosion can make it very hard to define the utility function for
the attribute representing the node, due to the number of child attributes. In
such cases, we recommend reducing the granularity of the scales of the child
attributes or restructuring the model, as further explained in [3].

5 Step 3: Validate Security Risk Assessment Algorithm

Before putting the algorithm produced in Step 2 in operation, it should be
validated to verify that its output correctly reflects reality. This can be done in
many ways, depending on the data and resources available. When dealing with
the kind of security risk assessment addressed in this paper, we typically need
to rely on expert judgment. We first select a set of validation scenarios and then
validate each of these with a team of experts.

A validation scenario is a set of indicator values representing one possible
snapshot of the dynamic factors that influence the risk level. Thus, the number
of possible scenarios is the product of the number of possible values for each indi-
cator. This often results in many possible scenarios, which may be infeasible to
validate. We therefore need to select a reasonable number of scenarios depending
on the available effort. As a minimum, we suggest selecting validation scenarios
based on the following two criteria: (1) cover the extreme scenarios (yielding the
minimum and maximum risk values), and (2) cover each path in the CORAS

254 G. Erdogan and A. Refsdal

risk model, meaning that for each path p (from the threat to the unwanted inci-
dent) in the risk model, there must be a scenario where one or more indicators
along the path is triggered and the indicators for all other paths are not trig-
gered unless these indicators also affect path p. By triggered, we mean that the
indicator value contributes to the increase of likelihood. For the reasons given in
Sect. 4.7 concerning consequence assessment, we focus on likelihood validation.

Our example in Fig. 2 includes six Boolean indicators affecting the likelihood
assessment (as well as one affecting the consequence). This gives 64 possible sce-
narios. Table 1 gives an example of four scenarios fulfilling the criteria mentioned
above. This represents the absolute minimum number to fulfill the coverage crite-
ria, and we recommend using more validation scenarios. The Scenarios SC1 and
SC4 satisfy the first coverage criterion. SC1 is the minimum risk scenario where
no indicators are triggered, and SC4 is the maximum risk scenario where all
indicators are triggered. The Scenarios SC2 and SC3 satisfy the second coverage
criterion, where SC2 covers the top path of the risk model (involving “Initiate
HTTP Verb Tampering”) and SC3 covers the bottom path of the risk model
(involving “Initiate reflection attack in authentication protocol”). The column
l U1 shows the resulting likelihood value of U1 for each scenario.

Table 1. Example of validation scenarios.

Scenario IN-19 IN-4 IN-8 IN-14 IN-5 IN-20 l U1

SC1 No No No No No No Very low

SC2 Yes Yes Yes No No No High

SC3 No No No Yes Yes Yes Medium

SC4 Yes Yes Yes Yes Yes Yes Very high

With respect to validating the selected scenarios, we recommend using a well-
established approach such as the Wide-band Delphi method [1]. The Wide-band
Delphi method is a forecasting technique used to collect expert opinion in an
objective way, and arrive at consensus conclusion based on that. Another similar
estimation approach is the Constructive Cost Model (COCOMO) [2].

6 Related Work

Most security risk approaches aim to provide assessments capturing the risk
level at a single point in time, rather than continuous monitoring. However,
there are also approaches that address dynamic aspects and offer support for
updating assessments based on new information, such as the ones proposed by
Poolsappasit and Ray [14], Frigault et al. [8], Liu and Liu [17], and Krautse-
vich et al. [11]. Common for all these is that they offer quantitative assessments
based on variants of Bayesian Networks or Markov Chains. Building and under-
standing the models therefore requires specialized expertise. Many security and

A Method for Developing Qualitative Security Risk Assessment Algorithms 255

risk practitioners, and most managers and decision makers, do not possess this
expertise. Our qualitative approach based on CORAS and DEXi is designed to
be simple and aimed at a broader user group.

DEXi is one of many approaches within the field of multi-criteria decision
making (on which there is huge literature [19]), and has been tried out in a wide
range of domains, such as health care, finance, construction, cropping systems,
waste treatment systems, medicine, tourism, banking, manufacturing of electric
motors, and energy [6,7]. To the best of our knowledge, DEXi has not been
used for security risk assessment. However, it has been applied to assess safety
risks within highway traffic [13] and ski resorts [5]. Although they focus on
safety risks, the approaches provided by Omerčević et al. [13] and Bohanec and
Delibašić [5] are similar to our approach in the sense that they use DEXi models
as the underlying algorithm to compute an advice based on relevant indicators.
Unlike our approach, they do not employ any dedicated risk modeling language
to provide a basis for developing the DEXi models.

CORAS is a comprehensive framework for model-driven risk analysis. In addi-
tion to the risk modeling language, the framework consists of a tool and a com-
prehensive method [12]. However, CORAS focuses on quantitative assessment
and does not address development of executable algorithms. Roughly speaking,
what we have done in the work presented here is to insert the DEXi approach
into the risk estimation step of the CORAS method and add indicators to cap-
ture dynamic aspects. The first use of measurable indicators as dynamic input to
provide risk level assessments based on CORAS was presented in [16]. This is a
quantitative approach aimed at developing mathematical formulas for assessing
risk levels, where indicators are represented by variables in the formulas.

7 Discussion of the Approach and Initial Experiences

Our experience from applying the presented method to develop CORAS models
and corresponding DEXi models for 10 common cyber attacks indicates that the
method is easy to use. Therefore, our hypothesis is that most security and risk
practitioners can adopt it without extensive additional training. In future work,
we hope to test this hypothesis empirically with practitioners who have not been
involved in developing the method.

This work was done in the context of the WISER project [20], which offers
a framework for real-time security risk assessment where values for the basic
attributes are automatically assigned from test tools, monitoring infrastructure
and user interfaces. The risk assessment results (i.e. the output of the algorithms)
are presented in a dashboard, which is part of the WISER framework. The
DEXi models constitute the qualitative assessment algorithms offered by the
framework, and will be tested on three pilots as part of the validation of the
WISER framework. Notice that the method presented here does not require
adoption of the WISER framework. It is possible to use only the DEXi tool to
run the algorithms and view the results, if one is willing to manually feed the
indicator values by assigning values to all basic attributes.

256 G. Erdogan and A. Refsdal

The effort required to apply the method obviously depends on several factors,
including the complexity of the attack to be captured, the chosen abstraction
level for the risk model, the number of indicators, and the choice of validation
approach. As a rough rule of thumb, we estimate that applying the method will
typically take from 20 to 40 h of work. This estimate is based on our experience
from the WISER models and applies for general attacks that are already well
understood, such as the one presented here. If a more complex CORAS model
needs to be developed from scratch in Step 1, the effort may be significantly
higher. Due to the guidelines provided for Step 2, we can reasonably assume
that the effort required to develop the DEXi model will grow more or less in
proportion to the number of elements in the CORAS model.

While the schematic translation to obtain the DEXi model structure is
straightforward and could even be automated, the definition of scales and util-
ity functions is based on subjective judgment. Here we see a potential for more
extensive guidelines. These could, for example, provide guidance on the degree
of impact on parent nodes for different types of indicators.

An inherent limitation of the approach is that new threats and attack types
can only be addressed by creating new risk models and algorithms. The reason
is that the only dynamic aspects that can be captured by the algorithms are
those covered by the identified indicators. Periodic evaluations should therefore
be performed to decide whether new or updated models and algorithms are
required. This limitation applies for all approaches that rely on human experts.

8 Conclusion

We have presented a method for developing security risk assessment algorithms,
using ordinal scales with textual descriptions for risk level assessments. Indi-
cators constitute the input to the algorithms and capture the current state of
the target of analysis, such as the presence of vulnerabilities, suspicious events
observed in the infrastructure or the potential impact of security incidents on
business processes. By producing an algorithm, rather than an assessment cap-
turing the risk level at a single point in time, the method facilitates continuous
assessment and monitoring of trends.

The method is designed to provide risk models documented in a comprehen-
sible format and transparent assessment algorithms that can be understood by
all stakeholders, without requiring programming skills or extensive effort. This
promotes user involvement, critical scrutiny and improvement, and helps build
trust in the results. Based on our initial experiences, we believe our work can
contribute to enhanced security and better decision making by helping organi-
zations to obtain transparent and comprehensible security risk assessments.

Acknowledgments. This work has been conducted as part of the WISER project
(653321) funded by the European Commission within the Horizon 2020 research and
innovation programme.

A Method for Developing Qualitative Security Risk Assessment Algorithms 257

A Schematic Translation from CORAS to DEXi

Table 2 shows the naming convention for risk model elements including likelihood
and consequence parameters. The lower-case letters x and y in the table represent
integers.

Table 2. Naming convention.

Name Meaning

Ax Asset x

Rx Risk x

Sx Scenario x (threat scenario)

Ux Incident x (‘U’ stands for unwanted incident)

Vx Vulnerability x

l Ux Likelihood of Ux

l Sx Likelihood of Sx

c Ux Ay Consequence of Ux for Ay

cl Sx to Sy Conditional likelihood of Sx leading to Sy

cl Sx to Uy Conditional likelihood of Sx leading to Uy

cl Ux to Sy Conditional likelihood of Ux leading to Sy

cl Ux to Uy Conditional likelihood of Ux leading to Uy

l Sx to Sy Likelihood contribution from Sx to Sy

l Sx to Uy Likelihood contribution from Sx to Uy

l Ux to Sy Likelihood contribution from Ux to Sy

l Ux to Uy Likelihood contribution from Ux to Uy

IN-x Indicator x

IN-Cx Consequence indicator x

Figure 6 shows an overview of risk model fragments and their schematic
translation from CORAS to DEXi. In all except the “Risk” row, we have used
threat scenarios to illustrate nodes. However, these threat scenarios may also be
replaced by unwanted incidents. The lower-case letters x, y, z, u, v, and n in
Fig. 6 represent integers.

258 G. Erdogan and A. Refsdal

CORAS representa on DEXi representa onFragment in
risk model

Ux
[l_Ux]

Ay

[c_Ux_Ay]

Sx
[l_Sx]

Sy
[l_Sy]

Sz
[l_Sz]

Sx
[l_Sx]

Sy
[l_Sy]

[cl_Sx_to_Sy]

IN-y

Sz
[l_Sz]

IN-x

Sx
[l_Sx]

Sy
[l_Sy]

[cl_Sx_to_Sy]

Vu
IN-z

Risk
(Sec on 4.2)

Node with incoming
leads-to rela ons

(Sec on 4.3)

Node with outgoing
leads-to rela on

(Sec on 4.4)

Node with a ached
indicators

(Sec on 4.5)

Leads-to rela on
with a ached

indicators
(Sec on 4.6)

IN-v

Fig. 6. Schematic translation from CORAS to DEXi

References

1. Boehm, B.W.: Software Engineering Economics. Prentice Hall, Upper Saddle River
(1981)

2. Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E.,
Madachy, R., Reifer, D.J., Steece, B.: Software Cost Estimation with COCOMO
II. Prentice Hall, Upper Saddle River (2000)

3. Bohanec, M.: DEXi: program for multi-attribute decision making. User’s Manual
v 5.00 IJS DP-11897. Institut “Jožef Stefan”, Ljubljana, Slovenija (2015)

4. Bohanec, M., Aprile, G., Costante, M., Foti, M., Trdin, N.: A hierarchical multi-
attribute model for bank reputational risk assessment. In: DSS 2.0 - Supporting
Decision Making with New Technologies, pp. 92–103. IOS Press (2014)

5. Bohanec, M., Delibašić, B.: Data-mining and expert models for predicting injury
risk in ski resorts. In: Delibašić, B., Hernández, J.E., Papathanasiou, J., Dargam,
F., Zaraté, P., Ribeiro, R., Liu, S., Linden, I. (eds.) ICDSST 2015. LNBIP, vol.
216, pp. 46–60. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18533-
0 5

https://doi.org/10.1007/978-3-319-18533-0_5
https://doi.org/10.1007/978-3-319-18533-0_5

A Method for Developing Qualitative Security Risk Assessment Algorithms 259

6. Bohanec, M., Žnidaršič, M., Rajkovič, V., Bratko, I., Zupan, B.: DEX methodology:
three decades of qualitative multi-attribute modeling. Informatica (Slovenia) 37(1),
49–54 (2013)

7. DEXi: A Program for Multi-Attribute Decision Making. http://kt.ijs.si/
MarkoBohanec/dexi.html. Accessed 9 Jan 2017

8. Frigault, M., Wang, L., Singhal, A., Jajodia, S.: Measuring network security using
dynamic Bayesian network. In: Proceedings of the 4th ACM Workshop on Quality
of Protection (QoP 2008), pp. 23–30. ACM (2008)

9. International Organization for Standardization: ISO 31000:2009(E), Risk manage-
ment - Principles and guidelines (2009)

10. International Organization for Standardization: ISO/IEC 27005:2011(E), Infor-
mation technology - Security techniques - Information security risk management
(2011)

11. Krautsevich, L., Lazouski, A., Martinelli, F., Yautsiukhin, A.: Risk-aware usage
decision making in highly dynamic systems. In: Proceedings of the 5th International
Conference on Internet Monitoring and Protection (ICIMP 2010), pp. 29–34. IEEE
(2010)

12. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS App-
roach. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-12323-8

13. Omerčević, D., Zupančič, M., Bohanec, M., Kastelic, T.: Intelligent response to
highway traffic situations and road incidents. In: Proceedings of the Transport
Research Arena Europe, pp. 21–24 (2008)

14. Poolsappasit, N., Ray, I.: Dynamic security risk management using Bayesian attack
graphs. Int. J. Adv. Intell. Syst. 9(1), 61–74 (2012)

15. Refsdal, A., Solhaug, B., Stølen, K.: Cyber-Risk Management. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23570-7

16. Refsdal, A., Stølen, K.: Employing key indicators to provide a dynamic risk picture
with a notion of confidence. In: Ferrari, E., Li, N., Bertino, E., Karabulut, Y. (eds.)
IFIPTM 2009. IAICT, vol. 300, pp. 215–233. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02056-8 14

17. Liu, S.-C., Liu, Y.: Network security risk assessment method based on HMM
and attack graph model. In: Proceedings of the 17th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking and Par-
allel/Distributed Computing (SNPD), pp. 517–522. IEEE (2016)

18. Solhaug, B., Stølen, K.: The CORAS language - why it is designed the way it
is. In: Proceedings of the 11th International Conference on Structural Safety &
Reliability (ICOSSAR 2013), pp. 3155–3162. Taylor and Francis (2013)

19. Velasquez, M., Hester, P.T.: An analysis of multi-criteria decision making methods.
Int. J. Oper. Res. 10(2), 56–66 (2013)

20. Wide-Impact cyber SEcurity Risk framework (WISER). https://www.cyberwiser.
eu/. Accessed 8 Feb 2017

http://kt.ijs.si/MarkoBohanec/dexi.html
http://kt.ijs.si/MarkoBohanec/dexi.html
https://doi.org/10.1007/978-3-642-12323-8
https://doi.org/10.1007/978-3-319-23570-7
https://doi.org/10.1007/978-3-642-02056-8_14
https://doi.org/10.1007/978-3-642-02056-8_14
https://www.cyberwiser.eu/
https://www.cyberwiser.eu/

An Empirical Analysis of Risk Aversion
in Malware Infections

Jude Jacob Nsiempba(&), Fanny Lalonde Lévesque,
Nathalie de Marcellis-Warin, and José M. Fernandez

École Polytechnique de Montréal, Montréal, QC, Canada
{jude-jacob.nsiempba,fanny.lalonde-levesque,

nathalie.demarcellis-warin,jose.fernandez}@polymtl.ca

Abstract. We present in this paper the results from a field study we conducted
over a 4-month period. The experience aimed at evaluating the impact of the
technological and human factors on the risk of getting infected by malware.
In this article, we applied the economic concept of risk aversion in order to

study the behaviour of users towards the risk of malware infection. Our results
show that younger users and men in particular, with a higher level of expertise in
computer science are more susceptible to open multiple web accounts and install
more software from the Internet. Furthermore, the increase in the level of
expertise in computer science, creates in men a negative attitude towards alert
messages of antivirus; while in women, the opposite happens.

Keywords: Computer security � Risk aversion � Human factors

1 Introduction

Studies published over the last decade have demonstrated the importance of human
factors such as users’ characteristics, demographic factors, and behaviors, in the suc-
cess or failure of defense mechanisms in computer security. So far, many studies have
investigated how socio-demographic factors relate to the risk of cyberattacks; only few
have focused on malware attacks [6, 9, 10]. Their overwhelming evidence essentially
suggest that socio-demographic factors (age, gender, income, education, etc.) are sig-
nificant correlates for malware attack. However, these studies have mostly focused on
the identification of key predictors rather than the origins of these associations, i.e. their
causality. We believe a better understanding of socio-demographic differences in the
risk of malware attack could enable practitioners, researchers, and policy makers to
better design interventions in cybersecurity. It is therefore essential to perform research
of malware attack to investigate the underlying causes behind these socio-demographic
differences.

As a first attempt, we conducted a field study designed to examine the interactions
between users, anti-malware software, and malware attacks as they occur on deployed
systems [4, 5]. The 4-month study involved 50 participants whose computers were
instrumented to monitor potential malware attacks and gather data on user behavior.
Although the population size was limited, this initial study produced some interesting,
non-intuitive insights into how socio-demographic factors and user behavior relate to

© Springer International Publishing AG, part of Springer Nature 2018
N. Cuppens et al. (Eds.): CRiSIS 2017, LNCS 10694, pp. 260–267, 2018.
https://doi.org/10.1007/978-3-319-76687-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76687-4_18&domain=pdf

the risk of malware attack. In particular, we found evidence that users with a high
(self-declared) level of computer expertise are more likely to be exposed to malware
than users with a low (self-declared) level of computer expertise [4]. Although one
could expect users who have more knowledge and expertise in computer to be less
at-risk, prior work shown that this may not always be the case [1–3, 6].

On the one hand, it is conceivable that users with high computer expertise differ in
their type and frequency of computer usage, which could contribute to increase,
intentionally or not, their likelihood of malware attack. On the other hand, the psy-
chological traits and level of knowledge of users can affect their decision making in the
context of computer security. In the first case, previous research [6–8] support the
existence of a relationship between type and frequency of computer usage and the risk
of malware attack. In the second case, there is sufficient evidence from prior research
[2, 3] to believe that users with higher computer and security knowledge are more
likely to exhibit insecure behavior. For these reasons, it is plausible that users with
higher level of computer expertise could be more prone to engage in computer
behaviors that may increase their risk of malware attack.

In order to investigate this hypothesis, we applied the concept of risk aversion to
the risk of malware attack. In economics, someone is referred as a risk-seeker, or
risk-lover, if he prefers to accept a bargain with an uncertain payoff rather than a
bargain with more certain, but possibly lower expected payoff. Applied to our study, a
risk-seeker would prefer to adopt risky behavior even if there is an uncertain outcome
associated with the action. For example, deliberately using peer-to-peer (P2P) networks
to download movies at the risk of being infected by malware, or clicking on a link sent
by an unknown sender to see exclusive images of celebrities.

In this paper, we extends the preliminary results already presented in earlier work
[4] by investigating the potential mediator effect of risk aversion between (self-
declared) level of computer expertise and the risk of malware attack. The rest of the
paper is organized as follows. Section 2 presents a review of the related work. The
research methodology and the analysis framework are detailed in Sect. 3. The results
are presented in Sect. 4 followed by an analysis and a discussion in Sect. 5. A con-
clusion on future perspectives completes the article in Sect. 6.

2 Related Work

Some researchers have investigated the relationship between computer knowledge and
expertise and the risk of malware attack. For example, Ovelgönne et al. [1] leveraged
2009–2011 telemetry data from the Symantec’s Worldwide Intelligence Network
Environment (WINE) project [7] to study the relationship between user behavior and
cyberattacks. They created four user profiles (gamers, professionals, software devel-
opers, and others), and studied how seven machine features (number of binaries;
fraction of unsigned, downloaded, low prevalence, and unique binaries; number of ISPs
to which the user connected) correlate with the number of attempted malware attacks
by host. The authors found all features to be significant contributing factors, and
identified software developers to be the most prone to malware attacks. Similarly, Yen
et al. [6] conducted a study of malware encounters in a large, multi-national enterprise.

An Empirical Analysis of Risk Aversion in Malware Infections 261

They coupled malware encounters with web activities, users’ characteristics and
demographic factors. Their results suggested that users’ characteristics, demographic
factors, and behavior can be used to infer the likelihood of malware encounters. More
particularly, they found people with technical expertise to be more at risk of encoun-
tering malware. In another study, Ngo and Paternoster [10] applied the general theory
of crime and lifestyle/routine activities framework to assess the effects of individual
and situational factors on seven types of cybercrime victimization, including computer
virus infection. They conducted a self-assessment survey on a sample of 295 college
students, and found no significant relationship between computer skills and computer
virus infection. While some of these studies [1, 6] support our previous finding, that
computer expertise is positively associated with the risk of malware attack, they offer
little discussion on how the results should be interpreted in terms of causality.

Other researchers have focused on how expert and non-expert users differ in their
security behavior. Using online surveys, Ion et al. [2] compared the (self-reported)
security practices of security expert and non-expert users. Their results shown dis-
crepancies between how security experts and non-experts behave. For instance, security
experts were found to be more prone to open emails from unknown sender, visit
unknown we sites, and less likely to install an antivirus software in comparison to
non-expert users. Finally, De Luca et al. [3] also conducted an online survey to
investigate how IT security expert and non-expert differ in their attitudes towards secure
instant messaging. Their analysis revealed that while experts are more aware of potential
risks, the extent to which they exhibit insecure behavior is similar to that of non-experts.

In light of this discussion, we believe it is plausible that users with higher expertise
in computer are more prone to malware attack because they are more risk-seeking. Our
main contribution is therefore to investigate this potential underlying cause by applying
the economic concept of risk aversion to malware attack.

3 Methodology

3.1 Study Design

Inspired by the medical approach, we designed a computer security clinical trial to
monitor real-world computer usage through diagnostics and logging tools, monthly
interviews and questionnaires, and in-depth investigation of any potential malware
infections. The 4-month field study involving 50 participants was conducted at the
École Polytechnique de Montréal from November 2011 to February 2012. This first
experiment of its kind aimed at (i) developing an effective methodology to evaluate
antivirus (AV) software in a real-world environment, (ii) determining how malware
infects computer systems and identify source of malware infections, and (iii) deter-
mining how technological and human factors affect the risk of malware infection.

3.2 Data Collection

Users were required to attend 5 in-person sessions: an initial session and 4 monthly
sessions. The aim of the initial session was to provide the laptop to users and collect
general information, such as gender, age group, status, etc. During the monthly meetings,

262 J. J. Nsiempba et al.

users were invited to complete an online questionnaire about their computer usage and
experience, while we were collecting local data compiled by our automated scripts.

The dependent variable, users’ self-declared expertise in computer, was computed
based on six tasks: (i) configuring a firewall, (ii) configuring a home wireless network,
(iii) securing a wireless network, (iv) creating a web page, (v) changing the default
security settings of a web browser, and (vi) installing an operating system (OS) on a
computer. Each user was monthly assigned a level of computer expertise ranging from
0 to 6 based on the number of tasks they reported having previously completed.

Risk aversion was measured based on user’s attitude and behavior regarding the AV
and potential risky situations. Each month, users were asked about their feelings (Q1)
and behavior (Q2) when a window appears from the AV. Answers for question Q1 were
coded with two dummy variables. The first one (Q1a) could either be 1 or 0, whether the
user answered that he feels annoyed that the AV software is interrupting him. The
second variable (Q1b) could either be 1 or 0, depending if the user answered that he feels
comforted to know that the AV software is working. Similarly, we created one dummy
variable (Q2a) to evaluate users’ behavior when a window appears from the AV. The
variable could either be 1 or 0, where 1 means that the user is reading and following the
instructions from the AV, and 0 means that the user is not following the instructions.

Users’ behavior was monthly assessed based on six factors that may increase,
intentionally or not, the risk of malware infection: (i) clicking on links and attachments
of email from unknown sender (Q3), (ii) using P2P networks (Q4), (iii) number of web
accounts protected by password (Q5), (iv) number of password used (Q6), (v) installing
applications from the Internet (Q7), and (vi) downloading audio or video files from the
Internet (Q8). Following a similar approach to that of Q1 and Q2, question Q3 was
coded with two dummy variables (Q3a and Q3b). Q3a could either be 1 or 0, if the user
answered that he clicks on to links and attachments of any email he receives provided
that he is interested in viewing the content. The other dummy variable (Q3b) could
either 1 or 0, whether the user said that he only clicks on to links and attachments of
emails from known senders. All other questions (Q4 to Q8) were considered as ordinal
discrete variables for the purpose of our analysis.

3.3 Statistical Analysis

Bivariate and stratified analysis by socio-demographic factors was performed to assess
the association between computer expertise and risk aversion. Given the nature of our
data and the small sample size, we used the Spearman rank correlation, a
non-parametric statistical test, to study the relationship between the level of computer
expertise and risk aversion. The statistical analysis was conducted with SPSS (V.21).

4 Results

4.1 Computer Expertise and Risk Aversion

We started by analyzing the relationship between the level of self-declared computer
expertise and the 10 risk aversion variables selected by using Spearman’s correlation

An Empirical Analysis of Risk Aversion in Malware Infections 263

month after month. Results in Table 1 presents the correlation coefficients (rho) and the
associated p-value. Items in bold were considered statistically significant at
p-value = 0.05.

The first observation from Table 1 is that none of the variables related to the AV
(Q1 and Q2) were significant correlates of the level of computer expertise. When
looking at behaviors (Q3 to Q8), variables related to links and attachments of email
from unknown sender (Q3a and Q3b) and the number of password (Q6) were not found
to be significant. Interestingly, using P2P networks (Q4), installing applications from
the Internet (Q7), and downloading video or audio files from the Internet (Q8) were
only significant for one or two months. One potential explanation is that users did not
sufficiently engaged in these activities for some months, which could result in
non-significant correlations. Only one variable, the number of web accounts (Q5), was
found to be significant every month. The overwhelming evidence, however, is that all
significant correlations are positive. This suggests that higher self-declared level of
computer expertise is associated with higher adoption of online behaviors (Q4, Q5, Q7,
Q8) that may contribute to increase, intentionally or not, the likelihood of malware
infection.

4.2 Stratified Analysis by Socio-Demographic Factors

We also analyzed the correlations between the self-declared level of computer expertise
and risk aversion by socio-demographic factors. For the purpose of our research, we
restricted our analysis to gender and age, as both factors are known to affect how
someone response to computer security-related risk [6, 9–14].

Gender. Our results in Table 2 show that male and female with computer expertise
differ in their response to risk. As the level of computer expertise increases, male
reported being less prone to read and follow the instructions suggested by the AV
(Q2a). To the opposite, female were more likely to read the message from the AV and
follow its suggestions (Q2a) as their level of computer expertise increases. Regarding

Table 1. Spearman correlation coefficients (rho (p-value))

Nov. (N = 47) Dec. (N = 47) Jan. (N = 46) Feb. (N = 47)

Q1a 0.031 (0.419) −0.008 (0.479) −0.133 (0.189) −0.039 (0.398)
Q1b 0.052 (0.363) 0.005 (0.486) 0.004 (0.491) 0.108 (0.235)
Q2a −0.51 (0.367) 0.160 (0.142) 0.032 (0.416) 0.133 (0.187)
Q3a 0.197 (0.092) 0.049 (0.371) 0.163 (0.140) 0.068 (0.324)
Q3b −0.177 (0.117) −0.238 (0.054) −0.224 (0.067) −0.098 (0.256)
Q4 0.134 (0.185) −0.027 (0.428) 0.234 (0.059) 0.326 (0.013)
Q5 0.350 (0.008) 0.440 (0.001) 0.258 (0.042) 0.370 (0.005)
Q6 −0.029 (0.425) 0.096 (0.260) −0.001 (0.498) 0.163 (0.136)
Q7 0.374 (0.005) 0.394 (0.003) 0.206 (0.085) 0.228 (0.062)
Q8 0.225 (0.064) 0.156 (0.147) 0.253 (0.045) 0.096 (0.260)

264 J. J. Nsiempba et al.

users’ behavior, only the variables related to the number of web accounts (Q5) and the
number of video or audio files downloaded from the Internet were statistically sig-
nificant. Similarly to our previous analysis in Sect. 4.2, they were both positively
associated with the level of computer expertise.

Age. Results in Table 3 show no significant correlation between the level of computer
expertise and the variables related to the AV (Q1a, Q1b, Q2a). In young people aged 18
to 24, we observed that the more the level of expertise in computer sciences increases,
the less they are inclined to click on link and attachments in emails coming from
unknown senders (Q3b), compared to others. On the other hand, as it pertains to their
behaviour online, they use more accounts than all other users and install just as many
software as people aged 35 and above. People aged 25 to 34 have a tendency to use
P2P networks and have less passwords than others when their level of expertise in
computer science increases.

Table 2. Total number of significant correlations by gender

Male Female
(+) (−) (+) (−)

Q1a 0 0 0 0
Q1b 0 0 0 0
Q2a 0 2 2 0
Q3a 0 0 0 0
Q3b 0 0 0 0
Q4 0 0 0 0
Q5 3 0 0 0
Q6 0 0 0 0
Q7 0 0 0 0
Q8 0 0 4 0

Table 3. Total number of significant correlations by age groups

18–24 25–34 35+
(+) (−) (+) (−) (+) (−)

Q1a 0 0 0 0 0 0
Q1b 0 0 0 0 0 0
Q2a 0 0 0 0 0 0
Q3a 0 0 0 0 0 0
Q3b 0 1 0 0 0 0
Q4 0 0 1 0 0 0
Q5 3 0 1 0 1 0
Q6 0 0 0 2 0 0
Q7 2 0 0 0 2 0
Q8 0 0 0 0 1 0

An Empirical Analysis of Risk Aversion in Malware Infections 265

5 Discussion

We found that women with an expertise in computer science are more likely to read
antivirus messages and to follow suggestions (Q2a). As for men, they use more web
accounts than women, thus multiplying the sources of vulnerability. The explanation
we can provide for these results is that expertise in computer science seems to create a
false sense of confidence that leads men to adopt more at-risk attitudes contrary to
women, for whom computer science expertise seems to cause a greater awareness to
threats. Such an attitude stems from what Luhmann calls assured confidence [15];
meaning that the Internet user is assured (confident) that his/her high level of computer
expertise guarantees him a high level of protection. Faced with contingent events, the
idea that his/her expectations are not met does occur to him. And because of this state
of mind infections are more common compared to someone who does not master
computer science.

We also realised that users in general, even though they have a higher level on
computer science expertise, continue to multiply the number of web accounts and to
download application software from the Internet. The explanation we found is that the
proportion of youth aged 18 to 24 was higher (38%) and furthermore, 60% of our total
sample was made up of men. It was mentioned in our results above that 18 to 24 year
olds use more web accounts than others, and install just as many applications down-
loaded, with men being more likely to do so, than women. A double handicap that
could partly explain the result of our previous research [11].

6 Conclusion of Future Perspectives

We presented the results of our analysis of the field study that aimed at studying the
impact of the level of expertise in computer science on the attitude of the Internet users
towards risk. Our hypothesis was that users with a higher level of computer science
expertise are more likely to adopt behaviours susceptible to increase the risk of them
getting infected by malware. Our results supported our initial hypothesis. We found
that users with a higher self-reported level of expertise in computer science are more
likely to have multiple web accounts and to install the application software from the
Internet and in so doing, they contribute to increasing their risk of infection. Also, high
level of computer expertise was associated with a negative attitude towards the AV for
men, and with a positive attitude for women. Our study has a number of limitations,
specifically the size and composition of our sample. For example, young people and
students were overrepresented in our sample. Our study can therefore not be gener-
alised. We believe that a broader study on computer science expertise and risk aversion
with a more representative sample should be performed in order to confirm our
conclusions.

266 J. J. Nsiempba et al.

References

1. Ovelgönne, M., Dumitras, T., Prakash, B.A., et al.: Understanding the relationship between
human behavior and susceptibility to cyber attacks: a data-driven approach. ACM Trans.
Intell. Syst. Technol. (TIST) 8(4), 51 (2017)

2. Ion, I., Reeder, R., Consolvo, S.: No one Can Hack My Mind: comparing expert and
non-expert security practices. In: SOUPS, pp. 327–346 (2015)

3. De Luca, A., Das, S., Ortlieb, M., et al.: Expert and non-expert attitudes towards (secure)
instant messaging. In: Symposium on Usable Privacy and Security (SOUPS) 2016

4. Lalonde Lévesque, F., Nsiempba, J., Fernandez, J.M., et al.: A clinical study of risk factors
related to malware infections. In: Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, pp. 97–108. ACM (2013)

5. Lalonde Lévesque, F., Davis, C.R., Fernandez, J.M., Chiasson, S., Somayaji, A.:
Methodology for a field study of anti-malware software. In: Blyth, J., Dietrich, S., Camp,
L.J. (eds.) FC 2012. LNCS, vol. 7398, pp. 80–85. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-34638-5_7

6. Yen, T., Heorhladi, V., Oprea, A., et al.: An epidemiological study of malware encounters in
a large enterprise. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1117–1130. ACM (2014)

7. Carlinet, Y., Me, L., Debar, H., et al.: Analysis of computer infection risk factors based on
customer network usage. In: Second International Conference on Emerging Security
Information, Systems and Technologies, 2008, SECURWARE 2008, pp. 317–325. IEEE
(2008)

8. Canali, D., Bilge, L., Balzarotti, D.: On the effectiveness of risk prediction based on users
browsing behavior. In: Proceedings of the 9th ACM Symposium on Information, Computer
and Communications Security, pp. 171–182. ACM (2014)

9. Bossler, A.M., Holt, T.J.: On-line activities, guardianship, and malware infection: an
examination of routine activities theory. Int. J. Cyber Criminol. 3(1), 400 (2009)

10. Ngo, F.T., Paternoster, R.: Cybercrime victimization: an examination of individual and
situational level factors. Int. J. Cyber Criminol. 5(1), 773 (2011)

11. Lévesque, F.L., Fernandez, J.M., Batchelder, D.: Age and gender as independent risk factors
for malware victimisation. In: Proceedings of the 31th International British Human
Computer Interaction Conference. ACM, Sunderland, UK (2017)

12. Oliveira, D., Rocha, H., Yang, H., et al.: Dissecting spear phishing emails for older vs young
adults: on the interplay of weapons of influence and life domains in predicting susceptibility
to phishing. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, pp. 6412–6424. ACM (2017)

13. Grimes, G.A., Hough, M.G., Signorella, M.L.: Email end users and spam: relations of
gender and age group to attitudes and actions. Comput. Hum. Behav. 23(1), 318–332 (2007)

14. Sheng, S., Holbrook, M., Kumaraguru, P., et al.: Who falls for phish?: a demographic
analysis of phishing susceptibility and effectiveness of interventions. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 373–382. ACM (2010)

15. Luhmann, N:. Confiance et familiarité. Réseaux (4), 15–35 (2001)

An Empirical Analysis of Risk Aversion in Malware Infections 267

http://dx.doi.org/10.1007/978-3-642-34638-5_7
http://dx.doi.org/10.1007/978-3-642-34638-5_7

Author Index

Abdallah, Ali E. 175
Abroshan, Hossein 187

Barika Ktata, Farah 101
Basile, Cataldo 66
Ben Yahya, Zeineb 101
Boelmann, Christopher 203
Briceag, Cosmin 115

Carvallo, Pamela 140
Cavalli, Ana R. 140
Chamoun, Maroun 127
Cheng, Feng 3
Conti, Mauro 49

de Marcellis-Warin, Nathalie 260
De, Sourya Joyee 227
Devos, Jan 187

Erdogan, Gencer 244

Fernandez, José M. 260
Foley, Simon N. 18

Gajrani, Jyoti 49
Garcia-Alfaro, Joaquin 29
Gaur, Manoj S. 49
Gawron, Marian 3
Ghedira, Khaled 101
Gonzalez-Granadillo, Gustavo 29
Groza, Bogdan 115

Hariss, Khalil 127
Huang, Chien-Hung 217
Huang, Po-Yang 217

Imine, Abdessamad 227

Khan, Muhammad Imran 18
Kushik, Natalia 140

Laermans, Eric 187
Laxmi, Vijay 49

Lei, Chin-Laung 217
Lévesque, Fanny Lalonde 260
Lin, Bor-Shing 217
Lin, Bor-Shyh 217
Lioy, Antonio 66

Mahbub, Khaled 175
Martinelli, Fabio 159
Meinel, Christoph 3
Mosbah, Mohamed 49

Noura, Hassan 127
Nsiempba, Jude Jacob 260

O’Sullivan, Barry 18
Orlando, Albina 159

Palomar, Esther 175
Poels, Geert 187

Refsdal, Atle 244
Regainia, Loukmen 83
Rubio-Hernán, José 29

Salva, Sébastien 83
Samhat, Abed Ellatif 127
Sharma, Daya Ram 49
Shiu, Hung-Jr 217

Tripathi, Meenakshi 49

Uuganbayar, Ganbayar 159

Viticchié, Alessio 66

Wagner, Thomas D. 175
Wander, Matthäus 203
Weis, Torben 203

Yautsiukhin, Artsiom 159

Zemmari, Akka 49

	Preface
	Organization
	Contents
	Vulnerability Analysis and Classification
	Automatic Vulnerability Classification Using Machine Learning
	1 Introduction
	2 Related Work
	3 Classification Approach
	3.1 Neural Network
	3.2 Naive Bayes

	4 Classification Results
	4.1 Naive Bayes
	4.2 Neural Networks
	4.3 Combined Classifiers

	5 Future Work
	6 Conclusion
	References

	A Semantic Approach to Frequency Based Anomaly Detection of Insider Access in Database Management Systems
	1 Introduction
	2 Related Work
	3 DBMS-Oriented Model for Normative Behavior
	3.1 With-Outlier Scenario
	3.2 Outlier-Free Scenario
	3.3 Translating DBMS-Oriented Model into Role-Oriented Model

	4 Discussion
	5 Detecting Anomalies
	6 Conclusions and Future Work
	References

	Towards a Security Event Data Taxonomy
	1 Introduction
	2 Security Event Data
	3 Critical vs. Non-critical Systems Data
	3.1 Information About Critical Systems
	3.2 Information About Non-critical Systems

	4 Internal vs. External Data
	4.1 Internal Data (Information About the Target)
	4.2 External Data (Information About the Attacker)

	5 A Priori vs. A Posteriori Data
	5.1 A Priori Data
	5.2 A Posteriori Data

	6 Logical vs. Physical Data
	6.1 Logical Data
	6.2 Physical Data

	7 Security Event Data Matrix
	8 Related Work
	9 Conclusions and Future Work
	References

	Apps Security
	Unraveling Reflection Induced Sensitive Leaks in Android Apps
	1 Introduction
	2 Background
	3 Proposed Solution: EspyDroid
	3.1 App Hooking and Dynamic Analyzer
	3.2 Log-Tracer
	3.3 Instrumentation

	4 Evaluation
	4.1 Open-Source Apps
	4.2 APKs in Bytecode

	5 Limitations of EspyDroid
	6 Related Work
	7 Conclusion
	References

	Remotely Assessing Integrity of Software Applications by Monitoring Invariants: Present Limitations and Future Directions
	1 Introduction
	2 Background on Invariants and Related Works
	2.1 Limitations of Likely Invariants
	2.2 Limitations of Daikon

	3 Remotely Monitoring Invariants at Runtime
	3.1 Our IM Implementation at Run-Time
	3.2 Limitations of Monitoring Invariants at Runtime

	4 Instrumenting an App to Be Protected with IM
	4.1 Limitations of our IM Application

	5 Use Cases
	6 Discussion
	7 Conclusions and Future Work
	References

	Using Data Integration to Help Design More Secure Applications
	1 Introduction
	2 Related Work
	3 Data Integration
	3.1 Security Patterns
	3.2 Data-Store Architecture Presentation
	3.3 Data Integration and Consolidation Steps

	4 Security Pattern Classification and ADTree Generation
	4.1 Security Pattern Classification
	4.2 Attack-Defence Tree Generation

	5 Classification Discussion
	6 Conclusion
	References

	Access Control and Filtering
	MA-MOrBAC: A Distributed Access Control Model Based on Mobile Agent for Multi-organizational, Collaborative and Heterogeneous Systems
	Abstract
	1 Introduction
	2 Background
	2.1 Distributed Access Control
	2.2 Mobile Agent Technology

	3 Related Work
	3.1 Distributed Access Control Models
	3.2 Distributed Access Control Based on Mobile Agent
	3.3 Discussion

	4 Proposed Model: MA-MOrBAC Model
	4.1 Motivation for Multi-organization Based Access Control
	4.2 MA-MOrBAC Goals
	4.3 MA-MOrBAC Functional Architecture
	4.4 MA-MOrBAC Authentication Process
	4.5 Requester Agent: Creation and Migration Process
	4.6 MA-MOrBAC Model Components
	4.7 Case Scenario

	5 Conclusion and Future Work
	References

	A Vehicle Collision-Warning System Based on Multipeer Connectivity and Off-the-Shelf Smart-Devices
	1 Introduction and Motivation
	1.1 Related Work

	2 Addressed Scenarios and Constraints
	2.1 Addressed Scenarios

	3 Setup and Results
	3.1 Practical Considerations and Addressed Setup
	3.2 Implementation and Experiments

	4 Conclusion
	References

	Cloud Security
	Design and Realization of a Fully Homomorphic Encryption Algorithm for Cloud Applications
	1 Introduction
	2 The MORE and The PORE Approaches
	3 FHE NOHE
	3.1 Logic NOT and Homomorphic Behavior
	3.2 Proposed FHE Algorithm: NOHE
	3.3 Decryption Process
	3.4 FHE NOHE Homomorphic Implementation

	4 Security Analysis and Performances
	4.1 Resistance Against Statistical Attacks
	4.2 Resistance Against Several Kinds of Key Attacks
	4.3 Lack of Avalanche Effect
	4.4 Storage Overhead
	4.5 Execution Time

	5 Conclusion
	References

	A Study of Threat Detection Systems and Techniques in the Cloud
	1 Introduction
	2 Preliminaries
	2.1 Security Issues in the Cloud
	2.2 Threat Overview

	3 Cloud Threat Detection Systems
	3.1 Pattern-Based Approach and Related Techniques
	3.2 Behavior-Based Approach and Related Techniques
	3.3 Hybrid-Based Approach and Related Techniques
	3.4 Discussion

	4 Experimental Evaluation
	5 Conclusion
	References

	Cyber-Insurance and Cyber Threat Intelligence
	Preventing the Drop in Security Investments for Non-competitive Cyber-Insurance Market
	1 Introduction
	2 Related Work
	3 Basic Formalisation
	3.1 No-Insurance Case
	3.2 Competitive Insurance Market

	4 Raising Security Investment Level with Insurance
	4.1 Interdependence of Security

	5 Examples and Analysis of CARA and CRRA
	5.1 CARA Utility Function
	5.2 CRRA Utility Function
	5.3 Numerical Analysis

	6 Conclusion
	References

	Towards an Anonymity Supported Platform for Shared Cyber Threat Intelligence
	1 Introduction
	2 A Generic Cyber Threat Sharing Platform
	2.1 Anonymity Filter

	3 Anonymity Filter: First Prototype
	3.1 A Note on Anonymity Techniques
	3.2 System Model
	3.3 Preliminary Evaluation and Threat Model

	4 Analysis of Threat Intelligence Platforms
	5 Conclusion
	References

	Human-Centric Security and Trust
	Phishing Attacks Root Causes
	Abstract
	1 Introduction
	2 Anti-Phishing Techniques
	3 Phishing Attacks
	4 The Influence of Cognitive Factors in the Phishing Process
	4.1 Suspicion
	4.2 Trust
	4.3 Decision-Making
	4.4 Prediction

	5 Phisher’s Tactics
	5.1 Scams and Tricks
	5.2 Persuasion and Influence
	5.3 Visceral Influence

	6 Discussion
	7 Conclusion
	References

	Domain Name System Without Root Servers
	1 Introduction
	2 Motivation
	3 Background
	3.1 DNS and DNSSEC
	3.2 Root Zone Management

	4 Approach
	4.1 Bootstrapping
	4.2 Priming
	4.3 Updating Trust Anchors
	4.4 Opt-In and Commitment

	5 Security Discussion
	6 Feasibility Study
	6.1 Frequency of IP Address Changes
	6.2 Frequency of Trust Anchors Rollover
	6.3 Efficiency

	7 Related Work
	8 Conclusions
	References

	Data Hiding on Social Media Communications Using Text Steganography
	Abstract
	1 Introduction and Related Work
	2 Methods and Algorithms
	2.1 White Space and Extended-Line
	2.2 Algorithms

	3 Results
	4 Discussions
	5 Conclusions
	References

	Risk Analysis
	Privacy Scoring of Social Network User Profiles Through Risk Analysis
	1 Introduction
	2 Model Ingredients
	3 Attribute Visibility
	4 Privacy Scoring Mechanism
	4.1 Construction of Harm Trees
	4.2 Pruning Harm Trees Based on Attribute Visibility
	4.3 Accuracy of Attribute Values
	4.4 Pruning the Harm Trees Based on Accuracy
	4.5 Evaluation of Harm Likelihoods

	5 Related Works
	6 Conclusion and Future Works
	References

	A Method for Developing Qualitative Security Risk Assessment Algorithms
	1 Introduction
	2 Method Overview
	3 Step 1: Create Security Risk Model
	4 Step 2: Develop Security Risk Assessment Algorithm
	4.1 A Brief Introduction to DEXi
	4.2 Risk
	4.3 Node with Incoming Leads-to Relations
	4.4 Node with Outgoing Leads-to Relation
	4.5 Node with Attached Indicators
	4.6 Leads-to Relation with Attached Indicators
	4.7 Other CORAS Model Fragments
	4.8 Defining Scales and Utility Functions

	5 Step 3: Validate Security Risk Assessment Algorithm
	6 Related Work
	7 Discussion of the Approach and Initial Experiences
	8 Conclusion
	A Schematic Translation from CORAS to DEXi
	References

	An Empirical Analysis of Risk Aversion in Malware Infections
	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Study Design
	3.2 Data Collection
	3.3 Statistical Analysis

	4 Results
	4.1 Computer Expertise and Risk Aversion
	4.2 Stratified Analysis by Socio-Demographic Factors

	5 Discussion
	6 Conclusion of Future Perspectives
	References

	Author Index

