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Abstract The power supply network, Smart Grid, is one of the most critical
infrastructures which help to realize the vision of Smart Cities. Smart Grids can
provide a reliable and quality power supply with high efficiency. However, the
demand for electricity fluctuates throughout the day, and this variable demand
creates power instability leading to an unreliable power supply. The inherent dif-
ficulties can be addressed to a certain extent with demand-side management
(DSM) that can play a vital role in managing the demand in Smart Grids and
Microgrids, by implementing dynamic pricing using Smart Meters. This chapter
reviews relevant challenges and recent developments in the area of dynamic elec-
tricity pricing by investigating the following pricing mechanisms: Time-of-Use
Pricing, Real-Time Pricing, Critical Peak Pricing, Day-Ahead Pricing, Cost
Reflective Pricing, Seasonal Pricing, and Peak Time Rebate Pricing. We also dis-
cuss four real-world case studies of different pricing mechanisms adopted in various
parts of the world. This chapter concludes with suggestions for future research
opportunities in this field.
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4.1 Introduction

The increasing demand for electricity and limited fossil fuels has given rise to
Demand Response (DR)-based electricity markets via Smart Grids. By means of
DR, customers can manage or control their demand according to the pricing signals
received from the utility company. Alternative sources of electrical energy gener-
ation such as wind, solar, geothermal, biogas, etc., are contributing to meet the
growing demand. However, these sources are less reliable, which is a major issue
[1–3]. Hence, electricity generation is not enough to meet the energy demand,
which creates a gap between demand and supply. One way to address this challenge
is to increase the generation capacity of existing power plants, but this requires a
great deal of capital investment and also affects the environment. The other option
is to optimize the existing capacity to reduce the gap, thereby fulfilling the demands
of all users.

With advancements in technology, improvement in the quality of life, rapid
economic growth and industrialization, the demand for electricity has increased
significantly. According to the World Energy Council report [4], the consumption
of electrical energy will increase to 20% in 2030, up from 18% in 2014. The
increasing demand can be met by either increasing production or demand-side
management (DSM). There are various issues which need to be managed effectively
in order to reduce the gap between demand and supply. One of these issues is the
peak-to-average load ratio. DR is an important tool for reducing the
peak-to-average load ratio. DR can be realized via the DSM technique [5, 6] that
can improve the power grid reliability by dynamically changing electricity con-
sumption or rescheduling it with the implementation of dynamic tariffs [7]. Hence,
DSM plays a vital role in realizing the grand vision of interconnected smart cities
and Smart Grids.

In the literature, peak load management (or reducing the peak-to-average load
ratio) is the most sought-after objective in demand response programs. The demand
for electrical energy during peak periods can be met by establishing new generating
stations, energy storage, or by demand response. However, setting up a new con-
ventional power generating station just to meet the peak demand is not a practical
solution because it is expensive and will be used only during peak demand periods.
Further, it is not environmentally friendly as it produces harmful greenhouse gases.
Alternative power generating sources such as wind, solar, etc., can be used to meet
the power demand during peak periods, but they are not reliable as their generation
can vary according to environmental conditions, weather, geographical location,
etc. Hence, DR becomes an important method of reducing the peak-to-average load
ratio and it can be achieved by means of dynamic pricing.

Dynamic pricing of electricity is one of the most valuable tools for DSM as
customers have the opportunity to participate in day-to-day operations of the
electricity grid by shifting their load during off-peak periods in response to the
dynamic tariff of electrical energy like Time-of-Use [8, 9] and other incentive-based
pricing strategies such as Real-Time Pricing, Critical Peak Pricing, Day-Ahead
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Pricing, Seasonal Pricing [10], Cost Reflective Pricing [11], and Peak Time Rebate
[12, 13]. In the traditional grid, it was difficult to apply various dynamic pricing
strategies as it was not possible to track the consumption of electrical energy at
different periods; however, with the adoption of smart meters in Smart Grids, it can
now be easily and reliably achieved.

Several studies in the literature have examined DSM [14, 15], but none of them
have comprehensively considered the challenges associated with different pricing
strategies. This chapter examines various challenges and reviews the recent
developments in the area of dynamic electricity pricing. The following pricing
mechanisms are investigated in detail—Time-of-Use Pricing, Real-Time Pricing,
Critical Peak Pricing, Day-Ahead Pricing, Cost Reflective Pricing, Seasonal
Pricing, and Peak Time Rebate Pricing. Further, we also include four real-world
case studies of dynamic pricing mechanisms adopted in various parts of the world.
This chapter concludes with suggestions for future research directions in this field.

4.2 History of Power Grids

The earliest electrical network was simple and localized consisting of few gener-
ating units and a distribution network. Thomas Edison designed the first electrical
network in New York City on Pearl Street in 1882. It had a 100-V generator with a
few hundred lamps in the neighborhood [16]. At that time, the demand for elec-
tricity was increasing rapidly and to fulfill this demand, new generation capacity
was necessary, along with long-distance transmission and distribution capability.
To meet this demand, investment in new infrastructure began which led to the larger
and more complex electrical networks that we see today. Managing this complexity
became a new challenge and the concept of grid evolved to address this issue. The
grid comprised three entities namely: electricity generation, electricity transmission,
and electricity distribution.

The power industries which began as regulated industries had the following
characteristics: monopolistic franchise, obligation to serve, regulation oversight,
least cost operation, regulated rates, and assumed returns [17]. In such a regulated
market structure, the generation, transmission, and distribution of electricity were
all controlled by a single entity [18].

During the 90s, the power industries faced significantly high demand that led to
increased operational efficiency brought about by companies changing their inef-
ficient systems and irrational tariff policies [19]. This resulted in the deregulation of
the power industry which led to the establishment of the following entities: GenCo
(generating company), TransCo (transmission company), DisCo (distribution
company), ResCo (retail energy service company), and ISO (independent system
operators) [20]. Deregulation of the power industry opened up the power sector and
introduced competition in the electrical industry. One of the major outcomes of
deregulation was increased reliability and secure operation of the power grid [21].
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Increased competition, as a result of deregulation, resulted in unprecedented
demands for electrical power, which required optimal utilization of the available
resources. Hence, power companies began implementing SCADA systems
(Supervisory Control and Data Acquisition) which provided some control but still
lacked real-time control of the distribution network [22].

In a traditional hierarchical grid, the power plants are positioned at the top of the
hierarchy and the consumers toward the bottom, and the flow of information is
unidirectional. This system has several drawbacks such as: (1) voltage and fre-
quency instability due to dynamic nature of the load, (2) difficulties in demand-side
management, (3) integration of distributed generation is not possible [23],
(4) electricity consumption occurs at the same time as generation, and (5) storage of
electricity is expensive, so unused electricity is wasted.

To address these challenges, a real-time infrastructure is required to monitor and
control the system. To obtain a complete and efficient control of the overall system,
additional feedback is required from the consumer side, which makes the real-time
monitoring of the distribution network very important. Advancement in information
and computing technology makes it possible for the utility to receive these real-time
inputs to the grid [24]. This is a realization of Smart Grid. A future grid or Smart
Grid is a grid that is integrated with information and communication technology
(ICT) with advanced dynamic control [25]. Smart Grids are described in the fol-
lowing section.

4.3 Traditional Grids to Smart Grids

In 1997, Vu et al. [24] introduced the term Smart Grid for the first time. They
referred to a Self-Managing and Reliable Transmission Grid as Smart Grid.
However, it was not until the 2003 North East blackout in the USA that it became
popular. Massoud Amin in 2004 also referred to the term Smart Grid [26].

Modernization of the existing power grid is referred to as Smart Grid. Smart
Grids are built on top of the existing grid infrastructure by effectively utilizing
information technology, internet of things (IoT) and smart algorithms for efficiently
managing components like sensors, relay, energy management system (EMS), SVC
(Static Var Compansator), Supervisory Control and Data Acquisition (SCADA),
etc.

As mentioned earlier, the traditional grids have the following characteristics:
(1) they are unidirectional, meaning that power flows only from one end to the
other; (2) the generation happens centrally, (3) consumers are required to pay fixed
tariffs, and (4) consumers rely on a traditional electricity meter, which shows only
the total amount of energy consumed, but does not provide a breakdown of when
the consumption occurred. Smart Grids address these limitations by means of three
innovations:
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• Smart Grids modernize existing power systems through an advanced control
system, for example installing advanced sensors like PMU (phasor measurement
unit) to monitor network parameters in real time, facilitate remote monitoring of
the entire network, and use self-healing designs [27]

• Smart Grids enable end users to monitor and control their daily consumption
and the associated costs, thereby giving some degree of autonomy in energy
management [12]

• Smart Grids enable the integration of distributed energy resources (DER) in the
existing grid effectively, thereby increasing the overall generation capacity and
reliability of the whole power system [27].

The basic idea behind the Smart Grid is a two-way digital communication and
advanced sensor network which creates an adaptive feedback loop [22]. In a tra-
ditional grid, the flow of information is unidirectional; whereas in the Smart Grid, it
is bidirectional between the utilities and smart meters, which is termed “Advanced
Metering Infrastructure (AMI)” [28]. With the help of smart meters, utilities can
inform the end consumer about tariffs, thereby empowering the latter to have
control of their overall consumption. Whereas from the utility perspective, ana-
lyzing the data gathered from smart meters helps to better manage the demand.
However, this should be done in a trustworthy environment to protect consumer
privacy [23]. Consumers’ privacy, cybersecurity, and the price of smart meters are
just some of the issues which need to be addressed in order to make Smart Grid
more resilient and reliable [29].

Smart Grids have evolved over time. The first generation of Smart Grid used
computational intelligence such as fuzzy logic and neural networks in the power
system, adopting a neural network approach for security assessment and the
development of automated meters [30]. The second generation of Smart Grid
focused on global control of the grid, stability of the system, self-healing, and
dynamic pricing [30]. The third generation focused on optimal power flow which
ensured global optimization of the grid by applying various optimization techniques
such as approximate dynamic programming, dynamic stochastic optimization [30].
The fourth generation of Smart Grid is concerned with sustainable development,
better demand response management with renewable energy source integration in
the grid, including more storage in the grid using plug-in hybrid vehicles (PHEV)
integration, battery storage, and mobile/distributed generation using PHEVs [27].

The future of smart distribution grid is the Microgrid, which is regarded as a
small-scale energy zone with small-scale energy resources such as photovoltaic
cells (PV), fuel cells, wind turbines, and battery storage [31]. The operation of a
Microgrid can be either standalone or connected to the grid [32]. However, there are
various challenges to implementing Microgrid in reality; some are technical (such
as power quality, reliability, overall network efficiency, and interconnection of
network [33]) and others are nontechnical (such as demand response management,
prosumer management, education about the technology, and consumer privacy
[29]). Microgrids play an important role in shaping the future energy grids with
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renewable sources that can meet the local demand as well as supply extra power to
other Microgrids. Besides, Microgrid networks provide a more reliable power
supply to the consumer in a smart city.

4.4 Smart Grids and the Vision of Smart Cities

The World Urbanization Prospects report published in 2014 stated that an addi-
tional 2.5 billion people will become part of the urban population by 2050, 90% of
whom will be in Africa and Asia. It further states that the world’s urban population
will rise to 66% by 2050 [34], which will put a significant load on cities’ existing
infrastructure, thereby impacting on future sustainable development [35, 36]. The
infrastructure of cities will need to be modified in order to sustain the pressure of an
ever-increasing population. Cities need to be remodeled into smart cities where
people can enjoy modern facilities with ease.

In a smart city, the basic civic infrastructure needs to be managed more effec-
tively and in a streamlined manner. This includes the management of water, energy,
transport, and health services. The underlying objective is to ensure that cities of the
future do not compromise the environment as a result of socioeconomic progress.
Information and communication technology is the backbone of the cities of the
future.

The energy demands of a smart city are high because most modern utilities such
as induction cooktops, air conditioners, air purifiers, heaters, etc., run on electricity.
Infrastructures including public communication networks and healthcare services
also depend on electricity. Hence, the energy infrastructure is one of the most
important and critical urban infrastructures to support the realization of a sustain-
able smart city. Therefore, the Smart Grid is appropriate for the power infrastructure
of smart cities.

A Smart Grid allows a smart city to exploit local power generation to meet the
immediate needs of the city and manage the load in such a manner that the critical
load required for hospitals, fire stations, police, and the like will not be affected
during an outage and, if affected, the self-healing nature of the Smart Grid will
restore the supply very quickly. Smart Grids also enable smart cities to manage the
total load and local renewable energy source more efficiently. They help smart cities
to achieve ambitious environmental goals. The smart metering infrastructure of
Smart Grids enables smart cities to meet power demands and harness more local
energy with net metering very easily and effectively. Hence, Smart Grids are one of
the fundamental infrastructures necessary to realize a dream of smart cities.

As already mentioned, smart cities need huge amounts of electrical energy, and
therefore require demand-side management. By means of dynamic pricing methods,
the Smart Grid facilitates demand-side management. Several dynamic pricing
methods are proposed in the literature, which will be discussed in the next section.
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4.5 Dynamic Pricing Mechanisms

Many experimental and empirical studies have been conducted to discover the
effect of peak load pricing to reduce peak load [37]. But only a handful of program
types have been developed and only a few utilities really use demand response
(DR) as a day-to-day tool in grid and energy management due to engineering
complexity, capital investment, etc. [38].

DR programs are designed to flatten the load profile of the consumer either by
reducing consumption during peak hours or by shifting the load to off-peak times.
Demand response can be either dispatchable or non-dispatchable [14].
Dispatchable DR programs allow the utility to control the user load during peak
times, whereas non-dispatchable DR programs provide incentives or time-varying
pricing schemes to reduce the load. Time-varying pricing or dynamic pricing is a
simple and effective mechanism for demand response.

Dynamic pricing is a time-varying electricity pricing mechanism designed to
provide an economic incentive for consumers to participate in demand management
via “demand participation” or “demand response”. It is used as an economic tool
that manages demand by informing the consumer about the electricity price in the
near future. Customers can use this information to modify their load and participate
in demand response [29]. One of the most important aspects of demand response is
the two-way communication between the utility and the consumer, which is made
possible by the Smart Grid infrastructure.

Customers can actively participate in the operation of the grid. They can par-
ticipate in the DR programs, consider the information they receive about the
electricity price, and make wise decisions regarding their daily electricity con-
sumption [8]. A non-dispatchable demand response program using dynamic pricing
method can be easily implemented in the Smart Grid network.

The various dynamic pricing schemes which are available for demand response
are Time-of-Use (TOU), Real-Time Pricing (RTP), Critical Peak Pricing (CPP),
Day-Ahead Pricing [14, 29, 39]. These are now discussed in the subsequent
sections.

4.5.1 Time-of-Use (TOU) Method

The TOU pricing scheme is based on the variation in the cost of electricity
depending upon the time of use. For instance, during peak time usage, tariffs are
higher, and are lower during off-peak times. However, with a flat rate tariff, a set
rate is charged for the use of electricity regardless of the time of day. With TOU
pricing, a different rate is fixed for different time slots over a day. Ideally, TOU
should shift the load from peak time to off-peak time. The TOU time-varying
scheme is generally preferred by the retail market because of its simple structure
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[8]. However, despite its simple structure, utilities face several challenges when
implementing it in a real system. These challenges are discussed below.

Challenges

The TOU pricing method is one of the most important economic methods employed
in DR (demand response) programs. This pricing scheme is a static time-varying
pricing scheme, which is easier and cheaper to implement by the utility. It looks like
a very simple strategy for DR but there are various difficulties which are associated
with it and need to be addressed before implementing it in the retail energy market.
The main difficulty faced by utilities is the existing traditional meter, which is
unable to capture energy consumption data at specific times. So, it is difficult to
implement this scheme in a system that still has traditional meters. If these were
replaced with smart energy meters, utilities could easily apply the TOU tariff [40].
However, these replacements are costly for the utility, and customers have concerns
regarding privacy. Another challenge faced by utilities is the design of TOU
pricing, which includes a subset of challenges such as designing TOU with
uncertainties in generation and demand, designing under different market structures
or designing with localized generation integrated into the grid. Different market
structures need different TOU designs [8]. In other words, a specific market
structure requires a specific design. For instance, in some places, the need for a
heating system is considered when designing a TOU scheme, whereas in other
places, a heating system is not required due to the different climatic condition.
Another challenge is the establishment of an optimal pricing strategy, which will
maximize the utilities’ profits as well as offer monetary and social benefits to
consumers. Another subset of TOU design challenges, which is found in Smart
Grids, is the presence of several distributed energy resources (DER). These energy
sources play a vital role in shaping the future source of clean energy. So, when
designing a TOU tariff scheme, these sources should be considered in order to make
the TOU pricing more effective. A summary of the aforementioned challenges is
presented in Table 4.1. Recently, several researchers have proposed various means
of overcoming these challenges. These recent developments are covered in the
following section.

Recent Developments

As discussed in the previous section, there are various challenges, which impede the
smooth implementation of TOU pricing. Researchers around the world have pro-
posed various methods for overcoming these challenges.

The design of a TOU scheme plays a vital role in the success of TOU pricing in
the retail market. Ferreira et al. [8] designed a TOU tariff using stochastic opti-
mization, considering uncertainty in price fluctuations of electricity demand, with
quadratic constraints. The proposed approach showed increment in social welfare
and improvement in load factor. Celebi and Fuller [41] examined TOU pricing
under different marketing structures and proposed a multifirm, multi-period equi-
librium model to forecast future TOU rates. In designing their model, the
researchers used the variational inequality (VI) problem approach. The advantage of
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this approach, compared with the complementarity approach, is the type of variable
required for the solution. The VI approach requires only primal variables, whereas
the complementarity problem approach requires both primal and dual variables.
Their findings showed that the customer benefits from TOU pricing compared to the
flat rate under a different market structure. Yang et al. [42] used the game theoretic
approach to find the optimal TOU pricing. They proposed multi-stage game models
between utility companies and consumers, whereby the utilities seek to maximize
their profit and the consumers seek cost reductions and an uninterrupted power
supply. They studied the responses of consumers to the TOU pricing scheme. Their
studies showed that in the residential sector, the consumers shift their load from
peak time to off-peak times. Commercial customers were not very responsive
during office hours; that is, their consumption did not decrease significantly. Of the
three sectors—residential, commercial, and industrial—the industrial customers
were more flexible in changing their load according to the TOU rate. Ali et al. [43]
proposed a price-based demand response scheme with a two-part tariff based on
time-of-use (TOU) pricing within a Microgrid. They formulated the load scheduling
problem in a Microgrid as a combinatorial optimization problem. In this two-part
tariff, one part concerns the TOU pricing and the other part penalizes customers if
they exceeded the specified maximum demand limit. This is more effective in
reducing the total demand. The TOU pricing strategy also assists utilities with the
management of profit and risk.

After designing a TOU, the effectiveness of TOU pricing needs to be determined
with different scenarios. Jia-hai [44] designed a multi-agent simulation system to
analyze the effectiveness of the TOU pricing on the behavior of large customers and
the change on system load simultaneously. They found that, if the price difference
between the flat rate and the TOU rate was less than 15%, then customers did not
shift their load; however, if the price difference was between 15 and 45%, then the

Table 4.1 Challenges and recent developments in TOU pricing

Challenges Designing with uncertainties in generation and demand [7]

Designing under different market structures [37]

Designing with localized generation integration in grid [43]

An optimal pricing strategy to maximize benefits for consumers and utility [38]

The inclusion of distributed sources in tariff design [41]

Recent
developments

Quadratic programming and stochastic optimization techniques used to design
tariff with uncertainties in demand and generation [7]

A multifirm, multi-period equilibrium model to forecast future TOU prices [37]

A game theory approach used to find the optimal TOU pricing [38]

A multi-agent simulation system proposed to analyze the effect of the TOU
pricing on the behavior of large customers [39]

A DR algorithm with photovoltaic generation proposed which requires minimal
sensors, and does not require forecasting of solar resources [43]
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customers were likely to change their load linearly with the price difference, and if
the difference is more than 45%, then again customers were unresponsive to price.
Consumers responded to the price fluctuation by decreasing their load if there was a
significant difference in cost. However, this simulation model was limited to a small
number of large customers. Pallonetto et al. [45] developed a rule-based algorithm
for a TOU tariff for a residential building with the following objectives: (1) mini-
mize energy consumption, (2) minimize carbon emissions, and (3) maximize
monetary benefit to the consumer in a Smart Grid with a renewable energy source.
They studied two different cases: thermal energy storage and zonal temperature
control. Their analysis showed an annual reduction of consumer electricity con-
sumption by up to 15.9%, carbon emission reduction by 27%, and a greater uti-
lization of power generated by a renewable energy source at grid scale. The TOU
pricing scheme can help to reduce harmful greenhouse gases, thereby protecting the
environment. Optimal utilization of a renewable energy source can be achieved
through the TOU scheme.

In the Smart Grid, the presence of DER has an effect on TOU pricing and,
therefore, on demand response because of the bidirectional flow of energy and net
metering system. Leger et al. [46] formulated a DR algorithm with photovoltaic
generation for the Smart Grid based on net energy flow shown in a smart meter.
This DR approach is interesting because it requires minimal sensors, does not
require the forecasting of solar resources, and requires minimum input from the user
side which leads to the automated implementation of demand response using TOU
pricing. Johnson et al. [47] analyzed the performance of bifacial PV (photovoltaic)
array energy output during summer. They analyzed the power output from a PV
array by orienting it in different directions. Then the total energy cost was analyzed
according to two different rates: TOU and flat rate tariff. They performed an
experiment during summer by keeping the PV array facing west, and determined
whether or not customers could benefit from the reorientation of the PV array. With
the TOU pricing scheme, the cost of energy is high during the afternoon in summer.
If the reorientation of PV panels can generate more power during this period, then
consumers can benefit financially as they use less energy from the grid. However,
the findings indicated that the reorientation of the array did not result in any
significant cost savings.

The acceptance of the TOU by residential consumers depends upon how it will
affect them. Torriti [48] studied the impact of TOU in the residential sector. He
studied the peak shifting in residential areas in Northern Italy. His study showed
that a significant level of load shifting takes place for morning peaks, but issues
regarding evening peaks were not resolved. His studies also indicated that the
average consumption of energy per user increased after the implementation of TOU
pricing. Average consumption increased but payments made by consumers
decreased due to the lower tariff during off-peak periods when more energy was
used. Dehnavi and Abdi [49] suggested a DR program that combined dynamic
economic dispatch with TOU pricing. In economic load dispatch, the generation
unit is scheduled optimally to reduce the fuel cost subjected to constraints. They
integrated both the problem of economic load dispatch and the design of TOU
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pricing into a single optimization problem and used the meta-heuristic imperialist
competitive algorithm to find the optimal solution. Their study showed that there
was a reduction in fuel cost after the application of TOU pricing; moreover, net-
work reliability was improved, and customers’ electricity bills were reduced.

Torriti [50] used a stochastic model to analyze the TOU dataset of Trento in
Northern Italy. His analysis showed that there is an unstable relationship between
the consumption of energy and TOU pricing, and that future consumption can be
predicted by weather conditions and active occupancy. This study had significant
implications for the TOU pricing scheme in Italy as it was based on nonvoluntary
participation, thereby demonstrating the consequence of large-scale implementation
of the TOU tariff. The new tariff scheme needs to be communicated effectively to
end users so that they can actively participate in demand response. The new tariff
scheme needs to be communicated via a number of channels including the new
tariff being printed on the bill, mobile phones, television advertisements, radio, and
newspapers.

TOU pricing is the first demand response price incentive program to be
implemented in various countries worldwide. Numerous researchers have proposed
several techniques such as quadratic programming, stochastic optimization, com-
binatorial optimization, MILP, etc., to address the problems faced by utilities when
implementing TOU pricing. A summary of recent developments is presented in
Table 4.1.

4.5.2 Real-Time Pricing (RTP) Method

RTP is a dynamic pricing scheme which follows the spot price of electricity in the
wholesale market. The wholesale market is a power market, where the electricity is
sold for re-sale purpose and a uniform biding strategy is used to set the spot price
(real time) of electricity. Based on the spot price in the wholesale market, the hourly
rate of RTP for retail consumers is fixed by the utility [51]. In this pricing method,
the price signal is released a day ahead or an hour ahead. It has been one of the most
researched topics in dynamic pricing in recent times as the smart metering infras-
tructure has been rolled out in several countries around the world [3, 52–54]. It has
also attracted numerous researchers globally who have attempted to find effective
and efficient methods for the practical implementation of RTP schemes.

RTP is different from TOU (time of use) in several ways. TOU is a predefined
tariff block pricing strategy; that is, the cost of energy varies from time to time
during a whole day, and this variation is announced by the retailer before the
billing cycle. However, with RTP, the tariff is announced by the retailer a day or an
hour before. The fixed tariff structure of TOU over a long period makes it static in
nature, but the RTP changes after an hour or a day which makes it a dynamic
scheme. Due to the static nature of TOU, it is not very effective in addressing the
peak load problems [39]. On the other hand, the RTP is dynamic in nature and it
can adjust the tariff within a short period of time. Hence, it is more effective in
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dealing with peak load reduction. Since the RTP is linked to the wholesale price, it
is able to reflect fluctuations in the wholesale market price, which cannot be done
by the TOU. Evidently then, the RTP has several advantages over the TOU pricing,
but there are also various challenges, which make difficult to implement it in reality.
The challenges associated with RTP are discussed below.

Challenges

There are several issues related to RTP implementation and its impact on the
consumers and the utility, which should be carefully considered before it is
implemented. One of the most important of these is the design of the RTP scheme
itself. RTP schemes should be designed in such a way that they offer a
win–win situation for both consumer and utility. Demand profile and consumer
satisfaction are important factors which need to be considered when designing an
RTP tariff structure, because consumers have to change their consumption behavior
according to the pricing signal they receive from the utility company on a daily or
hourly basis. The utility company needs to communicate the tariff to the end
consumer in real time via different communication media. There are several tech-
nologies available that can facilitate this communication including an in-home
display unit, smart meters, e-mail, SMS, energy orbs (globes that light up green,
yellow or red) which show a different colored light to indicate peak, medium peak,
off-peak hours, etc. However, it is likely that the consumer will not be available to
make a decision when a price signal arrives (e.g., consumer is away from a
computer/mobile device or in a meeting for instance). This scenario has two adverse
impacts: first, the consumer may have to pay more if the pricing signal is high and
second, the utility company cannot reduce the peak demand even with RTP
implementation. This can be a challenging task for both the consumers and the
utility. Hence, consumers may be reluctant to shift to RTP schemes. There is also a
possibility that they may change utility providers if they find that RTP is incon-
venient. Hence, RTP schemes need to be designed so that they not only benefit the
consumer, but also motivate them to be part of a new paradigm. One such approach
is to implement automated load management systems that can be programmed to
react to RTP signals in real time according to customer preferences in order to
derive the maximum benefit from RTP and to address some of the other issues.
However, designing an effective automated load controller is a challenge in itself
because each household appliance needs to communicate with the controller for
effective control. Other than design challenges, the economic impact on the con-
sumer and the utility needs to be thoroughly analyzed, and the RTP’s social impact
on the consumer needs to be determined. Other than the aforementioned issues,
several other critical challenges need to be overcome such as the implementation of
RTP without demand-side management, and price forecasting that includes models
for short-term and long-term forecasting, i.e., daily versus hourly forecasting.
Variation in pricing poses another problem: understanding how consumers respond
to pricing structures, and whether they accept or ignore the pricing signals. If the
customers ignore the pricing signals (i.e., they consume power even if the price
signal is considered high by the utility company), what can be done to manage peak
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demand? In this situation, real-time smart meter data can be analyzed to design
real-time and adaptable pricing structures to ensure the effective management of
peak demand. Alternatively, penalty schemes can be explored as a mechanism to
manage peak demand. Consumer privacy is an issue related to smart meters because
the energy use pattern and smart meter data can be hacked and may be used by an
unauthorized person for unlawful activities. All these issues need to be addressed in
order to effectively implement the RTP. A summary of the various challenges
associated with RTP is presented in Table 4.2.

Recent Developments

The design of an RTP scheme is important for both the consumer and the utility.
Much research has been conducted in recent times to make it more realistic to
implement RTP schemes on a large scale by addressing some of the abovemen-
tioned challenges. Numerous researchers have proposed several techniques to
address these problems using various methods such as convex optimization,
least-square support vector machines, genetic algorithm, stochastic optimization,
etc., and these are briefly articulated below.

Real-time price forecasting: Real-time price (RTP) forecasting is a challenging
task as there are so many variables that need to be considered when designing a
RTP forecasting model. For example, a statistical model for forecasting real-time
retail prices would require inputs such as hourly or daily wholesale market prices,
weather conditions, local generation availability, renewable generation capacity,
customer demand profile, etc. Furthermore, such models can be tailored for
short-term or long-term forecasting. Oldewurtel et al. [55] applied least-square
support vector machines (LS-SVM) for regression to compute short-term tariff

Table 4.2 Challenges and recent developments in RTP pricing

Challenges Designing RTP based on forecasted spot price of the wholesale market [52]

Designing based on analysis of real-time data [54]

Designing with load uncertainty at consumer end [55]

Analysis of the economic impact on consumer without demand-side
management [61]

An optimal pricing strategy to maximize utility profit [58]

Recent
developments

A least-square support vector machine (LS-SVM) method used to forecast
spot price of the wholesale market [52]

A new real-time pricing scheme proposed which was based on price
components with instantaneous data analysis [54]

An iterative stochastic optimization approach to design an RTP which
includes load uncertainty at the consumer end [55]

A versatile convex programming demand response optimization for
automatic load management of various types of loads in the smart
home [57]

A non-cooperative game among the consumer and search for the unique
equilibrium in demand response for demand-side management [59]
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forecasts for the wholesale market based on past spot price and grid load levels.
This price forecast data have been used to design an RTP for retail customers,
which reflects the wholesale price. Their studies showed that within the proposed
tariff regime, the peak electricity demand of buildings can be significantly reduced.

Determine price based on consumer responsiveness to price: Kim and
Giannakis [53] designed a strategy to determine RTP pricing based on consumer
responsiveness to price, using an online convex optimization framework to find the
real-time pricing structure with two feedback structures: (1) partial information (i.e.,
load data) that is known to the utility and (2) full information (i.e., aggregate load
and price fluctuations) that is known to the utility.

Reducing the peak-to-average ratio: Reducing the peak to average ratio is an
important factor that needs to be considered when designing an RTP scheme. Qian
et al. [56] proposed a two-stage optimization technique to design an RTP scheme
for the Smart Grid to reduce the peak-to-average ratio. On the one hand, users react
to price to maximize their financial benefit; on the other hand, utilities try to
formulate an RTP with forecasted user reaction to maximize their profits. The
researchers’ simulation result showed that the proposed algorithm can effectively
reduce the energy usages peak.

Real-time data analysis for price determination: Vivekananthan et al. [57]
proposed a new real-time pricing scheme which was based on price components
with instantaneous data analysis and after the data has been analyzed in real time,
the information about price and the appropriate load adjustment is sent through a
smart meter to an in-home unit display. With this information, consumers can easily
identify their critical load for possible adjustment.

Impact on price due to uncertainty: In practice, users’ responsiveness to price is
uncertain particularly when they have been equipped with an automated energy
consumption scheduling (ECS) device. Samadi et al. [58] designed two real-time
pricing algorithms based on finite-difference and simultaneous perturbation methods
using an iterative stochastic optimization approach which includes the load uncer-
tainty at the consumer end. In the presence of large consumers, these algorithms
converge much faster because they do not involve direct user interaction. This study
showed that the proposed algorithm can reduce the peak-to-average ratio.

Energy management controller: The energy consumption pattern of residential
area varies considerably. For future smart cities, each home must be equipped with
an energy management controller.

Load Management: Load management is one of the crucial aspects of the RTP
pricing scheme as it fluctuates hourly or daily. Hence, there is a need for load
management which has to be done with the help of a smart control device because
manual load management in the RTP scheme is very difficult. A smart meter makes
it easier to communicate with the load end and therefore the load management in
houses is easier in smart cities.

Load Management Strategy: In [59], a load management strategy is proposed
under a Smart Grid paradigm. This strategy is based on RTP pricing and the use of
different household appliances and electric vehicles in a typical smart house. With
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the help of a smart meter, the consumer can manage the load which can include the
charging of electric vehicles, washing machine use, etc. Under the RTP scheme, the
proposed model enabled users to reduce their electricity bill by 8–22% for a typical
summer day. Hence, load management enables consumers to reduce their electricity
bill and helps the utility with its demand response.

Types of loads and Automatic Load Management: Tsui and Chan [60] cat-
egorizedvarious types of loads in a smart home like schedule load (which need to be
switched on and off at a particular time to save energy), battery-assisted load, and
model-based load. The authors formulated a versatile convex programming for
demand-response optimization of automatic load management of various types of
loads in a smart home. From the perspective of the utility, the consumers’ response
is important while designing the tariff structure.

Combined Load Management for Community-based RTP: In [52], the
author proposed a new architecture for the smart home community. To reduce the
peak-to-average power ratio, RTP has been used between the home community and
the utility. In this RTP scheme, the charge for electricity at the end of a day is
calculated according to the combined loads of the entire community. Combined
load scheduling for the community is required in this scheme.

RTP for Profit Maximization for Utility: Meng and Zeng [61] proposed a
decision-making scheme for a retailer and its customers based on the Stackelberg
game. They modeled a one-leader, N-follower Stackelberg game between the
electricity retailer and its customers. The author designed an efficient energy
management system to maximize the consumer benefit. Whereas for the utility side,
they designed an optimal RTP rate that took into consideration the responses from
customers in order to maximize the benefits for the utility. Their findings indicated
that the retailer benefitted from the proposed RTP pricing algorithm.

Energy control: In [62], the author formulated a non-cooperative game for the
consumers and searched for a unique equilibrium in demand response which is
aligned with the Nash equilibrium. The Nash equilibrium is a set of strategies where
no consumer has an incentive to change its strategy unilaterally given the strategies
of the other consumers. To find the Nash equilibrium of this game, the authors
proposed an energy control algorithm which could be used to control the energy
consumption of the consumers. Their study indicated that there is a reduction in the
peak load, the daily load and the peak-to-average ratio with RTP feedback.

Energy storage device: In the RTP pricing scheme, an energy storage device
enables consumers to maximize their savings by optimally utilizing the storage
device. The storage device needs to be charged and discharged in such a manner so
that it will reduce the consumers’ bills. In [63], the author developed a new opti-
mization model to find the best storage size and control process for the charging and
discharging. However, the maintenance and replacement cost of the storage facility
is not viable within the current RTP pricing structure where there is not much
difference between maximum and minimum prices each day.

RTP without DSM: Campillo et al. [64] studied the impact of RTP on cus-
tomers. Customers without a demand-side management facility were considered in
this study. The authors determined the theoretical impact by analyzing the data for
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the previous 7 years from 2000 to 2007 obtained from a smart metering infras-
tructure, and compared these data with data for two different pricing strategies: RTP
and fixed pricing. They studied data for 400 households, which they divided
equally into two consumer groups: one used district heating and other used elec-
tricity to run ground-source heating. Their studies showed that customers who had
not changed their consumption pattern benefitted after shifting from a flat rate tariff
to an RTP tariff.

Load Curtailment and Load Shift: Althaher and Mutale [65] investigated the
impact and benefit to residential consumers who used the automatic demand
response system under real-time pricing. Although the authors proposed a scheme
for load curtailment and load shift, more work needs to be done to make the
real-time pricing more user-friendly. The other concern regarding this scheme is
that it requires a great deal of data in order to accurately forecast the RTP price,
thereby raising the issue of customer privacy which must be protected in every
manner possible.

As the electrical industry moves towards sustainability, the integration in the
grid of a renewable energy source becomes increasingly important. A renewable
energy sources such as solar–photovoltaic cells, wind energy farm other distributed
generation (DG) source is an important source of energy for smart cities. These
sources of power generation are not as reliable as the conventional sources because
their availability depends on natural environmental factors such as weather, wind
speed etc. Therefore, the demand response system plays vital role in bridging the
gap between demand and supply. In [66], the author proposed a stochastic unit
commitment model for the integration of wind power into grid. The given opti-
mization technique is used to realize higher wind power generation under various
possible wind condition. This technique could also deal with the wind power
uncertainty economically. The proposed stochastic optimal model with RTP could
be helpful to integrate large-scale wind power.

The previous discussion showed that there have been many developments in the
field of RTP pricing. Researchers explore various aspect of the RTP like profit
maximization for consumer and for utility, optimal energy storage utilization,
optimal DG utilization with RTP, consumer privacy, etc. Consumer privacy is one
of the concerns which need to be explored more for effective implementation of
RTP in real market. Structure of RTP is complex, hence special emphasis is needed
to be put on consumers education. A brief summary of recent developments is
presented in Table 4.2.

4.5.3 Critical Peak Pricing

Critical peak pricing (CPP) is another pricing strategy employed for demand
response which is slightly different from TOU and RTP. CPP increases electricity
prices to punitive levels at peak hours on critical days announced beforehand [67].
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As mentioned earlier, the TOU has a predefined block for the pricing mecha-
nism; that is, the pricing for the different intervals of time is fixed for a certain
duration (like a month) that makes TOU static in nature, whereas the real-time
pricing changes after an hour or a day which makes the RTP a dynamic pricing
scheme. But in certain cases, TOU pricing scheme is not sufficient to reduce the
peak because consumers can shift their load to create a peak at another time, and the
energy consumption may increase [48].

Critical peak pricing (CPP) incorporates some of the characteristics of both RTP
and TOU and solves the problem faced by the utilities to implement the TOU and
RTP pricing schemes. The CPP based on the TOU pricing scheme has a simple
structure and can also reduce the peak demand by identifying a peak event and
increasing the electricity cost for the duration. Although it is less dynamic, it can
handle peak demand effectively. The various challenges facing the implementation
of CPP in the retail market are discussed below.

Challenges

CPP programs are based on the TOU structure but include critical events which can
be called by the utility at a very short notice. However, CPP programs are limited to
calling peak events no more than 50 or 100 times [39]. CPP can be seen as a
modified version of TOU because the peak event called is based on a system
constraint, not on consumer demand behavior. Some of the features of RTP are
available in the CPP scheme. For example, the retail price CPP can vary with the
wholesale market price during peak periods. In RTP, the information related to the
electricity price can be declared an hour before, whereas with CPP, it must be
declared a day before the peak event [68]. Therefore, there are more constraints in
CPP than in RTP. Although the CPP structure is simple, there are challenges
associated with this scheme which need to be overcome before it is fully imple-
mented. One of the challenges is the price during peak times which needs to be
adjusted so that consumers will reduce their consumption and utilities can manage
the demand as well as make a profit [69]. If the prices are very high, then customers
will be reluctant to shift to this new tariff; if the prices are low, then customers will
not respond to price and therefore the demand will not decrease during peak time.
Hence, the design of optimal pricing for peak times is one of the critical challenges,
in addition to the rate and frequency of calling the peak event. Other challenges are
related to the magnitude and characteristics of demand responses of consumers to
the CPP from various sections of society such as high-end users, low-end users, etc.
[70]. With the automatic demand controller, the household load can effectively deal
with the peak pricing, although automatic controllers are not so common.
Therefore, consumers need to control their load manually which is not possible in
some instances. Informing consumers about a peak event is done via different
communication channels. However, sometimes consumers do not receive the
information or may receive it after a delay, which means that they cannot react to
the peak price and ultimately are financially disadvantaged. Therefore, the utility
should ensure that the information reaches the consumer on time. Another challenge
is consumer education, since the consumers’ need to know how to control the
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appliance manually in order to reduce the peak demand. These challenges are
summarized in Table 4.3.

Recent Developments

The design of the CPP is crucial as it has more constraints compared to RTP and
TOU. Park et al. [71] designed a CPP with the objective of maximizing the utility’s
profits by taking into consideration the consumers’ response to dynamic pricing.
The number of events, their duration, and peak rate are some of the important
factors to consider when designing a CPP scheme. In the CPP pricing scheme, the
optimal peak rate (OPR) is the optimal price during peak periods. As the optimal
peak rate increased, the consumer response decreased. The authors used the profit
index which is an additional benefit that the utility can derive from the triggering of
a critical event. By using the profit index, the effects of parameters such as critical
peak price, peak event, and duration of peak event on the profit of the LSE (least
square error) can be analyzed. A minimum number of peak events needs to be
triggered by the utility in the CPP pricing scheme in order to benefit financially,
unlike the uniform pricing scheme. The length of the peak duration influences the
consumer response to the CPP pricing [40]. The shorter the duration of the peak
time, the better will be the response compared to the longer duration. During a peak,
customers can curtail their consumption by reducing space heating and cooling
systems.

Residential consumers’ average consumption of electricity is reduced signifi-
cantly under the CPP pricing scheme [68]. In this study, the authors divided con-
sumers into two different groups: one group was charged according to CPP with
base TOU pricing, and the other group was charged TOU. The study was conducted
using four different cost structures during the peak period, and demonstrated that in
all four cases, the consumers who followed the CPP scheme consumed less. It

Table 4.3 Challenges and recent developments in CPP pricing

Challenges Finding optimal peak rate which will maximize utility’s profit [64]

Find the minimum number of event days during CPP [65]

Analysing the impact on people’s lifestyles [33]

Finding the optimal duration of peak event [65]

Determining the target consumer who will respond more readily to
CPP [66]

Recent
developments

Deterministic dynamic programming used to solve the events scheduling
problem [64]

Profit index used for revealing the effect on utility’s profit with variation in
CPP parameters [64]

Descriptive statistics and graphics used to analyze and know residential
demand response [65]

Analysis of the impact of CPP on energy demand and disadvantages for
consumers [33]

Design of zonal tariff with CPP for more efficient demand response [69]
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shows the effectiveness of CPP in reducing consumption. This reduction varies
depending on whether the consumers are high-end or low-end users in response to
the TOU pricing scheme, the high-end users significantly reduced their energy
consumption, whereas low-end users saved significantly more on their annual
electricity bills [69].

In [70], Herter and Wayland analyzed the data for the summer months only (1
July–30 September 2004) from 483 households who took part in the CPP experi-
ment, which was conducted in California. In this pilot study, the participants were
divided into twelve strata, according to climate zone and building type. Findings of
the analysis indicated that the CPP events were successful at reducing load during
peak periods. Their analysis also showed that there were significant load increases
just after the notification of an event day has been sent to consumers and also just
after the event ends. This indicated that much of the load reduction during the CPP
period results from load shifting by participating households.

CPP can be implemented by forming groups of consumers (zones) who will
voluntarily participate in a CPP scheme and in return expect some type of incentive
from the utility. This pricing scheme is known as a zonal tariff. The design of a
zonal tariff scheme requires the effective coordination of the supplier and network
operators [72]. The authors concluded that with this pricing scheme, a demand-side
resource could be created, which would be able to offer load reduction based on
dispersed customers.

Dynamic pricing may have an adverse impact on people’s lifestyles. Kii et al.
[37] examined the impact of CPP on people of different ages. They conducted a
survey in which the participants were given choices in terms of the appliances that
they wanted to switch off during the peak hours (e.g., the air conditioner, refrig-
erator, etc.) but unique option among various choices is going out or staying at
home during the peak time. This study will assist with the development of future
smart cities. Their study indicated that the CPP may have a more negative impact
on older people. Moreover, population density directly affects the demand for
electricity. If the population density increases by 10%, then demand will decrease
0.047 and 0.021% for the households with residents who are able to go out and
average households, respectively.

The CPP program has a simply structured variable pricing scheme, which can
efficiently deal with peak loads. The findings of various case studies which have
been done in different electrical markets show that CPP is more effective than TOU
pricing. The recent developments in this pricing area are presented in Table 4.3.

4.5.4 Day-Ahead Pricing (DAP)

In the TOU pricing scheme, the tariff structure is fixed by the utility a month before
or more. Therefore, consumers know the tariff in advance and can shift their load
which produces a new peak [48]. With the CPP that is based on TOU, information
related to a peak event must be sent to the consumer a day ahead of the event. This
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is because for both dynamic pricing systems, the base price is fixed at the start of
the billing cycle, and in the case of CPP, the peak event is decided only one day
before it occurs, with a limited number of peak events in a year. Hence, the utility
has little control over the daily load. In RTP, the rate is varied hourly and therefore
it is more uncertain, which makes it less attractive to the consumer [73]. The
day-ahead pricing scheme in which the tariff is fixed a day ahead is beneficial for
both the consumer and the utility. Seasonal Pricing Consumers and many enterprise
customers prefer day-ahead, time-dependent pricing. In comparison, the day-ahead
pricing is much more attractive to residential consumers because they can plan their
activities in advance according to the day-ahead price [73] and schedule their
appliances accordingly.

Challenges

The day-ahead pricing is most prominent from the consumer as well as from utility
point of view compared with other dynamic pricing schemes. Consumers can
schedule their activities well beforehand, and the utility can fix the tariff to benefit
financially and maintain the constant load profile. It also helps the utility to reduce
the cost of purchasing the electricity from the wholesale market. Day-ahead pricing
is looking very promising for demand response, but there are several issues asso-
ciated with it. The first and most important challenge is the designing of a fore-
casting model [74]. Energy price forecasting has been done by analyzing the
various input parameters such as the forecasted energy demand, available supply,
local weather, etc. So, the forecasting of the energy price a day ahead is a chal-
lenging task and needs a robust and effective model [75]. Another challenge for the
utility is that it needs to inform consumers about the day-ahead pricing. The utility
needs to send the information to consumers so that they can schedule their appli-
ances. Since the pricing is declared a day ahead, there is a chance of peak during
low price time. If consumers change their load during off-peak periods, the utility
may incur a financial loss. Hence, there is the need for an optimal day-ahead price
to maximize the benefit for the utility [76]. These are several challenges which need
to be overcome in order to obtain the maximum advantage from day-ahead pricing.
A summary of these challenges has been presented in Table 4.4.

Recent Developments

For day-ahead pricing, forecasting is important. Several methods are available for
forecasting the day-ahead price of electricity. Joe-Wong et al. in [73] developed an
algorithm to determine the day-ahead pricing in order to minimize the cost incurred

Table 4.4 Challenges and recent developments in day-ahead pricing

Challenges Forecast the day-ahead price [70]

Optimal day-ahead pricing for minimizing the cost to utility [69]

Recent
developments

Artificial neural network for day-ahead price forecasting [70]

An algorithm to estimate the response of the consumer to the day-ahead
pricing [72]

90 A. Chandan et al.



by the service provider, and maximize revenue. Their algorithm also estimates the
response of the consumer to DAP in a Smart Grid environment. Consumers respond
to DAP by reducing their load during high price times. With the day-ahead pricing
scheme, there is a significant reduction in the peak consumption and therefore there
is a reduction in the peak-to-average ratio.

Another method for day-ahead price forecasting is the artificial neural network.
The relationship between input data (weather condition, demand, and supply) and
target parameters (reducing peak load, maximizing utility benefit) for price fore-
casting is nonlinear in nature. The artificial neural network is a common technique
that can deal with nonlinearity. The day-ahead price forecasting using the artificial
neural network with a clustering algorithm is presented in [74]. It is a robust
forecasting scheme which includes the tradition generation unit, self-producer,
retailer, and aggregators. The ANN (artificial neural network) model for load
forecasting using only historical price values has not demonstrated reliable per-
formance in this study, although the researchers designed a cascade ANN network
to reduce errors. Their results indicated that the cascaded neural networks were the
optimal model. The authors also designed a hybrid forecasting model comprising a
two-stage process where the clustering tool was combined with the cascaded ANN.
The efficiency of the hybrid model was no better, but it produced fewer errors than
the cascade neural network.

Price forecasting is one of the challenging tasks. There is only a limited number
of forecasting methods available for load forecasting. The price time series method
used to forecast the day-ahead price is volatile and is influenced by a diverse set of
parameters such as weather conditions, hydrocapacity, fossil fuel prices, etc.
Therefore, a novel computational intelligence is required based on models for load
forecasting. A summary of recent developments is presented in Table 4.4.

4.5.5 Other Pricing Incentive Schemes for DR

Apart from the dynamic pricing mechanisms for demand response discussed above,
the literature includes various other pricing mechanisms used for demand response
programs. Some of them are cost reflective pricing [11], season pricing [10], and
peak time rebate [12, 13].

Cost Reflective Pricing: A cost reflective tariff reflects the cost of supplying
electricity which includes the spot price in the wholesale market, transmission
network costs and future expansion costs. In other words, the cost reflects the true
cost of supplying electricity.

Seasonal Pricing: The demand for electricity varies from season to season
because electrical appliance requirements differ from one season to another.
Electricity generation varies seasonally due to the availability of other energy
sources. For example, in summer, less electricity can be generated by a hydropower
plant because of the reduced amount of water. Demand management is required to
bridge the gap between demand and supply during different seasons. This can be

4 Pricing Mechanisms for Energy Management in Smart Cities 91



achieved by adopting seasonal variable pricing which will vary according to the
season.

Peak Time Rebate (PTR): Dynamic pricing schemes such as TOU, RTP, DAP
pricing, and CPP are all based on the restructuring of electricity tariff. The peak
time rebate is given to consumers who help the utility by reducing their con-
sumption during peak times. Consumers may choose whether or not to reduce their
load: if they reduce it, they receive the rebate; if not, they will pay a flat rate. In this
pricing scheme, the consumers have not been forced indirectly to reduce the peak
load by increasing the tariff during a certain period. This benefits the customers, but
the utility has to wait for the consumers’ response.

Challenges

The most challenging task is to design a pricing scheme that will benefit both the
consumer and the utility. Designing a cost-reflecting scheme with integrated
renewable energy sources, and that considers network cost, is one of the challenges
faced when implementing a cost reflecting the price. Various factors influence the
customers’ response to cost-reflective tariffs, so it is necessary to find which factor
has the greatest influence on consumers, and how consumers will respond if there
are any changes to this factor.

A seasonal pricing scheme varies according to the season. So, the challenge here
is to design an optimal seasonal pricing scheme which will effectively reduce the
gap between demand and supply during a particular season. When designing the
seasonal pricing, weather data needs to be considered in order to accurately forecast
the seasonal price.

Peak time rebate (PTR) relies on rewarding the customers during the peak time
based on their load reduction. Accordingly, any load that can be shifted to off-peak
periods looks like a gain. PTR scheme heavily depends on consumer base load
(CBL). So, the method to find the consumer base load is important while designing
the rebate pricing scheme. Consumer response to this pricing scheme is important
from the utility perspective. Hence, consumers must be informed of the benefits that
they can receive. Other challenges include the ways by which consumers can
receive information about the peak time and rebate they will receive if they reduce
their load during peak time. The above challenges are summarized in Table 4.5.

Recent Development

An electrical distribution network has two essential costs: network operational cost
and network development cost. The network development cost includes the cost of
expanding the network. In a deregulated competitive market where coordinated
generation and network planning is replaced by pricing, economic efficiency which
can be achieved by sending the pricing signal to the end user, can influence their
energy consumption behavior according to their location. The authors of [11]
developed a cost reflective pricing scheme for a distribution network with dis-
tributed generation. In developing this pricing scheme, they took network security
into consideration. They proposed a pricing framework which included the network
planning cost, fixed cost, and other factors that had a simple structure. The authors

92 A. Chandan et al.



created a price zone in the distribution network because creating a unique charge for
each and every node in a network would be impractical. The effective technical and
economic integration of DG (distributed generation) into various zones of power
systems has reduced the cost reflective price.

Hung et al. in [9] studied the seasonality of electricity consumption by
Taiwanese consumers. Most of the peak demand occurred during the summer
months. The regulated summer rates were higher than those for the non-summer
months. Their studies confirmed that in the residential sector, there was greater
electricity demand in summer. They found that price fluctuations during the sum-
mer season were lower than those of non-summer months due to the consistently
high temperatures. Their results suggest that energy consumption and CO2 emis-
sions can effectively be reduced during non-summer months if the carbon tax is
considered in combination with the electricity price, since in Taiwan, the electricity
price is lower in the non-summer months and higher in the summer months. By
combining the carbon tax with electricity price, the government of Taiwan is able to
smooth the electricity expenditure of households over the course of a year.

An incentive-based demand response program is different from a price-based
program. From the policy perspective, the PTR (Peak Time Rebate) program is
more appealing than other programs because it requires minimal changes to existing
systems and produces a favorable result if it is designed optimally. In [12],
Mohajeryami et al. studied the effect of behavioral characteristics in the design of
demand response programs. Loss aversion is one of the behavioral characteristics of
human beings. Its effect on the customers’ perception of the different programs was
also examined by authors. They also examined the impact of two dynamic pro-
grams (PTR and RTP) on demand response. They proposed a model which can be
used by utilities for profit maximization and can be used to design a more efficient

Table 4.5 Challenges and recent developments in seasonal, PTR, and cost reflective pricing

Challenges Designing seasonal pricing scheme [9]

Designing zonal tariff with distributed generator [10]

Designing PTR including human behavior [11]

Designing a method to find CBL, which will benefit all stakeholders by an
optimal incentive scheme [12]

How PTR program is different for the residential customer compared to
industrial customer [12]

Recent
developments

Cost reflective pricing scheme for distribution network with distributed
generation [10]

Energy consumption reduction by incorporating carbon tax with electricity
price [9]

A price elasticity-based DR model to simulate the response of customers
[11]

Economic analysis of PTR program [11]

Analysis of the impact of CBL performance on PTR programs offered to
residential customers [12]
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dynamic pricing scheme. They have examined two PTR cases to test the proposed
model. The first PTR case took loss aversion into consideration, while the second
PTR case did not. The first RTP case performed better than the PTR; whereas the
second PTR case performed better than the RTP. Their study showed that loss
aversion had no effect on the consumers’ selection of an appropriate dynamic
pricing program. As shown in this study, in DR programs, behavioral impacts have
to be taken into the consideration more seriously. The findings indicated that
behavioral characteristics cannot be ignored when one of two competing programs
is being selected.

In [13], the authors studied the relationship between accuracy of customer
baseline (CBL) calculation and efficiency of the peak time rebate (PTR) program
for residential customers. The authors analyzed the economic performance of PTR
for residential customers. The CBL calculation method to predict the consumer load
profile on event days is an important means of calculating the efficiency of PTR.
Hence, the authors analyzed the accuracy and bias metrics of CBLs and explained
how these metrics translate into financial losses for utility and customers. They used
exponential moving average and regression methods and their adjusted forms to
calculate the CBL. This CBL was used to determine the economic performance of
the PTR. Their study showed that the utility paid at least half of its revenue as a
rebate just because the CBL had not been calculated accurately.

There are several pricing mechanisms that have not been extensively used for
demand response. Several pilot tests have been conducted with these programs, but
these are very limited in number. These programs need to be explored more for
effective demand response output. In future, these programs could be combined
with TOU, RTP to design more effective dynamic programs for demand response.
A summary of the recent developments is presented in Table 4.5.

4.6 Case Studies

In the literature, various pricing schemes have been proposed by researchers across
the globe. But there are doubts about the consumer response to dynamic pricing and
this is one of the impediments to the full-scale rollout of dynamic pricing. The
various experiments were conducted to study consumer responses to various
dynamic pricing strategies, and determine their usefulness in a demand response
program. Four case studies are presented here.

Day-Ahead Pricing Experiment: Belgium

A pilot experiment study of day-ahead pricing in the Belgium market was con-
ducted from September 2013 to July 2014 [77]. A total of 240 residential con-
sumers participated in this experiment, 186 of whom were equipped with smart
appliances such as smart domestic hot water buffers and electric vehicles. The
remaining 54 families participated in a manual dynamic pricing scheme. Analysis
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of consumer consumption profiles showed that there were very limited to no
behavioral changes.

The experiment analysis showed a significant shift of the flexible load like
washing machine, dishwasher, etc., from peak hours to off-peak hour, i.e., to the
lower price periods. But this significant shift of flexible loads had an impact at the
national level, whereas the physical impact on the local distribution grid was
limited. Another finding was the high variation in energy consumption and load
flexibility in the groups of pilot participants.

A questionnaire was administered before and after the experiment to determine
the users’ acceptance of the dynamic pricing. Analysis shows that for complex
pricing schemes that require frequent price consultation, an automated response by
means of smart appliances is preferable to the manual response.

TOU/CPP Pilot Study: British Columbia

A pilot study was conducted in a Canadian province, British Columbia, which
experiences a severe winter peak. The study was intended to determine the relative
kW response of the participants who had the TOU/CPP electricity tariff [78].
Relative kW response is defined as the percentage change in the customer’s hourly
kW due to exposure to time-varying pricing.

The data were collected from November 2007 to February 2008 for 1717
single-family homes, 411 of which were allocated to the control group and the rest
to the treatment group. Hourly kW data collected from the control group of cus-
tomers with the flat rate tariff and the treatment group of customers with the TOU/
CPP rates, triggered by a 1-day advanced notice.

Remotely activated load control devices were considered in this pilot study to
automatically reduce water heating and space heating load during CPP events.
Analysis of this study shows that TOU pricing yields statistically significant eve-
ning peak kW reductions of 4–11%. An additional evening peak kW reduction of
about 9% could be achieved via CPP. This can be further increased to 33% through
remotely activated load control of space heating and water heating. The result
shows that an optional TOU rate design can effectively reduce residential peak
demands.

CPP and Peak Time Rebate (PTR) Experiment: Michigan

Consumers energy (CE) conducted a pilot experiment in Michigan known as the
personal power plan (PPP) from July 2010 through September 2010 [79]. A total of
921 residential customers participated in this experiment. This PPP pilot project
was conducted by dividing the customers into two groups. The first group was
subject to time-varying rates, whereas the second group was subjected to their
existing rate but they received information about peak times and peak pricing.

The CE created a price information only (PIO) consumer group to determine
whether consumer behavior changed after information had been received. Two
dynamic pricing strategies, i.e., CPP and peak time rebate (PTR) both of which
were layered atop a TOU rate, were used to study consumer responses. During the
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pilot study, a total of 6 days were announced as critical peak days and the partic-
ipants were informed about each one day ahead.

During the PPP period, the control group customers faced the inclining block
rates structure in which tariff varied according to total consumption. The treatment
customers were given one of the rates: CPP, PTR, or PIO. CE customers showed
the same price responsiveness to the equivalently designed PTR and CPP rates.
This pilot study showed that there was a reduction in critical peak period usage by
the entire treatment group. There was no significant difference between the CPP
(15.2%) and PTR (15.9%) treatment groups. Consumers in the PIO group also
reduced their usage by 5.8%. However, the total monthly consumption remained
unchanged for both the CPP and the PTR groups as the daily variations were
statistically insignificant. This indicated that, although there was a reduction in peak
demand for the CPP and PTR groups, this did not have any statistically detectable
load building or load conservation impact.

The pilot study also involved two control groups. A randomly selected group of
228 consumers, who were unaware of the pilot program were placed in the first
group. The second group comprised the remaining 92 consumers who knew that the
utility would observe their daily usage patterns. This was done to study any changes
in human behavior as a result of participants knowing that they are being monitored
by a utility. This is known as “Hawthorne bias”. Their study showed that the
consumption pattern of both groups remained unchanged. Therefore, there is no
definitive evidence of a Hawthorne effect in the PPP pilot program.

CPP Field Experiment: Kitakyushu and Kyoto

A field experiment was conducted by the Japanese Ministry of Economy, Trade,
and Industry (METI) in four cities in Japan (Yokohama, Toyota, Kyoto and
Kitakyushu) to examine the effect, on residential electricity demand, of dynamic
pricing and smart energy equipment.

In [80], the authors analyzed experimental data for the summer of 2012 in two
cities—Kitakyushu and Kyoto. The Kitakyushu experiment had 182 participants
and the Kyoto experiment had 681 participants. The participants were paid 12,000
yen (USD 105) to participate in this experiment; moreover, a smart meter and
in-home display were installed in their homes for free.

Electricity consumption data were collected from the smart meters at 30-minute
intervals. Of the 182 households, 112 were randomly selected for the treatment
group. Consumers in the treatment group had a time-of-use price schedule on
nonevent days. A CPP day was announced one day ahead, with the critical peak
price shown on the home display unit.

Critical peak prices for the two cities are slightly different. This study showed
that the CPP of higher marginal prices led to larger reductions in consumption, but
the rate of incremental reductions diminishes with increases in price. This study
also showed a slight increase in consumption during off-peak hours. Consumers
increased their consumption by 4–5% during the off-peak hours in the Kitakyushu
experiment, whereas in the case of Kyoto, the consumption increased by 3–4%.
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In the Kyoto experiment, a warning-only treatment group of consumers was
formed. In this group, consumers received day-ahead notices about the CPP event
in the same way that consumers in the dynamic pricing group did. However, they
were told that their price would not change. The warning-only treatment group
reduced their consumption by 3% which is small compared to that of the dynamic
price consumer group. However, this demonstrated that informing consumers about
the peak time will help to reduce the peak demand, which is an interesting finding.

4.7 Future Research Directions

In this chapter, we discussed several dynamic pricing schemes such as TOU RTP,
CPP, day-ahead pricing, etc. Each of these schemes has some unique characteristics
and addresses some aspect of energy consumption management. Although this area
has received much research attention, there are still numerous open research issues
that need investigation in the future, as briefly discussed below.

Open Research Directions in TOU (Time of Use)

Designing the smart house controller with the TOU pricing for smart home is an
important field for research. An algorithm is needed for the efficient use of a storage
device and a renewable energy source in order to reduce the customer’s electricity
bill. There is a need to analyze the effects of the TOU program in terms of voltage
improvement and frequency control. A smart device in the home will reduce
electricity costs for the consumer, but on the other hand, it will decrease the utility’s
revenue. Therefore, what is needed is a TOU tariff that maximizes utility profits.

Open Research Directions for RTP (Real-Time Pricing)

The establishment of an RTP tariff is a task that requires intensive effort because, of
all the dynamic pricing systems, RTP is the most complex. Consumer wants and
needs vary from person to person, so an RTP scheme needs to be aligned with
individual consumer requirements and preferences. The responsiveness to the
pricing is another method that can be used for the design of RTP pricing. Another
research opportunity in RTP is use of the recurrent neural network for solving DSM
(demand-side management) optimization problems. Design of RTP with imperfect
information from any side either customer or generation side needs to be explored
more in future. The distributed generation systems such as rooftop PV (photo-
voltaic) cells will play a vital role in future DR (demand response) program, so
there is need to design RTP with feed-in tariffs from rooftop PVs. Privacy con-
straints should be taken into account when designing and implementing an efficient
RTP scheme.

Open Research Directions in CPP (Critical Peak Pricing)

Various communication modes (e.g., by mail, email, telephone, social media, etc.)
should be used to deliver information related to event day and critical peak time
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prices. The synchronizing of all communication modes is required for the efficient
and effective information system. A forecasting model needs to be designed that can
forecast data with minimal error. A CPP price model needs to be developed which
includes the pre-established load variability from the consumer end.

Open Research Directions in DAP (Day-Ahead Pricing)

A two-sided pricing mechanism needs to be developed. The first side of the
mechanism enables the consumer to sell to the utility the power generated locally
using renewable sources such as a photovoltaic cell, etc. The other side of price
mechanism is where the utility sells the electricity to the user. A DAP forecast
model needs to be developed incorporating a new computational intelligence
technique that takes into account other clustering algorithms. The DAP forecast
model needs to integrate renewable energy sources, but take into account the
uncertainties associated with them.

General Open Research Directions

The smart meter data collected may breach the privacy of the consumer. Hence,
consumer privacy is another important issue which needs to be considered when
designing a pricing scheme. Consumer privacy has not received much attention in
the design of dynamic pricing scheme like TOU, RTP, CPP, PTR, day-ahead
pricing, etc. However, consumer privacy is a serious concern and it must be pro-
tected. Their is a need to developed secure pricing model which assure their is no
privacy breach of the consumer and if it happened they must be compensated.

Web and mobile applications need to be developed to assist customers with
decision-making regarding the Smart Grid technologies, and ensure a higher pen-
etration of DR (demand response) programs.

Most of the strategies proposed to date are based on either the varying price or
price incentive method. However, all these schemes require that customers accept
the terms and policies established by the utility company. These give the utility
company the right to set the rate for the various pricing schemes; therefore, once the
consumers have chosen a tariff schedule, they will have to pay according to that
scheme. This allows the utility to increase the tariff during the peak period so as to
increase its profits. Hence, consumers are helpless as they cannot shift their critical
load to an off-peak period and will, therefore, have to pay more. With the imple-
mentation of the smart meter infrastructure, it is easier to obtain data from the
consumer end, and consumers can easily track their consumption level. Consumers
know their consumption pattern and thus can manage their load accordingly.
Hence, future electricity prices should be established in such a way that the interests
of both consumer and supplier are protected.

The amount of data collected from the smart meter will be enormous, and the
handling of this data will be challenging. Although this huge amount of data will
make it easier to forecast prices, what is required is a model designed to make use
of this rich data in order to produce reliable price forecasts.
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4.8 Conclusion

The electrical infrastructure is one of the critical infrastructures of future smart
cities. A Smart Grid supplies the power to smart cities. Demand response is an
integral part of Smart Grids, and one of the methods used for demand response is
dynamic pricing. Demand-side management will play a crucial role in reducing the
peak load in smart cities. In this chapter, we explore various dynamic pricing
schemes such as TOU, RTP, CPP, PTR, and day-ahead pricing, which can be used
for the demand response program, and which are very effective. This chapter has
discussed the various challenges and issues related to the practical implementation
of these dynamic pricing schemes. These challenges need to be studied in greater
depth in order to find effective solutions to ensure the efficiency of a demand
response program. Several case studies have been included in this chapter to
demonstrate the effectiveness of these programs. This chapter has also included
suggestions for future work on dynamic pricing.
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