
Commutativity, Associativity, and Public
Key Cryptography

Jacques Patarin1 and Valérie Nachef2(B)

1 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS,
Université de Paris-Saclay, 78035 Versailles, France

jpatarin@club-internet.fr
2 Department of Mathematics, University of Cergy-Pontoise,

UMR CNRS 8088, 95000 Cergy-Pontoise, France
valerie.nachef@u-cergy.fr

Abstract. In this paper, we will study some possible generalizations of
the famous Diffie-Hellman algorithm. As we will see, at the end, most of
these generalizations will not be secure or will be equivalent to some clas-
sical schemes. However, these results are not always obvious and more-
over our analysis will present some interesting connections between the
concepts of commutativity, associativity, and public key cryptography.

Keywords: Diffie-Hellman algorithms · Chebyshev polynomials
New public key algorithms

1 Introduction

Classical Diffie-Hellman Key-Exchange Algorithm. The Diffie-Hellman
algorithm [5] was the first published key exchange algorithm (1976). In fact,
it is rather a two-party key establishment protocol, which also has “ephemeral
public key” features. The new functionalities it offers has created a whole new
area of science and engineering: public-key cryptography. Since 1976, many more
algorithms have been found, and some of them can be seen as generalizations
of the original Diffie-Hellman algorithm, for example when the computations
are done in an elliptic curve instead of (mod p), where p is a prime number.
In this paper, we will study some other possible generalizations and the link
between this problem and commutativity or associativity in some mathematical
structures (with one way properties).

Let us first recall what was the original Diffie-Hellman algorithm. Let p be a
prime number and g be an element of Z/pZ such that x �→ gx (mod p) is (as far
as we know) a one way function. Typically p has more than 1024 bits and g can
be a generator of Z/pZ. Let Alice and Bob (as in the original paper of Diffie and
Hellman) be the two persons who want to communicate. Alice randomly chooses
a secret value a between 1 and p−1, and she sends the value A = ga (mod p) to
Bob. Similarly, Bob randomly chooses a secret value b between 1 and p − 1 and

c© Springer International Publishing AG, part of Springer Nature 2018
J. Kaczorowski et al. (Eds.): NuTMiC 2017, LNCS 10737, pp. 104–117, 2018.
https://doi.org/10.1007/978-3-319-76620-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76620-1_7&domain=pdf
http://orcid.org/0000-0003-2600-861X

Commutativity, Associativity, and Public Key Cryptography 105

sends B = gb (mod p) to Alice. Then Alice and Bob are both able to compute a
common key K = ga.b (mod p) (Alice by computing K = Ba (mod p), and Bob
by computing K = Ab (mod p)). However, if an adversary, Charlie is a passive
observer of the messages exchanged on the line, he will obtain A and B, but,
if x �→ gx (mod p) is one way, he will not obtain a and b, and if the so called
“Diffie-Hellman” problem is difficult, he will not be able to compute K.

Remark 1. If Charlie is also able to send messages, it is well known that this
simple algorithm can be attacked by a man in the middle attack. So the mes-
sages MUST be authenticated somewhat, for example in usual HTTPS web, the
problem is solved. However, this is not the aim of this paper.

DH in a More General Frame. We can state this problem in a more general
frame as proposed by Couveignes [4]:

If A is a (semi-)group and G is a set, then a (left) group action ϕ of A on G
is a function:

ϕ : A × G → X : (a, g) �→ ϕ(a, g)

that satisfies the following two axioms (where we denote ϕ(a, g) as a · g):

– Identity e · g = g for all g in G. (Here, e denotes the identity element of A if
A is a group).

– Compatibility (ab) · g = a · (b · g) for all a, b ∈ A and all g ∈ G.

We say that A acts transitively on G. We now suppose that A is abelian. We
require that the action (a, g) → a · g is easy to compute but that given g and h
in G, it is difficult to compute a such that a · g = h. Now we can state DH in
this more general frame. Let g ∈ G. Alice choose randomly a secret value a ∈ A
and send the value a · g to Bob. Similarly, Bob choose a secret value b ∈ A and
send b · g to Alice. Then Alice and Bob will share the common value ab · g.

In this paper, we look for specific constructions that allow to use the algo-
rithm, and we will assume that Charlie remains a passive attacker and does not
create/modify/suppress any messages.

We propose a first type of construction with A = N. For this it is enough to
have a set G with a associative composition ∗. The structure of N-set is given
by gn := n−1-fold composition of g with itself. It is obvious that (ga)b = ga·b =
(gb)a and so we can use it for key exchange if, and only if, g �→ gn is one way to
make the system secure.

In this paper we shall construct compositions ∗ on (affine) curves of genus 0
over finite fields. To find them we first go to such curves over R and use addition
formulas for trigonometric functions to define compositions over R. The next
step then is to describe these compositions given by transcendental functions
algebraically over the finite fields. Since associativity is inherited, we can use
them to define a N-set.

106 J. Patarin and V. Nachef

Remark 2

– We recall that the algebraic addition law on elliptic curves E (i.e. curves
of genus 1) over any field is modeled after the addition theorems of elliptic
functions, e.g. the Weierstrass ℘-function and ℘′-function.

– The ℘-function alone yields a partial N-structure on Fq by the well-known
formulas for the X−coordinate of the point n · (x, y) for (x, y) ∈ E(Fq).

– A generalization for hyperelliptic curves of genus ≥ 2 is, at least in principle,
given by Theta-functions. For g = 2 this becomes very efficient [7].

Another possible constructions is to choose A as a family of functions with
the composition law and that are pairwise commuting, defined on a space X.
The action is then defined by (f, x) ∈ A×X �→ f(x). Here, A, is not necessary a
group, but we can observe that commutativity is needed to be able to have DH
in this context. In general, it is quite easy to design a very general commutative
internal law on the elements (for example if a ≤ b we define a ∗ b as a fixed
random element ϕ(a, b) and if b < a, we define a∗ b as ϕ(b, a)), but we want here
associativity, not commutativity. On the opposite, for functions f(x) = xa and
g(x) = xb, we want f ◦ g = g ◦ f , i.e. commutativity. Here the composition of
functions ◦ is always associative, but we want commutativity.

Commutativity Associativity

On the elements Easy What we want

On the functions What we want Easy

Quantum Computing on These Structures. We know that the quantum
Shor’s algorithm for factoring number or computing discrete logarithm (mod p)
in a finite field is polynomial. In the more general frame of groups operating on
sets, when the group is abelian, one can only expect subexponential security [6].
Thus in our constructions, one cannot expect to obtain exponential security
against quantum computing. This justifies the Feo [9] system using isogenies of
supersingular elliptic curves.

Organisation of the Paper. In part I, we will concentrate on the first type of
constructions, i.e. on the “associativity” property. In part II, we will concentrate
on the second type on constructions, i.e. on the “commutativity” property, to
generalize the fact that (ga) ◦ (gb) = (gb) ◦ (ga), on the mathematical structure
(G, ◦).

Part I: Associative Properties on the Elements

In this part, we focus on the first type of construction and we present two
examples. We work on affine curves of genus 0. Thus will end up with algebraic
linear group of dimension 0. Indeed, we can get only tori or additive groups.
This implies that we come to discrete logarithm in the multiplicative group of
finite fields, as our examples will show.

Commutativity, Associativity, and Public Key Cryptography 107

2 Associativity with a
√
1 + b2 + b

√
1 + a2

To generalize the Diffie-Hellman algorithm by working in a structure (G, ∗) dif-
ferent from (Z/pZ,×), we want:

– ∗ to be associative
– x �→ gx to be one way (from the best known algorithms, the existence of

proven one way functions is an open problem since it would imply P 	= NP).

Moreover, we would like G to be as small as possible, but with a security greater
than 280. Therefore, elements of G would have typically between 80 bits (or 160
bits if from a collision gx = gyA, we can find z such that gz = A) and 2048 bits
for example, since the computation of a ∗ b is expected to be fast. This is what
we have on elliptic curves, but is it possible to suggest new solutions? Ideally,
it would be great to generate a “random associative” structure on elements
of size, say, about 200 bits for example. It is very easy to generate “random
commutative” structures on elements of such size. Let for example a and b be
two elements of 256 bits. If a ≤ b, we can choose a∗b to be anything (for example
a ∗ b = AES − CBCk(a‖b) where k is a random value of 128 bits to be used as
the AES key) and if b < a then to define b ∗ a as a ∗ b. However here we want
to design a “random associative” structure on elements of about 200 bits and
not a “random commutative” structure, and this is much more difficult! In fact,
for associativity structure of this size, we do not know how to get them if we
do not create a specific mathematical structure that gives the associativity. But
then, there is a risk that such a structure could be used to attack the scheme. In
this section, we will study an example of associativity created in this way. More
precisely, we will study the operation a ∗ b = a.

√
1 + b2 + b.

√
1 + a2 on a set G

where .,+ and √ can be defined (we will see examples below). Let us first see
why ∗ is associative on various G.

2.1 Associativity in (R, ∗)

Definition 1. ∀a, b ∈ R, a ∗ b = a.
√

1 + b2 + b.
√

1 + a2.

We will see that (R, ∗) is a group. In fact the only difficult part in the proof is
to prove the associativity of ∗. We will see 3 different proofs of this fact, since
all of these proofs are interesting.

Associativity of *: Proof no1. A nice way to prove the associative property is
to notice that sinh function is a bijection from R to R that satisfies: ∀a ∈ R, ∀b ∈
R, sinh(a+b) = sinh(a)∗sinh(b) (since sinh(a+b) = sinh a cosh b+sinh b cosh a).
This shows that sinh is an isomorphism from (R,+) to (R, ∗) and therefore ∗ is
associative and (R, ∗) is a group.

108 J. Patarin and V. Nachef

Associativity of *: Proof no2

Theorem 1

∀a ∈ R, ∀b ∈ R,
(
a
√

b2 + 1 + b
√

a2 + 1
)2

+ 1 =
(
ab +

√
a2 + 1

√
b2 + 1

)2

Proof. It is obvious by developing the two expressions.

Theorem 2
∀a, b, c ∈ R, (a ∗ b) ∗ c = a ∗ (b ∗ c)

Proof Let α = a
√

b2 + 1 + b
√

a2 + 1. Then A = (a ∗ b) ∗ c = α ∗ c = α
√

c2 + 1 +
c
√

α2 + 1. Now from Theorem 1,
√

α2 + 1 = ab +
√

a2 + 1
√

b2 + 1 (this is true
even when a < 0 or b < 0). Therefore (a∗b)∗c = (a

√
b2 + 1+b

√
a2 + 1)

√
c2 + 1+

abc + c
√

a2 + 1
√

b2 + 1. Similarly, let β = b
√

c2 + 1 + c
√

b2 + 1. Then B = a ∗
(b ∗ c) = a ∗ β = a

√
β2 + 1 + β

√
a2 + 1. Then from Theorem 1,

√
β2 + 1 =

bc +
√

b2 + 1
√

c2 + 1. Therefore B = a ∗ (b ∗ c) = abc + a
√

b2 + 1
√

c2 + 1 +
(b

√
c2 + 1 + c

√
b2 + 1)

√
a2 + 1. Thus we obtain A = B.

Associativity of *: Proof no3. Here, we will define a law on R
2, called

“Domino Law” and represented by �.

Definition 2. Let (a, α) ∈ R
2 and (b, β) ∈ R

2. Then the � law is defined by

(a, α) � (b, β) = (aβ + bα, ab + αβ)

We can notice that � is very similar to the multiplication in C, except that we
have ab + αβ instead of ab − αβ. Here aβ + bα is the analog of the imaginary
part and ab + αβ is the analog of the real part.

Proposition 1. The � law is associative:

∀(a, α), (b, β), (c, γ), (a, α) � [(b, β) � (c, γ)] = [(a, α) � (b, β)] � (c, γ)

Proof. It is easy to see that

(a, α) � [(b, β) � (c, γ)] = [(a, α) � (b, β)] � (c, γ)
= (abc + aβγ + bαγ + cαγ, abγ + acβ + αbc + αβγ)

Corollary 1. The ∗ law is associative.

Proof. First, using Theorem 1, we notice that (a,
√

1 + a2) � (b,
√

1 + b2) = (a ∗
b,

√
1 + (a ∗ b)2). Therefore, the associativity of � implies the associativity of ∗,

since ∗ is the restriction of � on the curve b2 = a2 + 1.

2.2 Application to Finite Fields: A New Group (P, ∗)
for Cryptography

Let K be a finite field. Let P (K) = {x ∈ K,∃α ∈ K, 1 + x2 = α2}. When
a ∈ P , let

√
a2 + 1 denote any value α such that α2 = a2 + 1 (we will choose

Commutativity, Associativity, and Public Key Cryptography 109

later if
√

a2 + 1 = α or
√

a2 + 1 = −α). At this stage, we will only need that√
a2 + 1 denotes always the same value, α, or −α when a is fixed. When there

is no ambiguity, P (K) will be simply denoted by P .

Theorem 3

∀a ∈ P, ∀b ∈ P, (a
√

b2 + 1 + b
√

a2 + 1)2 + 1 = (ab +
√

a2 + 1
√

b2 + 1)2

Proof. As with Theorem 1, the proof is obvious: we just have to develop the two
expressions.

Definition 3. When a ∈ P and b ∈ P , we will denote by a ∗ b = a
√

b2 + 1 +
b
√

a2 + 1.

Remark 3. For
√

a2 + 1 we have two possibilities in K, α and −α, and for√
b2 + 1, we also have two possibilities, β and −β. Therefore, for a ∗ b, we have

so far 4 possibilities. So far we just assume that one of these possibilities is
choosen, and later (at the end of this Sect. 2.2) we will see how to choose one
of these 4 possibilities in order to have a group (P, ∗). Moreover we will always
choose

√
1 = 1.

Theorem 4. ∗ is associative on P .

Proof. This comes directly from Theorem 3 with the same proof as proof no2
on (R, ∗).

Therefore, we can design a variant of the Diffie-Hellman scheme on (P, ∗). To be
more precise, we will now explain how to compute

√
1 + a2 explicitly.

Theorem 5. We have the following properties:
∀a ∈ P, a ∗ 0 = 0 ∗ a = a ∀a, b ∈ P, (−a) ∗ (−b) = −(a ∗ b)
∀a ∈ P, a ∗ (−a) = (−a) ∗ a = 0 ∀a, b ∈ P, (−a) ∗ b = −(a ∗ (−b))

Proof. This comes immediately from
√

1 = 1 and from the fact that
√

a2 + 1
will always be the same value in all the expressions used for ∗.

Theorem 6. ∀a, b ∈ P, a ∗ b ∈ P .

Proof. From Theorem 3, 1 + (a ∗ b)2 is a square.

Theorem 7

[∀a, b ∈ P,

√
(ab +

√
a2 + 1

√
b2 + 1)2 = ab +

√
a2 + 1

√
b2 + 1]

=⇒ ∀a, b, c ∈ P, a ∗ (b ∗ c) = (a ∗ b) ∗ c

Proof. Let A = (a ∗ b) ∗ c and B = a ∗ (b ∗ c). Let α = a
√

b2 + 1 + b
√

a2 + 1.
Let β = b

√
c2 + 1 + c

√
b2 + 1. From Theorem 7 we have

√
α2 + 1 = ±ab +√

a2 + 1
√

b2 + 1 and similarly
√

β2 + 1 = ±bc+
√

b2 + 1
√

c2 + 1. Therefore A =
(a

√
b2 + 1 + b

√
a2 + 1)

√
c2 + 1 ± c(ab +

√
a2 + 1

√
b2 + 1) and B = (b

√
c2 + 1 +

c
√

b2 + 1)
√

a2 + 1 ± a(bc +
√

b2 + 1
√

c2 + 1). We see that if here we will have
two “+”, then A = B, i.e. a sufficient condition to have A = B is to have

∀a, b ∈ P,
√

(ab +
√

a2 + 1
√

b2 + 1)2 = ab +
√

a2 + 1
√

b2 + 1.

110 J. Patarin and V. Nachef

We will denote by � this condition

∀a, b ∈ P,

√
(ab +

√
a2 + 1

√
b2 + 1)2 = ab +

√
a2 + 1

√
b2 + 1 (�)

From Theorem 3, � also means:

∀a, b ∈ P,
√

1 + (a ∗ b)2 = ab +
√

1 + a2
√

1 + b2 (��)

From (��) and a ∗ b = a
√

1 + b2 + b
√

1 + a2, we see that from (a,
√

1 + a2),
(b,

√
1 + b2), we can compute

(
a ∗ b,

√
1 + (a ∗ b)2

)
with 4 multiplications and

2 additions in K. With a = b in (�), we obtain:

∀a ∈ P,
√

(2a2 + 1)2 = 2a2 + 1 (�)

2.3 A Toy Example for (P, ∗)

Here we have K = Z/19Z with p = 19 (p ≡ 3 (mod 4) as wanted). The set of
all the squares of K is C = {0, 1, 4, 5, 6, 7, 9, 11, 16, 17}.

∀a ∈ K, a2 + 1 is a square ⇔ a2 ∈ {0, 4, 5, 6, 16} ⇔ a ∈ P with P = {0, 2, 4,
5, 9, 10, 14, 15, 17}. We denote by P this set. Therefore in P we have 9 values (i.e.
p−1
2 values). For example, let assume that we want to compute 5 ∗ 9. We have:

5 ∗ 9 = 5
√

82 + 9
√

26 = 5
√

6 + 9
√

7. Now
√

6 can be 5 or 14, and
√

7 can be 8 or
11, so for 5 ∗ 9 we have 4 possibilities here. In order to see what the exact values
are for

√
6 and

√
7, we use the formula: ∀a ∈ P,

√
(2a2 + 1)2 = 2a2 + 1 (�). To

compute
√

6, we first solve the equation (2a2 +1)2 = 6. This gives 2a2 +1 = 5 or
14, thus 2a2 = 4 or 13. Since 2−1 = 10 (mod 19)), we obtain a2 = 40 or 130, i.e.
a2 = 2 or 16. This gives a = 4 or 15. Now, (�) with a = 4 (or 15) gives:

√
6 = 14.

Similarly, to compute
√

7 we first solve the equation (2a2+1)2 = 7. This gives
2a2 +1 = 11 or 8. Thus we have 2a2 = 10 or 17 and a2 = 5 or 13. Thus a = 9 or
10. Now (�) with a = 9 (or 10) gives:

√
7 = 11. Finally 5 ∗ 9 = 5

√
6 + 9

√
7 = 17.

All the values a ∗ b with a, b ∈ P can be computed in the same way. We obtain
like this the table below of the group (P, ∗) = P (Z/19Z).

2.4 A More General Context

Definition and Properties. The Domino Law can be defined also on P × P .
It is still associative (the proof is similar to the one given for R

2) (Table 1).

Proposition 2. Let (a, b) ∈ P × P , then (a, b) � (a, b) = (2ab, a2 + b2). If
(a, b)2� = (A,B), then A + B = (a + b)2.

More generally, ∀k ∈ N, if (a, b)k� = (A,B) then A + B = (a + b)k.

Proof. For k = 2, the computation is straightforwards. Then, the proof is done
by induction.

Corollary 2. Proposition 2 shows that computing logarithms in (P × P,�) is
equivalent to computing logarithms in (K, .)

Proof. The proof is obvious.

Commutativity, Associativity, and Public Key Cryptography 111

Table 1. P (Z/19Z)

∗ 0 2 4 5 9 10 14 15 17

0 0 2 4 5 9 10 14 15 17

2 2 17 5 10 14 4 15 9 0

4 4 5 9 14 2 15 17 0 10

5 5 10 14 15 17 9 0 2 4

9 9 14 2 17 5 0 10 4 15

10 10 4 15 9 0 14 2 17 5

14 14 15 17 0 10 2 4 5 9

15 15 9 0 2 4 17 5 10 14

17 17 0 10 4 15 5 9 14 2

Application to a ∗ b = a
√

1 + b2 + b
√

1 + a2

Proposition 3. We have: (a,
√

1 + a2) � (b,
√

1 + b2) =
(
a ∗ b,

√
1 + (a ∗ b)2

)
.

Hence ∀k, (a,
√

1 + a2)k� = (ak
∗,

√
1 + (ak∗)2)

Corollary 3. This proposition shows that computing logarithms in (P, ∗) is
equivalent to computing logarithms in (K, .).

Proof. We want to compute k such that ak
∗ = α (a and α are known). We first

choose β such that β2 = α2+1. Then, we want to find (a, b) satisfying b2 = a2+1
such that (a, b)k� = (A,B). Since α+β = (a+ b)k, this equation gives k by using
the discrete log.

Therefore the cryptographic scheme based on (P, ∗) is essentially similar to
the classical cryptographic scheme based on discrete logarithms on (K, .).

3 Associativity Based on the Hyperbolic Tangent

3.1 The General Case

In this section, we will use the tanh function to obtain associativity. This function
is a bijection from R to] − 1, 1[and we have the formula

tanh(a + b) =
tanh a + tanh b

1 + tanh a tanh b

Thus if we define on]−1, 1[the following law: a∗b = (a+b)(1+ab)−1 we obtain
a group since tanh is an isomorphism from (R,+) to (] − 1, 1[, ∗). Similarly, we
will work on finite fields. Let K be a finite field. We suppose that in K, −1 is not
a square. When we can perform the computation (i.e. when ab 	= −1), we define:

a ∗ b = (a + b)(1 + ab)−1

112 J. Patarin and V. Nachef

We have the following properties:

Proposition 4. 1. ∀a ∈ K, a ∗ 0 = a.
2. ∀a ∈ K \ {−1}, a ∗ 1 = 1 and ∀a ∈ K \ {1}, a ∗ (−a) = 0.
3. ∀a, b, ab 	= −1, (−a) ∗ (−b) = −(a ∗ b).
4. ∀a, b, c, (a ∗ b) ∗ c = a ∗ (b ∗ c) when the computation is possible, i.e. ∗ is

associative.

Proof. Properties 1, 2 and 3 are straightforward. We will prove that ∗ is asso-
ciative.

(a ∗ b) ∗ c = [(a + b)(1 + ab)−1 + c][1 + (a + b)(1 + ab)−1c]−1

We multiply by (1 + ab)(1 + ab)−1. This gives:

(a ∗ b) ∗ c = [((a + b)(1 + ab)−1 + c)(1 + ab)][(1 + (a + b)(1 + ab)−1c)(1 + ab)]−1

(a ∗ b) ∗ c = [a + b + c + abc][(1 + ab + bc + ac]−1

Similarly

a ∗ (b ∗ c) = [a + (b + c)(1 + bc)−1][1 + a(b + c)(1 + bc)−1]−1

Here we multiply by (1 + bc)(1 + bc)−1 and we obtain

a ∗ (b ∗ c) = [a + b + c + abc][(1 + ab + bc + ac]−1

Remark 4. There is an analog with the addition law of the speed in simple
relativity: v1+v2

1+
v1v2

c

. From this, it is also possible to justify associativity from
physical considerations.

3.2 A Toy Example

In Table 2, we give the example of the construction of a group denoted (Q(K), ∗)
when K = Z/19Z and ∗ is the law based on the tanh function. Here −1 is
not a square since 19 ≡ 3 (mod 4). We already know that 1 and 18 are not
elements of Q(K). When we do the computations, we obtain that for Q(K) =
{0, 2, 3, 4, 7, 12, 15, 16, 17}. We also have that Q(K) = 〈3〉.

3.3 Computing Log with ∗ (Analog of tanh)

We will now study the power for ∗ of an element of K. We will use the following
notation: ak

∗ = a ∗ a ∗ . . . ∗ a︸ ︷︷ ︸
k times

.

Proposition 5. Suppose that we can perform the computations (i.e. we never
obtain the value −1 during the computations). ∀a ∈ K, ∀k, ak

∗ = skt
−1
k with

sk = (1 + a)k − (1 − a)k and tk = (1 + a)k + (1 − a)k. Then sk + tk = 2(1 + a)k.

Commutativity, Associativity, and Public Key Cryptography 113

Table 2. (Q(Z/19Z), ∗)

∗ 0 2 3 4 7 12 15 16 17

0 0 2 3 4 7 12 15 16 17

2 2 16 17 7 12 15 3 4 0

3 3 17 12 2 16 4 7 0 15

4 4 7 2 15 3 17 0 12 16

7 7 12 16 3 17 0 2 15 4

12 12 15 4 17 0 2 16 3 7

15 15 3 7 0 2 16 4 17 12

16 16 4 0 12 15 3 17 7 2

17 17 0 15 16 4 7 12 2 3

Proof. We have a1
∗ = a ∗ 0. Then a2

∗ = a ∗ a = 2a(1 + a2)−1. Since s2 = 2a
and t2 = 2(1 + a2), we have a2

∗ = s1t
−1
2 . Suppose that ak−1

∗ = sk−1t
−1
k−1. Then

ak
∗ = a ∗ ak−1

∗ = (a + sk−1s
−1
k−1)(1 + ask−1sk−1)−1. We multiply this expression

by tk−1t
−1
k−1. We obtain that ak

∗ = sks
−1
k with sk = atk−1 + sk−1 and tk =

tk−1 + ask−1. Thus we can write:
[

sk
tk

]
=

[
1 a
a 1

] [
sk−1

tk−1

]

This gives: [
sk
tk

]
= Ak−1

[
s1
t1

]

with A =
[

1 a
a 1

]
. By diagonalizing the matrix A, we obtain that:

ak
∗ = skt

−1
k with sk = (1 + a)k − (1 − a)k and tk = (1 + a)k + (1 − a)k

Then we get uk + vk = (1 + a)k. This can also be proved by induction.

Corollary 4. If ak
∗ exists, then (−a)k∗ = −ak

∗.

Corollary 5. Let a ∈ K.

1. If there exists k(a) ∈ N
∗ such that ∀k < k(a), sk 	= 0, tk 	= 0 and sk(a) =

0, tk(a) 	= 0, then (〈a〉, ∗) is a group.
2. If there exists k′(a) ∈ N

∗ such that ∀k < k′(a), sk 	= 0, tk 	= 0 and tk′(a) = 0,
then a does not generate a group.

We recall the results obtained in Proposition 5: ∀a ∈ K, ∀k, ak
∗ = skt

−1
k with

sk = (1 + a)k − (1 − a)k and tk = (1 + a)k + (1 − a)k. Then sk + tk = 2(1 + a)k.
Let α = ak

∗. It is possible to compute k from α and a like this:

α = ak
∗ = skt

−1
k =

(1 + a)k − (1 − a)k

(1 + a)k + (1 − a)k

114 J. Patarin and V. Nachef

α =
1 −

(
1−a
1+a

)k

1 +
(

1−a
1+a

)k

Then we can find
(

1−a
1+a

)k

and finally we obtain k by using the discrete log. This
shows that computing logarithms for the ∗ law is essentially the same as for the
classical case. Therefore the cryptographic scheme based on this law ∗ (analog
to tanh) is again essentially similar to the classical cryptographic scheme based
on the discrete logarithm.

4 Widen the Range

As pointed out by Jérôme Plût to us, it seems that there is a little hope to
find “magic algebraic curves” that are more efficient than elliptic curves. In
particular, our curve b2 = a2 + 1 had little chance to be useful due to general
results on the classification of algebraic groups. For any abelian algebraic group,
there exist unique decompositions:

– 0 → G0 → G → π0(G) → 0 where G0 is connexe and π(G) is étale.
– 0 → L → G0 → A → 0 where A is an abelian variety and L is a linearizable

group.
– 0 → U → L → T → 0 where T is a torus, and U is unipotent.

The first and the third decompositions are rather simple. The second one is more
complicated and can be found in [1].

Therefore the only possibility to get more efficient systems is to use curves of
genus larger than 1 and varieties related to their Jacobians, which are accessible
to effective computation. But because of security reasons it is very doubtful that
one can use curves of genus larger than 3 (key word: index-calculus). As said
already in Remark 2, Theta functions lead to the very efficient Kummer surfaces
for g = 2.

Part II: Commutative Properties on the Functions

5 Chebyshev Polynomials

To generalize the Diffie-Hellman Algorithm by using (f ◦ g)(a) = (g ◦ f)(a), we
want:

– f and g to be one way
– f and g to be easy to compute
– f ◦ g = g ◦ f , i.e. commutativity.

Commutativity, Associativity, and Public Key Cryptography 115

The value a is typically between 80 and 2048 bits (as in Sect. 2). Ironically, here
(unlike in Part I) associativity is very easy, since ◦ is always associative, but
we want commutativity on f and g, and this is not easy to obtain. In part I,
we had a law ∗ on elements of G with about 160 bits, but here, we work with
functions f and g on G and we have more functions from G to G than elements
of G. Moreover ai

∗ = a ∗ a ∗ . . . ∗ a︸ ︷︷ ︸
i times

can be computed in O(ln i) with square and

multiply, while f i(a) = f [f . . . f(a))] would generally require O(i) computations
of f . An interesting idea is to use the Chebyshev polynomials (cf. [2,8,10–12,15]
for example). In [14], the structure of Chebyshev polynomials on Z/pZ is also
studied. However, as mentioned in some of these papers, and as we will see
below, public key schemes based on Chebyshev polynomials have often exactly
the same security than public key schemes based on monomials. We will present
here only a few properties.

Some Properties of Chebyshev Polynomials on R

The Chebyshev polynomials Tn can be defined as the polynomials such that:

cos nx = Tn(cos x) (1)

Since cos a + cos b = 2 cos(a+b
2) cos(a−b

2), we have: cos(n + 1)x + cos(n − 1)x =
2 cos x cos nx, and therefore we have:

Tn+1(X) = 2XTn(X) − Tn−1(X). (2)

For example, the first polynomials are: T0 = 1, T1 = X, T2 = 2X2 − 1,
T3 = 4X3 − 3X, T4 = 8X4 − 8X2 + 1. From 1, we can see that the Chebyshev
polynomials commute: (Tn(Tm(X)) = Tm(Tn(X)) since cos(nm)x = cos(mn)x.
Therefore, we can design analog of the Diffie-Hellman or RSA schemes by using
Chebyshev polynomials instead of the monomial transformation X �→ Xa. More-
over, from 2, we can write:

[
Tn(X)

Tn+1(X)

]
=

[
0 1

−1 2X

] [
Tn−1(X)
Tn(X)

]

and this gives
[

Tn(X)
Tn+1(X)

]
=

[
0 1

−1 2X

]n [
1
X

]
(3)

Now from 3 we can obtain:

Tn(X) = U ◦ Xn ◦ U−1 (4)

with U(X) = X+ 1
X

2 if X 	= 0 and U−1(X) = X +
√

X2 − 1 if X > 1. Therefore,

if |X| ≥ 1, Tn(X) = 1
2

((
X − √

X2 − 1
)n

+
(
X +

√
X2 − 1

)n)
. Property (4) is

very nice since it shows that we can compute Tn(X) about as fast as a Xn (and
we use an analog of the square and multiply algorithm), so we can compute

116 J. Patarin and V. Nachef

Tn(X) efficiently even when n has a few hundred or thousands of bits. However,
property 4 also shows that Tn(X) and Xn are essentially the same operation
since U and U−1 can be considered as public.

Properties of Chebyshev Polynomials on Other Spaces.
For cryptographic use, it has been suggested to use Chebyshev polynomials on
various spaces. In fact, it could be assumed that the analysis of Chebyshev
polynomials properties for cryptography would depend on the type of space
where the computations are done (finite fields with characteristic equal or not
equal to 2, computations modulo n with n prime or not prime, etc.). However,
most of the time, the above properties on real numbers suggest that public
key cryptography based on Chebyshev polynomials is essentially the same as
(classical) public key cryptography based on Xn (see [8,10–12,14,15] for details).

Remark 5. After our presentation at the NuTMiC conference (Warsaw 2017),
Gérard Maze pointed out to us that in his PhD Thesis (Chap. 6) [13], he had
also studied how to use Chebyshev polynomials for public key cryptography.
His conclusions were similar to ours, i.e. when the Chebyshev polynomials are
properly used, the resulting schemes are essentially the same as schemes based
on discrete log.

6 Commutativity with Other Polynomials

We first give the definition of a commutative family of polynomials.

Definition 4. Let (Qn) be a family of polynomials. We say that we have a family
of polynomials that commute if ∀n, ∀m, Qn ◦ Qm = Qm ◦ Qn.

If we look for infinite family of polynomials satisfying commutativity, the Block
and Thielman theorem [3] shows that we do not have many solutions. More
precisely:

Theorem 8 (Bloch and Thielman 1951). Let (Qn) be a polynomial of degree n.
If (Qn)n≥1 is a family of polynomials that commute, then there exists a polyno-
mial of degree 1, U , such that, either for all n, Qn = U ◦ Xn ◦ U−1 or for all n,
Qn = U ◦ Tn ◦ U−1, where Tn is the Chebyshev polynomial of degree n.

For cryptographic use, we may look for “sufficiently large” families of poly-
nomials that commute (instead of “infinite families”) but it seems difficult to
find new large families. Some suggestions are given in [13], but more possibilities
should exist and could be the subject of further work.

7 Conclusion

In this paper, we investigated several methods to construct algebraic generaliza-
tions of the Diffie-Hellman key exchange algorithm. However, after our analysis,

Commutativity, Associativity, and Public Key Cryptography 117

it appears that the proposed schemes are essentially equivalent to the classi-
cal ones. Nevertheless, the study showed that there are interesting connections
between associativity, commutativity and the construction of such algorithms.
We also explained that there is little hope to find “magic algebraic curves” more
efficient than elliptic curves and we suggested to study “large” but not infinite
families of polynomials that commute for further analysis.

Acknowledgment. The authors want to thank Jérôme Plût, Gerhard Frey and
Gérard Maze for very useful comments and particularly Gerhard Frey for his help
to improve the presentation of this paper. We have met Gerhard Frey and Gérard
Maze at NuTMiC 2017 in Poland.

References

1. Barsotti, I.: Un Teorema di structura per le variettà di gruppali. Rend. Acc. Naz.
Lincei 18, 43–50 (1955)

2. Bergamo, P., D’Arco, P., de Santis, A., Kocarev, L.: Security of Public Key Cryp-
tosystems based on Chebyshev Polynomials. arXiv:cs/0411030v1, 1 February 2008

3. Block, H.D., Thielman, H.P.: Commutative Polynomials. Quart. J. Math. Oxford
Ser. 2(2), 241–243 (1951)

4. Couveignes, J.M.: Hard Homogeneous Spaces. Cryptology ePrint archive:
2006/291: Listing for 2006

5. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

6. Frey17: Deep Theory, efficient algorithms and surprising applications. In: NuTMiC
(2017)

7. Gaudry, P., Lubicz, D.: The arithmetic of characteristic 2 Kummer surfaces and of
elliptic Kummer lines. Finite Fields Appl. 15(2), 246–260 (2009)

8. Hunziker, M., Machiavelo, A., Parl, J.: Chebyshev polynomials over finite fields
and reversibility of σ-automata on square grids. Theor. Comput. Sci. 320(2–3),
465–483 (2004)

9. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

10. Kocarev, L., Makraduli, J., Amato, P.: Public key encryption based on Chebyshev
polynomials. Circ. Syst. Sign. Process. 24(5), 497–517 (2005)

11. Li, Z., Cui, Y., Jin, Y., Xu, H.: Parameter selection in public key cryptosystem
based on Chebyshev polynomials over finite field. J. Commun. 6(5), 400–408 (2011)

12. Lima, J.B., Panario, D., Campello de Sousa, R.M.: Public-key cryptography based
on Chebyshev polynomials over G(q). Inf. Process. Lett. 111, 51–56 (2010)

13. Maze, G.: Algebraic Methods for Constructing One-Way Trapdoor Functions.
Ph.D. thesis - University oof Notre Dame (2003). http://user.math.uzh.ch/maze/

14. Rosen, J., Scherr, Z., Weiss, B., Zieve, M.: Chebyshev mappings over finite fields.
Amer. Math. Monthly 119, 151–155 (2012)

15. Sun, J., Zhao, G., Li, X.: An improved public key encryption algorithm based on
Chebyshev polynomials. TELKOMNIKA 11(2), 864–870 (2013)

http://arxiv.org/abs/cs/0411030v1
https://doi.org/10.1007/978-3-642-25405-5_2
http://user.math.uzh.ch/maze/

	Commutativity, Associativity, and Public Key Cryptography
	1 Introduction
	2 Associativity with a1+b2+b1+a2
	2.1 Associativity in (R,*)
	2.2 Application to Finite Fields: A New Group (P,*) for Cryptography
	2.3 A Toy Example for (P,*)
	2.4 A More General Context

	3 Associativity Based on the Hyperbolic Tangent
	3.1 The General Case
	3.2 A Toy Example
	3.3 Computing Log with * (Analog of tanh)

	4 Widen the Range
	5 Chebyshev Polynomials
	6 Commutativity with Other Polynomials
	7 Conclusion
	References

