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Abstract. In this paper we present a novel RSA-like cryptosystem.
Specifically, we define a novel product that arises from a cubic field con-
nected to the cubic Pell equation. We discuss some interesting proper-
ties and remarks about this product that can also be evaluated through
a generalization of the Rédei rational functions. We then exploit these
results to construct a novel RSA-like scheme that is more secure than
RSA in broadcast applications. Moreover, our scheme is robust against
the Wiener attack and against other kind of attacks that exploit the
knowledge of a linear relation occurring between two plaintexts.
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1 Introduction

RSA cryptosystem is one of the most famous public key scheme and is based
on the existence of an one-way trapdoor function, which is easy to compute and
difficult to invert without knowing some information. However, some attacks are
possible when, e.g., the private key is small [23] or the public key is small [5].
Further attacks have been reviewed in [11] exploiting possible extra information
(such as the knowledge of linear relations occurring between two plaintexts).
Moreover, RSA leaks some vulnerabilities in broadcast applications [9]. Hence,
during the years, RSA-like schemes (see, e.g., [2,6,13,15,17]) have been proposed
in order to overcome some of the previous vulnerabilities.

In this paper, we present a novel RSA-like scheme that is more secure than
RSA in some of the previous situations, like broadcast scenarios or consider-
ing the Wiener attack and others. Our scheme is based on a particular group
equipped with a non-standard product that we have found working on a cubic
field related to the cubic Pell equation (which is a generalization of the Pell equa-
tion, one of the most famous equations in number theory). This group appears to
have many interesting properties and connections that should be further inves-
tigated. In fact, we would like to point out that in this work we give a first idea
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about the potentiality of this group in cryptographic applications, with the aim
of providing an original point of view for exploiting number theory in cryptog-
raphy and opening new studies. Certainly, our scheme should be more investi-
gated under several perspectives, such as its efficiency. However, it appears very
promising due to the definition itself and the many properties and connections
to different topics.

The paper is structured as follows. In Sect. 2, we introduce a group with a
non-standard product starting from a cubic field. Section 3 is devoted to the
presentation of our cryptosystem and its discussion. Moreover, we see that pow-
ers with respect to our product can be evaluated by means of a generalization
of the Rédei rational functions (Rédei rational functions are classical and very
interesting functions in number theory). In Sect. 4 we present the conclusion.

2 A Product Related to the Cubic Pell Equation

The Pell equation x2 − dy2 = 1, for d positive integer non-square and x, y
unknowns, is one of the most famous Diophantine equations. Its generalization
to the cubic case is given by the following equation:

x3 + ry3 + r2z3 − 3rxyz = 1 (1)

where r is a given non-cubic integer and x, y, z unknown numbers whose values
we are seeking over the integers. This equation is considered the more natu-
ral generalization of the Pell equation, since it arises considering the unitary
elements of a cubic field as well as the Pell equation can be introduced consid-
ering unitary elements of a quadratic field. Specifically, let (F,+, ·) be a field
and t3 − r an irreducible polynomial in F[t]. Let us consider the quotient field
A = F[t]/(t3 − r) = {x + yt + zt2 : x, y, z ∈ F}. The quotient field A naturally
induces a product between triples of elements of F as follows:

(x1, y1, z1)•(x2, y2, z2) := (x1x2+(y2z1+y1z2)r, x2y1+x1y2+rz1z2, y1y2+x2z1+x1z2)

for (x1, y1, z1), (x2, y2, z2) ∈ F
3 and the norm of an element is given by

N(x, y, z) := x3 + ry3 + r2z3 − 3rxyz,

see, e.g., [1], p. 98. Considering the unitary elements we get the cubic Pell curve

C = {(x, y, z) ∈ F
3 : x3 + ry3 + r2z3 − 3rxyz = 1}.

In [4], Christofferson widely studied the more general equation

x3 + rb2y3 + r2bz3 − 3rbxyz = c,

whose the cubic Pell equation is a particular case for b = c = 1 and r not a cube,
providing also a complete bibliography up to 1956. It is worth noting that it is
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still lacking an algorithm for generating the solutions of such an equation (for
any value of r) similar to that for the quadratic Pell case (see, e.g., [1]).

Proposition 1. (C, •) is a commutative group with identity (1, 0, 0) and the
inverse of an element (x, y, z) is

(x̄, ȳ, z̄) := (−x + ryz, rz2 − xy, y2 − xz).

Proof. The proof is straightforward and is left to the reader.

Remark 1. In F
3 an element (x, y, z) is invertible with respect to • if and only

if N(x, y, z) �= 0 and its inverse is
(

x̄

N(x, y, z)
,

ȳ

N(x, y, z)
,

z̄

N(x, y, z)

)
.

Remark 2. When F = R, the cubic Pell curve C contains the solutions of the
cubic Pell equation.

Remark 3. The Pell equation can be introduced considering the unitary ele-
ments of R[t]/(t2 −d), d positive integer non-square, where the product between
elements is

(x1, y1)(x2, y2) = (x1x2 + dy1y2, x1y2 + y1x2).

Starting from A, we can introduce a new group with a non-standard product
having interesting properties that can be also exploited for creating a novel RSA-
like cryptosystem. Let us consider the quotient group B := A

∗/F∗. An element
in B is the equivalence class of elements in A

∗, i.e., [m + nt + pt2] ∈ B is the
equivalence class of m + nt + pt2 ∈ A

∗ defined by

[m + nt + pt2] := {λm + λnt + λpt2 : λ ∈ F
∗}.

We can now rewrite the elements of B. Given m + nt + pt2 ∈ A
∗, if m �= 0 and

n = p = 0, then
[m + nt + pt2] = [m] = [1F∗ ].

If n �= 0 and p = 0, then

[m + nt + pt2] = [m + nt] = [m + t].

Finally, if p �= 0, then

[m + nt + pt2] = [m + nt + t2].

Thus, the group B is

B = {[m + nt + t2] : m,n ∈ F} ∪ {[m + t] : m ∈ F} ∪ {[1F∗ ]}.
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Now, we can write the elements of B with a new notation. Fixed an element
α �∈ F, the elements of B can be written as couples of the kind (m,n), with
m,n ∈ F, or (m,α), with m ∈ F, or (α, α). Hence the group B is

B = (F × F) ∪ (F × {α}) ∪ ({α} × {α}).

With this new notation and remembering that A = F[x]/(t3 − r), we can obtain
a commutative product � in B, where (α, α) is the identity, having the following
rules:

– (m,α) � (p, α) = (mp,m + p)

– (m,n) � (p, α) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
mp + r

n + p
,
m + np

n + p

)
, if n + p �= 0

(
mp + r

m − n2
, α

)
, if n = −p,m − n2 �= 0

(α, α), otherwise

– (m,n)�(p, q)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
mp + (n + q)r
m + p + nq

,
np + mq + r

m + p + nq

)
, if m + p + nq �= 0

(
mp + (n + q)r
np + mq + r

, α

)
, if m + p + nq = 0, np + mq + r �=0

(α, α), otherwise

As a consequence, the following proposition holds.

Proposition 2. (B,�) is a commutative group with identity (α, α). The inverse
of an element (m,n), with m − n2 �= 0, is

(
nr−m2

m−n2 , r−mn
m−n2

)
. The inverse of

an element (m2,m) is (−m,α). Viceversa, the inverse of an element (m,α) is
(−m2,m).

Remark 4. When F = R, the element α can be viewed as ∞ and the points in
B of the kind (m,∞), (∞,∞) as points at infinity.

Furthermore, if we consider F = Zp where p is prime, then we have a field,
so B = A

∗/F∗ = Z
∗
p[t]/Z

∗
p is a field too. It is easy to notice that the point

0 = [0 : 0 : 0] /∈ B and we can consider the equivalence relation ∼ induced by
the action of Z∗

p on the set Z
∗
p[t] such that b1 ∼ b2 ⇐⇒ ∃λ ∈ Z

∗
p : b1 = λb2 and

now it is clear that B is a projective space.

Remark 5. If F is not a finite field, let us denote B as B0, B1 = B∗
0/F∗, Bn =

B∗
n−1/F

∗ and so ∀n , then we have Bn+1 ⊂ Bn and so we have a directed system,
in fact ∀n Bn ⊂ B0; moreover let us consider the family of maps {φn,n+1}n with
φn,n+1 : Bn+1 ↪→ Bn, where φn,n = idBn

, such that φn,n+1 ◦φn+1,m = φn,m and
φn,m : Bm ↪→ Bn. At this point it is clear that ({Bn}, φn,n+1) is a projective
system, hence we naturally consider the inverse limit lim←−Bi, that is equipped
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with a family of projection maps {pn}n such that the inverse limit has the
following universal property, showed by the commutative diagram

A
∗

∃!φ

��πn+1

��

πn

��

πn−1

��

lim←−Bi

pn+1

����
��
��
��
��
��

pn

��

pn−1

���
��

��
��

��
��

�

Bn+1
φn,n+1

�� Bn
φn−1,n

�� Bn−1

with πn ◦ p−1
n = idBn

Remark 6. We consider F as a topological field, so that C has the topology
induced as a subset of F3. The cubic Pell curve

C = {(x, y, z) ∈ F
3 : N(x, y, z) := x3 + ry3 + r2z3 − 3rxyz = 1},

endowed with the non standard product we have previously defined, can be
studied as a topological group. Indeed the group operation

C × C −→ C, ((x1, y1, z1), (x2, y2, z2)) �−→ (x1x2, y1y2, z1z2)

is a continuous mapping and the inversion map C −→ C, (x, y, z) �−→ (x̄, ȳ, z̄) is
likewise continuous, according to the fact that N(x, y, z) = 1. If F = R, then we
can consider C equipped with the Euclidean topology, otherwise if F = Zp, then
the discrete topology is the most natural topology we can put on it, but maybe
it is not the only one interesting, even if the only one that is T0.

3 A Public-Key Cryptosystem

3.1 The Scheme

When F = Zp (and fixing α = ∞), the situation is interesting for cryptographic
applications. Indeed, in this case we have A = GF (p3), i.e., A is the Galois field

of order p3. Thus, by construction, B is a cyclic group of order
p3 − 1
p − 1

= p2+p+1,

with respect to a well-defined product, and an analogous of the little Fermat’s
theorem holds:

(m,n)�p2+p+1 ≡ (∞,∞) (mod p), (2)

where the power is evaluated by using the product �, for any m ∈ Zp and
n ∈ Zp ∪ {∞}.



96 N. Murru and F. M. Saettone

Remark 7. It follows from (2) that

(m,n)�(p2+p+1)(q2+q+1) ≡ (∞,∞) (mod N),

where N = pq, for p and q prime numbers. This does not mean that, when B
is constructed over ZN , B is a group. In this case we only have an analogous of
the Euler’s theorem. In other words when we construct B over Zp (p prime) our
product � works like the standard product in Zp. Moreover, when we consider
B over ZN , our product � works like the standard product in ZN .

As a consequence we can construct a public-key cryptosystem similar to the RSA
scheme, but using our product �.

The following steps describe the keys generation:

– choose two prime numbers p, q
– compute N = pq
– choose an integer e such that (e, (p2 + p + 1)(q2 + q + 1)) = 1
– choose a non-cube integer r in Zp, Zq and ZN

– compute d such that ed ≡ 1 (mod (p2 + p + 1)(q2 + q + 1)).

The public encryption key is (N, e, r) and the secret decryption key is (p, q, d).
Given a pair of messages m1 and m2 in ZN , they can be encrypted by

(c1, c2) ≡ (m1,m2)�e (mod N).

The receiver can decrypt the messages evaluating

(c1, c2)�d (mod N).

3.2 Some Remarks

In the following, we discuss some peculiarities of our cryptosystem.
First, our scheme is more secure than RSA in broadcast scenarios, i.e., when

the plaintext is encrypted for different receivers using the same public exponent
and it is possible to recover the plaintext message by solving a set of congruences
of polynomials [9]. However, this attack can not be applied when the trapdoor
function is not a simple monomial power as in RSA [12]. Thus, this kind of
attacks fails in our scheme.

Another classical attack against the RSA scheme is the Wiener attack [23].
Said e and d the public and private exponents, respectively, in the RSA scheme
the following relation holds

ed − kϕ(N) = 1

for a certain integer k, where ϕ is the Euler totient function and N = pq (for
p and q prime numbers) is the modulo with respect to messages are encrypted
and decrypted. For large values of N the following bounds hold:

N − 3
√

N < ϕ(N) < N (3)
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The Wiener attack exploits properties of continued fractions. Indeed, thanks to
the previous inequalities, we have

|k
d

− e

N
| <

1
2d2

,

i.e., by Legendre theorem, d is the denominator of a convergent of the continued
fraction expansion of e

N and consequently the private exponent d can be recov-
ered. In our case, the role of ϕ(N) is substituted by (p2 +p+1)(q2 + q +1). This
leads to a less efficient evaluation of the decryption exponent, however in this
situation inequalities similar to (3) can not be found, making the Wiener attack
not usable against our scheme. Moreover, for the same reason, further attacks
exploiting continued fractions, reviewed in [7], fail in our case.

Remark 8. The private exponent d can be effectively recovered by using the
Wiener attack if it is less than N1/4, where N is the RSA-modulo. A typical size
of the RSA-modulo is 1024–bit. Thus, in this case, it is required that the size of
d must be at least 256 bits long in order to avoid the Wiener attack, but this is
unfortunate for low-power devices [3]. Using the proposed scheme, the dimension
of the private exponent could be less than 256 bits without being affected by the
Wiener attack.

Finally, our scheme appears to be robust against another class of attack
presented in [20] (see also [11], Sect. 3.1, for a review of the attack). We recall
this attack here for the reader. It is supposed that it is known a linear relation
between two plaintexts M1 and M2:

M2 = M1 + Δ

where Δ is known and C1 ≡ Me
1 (mod N), C2 ≡ Me

2 (mod N). In this case,
the attack can retrieve the plaintext messages evaluating the greatest common
divisor of the polynomials

xe − C1 (mod N), (x + Δ)e − C2 (mod N).

In our case, the situation is more complicated, since the exponentiation yields
rational functions and not polynomials. Moreover, in our case, we deal with
bivariate polynomials.

3.3 Evaluation of the Powers with Respect to � by Means
of Generalized Rédei Functions

The Rédei rational functions were introduced by Rédei in [21] from the devel-
opment of (z +

√
d)n, where z is an integer and d a non-square positive integer.

We can define the Rédei polynomials Nn(d, z) and Dn(d, z) as follows:

(z +
√

d)n = Nn(d, z) + Dn(d, z)
√

d, ∀n ≥ 0.
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The Rédei polynomials have the following closed form:

Nn(d, z) =
[n/2]∑
k=0

(
n

2k

)
dkzn−2k, Dn(d, z) =

[n/2]∑
k=0

(
n

2k + 1

)
dkzn−2k−1.

The Rédei rational functions are defined by

Qn(d, z) =
Nn(d, z)
Dn(d, z)

, ∀n ≥ 1

and can be also evaluated by means of powers of matrices. Indeed, we have(
z d
1 z

)n

=
(

Nn dDn

Dn Nn

)
,

see [8].
They are classical and interesting functions in number theory since, for

instance, they provide approximations of square roots, are permutations in finite
fields and Rédei polynomials belong to the class of the Dickson polynomials [14].
Moreover, they have been applied in several contexts, like the creation of a
cryptographic system based on the Dickson scheme [18] and the generation of
pseudorandom sequences [22].

Here, we see that the powers of elements in B can be evaluated by means of
a certain generalization to the cubic case of the Rédei functions.

Starting from the development of (z1 + z2 3
√

r + 3
√

r2)n, with z1, z2, r ∈ F

and r non-cube, we can introduce three sequences of polynomials An(r, z1, z2),
Bn(r, z1, z2), Cn(r, z1, z2) that generalize the Rédei polynomials. We define

(z1+z2
3
√

r+ 3
√

r2)n = An(r, z1, z2)+Bn(r, z1, z2) 3
√

r+Cn(r, z1, z2)
3
√

r2, ∀n ≥ 0.

Hence, the rational functions
An

Cn
and

Bn

Cn
, for n ≥ 1 can be considered a gener-

alization to the cubic case of the Rédei rational functions.

Remark 9. Let us observe that for introducing the generalized Rédei functions,
it is not necessary to work in a field. Indeed, the previous definition works even
in the case that z1, z2, r belongs to a commutative ring with identity. Indeed, the
original Rédei polynomials were introduced in Z. We have chosen to define the
generalized Rédei polynomials in the field F only for being consistent with the
notation used for introducing B as a group and not introducing new notation.

In the following proposition, we see that also the generalized Rédei polyno-
mials can be evaluated by means of a matricial approach.

Proposition 3. Let An(r, z1, z2), Bn(r, z1, z2), Cn(r, z1, z2) be the generalized
Rédei polynomials, then⎛

⎝z1 r rz2
z2 z1 r
1 z2 z1

⎞
⎠

n

=

⎛
⎝An rCn rBn

Bn An rCn

Cn Bn An

⎞
⎠ , ∀n ≥ 0
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Proof. In the following, for the seek of simplicity we omit the dependence on
r, z1, z2. We prove the thesis by induction on n.
Basis: for n = 0 we have A0 = 1, B0 = 0, C0 = 0 and (z1 + z2 3

√
r + 3

√
r2)0 = 1,

i.e., ⎛
⎝z1 r rz2

z2 z1 r
1 z2 z1

⎞
⎠

0

=

⎛
⎝A0 0 0

0 A0 0
0 0 A0

⎞
⎠ .

Similarly, it is straightforward to check the cases n = 1, 2.
Inductive step: we assume the statement holds for some natural number n − 1
and we prove that holds for n too. We have

⎛
⎝z1 r rz2

z2 z1 r
1 z2 z1

⎞
⎠

n

=

⎛
⎝z1 r rz2

z2 z1 r
1 z2 z1

⎞
⎠

n−1 ⎛
⎝z1 r rz2

z2 z1 r
1 z2 z1

⎞
⎠

=

⎛
⎝An−1 rCn−1 rBn−1

Bn−1 An−1 rCn−1

Cn−1 Bn−1 An−1

⎞
⎠

⎛
⎝z1 r rz2

z2 z1 r
1 z2 z1

⎞
⎠ .

Thus, we have to show that⎧⎪⎨
⎪⎩

An = z1An−1 + rz2Cn−1 + rBn−1

Bn = z1Bn−1 + z2An−1 + rCn−1

Cn = z1Cn−1 + z2Bn−1 + An−1

.

By definition of generalized Rédei polynomials, we have

(z1 + z2
3
√

r + 3
√

r2)n = An + Bn
3
√

r + Cn
3
√

r2.

On the other hand

(z1 + z2
3
√

r + 3
√

r2)n = (z1 + z2
3
√

r + 3
√

r2)n−1(z1 + z2
3
√

r + 3
√

r2)

= (An−1 + Bn−1
3
√

r + Cn−1
3
√

r2)(z1 + z2
3
√

r + 3
√

r2)

from which, expanding the last product, the thesis easily follows.

In the next proposition, we see that these functions can be used in order to
evaluate powers of elements (z1, z2) in B.

Proposition 4. Given (z1, z2)∈B and letAn(r, z1, z2), Bn(r, z1, z2), Cn(r, z1, z2)
be the generalized Rédei polynomials, we have

(z1, z2)�n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
An

Cn
,
Bn

Cn

)
, if Cn �= 0

(
An

Bn
, α

)
, if Bn �= 0, Cn = 0

(α, α), if Bn = Cn = 0

,

for n ≥ 1.
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Proof. By the previous proposition, we have
⎛
⎝An rCn rBn

Bn An rCn

Cn Bn An

⎞
⎠

⎛
⎝Am rCm rBm

Bm Am rCm

Cm Bm Am

⎞
⎠ =

⎛
⎝Am+n rCm+n rBm+n

Bm+n Am+n rCm+n

Cm+n Bm+n Am+n

⎞
⎠ ,

from which we get
⎧⎪⎨
⎪⎩

Am+n = AmAn + rBmCn + rBnCm

Bm+n = AmBn + AnBm + rCmCn

Cm+n = AmBn + BmBn + AnCm

.

Thus, if Cm, Cn �= 0 and Cm+n = AmBn + BmBn + AnCm �= 0, i.e., An

Cn
+ Am

Cm
+

BmBn

CnCm
�= 0 (that is the condition m+ p+nq �= 0 for the product (m,n)� (p, q)),

we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Am+n

Cm+n
=

An

Cn

Am

Cm
+ r

Bm

Cm
+ r

Bn

Cn

Am

Cm
+

Bn

Cn

Bm

Cm
+

An

Cn

Bm+n

Cm+n
=

Bn

Cn

Am

Cm
+

Bm

Cm

An

Cn
+ r

Am

Cm
+

Bn

Cn

Bm

Cm
+

An

Cn

and this is equivalent to say that
(

Am+n

Cm+n
,
Bm+n

Cm+n

)
=

(
An

Cn
,
Bn

Cn

)
�

(
Am

Cm
,
Bm

Cm

)
.

In the case that Bm+n �= 0 Cm+n = AmBn+BmBn+AnCm = 0, i.e., An

Cn
+ Am

Cm
+

BmBn

CnCm
= 0 (that is the condition m+ p+nq = 0 for the product (m,n)� (p, q)),

then we have (
Am+n

Bm+n
, α

)
=

(
Am

Cm
,
Bm

Cm

)
�

(
An

Cn
,
Bn

Cn

)
.

Now, considering that

(
A1

C1
,
B1

C1

)
= (z1, z2), the thesis follows.

When we consider elements of the kind (z, α) in B, the previous generalized
Rédei functions can not be applied for evaluating the powers. However, in the
following proposition, we see how these powers can be evaluated in a similar way.

Proposition 5. Given (z1, α) ∈ B and let Ān(r, z1), B̄n(r, z1), C̄n(r, z1) be
polynomials defined by

(z1 + 3
√

r)n = Ān(r, z1) + Ān(r, z1) 3
√

r + Ān(r, z1)
3
√

r2, ∀n ≥ 1.
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We have that

1.

⎛
⎝z1 0 r

1 z1 0
0 1 z1

⎞
⎠

n

=

⎛
⎝Ān C̄n rB̄n

B̄n Ān C̄n

C̄n B̄n Ān

⎞
⎠ , ∀n ≥ 0

2. (z1, α)�n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
Ān

C̄n
,
B̄n

C̄n

)
, if C̄n �= 0

(
Ān

B̄n
, α

)
, if B̄n �= 0, C̄n = 0

(α, α), if B̄n = C̄n = 0

Proof. The proofs are similar to proofs of Propositions 3 and 4 and are left to
the reader.

Remark 10. As we have already pointed out, the generalized Rédei functions
can be used for evaluating powers in B even in the case that we are working in
a ring and not in the field F. Let us note that in this case B is not a group but
the product is well-defined and the powers can be evaluated by Propositions 4
and 5. In this case conditions “�= 0” means “is invertible”.

4 Conclusion

In this paper, we have proposed a novel RSA-like scheme that is more secure
than RSA in broadcast applications and is not affected by the Wiener attack.
Moreover, it appears more robust than RSA with respect to other attacks that
exploit the knowledge of a linear relation occurring between two plaintexts. This
scheme has been developed by using a new group equipped with a non-standard
product whose powers can be evaluated by means of some generalized Rédei
functions. This group and its product have shown many interesting properties
and relations highlighting that they are worth investigating due to their per-
spectives. Certainly, in this work we have only given an idea of their use in
cryptographic applications, but the present scheme should be further discussed
and improved. In the following, we advise some further studies:

– In [16], the author exhibits an algorithm of complexity O(log2(n)) with
respect to addition, subtraction and multiplication to evaluate Rédei rational
functions over a ring. It will be interesting to study a similar algorithm in
order to obtain an efficient method for evaluating the generalized Rédei func-
tions introduced in this paper, so that the encryption cost of our algorithm
is equal to the encryption cost of the RSA scheme or less considering that in
our scheme we encrypt two messages at once.

– We conjecture that (B,�) and (C, •) are isomorphic. Proving this fact and
finding the isomorphism lead to important consequences. First, the isomor-
phism could be exploited in order to improve our scheme following the ideas
of RSA-like schemes based on isomorphism between two groups (see, e.g.,
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[12,19]). Moreover, in this way a method for generating the solutions of the
cubic Pell equation could be found (note that such a method is still missing
[1]). As a special case, we will also state that the number of solutions of the
cubic Pell equation in Zp is p2 + p + 1 (as numerical simulations appear to
confirm). One could try to show that B � C using the Short Five Lemma [10]:
if in the following diagram we have two exact sequences, that is ker g = Imf
and ker k = Imh, whew both k and g are surjections and both h and f are
injections, under the hypothesis that two of the down arrows are isomorphism,
then the last down arrow is an isomorphism too.

0 �� B

�
��

f �� Zp[t]/(β(t))

id

��

g �� A

id

��

�� 0

0 �� C
h

�� Zp[t]/(β(t))
k

�� A �� 0

So our goal is to find an appropriate (β(t)) and the maps previously intro-
duced, with particular attention to the degree of the polynomial (β(t)). For
now, we were only able to find the following morphism

ε :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

B → C

(m, n) �→
(

m3 + 6mnr + n3r + r2

m3 + rn3 + r2 − 3rmn
,

3(m2n + mr + n2r)

m3 + rn3 + r2 − 3rmn
,

3(m2 + mn2 + nr)

m3 + rn3 + r2 − 3rmn

)

(m, α) �→
(

1,
3m2

m3 + r
,

3m

m3 + r

)

(α, α) �→ (1, 0, 0)

Moreover, let us recall that Zp has non-cubic residues only when p ≡ 1
(mod 3), and consequently 3 divides p2 + p + 1. Thus, when we consider
F = Zp, we are able to construct the group B only for the prime numbers p
such that p2 + p + 1 is divisible by 3. Then we have observed that we have
|Imε| = |B|

3 .
– The scheme should be studied from a computational point of view, in order to

give more precise and effective results about its efficiency and security. In this
paper, we have only investigated some improvements regarding the security
from a theoretical point of view.
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