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Preface

The First Number-Theoretic Methods in Cryptology (NuTMiC) Conference was held at
the University of Warsaw, Poland, during September 11–13, 2017. The aim of the
conference is to cross-pollinate number theory and cryptology. Besides the
well-established connections between the two domains such as primality testing, fac-
torization, elliptic curves, lattices (to mention a few), the conference endeavors to forge
new ones that would encompass number theory structures and algorithms that have
never been used in cryptology before. It is expected that these new connections will
lead to novel, more efficient and secure cryptographic systems and protocols (such as
one-way functions, pseudorandom number generators, encryption algorithms, digital
signatures, etc.). The conference topics include lattice-based cryptography, elliptic
curves and bilinear-based cryptography, L-functions with applications to cryptology,
large sieve methods in cryptography and exponential sums over finite fields and ran-
domness extractors.

We received 32 submissions. The review process was conducted in two phases. In
the first, the papers were lightly reviewed with emphasis on helpful comments and
feedback. There were 21 papers that were chosen for conference presentation. The final
papers were collected after the conference for these proceedings. The papers and were
subject to a rigorous review. The proceedings include 15 peer-reviewed papers and
three invited talks.

We would like to thank the Program Committee members and the external reviewers
for their time and effort. We also thank the local organizers who made the conference a
success. In particular, Marek Janiszewski, Aleksandra Dolot, Daniel Waszkiewicz, and
Marcin Tunia took care of the conference website, helped us with EasyChair, and
manned the conference desk. Bartosz Źrałek helped us with e-mail communication and
financial overview. We would like to express our appreciation to Springer for their
support and help in the production of the conference proceedings. We thank the
EasyChair team for letting us use the server.

Last but not least, we highly appreciate the support the conference received from the
Faculty of Mathematics, Informatics, and Mechanics of the University of Warsaw
(MIMUW) and Warsaw Center of Mathematics and Computer Science (WCMCS). In
particular, the Dean of MIMUW, Professor Paweł Strzelecki, welcomed the partici-
pants and hosted the conference in his department facilities. Professor Krzysztof
Barański, Director of the Institute of Mathematics, and Professor Anna Zdunik,
Chair WCMCS MIMUW, supported the conference financially. We gladly acknowl-
edge the continuous assistance of the university administration units: financial, inter-
national collaboration, and audiovisual/technical services.

December 2017 Jerzy Kaczorowski
Josef Pieprzyk

Jacek Pomykała
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Arithmetic Geometry: Deep Theory, Efficient
Algorithms and Surprising Applications

Gerhard Frey

University of Duisburg-Essen

One of the most astonishing success stories in recent mathematics is arithmetic
geometry, which unifies methods from classical number theory with algebraic geom-
etry (“schemes”). In particular, an the extremely important role is played by the Galois
groups of base schemes like rings of integers of number fields or rings of holomorphic
functions of curves over finite fields. These groups are the algebraic analogues of
topological fundamental groups, and their representations induced by the action on
divisor class groups of varieties over these domains yielded spectacular results like
Serre’s Conjecture for two-dimensional representations of the Galois group of Q,
which implies for example the modularity of elliptic curves over Q and so Fermat’s
Last Theorem (and much more).

At the same time the algorithmic aspect of arithmetical objects like lattices and
ideal class groups of global fields became more and more important and accessible,
stimulated by and stimulating the advances in theory. An outstanding result is the
theorem of F. Heß and C.Diem yielding that the addition in divisor class groups of
curves of genus g over finite fields Fq is (probabilistically) of polynomial complexity in
g (fixed) and logðqÞ (g fixed). So one could hope to use such groups for public key
cryptography, e.g. for key exchange, as established by Diffie-Hellman for the multi-
plicative group of finite fields.

The obtained insights play not only a constructive role but also a destructive role
for the security of such systems. Algorithms for fast scalar multiplication and point
counting (e.g. the algorithm of Schoof-Atkin-Elkies) make it possible to find divisor
class groups in cryptographically relevant ranges but, at the same time, yield algorithms
for the computation of discrete logarithms that are in many cases “too fast” for security.
The good news is that there is a narrow but not empty range of candidates usable for
public key cryptography and secure against all known attacks based on conventional
computer algorithms: carefully chosen curves of genus 1 (elliptic curves) and hyper-
elliptic curves of genus � 3 over prime fields.

In the lecture we gave an overview on the methods and results for the rather
satisfying situation of elliptic and hyperelliptic cryptography–as long as we restrict the
algorithms to classical bit-operations. But the possibility of the existence of quantum
computers in a not too far future forces to look for alternatives.

Therefore we formulated a rather abstract setting for Diffie-Hellman key exchange
schemes using (closely related) categories for the exchange partners, for which
push-outs exist and are computable. The DL-systems with cyclic groups are the easiest
realizations (and by Shor’s algorithm cracked in polynomial time), the next level are
G-sets (G a semi group) with a commutativity condition. If G is abelian (e.g. equal to N)



then an algorithm of Kuperberg for the hidden shift problem with subexponential
complexity can be applied, for general groups no such algorithm is known (but the
commutation condition is difficult to realize).

Using fundamental results of M. Deuring about isogenies of elliptic curves we
described the system of Couveignes-Stolbunov for key exchange using the isogeny
graph of ordinary elliptic curves with endomorphism ring O, which is a G-set with
G ¼ PicðOÞ and so only of subexponential security under quantum computing, and the
system of De Feo using supersingular elliptic curves (and nicely fitting into our cate-
gorical frame) for which no non-exponential quantum computer attack is known till now.

XIV G. Frey



A Babystep-Giantstep Method for Faster
Deterministic Integer Factorization

Markus Hittmeir

University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg
markus.hittmeir@sbg.ac.at

We consider the problem of computing the prime factorization of integers. In practice,
a large variety of probabilistic and heuristic methods is used for this task. However,
none of these algorithms is efficient and the problem itself is assumed to be compu-
tationally hard. The difficulty of factoring large numbers is fundamental for the security
of several cryptographical systems, one of which is the public-key scheme RSA.

A more theoretical aspect of integer factorization concerns deterministic algorithms
and the rigorous analysis of their runtime complexities. In the years from 1974 to 1977,
Pollard and Strassen developed such a method and proved that it runs in time eOðN1=4Þ.
Since the seventies, the logarithmic factors in the bound have been refined and other
deterministic algorithms running in eOðN1=3Þ have been found. However, the bound
eOðN1=4Þ has been state of the art for the last forty years.

In this paper, we obtain an improvement by a superpolynomial factor. The runtime
complexity of our algorithm is of the form

eO N1=4 expð�C logN= log logNÞ
� �

:

To describe our approach, we consider the case N ¼ pq, where p and q are
unknown prime factors and p\q. We will employ a refined babystep-giantstep method
to solve the discrete logarithm problem aX � aNþ 1 mod N for a certain a 2 Z coprime
to N. The purpose of this procedure is to determine S :¼ pþ q. Knowing S allows us to
factor N immediately.

Let D�N1=2 be a parameter. The scheme for our main algorithm is as follows:

1. Use the Pollard-Strassen approach to search for p in the interval ½1;D�. If p is found,
stop. If p is not found, go to Step 2.

2. Use D\p\N1=2 to find S :¼ pþ q, the sum of the prime factors of N.
3. Knowing N and S, compute p and q.

To speed up the application of the babystep-giantstep method in Step 2 and to
optimize the value for D, we will consider so called modular hyperbolasHN;m. They are
defined as the sets of solutions ðx; yÞ to the congruence equation N � xymod m. Clearly,
the corresponding set LN;m consisting of the elements xþ ymod m for ðx; yÞ 2 HN;m

contains the residue of Smodulom. If r is prime, than the cardinality ofLN;r is about half



of the possible residue classes modulo r. Considering all primes up to a suitable bound
B, we deduce significant information about S. For example, let N ¼ 3823 � 2069 and
m ¼ 2 � 3 � 5 � 7 � 11. Then LN;m contains only 40 elements. As a result, the residue of S
modulo m is restricted to 40=2310 ¼ 1:7% of all residue classes modulo m. The
information obtained by this idea yields the main contribution to our improvement.

XVI M. Hittmeir



A Crossbred Algorithm for Solving Boolean
Polynomial Systems

Antoine Joux1 and Vanessa Vitse2

1 Chaire de Cryptologie de la Fondation de l’UPMC, Sorbonne Universités,
UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, Paris, France

antoine.joux@m4x.org
2 Institut Fourier, Université Grenoble-Alpes, Grenoble, France

vanessa.vitse@univ-grenoble-alpes.fr

Abstract. We consider the problem of solving multivariate systems of Boolean
polynomial equations: starting from a system of m polynomials of degree at
most d in n variables, we want to find its solutions over F2. Except for d ¼ 1,
the problem is known to be NP-hard, and its hardness has been used to create
public cryptosystems; this motivates the search for faster algorithms to solve this
problem. After reviewing the state of the art, we describe a new algorithm and
show that it outperforms previously known methods in a wide range of relevant
parameters. In particular, the first named author has been able to solve all the
Fukuoka Type I MQ challenges, culminating with the resolution of a system of
148 quadratic equations in 74 variables in less than a day (and with a lot of luck).
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A Crossbred Algorithm for Solving
Boolean Polynomial Systems

Antoine Joux1(B) and Vanessa Vitse2

1 Chaire de Cryptologie de la Fondation de l’UPMC, Sorbonne Universités,
UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, Paris, France

antoine.joux@m4x.org
2 Institut Fourier, Université Grenoble-Alpes, Grenoble, France

vanessa.vitse@univ-grenoble-alpes.fr

Abstract. We consider the problem of solving multivariate systems of
Boolean polynomial equations: starting from a system of m polynomials
of degree at most d in n variables, we want to find its solutions over F2.
Except for d = 1, the problem is known to be NP-hard, and its hardness
has been used to create public cryptosystems; this motivates the search
for faster algorithms to solve this problem. After reviewing the state
of the art, we describe a new algorithm and show that it outperforms
previously known methods in a wide range of relevant parameters. In
particular, the first named author has been able to solve all the Fukuoka
Type I MQ challenges, culminating with the resolution of a system of
148 quadratic equations in 74 variables in less than a day (and with a
lot of luck).

Keywords: Multivariate polynomial systems · Gröbner basis · XL
Multivariate cryptography · Algebraic cryptanalysis

1 Introduction

The resolution of systems of polynomial equations is a fundamental mathemat-
ical tool with numerous applications. It is well known that solving systems of
multivariate equations is NP-hard in general, but it does not preclude from seek-
ing the most efficient algorithms; besides, systems coming from applications are
often easier to solve than predicted by the worst-case complexity. In this paper,
we mostly focus on random instances which is presumably the hardest case.

Actually, there is a subtlety in the signification of “solving”. Usually, it means
finding all solutions of a given system, i.e. all tuples (x1, . . . , xn) ∈ Kn satisfying

⎧
⎪⎪⎨

⎪⎪⎩

f1(x1, . . . , xn) = 0
...

fm(x1, . . . , xn) = 0

c© Springer International Publishing AG, part of Springer Nature 2018
J. Kaczorowski et al. (Eds.): NuTMiC 2017, LNCS 10737, pp. 3–21, 2018.
https://doi.org/10.1007/978-3-319-76620-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76620-1_1&domain=pdf


4 A. Joux and V. Vitse

where f1, . . . , fm are elements of K[X1, . . . , Xn]. This is mostly fine if the system
has a finite number of solutions, or more precisely is zero-dimensional. Mostly
because this approach ignores the solutions that may exist in a field extension
or at infinity, and also because the solution set may be too large to be prac-
tically listed. In this latter case, or if the solution set has positive dimension,
the alternative is to find a practical description of the corresponding algebraic
variety, and Gröbner bases usually fill that role. Note that, in many applications,
including cryptographic ones, it can be sufficient to find a single solution of a
system. We also consider this weaker form of solving.

In this article, we focus on systems of quadratic (i.e. total degree 2) equa-
tions, as it is the simplest case beyond the polynomially-solvable linear case. The
method we propose can also be applied to systems with a higher degree, but of
course the complexity quickly grows with the degree. Note that there exists a
general method to transform a system of arbitrary high degree equations into
an equivalent quadratic system. This is done by introducing new variables to
encode high degree monomials and new equations relating them. Due to the
large number of new variables, combining this approach with the resolution of a
quadratic system is usually very unefficient.

More importantly, our work focuses on the Boolean case, i.e. we are looking
for solutions in F

n
2 of systems of quadratic polynomials with coefficients in the

field with two elements F2. This is relevant for applications in computer science,
in coding theory and cryptography (see for instance [7,16,20]); furthermore, any
polynomial system defined over a binary field F2d can be translated using Weil
descent as a system over F2. The Boolean case has two important implications:

– Since we are looking for solutions defined over F2 and not an extension, we
can add the field equations x2

i + xi = 0 to the system. Equivalently, we can
work in the Boolean polynomial ring B[X1, . . . , Xn] = F2[X1, . . . , Xn]/(X2

1 +
X1, . . . , X

2
n +Xn), where the equations become simpler since no variable may

occur with (individual) degree equal to 2 or more.
– In small finite fields, exhaustive search becomes a viable option. This is obvi-

ously true for F2, but also in a lesser extent for other small finite fields such as
F3 or F5. Our new algorithm, as most current algorithms for solving Boolean
systems, partly relies on exhaustive search.

Despite this, Boolean quadratic systems still capture the NP-hardness of
polynomial solving. In fact, because the 3-SAT problem can be reduced to the
resolution of such systems [12], the existence of an algorithm with worst-case
subexponential complexity would refute the Exponential Time Hypothesis [15],
a conjecture in complexity theory, generalizing P �= NP and widely believed to
be true.

For the analysis of our algorithm, we will consider systems of random equa-
tions, i.e. where the monomial coefficients are chosen independently and uni-
formly in {0, 1}. The behaviour of such systems differs according to the relative
values of m and n [13]. If m < n (there are more unknowns than equations), the
system is underdetermined and admits on average O(2n−m) solutions. If m = n,
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the system is determined, and has at least one solution with a probability con-
verging to 1−1/e has n grows to infinity. If m > n (there are more equations than
unknowns) the system is overdetermined and has no solution with overwhelming
probability.

But in practical applications such as cryptography, the polynomial systems,
even when overdetermined, always have at least one solution. For this reason,
we also consider random consistent systems, i.e. chosen uniformly from the set
of systems of m quadratic Boolean polynomials in n variables with at least one
solution in F

n
2 . Then when m is larger than n, this forced solution is unique with

overwhelming probability.

2 State of the Art

2.1 Under- and Overdetermined Systems

Extremely overdetermined (m > n(n+1)/2) or underdetermined (n > m(m+1))
random Boolean quadratic systems can be solved in polynomial time. The first
case simply requires Gaussian elimination on the equations and can be seen as
a particular instance of the general approach presented in Sect. 2.4. The second
case was solved by Kipnis et al. in [16]. At PKC 2012, Thomae and Wolf [21] have
generalized the algorithm of Kipnis-Patarin-Goubin to other underdetermined
systems, and their complexity interpolates between polynomial for n > m(m+1)
and exponential for n close to m.

Beyond these two extremes, the m = n case is essentially the hardest. For
m > n, the additional information given by the extra equations can simplify the
problem. And when n > m, it is always possible to specialize n − m variables
(i.e. set them to arbitrary values) and get back to the case of as many equations
as unknowns – at least, if we only seek a single solution which it usually the case
for such underdetermined systems.

2.2 Exhaustive Search

Obviously, since there are 2n possible values to instantiate n variables in F2,
it is possible to evaluate the m polynomials for all values in order to find all
solutions. At first glance, this costs m · 2n evaluations of a degree d polynomial.
However, this first estimation is too pessimistic. Optimizing the 2n evaluations
is quite subtle, but Bouillaguet et al. proposed in [3] a faster method that relies
on the remark that if we know the evaluation of a polynomial at one point and
only change the value of one variable, the evaluation at the new point can be
computed faster. Their idea is based on the use of partial derivatives of the
polynomials. Combined with the use of Gray codes and other techniques, it
allows to find all solutions of a system of m Boolean quadratic equations in
n variables in O(ln(n)2n) elementary operations. Remarkably, this complexity
does not depend of m; but obviously if only one solution is needed the search
will finish faster for smaller m since there are more solutions then. This fast
exhaustive search algorithm is implemented in the libFES library (http://www.
lifl.fr/∼bouillag/fes/) and holds several resolution records.

http://www.lifl.fr/~bouillag/fes/
http://www.lifl.fr/~bouillag/fes/
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2.3 A Provable Method Faster than Exhaustive Search

Recently, Lokshtanov et al. [18] proposed a probabilistic method that outper-
forms exhaustive search asymptotically. Their idea stems from the following
observation: (x1, . . . , xn) ∈ F

n
2 is a solution of the polynomial system generated

by f1, . . . , fm if and only if y = (xk+1, . . . , xn) is a solution of the equation

∏

a∈F
k
2

(1 −
m∏

i=1

(1 − fi(a, y))) = 0.

Instead of working with this unwieldly polynomial, they consider its probabilistic
counterpart

R(y) =
∑

a∈F
k
2

ta

l∏

i=1

(1 −
m∑

j=1

saijfj(a, y))

where saij and ta are chosen independently and uniformly in F2 and l ≤ m is a
parameter. If y is the last part of a solution, then R(y) is uniformly distributed
in F2, but otherwise R(y) = 0 with a probability greater than (1 − 2−l)2

k

. By
performing several complete evaluations of R on all its 2n−k input values of y, for
varying coefficients saij , ta, it is possible to recover with high probability the last
part of all the solutions of the system. Overall, the complexity is in Õ(20.8765n),
faster than the brute force approach.

As far as we know, this method as not been implemented and it seems unlikely
that it outperforms exhaustive search in the range of systems which can be solved
with current computer. However, it is remarkable that it asymptotically beats
brute force without relying on any heuristic hypothesis concerning the given
system. An unfortunate consequence is that the method cannot take advantage
of a large value of m compared to n, since it would necessarily requires some
hypothesis of “independence” between the equations. Indeed, if we don’t care
about independence, it is easy to add extra equations by taking linear combina-
tions of the initial ones. As a final remark, one should note that the algorithm
of Lokshtanov et al. makes the assumption that the number of solutions of the
system is smaller than 20.8765n, since otherwise, it would not be possible to list
all of them in the indicated complexity.

2.4 Algebraic Methods

Algebraic methods consider systems of polynomial equations by looking at the
ideals they generate and try to solve them by finding a good representation of
the corresponding ideal. More precisely, let F = {f1, . . . , fm} be a family of
elements in a multivariate polynomial ring K[X1, . . . , Xn] and form the ideal
I = 〈f1, . . . , fm〉 generated by the family F . By definition, I is the following set
of polynomials:

I =

{
m∑

i=1

pifi | (p1, . . . , pm) ∈ K[X1, . . . , Xn]m
}

.
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Thus, for any element f of the ideal I, there exist polynomials p1, . . . , pm such
that f =

∑m
i=1 pifi; in other words, there exists an integer D = max{deg pi :

1 ≤ i ≤ m} such that f belongs to the vector space

VF,D = SpanK {ufi| i ∈ [1;m];u a monomial with deg u ≤ D − deg fi} .

Macaulay matrices. T he above observation implies that relevant information
on the ideal I can be obtained by studying these vector spaces and motivates
the following definition.

Definition 1. For any integer k, let Tk be the set of monomials of
K[X1, . . . , Xn] of degree smaller than or equal to k. The degree D Macaulay
matrix of F , denoted by MacD(F), is the matrix with coefficients in K
whose columns are indexed by TD, whose lines are indexed by the set{
(u, fi)

∣
∣i ∈ [1;m];u ∈ TD−deg(fi)

}
, and whose coefficients are those of the prod-

ucts ufi in the basis TD.

Macaulay matrices can be thought as multivariate analogs of the classical
Sylvester matrix. Lazard first showed in [17] that they can be used to compute
Gröbner bases: for any monomial order �, there exists a degree D such that if
the columns of MacD(F) are sorted according to �, the rows of its reduced eche-
lon form contains the coefficients of a Gröbner basis of I. This idea of expressing
many multiples of a family of polynomials in matrix form and reducing the result-
ing matrices is at the heart of most current algorithms for computing Gröbner
bases, such as F4, F5, XL and their many variants [6,9,10].

When K is equal to F2, we usually want to add the field equations X2
i =

Xi for all i ∈ [1;m]. As stated before, it is more efficient to work directly in
the quotient algebra B[X1, . . . , Xn] = F2[X1, . . . , Xn]/(X2

1 + X1, . . . , X
2
n + Xn)

(B stands for Boolean). The definition can be adapted by requiring that every
monomial (either in Tk or in the products ufi) has degree strictly smaller than 2
in each variable. Of course, we can proceed in a similar way when working over
Fq with q small.

In many situations, the system f1 = · · · = fm = 0 is overdetermined and
so has none or very few solutions. This implies that the ideal I = 〈f1, . . . , fm〉
will contain 1 (if there is no solution) or linear polynomials, from which it is
easy to deduce the solutions. Again, such low degree equations can be obtained
by reducing the Macaulay matrix MacD(F), with its columns sorted by total
degree, for some degree D. The smallest such integer D is called the degree of
regularity of the system and denoted by Dreg. (Note that this only one out of
many other definitions of Dreg.)

With this approach, solving an overdetermined system of Boolean quadratic
polynomials amounts to computing the row echelon form of a large matrix, for
a total cost in

Õ

((
n

Dreg

)ω)

,

where ω is the exponent of matrix multiplication (smallest known value is
ω = 2.373; in practice ω = 2.807 with Strassen algorithm). But this Macaulay
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matrix is extremely sparse: by design, it has at most 1 + n(n + 1)/2 non zero
coefficients per row, which is negligible compared to its number of columns when
n goes to infinity (as soon as D > 2, of course). This suggests that instead of
Gaussian elimination, sparse linear algebra techniques such as block Lanczös
algorithm [19] or block Wiedemann algorithm [22] could be used. Indeed, it is
possible to probabilistically test the consistency of a Boolean quadratic system in
Õ

((
n

Dreg

)2
)

and to find a (small number of) solution(s) if any exists. It remains
an open problem to find all solutions with the same complexity, when there are
many.

However, determining the degree of regularity is not straightforward,
although a practical option is to reduce several Macaulay matrices in increasing
degrees until enough linear polynomials have been found. Asymptotic estimates
exist for an important class of systems, called “semi-regular”; heuristic argu-
ments and experimental evidence suggest that random systems fall in this class
with overwhelming probability. In this case, Bardet et al. showed in [2] that if
m ∼ αn (α ≥ 1 fixed), as n goes to infinity, then Dreg ∼ M(α)n where M(α)
is an explicit decreasing function of α. In particular for α = 1, with ω = 2 this
yields an asymptotic complexity of Õ(20.8728n), faster than exhaustive search
and even than Lokshtanov et al. But this complexity is conditional to the semi-
regularity of the system: it is conjectured to hold with probability converging
to 1 as n grows, but exceptional systems may be harder to solve with this tech-
nique. By contrast, the complexity of the methods of Sects. 2.2 and 2.3 does not
rely on any assumption.

In practice, computing the row echelon form of the Dreg Macaulay matrix of
f1, . . . , fm is too costly to be efficient. In particular, for the Boolean case, it has
been estimated (see [3]) that these methods would not outperform exhaustive
search for any value of n smaller than 200. Nevertheless, algebraic algorithms
have proven themselves to be very efficient on specific systems with extra alge-
braic properties which imply a low degree of regularity. A striking example is
given by systems arising in the Hidden Field Equations cryptosystem [20]. In
this case, a consequence of the presence of a hidden backdoor is a degree of
regularity smaller than expected [8,14], leading to devastating attacks [11].

The FXL and BooleanSolve hybrid Algorithms. Lazard’s resolution
method [17] was rediscovered as the XL algorithm fifteen years later by Courtois
et al. in [6]. This last paper also introduced a variant called FXL, which combines
exhaustive search with linear algebra on a Macaulay matrix and improves on
the above algebraic technique. It takes as input the family F = {f1, . . . , fm} ⊂
B[X1, . . . , Xn] of Boolean polynomials, a parameter k ≤ n and proceeds as
follows:

1. For each a = (ak+1, . . . , an) ∈ F
n−k
2 , compute the specialized polynomials

f1,a, . . . , fm,a where fi,a = fi(X1, . . . , Xk, ak+1, . . . , an) ∈ B[X1, . . . , Xk].
2. Using the Macaulay matrix of f1,a, . . . , fm,a in degree Dreg, check if the

specialized system f1,a = · · · = fm,a = 0 admits a solution. If no,
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continue with the next value of a ∈ F
n−k
2 ; otherwise, find the solution

(x1, . . . , xk, ak+1, . . . , an) using e.g. exhaustive search on x1, . . . , xk.

A first complexity analysis of FXL was given in [23,24]. Specializing the
equations allows to dramatically reduce the size of the Macaulay matrices, not
only because the number of variables diminishes, but also because the degree
of regularity decreases as the ratio between the number of equations and the
number of variables goes up. Of course, it induces a factor 2n−k in the complexity,
corresponding to the number of times the second step has to be executed.

In this second step, for most values of a the specialized system will have no
solution, meaning that 1 is in the ideal. As discussed above, it is possible to
take advantage of the sparsity of the Macaulay matrix in testing this property;
this was done in [4]. Indeed, the full row echelon form of the matrix is not
needed; one just has to test whether a constant polynomial can be found in
the Macaulay matrix, using for instance a probabilistic method based on block
Lanczös algorithm.

Bardet et al. give a thorough analysis of this hybrid approach (renamed
BooleanSolve algorithm) in [1]. Under the assumption that the specialized sys-
tems still behave like random ones—more precisely, that they remain semi-
regular (“strong semi-regularity”)—it is possible to derive a complexity esti-
mate. In the case m ∼ αn (α ≥ 1 fixed and n going to infinity), for α < 1.82 the
asymptotically best choice is k ≈ 0.55αn, for a complexity in Õ(2(1−0.208α)n).
In particular, for α = 1 this yields a (conditional) complexity of Õ(20.792n). For
α ≥ 1.82 the asymptotically best choice is k = n, i.e. no variables are specialized:
the system is too overdetermined for the algorithm, and it does not improve on
the standard reduction of the full Macaulay matrix.

3 Our Crossbred Algorithm

3.1 General Principle

In the FXL/BooleanSolve algorithm, the most costly step is the linear algebra
of the Macaulay matrix, which is performed 2n−k times. In order to avoid this
problem, we propose a new method that performs the specialization step on n−k
variables after working with the Macaulay matrix.

Basic idea. A first idea is to construct a degree D Macaulay matrix, sort its
columns in lexicographical order, then compute the last rows of its row echelon
form. This allows to generate degree D equations in which k variables have been
eliminated, and this resulting system can then be solved using exhaustive search
on n − k variables. As a toy example, we can consider the following system:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1X3 + X2X4 + X1 + X3 + X4 = 0
X2X3 + X1X4 + X3X4 + X1 + X2 + X4 = 0
X2X4 + X3X4 + X1 + X3 + 1 = 0
X1X2 + X1X3 + X2X3 + X3 + X4 + 1 = 0
X1X2 + X2X3 + X1X4 + X3 = 0
X1X3 + X1X4 + X3X4 + X1 + X2 + X3 + X4 = 0

The corresponding degree 2 Macaulay matrix, in lex order, is

X1X2 X1X3 X1X4 X1 X2X3 X2X4 X2 X3X4 X3 X4 1
⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

0 1 0 1 0 1 0 0 1 1 0
0 0 1 1 1 0 1 1 0 1 0
0 0 0 1 0 1 0 1 1 0 1
1 1 0 1 1 0 0 0 1 1 1
1 0 1 1 1 0 0 0 1 0 0
0 1 1 1 0 0 1 1 1 1 0

and its reduced row echelon form is

X1X2 X1X3 X1X4 X1 X2X3 X2X4 X2 X3X4 X3 X4 1
⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 1 0 1 1
0 0 1 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 1 1 0 1
0 0 0 0 1 0 0 1 1 1 1
0 0 0 0 0 1 1 0 0 0 0

We obtain two equations not involving X1, namely X2X3 + X3X4 + X3 +
X4+1 = 0 and X2X4+X2 = 0, which can be solved for instance with exhaustive
search; the solutions thus found must then be checked for compatibility with the
remaining equations in X1.

An obvious drawback of this method is that in order to eliminate a significant
number of variables, the degree D should be taken large enough, and reducing
large Macaulay matrices is quickly prohibitive.

A more refined variant. An important remark is that it is not necessary to
completely eliminate k variables. We now illustrate this with the same example.
First, we sort the columns, this time according to the graded reverse lexico-
graphic order (grevlex), and obtain the following row echelon form:
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X1X2 X1X3 X2X3 X1X4 X2X4 X3X4 X1 X2 X3 X4 1
⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 1 1 1 1 0
0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 1 1 1 0 1
0 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 1 1 1 1 0 1

The last three equations have degree 1 in X1,X2,X3:
⎧
⎪⎨

⎪⎩

(X4 + 1)X1 + X2 + X3 + 1 = 0
(X4 + 1)X2 = 0
X1 + X2 + (X4 + 1)X3 + 1 = 0

Consequently, for any assignation of the last variable, we obtain a system that
can be easily solved using linear algebra. Reducing the same Macaulay matrix,
we have thus “eliminated” three variables from the exhaustive search proce-
dure. This is somewhat reminiscent of Kipnis-Goubin-Patarin algorithm [16] for
solving extremely underdetermined quadratic systems, whose principle is also to
generate enough equations of the form

P1(Xk+1, . . . , Xn)X1 + · · · + Pk(Xk+1, . . . , Xn)Xk + Q(Xk+1, . . . , Xn) = 0,

yielding a linear system once the variables Xk+1, . . . , Xn are specialized.

3.2 Description of the Algorithm

Our algorithm implements this idea in a scalable way. It depends on three param-
eters D, d and k, with D ≥ 2, 1 ≤ d < D and 1 ≤ k ≤ n. To simplify the
description, for any polynomial p ∈ B[X1, . . . , Xn], we let degk p stand for the
total degree in X1, . . . , Xk.

When d = 1, it works as proposed above: from the degree D Macaulay
matrix (sorted by decreasing value of degk), we generate new equations that are
linear in X1, . . . , Xk, i.e. we eliminate all monomials of degree larger than 1 in
these variables. This can be achieved by computing elements in the left kernel of
the truncated matrix, from which the monomials containing at most one of the
variables X1, . . . , Xk have been removed. The choice of D is a critical parameter,
it must be large enough for reduced equations to exist and as small as possible
if we want the dimension of the Macaulay matrix to remain manageable. Note
that, since the new equations become linear after performing the evaluation of
variables Xk+1 to Xn, it is sufficient to have a little more than k equations of
this form.

To extend this to larger values of d, we want to construct new equations of
degree at most d in the first variables X1, . . . , Xk. For large systems, this allows to
select smaller values of D and to work with smaller Macaulay matrices. However,
the number of equations that we need in this context to solve the system after
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specialization through linear algebra becomes larger. Of course, when d is equal
to or larger than the degree of the initial equations, these initials equations can
be included in the pool of equations that we are keeping for specialization.

The main difficulty of this method is to analyze the optimal choices of param-
eters D, d and k for given values of the number of variables n, the number of
equations m and the degree of these equations (2 if we restrict ourselves to
quadratic systems).

We give below a pseudo-code description of the algorithm. The algorithm
considers the two following submatrices of the full degree D Macaulay matrix:

– Mac(k)D,d(F) is the submatrix of MacD(F) whose rows correspond to products
ufi with degk u ≥ d − 1

– M
(k)
D,d(F) is the submatrix of Mac(k)D,d(F) whose columns correspond to mono-

mials m with degk m > d.

Basically, the algorithm works as follows:

1. Search elements v1, . . . , vr in the kernel of M
(k)
D,d(F).

2. Compute the polynomials pi corresponding to vi.Mac(k)D,d(F); they have total
degree at most D, and at most d in X1, . . . , Xk.

3. For all a = (ak+1, . . . , an) ∈ F
n−k
2 :

(a) Create the degree d Macaulay matrix Macd(F∗) corresponding to the
polynomials in F (partially) evaluated at a

(b) Evaluate the polynomials pi at a and append them to Macd(F∗)
(c) Check if the resulting system (of degree d) if solvable in X1, . . . , Xk.

As a further refinement, it is possible to add an outer layer of hybridation.
Indeed, we can start by iterating through the possible values of the h last vari-
ables Xn−h+1, . . . , Xn, and apply the above algorithm 2h times to the specialized
systems of m quadratic equations in n − h variables. The main interest of this
outer hybridation is to allow an easy parallelization between 2h computers and
sometimes to offer a slightly better choice of parameters (see Sect. 3.3). Never-
theless, in some sense, it goes against the philosophy of the algorithm and we do
not expect this parameter to be asymptotically useful.

Note that the idea of reducing a part of a large Macaulay matrix before
specializing variables was already suggested by Courtois in [5], but in a rather
different form. However, his algorithm seems to be unefficient according to the
analysis given in [23].

3.3 Valid Parameters and Asymptotic Analysis

The parameters D, d and k (and h when outer hybridation is used) control the
course of the algorithm, but finding optimal (or even functional) values is far
from obvious. As a first remark, since we want to find new relations of degree
at most d in the first k variables, cancellations of the highest degree parts in
X1, . . . , Xk must occur. Thus under a strong semi-regularity assumption, we
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Algorithm 1. The crossbred algorithm
procedure System Resolution(F = (f1, . . . , fm))

� System of m equations in n variables. Parameters D, d and k.
Construct Mac

(k)
D,d(F) and M

(k)
D,d(F)

Find r linearly independent elements (v1, . . . , vr) in the (left) kernel of M
(k)
D,d(F).

� Using (sparse) linear algebra.

For all i ∈ [1; r] compute the polynomial pi corresponding to vi.Mac
(k)
D,d(F).

� Polynomials of total degree at most D and degree at most d in (X1, . . . , Xk).
Perform fast evaluation on (f1, . . . , fm, p1, . . . , pr), n, k with

Callback procedure
� Get (f∗

1 , ..., f∗
m, p∗

1, ..., p
∗
r) evaluated at each (xk+1, ..., xn) ∈ {0, 1}n−k

Construct the Macaulay matrix Macd(F∗) of degree d from (f∗
1 , . . . , f∗

m)
Append (p∗

1, . . . , p
∗
r) to Macd(F∗)

Use (dense) linear algebra to test the consistency of resulting system,
� As in XL every monomial is viewed as an independent variable.

if System is consistent then
Extract values of (X1, . . . , Xk) and test the candidate solution.
Print any valid solution.

end if
end callback

end procedure

Algorithm 2. Fast Evaluation of a polynomial (over F2)
procedure Fast Evaluation((P1, . . . , PR), �, k, Callback action)

� Polynomials of degree D in � variables.
if � = k then

Perform Callback action on (P1, . . . , PR) and (xk+1, . . . , xn)
else

Write each Pi as P
(0)
i + X� · P

(1)
i

Let x� ← 0
Fast evaluate on (P

(0)
1 , . . . , P

(0)
R ), � − 1, k and Callback action.

Let x� ← 1
Fast evaluate on (P

(0)
1 + P

(1)
1 , . . . , P

(0)
R + P

(1)
R ), � − 1, k and Callback action.

end if
end procedure

obtain that the parameter D must be greater than or equal to the degree of
regularity of a semi-regular system of m equations in k variables.

In addition to that, we need (under a regularity assumption) to compute
the number of equations that can be obtained for the final linearized system
and check that it is at least1 equal to the number of monomials in the first k
variables of degree at most d. We now explain how this is done in the case where
d = 1 and D = 3, 4 that covers all of the reported experiments and seems to be
the only viable choice for any feasible computation.

1 Having a bit more equations is even better, since this leads to a smaller number of
consistent systems of evaluation that lead to a finally incorrect solution.
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With d = 1, the matrix Macd(F∗) is empty and the linear algebra is simply
performed on the evaluated linear polynomials (p∗

1, . . . , p
∗
r) in k variables. Thus

it suffices to check that r ≥ k + 1. As a consequence, we need enough linearly
independent elements in the kernel of M

(k)
D,1(F) which are not in the kernel of

Mac(k)D,1(F) = MacD(F) (otherwise we get the trivial equation 0 = 0). A lower
bound on that number is simply given by the rank RD,1 of MacD(F) minus the
number of columns of M

(k)
D,1(F).

The number N
(k)
D,d of columns of M

(k)
D,d(F) corresponds to the number of

monomials labeling its columns and is given by the formula:

N
(k)
D,d =

D∑

dk=d+1

D−dk∑

d′=0

(
k

dk

)(
n − k

d′

)

.

The number of independent rows of Mac(k)D,1(F) = MacD(F) is simple to evaluate
when D = 3. In that case and in our range of values of (m,n), under the regularity
assumption the matrix has full rank. Since every polynomial in F is multiplied by
the monomials 1, x1, x2, . . . xn, there are R3,1 = (n + 1) · m rows. For D = 4, it
is slightly more complicated, because we need to account for the trivial relations
of the form fifj + fjfi = 0 and (fi + 1)fi = 0. As a consequence, the Macaulay
matrix MacD(F) has R4,1 = (1+n+n (n− 1)/2) ·m−m (m+1)/2 independent
rows. Table 1 illustrates this on a few parameters extracted from Sect. 4.

Table 1. Examples of parameters’ computation

n0 m h n = n0 − h k D N
(k)
D,1 RD,1 Exp. num of polys

35 35 0 35 9 3 1056 1260 204

35 70 0 35 14 3 2366 2520 154

41 41 0 41 11 4 31075 34481 3406

41 82 0 41 15 3 3290 3444 154

74 148 12 62 23 4 277288 278166 878

For d > 1, and under semi-regularity hypotheses, the number RD,d(F) of new
independent polynomials coming from the reduction of the matrix Mac(k)D,d(F)
can also be expressed using binomial coefficients, or more concisely as the coef-
ficient in XDY d of the bivariate generating series

SD,d(X,Y ) =
(1 + X)n−k

(1 − X)(1 − Y )

(
(1 + XY )k

(1 + X2Y 2)m
− (1 + X)k

(1 + X2)m

)

.

This gives a way to test the admissibility of the parameters: k,D and d are
admissible if the coefficient of XDY d of the series

SD,d(X,Y ) − (1 + Y )k

(1 − X)(1 − Y )(1 + Y 2)m
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is non-negative; this series has been used to find optimal parameters for the
crossbred algorithm complexity given in Figs. 2, 3 and 4.

This expression can also be used for asymptotic analysis. When n grows to
infinity, and m = �αn,D = �Δn, d = �δn, k = �κn with fixed α ≤ 1, 0 <
δ ≤ Δ < 1, 0 < κ < 1, the asymptotic behavior of the coefficient of X�Δn�Y �δn�

can be obtained using adaptations of the saddle-point method. This gives an
asymptotic range of admissible parameters, among which it remains to optimize
the overall complexity. However, we have found that for these asymptotically
large values, the optimal choice is Δ = δ, and the crossbred algorithm degener-
ates to FXL/BooleanSolve; thus our algorithm does not improve the asymptotic
complexity of solving multivariate quadratic Boolean systems2.

Despite this, for tractable numbers of equations and variables our experi-
ments demonstrated that the crossbred algorithm is much more efficient than
any other known methods, see next section for detailed reports. Our esti-
mations indicate that for moderately overdetermined systems, it is only for
very large numbers of equations and variables (several hundreds, see Figs. 2,
3 and 4) that the optimal choice of parameters makes our algorithm equivalent
to FXL/BooleanSolve; the resolution of such systems is obviously completely
out of reach with current computers.

4 Experiments and Timings

4.1 Implementation Specifics

In our implementation, the sparse linear algebra in the first phase of the crossbred
algorithm is performed using the block Lanczös algorithm of Montgomery [19].
The multiplication of matrices are applied in parallel on 128 vectors, taking
advantage of the 128-bit integers available in modern CPUs.

Similarly, the fast polynomial evaluation and the resolution of the linear sys-
tems in the second phase work in parallel using 128-bit operations. In addition,
since in practice we have d = 1, the linear systems in phase 2 are small enough
to be solved using a quadratic number of 128-bit word operations.

4.2 Fukuoka Type I MQ Challenge

In order to experimentally test this new algorithm, we decided to tackle the
Fukuoka MQ Challenges [25]. These challenges, available on the website https://
www.mqchallenge.org/, were issued in 2015 with the explicit goal to help assess
the hardness of solving systems of quadratic equations. The Type I challenges
consist of 2n Boolean quadratic equations in n variables, and the designers have
ensured that every system has some forced solution. At the time we started, the
record on n = 66 was held by Chou, Niederhagen and Yang, using a fast Gray
code enumeration technique on an array of FPGA. It took a little less than 8 days
2 Because of this negative result coupled with page limitations, we chose not to include

the derivation of the above series and its coefficient asymptotics in this article.

https://www.mqchallenge.org/
https://www.mqchallenge.org/
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using 128 Spartan 6 FPGAs. It is interesting to note that this allows for a much
faster resolution than on CPU based computation. According to our estimations,
using libFES the same computation would have taken about 61 000 cpu · days
using Intel Core i7 processors at 2.8 GHz. Note that as mentioned before, the
BooleanSolve algorithm on such systems performs no exhaustive search and boils
down to working with the full Macaulay matrix, for an asymptotic complexity
in Õ(20.585n).

We found the solution of all the remaining challenges n = 67 . . . 74 by run-
ning our code on a heterogenous network of computers at the LIP6 laboratory.
Due to this heterogeneity, the timings are not very precise and the running of
identical jobs greatly varied depending on the individual machine it runned on.
The processors types in the cluster ranged from Opteron 2384 at 2.8 GHz to
Xeon 2690 at 2.6 GHz (the latter being about four times faster). Timings3 are
given in Table 2.

Table 2. Fukuoka challenge

Number of
vars (m = 2n)

External
hybridation h

Parameters
(D, n − h − k)

Max CPU
(estimate)

Real CPU
(rounded)

67 9 (4, 36) 6 200 h 3 100 h

68 9 (4, 37) 11 200 h 4 200 h

69 9 (4, 38) 15 400 h 15 400 h

70 13 (4, 34) 33 000 h 16 400 h

71 13 (4, 35) 60 000 h 13 200 h

72 13 (4, 36) 110 000 h 71 800 h

73 13 (4, 37) 190 000 h 14 300 h

74 12 (4, 39) 360 000 h 8 100 h

4.3 Crossover Point Compared to Fast Enumeration when m = n

In addition to the above records, which take advantage of having twice as many
equations as variables, it is interesting to compare the relative performances
of our algorithm and fast enumeration when m = n. We ran experiments on
Intel Core i7 laptop at 2.8 GHz for values of n ranging from 35 to 46. For the
fast enumeration, we used the state of the art library libFES. The results are
summarized in Table 3 and represented in Fig. 1. It makes clear that the cross-
over point is at n = 37 when m = n. The table also contains timings of our code
when m = 2n, in order to illustrate the gain in terms of running time when extra
equations are available. Since our code is much less optimized than libFES, the
cross-over point value might be slightly pessimistic.
3 As remarked in the abstract, the last two entries in this table correspond to extremely

lucky running times. The desired solution just happened to be found by the first series
of parallel jobs.
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Table 3. Comparison with libFES (Timings for full enumeration of search space)

Number of vars libFES Our code
(m = n)

Parameters
(D, n − k)

Our code
(m = 2n)

Parameters
(D, n − k)

35 2.3 s 3.8 s (3, 26) 0.6 s (3, 21)

36 4.9 s 7.2 s (3, 27) 0.9 s (3, 22)

37 9.6 s 9.5 s (3, 27) 1.5 s (3, 23)

38 20.1 s 16.5 s (3, 28) 2.5 s (3, 24)

39 40.2 s 33 s (3, 29) 2.7 s (3, 24)

40 84 s 65 s (3, 30) 4.8 s (3, 25)

41 162 s 131 s (4, 30) 9 s (3, 26)

42 317 s 242 s (4, 31) 18 s (3, 27)

43 642 s 437 s (4, 32) 36 s (3, 28)

44 1380 s 850 s (4, 33) 71 s (3, 29)

45 2483 s 989 s (4, 33) 146 s (3, 30)

46 5059 s 1905 s (4, 34) 151 s (3, 30)
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Fig. 1. Comparison with libFES

4.4 Complexity Estimates for Cryptographic Sizes

To illustrate the efficiency of the crossbred algorithm in the cryptographic range
and help crypto-designers to assess its impact on their parameter choices, we
give in Figs. 2, 3 and 4 the comparisons between the complexities of Macaulay
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Fig. 4. Comparison between the Macaulay and crossbred algorithm complexities when
α = 2

(or FXL/BooleanSolve when 1 ≤ α < 1.82) and our crossbred algorithms,
focused on three specific values of α. The graphs also show the correspond-
ing asymptotic exponent coming from the analysis of [1], which is only reached
for extremely large values of n.

5 Conclusion

In this article, we have presented a new “crossbred” algorithm for solving systems
of Boolean equations, using both exhaustive search and the ideal-based approach
of Lazard. The main idea of the new algorithm is to reduce a partial Macaulay
matrix before a specialization of part of the variables.

We have demonstrated that our mixed approach decisively beats the fast
enumeration technique of [3] for large real-world (over)determined systems of
Boolean quadratic polynomials. In particular, we have been able to solve all
the Fukuoka Type I MQ Challenges [25] up to the last system of 148 quadratic
equations in 74 variables, whereas the previous record using fast enumeration
consisted in the resolution of a system of 132 equations in 66 variables. Note
that, for such parameters (m = 2n) the hybrid BooleanSolve algorithm of [1] is
optimal with an empty hybridation and thus becomes equivalent to the classical
Lazard method [17]. In fact, the asymptotic analysis of these algorithms are
quite technical, especially for the crossbred method. Moreover, the asymptotic
regime is only reached for values of n which are far beyond any accessible or
cryptographically interesting sizes. Despite its practical performance, in that
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asymptotic context the crossbred algorithm does not seem to offer an improved
complexity.

In particular, as mentioned in [1,3], pre-existing algebraic methods are not
expected to beat brute force for n = m and n lower than 200. Yet, we have
demonstrated that in practice the crossover point between exhaustive search
and our method is n = 37.

We have only implemented and tested the case of quadratic systems over F2.
However, the same principle applies to higher degree and other (small) finite
fields of coefficients.
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out reduction to zero (F5). In: Proceedings of ISSAC 2002, pp. 75–83. ACM,
New York (2002)

11. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
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Abstract. Elliptic curves over finite fields are an essential part of pub-
lic key cryptography. The security of cryptosystems with elliptic curves
is based on the computational intractability of the Elliptic Curve Dis-
crete Logarithm Problem (ECDLP). The paper presents requirements
which cryptographically secure elliptic curves have to satisfy, together
with their justification and some relevant examples of elliptic curves. We
implemented modular arithmetic in a finite field, the operations on an
elliptic curve and the basic cryptographic protocols.

Keywords: Elliptic curve cryptography · Modular arithmetic
Digital signature ECDSA · Diffie-Hellman key agreement

1 Introduction

Elliptic curves (EC) are widely used in public key cryptography systems, e.g. for
key agreement, encryption, digital signatures and pseudo-random generators. As
mathematical objects they may form elliptic curve groups with a finite number of
elements (points), involving arithmetic operations on those elements. Therefore
elliptic curves may be defined among others over real numbers, over the binary
field or over the prime field Fp, where p is a prime number. Due to some possible
attacks it is safer to use the latter curves and that is why we focus on them.
Moreover, prime field curves are very fast on processors, because CPUs usually
have an advanced integer multiplier circuit built-in. But the greatest advantage
of Elliptic Curve Cryptography (ECC) is the same level of security as in RSA
cryptosystems, provided by significantly shorter key sizes. For example, to ensure
128-bit security strength (compared to symmetric cryptography), a 3072-bit RSA
public key is necessary, and in the case of ECC only a 256-bit key, see Table 1.
So the time spent on performing cryptographic operation decreases.

The U.S. National Institute of Standards and Technology (NIST) has
included ECC in the set of recommended algorithms, extending it by Elliptic
Curve Diffie-Hellman Algorithm (ECDH) for key exchange and Elliptic Curve
Digital Signature Algorithm (ECDSA) for digital signature. The U.S. National
Security Agency (NSA) allows their use to protect information classified up to
secret. The ECDSA and ECDH are also recommended by NATO as interop-
erability standards [7]. However, in national systems, specific elliptic curves
c© Springer International Publishing AG, part of Springer Nature 2018
J. Kaczorowski et al. (Eds.): NuTMiC 2017, LNCS 10737, pp. 25–36, 2018.
https://doi.org/10.1007/978-3-319-76620-1_2
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along with independently designed implementation of elliptic curve arithmetic
are required.

This paper presents five required criteria for an elliptic curve in order to be
considered cryptographically secure. We put together the security conditions of
the Brainpool Standard [3] and twist security requirements [1,2]. We give some
examples of curves over finite prime fields Fp that satisfy these criteria.

As concerns arithmetic operations we present results on implementation of
modular arithmetic in the finite prime field Fp and operations in the finite group
E(Fp) of points on an elliptic curve. Basic arithmetic operations in the finite field
are addition and multiplication modulo p. The most time-consuming operation is
exponentiation. Effective implementation of modular arithmetic requires special
algorithms for modular reduction, because many processors do not have fast
division. We implement and compare three algorithms of multiplication with
modular reduction: classical, Barrett and Montgomery methods. Then we use
modular arithmetic to implement operations on elliptic curves.

Point addition is the basic operation on an elliptic curve. Points can be repre-
sented in affine or projective coordinates. Addition of points in affine coordinates
needs exponentiation. We can avoid this by performing addition using projec-
tive coordinates. ECDSA and ECDH use point multiplication implemented as
repeated additions (and doublings). We will compare effectiveness of point mul-
tiplication for two types of point representation and three methods of modular
multiplication.

Table 1. Number of bits of cryptographic keys

Symmetric algorithms RSA Elliptic curves

80 1 024 160

128 3 072 256

256 15 360 512

2 Group of Points on an Elliptic Curve

For basic facts about finite fields and elliptic curves see e.g., [5,6]. Let p > 3 be
a prime number and let Fp denote the finite field of p elements

Fp = {0, 1, . . . , p − 1},

with addition and multiplication modulo p. An elliptic curve over the field Fp is
the set of solutions of an equation

E : y2 = x3 + Ax + B mod p (1)

together with “a point at infinity” O, where the coefficients A,B ∈ Fp satisfy

Δ = 4A3 + 27B2 �= 0 mod p. (2)
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The Eq. (1) is called the Short Weierstrass Form. This set forms an abelian group
with neutral element O and the addition law, called point addition, given for
example in [6]. Points on the curve are given in terms of their x and y coordinates
(x, y). The group E(Fp) of points of the elliptic curve (1) defined over the finite
field Fp has order #E(Fp), which satisfies the Hasse inequality

p + 1 − 2
√

p < #E(Fp) < p + 1 + 2
√

p.

The exact value of #E(Fp) can be calculated using the SEA–algorithm, whose
optimized implementation is available in Magma [10]. A special kind of point
addition is adding a point to itself, which is called point doubling. Point mul-
tiplication is an operation of taking a point on the curve and multiplying it
by a natural number. In practice it means a sequence of addition and doubling
operations.

Elliptic curve cryptosystems draw their strength from intractability of the
Elliptic Curve Discrete Logarithm Problem (ECDLP), defined as follows: given
an elliptic curve E defined over Fp and two points P,Q ∈ E(Fp), find an inte-
ger d such that Q = dP . There is no efficient algorithm to solve ECDLP (for
sufficiently large prime p) and it is more difficult than the general DLP for the
same length. In Elliptic Curve Cryptography (ECC) for a given elliptic curve
the point Q is the public key, and the number d is the private key.

3 Generation of Elliptic Curves

We consider elliptic curves over finite fields Fp, where p is a prime number of
suitable size in bits. There exist a lot of standard elliptic curves, given by many
official bodies, for use in cryptographic applications [3,7,11,14]. The definition
of the curve includes a set of parameters, called domain parameters, which must
be shared by two parties to use the ECC algorithm. These are (p,A,B, P0, n, h),
where:

– p is a prime number, which defines the field Fp,
– A and B are integers, coefficients of the short Weierstrass Eq. (1) and satis-

fying (2),
– P0 ∈ E(Fp) is the base point, called also a generator of a cyclic group,
– n is the order of the cyclic group generated by P0, that is, the smallest natural

number n such that nP0 = O,
– h = #E(Fp)/n is called a cofactor; h must be small (h � 4), preferably h = 1.

Our purpose is to find customized curves of different sizes, which are crypto-
graphically secure. We consider the bit lengths 160, 256, 384 and 512 of the basic
primes p, which were generated according to the algorithm given in [3] from seeds
taken from a random number generator. We invoke a search procedure, which
selects pseudo-random coefficients A and B. If the coefficients satisfy (2), then
the security requirements are checked for the resulting curve. These require-
ments ensure resistance against known attacks on ECDLP. The elliptic curves



28 P. D ↪abrowski et al.

are accepted and the search process stops when criteria 1 to 4 below are fulfilled.
Then the length of the largest prime factor of the order of the twisted elliptic
curve is computed. The following set of security criteria is checked:

1. The group order #E(Fp) of the elliptic curve is a prime number (h = 1)
in order to prevent a small-subgroup attack [3,6] and Pohlig-Hellman attack
[12]. Every non-identity point on the curve is a generator of the group of all
points of the curve. The curves with prime group order have no points of
order 2 (P + P = O), and therefore no points with y-coordinate y = 0.

2. The order n = #E(Fp) is less than the prime number p (n < p) [3]. This
requirement is necessary to avoid overruns in implementation, since in some
cases, even the bit-length of n can exceed the bit-length of p. Elliptic curves
with n = p are called trace one curves (or anomalous curves). Satoh and
Araki [13] proposed an efficient solution to the ECDLP on trace one curves,
so one must exclude such cases.

3. Immunity to attacks using the Weil-pairing or Tate-pairing. These attacks
allow the embedding of the group E(Fp) into the group of units of an extension
field GF(pl) of degree l of the field Fp. For such cases subexponential attacks
on DLP exist. Let l = min(t : n | pt − 1), i.e. l is the order of p modulo
n. By Fermat’s little theorem, l divides n − 1. One can compute the exact
value of l by factoring (n − 1). The requirement to avoid the above attack is
that (n − 1)/l � 100 [3], which means that l is close to the maximal possible
value. Therefore, verification of this condition for a k-bit curve requires the
factorization of a number of length up to k bits.

4. The class number of the field K =
√−d is greater than 10 000 000 [3]. d is

defined as d = (4p−u2)/v2, where u = n−p−1, and v = max{a : a2 | 4p−u2},
so d is the square-free part of 4p−u2. This condition protects against attacks
exploiting a small value of the class number. According to Gerhard Frey [4]
this criterion is intended to protect against possible liftings to curves with
CM (Complex Multiplication) over number fields, and in the background
there are duality theorems and relations to Brauer groups which could be a
danger for the discrete logarithm. The papers of Huang and Raskind, e.g. [8],
could go into this direction. Hence one should avoid elliptic curves whose ring
of endomorphisms has a class group of small order, and since in most cases
this is very mild and easily satisfied condition it may not hurt to have it.
Further constraints may be deducted from the paper [9].

5. The twist criterion. By the Hasse-Weil theorem the elliptic curve E has p+1+t
points defined over Fp, where |t| < 2

√
p. The twisted curve Etw then has

p + 1 − t points defined over Fp. This implies that the order of the group of
the twisted elliptic curve is given by the formula

#Etw(Fp) = 2p + 2 − #E(Fp).

Practically, the largest prime factor of #Etw(Fp) has to be longer than 100
bits. Active attacks on elliptic curves which do not satisfy the twist criterion
are described in [1,2].
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We provide below domain parameters for sample 160, 256, 384 and 512-bit
curves. We give detailed results regarding the twist criterion, including the order
of the twisted curve #Etw(Fp), its prime factors (factorization) and the length
of the largest one of them (len). As can be seen, not all of them satisfy the twist
criterion. Tables 6, 7, 8 and 9 present curves which satisfy the first four security
criteria.

4 Arithmetic Implementation of Group Operations
on Elliptic Curves

Execution of cryptographic algorithms and protocols defined using elliptic
curves, like ECDSA or ECDH, requires implementation of operations on ellip-
tic curves in the group of points on the curve. For curves defined over finite
prime fields first we should implement modular arithmetic, then group opera-
tions, among which point addition is fundamental. In this section we describe
software implementation dedicated for 32-bit processors.

4.1 Modular Arithmetic

Suppose the curve (1) is defined over the finite field Fp with prime characteristic
p > 3. The prime number and the integers of the finite field can be represented in
computer memory by sequences of bits or words. So, positive integers 0 � x < p
and the prime number p can be written in binary notation:

x = (bi−1, bi−2, . . . , b1, b0)2

or
x = (wj−1, wj−2, . . . , w1, w0)w,

where b0, b1, . . . , bi−1 represent bits from {0, 1} and w0, w1, . . . , wj−1 words from
the set {0, 1, . . . , w − 1}.

Aiming at effective implementation, the radix (base) w should be chosen
close to the word size of the processor, for example w = 232. Then a 512-bit
integer is represented by 16 32-bit computer words. Intermediate results, before
reduction modulo p, may be larger – the sum of two 512-bit integers has 17
32-bit words, and their product has 32 32-bit words. Therefore in our modular
arithmetic dedicated for elliptic curves defined for max 512-bit p integers we use
35 32-bit words. We have implemented basic arithmetic operations in the finite
field:

– addition (mod p),
– multiplication (mod p).

Moreover we have implemented additional arithmetic operations:

– subtraction (mod p),
– exponentiation (mod p),
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– inverse (mod p),
– division,
– square root,

and other types of non-arithmetic operations:

– bitwise logic operations: OR, XOR, AND, NOT,
– shifts and rotations,
– comparisons,
– assign and copy values,
– pseudo random generator,
– primality test.

Effective implementation of modular arithmetic requires special algorithms
for multiplication with modular reduction, because many processors do not have
fast division. We have implemented three algorithms for modular multiplication:

– classical [17],
– proposed by Montgomery [16],
– with reduction proposed by Barrett [15].

The classical algorithm calculates the remainder of division by any number p.
The Montgomery and Barrett algorithms calculate reduction modulo p without
performing classical division. Montgomery modular multiplication and multipli-
cation with Barrett reduction require precomputations.

Before performing calculations using the Montgomery algorithm, we have to
compute

γ = −p−1 mod w, (3)

where w is a base of integer representation which is relatively prime to p.
Before performing calculations using the Barrett algorithm, we have to com-

pute

μ =
22i

p
, (4)

where i is the number of bits in the binary representation of p.
A basic arithmetic operation used in public key cryptography algorithms and

protocols like RSA, DSA and DH is modular exponentiation. We have checked
the execution time of this operation with the three above listed algorithms of
modular multiplication for 1024 and 2048-bit integers: the base, the exponent
and the modulus. The average execution times of modular exponentiation imple-
mented in C, performed on a personal computer with a 3.6 GHz processor are
presented in Table 2.

We have also tested the execution times of modular exponentiation imple-
mented in C and applied in embedded Linux, performed on a development board
with a 400 MHz ARM processor. The average results are presented in Table 3.

We can see that exponentiation with the Montgomery method is the fastest.
These results cover exponentiation with precomputations (3) and (4).
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Table 2. Execution times of modular exponentiation on PC

No. of bits
of integers

The method of modular multiplication

classical Barrett Montgomery

1024 38 ms 30ms 13 ms

2048 288 ms 225ms 100 ms

Table 3. Execution times of modular exponentiation on ARM

No. of bits
of integers

The method of modular multiplication

classical Barrett Montgomery

1024 250 ms 166 ms 103 ms

2048 1 762 ms 1 243ms 787 ms

4.2 Arithmetic for Elliptic Curves over a Finite Prime Field

When using elliptic curve cryptography we perform operations on points (x, y)
on the curve (1). The basic operation is point addition. The affine coordinates
R = (x2, y2) of the sum of P = (x0, y0) and Q = (x1, y1) are calculated modulo
p using the formulas

x2 = λ2 − x0 − x1, y2 = λ(x0 − x2) − y0,

where
λ =

y0 − y1
x0 − x1

for (x0, y0) �= (x1, y1), (5)

λ =
3x2

0 + A

2y0
for (x0, y0) = (x1, y1). (6)

Addition of a point to itself is called point doubling. Note that the sum of
(x0, y0) and (x0,−y0) is the neutral element in the group (the point at infinity O).

Calculating λ when adding different (5) points and when point doubling (6)
needs division in the finite prime field, which can be calculated via inversion,
v−1 = vp−2 mod p. Unfortunately, this requires exponentiation in the prime field.

The ECDSA and ECDH algorithms use as a basic operation multiplication
of a point on the curve E by a number d, where 1 < d < p. The multiplication
algorithm requires k point doublings and on average k/2 point additions, where
k is the number of bits in d. Additionally, ECDSA and ECDH require procedures
for point generation and verification to check that the equation of the curve is
satisfiesd.

Thus, our elliptic curve arithmetic consists of the following operations on the
group of points:

– generation,
– addition,
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– doubling,
– multiplication,
– verification.

These operations have been implemented in affine and projective coordinates.
We can easily convert affine coordinates (x, y) of a point on E : y2 = x3+Ax+B
into projective coordinates (x, y, z) on an equivalent curve E′ : zy2 = x3+Axz2+
Bz3 and invert this by taking z = 1. Formulas for point addition and doubling
in projective coordinates do not use divisions (5) and (6), computed via time-
consuming exponentiation. Inverting calculations from projective coordinates to
affine coordinates require divisions x/z and y/z in the finite prime field.

We present execution times of point multiplication for 256, 384 and 512-bit
integers: EC parameters A and B, coordinates of points x, y, z and the modulus
p. We use affine and projective coordinates and three multiplication algorithms
with reduction. We apply Montgomery modular multiplication in affine coor-
dinates which needs fast modular exponentiation. Projective coordinates need
just simple modular operations: multiplication, squaring, adding and subtrac-
tion to carry out point addition and doubling, so we apply multiplication and
other operations with classical and Barrett modular reductions. Average execu-
tion times of point multiplication implemented in C, performed on a personal
computer with a 3.6 GHz processor, are presented in Table 4.

We can see that point multiplication is the fastest in projective coordinates
and with Barrett reduction. These results covers calculations with precomputa-
tions (3) and (4).

We have also tested the execution times of point multiplication implemented
in C and applied in embedded Linux, performed on a development board with
a 400 MHz ARM processor. The average results are presented in Table 5.

Table 4. Execution times of point multiplication on PC

No. of bits
of integers

The method of point representation and
the method of modular multiplication

Affine
Montgomery

Projective
classical

Projective
Barrett

256 84 ms 8 ms 7 ms

384 378 ms 27 ms 24 ms

512 1 270 ms 64 ms 55 ms

Point multiplication is the basic operation performed during key pair gen-
eration and then during signing and verification signature using ECDSA. Key
generation and signing require one point multiplication and signature verifica-
tion, that is, two point multiplications. So, the time of key generation and signing
for a 384-bit p is 24 ms on PC with a 3.6 GHz processor, and about 557 ms on
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a platform with a 400 MHz ARM processor with our fastest implementation of
EC arithmetic. Signature verification takes 48 ms and 1.1 s respectively.

The main operation performed during key agreement according to the ECDH
protocol is point multiplication as well. Each party calculates one point multi-
plication for their own key pair generation and then one point multiplication
for each key agreement. So each operation takes, depending on the platform,
respectively 24 ms and 557 ms.

Execution times presented in Tables 2, 3, 4 and 5 can be reduced if special
parameters of the elliptic curve are used. We will continue our work to optimize
the code of our modular and EC arithmetic. In the next stage we will implement
modular arithmetic and arithmetic on elliptic curves in FPGA hardware, which
is required for the higher levels of security.

Table 5. Execution times of point multiplication on ARM

No. of bits
of integers

The method of point representation and
the method of modular multiplication

Affine
Montgomery

Projective
classical

Projective
Barrett

256 2 798 ms 242ms 181ms

384 12 881 ms 718ms 557ms

512 41 647 ms 1 623 ms 1 261 ms

5 Summary

Elliptic Curve Cryptography is the most efficient way to achieve secure key estab-
lishment and digital signature. The basis for implementation of any ECC cryp-
tosystem is a secure elliptic curve, defined by its coefficients, the order and the
base point. Although there are many recommended domain parameter sets, it is
especially important to be able to generate and to implement unique, customized
elliptic curves, satisfying required conditions. This will allow the development
and efficient implementation of national systems in the field of public key cryp-
tography. In this paper we have identified five main criteria that must be met
by curves to be considered cryptographically secure. According to these criteria
we showed that finding secure elliptic curves with lengths from 160 to 512 bits
is feasible. Adding the twist criterion limits the number of secure elliptic curves.
After choosing the parameter set domain, we implemented the finite prime field
arithmetic and elliptic curve arithmetic.

Implementation of arithmetic in the group of points on an elliptic curve
requires fast modular operations, suitable methods of modular reduction and
suitable representation of point coordinates. We implemented modular arith-
metic for 32-bit processors, including three methods of modular multiplication:
classical, Montgomery and with Barrett reduction, and two types of coordinate
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representation: affine and projective. Having all these possibilities available, we
compared execution times of the basic modular operation, the integer exponen-
tiation, and the basic elliptic curve operation – point multiplication, in vari-
ous configurations. In the case of modular exponentiation, the best result was
achieved by Montgomery multiplication. In the case of point multiplication the
best result was achieved by projective coordinates and Barrett reduction.

In the next step we plan to implement modular arithmetic and elliptic curve
arithmetic in field programmable gate arrays (FPGA). Arithmetic in groups of
points on elliptic curves is intended to be used for implementation of ECC algo-
rithms and protocols for digital signature (ECDSA) and key agreement (ECDH),
which will replace previously used ones.

Appendix: The Examples of Elliptic Curves

Table 6. Domain parameters for a 160-bit elliptic curve

p 0xE75F077B3804BAB2C122344DFD04FCE951DA7027

A 0xE06C22F8F36E2468E2B5F27CCBD57D9DC6B23400

B 0x68F4C31B7CE82460D372864AB2C8C1CCE5F29283

P0 x(P0) = 0x37A8D5420536D5F3071C706D66A5CE4C07C700D9

y(P0) = 0x6BEF365071D253DEA39FC3088E3C0CCC6FF47F09

n 0xE75F077B3804BAB2C121924451CFCFFBABE5FBB3

h 1

#Etw(Fp) 0xE75F077B3804BAB2C122D657A83A29D6F7CEE49D

prime

factors

[<3,1>, <90281,1>, <426611,1>, <11431915082479720108730664390719752669, 1>]

len 124

Table 7. Domain parameters for a 256-bit elliptic curve

p 0xA4701F69D1D96BCEE3719029B6C8F3F1C0318B00FBC76A4FBAE54A2D84BA90C3

A 0x1C417D163830A291B2F769BE7737E29112C4D400ECC3A22726E589289084DC67

B 0x9D3B1FE4E68A23711EC1D7D92251D14C0CE040CB21EF11DA66012DDD79402E72

P0 x(P0) = 0x7EE932CFAA5B1EFE0297815BF0036DFFB4C9B70708B344481504C36D4C24BEB9

y(P0) = 0x5195AC4DA0186C7B3FBDF20AF09F64276EE25C689ACDF8174E2D4BD8BFC50D25

n 0xA4701F69D1D96BCEE3719029B6C8F3F0485F90CF0AC53F6344F9D95622C730AD

h 1

#Etw(Fp) 0xA4701F69D1D96BCEE3719029B6C8F3F338038532ECC9953C30D0BB04E6ADF0DB

prime

factors

[<137,1>, <77127527346223,1>, <7039001868391305024827233109584083029

781968094947827782607661, 1>]

len 203
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Table 8. Domain parameters for a 384-bit elliptic curve

p 0x950FD23F7FCDB5D647C6087B67A238B8C94A33898021E71451B5F922A277D40F

89C561387B978CC057749BE485C3621F

A 0x2704ED36195B700E6DA4A3B98DEF52342094C6AA34A71A36F64D0F3E2A38432D

1E7C85004583CC3246254258B392508D

B 0x7C1CA2774E5FABC0EB668323DC507E2BF0FD936BFBAFAEABED0E1F5740D19627

6C5A9EE60D40957F67E6333320359295

P0 x(P0) = 0x1C56954F12FC79768A87CAC920323115E50B1DA42542A380E1265779A32A2D23

F9BEE6FCA61BCB057AFB26ECA927E51C

y(P0) = 0x8A28CF52E6B00BF935667D90092EA01504133AA556C23C9462AF727DF244464D

6B575F1B61C3FBA27E242ABBCE28121B

n 0x950FD23F7FCDB5D647C6087B67A238B8C94A33898021E713C6FEECAB3B86DB8D

79D79B916E3E2F199A1C8098D2C8035D

h 1

#Etw(Fp) 0x950FD23F7FCDB5D647C6087B67A238B8C94A33898021E714DC6D059A0968CC91

99B326DF88F0EA6714CCB73038BEC0E3

prime

factors

[<5,1>, <4588542219799413391900517767130438062170403601256391422007

358414020609723036030758374529156592774903913259915106759, 1>]

len 381

Table 9. Domain parameters for a 512-bit elliptic curve

p 0xE121B140806D878B50656F5A5AEF0FBE3A912FD8526A10EB6177EC6C4F

F5808C2F6812C529097FCA07F5F7D57B1F1E7FEB41CA7FEDF8C647CD5FD4

0DB53EC107

A 0x8A3DFCDF063ABB966D72DB6C328346B937D6BE075049D765474730D8A1

3415D550ABB77C00343AD0C0B03D784F4F4EC5158BC43DC5C2AC33C66200

31510FD69

B 0x8B3423FE32644E29860D667CDFA9CB62376F32A9404D470EAF9BE87E35

144F120B5E9238402DA3105D09B096C52081ECBAD2D687EC3D42C0727481

2E10414827

P0 x(P0) = 0xAE3D9F24D26B6B5E944EA30DA95AF78FC922E00BA6052B0FD8C1605B54

0A33C7BFA7EC6106A13A52661ABE77E4C6C02154AD7FC97FD68E352E67A3

8DAF1DFE9E

y(P0) = 0xBF95072569330E0088BC5C82DEE33543AED1EB3090618B15873A1617

F4F4D0FD9D22394AD380EA96AE478FAEC4D9A8693B60EBEA58983676277AC5

ECF1C6B085

n 0xE121B140806D878B50656F5A5AEF0FBE3A912FD8526A10EB6177EC6C4F

F5808A7A65BC602CD79AA4EF4B9B598746662B67160EC7634F74B183CB84

09B8F2856F

h 1

#Etw(Fp) 0xE121B140806D878B50656F5A5AEF0FBE3A912FD8526A10EB6177EC6C4F

F5808DE46A692A253B64EF20A054516EF7D6D46F6D863878A217DE16F424

11B18AFCA1

prime

factors

[<17,1>, <263, 1>, <73777333199494915133765584973, 1>,<357459357

789270259701927865005508273200178922782463933590968061769902

91228433366122561111388192728299916229683860346449603, 1>]

len 404
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w kryptografii (Applications of finite fields and elliptic curves in cryptography).
Wojskowa Akademia Techniczna, Warszawa (1999)

6. Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography.
Springer, New York (2004). https://doi.org/10.1007/b97644. ISBN 0-387-95273-X

7. INFOSEC Technical and Implementation Directive on Cryptographic Security and
Cryptographic Mechanisms, AC/322-D/0047-REV2, 11 March 2009

8. Huang, M.-D., Raskind, W.: Signature calculus and discrete logarithm problems.
In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 558–572.
Springer, Heidelberg (2006). https://doi.org/10.1007/11792086 39

9. Jao, D., Miller, S.D., Venkatesen, R.: Ramanujan graphs and the random reducibil-
ity of discrete log on isogenous elliptic curves (2004). www.iacr.org

10. Magma Computational Algebra System. www.magma.math.usyd.edu.au
11. NIST: Recommended Elliptic Curves for Federal Government Use (1999)
12. Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over

GF(p) and its cryptographic significance. IEEE Trans. Inf. Theory 24, 106–110
(1978)

13. Satoh, T., Araki, K.: Fermat quotients and the polynomial time discrete log algo-
rithm for anomalous elliptic curves. Comm. Math. Univ. Sancti Pauli 47, 81–92
(1998)

14. SEC2: Recommended Elliptic Curve Domain Parameters. Certicom Research, 27
January (2010). Version 2.0

15. Barrett, P.: Implementing the rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987). https://doi.org/
10.1007/3-540-47721-7 24

16. Montgomery, P.: Modular multiplication without trial division. Math. Comput. 44,
519–521 (1985)

17. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

http://safecurves.cr.yp.to
www.iacr.org
www.ecc-brainpool.org/download/Domain-parameters.pdf
https://doi.org/10.1007/b97644
https://doi.org/10.1007/11792086_39
www.iacr.org
www.magma.math.usyd.edu.au
https://doi.org/10.1007/3-540-47721-7_24
https://doi.org/10.1007/3-540-47721-7_24


On the Possibility of Transformation
of Multidimensional ECDLP
into 1-Dimensional ECDLP
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Abstract. In this article the attack on elliptic curve discrete logarithm
problem (ECDLP) with partial information is considered. If unknown
bits of discrete logarithm are continuous then 1-dimensional algorithms
for ECDLP may be used. One of these algorithms is improved Gaudry-
Schost using equivalence classes which requires O(1.47

√
n) operations. It

will be showed that if unknown bits are not continuous and are given in
c > 1 partitions and also two most significant bits are known, transforma-
tion of this partitions into one partition to use 1-dimensional algorithm
without increasing size of the problem is impossible. It is also showed
that in some situations it is better to “forget” some of known bits to
transform the problem to 1-dimensional ECDLP.

Keywords: Elliptic curve · ECDLP · Partial information
Multidimensional Gaudry-Schost algorithm

1 Introduction

Many cryptographic algorithms base on elliptic curve discrete logarithm problem
(ECDLP). If point (generator) P on elliptic curve is given and it is required to
compute Q = [K]P , then computations are very fast. If Q and P are known but
K is unknown, then it is computationally hard to find K. If some information
about K is given (values of some bits of K are known), then it is easier to find
all bits of K. It should be noted that electronic devices are not resistant for side
channel attacks. Using attacks like power analysis [4] or acoustic cryptanalysis
[2], attacker is able to find some information about K (in perfect situation it is
possible to find out all bits of K).

More realistic situation is that some bits will be known with almost 100%
probability and the others with smaller probability. Such cases were considered
for example in work [5]. In this article will be assumed that bits are known with
100% probability or are unknown (there is probability 50% that given bit is
equal to 0 or 1).
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2 Attack with Partial Information

Below are described different cases of attacks with partial information.

2.1 Only Least Significant Bits are Unknown

Let’s consider the situation that some the least significant continuous bits are
known:

K = known bits
︸ ︷︷ ︸

m

unknown bits
︸ ︷︷ ︸

l

.

It is the simplest situation. All unknown bits of K are continuous and given in

set {U,U + 1, . . . , U + 2l − 1}, where

U = known bits
︸ ︷︷ ︸

m

00 . . . 00
︸ ︷︷ ︸

l

.

In this case for example Pollard’s lambda [6] or 1-dimensional Gaudry-Schost
algorithm [1] may be applied.

2.2 Only Some Continuous Bits are Unknown

This situation may be illustrated as below:

K = known bits
︸ ︷︷ ︸

m2

unknown bits
︸ ︷︷ ︸

l

known bits
︸ ︷︷ ︸

m1

.

This problem may be solved as previous. Let’s see that it is possible to find new
generator P ′ = [2m1 ]P and then search for solution in interval of size 2l. Let

U = known bits
︸ ︷︷ ︸

m2

00 . . . 00
︸ ︷︷ ︸

l

known bits
︸ ︷︷ ︸

m1

.

Then Q = [U ]P + [K ′]P ′, where K ′ ∈ {0, . . . , 2l − 1}. There are required some
transformations to get 1-dimensional ECDLP.

If P ′ = [2m1 ]P , then P = [2−m1 ]P ′. Because it is assumed that Ord(P ) = p is
prime, then the element 2m1 is invertible modulo p and Q = [U ·2−m1 ]P ′+[K ′]P ′.
In such case it is possible to search for solution of K ′ in set

{U · 2−m1 , U · 2−m1 + 1, . . . , U · 2−m1 + 2l − 1}.

If K ′ is found then it is easy to find K = U + K ′ · 2m1 .
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2.3 Only Some Continuous Bits in the Middle are Known. Most
and Least Significant Bits are Unknown

In [3] is described method of searching for solution if the most and the least
significant bits of K are unknown. Let’s consider the situation where:

K = unknown bits
︸ ︷︷ ︸

l2

known bits
︸ ︷︷ ︸

m1

unknown bits
︸ ︷︷ ︸

l1

.

Then K may be presented as:

K = d22m1+l1 + K12l1 + d1,

where d1 ∈ {0, . . . , 2l1 − 1}, d2 ∈ {0, . . . , 2l2 − 1} and

K1 = 0 . . . 0
︸ ︷︷ ︸

l2

known bits
︸ ︷︷ ︸

m1

0 . . . 0
︸ ︷︷ ︸

l1

.

Numbers d1 and d2 are unknown. Let’s assume that number R from set
{1, . . . , p − 1} for which R · 2m1+l1 = fp + s, where |s| < p

2 is given. Let’s
see that:

RK = Rd22m1+l1 + RK12l1 + Rd1 = (fp + s)d2 + RK12l1 + Rd1

= d2fp + sd2 + RK12l1 + Rd1 = d2fp + RK12l1 + d′,

where d′ = sd2 + Rd1.
Now it is easy to see that:

[RK]P = [R]([K]P ) = [R]P = [d2fp + RK12l1 + d′]P = [RK12l1 + d′]P,

where P = [K]P .
Because K1 is known, then:

P ′ = [R]P − [RK12l1 ]P = [R](P − [K12l1 ] = [d′]P,

[R]Q = [RK]P = [RK12l1 + d′]P

and
Q′ = [R]Q − [RK12l1 ]P = [R](Q − [K12l1 ]P ) = [d′]P.

Finally it is required only to find the value d′.
If s is positive, then d′ must be in the set

{0, . . . , R · (2l1 − 1) + s · (
p

2m1+l1
− 1)}.

In this case it is possible to use 1-dimensional Pollard’s lambda or Gaudry-Schost
algorithm.

If s is negative, then d′ must be in the set

{s · (
p

2m1+l1
− 1), . . . , R · (2l1 − 1)}
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and the same methods may be used. The size of both intervals is the same and
is R2l1 + |s| p

2m1+l1
at most. To minimize the complexity of computations for

intervals, it is required to find such R that the value R2l1 + |s| p
2m1+l1

is as small
as possible.

It should be also noted that there must exist s ≡ R2m1+l1(mod p). It is
not always possible to find such R that the interval in which searching is made
would have length p

2m1 ≈ 2n−m1 . The best case is when p is Mersenne prime
number p = 2n − 1, then for R = 2n−m1−l1 and for s = 1 interval has bitlength
l1 + l2 = n − m1. There are methods of choosing R to minimize the length of
interval for other primes, but such interval will be always bigger than 2n−m1 and
will be about size

√
2p

2
m1
4

. These methods are described with details in [3].

2.4 There are Many Unknown Bits Given in Many Disjoint
Intervals

Now let’s consider the situation where:

K = known bits
︸ ︷︷ ︸

mc+1

unknown bits
︸ ︷︷ ︸

lc

. . . . . .
︸ ︷︷ ︸

...

known bits
︸ ︷︷ ︸

m3

unknown bits
︸ ︷︷ ︸

l2

known bits
︸ ︷︷ ︸

m2

unknown bits
︸ ︷︷ ︸

l1

known bits
︸ ︷︷ ︸

m1

.

It will be also assumed that at least 2 most significant bits of K are known
(mc+1 ≥ 2).

Let’s assume that sum of unknown bits is equal to k =
∑c

j=1 lj , and c is
number of disjoint intervals in which bits of K are unknown.

Let’s suppose that P is point on elliptic curve (generator) and Ord(P ) = p.
There is also given point Q for which Q = [K]P , where the value K is sought.
We are searching for K. Now let’s assume that:

U = known bits
︸ ︷︷ ︸

mc+1

0 . . . 0
︸ ︷︷ ︸

lc

. . . . . .
︸ ︷︷ ︸

...

known bits
︸ ︷︷ ︸

m3

0 . . . 0
︸ ︷︷ ︸

l2

known bits
︸ ︷︷ ︸

m2

0 . . . 0
︸ ︷︷ ︸

l1

known bits
︸ ︷︷ ︸

m1

.

Then

Q = [K]P = [U ]P + [
c

∑

i=1

di2ai ]P,

where di2ai is generator of interval i. So ai =
∑i−1

j=1 lj +
∑i

j=1 mj and di ∈
{0, . . . , 2li − 1} for i ∈ {1, . . . , c}, because i-th interval has bitlength of li bits.
Then:

Q′ = Q − [U ]P = [K]P − [U ]P = [K − U ]P = [
c

∑

i=1

di2ai ]P = [K ′]P ′,

where K ′ ∈ {0, . . . , 2k − 1}. In such case the inequality
∑c

i=1 di2ai < p
2 also

holds (that is why it is assumed that at least two most significant bits of K are
unknown).
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Theorem 1. The transformation of the problem described above into 1-
dimensional ECDLP of size 2l1+l2+...+lc = 2k is impossible.

Proof (Theorem 1)
Let’s suppose that transformation described in Sect. 2.4 to get one interval of

length 2k is possible. To get 1-dimensional ECDLP the result must be generated
by one generator P ′ = [t]P, t ∈ F ∗

p . The interval may begin from value v. Then
should hold [

∑c
i=1 di2ai ]P = [v]P ′ + [s]P ′ = [v + s]P ′, where for every possible

values of di the value of s would be in interval s ∈ {0, . . . , 2k − 1} (because it is
required to search for solution in one interval).

But P ′ = [t]P and then:

[
c

∑

i=1

di2ai ]P = [K ′]P ′ = [v]P ′ + [s]P ′ = [(v + s)t]P.

Now it is easy to see that:

c
∑

i=1

di2ai = (v + s)t

and because t �= 0 then also

c
∑

i=1

di2ait−1 = v + s.

If d0 = d1 = . . . = dc = 0 there must exist s0 ∈ {0, . . . , 2k − 1} for
which (v + s0)t = 0. Because t �= 0, then v + s0 = 0, so v = −s0. But if
s0 ∈ {0, . . . , 2k − 1} then v ∈ {−2k + 1, . . . , 0}.

To finish the Proof of Theorem 1 it is required to prove the Lemma 1.

Lemma 1. The only possible values of v are 0 or −2k + 1.

Proof (Lemma 1)
If

∑c
i=1 di2ait−1 = v + s, then

c
∑

i=1

(−di)2ait−1 = −v − s.

If −2k + 1 < v < 0 , then there exists some sf ∈ {0, . . . , 2k − 1} satisfying:

v + 2k − 1 ≥ v + sf > 0

and
0 > −v − sf > v.

So both values [
∑c

i=1 di2ait−1]P and [
∑c

i=1(−di)2ait−1]P must be some multi-
plicities of P ′ from set {v, . . . , v + 2k − 1}.
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Then

v + sf =
c

∑

i=1

di2ait−1

is in set {v, . . . , v + 2k − 1} and also

−v − sf =
c

∑

i=1

(−di)2ait−1

is in the same set.
Let’s see that because the inequality 0 ≤ ∑c

i=1 di2ai < p
2 must hold then

p
2 <

∑c
i=1(−di)2ai ≤ p (operations modulo prime p are made).

So if value (v+sf )t =
∑c

i=1 di2ai is in the set {0, . . . , p
2} then 0 > −v−sf > v

and

(−v − sf )t =
c

∑

i=1

(−di)2ai

should be in the same set {0, . . . , p
2} what is impossible because (−v − sf )t is in

set {p − p
2 , . . . , p − 1, 0}.

Finally, v = −2k + 1 or v = 0. �	
Fact 1. If d0 = d1 = . . . = dc = 0 then

c
∑

i=1

di2ai =
c

∑

i=1

(−di)2ai = 0.

Fact 2. The case when v = −2k + 1 may be transformed into the case v = 0: it
is sufficient to operate not on P ′ but on −P ′.

Fact 3. If it is assumed that v = 0 then K ′ ∈ {0, . . . , 2k − 1}.
Using results from Lemma 1 it is possible to finish Proof of Theorem 1.

Proof (Theorem 1)
Let’s see that for every di ∈ {0, . . . , 2li − 1} must hold (

∑c
i=1 digi) ≤ 2k − 1,

where gi = 2ait−1. If gi ≤ 2k − 1, then digi ≤ 2k − 1. That is because (of course
when di may be equal to 2, so when li > 1):

2gi = gi + gi ≤ 2k − 1 + 2k − 1 = 2(2k − 1) <
p

2
+

p

2
= p,

so 2gi < p and therefore 2gi < p
2 and because these operations are performed in

integer ring, not modulo, then 2gi < 2k − 1.
Repeating this step it is easy to observe that of course for every

di ∈ {0, . . . , 2li −1} holds digi ≤ 2k−1 so also (2li −1)gi ≤ 2k−1 (in integer ring,
not modulo p) holds. Because intervals are disjoint, then number 2ligi cannot
be in set {0, . . . , 2k − 1}. So the following inequality must hold:

(2li − 1)gi ≤ 2k − 1 < 2ligi.
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By analogy:
∑c

i=1 digi ≤ 2k − 1 for every di ∈ {0, . . . , 2li − 1}.
The question is how to find elements di ∈ {0, . . . , 2li − 1}, i = 1, c, for which

∑c
i=1 digi = 1.
For some i ∈ {1, . . . , c} must hold gi = 1, where di = 1 and for j �= i

dj = 0. Otherwise, for some
∑c

i=1 digi, where di ∈ {0, . . . , 2li −1}, the inequality
∑c

i=1 digi > 2k −1 would hold (in modulo, not integer ring) which cannot occur.
There must also hold (2li − 1)gi ≤ 2k − 1 < 2ligi. Because operations are

made in integer ring (not modulo p):

2k − 1
2li

< gi ≤ 2k − 1
2li − 1

,

then
gi = 1

if and only if
2k − 1
2li − 1

= 1.

So finally k = li.
It means that to make these transformations there cannot be c > 1 disjoint

intervals and in consequence it is impossible to transform

[
c

∑

i=1

di2ai ]P = [v]P ′ + [s]P ′

into 1-dimensional ECDLP. �	

3 Results

It was showed that if many disjoint intervals of unknown bits are given and
two most significant bits of K are known, then it is impossible to transform the
problem from Sect. 2.4 into 1-dimensional ECDLP without increasing size of the
problem. It is very important from practical point of view, because multidimen-
sional ECDLP has longer expected time of searching for solution.

The table below shows the expected time of solving ECDLP for different
dimensions. The expected time [7] is given by formula T1,n = O(1.47

√
n) in

average case for 1-dimensional problem (so A1 = 1.47) and Tc,n = O(Ac
√

n)
in average case for c dimensional problem, where c > 1 and Ac = ( 2√

3
)c

√
π

(Table 1).
Fraction Ac

A1
shows how much time is needed in average case to solve problem

with the same number of unknown bits in c-dimensional ECDLP comparing to
1-dimensional ECDLP (Table 2).
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Table 1. Values of coefficients Ac for different number of dimensions c

c 1 2 3 4 5 6 7 8 9 10

Ac 1.47 2.36 2.73 3.15 3.64 4.20 4.85 5.60 6.47 7.47

Table 2. Comparison of average times required for solving two dimensional ECDLP
(A2,k) with 1-dimensional (A1,k+m1) for k unknown bits and different m1. In
1-dimensional ECDLP m1 bits are “forgotten”

l1 1 2 3 4 5 6 7 8 9 10
A2,k

A1,k+m1
1.14 0.80 0.57 0.40 0.28 0.20 0.14 0.10 0.07 0.05

3.1 Practical Implementation

In order to practical comparison of 1-dimensional Gaudry-Schost with two-
dimensional Gaudry-Schost algorithm authors considered following ECDLP
problem: compute discrete logarithm of a point Q in cyclic group generated
by the point P on elliptic curve E/Fp, where

1. Elliptic curve E/Fp is the NIST P − 192 curve, the point P is the generator
of cyclic subgroup of order n.

2. The number of unknown bits of K (where Q = [K]P ) is k.

The number K has a form

K =
known bits
︸ ︷︷ ︸

m2

unknown bits
︸ ︷︷ ︸

l2

known bits
︸ ︷︷ ︸

m1

unknown bits
︸ ︷︷ ︸

l1

,

where l1 + l2 = k. For 1-dimensional Gaudry-Schost algorithm known bits to get
one joint interval are “forgotten”. Then the number U has a form:

K =
known bits
︸ ︷︷ ︸

m2

unknown bits
︸ ︷︷ ︸

l2+m1+l1

.

It means that k′ = l1 + m1 + l2 bits of the number U must be computed.
For experimental comparison authors considered cases presented in Table 3

(for 2-dimensional ECDLP).

Table 3. Experimental parameters

l1 l2 m1 k = l1 + l2

33 33 1 66

38 28 1 66

43 23 1 66
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For 1-dimensional ECDLP k′ was equal to 67 (since m1 = 1). In practical
implementation authors compared average times of computing ECDLP with:

– 1-dimensional improved Gaudry-Schost algorithm on equivalence classes (par-
allel version),

– two-dimensional Gaudry-Schost algorithm (parallel version).

For all cases described in Table 3 authors generated randomly 64 discrete log-
arithms to compute 64 points Q = [K]P , where K = a2 · 2m1+l1 + a1,
a2 ∈ {0, . . . , 2m2−1} and a1 ∈ {0, . . . , 2m1−1}. Computations were repeated 7
times (which generates 1344 results for each algorithm). There were obtained
average times t1, t2 and standard deviations s1, s2:

1. for 1-dimensional Gaudry-Schost algorithm:

t1 = 119.24s, s1 = 55.71s,

2. for two-dimensional Gaudry-Schost algorithm:

t2 = 130.76s, s2 = 58.13s.

It is worth to point that experimental results differ from theoretical. Expected
value of A2,k/A1,k+1 = 1.14 is bigger than t2/t1 = 1.10. The difference between
these results may be caused by the value of m1. When m1 = 1 it is possible that
during pseudorandom walks both “tame” and “wild kangaroos” can “jump”
as far that they reenter the searching area. This situation is more probable
for m1 = 1 than for bigger values of m1. Average time for multidimensional
Gaudry-Schost algorithm does not include the influence of distance between
both intervals of unknown bits.

Let’s describe two starting areas: T for “tame” and W for “wild kangaroos”.
Both situations, for m1 = 1 and m1 = 2, are presented on Figs. 1 and 2.

Fig. 1. Possible reentering the searching area for m1 = 1

Fig. 2. Possible reentering the searching area for m1 = 2
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4 Transformation of c-Dimensional ECDLP into
(c − 1)-Dimensional ECDLP for c ≥ 3

One can ask if it is computationally efficient to transform c-dimensional ECDLP
into (c−1)-dimensional ECDLP for c ≥ 3 by “forgetting” known bits. Let’s take
a look at analytic comparison of average time required to solve c-dimensional
ECDLP. If the number of unknown bits is equal to k, then N = 2k and thus
Tc,2k = O(( 2√

3
)c

√
π2k). Let’s now assume that there is k unknown bits given in

c disjoint intervals and some value of known bits m2,m3, . . . ,mc is equal to one,
so we have similar situation as in Sect. 2.4.

The natural idea would be trying to “forget” this one known bit to achieve
(c − 1)-dimensional ECDLP of size 2k+1. But let’s see that:

(

2√
3

)c √
π2k <

(

2√
3

)c−1 √
π2k+1,

because 2√
3

<
√

2.
Now it is easy to see that if c ≥ 3 then any trying of reduction of

c-dimensional ECDLP into ECDLP of smaller dimension by forgetting some
of known bits is not computationally efficient. It is worth to note that trans-
formation of 2-dimensional ECDLP into 1-dimensional ECDLP is computation-
ally efficient because 1-dimensional Gaudry-Schost is more interesting in many
practical applications and thus this algorithm is more elaborate and asymptotic
formula for average time of solving 1-dimensional ECDLP using 1-dimensional
Gaudry-Schost algorithm much differs from asymptotic formula for multidimen-
sional Gaudry-Schost algorithm.

Also reduction of 3-dimensional ECDLP into 1-dimensional ECDLP is com-
putationally inefficient even if both values m1 and m2 are equal to one:

K = known bits
︸ ︷︷ ︸

m2

unknown bits
︸ ︷︷ ︸

l2

known bits
︸ ︷︷ ︸

m2

unknown bits
︸ ︷︷ ︸

l2

known bits
︸ ︷︷ ︸

m1

unknown bits
︸ ︷︷ ︸

l1

,

because such inequality holds:
(

2√
3

)3 √
π2k < 1.47

√
π2k+2

and it is easy to see that in this case transformation of 3-dimensional ECDLP
into 1-dimensional ECDLP is not the best idea.

5 Conclusion

It was showed that if c disjoint intervals (c > 1) of unknown bits are given and
two most significant bits of K are known, then it is impossible to transform
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c-dimensional ECDLP into 1-dimensional ECDLP of the same size. It is very
important from practical point of view, because multidimensional ECDLP has
longer expected time of searching for solution. Experimental results show that
for two disjoint intervals of unknown bits it is computationally efficient to join
these intervals by “forgetting” known bit between them (situation when m1 = 1).
For m1 > 1 using multidimensional Gaudry-Schost algorithm should be faster
than 1-dimensional version with “forgotten” known bits between intervals.
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Abstract. We give explicit numerical estimates for the generalized
Chebyshev functions. Explicit results of this kind are useful for estimat-
ing the computational complexity of algorithms which generate special
primes. Such primes are needed to construct an elliptic curve over a
prime field using the complex multiplication method.

1 Introduction

Let K denote any fixed totally imaginary field of discriminant Δ = Δ(K) and
degree [K : Q] = 2r2, where 2r2 is the number of complex-conjugate fields of K.
Denote by f a given non-zero integral ideal of the ring of algebraic integers OK

and by H (mod f) any ideal class mod f in the “narrow” sense. Let h∗
f (K) be the

number of elements of H. Let χ(H) be a character of the abelian group of ideal
classes H (mod f), and let χ(a) be the usual extension of χ(H). Let s = σ + it.
The Hecke–Landau zeta-functions associated to χ, are defined by

ζ(s, χ) =
∑

a∈OK

χ(a)
(Na)s

, σ > 1, (1)

where a runs through integral ideals and Na is the norm of a. Throughout, χ0

denotes the principal character modulo f. Let

E0 = E0(χ) =
{

1 for χ = χ0

0 for χ �= χ0

If χ is a primitive character, then ζ(s, χ) satisfies the functional equation

Φ(s, χ) = W (χ)Φ(1 − s, χ), |W (χ)| = 1,

where

Φ(s, χ) = A(f)sΓ (s)r2ζ(s, χ)
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and

A(f) = (2π)−r2
√

|Δ|N f. (2)

Let Λ(a) be the generalized Mangoldt function. Fix X mod f ∈ H. We define,

Ψ(x,X) =
∑

x≤Na≤2x
a∈X

Λ(a) =
∑

x≤Npm≤2x
pm∈X

log Np,

where p runs through prime ideals of OK . The aim of this paper is to prove the
following theorem.

Theorem 1. Let K, Δ, f, ζ(s, χ) denote respectively any algebraic number field
of degree [K : Q] = 2r2, the discriminant of K, any integral ideal in K and
any Hecke-Landau zeta function with a character χ modulo f. Fix 0 < ε < 1. If
|Δ| ≥ 9 and there is no zero in the region

σ ≥ 1 − 0.0795
(
log |Δ| + 0.7761 log

(
(|t| + 1)2r2 (N f)1−E0

))−1

, (3)

then

Ψ(x,X) ≥ x(1 − ε)
h∗
f (K)

,

for

log x ≥
(

23.148
√

r2

(
1 +

(
2 log

(
c1

√
r2

0.117ε

)) 1
2

+
2
3

log
(

c1
√

r2
0.117ε

)))2

,

where

c1 =
(
40506.547|Δ| 1.933

r2 + 15061.779|Δ| 1.289
r2 (N f)

1
r2 h∗

f (K)
)

r22 log(|Δ|N f).

Remark 1. For real χ (mod f) the function ζ(s, χ) may have a real, simple zero
in (3). However, we can check numerically whether a Hecke-Landau ζ function
has a simple real zero in (3) using scripts for computing zeros of zeta functions
associated to characters of finite order [13].

Explicit results of this kind are useful for estimating the computational com-
plexity of algorithms which generates special primes. Such primes can be used in
computational number theory and cryptography. In order to analyse the running
time of these algorithms one need an explicit bound for the number of desired
primes from the interval [x, 2x], x ≥ x0, where x0 is computed explicitly. We
give an example of such an algorithm. For this reason we recall the following
definition [6].
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Definition 1. Let p, q be a pair of primes and Δ < 0. The primes p, q are
defined to be CM-primes with respect to Δ if there exist integers f and t such
that

|t| ≤ 2
√

p, q|p + 1 − t, 4p − t2 = Δf2. (4)

If CM-primes p and q with respect to Δ and integers f, t are given, then an
ordinary elliptic curve E over Fp of cardinality p+1− t can be constructed using
complex multiplication method [1,3]. Let E(Fp) be the group of points on E
over Fp, and let |E(Fp)| be the order of E(Fp). The group E(Fp) can be used
to implement public key cryptographic systems, based on intractability of the
discrete logarithm problem (DLP). To make the DLP in E(Fp) intractable, it is
essential to generate a large prime p, and a curve E defined over Fp, such that
|E(Fp)| has a large prime factor q. In [6] an algorithmic method for constructing
a pair (E, p) such that |E(Fp)| has a large prime factor q is given. Fix K an
imaginary quadratic number field, and positive integers m,n, (n,m) = 1. Then
the algorithm generates α ∈ OK such that q = NK/Q(α) ≡ m (mod n) is a
prime, and x ≤ q ≤ 2x for sufficiently large x ≥ x0. Given α, q a prime p,
x < p < x

5
2−5ε , is constructed, where 0 < ε < 2

5 . For more algorithms of this
kind we refer the reader to [7,8].

Let x ∈ R, and let W (x) be the Lambert W function such that W (x)eW (x) =
x. If −e−1 ≤ x ≤ 0, then there are two possible real values of W (x). We denote
the branch satisfying −1 < W (x) by W0(x) and the branch satisfying W (x) ≤ −1
by W−1(x). Fix X (mod f) ∈ H. We define

ψ(x,X) :=
∑

Npm<x
pm∈X

log Np,

where p runs through prime ideals of OK . Theorem 1 follows from Theorem 2.

Theorem 2. Let K, Δ, f, ζ(s, χ) denote respectively any algebraic number field
of degree [K : Q] = 2r2, the discriminant of K, any integral ideal in K and any
Hecke-Landau zeta function with a character χ modulo f. Let A0 = 0.7761. If
|Δ| ≥ 9 and there is no zero in the region

σ ≥ 1 − 0.0795
(
log |Δ| + A0 log

(
(|t| + 1)2r2(N f)1−E0(χ)

))−1

,

then

ψ(x,X) ≥ x

h∗
f (K)

− c2x

h∗
f (K)

(log x)
1
2 e−0.0432r

−1/2
2

√
log x,

and

ψ(x,X) ≤ x

h∗
f (K)

+
c3x

h∗
f (K)

(log x)
1
2 e−0.0459r

−1/2
2

√
log x
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for x ≥ exp
(
116r2 log

(
2|Δ| 1

A0r2 (N f)
1

r2

))
, where

c2 =
(
10756.967|Δ| 3

2A0r2 + 3999.824|Δ| 1
A0r2 (N f)

1
r2 h∗

f (K)
)

r22 log(|Δ|N f),

c3 =
(
18164.326|Δ| 3

2A0r2 + 6754.144|Δ| 1
A0r2 (N f)

1
r2 h∗

f (K)
)

r22 log(|Δ|N f).

Proof. See Sect. 2.

We are now in a position to prove Theorem 1.

Proof. By Theorem 2 we have

ψ(2x,X) − ψ(x,X) ≥ x

h∗
f (K)

− c1x

h∗
f (K)

(log x)
1
2 e−0.0432r

−1/2
2

√
log x,

where

c1 =

(
2c2

(
1 +

log 2
log x

) 1
2

+ c3

)
≤ 2.077c2 + c3

for x ≥ exp
(
116r2 log

(
2|Δ| 1

A0r2 (N f)
1

r2

))
. Fix 0 < ε < 1. If

c1(log x)
1
2 e−0.0432r

−1/2
2

√
log x ≤ ε,

then

0.0432r
− 1

2
2 (log x)

1
2 ≥ −W−1

(−0.0432ε

c1
√

r2

)
.

By [2, Theorem 1]

log x ≥
(

23.148
√

r2

(
1 +

(
2 log

(
c1

√
r2

0.117ε

)) 1
2

+
2
3

log
(

c1
√

r2
0.117ε

)))2

.

This finishes the proof.

2 The Proof of Theorem 2

The proof of Theorem 2 rests on the following lemmas and theorems.

Theorem 3. Let K, f, ζ(s, χ) denote respectively any algebraic number field of
degree n ≥ 2, any integral ideal in K and any Hecke-Landau zeta function with
a character χ modulo f. Let futher

L(t) = log |Δ| + A0 log
(
(|t| + 1)n(N f)1−E0

) ≥ 2.097. (5)

Then in the case of the complex χ in the region

σ ≥ 1 − A1

L(t)
≥ 1 − 0.037911 = 0.962089 = A2 (6)

there is no zero of ζ(s, χ), where A0 = 0.7761, A1 = 0.0795. For real χ (mod f)
the function ζ(s, χ) may have a real, simple zero in (6).
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Proof. See [5, Theorem 2].

Lemma 1. Let s = σ + it, 0 < η ≤ 1
4 , A3 = 75.472, A4 = 0.010 and |Δ| ≥ 9.

Assume that there is no exceptional zero in the region (6). Then in the strip
1 − A1

6L(t) ≤ σ ≤ 3 we have

∣∣∣∣
ζ ′

ζ
(s, χ0) +

1
s − 1

∣∣∣∣ ≤ φ0(t, r2, η,Δ, f),

where

φ0(t, r2, η,Δ, f) = 32 log
(
L(t)(|t| + 4)(|t| + 2)r2(1+η) (1 + A3L(t))2r2

)

+ 32 log
(
A3(|Δ|N f)

1+η
2 ζ(1 + η)2r2

)
+ 8A3r2L(t) +

A4r2
L(t)

,
(7)

and
∣∣∣∣
ζ ′

ζ
(s, χ)

∣∣∣∣ ≤ φ(t, r2, η,Δ, f),

where

φ(t, r2, η,Δ, f) = 32 log
(
(1 + A3L(t))2r2 (|t| + 4)r2(1+2η)

)

+ 32 log
(
1.4(1 + εχ)A(f)1+2ηζ(1 + η)2r2

)
+ 4A3r2L(t) +

A4r2
L(t)

(8)

for any character χ �= χ0 modulo f, where εχ = 0 or 1 to accordingly whether χ
is primitive or not.

Proof. See Sect. 3.

Lemma 2. Let φ0, φ be functions defined in Lemma 1. Let T ≥ 1, w ≥ 1,
|Δ| ≥ 9, c4 = 1√

2wr2
and

c0 = c0(Δ, f, r2, E0) = |Δ|− 1
2A0r2 (N f)− 1−E0

2r2 . (9)

If

T + 1 = c0 exp
(
c4

√
log x

)
, (10)

then

φ(T, r2, η,Δ, f) ≤ 287.790r
3
2
2 log(|Δ|N f)(log x)

1
2

φ0(T, r2, η,Δ, f) ≤ 479.346r
3
2
2 log(|Δ|N f)(log x)

1
2

for x ≥ exp
(
(c−1

4 log(2c−1
0 ))2

)
.
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Proof. By (5), (10) we obtain

L(T ) =
A0

√
2r2√
w

(log x)
1
2 , x ≥ exp

(
(c−1

4 log(2c−1
0 ))2

)
. (11)

Since T + 1 ≥ 2, log x ≥ 2r2w
(
log(2c−1

0 )
)2 ≥ 2(log(2 · 9

1
2A0 ))2 ≥ 8.892, and

hence x > e8.892. Let η = 1
4 . We have ζ

(
5
4

) ≤ 4.596,

32 log(1 + A3L(T ))2r2 ≤ 32r2 log log x + 64r2 log(A0

√
2r2(A3 +

1
2.097

))

≤ 190.837r
3
2
2 log log x,

32r2(1+2η) log(T + 4) ≤ 32r2(1 + 2η)

(
1√

2wr2
(log x)

1
2 + log

5

2

)
≤ 48.691r

1
2
2 (log x)

1
2 ,

4A3r2L(T ) ≤ 4
√

2A0A3r
3
2
2 (log x)

1
2 ≤ 331.344r

3
2
2 (log x)

1
2 ,

32 log
(
1.4(1 + εχ)A(f)1+2ηζ(1 + η)2r2

)
+

A4r2
L(T )

≤ 32 log
(
2.8ζ(1 + η)2r2

)

+ 16(1 + 2η) log(|Δ|N f) +
A4r2
0.429

≤ 83.417r2 log(|Δ|N f).

By the above and (8) we obtain

φ(T, r2, η,Δ, f) ≤ 287.790r
3
2
2 log(|Δ|N f)(log x)

1
2 ,

Similarly,

32 log L(T ) ≤ 16 log log x + 32 log(
√

2r2A0) ≤ 24.686r
1
2
2 log log x,

32 log(T + 4)r2(1+η)+1 ≤ 81.151r2(log x)
1
2 ,

and

32 log
(
A3(|Δ|N f)

1+η
2 ζ(1 + η)2r2

)
+

A4r2
L(t)

≤ 127.393r2 log(|Δ|N f).

By the above and (7) we obtain

φ0(T, r2, η,Δ, f) ≤ 479.346r
3
2
2 log(|Δ|N f)(log x)

1
2 .

This finishes the proof.

Lemma 3. Let T ≥ 1, w ≥ 1, |Δ| ≥ 9, and let k ≥ 1. Let c0, c4, T be defined as
in Lemma 2. If

T + 1 = c0 exp

(√
log x

2wr2

)
, (12)
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then

1
T k

≤ 2kc−k
0 e−kc4

√
log x for log x ≥ (c−1

4 log(2c−1
0 ))2, (13)

log(e(T + k)) ≤ c4
√

log x + log
(

e

(
k + 1

2

))
. (14)

Proof. By (12) we have

1
T k

= exp(−k log(c0ec4
√
log x(1 − (c0ec4 log x)−1))) ≤ exp(−k log(

1
2
c0e

c4
√
log x)),

for log x ≥ (c−1
4 log(2c−1

0 ))2. The proof of (14) is left to the reader. This finishes
the proof.

Lemma 4. For T ≥ 1 we have

∞∫

T

t−2dt ≤ T−1,

∞∫

T

t−2 log(t + 4)dt ≤ T−1 log(e(T + 4))

Proof. The proof is left to the reader.

Lemma 5. Let L(t) be the function which occur in (5). For T ≥ 1 we have

∞∫

T

t−2L(t)dt ≤ c5T
−1 log(e(T + 4)),

where c5 = 1.09r2 log
(|Δ|(N f)A0(1−E0)

)
.

Proof. We have

∞∫

T

t−2L(t)dt ≤ 2r2A0

∞∫

T

t−2 log(t + 4)dt + log
(
|Δ|(N f)A0(1−E0)

) ∞∫

T

t−2dt.

The Lemma 5 follows from Lemma 4. This finishes the proof.

Lemma 6. Let L(t) be the function which occur in (5). For T ≥ 1 we have

∞∫

T

t−2 log(1 + A3L(t))2r2dt ≤ c6T
−1 log(e(T + 4)),

where c6 = 11.605r22 log
(|Δ|(N f)A0(1−E0)

)
, and A3 is the constant appearing in

Lemma 1.
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Proof. By (5) we have
∞∫

T

t−2 log (1 + A3L(t))2r2 dt ≤ 2r2c7

∞∫

T

t−2dt + 2r2

∞∫

T

t−2L(t)dt,

where c7 = log
(
A3

(
1 + 1

2.097A3

))
. The Lemma 6 follows from Lemmas 4 and 5.

This finishes the proof.

Lemma 7. Let φ0 be the function which occur in (7). For T ≥ 1 we have
∞∫

T

φ0(t, r2, η,Δ, f)t−2dt ≤ c8T
−1 log(e(T + 4)),

where c8 = 1138.428r22 log(|Δ|(N f)
5
8 ).

Proof. By (5) and (7) with η = 1
4 we have

∞∫

T

φ0(t, r2, η,Δ, f)t−2dt ≤ (40r2 + 32)

∞∫

T

t−2 log(t + 4)dt

+
(

32 log(A3(|Δ|N f)
5
8 ) + 64r2 log ζ

(
5
4

)
+

A4r2
2.097

) ∞∫

T

t−2dt

+ (32 + 8A3r2)

∞∫

T

t−2L(t)dt + 32

∞∫

T

t−2 log (1 + A3L(t))2r2 dt.

The Lemma 7 follows from Lemmas 4, 5 and 6. This finishes the proof.

Lemma 8. Let φ be the function which occur in (8). For T ≥ 1 we have
∞∫

T

φ(t, r2, η,Δ, f)t−2dt ≤ c9T
−1 log(e(T + 4)),

where c9 = 835.777r22 log (|Δ|N f).

Proof. By (5) and (8) with η = 1
4 we have

∞∫

T

φ(t, r2, η,Δ, f)t−2dt ≤
(

32 log

(
2.8A(f)

3
2 ζ

(
5
4

)2r2
)

+
A4r2
2.097

) ∞∫

T

t−2dt

+ 32

∞∫

T

t−2 log (1 + A3L(t))2r2 dt + 48r2

∞∫

T

t−2 log (t + 4) dt

+ 4A3r2

∞∫

T

L(t)t−2dt.

The Lemma 8 follows from Lemmas 4, 5 and 6. This finishes the proof.
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We are now in a position to prove Theorem 2.

Proof. Fix T ≥ 1, and let c = 1 + 1
log x . Fix X (mod f). We define

ψ1(x,X) :=
∫ x

0

ψ(t,X)dt, (15)

and

γ(n) =
∑

Npm=n
pm∈X

log Np.

Hence,

ψ(x,X) =
∑

n≤x

γ(n).

By partial summation we obtain

∑

n≤x

(x − n)γ(n) =
∫ x

0

ψ(t,X)dt.

Now, we write

f(s, χ) =
xs−1

s(s + 1)

[
−ζ ′

ζ
(s, χ)

]
.

By Theorem B [10, see p. 31] and the orthogonality properties of χ (mod f) we
deduce the formula

∑

n≤x

(x − n)γ(n) =
x2

2πih∗
f (K)

∑

χ

χ(X)

c+i∞∫

c−i∞
f(s, χ)ds, (16)

where c > 1. Let A1 be the constat appearing in (6), and let B = A1
6 = 0.01325.

We define the contour C consisting of the following parts:

C1 : s = c + it,where − T ≤ t ≤ T, (17)

C2 : s = σ + iT,where 1 − B

L(T )
≤ σ ≤ c,

C3 : s = 1 − B

L(T )
+ it,where − T ≤ t ≤ T.

and of C′
2 situated symmetrically to C2. If χ = χ0, them ζ′

ζ (s, χ) has a first order
pole of residue −1 at s = 1. From the Cauchy formula we get

1
2πi

∫

C1

f(s, χ)ds =
δ(χ)

2
− 1

2πi

∫

C2+C3+C′
2

f(s, χ)ds, (18)
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where

δ(χ) =
{

1 if χ = χ0,
0 if χ �= χ0.

From (15), (16) and (18) we obtain
∣∣∣∣∣ψ1(x,X) − x2

2h∗
f (K)

∣∣∣∣∣ ≤ x2(I1 + I2 + I3)
h∗
f (K)

+
x2(J1 + J2 + J3)

h∗
f (K)

, (19)

where

I1 + I2 + I3 =

∣∣∣∣∣∣
1

2πi

c−iT∫

c−i∞
f(s, χ0)

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

1
2πi

∫

C2+C3+C′
2

f(s, χ0)ds

∣∣∣∣∣∣∣
+

+

∣∣∣∣∣∣
1

2πi

c+i∞∫

c+iT

f(s, χ0)ds

∣∣∣∣∣∣
,

J1 + J2 + J3 =

∣∣∣∣∣∣

∑

χ	=χ0

χ(X)
1

2πi

c−iT∫

c−i∞
f(s, χ)ds

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣∣

∑

χ	=χ0

χ(X)
1

2πi

∫

C2+C3+C′
2

f(s, χ)ds

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣

∑

χ	=χ0

χ(X)
1

2πi

c+i∞∫

c+iT

f(s, χ)ds

∣∣∣∣∣∣
.

We define

h0(s, χ0) =
[
−ζ ′

ζ
(s, χ0) − 1

s − 1

]
xs−1

s(s + 1)
, h1(s) =

xs−1

s(s + 1)(s − 1)
.

Then

f(s, χ0) = h0(s, χ0) + h1(s). (20)

We estimate the above integrals. Let T ≥ 1, x ≥ e8.892, 1 < c = 1 + 1
log x ≤ 1.12.

We need to consider the following cases:
1. Bound over C2 and C′

2, case χ = χ0. In this case c0 ≤ 9− 1
2A0 ≤ 1

4 . From
Lemmas 1, 2 and 3 we obtain

∣∣∣∣∣∣
1

2πi

∫

C2

f(σ + iT, χ0)dσ

∣∣∣∣∣∣
≤ e

2πT 2 log x
φ0(T, r2, η,Δ, f) +

e

2πT 3 log x

≤ c−3
0 r

3
2
2 log(|Δ|N f)(log x)− 1

2

(
2ec0479.346

π
+

4e

π(log x)
1
2

)
e−2c4

√
log x

≤ c10(log x)− 1
2 e−2c4

√
log x,
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where c10 = 208.540|Δ| 3
2A0r2 r

3
2
2 log(|Δ|N f). The same bound holds with

∫
C′
2

in
place of

∫
C2

.
2. Bound over C3, case χ = χ0. Lemmas 1, 2 and 3 shows that

∣∣∣∣∣∣
1

2πi

∫

C3

h0

(
1 − B

L(T )
+ it, χ0

)
dt

∣∣∣∣∣∣
≤ 1

π
x− B

L(T ) φ0(T, r2, η,Δ, f)

·
T∫

0

dt
(
1 − B

L(T )

)2

+ t2
≤ 1

π
2.01e−c18

√
log xφ0(T, r2, η,Δ, f)

≤ 306.687r
3
2
2 log(|Δ|N f)(log x)

1
2 e−c18

√
log x,

where c18 = B
√

w

A0
√
2r2

. Indeed, 1 − B
L(T ) ≥ 1 − 0.0133

2.097 ≥ 0.993, and

T∫

0

dt
(
1 − B

L(T )

)2

+ t2
=

1∫

0

dt
(
1 − B

L(T )

)2

+ t2
+

T∫

1

dt
(
1 − B

L(T )

)2

+ t2

≤
1∫

0

dt

(0.993)2
+

T∫

1

dt

t2
≤ 1

(0.993)2
+ 1 ≤ 2.01.

Moreover,
∣∣∣∣∣∣

1
2πi

∫

C3

h1

(
1 − B

L(t)
+ it

)
ds

∣∣∣∣∣∣

≤ 1
π

x− B
L(T )

T∫

0

dt∣∣∣1 − B
L(T ) + it

∣∣∣
∣∣∣2 − B

L(T ) + it
∣∣∣
∣∣∣− B

L(T ) + it
∣∣∣

≤ c11
π

e−c18
√
log x,

where c11 = 1
0.993|0.993−1|(0.993+1) + 1 ≤ 73.185. By the above and (20),

∣∣∣∣∣∣
1

2πi

∫

C3

f

(
1 − B

L(T )
+ it, χ0

)
dt

∣∣∣∣∣∣
≤ c12(log x)

1
2 e−c18

√
log x,

where c12 = 267.495r
3
2
2 log(|Δ|N f). Hence,

I2 ≤ |Δ| 3
2A0r2 r

3
2
2 log(|Δ|N f)(log x)

1
2 e−c18

√
log x

·
(

267.495 +
2 · 360.992

log x
e−(2c4−c18)

√
log x

)
≤ c13(log x)

1
2 e−c18

√
log x,

(21)

if w < 2A0
B = 117.148, where c13 = 348.69|Δ| 3

2A0r2 r
3
2
2 log(|Δ|N f).
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3. Bound over C2 and C′
2, case χ �= χ0. From Lemmas 1, 2 and 3 we obtain

∣∣∣∣∣∣
1

2πi

∫

C2

f(σ + iT, χ)ds

∣∣∣∣∣∣
≤ c14(log x)− 1

2 e−2c4
√
log x,

where c14 = 498.025|Δ| 1
A0r2 (N f)

1
r2 r

3
2
2 log(|Δ|N f). The same bound holds with∫

C′
2

in place of
∫

C2
.

4. Bound over C3, case χ �= χ0. Lemmas 1, 2 and 3 shows that
∣∣∣∣∣∣

1
2πi

∫

C3

f

(
1 − B

L(T )
+ it, χ

)
ds

∣∣∣∣∣∣
≤ 1

π
x− B

L(T ) φ(T, r2, η,Δ, f)

T∫

0

dt
(
1 − B

L(T )

)2

+ t2

≤ 1
π

2.01e−c18
√
log xφ(T, r2, η,Δ, f) ≤ c15(log x)

1
2 e−c18

√
log x,

where c15 = 184.129r
3
2
2 log(|Δ|N f). Hence, by the above

J2 ≤
∑

χ	=χ0

χ(X)
(
2c14(log x)− 1

2 e−2c4
√
log x + c15(log x)

1
2 e−c18

√
log x

)

≤ c16(log x)
1
2 e−c18

√
log x,

(22)

if w < 2A0
B = 117.148, where c16 = 296.146h∗

f (K)|Δ| 1
A0r2 (N f)

1
r2 r

3
2
2 log(|Δ|N f).

5. Bound for
∫ c+i∞

c+iT
, case χ = χ0. By (20) and Lemmas 1, 3, 7 we obtain

∣∣∣∣∣∣
1

2πi

c+i∞∫

c+iT

f(s, χ0)ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
1

2πi

c+i∞∫

c+iT

h0(s, χ0)ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1

2πi

c+i∞∫

c+iT

h1(s)ds

∣∣∣∣∣∣

≤ e

2π

∞∫

T

φ0(t, r2, η,Δ, f)t−2dt +
e

2π

∞∫

T

t−3dt ≤ e

2π
c8

log(e(T + 4))
T

+
e

4πT 2
≤ ec8

πc20
(log x)

1
2

(
c0√
2w

+
1.917c0

(log x)
1
2

+
c0

2c8(log x)
1
2

)
e−c4

√
log x

≤ c17(log x)
1
2 e−c4

√
log x

for log x ≥ (c−1
4 log(2c−1

0 ))2 ≥ 8.892, with (log x)
1
2 ≥ 2.98, c0 ≤ 1, w = 58.

where c17 = 724.845|Δ| 1
A0r2 r22 log(|Δ|(N f)

5
8 ). The same bound holds with

∫ c−iT

c−i∞
in place of

∫ c+i∞
c+iT

. Hence,

I1 + I3 ≤ 2c17(log x)
1
2 e−c4

√
log x. (23)
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6. Bound for
∫ c+i∞

c+iT
, case χ �= χ0. Lemmas 1, 3 and 8 shows that

∣∣∣∣∣∣
1

2πi

c+i∞∫

c+iT

f(s, χ)ds

∣∣∣∣∣∣
≤ e

2π

∞∫

T

φ(t, r2, η,Δ, f)t−2dt ≤ e

2π
c9

log(e(T + 4))
T

≤ ec9
πc0

(log x)
1
2

(
1√
2w

+
1.917

(log x)
1
2

)
e−c4

√
log x ≤ c19(log x)

1
2 e−c4

√
log x.

where c19 = 532.042|Δ| 1
2A0r2 (N f)

1
2r2 r22 log(|Δ|N f), and w = 58. The same bound

holds with
∫ c−iT

c−i∞ in place of
∫ c+i∞

c+iT
. Hence,

J1 + J3 ≤ 2c19h
∗
f (K)(log x)

1
2 e−c4

√
log x. (24)

By (21), (23) we have

I1 + I2 + I3 ≤ c20(log x)
1
2 e−c18

√
log x, (25)

where c20 = 3585.536|Δ| 3
2A0r2 r22 log(|Δ|N f), for 1 ≤ w < A0

B = 58.57. From (22),
(24) we obtain

J1 + J2 + J3 ≤ c21(log x)
1
2 e−c18

√
log x, (26)

where c21 = 1333.230h∗
f (K)|Δ| 1

A0r2 (N f)
1

r2 r22 log(|Δ|N f) for 1 ≤ w < A0
B =

58.57. Now, by (19), (25), (26) we obtain
∣∣∣∣∣ψ1(x,X) − x2

2h∗
f (K)

∣∣∣∣∣ ≤ x2

h∗
f (K)

c22(log x)
1
2 e−c18

√
log x

where c22 = c20 + c21. Now, let x > 2, and h be a function of x satisfying
0 < h < 1

2x. Let W (x) = c22(log x)
1
2 e−c18

√
log x. Since ψ(t,X) is an increasing

function

ψ(x,X) ≥ 1
h

∫ x

x−h

ψ(t,X)dt =
ψ1(x,X) − ψ1(x − h,X)

h

≥ x

h∗
f (K)

− x2

hh∗
f (K)

W (x) − h

2h∗
f (K)

− x2 + h2

hh∗
f (K)

W (x − h).

Taking h = xe− 1
2 c18

√
log x and x > exp( 2 log 2

c18
)2, we get

ψ(x, X) ≥ x

h∗
f (K)

− x

h∗
f (K)

c22(log x)
1
2 e− 1

2 c18
√
log x − 1

2h∗
f (K)

xe− 1
2 c18

√
log x

− x

h∗
f (K)

c22(log x)
1
2 e−c18(c23−0.5)

√
log x − x

h∗
f (K)

c22(log x)
1
2 e−c18(c23+0.5)

√
log x

≥ x

h∗
f (K)

− x

h∗
f (K)

c22(log x)
1
2 e−0.47c18

√
log x(3 + c24)

≥ x

h∗
f (K)

− c2x

h∗
f (K)

(log x)
1
2 e−0.47c18

√
log x,

(27)
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where c23 = (1 − log 2
log x )

1
2 , 0.97 ≤ c23 ≤ 0.98, c24 = 1

2c22
(log x)− 1

2 ≤ 0.0001, and
c2 = c22(3 + c24). On the other hand,

ψ(x,X) ≤ 1
h

∫ x+h

x

ψ(t,X)dt =
ψ1(x + h,X) − ψ1(x,X)

h

≤ x

h∗
f (K)

+
h

2h∗
f (K)

+
(x + h)2

hh∗
f (K)

W (x + h) +
x2

hh∗
f (K)

W (x)

≤ x

h∗
f (K)

+
x

h∗
f (K)

c22(log x)
1
2 e− 1

2 c18
√
log x(c25 + 5c1)

≤ x

h∗
f (K)

+
c3x

h∗
f (K)

(log x)
1
2 e− 1

2 c18
√
log x

where c25 = 1
2c22c26

(log x)− 1
2 ≤ 0.001, c26 =

(
1 + log 3

2
log x

) 1
2 ≤ 1.013, c3 = c22(c25+

5c26). Putting c18 = B
√
58

A0
√
2r2

= 0.0919
√

r2 we obtain the result. This finishes the
proof.

3 Proof of Lemma 1

The proof of Lemma 1 rests on the following lemmas. We first recall the well-
known theorem of Phragmen-Lindelöf.

Lemma 9. Let f(s) be a regular function and |f(s)| ≤ c1 exp (c2|t|) in the region
σ1 ≤ σ ≤ σ2, −∞ < t < ∞. Suppose further |f(s)| ≤ M on the lines σ = σ1

and σ = σ2 of the complex plane. Then |f(s)| ≤ M in the region σ1 ≤ σ ≤ σ2,
−∞ < t < ∞.

Proof. See [4, Lemma, p. 61]

Lemma 10. Let [K : Q] = 2r2 and 0 < η ≤ 1
4 . In the region −η ≤ σ ≤ 3 we

have the estimate

|ζ(σ + it, χ)| ≤ 1.4r2(1 + εχ)A(f)1+2ηζ(1 + η)2r2(|t| + 4)r2(1+2η)

for any character χ �= χ0 modulo f, where εχ = 0 or 1 to accordingly whether χ
is primitive or not.

Proof. Consider

g(s, χ) =
ζ(s, χ)

ζ(1 − s, χ)
,

where χ is a primitive character mod f and ζ(s, χ) is defined in (1). From the
functional equation for ζ(s, χ) it follows that

g(s, χ) = W (χ)A(f)1−2s

(
Γ (1 − s)

Γ (s)

)r2

, (28)
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where A(f) is defined in (2). We estimate g(s, χ) on the line s = −η+it, 0 ≤ η ≤ 1
4

using the following inequality (see [4], p. 58)
∣∣∣∣
Γ (1 − s)

Γ (s)

∣∣∣∣ ≤ 1.4max(1, |s|1+2η). (29)

From (28) and (29) we obtain

|g(−η + it, χ)| ≤ 1.4r2 A(f)1+2η(max(1, | − η + it|(1+2η)))r2 (30)

for −∞ < t < ∞. Write

G(s, χ) =
ζ(s, χ)

(s + 1)r2(1+2η)
. (31)

From (30) we have

|G(−η + it, χ)| ≤ 1.4r2A(f)1+2η|ζ(1 + η − it, χ)| (32)

≤ 1.4r2A(f)1+2ηζ(1 + η)2r2

for χ �= χ0. If χ is not a primitive character, then there is an ideal f0 which
divides f, and there is a primitive character λ (mod f0) such that

ζ(s, χ) = ζ(s, λ)
∏

p|f,p�f0

(
1 − λ(p)

(Np)s

)
.

Write f = f0f1. From [4, see p. 60] we get
∣∣∣∣∣∣

∏

p|f,p�f0

(
1 − λ(p)

(Np)η−it

)∣∣∣∣∣∣
≤ 2(N f1)

1
2+η.

Hence,

|G(−η + it, χ)| ≤ 1.4r2(1 + εχ)A(f)1+2η|ζ(1 + η − it, χ)| (33)

≤ 1.4r2(1 + εχ)A(f)1+2ηζ(1 + η)2r2

for any character χ �= χ0 modulo f, where εχ = 0 or 1 to accordingly whether χ
is primitive or not. On the other hand,

|G(3 + it, χ)| ≤ |ζ(3 + it, χ)|
(4 + it)r2(1+2η)

≤ 1
4r2

ζ(3)2r2 . (34)

Using the estimate

|ζ(s, χ)| ≤ A1e
A2|t|,

which is valid in the strip −η ≤ σ ≤ 3, where A1, A2 depends on K, χ, and f,
we get

|G(s, χ)| = O(eA3|t|) (35)
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for −η ≤ σ ≤ 3. From (33)–(35) and Lemma 9 we obtain

|G(s, χ)| ≤ 1.4r2(1 + εχ)A(f)1+2ηζ(1 + η)2r2 (36)

in the strip −η ≤ σ ≤ 3. From (36), (31)

|ζ(s, χ)| ≤ 1.4r2(1 + εχ)A(f)1+2ηζ(1 + η)2r2(|t| + 4)r2(1+2η)

for any character χ �= χ0 modulo f. This finishes the proof.

We denote by ζK(s) the Dedekind zeta-function.

Lemma 11. For σ > 1 we have

1
|ζ(σ + it, χ)| ≤ ζK(σ).

Proof. See [9, Lemma 2.4].

Lemma 12. Let [K : Q] = 2r2 and 0 < η ≤ 1
4 . In the region −η ≤ σ ≤ 1 + η,

−∞ < t < ∞ we have estimate

|(s − 1)ζ(s, χ0)| ≤ (3 + |t|)(1 + |t|)r2(1+η−σ)(|Δ|N f)
1+η−σ

2 ζK(1 + η).

Proof. See [4, Eq. (5.4), p. 61].

Lemma 13. Let f(s) be a function regular in the disk |s−s0| ≤ r and satisfying
the inequality

∣∣∣∣
f(s)
f(s0)

∣∣∣∣ ≤ M.

If f(s) �= 0 in the region |s − s0| ≤ r
2 , 	(s − s0) > 0, then

	f ′

f
(s0) ≥ −4

r
log M.

Proof. See [12, Satz 4.5, p. 384].

Lemma 14. Let f(s) be a function regular in the disk |s−s0| ≤ R and satisfying
the conditions

	f(s) ≤ M for |s − s0| = R

Then

|f (k)(s)| ≤ 2k!(M − 	f(s0))
R

(R − r)k+1
, k ≥ 1.

in the circle |s − s0| ≤ r < R.

Proof. See [12, Satz 4.2, p. 383].
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We are in a position to prove Lemma 1.

Proof. Let B = A1
6 = 0.01325, where A1 is the constant appearing in (6). Let

s0 = σ0 + it0, t0 ≥ 0,

σ0 = 1 +
B

L(t0)
. (37)

where L(t0) is defined in (5). We define the function

H(s, χ) = log
g(s, χ)
g(s0, χ)

, g(s, χ) = h(s, χ)
∏

ρ

(s − ρ)−1,

where h(s, χ) = ζ(s, χ) if χ �= χ0 and h(s, χ0) = (s − 1)ζ(s, χ0), where ρ are
zeros of the function h(s, χ) in the disk |s−s0| ≤ 1

2 . Firstly, we estimate
∣∣∣ g(s,χ)
g(s0,χ)

∣∣∣.
Lemmas 10, 11 and 12 shows that in the disk |s − s0| ≤ 1

∣∣∣∣
ζ(σ + it, χ)

ζ(s0, χ)

∣∣∣∣ ≤ 1.4r2(1 + εχ)A(f)1+2ηζ(1 + η)2r2ζK(σ0)(t0 + 4)r2(1+2η), (38)

for any character χ �= χ0 modulo f, where εχ = 0 or 1 to accordingly whether χ
is primitive or not, and

∣∣∣∣
ζ(σ + it, χ0)(s − 1)
ζ(s0, χ0)(s0 − 1)

∣∣∣∣ (39)

≤ L(t0)
B

(4 + |t0|)(2 + |t0|)r2(1+η)(|Δ|N f)
1+η
2 ζK(1 + η)ζK(σ0).

On the circle |s − s0| = 1, |s0 − ρ| ≤ 1
2 and |s − ρ| ≥ 1

2 . From (38), (39) and the
maximum modulus principle we obtain

∣∣∣∣∣
ζ(s, χ)

∏
ρ(s0 − ρ)

ζ(s0, χ)
∏

ρ(s − ρ)

∣∣∣∣∣ (40)

≤ 1.4(1 + εχ)A(f)1+2ηζ(1 + η)2r2ζK(σ0)(t0 + 4)r2(1+2η),

and
∣∣∣∣∣

(s − 1)ζ(s, χ0)
∏

ρ(s0 − ρ)
(s0 − 1)ζ(s0, χ0)

∏
ρ(s − ρ)

∣∣∣∣∣ ≤
∣∣∣∣∣

(s − 1)ζ(s, χ0)
∏

ρ(s0 − ρ)
(σ0 − 1)ζ(s0, χ0)

∏
ρ(s − ρ)

∣∣∣∣∣ (41)

≤ L(t0)
B

(4 + |t0|)(2 + |t0|)r2(1+η)(|Δ|N f)
1+η
2 ζK(1 + η)ζK(σ0)

in the disk |s − s0| ≤ 1. Secondly, we apply Lemma 14 to the function H(s, χ)
with k = 1, R = 1

2 and r = 1
4 . The function H(s, χ) is regular in the disk

|s − s0| ≤ 1
2 , so by (40), (41) we obtain

�H(s, χ) = log

∣∣∣∣ g(s, χ)

g(s0, χ)

∣∣∣∣

≤
⎧⎨
⎩

log
(
1.4(1 + εχ)A(f)1+2ηζ(1 + η)2r2ζK(σ0)(t0 + 4)r2(1+2η))

)
, if χ �= χ0

log
(

L(t0)
B

(4 + |t0|)(2 + |t0|)r2(1+η)(|Δ|N f)
1+η
2 ζK(1 + η)ζK(σ0)

)
, if χ = χ0.
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in the disk |s − s0| ≤ 1
2 . Therefore, in the disk |s − s0| ≤ 1

4 we have
∣∣∣∣∣
ζ ′

ζ
(s, χ) −

∑

ρ

1
s − ρ

∣∣∣∣∣ (42)

≤ 16 log
(
1.4(1 + εχ)A(f)1+2ηζ(1 + η)2r2ζK(σ0)(t0 + 4)r2(1+2η)

)
,

and
∣∣∣∣∣
ζ′

ζ
(s, χ0) +

1

s − 1
−

∑
ρ

1

s − ρ

∣∣∣∣∣ (43)

≤ 16 log

(
L(t0)

B
(4 + |t0|)(2 + |t0|)r2(1+η)(|Δ|N f)

1+η
2 ζK(1 + η)ζK(σ0)

)
.

Finally, we estimate |∑ρ
1

s0−ρ | and |∑ρ
1

s−ρ |. In [11] Israilov shows that, if
1 < σ ≤ 2 then

−ζ ′

ζ
(σ) <

1
σ − 1

− γ + C1(σ − 1),

where C1 = 0.1875463. Hence, (37) shows
∣∣∣∣
ζ ′

ζ
(s0, χ)

∣∣∣∣ ≤ 2r2
L(t0)

B
+ 2r2C1

B

L(t0)
, (44)

and
∣∣∣∣
ζ ′

ζ
(s0, χ0) +

1
s0 − 1

∣∣∣∣ ≤ 4r2
L(t0)

B
+ 2r2C1

B

L(t0)
. (45)

By (42), (44), we obtain
∣∣∣∣∣
∑

ρ

1
s0 − ρ

∣∣∣∣∣ ≤ 16 log
(
1.4(1 + εχ)A(f)1+2ηζ(1 + η)2r2ζK(σ0)(t0 + 4)r2(1+2η))

)

(46)

+ 2r2
L(t0)

B
+ 2r2C1

B

L(t0)
,

and (43), (45)
∣∣∣∣∣
∑

ρ

1

s0 − ρ

∣∣∣∣∣ ≤ 16 log

(
L(t0)

B
(4 + |t0|)(2 + |t0|)r2(1+η)(|Δ|N f)

1+η
2 ζK(1 + η)ζK(σ0)

)

(47)

+ 4r2
L(t0)

B
+ 2r2C1

B

L(t0)
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in the circle |s − s0| ≤ 1
4 . Now, we define

r1 =
2B

L(t0)
<

1
4
.

By Theorem 3, the function ζ(s, χ) �= 0 in the region |s − s0| ≤ r, 	(s − s0) >
−2r1. Hence

|s0 − ρ| ≥ 2r1, |s − ρ| ≥ 1
2
|s0 − ρ|, 	(s0 − ρ) ≥ 2r1

for all zeros ρ in the disk |s − s0| ≤ 1
4 , and for s in the disk |s − s0| ≤ r1. For

|s − s0| ≤ r1 we obtain
∣∣∣∣∣
∑

ρ

1
s − ρ

−
∑

ρ

1
s0 − ρ

∣∣∣∣∣ ≤
∑

ρ

|s − s0|
|s − ρ||s0 − ρ| ≤

∑

ρ

r1
1
2 |s0 − ρ|2

≤
∑

ρ

	(s0 − ρ)
|s0 − ρ|2 ≤

∑

ρ

	 1
s0 − ρ

≤
∣∣∣∣∣
∑

ρ

1
s0 − ρ

∣∣∣∣∣ .

Thus,
∣∣∣∣∣
∑

ρ

1
s − ρ

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
∑

ρ

1
s0 − ρ

∣∣∣∣∣ . (48)

From (42), (46) and (48) we have
∣∣∣∣
ζ ′

ζ
(s, χ)

∣∣∣∣ ≤ 4r2
L(t0)

B
+ 4r2C1

B

L(t0)

+ 32 log
(
1.4(1 + εχ)A(f)1+2ηζ(1 + η)2r2ζK(σ0)(t0 + 4)r2(1+2η)

)
,

and by (42), (47) and (48)
∣∣∣∣
ζ ′

ζ
(s, χ) +

1
s − 1

∣∣∣∣ ≤ 8r2
L(t0)

B
+ 4r2C1

B

L(t0)

+ 32 log
(

L(t0)
B

(4 + |t0|)(2 + |t0|)r2(1+η)(|Δ|N f)
1+η
2 ζK(1 + η)ζK(σ0)

)

in the disk |s − s0| ≤ r1, and consequently the above estimates hold in the strip

1 − B

L(t)
= 1 − A1

6L(t)
< σ < 1 +

3B

L(t)
= 1 +

A1

2L(t)
.

Now suppose that s0 = σ0 + it0, t0 ≥ 0, where

1 +
A1

2L(t0)
≤ σ0 ≤ 3.
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Lemma 13 and (38), (39) show that

−ζ ′

ζ
(σ0, χ) ≤ 4 log

(
1.4(1 + εχ)A(f)1+2ηζ(1 + η)2r2ζK(σ0)(t0 + 4)r2(1+2η)

)

for any character χ �= χ0 modulo f, where εχ = 0 or 1 to accordingly whether χ
is primitive or not, and

−ζ′

ζ
(σ0, χ0) ≤ 1

σ0 − 1

+ 4 log

(
L(t0)

B
(4 + |t0|)(2 + |t0|)r2(1+η)(|Δ|N f)

1+η
2 ζK(1 + η)ζK(σ0)

)
.

Therefore,
∣∣∣∣
ζ ′

ζ
(σ0, χ)

∣∣∣∣ ≤ 4 log
(
1.4(1 + εχ)A(f)1+2ηζ(1 + η)2r2ζK(σ0)(t0 + 4)r2(1+2η)

)

for any character χ �= χ0 modulo f, where εχ = 0 or 1 to accordingly whether χ
is primitive or not, and

∣∣∣∣ζ
′

ζ
(σ0, χ0)

∣∣∣∣ ≤ 2L(t0)

A1

+ 4 log

(
L(t0)

B
(4 + |t0|)(2 + |t0|)r2(1+η)(|Δ|N f)

1+η
2 ζK(1 + η)ζK(σ0)

)
.

Write f(s, χ) = ζ(s, χ), χ �= χ0 and f(s, χ0) = ζ(s, χ0)(s − 1). By the above we
obtain

∣∣∣∣
f ′

f
(s0, χ)

∣∣∣∣ =
∣∣∣∣
ζ ′

ζ
(s0, χ)

∣∣∣∣ ≤
∣∣∣∣
ζ ′

ζ
(σ0, χ)

∣∣∣∣

≤ 4 log
(
1.4(1 + εχ)A(f)1+2ηζ(1 + η)2r2ζK(σ0)(t0 + 4)r2(1+2η)

)

for any character χ �= χ0 modulo f, where εχ = 0 or 1 to accordingly whether χ
is primitive or not, and

∣∣∣∣f
′

f
(s0, χ0)

∣∣∣∣ =

∣∣∣∣ζ
′

ζ
(s0, χ0) +

1

s0 − 1

∣∣∣∣ ≤
∣∣∣∣ζ

′

ζ
(σ0, χ)

∣∣∣∣ +
1

σ0 − 1
≤ 4L(t0)

A1

+ 4 log

(
L(t0)

B
(4 + |t0|)(2 + |t0|)r2(1+η)(|Δ|N f)

1+η
2 ζK(1 + η)ζK(σ0)

)
.

The proof is completed by applying

ζK(σ0) ≤ ζ(σ0)2r2 ≤
(

1 +
6L(t0)

A1

)2r2

.
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Abstract. This paper presents a new hard problem for use in cryptogra-
phy, called Short Solutions to Nonlinear Equations (SSNE). This problem
generalizes the Multivariate Quadratic (MQ) problem by requiring the
solution be short; as well as the Short Integer Solutions (SIS) problem
by requiring the underlying system of equations be nonlinear. The joint
requirement causes common solving strategies such as lattice reduction
or Gröbner basis algorithms to fail, and as a result SSNE admits shorter
representations of equally hard problems. We show that SSNE can be
used as the basis for a provably secure hash function. Despite failing to
find public key cryptosystems relying on SSNE, we remain hopeful about
that possibility.

Keywords: Signature scheme · Hard problem · Post-quantum · MQ
SIS · SSNE · Hash function

1 Introduction

The widely deployed RSA and elliptic curve cryptosystems rely on the hard-
ness of the integer factorization and discrete logarithm problems respectively,
which are in fact easy to solve on quantum computers by means of Shor’s algo-
rithm [30]. These encryption and signature schemes will therefore become inse-
cure once large enough quantum computers are built; and as a result we need to
design, develop and deploy cryptography capable of resisting attacks by quantum
computers, despite running on classical computers.

A number of hard problems have been proposed to replace integer factoriza-
tion and discrete logarithms for precisely this purpose of offering post-quantum
security. For instance, the problem of finding short vectors in high-dimensional
lattices relates to normed linear algebra problems such as SIS [1] and LWE [28],
which in turn generate many types of public key cryptosystems. Finding satis-
fying solutions to systems of multivariate quadratic (MQ) systems of equations
seems to be hard even if the quadratic map embeds a secret trapdoor allow-
ing only the secret-key holder to generate signatures [14]. Evaluating isogenies
between elliptic curves is easy, but finding the isogeny from input and output
images is hard; this enables a rather direct adaptation of the Diffie-Hellman
key agreement protocol [20]. Even traditionally symmetric problems such as
c© Springer International Publishing AG, part of Springer Nature 2018
J. Kaczorowski et al. (Eds.): NuTMiC 2017, LNCS 10737, pp. 71–90, 2018.
https://doi.org/10.1007/978-3-319-76620-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76620-1_5&domain=pdf
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hash function inversion have been used to generate stateless digital signature
schemes [5]. However, in nearly all post-quantum cryptosystems to date, either
the public key or else the ciphertext or signature is huge—measurable in tens of
kilobytes if not megabytes1. In the interest of easing the transition away from the
quantum-insecure but very low-bandwidth ECDSA, designing a post-quantum
signature scheme with short signatures or ciphertexts and short public keys is a
major open problem.

In this paper, we propose a new cryptographic problem called Short Solutions
to Nonlinear Equations (SSNE) and argue that it is likely hard, even for quantum
computers. Informally, our new hard problem asks to find a short solution to
a system of non-linear multivariate polynomial equations, and thus generalizes
both the Short Integer Solution (SIS) problem where the system is linear, and
the Multivariate Quadratic (MQ) problem where the solution need not be short.
Adopting both requirements renders standard attack strategies inapplicable or
wildly inefficient.

Nevertheless, we show in Sect. 4 that it is possible to attack SSNE with
limited success, in a way that improves over brute force search. We take this
attack and its limitations into account and delineate a niche of parameter space
in which brute force is the most efficient attack strategy. As a result, SSNE offers
a denser encoding of computational hardness than either SIS or MQ, and if it
is possible to design public key cryptosystems that rely on this hard problem,
it holds promise of generating a smaller public keys, ciphertexts and signatures
than their MQ and SIS counterparts without incurring a security cost.

While designing a public key cryptosystem on top of SSNE remains an open
problem, designing a hash function whose security relies on SSNE does not, as
this problem is solved in Sect. 5. This result does not merely serve to demonstrate
design of cryptographic primitives in lieu of the comparably more difficult end-
goal of designing public key functionalities; it has standalone value as well. From
the point of view of provable security, very few hash functions come with a
security proof showing that finding a solution implies solving a hard problem that
is defined independently of the hash function itself. Therefore these not-provably-
secure hash functions offer less assurance of security than provably secure hash
functions whose underlying hard problems are studied independently. Moreover,
it is prudent to diversify the hard problems upon which cryptographic primitives
rely, in order to isolate the effects of cryptanalytic breakthroughs.

2 Preliminaries

Notation. We denote by Fq the finite field of q elements. The integer range
{a, a + 1, . . . , b − 1, b} is denoted by [a : b]. Vectors are denoted in boldface,
e.g., x and matrices by capital letters, e.g., A, with indexation starting at zero.

1 The curious exception to this rule is the supersingular isogeny Diffie-Hellman key
agreement scheme, but even so it does not seem possible to use this construction for
small signature schemes.
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The slice of A consisting of rows i—j and columns k—l is denoted by A[i:j,k:l],
and we drop the, k : l when slicing from a vector instead of a matrix.

Lattices. A lattice of dimension n and embedding degree m is a discrete n-
dimensional subspace of Rm; without loss of generality, we consider subspaces of
Z

m. Any such lattice L can be described as the set of integer combinations of a
set of vectors b0, . . . ,bn−1 ∈ Z

m, which is called a basis for the lattice and is not
unique for a given lattice. A lattice L is q-ary whenever membership of a point
p ∈ Z

m is decided by pmod q, i.e., with each component reduced modulo q.
The LLL algorithm [23] takes a matrix of integers A ∈ Z

h×w whose rows
span a lattice, and outputs another matrix B ∈ Z

h×w whose rows span the same
lattice but are much shorter in length. Without loss of generality we assume the
LLL algorithm also outputs a unitary matrix U such that UA = B. The shortest
basis vector produced by LLL when applied to a lattice spanned by h vectors of
w elements, is bounded in length by

‖b0‖2 ≤
(

4
4δ − 1

)(w−1)/4

det(L)1/w, (1)

where 1
4 < δ ≤ 1 is the LLL parameter and where the determinant of the lattice

is given by det(L) = det(AAT)1/2 = det(BBT)1/2 if A and B have linearly
independent rows.

In the case of q-ary matrices, a basis matrix can be obtained by adjoining the
original basis matrix with qI. LLL will return a (w + h) × w matrix whose first
w rows consist of all zeros. The determinant of q-ary lattices of this dimension
is qw−h with high probability [26], which means that the length of the shortest
nonzero vector in the output of LLL is bounded by

‖b0‖2 ≤
(

4
4δ − 1

)(w−1)/4

q(w−h)/w. (2)

The ith successive minimum λi(L) of a lattice L is the smallest ρ ∈ R

such that the hypersphere with radius ρ centered at the origin contains at least
i independent lattice points. According to the m-dimensional ball argument of
Micciancio and Regev [26], the first successive minimum of a random q-ary lattice
of dimension h and embedding dimension w can be approximated by

λ0(L) ≈
√

w

2πe
q(w−h)/w. (3)

3 Short Solutions to Nonlinear Equations

Our hard problem generalizes the Multivariate Quadratic (MQ) problem as well
as the Short Integer Solution (SIS) problem. After presenting the definitions we
consider some straightforward attacks. In the next section we consider a more
sophisticated one.
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MQ Problem. Given a quadratic map P : Fn
q → F

m
q consisting of m polynomi-

als in n variables of degree at most 2, find a vector x ∈ F
n
q such that P(x) = 0.

The MQ problem is NP-hard in general as well as empirically hard on average
whenever m ≈ n. The best known attack is the hybrid attack [6], which consists
of guessing some variables so as to overdetermine the system of equations and
then solving it using a Gröbner basis type solver such as F4 [16] or XL [13]. The
reduced cost of solving the overdetermined system compensates for the increased
cost of retrying a new guess whenever it leads to no solutions. The complexity
of the optimal-trade-off hybrid attack approaches 2Cqn as n � q → ∞ with
Cq = ω(1.38−0.44ω log2 q) and where ω ≥ 2 is the exponent of matrix multipli-
cation complexity [7]. However, when q � n, the cost of even one random guess
beyond the number of variable-fixes that makes the system a determined one,
dominates the attack complexity. In this case the complexity of a purely alge-
braic attack can be estimated using the degree of regularity Dreg of the system.
For semi-regular quadratic systems [3,4] (which we assume random quadratic
systems are), the degree of regularity is equal to the degree of the first term with
a non-positive coefficient of the power series expansion of

HS(z) =
(1 − z2)m

(1 − z)n
. (4)

At this point, the Gröbner basis computation using F4 or XL boils down to
performing sparse linear algebra in the Macaulay matrix whose polynomials
have degree Dreg. The complexity of this task is O

((
n+Dreg+1

Dreg

)2)
in terms of

the number of finite field operations, which in turn are polynomial in log q. In
summary, the complexity of solving the MQ problem is exponential in n ≈ m,
but barely affected by q.

SIS Problem. Given a matrix A ∈ F
n×m
q with m > n, find a nonzero vector

x ∈ Z
m\{0} such that Ax = 0mod q and ‖x‖2 ≤ β.

While not NP-hard, SIS does offer an average-case to worst-case reduction:
solving random SIS instances is at least as hard as solving the lattice-based
Shortest Independent Vectors Problem (SIVP) up to an approximation factor
of Õ(β

√
n) in the worst case [25]. The most performant attack on SIS is indeed

running a lattice-reduction algorithm such as BKZ 2.0 [8] to find short vectors in
the associated lattice which is spanned by the kernel vectors of A. The complexity
of this task is captured by the root Hermite factor δ > 1, which approaches 1
for more infeasible computations. For a given δ the optimal number of columns
of A to take into account (i.e., by setting the coefficients of x associated to
the other columns to zero) is given by m =

√
n log2 q/log2 δ. At this point the

average length of the lattice points found is 22
√

n log2 q log2 δ and cryptographic
security requires β to be smaller than this number. Albrecht et al. estimate
the complexity of obtaining lattice points of this quality as 0.009/log22δ + 4.1 in
terms of the base-2 logarithm of the number of time steps [2]. The key takeaway
is that the complexity of SIS grows exponentially in m and n, but polynomially
in q and β.
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SSNE Problem (Short Solutions to Nonlinear Equations). Given a map P :
F

n
q → F

m
q consisting of m polynomials in n variables over a prime field Fq and

with deg(P) ≥ 2, find a vector x ∈ Z
n such that P(x) = 0mod q and ‖x‖2 ≤ β.

It is clear that the attack strategies that work for MQ and SIS do not apply
out of the box to the SSNE problem. The random guess of the hybrid attack
on MQ might fix the first few variables to small values, but offers no guarantee
that an algebraic solution to the other variables is small. Alternatively, one can
drop the random guess and compute a Gröbner basis for the under-determined
system. Even if the resulting Gröbner basis consists of a reasonable number
of polynomials of reasonable degrees, obtaining a short vector in the variety
associated with the Gröbner basis seems like a hard problem in and of itself.
Alternatively, one can linearize the system by introducing a new variable for
every quadratic term and treat the resulting matrix of coefficients as the matrix
of a SIS instance. However, in this case it is unclear how to find the correct length
bound β as it now applies to a vector of quadratic monomials. Nevertheless, we
now show under which conditions or adaptations an algebraic attack and attack
based on lattice reduction are possible.

3.1 Algebraic Attack

The constraint ‖x‖2 ≤ β can be formulated algebraically. Assume β < q/2,
and let b = �β�. Then any solution x to the SSNE problem must consist of
coefficients in [−b : b]. For any such coefficient xi, the polynomial

∏b
j=−b(xi − j)

must evaluate to zero. Therefore, by appending these polynomials to P, one
obtains a less under-determined system and perhaps even a determined one. If
that is the case, XL and F4 will find a short solution; however, the Gröbner
basis computation must reach degree 2b for the added polynomials to make a
difference, and for sufficiently large β even this task is infeasible. It is possible to
generalize this strategy so as to require that the sums-of-squares of all subsets of
the coefficients of x are smaller than β. This method cannot work when β > q,
but can be effective when β is small—say, a handful of bits.

Alternatively, it is possible to run down the unsigned bit expansion of every
component of x and introduce a new variable xi,j for each bit and one for
each component’s sign si. This transformation adds n equations of the form
xi = si

∑�log2q�
j=0 2jxi,j , nlog2q� equations of the form xi,j(1 − xi,j) = 0, and n

equations of the form (si −1)(si +1) = 0. The advantage of having access to this
bit expansion is that the constraint ‖x‖2 ≤ β can now be expressed as log2q�
equations modulo q, even when β > q.

In both cases, the system of equations becomes infeasibly large whenever β
grows, which is exactly the intended effect from a design perspective. Phrased
in terms of the security parameter κ, we have

Design Principle 1: β must be large: log2β > κ.

Note that β cannot be larger than
√

n(q−1)/2 because in that case any solu-
tion vector x satisfies the shortness criterion, which can therefore be forgotten
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at no cost in favor of a very fast algebraic solution. In fact, we want a random
solution to the system of equations to satisfy ‖x‖2 ≤ β with at most a negligible
probability. Design principle 2 requires this probability to be at most 2−κ, where
κ is the targeted security level.

Design Principle 2: β must not be too large: nlog2q ≥ κ + nlog2β.

3.2 Lattice Attack

In the relatively small dimensions considered for SSNE, basic lattice reduction
algorithms such as LLL [23] manage to find the shortest vector in polynomial
time with all but absolute certainty. Moreover, the nonlinear system P(x) = 0
can always2 be represented as a linear system P x̄ = 0, where P is the Macaulay
matrix of P and x̄ is the vector of all monomials in x that appear in P. If the
solution x to P(x) = 0 is short enough, then its expansion into x̄ will also be a
solution to P x̄ = 0—and might be found quickly by lattice-reducing any basis
for the kernel of P and weighting the columns as necessary.

In fact, the vector x̄ associated with a solution x to P(x) = 0 will always lie
in the kernel of P , although not every kernel vector corresponds to a solution.
Since x̄ is necessarily in the lattice spanned by the kernel vectors of P , the only
way to hide it from lattice-reduction is to make it long—as long as random
lattice vectors taken modulo q. The rationale behind the next design principle is
to require that some of the quadratic monomials x̄ are of the order of magnitude
of q (possibly after modular reduction).

Design Principle 3: x must not be too small: log2‖x‖22 ≥ log2 q.

A straightforward attack strategy to cope with this design principle is to
focus only on those columns of P that correspond to the monomials of degree 1
in x̄. Lattice reduction will then find short kernel vectors for this reduced matrix
P̃ . The attack runs through linear combinations of these small reduced kernel
vectors until it finds a small linear combination c such that P(c) = 0. A rigorous
argument counts the number of points in this lattice that have the correct length
and then computes the proportion of them that solve P(x) = 0, and infers from
this a success probability and hence a running time for the attack. A far simpler
but heuristic argument pretends that the nonlinear monomials of x̄ multiply
with their matching columns from P and thus generate a uniformly random
offset vector p. The attacker succeeds only when p + P̃x = 0, which can be
engineered to occur with at most a negligible probability.

Design Principle 4: The output space must be large enough: mlog2 q ≥ κ.

Lattice-reduction has been used in the past to find small solutions to uni-
variate and multivariate polynomial equations, for instance in the context of
factoring RSA moduli n = pq where some of the bits of p or q are known. These
applications of LLL were first discovered by Coppersmith [9,10], and were then
2 This assumes that P has no constant terms, but the same arguments apply with

minor modifications even if it does.
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expanded on by Howgrave-Graham [19], Jutla [21], Coron [11,12], and most
recently by Ritzenhofen [29]. The common strategy behind all these attacks is
to generate clever algebraic combinations of the polynomials but which must
be linearly independent. LLL is run either on the resulting system’s Macaulay
matrix or on its kernel matrix to find either polynomial factors with small coeffi-
cients or else short roots. However, this family of methods is only effective when
the targeted solution is short enough. In particular, if Xi ∈ Z is a bound on xi,
i.e., |xi| ≤ Xi, then success is only guaranteed whenever for every term t ∈ Fq[x]
of every polynomial of P (interpreted as t ∈ Z[x])

|t(X1, . . . , Xn)| < q. (5)

This success criterion is inconsistent with design principle 3.

3.3 Additional Considerations

Note that the shortness constraint ‖x‖2 ≤ β does not have to apply to all

variables. Even requiring only
√∑

i∈S x2
i ≤ β where the sum is taken only over

a non-empty subset S of the variables suffices to capture the hardness of the
problem. More generally, the problem can be defined with respect to any weight
matrix W ∈ Z

n×n, namely by requiring that xTWx ≤ β2. Diagonalization of W
leads to a partitioning of the variables into one set which should be short and
one set whose length does not matter. Nevertheless, one should be careful to
ensure that the number of short variables must be larger than the dimension of
the variety. Otherwise the shortness constraint is no constraint at all because it
is possible to guess the short variables and subsequently solve for the remaining
variables using a Gröbner basis algorithm.

Design Principle 5. There should be more small variables than the dimension
of the variety: rank(W + WT) > dimV (P) = n − m.

Remark. The concise way to capture “the number of variables that must be
small after optimal basis change” is indeed rank(W + WT). To see this, observe
that xTWx is a quadratic form and therefore equal to xT(W +A)x for any skew-
symmetric matrix A (i.e., square matrix such that AT = −A). Up to additions of
skew-symmetric matrices and up to constant factors we have W ≡ W +WT. This
latter form is preferred for diagonalization, which finds an invertible basis change
S such that makes ST(W + WT)S diagonal. The zeros on this diagonal indicate
the variables whose size is unconstrained. Moreover, the rank of W + WT cannot
change under left or right multiplication by invertible matrices such as ST or S.

3.4 Estimating Hardness

The main selling point of the SSNE problem is that neither the algebraic solvers
nor lattice-reduction algorithms seem to apply, and as a result of this immunity
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it admits a much conciser encapsulation of cryptographic hardness. In MQ prob-
lems, the hardness derives from the large number of variables and equations n
and m, and is largely independent of the field size q. In SIS problems, the hard-
ness derives mostly from the large lattice dimension n, although the field size q
and length constraint β are not entirely independent. Since both Gröbner basis
and lattice-reduction algorithms do not apply, the hardness of SSNE problems
must be much more sensitive to the size of the search space than their MQ and
SIS counterparts. In particular, this sensitivity allows designers to achieve the
same best attack complexity while shrinking m and n in exchange for a larger
q—a trade-off that makes perfect sense because in all cases the representation
of a single problem instance is linear in log2 q and polynomial in m and n.

All five design principles, including design principle 6 which will be derived
in Sect. 4, have a limited range of applicability. No known algorithm solves SSNE
problems for which all six criteria are met, faster than the following brute force
search does. In the most optimistic scenario, no such algorithm exists. We invite
the academic community to find attacks on SSNE that outperform this brute
force search. In Sect. 5 we propose a hash function whose security relies on the
assumption that either such an algorithm does not exist or that if it does, it
does not beat brute force by any significant margin.

A brute force strategy must only search across Fn−m
q . Each guess of the first

n − m variables is followed by an algebraic solution to the remaining system
of m equations in m variables. If m is not too large then the task of finding
this solution algebraically is rather fast, and the complexity of this joint task is
dominated by O(qn−m). In quantum complexity, Grover’s algorithm [18] offers
the usual square root speed-up of O(q(n−m)/2).

4 An Algebraic-Lattice Hybrid Attack

In this section we describe an attack that applies when m(m + 1)/2 ≤ n and
manages to produce somewhat short solutions. In a nutshell, the attack treats
the polynomial system as a UOV− public key. A UOV reconciliation attack
recovers the secret decomposition and at this point the attacker samples vinegar
and oil variables such that the resulting “signature” is small. We consider the
various steps separately. This section uses the terms “signature” and “solution”
interchangeably because in the context of attacks on UOV they are identical.

4.1 UOV

Unbalanced Oil and Vinegar [22] is an MQ signature scheme with parameters
n = o + v, v ≈ 2o and m = o. The public key is a homogeneous quadratic
map P : Fn

q → F
m
q . The secret key is a decomposition of this public map into

F : Fn
q → F

m
q and S ∈ GLn(Fq) such that P = F ◦ S. While S is a randomly

chosen invertible matrix, F must have a special structure. All m components
fi(x) partition the variables into two sets: vinegar variables x0, . . . , xv−1, which
are quadratically mixed with all other variables; and oil variables xv, . . . , xn−1.
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Visually, the matrix representations of these quadratic forms have an all-zero3

o × o block:

fi(x) = xT

⎛
⎜⎜⎝

⎞
⎟⎟⎠x. (6)

In order to compute a signature for a document d ∈ {0, 1}∗, the signer
computes its hash y = H(d). He then chooses a random assignment to the
vinegar variables and substitutes these into the system of equations P(x) = y,
or more explicitly

⎧⎪⎪⎨
⎪⎪⎩

...∑v−1
j=0

∑j
k=0 f

(i)
j,kxjxk +

∑v−1
j=0

∑n−1
k=v f

(i)
j,kxjxk = yi

...

, (7)

where f
(i)
j,k represents the coefficient of the monomial xjxk of the ith component

of F . The underlining indicates vinegar variables, which are substituted for their
assignments. It is clear from this indication that the system of equations has
become linear in the remaining oil variables, and since m = o, it has one easily
computed solution in the generic case. The signer chooses a different assignment
to the vinegar variables until there is one solution. At this point, the signature
s ∈ F

n
q is found by computing s = S−1x. It is verified through evaluation of P,

i.e., P(s) ?= H(d).

4.2 Reconciliation Attack

The reconciliation attack [15] is essentially an algebraic key recovery attack: the
variables are the coefficients of S−1 and the equations are obtained by requiring
that all the polynomials be of the same form as Eq. 6. Näıvely, this requires
solving a quadratic system of mo(o + 1) equations in n2 variables. However,
the attack relies on the observation that there is almost always a viable S′−1

compatible with (6) but of the form

S′−1 =

⎛
⎜⎝ v

o

⎞
⎟⎠ . (8)

This observation is justified by the fact that only the coefficients of S−1

that are located in the rightmost o columns appear as indeterminates in the
coefficients that are equated to zero. Moreover, any linear recombination of these
columns also maps the oil-times-oil coefficients to zero and therefore we might as
well consider only the representative of this equivalence class (equivalence under

3 Or since it represents a quadratic form, skew-symmetric instead of all-zero.
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linear recombination of the rightmost o columns) whose bottom right o×o block
is the identity matrix.

The use of this observation reduces the number of variables to v×o. Moreover,
the key observation behind the reconciliation attack is that the o columns of S′−1

can be found iteratively, solving a new quadratic system at each step. Moreover,
the authors of this attack argue that the complexity of this strategy is dominated
by the first step, which requires solving only m equations in v variables [15].

These optimizations are no issue in our attack on SSNE. The parameters m
and n are generally small enough to make näıvely solving a quadratic system
of mo(o + 1)/2 equations in n2 variables feasible. However, for generic systems,
whenever mo(o + 1)/2 > n2 there might not exist a S−1 ∈ GLn(Fq) that brings
P into the form of Eq. 6. But choosing o to be different from m might bring a
suitable S−1 back into existence. This motivates the following definition.

Definition 1 (o-reconcilable). A system P of m multivariate quadratic poly-
nomials in n variables over Fq is o-reconcilable iff there exists an S ∈ GLn(Fq)
such that P ◦ S partitions the n variables into v = n − o vinegar variables and o
oil variables distinguished by P ◦ S being linear in the oil variables.

Remark. Clearly, constant and linear terms are linear in all variables under
any change of basis. Reconcilability considers only the quadratic part of the
polynomials and without loss of generality we may restrict attention to their
homogeneous quadratic part.

Theorem 1 (m-reconcilability of UOV). Let P : Fn
q → F

m
q be the public key

of a UOV cryptosystem. Then P is m-reconcilable.

Proof. Trivial: follows from construction of P = F ◦ S. F induces the required
partition into oil and vinegar variables. ��
Theorem 2 (�n/2�-reconcilability when m = 1). Assume q is odd. Let P :
F

n
q → Fq be a single quadratic polynomial. Then P is �n/2�-reconcilable.

Proof. Let Qp ∈ F
n×n
q be a symmetric matrix representation of P(x) via P(x) =

xTQpx. Then Qp is diagonalizable, i.e., there exists an invertible matrix A ∈
F

n×n
q such that ATQpA is nonzero only on the diagonal.

All non-zero elements on the diagonal must be one except for the last which
might be the smallest quadratic non-residue in Fq. Now choose a random sym-
metric matrix Qf ∈ F

n×n
q such that the lower right �n/2�×�n/2� block consists

of all zeros and such that rank(Qf ) = rank(Qp). It is also diagonalizable: there is
an invertible matrix B ∈ F

n×n
q such that BTQfB is a diagonal matrix consisting

of all ones except for the last element which might be the smallest quadratic
non-residue. If BTQfB = ATQpA we are done because F = P ◦B−1 ◦A induces
the required partition. If BTQfB �= ATQpA they must differ in the last diagonal
element. So then multiply any one nonzero row of Qf by any quadratic residue
and obtain another diagonalization. Now BTQfB = ATQpA must hold and we
are done. ��
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Theorem 3. In the generic case, a system of m quadratic polynomials in n
variables over Fq is o-reconcilable when m(o + 1)/2 ≤ n.

Proof. The number of coefficients of S−1 that are involved in the mo(o + 1)/2
equations that set the oil-times-oil coefficients to zero is no, corresponding the
rightmost n × o block of S−1. The other elements of S−1 do not affect these
coefficients. This leads to a system of mo(o + 1)/2 quadratic equations in no
variables which generically has solutions when mo(o+1)/2 ≤ no, or equivalently
when m(o + 1)/2 ≤ n. ��

4.3 Generating Small Solutions

After obtaining an o-reconciliation (F , S), the task is to obtain a solution x
such that F(x) = 0 and such that S−1x is small. The partitioning of x into the
vinegar variables x0, . . . , xv−1 and the oil variables xv, . . . , xn−1 separates the
shortness objective into two parts. On the one hand, the vinegar contribution

(
S−1

)
[:,0:(v−1)]

x[0:(v−1)] (9)

must be small; on the other hand, the oil contribution
(
S−1

)
[:,v:(n−1)]

x[v:(n−1)] (10)

must be small as well. The reason for this separation is not just that the vinegar
variables and oil variables are determined in separate steps; in fact, determining
vinegar variables that lead to a small vinegar contribution is easy. The form
of Eq. 8 guarantees that small vinegar variables will map onto a small vinegar
contribution. Therefore, the only requirement for selecting vinegar variables is
that they be small enough, say roughly q1/2. By contrast, the process of finding
suitable oil variables is far more involved.

A quadratic map where o > m can be thought of as a UOV− map, i.e., a
UOV map with o−m dropped components. This gives the signer, or an attacker
who possesses the reconciliation, o − m degrees of freedom for selecting the oil
variables. Coupled with the freedom afforded by the choice of vinegar variables,
the signer or attacker can generate a vector x such that S−1x is short.

The task is thus to find an assignment to the oil variables such that (a)
F(x) = 0 is satisfied; and (b)

(
S−1

)
[:,v:(n−1)]

xv:(n−1) is small as well. Constraint
(a) is satisfiable whenever m ≤ o (in the generic case, i.e., assuming certain
square matrices over Fq are invertible). Constraint (b) requires o > m and the
resulting vector can be made shorter with growing o − m.

The matrix representation of a quadratic form is equivalent under addition
of skew-symmetric matrices, which in particular means that it is always possible
to choose an upper-triangular representation even of UOV maps such as Eq. 6.
The ith equation of F(x) = 0 can therefore be described as
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fi(x) = xT

⎛
⎜⎜⎜⎝

Qi Li

⎞
⎟⎟⎟⎠x+ �(i)Tx+ ci = 0 (11)

(
xT
[0:(v−1)]

Li + �
(i)T
[v:(n−1)]

)
x[v:(n−1)] = −xT

[0:(v−1)]
Qix[0:(v−1)] − �

(i)T
[0:(v−1)]

x[0:(v−1)] − ci.

(12)

All m equations can jointly be described as Ax[v:(n−1)] = b for some matrix
A ∈ F

m×o
q and vector b ∈ F

m
q , because the vinegar variables x[0:(v−1)] assume

constant values. Let x(p) be any particular solution to this linear system, and let
x(k)
0 , . . . ,x(k)

o−m−1 be a basis for the right kernel of A. Any weighted combination
of the kernel vectors plus the particular solution, is still a solution to the linear
system:

∀(w0, . . . , wo−m−1) ∈ F
o−m
q . A

(
x(p) +

o−m−1∑
i=0

wix
(k)
i

)
= b. (13)

This means we have o−m degrees of freedom with which to satisfy constraint (b).
In fact, we can use LLL for this purpose in a manner similar to the clever

selection of the vinegar variables. The only difference is that the weight associ-
ated with the vector x(p) must remain 1 because otherwise constraint (a) is not
satisfied. This leads to the following application of the embedding method.

Identify x(p) and all x(k)
i by their image after multiplication by

(
S−1

)
[:,v:(n−1)]

,

thus obtaining z(p) =
(
S−1

)
[:,v:(n−1)]

x(p) and z(k)i =
(
S−1

)
[:,v:(n−1)]

x(k)
i . Then

append q2 to z(p) and 0 to all z(k)i , and stack all these vectors in column form
over a diagonal of q’s to obtain the matrix C:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

— z(p)T — q2

— z(k)T0 — 0
...

...
— z(k)To−m−1 — 0
q

. . .
q

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

Run LLL on this matrix to obtain a reduced basis matrix B ∈ Z
(o−m+1+n)×(n+1)

of which the first n rows are zero, and a unimodular matrix U satisfying B = UC.
The appended q2 element guarantees that the row associated with the particular
solution will never be added to another row because that would increase the size
of the basis vectors. As a result, there will be one row in the matrix B that ends in
q2. Moreover, this row will be short because it was reduced by all other rows. We
now proceed to derive an upper bound for the size of this vector considering only
the first n elements, i.e., without the q2. Unfortunately, the best upper bound
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we can prove rigorously is  q
2�√n, but we can rely on the following heuristic

argument for a meaningful result.
Let s be the index of this targeted row. Without row s and omitting the last

column, the nonzero rows of B form an LLL-reduced basis for a q-ary lattice of
dimension o−m and embedding dimension n. We approximate the sizes of these
vectors using λi(L) ≈ λ0(L). Coupled with the m-dimensional ball argument of
Micciancio and Regev for estimating the first successive minimum [26], this gives

‖b�‖2 � 2(o−m)/2

√
n

2πe
q(n−o+m)/n. (15)

Moreover, row s (considered without the q2) cannot be much larger than this
quantity because it is LLL-reduced with respect to vectors of this size. So
‖bs‖2 ≈ ‖b�‖2. Our experiments show that this heuristic bound is followed
quite closely in practice for small m,n and large q.

The solution s = S−1x consists of two parts: the vinegar contribution and
the oil contribution. Therefore, we can bound the size of the whole thing.

‖s‖2 ≤ ‖S−1
[:,0:(v−1)]x[0:(v−1)]‖2 + ‖S−1

[:,v:(n−1)]x[v:(n−1)]‖2 (16)

�
√

n − o · q1/2 + 2(o−m)/2

√
n

2πe
q(n−o+m)/n. (17)

Or if we treat n,m, o, v as small constants,

‖s‖2 ∈ O
(
q(n−o+m)/n

)
. (18)

4.4 Summary

Figure 1 shows pseudocode for the algebraic-lattice hybrid attack algorithm.
Line 1 attempts to launch a UOV reconciliation attack, but the algorithm

fails when this attack is unsuccessful. In fact, the criterion for success is pre-
cisely whether the map P is o-reconcilable. Generically, this criterion is only
satisfied for m(o + 1)/2 ≤ n, as per Theorem 3, although it is certainly possible
to construct maps that are o-reconcilable for m(o + 1)/2 > n—indeed, standard
UOV public keys match this ungeneric description. A prudent strategy for maps
whose structure is unknown is to try step 1 for several values of o and to pick
the decomposition of P where o is largest. However, in this case the length of
the returned solution is not fixed beforehand but depends on the largest o for
which step 1 succeeds.

With this algebraic-lattice hybrid attack in mind, we formulate the last design
principle for SSNE instances. The rationale is that the targeted solution should
be significantly smaller (i.e., κ bits, spread over n variables) than what the
algebraic-lattice hybrid attack can produce.

Design Principle 6: Let o be the largest integer such that the system is
o-reconcilable. If o > m then guarantee that

κ

n
+ log2β ≤ n − o + m

n + 1
log2q. (19)
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algorithm ALHA
input: P : Fn

q → F
m
q — a quadratic map

: o ∈ Z — number of oil variables
output: s ∈ F

n
q such that P(s) = 0

and such that ‖s‖2 ∈ O(qo/n + q(n−o+m)/(n+1))
� find decomposition P = ◦ S where is quadratic but linear in
xn−o, . . . , xn−1, and where S ∈ GLn(Fq)

1: try: , S ← UOVReconciliationAttack(P, o)

� get vinegar variables x0, . . . , xn−o−1

2: x[0:n−o−1]
$←− [−�q1/2� : �q1/2�]n−o

� get oil variables xn−o, . . . , xn−1

3: Find A ∈ F
m×o
q and b ∈ F

m
q such that Ax[(n−o):(n−1)] = b ⇔ F(x) = 0

4: Find particular solution x(p) to Ax[(n−o):(n−1)] = b

5: Find kernel vectors x(k)
0 , . . . ,x

(k)
o−m−1 of A

6: z(p) ← S−1
)
[:,(n−o):(n−1)]

x(p)

7: for i ∈ [0 : (o − m − 1)] do:
8: z

(k)
i ← S−1

)
[:,(n−o):(n−1)]

x
(k)
i

9: end
10: Compile matrix C from z(p) and z

(k)
i � according to Eqn. 14

11: U, B ← LLL(C)
12: Find s such that B[s,:] ends in q2

13: x[(n−o):(n−1)] ← x(p) +
∑o−m−1

i=0 U[s,1+i]x
(k)
i

� join vinegar and oil variables, and find inverse under S
14: s ← S−1x
15: return s

Fig. 1. Algebraic-lattice hybrid attack.

4.5 Discussion

Equation 15 is an upper bound whereas we actually need a lower bound in order
to delineate a portion of the parameter space where the attack does not apply.
In practice, the short solutions found by the algebraic lattice hybrid attack are
indeed shorter than the heuristic upper bound of Eq. 17. Nevertheless, the solu-
tions found by the attack have length very close to this bound, to the point
where it is a suitable estimate. Figure 2 plots in full blue the minimum length of
solutions found by the algebraic lattice hybrid attack across one hundred trials
for various modulus sizes. This graph follows the dashed green line, which rep-
resents the estimate or heuristic upper bound of Eq. 17, quite closely. Both are
far apart from the recommendation of design principle 6, which is drawn in full
red. This graph represents many random SSNE instances with m = 2 and n = 9.
The same behavior was observed across a wide range of parameter choices.
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Fig. 2. Comparison of prediced length against experimental length of solutions
obtained by the algebraic-lattice hybrid attack.

It is worth stressing that the algebraic-lattice hybrid attack applies only
when o > m. When o = m it does not produce solutions that are shorter than
random vectors in F

n
q , and when o < m there is no guarantee it will find even

one solution. Obviously, instead of requiring β to be significantly smaller than
the expected length of this attack’s solutions, the designer might also choose n
and m so as to render the algebraic-lattice hybrid attack inapplicable.

5 Hash Function

At this time we do not know how to use SSNE to generate short-message public
key functionalities. The next best option is to generate a hash function, which
is what this section is about.

The resulting design does not merely exemplify using the SSNE problem
constructively; it has concrete advantages over other hash functions as well.
For instance, not only is the SSNE hash function provable secure (in contrast
to all widely deployed hash functions), but it also relies on a different hard
problem, which is likely to be unaffected by potential future breakthroughs in
cryptanalysis of other hard problems. Also, our hash function has essentially
optimal output length in terms of security: for κ bits of security against collision
finders the output is 2κ bits long. This stands in contrast to many other provably
secure hash functions which either have larger outputs or else require purpose-
defeating post-processing functions to shrink them.

Additionally, because the hash function is built on top of SSNE instances, it
requires comparably few finite field multiplications to compute. This property
of having low multiplication complexity is interesting from the point of view of
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multiparty computation, zero-knowledge proofs, and fully homomorphic encryp-
tion, where multiplication operations are typically so expensive as to compel
minimization at all costs. However, this argument ignores the cost of the bit
shuffling, which are nonlinear operations over the finite field.

We note that it is possible to generate digital signature schemes from just
hash functions [5,17], although the size and generation time of the signatures
scales poorly. Nevertheless, anyone wanting to implement this signature scheme’s
key generation or signature generation procedures in a distributed manner—for
instance, in order to require majority participation—must develop applied mul-
tiparty computation protocols and must consequently look to minimize multipli-
cation complexity. Therefore, the SSNE hash function might be a good candidate
for instantiating hash-based digital signature schemes with if they must enable
distributed key and signature generation.

5.1 Description

We use the Merkle-Damg̊ard construction, which requires dividing the data
stream into a sequence of size b blocks. At every iteration, one data block is
consumed and it is compressed with the state in order to produce a new state.
The hash value is the output of the compression function after the last block has
been consumed. The concept is described visually in Fig. 3.

Before applying the sequence of compression functions, the data stream x ∈
{0, 1}∗ must first be expanded into a multiple of b bits. Let 	 = |x| be the number
of bits before padding, and let �	� be its expansion and |	| the number of bits
in this expansion. The expansion function is given by

expand : {0, 1}� → {0, 1}�(�+|�|)/b�b = x �→ x‖0−�mod b‖0−|�|mod b‖�	�. (20)

Let q be the largest prime smaller than 22κ, where κ is the targeted security
level. For the purpose of defining this hash function, the elements of Fq are
{0, . . . , q − 1}. The compression function itself decomposes into f = P ◦ r. The
purpose of r : {0, 1}b × Fq → F

2
q is to permute the bits and output two integers

inside [0 : q3/4� − 1], which are then interpreted as small elements of Fq. In
particular, on input (s, e) ∈ {0, 1}b ×Fq, this reshuffling function takes the most

f f f

block i − 1 block i block i + 1

Fig. 3. Merkle-Damg̊ard construction for hash functions.
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algorithm Hash
input: x ∈ {0, 1}� — bitstring of any length
output: h ∈ {0, 1}2κ — hash value

1: h ← �(π−1 − 1
4
)22κ+2�

2: x′ ← expand(x)
3: for i ∈ [0 : |x′|/b] do:
4: e1, e2 ← r(x′

[ib:(ib+b−1)], h)
5: h ← P(e1, e2)
6: end
7: return �h�

Fig. 4. Hash function relying on SSNE.

significant 1
4log2 q� bits of e, appends them to s, and reinterprets this bitstring

as an integer. Formally, r maps

r :

⎛
⎝sb−1‖ · · · ‖s0,

�log2 q�−1∑
i=0

2
i
ei

⎞
⎠ 	→

⎛
⎜⎝

⎛
⎝

b−1∑
i=0

2
i
si

⎞
⎠ +

⎛
⎜⎝

� 3
4 log2 q�−1∑

i=b

2
i
ei+b/2

⎞
⎟⎠ ,

� 3
4 log2 q�−1∑

i=0

2
i
ei

⎞
⎟⎠ .

(21)
In particular, this implies that b = 1

2log2 q�.
The map P : F2

q → Fq is a single homogeneous cubic polynomial in two vari-
ables. There are

(
5
2

)
= 10 coefficients which are assigned indices lexicographically

from 0 to 9. Then the ith coefficient has a bit expansion equal to the first 2κ
bits in the expansion of πi+1, without the leading 1.

The description of the hash function is complete except for one remaining
item. The initial state element, i.e., the field element that is fed into the very
first compression function must still be specified. For this value we choose the
first 2κ bits of π−1, again without the leading 1. The formal description of the
algorithm is given in Fig. 4.

5.2 Security

The key property a hash function should possess is collision-resistance, which
informally states that it should be difficult to find two different inputs x, y ∈
{0, 1} such that Hash(x) = Hash(y). Collision-resistance implies weaker proper-
ties such as second preimage resistance and first preimage resistance (also known
as one-wayness). Therefore, it suffices to show that collisions are hard to find.
We demonstrate this fact by showing that any pair of colliding values implies
a collision for P, which should be difficult to find because that task requires
solving a hard SSNE instance.

First, consider that expand is injective. To see this, assume there are two
different strings x and y that have the same output under expand. Then |x| �= |y|
because otherwise the appended tail is the same and then the difference must
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be present in their images under expand as well. However, the last b bits of the
images under expand uniquely determine the length of the original strings and
this quantity must be the same, which contradicts |x| �= |y|. This argument
assumes the length of the inputs is less than 2b = 2κ, which is reasonable from
a practical point of view. Since expand is injective, it cannot be the source of a
collision.

Next, the permutation of bits r is a bijection. It cannot be the source of a
collision either.

Therefore, the only source of collisions contained in the description of the
hash function is P. Finding a collision means finding a pair of vectors a,b ∈ F

2
q

whose elements have at most 6
4κ bits, such that P(a) = P(b). One can re-write

this equation in terms of the difference d from the mean c = (a + b)/2. The
equation then becomes

P(c + d) − P(c − d) = 0. (22)

This expression is useful because its degree in c is one less, i.e., 2 instead of 3.
Therefore, by choosing a random value for d the attacker finds c by solving a
quadratic, instead of cubic, SSNE instance. (In fact, this argument was precisely
the motivation for a degree-3 polynomial map P to begin with; to kill an attack
strategy that involves only finding short solutions to linear equations.) The
parameters of the hash function were chosen to ensure that the SSNE instance
of Eq. 22 (with randomly chosen d) satisfies all design principles.

6 Conclusion

This paper presents a new hard problem called SSNE, which is the logical merger
of the SIS and MQ problems. However, in contrast to both the SIS and MQ
problems, the hardness of an SSNE instance grows linearly with the size of the
modulus q. This linear scaling stands in stark contrast to the quadratic and cubic
scaling of the SIS and MQ problems; and therefore, if it is possible to generate
post-quantum public key cryptosystems from SSNE as it is from SIS and MQ,
then these cryptosystems are very likely to require dramatically less bandwidth
for having smaller public keys, ciphertexts, or signatures.

Indeed, the goal of the research that lead to the writing of this paper was to
generate public key cryptosystems with exactly those properties. Needless to say,
we have failed in that endeavor. Some of the design principles came about as a
result of a process of design and attack. At least from a superficial point of view,
this failure suggests that the design principles are incompatible with strategies
for generating public key cryptosystems. Nevertheless, we remain hopeful about
the possibility of finding strategies that are compatible with the design principles
and leave their discovery as an open problem.
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Abstract. In this paper we present a novel RSA-like cryptosystem.
Specifically, we define a novel product that arises from a cubic field con-
nected to the cubic Pell equation. We discuss some interesting proper-
ties and remarks about this product that can also be evaluated through
a generalization of the Rédei rational functions. We then exploit these
results to construct a novel RSA-like scheme that is more secure than
RSA in broadcast applications. Moreover, our scheme is robust against
the Wiener attack and against other kind of attacks that exploit the
knowledge of a linear relation occurring between two plaintexts.

Keywords: Cubic Pell equation · Public cryptography
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1 Introduction

RSA cryptosystem is one of the most famous public key scheme and is based
on the existence of an one-way trapdoor function, which is easy to compute and
difficult to invert without knowing some information. However, some attacks are
possible when, e.g., the private key is small [23] or the public key is small [5].
Further attacks have been reviewed in [11] exploiting possible extra information
(such as the knowledge of linear relations occurring between two plaintexts).
Moreover, RSA leaks some vulnerabilities in broadcast applications [9]. Hence,
during the years, RSA-like schemes (see, e.g., [2,6,13,15,17]) have been proposed
in order to overcome some of the previous vulnerabilities.

In this paper, we present a novel RSA-like scheme that is more secure than
RSA in some of the previous situations, like broadcast scenarios or consider-
ing the Wiener attack and others. Our scheme is based on a particular group
equipped with a non-standard product that we have found working on a cubic
field related to the cubic Pell equation (which is a generalization of the Pell equa-
tion, one of the most famous equations in number theory). This group appears to
have many interesting properties and connections that should be further inves-
tigated. In fact, we would like to point out that in this work we give a first idea
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about the potentiality of this group in cryptographic applications, with the aim
of providing an original point of view for exploiting number theory in cryptog-
raphy and opening new studies. Certainly, our scheme should be more investi-
gated under several perspectives, such as its efficiency. However, it appears very
promising due to the definition itself and the many properties and connections
to different topics.

The paper is structured as follows. In Sect. 2, we introduce a group with a
non-standard product starting from a cubic field. Section 3 is devoted to the
presentation of our cryptosystem and its discussion. Moreover, we see that pow-
ers with respect to our product can be evaluated by means of a generalization
of the Rédei rational functions (Rédei rational functions are classical and very
interesting functions in number theory). In Sect. 4 we present the conclusion.

2 A Product Related to the Cubic Pell Equation

The Pell equation x2 − dy2 = 1, for d positive integer non-square and x, y
unknowns, is one of the most famous Diophantine equations. Its generalization
to the cubic case is given by the following equation:

x3 + ry3 + r2z3 − 3rxyz = 1 (1)

where r is a given non-cubic integer and x, y, z unknown numbers whose values
we are seeking over the integers. This equation is considered the more natu-
ral generalization of the Pell equation, since it arises considering the unitary
elements of a cubic field as well as the Pell equation can be introduced consid-
ering unitary elements of a quadratic field. Specifically, let (F,+, ·) be a field
and t3 − r an irreducible polynomial in F[t]. Let us consider the quotient field
A = F[t]/(t3 − r) = {x + yt + zt2 : x, y, z ∈ F}. The quotient field A naturally
induces a product between triples of elements of F as follows:

(x1, y1, z1)•(x2, y2, z2) := (x1x2+(y2z1+y1z2)r, x2y1+x1y2+rz1z2, y1y2+x2z1+x1z2)

for (x1, y1, z1), (x2, y2, z2) ∈ F
3 and the norm of an element is given by

N(x, y, z) := x3 + ry3 + r2z3 − 3rxyz,

see, e.g., [1], p. 98. Considering the unitary elements we get the cubic Pell curve

C = {(x, y, z) ∈ F
3 : x3 + ry3 + r2z3 − 3rxyz = 1}.

In [4], Christofferson widely studied the more general equation

x3 + rb2y3 + r2bz3 − 3rbxyz = c,

whose the cubic Pell equation is a particular case for b = c = 1 and r not a cube,
providing also a complete bibliography up to 1956. It is worth noting that it is
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still lacking an algorithm for generating the solutions of such an equation (for
any value of r) similar to that for the quadratic Pell case (see, e.g., [1]).

Proposition 1. (C, •) is a commutative group with identity (1, 0, 0) and the
inverse of an element (x, y, z) is

(x̄, ȳ, z̄) := (−x + ryz, rz2 − xy, y2 − xz).

Proof. The proof is straightforward and is left to the reader.

Remark 1. In F
3 an element (x, y, z) is invertible with respect to • if and only

if N(x, y, z) �= 0 and its inverse is
(

x̄

N(x, y, z)
,

ȳ

N(x, y, z)
,

z̄

N(x, y, z)

)
.

Remark 2. When F = R, the cubic Pell curve C contains the solutions of the
cubic Pell equation.

Remark 3. The Pell equation can be introduced considering the unitary ele-
ments of R[t]/(t2 −d), d positive integer non-square, where the product between
elements is

(x1, y1)(x2, y2) = (x1x2 + dy1y2, x1y2 + y1x2).

Starting from A, we can introduce a new group with a non-standard product
having interesting properties that can be also exploited for creating a novel RSA-
like cryptosystem. Let us consider the quotient group B := A

∗/F∗. An element
in B is the equivalence class of elements in A

∗, i.e., [m + nt + pt2] ∈ B is the
equivalence class of m + nt + pt2 ∈ A

∗ defined by

[m + nt + pt2] := {λm + λnt + λpt2 : λ ∈ F
∗}.

We can now rewrite the elements of B. Given m + nt + pt2 ∈ A
∗, if m �= 0 and

n = p = 0, then
[m + nt + pt2] = [m] = [1F∗ ].

If n �= 0 and p = 0, then

[m + nt + pt2] = [m + nt] = [m + t].

Finally, if p �= 0, then

[m + nt + pt2] = [m + nt + t2].

Thus, the group B is

B = {[m + nt + t2] : m,n ∈ F} ∪ {[m + t] : m ∈ F} ∪ {[1F∗ ]}.
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Now, we can write the elements of B with a new notation. Fixed an element
α �∈ F, the elements of B can be written as couples of the kind (m,n), with
m,n ∈ F, or (m,α), with m ∈ F, or (α, α). Hence the group B is

B = (F × F) ∪ (F × {α}) ∪ ({α} × {α}).

With this new notation and remembering that A = F[x]/(t3 − r), we can obtain
a commutative product � in B, where (α, α) is the identity, having the following
rules:

– (m,α) � (p, α) = (mp,m + p)

– (m,n) � (p, α) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
mp + r

n + p
,
m + np

n + p

)
, if n + p �= 0

(
mp + r

m − n2
, α

)
, if n = −p,m − n2 �= 0

(α, α), otherwise

– (m,n)�(p, q)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
mp + (n + q)r
m + p + nq

,
np + mq + r

m + p + nq

)
, if m + p + nq �= 0

(
mp + (n + q)r
np + mq + r

, α

)
, if m + p + nq = 0, np + mq + r �=0

(α, α), otherwise

As a consequence, the following proposition holds.

Proposition 2. (B,�) is a commutative group with identity (α, α). The inverse
of an element (m,n), with m − n2 �= 0, is

(
nr−m2

m−n2 , r−mn
m−n2

)
. The inverse of

an element (m2,m) is (−m,α). Viceversa, the inverse of an element (m,α) is
(−m2,m).

Remark 4. When F = R, the element α can be viewed as ∞ and the points in
B of the kind (m,∞), (∞,∞) as points at infinity.

Furthermore, if we consider F = Zp where p is prime, then we have a field,
so B = A

∗/F∗ = Z
∗
p[t]/Z

∗
p is a field too. It is easy to notice that the point

0 = [0 : 0 : 0] /∈ B and we can consider the equivalence relation ∼ induced by
the action of Z∗

p on the set Z
∗
p[t] such that b1 ∼ b2 ⇐⇒ ∃λ ∈ Z

∗
p : b1 = λb2 and

now it is clear that B is a projective space.

Remark 5. If F is not a finite field, let us denote B as B0, B1 = B∗
0/F∗, Bn =

B∗
n−1/F

∗ and so ∀n , then we have Bn+1 ⊂ Bn and so we have a directed system,
in fact ∀n Bn ⊂ B0; moreover let us consider the family of maps {φn,n+1}n with
φn,n+1 : Bn+1 ↪→ Bn, where φn,n = idBn

, such that φn,n+1 ◦φn+1,m = φn,m and
φn,m : Bm ↪→ Bn. At this point it is clear that ({Bn}, φn,n+1) is a projective
system, hence we naturally consider the inverse limit lim←−Bi, that is equipped
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with a family of projection maps {pn}n such that the inverse limit has the
following universal property, showed by the commutative diagram

A
∗

∃!φ

��πn+1

��

πn

��

πn−1

��

lim←−Bi

pn+1

����
��
��
��
��
��

pn

��

pn−1

���
��

��
��

��
��

�

Bn+1
φn,n+1

�� Bn
φn−1,n

�� Bn−1

with πn ◦ p−1
n = idBn

Remark 6. We consider F as a topological field, so that C has the topology
induced as a subset of F3. The cubic Pell curve

C = {(x, y, z) ∈ F
3 : N(x, y, z) := x3 + ry3 + r2z3 − 3rxyz = 1},

endowed with the non standard product we have previously defined, can be
studied as a topological group. Indeed the group operation

C × C −→ C, ((x1, y1, z1), (x2, y2, z2)) �−→ (x1x2, y1y2, z1z2)

is a continuous mapping and the inversion map C −→ C, (x, y, z) �−→ (x̄, ȳ, z̄) is
likewise continuous, according to the fact that N(x, y, z) = 1. If F = R, then we
can consider C equipped with the Euclidean topology, otherwise if F = Zp, then
the discrete topology is the most natural topology we can put on it, but maybe
it is not the only one interesting, even if the only one that is T0.

3 A Public-Key Cryptosystem

3.1 The Scheme

When F = Zp (and fixing α = ∞), the situation is interesting for cryptographic
applications. Indeed, in this case we have A = GF (p3), i.e., A is the Galois field

of order p3. Thus, by construction, B is a cyclic group of order
p3 − 1
p − 1

= p2+p+1,

with respect to a well-defined product, and an analogous of the little Fermat’s
theorem holds:

(m,n)�p2+p+1 ≡ (∞,∞) (mod p), (2)

where the power is evaluated by using the product �, for any m ∈ Zp and
n ∈ Zp ∪ {∞}.
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Remark 7. It follows from (2) that

(m,n)�(p2+p+1)(q2+q+1) ≡ (∞,∞) (mod N),

where N = pq, for p and q prime numbers. This does not mean that, when B
is constructed over ZN , B is a group. In this case we only have an analogous of
the Euler’s theorem. In other words when we construct B over Zp (p prime) our
product � works like the standard product in Zp. Moreover, when we consider
B over ZN , our product � works like the standard product in ZN .

As a consequence we can construct a public-key cryptosystem similar to the RSA
scheme, but using our product �.

The following steps describe the keys generation:

– choose two prime numbers p, q
– compute N = pq
– choose an integer e such that (e, (p2 + p + 1)(q2 + q + 1)) = 1
– choose a non-cube integer r in Zp, Zq and ZN

– compute d such that ed ≡ 1 (mod (p2 + p + 1)(q2 + q + 1)).

The public encryption key is (N, e, r) and the secret decryption key is (p, q, d).
Given a pair of messages m1 and m2 in ZN , they can be encrypted by

(c1, c2) ≡ (m1,m2)�e (mod N).

The receiver can decrypt the messages evaluating

(c1, c2)�d (mod N).

3.2 Some Remarks

In the following, we discuss some peculiarities of our cryptosystem.
First, our scheme is more secure than RSA in broadcast scenarios, i.e., when

the plaintext is encrypted for different receivers using the same public exponent
and it is possible to recover the plaintext message by solving a set of congruences
of polynomials [9]. However, this attack can not be applied when the trapdoor
function is not a simple monomial power as in RSA [12]. Thus, this kind of
attacks fails in our scheme.

Another classical attack against the RSA scheme is the Wiener attack [23].
Said e and d the public and private exponents, respectively, in the RSA scheme
the following relation holds

ed − kϕ(N) = 1

for a certain integer k, where ϕ is the Euler totient function and N = pq (for
p and q prime numbers) is the modulo with respect to messages are encrypted
and decrypted. For large values of N the following bounds hold:

N − 3
√

N < ϕ(N) < N (3)
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The Wiener attack exploits properties of continued fractions. Indeed, thanks to
the previous inequalities, we have

|k
d

− e

N
| <

1
2d2

,

i.e., by Legendre theorem, d is the denominator of a convergent of the continued
fraction expansion of e

N and consequently the private exponent d can be recov-
ered. In our case, the role of ϕ(N) is substituted by (p2 +p+1)(q2 + q +1). This
leads to a less efficient evaluation of the decryption exponent, however in this
situation inequalities similar to (3) can not be found, making the Wiener attack
not usable against our scheme. Moreover, for the same reason, further attacks
exploiting continued fractions, reviewed in [7], fail in our case.

Remark 8. The private exponent d can be effectively recovered by using the
Wiener attack if it is less than N1/4, where N is the RSA-modulo. A typical size
of the RSA-modulo is 1024–bit. Thus, in this case, it is required that the size of
d must be at least 256 bits long in order to avoid the Wiener attack, but this is
unfortunate for low-power devices [3]. Using the proposed scheme, the dimension
of the private exponent could be less than 256 bits without being affected by the
Wiener attack.

Finally, our scheme appears to be robust against another class of attack
presented in [20] (see also [11], Sect. 3.1, for a review of the attack). We recall
this attack here for the reader. It is supposed that it is known a linear relation
between two plaintexts M1 and M2:

M2 = M1 + Δ

where Δ is known and C1 ≡ Me
1 (mod N), C2 ≡ Me

2 (mod N). In this case,
the attack can retrieve the plaintext messages evaluating the greatest common
divisor of the polynomials

xe − C1 (mod N), (x + Δ)e − C2 (mod N).

In our case, the situation is more complicated, since the exponentiation yields
rational functions and not polynomials. Moreover, in our case, we deal with
bivariate polynomials.

3.3 Evaluation of the Powers with Respect to � by Means
of Generalized Rédei Functions

The Rédei rational functions were introduced by Rédei in [21] from the devel-
opment of (z +

√
d)n, where z is an integer and d a non-square positive integer.

We can define the Rédei polynomials Nn(d, z) and Dn(d, z) as follows:

(z +
√

d)n = Nn(d, z) + Dn(d, z)
√

d, ∀n ≥ 0.
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The Rédei polynomials have the following closed form:

Nn(d, z) =
[n/2]∑
k=0

(
n

2k

)
dkzn−2k, Dn(d, z) =

[n/2]∑
k=0

(
n

2k + 1

)
dkzn−2k−1.

The Rédei rational functions are defined by

Qn(d, z) =
Nn(d, z)
Dn(d, z)

, ∀n ≥ 1

and can be also evaluated by means of powers of matrices. Indeed, we have(
z d
1 z

)n

=
(

Nn dDn

Dn Nn

)
,

see [8].
They are classical and interesting functions in number theory since, for

instance, they provide approximations of square roots, are permutations in finite
fields and Rédei polynomials belong to the class of the Dickson polynomials [14].
Moreover, they have been applied in several contexts, like the creation of a
cryptographic system based on the Dickson scheme [18] and the generation of
pseudorandom sequences [22].

Here, we see that the powers of elements in B can be evaluated by means of
a certain generalization to the cubic case of the Rédei functions.

Starting from the development of (z1 + z2 3
√

r + 3
√

r2)n, with z1, z2, r ∈ F

and r non-cube, we can introduce three sequences of polynomials An(r, z1, z2),
Bn(r, z1, z2), Cn(r, z1, z2) that generalize the Rédei polynomials. We define

(z1+z2
3
√

r+ 3
√

r2)n = An(r, z1, z2)+Bn(r, z1, z2) 3
√

r+Cn(r, z1, z2)
3
√

r2, ∀n ≥ 0.

Hence, the rational functions
An

Cn
and

Bn

Cn
, for n ≥ 1 can be considered a gener-

alization to the cubic case of the Rédei rational functions.

Remark 9. Let us observe that for introducing the generalized Rédei functions,
it is not necessary to work in a field. Indeed, the previous definition works even
in the case that z1, z2, r belongs to a commutative ring with identity. Indeed, the
original Rédei polynomials were introduced in Z. We have chosen to define the
generalized Rédei polynomials in the field F only for being consistent with the
notation used for introducing B as a group and not introducing new notation.

In the following proposition, we see that also the generalized Rédei polyno-
mials can be evaluated by means of a matricial approach.

Proposition 3. Let An(r, z1, z2), Bn(r, z1, z2), Cn(r, z1, z2) be the generalized
Rédei polynomials, then⎛

⎝z1 r rz2
z2 z1 r
1 z2 z1

⎞
⎠

n

=

⎛
⎝An rCn rBn

Bn An rCn

Cn Bn An

⎞
⎠ , ∀n ≥ 0
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Proof. In the following, for the seek of simplicity we omit the dependence on
r, z1, z2. We prove the thesis by induction on n.
Basis: for n = 0 we have A0 = 1, B0 = 0, C0 = 0 and (z1 + z2 3

√
r + 3

√
r2)0 = 1,

i.e., ⎛
⎝z1 r rz2

z2 z1 r
1 z2 z1

⎞
⎠

0

=

⎛
⎝A0 0 0

0 A0 0
0 0 A0

⎞
⎠ .

Similarly, it is straightforward to check the cases n = 1, 2.
Inductive step: we assume the statement holds for some natural number n − 1
and we prove that holds for n too. We have

⎛
⎝z1 r rz2

z2 z1 r
1 z2 z1

⎞
⎠

n

=

⎛
⎝z1 r rz2

z2 z1 r
1 z2 z1

⎞
⎠

n−1 ⎛
⎝z1 r rz2

z2 z1 r
1 z2 z1

⎞
⎠

=

⎛
⎝An−1 rCn−1 rBn−1

Bn−1 An−1 rCn−1

Cn−1 Bn−1 An−1

⎞
⎠

⎛
⎝z1 r rz2

z2 z1 r
1 z2 z1

⎞
⎠ .

Thus, we have to show that⎧⎪⎨
⎪⎩

An = z1An−1 + rz2Cn−1 + rBn−1

Bn = z1Bn−1 + z2An−1 + rCn−1

Cn = z1Cn−1 + z2Bn−1 + An−1

.

By definition of generalized Rédei polynomials, we have

(z1 + z2
3
√

r + 3
√

r2)n = An + Bn
3
√

r + Cn
3
√

r2.

On the other hand

(z1 + z2
3
√

r + 3
√

r2)n = (z1 + z2
3
√

r + 3
√

r2)n−1(z1 + z2
3
√

r + 3
√

r2)

= (An−1 + Bn−1
3
√

r + Cn−1
3
√

r2)(z1 + z2
3
√

r + 3
√

r2)

from which, expanding the last product, the thesis easily follows.

In the next proposition, we see that these functions can be used in order to
evaluate powers of elements (z1, z2) in B.

Proposition 4. Given (z1, z2)∈B and letAn(r, z1, z2), Bn(r, z1, z2), Cn(r, z1, z2)
be the generalized Rédei polynomials, we have

(z1, z2)�n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
An

Cn
,
Bn

Cn

)
, if Cn �= 0

(
An

Bn
, α

)
, if Bn �= 0, Cn = 0

(α, α), if Bn = Cn = 0

,

for n ≥ 1.
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Proof. By the previous proposition, we have
⎛
⎝An rCn rBn

Bn An rCn

Cn Bn An

⎞
⎠

⎛
⎝Am rCm rBm

Bm Am rCm

Cm Bm Am

⎞
⎠ =

⎛
⎝Am+n rCm+n rBm+n

Bm+n Am+n rCm+n

Cm+n Bm+n Am+n

⎞
⎠ ,

from which we get
⎧⎪⎨
⎪⎩

Am+n = AmAn + rBmCn + rBnCm

Bm+n = AmBn + AnBm + rCmCn

Cm+n = AmBn + BmBn + AnCm

.

Thus, if Cm, Cn �= 0 and Cm+n = AmBn + BmBn + AnCm �= 0, i.e., An

Cn
+ Am

Cm
+

BmBn

CnCm
�= 0 (that is the condition m+ p+nq �= 0 for the product (m,n)� (p, q)),

we have ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Am+n

Cm+n
=

An

Cn

Am

Cm
+ r

Bm

Cm
+ r

Bn

Cn

Am

Cm
+

Bn

Cn

Bm

Cm
+

An

Cn

Bm+n

Cm+n
=

Bn

Cn

Am

Cm
+

Bm

Cm

An

Cn
+ r

Am

Cm
+

Bn

Cn

Bm

Cm
+

An

Cn

and this is equivalent to say that
(

Am+n

Cm+n
,
Bm+n

Cm+n

)
=

(
An

Cn
,
Bn

Cn

)
�

(
Am

Cm
,
Bm

Cm

)
.

In the case that Bm+n �= 0 Cm+n = AmBn+BmBn+AnCm = 0, i.e., An

Cn
+ Am

Cm
+

BmBn

CnCm
= 0 (that is the condition m+ p+nq = 0 for the product (m,n)� (p, q)),

then we have (
Am+n

Bm+n
, α

)
=

(
Am

Cm
,
Bm

Cm

)
�

(
An

Cn
,
Bn

Cn

)
.

Now, considering that

(
A1

C1
,
B1

C1

)
= (z1, z2), the thesis follows.

When we consider elements of the kind (z, α) in B, the previous generalized
Rédei functions can not be applied for evaluating the powers. However, in the
following proposition, we see how these powers can be evaluated in a similar way.

Proposition 5. Given (z1, α) ∈ B and let Ān(r, z1), B̄n(r, z1), C̄n(r, z1) be
polynomials defined by

(z1 + 3
√

r)n = Ān(r, z1) + Ān(r, z1) 3
√

r + Ān(r, z1)
3
√

r2, ∀n ≥ 1.
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We have that

1.

⎛
⎝z1 0 r

1 z1 0
0 1 z1

⎞
⎠

n

=

⎛
⎝Ān C̄n rB̄n

B̄n Ān C̄n

C̄n B̄n Ān

⎞
⎠ , ∀n ≥ 0

2. (z1, α)�n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
Ān

C̄n
,
B̄n

C̄n

)
, if C̄n �= 0

(
Ān

B̄n
, α

)
, if B̄n �= 0, C̄n = 0

(α, α), if B̄n = C̄n = 0

Proof. The proofs are similar to proofs of Propositions 3 and 4 and are left to
the reader.

Remark 10. As we have already pointed out, the generalized Rédei functions
can be used for evaluating powers in B even in the case that we are working in
a ring and not in the field F. Let us note that in this case B is not a group but
the product is well-defined and the powers can be evaluated by Propositions 4
and 5. In this case conditions “�= 0” means “is invertible”.

4 Conclusion

In this paper, we have proposed a novel RSA-like scheme that is more secure
than RSA in broadcast applications and is not affected by the Wiener attack.
Moreover, it appears more robust than RSA with respect to other attacks that
exploit the knowledge of a linear relation occurring between two plaintexts. This
scheme has been developed by using a new group equipped with a non-standard
product whose powers can be evaluated by means of some generalized Rédei
functions. This group and its product have shown many interesting properties
and relations highlighting that they are worth investigating due to their per-
spectives. Certainly, in this work we have only given an idea of their use in
cryptographic applications, but the present scheme should be further discussed
and improved. In the following, we advise some further studies:

– In [16], the author exhibits an algorithm of complexity O(log2(n)) with
respect to addition, subtraction and multiplication to evaluate Rédei rational
functions over a ring. It will be interesting to study a similar algorithm in
order to obtain an efficient method for evaluating the generalized Rédei func-
tions introduced in this paper, so that the encryption cost of our algorithm
is equal to the encryption cost of the RSA scheme or less considering that in
our scheme we encrypt two messages at once.

– We conjecture that (B,�) and (C, •) are isomorphic. Proving this fact and
finding the isomorphism lead to important consequences. First, the isomor-
phism could be exploited in order to improve our scheme following the ideas
of RSA-like schemes based on isomorphism between two groups (see, e.g.,
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[12,19]). Moreover, in this way a method for generating the solutions of the
cubic Pell equation could be found (note that such a method is still missing
[1]). As a special case, we will also state that the number of solutions of the
cubic Pell equation in Zp is p2 + p + 1 (as numerical simulations appear to
confirm). One could try to show that B � C using the Short Five Lemma [10]:
if in the following diagram we have two exact sequences, that is ker g = Imf
and ker k = Imh, whew both k and g are surjections and both h and f are
injections, under the hypothesis that two of the down arrows are isomorphism,
then the last down arrow is an isomorphism too.

0 �� B

�
��

f �� Zp[t]/(β(t))

id

��

g �� A

id

��

�� 0

0 �� C
h

�� Zp[t]/(β(t))
k

�� A �� 0

So our goal is to find an appropriate (β(t)) and the maps previously intro-
duced, with particular attention to the degree of the polynomial (β(t)). For
now, we were only able to find the following morphism

ε :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

B → C

(m, n) �→
(

m3 + 6mnr + n3r + r2

m3 + rn3 + r2 − 3rmn
,

3(m2n + mr + n2r)

m3 + rn3 + r2 − 3rmn
,

3(m2 + mn2 + nr)

m3 + rn3 + r2 − 3rmn

)

(m, α) �→
(

1,
3m2

m3 + r
,

3m

m3 + r

)

(α, α) �→ (1, 0, 0)

Moreover, let us recall that Zp has non-cubic residues only when p ≡ 1
(mod 3), and consequently 3 divides p2 + p + 1. Thus, when we consider
F = Zp, we are able to construct the group B only for the prime numbers p
such that p2 + p + 1 is divisible by 3. Then we have observed that we have
|Imε| = |B|

3 .
– The scheme should be studied from a computational point of view, in order to

give more precise and effective results about its efficiency and security. In this
paper, we have only investigated some improvements regarding the security
from a theoretical point of view.
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1 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS,
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Abstract. In this paper, we will study some possible generalizations of
the famous Diffie-Hellman algorithm. As we will see, at the end, most of
these generalizations will not be secure or will be equivalent to some clas-
sical schemes. However, these results are not always obvious and more-
over our analysis will present some interesting connections between the
concepts of commutativity, associativity, and public key cryptography.

Keywords: Diffie-Hellman algorithms · Chebyshev polynomials
New public key algorithms

1 Introduction

Classical Diffie-Hellman Key-Exchange Algorithm. The Diffie-Hellman
algorithm [5] was the first published key exchange algorithm (1976). In fact,
it is rather a two-party key establishment protocol, which also has “ephemeral
public key” features. The new functionalities it offers has created a whole new
area of science and engineering: public-key cryptography. Since 1976, many more
algorithms have been found, and some of them can be seen as generalizations
of the original Diffie-Hellman algorithm, for example when the computations
are done in an elliptic curve instead of (mod p), where p is a prime number.
In this paper, we will study some other possible generalizations and the link
between this problem and commutativity or associativity in some mathematical
structures (with one way properties).

Let us first recall what was the original Diffie-Hellman algorithm. Let p be a
prime number and g be an element of Z/pZ such that x �→ gx (mod p) is (as far
as we know) a one way function. Typically p has more than 1024 bits and g can
be a generator of Z/pZ. Let Alice and Bob (as in the original paper of Diffie and
Hellman) be the two persons who want to communicate. Alice randomly chooses
a secret value a between 1 and p−1, and she sends the value A = ga (mod p) to
Bob. Similarly, Bob randomly chooses a secret value b between 1 and p − 1 and
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sends B = gb (mod p) to Alice. Then Alice and Bob are both able to compute a
common key K = ga.b (mod p) (Alice by computing K = Ba (mod p), and Bob
by computing K = Ab (mod p)). However, if an adversary, Charlie is a passive
observer of the messages exchanged on the line, he will obtain A and B, but,
if x �→ gx (mod p) is one way, he will not obtain a and b, and if the so called
“Diffie-Hellman” problem is difficult, he will not be able to compute K.

Remark 1. If Charlie is also able to send messages, it is well known that this
simple algorithm can be attacked by a man in the middle attack. So the mes-
sages MUST be authenticated somewhat, for example in usual HTTPS web, the
problem is solved. However, this is not the aim of this paper.

DH in a More General Frame. We can state this problem in a more general
frame as proposed by Couveignes [4]:

If A is a (semi-)group and G is a set, then a (left) group action ϕ of A on G
is a function:

ϕ : A × G → X : (a, g) �→ ϕ(a, g)

that satisfies the following two axioms (where we denote ϕ(a, g) as a · g):

– Identity e · g = g for all g in G. (Here, e denotes the identity element of A if
A is a group).

– Compatibility (ab) · g = a · (b · g) for all a, b ∈ A and all g ∈ G.

We say that A acts transitively on G. We now suppose that A is abelian. We
require that the action (a, g) → a · g is easy to compute but that given g and h
in G, it is difficult to compute a such that a · g = h. Now we can state DH in
this more general frame. Let g ∈ G. Alice choose randomly a secret value a ∈ A
and send the value a · g to Bob. Similarly, Bob choose a secret value b ∈ A and
send b · g to Alice. Then Alice and Bob will share the common value ab · g.

In this paper, we look for specific constructions that allow to use the algo-
rithm, and we will assume that Charlie remains a passive attacker and does not
create/modify/suppress any messages.

We propose a first type of construction with A = N. For this it is enough to
have a set G with a associative composition ∗. The structure of N-set is given
by gn := n−1-fold composition of g with itself. It is obvious that (ga)b = ga·b =
(gb)a and so we can use it for key exchange if, and only if, g �→ gn is one way to
make the system secure.

In this paper we shall construct compositions ∗ on (affine) curves of genus 0
over finite fields. To find them we first go to such curves over R and use addition
formulas for trigonometric functions to define compositions over R. The next
step then is to describe these compositions given by transcendental functions
algebraically over the finite fields. Since associativity is inherited, we can use
them to define a N-set.
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Remark 2

– We recall that the algebraic addition law on elliptic curves E (i.e. curves
of genus 1) over any field is modeled after the addition theorems of elliptic
functions, e.g. the Weierstrass ℘-function and ℘′-function.

– The ℘-function alone yields a partial N-structure on Fq by the well-known
formulas for the X−coordinate of the point n · (x, y) for (x, y) ∈ E(Fq).

– A generalization for hyperelliptic curves of genus ≥ 2 is, at least in principle,
given by Theta-functions. For g = 2 this becomes very efficient [7].

Another possible constructions is to choose A as a family of functions with
the composition law and that are pairwise commuting, defined on a space X.
The action is then defined by (f, x) ∈ A×X �→ f(x). Here, A, is not necessary a
group, but we can observe that commutativity is needed to be able to have DH
in this context. In general, it is quite easy to design a very general commutative
internal law on the elements (for example if a ≤ b we define a ∗ b as a fixed
random element ϕ(a, b) and if b < a, we define a∗ b as ϕ(b, a)), but we want here
associativity, not commutativity. On the opposite, for functions f(x) = xa and
g(x) = xb, we want f ◦ g = g ◦ f , i.e. commutativity. Here the composition of
functions ◦ is always associative, but we want commutativity.

Commutativity Associativity

On the elements Easy What we want

On the functions What we want Easy

Quantum Computing on These Structures. We know that the quantum
Shor’s algorithm for factoring number or computing discrete logarithm (mod p)
in a finite field is polynomial. In the more general frame of groups operating on
sets, when the group is abelian, one can only expect subexponential security [6].
Thus in our constructions, one cannot expect to obtain exponential security
against quantum computing. This justifies the Feo [9] system using isogenies of
supersingular elliptic curves.

Organisation of the Paper. In part I, we will concentrate on the first type of
constructions, i.e. on the “associativity” property. In part II, we will concentrate
on the second type on constructions, i.e. on the “commutativity” property, to
generalize the fact that (ga) ◦ (gb) = (gb) ◦ (ga), on the mathematical structure
(G, ◦).

Part I: Associative Properties on the Elements

In this part, we focus on the first type of construction and we present two
examples. We work on affine curves of genus 0. Thus will end up with algebraic
linear group of dimension 0. Indeed, we can get only tori or additive groups.
This implies that we come to discrete logarithm in the multiplicative group of
finite fields, as our examples will show.
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2 Associativity with a
√
1 + b2 + b

√
1 + a2

To generalize the Diffie-Hellman algorithm by working in a structure (G, ∗) dif-
ferent from (Z/pZ,×), we want:

– ∗ to be associative
– x �→ gx to be one way (from the best known algorithms, the existence of

proven one way functions is an open problem since it would imply P 	= NP ).

Moreover, we would like G to be as small as possible, but with a security greater
than 280. Therefore, elements of G would have typically between 80 bits (or 160
bits if from a collision gx = gyA, we can find z such that gz = A) and 2048 bits
for example, since the computation of a ∗ b is expected to be fast. This is what
we have on elliptic curves, but is it possible to suggest new solutions? Ideally,
it would be great to generate a “random associative” structure on elements
of size, say, about 200 bits for example. It is very easy to generate “random
commutative” structures on elements of such size. Let for example a and b be
two elements of 256 bits. If a ≤ b, we can choose a∗b to be anything (for example
a ∗ b = AES − CBCk(a‖b) where k is a random value of 128 bits to be used as
the AES key) and if b < a then to define b ∗ a as a ∗ b. However here we want
to design a “random associative” structure on elements of about 200 bits and
not a “random commutative” structure, and this is much more difficult! In fact,
for associativity structure of this size, we do not know how to get them if we
do not create a specific mathematical structure that gives the associativity. But
then, there is a risk that such a structure could be used to attack the scheme. In
this section, we will study an example of associativity created in this way. More
precisely, we will study the operation a ∗ b = a.

√
1 + b2 + b.

√
1 + a2 on a set G

where .,+ and √ can be defined (we will see examples below). Let us first see
why ∗ is associative on various G.

2.1 Associativity in (R, ∗)

Definition 1. ∀a, b ∈ R, a ∗ b = a.
√

1 + b2 + b.
√

1 + a2.

We will see that (R, ∗) is a group. In fact the only difficult part in the proof is
to prove the associativity of ∗. We will see 3 different proofs of this fact, since
all of these proofs are interesting.

Associativity of *: Proof no1. A nice way to prove the associative property is
to notice that sinh function is a bijection from R to R that satisfies: ∀a ∈ R, ∀b ∈
R, sinh(a+b) = sinh(a)∗sinh(b) (since sinh(a+b) = sinh a cosh b+sinh b cosh a).
This shows that sinh is an isomorphism from (R,+) to (R, ∗) and therefore ∗ is
associative and (R, ∗) is a group.



108 J. Patarin and V. Nachef

Associativity of *: Proof no2

Theorem 1

∀a ∈ R, ∀b ∈ R,
(
a
√

b2 + 1 + b
√

a2 + 1
)2

+ 1 =
(
ab +

√
a2 + 1

√
b2 + 1

)2

Proof. It is obvious by developing the two expressions.

Theorem 2
∀a, b, c ∈ R, (a ∗ b) ∗ c = a ∗ (b ∗ c)

Proof Let α = a
√

b2 + 1 + b
√

a2 + 1. Then A = (a ∗ b) ∗ c = α ∗ c = α
√

c2 + 1 +
c
√

α2 + 1. Now from Theorem 1,
√

α2 + 1 = ab +
√

a2 + 1
√

b2 + 1 (this is true
even when a < 0 or b < 0). Therefore (a∗b)∗c = (a

√
b2 + 1+b

√
a2 + 1)

√
c2 + 1+

abc + c
√

a2 + 1
√

b2 + 1. Similarly, let β = b
√

c2 + 1 + c
√

b2 + 1. Then B = a ∗
(b ∗ c) = a ∗ β = a

√
β2 + 1 + β

√
a2 + 1. Then from Theorem 1,

√
β2 + 1 =

bc +
√

b2 + 1
√

c2 + 1. Therefore B = a ∗ (b ∗ c) = abc + a
√

b2 + 1
√

c2 + 1 +
(b

√
c2 + 1 + c

√
b2 + 1)

√
a2 + 1. Thus we obtain A = B.

Associativity of *: Proof no3. Here, we will define a law on R
2, called

“Domino Law” and represented by �.

Definition 2. Let (a, α) ∈ R
2 and (b, β) ∈ R

2. Then the � law is defined by

(a, α) � (b, β) = (aβ + bα, ab + αβ)

We can notice that � is very similar to the multiplication in C, except that we
have ab + αβ instead of ab − αβ. Here aβ + bα is the analog of the imaginary
part and ab + αβ is the analog of the real part.

Proposition 1. The � law is associative:

∀(a, α), (b, β), (c, γ), (a, α) � [(b, β) � (c, γ)] = [(a, α) � (b, β)] � (c, γ)

Proof. It is easy to see that

(a, α) � [(b, β) � (c, γ)] = [(a, α) � (b, β)] � (c, γ)
= (abc + aβγ + bαγ + cαγ, abγ + acβ + αbc + αβγ)

Corollary 1. The ∗ law is associative.

Proof. First, using Theorem 1, we notice that (a,
√

1 + a2) � (b,
√

1 + b2) = (a ∗
b,

√
1 + (a ∗ b)2). Therefore, the associativity of � implies the associativity of ∗,

since ∗ is the restriction of � on the curve b2 = a2 + 1.

2.2 Application to Finite Fields: A New Group (P, ∗)
for Cryptography

Let K be a finite field. Let P (K) = {x ∈ K,∃α ∈ K, 1 + x2 = α2}. When
a ∈ P , let

√
a2 + 1 denote any value α such that α2 = a2 + 1 (we will choose
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later if
√

a2 + 1 = α or
√

a2 + 1 = −α). At this stage, we will only need that√
a2 + 1 denotes always the same value, α, or −α when a is fixed. When there

is no ambiguity, P (K) will be simply denoted by P .

Theorem 3

∀a ∈ P, ∀b ∈ P, (a
√

b2 + 1 + b
√

a2 + 1)2 + 1 = (ab +
√

a2 + 1
√

b2 + 1)2

Proof. As with Theorem 1, the proof is obvious: we just have to develop the two
expressions.

Definition 3. When a ∈ P and b ∈ P , we will denote by a ∗ b = a
√

b2 + 1 +
b
√

a2 + 1.

Remark 3. For
√

a2 + 1 we have two possibilities in K, α and −α, and for√
b2 + 1, we also have two possibilities, β and −β. Therefore, for a ∗ b, we have

so far 4 possibilities. So far we just assume that one of these possibilities is
choosen, and later (at the end of this Sect. 2.2) we will see how to choose one
of these 4 possibilities in order to have a group (P, ∗). Moreover we will always
choose

√
1 = 1.

Theorem 4. ∗ is associative on P .

Proof. This comes directly from Theorem 3 with the same proof as proof no2
on (R, ∗).

Therefore, we can design a variant of the Diffie-Hellman scheme on (P, ∗). To be
more precise, we will now explain how to compute

√
1 + a2 explicitly.

Theorem 5. We have the following properties:
∀a ∈ P, a ∗ 0 = 0 ∗ a = a ∀a, b ∈ P, (−a) ∗ (−b) = −(a ∗ b)
∀a ∈ P, a ∗ (−a) = (−a) ∗ a = 0 ∀a, b ∈ P, (−a) ∗ b = −(a ∗ (−b))

Proof. This comes immediately from
√

1 = 1 and from the fact that
√

a2 + 1
will always be the same value in all the expressions used for ∗.

Theorem 6. ∀a, b ∈ P, a ∗ b ∈ P .

Proof. From Theorem 3, 1 + (a ∗ b)2 is a square.

Theorem 7

[∀a, b ∈ P,

√
(ab +

√
a2 + 1

√
b2 + 1)2 = ab +

√
a2 + 1

√
b2 + 1]

=⇒ ∀a, b, c ∈ P, a ∗ (b ∗ c) = (a ∗ b) ∗ c

Proof. Let A = (a ∗ b) ∗ c and B = a ∗ (b ∗ c). Let α = a
√

b2 + 1 + b
√

a2 + 1.
Let β = b

√
c2 + 1 + c

√
b2 + 1. From Theorem 7 we have

√
α2 + 1 = ±ab +√

a2 + 1
√

b2 + 1 and similarly
√

β2 + 1 = ±bc+
√

b2 + 1
√

c2 + 1. Therefore A =
(a

√
b2 + 1 + b

√
a2 + 1)

√
c2 + 1 ± c(ab +

√
a2 + 1

√
b2 + 1) and B = (b

√
c2 + 1 +

c
√

b2 + 1)
√

a2 + 1 ± a(bc +
√

b2 + 1
√

c2 + 1). We see that if here we will have
two “+”, then A = B, i.e. a sufficient condition to have A = B is to have

∀a, b ∈ P,
√

(ab +
√

a2 + 1
√

b2 + 1)2 = ab +
√

a2 + 1
√

b2 + 1.
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We will denote by � this condition

∀a, b ∈ P,

√
(ab +

√
a2 + 1

√
b2 + 1)2 = ab +

√
a2 + 1

√
b2 + 1 (�)

From Theorem 3, � also means:

∀a, b ∈ P,
√

1 + (a ∗ b)2 = ab +
√

1 + a2
√

1 + b2 (��)

From (��) and a ∗ b = a
√

1 + b2 + b
√

1 + a2, we see that from (a,
√

1 + a2),
(b,

√
1 + b2), we can compute

(
a ∗ b,

√
1 + (a ∗ b)2

)
with 4 multiplications and

2 additions in K. With a = b in (�), we obtain:

∀a ∈ P,
√

(2a2 + 1)2 = 2a2 + 1 (�)

2.3 A Toy Example for (P, ∗)

Here we have K = Z/19Z with p = 19 (p ≡ 3 (mod 4) as wanted). The set of
all the squares of K is C = {0, 1, 4, 5, 6, 7, 9, 11, 16, 17}.

∀a ∈ K, a2 + 1 is a square ⇔ a2 ∈ {0, 4, 5, 6, 16} ⇔ a ∈ P with P = {0, 2, 4,
5, 9, 10, 14, 15, 17}. We denote by P this set. Therefore in P we have 9 values (i.e.
p−1
2 values). For example, let assume that we want to compute 5 ∗ 9. We have:

5 ∗ 9 = 5
√

82 + 9
√

26 = 5
√

6 + 9
√

7. Now
√

6 can be 5 or 14, and
√

7 can be 8 or
11, so for 5 ∗ 9 we have 4 possibilities here. In order to see what the exact values
are for

√
6 and

√
7, we use the formula: ∀a ∈ P,

√
(2a2 + 1)2 = 2a2 + 1 (�). To

compute
√

6, we first solve the equation (2a2 +1)2 = 6. This gives 2a2 +1 = 5 or
14, thus 2a2 = 4 or 13. Since 2−1 = 10 (mod 19)), we obtain a2 = 40 or 130, i.e.
a2 = 2 or 16. This gives a = 4 or 15. Now, (�) with a = 4 (or 15) gives:

√
6 = 14.

Similarly, to compute
√

7 we first solve the equation (2a2+1)2 = 7. This gives
2a2 +1 = 11 or 8. Thus we have 2a2 = 10 or 17 and a2 = 5 or 13. Thus a = 9 or
10. Now (�) with a = 9 (or 10) gives:

√
7 = 11. Finally 5 ∗ 9 = 5

√
6 + 9

√
7 = 17.

All the values a ∗ b with a, b ∈ P can be computed in the same way. We obtain
like this the table below of the group (P, ∗) = P (Z/19Z).

2.4 A More General Context

Definition and Properties. The Domino Law can be defined also on P × P .
It is still associative (the proof is similar to the one given for R

2) (Table 1).

Proposition 2. Let (a, b) ∈ P × P , then (a, b) � (a, b) = (2ab, a2 + b2). If
(a, b)2� = (A,B), then A + B = (a + b)2.

More generally, ∀k ∈ N, if (a, b)k� = (A,B) then A + B = (a + b)k.

Proof. For k = 2, the computation is straightforwards. Then, the proof is done
by induction.

Corollary 2. Proposition 2 shows that computing logarithms in (P × P,�) is
equivalent to computing logarithms in (K, .)

Proof. The proof is obvious.
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Table 1. P (Z/19Z)

∗ 0 2 4 5 9 10 14 15 17

0 0 2 4 5 9 10 14 15 17

2 2 17 5 10 14 4 15 9 0

4 4 5 9 14 2 15 17 0 10

5 5 10 14 15 17 9 0 2 4

9 9 14 2 17 5 0 10 4 15

10 10 4 15 9 0 14 2 17 5

14 14 15 17 0 10 2 4 5 9

15 15 9 0 2 4 17 5 10 14

17 17 0 10 4 15 5 9 14 2

Application to a ∗ b = a
√

1 + b2 + b
√

1 + a2

Proposition 3. We have: (a,
√

1 + a2) � (b,
√

1 + b2) =
(
a ∗ b,

√
1 + (a ∗ b)2

)
.

Hence ∀k, (a,
√

1 + a2)k� = (ak
∗,

√
1 + (ak∗)2)

Corollary 3. This proposition shows that computing logarithms in (P, ∗) is
equivalent to computing logarithms in (K, .).

Proof. We want to compute k such that ak
∗ = α (a and α are known). We first

choose β such that β2 = α2+1. Then, we want to find (a, b) satisfying b2 = a2+1
such that (a, b)k� = (A,B). Since α+β = (a+ b)k, this equation gives k by using
the discrete log.

Therefore the cryptographic scheme based on (P, ∗) is essentially similar to
the classical cryptographic scheme based on discrete logarithms on (K, .).

3 Associativity Based on the Hyperbolic Tangent

3.1 The General Case

In this section, we will use the tanh function to obtain associativity. This function
is a bijection from R to ] − 1, 1[ and we have the formula

tanh(a + b) =
tanh a + tanh b

1 + tanh a tanh b

Thus if we define on ]−1, 1[ the following law: a∗b = (a+b)(1+ab)−1 we obtain
a group since tanh is an isomorphism from (R,+) to (] − 1, 1[, ∗). Similarly, we
will work on finite fields. Let K be a finite field. We suppose that in K, −1 is not
a square. When we can perform the computation (i.e. when ab 	= −1), we define:

a ∗ b = (a + b)(1 + ab)−1



112 J. Patarin and V. Nachef

We have the following properties:

Proposition 4. 1. ∀a ∈ K, a ∗ 0 = a.
2. ∀a ∈ K \ {−1}, a ∗ 1 = 1 and ∀a ∈ K \ {1}, a ∗ (−a) = 0.
3. ∀a, b, ab 	= −1, (−a) ∗ (−b) = −(a ∗ b).
4. ∀a, b, c, (a ∗ b) ∗ c = a ∗ (b ∗ c) when the computation is possible, i.e. ∗ is

associative.

Proof. Properties 1, 2 and 3 are straightforward. We will prove that ∗ is asso-
ciative.

(a ∗ b) ∗ c = [(a + b)(1 + ab)−1 + c][1 + (a + b)(1 + ab)−1c]−1

We multiply by (1 + ab)(1 + ab)−1. This gives:

(a ∗ b) ∗ c = [((a + b)(1 + ab)−1 + c)(1 + ab)][(1 + (a + b)(1 + ab)−1c)(1 + ab)]−1

(a ∗ b) ∗ c = [a + b + c + abc][(1 + ab + bc + ac]−1

Similarly

a ∗ (b ∗ c) = [a + (b + c)(1 + bc)−1][1 + a(b + c)(1 + bc)−1]−1

Here we multiply by (1 + bc)(1 + bc)−1 and we obtain

a ∗ (b ∗ c) = [a + b + c + abc][(1 + ab + bc + ac]−1

Remark 4. There is an analog with the addition law of the speed in simple
relativity: v1+v2

1+
v1v2

c

. From this, it is also possible to justify associativity from
physical considerations.

3.2 A Toy Example

In Table 2, we give the example of the construction of a group denoted (Q(K), ∗)
when K = Z/19Z and ∗ is the law based on the tanh function. Here −1 is
not a square since 19 ≡ 3 (mod 4). We already know that 1 and 18 are not
elements of Q(K). When we do the computations, we obtain that for Q(K) =
{0, 2, 3, 4, 7, 12, 15, 16, 17}. We also have that Q(K) = 〈3〉.

3.3 Computing Log with ∗ (Analog of tanh)

We will now study the power for ∗ of an element of K. We will use the following
notation: ak

∗ = a ∗ a ∗ . . . ∗ a︸ ︷︷ ︸
k times

.

Proposition 5. Suppose that we can perform the computations (i.e. we never
obtain the value −1 during the computations). ∀a ∈ K, ∀k, ak

∗ = skt
−1
k with

sk = (1 + a)k − (1 − a)k and tk = (1 + a)k + (1 − a)k. Then sk + tk = 2(1 + a)k.
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Table 2. (Q(Z/19Z), ∗)

∗ 0 2 3 4 7 12 15 16 17

0 0 2 3 4 7 12 15 16 17

2 2 16 17 7 12 15 3 4 0

3 3 17 12 2 16 4 7 0 15

4 4 7 2 15 3 17 0 12 16

7 7 12 16 3 17 0 2 15 4

12 12 15 4 17 0 2 16 3 7

15 15 3 7 0 2 16 4 17 12

16 16 4 0 12 15 3 17 7 2

17 17 0 15 16 4 7 12 2 3

Proof. We have a1
∗ = a ∗ 0. Then a2

∗ = a ∗ a = 2a(1 + a2)−1. Since s2 = 2a
and t2 = 2(1 + a2), we have a2

∗ = s1t
−1
2 . Suppose that ak−1

∗ = sk−1t
−1
k−1. Then

ak
∗ = a ∗ ak−1

∗ = (a + sk−1s
−1
k−1)(1 + ask−1sk−1)−1. We multiply this expression

by tk−1t
−1
k−1. We obtain that ak

∗ = sks
−1
k with sk = atk−1 + sk−1 and tk =

tk−1 + ask−1. Thus we can write:
[

sk
tk

]
=

[
1 a
a 1

] [
sk−1

tk−1

]

This gives: [
sk
tk

]
= Ak−1

[
s1
t1

]

with A =
[

1 a
a 1

]
. By diagonalizing the matrix A, we obtain that:

ak
∗ = skt

−1
k with sk = (1 + a)k − (1 − a)k and tk = (1 + a)k + (1 − a)k

Then we get uk + vk = (1 + a)k. This can also be proved by induction.

Corollary 4. If ak
∗ exists, then (−a)k∗ = −ak

∗.

Corollary 5. Let a ∈ K.

1. If there exists k(a) ∈ N
∗ such that ∀k < k(a), sk 	= 0, tk 	= 0 and sk(a) =

0, tk(a) 	= 0, then (〈a〉, ∗) is a group.
2. If there exists k′(a) ∈ N

∗ such that ∀k < k′(a), sk 	= 0, tk 	= 0 and tk′(a) = 0,
then a does not generate a group.

We recall the results obtained in Proposition 5: ∀a ∈ K, ∀k, ak
∗ = skt

−1
k with

sk = (1 + a)k − (1 − a)k and tk = (1 + a)k + (1 − a)k. Then sk + tk = 2(1 + a)k.
Let α = ak

∗. It is possible to compute k from α and a like this:

α = ak
∗ = skt

−1
k =

(1 + a)k − (1 − a)k

(1 + a)k + (1 − a)k
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α =
1 −

(
1−a
1+a

)k

1 +
(

1−a
1+a

)k

Then we can find
(

1−a
1+a

)k

and finally we obtain k by using the discrete log. This
shows that computing logarithms for the ∗ law is essentially the same as for the
classical case. Therefore the cryptographic scheme based on this law ∗ (analog
to tanh) is again essentially similar to the classical cryptographic scheme based
on the discrete logarithm.

4 Widen the Range

As pointed out by Jérôme Plût to us, it seems that there is a little hope to
find “magic algebraic curves” that are more efficient than elliptic curves. In
particular, our curve b2 = a2 + 1 had little chance to be useful due to general
results on the classification of algebraic groups. For any abelian algebraic group,
there exist unique decompositions:

– 0 → G0 → G → π0(G) → 0 where G0 is connexe and π(G) is étale.
– 0 → L → G0 → A → 0 where A is an abelian variety and L is a linearizable

group.
– 0 → U → L → T → 0 where T is a torus, and U is unipotent.

The first and the third decompositions are rather simple. The second one is more
complicated and can be found in [1].

Therefore the only possibility to get more efficient systems is to use curves of
genus larger than 1 and varieties related to their Jacobians, which are accessible
to effective computation. But because of security reasons it is very doubtful that
one can use curves of genus larger than 3 (key word: index-calculus). As said
already in Remark 2, Theta functions lead to the very efficient Kummer surfaces
for g = 2.

Part II: Commutative Properties on the Functions

5 Chebyshev Polynomials

To generalize the Diffie-Hellman Algorithm by using (f ◦ g)(a) = (g ◦ f)(a), we
want:

– f and g to be one way
– f and g to be easy to compute
– f ◦ g = g ◦ f , i.e. commutativity.
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The value a is typically between 80 and 2048 bits (as in Sect. 2). Ironically, here
(unlike in Part I) associativity is very easy, since ◦ is always associative, but
we want commutativity on f and g, and this is not easy to obtain. In part I,
we had a law ∗ on elements of G with about 160 bits, but here, we work with
functions f and g on G and we have more functions from G to G than elements
of G. Moreover ai

∗ = a ∗ a ∗ . . . ∗ a︸ ︷︷ ︸
i times

can be computed in O(ln i) with square and

multiply, while f i(a) = f [f . . . f(a))] would generally require O(i) computations
of f . An interesting idea is to use the Chebyshev polynomials (cf. [2,8,10–12,15]
for example). In [14], the structure of Chebyshev polynomials on Z/pZ is also
studied. However, as mentioned in some of these papers, and as we will see
below, public key schemes based on Chebyshev polynomials have often exactly
the same security than public key schemes based on monomials. We will present
here only a few properties.

Some Properties of Chebyshev Polynomials on R

The Chebyshev polynomials Tn can be defined as the polynomials such that:

cos nx = Tn(cos x) (1)

Since cos a + cos b = 2 cos(a+b
2 ) cos(a−b

2 ), we have: cos(n + 1)x + cos(n − 1)x =
2 cos x cos nx, and therefore we have:

Tn+1(X) = 2XTn(X) − Tn−1(X). (2)

For example, the first polynomials are: T0 = 1, T1 = X, T2 = 2X2 − 1,
T3 = 4X3 − 3X, T4 = 8X4 − 8X2 + 1. From 1, we can see that the Chebyshev
polynomials commute: (Tn(Tm(X)) = Tm(Tn(X)) since cos(nm)x = cos(mn)x.
Therefore, we can design analog of the Diffie-Hellman or RSA schemes by using
Chebyshev polynomials instead of the monomial transformation X �→ Xa. More-
over, from 2, we can write:

[
Tn(X)

Tn+1(X)

]
=

[
0 1

−1 2X

] [
Tn−1(X)
Tn(X)

]

and this gives
[

Tn(X)
Tn+1(X)

]
=

[
0 1

−1 2X

]n [
1
X

]
(3)

Now from 3 we can obtain:

Tn(X) = U ◦ Xn ◦ U−1 (4)

with U(X) = X+ 1
X

2 if X 	= 0 and U−1(X) = X +
√

X2 − 1 if X > 1. Therefore,

if |X| ≥ 1, Tn(X) = 1
2

((
X − √

X2 − 1
)n

+
(
X +

√
X2 − 1

)n)
. Property (4) is

very nice since it shows that we can compute Tn(X) about as fast as a Xn (and
we use an analog of the square and multiply algorithm), so we can compute
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Tn(X) efficiently even when n has a few hundred or thousands of bits. However,
property 4 also shows that Tn(X) and Xn are essentially the same operation
since U and U−1 can be considered as public.

Properties of Chebyshev Polynomials on Other Spaces.
For cryptographic use, it has been suggested to use Chebyshev polynomials on
various spaces. In fact, it could be assumed that the analysis of Chebyshev
polynomials properties for cryptography would depend on the type of space
where the computations are done (finite fields with characteristic equal or not
equal to 2, computations modulo n with n prime or not prime, etc.). However,
most of the time, the above properties on real numbers suggest that public
key cryptography based on Chebyshev polynomials is essentially the same as
(classical) public key cryptography based on Xn (see [8,10–12,14,15] for details).

Remark 5. After our presentation at the NuTMiC conference (Warsaw 2017),
Gérard Maze pointed out to us that in his PhD Thesis (Chap. 6) [13], he had
also studied how to use Chebyshev polynomials for public key cryptography.
His conclusions were similar to ours, i.e. when the Chebyshev polynomials are
properly used, the resulting schemes are essentially the same as schemes based
on discrete log.

6 Commutativity with Other Polynomials

We first give the definition of a commutative family of polynomials.

Definition 4. Let (Qn) be a family of polynomials. We say that we have a family
of polynomials that commute if ∀n, ∀m, Qn ◦ Qm = Qm ◦ Qn.

If we look for infinite family of polynomials satisfying commutativity, the Block
and Thielman theorem [3] shows that we do not have many solutions. More
precisely:

Theorem 8 (Bloch and Thielman 1951). Let (Qn) be a polynomial of degree n.
If (Qn)n≥1 is a family of polynomials that commute, then there exists a polyno-
mial of degree 1, U , such that, either for all n, Qn = U ◦ Xn ◦ U−1 or for all n,
Qn = U ◦ Tn ◦ U−1, where Tn is the Chebyshev polynomial of degree n.

For cryptographic use, we may look for “sufficiently large” families of poly-
nomials that commute (instead of “infinite families”) but it seems difficult to
find new large families. Some suggestions are given in [13], but more possibilities
should exist and could be the subject of further work.

7 Conclusion

In this paper, we investigated several methods to construct algebraic generaliza-
tions of the Diffie-Hellman key exchange algorithm. However, after our analysis,
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it appears that the proposed schemes are essentially equivalent to the classi-
cal ones. Nevertheless, the study showed that there are interesting connections
between associativity, commutativity and the construction of such algorithms.
We also explained that there is little hope to find “magic algebraic curves” more
efficient than elliptic curves and we suggested to study “large” but not infinite
families of polynomials that commute for further analysis.

Acknowledgment. The authors want to thank Jérôme Plût, Gerhard Frey and
Gérard Maze for very useful comments and particularly Gerhard Frey for his help
to improve the presentation of this paper. We have met Gerhard Frey and Gérard
Maze at NuTMiC 2017 in Poland.
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Abstract. In this work we investigate the problem of private statisti-
cal analysis of time-series data in the distributed and semi-honest set-
ting. In particular, we study some properties of Private Stream Aggre-
gation (PSA), first introduced by Shi et al. 2011. This is a computa-
tionally secure protocol for the collection and aggregation of data in a
distributed network and has a very small communication cost. In the
non-adaptive query model, a secure PSA scheme can be built upon any
key-homomorphic weak pseudo-random function as shown by Valovich
2017, yielding security guarantees in the standard model which is in con-
trast to Shi et al. We show that every mechanism which preserves (ε, δ)-
differential privacy in effect preserves computational (ε, δ)-differential pri-
vacy when it is executed through a secure PSA scheme. Furthermore,
we introduce a novel perturbation mechanism based on the symmetric
Skellam distribution that is suited for preserving differential privacy in
the distributed setting, and find that its performances in terms of pri-
vacy and accuracy are comparable to those of previous solutions. On
the other hand, we leverage its specific properties to construct a compu-
tationally efficient prospective post-quantum protocol for differentially
private time-series data analysis in the distributed model. The security
of this protocol is based on the hardness of a new variant of the Deci-
sional Learning with Errors (DLWE) problem. In this variant the errors
are taken from the symmetric Skellam distribution. We show that this
new variant is hard based on the hardness of the standard Learning with
Errors (LWE) problem where the errors are taken from the discrete Gaus-
sian distribution. Thus, we provide a variant of the LWE problem that
is hard based on conjecturally hard lattice problems and uses a discrete
error distribution that is similar to the continuous Gaussian distribution
in that it is closed under convolution. A consequent feature of the con-
structed prospective post-quantum protocol is the use of the same noise
for security and for differential privacy.

1 Introduction

The framework of statistical disclosure control aims at providing strong pri-
vacy guarantees for the records stored in a database while enabling accurate
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statistical analyses to be performed. In recent years, differential privacy has
become one of the most important paradigms for privacy-preserving statistical
analyses. According to Nissim, a pioneer in this area of research, “there is a
great promise for the marriage of Big Data and Differential Privacy”.1 It com-
bines mathematically rigorous privacy guarantees with highly accurate analyses
over larger data sets. Generally, the notion of differential privacy is considered
in the centralised setting where we assume the existence of a trusted curator (see
Blum et al. [6], Dwork [11], Dwork et al. [13], McSherry and Talwar [19]) who
collects data in the clear, aggregates and perturbs it properly (e.g. by adding
Laplace noise) and publishes it. In this way, the output statistics are not signif-
icantly influenced by the presence (resp. absence) of a particular record in the
database.

In this work we study how to preserve differential privacy when we cannot
rely on a trusted curator. In this so-called distributed setting, the users have
to send their own data to an untrusted aggregator. Preserving differential pri-
vacy and achieving high accuracy in the distributed setting is of course harder
than in the centralised setting, since the users have to execute a perturbation
mechanism on their own. In order to achieve the same accuracy as provided by
well-known techniques in the centralised setting, Shi et al. [26] introduce the
Private Stream Aggregation (PSA) scheme, a cryptographic protocol enabling
each user to securely send encrypted time-series data to an aggregator. The
aggregator is then able to decrypt the aggregate of all data in each time-step,
but cannot retrieve any further information about the individual data. Using
such a protocol, the task of perturbation can be split among the users, such that
computational differential privacy, a notion first introduced by Mironov et al.
[22], is preserved and high accuracy is guaranteed. For a survey of applications,
we refer to [26].

Related Work. In [26], a PSA scheme for sum queries was provided that
satisfies strong security guarantees under the Decisional Diffie-Hellman (DDH)
assumption. However, this instantiation has some limitations. First, the security
only holds in the random oracle model; second, its decryption algorithm requires
the solution of the discrete logarithm in a given range, which can be very time-
consuming if the number of users and the plaintext space are large. Third, a
connection between the security of a PSA scheme and computational differential
privacy is not explicitly shown. In a subsequent work by Chan et al. [8], this
connection is still not completely established.

By lowering the requirements of Aggregator Obliviousness introduced in [26]
by abrogating the attacker’s possibility to adaptively compromise users during
the execution of a PSA scheme with time-series data, Valovich [28] shows that
a PSA scheme achieving this lower security level can be built upon any key-
homomorphic weak pseudo-random function. Since weak pseudo-randomness can
be achieved in the standard model, this condition also enables secure schemes
in the standard model. Furthermore, an instantiation of this result based on
the DDH assumption was given in [28], where decryption is always efficient.
1 http://bigdata.csail.mit.edu/Big Data Privacy.

http://bigdata.csail.mit.edu/Big_Data_Privacy
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Joye and Libert [16] provide a protocol with the same security guarantees in
the random oracle model as in [26]. The security of their scheme relies on the
Decisional Composite Residuosity assumption (rather than DDH as in [26]) and
as a result, in the security reduction they can remove a factor which is cubic in the
number of users. However, their scheme involves a semi-trusted party for setting
some public parameters. In this work, we provide an instantiation of the generic
PSA construction from [28] which relies on the Decisional Learning with Errors
assumption. While in this generic security reduction a linear factor in the number
of users cannot be avoided, our construction does not involve any trusted party
and has security guarantees in the standard model. In a subsequent work [5], a
generalisation of the scheme from [16] is obtained based on smooth projective
hash functions (see [9]). This generalisation allows the construction of secure
protocols based on various hardness assumptions. However, the dependencies on
a semi-trusted party (for most of the instantiations) and on a random oracle
remain.

Contributions. In this regard, our results are as follows. First, reduction-based
security proofs for cryptographic schemes usually require an attacker in the
corresponding security game to send two different plaintexts (or plaintext col-
lections) to a challenger. The adversary receives then back a ciphertext which is
the encryption of one of these collections and has to guess which one it is. In any
security definition for a PSA scheme, these collections must satisfy a particular
requirement, i.e. they must lead to the same aggregate, since the attacker has the
capability to decrypt the aggregate (different aggregates would make the adver-
sary’s task trivial). In general, however, this requirement cannot be satisfied in
the context of differential privacy. Introducing a novel kind of security reduction
which deploys a biased coin flip, we show that, whenever a randomised perturba-
tion procedure is involved in a PSA scheme, the requirement of having collections
with equal aggregate can be abolished. Using this property, we are able to show
that if a mechanism preserves differential privacy, then it preserves computa-
tional differential privacy when it is composed with a secure PSA scheme. This
provides the missing step in the analysis from [26].

Second, we introduce the Skellam mechanism that uses the symmetric Skel-
lam distribution and compare it with the geometric mechanism by Ghosh et al.
[14] and the binomial mechanism by Dwork et al. [12]. All three mechanisms
preserve differential privacy and make use of discrete probability distributions.
Therefore, they are well-suited for an execution through a PSA scheme. For
generating the right amount of noise among all users, these mechanisms apply
two different approaches. While in the geometric mechanism, with high prob-
ability, only one user generates the noise necessary for differential privacy, the
binomial and Skellam mechanisms allow all users to generate noise of small
variance, that sums up to the required value for privacy by the reproducibil-
ity property of the binomial and the Skellam distributions. We show that the
theoretical error bound of the Skellam mechanism is comparable to the other
two. At the same time, we provide experimental results showing that the geo-
metric and Skellam mechanisms have a comparable accuracy in practice, while
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beating the one of the binomial mechanism. The advantage of the Skellam mech-
anism is that, based on the previously mentioned results, it can be used it to
construct a secure, prospective post-quantum PSA scheme for sum queries that
automatically preserves computational differential privacy. The corresponding
weak pseudo-random function for this protocol is constructed from the Learning
with Errors (LWE) problem. Regev [25] provided a worst-case search-to-decision
reduction and Micciancio and Mol [21] provided a sample preserving search-to-
decision reduction for certain cases in the average case. Moreover, in [25] the
average-case-hardness of the search-version of the LWE problem was established
by the construction of an efficient quantum algorithm for worst-case lattice prob-
lems using an efficient solver of the LWE problem if the error distribution χ is a
discrete Gaussian distribution. Accordingly, most cryptographic applications of
the LWE problem used a discrete Gaussian error distribution for their construc-
tions. We will take advantage of the reproducibility of the Skellam distribution
for our DLWE-based PSA scheme by using errors following the symmetric Skel-
lam distribution rather than the discrete Gaussian distribution, which is not
reproducible. The result is that the sum of the errors generated by every user to
secure their data is also a Skellam variable and therefore sufficient for preserving
differential privacy. Hence, we show the average-case-hardness of the LWE prob-
lem with errors drawn from the Skellam distribution. Our proof is inspired by
techniques used in [10], where a variant of the LWE problem with uniform errors
on a small support is shown to be hard.2 Consequently, we obtain a lattice-based
secure PSA scheme for analysing sum queries under differential privacy where
the noise is used both for security and for preserving differential privacy at once.

Other Related Work. A series of works deals with a distributed generation of
noise for preserving differential privacy. Dwork et al. [12] consider the Gaussian
distribution for splitting the task of noise generation among all users. In [2],
the generation of Laplace noise is performed in a distributed manner by gener-
ating the difference of two Gamma distributed random variables as a share of
a Laplace distributed random variable. In [24], each user generates a share of
Laplace noise by generating a vector of four Gaussian random variables. How-
ever, the aforementioned mechanisms generate noise drawn according to contin-
uous distributions, but for the use in a PSA scheme discrete noise is required.
Therefore, we consider proper discrete distributions.

2 Preliminaries

Notation 1. Let q > 2 be a prime. We handle elements from Zq as their central
residue-class representation. This means that x′ ∈ Zq is identified with x ≡
x′ mod q for x ∈ {−(q − 1)/2, . . . , (q − 1)/2} thereby lifting x′ from Zq to Z.

2 Although the uniform distribution is reproducible as well, the result from [10] does
not provide a proper error distribution for our DLWE-based PSA scheme, since a dif-
ferentially private mechanism with uniform noise provides no accuracy to statistical
data analyses.
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2.1 Problem Statement

In this work, we consider a distributed and semi-honest setting where n users are
asked to participate in some statistical analyses but do not trust the data ana-
lyst/aggregator, who is honest but curious. Therefore, the users cannot provide
their own data in the clear. Moreover, they communicate solely and indepen-
dently with the untrusted aggregator, who wants to analyse the users data by
means of time-series queries and aims at obtaining answers as accurate as pos-
sible. For a sequence of time-steps t ∈ T , where T is a discrete time period,
the analyst sends queries which are answered by the users in a distributed
manner.

We also assume that some users may act in order to compromise the privacy
of the other participants. More precisely, we assume the existence of a publicly
known constant γ ∈ (0, 1] which is the a priori estimate of the lower bound on
the fraction of uncompromised users who honestly follow the protocol and want
to release useful information about their data (with respect to a particular query
f), while preserving (ε, δ)-differential privacy. The remaining (1− γ)-fraction of
users is compromised and aims at violating the privacy of uncompromised users,
but honestly follows the protocol. For that purpose, these users form a coalition
with the analyst and send her auxiliary information, e.g. their own secrets.

For computing the answers to the aggregator’s queries, a special crypto-
graphic protocol, called Private Stream Aggregation (PSA) scheme, is used by
all users. In contrast to common secure multi-party techniques (see [15,18]), this
protocol requires each user to send only one message per query to the analyst. In
connection with a differentially private mechanism, a PSA scheme assures that
the analyst is only able to learn a noisy aggregate of users’ data (as close as
possible to the real answer) and nothing else. Specifically, for preserving (ε, δ)-
differential privacy, it would be sufficient to add a single copy of (properly dis-
tributed) noise Y to the aggregated statistics. Since we cannot add such noise
once the aggregate has been computed, the users have to generate and add noise
to their original data in such a way that the sum of the errors has the same dis-
tribution as Y . For this purpose, we see two different approaches. Firstly, with
small probability a user adds noise sufficient to preserve the privacy of the entire
statistics. This probability is calibrated in such a way only one of the n users is
actually expected to add noise at all. Shi et al. [26] investigate this method using
the geometric mechanism from [14]. Secondly, each user generates noise of small
variance, such that the sum of all noisy terms suffices to preserve differential
privacy of the aggregate. The binomial mechanism from [12] and the Skellam
mechanism from this work serve these purposes.3 Since the protocol used for the
data transmission is computationally secure, the entire mechanism preserves a
computational version of differential privacy as described in Sect. 4.

3 Due to the use of a cryptographic protocol, the plaintexts have to be discrete. This
is the reason why we use discrete distributions for generating noise.
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2.2 Definitions

Differential Privacy. We will always assume that a differentially private mech-
anism is applied in the distributed setting. We recall that a randomised mech-
anism preserves differential privacy if its application on two adjacent databases
(databases differing in one entry only) leads to close distributions of the outputs.

Definition 1 (Differential Privacy [13]). Let R be a (possibly infinite) set
and let n ∈ N. A randomised mechanism A : Dn → R preserves (ε, δ)-differential
privacy (short: DP), if for all adjacent databases D0,D1 ∈ Dn and all measurable
R ⊆ R: Pr[A(D0) ∈ R] ≤ eε · Pr[A(D1) ∈ R] + δ.

The probability space is defined over the randomness of A.

Thus, the presence or absence of a single user does not affect the probability
of any outcome by too much. The aim of the analyst is to obtain information from
the database. Therefore it processes queries to the database which are answered
while preserving DP. In the literature, there are well-established mechanisms
for preserving DP (see [13,19]).4 In order to privately evaluate a query, these
mechanisms draw error terms according to some distribution depending on the
query’s global sensitivity. For any D ∈ Dn, the global sensitivity S(f) of a query
f : Dn → R is defined as the maximum change (in terms of the L1-norm)
of f(D), which can be produced by a change of one entry (i.e. the absence of
one user) in D. In particular, we will consider sum-queries fD : Dn → Z or
fD : Dn → [−m′,m′] for some integer m′ defined as fD(D) :=

∑n
i=1 di, for

D = (d1, . . . , dn) ∈ Dn and D ⊆ Z. If the entries in D are bounded by m, then
S(fD) ≤ m. For measuring how well the output of a mechanism A estimates the
real data with respect to a particular query f (mapping into a metric space), we
use the notion of (α, β)-accuracy, defined as Pr[|A(D) − f(D)| ≤ α] ≥ 1 − β.

The use of a cryptographic protocol for transferring data provides a compu-
tational security level. If such a protocol is applied to preserve DP, this implies
that only a computational level of DP can be provided. The definition of com-
putational differential privacy was first provided in [22] and extended in [8].

Definition 2 (Computational Differential Privacy [8]). Let κ be a security
parameter and n ∈ N with n = poly(κ). A randomised mechanism A : Dn → R
preserves computational (ε, δ)-differential privacy (short: CDP), if for all adja-
cent databases D0,D1 ∈ Dn and all probabilistic polynomial-time distinguishers
DCDP: Pr[DCDP(1κ,A(D0)) = 1] ≤ eε · Pr[DCDP(1κ,A(D1)) = 1] + δ + neg(κ),
where neg(κ) is a negligible function in κ. The probability space is defined over
the randomness of A and DCDP.

Private Stream Aggregation. We define the Private Stream Aggregation
scheme and give a security definition for it. Thereby, we mostly follow the con-
cepts introduced in [26], though we deviate in a few points. A PSA scheme is a

4 These mechanisms work in the centralised setting, where a trusted curator sees the
full database in the clear and perturbs it properly.
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protocol for safe distributed time-series data transfer which enables the receiver
(here: the untrusted analyst) to learn nothing else than the sums

∑n
i=1 xi,j for

j = 1, 2, . . ., where xi,j is the value of the ith participant in time-step j and n
is the number of participants (or users). Such a scheme needs a key exchange
protocol for all n users together with the analyst as a precomputation (e.g. using
multi-party techniques), and requires each user to send exactly one message in
each time-step j = 1, 2, . . ..

Definition 3 (Private Stream Aggregation [26]). Let κ be a security param-
eter, D a set and n = poly(κ), λ = poly(κ). A Private Stream Aggregation
(PSA) scheme Σ = (Setup,PSAEnc,PSADec) is defined by three ppt algorithms:

Setup: (pp, T, s0, s1, . . . , sn) ← Setup(1κ) with public parameters pp, T =
{t1, . . . , tλ} and secret keys si for all i = 1, . . . , n.

PSAEnc: For tj ∈ T and all i = 1, . . . , n: ci,j ← PSAEncsi
(tj , xi,j) for xi,j ∈ D.

PSADec: Compute
∑n

i=1 x′
i,j = PSADecs0(tj , c1,j , . . . , cn,j) for tj ∈ T and

ciphers c1,j , . . . , cn,j. For all tj ∈ T and x1,j , . . . , xn,j ∈ D the following
holds:

PSADecs0(tj ,PSAEncs1(tj , x1,j), . . . ,PSAEncsn
(tj , xn,j)) =

n∑

i=1

xi,j .

The Setup-phase has to be carried out just once and for all, and can be
performed with a secure multi-party protocol among all users and the analyst.
In all other phases, no communication between the users is needed.

The system parameters pp are public and constant for all time-steps with the
implicit understanding that they are used in Σ. Every user encrypts her value
xi,j with her own secret key si and sends the ciphertext to the analyst. If the
analyst receives the ciphertexts of all users in a time-step tj , it computes the
aggregate with the decryption key s0. For a particular time-step, let the users’
values be of the form xi,j = di,j +ei,j , i = 1, . . . , n, where di,j ∈ D is the original
data of the user i and ei,j is her error term. It is reasonable to assume that
ei,j = 0 for the (1 − γ) · n compromised users, since this can only increase their
chances to infer some information about the uncompromised users. There is no
privacy-breach if only one user adds the entirely needed noise (first approach)
or if the uncompromised users generate noise of low variance (second approach),
since the single values xi,j are encrypted and the analyst cannot learn anything
about them, except for their aggregate.

Security. Since our model allows the analyst to compromise users, the aggrega-
tor can obtain auxiliary information about the data of the compromised users
or their secret keys. Even then a secure PSA scheme should release no more
information than the aggregate of the uncompromised users’ data.

We can assume that an adversary knows the secret keys of the entire compro-
mised coalition. If the protocol is secure against such an attacker, then it is also
secure against an attacker without the knowledge of every key from the coalition.
Thus, in our security definition we consider the most powerful adversary.
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Definition 4 (Non-adaptive Aggregator Obliviousness [28]). Let κ be
a security parameter. Let T be a ppt adversary for a PSA scheme Σ =
(Setup,PSAEnc,PSADec) and let D be a set. We define a security game between
a challenger and the adversary T .
Setup. The challenger runs the Setup algorithm on input security parameter

κ and returns public parameters pp, public encryption parameters T with
|T | = λ = poly(κ) and secret keys s0, s1, . . . , sn. It sends κ, pp, T, s0 to T . T
chooses U ⊆ [n] and sends it to the challenger which returns (si)i∈[n]\U .

Queries. T is allowed to query (i, tj , xi,j) with i ∈ U, tj ∈ T, xi,j ∈ D and the
challenger returns ci,j ← PSAEncsi

(tj , xi,j).
Challenge. T chooses tj∗ ∈ T such that no encryption query with tj∗ was

made. (If there is no such tj∗ then the challenger simply aborts.) T queries
two different tuples (x[0]

i,j∗)i∈U , (x[1]
i,j∗)i∈U with

∑
i∈U x

[0]
i,j∗ =

∑
i∈U x

[1]
i,j∗ . The

challenger flips a random bit b ←R {0, 1}. For all i ∈ U the challenger returns
ci,j∗ ← PSAEncsi

(tj∗ , x
[b]
i,j∗).

Queries. T is allowed to make the same type of queries as before restricted to
encryption queries with tj 	= tj∗ .

Guess. T outputs a guess about b.

The adversary’s probability to win the game (i.e. to guess b correctly) is
1/2 + ν(κ). A PSA scheme is non-adaptively aggregator oblivious or achieves
non-adaptive Aggregator Obliviousness (AO1), if there is no ppt adversary T
with advantage ν(κ) > neg(κ) in winning the game.

Encryption queries are made only for i ∈ U , since knowing the secret key
for all i ∈ [n]\U the adversary can encrypt a value autonomously. If encryption
queries in time-step t∗j were allowed, then no deterministic scheme would be
aggregator oblivious. The adversary T can determine the original data of all
i ∈ [n]\U for every time-step, since it knows (si)i∈[n]\U . Then T can compute
the aggregate of the uncompromised users’ data.

The security definition indicates that T cannot distinguish between the
encryptions of two different data collections (x[0]

i )i∈U , (x[1]
i )i∈U with the same

aggregate at time-step t∗. For proving that a secure PSA scheme in the sense of
Definition 4 can be used for computing differentially private statistics with small
error, we have to slightly modify the security game such that an adversary may
choose adjacent (and non-perturbed) databases, as it is required in the definition
of differential privacy. For details, see Sect. 4.2.

Weak PRF. In our security analysis, we make use of the following definition.

Definition 5 (Weak PRF [23]). Let κ be a security parameter. Let A,B,C be
sets with sizes parameterised by a complexity parameter κ. A family of functions
F = {Fa |Fa : B → C}a∈A is called a weak PRF family, if for all ppt algo-
rithms DO(·)

PRF with oracle access to O(·) (where O(·) ∈ {Fa(·), rand(·)}) on any
polynomial number of given uniformly chosen inputs, we have: |Pr[DFa(·)

PRF (κ) =
1] − Pr[Drand(·)

PRF (κ) = 1]| ≤ neg(κ), where a ← U(A) and rand ∈ {f | f : B → C}
is a random mapping from B to C.
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3 Main Result

In this work we prove the following result by showing the connection between
a key-homomorphic weak pseudo-random function and a differentially private
mechanism for sum queries.

Theorem 1. Let ε > 0, w < w′ ∈ Z, m,n ∈ N with max{|w|, |w′|} < m.
Let D = {w, . . . , w′} and fD be a sum query. If there exist groups G′ ⊆ G,
a key-homomorphic weak pseudo-random function family mapping into G′

and an efficiently computable and efficiently invertible homomorphism ϕ :
{−mn, . . . , mn} → G injective over {−mn, . . . , mn}, then there exists an effi-
cient mechanism for fD that preserves (ε, δ)-CDP for any 0 < δ < 1 with an
error bound of O(S(fD)/ε · log(1/δ)) and requires each user to send exactly one
message.

The proof of Theorem1 is provided in the next two sections. In Sect. 4 we
recall from [28] how to construct a general PSA scheme from a key-homomorphic
weak PRF. Subsequently, we show that a secure PSA scheme in composition
with a DP-mechanism preserves CDP. In Sect. 5, based on the DLWE problem
with errors drawn from a Skellam distribution, we provide an instantiation of a
key-homomorphic weak PRF. This yields a concrete efficient PSA scheme that
automatically embeds a DP-mechanism with accuracy as stated in Theorem 1.

4 From Key-Homomorphic Weak PRF to CDP

We give a condition for the existence of secure PSA schemes and then analyse
its connection to CDP.

4.1 From Key-Homomorphic Weak PRF to Secure PSA

Now we state the condition for the existence of secure PSA schemes for sum
queries in the sense of Definition 4.

Theorem 2 (Weak PRF gives secure PSA scheme [28]). Let κ be a
security parameter, and m,n ∈ N with log(m) = poly(κ), n = poly(κ). Let
(G, ·), (S, ∗) be finite abelian groups and G′ ⊆ G. For some finite set M , let
F = {Fs |Fs : M → G′}s∈S be a (possibly randomised) weak PRF family and
let ϕ : {−mn, . . . , mn} → G be a mapping. Then the following PSA scheme
Σ = (Setup,PSAEnc,PSADec) achieves AO1:

Setup: (pp, T, s0, s1, . . . , sn) ← Setup(1κ), where pp are parameters of G,G′, S,
M,F , ϕ. The keys are si ← U(S) for all i ∈ [n] with s0 = (˚n

i=1si)−1 and
T ⊂ M such that all tj ∈ T are chosen uniformly at random from M , j =
1, . . . , λ = poly(κ).

PSAEnc: Compute ci,j = Fsi
(tj) ·ϕ(xi,j) in G for xi,j ∈ D̂ = {−m, . . . , m} and

public parameter tj ∈ T .
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PSADec: Compute Vj = ϕ−1(Sj) (if possible) with Sj = Fs0(tj) · c1,j · . . . · cn,j.

If F contains only deterministic functions that are homomorphic over S, if ϕ
is homomorphic and injective over {−mn, . . . , mn} and if the ci,j are encryptions
of the xi,j, then Vj =

∑n
i=1 xi,j, i.e. then PSADec correctly decrypts

∑n
i=1 xi,j.

The reason for not including the correctness property in the main statement
is that in Sect. 5 we will provide an example of a secure PSA scheme based on
the DLWE problem that does not have a fully correct decryption algorithm, but
a noisy one. This noise is used for establishing the security of the protocol and
for preserving the differential privacy of the decryption output.

Hence, we need a key-homomorphic weak PRF and a mapping which homo-
morphically aggregates all users’ data. Since every data value is at most m, the
scheme correctly retrieves the aggregate, which is at most m · n. Importantly,
the product of all pseudo-random values Fs0(t),Fs1(t), . . . ,Fsn

(t) is the neutral
element in the group G for all t ∈ T . Since the values in T are uniformly dis-
tributed in M , it is enough to require that F is a weak PRF family. Thus, the
statement of Theorem 2 does not require a random oracle.

4.2 From Secure PSA to CDP

In this section, we describe how to preserve CDP using a PSA scheme. Specifi-
cally, let A be a mechanism which, given some event Good, evaluates a statistical
query over a database D ∈ Dn preserving ε-DP. Furthermore, let Σ be a secure
PSA scheme. We show that A executed through Σ preserves ε-CDP given Good.
Assume Pr[¬Good] ≤ δ. Then it is immediate that A preserves (ε, δ)-CDP uncon-
ditionally if executed through Σ. Due to space limitations, we provide the proof
of these results in the full version.

Theorem 3 (DP and AO1 give CDP). Let A be a randomised mechanism that
gets as inpout some database D = (d1, . . . , dn) ∈ Dn, generates some database
D′ = D′(D) = (x1(d1), . . . , xn(dn)) = (x1, . . . , xn) and outputs S =

∑n
i=1 xi,

such that ε-DP for D is preserved. Let Σ be a PSA scheme that gets as input
values x1, . . . , xn, outputs ciphers c1 = c1(x1), . . . , cn = cn(xn) and S =

∑n
i=1 xi

and achieves AO1. Then the composition of Σ with A achieves AO1 and preserves
ε-CDP.

5 A Weak PRF for CDP Based on DLWE

We are ready to show how Theorem 2 contributes to build a prospective post-
quantum secure PSA scheme for differentially private data analyses with a rel-
atively high accuracy. Concretely, we can build a secure PSA scheme from the
DLWE assumption with errors sampled according to the symmetric Skellam
distribution. These errors automatically provide enough noise to preserve DP.
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5.1 The Skellam Mechanism for Differential Privacy

In this section we recall the geometric mechanism from [14] and the binomial
mechanism from [12] and introduce the Skellam mechanism. Since these mech-
anisms make use of a discrete probability distribution, they are well-suited for
an execution through a secure PSA scheme, thereby preserving CDP as shown
in the last section.

Definition 6 (Symmetric Skellam Distribution [27]). Let μ > 0. A discrete
random variable X is drawn according to the symmetric Skellam distribution
with parameter μ (short: X ← Sk(μ)) if its probability distribution function
ψμ : Z �→ R is ψμ(k) = e−μIk(μ), where Ik is the modified Bessel function of the
first kind (see pp. 374–378 in [1]).

A random variable X ← Sk(μ) can be generated as the difference of two
Poisson variables with mean μ, (see [27]) and is therefore efficiently samplable.
We use the fact that the sum of independent Skellam random variables is a
Skellam random variable.

Lemma 4 (Reproducibility of Sk(μ) [27]). Let X ← Sk(μ1) and Y ← Sk(μ2)
be i.i.d. Then Z := X + Y is distributed according to Sk(μ1 + μ2).

An induction step shows that the sum of n i.i.d. symmetric Skellam variables
with variance μ is a symmetric Skellam variable with variance nμ. The proofs of
the following Theorems 5 and 6 are based on standard concentration inequalities
and are provided in the full version.

Theorem 5 (Skellam Mechanism). Let ε > 0. For every database D ∈ Dn

and query f with sensitivity S(f) the randomised mechanism A(D) := f(D)+Y
preserves (ε, δ)-DP, if Y ← Sk(μ) with

μ =
log(1/δ) + ε

1 − cosh(ε/S(f)) + (ε/S(f)) · sinh(ε/S(f))
.

Remark 1. The bound on μ from Theorem 5 is smaller than 2 · (S(f)/ε)2 ·
(log(1/δ) + ε), thus for the standard deviation

√
μ of Y ← Sk(μ) it holds that

√
μ = O(S(f) ·

√
log(1/δ)/ε).

Executing this mechanism through a PSA scheme requires the use of the
known constant γ which denotes the a priori estimate of the lower bound on the
fraction of uncompromised users. For this case, we provide the accuracy bound
for the Skellam mechanism.

Theorem 6 (Accuracy of the Skellam Mechanism). Let ε > 0, 0 < δ < 1,
S(f) > 0 and let 0 < γ < 1 be the a priori estimate of the lower bound on the
fraction of uncompromised users in the network. By distributing the execution
of a perturbation mechanism as described above and using the parameters from
Theorem5, we obtain (α, β)-accuracy with

α =
S(f)

ε
·
(

1
γ
·
(

log
(

1
δ

)

+ ε

)

+ log
(

2
β

))

.
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Fig. 1. Empirical error of the geometric, Skellam and binomial mechanisms. The fixed
parameters are ε = 0.1, S(f) = 1, n = 1000. The plot on the left shows the mean of
the error in absolute value for variable δ and γ = 1 over 1000 repeats, the plot on the
right is for variable γ and δ = 10−5.

Theorem 6 shows that for constant δ, β, γ the error of the Skellam mechanism
is bounded by O(S(f)/ε). This is the same bound as for the geometric mecha-
nism (see Theorem 3 in [26]) and the binomial mechanism from [12]. Therefore,
the Skellam mechanism has the same accuracy as known solutions. In Fig. 1,
an empirical comparison between the mechanisms shows that the error of the
geometric and the Skellam mechanisms have a very similar behaviour for both
variables δ and γ, while the error of the binomial mechanism is roughly three
times larger. On the other hand, as pointed out in Sect. 2.1, the execution of
the geometric mechanism through a PSA scheme requires each user to gener-
ate full noise with a small probability. Complementary, the Skellam mechanism
allows all users to simply generate noise of small variance. This fact makes the
Skellam mechanism tremendously advantageous over the geometric mechanism,
since it permits to construct a PSA scheme based on the DLWE problem, which
automatically preserves CDP without any loss in the accuracy compared to state-
of-the-art solutions.

5.2 Hardness of the LWE Problem with Errors Following
the Symmetric Skellam Distribution

For constructing a secure PSA scheme, we consider the following λ-bounded
(Decisional) Learning with Errors problem and prove the subsequent result.

Definition 7 (λ-bounded LWE). Let κ be a security parameter, let λ =
λ(κ) = poly(κ) and q = q(κ) ≥ 2 be integers and let χ be a distribution on Zq. Let
x ← U(Zκ

q ), let A ← U(Zλ×κ
q ) and let e ← χλ. The goal of the LWE(κ, λ, q, χ)

problem is, given (A,Ax + e), to find x. The goal of the DLWE(κ, λ, q, χ) prob-
lem is, given (A,y), to decide whether y = Ax + e or y = u with u ← U(Zλ

q ).
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Theorem 7 (LWE with Skellam-distributed errors). Let κ be a security
parameter and let λ = λ(κ) = poly(κ) with λ > 3κ. Let q = q(κ) = poly(κ) be a
sufficiently large prime modulus and ρ > 0 such that ρq ≥ 4λ

√
κs. If there exists

a ppt algorithm that solves the LWE(κ, λ, q,Sk((ρq)2/4)) problem with more
than negligible probability, then there exists an efficient quantum-algorithm that
approximates the decisional shortest vector problem (GapSVP) and the shortest
independent vectors problem (SIVP) to within Õ(λκ/ρ) in the worst case.

Based on the same assumptions, the decisional problem DLWE(κ, λ, q,
Sk((ρq)2/4)) is also hard due to the search-to-decision reduction from [21].

Notions of LWE can be found in the full version. As mentioned in the intro-
duction, our proof of Theorem7 uses ideas from [10]. Since the Skellam distribu-
tion is both reproducible and well-suited for preserving differential privacy (see
Theorem 5), the error terms in our DLWE-based PSA scheme are used for two
tasks: establishing the cryptographic security of the scheme and the distributed
noise generation to preserve differential privacy.

As observed in [10], considering a λ-bounded LWE problem, where the adver-
sary is given λ(κ) = poly(κ) samples, poses no restrictions to most cryptographic
applications of the LWE problem, since they require only an a priori fixed num-
ber of samples. In our application to differential privacy, we identify λ with the
number of queries in a pre-defined time-series.

Entropy and Lossy Codes. We introduce the conditional min-entropy as starting
point for our technical tools. It can be seen as a measure of ambiguity.

Definition 8 (Conditional min-entropy [10]). Let χ be a probability distri-
bution with finite support Supp(χ) and let X, X̃ ← χ. Let f, g be two (possibly
randomised) maps on the domain Supp(χ). The (f, g)-conditional min-entropy
H∞(X | f(X) = g(X̃)) of X is defined as

H∞(X | f(X) = g(X̃)) = − log2

(

max
ξ∈Supp(χ)

{Pr[X = ξ | f(X) = g(X̃)]}
)

.

In the remainder of the work we consider f = fA,e and g = gA,e as maps to
the set of LWE instances, i.e. fA,e(y) = gA,e(y) = Ay + e. Now we provide the
notion of lossy codes, which is the main technical tool used in the proof of the
hardness result.

Definition 9 (Families of Lossy Codes [10]). Let κ be a security parameter,
let λ = λ(κ) = poly(κ) and let q = q(κ) ≥ 2 be a modulus, Δ = Δ(κ) and let
χ be a distribution on Zq. Let {Cκ,λ,q} be a family of distributions, where Cκ,λ,q

is defined on Z
λ×κ
q . The distribution family {Cκ,λ,q} is Δ-lossy for the error

distribution χ, if the following hold:

1. Cκ,λ,q is pseudo-random: It holds that Cκ,λ,q ≈c U(Zλ×κ
q ).

2. Cκ,λ,q is lossy: Let fB,b(y) = By + b. Let A ← Cκ,λ,q, x̃ ← U(Zκ
q ), ẽ ← χλ,

let x ← U(Zκ
q ) and e ← χλ. Then it holds that

Pr
(A,x̃,ẽ)

[H∞(x | fA,e(x) = fA,ẽ(x̃)) ≥ Δ] ≥ 1 − neg(κ).
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3. U(Zλ×κ
q ) is non-lossy: Let fB,b(y) = By + b. Let A ← U(Zλ×κ

q ), x̃ ←
U(Zκ

q ), ẽ ← χλ, let x ← U(Zκ
q ) and e ← χλ. Then it holds that

Pr
(A,x̃,ẽ)

[H∞(x | fA,e(x) = fA,ẽ(x̃)) = 0] ≥ 1 − neg(κ).

It is not hard to see that the map-conditional entropy suffices for showing
that the existence of a lossy code for the error distribution χ implies the hardness
of the LWE problem with error distribution χ.

Theorem 8 (Lossy code gives hard LWE [10]). Let κ be a security param-
eter, let λ = λ(κ) = poly(κ) and let q = q(κ) be a modulus. Let the distri-
bution χ on Zq be efficiently samplable. Let Δ = Δ(κ) = ω(log(κ)). Then the
LWE(κ, λ, q, χ) problem is hard, given that there exists a family {Cκ,λ,q} ⊆ Z

λ×κ
q

of Δ-lossy codes for the error distribution χ.

Thus, for our purposes it suffices to show the existence of a lossy code for
the error distribution Sk(μ). First, it is easy to show that U(Zλ×κ

q ) is always
non-lossy if the corresponding error distribution χ can be bounded, thus the
third property of Definition 9 is satisfied.

Lemma 9 (Non-lossiness of U(Zλ×κ
q ) [10]). Let κ be a security parameter

and χ a probability distribution on Z. Assume the support of χ can be bounded
by r = r(κ) = poly(κ). Moreover, let q > (4r + 1)1+τ for a constant τ > 0
and λ = λ(κ) > (1 + 2/τ)κ. Let fB,b(y) = By + b. Let A ← U(Zλ×κ

q ), x̃ ←
U(Zκ

q ), ẽ ← χλ, let x ← U(Zκ
q ) and e ← χλ. Then

Pr
(A,x̃,ẽ)

[HfA,e,fA,ẽ,x̃(x) = 0] ≥ 1 − neg(κ).

For the first and the second properties we construct a lossy code for the
Skellam distribution as follows. It is essentially the same construction that was
used for the uniform error distribution in [10].

Construction 1 (Lossy code for the symmetric Skellam distribution).
Let κ be an even security parameter, let λ = λ(κ) = poly(κ), ν > 0 and let q =
q(κ) be a prime modulus. The distribution Cκ,λ,q,ν defined on Z

λ×κ
q is specified

as follows. Choose A′ ← U(Zλ×κ/2
q ), T ← U(Zκ/2×κ/2

q ) and G ← D(ν)λ×κ/2.
Output A = (A′||(A′T + G)).

From the matrix version of the LWE problem and the search-to-decision
reduction from [21], it is straightforward to see that Cκ,λ,q,ν is pseudo-random
assuming the hardness of the LWE(κ, λ, q,D(ν)) problem.

It remains to show that Construction 1 satisfies Property 2 of Definition 9.
We first state four supporting claims. The proofs are provided in the full version.

Lemma 10. Let κ be an even integer, A = (A′||(A′T+G)) with A′ ∈ Z
λ×κ/2
q ,

T ∈ Z
κ/2×κ/2
q , G ∈ Z

λ×κ/2
q . For all x ∈ Z

κ/2
q there is a x′ ∈ Z

κ
q with Ax′ = Gx.
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Lemma 11. −C +
√

C2 + 1 ≥ exp(−C) for all C ≥ 0.

Lemma 12. Let κ be a security parameter, let s = s(κ) = ω(log(κ)) and let
ν = ν(κ) = poly(κ). Let λ = λ(κ) = poly(κ), 0 < ζ = ζ(κ) = poly(κ) be integers.
Let G ← D(ν)λ×ζ . Then for all z ∈ {0, 1}ζ the following hold:

1. Pr[||Gz||∞ > ζ
√

ν] ≤ neg(κ), where || · ||∞ is the supremum norm.
2. Pr[||Gz||22 > λζ2ν] ≤ neg(κ), where || · ||2 is the Euclidean norm.

Lemma 13. Let κ be an even security parameter and A ∈ Z
λ×κ
q . Let s =

s(κ) = ω(log(κ)), let μ = μ(κ), let q = poly(κ) be a sufficiently large prime
modulus and let λ = λ(κ) = poly(κ) be even. Let e, ẽ ← Sk(μ)λ and let
ξ̃ = arg maxξ∈Zκ

q
{Pre[e = Aξ + ẽ]}. Let u = Aξ̃ + ẽ. Then ||u||1 ≤ λs

√
μ

with probability 1 − neg(κ).

We now show the lossiness of Construction 1 for the error distribution Sk(μ).

Lemma 14 (Lossiness of Construction 1). Let κ be an even security param-
eter, s = s(κ) = ω(log(κ)), let ν = ν(κ), let q = poly(κ) be a sufficiently large
prime modulus, let λ = λ(κ) = poly(κ) and let Δ = Δ(κ) = ω(log(κ)). Let
μ = μ(κ) ≥ 4λ2νs2. Let fB,b(y) = By + b. Let A ← {Cκ,λ,q,ν} for {Cκ,λ,q,ν} as
in Construction 1, x̃ ← U(Zκ

q ), ẽ ← Sk(μ)λ, x ← U(Zκ
q ) and e ← Sk(μ)λ. Then

Pr(A,x̃,ẽ)[H∞(x | fA,e(x) = fA,ẽ(x̃)) ≥ Δ] ≥ 1 − neg(κ).

Proof. Let (Mz)j denote the jth entry of Mz for a matrix M and a vector z. Let
A = (A′||(A′T+G)) be distributed according to Cκ,λ,q,ν with A′ ← U(Zλ×κ/2

q ),
T ← U(Zκ/2×κ/2

q ) and G ← D(ν)λ×κ/2. Let ẽ = (ẽj)j=1,...,λ ← Sk(μ)λ and let
ξ̃ = arg maxξ∈Zκ

q
{Pre[e = Aξ + ẽ]}. Then we have the following:

Pr
(A,x̃,ẽ)

[H∞(x | fA,e(x) = fA,ẽ(x̃)) ≥ Δ]

= Pr
(A,x̃,ẽ)

[

max
ξ∈Zκ

q

{

Pr
(x,e)

[x = ξ |Ax + e = Ax̃ + ẽ]
}

≤ 2−Δ

]

= Pr
(A,x̃,ẽ)

[

max
ξ∈Zκ

q

{

Pr
(x,e)

[Ax + e = Ax̃ + ẽ |x = ξ]
Prx[x = ξ]

Pr(x,e)[Ax + e = Ax̃ + ẽ]

}

≤ 2−Δ
]

(1)

= Pr
(A,x̃,ẽ)

[

max
ξ∈Zκ

q

{
Pr
e

[e = A(x̃ − ξ) + ẽ]

· Prx[x = ξ]
∑

z∈Zκ
q

Pre[e = A(x̃ − z) + ẽ] · Prx[x = z]

}

≤ 2−Δ

]

= Pr
(A,x̃,ẽ)

[

max
ξ∈Zκ

q

{
Pr
e

[e = A(x̃ − ξ) + ẽ]

· 1
∑

z∈Zκ
q

Pre[e = A(x̃ − z) + ẽ]

}

≤ 2−Δ

]

(2)
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= Pr
(A,x̃,ẽ)

[

max
ξ∈Zκ

q

{

Pr
e

[e = Aξ + ẽ] · 1
∑

z∈Zκ
q

Pre[e = A(x̃ − z) + ẽ]

}

≤ 2−Δ

]

(3)

= Pr
(A,ẽ)

[

max
ξ∈Zκ

q

{
Pre[e = Aξ + ẽ]

∑
z∈Zκ

q
Pre[e = Az + ẽ]

}

≤ 2−Δ

]

(4)

= Pr
(A,ẽ)

[∑
z∈Zκ

q
Pre[e = Az + ẽ]

Pre[e = Aξ̃ + ẽ]
> 2Δ

]

(5)

= Pr
(A,ẽ)

⎡

⎣
∑

z∈Zκ
q

Pre[e = A(z + ξ̃) + ẽ]
Pre[e = Aξ̃ + ẽ]

> 2Δ

⎤

⎦ (6)

= Pr
(A,ẽ)

⎡

⎣
∑

z∈Zκ
q

λ∏

j=1

I(A(z+ξ̃))j+ẽj
(μ)

I(Aξ̃)j+ẽj
(μ)

> 2Δ

⎤

⎦

≥ Pr
(A,ẽ)

⎡

⎣
∑

z∈Zκ
q

λ∏

j=1

(A(z+ξ̃))j+ẽj∏

k=1+(Aξ̃)j+ẽj

−k +
√

k2 + μ2

μ
> 2Δ

⎤

⎦ (7)

≥ Pr
(A,ẽ)

⎡

⎢
⎢
⎣

∑

z∈Zκ
q

λ∏

j=1

⎛

⎜
⎝
−((A(z + ξ̃))j +ẽj)

μ
+

√
√
√
√

(
(A(z + ξ̃))j +ẽj

μ

)2

+1

⎞

⎟
⎠

(Az)j

>2Δ

⎤

⎥
⎥
⎦

(8)

≥ Pr
(A,ẽ)

⎡

⎣
∑

z∈Zκ
q

λ∏

j=1

exp

(

− (A(z + ξ̃))j + ẽj

μ

)(Az)j

> 2Δ

⎤

⎦ (9)

≥ Pr
(A,ẽ)

⎡

⎣
∑

z∈Zκ
q

exp

(

−||Az||22 + ||Az||∞ · ||Aξ̃ + ẽ||1
μ

)

> 2Δ

⎤

⎦ (10)

≥Pr
A

⎡

⎣
∑

z∈Zκ
q

exp
(

−||Az||22 + ||Az||∞ · λs
√

μ

μ

)

> 2Δ

⎤

⎦− neg(κ) (11)

≥Pr
G

⎡

⎢
⎣
∑

z∈Z
κ/2
q

exp
(

−||Gz||22 + ||Gz||∞ · λs
√

μ

μ

)

> 2Δ

⎤

⎥
⎦− neg(κ). (12)

Equation (1) is an application of the Bayes rule and Eq. (2) applies, since
x is sampled according to a uniform distribution. Equation (3) applies, since
maximising over ξ is the same as maximising over x̃ − ξ. Equation (4) is valid
since in the denominator we are summing over all possible z ∈ Z

κ
q . Equa-

tion (5) holds by definition of ξ̃. Equation (6) is an index shift by ξ̃. Inequa-
tion (7) follows from essential properties of the modified Bessel functions (itera-
tive application of Theorem 1.1 in [17]). Note that the modified Bessel function
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of the first kind is symmetric when considered over integer orders. Therefore,
from this point of the chain of (in)equations (i.e. from Inequation (7)), we can
assume that ẽj ≥ 0. Moreover, we can assume that (Az)j ≥ 0, since otherwise
I(Az)j+ẽj

(μ) > I−(Az)j+ẽj
(μ). I.e. if (Az)j < 0, then we implicitly change the

sign of the jth row in the original matrix A while considering the particular
z. In this way, we are always considering the worst-case scenario for every z.
Note that this step does not change the distribution of A, since {Cκ,λ,q,ν} is
symmetric. Inequation (8) holds, since fμ(k) = (−k +

√
k2 + μ2)/μ is a mono-

tonically decreasing function. Inequation (9) follows from Lemma 11 by setting
C = ((Az)j + ẽj)/μ. Inequation (10) holds because of the Hölder’s inequality.
Inequation (11) follows from Lemma 13. Inequation (12) follows from Lemma 10,
since A = (A′||(A′T + G)).

Now consider the set Z = {0, 1}κ/2. Then |Z| = 2κ/2. Since μ ≥ 4λ2νs2,
from Lemma 12, it follows that with probability 1 − neg(κ) over (G, ẽ) we have

∑

z∈Z
exp
(

−||Gz||22 + ||Gz||∞ · λs
√

μ||1
μ

)

≥ 2κ/2 · exp
(
−κ

4
− κ

16s2

)
,

where the norm is computed in the central residue-class representation of the
elements in Zq. Moreover we have 2κ/2 ·exp

(
−κ

4 − κ
16s2

)
> Cκ for some constant

C > 1. Therefore

Pr
(A,x̃,ẽ)

[H∞(x | fA,e(x) = fA,ẽ(x̃)) ≥ Δ] = 1 − neg(κ).

��

Putting the previous results together, we finally show the hardness of the LWE
problem with errors drawn from the symmetric Skellam distribution.

Proof (Proof of Theorem 7). By a result from [25], the LWE(κ, λ, q,D(ν)) prob-
lem is hard for ν = (αq)2/(2π) > 2κ/π, if there exists no efficient quantum
algorithm approximating the decisional shortest vector problem (GapSVP) and
the shortest independent vectors problem (SIVP) to within Õ(κ/α) in the worst
case. Let q = q(κ) = poly(κ), s = s(κ) = ω(log(κ)) and λ > 3κ. Then
for Δ = ω(log(κ)), Lemma 9, the pseudo-randomness of Construction 1 and
Lemma 14 provide that Construction 1 gives us a family of Δ-lossy codes for
the symmetric Skellam distribution with variance μ ≥ 4λ2νs2. As observed in
Theorem 8, this is sufficient for the hardness of the LWE(κ, λ, q,Sk(μ)) problem.
Setting ρ = 2αλs yields (ρq)2 > 16λ2κs2 and the claim follows. ��

By the search-to-decision reduction from [21] we obtain the hardness of the
DLWE problem as a corollary.

5.3 A CDP-Preserving PSA Scheme Based on DLWE

Security of the scheme. We can build an instantiation of Theorem2 (with-
out correct decryption) based on the DLWE(κ, λ, q, χ) problem as follows.
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Set S = M = Z
κ
q , G = Zq, choose si ← U(Zκ

q ) for all i = 1, . . . , n and
s0 = −

∑n
i=1 si, set Fsi

(t) = 〈t, si〉 + ei (which is a so-called randomised weak
pseudo-random function as described in [3,4]), where ei ← χ (for the uncompro-
mised users) and let ϕ be the identity function. Therefore

〈t, si〉 + ei + di = ci,t ← PSAEncsi
(t, di)

for data value di ∈ Zq, i = 1, . . . , n. The decryption function is defined by
n∑

i=1

di +

n∑

i=1

ei = 〈t, s0〉 +

n∑

i=1

Fsi (t) + di = 〈t, s0〉 +

n∑

i=1

ci,t = PSADecs0 (t, c1,t, . . . , cn,t).

Thus, the decryption is not perfectly correct anymore, but yields a noisy aggre-
gate. Let γ ∈ (0, 1] be the a priori known fraction of uncompromised users in
the network. Then we can construct the following DLWE-based PSA schemes.

Example 1 [28]. Let χ = D(ν/(γn)) with parameter ν/(γn) = 2κ/π, then the
DLWE(κ, λ, q, χ) problem is hard and the above scheme is secure.

Example 2. Let χ = Sk(μ/(γn)) with variance μ/(γn) = 4λ2κs2, where λ =
λ(κ) = poly(κ) with λ > 3κ. Then the DLWE(κ, λ, q, χ) problem is hard and the
above scheme is secure.

Remark 2. The original result from [25] states that the LWE problem is hard in
the set T = R/Z when the noise is distributed according to the continuous Gaus-
sian distribution (with a certain bound on the variance) modulo 1. Although the
continuous Gaussian distribution is reproducible as well, it does not seem to
fit well for a DLWE-based PSA scheme: For data processing reasons the val-
ues would have to be discretised. Therefore the resulting noise would follow a
distribution which is not reproducible anymore.5

Differential privacy and accuracy. The total noise
∑n

i=1 ei in Example 2 is
distributed according to Sk(μ) due to Lemma 4. Thus, in contrast to the total
noise in Example 1, the total noise in Example 2 preserves the distribution of
the single noise and can be used for preserving differential privacy of the correct
sum by splitting the task of perturbation among the users.

We identify |T | = λ, i.e. the number of queries is equal to the number of
equations in the instance LWE problem. Due to sequential composition,6 in
order to preserve (ε, δ)-DP for all λ queries together, the executed mechanism
must preserve (ε/λ, δ)-DP for each query. Therefore we must use Sk(λ2μ)-noise
in each query in order to preserve (ε, δ)-DP for all λ queries. By Theorem 6,
the error in each query within T is bounded by O(λS(f) · log(1/δ)/ε) which is
consistent with the effects of sequential composition.
5 In [7] it was shown that the sum of n discrete Gaussians each with parameter σ2 is

statistically close to a discrete Gaussian with parameter ν = nσ2 if σ >
√

nηε(Λ) for
some smoothing parameter ηε(Λ) of the underlying lattice Λ. However, as pointed
out in [28], this approach is less suitable for our purpose if the number of users is
large, since the aggregated decryption outcome would have a an error with a variance
of order ν = Ω(n2) (in Example 2 the variance is only of order O(λ2κn)).

6 See for instance Theorem 3 in [20].
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Combining Security, Privacy and Accuracy. Let S(f) = λw and for each
time-step tj ∈ T , let the data of each user come from {−w/2, . . . , w/2}. For
μ = 2 · (λw/ε)2 · (log(1/δ) + ε), it follows from the previous discussion and
Remark 1 that if every user adds Sk(μ/(γn))-noise to her data in every time-
step tj ∈ T , then this suffices to preserve (ε, δ)-DP for all λ sum-queries executed
during T .

Furthermore, if for a security parameter κ we have that μ/(γn) = 4λ2κs2,
then we obtain a secure protocol for sum-queries, where the security is based on
prospectively hard lattice problems. As we showed in Sect. 4.2, a combination of
these two results provides (ε, δ)-CDP for all λ sum-queries.

Now assume that for μ = 4γnλ2κs2, every uncorrupted user in the network
adds Sk(μ/(γn))-noise to her data for each of the λ queries in order to securely
encrypt it using the scheme from Example 2. Then there exist ε, δ such that the
decryption output preserves (ε, δ)-CDP for all λ queries. In order to calculate ε
and δ, we set 2 ·(λw/ε)2 ·(log(1/δ) + ε) = 4γnλ2κs2. Hence, for all λ queries, the

secure scheme preserves (ε, δ)-CDP with ε = ε(κ) ≈
√

w2·log(1/δ)
2γnκs2 , indicating that

ε = ε(κ) depends on 1/κ. Note that this is consistent with the original definition
of CDP from [22]. Thus, in addition to a privacy/accuracy trade-off there is also
a security/accuracy trade-off. More specifically, depending on κ and n we obtain
an upper bound on the (α, β)-accuracy for every single query executed during T :

α =
w

ε/λ
·
(

1
γ
·
(

log
(

1
δ

)

+ ε

)

+ log
(

2
β

))

= O(λs
√

κ · n + λw).

Finally, we are able to prove our main result, Theorem1, which follows from the
preceding analyses.

Proof (of Theorem 1). The claim follows from Theorem 3 together with
Theorem 2 (instantiated with the efficient constructions in Example 2) and from
Theorem 5 together with Theorem 6. ��
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2. Ács, G., Castelluccia, C.: I have a DREAM! (DiffeRentially privatE smArt Meter-
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Abstract. Lattice basis reduction algorithms have been used as a strong
tool for cryptanalysis. The most famous one is LLL, and its typical
improvements are BKZ and LLL with deep insertions (DeepLLL). In
LLL and DeepLLL, at every time to replace a lattice basis, we need
to recompute the Gram-Schmidt orthogonalization (GSO) for the new
basis. Compared with LLL, the form of the new GSO vectors is compli-
cated in DeepLLL, and no formula has been known. In this paper, we
give an explicit formula for GSO in DeepLLL, and also propose an effi-
cient method to update GSO in DeepLLL. As another work, we embed
DeepLLL into BKZ as a subroutine instead of LLL, which we call “Deep-
BKZ”, in order to find a more reduced basis. By using our DeepBKZ with
blocksizes up to β = 50, we have found a number of new solutions for
the Darmstadt SVP challenge in dimensions from 102 to 123.

Keywords: Lattice basis reduction · LLL with deep insertions
Shortest Vector Problem (SVP)

1 Introduction

Fix n > 0. Given n linearly independent column vectors b1, . . . ,bn ∈ R
n, the

set of integral linear combinations of the vectors bi is called a (full-rank) lattice
of dimension n. The n × n matrix B = [b1, . . . ,bn] is called a basis of the
lattice. Given an input basis, lattice basis reduction aims to find a new basis with
short and nearly orthogonal basis vectors. Lattice basis reduction algorithms
have various applications in both computational algebraic number theory and
cryptanalysis (see [6,18] for example). The most famous lattice basis reduction
is the LLL algorithm, proposed in 1982 by Lenstra, Lenstra and Lovász [17].
It computes a reduced basis with provable output quality in polynomial-time
in the dimension of an input basis. A typical improvement of LLL is the block
Korkine-Zolotarev (BKZ) reduction algorithm proposed by Schnorr and Euchner
c© Springer International Publishing AG, part of Springer Nature 2018
J. Kaczorowski et al. (Eds.): NuTMiC 2017, LNCS 10737, pp. 142–160, 2018.
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[22] in 1994 (the concept was first introduced by Schnorr [20]). It can be regarded
as a blockwise generalization of LLL. While BKZ with high blocksizes is much
stronger than LLL, it is hard to analyze the complexity of BKZ (see [14] for a
useful upper bound of the complexity of BKZ). Another improvement of LLL
was suggested also in [22], whose idea is called a deep insertion. While only
adjacent basis vectors are swapped in LLL, non-adjacent vectors can be swapped
in DeepLLL. The output quality of DeepLLL is often better than LLL in practice
(see [10] for their experimental results).

As is mentioned in textbooks [3, Sect. 5.1] and [6, Sect. 2.6.2], one obstacle of
DeepLLL is that it is very difficult to keep track of the GSO vectors after every
deep insertion. Let Sn denote the group of permutations among n elements.
Given an element σ ∈ Sn and a basis B = [b1, . . . ,bn] of a lattice L, let
σ(B) := [bσ(1), . . . ,bσ(n)] denote the reordered basis of L. For 1 ≤ i < k ≤ n, we
define σi,k ∈ Sn as σi,k(�) = � for � < i or � > k, σi,k(i) = k, and σi,k(�) = � − 1
for i + 1 ≤ � ≤ k. Then the reordered basis is given by

σi,k(B) = [b1, . . . ,bi−1,bk,bi, . . . ,bk−1,bk+1, . . . ,bn],

which is obtained by inserting bk between bi−1 and bi (i.e., a deep insertion). For
2 ≤ � ≤ n, let π� denote the orthogonal projection from R

n over the orthogonal
supplement of the R-vector space 〈b1, . . . ,b�−1〉R (we also set π1 = id). In the
following, we give an explicit formula for the new GSO vectors of σi,k(B):

Theorem 1. Let B = [b1, . . . ,bn] be a basis, and B∗ = [b∗
1, . . . ,b

∗
n] denote its

GSO with coefficients μi,j and Bj = ‖b∗
j‖2. For 1 ≤ i < k ≤ n, let C = σi,k(B)

and C∗ = [c∗
1, . . . , c

∗
n] denote its GSO. Then c∗

j = b∗
j for 1 ≤ j ≤ i − 1 and

k + 1 ≤ j ≤ n. We also have c∗
i = πi(bk) and

c∗
j =

D
(k)
j

D
(k)
j−1

b∗
j−1 − μk,j−1Bj−1

D
(k)
j−1

k∑

�=j

μk,�b∗
� (1)

for i + 1 ≤ j ≤ k, where set D
(k)
� = ‖π�(bk)‖2 =

∑k
j=� μ2

k,jBj for 1 ≤ � ≤ k.

With respect to the squared lengths Cj = ‖c∗
j‖2, we have Ci = D

(k)
i and

Cj =
D

(k)
j

D
(k)
j−1

Bj−1 (2)

for i + 1 ≤ j ≤ k.

As an application of Theorem 1, we propose a method to efficiently update
GSO in DeepLLL. Compared to the Gram-Schmidt algorithm [9, Algorithm 23],
our GSO update algorithm has much faster performance, and it makes DeepLLL
practical as well as LLL. In order to obtain a more reduced basis, we embed
DeepLLL into BKZ as a subroutine instead of LLL, which we call DeepBKZ.
Our experiments show that DeepBKZ can find a more reduced basis than the
original BKZ with reasonable running time. In practice, DeepBKZ with blocksize
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β = 40 achieves the Hermite factor 1.0095n on average for random lattices of
dimensions 100 ≤ n ≤ 115 in the sense of Goldstein and Mayer [12]. In fact,
DeepBKZ found new solutions (i.e., shorter lattice vectors) for the Darmstadt
SVP challenge [7] in dimensions n = 102–107, 109–113, 115, 117, 119 and 123.
For example, in dimension n = 123, we used DeepBKZ with full enumeration for
blocksizes up to β = 50; it took about three weeks to find a new solution with
our non-optimal implementation over a general-purpose PC.

Notation. The symbols Z, Q and R denote the ring of integers, the field of
rational numbers, and the field of real numbers, respectively. In this paper, we
represent all vectors in column format. For a = (a1, . . . , an)t ∈ R

n, let ‖a‖
denote its Euclidean norm. For a = (a1, . . . , an)t and b = (b1, . . . , bn)t ∈ R

n, let
〈a,b〉 denote the inner product

∑n
i=1 aibi.

2 Preliminaries

In this section, we review lattices, GSO, LLL and DeepLLL algorithms.

2.1 Lattices and GSO

For a positive integer n, linearly independent vectors b1, . . . ,bn ∈ Z
n define the

(full-rank) lattice (here we consider only integral lattices for simplicity)

L =

{
n∑

i=1

xibi : xi ∈ Z (1 ≤ ∀i ≤ n)

}

of dimension n with basis B = [b1, . . . ,bn] ∈ Z
n×n. Every lattice has infinitely

many bases; If B1 and B2 are two bases, then there exists a unimodular matrix
V ∈ GLn(Z) such that B1 = B2V. For a basis B of L, the volume of L is defined
as vol(L) = |det(B)| > 0, which is independent of the choice of the bases.

The GSO of B = [b1, . . . ,bn] is the orthogonal family B∗ = [b∗
1, . . . ,b

∗
n],

recursively defined by b1 := b1 and

b∗
i := bi −

i−1∑

j=1

μi,jb∗
j , μi,j :=

〈bi,b∗
j 〉

‖b∗
j‖2

for 1 ≤ j < i ≤ n. (3)

We remark that B should be regarded as an ordered set for its GSO. Let U =
(μi,j), where we set μi,i = 1 for all i and μi,j = 0 for all j > i. Then we have B =
B∗Ut and vol(L) =

∏n
i=1 ‖b∗

i ‖. For 1 ≤ � ≤ n, the orthogonal projection π� over
the orthogonal supplement of the R-vector space 〈b1, . . . ,b�−1〉R is computed as

π�(x) =
n∑

i=�

〈x,b∗
i 〉

‖b∗
i ‖2

b∗
i for any x ∈ R

n.



Explicit Formula for Gram-Schmidt Vectors in LLL 145

Algorithm 1. LLL [17]
Input: A basis B = [b1, . . . ,bn] of a lattice L, and a reduction parameter 1

4
< α < 1

Output: An α-LLL-reduced basis of L
1: Set k ← 2

2: while k ≤ n do
3: Size-reduce B = [b1, . . . ,bn] /* At each k, we recursively change bk ←

bk − 	μk,j
bj for 1 ≤ j ≤ k − 1 (see [9, Algorithm 24] for details) */
4: if Lovász condition (4) is not satisfied then
5: Swap bk with bk−1, and set k ← max(2, k − 1)
6: else
7: Set k ← k + 1
8: end if
9: end while

2.2 LLL and DeepLLL

Here we briefly review the LLL and DeepLLL algorithms. Let us recall the notion
of LLL-reduction [17] (see also [18, Chap. 2] for details).

Definition 1 (LLL). Let B = [b1, . . . ,bn] be a basis, and B∗ = [b∗
1, . . . ,b

∗
n]

denote its GSO with coefficients μi,j. Given 1
4 < α < 1, the basis B is called

α-LLL-reduced if the following two conditions are satisfied:

1. (Size-reduced) |μi,j | ≤ 1/2 for any 1 ≤ j < i ≤ n.
2. (Lovász condition) α‖b∗

k−1‖2 ≤ ‖πk−1(bk)‖2 for any 2 ≤ k ≤ n. Since
πk−1(bk) = b∗

k + μk,k−1b∗
k−1, this condition can be rewritten as

‖b∗
k‖2 ≥ (α − μ2

k,k−1)‖b∗
k−1‖2. (4)

In Algorithm 1, we present the LLL algorithm [17] (see also [18, Algorithm 6
in Chap. 2] or [9, Algorithm 24] for details). In LLL, only adjacent basis vectors
bk−1 and bk can be swapped. In DeepLLL [22], non-adjacent basis vectors can
be changed; Given a reduction parameter 1

4 < α < 1, a basis vector bk is inserted
between bi−1 and bi for 1 ≤ i < k ≤ n if the deep exchange condition

‖πi(bk)‖2 < α‖b∗
i ‖2

is satisfied. In this case, the new GSO vector at the i-th position is given by
πi(bk), which is strictly shorter than the old GSO vector b∗

i . In Algorithm 2,
we present the DeepLLL algorithm [22] (see also [3, Fig. 5.1] or [6, Algorithm
2.6.4]). The output basis of DeepLLL is α-DeepLLL-reduced, defined below:

Definition 2 (DeepLLL). Given 1
4 < α < 1, a basis B = [b1, . . . ,bn] is

called α-DeepLLL-reduced if the following two conditions are satisfied:

1. The basis B is size-reduced.
2. We have ‖πi(bk)‖2 ≥ α‖b∗

i ‖2 for any 1 ≤ i < k ≤ n.
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Algorithm 2. DeepLLL [22]
Input: A basis B = [b1, . . . ,bn] of a lattice L, and a reduction parameter 1

4
< α < 1

Output: An α-DeepLLL-reduced basis of L
1: Set k ← 2

2: while k ≤ n do
3: Size-reduce B = [b1, . . . ,bn] as well as in Algorithm 1
4: Set C ← ‖bk‖2 and i ← 1
5: while i < k do
6: if C ≥ α‖b∗

i ‖2 then
7: Compute C ← C − μ2

k,i‖b∗
i ‖2 and set i ← i + 1 /* C = ‖πi(bk)‖2 */

8: else
9: Set B ← σi,k(B) and update the GSO of B /* A deep insertion */

10: Set k ← max(i, 2) and go back to step 3
11: end if
12: end while
13: Set k ← k + 1
14: end while

3 Proof of Theorem 1

In this section, we shall prove Theorem 1. Throughout this section, we fix a
basis B = [b1, . . . ,bn], and its GSO vectors B∗ = [b∗

1, . . . ,b
∗
n] with coefficients

μi,j and Bj = ‖b∗
j‖2. We also fix 1 ≤ i < k ≤ n, and set C = σi,k(B). As in

Theorem 1, let C∗ = [c∗
1, . . . , c

∗
n] denote its GSO with Cj = ‖c∗

j‖2. In the next
subsection, we first recall the well-known explicit GSO formula in the LLL case.

3.1 Explicit GSO Formula in the LLL Case

If i = k − 1 (i.e., the LLL case), we have the well-known formula for the GSO of
C = σk−1,k(B); By [9, Lemma 17.4.3], we have c∗

j = b∗
j for j �= k − 1, k, and for

j = k − 1, k we have
⎧
⎨

⎩

c∗
k−1 = πk−1(bk) = b∗

k + μk,k−1b∗
k−1,

c∗
k =

Bk

Ck−1
b∗

k−1 − μk,k−1Bk−1

Ck−1
b∗

k.
(5)

Thanks to this formula, we can efficiently update GSO after every swap in LLL
(see [3, Fig. 4.1] or [6, Algorithm 2.6.3] for a procedure of LLL). On the other
hand, since such formula for DeepLLL is not known, the Gram-Schmidt algo-
rithm [9, Algorithm 23] is adopted to recompute GSO after every deep insertion
(see [3, Fig. 5.1] or [6, Algorithm 2.6.4] for a procedure of DeepLLL).

3.2 Proof of Formula (1)

Here we give a proof of formula (1) in Theorem 1. Throughout our proof, we
simply write D� for D

(k)
� . It follows from definition (3) that we have c∗

j = b∗
j for
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1 ≤ j ≤ i−1 and k+1 ≤ j ≤ n, and c∗
i = πi(bk). Fixing k, we shall prove (1) by

induction on index i from i = k − 1 to 1; For i = k − 1, formula (1) is consistent
with GSO formula (5) in the LLL case. Now we assume that formula (1) holds
for the case i+1. In other words, we assume that the GSO of σi+1,k(B) is given
by formula (1). Let G = σi+1,k(B) = [g1, . . . ,gn] denote the reordered basis,
that is, we have

{
gi+1 = bk, gj = bj−1 (i + 2 ≤ j ≤ k),

gj = bj (1 ≤ j ≤ i and k + 1 ≤ j ≤ n).

Let G∗ = [g∗
1, . . . ,g

∗
n] be its GSO. By the induction assumption, we have

⎧
⎪⎪⎨

⎪⎪⎩

g∗
j = b∗

j ( 1 ≤ j ≤ i and k + 1 ≤ j ≤ n), g∗
i+1 = πi+1(bk),

g∗
j =

Dj

Dj−1
b∗

j−1 − μk,j−1Bj−1

Dj−1

k∑

�=j

μk,�b∗
� ( i + 2 ≤ j ≤ k).

(6)

Now we set D′
i = ‖π′

i(gi+1)‖2, where let π′
i denote the orthogonal projection

over the orthogonal supplement of 〈g1, . . . ,gi−1〉R. Note that C = σi,k(B) =
σi,i+1(G). By applying formula (5) to σi,i+1(G), we have

⎧
⎪⎨

⎪⎩

c∗
i =π′

i(gi+1), c∗
i+1 =

Gi+1

D′
i

g∗
i − ηGi

D′
i

g∗
i+1

(
η =

〈gi+1,g∗
i 〉

Gi

)
,

c∗
j =g∗

j (1 ≤ j ≤ i − 1 and i + 2 ≤ j ≤ n),

where let Gj = ‖g∗
j ‖2 for 1 ≤ j ≤ n. Since c∗

j = g∗
j for i + 2 ≤ j ≤ k, formula

(1) holds for any i + 2 ≤ j ≤ k. Therefore it is sufficient to prove (1) only for
the case j = i + 1. Note Gi = Bi and Gi+1 = Di+1 by (6). We have

{
ηGi = 〈gi+1,g∗

i 〉 = 〈bk,b∗
i 〉 = μk,iBi,

D′
i = ‖π′

i(gi+1)‖2 = ‖g∗
i+1‖2 + η2‖g∗

i ‖2 = Di+1 + μ2
k,iBi = Di.

Since g∗
i = b∗

i and g∗
i+1 = πi+1(bk) by (6), we clearly have

c∗
i+1 =

Di+1

Di
b∗

i − μk,iBi

Di

k∑

�=i+1

μk,�b∗
� .

This completes the proof of formula (1) by induction. �

Remark 1. Given any vector v, an explicit GSO formula for

[b1, . . . ,bk−1,v,bk, . . . ,bn]

is shown in [25, Proposition 4.2]. Compared to the formula, Theorem 1 is specific
to the reordered basis C = σi,k(B). The above proof is quite different from [25]
and it is based on easy induction with GSO formula (5) in the LLL case.
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3.3 Proof of Formula (2)

For the squared lengths Cj , the case j = i is clear by definition. For i+1 ≤ j ≤ k,
from formula (1), we clearly have

Cj =
D2

j

D2
j−1

Bj−1 +
μ2

k,j−1B
2
j−1

D2
j−1

k∑

�=j

μ2
k,�B�

=
Bj−1

D2
j−1

(
D2

j + μ2
k,j−1Bj−1Dj

)
=

Bj−1Dj

Dj−1

since Dj + μ2
k,j−1Bj−1 = Dj−1 by definition. This completes the proof. �

Remark 2. The potential of a basis B = [b1, . . . ,bn] is defined as

Pot(B) :=
n∏

i=1

vol(Li)2 =
n∏

i=1

‖b∗
i ‖2(n−i+1),

where Li denotes the lattice spanned by [b1, . . . ,bi] for 1 ≤ i ≤ n. It is well
known that the potential plays an important role in showing that LLL is a
polynomial-time algorithm (see [3, Sect. 4.3] for details). For the reordered basis
C = σi,k(B), Fontein et al. [8, Lemma 1] proved the relation

Pot(C) = Pot(B)
k−1∏

j=i

‖πj(bk)‖2
‖b∗

j‖2
. (7)

With this relation, Fontein et al. proposed polynomial-time variants of DeepLLL.
Fixing k, Fontein et al. proved Eq. (7) by induction on i from k − 1 to 1.

In contrast, with formula (2) in Theorem 1, we can directly obtain Eq. (7); We
have

Pot(C)
Pot(B)

=
Dn−i+1

i × ∏k
j=i+1

(
Dj

Dj−1
Bj−1

)n−j+1

∏k
j=i Bn−j+1

j

=
Dn−i+1

i ×
(

Di+1
Di

)n−i (
Di+2
Di+1

)n−i−1

· · ·
(

Dk

Dk−1

)n−k+1

Bi · · · Bk−1 · Bn−k+1
k

=
Di · · · Dk−1 · Dn−k+1

k

Bi · · · Bk−1 · Bn−k+1
k

=
Di · · · Dk−1

Bi · · · Bk−1

since Dk = Bk by definition. �

4 Efficient GSO Update in DeepLLL

Let B = [b1, . . . ,bn] be a basis, and B∗ = [b1, . . . ,b∗
n] denote its GSO with

coefficients μi,j and Bj = ‖b∗
j‖2. In this section, we consider how to efficiently
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update the GSO of the reordered basis C = σi,k(B) in step 9 of Algorithm 2 for
fixed 1 ≤ i < k ≤ n. Let C∗ = [c∗

1, . . . , c
∗
n] denote the GSO of C with coefficients

ξ�,j :=
〈c�, c∗

j 〉
‖c∗

j‖2
for 1 ≤ j < � ≤ n.

The GSO vectors c∗
j and their squared lengths Cj = ‖c∗

j‖2 are computable by
Theorem 1. We can also compute the GSO coefficients ξ�,j directly as follows:

Proposition 1. The GSO coefficients ξ�,j are as follows:

(A) For i + 1 ≤ j ≤ k, we have

ξ�,j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μ�−1,j−1 − μk,j−1

D
(k)
j

�−1∑

m=j

μ�−1,mμk,mBm (j + 1 ≤ � ≤ k),

μ�,j−1 − μk,j−1

D
(k)
j

k∑

m=j

μ�,mμk,mBm (k + 1 ≤ � ≤ n).

(B) For j = i, we have

ξ�,i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

D
(k)
i

�−1∑

m=i

μ�−1,mμk,mBm (i + 1 ≤ � ≤ k),

1

D
(k)
i

k∑

m=i

μ�,mμk,mBm (k + 1 ≤ � ≤ n).

(C) For 1 ≤ j ≤ i − 1, we have ξ�,j = μ�−1,j for i + 1 ≤ � ≤ k and ξi,j = μk,j.
(D) For the other indices 1 ≤ j < � ≤ n, we have ξ�,j = μ�,j.

Proof. It easily follows from Theorem 1. �

4.1 Efficient GSO Update Algorithm

As well as in LLL, it is sufficient to update the GSO coefficients ξ�,j and the
squared lengths Cj in DeepLLL (namely, the update of the GSO vectors c∗

j is
unnecessary). Moreover, the update of the GSO information is dominant (since
we do not use naive size reduction [18, Algorithm 3 in Chap. 2] but partial size
reduction [9, Algorithm 24] at each iteration as described in step 3 of Algo-
rithm 1). In Algorithm 4 (in Appendix A), we give an algorithm to efficiently
update the GSO information, which can be applied as a sub-function in DeepLLL
(Algorithm 2).

Here we discuss the complexity of our GSO update algorithm (Algorithm 4)
for the update of (μ�,j) and Bj of the reordered basis B ← σi,k(B); Set
X = max1≤j≤k ‖bj‖ for an input basis B = [b1, . . . ,bn]. We note that steps
10 and 13 are dominant in Algorithm 4. In accordance with the proof of
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[9, Theorem 17.3.4], the computation of μ�,jPj , μ�−1,jPj and TS� in steps 10
and 13 requires O

(
k2 log2 X

)
bit operations when we use exact Q arithmetic.

Since there are at most O (k(n − 1)) = O (kn) operations to perform steps 10
and 13, the complexity of Algorithm 4 is O

(
k3n log2 X

)
. On the other hand, the

complexity of the Gram-Schmidt algorithm for updating μ�,j with 1 ≤ j < � ≤ k
is O

(
k4n log2 X

)
[9, Theorem 17.3.4] when we use exact Q arithmetic. It also

requires O
(
k3n2 log2 X

)
for updating the other μ�,j , and hence the complexity

of the Gram-Schmidt algorithm in DeepLLL is O
(
k3n2 log2 X

)
. Therefore Algo-

rithm 4 is asymptotically n times faster than the Gram-Schmidt algorithm for
each GSO update of the reordered basis σi,k(B).

4.2 Implementation Results of DeepLLL

We implemented DeepLLL (Algorithm 2) using the NTL library [23] of C++
programs (we used the g++ compiler with -O3 -std=c++11 option). Our exper-
iments ran on an Intel Xeon CPU E5-2670@2.60 GHz with 16 GB memory. We
used the long long data type for lattice basis vectors, and the long double
for GSO vectors and coefficients in our programs (we did not use exact Q arith-
metic). We generated bases B of full-rank lattices of dimensions n = 100, 200, 300
and 400 with entries less than 20-bit. In Table 1, we summarize our experimental
results on the average performance of DeepLLL with the Gram-Schmidt and our
GSO update algorithms. For each dimension n, we generated 100 bases. From
Table 1, DeepLLL with our algorithm (Algorithm 4) is about 23.4 (resp., 57.0,
103.7 and 145.7) times faster than with the Gram-Schmidt algorithm in total
for n = 100 (resp., n = 200, 300 and 400). This is due to that the cost of GSO
updates is more dominant in DeepLLL for higher dimensions. Hence we estimate
that DeepLLL with our algorithm is much faster than with the Gram-Schmidt
algorithm for higher dimensions.

Table 1. Performance of DeepLLL with the Gram-Schmidt and our GSO update
algorithms (Algorithm 4) for n-dimensional bases with entries less than 20-bit

(i) With GS alg (ii) With our alg Ratio (i)/(ii)

n = 100 0.351 s 0.015 s 23.4

n = 200 8.494 s 0.149 s 57.0

n = 300 60.86 s 0.587 s 103.7

n = 400 231.1 s 1.585 s 145.7

5 DeepBKZ: Embedding of DeepLLL into BKZ

Let B = [b1, . . . ,bn] be a basis of a lattice L, and B∗ = [b∗
1, . . . ,b

∗
n] denote its

GSO. For 1 ≤ j ≤ k ≤ n, we denote by B[j,k] the local projected block basis

[πj(bj), πj(bj+1), . . . , πj(bk)] ,
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Algorithm 3. DeepBKZ (cf., BKZ [22])
Input: A basis B = [b1, . . . ,bn] of a lattice L, a BKZ blocksize β ∈ {2, . . . , n}, and

a reduction parameter 1
4

< α < 1 of DeepLLL
Output: An (α, β)-DeepBKZ-reduced basis B of L
1: B ← DeepLLL (B, α) /* Compute μi,j and ‖b∗

j ‖2 */
2: Set z ← 0 and j ← 0

3: while z < n − 1 do
4: Set j ← (j mod (n − 1)) + 1, k ← min(j + β − 1, n), h ← min(k + 1, n)
5: Compute v ← Enum(μ[j,k], ‖b∗

j‖2, . . . , ‖b∗
k‖2) /* Find v = (vj , . . . , vk) ∈

Z
k−j+1 such that ‖πj(

∑k
i=j vibi)‖ = λ1(L[j,k]) by enumeration */

6: if v �= (1, 0, . . . , 0) then
7: Set z ← 0 and call Modified-DeepLLL(b1, . . . ,bj−1,w,bj , . . . ,bh) at

stage j /* Insert w =
∑k

i=j vibi and remove the linear dependency */
8: else
9: Set z ← z + 1 and call DeepLLL ([b1, . . . ,bh], γ) at stage h − 1

10: end if
11: end while

and by L[j,k] the lattice spanned by B[j,k] of dimension k − j + 1. Let λ1(L)
denote the first successive minimum of a lattice L. The basis B is called BKZ-
reduced [20] with blocksize β ≥ 2 and factor 1

4 < α < 1 if it is α-LLL-reduced
and it satisfies ‖b∗

j‖ = λ1(L[j,k]) for every 1 ≤ j ≤ n with k = min(j + β − 1, n)
(we simply call the basis β-BKZ-reduced when the LLL-reduction parameter α is
unconscious). Given a basis B of a lattice L, the BKZ algorithm [22, Sect. 6] com-
putes a β-BKZ-reduced basis of L. For higher β, BKZ outputs a more reduced
basis than LLL and DeepLLL in practice.

The original BKZ uses LLL as a subroutine to reduce local bases B[j,k] (cf.,
BKZ 2.0 [5], an updated version of BKZ, adopts aborted-BKZ with small block-
sizes in preprocessing of local blocks B[j,k] before enumeration for higher block-
sizes β ≥ 50). In this section, we embed DeepLLL into BKZ (instead of LLL),
and show experimental results on the running time and the output quality. Here
let us define a new reduction notion.

Definition 3 (DeepBKZ). Let 1
4 < α < 1 and β ≥ 2. A basis B is called

(α, β)-DeepBKZ-reduced if it is both α-DeepLLL-reduced and β-BKZ-reduced.

A basis B = [b1, . . . ,bn] is called HKZ-reduced [15] if it is size-reduced and
it satisfies ‖b∗

i ‖ = λ1(πi(L)) for any 1 ≤ i ≤ n. The notion of BKZ-reduction is
a local block version of HKZ-reduction. It is clear that any HKZ-reduced basis is
also (α, β)-DeepBKZ-reduced for any 1

4 < α < 1 and β ≥ 2. Namely, DeepBKZ-
reduction is a middle notion between BKZ and HKZ. Since any lattice L has an
HKZ-reduced basis, there always exists a DeepBKZ-reduced basis in L.



152 J. Yamaguchi and M. Yasuda

5.1 Algorithm and Implementation

Algorithm 3 is our DeepBKZ (we just adopt DeepLLL to reduce local bases B[j,k]

before enumeration). It takes as input a basis B = [b1, . . . ,bn] of a lattice L, a
BKZ blocksize β, and a reduction parameter α of DeepLLL. It outputs an (α, β)-
DeepBKZ-reduced basis of L. In step 7 of Algorithm 3, for h = min(k + 1, n)
with fixed k, we need to remove the linear dependency of (h + 1)-vectors

[b1, . . . ,bj−1,w,bj , . . . ,bh]

for a new lattice vector w =
∑k

i=j vibi ∈ L (the vector v = (vj , . . . , vk) ∈ Z
k−j+1

is found by enumeration in step 5 of Algorithm 3). Our algorithm terminates
with the same principle as the BKZ algorithm. As in the modified LLL proposed
by Pohst [19] (see also [3, Chap. 6] or [6, Sect. 2.6.4]), we can modify DeepLLL
(which we call “Modified-DeepLLL”) to remove the linear dependency, and we
adopt it in step 7 of Algorithm 3.

In our implementation, we adopted Schnorr-Euchner’s full enumeration [22]
for step 5 of Algorithm 3 (cf., BKZ 2.0 [5] adopts pruned enumeration of [11]
with early-abort strategy). Specifically, we implemented the pseudo-code of [11,
Algorithm 2 in Appendix B] with full enumeration setting (more specifically, for
[11, Algorithm 2 in Appendix B], we set

R2
1 = · · · = R2

n = 0.99 · ‖b1‖2

as a bounding vector). Our PC environment and implementation information
are same as described in Subsect. 4.2. In particular, we used the long double
data type for GSO information in enumeration (as the progressive BKZ imple-
mentation [1], we may use the double data type for efficiency).

5.2 Experimental Results

Let L be a lattice of dimension n. The Hermite factor of a lattice basis reduction
algorithm for a basis of L is defined as

δ :=
‖b1‖

vol(L)1/n

with the output basis B = [b1, . . . ,bn] (assume that b1 is the shortest among
the basis vectors bj). This factor is experimentally investigated in [10], and it is
shown that the factor gives a good index to measure the practical output quality
of lattice basis reduction algorithms. The output quality becomes better as δ is
smaller. According to experimental results [10, Fig. 5], the value δ1/n converges
a constant in practical algorithms such as LLL, DeepLLL and BKZ for large n.
The limiting constant δ1/n is called the Hermite factor constant.

In Figs. 1, 2, 3 and 4, we show an experimental comparison of the original
BKZ (we implemented), BKZ(fplll), and DeepBKZ for bases of [7] of dimen-
sions 100–115 with seed 0 in terms of the Hermite factor constant δ1/n, where
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Fig. 1. Transition of the Hermite factor constant δ1/n of BKZ, BKZ(fplll), DeepBKZ
with blocksizes β = 25–40 for bases of [7] of dimension n = 100 with seed 0 (BKZ(fplll)
by [24], BKZ and DeepBKZ by our implementation in C++ programs)

Fig. 2. Same as Fig. 1, but dimension n = 105 with seed 0
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Fig. 3. Same as Fig. 1, but dimension n = 110 with seed 0

Fig. 4. Same as Fig. 1, but dimension n = 115 with seed 0
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‘BKZ(fplll)’ is an implementation of BKZ in the fplll library [24]. In each dimen-
sion, we used a BKZ(fplll)-reduced basis with blocksize β = 20 as an input basis
(we used command ‘fplll -a bkz -b 20’ of [24] without any option). For example, for
BKZ, we recursively performed BKZ with blocksize β + 5 for a β-BKZ-reduced
basis with 20 ≤ β ≤ 35. We took a reduction parameter α = 0.99 of LLL and
DeepLLL in BKZ and DeepBKZ. In Table 2, we show the average of the Hermite
factor constant δ1/n of BKZ, BKZ(fplll), and DeepBKZ of dimensions n = 100–
115 with seeds 0–19. In Table 3, we show the average of the total number of tours
(here we call one process of steps 5, 6, 7 in Algorithm 3 a tour).

Output quality. From Table 2, DeepBKZ outputs a more reduced basis than BKZ
and BKZ (fplll) for each blocksize β. According to [10, Table 1], the average of
the Hermite factor constant δ1/n by BKZ with β for random lattices is 1.0128
(resp., 1.0109) for β = 20 (resp., β = 28). Furthermore, according to [5, Table 2],
it is predicted by simulation (see also (8) below) that β = 85 (resp., β = 106)
is required to achieve δ1/n = 1.01 (resp., δ1/n = 1.009) in BKZ 2.0 [5], which
adopts pruned enumeration and early-abort strategy. In contrast, DeepBKZ with
β = 40 (full enumeration) achieves less than δ1/n = 1.0095 in practice.

Running time. From Figs. 1, 2, 3 and 4, DeepBKZ has reasonable running time
compared with BKZ for each β. This is due to that as seen from Table 3, fewer
tours are only required in DeepBKZ than BKZ although DeepLLL is still costly
in spite of our GSO update algorithm (Algorithm 4). In other words, DeepBKZ
can make a basis reduced effectively with fewer insertions of short lattice vectors.
Since [b1, . . . ,bh] is α-DeepLLL-reduced before enumeration in DeepBKZ, short
lattice vectors w =

∑k
i=j vibi ∈ L other than the basis vectors bi are inserted

in most cases. This is a reason why fewer insertions are required in DeepBKZ.
Note that our implementation is non-optimal. In fact, the performance of our
C++ program for BKZ is much slower than BKZ(fplll) for most blocksizes β.

Remark 3. In her thesis [4], Chen gives a limiting value of the Hermite factor
constant achieved by BKZ-β as a function of β (based on Gaussian Heuristic):

lim
n→∞ δ1/n ≈

(
β

2πe
(πβ)

1
β

) 1
2(β−1)

. (8)

On the other hand, Hanrot et al. [14, Theorem 1] showed that the output basis
B = [b1, . . . ,bn] of their modified version of BKZ, called terminating BKZ,
satisfies

‖b1‖ ≤ 2(νβ)
n−1

2(β−1)+
3
2 · det(B)1/n,

where let νβ ≤ β denote the maximum of Hermite’s constants γk for k ≤ β.

5.3 New Solutions by DeepBKZ for the Darmstadt SVP Challenge

With DeepBKZ, we found new solutions (i.e., shorter lattice vectors) for the
Darmstadt SVP challenge [7] in dimensions n = 102–107, 109–113, 115, 117, 119
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Table 2. The average of the Hermite factor constant δ1/n of BKZ, BKZ(fplll), Deep-
BKZ for bases of [7] of dimensions n = 100–115 with seeds 0–19

Dimension Algorithm β = 25 β = 30 β = 35 β = 40

100 BKZ 1.01170 1.01107 1.01034 1.01011

BKZ(fplll) 1.01167 1.01110 1.01075 1.01038

DeepBKZ 1.01043 1.00999 1.00958 1.00949

105 BKZ 1.01170 1.01098 1.01033 1.00996

BKZ(fplll) 1.01177 1.01099 1.01054 1.01041

DeepBKZ 1.01041 1.00983 1.00937 1.00924

110 BKZ 1.01166 1.01079 1.01023 1.00996

BKZ(fplll) 1.01180 1.01105 1.01062 1.01037

DeepBKZ 1.01010 1.00975 1.00941 1.00916

115 BKZ 1.01181 1.01085 1.01024 1.01002

BKZ(fplll) 1.01164 1.01089 1.01051 1.01019

DeepBKZ 1.01021 1.00964 1.00917 1.00899

Table 3. The average of the total number of tours of BKZ and DeepBKZ for bases of
[7] of dimensions n = 100–115 with seeds 0–19

Dimension Algorithm β = 25 β = 30 β = 35 β = 40

100 BKZ 36632 285249 1812351 2285044

DeepBKZ 1157 14596 75606 111745

105 BKZ 48759 511875 3005585 7437806

DeepBKZ 1526 25241 220935 395815

110 BKZ 76977 1147480 7073110 17200141

DeepBKZ 2113 47295 271418 1045659

115 BKZ 751702 2000791 17494614 24852295

DeepBKZ 3244 67698 953553 2484898

and 123. For these dimensions, we applied DeepBKZ (Algorithm 3) with full
enumeration for blocksizes up to β = 50 for bases of [7] with seeds 0–10. In fact,
β = 40 or 45 was sufficient to find new solutions in most cases (cf., BKZ 2.0 [5]
with blocksize β = 75, 20%-pruning, found solutions from dimension 90 to 112).
In Table 4, we list new short norms among seeds 0–10 in each dimension (in most
dimensions from 100 to 120 with other seeds, we found the same short vectors
as the previous records). From Table 4, DeepBKZ with β = 50 achieves less than
δ1/n = 1.009 in all dimensions. In dimension n = 123 with seed 0, it took about
three weeks to find a new solution even with our non-optimal implementation
using a PC (our implementation has been improved, and our current program
is about 3 times faster than the previous one).
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Table 4. New solutions for the Darmstadt SVP challenge [7], found by DeepBKZ with
full enumeration for blocksizes up to β = 50 (in most dimensions, β = 40 or 45 was
sufficient for new solutions)

Dimension Seed New norm Hermite factor constant

123 0 2883 1.00847

119 10 2863 1.00868

117 10 2840 1.00880

115 3 2699 1.00841

113 1 2681 1.00857

112 3 2653 1.00866

111 0 2684 1.00874

110 4 2621 1.00859

109 8 2613 1.00863

107 9 2566 1.00866

106 8 2551 1.00868

105 1 2604 1.00897

104 10 2546 1.00884

103 10 2520 1.00882

102 10 2512 1.00889

6 Conclusion

In this paper, we first gave an explicit formula (Theorem 1) for the GSO in
DeepLLL to keep track of the new GSO after every deep insertion. As an appli-
cation of our GSO formula, we gave an algorithm (Algorithm 4) to efficiently
update the GSO information in DeepLLL. Thanks to our GSO update algo-
rithm, DeepLLL can run practically as well as LLL. As another application, we
embedded DeepLLL into BKZ in order to obtain a more reduced basis with
DeepLLL. Our experiments showed that DeepBKZ (Algorithm 3) can output a
more reduced basis than BKZ [22] with reasonable running time in practice. We
have found a number of new solutions for the Darmstadt SVP challenge [7] in
dimensions from 102 to 123 by DeepBKZ with full enumeration for blocksizes
up to β = 50 (see Table 4).
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Number 16H02830. The authors thank Takuya Hayashi for his useful advices on
implementation.
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A Efficient GSO Update Algorithm in DeepLLL

In Algorithm 4, we show a detailed algorithm to efficiently update the GSO
information in DeepLLL. This algorithm is based on results of Theorem 1 and
Proposition 1.

Algorithm 4. Update of the GSO information in DeepLLL
Input: GSO information (μ�,j) and Bj = ‖b∗

j ‖2 of a basis B, and indices 1≤ i<k≤n
Output: Updated GSO information (μ�,j) and Bj for the new basis B ← σi,k(B)
1: Set Pk ← Bk and Dk ← Bk

2: for j = k − 1 downto i do
3: Compute Pj ← μk,jBj and Dj ← Dj+1 + μk,jPj /* Dj = ‖πj(bk)‖2 */
4: end for
5: Set Si = Si+1 = . . . = Sn = 0
6: /* By Proposition 1 (A) */
7: for j = k downto i + 1 do

8: Compute T ← μk,j−1

Dj

9: for � = n downto k + 1 do
10: Compute S� ← S� + μ�,jPj and μ�,j ← μ�,j−1 − TS�

11: end for
12: for � = k downto j + 2 do
13: Compute S� ← S� + μ�−1,jPj and μ�,j ← μ�−1,j−1 − TS�

14: end for
15: if j �= k then
16: Compute Sj+1 ← Pj and μj+1,j ← μj,j−1 − TSj+1

17: end if
18: end for
19: /* By Proposition 1 (B) */

20: Compute T ← 1

Di

21: for � = n downto k + 1 do: Compute μ�,i ← T (S� + μ�,iPi);
22: for � = k downto i + 2 do: Compute μ�,i ← T (S� + μ�−1,iPi);
23: Compute μi+1,i ← TPi

24: /* By Proposition 1 (C) */
25: for j = 1 to i − 1 do
26: Copy ε ← μk,j

27: for � = k downto i + 1 do: Copy μ�,j ← μ�−1,j ;
28: Copy μi,j ← ε
29: end for
30: /* Update of Bj by Theorem 1 */

31: for j = k downto i + 1 do: Compute Bj ← DjBj−1

Dj−1
;

32: Set Bi ← Di
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Abstract. In this paper we describe the reduction of factorization of a
square-free integer n to the problem of determining the number of points
in Z

d+1
n on twists of Kummer hypersurfaces yk = f(x1, . . . , xd) mod n,

where f(x1, . . . , xd) ∈ Zn[x1, . . . , xd] and k > 1. This reduction is
expected to be polynomial time (in log n) for small k and fixed number of
prime divisors of n provided that some necessary for this reduction con-
ditions are satisfied. This extends the known reduction of factorization
to determining the number of points on elliptic curves y2 = x3 + ax + b
over Zn. In particular our reduction implies that factorization of n can be
reduced to determining the number of points on quadrics in Z

d
n, d > 1,

which extends the known reduction of factorization to determining the
order of Z∗

n. We also describe the reduction of factorization to determine
the number of points in P

2(Zn) on superelliptic curves yk = f(x1) mod n.
To study the complexity of these reductions we introduce some notions
and prove useful facts for a more precise analysis. In greater detail we
consider the case of the reduction when n = pq is a product of two primes
and k = 2.

Keywords: Dirichlet characters · Least r-th power nonresidue
Integer factorization · Reductions · Elliptic and hyperelliptic curve
Kummer surface

1 Introduction

Factorization of an integer n can be reduced to the problem of computing the
group orders of G = Z

∗
n (see [Bac84]) or G = E(Zn) for an elliptic curve E over

the ring Zn (see e.g. [KuKo98,MMV01,DrPo17]). These reductions are princi-
pally based on comparing the orders P mod p and P mod q for P ∈ G and distinct
primes p, q | n. If m = |G|, while the orders of P mod p and P mod q are divisible
by different maximal powers of 2, then multiplication mP reveals a non-trivial
divisor of n, similarly as in Lenstra’s elliptic curves factorization method [Len87].
Certainly the probability of choosing a suitable point P depends on the group

c© Springer International Publishing AG, part of Springer Nature 2018
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G structure. The existence of such reduction was used in ([OkUc98]) to prove
the tractability of anomalous E(Zn)- Diffie-Hellman Problem.

The interesting general problem is the estimation of the number of positive
integers n ≤ x that can be factored non-trivially or completely by the cho-
sen polynomial time algorithm using the given oracle O. The general problem
of investigating the positive integers that can be factored non-trivially by the
given algorithm A was already posed in [KnPa76]. In this paper we address to the
analogous problem of complete factorization of n provided one can query poly-
nomially many times the given oracle O answering with the number of points in
Z

d+1
n on twists of Kummer hypersurfaces yk = f(x1, x2, . . . , xd)mod n for small

prime values of k . The independent interest is focused on the deterministic poly-
nomial time reduction of factoring n to computing the number of points of the
above Kummer hypersurfaces modulo n (see Definition 6 below).

Let n = p1 · · · ps be a squarefree odd integer, G = E(Zn) := E(Zp1) × . . . ×
E(Zps

), E : y2 = x3 + ax + b, (k = 2). The known polynomial time, asymp-
totic reductions (i.e. reductions for all squarefree, odd positive integers n ≤ x
with at most of o(x) exceptions) depend strongly on the fact that such n are
D- separable for D = D(x) of polynomial growth (of log x). D-separability
means here that n is composed of the prime factors p for which there exists
α ≤ D(x), coprime to n, that is quadratic nonresidue mod p and quadratic
residue mod n/p, (see [DrPo17]). A possible way of generalization of such results
goes towards replacing this requirement by a more general one related to arbi-
trary k−th order nonresidues (see Lemma 5 below for prime value k = r and
primes p | n, p = 1(mod r)). In such approach we are related to the more general
superelliptic curves defined by the equations yk = f(x)mod n.

The quantitative results are interesting in the case of deterministic reduc-
tions, proving the upper bounds for odd, squarefree, positive integers n ≤ x that
might not be factored in polynomial time by the given algorithm A. In case
when k ≥ 2 we obviously restrict ourselves to the numbers n having a prime
factor p = 1mod k. In this note we will show that factorization of a square-free
integer n (having a prime divisor p = 1mod k) can be reduced to the problem
of computing the numbers |Aα(Zn)| of points in Z

d+1
n satisfying the equation

Aα : αyk = f(x), where f ∈ Zn[x1, . . . , xd], using a similar way as for elliptic
curves. This reduction is based on elementary properties of twists Aα for α ∈ Z

∗
n.

We will show that if one knows the numbers of points |Aα1(Zn)|, . . . , |Aαk
(Zn)|

for α1, . . . , αk ∈ Z
∗
n satisfying a suitable condition (see (4) Sect. 3), and some

necessary condition is satisfied, then gcd(
∑k

i=1 |Aαi
(Zn)|, n) is a non-trivial divi-

sor of n. One should see the analogy between the above approach and factoring
idea in the case when G = Z

∗
n (see Lemma 5 below).

Our approach is based on the generalization of idea applied in [DrPo17] for
the twisted elliptic curves Eα over Zn. Namely if α1, . . . , αh ∈ F

∗
q represent

different classes of F∗
q/(F∗

q)
k = F

∗
q/(F∗

q)
h, where h = gcd(q − 1, k), then we will

prove that
∑h

i=1 |Aαi
(Fq)| = hqd (see Lemma 9 below). Therefore if α1, . . . , αk ∈

Z
∗
n satisfy the condition (4), Sect. 3, then computing (5), Sect. 3, we detect a

nontrivial divisor of n. In Sect. 4 we will estimate the probability of choosing
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the suitable tuple (α1, . . . , αk) ∈ (Z∗
n)k. Finally in case when k = 2 and n is

a product of two primes we prove the unconditional, explicit upper bound for
the number of squarefree, odd positive integers that might not be factored in
deterministic time O(log9 x) with the aid of oracle OrdE (see Sects. 6 and 7).

Let us remark that the specific case when f is quadratic polynomial and
d = 2, the number of points on the hyperbola xy = 1(mod n) is equal to the
value of Euler’s totient function φ(n) and the related deterministic reduction
is the reduction of factoring n to computing φ(n), which was investigated in
detail in [DuPo17]. In this paper we also show that the above method can be
modified to reduce factorization to the problem of computing the number of
points in P

2(Zn) on the projective closure of curves C : yk = f(x1), where
f ∈ Zn[x1]. Curves given by this equation over a field are called superelliptic,
and arithmetic in their jacobian was studied in [GPS02]. However this approach
will be the subject of a separate work.

2 Basic Notions and the Related Work

Notation

N – the set of all positive integers
N∗ – the set of all odd, squarefree, positive integers
Ns – the set of all odd, squarefree positive integers having s prime factors
Ns(x, y) – the set of n ∈ Ns, n ≤ x such that P−(n) ≥ y
Ns(x) – the set of n ∈ Ns, n ≤ x
Conventionally m,n stand for positive integers, while p, q, r for prime numbers
(unless otherwise stated)
φ – Euler’s totient function
ω(n) denotes the number of distinct prime divisors of n
P−(n) stands for the least prime divisor of n
π(t) denotes the number of primes ≤ t
νq(n) denotes the highest power of q dividing n
#A stand for the cardinality of the (finite) set A
For positive arithmetical functions f and g the equality f = Θ(g) means that
f = O(g) and g = O(f)
f � g means that f = O(g)
ordn b denotes the order of b mod n, where gcd(b, n) = 1
By LN(r, n) we denote the least positive integer b (coprime to n) that is r-th
power nonresidue modulo n, (r | φ(n)).
By LN(χ) we denote the least Dirichlet character χ nonresidue, i.e. the least
b such that χ(b) /∈ {0, 1}
For odd, squarefree number n = p1p2 . . . , ps, p1 < p1 < . . . < ps we denote
by sig(b, n) the s− tuple ((b/p1), (b/p2), . . . , (b/ps)) of Legendre’s symbols

Definition 1. Let p | n and r be a prime number dividing p − 1. The posi-
tive integer b is called (r, p, n)−witness if b is r-th power nonresidue mod p and
r-th power residue modulo q for some prime q | n/p (q �= p).
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Definition 2. By LSp(r, n) we denote the least (r, p, n)−witness. Moreover

LS(r, n) = max
p|n, r|p−1

LSp(r, n).

The following notion of strong (r, p, n)−witness is actually related to the
complete factorization of n.

Definition 3. Let p | n and r be a prime number dividing p − 1. The positive
integer b is called strong (r, p, n)−witness if b is r-th power nonresidue mod p
and r-th power residue modulo q for any prime q | n/p (q �= p).

Definition 4. By LSSp(r, n) we denote the least strong (r, p, n)−witness. More-
over

LSS(r, n) = max
p|n, r|p−1

LSSp(r, n).

Let us remark that if n = pq is the product of two distinct primes, then the
notions LSp(2, n) and LSSp(2, n) coincide. In what follows let D = D(n) be a
given function of n.

Lemma 5. Let n and φ(n) be given, where n is odd, squarefree positive integer.
Let r | φ(n) and assume that

LS(r, n) ≤ D(n).

Then n can be factored nontrivially in O
(
D(n) log2 n

)
bit operations. Moreover

if
LSS(r, n) ≤ D(n),

then n can be factored completely in O
(
D(n) log3 n

)
bit operations.

Proof. The case of nontrivial factorization follows easily form the proof of the
complete factorization so we will prove only the second inequality. It follows by
induction. We will show how to factor nontrivially any d | n such that r | φ(d)
and ω(d) ≥ 2. Let d = p1p2 . . . ps. Since r | φ(d) there exists a prime divisor p | d
such that νr(p − 1) ≥ 1. Choose p | n such that νr(p − 1) ≥ νr(q − 1) for all
q | d/p. We consider two cases.

(1) Assume that νr(p − 1) = νr(q − 1) for all q | d/p. Then letting b =
LSSp(r, d) ≤ D we conclude that νr(ordp b) = νr(p − 1), while for any
q �= p we have that νr(ordq b) < νr(q − 1), hence νr(ordp b) > νr(ordq b).
Without losing the generality we may assume that b is coprime to d/p, since
otherwise we could easily detect a nontrivial prime factor of d. Therefore
rising b to the powers of type φ(n)/rm and computing their residues modn,
for m = 1, 2, . . ., we obtain that for some m ≥ 1 it holds

q | gcd(bφ(d)/rm − 1, d) | d/p,

giving the required factorization.
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(2) Now assume that νr(p − 1) > νr(q − 1) for some q | d/p. Then we obtain
for b = LSSp(r, d) ≤ D that b is r-th power nonresidue modulo p, where
as before we may assume that b is coprime to d/p. Hence νr(ordp b) =
νr(p − 1) > νr(q − 1) ≥ νr(ordq b). Therefore rising b to the suitable power
of type φ(n)/rm we obtain similarly as above the nontrivial divisor of d.
The number of bit operations is O(D(n)ω(n) log2 n) = O(D(n) log3 n). This
completes the proof of Lemma 5.

The above lemma can be viewed as a starting point to extend the results
proved in [DuPo17,DrPo17] to general oracle O = NuSol(g), answering with the
number of solutions of g(x1, ..., xd, y) = 0(mod n), where g ∈ Zn[x1, . . . , xd, y] is
of type g(x1, . . . , xd, y) = yk − f(x1, . . . , xd). In order to formulate the related
quantitative results we begin with the following

Definition 6. By Fs (x,A, O, tA, tO)
(
F∗ (x,A, O, tA, tO)

)
respectively, we den-

ote the number of n ∈ Ns (n ∈ N∗), n ≤ x that can by completely factored by
algorithm A in deterministic time tA with at most tO queries the oracle O.

Let O = Φ be the oracle answering the value of the Euler totient func-
tion φ(n) for positive integer n ∈ N∗. Approaching the positive answer
on the problem posed by Adleman and McCurley (see [AdCu94]), in the
paper [DuPo17] it is proved that there exists deterministic algorithm A1

such that F∗ (x,A1,O, tA1 , tO) = #N∗(x) (1 + O (1/A1(x))), where A1(x) =
(log x)c1/ log log log x for some absolute positive constant c1, tA = O

(
(log x)5

)

and tO = O(log x). We recall that the oracle Φ is a particular case of the oracle
NuSol(g) for g(x, y) = xy − 1(mod n).

Let O = OrdE where OrdE is the oracle answering with the order of elliptic
curve E(Zn), over the ring Zn, B = B(n) and Bp(d) be the sequence of traces
tp(Ep(b)) of elliptic curves given by the Weierstrass equation: Ep(b) : y2 = x3 +
x+b(mod p), b ≤ B, lying in the arithmetical progression 0(mod d), d | p+1. In
[DrPo17] it is proved that if the average value (over p ≤ x) of |#Bp(d) − #Bp/d|
is bounded by logδ x, then there exists deterministic algorithm A2 such that

F2 (x,A2,O, tA2 , tO) = #N2(x) (1 + O (1/A2(x))) ,

where A2(x) = (log log x)c, tA2 = (log x)8+2δ and tO = (log x)4+δ for arbitrary
fixed c < 1.

In this paper we will present the theoretical background for the oracle
O = NuSol(g), where g(x1, . . . , xd, y) = yk − f(x1, . . . , xd). In particular case
when k = 2 and f(x1) = x3

1 + ax1 + b defines a projective elliptic curve E, we
will show (see Sect. 7) the deterministic algorithm A3 such that for O = OrdE
we have

F2 (x,A3,O, tA3 , tO) = #N2(x) (1 + O(1/A3(x))) , (1)

where A3(x) = (log x)c/ log log log x, for some positive constant c. Here
tA3 = O(log9 x) and tO = O(log2 x). The investigation of the above counting
function is based on the following
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Definition 7. The positive integer n = pq, p < q is called (y,D)− admis-
sible if P−(n) ≥ y and there exist positive integers b1, b2, b3 ≤ D such that
sig(b1, n) = (−1, 1), sig(b2, n) = (1,−1) and sig(b3, n) = (−1,−1). If n is not
(y,D)− admissible it is called (y,D)− exceptional.

To prove equality (1) we will need the upper bound for (y,D)− exceptional
numbers n = pq with y = Θ(log n) and D = Θ(log2 n). The proof is principally
based on Lemma 13, Lemma 17 and the following

Proposition 8. Let n = pq ∈ N2(x, y) and assume that for any m ∈ {p, q, pq}
we have that LN(2,m) ≤ B. Then n is (y,B2)− admissible and LSS(2, n) ≤ B2.

Proof. By the condition LN(2, n) ≤ B we can assume without losing the
generality that there exists b1 ≤ B is such that sig(b1) = (−1,+1). Let
b2 = LN(2, q) ≤ B. Then b1b2 has the complementary signature in question
that is ≤ B2. Therefore for m = p and m = q we have that LSSm(2, n) ≤ B2

and the last conclusion follows.

3 Reduction of Factorization to Computing the Number
of Points on A(Zn)

Let n =
∏s

i=1 pi be a square-free integer, where pi are odd primes, and let
A(Zn) = {(x, y) ∈ Z

d+1
n : yk = f(x)}, where k > 1 and f ∈ Zn[x1, . . . , xd].

Let Aα : αy2 = f(x) be the twist of A for α ∈ Z
∗
n. We will show that if we

know the numbers of points |Aα1(Zn)|, . . . , Aαk
(Zn)|, where α1, . . . , αk satisfy

condition (4) below for a prime q | n and n/q does not divide |A(Zn/q)| (see
Remark 10), then gcd(

∑k
i=1 |Aαi

(Zn)|, n) is a non-trivial divisor of n. We will
need the following elementary facts. For m | n let A(Zm) be the set of Zm-points
on the reduction Amod m. By the CRT reductions mod primes pi | n induce the
bijection

A(Zn) →
s∏

i=1

A(Fpi
). (2)

Two twists Aα, Aβ for α, β ∈ Z
∗
n have the same number of points over Zn

if α ≡ β mod (Z∗
n)k (kth powers in Z

∗
n). It is enough to show this for A defined

over a finite field Fq. For α, β ∈ F
∗
q we have the isomorphism Aα → Aβ , (x, y) →

(x, (α/β)1/ky), defined over the smallest extension of Fq containing a kth root
(α/β)1/k. Thus if α ≡ β mod (F∗

q)
k, then Aα, Aβ are isomorphic over Fq. We will

need the following fact, which is well-known for elliptic curves y2 = x3 + ax + b.

Lemma 9. Assume that each class of F
∗
q/(F∗

q)
k = F

∗
q/(F∗

q)
h, where h =

gcd(k, q − 1), is represented by exactly k/h elements among α1, . . . , αk ∈ F
∗
q .

Then
k∑

i=1

|Aαi
(Fq)| = kqd. (3)
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Proof. Assume that α1, . . . , αh represent different classes U1, . . . , Uh of F∗
q/(F∗

q)
h.

Let Z0 = {x ∈ F
d
q : f(x) = 0} and Zi = {x ∈ F

d
q : f(x) ∈ Ui} for i = 1, . . . , h.

Then F
d
q = ∪h

i=0Zi is the disjoint union. For each x ∈ Zi, i ≥ 1, the equation
αiy

k = f(x) has exactly h solutions y ∈ Fq, because f(x)/αi ∈ (F∗
q)

h, so there
is a solution y ∈ Fq, and remaining solutions over Fq are of the form ζi

hy,
i = 1, . . . , h, where an hth primitive root of unity ζh ∈ Fq, since h | q − 1. Thus
|Aαi

(Fq)| = |Z0| + h|Zi|, so
∑h

i=1 |Aαi
(Fq)| = h|Z0| + h

∑h
i=1 |Zi| = hqd, which

gives (3) since each class of F∗
q/(F∗

q)
h is represented by k/h elements αi.

Given A/Zn to reduce factorization of n to computation |Aα(Zn)| for α ∈ Z
∗
n

we need to choose

α1, . . . , αk ∈ Z
∗
n,which reduced mod q satisfy assumptions of

Lemma 9 for exactly one prime q | n and for each prime p | n,
p �= q, all αi mod p are in the same class of F∗

p/(F∗
p)

k.
(4)

If (4) is satisfied, then |Aαi
(Zn/q)| = |Aα1(Zn/q)| for i = 1, . . . , k. Hence

∑k
i=1 |Aαi

(Zn)| = |Aα1(Zn/q)|(
∑k

i=1 |Aαi
(Fq)|) = kqd|Aα1(Zn/q)|. Thus if n/q

does not divide |Aα1(Zn/q)|, then

gcd(n,

k∑

i=1

|Aαi
(Zn)|) (5)

is a nontrivial divisor of n (we assume that k is small and is not divisible by
prime factors of n).

Remark 10. Note that the above reduction fails if n divides |Aα(Zn)| for each
α ∈ Z

∗
n. This happens if gcd(q − 1, k) = 1 for each prime q | n, since then

|Aα(Fq)| = qd, because for each x ∈ F
d
q the equation yk = f(x) has unique solu-

tion y ∈ Fq. Similarly, if we can compute from the equation yk = f(x1, . . . , xd)
one variable as a function of the remaining variables. Clearly it may also happen
that |Aα(Zn)| = nd if the above do not hold. For example, if A : y2 = x3+ax+b
is an elliptic curve over Zn and for each prime q | n the reduction E mod q is
supersingular (i.e., the trace tq = 0 and for the affine part |Aα(Fq)| = q), then
|A(Zn)| = n.

The following corollary shows that the k-tuple satisfying (4) can be efficiently
computed provided LSSq(k, n) is small. Let us also remark that since the notions
LSS(2, n) and LS(2, n) are equivalent we obtain in view of Proposition 8 that
there are #N2(x)

(
1 + O((log x)−c1/ log log log x)

)
numbers n ∈ N2(x) for which

LSS(2, n) is ≤ c2 log2 n for some positive constants c1 and c2.

Corollary 11. Let r be a fixed prime dividing q − 1, where q | n. Let
b = LSSq(r, n). Then the r-tuple (α1, α2, . . . , αr) = (b, b2, . . . , br) satisfies the
requirement (4) (with k = r).
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Proof. Let r be a fixed prime and q = 1(mod r) be a prime divisor of n. Let-
ting b = LSSq(r, n) we see that the powers of b represent all distinct cosets of
F

∗
q/(F∗

q)
r. On the other hand all such powers are in the same class 1 ∈ F

∗
p/(F∗

p)
r

for all primes p | n/q. This proves that the requirement (4) is satisfied with
k = r.

4 Estimate for the Frequency of the Related Tuples
(α1, . . . , αk) ∈ Z

k
n

In this section we estimate the probability of choosing k-tuple (α1, . . . , αk) ∈ Z
k
n

satisfying (4). Let n =
∏s

i=1 pi, hi = gcd(k, pi − 1), and renumber pi such that
hi > 1 for i ≤ u and hi = 1 for i > u. Then we have

#{(α1, . . . , αk) ∈ Z
∗
n

k satisfying (4)} 1
ϕ(n)k

≥ uk!
ksk−s+1

. (6)

Note that if k | pi − 1 for each i = 1, . . . , s, then we have equality. Thus this
probability quickly decreases with s and k. To show (6) we will make use of the
isomorphism

Z
∗
n/(Z∗

n)k ∼=
s∏

i=1

Zpi
/(Z∗

pi
)hi . (7)

Since the classes of Z∗
n/(Z∗

n)k have the same number of elements, the LHS
of (6) is equal to the probability of choosing a k-tuple (U1, . . . , Uk) of classes Ui

in Z
∗
n/(Z∗

n)k satisfying the following: there exists exactly one i0 ≤ u such that if
Ui

∼= Ui1×· · ·×Uis by (7), then each class of F∗
pi0

/(F∗
pi0

)hi0 appears in a sequence
U1,i0 , . . . , Uk,i0 exactly k/hi0 times, and Uji = U1i for each i �= i0, j = 1, . . . , k.
The number of such k-tuples (U1, . . . , Uk) is equal to

∑u
i0=1

h
hi0

k!

((k/hi0 )!)
hi0

,

where h =
∏s

i=1 hi, h
hi0

is the number of choices of Uij on positions i �= i0,

and k!

((k/hi0 )!)
hi0

is the number of sequences (Ui01, . . . , Ui0k) such that each class

of F∗
pi0

/(F∗
pi0

)hi0 appears in this sequence exactly k/hi0 times. Thus we have to
show

LHS of (6) =

∑u
i=1

h
hi

k!
((k/hi)!)hi

hk
≥ u

k!
ksk−s+1

.

Dividing by k! this follows from

h/hi

hk((k/hi)!)hi
≥ h/hi

hk((k/hi)k/hi)hi
=

h/hi

hk(k/hi)k

=
1

(h/hi)k−1kk
≥ 1

(ks−1)k−1kk
=

1
ksk−s+1

.

Remark 12. Note that for k = 2 factorization of n can be reduced to compu-
tation the number of points in Z

d+1
n satisfying the equation A′ : y2 + f1(x)y +

f2(x) = 0, where f1, f2 ∈ Zn[x1, . . . , xd], because by completing the square
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(y+f1/2)2+f2−f2
1 /4 = 0 we have the isomorphism A′ → A : y2 = f2

1 /4−f2(x)
given by (x, y) �→ (x, y+f1(x)/2). In particular, it is enough to compute the num-
ber of points on quadrics F (x1, . . . , xd) = 0 in Z

d
n, deg F = 2, d ≥ 2. If no squares

x2
1, . . . , x

2
d do appear in F , that is F =

∑
i�=j aijxixj + terms of degree < 2, then

substituting (xi + xj , xi − xj) → (xi, xj) for some aij �= 0 we get x2
i − x2

j .

5 Reduction of Factorization to Computation the
Number of Points in P

2(Zn) on Twists of Superelliptic
Curves

If we slightly modify the previous method, we will obtain reduction of factor-
ization of a square-free integer n to computation the number |C(Zn)| of points
in P

2(Zn) on the superelliptic curves C : zmax{k,deg f}((y/z)k − f(x/z)) = 0.
This extends the reduction of factorization to the problem of computing the
order |E(Zn)| of ellitpic curves E/Zn. We do not consider the reduction to the
problem of computing the number of points on the projective closure of the set
yk = f(x1, . . . , xd) for d > 1, because we need to know the number of points
at infinity over a field. Superelliptic curves have one point at infinity over a
field if k �= deg f(x), and at most k points if k = deg f . We first assume that
k �= deg f(x), and later extend on the case k = deg f(x).

Recall that the projective plane P
2(Zn) is defined to be the set of equivalence

classes of primitive triples inZ
3
n (i.e., triples (x1, x2, x3) with gcd(x1, x2, x3, n)=1)

with respect to the equivalence (x1, x2, x3) ∼ (y1, y2, y3) if (x1, x2, x3) =
u(y1, y2, y3) for u ∈ Z

∗
n. By the CRT we have the bijection C(Zn) →∏s

i=1 C(Fpi
).

Suppose that we know the numbers |Cαi
(Zn)| for α1, . . . , αk satisfying (4)

for a prime q | n. If l = gcd(|Cα1(Fq)|, . . . , |Cαk
(Fq)|) is sufficiently small, i.e.,

l ≤ O(logα n) for some α > 0, then varying m ≤ O(logα n) for m = l we will
find the prime

q =
m

kD
(

k∑

i=1

|Cαi
(Zn)|) − 1, (8)

where D = gcd(|Cα1(Zn)|, . . . , |Cαk
(Zn))|. This follows from the fact that

∑k
i=1 |Cαi

(Fq)| = k(q + 1) by Lemma 9 including the point at infinity. Since
|Cαi

(Fp)| = |Cα1(Fp)| for i = 1, . . . , k and primes p | n, p �= q, we have
D = l|Cα1(Zn/q)| and

∑k
i=1 |Cαi

(Zn)| = |Cα1(Zn/q)|(
∑k

i=1 |Cαi
(Fq)|) = k(q+1)

|Cα1(Zn/q|). Thus
∑k

i=1 |Cαi
(Zn)| = k(q + 1)D/l, which gives (8).

Remark. Note that the assumption that l is small is not satisfied in the sit-
uation of Remark 10. For example, for an elliptic curve it is not satisfied if
gcd(q + 1 − tq, q + 1 + tq), and so gcd(q + 1, tq), is large, which is very
unlikely, because traces of elliptic curves are almost uniformly distributed in
Hasse’s interval [−2

√
q, 2

√
q].

Now assume that k = deg f(x) and the above assumptions on q and
α1, . . . , αk hold. The number of points at infinity on C over Fq is equal to the
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number of roots yk = ak, where ak is the leading coefficient of f . Applying
Lemma 9 to the affine part of C and to the equation yk = ak we also have∑k

i=1 |Cαi
(Fq)| = k(q + 1), which gives (8).

6 Investigation of F2 (x, A3, O, tA3, tO)

In this section we will prove the estimate for (y,D)− exceptional numbers and
describe the algorithm A3 with the oracle O = OrdE. In this connection let
us denote by Adm2(x, y,D) the set of (y,D)− admissible numbers and by
Exc2(x, y,D) the related set of (y,D)− exceptional numbers n ∈ N2(x, y) (see
Sect. 2 for definitions).

Let N2(x,B) denote the set of positive integers n ∈ N2(x) such that
LN(2, n) ≤ B. We will first prove the asymptotic equality for #N2(x,B) for
B = B(x) of magnitude order log x. The main ingredient in the proof is the
following

Lemma 13. (see [LaWu08]) There exists a positive absolute constant c0 such
that for γ0 = log 2/48 we have that LN(χd) ≤ c0 log |d|, for all but except
O(x1−γ0/ log log x) values of |d| ≤ x.

Corollary 14. For B = B(x) = c0 log x with c0 as above and arbitrary positive
constant c′ < log 2/48 we have

#N2(x,B(x)) = #N2(x)
(
1 + O

(
x−c′/ log log x

))
. (9)

Proof. Let n be any odd, positive, squarefree integer. Consider a quadratic
Dirichlet character χ(mod |n′|) satisfying the equality (see e.g. [Dav67], Sect. 5)

(α

n

)
=

(
n′

α

)

K

=: χn′(α) (10)

where n′ is the fundamental discriminant n′ =
∏

p′, with p′ = (−1)(p−1)/2p for
primes p | n and

(
n′
α

)

K
denotes the Kronecker symbol. Obviously if for some

α ≤ B(|n′|) we have χn′(α) = −1, then LN(2, n) ≤ B(n). To prove (9) it is now
sufficient to apply Lemma 13 with | d |= n yielding

0 ≤ #N2(x) − #N2(x,B(x)) � x1−γ0/ log log x

Therefore in view of the asymptotic equality (11) we conclude that

#N2(x,B(x)) = #N2(x) + O(x1−γ0/ log log x) = #N2(x)
(
1 + O

(
x−c′/ log log x

))

for any c′ < γ0 and x > x0(c′), as required.
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Lemma 15. (see [HaWr79], Theorem 437) We have the following asymptotic
equality

#N2(x) =
x

log x
(log log x)

(
1 + o(1)

)
, (11)

as x tends to infinity.

Corollary 16. There exist positive absolute constants c1, c′
1 and c2 such that

we have for 1 < y <
√

x/2 the inequalities

c1x

log x

(

log
log x

log y
+ O

(
1

log y
+

log y

log x

))

≤ #N2(x, y) ≤ c2x

log x
(log log x), (12)

In particular if y = log x and x is sufficiently large, then we have

c′
1x

log x
(log log x) ≤ #N2(x, y) ≤ c2x

log x
(log log x), (13)

Proof. The proof of an upper bound follows immediately from Lemma 15. To
prove the lower bound we derive

#N2(x, y) ≥
∑

y≤p1<x/(2y)

∑

y≤p2<x/p1

1 ≥
∑

y≤p1<x/(2y)

x/(2p1)

log(x/(2p1))
� x

log x

∑

y≤p1<x/(2y)

p−1
1

(14)
Applying the familiar estimate for the prime reciprocal series the above

expression is

log
(

log(x/(2y))
log y

)

+ O

(
1

log y

)

= log
(

log x

log y

(

1 − log(2y)
log x

))

+ O

(
1

log y

)

= log
(

log x

log y

)

+ O

(
1

log y
+

log y

log x

)

which proves the first estimate. The second follows letting y = log x and x be
sufficiently large.

Lemma 17. There exist some positive, absolute constants c1 and c, so that for
y = log x and D(x) = (c1 log x)2 we have

#Adm2(x, y,D(x)) = π(x) (1 + O(1/A3(x))) ,

where A3(x) = (log x)c/ log log log x.

Proof. We will prove that for the choice of y and D as above we obtain that
#Exc2(x, y,D) is � π(x)/A3(x). Assume that n ∈ Exc2(x, y,D), where n =
pq, p, q ≥ y. If LN(2,m) ≤ √

D for any m ∈ {p, q, pq} then by By Proposition 8 n
would be (y,D)-admissible. Therefore LN(2,m) >

√
D for some m ∈ {p, q, pq}.

By Lemma 13 we have that the number of m ∈ N∗(t) such that LN(2,m) ≥
c1 log t is � t1−c/ log log t, giving the required bound for thel numbers m = pq.
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Therefore it remains to estimate the number of n ∈ N2(x) having a prime divisor
p ≥ y such that LN(2, p) ≥ c1 log p.

In this connection let e be a base of natural logarithm and B = B(t) =
c1 log t. Let PB(t) be the counting function of primes p ≤ t such the LN(2, p) ≥
B(t). By Lemma 13 we obtain PB(t) � t1−c/ log log t. Hence writing n = pq and
applying the bound for the counting function of primes p such that LN(2, p) ≥
B(p) we obtain by the partial summation

#Exc2(x, y,D) � x1−c/ log log x +
∑

y≤q≤x, LN(2,q)≥B

∑

p≤x/q

1

x1−c/ log log x +
∑

y≤q≤x/e, LN(2,q)≥B

x/q

log(x/q)

� x1−c/ log log x + PB(x) + x

∫ x/e

y

PB(t)
t2 (log(x/t))

dt

� x1−c/ log log x + x

∫ x/e

y

1
t1+c/ log log t(log(x/t))

dt

Since tc/ log log t > log t we obtain that

#Exc2(x, y,D)�x1−c/ log log x +
x

yc′/ log log y

∫ x/e

y

1
t1+c′/ log log t(log t) log(x/t)

dt

for some c′ < c. Hence changing the variables the last expression is

� x1−c/ log log x +
x

yc′/ log log y(log x)

∫ 1−1/ log x

log y/ log x

1
u(1 − u)

du

� x1−c/ log log x +
x

yc′/ log log y(log x)

(∣
∣
∣
∣log

(
log y

log x

)∣
∣
∣
∣ +

∣
∣
∣
∣log

(
1

log x

)∣
∣
∣
∣

)

� x log log x

(log x)(yc′/ log log y)
� π(x)/A3(x)

where y = log x. This gives the required estimate for the number of exceptions
and therefore completes the proof of Lemma 17.

Now we estimate the running time of the above algorithm. In view of [LePo05]
the first step takes O

(
y log6+ε n

)
bit operations. In Step 2 we query O(D(n))

times the oracle O . Finally Steps 3−4 run in O
(
D(n)3 log3 n

)
bit operations.

Hence specifying the parameters y = log x, D = D(x) = Θ(log2 x) the total run-
ing time of Algorithm A3 is O(y log6+ε x + D(x)3 log3 x) = O(log9 x). Moreover
we have the following
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Algorithm 1. (A3) Complete factoring with O = OrdE oracle
Input: squarefree positive integer n ∈ N2(x) and parameters y, D = D(n)
Output: complete factorization n = pq or the answer that n is (y, D)-exceptional.

1. Check whether p | n for all p ≤ y using the deterministic primality testing
2. For each 1 ≤ α ≤ D(n) use the oracle O = OrdE answering the values of |Eα(Zn)|,

where 1 ≤ α ≤ D(n).
3. For arbitrary tuples (n2, n3, n4) with coordinates belonging to the set |Eα(Zn)| for

1 < α ≤ D(n), check if there exists n1, such that n1n4 = n2n3. If no, continue Step
3 with another choice of (n2, n3, n4). Else solve the following quadratic equation

Ax2 + Bx + C = 0, (15)

where A = 2
(
n4n

−1
2 + 1

)
, B = 4(n−1)−(

n4n
−1
2 + 1

)
(n1+n2), C = −2(n1+n2).

4. If x is a positive integer then compute

p1 =
n1 + n2

2x
− 1. (16)

If p1 is a nontrivial divisor of n the algorithm returns the required complete factoriza-
tion n = p1

n
p1

and halt, otherwise return to Step 3. If no prime divisor of n is detected
for all α ≤ D(n) we declare n as (y, D(n))− exceptional and halt.

Remark 18. Since in Step 1 we discover the prime factor of n that is ≥ y =
log x, one may assume without losing the generality that n ∈ N2(x, y). By Lemma
17 all but except O(π(x)/A3(x)) positive integers n ∈ N2(x, y) are (y,D)−
admissible, where D = B2 = Θ(log2 x) and any such number has the wit-
ness b ≤ D(x) having the arbitrary nontrivial (i.e. �= (1, 1)) signature sig(b, n).
Therefore such n is completely factored in O

(
log9 n

)
deterministic time with at

most O
(
log2 n

)
queries the oracle O = OrdE.

7 Completion of the Proof of Estimate (1)

In this section we will prove the correctness of algorithm A3. We start from the
general approach. Let n =

∏s
i=1 pi be a product of different odd primes pi where

s is arbitrary, fixed positive integer ≥ 2.
The general idea deals with the polynomial time reduction of factorization

of n to the problem of computing the number of points |Cα(Zn)| in P
2(Zn) on

twists of the curve y2 = f(x). Note that over a field Fq we can write the number
of points as |C(Fq)| = q + 1 − tq for an integer tq (which is the trace if C is an
elliptic curve). Then from Lemma 9 we have |Cα(Fq)| = q+1− (α

q )tq for α ∈ F
∗
q ,

where (α
q ) is the Legendre symbol. Thus we have |Cα(Zn)| =

∏s
i=1(pi+1−( α

pi
)ti)

for α ∈ Z
∗
n. Note that there is a one-to-one correspondence between classes of

Z
∗
n/(Z∗

n)2 and 2s different sequences of Legendre symbols (( α
p1

), . . . , ( α
ps

)).
For a generic curve we expect to obtain 2s different numbers |Cα(Zn)| for

α ≤ D(n) and α ∈ Z
∗
n. If this is the case let nj be a permutation of them
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enumerated by j = (j1, . . . , js) ∈ {±1}s. Then we have to solve the following
system of equations (including the permutations of nj).

{
p1 · · · ps = n

(p1 + 1 − j1t1
) · · · (ps + 1 − jsts

)
= nj for j = (j1, . . . , js) ∈ {±1}s.

For s > 2 the algebraic set given by this system has positive dimension, and
we have no efficient method to find integral points in this set. However for s = 2
the integral solutions can be determined efficiently since the system has finitely
many solutions. Namely let us substitute in the system xi = pi + 1 − ti and
x̄i = pi + 1 + ti. We have the following system of equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1x2 = n1

x̄1x2 = n2

x1x̄2 = n3

x̄1x̄2 = n4,

where {n2, n3, n4} vary over all permutations of |Cα(Zn)| for α > 1. The number
of all choices of triples (n2, n3, n4) is therefore ≤ D2(n)3 = O(log6 n), but can
be obviously reduced if we detect the distinct numbers among |Cα(Zn)|.
Dividing Eqs. (4) by (2) and (3) by (1) we have x̄2/x2 = n4/n2 = n3/n1. Thus
the system has solutions iff n4/n2 = n3/n1. Writing x̄2 = n4

n2
x2 we eliminate one

equation yielding the system
⎧
⎪⎨

⎪⎩

x1 = n1x
−1
2

x̄1 = n2x
−1
2

x̄2 = n4
n2

x2.

Since xi + x̄i = 2pi + 2, we obtain that
{

p1 = 1
2 (n1 + n2)x−1

2 − 1
p2 = 1

2 (n4
n2

+ 1)x2 − 1.

Substituting to the equation p1p2 = n and multiplying by x2 we conclude that
x2 is a solution of the following quadratic equation

(
1
2

(
n4

n2
+ 1

)

x2 − 1
)(

1
2
(n1 + n2) − x2

)

= nx2.

with the solution satisfying the Eq. (15). Having x2 we can compute x1 and x̄1

and therefore from the above system of two equations we see that

2x(p1 + 1) = n1 + n2

hence p1 = n1+n2
2x − 1, as required in (16). The total running time is therefore

O(log6 n log3 n) = O(log9 n) bit operations. This completes the proof of estimate
(1) of Sect. 2.
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Detection of Primes in the Set of Residues
of Divisors of a Given Number
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Poznań, Poland
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Abstract. We consider the following problem: given the set of residues
modulo p of all divisors of some squarefree number n, can we find effi-
ciently a small set of residues containing all residues coming from prime
factors? We present an algorithm which solves this problem for p and
n satisfying some natural conditions and show that there are plenty of
such numbers. One interesting feature of the proof is that it relies on
additive combinatorics. We also give some application of this result to
algorithmic number theory.

1 Introduction

The main part of this paper deals with the following problem: Suppose that
for some natural number n and some prime number p we are given the set of
residues mod p of all its divisors and we would like to know which of those
residues correspond to prime factors of n. For convenience we introduce the
following notation:

Notation 1. A would stand for the set of all divisors of n. Ap would stand for
the set of residues mod p of elements of A. Similarly, Γ would stand for the
set of prime factors of n and Γp would stand for the set of residues mod p of
elements of Γ . Also, Zp stands for Z/pZ.

Ideally, we would like to find Γp, but we were unable to achieve that goal. More-
over, it seems to be impossible to get in general with an algorithm using only
the information on residues mod p (see Sect. 7). Therefore, we focus on a simpler
but still useful task of finding B, a small subset of Ap containing Γp. For our
application (see Sect. 6) it turns out to be good enough. We firmly believe that
more applications of this approach should be found in the future. In the sequel,
we are going to provide two algorithms (Brand(Ap) and Bstruct(Ap)) to find such
a set B. For brevity, we will denote resulting sets obtained from A with those
algorithms by Brand and Bstruct respectively.

Before we formulate our main theorem, let us provide some definitions which
are essential to fully explain its meaning and the idea behind its proof. First, let
us recall some basic number-theoretic functions. We will need them to express
properties of numbers which make our argument to work.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Kaczorowski et al. (Eds.): NuTMiC 2017, LNCS 10737, pp. 178–194, 2018.
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Definition 1. ω(n) denotes the number of prime divisors of a number n.

Definition 2. P (m) denotes the greatest prime divisor of an integer m.

Another important number-theoretic functions are σk(n)

Definition 3
σk(n) =

∑

d|n
dk.

The problem we look at arise naturally when studying the deterministic
reduction of factorization to computing the values of σk(n). We detail this appli-
cation in Sect. 6.

We are going to present an algorithm which is deterministic, but works only
for some inputs. We next show that for a randomly chosen input the algorithm
is almost certain to work properly. To formalize this statement we will need the
notion of natural density.

Definition 4. Natural density of a set X of integers is the following limit (if it
exists)

lim
n→∞

#{m ∈ N : m < n,m ∈ X}
n

(1)

It turns out that the right way of looking at the problem we consider is
actually by looking at numbers as elements of a cyclic group Z

∗
p. It leads us to

consider the following object appearing in additive number theory.

Definition 5. Let C be a subset of abelian group. Then P(C) denotes the set
of all subset sums of C, namely

P(C) := {
∑

a∈T

a : T ⊂ C}.

After taking logarithms of elements of the set of all divisors of a given number
we get the structure defined above with C being the set of prime factors.

Now we are ready to state our result. The main theorem of this paper is

Theorem 1. For a given x let p = log x3+o(1) be a prime such that p0.5−ε <
P (p − 1) < p0.5+ε and P (p − 1)2 � (p − 1) and let n ≤ x be a squarefree integer
such that ω(n) ≤ 2 log log n, n has at most log log x1+o(1) divisors less than p,
no pair of distinct divisors of n is congruent modulo p and the number of its
divisors d > p for which d

p−1
P (p−1) is congruent to q

p−1
P (p−1) or −q

p−1
P (p−1) for some

prime divisor q is less then 1
2ε2ω(n). Let A (and Ap) denote the set of divisors

of n (and their residues modulo p) and let Γ (and Γp) denote the set of prime
divisors of n (and their residues modulo p). Then for any ε > 0 there exists
a deterministic algorithm with running time Oε(p0.5+o(1)) = O((log x)1.5+o(1))
which finds a set B such that Γp ⊂ B ⊂ Ap and |B| < ε|Ap|.
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Although the statement is a bit technical, we are going to show that all con-
ditions appearing in the assumptions are very weak and in fact occur for almost
every squarefree number n and for enough primes p in order to be practical. The
most interesting novelty in the proof is the heavy use of additive combinatorics
in a problem arising from multiplicative number theory. We also give an appli-
cation of this result to the algorithm which finds factorization of a given number
using an oracle for values of functions σk(n). In fact, the search for determinis-
tic reductions of factorization to some other number-theoretic problems was our
original motivation to study this problem.

2 Preliminaries

Let us briefly recall some results from computational number theory, group the-
ory and Fourier analysis. Reader may as well skip this part if he’s familiar with
those concepts. Concepts from additive combinatorics and analytic number the-
ory are introduced in Sects. 3 and 4 respectively, where they are used.

Lemma 1. Addition (or subtraction) of two numbers on at most n bits can be
performed with O(n) bit operations.

Theorem 2 (Schönhage - Strassen [16]). Multiplication of two numbers on
at most k bits can be performed with O(k log k log log k) bit operations. In par-
ticular it is O(k1+o(1)).

Corollary 1. Division (with the remainder) of the number N on at most k bits
by the number D on at most k bits can be performed with O(k(log k)2 log log k)
bit operations (in particular it is O(k1+o(1))).

Lemma 2. Values of a polynomial of degree k at a given point can be found
with k multiplications and k additions using Horner scheme.

Lemma 3. Greatest common divisor of polynomials f, g ∈ Fp[X] can be found
with Euclid algorithm with O(deg(f)deg(g)) operations in Fp.

Lemma 4. Exponentiation modulo p to the exponent k can be performed with
O(log k) operations in Fp.

We recall some basic facts about the structure of Z
∗
p. The previous lemma

implies that the homomorphism mentioned below can be computed efficiently.

Lemma 5. If p − 1 = qe1
1 · · · qek

k is a prime powers factorization, then

Z
∗
p � Zp−1 � Zq

e1
1

× · · · × Zq
ek
k

.

For every q|(p − 1)
a �→ a

p−1
q

is a group homomorphism Zp−1 → Zq.
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In order to work with the additive notation we will need to take discrete
logarithms.

Definition 6. Let b, g ∈ Fp. Discrete logarithm of g to the base b is the residue
class mod ord(b) of the smallest positive integer k such that bk = g. We denote
it with logb(g).

Theorem 3 (Pollard [13]). Discrete logarithm modulo p can be found with
O(

√
p) operations in Fp.

Definition 7. Discrete Fourier transform (with size p) of a function f : Fp → C

is a function
f̂(γ) =

∑

x∈Fp

f(x)e
2πi

p xγ .

Theorem 4 (Bluestein [4]). Discrete Fourier transform with size N can be
computed with O(N log N) arithmetical operations.

Discrete Fourier transform enjoys the following nice property.

Lemma 6 (Parseval identity)

∑

x∈Fp

|f(x)|2 =
1
p

∑

x∈Fp

|f̂(x)|2.

This fact is particularly useful when applied to the characteristic function of
the set A ⊂ Fp.

Corollary 2 ∑

x∈Fp

|Â(x)|2 = p|A|.

3 Algorithms

In this section we present an algorithm which solves the problem stated in the
introduction, therefore proving Theorem1. The algorithm consists of two algo-
rithms, which performed one after another lead to the solution. They are based
on two simple observations. We include them as the next two lemmas.

The idea behind the first one is to look for properties of prime numbers which
distinguish them from the composite ones. To be more specific, we are interested
in properties which are preserved after taking residues mod p. One such property
is the large number of multiples in the set of divisors. Algorithm1 is based on
this lemma.

Lemma 7. If a ∈ Γ , then there exist at least 2ω(n)−1 elements b ∈ A such that
a(mod p)b(mod p) ∈ Ap.

Proof. For every b ∈ A which is not a multiple of a (for a ∈ Γ there are 2ω(n)−1

such b’s) ab ∈ A holds, hence also ab(mod p) ∈ Ap.
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When we apply Algorithm 1 to Ap ⊂ Zp all elements of Γp are included in
Brand. But Brand may be too big.

Algorithm 1. Brand(Ap)
For every a ∈ Ap:

1. set Da = 0
2. For every b ∈ Ap:

(a) check whether ab ∈ Ap,
(b) if it’s true set Da = Da + 1.

3. if Da ≥ 1
2 |Ap|, add a to the set Brand.

The idea behind the second lemma is to realize that the problem is really
about P(C) of some set C in the cyclic group Zp−1 and look for other settings
where the corresponding problem is easy to solve. It turns out that one such
setting is the semigroup of natural numbers under addition.

Lemma 8. Let C ⊂ N. Then there exists a deterministic algorithm which given
P(C) (|P(C)| = N) finds C with running time O(N log N). Moreover, C can be
a multiset and it does not change the conclusion.

Proof. See Algorithm 2.

Algorithm 2. C(S)

1. Sort the elements of S in nondecreasing order.
2. Set D := ∅ and C := ∅.
3. Move 0 from S to D.
4. Until |C| = log(|S|)

log 2 :
(a) Set x - the smallest element still in S.
(b) For all elements d in D move x + d from S to D.
(c) Add x to C.

This algorithm can be easily adapted to handle also sets containing negative
integers. It is going to be important that we can easily generalize this problem
(and its solution) to multisets (no changes in the algorithm needed).

Algorithm 3. F (S)

1. Find min(S) and set T = {s − min(S) : s ∈ S}.
2. Apply Algorithm2 with T as input to find C̄ = C(T ).
3. For every c ∈ C̄:

(a) if c ∈ S - add c to F .
(b) if −c ∈ S - add −c to F .

Corollary 3. Let C ⊂ Z. Then there exists a deterministic algorithm which
given S = P(C) (|P(C)| = N) finds a set F such that C ⊂ F and |F | < 2|C|
with running time O(N log N). Moreover, C can be a multiset and it does not
change the conclusion (elements of multisets are counted with multiplicity).
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Proof. Algorithm 3 does the job, since the addition of the constant (which is
an element of the input set S) only changes the signs of some elements g ∈ C.
Absolute values of elements of C are found in step 2.

In order to adapt this algorithm to the setting of cyclic group it is desirable
to contain the set in some short interval. To perform this task it is convenient to
work with a group of prime order. Therefore, we would like to have at least a large
subgroup of prime order. To find the sought-after interval efficiently, we need
to use Fourier transform. In order to optimize its computational complexity we
would not like this prime to be too large. This are the reasons for our assumptions
on P (p − 1).

Algorithm 4. Bstruct(Ap)

1. Set q = P (p − 1).
2. For every a ∈ Ap compute ā := a

p−1
q .

3. For every a ∈ Ap compute discrete logarithm ã := q
p−1 logg(ā) (for some

generator g of the group Z
∗
p). Set Lq = { q

p−1 logg(ā) : a ∈ A} ⊂ Zq.
4. Find using Fourier transform d ∈ {1, . . . , q − 1} such that for all ã ∈ Lq

elements d · ã are contained in the interval [− q log(2)
log(|Ap|) ,

q log(2)
log(|Ap|) ].

5. Find the set F using Algorithm3 for Z with d · Lq (with elements treated as
integers) as an input.

6. For every c ∈ F put all corresponding a ∈ Ap into the set Bstruct (if a|n as
integers include a only if it’s prime).

Observe that if d ∈ Zq is such that dA ⊂ [− q log(2)
log(|Ap|) ,

q log(2)
log(|Ap|) ], then it corre-

sponds to a large Fourier coefficient, namely Â(d) is greater than |A|
2 (say) if x is

large enough. Hence in step 5 of Algorithm 4 we first find all Fourier coefficients
larger than |A|

2 . There are at most p
|A| of them because of Parseval identity. Then

we can check for all of them whether they satisfy the condition.
Now the analysis of computational complexity of those algorithms is straight-

forward. First algorithm needs only O(|A|2) operations in Fp. The most costly
step of the second algorithm is step 4, which takes O(p

1
2+o(1)) operations in Fp.

Step 3 takes O(p
1
4+o(1)|A|) operations.

To find all divisors which can possibly be prime we need to perform those
two algorithms. At least one of them should give us desired set. Justification of
this statement finishes the proof of Theorem1 and it is our main objective in
the next section.

4 If Brand Fails, then Bstruct Works

In this section we present the heart of our proof. This is the part where additive
combinatorics come into play. For theoretical consideration it is simpler to look
at the set of discrete logarithms of elements of the set Ap. We will denote this
set by L.
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Notation 2. Let L := {logg(a) : a ∈ Ap}.
Note that to optimize computational complexity of Algorithm4, we perform
exponentiation first and then take discrete logarithms. Exposition becomes
clearer with those operations in reversed order, since then we can phrase struc-
tural properties of Ap in additive language. Later we work with corresponding
subset of integers under addition what makes additive notation more natural
here.

Note that definitions and theorems in this section use L to denote general
subset of an abelian group. One can think of L defined above as an illustrative
example (we will only be concerned with L and related sets: its subsets and
homomorphic images).

First, let us define some notion encoding additive structure of a set.

Definition 8. Let G be an abelian group and L ⊂ G a finite subset. The energy
of L is defined by

E(L) =
1

|L|3 |{(a1, a2, a3, a4) ∈ L4 : a1 − a2 = a3 − a4}|.

We can think of a set with large additive energy as structural.
The next lemma shows that Algorithm 1 can only fail for Ap, such that L,

the set of discrete logarithms of its elements, is additively structured.

Lemma 9 (Katz-Koester [8]). Let 0 < ρ < 1 and suppose L1 and L2 are two
subsets of G, and suppose

L1 ⊂ {z ∈ G : |(z + L2) ∩ L2| ≥ ρ|L2|}.

Then

E(L1)E(L2) ≥ (log(2))2

16
ρ4

(log( 4
ρ2 ))2

|L1|
|L2| .

Applying this lemma with L1 = {logg(b) : b ∈ Brand} (recall that Brand is
the output of Algorithm1), L2 = L and ρ = 1

2 we obtain the bound for the
additive energy of L or its large subset L1. Namely, at least one of those sets
satisfies

E(Li) ≥ κ
√

ε

for some explicit constant κ. In each case there is at least some large subset
L′ ⊂ L (namely |L′| > c(ε)|L|) with E(L) ≥ 1

K(ε) .
It is more convenient to use some more restrictive notion of additive structure

and work with sets satisfying the condition |L + L| ≤ K|L| or |L − L| ≤ K|L|
(look at the definition below) for some constant K (the so called sets with small
doubling).
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Definition 9. The sumset of a set L is the set

L + L := {a + b : a, b ∈ L}

The difference set of a set L is the set

L − L := {a − b : a, b ∈ L}

Before we move on, let us formulate some classical results from additive
combinatorics which are very useful in the study of sets with small doubling.

Lemma 10 (Ruzsa covering lemma [14]). For any non-empty sets L,M in
abelian group G one can cover M by |L+M |

|L| translates of L − L.

Lemma 11 (Plünnecke inequality [12]). If |L + L| ≤ K|L| or |L − L| ≤
K|L|, then |iL − jL| ≤ Ki+j |L| for all non-negative integers i, j.

The two notions of additive structure are not exactly equivalent, but some
sort of equivalence between them is given by the following theorem. The first
version of this theorem (with exponential dependence on K) was given by Balog
and Szemerédi. First version with polynomial dependence on K was provided by
Gowers. We quote the version with currently the best known dependence on K.

Theorem 5 (Balog-Szemerédi-Gowers [15]). Let be a subset of an abelian
group such that E(L) = 1

K . Then there exists L′ ⊂ L such that |L′| = Ω( 1
K |L|)

and
|L′ − L′| = O(K4|L′|).

Using this theorem we can find some large more structural subset in our original
set, namely the set L′′ ⊂ L′ such that |L′′| > c(ε)|L′| and |L′′ − L′′| < K(ε)|L′′|.

We need even more restrictive notion of additive structure. Its main advan-
tage for us is that it is well-behaved under homomorphisms.

Definition 10. Let K ≥ 1. A subset H of an abelian group G is said to be a
K-approximate group if it is symmetric (H = −H), contains neutral element,
and H + H can be covered by at most K traslates of H.

Lemma 12. Let L be a subset of an abelian group G containing neutral element.
If |L+L| ≤ K|L|, then there exists a K3-approximate group H such that L ⊂ H
and |L| ≥ K−2|H|.
Proof. Take H = L − L and apply Ruzsa covering lemma (with L = L and
M = H). The result follows, since |L| < |L−L| < K2|L| and |L−L+L| < K3|L|
by Plünnecke inequality.

Applying this lemma to the set L′′ we obtain a set H, such that |H| < C(ε)|L′′|,
L′′ ⊂ H and H is K(ε)-approximate group.

The following lemma appears as an exercise in [18].
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Lemma 13. Let G,G′ be abelian groups, H ⊂ G a K-approximate group and
φ : G → G′ - a homomorphism. Then φ(H) is a K-approximate group.

Proof. Let x1, . . . , xK ∈ G be such that H +H is covered by x1+H, . . . , xk +H.
Then φ(x1) + φ(H), . . . , φ(xK) + φ(H) covers φ(H) + φ(H). Clearly, φ(eG) =
φ(eG′) and φ(−a) = −φ(a).

Applying the last lemma to the set H and a homomorphism φ : Z
∗
p → Zq defined

by a �→ logg(a
p−1

q ), we see that φ(H) is K(ε)-approximate group.
Now, we have got an additively structured set in a large group of prime

order. In such a setting we can observe that this set can be compressed to a
short interval.

Definition 11 The diameter diamL of a set L (in Z or Zm) is defined as the
smallest integer l for which there exist some a, d such that L ⊂ a, a+d, . . . , a+ld.

Theorem 6 (Green-Ruzsa [7]). Let q be a prime and let H ⊂ Zq be a set with
|H| = αq and |2H| = K|H|. Suppose that α ≤ (16K)−12K2

. Then the diameter
of H is at most

12α
1

4K2

√
log (

1
α

)q.

We emphasize the fact that small doubling is really needed here (large additive
energy is not enough). Obviously, K-approximate group satisfies |H + H| ≤
K|H|. Using this theorem, we can therefore find an arithmetic progression P
such that |P | ≤ p1−δ(ε) for some δ(ε) > 0 and H (and hence also L′′) is contained
in P .

Next lemma will bring us back to the set L (or more precisely φ(L), which
is equal to the set Lq in step 3 of Algorithm 4). Roughly speaking, it shows that
a structure of P(C) enables us to control the whole set, when only some part is
controlled. The fact that L = P(C) is crucial here and it is the only part of the
proof where we use it.

Lemma 14. Let L = P(C) be a subset (L is possibly a multiset) of Zq and
let L′ ⊂ L be such that |L′| ≥ ε|L| (elements counted with multiplicity) and
diamL′ ≤ q1−δ. Then there exists a constant K(ε) > 0 such that L is contained
in K(ε) translates of a set D with diamD ≤ 2q1−δ.

Proof. Let P be a symmetric arithmetic progression such that some translate
x of P contains L′ (without loss of generality we can assume that P has the
common difference 1, otherwise we can multiply every element by d−1). We are
going to construct m = � 2

ε  translates xi + 2P such that C ⊂ X + 2P for
X = {x1, . . . , xm}. For each gj ∈ C either gj belongs to some xi + P (and then
gj + L′ ⊂ xi + x + 2P and L′ − gj ⊂ xi + x + 2P ) for some xi already put in
X or there are |L′| = ε|L| elements of L which are of the form gj + a′ or a′ − gj

and are not captured by any translate yet. Then we add gj and −gj to the set
X. We need to add new translates at most � 1

ε  times, because it increases by
ε|A| the number of elements of A covered. If X is a set of translates covering all
ginC, then P(X) are translates covering P(C) (and there are 2|X| of them).
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Lemma 15. Let L ⊂ Zq be a set with diamA = q1−δ. Then there exist d ∈ Z
∗
q

such that dL ⊂ [−2q1− δ
2 , 2q1− δ

2 ]. Generally, if L is contained in K trans-
lates of a set D with diamD = q1−δ, then there exists d ∈ Z

∗
q such that

dL ⊂ [−2q1− δ
2K , 2q1− δ

2K ].

Proof. Let a ∈ L be any element. By Pigeonhole Principle, there exist d < q
δ
2

such that da ∈ [q1− δ
2 , q1− δ

2 ] (there exist two elements d1a, d2a in one interval of
length q1− δ

2 , their difference satisfies the condition). For such d the conclusion
holds. To prove the second statement, use multidimensional Pigeonhole Principle
to find d < q

δ
2 such that dai ∈ [q1− δ

2K , q1− δ
2K ] for i = 0, . . . , K −1, where ai +D

are given translates.

Using the last two lemmas we see that we can find d such that dL ⊂
[−2q1− δ(ε)

2K(ε) , 2q1− δ(ε)
2K(ε) ] what proves that a suitable d in step 4 of Algorithm 4

can be found, since p
δ(ε)

2K(ε) >
log(|Ap|)
log(2) if n is large enough. It finishes the proof

of Theorem 1, since the number of elements a ∈ Ap corresponding to the same
c ∈ F is small by our assumptions (specifically the last, more technical one).

5 There are Plenty of Numbers Satisfying the Conditions

First of all, observe that the fact that for all but o(x) numbers n ≤ x the number
of prime divisors is right follows from the classical result quoted below.

Theorem 7 (Erdős-Kac [6]). Denote by N(x; a, b) the number of integers m
belonging to the interval [3, x] for which the following inequality holds:

a ≤ Ω(m) − log log m√
log log m

≤ b, (2)

where a < b are real numbers with additional possibilities a = −∞ and b = ∞.
Then, with x tending to infinity, we have

lim
x→∞

N(x; a, b)
x

=
1√
2π

∫ b

a

exp (− t2

2
)dt. (3)

It is easy to observe that a typical number cannot have to many small divisors.
We will need this fact later.

Lemma 16. There are o(x) numbers n ≤ x such that the number of divisors of
n smaller than (log x)3+o(1) is greater than (log log x)1+o(1).

Proof. It follows from the fact that
∑

n<(log x)3

x

n
= O(x log x).

It is possible to find for x large enough the prime with the desired properties
of p−1. To prove that we need two classical results from analytic number theory.
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Lemma 17 (Mertens [9]). We have

|
∑

p≤n

log p

p
− log n| ≤ 2.

Theorem 8 (Bombieri - Vinogradov [19]). Let x and Q be any two positive
real numbers with x1/2 log−A x ≤ Q ≤ x1/2. Then

∑

q≤Q

max
y<x

max
1≤a≤q
(a,q)=1

∣∣∣∣ψ(y; q, a) − y

ϕ(q)

∣∣∣∣ = O
(
x1/2Q(log x)5

)
.

This leads to the following statement.

Corollary 4. Let ε > 0. Then there exist efficiently computable constants X1(ε),
δ(ε) > 0, such that, if x > X1, we have

∑

p≤x,x
1
2 −ε<P (p−1)<x

1
2+ε

1 > δ(θ)
x

log x
.

Proof. It suffices to lowerbound the sum
∑

x
1
2 −ε<p<x

1
2 (log x)−B

π(x, q). By
Bombieri-Vingradov theorem

∑

x
1
2 −ε<p<x

1
2 (log x)−B

π(x, q) log q =
x

log x

∑

x
1
2 −ε<p<x

1
2 (log x)−B

log p

p − 1
+ O(

x

log x
).

The last sum is equal ε log x + O(1) by Mertens’ theorem.

To ensure that P (p − 1)2 � (p − 1) we need the following lemma.

Lemma 18. There are O(x
1
2+2ε

log x ) numbers n ≤ x such that q2|(n − 1) for some

prime number q > x
1
2−ε. In particular, for ε < 1

4 there are o( x
log x ) such prime

numbers.

Proof. We simply count

∑

x
1
2 −ε<q<x

1
2

x

q
= O(

x
1
2

log x
x2ε), (4)

since there are O( x
1
2

log x ) primes in this range and at most x

x2( 1
2 −ε)

= x2ε numbers
divisible by any of them.

Now, we will prove that given such a prime p we can expect different divisors
of n to give different residues. In the proof we are going to use the following
lemma which is a discrete analogue of integration by parts (Lemma 2.5.1 in [2]).
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Lemma 19. Let (an)n∈N be the sequence of complex numbers, A(t) :=
∑

n≤t an

and let f : [1, x] → C be a C1-class function. Then:

∑

n≤x

anf(n) = A(x)f(n) −
∫ x

1

A(t)f ′(t)dt. (5)

Lemma 20. Let ε > 0. For a given prime number such that p > (log x)2+ε

the set of numbers n ≤ x such that there exists a pair of distinct divisors of n
congruent modulo p respectively has size o(x).

Proof. Clearly, there are o(x) number n < x divisible by p. We need to bound
the size of the set of numbers n such that there exist a pair d1, d2 such that d1|n,
d2|n and d1 − d2 is divisible by p. For n not divisible by p at least one such pair
d1, d2 (if it exists) must consist of relatively prime numbers. Therefore, the size
of the set can be crudely bounded by the following expression

∑

r< x
p

∑

d< x
rp

x

d(d + rp)
(6)

To bound those sums we can use the following bound for the series
∑

n≥1
1

n(n+r)

with parameter r.

∑

n≥1

1
n(n + r)

=
∑

n≥1

1
r
(
1
n

− 1
n + r

) =
1
r

r∑

n=1

1
n

= O(
log r

r
) (7)

Using (7) with parameter rp we can bound (6) by

∑

r< x
p

x(log rp)
rp

= O(
x(log x)2

p
),

using Lemma 19 to get the last inequality.

What has left to show is that a condition set on d
p−1

P (p−1) ’s is satisfied by
typical n. First we deal with possible obstruction caused by a divisor which
satisfies d

p−1
P (p−1) ≡ ±1.

Lemma 21. Let p be a prime number and let I ⊂ Z
∗
p be such that |I| ≤ pδ. If

log x = o(p1−δ), then the set of numbers n < x such that there exists a number
d > p which satisfies d ≡ a for some a ∈ I and d|n has size o(x).

Proof. It follows from
∑

1≤r x
p

x

a + pr
= O(

x

p
log (

x

p
)).

Using this fact we can prove what we need.
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Lemma 22. Let ε > 0. Let p be a prime number with p ≥ (log x)3 such that
P (p − 1) > (log x)2−log 2+ε. For all but o(x) numbers n ≤ x the set of divisors d

of n such that d
p−1

P (p−1) ≡ q
p−1

P (p−1) (mod p) for some q > p prime divisor of n has
size o((log x)log 2).

Proof. We can estimate the number of triples consisting of a number n ≤ x and
a pair (d1, d2) of relatively prime divisors of n such that d1 > p, d2 > p which

satisfies d
p−1

P (p−1)
1 ≡ d

p−1
P (p−1)
2 . Let I ⊂ Z

∗
p be a subgroup of P (p − 1)-th powers and

let Id ⊂ Z
∗
p be a coset of this subgroup containing d. We know that |I| ≤ p−1

P (p−1) .

∑

d≤x

1
d

∑

a∈Id

∑

1≤r≤ x
p

x

a + rp
= O(

x p
P (p−1) (log x)2

p
) = O(

x(log x)2

P (p − 1)
).

All divisors d for which d
p−1

P (p−1) ≡ ±q
p−1

P (p−1) (mod p) holds for some q > p which
is a prime divisor of n are either relatively prime to q (first kind) or they are of
the form ds, where s < p and d is either q or a divisor of the first kind (then we
call them divisors of the second kind). The number of the divisors of the first
type can be bounded by O((log x)log 2−ε) for all but at most o(x) numbers n ≤ x
using (5). Taking into account the divisors of the second kind raises this number
only (log log x)1+o(1) times for all but o(x) numbers n ≤ x by Lemma 16.

6 Application

Here we present an application of our result to deterministic polynomial-time
reduction of factorization to computing σ1(n), . . . , σM (n). This reduction is
only proved to work for numbers forming a dense set (not necessarily for all
numbers). The reduction is already polynomial-time in its simplest form. If
a sufficiently efficient polynomial factoring algorithm is used (namely Shoup’s
Algorithm for polynomial with linear factors) it can be made to run in time
O((τ(n))2 log n log log n log log log n). Then our main result only reduces implied
constant in O() notation.

It is worth noting here that probabilistic polynomial-time reductions to com-
puting σk(n) (for a single k) are known [3]. Much more is known about the sim-
ilar problem concerning Euler totient function φ(n). There exists a probabilistic
polynomial-time reduction which can be easily derandomized under Extended
Riemann Hypotheses [11]. Moreover, it can be shown unconditionally to work
in deterministic polynomial time for the dense set of integers [5]. There is also
unconditional subexponential-time reduction proved to work for any integer [20].
Paper [1] provides extensive survey of problems studied and results obtained in
this area.
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Algorithm 5. N(n, P1, P2, . . . , PM )

1. For every k = 1, . . . ,M compute Sk = (−1)k+1

k (Pk +
∑k−1

i=1 (−1)iPk−iSi).
2. Set as m the greatest k such that Sk �= 0.
3. Set as W ∈ Z[X] the polynomial W (X) = Xm +

∑m
i=1(−1)iSiX

m−i.
4. Factor the polynomial W (X) in Z[X].
5. If the result consists of linear terms (X − di) (for i = 1, . . . ,m), sort di in

nonincreasing order.
6. For each i check whether dj |di for some j < i; if not, check with what multi-

plicity di divides n and write out di with that multiplicity.

Theorem 7 implies that in Algorithm5 parameter M = �(log n)log 2+o(1)� can
be used and the algorithm would still work for the numbers from the set of
natural density equal 1.

We prove

Theorem 9. There exists a deterministic algorithm which using an oracle for
monic polynomial W with all divisors of a given number m as roots computes the
factorization of n for numbers n belonging to the set of natural density 1 (it uses
the oracle at most twice) with running time O((τ(n))2 log n log log n log log log n).
In particular, for n belonging to this set this time is (log n)1+2 log 2+o(1).

We can assume that n is squarefree because of the following observation.

Lemma 23. The set of natural numbers n ≤ x divisible by a square of an integer
larger than log log x is of cardinality o(x).

Proof. The cardinality of the considered set can be upperbounded by

x
∑

log log x≤d<
√

x

1
d2

+ O(
√

x) (8)

(as � x
d2 � = x

d2 + O(1)) which is o(x) because of the convergence of the series∑
1
d2 .

Divisibility by squares of the numbers smaller than log log n can be checked by
trial division with (log n)1+o(1) bit operations. If pα||n the values of functions
σk( n

pα ) can be determined using formula σk( n
pα ) = σk(n)

σk(pα) at the cost of O(k log n)
bit operations.

All divisors which can possibly be prime numbers can be found with Algo-
rithm6. To find the factorization of n perform the last step of Algorithm5 on
elements of B.

Algorithm 6. S(W )

1. Find a prime number p of the order (log n)3+o(1) with P (p − 1) = p0.5+o(1).
2. Factor Wp with Shoup algorithm and find set of residues A.
3. Find the set B with Algorithm1.
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4. If |B| > ε|A|, find the set B with Algorithm4.
5. For every element in B perform Hensel lift to the residue modulo pe (with

e = � log n
log p ).

We need to define some special types of symmetric polynomials.

Definition 12. Elementary k-th symmetric polynomial of variables x1, . . . , xm

is given by
sk(x1, . . . , xm) =

∑

1≤i1<...<ik≤m

xi1 · · · xik
. (9)

k-th Newton function of variables x1, . . . , xm is given by

pk(x1, . . . , xm) =
m∑

i=1

xk
i . (10)

Function σk(n) is equal to pk(d1, . . . , dτ(n)), where d1, . . . , dτ(n) are all divisors
of n.

The correctness of the algorithm follows from the two sets of identities given
below.

Lemma 24 (Newton identities). For 1 ≤ k ≤ m the following identity holds:

pk +
k−1∑

i=1

(−1)ipk−isi + (−1)kksk = 0, (11)

and for m < k:

pk +
m∑

i=1

(−1)ipk−isi = 0. (12)

For a nice proof see [10].

Lemma 25 (Vieta’s formulas). Let R be an unique factorization domain and
let amxm + . . .+a0 ∈ R[X] be a polynomial with m roots x1, . . . , xm (in the field
of fractions of R). Then the following holds

sk(x1, . . . , xm) = (−1)k am−k

am
. (13)

To bound its running time we need the following two results from algorithmic
number theory.

Theorem 10 (Shoup [17]). Let f be a polynomial over Zp of degree m which
is a product of m distinct monic polynomials of degree 1. Then f can be factored
deterministically with O(p

1
2 (log p)2m1+o(1)) operations in Zp.

Lemma 26 [2]. Hensel lift of a root of polynomial f modulo p to a root modulo
pk can be found with O(deg(f)(k log p)1+o(1)) operations.
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Factorization can be found with Algorithm6. Computing the coefficients
of the polynomial modulo p can be performed in time O((τ(n))2 log n log log n
log log log n). Factorization of a polynomial with distinct roots over Fp can be
done with Shoup algorithm in time (log n)

1
23+log 2+o(1). Algorithms 1 and 4 work

in time (log n)2 log 2+o(1) and O((log n)1.08+log 2+o(1)) respectively. Hensel lift can
be performed in time o((τ(n))2 log n log log n log log log n). In this last bound we
used our main result to reduce the number of Hensel lifts needed so that their
cost does not dominate computational complexity of the algorithm.

From this result we can deduce the following.

Corollary 5. There exists a deterministic algorithm which for almost every n
if the values of functions σ1(n), . . . , σ�(log n)log 2+o(1)�(n) are given, computes the
full factorization of n in time O((log n)1+2 log 2+o(1)).

Proof. Values of σk( n
pα ) can be computed effectively. After computing the

residues of σk(n) modulo p log n
log p � coefficients of the polynomial can be found in

time O((log n)1+2 log 2+o(1)). The rest proceeds exactly as in the previous proof.

The approach presented here does not seem to extend to the cases of a single
σk(n) or φ(n) mentioned in the beginning of this section, neither is it possible to
work for any integer as it critically relies on n having the right number of prime
factors. On the other hand, it does appear to be possible to significantly reduce
the amount of information used by algorithm. It is not needed to know residues
of all divisors, knowing a large fraction of them should suffice.

7 Open Problems

The problem considered here leads to the following questions: For a dissociated
set C (a dissociated set is a set with all subset sums distinct) in an abelian group
G, is C determined uniquely by S = P(C)? Can we find it efficiently?

In general, already the answer to the first question is negative, as the exam-
ples below shows.

P({2, 5}) = P({5, 7}) in Z10

P({3, 5, 6, 7}) = P({1, 9, 13, 15}) = Z17 \ {2} in Z17

The first example illustrates the obstruction caused by even order of the
group and in the second one the set P(C) almost covers the whole group.

So, probably the right question to ask would be rather: Under what conditions
is C determined uniquely by S = P(C)? (Under what conditions can we find it
efficiently?)
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1 Johann Radon Institute for Computational and Applied Mathematics,
Austrian Academy of Sciences, Altenbergerstr. 69, 4040 Linz, Austria

merai@cs.elte.hu
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Abstract. A few years ago new quantitative measures of pseudoran-
domness of binary sequences have been introduced. Since that these
measures have been studied in many papers and many constructions
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binary sequences possessing strong pseudorandom properties in terms of
these new measures usually also pass or nearly pass most of the NIST
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1 Introduction

The National Institute of Standards and Technology (=NIST) of the US issued
the document [26] which we refer to as “NIST tests”. We quote the introduction
of this documentum: “The need for random and pseudorandom numbers arises in
many cryptographic applications. For example, common cryptosystem. . . ” [e.g.,
the Vernam cipher] “. . . employs keys that must be generated in a random fash-
ion. . . This document discusses the randomness testing of random numbers and
pseudorandom number generators that may be used for many purposes includ-
ing cryptographic, modeling and simulation applications. The focus of this doc-
ument is on those applications where randomness is required for cryptographic
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purposes. A set of statistical tests for randomness is described in this document.”
The NIST tests is a package consisting of 15 tests, and in each of these 15 cases
one has to compute the value of a certain statistics composed from the elements
of the given sequence. Then we have to check whether this value is close enough
to the expected value of this statistics for a random binary sequence. If, say, we
want to check the quality of a PRBG (=pseudorandom bit generator; an algo-
rithm generating a long bit sequence from a short random one called “seed”),
then this can be done by testing several bit sequences generated from random
seeds by the PRBG; if these sequences pass the NIST tests then the PRBG is
suitable for further consideration. As the NIST tests writes: “These tests may
be useful as a first step in determining whether or not a generator is suitable for
a particular cryptographic application. However, no set of statistical tests can
absolutely certify a generator as appropriate for usage in a particular applica-
tion, i.e., statistical testing cannot serve as a substitute for cryptanalysis.” The
weak point of this “first step” by using the NIST tests is that they are of a
posteriori type, i.e., we do not have any a priori control of the pseudorandom
quality of the output sequences of the PRBG so that we do not know anything
about the output sequences not tested by the NIST tests.

Thus one might like to replace this a posteriori type testing based on the
NIST tests with a method for a priori testing (called “theoretical testing” by
Knuth) of all the output sequences of the PRBG (which seems to be a too opti-
mistic goal) or at least to combine and complete the NIST tests by a method of
this type (this is a more realistic goal). In 1997 Mauduit and the third author
[18] made a significant step in this direction: they introduced certain measures
of pseudorandomness, and they presented an example for binary sequence which
possess strong pseudorandom properties in terms of these measures. Since that
more than 150 papers have been written in which these measures are studied,
further measures are introduced, or further “good” constructions are presented;
an excellent survey of these papers is given by Gyarmati [12]. It is a natural ques-
tion to ask: how is this direction related to the NIST tests? Can one, indeed,
complete the a posteriori testing by using these new results? A partial answer
was given by the second and third author in [25]: they studied the connection
of 3 NIST tests and a further often used test with the measures of pseudoran-
domness introduced in [18], and they showed that the values of the statistics to
be computed in each of these tests can be estimated well by using the measures
of pseudorandomness mentioned above, moreover, they also presented numer-
ical calculations to show that a “random” sequence selected from a family of
binary sequences constructed by using the Legendre symbol [10,18] passes all
the NIST tests (of 2005). In this paper our goal is to continue that work in the
following direction: we will study the connection between 3 further NIST tests
and our measures of pseudorandomness. (The 8 remaining NIST tests are too
complicated to study their theoretical connection with the measures of pseudo-
randomness.) Moreover, we will present further numerical calculations to show
that a “random” sequence selected from two other families constructed by using
other principles also passes or “almost passes” all the NIST tests.
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2 The Measures of Pseudorandomness

First we recall a few definitions and facts from [18] and other related papers that
we will need in this paper.

Consider a finite binary sequence

EN = (e1, . . . , eN ) ∈ {−1,+1}N . (1)

(Note that in the analysis in some of the NIST tests the bit sequences are also
transformed into sequences consisting of −1 and +1.) Then the well-distribution
measure of EN is defined as

W (EN ) = max
a,b,t

∣
∣
∣
∣
∣
∣

t−1∑

j=0

ea+jb

∣
∣
∣
∣
∣
∣

, (2)

where the maximum is taken over all a, b, t ∈ N such that 1 ≤ a ≤ a+(t−1)b ≤ N ,
while the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

∣
∣
∣
∣
∣

M∑

n=1

en+d1en+d2 . . . en+dk

∣
∣
∣
∣
∣
, (3)

where the maximum is taken over all D = (d1 . . . , dk) and M such that 0 ≤ d1 <
· · · < dk ≤ N − M . Then the sequence is considered as a “good” pseudorandom
sequence if both these measures W (EN ) and Ck(EN ) (at least for “small” k)
are “small” in terms of N (in particular, both are o(N) as N → ∞). Indeed, it
is shown in [4] that for a “truly random” EN ∈ {−1,+1}N both W (EN ) and,
for fixed k, Ck(EN ) are of order of magnitude N1/2 with probability “near 1”
(see also [2,14]). Thus for “really good” pseudorandom sequences we expect the
measures (2) and (3) to be not much greater than N1/2. In [18] a combination of
the well-distribution and correlation measures was also introduced: the combined
pseudorandom measure of order k of the sequence EN in (1) is defined as

Qk(EN ) = max
a,b,t,D

∣
∣
∣
∣
∣
∣

t∑

j=0

ea+jb+d1ea+jb+d2 . . . ea+jb+dk

∣
∣
∣
∣
∣
∣

where the maximum is taken over all a, b, t ∈ N and k-tuples D = (d1, d2, . . . , dk)
of non-negative integers d1 < d2 < · · · < dk such that all the subscripts a+jb+dl

belong to {1, 2, . . . , N}. (Clearly, we have W (EN ) = Q1(EN ) and Ck(EN ) ≤
Qk(EN ) for k ≥ 2.) We will also need the definition of normality measures also
introduced in [18]. The normality measure of order k of the sequence EN of form
(1) is defined as

Nk(EN ) = max
X∈{−1,+1}k

max
0<M≤N+1−k

∣
∣
∣|{n : 0 ≤ n ≤ M, (en+1, . . . , en+k) = X}| − M

2k

∣
∣
∣.

(4)
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It was also shown in [18] (see Proposition 1 and its proof there) that for all N ,
EN and k < N we have

Nk(EN ) ≤ 1
2k

k∑

t=1

(
k

t

)

Ct(EN ) ≤ max
1≤t≤k

Ct(EN ). (5)

Thus if Ct(EN ) is small for all t ≤ k, then Nk(EN ) is also small.

3 Three Principles for Constructing Large Families
of Binary Sequences with Strong Pseudorandom
Properties

It is well known that the Legendre polynomial has many pseudorandom proper-
ties [6,7]. It was shown in [18] that the Legendre symbol also possesses strong
pseudorandom properties in terms of the pseudorandom measures described in
Sect. 2: if p is an odd prime, we write N = p − 1 and

EN = (e1, . . . , eN ) with en =
(

n

p

)

for n = 1, . . . , N,

then we have

W (EN ) � N1/2 log N and Ck(EN ) � kN1/2 log N

for all k < N (where � is Vinogradov’s notation: f(x) � g(x) means that
f(x) = O(g(x)); in both cases the implicit constants can be computed explicitly
(and are relatively small constants).

Goubin et al. [10] studied the generalization of this construction with f(n) in
place of n (where f(x) ∈ Fp[x]). Their results can be combined in the following
way:

Theorem A. If p is a prime number, f(x) ∈ Fp[x] (Fp being the field of the
modulo p residue classes) has degree k(> 0), f(x) has no multiple zero in Fp (=
the algebraic closure of Fp), and the binary sequence Ep = (e1, . . . , ep) is defined
by

en =

{(
f(n)

p

)

for (f(n), p) = 1
+1 for p | f(n),

(6)

then we have
W (Ep) < 10kp1/2 log p.

Moreover, assume that also � ∈ N, and one of the following assumptions holds:

(i) � = 2;
(ii) � < p, and 2 is a primitive root modulo p;
(iii) (4k)� < p.
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Then we also have
C�(Ep) < 10k�p1/2 log p.

The second principle is to utilize the fact that the multiplicative inverse
modulo p is distributed in a random way in (0, p). Denote the least non-negative
residue of n modulo p by rp(n), and if the prime p is fixed, then denote the
multiplicative inverse of a modulo p by a−1 (so that a · a−1 ≡ 1 mod p). The
following theorem (here we present the result in a slightly simplified form) was
proved in [20].

Theorem B. Assume that p is an odd prime number, f(x) ∈ Fp[x] has degree
k with 0 < k < p and no multiple zero in Fp. Define the binary sequence Ep =
(e1, . . . , ep) by

en =
{

+1 if (f(n), p) = 1, rp(f(n)−1) < p
2−1 if either (f(n), p) = 1, rp(f(n)−1) > p

2 or p | f(n). (7)

Then we have
W (Ep) � kp1/2(log p)2.

Moreover, if � ∈ N, 2 ≤ � ≤ p
2k

and f(x) ∈ Fp[x] is of the form f(x) =
(x+a1)(x+a2) · · · (x+ak) with a1, . . . , ak ∈ Fp (ai 	= aj for i 	= j) then we also
have

C�(Ep) � k�p1/2(log p)�+1. (8)

For further related results see also [5,15,16]. For example Liu [15] gave
another (and simpler) condition to control the correlation measure.

Theorem C. Assume that p is an odd prime number, f(x) ∈ Fp[x] is a poly-
nomial of degree (0<)k(<p) such that 0 is its unique zero in Fp. If the sequence
EN is defined as in TheoremB and � < p, then (8) also holds.

The third construction is based on elliptic curves. Let p > 3 be a prime
number and let E be an elliptic curve over Fp defined by the Weierstrass equation

y2 = x3 + Ax + B

with coefficients A,B ∈ Fp and non-zero discriminant (see [30]). The Fp-rational
points E(Fp) of E form an Abelian group with the point in infinity O as the
neutral element, where the group operation is denoted by ⊕. For a rational
point R ∈ E(Fp), a multiple of R is defined by nR =

⊕n
i=1 R. Let Fp(E) be the

function field of E over Fp and as usual for f ∈ Fp(E) let deg f denote of the
degree of f in Fp(E), see [30]. For example, for the coordinate functions we have
deg x = 2 and deg y = 3.

Let G ∈ E(Fp) be of order T and f ∈ Fp(E). Define the binary sequence
ET = (e1, . . . , eT ) by

en =

{(
f(nG)

p

)

if (f(nG), p) = 1,
+1 otherwise.

(9)

The first author studied the pseudorandomness of this sequence [21]. His
results can be combined in the following way:
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Theorem D. Let G ∈ E(Fp) be a generator of E(Fp) of prime order T . Let
f ∈ Fp(E) which is not a perfect square in Fp(E) with degree k = deg f . Then

W (ET ) ≤ 6kp1/2 log T.

Moreover, assume that also � ∈ N, and one of the conditions (i), (ii), (iii) of
TheoremA holds with p replaced by T . Then

C�(ET ) < 2�kp1/2 log T.

4 The “Frequency Test Within a Block”

First we will study the connection of this test (which appears as Sect. 2.2 in
[26]) with the measures of pseudorandomness described in Sect. 2. We quote
[26]: “The focus of this test is to determine whether the frequency of ones in an
M -bit block is approximately M/2, as would be expected under an assumption of
randomness. For block size M = 1, this test degenerates to test 1, the Frequency
(Monobit) test” (which was analyzed in [25]).

Let EN = (e1, . . . , eN ) ∈ {−1,+1}N be the sequence to be tested, M the
length of each block, and, as [26] writes,

“Partition the input sequence into t = [ N
M ] non-overlapping blocks.”

(Here and later we adjust the notations of [26] to our notation.) The quotation
continues:

“Discard any unused bits. Determine the proportion πi of ones in each
block of length M for 1 ≤ i ≤ t”

Now “Compute the χ2 statistic

X1 = 4M

t∑

i=1

(

πi − 1
2

)2

.” (10)

Then the sequence EN passes this test if the value of this statistic is small enough
in the sense described in [26]; we skip the technical details.

In 2.2.7 [26] writes: “The block size M should be selected such that

M ≥ 20, M > N/100 and t < 100.” (11)

Theorem 1. Using the notation above and assuming (11), for every EN ⊂
{−1,+1}N we have

X1 ≤ 2 · 104
W (EN )2

N
. (12)
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Proof. Clearly we have

πi =
|{ej : (i − 1)M < j ≤ iM, ej = +1}|

M

=
1
M

iM∑

j=(i−1)M+1

1
2
(ej + 1) =

1
2M

iM∑

j=(i−1)M+1

ej +
1
2

whence, using the notation of Sect. 2,

∣
∣
∣
∣
πi − 1

2

∣
∣
∣
∣
=

1
2M

∣
∣
∣
∣
∣
∣

iM∑

j=(i−1)M+1

ej

∣
∣
∣
∣
∣
∣

≤ 1
2M

W (EN )

for every 1 ≤ i ≤ t. Thus it follows from (10) that

X1 ≤ 4M · t

(
1

2M
W (EN )

)2

=
2t

M
W (EN )2.

By using (11), (12) follows from this.

In each of the constructions described in Sect. 3 the upper bound in inequality
(12) is less than a constant multiple of a fixed power of log N , so that this
upper bound falls just a little short of the desired <c (with a small positive
constant c). In many applications this can be interpreted as a strong tendency
towards pseudorandomness which is sufficient for our purposes, while if we have
to stick to the threshold bound belonging to the test, then this good upper
bound points to the direction that choosing successive random sequences from
our family studied we have a good chance to find soon a sequence which also
satisfies the stronger inequality prescribed in the test.

5 The “Test for the Longest Run of Ones in a Block”

This test appears in Sect. 2.4 of [26]. We quote [26]: “The focus of the test is the
longest run of ones within M bit blocks. The purpose of this test is to determine
whether the length of the longest run of ones within the tested sequence is
consistent with the length of the largest run of ones that would be expected in
a random sequence.”. The test to answer this question is carried out in [26] in
the following way:

Assume the N,M, t are positive integers with

N = Mt, (13)

N is the length of the sequence EN = (e1, . . . , eN ) ∈ {−1,+1}N to be tested
(again we switch from bit sequences to ±1 sequences), M is taken from a
certain special sequence 8, 128, 104, . . . (see [26]), EN is split in t blocks of
length M , t and thus also N is large enough in terms of M (in particular, for
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M = 8, 128, 104 the number N must be at least 128, 272, 750000, respectively)
and K (=3, 5, 6, . . . ) is certain positive integer assigned to the given M value.
The set {0, 1, . . . ,M} is split in K + 1 disjoint parts P0,P1, . . . ,PK so that

{0, 1, . . . ,M} = P0 ∪ P1 ∪ · · · ∪ PK , Pi ∩ Pj = ∅ for 0 ≤ i < j ≤ K, (14)

e.g., for M = 104, K = 6 in [26] we have

{0, 1, . . . , 104} = {0, 1, . . . , 10} ∪ {11} ∪ {12} ∪ {13} ∪ {14} ∪ {15} ∪ {16, 17, . . . , 104}.

Then for i = 0, 1, . . . ,K we count how many of the t blocks is such that the
length of the longest run of +1’s in it belongs to the part Pi of {0, 1, . . . ,M};
let νi denote the number of blocks with this property. Let πi be the probability
of the event that the length of the longest run of +1’s in a random sequence of
+1 and −1 with length M is i. The test statistic to be computed is a weighted
square mean of the deviations of the νi’s from their expected values tπi:

X2 =
K∑

i=0

(νi − tπi)2

tπi
, (15)

“which, under the randomness hypothesis, has an approximate χ2-distribution
with K degrees of freedom”. Here the theoretical values πi can be replaced by
approximating numerical values which for certain pairs M,K are provided in
Sect. 3.4 of [26]. (We remark that for fixed M , the choice of K and the compu-
tation of the values approximating πi is based on the analysis of distribution of
the longest run in random walks; see, e.g. [24, Chap. 7].)

We will show that the statistic X2 in (15) can be estimated in the following
way:

Theorem 2. We have

X2 ≤ M

N

(
M∑

r=1

(
M

r

)

Qr(EN )

)2

.

Note that this estimate gives a good bound for X2 only if N is large in terms
of M ; the first table in [26], pp. 2–8 seems to indicate that this can be assumed.

Proof. We will use the following notations:
For Z ∈ N, let ΦZ be the set of the binary sequences

FZ = (f1, f2, . . . , fZ) ∈ {−1,+1}Z ,

for such a sequence FZ let ψ(FZ) denote the length of the longest run of +1’s in
FZ , and for j ∈ N, jM ≤ Z, write F

(j,M)
Z = (f(j−1)M+1, f(j−1)M+2, . . . , fjM ).

Then for i = 0, 1, . . . ,K, by the definition of νi and (13) we have

νi =
∑

1≤j≤t

ψ(E
(j,M)
N )∈Pi

1, (16)
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and the expectation of νi choosing any FN ∈ ΦN with equal probability 1/2N is

E(νi) = E

⎛

⎜
⎜
⎜
⎝

∑

1≤j≤t

ψ(E
(j,M)
N )∈Pi

1

⎞

⎟
⎟
⎟
⎠

= t · E

⎛

⎜
⎜
⎝

∑

G∈ΦM

ψ(G)∈Pi

1

⎞

⎟
⎟
⎠

= tπi. (17)

Let G(1), G(2), . . . , G(γi) be the sets G counted in the last sum, and write Gi =
{G(1), G(2), . . . , G(γi)} and G(j) = (g(j)1 , g

(j)
2 , . . . , g

(j)
M ). Each of these sets G(j)

contributes by 1 to this sum, and they are to be selected with probability 1/2M

uniformly. Thus it follows from (17) that

E(νi) = tπi = t
|Gi|
2M

=
t

2M
γi. (18)

Moreover, it follows from (14) that each of the 2M sets G ∈ ΦM is counted in
exactly one Gi with weight 1, thus we have

K∑

i=0

|Gi| =
K∑

i=0

γi = 2M . (19)

Now we will estimate νi for 0 ≤ i ≤ K. Consider a subset G(�) =
(g(�)1 , g

(�)
2 , . . . , g

(�)
M ) ∈ Gi. Then for j = 1, 2, . . . , t clearly we have

M∏

x=1

1 + e(j−1)M+xg
(�)
x

2
=

{

1 if E
(j,M)
N = G(�),

0 if E
(j,M)
N 	= G(�),

whence

γi∑

�=1

M∏

x=1

1 + e(j−1)M+xg
(�)
x

2
=

{

1 if E
(j,M)
N ∈ {G(1), G(2), . . . , G(γi)} = Gi,

0 if E
(j,M)
N 	∈ Gi,

so that by (16) we have

νi =
∑

1≤j≤t

ψ(F
(j,M)
N

)∈Pi

1 =
∑

1≤j≤t

∑

E
(j,M)
N

∈Gi

1 =
t∑

j=1

γi∑

�=1

M∏

x=1

1 + e(j−1)M+xg
(�)
x

2

=

γi∑

�=1

t∑

j=1

⎛

⎝
1

2M
+

1

2M

M∑

r=1

∑

1≤x1<···<xr≤M

g(�)
x1 . . . g(�)

xr
e(j−1)M+x1 . . . e(j−1)M+xr

⎞

⎠

=
t

2M
γi +

1

2M

γi∑

�=1

⎛

⎝

M∑

r=1

∑

1≤x1<···<xr≤M

g(�)
x1 . . . g(�)

xr

t∑

j=1

e(j−1)M+x1 . . . e(j−1)M+xr

⎞

⎠ .

(20)
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It follows from (18) and (20) that

|νi − tπi| =
1

2M

∣
∣
∣
∣
∣
∣

γi∑

�=1

⎛

⎝

M∑

r=1

∑

1≤x1<···<xr≤M

g(�)
x1 . . . g(�)

xr

t∑

j=1

e(j−1)M+x1 . . . e(j−1)M+xr

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ 1

2M

γi∑

�=1

M∑

r=1

∑

1≤x1<···<xr≤M

∣
∣
∣g

(�)
x1 . . . g(�)

xr

∣
∣
∣

∣
∣
∣
∣
∣

t∑

j=1

e(j−1)M+x1 . . . e(j−1)M+xr

∣
∣
∣
∣
∣

=
γi

2M

M∑

r=1

(

M

r

)

Qr(EN ) = πi

M∑

r=1

(

M

r

)

Qr(EN ). (21)

By (13), (18), (19) and (21) we have

X2 =
K∑

i=0

(νi − tπi)
2

tπi
≤

K∑

i=0

πi

t

(
M∑

r=1

(

M

r

)

Qr(EN )

)2

=
1

t

(
M∑

r=1

(

M

r

)

Qr(EN )

)2 K∑

i=0

πi =
M

N

(
M∑

r=1

(

M

r

)

Qr(EN )

)2

which completes the proof of the theorem.

We remark that in Theorem2 the statistic X2 is estimated in terms of the com-
bined pseudorandom measure Qk, while in the most important constructions
studied in Theorems A, B, C and D only the measures W and Ck were esti-
mated, and no estimates are known for the measures Qk (and the situation is
similar in most of the other constructions). However, this gap can be bridged eas-
ily, since in most cases the estimate of Qk can be reduced easily to the estimate
of Ck. For example, in case of the Legendre symbol construction (6) studied in
Theorem A, we can show that if the sequence Ep is defined by (6) in Theorem A
and we assume that all the assumptions in the theorem hold, then we have

Qk(Ep) ≤ Ck(Ep) + 2k,

and in case of the two other constructions similar results could be proved.

6 The “Linear Complexity Test”

The linear complexity L(ẼN ) of a bit sequence ẼN = (ẽ1, . . . , ẽN ) ∈ {0, 1}N is
defined as the length L of a shortest linear recurrence relation (linear feedback
shift register – LFSR)

ẽn+L ≡ cL−1ẽn+L−1 + · · · + c1ẽn+1 + c0ẽn (mod 2), 1 ≤ n ≤ N − L

where c0, . . . , cL−1 ∈ {0, 1}, that ẼN satisfies, with the convention that L(ẼN ) =
0 if ẼN = (0, . . . , 0), and L(ẼN ) = N if ẼN = (0, . . . , 0, 1). For binary sequence
EN of form (1) we also define the linear complexity as L(EN ) = L(ẼN ) with
ẽn = (1 + en)/2.
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The linear complexity is a measure for the unpredictability of a sequence. A
large linear complexity is necessary (but not sufficient) for cryptographic appli-
cations. The linear complexity test appears as Sect. 2.10 in [26]. We quote: “The
purpose of this test is to determine whether or not the sequence is complex
enough to be considered random. Random sequences are characterized by longer
LFSRs. An LFSR that is too short implies non-randomness.”

Brandstätter and Winterhof [3] showed that a small correlation measure
implies large linear complexity:

L(EN ) ≥ N − max
1≤k≤L(EN )+1

Ck(EN ). (22)

This result provides a lower bound for the linear complexity of sequences gener-
ated by using the Legendre symbol (6) and elliptic curves (9). Namely, if Ep is a
sequence generated by (6) using a squarefree polynomial f(x) ∈ Fp[x] of degree
k and 2 is a primitive root modulo p, then Theorem A and (22) imply that

p ≤ L(Ep) + max
1≤k≤L(Ep)+1

Ck(Ep) � kLp1/2 log p,

so that

L(Ep) � p1/2

k log p
. (23)

Similarly, if the sequence ET is generated by (9) using a squarefree func-
tion f(x, y) ∈ Fp[E] with degree k and 2 is a primitive root modulo T , then
Theorem D and (22) imply that

L(ET ) � p1/2

k log T
.

By the celebrated Hasse-Weil Theorem (see e.g. [30], Theorem 4.2) we have
∣
∣p + 1 − |E(Fp)|

∣
∣ ≤ 2p1/2, thus

L(ET ) � T 1/2

k log T
. (24)

In practice, the bounds (23) and (24) are sometimes sufficient. However,
the linear complexity of a truly random binary sequence of length N is around
N/2, thus in more demanding applications one may have to show that the lin-
ear complexity of the given sequence is near N/2 (or at least it is �N); the
linear complexity of the sequence can be determined by using the well-known
Berlekamp-Massey algorithm [17].

In even more demanding cases one may need an even more precise study of
the complexity properties of the sequence. In [26] this is done by the “linear
complexity test” described in [26, pp. 2–24]. This test requires a more controlled
distribution of the linear complexity of the sequences. Namely, it compares the
linear complexity within blocks of length M to the expected value of the linear
complexity

μM =
M

2
+

4 + r2(M)
18

(here again r2(M) is the non-negative remainder of M modulo 2).
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We quote: “Partition the N -bit sequence into t independent blocks of M bits,
where N = t · M .” Then “determine the linear complexity Li of each of the t
blocks (i = 1, . . . , t)”. “For each substring, calculate a value of Ti where

Ti = (−1)M · (Li − μM ) +
2
9
.”

Define the intervals:

I0 = (−∞,−2, 5],
Ij = (−2.5 + j − 1,−2.5 + j], j = 1, . . . , 5,
I6 = (2.5,∞),

and put vj = |{i : Ti ∈ Ij , i = 1, . . . , t}|.
Finally, we define the statistic

X3 =
6∑

j=0

(vj − t · πj)2

t · πj
,

where πj (i = 0, . . . , 6) are the probabilities for the classes Ij :

πj = P

(

(−1)M · (L(EM ) − μM ) +
2
9

∈ Ij

)

,

where EM is chosen uniformly from {−1,+1}M . The acceptance of the sequence
depends on the value of the statistic X3: one has to compute the “P -value”
defined in [26], pp. 2–25, (7) and if the “P -value” is ≥0.01, then the sequence
passes the test.

If the sequence EN to be tested possesses strong pseudorandom properties in
terms of the measures described in Sect. 2, and the length M of the blocks is much
smaller than the length N of the sequence (say, we have M = o(log N)), then
one could give a reasonable upper bound for the statistic X3 by the method used
in Sect. 5 (although here even more work and computation would be needed).
However, according to “input size recommendation” in [26, Sect. 2.10.7], M must
be very large (500 ≤ M ≤ 5000) so that to have M = o(log N), N must be huge
(say, N > 1010000), thus we will not present the details here. This, of course,
does not mean that shorter sequences with good pseudorandom properties fail
this test and, indeed, the numerical examples in Sect. 8 will show that sequences
of this type tend to pass this test, but we cannot show that this is necessarily so.

Remark 6.1. As mentioned previously, small linear complexity implies non-
randomness. However, recent results show that there are many sequences whose
linear complexity is very near to its expected value but which also have some
cryptographic weakness: Winterhof and the first author provided a large class
of highly predictable sequences whose linear complexity is close to its mean
[23]. A simple way to eliminate such sequences is to consider also the expansion
complexity of the sequences defined in [8,22].
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7 Discrete Fourier Transform (Spectral) Test

The “NIST tests” writes: “The purpose of this test is to detect periodic features
(i.e., repetitive patterns that are near each other) in the tested sequence that
would indicate a deviation from the assumption of randomness”.

This is one of the tests which are too complicated to estimate the statistic
to be studied by using our measures of pseudorandomness. Instead, we will do
the following: we show that the goal of the test described above can be also
achieved by using our measures of pseudorandomness and, indeed, the combined
pseudorandom measure of order k described above is especially suitable for this.
Take the following example:

Example 7.1. Consider the 4-tuple +1,−1,−1,+1, and repeat it M = 500000
times. Then letting N = 4M = 2000000, we get a binary sequence EN =
(e1, e2, . . . , eN ) with e4k−3 = +1, e4k−2 = −1, e4k−1 = −1, e4k = +1 for
k = 1, 2, . . . ,M . This sequence is periodic with period 4. Its combined pseu-
dorandom measure of order 4 can be estimated in the following way:

Q4(EN ) ≥
∣
∣
∣
∣
∣
∣

M−1∑

j=0

e4j+1e4j+2e4j+3e4j+4

∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

M−1∑

j=0

1

∣
∣
∣
∣
∣
∣

= M =
N

4
,

so that this measure is big, is as large as 1
4 times the length of the sequence,

much larger than the optimal �N1/2. This fact is reflected in the periodicity,
thus the sequence is far from being of pseudorandom nature.

Of course, if a sequence is not completely periodic but is only almost periodic
with period k, than its Qk measure is still large.

Applying the Discrete Fourier Transform Test for testing the sequence EN

defined above with 20 samples of length 100000, we find that it fails this test
(strongly).

So that both approaches point out the periodic nature of EN , thus it fails
both tests.

Now let us study a more complicated example.

Example 7.2. Consider two especially important special sequences: the Rudin-
Shapiro sequence (defined by (−1)

∑
i εi(n)εi+1(n) where εi denotes the i-th binary

digit of n ) and the Thue-Morse sequence (defined by (−1)
∑

i εi(n) ). It is known
[19] that in both cases if we take a sequence of length N then its correlation
measure of order 2 is very large, it is �N which is again much larger than the
optimal �N1/2 so that in terms of the measures of pseudo randomness described
above they are both far from being of pseudorandom nature.

But what about the Discrete Fourier Transform Test, do these sequences also
fail this test? First consider the Rudin-Shapiro sequence (Fig. 1):
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------------------------------------------------------------------------------

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

------------------------------------------------------------------------------

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

------------------------------------------------------------------------------

3 3 0 2 3 3 1 2 3 0 0.637119 20/20 Frequency

4 0 0 0 3 2 0 0 0 11 0.000000 * 16/20 * BlockFrequency

2 3 5 2 1 2 1 1 1 2 0.637119 20/20 CumulativeSums

2 1 6 2 0 3 2 1 1 2 0.213309 20/20 CumulativeSums

0 0 0 0 0 0 0 0 0 20 0.000000 * 20/20 Runs

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * LongestRun

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Rank

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * FFT

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Universal

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * ApproximateEntropy

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Serial

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Serial

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * LinearComplexity

Fig. 1. Results of 13 NIST tests for the Rudin-Shapiro sequence

------------------------------------------------------------------------------

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

------------------------------------------------------------------------------

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

------------------------------------------------------------------------------

0 0 0 0 0 0 0 0 0 20 0.000000 * 20/20 Frequency

0 0 0 0 0 0 0 0 0 20 0.000000 * 20/20 BlockFrequency

0 0 0 0 0 0 0 0 0 20 0.000000 * 20/20 CumulativeSums

0 0 0 0 0 0 0 0 0 20 0.000000 * 20/20 CumulativeSums

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Runs

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * LongestRun

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Rank

19 0 0 0 0 0 0 0 1 0 0.000000 * 2/20 * FFT

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Universal

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * ApproximateEntropy

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Serial

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * Serial

20 0 0 0 0 0 0 0 0 0 0.000000 * 0/20 * LinearComplexity

Fig. 2. Results of 13 NIST tests for the Thue-Morse sequence

(Here and in some further tables an asterisk indicates after the column “P -
value” that the P -values belonging to the sequence studied and the test named
in the last column are non-uniform, while after column “proportion” it denotes
that many or all of these sequences fail the test in question.) Now consider the
Thue-Morse sequence (Fig. 2):

So that both sequences fail this test. The Fourier transform of the Rudin-
Shapiro polynomial, whose maximum modulus is very close to its L2 norm, and
this is a very unusual property (see [28]). Similarly, the Fourier transform of the
Thue-Morse sequence has a very small L1 norm (see [9]). This explains why they



The Measures of Pseudorandomness and the NIST Tests 211

fail the Discrete Fourier Transform test which detects that they are far from the
DFT of a random sequence.

Our examples show that both approaches can be used effectively for detecting
some sort of periodicity.

8 Numerical Calculation

In the previous sections we showed that those binary sequences EN ∈ {−1,+1}N

whose pseudorandom measures W (EN ) and Ck(EN ) are small, also have strong
pseudorandom properties in terms of the NIST tests a priori, i.e. they provably
pass or “almost pass” most of the NIST tests. In this section we test sequences
constructed by principles described in Sect. 3 a posteriori. The examples show
that these sequences typically pass the NIST tests, even if we can only prove a
slightly weaker pseudorandomness.

We use “Statistical Test Suite for random and pseudorandom number gen-
erators for cryptographic application” (sts-1.4) from the National Institute of
Standards and Technology (NIST). We chose the following parameters for the
test suite (Fig. 3).

BlockFrequency M = 128
OverlappingTemplatem = 9
ApproximateEntropy m = 10
LinearComplexity M = 500

Fig. 3. Parameter choices for NIST test suite

In order to save space we omit the results of the non-overlapping tem-
plate matching (NonOverlappingTemplate), the random excursions (Random
Excursions) and the random excursions variant tests (RandomExcursions
Variant).

The results of the tests are given in Figs. 4, 5 and 6. Columns C1 up to C10
correspond to the frequency specific to the test. Then the P-VALUE is the result
of the application of a χ2-test, and PROPORTION is the proportion of sequences
that pass the test.

8.1 Sequences Generated Using the Legendre Symbol

We constructed 20 sequences with length p = 105 + 3 by (6) with the first 20
squarefree polynomial of degree 31 with respect to the lexicographic ordering:
fi(x) = x31 + i (i = 1, . . . , 20). Since 2 is a primitive root modulo p = 105 +
3, Theorem A implies that all the sequences Ep(i) generated with fi(x) (i =
1, . . . , 20) have small well-distribution and correlation measures.
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------------------------------------------------------------------------------

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

------------------------------------------------------------------------------

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

------------------------------------------------------------------------------

0 0 0 0 0 0 0 0 0 20 0.000000 * 20/20 Frequency

1 4 2 2 2 2 3 3 1 0 0.739918 20/20 BlockFrequency

0 1 0 0 0 1 1 4 7 6 0.000199 20/20 CumulativeSums

0 1 0 0 0 1 1 4 7 6 0.000199 20/20 CumulativeSums

4 4 1 1 3 1 1 3 0 2 0.437274 20/20 Runs

1 2 2 1 5 1 2 3 1 2 0.637119 20/20 LongestRun

2 1 0 3 1 0 4 2 5 2 0.213309 20/20 Rank

0 0 0 0 0 10 0 10 0 0 0.000000 * 20/20 FFT

2 6 0 0 1 6 2 1 2 0 0.006196 19/20 OverlappingTemplate

0 20 0 0 0 0 0 0 0 0 0.000000 * 20/20 Universal

1 1 6 1 1 2 2 1 4 1 0.162606 20/20 ApproximateEntropy

1 2 1 1 3 2 2 5 1 2 0.637119 20/20 Serial

0 4 1 3 1 5 0 2 0 4 0.066882 20/20 Serial

1 4 1 2 2 3 0 1 3 3 0.637119 20/20 LinearComplexity

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fig. 4. Results of 14 NIST tests for sequences generated by using the Legendre symbol

8.2 Sequences Generated Using the Multiplicative Inverse

We took p = 2 · 105 + 3 and considered the polynomials

fi(x) = x ·
15i∏

j=15(i−1)+1

(x2 + j2), i = 1, . . . , 20.

Since 2 · 105 + 3 ≡ 3 (mod 4), −1 is quadratic non-residue, and the least
non-negative remainders of −j2 (j = 1, . . . , 300) modulo p, rp(−j2), are also
quadratic non-residues. Then these polynomials satisfy the conditions of Theo-
rem C, thus they have small well-distribution and correlation measures. However
the sequences generated by (7) with the polynomials fi(x) have a non-trivial
symmetry. Namely, fi(−x) = −fi(x), so en = −ep−n for all 1 ≤ n < p if the
sequence Ep = (e0, . . . , ep−1) ∈ {−1,+1}p is generated such a way. (For tools to
detect such symmetries see [11]). To avoid this phenomenon we just considered
the first half of the sequences: E(i)(p+1)/2 = {e0(i), . . . , e(p−1)/2(i)}, where en(i)
(0 ≤ n < p/2) is defined by the rule (7). In this way we obtained 20 sequences
of length 100002.
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------------------------------------------------------------------------------

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

------------------------------------------------------------------------------

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

------------------------------------------------------------------------------

3 2 1 3 0 2 3 4 1 1 0.637119 20/20 Frequency

5 2 0 1 3 4 2 1 1 1 0.275709 19/20 BlockFrequency

3 1 0 2 2 1 3 0 3 5 0.275709 20/20 CumulativeSums

3 2 2 1 4 0 3 1 4 0 0.350485 20/20 CumulativeSums

2 3 2 5 3 1 1 2 0 1 0.437274 20/20 Runs

2 1 1 2 5 2 3 0 2 2 0.534146 20/20 LongestRun

2 3 3 3 0 0 2 1 4 2 0.534146 20/20 Rank

2 2 1 5 3 3 1 0 2 1 0.437274 20/20 FFT

4 1 1 1 3 0 2 4 1 3 0.437274 20/20 OverlappingTemplate

0 0 0 0 0 0 20 0 0 0 0.000000 * 20/20 Universal

5 4 1 2 2 2 1 1 2 0 0.350485 20/20 ApproximateEntropy

1 2 1 2 1 0 2 7 4 0 0.017912 20/20 Serial

2 1 2 0 3 3 3 2 0 4 0.534146 19/20 Serial

1 3 3 0 3 2 1 4 1 2 0.637119 20/20 LinearComplexity

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fig. 5. Results of 14 NIST tests for sequences generated by using the multiplicative
inverse

8.3 Sequences Generated Using Elliptic Curves

In order to generate sequences with elliptic curves we chose pseudorandom curves
and points following the NIST recommendation (FIPS 186-3). We took the prime
p = 105 + 3 and a pseudorandom elliptic curve of the form

y2 = x3 − 3x + b

over Fp with the additional restriction, that the number T of the Fp-rational
points is prime and 2 is a primitive root modulo T . Then we selected a pseudo-
random point P on the curve.

Our parameters were the following:

E : y2 = x3 − 3x + 74439 over F105+3.

Its cardinality T is 100523. The point was P = (85611, 76395). We took the
functions fi(x, y) = x31 + x + y + i (i = 0, . . . , 19). Since 2 is a primitive root
modulo T , and the functions fi(x, y) (i = 0, . . . , 19) are not perfect squares, The-
orem D implies, that the well-distribution and correlation measures of sequences
generated by the polynomials fi(x, y) (i = 0, . . . , 19) are small.

Summarizing: we have considered altogether 60 binary sequences which have
been proved to possess good pseudorandom properties in terms of the pseudo-
random measures described in Sect. 2, and we tested them by 14 NIST tests. 834
times out of 840 the sequences passed the test so that the NIST tests confirmed
the good pseudorandom quality of the sequence.
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------------------------------------------------------------------------------

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES

------------------------------------------------------------------------------

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

------------------------------------------------------------------------------

4 1 3 0 1 2 2 2 2 3 0.739918 20/20 Frequency

0 3 4 0 3 2 2 1 2 3 0.534146 20/20 BlockFrequency

1 5 2 1 3 1 0 2 3 2 0.437274 20/20 CumulativeSums

4 0 2 4 2 1 3 1 2 1 0.534146 20/20 CumulativeSums

4 2 4 3 2 0 2 1 1 1 0.534146 20/20 Runs

5 3 1 3 4 0 0 3 1 0 0.090936 20/20 LongestRun

3 4 1 0 2 1 1 1 4 3 0.437274 19/20 Rank

3 3 2 2 4 1 1 1 1 2 0.834308 20/20 FFT

4 1 1 2 1 1 6 2 0 2 0.122325 20/20 OverlappingTemplate

0 0 0 0 0 0 0 0 0 20 0.000000 * 20/20 Universal

5 1 2 1 0 5 3 1 1 1 0.122325 20/20 ApproximateEntropy

1 2 2 3 4 0 1 3 2 2 0.739918 19/20 Serial

1 1 4 2 1 2 4 1 2 2 0.739918 19/20 Serial

1 3 3 6 0 2 2 1 1 1 0.162606 20/20 LinearComplexity

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fig. 6. Results of 14 NIST tests for sequences generated by using the elliptic curves

9 Conclusion Remarks

The tables in Sect. 8 show that the sequences “good” in terms of the measures
defined in Sect. 2 are usually also “good” in terms of the NIST tests. Does this
mean that we may eliminate the NIST tests, replace them by estimating the
pseudorandom measures described above? Certainly not: both methods have
advantages and disadvantages. The greatest advantage of using the measures of
pseudorandomness described above is that at least for certain special sequences
they enable us to provide “a priori”, “theoretical” testing without any further
computations. An other advantage of this method is that in many constructions
(like the ones described in Sect. 3) we can give a good upper bound (simultane-
ously by just a single computation) for the correlation measure of order k of a
sequence of length N for every k with k < N c (say, with c = 1/4), and since it
is known [4] that the correlation measures of order k, resp. � are independent
if k � � and � � k, thus by estimating the correlation measures whose order is
less than N c, we test N c′

(with c′ < c) independent pseudorandom properties
of the sequence, while in the NIST tests only 15 properties are tested. On the
other hand, the disadvantage of this approach is that in most cases it is very
difficult to estimate these measures, e.g. there are no algorithms for estimating
correlation measure of high order. On the other hand, NIST provides good and
fast algorithms for performing these tests, while its disadvantage is that it can
not be used for “a priori”, “theoretical” testing.

In Sect. 2 we described only the most important measures of pseudorandom-
ness and in Sect. 3 we presented only three constructions for sequences having
good pseudorandom properties in terms of these measures. There are also other
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measures of pseudorandomness and many further constructions; a survey of these
measures and constructions; a survey of these measures and constructions is pre-
sented in [12]. In this paper we have been focusing on studying pseudorandom
properties of single binary sequences. However, as we mentioned in Sect. 1, if our
goal is to test the quality of a pseudorandom generator, then it is not enough
to restrict ourselves to testing single sequences; one also has to continue the
work by using the tools of cryptanalysis for testing the family of the sequences
generated by the given algorithm. Tools for helping this work also have been
introduced (in the spirit of the measures described in Sect. 2): family complexity
[1], cross-correlation measure [13], distance minimum and avalanche effect [29],
etc., and in each of these cases constructions have been presented for families
possessing good pseudorandom properties in terms of these measures. A survey
of this type of papers is presented in [27].
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pseudorandomness for finite sequences: typical values. Proc. Lond. Math. Soc. 95,
778–812 (2007)

3. Brandstätter, N., Winterhof, A.: Linear complexity profile of binary sequences with
small correlation measure. Period. Math. Hung. 52(2), 1–8 (2006)
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18. Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences I: measures
of pseudorandomness, the Legendre symbol. Acta Arith. 82, 365–377 (1997)
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29. Tóth, V.: Collision and avalanche effect in families of pseudorandom binary
sequences. Period. Math. Hungar. 59, 1–8 (2009)

30. Washington, L.C.: Elliptic Curves: Number Theory and Cryptography, 2nd edn.
Chapman & Hall/CRC Press, Boca Raton (2008)

https://doi.org/10.1016/j.jnt.2017.11.008
https://doi.org/10.1007/11889342_19
https://doi.org/10.1007/11889342_19
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html


On the Cross-Combined Measure of
Families of Binary Lattices and Sequences

Katalin Gyarmati(B)

MTA-ELTE Geometric and Algebraic Combinatorics Research Group,
Department of Algebra and Number Theory, Institute of Mathematics,
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Abstract. The cross-combined measure (which is a natural extension of
the cross-correlation measure) is introduced and important constructions
of large families of binary lattices with optimal or nearly optimal cross-
combined measures are presented. These results are also strongly related
to the one-dimensional case: An easy method is shown obtaining strong
constructions of families of binary sequences with nearly optimal cross-
correlation measures based on the previous constructions of families of
lattices. The important feature of this result is that so far there exists
only one type of construction of very large families of binary sequences
with small cross-correlation measure, and this only type of construction
was based on one-variable irreducible polynomials. However there are
relatively fast algorithms to construct one-variable irreducible polyno-
mials, still in certain applications these algorithms are too complicated
or are not fast enough, thus it became necessary to show other types of
constructions where the generation of sequences is much faster. Using
binary lattices based on two-variable irreducible polynomials this prob-
lem can be avoided. (Since, contrary to one-variable polynomials, using
the Schöneman-Eisenstein criteria it is possible to generate two-variable
irreducible polynomials over Fp easily and very fast.)
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1 Introduction

Pseudorandom binary sequences and lattices have many applications in cryp-
tography. One of the main applications is the famous Vernam-cipher encrypting
algorithm, where pseudorandom binary sequences are used as key-streams. If in
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place of a text we would like to encrypt an image by Vernam cipher, then the key-
stream should be a pseudorandom binary lattice in place of a binary sequence.
In the present paper I will study large families of binary sequences and lattices
and I will extend an important family measure, the cross-correlation measure
from families of binary sequences to family of binary lattices.

1.1 Large Families of Pseudorandom Binary Sequences

The constructive and quantitative study of pseudorandomness started by the
work of Mauduit and Sárközy [30]. They introduced the following pseudoran-
dom measures in order to study the pseudorandom properties of finite binary
sequences:

Definition 1. For a binary sequence EN = (e1, . . . , eN ) ∈ {−1,+1}N of length
N , write U(EN , t, a, b) =

∑t
j=0 ea+jb. Then the well-distribution measure of EN

is defined as

W (EN ) = max
a,b,t

∣
∣
∣
∣
∣
∣

t∑

j=0

ea+jb

∣
∣
∣
∣
∣
∣
,

where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤ a ≤
a + tb ≤ N .

In order to study certain connections of between different elements of the
sequence Mauduit and Sárközy [30] introduced the correlation measure:

Definition 2. For a binary sequence EN = (e1, . . . , eN ) ∈ {−1,+1}N of length
N , and for D = (d1, . . . , d�) with non-negative integers 0 ≤ d1 < · · · < d�, write
V (EN ,M,D) =

∑M
n=1 en+d1 . . . en+d�

. Then the correlation measure of order �
of EN is defined as

C�(EN ) = max
M,D

∣
∣
∣
∣
∣

M∑

n=1

en+d1 . . . en+d�

∣
∣
∣
∣
∣
,

where the maximum is taken over all D = (d1, . . . , d�) and M such that 0 ≤
d1 < · · · < d� < M + d� ≤ N .

In [7] Cassaigne et al. formulated the following principle: “The sequence EN

is considered a “good” pseudorandom sequence if these measures W (EN ) and
C�(EN ) (at least for “small” �) are “small”.” This principle was justified by
Cassaigne et al. [8]. They proved that for the majority of the sequences EN ∈
{−1,+1}N the measures W (EN ) and C�(EN ) are around N1/2 (up to some
logarithmic factors). Later Alon et al. [4] improved on these bounds.

It is also important that we will be able to present constructions for which
these pseudorandom measures are small. First Mauduit and Sárközy [30] studied
the following construction:
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Construction A. Let p be a prime number, N = p−1 and define the Legendre-
sequence EN = (e1, e2, . . . , eN ) ∈ {−1,+1}N by

en =
(

n

p

)

,

where
(

·
p

)
denotes the Legendre symbol.

Then by Theorem 1 in [30] for the sequence EN defined in ConstructionA
we have W (EN ) � N1/2 log N and C�(EN ) � N1/2 log N .

After their first paper [30] on pseudorandomness, Mauduit and Sárközy con-
tinued it by a series of papers and later many people continued the work started
by them. Since then numerous constructions have been given by several authors.

First for fixed N most constructions produced only a single sequence of
length N , however, in many applications one needs many pseudorandom binary
sequences. In 2001 Hoffstein and Liemann [27] succeeded in constructing large
families of pseudorandom binary sequences based on the Legendre symbol, but
they did not prove anything on its pseudorandom properties. Their construction
was the following:

Construction B. Let K ∈ N, p be a prime number, and denote by P≤K the set
of monic polynomials f(x) ∈ Fp[x] of degree k, where 0 < k ≤ K. For f ∈ P≤K

define the binary sequence Ep(f) = (e1, . . . , ep) by

en =

{(
f(n)

p

)
for (f(n), p) = 1,

+1 for p | f(n).
(1.1)

Let F≤K,Legendre = {Ep(f) : f ∈ P≤K}.
Clearly F≤K,Legendre is a large family of pseudorandom binary sequences.

Goubin et al. [14] proved that, under some not too restrictive conditions on the
polynomials f , the sequences Ep(f) have strong pseudorandom properties:

Theorem A. Let p, P≤K and F≤K,Legendre be defined as in ConstructionB and
for f ∈ P≤K define Ep = Ep(f) ∈ F≤K,Legendre by (1.1). Suppose that f has no
multiple root in Fp and denote by k the degree of f . Then

W (Ep) ≤ 10kp1/2 log p.

Moreover, assume that for � ∈ N one of the following assumptions holds:

(i) � = 2;
(ii) � < p and 2 is a primitive root modulo p;
(iii) (4k)� < p.

Then we also have
C�(Ep) ≤ 10k�p1/2 log p.
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We remark that several important a posteriori tests (indicated by the 1.4-sts.
package of the National Institute of Standards and Technology) were checked by
Rivat and Sárközy [39] by computer for many sequences generated by Construc-
tion B. In each cases they obtained that the sequence passes all these tests. This
work was continued by Mérai et al. [36]. After the construction in Theorem A
many other constructions of large families of pseudorandom sequences have been
given by several authors.

Although many constructions exist, ConstructionB is one of the best: we have
optimally good bounds for the pseudorandom measures and the elements of the
sequences can be generated fast. In these constructions it is guaranteed that
the individual sequences belonging to the family possess strong pseudorandom
properties. However, in many applications it is not enough to know this; it can
be much more important to know that the given family has a “rich”, “complex”
structure, there are many “independent” sequences in it. In order to handle
this requirement Ahlswede et al. [1] (see also [2,3,16,32]) introduced the notion
of family complexity or briefly f -complexity (which can be especially useful in
cryptography):

Definition 3. The f-complexity Γ (F) of a family F of binary sequences EN ∈
{−1,+1}N is defined as the greatest integer j so that for any specification

ei1 = ε1, . . . , eij
= εj (1 ≤ i1 < · · · < ij ≤ N)

(with ε1, . . . , εj ∈ {−1,+1}) there is at least one EN = (e1, . . . , eN ) ∈ F which
satisfies it. The f-complexity of F is denoted by Γ (F). (If there is no j ∈ N with
the property above then we set Γ (F) = 0.)

Later other properties of large families were studied and other family measures
were introduced, see e.g. collision free [6,33,40,41], avalanche effect or a vari-
ant of Hamming-distance called in the case of pseudorandom binary sequences as
distance-minimum [6,11,29,40,41]. These measures have multi-dimensional ana-
logues (see the papers [19,20]) and in Sect. 1.2 these multi-dimensional versions
of family measures will be presented.

In Sect. 3 of this paper I will introduce and focus on a new very general mea-
sure, the cross-combined measure. This new measure will be a natural exten-
sion of the one-dimensional cross-correlation measure defined by Gyarmati et al.
in [21]:

Definition 4. Let N ∈ N, � ∈ N, and for any � binary sequences E
(1)
N , . . . , E

(�)
N

with
E

(i)
N =

(
e
(i)
1 , . . . , e

(i)
N

)
∈ {−1,+1}N (for i = 1, 2, . . . , �)

and any M ∈ N and �-tuple D = (d1, . . . , d�) of non-negative integers with
0 ≤ d1 ≤ · · · ≤ d� < M + d� ≤ N , write

V�

(
E

(1)
N , . . . , E

(�)
N ,M,D

)
=

M∑

n=1

e
(1)
n+d1

· · · e(�)n+d�
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Let ∼
C�

(
E

(1)
N , . . . , E

(�)
N

)
= max

M,D

∣
∣
∣V�

(
E

(1)
N , . . . , E

(�)
N ,M,D

)∣
∣
∣

where the maximum is taken over all D = (d1, . . . , d�) and M ∈ N satisfying
0 ≤ d1 ≤ · · · ≤ d� < M + d� ≤ N with the additional restriction that if E

(i)
N =

E
(j)
N for some i �= j, then we must not have di = dj. Then the cross-correlation

measure of order � of the family F of binary sequences EN ∈ {−1,+1}N is
defined as

Φ�(F) = max
∼
C�

(
E

(1)
N , . . . , E

(�)
N

)

where the maximum is taken over all �-tuples of binary sequences(
E

(1)
N , . . . , E

(�)
N

)
with E

(i)
N ∈ F for i = 1, . . . , �.

(Note that other cross-correlation type quantities also occur in [5,13,15].)
In [21] jointly with Mauduit and Sárközy we also studied the main prop-

erties and connections of cross-correlation measure to other family measures.
Later Mérai studied the average behaviour of the cross-correlation measure.
Among others he proved that usually the cross-correlation measure Φ� of a fam-
ily of binary lattices η : In

N → {−1,+1} is between two constant factors of
N1/2(log N)1/2. For more details see [34,35].

The goal of the present paper is to extend this measure to the multi-
dimensional case. The multi-dimensional cross-combined measure will have all
advantages of the one-dimensional cross-correlation measure.

1.2 Large Families of Binary Lattices

Before introducing the definition of the multi-dimensional cross-combined mea-
sure we will need to present the standard terminology of the multi-dimensional
theory of pseudorandomness. This will follow in the next section. In [28] Hubert
et al. extended this theory of pseudorandomness to n dimensions.

Denote by In
N the set of n-dimensional vectors whose coordinates are integers

between 0 and N − 1:

In
N = {x = (x1, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}}.

This set is called an n-dimensional N -lattice or briefly an N -lattice. In [25]
this definition was extended to more general lattices in the following way: Let
u1,u2, . . . ,un be n linearly independent n-dimensional vectors over the field of
the real numbers such that the i-th coordinate of ui is a positive integer and the
other coordinates of ui are 0, so that ui is of the form (0, . . . , 0, zi, 0, . . . , 0) (with
zi ∈ N). Let t1, t2, . . . , tn be integers with 0 ≤ t1, t2, . . . , tn < N . Then we call
the set

Bn
N = {x = x1u1 + · · · + xnun : xi ∈ N ∪ {0}, 0 ≤ xi |ui| ≤ ti(< N)

for i = 1, . . . , n} (1.2)

an n-dimensional box N -lattice or briefly a box N -lattice.



222 K. Gyarmati

In [28] the definition of binary sequences was extended to more dimensions
by considering functions of type

η(x) : In
N → {−1,+1}.

If x = (x1, . . . , xn) so that η(x) = η((x1, . . . , xn)), then we will simplify the
notation slightly by writing η(x) = η(x1, . . . , xn). Such a function can be visu-
alized as the lattice points of the N -lattice replaced by the two symbols + and
−, thus they are called binary N -lattices.

In [28] Hubert et al. introduced the following measures of pseudorandomness
of binary lattices (here we will present the definition in the same slightly modified
but equivalent form as in [25]):

Definition 5. Let η : In
N → {−1,+1} be a binary lattice. Define the combined

pseudorandom measure of order � of η by

Q�(η) = max
B,d1,...,d�

∣
∣
∣
∣
∣

∑

x∈B

η(x + d1) · · · η(x + d�)

∣
∣
∣
∣
∣
,

where the maximum is taken over all distinct d1, . . . ,d� ∈ In
N and all box N -

lattices B such that B + d1, . . . , B + d� ⊆ In
N .

Note that in the one-dimensional special case Q1(η) is the well-distribution
measure W .

η is said to have strong pseudorandom properties, or briefly, it is considered
as a good pseudorandom binary lattice if at least for small �’s and large N the
measures Q�(η)’s are small (much smaller, than the trivial upper bound Nn).
This terminology is justified by the fact that, as it was proved in [28], for a truly
random binary lattice defined on In

N and for fixed � the measure Q�(η) is “small”,
more precisely, it is less than Nn/2 multiplied by a logarithmic factor. As in the
one-dimensional case, many papers have been written on pseudorandomness of
binary lattices, for further references see e.g. [22–24].

In the application (similarly to the one-dimensional case) it is important that
a large family G of binary lattices has a “rich”, “complex” structure, there are
many “independent” sequences, resp. lattices in it which are “far apart”. Thus
one needs quantitative measures for these properties of families of binary lattices.
In case of binary sequences some of these measures were mentioned in Sect. 1.1.

Next few definitions of family measures of binary lattices introduced by
Gyarmati et al. in [21] follow:

Definition 6. If G is a family of binary lattices η is of the form

G = G(S) = {ηs : s ∈ S}, (1.3)

and for any s ∈ S changing any element of s changes large proportion of the
elements of ηs : In

N → {−1,+1}, then we speak about avalanche effect, and we
say that F = F(S) possesses the avalanche property. If for any s ∈ S, s′ ∈ S,
s �= s′ at least

(
1
2 − o(1)

)
Nn elements of ηs and ηs′ are different, then F is said

to possess the strict avalanche property.
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Definition 7. If N ∈ N, n ∈ N, η : In
N → {−1,+1} and η′ : In

N → {−1,+1},
then the distance d(η, η′) between η and η′ is defined by

d(η, η′) = |{(x1, x2, . . . , xn) : (x1, . . . , xn) ∈ I
n
N ,

η(x1, . . . , xn) �= η′(x1, . . . , xn)}|.
If G is a family of binary lattices, then the distance minimum m(G) is defined by

m(G) = min
η,η′∈G
η �=η′

d(η, η′).

So that G is collision free if m(G) > 0, and it possesses the strict avalanche
property if

m(G) ≥
(

1
2

− o(1)
)

Nn. (1.4)

2 The Definition of Cross-Combined Measure and Its
Connection with other Family Measures

In this Sect. 1 extend the cross-correlation measure to the multi-dimensional
case. This new measure will be called cross-combined measure:

Definition 8. Let N ∈ N, � ∈ N, and for any � binary sequences η1, . . . , η� with

ηi : In
N → {−1,+1} (i = 1, 2, . . . , �)

and for any B box-lattice of the form (1.2) and �-tuple D = (d1, . . . ,d�) with
di ∈ In

N (i = 1, 2, . . . , �) write

V� (η1, . . . , η�, B,D) =
∑

x∈B

η1(x + d1) · · · η�(x + d�). (2.1)

Let ∼
Q� (η1, . . . , η�) = max

B,D
|V� (η1, . . . , η�, B,D)| (2.2)

where the maximum is taken over all D = (d1, . . . ,d�) and B box-lattice sat-
isfying B + d1, B + d2, . . . , B + d� ⊆ In

N with the additional restriction that if
ηi = ηj for some i �= j, then we must not have di = dj. Then the cross-combined
measure of order � of the family G of binary lattices η ∈ {−1,+1}N is defined as

Φ�(G) = max
∼
Q� (η1, . . . , η�) (2.3)

where the maximum is taken over all �-tuples of binary lattices (η1, . . . , η�) with

ηi ∈ G for i = 1, . . . , �.

By the definition of
∼
Q�, we have

∼
Q� (η, . . . , η) = Q�(η), thus it follows from (2.3)

that
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Proposition 1. We have

Φ�(G) ≥ max
η∈G

Q�(η).

This means that if we have a “good” upper bound for Φ�(G), then this guarantees
that all lattices in G possess strong pseudorandom properties.

Next in this Sect. 1 will study the connection of cross-combined measure with
other family measures. As a multi-dimensional analog of Proposition 2.2 in [21]
now we obtain:

Proposition 2. If N,n ∈ N and G is a family of binary lattices η : In
N →

{−1,+1}, then for η1, η2 ∈ G we have
∣
∣
∣
∣d(η1, η2) − Nn

2

∣
∣
∣
∣ ≤ 1

2

∼
Q2(η1, η2) ≤ 1

2
Φ2(G). (2.4)

Proof. Clearly we have

d(η1, η2) =
∑

x∈In
N

(η1(x) − η2(x))2

4
=

Nn

2
− 1

2

∑

x∈In
N

η1(x)η2(x)

whence, by (2.1), (2.2) and (2.3),

∣
∣
∣
∣d(η1, η2) − Nn

2

∣
∣
∣
∣ =

1
2

∣
∣
∣
∣
∣
∣

∑

x∈In
N

η1(x)η2(x)

∣
∣
∣
∣
∣
∣
≤ 1

2

∼
Q2(η1, η2) ≤ Φ2(G)

which proves (2.4).
If the cross-combined measure of order 2 of a family G of n-dimensional

binary lattices is o(Nn) then it follows from Definition 7 and (2.4) that

m(G) = min
η,η′∈F
η �=η′

d(η1, η2) ≥ Nn

2
− 1

2
Φ2(G) =

Nn

2
− o(Nn)

so that (1.4) holds. This proves

Proposition 3. If N,n ∈ N, G is a large family of binary lattices η : In
N →

{−1,+1} and Φ2(G) = o(Nn) then the family G possesses the strict avalanche
property.

3 Cross-Combined Measure of a Family of Binary
Lattices Constructed by Using Quadratic Characters

Mauduit and Sárközy [31] constructed a large family of binary lattices with
strong pseudorandom properties by using quadratic characters of finite fields
(this construction generalizes the one dimensional constructions in [14,30]). They
proved the following theorem:
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Theorem B. Assume that q = pn is the power of an odd prime, f(x) ∈ Fq[x]
has degree k with

0 < k < p.

Denote the quadratic character of Fq by γ (setting also γ(0) = 0). Consider the
linear vector space formed by the elements of Fq over Fp, and let v1, . . . , vn be a
basis of this vector space (i.e., assume that v1, v2, . . . , vn are linearly independent
over Fp). Define the n dimensional binary p-lattice η : In

p → {−1,+1} by

η(x) = η((x1, . . . , xn)) =

⎧
⎨

⎩

γ(f(x1v1 + · · · + xnvn)) for
f(x1v1 + · · · + xnvn) �= 0

+1 for f(x1v1 + · · · + xnvn) = 0.
(3.1)

Assume that f(x) has no multiple zero in Fq, � ∈ N and

4n(k+�) < p.

Then we have
Q�(η) < k�(q1/2(1 + log p)n + 2).

Indeed this is a combination of Theorems 1 and 2 in [31].
Throughout this section p, n and q = pn will be fixed. We will denote the

construction of TheoremB by G≤K,quadratic:

Construction C. Denote by P≤K the set of monic polynomials f ∈ Fq[x] with
degree 0 < deg f ≤ K. Let G≤K,quadratic denote the family of the binary lattices
η defined by (3.1) assigned to polynomials f ∈ P≤K .

It is clear that all lattices η ∈ G≤K,quadratic satisfying the conditions of
Theorem B possess strong pseudorandom properties.

In order to simplify the notations we will introduce a function τ : F
n
p → Fq.

We may assume that In
p represents the elements of F

n
p and thus we may also use

τ as a function τ : In
p → Fq. Let v1, v2, . . . , vn be the basis of the vector space Fq

over Fp defined in Theorem B. (Here q = pn.) For an x = (x1, x2, . . . , xn) ∈ F
n
p

let
τ(x) = x1v1 + x2v2 + · · · + xnvn.

Then τ is a bijection. We also have for a,b ∈ F
n
p that τ(a + b) = τ(a) + τ(b).

Then (3.1) in Theorem B can be written in the equivalent form

η(x) =
{

γ(f(τ(x))) for f(τ(x)) �= 0
+1 for f(τ(x)) = 0. (3.2)

In [19] jointly with Mauduit and Sárközy we proved that the family measure of
G≤K,quadratic is optimal. The distance minimum was also estimated in [19] and If
K < 1

2q1/2, then G≤K,quadratic is collision free. Moreover if q → ∞, K = o(q1/2),
then G≤K,quadratic possesses the strict avalanche property.

Unfortunately, it turned out that for K ≥ 2, our new measure, the cross-
combined measure of G≤K,quadratic is very bad:
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Proposition 4. For K ≥ 2 we have Φ3(G≤K,quadratic) ≥ q − 2.

Proof. Consider the following 3 polynomials: f1(x) = x, f2(x) = x + 1, f3(x) =
x(x + 1) ∈ Fq[x]. Let ηi be the binary lattice defined by (3.1) with fi in place of
f for i = 1, 2, 3. Then using (3.2) we get:

Φ3(G≤K,quadratic) ≥
∼
Q3(η1, η2, η3) ≥ V3(η1, η2, η3, I

n
p , (0, 0, 0)) =

∑

x∈In
p

η1(x)η2(x)η3(x)

=
∑

τ(x)∈In
p

τ(x)(τ(x)+1) �=0

γ(τ(x))γ(τ(x) + 1)γ(τ(x)(τ(x) + 1)) + γ(1) + γ(−1)

=
∑

y∈Fq

y(y+1) �=0

γ(y2(y + 1)2) + γ(1) + γ(−1) ≥ q − 2.

Clearly Proposition 4 can be easily extended to cross-combined measures of
higher order.

Thus we need to restrict the family G≤K,quadratic to a large subfamily of
it such that this subfamily has a good cross-combined measure. In the one-
dimensional case jointly with Mauduit and Sárközy [21] we have the following
idea:

Construction D. Consider the set of monic irreducible polynomials of the form
f(x) = xk + ak−2x

k−2 + ak−3x
k−3 + · · · + a0 (so that the coefficient ak−1 = 0)

with degree 0 < k ≤ K and let F≤K,irreducible,Legendre (F≤K,Legendre) the set of
all binary sequences defined by (1.1) where the used monic irreducible polynomial
f are in this form.

Then by [21] the family F≤K,irreducible,Legendre has optimal cross-correlation
measure:

Theorem C

Φ�(F≤K,irreducible,Legendre) ≤ 10K�p1/2 log p.

(This is Theorem 1 in [21]). Here the family F≤K,irreducible,Legendre is almost as
large as F≤K,Legendre, and so far this is the only method to construct very large
family of binary sequences with optimal cross-correlation measure. In Sect. 5
I will show another type of construction of a very large family of binary sequences
for which the cross-correlation measure is nearly optimal.

Next I return to the cross-combined measure and the multi-dimensional case.

Construction 1. Let G≤K,irreducible,quadratic denote the following subfamily of
G≤K,quadratic: consider those η ∈ G≤K,quadratic for which the used polynomials f
in (3.1) are monic irreducible and of the form f(x) = xk+ak−2x

k−2+ak−3x
k−3+

· · · + a0 (so that the coefficient ak−1 = 0) with degree 0 < k ≤ K and let
G≤K,irreducible,quadratic the set of all binary lattices obtained in this way. Clearly
G≤K,irreducible,quadratic ⊂ G≤K,quadratic.
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Next I prove

Theorem 1

Φ�(G≤K,irreducible,quadratic) < K�q1/2(log p + 1)n + 2�.

Proof. By the definition of cross-combined measure we have that there exist
binary lattices η1, η2, . . . , η� ∈ G≤K,Legendre D = (d1, . . . ,d�) �-tuple (where
di ∈ I

n
p ) and B box-lattice satisfying B+d1, . . . , B+d� ⊂ In

p with the additional
restriction that if ηi = ηj for some i �= j, then we must not have di = dj such
that

Φ�(G≤K,irreducible,quadratic) = |V�(η1, . . . , η�, B, D)| =

∣∣∣∣∣
∑

x∈B

η1(x + d1) · · · η�(x + d�)

∣∣∣∣∣
(3.3)

Clearly by (3.2) there exists monic irreducible polynomials fi (i = 1, 2, . . . , �)
such that all fi can be written in the form

xk + ak−2x
k−2 + ak−3x

k−3 + · · · + a1x + a0 (3.4)

for some 0 < k ≤ K, a0, a1, . . . , ak−2 ∈ Fq (thus the coefficient of xdeg fi−1 is
always 0) and for the binary lattice ηi (i = 1, 2, . . . , �) we have

ηi(x) =
{

γ(fi(τ(x))) for f(τ(x)) �= 0
+1 for fi(τ(x)) = 0. (3.5)

By (3.3), (3.5) and since irreducible polynomials may have only one zero (and
only in the case of linear polynomials) we have

Φ�(G≤K,irreducible,quadratic) ≤
∣
∣
∣
∣
∣

∑

x∈B

γ(f1(τ(x + d1))) · · · γ(f�(τ(x + d�)))

∣
∣
∣
∣
∣
+ 2�

=

∣
∣
∣
∣
∣
∣

∑

y∈τ(B)

γ(f1(y + τ(d1)) · · · f�(y + τ(d�)))

∣
∣
∣
∣
∣
∣
+ 2�

(3.6)

where the set τ(B) is defined by τ(B) def= {τ(x) : x ∈ B}. Next we use
Winterhof’s Lemma [43]:

Lemma 1. Let χ be a non-trivial multiplicative character of order d over Fq

and g ∈ Fq[x] of a polynomial with s distinct zeros in Fq and which is not of the
form ch(x)d with c ∈ Fq and h(x) ∈ Fq[x]. Then for 1 ≤ ti < p (i = 1, 2, . . . , n)
and for a set C defined by

C = C(t1, t2, . . . , tn) = {x1v1+x2v2+· · ·+xnvn : 0 ≤ xi ≤ ti for i = 1, 2, . . . , n}
(3.7)
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we have
∣
∣
∣
∣
∣
∣

∑

y∈C

χ(g(x))

∣
∣
∣
∣
∣
∣
< sq1/2(1 + log p)n ≤ deg g q1/2(1 + log p)n.

This is Theorem 2 in [43]. (The main tool in the proof is Weil’s theorem [42].)
Clearly the set τ(B) is a set of the form (3.7). We will use Lemma 1 with

the quadratic character γ in place of χ and with the polynomial g(y) def= f1(y +
τ(d1)) · · · f�(y + τ(d�)). In order to use this lemma first we need to show g(y) is
not of the form ch(y)2. If for some 1 ≤ i < j ≤ � we have fi(y) �= fj(y), then

fi(y + τ(di)) �= fj(y + τ(dj)) (3.8)

also holds since if
fi(y + τ(di)) = fj(y + τ(dj)), (3.9)

then deg fi = deg fj = k. Then the coefficient of the term xk−1 are the same both
in fi(y + τ(di)) and fj(y + τ(dj)) and by the special form of these polynomials
(see (3.4)) we also have that (3.9) holds only if τ(di) = τ(dj). Since τ is a
bijection then we have di = dj . Writing this in (3.9) we get the polynomials fi

and fj are the same, but then the lattices ηi and ηj are also the same. In the
definition of cross-combined measure we have the additional restriction that if
ηi = ηj , then we must have di �= dj , which is a contradiction. Thus we proved
(3.8). By (3.8) we get g(y) is a product of different irreducible polynomials thus
it cannot be of the form ch(y)2. So we may use Lemma 1 for the character sum
in (3.6) and we obtain

Φ�(G≤K,irreducible,quadratic) < K�q1/2(log p + 1)n + 2�

which was to be proved.

4 Cross-Combined Measure of a Family of Binary
Lattices Constructed by Using Legendre Symbol

Next I study a natural construction of families of two-dimensional binary lattices
based on Legendre symbol introduced by Gyarmati et al. in [25,26]. In the case
of this construction we will have slightly weaker upper bounds both for the pseu-
dorandom measures of the binary lattices and for the cross-combined measure of
the family than the optimal. The reason for this is that in order to estimate the
necessary character sums we would need the two-dimensional analogue of Weil’s
theorem [42]. The multi-dimensional analogue of Weil’s theorem was studied by
Delinge [9,10], and later Fouvry and Katz [12] simplified the requirements. Still
an inconvenient assumption of nonsingularity is required in order to reach the
optimal bounds, which in our cases are not applicable. However in the case of
this construction we have weaker upper bounds for the pseudorandom measures,
on the other hand the lattices of the family can be generated very fast, which
makes the implementation easy. Our starting point is the following construction
defined by Sárközy, Stewart and myself in [25]:



On the Cross-Combined Measure of Families of Binary Lattices 229

Construction E. Let p be an odd prime. Denote by R≤K the set of polynomials
f ∈ Fp[x1, x2] with degree 0 < deg f ≤ K. Let G≤K,Legendre denote the family
all binary lattices η : I2p → {−1,+1} which can be written in the form defined
by

η(x1, x2) =

{(
f(x1,x2)

p

)
if (f(x1, x2), p) = 1,

1 if p | f(x1, x2).
(4.1)

with a polynomial f ∈ R≤K .

In [25,26] jointly with Sárközy and Stewart we proved that under some not
too restrictive conditions on the polynomial f or the prime p we have:

Q�(η) ≤ 11k�p3/2 log p.

Similarly to Sect. 3, it turned out that for K ≥ 2, the cross-combined measure
of G≤K,Legendre is very bad:

Proposition 5. For K ≥ 2 we have Φ3(G≤K,Legendre) ≥ p2 − 2.

The proof of Proposition 5 is similar to Proposition 4 thus we leave the details to
the reader. Thus again we need to restrict G≤K,Legendre to a proper large sub-
family which has good cross-correlation measure. Again we have the idea using
irreducible polynomials. Here we need the following special case of Theorem 1
in [25]:

Theorem D. Let p be an odd prime, f ∈ Fp[x1, x2] be an irreducible polynomial
in two variables of degree k. Define η : I2p → {−1,+1} by (4.1). If f(x1, x2) is
not of the form

f(x1, x2) = ϕ(γx1 + δx2) (4.2)

with γ, δ ∈ Fp and ϕ ∈ Fp[x].
Then for the binary p-lattice defined by (4.1) we have

Q�(η) ≤ 11k�p3/2 log p.

Is the condition that f(x1, x2) is not of the form (4.2) necessary? The answer
is affirmative since by Theorem 2 in [26] we have

Theorem E. Let p be an odd prime, f ∈ Fp[x1, x2] be a polynomial in two
variables of degree k. Define η : I2p → {−1,+1} by (4.1). If f(x1, x2) is of the
form f(x1, x2) = ϕ(γx1 + δx2) with some γ, δ ∈ Fp and ϕ ∈ Fp[x], then for the
binary p-lattice defined by (4.1) we have

Q2(η) ≥ p2 − 4p3/2 − 8kp.

By Theorems D and E we have the idea of studying the following subfamily
of G≤K,Legendre:
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Construction 2. Let G≤K,irreducible,Legendre denote the following subfamily of
G≤K,Legendre: consider those η ∈ G≤K,quadratic for which the used polynomials f
in (4.1) are irreducible and they are of the form

f(x1, x2) = xk
1 + xk−1

2 + s(x1, x2) (4.3)

where deg s ≤ k − 3. Clearly G≤K,irreducible,quadratic ⊂ G≤K,quadratic.

The cross-combined measure of this family is relatively small:

Theorem 2

Φ�(G≤K,irreducible,Legendre) < 11K�p3/2 log p.

Proof. The theorem is trivial for the cases p ≤ 7 and p ≤ K, thus through-
out the proof we may assume p ≥ 11 and K < p. Let η1, η2, . . . , η� ∈
G≤K,irreducible,Legendre binary lattices, D = (d1, . . . ,d�) and B box-lattice sat-
isfying B + d1, . . . , B + d� ⊂ In

p with the additional restriction that if ηi = ηj

for some i �= j, then we must not have di = dj for which we have

Φ�(G≤K,irreducible,Legendre) = |V�(η1, . . . , η�, B, D)| =

∣∣∣∣∣
∑

x∈B

η1(x + d1) · · · η�(x + d�)

∣∣∣∣∣

Clearly by (4.1) there exists irreducible polynomials fi (i = 1, 2, . . . , �) which
are of the form (4.3) and

ηi(x) =

{(
fi(x)

p

)
for f(x) �= 0

+1 for fi(x) = 0.

Since for fixed x1 the polynomial f(x) = f(x1, x2) has at most K zeros in x2,
we have f(x) has at most Kp zeros in x. Then similarly to (3.6) we get

Φ�(G≤K,irreducible,Legendre) ≤
∣
∣
∣
∣
∣

∑

x∈B

(
f1(x + d1) · · · f�(x + d�)

p

)∣
∣
∣
∣
∣
+ 2K�p. (4.4)

Here we would like to use the following lemma which was proved in [25]:

Lemma 2. Let p ≥ 5 be a prime and χ be a multiplicative character of order
d. Suppose that h(x1, x2) ∈ Fp[x1, x2] is not of the form cg(x1, x2)d with c ∈ Fp,
g(x1, x2) ∈ Fp[x1, x2]. Let k be the degree of h(x1, x2). Then we have

∑

x∈B

χ (h(x)) < 10kp3/2 log p

for every 2 dimensional box p-lattice B ⊆ I2p .
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In order to prove Theorem 2 first we mention that the irreducible polynomials
f1(x + d1), . . . , f�(x + d�) are different. Indeed if

fi(x + di) = fj(x + dj), (4.5)

then writing d = dj − di we get

fi(x + d) = fj(x).

Write x = (x1, x2) and d = (d1, d2). Then using that f is of the form (4.3) we
get

(x1 + d1)k + (x2 + d2)k−1 + s(x1 + d1, x2 + d2) = xk
1 + xk−1

2 + s(x1, x2). (4.6)

Here the coefficients of xk−1
1 and xk−2

2 must be identical in the left and right-
hand side of (4.6) but since deg s ≤ k − 3 this is possible only for d1 = 0 and
d2 = 0. Then d = (d1, d2) = 0, so di = dj . Then from (4.5) we get fi = fj and
thus ηi = ηj . But in the beginning of the proof we assumed that if ηi = ηj for
some i �= j, then we must not have di = dj which is a contradiction.

Since the irreducible polynomials f1(x + d1), . . . , f�(x + d�) are different,
the product polynomial g(x) = f1(x + d1) · · · f�(x + d�) cannot be of the form
cg(x)2. By (4.4) and using Lemma 2 we get

Φ�(G≤K,irreducible,Legendre) < 10K�p3/2 log p + 2K�p < 11K�p3/2 log p.

which was to be proved.

Corollary 1. For all subfamily G0 of G≤K,irreducible,Legendre we have

Φ�(G0) < 11K�p3/2 log p.

This corollary is trivial and at first sight not very interesting. The important
feature of it is that while the construction of one-variable irreducible polynomials
is slightly complicated (see e.g. the Handbook of Finite Fields [37]), then there
is an easy way to construct two-variable irreducible polynomials over finite fields
using the Schöneman-Eisenstein criteria:

Lemma 3. Let k ≥ 5 and f ∈ Fp[x1, x2] be a polynomial of the form

f(x1, x2) = xk
1 + x1x2g(x1, x2) + x2h(x2) (4.7)

with g ∈ Fp[x1, x2], deg g ≤ k − 5, h ∈ Fp[x2] is a monic polynomial such that
deg h = k − 2, x2 � h(x2) and the coefficient of xk−3

2 in h(x2) is 0.
Then f(x1, x2) is irreducible and it is of the form (4.3).

It is clear that the polynomial f is of the form (4.3). The irreducibility of the
polynomial f was also stated and used in [26] in the proof of Theorem3 (there
the conditions on g and h were slightly weaker than here, e.g. it is enough to
assume deg g ≤ k−3 etc.). In [26] the proof of the irreducibility of f was deduced
from Theorem 282 in the book of Rédei [38].

Using polynomials of form (4.7) we can construct a large family of binary
lattices such that its implementation is easy and fast:
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Construction 3. Let G≤K,Sch−Eis,Legendre denote the following subfamily of
G≤K,irreducible,Legendre: consider those η ∈ G≤K,quadratic for which the used
polynomials f in (4.1) are of the form (4.7). Clearly G≤K,Sch−Eis,Legendre ⊂
G≤K,irreducible,Legendre ⊂ G≤K,quadratic.

Using Corollary 1 we immediately get.

Corollary 2

Φ�(G≤K,Sch−Eis,Legendre) < 11K�p3/2 log p.

Thus the family G≤K,Sch−Eis,Legendre has nearly optimal cross-combined mea-
sure, clearly is is very large (it contains more than pK(K−1)/2 different binary
lattices) and the binary lattices in it can be generated easily and very fast. In the
next section we will show how it is possible to generate a very large families of
pseudorandom binary sequences with optimal or nearly optimal cross-correlation
measure using these families of binary lattices.

5 Constructions of Binary Sequences with Optimal
or Nearly Optimal Cross-Correlation Measures Based
on Lattices and Multi-dimensional Theory

In [18] jointly with Mauduit and Sárközy we reduced the two dimensional case
to the one-dimensional one by the following way: To any 2-dimensional binary
N -lattice

η : I2N → {−1,+1} (5.1)

we may assign a unique binary sequence EN2 = EN2(η) = {e1, e2, . . . , eN2} ∈
{−1,+1}N by taking the first (from the bottom) row of the lattice then we
continue the binary sequence by taking the second row of the lattice, then the
third row follows, etc.; in general, we set

eiN+j = η((j − 1, i)) for i = 0, 1, . . . , N2 − 1, j = 1, 2, . . . , N. (5.2)

We will denote the sequence defined by this way by E(η). In [18] with Mauduit
and Sárközy we asked if it is true that if E(η) is a “good” pseudorandom binary
sequence then η is a “good” pseudorandom 2-dimensional lattice? The answer to
this question is negative; in [18] it is showed that it may occur that the pseudo-
random measures of the sequence EN2(η) are small, however, the corresponding
pseudorandom measures of the lattice η are large. On the other hand, in [17]
I proved the following: if the lattice η has small combined measure, then the
corresponding E(η) sequence has small correlation measure as well.

Theorem F. Let η be an arbitrary binary lattice. Then

C�(E(η)) ≤ (� + 2)Q�(η).

Here I generalize this result to families of binary sequences and lattices and
the cross-correlation and cross-combined measure.



On the Cross-Combined Measure of Families of Binary Lattices 233

Definition 9. Let F be a two-dimensional family of binary lattices η : I2N →
{−1,+1}. Define the family E(G) of binary sequences of length N2 by

E(G) def= {E(η) : η ∈ G}.
Next I will prove that if a family G of two-dimensional binary lattices has good
cross-combined measure then the family of binary sequences E(G) also has good
cross-correlation measure. The proof of this fact will be very similar to the proof
of Theorem F (see [17]).

Theorem 3. Let G be a family of two-dimensional binary lattices η : I2N →
{−1,+1}. Then

Φ�(E(G)) ≤ (� + 2)Φ�(G)

Proof. By the definition of the cross-correlation measure we have that there
exist binary sequences E(η1), E(η2), . . . , E(η�) ∈ E(G) (where η1, η2, . . . , η� ∈ G),
M ∈ N and �-tuple D = (d1, d2, . . . , d�) of non-negative integers with 0 ≤ d1 ≤
d2 ≤ · · · ≤ d� < M + d� with the additional restriction that if E(ηi) = E(ηj)
(in other words ηi = ηj) for some i �= j, then we must not have di = dj and for
which

Φ�(E(G)) =
∣
∣V�(E(η1), . . . , E(η�),M,D)

∣
∣ . (5.3)

Write E(ηi) of the form E(ηi) = (e(i)1 , e
(i)
2 , . . . , e

(i)
N2) for i = 1, 2, . . . , �. Then by

(5.3)

Φ�(E(G)) =

∣
∣
∣
∣
∣

M∑

n=1

e
(1)
n+d1

· · · e(�)n+d�

∣
∣
∣
∣
∣
. (5.4)

Next few definitions will follow: For x ∈ Z let

x = rN (x)N + mN (x)

where mN (x) ≡ x (mod N), 0 ≤ mN (x) ≤ N − 1 and rN (x) =
[

x
N

]
.

By definition e
(i)
yN+x+1 = ηi(x, y) for 0 ≤ x ≤ N − 1, 0 ≤ y ≤ N − 1 and i =

1, . . . , � and thus
e(i)n = ηi(mN (n − 1), rN (n − 1)).

Then for 1 ≤ i ≤ �

e
(i)
n+di

= η(mN (n + di − 1), rN (n + di − 1)). (5.5)

Here
n + di − 1 = (rN (n − 1) + rN (di))N + mN (n − 1) + mN (di).

Thus if 0 ≤ mN (n − 1) + mN (di) ≤ N − 1, then

rN (n + di − 1) = rN (n − 1) + rN (di), mN (n + di − 1) = mN (n − 1)+mN (di)

and if N ≤ mN (n − 1) + mN (di), then

rN (n + di − 1) = rN (n − 1) + rN (di) + 1, mN (n + di − 1) = mN (n − 1) + mN (di) − N.



234 K. Gyarmati

Thus we get that there exists an ai
def= N − 1 − mN (di) such that for

mN (n − 1) ≤ ai

rN (n + di − 1) = rN (n − 1) + rN (di), mN (n + di − 1) = mN (n − 1)+mN (di)
(5.6)

and for ai + 1 ≤ mN (n − 1)

rN (n + di − 1) = rN (n − 1) + rN (di) + 1, mN (n + di − 1) = mN (n − 1) + mN (di) − N.

(5.7)

Then {1, a1+1, a2+1, . . . , a�+1,mN (M −1)+1, N} is a multiset which contains
integers 1 = c1 < c2 < · · · < cm ≤ N where m ≤ � + 3. By (5.6) and (5.7) we
get that for cj ≤ n ≤ cj+1 − 1 there exist numbers bi,j and fi,j such that

rN (n + di − 1) = rN (n) + rN (di − 1) + bi,j , mN (n + di − 1) = mN (n)+mN (di − 1) − fi,j

(5.8)

where bi,j ∈ {0, 1} and fi,j ∈ {0, N}. Moreover, if bi,j = 0, then fi,j = 0 and if
bi,j = 1, then fi,j = N . Now

[1,M ] =

= {n = TN + x + 1 : T = 0, 1, . . . ,

[
M − 1

N

]

, x = 0, 1, . . . ,mN (M − 1)}

∪ {n = TN + x + 1 : T = 0, 1, . . . ,

[
M − 1

N

]

− 1, x = mN (M − 1) + 1,

. . . , N − 1}.

Thus

[1,M ] = ∪m−1
j=1 {n : n = rN (N − 1)N + mN (n − 1) + 1,

cj ≤ mN (n − 1) ≤ cj+1 − 1, rN (n − 1) ∈ {0, 1, 2, . . . , Tj}} (5.9)

where Tj =
[

M−1
N

]
if cj+1 ≤ mN (M − 1) + 1 and Tj =

[
M−1

N

] − 1 if mN (M −
1) + 1 ≤ cj . (Since mN (M − 1) + 1 ∈ {c1, c2, . . . , cm} and c1 < c2 < · · · < cm

thus cj < mN (M − 1) + 1 < cj+1 is not possible.) By this, (5.4), (5.5) and (5.6)

Φ�(E(G)) =

M∑

n=1

e
(1)
n+d1

· · · e(�)n+d�
=

m−1∑

j=1

∑

cj≤mN (n−1)≤cj+1−1
1≤n≤M

e
(1)
n+d1

. . . e
(�)
n+d�

=

m−1∑

j=1

∑

cj≤mN (n−1)≤cj+1−1
1≤n≤M

�∏

i=1

ηi(mN (n − 1) + mN (di) − fi,j , rN (n − 1) + rN (di) + bi,j) (5.10)
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By (5.9)

{(mN (n − 1), rN (n − 1)) : 1 ≤ n ≤ M and cj ≤ mN (n − 1) ≤ cj+1 − 1} =
{(x, y) : 0 ≤ x ≤ Tj and cj ≤ y ≤ cj+1 − 1}.

Using this, (5.8) and (5.10) we get

Φ�(E(G)) =
m−1∑

j=1

Tj∑

x=0

sum
cj+1−1
y=cj

�∏

i=1

ηi(x + mN (di) − fi,j , y + rN (di) + bi,j) ≤ (m − 1)Φ�(G)

≤ (� + 2)Φ�(G)) (5.11)

which was to be proved. Let us see whether the pairs (mN (di)−fi,j , rN (di)+bi,j)
are different for fixed j as i runs over 1, 2, . . . , �. Indeed if for fixed j there exist
i1 and i2 with

(mN (di1) − fi1,j , rN (di1) + bi1,j) = (mN (di2) − fi2,j , rN (di2) + bi2,j),

then

N(rN (di1) + bi1,j) + mN (di1) − fi1,j = N(rN (di2) + bi2,j) + mN (di2) − fi2,j .

Since if bi,j = 0, then fi,j = 0 and if bi,j = 1, then fi,j = N , from this we get

NrN (di1) + mN (di1) = NrN (di2) + mN (di2)
di1 = di2

By the definition of cross-correlation measure di1 = di2 is possible only if
E(ηi1) �= E(ηi2). Then clearly we have ηi1 �= ηi2 , so indeed

∣
∣
∣
∣
∣
∣

Tj∑

x=0

cj+1−1∑

y=cj

�∏

i=1

ηi(x + mN (di) − fi,j , y + rN (di) + bi,j)

∣
∣
∣
∣
∣
∣

can be estimated by Φ�(G) in (5.11). This completes the proof of Theorem3.
Using Theorems 1, 2, Corollary 2 and Theorem 3 we immediately get the

following:

Corollary 3. Let q = p2 where p is a prime and define G≤K,irreducible,quadratic

as in Construction 1 Then

Φ�(E(G≤K,irreducible,quadratic)) < K�(� + 2)p(log p + 1)n + 2�.

Corollary 4. Let p be a prime and define G≤K,irreducible,Legendre as in Con-
struction 2. Then

Φ�(E(G≤K,irreducible,Legendre)) < 11K�(� + 2)p3/2 log p.
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Corollary 5. Let p be a prime and define G≤K,Sch−Eis,Legendre as in Construc-
tion 3. Then

Φ�(E(G≤K,Sch−Eis,Legendre)) < 11K�(� + 2)p3/2 log p.

Thus each family of binary sequences in Corollaries 3, 4 and 5 have optimal or
nearly optimal cross-combined measure. Between them we were able to prove
the strongest bound for cross-correlation measure in the case of the family
of E(G≤K,irreducible,quadratic). The weak point of this construction is that it
is based on one-variable irreducible polynomials over Fp2 and however there
are relatively fast algorithms to construct one-variable irreducible polynomi-
als (see e.g. the Handbook of Finite Fields [37]), still in certain applications
these algorithms are too complicated or are not fast enough (e.g. we need sev-
eral binary sequences or lattices used them as a key-streams in Vernam-cipher).
Using binary lattices based on two-variable irreducible polynomials and Legen-
dre symbol this problem can be avoided, however a slightly weaker upper bound
is obtained for the cross-correlation measure than in the original construction.
But, contrary to one-variable polynomials, using Schöneman-Eisenstein crite-
ria it is very fast and easy to construct two-variable irreducible polynomials
over Fp (e.g. see Lemma 3). Indeed by Construction 3 the binary lattices in
G≤K,Sch−Eis,Legendre can be implemented easily and fast, and thus the binary
sequences in E(G≤K,Sch−Eis,Legendre) also can be implemented easily and fast.
However we do not have the strongest bound cp log p, we have only cK�2p3/2 log p
for the cross-correlation measure of this family, it is much better than the trivial
bound p2. Moreover, the family E(G≤K,Sch−Eis,Legendre) is very big, it contains
more than pK(K−1)/2 pieces of binary sequences, which is also important in the
applications.

Acknowledgement. I would like to thank the referee for his careful reading and
valuable advice concerning Theorem 1.
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6. Bérczes, A., Ködmön, J., Pethő, A.: A one-way function based on norm form
equations. Period. Math. Hung. 49, 1–13 (2004)

7. Cassaigne, J., Ferenczi, S., Mauduit, C., Rivat, J., Sárközy, A.: On finite pseudo-
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The Cube Attack on Courtois Toy Cipher
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Abstract. The cube attack has been introduced by Dinur and Shamir
[8] as a known plaintext attack on symmetric primitives. The attack
has been applied to reduced variants of stream ciphers Trivium [3,8]
and Grain-128 [2], a reduced to three rounds variant of the block cipher
Serpent [9] and a reduced version of the keyed hash function MD6 [3]. In
another form the attack appeared in the Vielhaber ePrint articles [13,14],
where it was named AIDA (Algebraic Initial Value Differential Attack)
and applied to reduced variants of Trivium. We applied the cube attack
to the reduced variant of Courtois Toy Cipher (CTC) consisting of four
rounds and 120-bit key. After that we extended the attack to five rounds
of CTC by applying the 4+1 cryptanalytic principle. The article also
presents experimental results of recovering the key.
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1 Introduction

In recent years there have been developed the methods of algebraic cryptanalysis
of symmetric primitives, i.e. block and stream ciphers, hash and MAC functions.
The idea is to represent the investigated algorithm as a system of multivariate
polynomials involving the plaintext and ciphertext bits, the initial value bits and
the key bits as their variables. As a result, to break the cryptosystem (to find the
secret key) one must solve such a complicated system of algebraic equations. For
ciphers used in practice such systems are too large to be solved with the com-
putational capabilities currently available. Thus usually reduced and simplified
versions of symmetric algorithms are considered to investigate the applicability
of algebraic cryptanalysis.

In this paper, we apply recently introduced by Dinur and Shamir [8] cube
attack, as an example of algebraic technique in cryptanalysis. The method
involves also some probabilistic tools. The linear tests were applied to test
the approximation of complicated Boolean functions of several variables. If this
approximation is possible with probability close to one, then the cube attack is
applicable.

The cube attack were applied to reduced variants of stream ciphers Trivium
[3,8] and Grain-128 [2], a reduced to three rounds variant of the block cipher
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Serpent [9] and a reduced version of the keyed hash function MD6 [3]. In another
form the attack appeared in the Vielhaber ePrint articles [13,14], where it was
named AIDA (Algebraic Initial Value Differential Attack) and applied to reduced
versions of Trivium. Vielhaber considered Disjunctive Normal Form (DNF) or
Algebraic Normal Form (ANF) of Boolean Functions and Inclusion-Exclusion-
Principle to represent sums over cubes as linear terms of key bits. Dinur and
Shamir in their paper [8] first time applied linear tests to extract linear terms
of key bits. Their method does not depend on particular form of investigated
Boolean Functions. It seems that linear tests are more suitable in application to
block ciphers.

The CTC was designed by Courtois [5] to apply methods of algebraic crypt-
analysis. The security of this cipher was analysed by Courtois [5], Albrecht [1],
and Dunkelman and Keller [10]. The modification of CTC named CTC2 [6] was
investigated by Courtois [6] and Dunkelman and Keller [11]. Algebraic, differ-
ential and linear cryptanalysis provides attacks below the exhaustive key search
complexity (see [10,11]). Although, CTC and CTC2 are not ciphers used in
practice, cryptanalysts have payed the attention to them.

Our contribution is an application of the cube attack to a version of the
Courtois Toy Cipher with four rounds and 120-bit key and the extension of the
original cube attack by combining it with the 4+1 cryptanalytic principle, where
we add one round more. In our attack we assume that during the preprocessing
phase an attacker can encrypt the chosen plaintexts and investigate the sums
of the ciphertexts bits as a function of the key bits. The main task of this
phase is to find linear (or affine) functions using the linear tests [4]. During the
preprocessing phase the attacker collects many linear expressions in key bits and
chooses linearly independent ones; we have used here the MAGMA [15] package
to do the needed calculations.

The on-line phase is a chosen plaintext attack, where one round is added
to the cipher. The key is secret now and an attacker encrypts the plaintexts
(obtained from the cubes found in the previous phase) and collects the cipher-
texts after the added round. Now the attacker has no access to partial ciphertexts
after the previous round. The 4+1 phase compares the right hand sides of the
linear expressions obtained during the preprocessing phase (but without explicit
calculation of them, as it was done in the original Dinur and Shamir cube attack)
with the sums of bits obtained after inverting the last round of the cipher. The
task is realized using the explicit formules for output bits of the inversion of the
last round.

The 4+1 attack was practically realized for the five round CTC with 120-
bit block and key size. In the experiments, randomly chosen keys were retrieved
during the on-line phase of the attack. It is worth to mention, that using the
BooleanPolynomial class from the SAGE [17] package and the code written in
Python [16] it is possible to perform the necessary calculations with quadratic
Boolean functions depending on 240 binary variables.
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2 The Cube Attack

We shall not distinguish at the moment between secret and public variables. Let p
be a polynomial of n variables x1, . . . , xn over the field GF (2). For a fixed subset
of indices I = {i1, . . . , ik} ⊆ {1, . . . , n} let us take a monomial tI = xi1 . . . xik .
Then we have a decomposition

p(x1, . . . , xn) = tI · pS(I) + q(x1, . . . , xn),

where the polynomial pS(I) does not depend on the variables xi1 , . . . , xik .

Definition 1. The maxterm of the polynomial p we call the monomial tI , such
that deg(pS(I)) = 1, it means that the polynomial pS(I) corresponding to the
subset of indices I is a linear one, which is not a constant.

The set of indices I defines the k-dimensional Boolean cube CI , where on
the place of each of the indices we put 0 or 1. A given vector v ∈ CI defines
the derived polynomial pv depending on n − k variables, where in the basic
polynomial p we put the values corresponding to the vector v. Summing over all
vectors in the cube CI we obtain the polynomial

pI =
∑

v∈CI

pv.

Theorem 1. Let p be a polynomial over the field GF (2) and I ⊂ {1, . . . , n} the
subset of indices. Then we have

pI = pS(I),

where the polynomials are equal modulo 2.

Let us consider a cryptosystem described by the polynomial

p(v1, . . . , vm, x1, . . . , xn)

depending on m public variables v1, . . . , vm (the initial value or plaintext) and on
n secret variables x1, . . . , xn (the key). The value of the polynomial represents a
ciphertext bit. In general, the polynomial p is not explicitelly known; it can be a
black box. We will consider the known plaintext attack, where at the preprocessing
phase the attacker has also access to secret variables.

The attack has two phases. In the preprocessing one the attacker can change
the values of public and secret variables. The task is to obtain a system of linear
equations on secret variables. In the second on-line phase of the attack the key
is secret and the attacker can change the values of public variables. He adds the
output bits, where the inputs run over some multi-dimensional cube. The task is
to obtain the right hand sides of linear equations. The system of linear equations
can be solved giving some bits of the key.

The first task is to fix the dimension of the cube and the public variables
over which we will sum up; they are called the tweakable variables, and the
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other public variables are equal to zero. If we know the degree d of the basic
polynomial, we fix the cube dimension to d − 1. We sum up over a fixed cube
for several values of secret variables and collect the obtained values. We do the
linear tests for the obtained function of secret variables and store it when it is
linear. The linear test for a function f(x) depending on a collection x of binary
variables requires checking the condition

f(x ⊕ x′) = f(x) ⊕ f(x′) ⊕ f(0)

for some randomly chosen arguments x, x′. If the function f passes the linear
test for a few hundreds of pairs x, x′ and it is not a constant function (equal
to zero or to one), then we can put the hypothesis that it is a linear (or affine)
function. The theoretical explanation for these tests has been elaborated in the
paper [4].

The next task is to calculate the coefficients explicit values of the obtained
linear function of secret variables. The free term of the linear function we obtain
fixing all its arguments as equal to zero. The coefficient of the variable xi is
equal 1 if and only if the change of this variable implies the change of value of
the function. The coefficient of the variable xi is equal to 0 if and only if the
change of this variable does not imply the change of value of the function. The
task of the preprocessing phase of attack is to collect possibly many independent
linear terms - they constitute the system of linear equations on secret variables.
This system of linear equations will be used in the on-line phase of attack. The
preprocessing procedure is done only once in cryptanalysis of the algorithm.

In the on-line phase an attacker has access only to public variables (the
plaintexts for block ciphers, the initial values for stream ciphers), which he can
change and then he calculates the corresponding bits of the ciphertext under the
unknown value of secret variables. The task of this phase of attack is to find some
bits of secret key with complexity, which is lower than that of the exhaustive
search in the brute force attack. The attacker uses the derived system of linear
equations for secret variables (the unknown bits of the key), where the right
hand sides of these equations are sums of bits values of ciphertexts obtained
after summation over the same cubes as in the preprocessing phase, but now the
key is not known.

The cube attack is applicable to symmetric ciphers for which the polynomials
describing the system have relatively low degree. Then one can eventually find
some bits of unknown key; the remaining bits of the key may be found by brute
force search. After successful preprocessing, the on-line phase of the attack can
be done many times for different unknown keys. In general, the cube attack is
applicable to cryptosystems without knowing their inner structure. The attacker
must have the possibility to realize the preprocessing phase and in the on-line one
has an access to the implementation of the algorithm (to perform the summation
over cubes under unknown key).
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3 The Courtois Toy Cipher

3.1 The Specification

The CTC has been designed by Courtois [5,6] to apply algebraic cryptanalysis
methods. It is an SPN network with a scalable number of rounds, block and key
size. Each round performs the same operations on the input data, except that a
different round key is added each time. The number of rounds is denoted by Nr.
The output of round i−1 is the input to round i. Each round consists of parallel
application of B S-boxes (S), the application of the linear diffusion layer (D),
and a final key addition of the round key (Ki). The round key K0 is added to
the plaintext block before the first round.

The plaintext bits p0 . . . pBs−1 are identified with Z0,0 . . . Z0,Bs−1 and the
ciphertext bits c0 . . . cBs−1 are identified with XNr+1,0 . . . XNr+1,Bs−1 to have
an uniform notation (s = 3 is the size of the S-box). The S-box was chosen as
the permutation

[7, 6, 0, 4, 2, 5, 1, 3].

It has 23 = 8 inputs and 8 outputs. The output bits are quadratic Boolean
functions of the input bits which can be expressed as

y0 = x0x1 + x0 + x1 + x2 + 1,

y1 = x0x2 + x1 + 1,

y2 = x0x1 + x0x2 + x1x2 + x1 + x2 + 1,

and for the inverse S-box:
x0 = y0y1 + y2,

x1 = y0y1 + y0y2 + y1 + 1.

x2 = y0y1 + y1y2 + y0 + y1.

The explicit form of these functions will be used when we apply the meet-in-the-
middle method.

The diffusion layer (D) is defined as

Zi,257modBs = Yi,0,

for i = 1, . . . , Nr, and

Zi,(1987j+257)modBs = Yi,j + Yi,(j+137)modBs

for j �= 0 and all i, where Yi,j represent input bits and Zi,j represent output bits.
The key schedule is a simple permutation of bits:

Ki,j = K0,(i+j)modBs

for all i and j, where K0 is the main key. Key addition is performed bit-wise:

Xi+1,j = Zi,j + Ki,j

for all i = 1, . . . , Nr and j = 0, 1, . . . , Bs − 1, where Zi,j represent output bits
of the previous diffusion layer, Xi+1,j the input bits of the next round, and Ki,j

the bits of the current round key (Fig. 1).
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Fig. 1. CTC overview for B = 10.

3.2 The Cube Attack on CTC

We have applied the cube attack to the version of Courtois Toy Cipher with
four rounds and 120-bit block and key size. We have found the maxterms cor-
responding to four dimensional cubes and we have collected 120 r linearly inde-
pendent linear polynomials related to them which are given in Table 1 in the
Appendix. The table contains the indices of the cubes, the corresponding linear
expressions and the output bits after four rounds of the CTC for which there
were found these expressions after summation over the cubes. There were per-
formed 1000 linear tests for each expression to test its linearity. In fact, these
120 linearly independent functions were chosen among 610 linear ones generated
during the preprocessing phase. It is difficult to estimate explicitelly the com-
plexity of this phase. The first task was to find, for which dimension of cubes
there appear the maxterms with corresponding linear polynomials. This phe-
nomenon has appeared for four dimensional cubes after four rounds of 120-bit
CTC. Each round of CTC can be described by quadratic Boolean functions,
hence the output bits of four round CTC are described by Boolean polynomials
of degree 24 = 16 regarded as a function of the plaintext bits and the key bits.
According to general principles, there should exist linear expressions correspond-
ing to 15-dimensional cubes, but we have not found any up to now; probably
the probability to detect any of them is very low. The existence of linear terms
for four dimensional cubes in this case may be related to poor diffusion.

The complexity of the on-line phase is equal to 120 × 24 ≈ 211 encryptions
of the four round CTC. In this phase the attacker has the derived system of
linear equations and calculates (by summing up over the cubes the ciphertext
bits) the right hand sides of these equations. The solution of this system gives
the key. We have performed the experiment for several randomly chosen keys
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and obtained their exact values. All the calculations involving linear algebra, e.g.
solving the systems of linear equations over binary field, were done with Magma
[15] computational system.

Below there are presented the results obtained for the variant of CTC with
six rounds and 15-bit block and key size. The maxterms with correspond-
ing linear polynomials have appeared after summation over 14-dimensional
cubes. Here is the system of 15 linearly independent equations with the
right hand sides representing the sums of ciphertext bits after six rounds
of this variant of CTC. The eight linear equations obtained for the cube
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}:

x0 + x1 + x2 + x3 + x4 = c0
x2 + x3 + x9 = c1

x2 + x3 + x10 + x11 + x12 + x13 = c2
1 + x2 + x3 + x6 + x7 + x8 + x9 + x11 + x13 = c3

x0 + x1 + x2 + x4 + x7 + x8 + x10 + x11 + x12 = c4
x0 + x3 + x6 + x9 + x11 = c6

x5 + x11 = c7
1 + x0 + x3 + x6 + x7 + x8 + x10 + x12 + x13 = c10

The seven linear equations obtained for the cube {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 14}:

1 + x3 + x4 + x7 + x8 + x9 + x11 + x13 = c0
x1 + x3 + x5 + x10 + x11 + x12 + x13 + x14 = c1
1 + x0 + x2 + x3 + x5 + x6 + x8 + x9 + x14 = c2

x1 + x2 + x3 + x5 + x6 + x8 + x9 + x10 + x11 + x12 + x13 + x14 = c3
1 + x0 + x1 + x2 + x3 + x4 + x6 + x9 + x10 + x13 + x14 = c4

x0 + x2 + x3 + x7 + x10 + x13 + x14 = c6
1 + x0 + x1 + x2 + x4 + x5 + x6 + x7 + x9 + x14 = c7

This example will be continued in the next point, where we will add one
round more to extend the attack.

4 The Cube Attack and the 4 + 1 Cryptanalytic
Principle

We assume now that in the preprocessing phase the attacker has access to keys
and encryption data after four rounds of CTC (the variant with 120-bit block
and key size) and then he collects the linear expressions in key bits which are
given in Table 1 of the Appendix. Now in the on-line phase we assume that
the attacker can encrypt the plaintexts corresponding to the previously selected
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cubes and can collect the ciphertexts only after five rounds of the CTC. The
task of this phase is to obtain the linear equations for unknown bits of the key.

We invert the last fifth round of the cipher and obtain the exact formules
expressing the output bits as quadratic Boolean functions of the ciphertext bits
(after five rounds) and the bits of the key. Summing up these output bits over
ciphertexts belonging to the given cube we obtain linear expression in unknown
bits of the key: there is an even number of ciphertexts corresponding to the cube
and the quadratic terms in key bits are canceled. Now we make them equal to
linear expressions given in Table 1 (obtained in preprocessing phase after four
rounds) having this way the system of linear equations for the bits of the key.
In fact, we compare the sums of the bits after four rounds with the sums of the
bits obtained after decryption of the fifth round, but we do not collect the exact
values of bits in the meeting point (these bits are equal and hence their sums
are equal too). The exact formules for the inverted last round are not presented
here since they are to complicated. The main reason is, that the inversion of the
diffusion layer has not a simple form. We have generated them using the suitable
program and they are included in the execution files (see below for the simplest
case). The Fig. 2 depicts the 4 + 1 attack.

Fig. 2. The 4+1 attack.

As an example, the formules for the inversion of diffusion layer in the case of
CTC with five S-boxes (i.e., 15-bit plaintext and key size) are given below. Here
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z0, . . . , z14 are the inputs bits and y0, . . . , y14 the output bits of the diffusion
layer.

y0 = z2
y1 = z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9
y2 = z0 + z1 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12

+ z13 + z14
y3 = z2 + z3 + z4 + z5 + z6 + z7 + z8
y4 = z0 + z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12 + z13

+ z14
y5 = z2 + z3 + z4 + z5 + z6 + z7
y6 = z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12 + z13 + z14
y7 = z2 + z3 + z4 + z5 + z6
y8 = z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12 + z13
y9 = z2 + z3 + z4 + z5
y10 = z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12
y11 = z2 + z3 + z4
y12 = z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10 + z11
y13 = z2 + z3
y14 = z2 + z3 + z4 + z5 + z6 + z7 + z8 + z9 + z10

We have performed the described above 4+1 phase of the attack with the
inverted seventh round of the 15-bit CTC and here there are the obtained linear
equations.

x0 + x1 + x2 + x3 + x4 + x9 = 0
x2 + x3 + x9 = 1

x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 = 0
x0 + x2 + x3 + x6 + x7 + x8 + x10 + x12 + x14 = 0

x1 + x2 + x4 + x7 + x8 + x9 + x13 + x14 = 1
x1 + x2 + x4 + x5 + x9 + x11 + x14 = 0

x5 + x6 + x9 + x10 + x12 + x13 = 1
x1 + x2 + x4 + x6 + x7 + x8 + x10 + x14 = 0

x0 + x1 + x3 + x4 + x7 + x8 + x9 + x10 + x12 + x14 = 0
x1 + x2 + x4 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 = 0

x0 + x4 + x7 + x14 = 1
x4 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 + 1 = 0

x0 + x5 + x7 + x11 + x12 = 0
x0 + x2 + x3 + x7 + x10 + x13 + x14 = 0

x0 + x1 + x2 + x4 + x5 + x6 + x7 + x9 + x14 = 0
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The solution of these equations is the key:

(x0, x1, . . . , x14) = (1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1),

randomly chosen at the beginning of the experiment.
We have performed the same experiment for the five round CTC with 120-bit

block and key size. We have exploited the linear expressions (Appendix, Table 1)
obtained after four rounds during the preprocessing phase. In fact, each of them
corresponds here with another 4-dimensional cube. In the on-line phase which
is now the 4+1 attack, we have collected the ciphertexts after five rounds of
120-bit CTC obtained after encryptions with the key (which is assumed to be
unknown in the experiment) referring to the same cubes. The system of 120
linear equations is too large to write it down here (see the extended version
[12] of this article). All manipulations with the Boolean polynomials depending
on 120 + 120 = 240 binary variables were done in SAGE package [17] and the
related program was written using the Python language. It appears that the
rank of this system of linear equations is equal to 119, hence one bit of the key
must be guessed. The performed experiments have confirmed the correctness of
the method for several randomly chosen 120-bit keys. The complexity of the on-
line phase here is the 211 encryptions of five round CTC and storage of the 211

120-bit ciphertexts. The complexity of the linear part of caculations is negligible.
In general, this 4+1 extension of extension work in the situation when we

are able to realize successfully the preprocessing phase of the cube attack for n
rounds of block cipher and the invertion of n + 1 round leads to a system of
equations which could be solved.

5 Conclusion

After investigating five round and 120-bit key CTC we have applied the same
methods to five round and 255-bit key and plaintext block CTC2 (the experi-
mental results will be given in another note). We have tried to find linear terms
referring to cubes for versions of CTC and CTC2 with five rounds, but it was
only possible for plaintext blocks up to 57 bits. It seems that the probability to
find such linear terms is very low for bigger plaintext blocks. An appearance of
linear terms for these ciphers with a small number of rounds can be interpreted
as an effect of poor diffusion. We see a possibility to apply similar attacks for
six and more rounds of Courtois Toy Ciphers in combining the cube attack, the
4+ r (r the number of last rounds) method and description of two or more last
r rounds as a system of quadratic equations in key bits and auxiliary variables.
Then a success of attack depends on possibility to solve obtained systems of
equations.
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Appendix

Table 1. The linear expressions for CTC with 4 rounds and 120-bit key.

Cube idices Expression Out. bit Cube indices Expression Out. bit

{78, 84, 86, 113} x80 c69 {26, 28, 63, 118} x64+x65 c69

{71, 85, 107, 116} 1+x69+x70 c21 {5, 46, 86, 103} 1+x84+x85 c37

{32, 63, 64, 77} 1+x30+x31 c17 {22, 84, 110, 113} x86 c76

{10, 11, 12, 50} x13+x14 c17 {49, 62, 68, 113} 1+x48+x50 c87

{25, 74, 100, 101} 1+x24 c102 {32, 65, 73, 89} 1+x87+x88 c93

{49, 76, 85, 86} 1+x75 c102 {4, 20, 32, 84} x85+x86 c39

{36, 37, 110, 115} x108 c99 {18, 20, 62, 73} 1+x60+x61 c63

{20, 23, 112, 114} x116 c106 {1, 8, 64, 77} 1+x63+x65 c53

{0, 13, 61, 92} x2 c117 {37, 38, 91, 115} 1+x90+x92 c99

{41, 56, 78, 110} x79+x80 c51 {37, 67, 97, 109} 1+x66 c93

{14, 20, 46, 51} x53 c96 {18, 20, 47, 114} x115+x116 c3

{38, 53, 79, 80} x36 c81 {40, 45, 98, 119} 1+x46 c31

{7, 11, 47, 52} 1+x6+x8 c43 {13, 59, 92, 101} x99 c113

{25, 46, 83, 104} 1+x45+x47 c16 {3, 12, 14, 97} 1+x4 c30

{0, 2, 94, 98} 1+x93+x95 c93 {10, 58, 70, 101} 1+x99+x100 c54

{11, 23, 79, 92} 1+x78 c70 {5, 26, 59, 97} x57 c48

{11, 35, 43, 118} 1+x33+x34 c1 {34, 75, 87, 89} x76+x77 c17

{0, 52, 98, 112} x1+x2 c32 {5, 56, 58, 104} 1+x57+x59 c35

{12, 14, 56, 89} 1+x54+x55 c117 {7, 35, 53, 70} 1+x51+x52 c1

{61, 62, 89, 102} x104 c48 {41, 82, 83, 94} x39 c84

{24, 28, 53, 107} x26 c19 {21, 41, 49, 77} x22+x23 c114

{17, 49, 81, 101} x82+x83 c54 {28, 74, 88, 98} 1+x96+x97 c8

{3, 97, 98, 101} x4+x5 c35 {38, 69, 100, 101} x71 c114

{62, 97, 113, 117} 1+x118 c94 {22, 27, 82, 107} x29 c19

{8, 75, 83, 115} 1+x76 c39 {18, 26, 58, 71} 1+x19 c102

{26, 80, 95, 102} x103+x104 c117 {67, 88, 95, 106} 1+x87+x89 c5

{30, 72, 73, 85} x32 c75 {29, 34, 35, 112} 1+x27+x28 c36

{4, 23, 50, 92} 1+x3+x5+x21 c9 {17, 67, 68, 103} 1+x102+x104 c108

{39, 43, 68, 71} x41 c34 {17, 59, 100, 113} 1+x15+x16 c30

{76, 105, 118, 119} x106+x107 c0 {48, 77, 106, 107} x50 c18

{76, 77, 104, 108} 1+x109 c35 {17, 46, 86, 105} x107 c42

{33, 49, 71, 80} x34+x35 c46 {12, 20, 89, 101} x14 c20

{11, 40, 41, 42} x44 c72 {13, 20, 41, 70} 1+x69 c4

{13, 29, 73, 107} x27 c48 {46, 79, 82, 104} 1+x45 c79

{16, 50, 76, 90} x92 c111 {8, 56, 91, 107} 1+x6+x7 c27

{11, 43, 80, 107} 1+x105+x106 c102 {1, 26, 85, 93} 1+x0+x2+x94 c119

(continued)
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Table 1. (continued)

Cube idices Expression Out. bit Cube indices Expression Out. bit

{34, 59, 91, 111} 1+x112 c25 {16, 73, 104, 109} 1+x108+x110 c9

{51, 65, 97, 104} 1+x52 c104 {77, 92, 116, 118} 1+x114+x115 c33

{21, 38, 79, 92} 1+x22 c33 {70, 73, 90, 101} 1+x91 c67

{14, 36, 40, 119} x37+x38 c9 {7, 54, 55, 74} x72 c117

{77, 113, 117, 119} x111 c102 {35, 41, 66, 73} x68 c117

{17, 19, 61, 86} 1+x18 c52 {7, 23, 35, 44} x21 c19

{11, 38, 114, 116} 1+x36+x37 c39 {10, 11, 83, 88} x81 c72

{15, 16, 43, 89} 1+x42+x44 c30 {11, 14, 36, 38} 1+x9+x10 c9

{11, 62, 77, 117} x119 c72 {7, 28, 94, 115} 1+x93+x114 c18

{6, 13, 72, 74} x8 c117 {20, 51, 53, 82} 1+x81+x83 c96

{8, 26, 48, 50} 1+x24+x25 c33 {57, 65, 91, 97} 1+x58 c21

{5, 9, 74, 80} 1+x10 c36 {1, 32, 64, 98} 1+x0+x2 c39

{17, 83, 95, 115} x15 c36 {11, 31, 73, 80} 1+x30 c64

{4, 8, 65, 77} x63 c18 {24, 26, 39, 85} 1+x40 c69

{35, 37, 116, 119} 1+x117+x118 c57 {49, 58, 86, 111} x112+x113 c49

{47, 50, 73, 116} 1+x72+x74 c82 {24, 25, 96, 103} x98 c87

{40, 41, 66, 110} 1+x67 c27 {50, 70, 71, 87} x89 c17

{10, 22, 28, 101} 1+x9+x11 c18 {26, 52, 53, 96} 1+x97 c54

{34, 56, 76, 88} 1+x33 c12 {42, 47, 88, 113} 1+x43 c79

{23, 56, 58, 80} x54 c55 {37, 38, 71, 72} 1+x73 c99

{17, 19, 49, 97} 1+x18+x20 c93 {32, 50, 55, 56} 1+x48+x49 c57

{50, 60, 82, 103} 1+x61 c3 {20, 61, 68, 99} x101 c52

{15, 41, 76, 82} x17 c12 {8, 13, 59, 97} 1+x12+x14 c33

{25, 35, 61, 86} 1+x60+x62 c59 {31, 32, 54, 59} x55+x56 c18
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Abstract. A Hadamard matrix is a square matrix with entries ±1 whose
rows are orthogonal to each other. Hadamard matrices appear in vari-
ous fields including cryptography, coding theory, combinatorics etc. This
study takes an interest in γ near Butson-Hadamard matrix that is a
generalization of Hadamard matrices for γ ∈ R ∩ Z[ζm]. These matrices
are examined in this study. In particular, the unsolvability of certain
equations is studied in the case of cyclotomic number fields. Winter-
hof et al. considered the equations for γ ∈ Z, and by the authors for
γ ∈ R ∩ Z[ζm]. In this study, we obtain another method for checking
the nonexistence cases of these equations, which uses the tool of norm
from algebraic number theory. Then, the direct applications of these
results to γ near Butson-Hadamard matrices are obtained. In the second
part of this study, the connection between nonlinear Boolean crypto-
graphic functions and γ near Butson-Hadamard matrices having small
|γ| is established. In addition, a computer search is done for checking the
cases which are excluded by our results and for obtaining new examples
of existence parameters.

Keywords: Butson-Hadamard matrices · Cyclotomic fields
Cryptographic functions

1 Introduction

Hadamard matrices are used in computational mathematics and quantum com-
puter science. They have also been used in many practical areas e.g. crypto-
graphic function design, telecommunication satellites, modern cell phones and
wireless networks. Modern CDMA based cell phones use Hadamard matrices to
modulate the signals and to minimize the interference between signals arriving
the base station. Information hiding in wireless networks, optical telecommuni-
cation, neuroscience and pattern recognition are other practical areas where
Hadamard matrices are used. In addition, Hadamard matrices are directly
applied in computer science, for example, Hadamard codes (known as best error
correcting codes) and Hadamard gates (used in quantum gates), see [4,5] for
details and other applications.

In this study, a class of Butson-Hadamard matrices is studied and its appli-
cation to cryptographic Boolean functions is investigated. Very recently, new
c© Springer International Publishing AG, part of Springer Nature 2018
J. Kaczorowski et al. (Eds.): NuTMiC 2017, LNCS 10737, pp. 254–266, 2018.
https://doi.org/10.1007/978-3-319-76620-1_15
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properties of m-ary γ near Butson-Hadamard matrices for γ ∈ Z are studied in
[7,13]. We study m-ary γ near Butson-Hadamard matrices for γ ∈ (Z[ζm] ∩ R),
and look for new examples of near Butson-Hadamard matrix and their existence
requirements, where m ∈ Z

+ and ζm is a primitive m-th root of unity. We use
the methods in algebraic number theory and results in [13] to find new results
on m-ary γ near Butson-Hadamard matrices. Moreover, these new results on
Hadamard matrices are used in the investigation of new applications in cryptog-
raphy.

A Hadamard matrix is a square matrix with entries ±1 whose rows are
orthogonal to each other. First generalization of Hadamard matrices was made
by Butson in 1962. Butson [3] handled complex m-th root of unity for entries of
Hadamard matrices, instead of second root of unity. γ near Butson-Hadamard
matrices are similar to Butson-Hadamard matrices, except inner product of a
row with a complex conjugate of another row is γ. The most common result for
Butson-Hadamard matrices is presented by [2,7,13].

Winterhof et al. [13] reduce the existence condition of a γ near Butson
Hadamard matrix to an equation over ring of integers of a cyclotomic field hav-
ing class number hm > 1. Namely, they consider the solutions α ∈ Z[ζm] of the
following equation

αᾱ = ((γ + 1)v − γ)(v − γ)v−1, (1)

where v ∈ Z
+ is the dimension of the γ near Butson Hadamard matrix and

γ ∈ Z. Then they consider the principal ideal factorization of D = ((γ +1)v −γ)
(v − γ)v−1 and deal with the unsolvability conditions of (1). They only consider
integer γ for ideal factorization of D. Then, the authors in [7] extended this
method for γ ∈ Z[ζm]∩R. It was shown that the norm of nonprincipal part of D
is to be relatively prime to the norm of principal part of D for the unsolvability
of (1) in case γ ∈ Z[ζm] ∩ R (see Theorem 2 herein).

In Sect. 3, a new method is built up for checking the cases in which a near
Butson-Hadamard matrix does not exist. This method does not depend on the
class number hm. We use the fact that the norm of a prime ideal dividing α in
(1), also divides ᾱ. Therefore, for any prime ideal p dividing D, if the norm of
D divided by the norm of p is relatively prime to the norm of p, then (1) has
no solution (see Theorem 3). In particular, if the norm of D is square-free then
it is clear that (1) has no solution (see Corollary 1). In addition, we perform an
exhaustive computer search by using MAGMA [1] on the set v ∈ {2, 3, . . . , 100}
for fixed m and ζ and for the nonexistence of the equation (1) to see the strength
of Theorems 2 and 3. It is seen that Theorems 2 and 3 exclude the existence of
many values, on the other hand, we see that they do not cover each other.

We applied our new result (Theorem 3) to γ near Butson-Hadamard matrices
in Sect. 4. Namely, we look for dimension v ∈ Z and γ ∈ Z[ζm] ∩ R for which
a γ near Butson-Hadamard matrix does not exist. This is equivalent to finding
necessary conditions for solvability of αᾱ = ((γ + 1)v − γ)(v − γ)v−1 for some
α ∈ Z[ζm]. Hence, by using our main theorems we obtain nonexistence results
for γ near Butson-Hadamard matrices (see Corollary 2).
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Finally, in this study, the relationship between a Butson-Hadamard matrix
and a cryptographic function is investigated. In cryptography, secrecy (or con-
fidentiality) is satisfied by using block ciphers which confuses a message into
a ciphertext via a nonlinear Boolean function. A nonlinear Boolean function
attaining the maximum nonlinearity is called a bent function. It is known that a
Butson-Hadamard matrix is equivalent to cryptographic bent function (see [6] or
Theorem 6 in this study). By using this equivalence, we convert a γ near Butson-
Hadamard matrix into a Boolean function in Sect. 5. It is seen that one can
find a highly nonlinear Boolean function via circulant γ near Butson-Hadamard
matrices having very small |γ| values. The existence cases of circulant γ near
Butson-Hadamard matrices for small |γ| is considered in this study. Hence, we
perform an exhaustive computer search by using MAGMA [1] on dimension
v ∈ {1, 2, . . . , 11} and alphabet m ∈ {1, 2, . . . , 11}, and look for γ (see Table 2).

The outline of this study is as follows. In Sect. 2, previous studies, the meth-
ods based on self conjugacy condition and principal ideal factorization are pre-
sented. In Sect. 3, a new result for deciding the nonexistence of a solution to
(1) is given. Then, in Sect. 4, the consequences of the results given in Sect. 3 are
applied to Hadamard matrices. Next, a cryptographic application of the results
given Sect. 4 is presented in Sect. 5.

2 Previous Results

We first give definitions of the norm of an element in a number field and norm
of an ideal of the ring of integers of a number field.

Definition 1 [11, p. 49]. Let K = Q(θ) be a number field of degree n and let
σ1, . . . , σn be monomorphisms K → C. α ∈ K is an algebraic integer. For any
α ∈ K, we define the norm.

NK(α) =
n∏

i=1

σi(α)

Definition 2 [11, p. 115]. Let OK be the ring of unit of a number field K and
I be non-zero ideal of OK , we define the norm of I by

N(I) = |OK|.
We note that if a = 〈a〉 is a principal ideal then N(a) = 〈N(a)〉 [11, Corol-

lary 5.10]. If a|b then N(a)|N(b) [11, Theorem 5.12]. For an ideal a, its conjugate
ideal is ā := {ᾱ : α ∈ a}. It can be seen that N(a) = N(ā) and if a is a prime
ideal, then ā is also prime ideal.

We now present non-existence results on γ near Butson-Hadamard matrices
based on results of Brock [2], see also [8], for γ ∈ Z.

Let p be a prime and m a positive integer with gcd(p,m) = 1. We say
that p is self-conjugate modulo m if the order f of p modulo m is even and
pf/2 ≡ −1 mod m.
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Table 1. The class number hm of Q(ζm) for m ≤ 70 [12].

m hm m hm m hm m hm m hm m hm m hm

1 1 11 1 21 1 31 9 41 121 51 5 61 76301

2 1 12 1 22 1 32 1 42 1 52 3 62 9

3 1 13 1 23 3 33 1 43 211 53 48891 63 7

4 1 14 1 24 1 34 1 44 1 54 1 64 17

5 1 15 1 25 1 35 1 45 1 55 10 65 64

6 1 16 1 26 1 36 1 46 3 56 2 66 1

7 1 17 1 27 1 37 37 47 695 57 9 67 853513

8 1 18 1 28 1 38 1 48 1 58 8 68 8

9 1 19 1 29 8 39 2 49 43 59 41421 69 69

10 1 20 1 30 1 40 1 50 1 60 1 70 1

Theorem 1 [2, Theorem 3.1]. For a positive integer w there exists no solution
α to the equation αα = w over Q[ζm] if the square-free part of w is divisible by
a prime which is self-conjugate modulo m.

We now consider the equation D = αᾱ over Z[ζm] for some m ∈ Z
+ and

D ∈ Z[ζm]∩R. Winterhof et. al. [13] presented a condition for the non-existence
of a solution α ∈ Z[ζm] to this equation for D ∈ Z, then it was extended to
D ∈ Z[ζm] ∩ R in [7]. In particular, we consider

D = ((γ + 1)v − γ)(v − γ)v−1

for some m, v ∈ Z
+ and γ ∈ Z[ζm] ∩ R, which we get in case of proving nonexis-

tence of some Butson-Hadamard matrices in Sect. 5.
The main theorem of [7] that there is no solution on D = αᾱ ∈ Z[ζm] for

some γ ∈ Z[ζm] is given below. For completeness, the outline of the proof is given
below. Let hm denote the class numbers of cyclotomic number field Q(ζm). We
list hm for m ≤ 70 in Table 1.

Theorem 2 [7]. Let D ∈ Z[ζm] ∩ R such that D = tq2e+1 where q, t ∈ Z[ζm]
and q is square-free, provided that every prime ideal t � Z[ζm] with t|(t) is
principal, (q) = q1q2 where q1 and q2 are non-principal prime ideals of Z[ζm],
e > 0 be rational integer, gcd(2e + 1 − 2k, hm) = 1 for 0 ≤ k ≤ e − 1 and
gcd(N(q), N(t)) = 1. Then, there exists no α ∈ Z[ζm] satisfying D = αᾱ.

Proof. We first assume that there exists α ∈ Z[ζm] such that αᾱ = tq2e+1 such
that

(α) = t1q
2e+1−k
1 qk

2

(ᾱ) = t2q
k
1q

2e+1−k
2

for some t � Z[ζm]. We have

(α) = t1q
2e+1−k
1 qk

2 = t1q
2e+1−2k
1 qk
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We know that t1 and q are principal ideals of Z[ζm] but q2e+1−2k
1 is nonprincipal

since gcd(2e+1−2k, hm) = 1. Hence we get a contradiction. Next, we assume that
α = t1q

s, ᾱ = t2q
2e+1−s for some principal ideals t1, t2 � Z[ζm] and s ∈ Z

+∪{0},
s ≤ e. Then, q2e+1−2s|t1. However, this contradicts to gcd(N(q), N(t)) = 1. �

We now give an example of Theorem 2.

Example 1. Let D = ((−ζ23 − ζ2223 )5 + 1 + ζ23 + ζ2223 )(6 + ζ23 + ζ2223 )4 ∈ Z[ζ23] be
obtained by setting v = 5, m = 23, γ = −1 − ζ23 − ζ2223 . D has two non-principal
prime ideals such that D = p41p2p

4
3q4q5 where p1, p2, p3 � Z[ζ23] are principal

prime ideals and q4, q5 ∈ Z[ζ23] are the non-principal prime ideals. By Theorem 2
we say that there is no α ∈ Z[ζm] satisfying D = αᾱ.

We note that the method given in Theorem 2 to the case that q has more
than two non-principal ideals factors does not work.

Example 2. Let D = ((−ζ23 − ζ2223 )46 + 1 + ζ23 + ζ2223 )(47 + ζ23 + ζ2223 )45 ∈ Z[ζ23]
be obtained by setting v = 46, m = 23, γ = −1 − ζ23 − ζ2223 . D has four non-
principal prime ideals such that D = p1p

45
2 p453 q4q5q6q7 where p1, p2, p3 � Z[ζ23]

are principal prime ideals and q4, q5, q6, q7 � Z[ζ23] are the non-principal ideals.
The methodology in Example 1 does not work for this example. Note that (α) =
t1q10q

38
12 is a principal ideal and satisfies D = αᾱ for a convenient principal ideal

t1 � Z[ζ23] such that t1 | D.

Example 3. Let D = ((−ζ23 − ζ2223 )39 + 1 + ζ23 + ζ2223 )(40 + ζ23 + ζ2223 )38 ∈ Z[ζ23]
be obtained by setting v = 39, m = 23, γ = −1 − ζ23 − ζ2223 . D has four
prime non-principal ideals such that D = p1p2p3p4p

2
5p

38
6 p387 p388 q9q10q

38
11q

38
12 where

p1, p2, p3, p4, p5, p6, p7, p8 � Z[ζ23] are principal ideals and q9, q10, q11, q12 �
Z[ζ23] are non-principal ideals. Note that (α) = t1q10q

38
12 is a principal ideal

and satisfies D = αᾱ for a convenient principal ideal t1 � Z[ζ23] such that
t1 | D.

In order to speak of the non-existence of a solution to the equation D = αᾱ
for α ∈ Z[ζm] with D is divisible by more than two non-principal ideals, one
can consider principal parts produced by the non-principal ones. We remark this
method below.

Remark 1. If D is divisible by four non-principal prime ideals which are distinct
and relatively prime to each other, then there exists no solution α ∈ Z[ζm] sat-
isfying D = αᾱ. In other words, let q1, q2, q3, q4 � Z[ζm] be non-principal prime
ideals of Z[ζm] dividing D. Assume that q1q2, q3q4, q1q3, q2q4 are all principal in
Z[ζm]. If gcd(N(q1q2), N(q3q4)) = 1, gcd(N(q1q3), N(q2q4)) = 1, then we can
conclude that there exists no solution.

3 Norm Method

The method presented in Theorem 2 works only for hm > 1, where hm denotes
the class numbers of cyclotomic number field Q(ζm). In this section, we present
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a new method for deciding an existence of a solution α ∈ Z[ζm] to the equation
D = αᾱ where m ∈ Z

+ and D ∈ Z[ζm] ∩ R, which does not depend on hm. In
particular, we consider

D = ((γ + 1)v − γ)(v − γ)v−γ

for some m, v ∈ Z
+ and γ ∈ Z[ζm] ∩ R, which we get in case of proving nonexis-

tence of some Butson-Hadamard matrices in Sect. 5.

Theorem 3. Let p � Z[ζm] be a prime ideal with p|D and gcd(N(D)/N(p),
N(p)) = 1. Then there is no solution α ∈ Z[ζm] satisfying D = αᾱ.

Proof. Assume α ∈ Z[ζm] is a solution of D = αᾱ and p � Z[ζm] is a prime ideal
factor of α. We know that if p | D, then N(p) | N(D). We have N(p) �

N(D)
N(p)

since gcd(N(D)/N(p), N(p)) = 1. By N(p) = N(p̄), we have N(p̄) �
N(D)
N(p) . Hence,

N(p)N(p̄) � N(D). This is a contradiction to D = αᾱ. �

There is an immediate consequence of Theorem 3.

Corollary 1. If the norm of non-principal part of D is square-free, then there
exists no α ∈ Z[ζm] satisfying D = αᾱ.

Next, we give an example of Theorem 3. Below, we consider D = ((γ +1)v −
γ)(v − γ)v−1 for some m, v ∈ Z

+ and γ ∈ Z[ζm] ∩ R.

Example 4. Let be v = 30, m = 23, γ = −1 − ζ23 − ζ2223 . Then D = ((−ζ23 −
ζ2223 )39 + 1 + ζ23 + ζ2223 )(40 + ζ23 + ζ2223 )38 ∈ Z[ζ23] has four non-principal prime
ideal factors, such that D = p1p

29
2 q3q4q

29
5 q296 where p1, p2 � Z[ζ23] are principal

prime ideals and q1, q2, q3, q4 � Z[ζ23] are non-principal prime ideals. Then,

N(D) = 4758 · 2292 · 632763048368812 · 5177253710910232, N(p1) = 2292

and

gcd(
4758 · 2292 · 632763048368812 · 5177253710910232

2292
, 2292) = 1.

Hence, we say that there is no α ∈ Z[ζ23] satisfying D = αᾱ by Theorem 3.

We note that Theorem 3 does not completely cover Theorem 2 and vice
versa. For γ = −1 − ζ23 − ζ2223 and m = 23, the existence of a solution to the
equation D = αᾱ over Z[ζ23] for v ∈ {8, 26} can be excluded by Theorem 2,
but Theorem 3. On the other hand, the existence of a solution to the equation
D = αᾱ over Z[ζ23] for v ∈ {9, 10, 11, 12, 13, 14} can be excluded by Theorem 3,
but Theorem 2. Therefore, the two theorems do not cover each other, but they
intersect.
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4 Application to Butson-Hadamard Matrices

In this section, we give the definition of a Butson-Hadamard matrix, and apply
the results of the previous sections to this kind of matrices.

A Hadamard matrix is an (v × v) square matrix with entries 1 or −1 satisfying
HH

T
= vI. Two examples of Hadamard matrices are given below.

A =
[
1 1
1 −

]
, B =

⎡

⎢⎢⎣

1 1 1 1
1 1 − −
1 − 1 −
1 − − 1

⎤

⎥⎥⎦

A square matrix H = (hij) of order v is called circulant if
hi+1 mod v,j+1 mod v = hi,j for all 0 ≤ i, j < v. An example of a circulant matrix
H is given below.

H =

⎡

⎢⎢⎢⎢⎣

1 1 − − −
− 1 1 − −
− − 1 1 −
− − − 1 1
1 − − − 1

⎤

⎥⎥⎥⎥⎦

For an integer m ≥ 2, let ζm denote a primitive complex m-th root of unity
and let Em = {1, ζm, ζ2m, . . . , ζm−1

m }. The identity matrix is denoted by I and all
one matrix is denoted by J .

Definition 3. A Butson-Hadamard matrix is a square matrix H of order v

with entries in Em such that HH
T

= vI. It is denoted by BH(v,m). BH(v, 2) is
so called Hadamard matrix of order v. In general, a γ near Butson-Hadamard
matrix is a square matrix H of order v with entries in Em such that HH

T
=

(v − γ)I + γJ for a γ ∈ R ∩ Z[ζm]. Similarly, it is denoted by BHγ(v,m).

Two examples on the existence of γ near Butson-Hadamard matrices are
presented below.

Example 5. BHγ(5,5) exists for γ ∈ {−ξ35 − ξ25 + 2, 0, 5, ξ35 + ξ25 + 3} with |γ| ∈
{1.38, 0, 5, 3.61}, respectively. For instance, the matrix H has γ = −ξ35 − ξ25 + 2
with |γ| = 1.38

H =

⎡

⎢⎢⎢⎢⎣

1 1 −ξ25 1 1
1 1 1 −ξ25 1
1 1 1 1 −ξ25

−ξ25 1 1 1 1
1 −ξ25 1 1 1

⎤

⎥⎥⎥⎥⎦
.

Example 6. Similarly, we obtained by an exhaustive search that BHγ(8,5) exists
for γ ∈ {−ξ35 − ξ25 + 5,−ξ35 − ξ25 , 8, ξ35 + ξ25 + 1, ξ35 + ξ25 + 6} with |γ| ∈
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{6.61, 1.61, 8, 0.61, 4.38}, respectively. In particular, the matrix H has γ =
−ξ35 − ξ25 + 2 with |γ| = 0.61

H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 ζ25 ζ35 1 ζ35 ζ5 1
1 1 1 ζ25 ζ35 1 ζ35 ζ5
ζ5 1 1 1 ζ25 ζ35 1 ζ35
ζ35 ζ5 1 1 1 ζ25 ζ35 1
1 ζ35 ζ5 1 1 1 ζ25 ζ35
ζ35 1 ζ35 ζ5 1 1 1 ζ25
ζ25 ζ35 1 ζ35 ζ5 1 1 1
1 ζ25 ζ35 1 ζ35 ζ5 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We now investigate a property that a γ near Butson-Hadamard matrix H
satisfy. It is clear that det(H) ∈ Z[ζm] and we have the following equalities:

HH
T

= (v − γ)I + γJ,

det(HH
T
) = det((v − γ)I + γJ)

det(H) det(H) = ((γ + 1)v − γ)(v − γ)v−1.

Therefore, a BHγ(v,m) exists then the following equation has a solution α ∈
Z[ζm]

αα = ((γ + 1)v − γ)(v − γ)v−1. (2)

Now, we apply Theorem 3 to (2), we get a criterion for the non-existence of
BHγ(v,m):

Corollary 2. Let v,m ∈ Z
+ and γ ∈ Z[ζm]∩R such that D = ((γ+1)v−γ)(v−

γ)v−1 and p � Z[ζm] be a prime ideal with p|D and gcd(N(D)/N(p), N(p)) = 1.
Then, there exists no BHγ(v,m).

We give an example illustrating the results above.

Example 7. Consider BHγ(39, 23), γ = −1 − ζ23 − ζ2223 , v = 39 and m = 23.
Hence we have

αα = ((−ζ23 − ζ2223 )39 + 1 + ζ23 + ζ2223 )(40 + ζ23 + ζ2223 )38.

Then we conclude that BHγ(39, 23) does not exist by Corollary 2 and Example 4.

Remark 2. We performed an exhaustive computer search by using MAGMA [1]
to check the cases for which Corollary 2 excludes the existence of a BHγ(v,m).
We fixed m = 23, γ = −1− ζ23 − ζ2223 and searched on the set v ∈ {2, 3, . . . , 100}.
We obtained that Corollary 2 excludes the existence of a BHγ(v,m) for all v =
{2, 3, . . . , 100} except {6, 8, 15, 16, 26, 44, 49, 62, 67, 75, 84, 85, 88, 94}.
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5 Nonlinear Boolean Functions

There is a close relationship between the family of Hadamard matrices and
cryptography. For instance there is a class of functions called bent function
used in block cipher cryptosystems, and they can be constructed via Butson-
Hadamard matrices.

Functions used in block cipher design have to satisfy some properties in order
to resist attacks. Two of them are balancedness and nonlinearity. A function
is said to be balanced if each value in its image set is attained by the same
probability. And, a function’s nonlinearity is measured by its minimum distance
to all linear functions.

The family of bent functions is a branch of the Boolean functions. Their
Walsh spectrum coefficients allow us to examine their non-linearity. Hence, we
start with the definition of a Boolean function.

Definition 4. A function f : (Z2)n → Z2 is a Boolean function of n variables.
Let Bn be the set of all Boolean functions of n variables. A function f ∈ Bn is
represented with a vector of length 2n having values f(x) for all x ∈ (Z2)n where
x values are in lexicographic order.

Definition 5. For any f ∈ Bn, define (−1)f to be the function F : (Z2)n →
{−1, 1} such that F (x) = (−1)f(x) for all x ∈ (Z2)n.

For cryptographic systems, the method of confusion and diffusion is used
as a fundamental technique to achieve security [10]. Confusion is satisfied by
including a highly nonlinear function into the cryptosystem. These functions
simultaneously have maximum distance to affine functions and maximum dis-
tance to linear structures, as well. So they are called as strong functions, i.e. not
weak. A function is considered weak whenever it can be turned into a crypto-
graphically weak function by means of simple (linear or affine) transformations
as a minimum correlation to affine functions [9, p. 549].

The nonlinearity of a function can be calculated by using the Walsh trans-
form, one of the important tools in cryptography. The definition of Walsh trans-
form and its properties are given below. After that, a method for computing the
nonlinearity will be demonstrated.

The inner product of two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈
(Z2)n is x · y =

∑n
i=1 xiyi mod 2.

Definition 6. Let F be any real-valued function defined on (Z2)n. The Walsh
transform of F is the function F̂ : (Z2)n → R defined by the following formula.
For all x ∈ (Z2)n, F̂ (x) =

∑
y∈(Z2)n

(−1)x·yF (y).

Nonlinearity of a Boolean function is the minimum distance of a Boolean
function f to the set of all linear functions

nl(f) = min{d(f,An)},
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where An is the set of all affine functions in Bn. Below we consider F (x) =
(−1)f(x).

F̂ (x) =
∑

y∈(Z2)n

(−1)x·y(−1)f(x)

=
∑

f(x)=x·y
1 −

∑

f(x) �=x·y
1,

= 2n − 2d(f, x · y).

Then, d(f, x·y) = 2n−1− 1
2 F̂ (x) is the distance between f(x) and ly(x) = x·y.

Theorem 4. The nonlinearity of a Boolean function f on Z
n
2 can be expressed

by nl(f) = 2n−1 − 1
2max{|F̂ (x)| : x ∈ Z

n
2}.

Theorem 5. For any function f on Z
n
2 , the nonlinearity of f satisfies nl(f) ≤

2n−1 − 2
n
2 −1.

A function f on Z
n
2 attains the upper bound of nonlinearity 2n−1 − 2

n
2 −1 is

called a bent function. It is clear that a function f ∈ Bn is a bent function if
F̂ (x) = ±2n/2 for all x ∈ Z

n
2 . Maximal nonlinearity is hence attained by bent

functions, with only even n. For instance, let P (x) be a function from Z2 to Z2.
P (x) is bent if all Walsh coefficients of (−1)P (x) are ±1. This definition of a bent
function over Z2 can be directly extended to functions on Zq. First the Walsh
transform is extended to the functions on Zq.

Definition 7 [6, p. 339]. Suppose F : (Zq)n → C and let ω = e2iπ/q. The Walsh
transform of F is the function F̂ : (Zq)n → C defined for all x ∈ (Zq)n by the
formula:

F̂ (x) =
∑

y∈(Zq)n

ωx·yF (y).

Then a generalized bent function is defined similarly.

Definition 8 [6]. Suppose f : (Zq)n → Zq and define F : (Zq) → C by the rule
F (x) = ωf(x) for all x ∈ (Zq)n, where ω = e2iπ/q. Then f is a generalized bent
function if |F̂ (x)| = qn/2 for all x ∈ (Zq)n.

The connection between Hadamard matrices and generalized bent functions
is given in Theorem 6.

Theorem 6 [6]. Suppose f and F are defined as above. Define the matrix Hf =
(hx,y), where hx,y = F (x − y) for all x,y ∈ (Zq)n. Then f is a generalized bent
function if and only if Hf is a Butson-Hadamard matrix.

We give a well known result on the existence of a generalized bent function.

Theorem 7 [6, p. 96]. Suppose that n is even or q ≡ 2 mod 4. Then there
exists a generalized bent function f : (Zq)n → Zq.
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Therefore, we see that there is a one to one correspondence between gen-
eralized bent functions and Butson-Hadamard matrices. We give an example
below.

Example 8. f : Z
2
3 → Z3 and f(x1, x2) = x1x2. The matrix H corresponding to

the bent function f is given below. The entries of the Hadamard matrix forms
a power of 3-th of unity ω.

H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wf(0,0) wf(0,2) wf(0,1) wf(2,0) wf(2,2) wf(2,1) wf(1,0) wf(1,2) wf(1,1)

wf(0,1) wf(0,0) wf(0,2) wf(2,1) wf(2,0) wf(2,2) wf(1,1) wf(1,0) wf(1,2)

wf(0,2) wf(0,1) wf(0,0) wf(2,2) wf(2,1) wf(2,0) wf(1,2) wf(1,1) wf(1,0)

wf(1,0) wf(1,2) wf(1,1) wf(0,0) wf(0,2) wf(0,1) wf(2,0) wf(2,2) wf(2,1)

wf(1,1) wf(1,0) wf(1,2) wf(0,1) wf(0,0) wf(0,2) wf(2,1) wf(2,0) wf(2,2)

wf(1,2) wf(1,1) wf(1,0) wf(0,2) wf(0,1) wf(0,0) wf(2,2) wf(2,1) wf(2,0)

wf(2,0) wf(2,2) wf(2,1) wf(1,0) wf(1,2) wf(1,1) wf(0,0) wf(0,2) wf(0,1)

wf(2,1) wf(2,0) wf(2,2) wf(1,0) wf(1,1) wf(1,2) wf(0,1) wf(0,0) wf(0,2)

wf(2,2) wf(2,1) wf(2,0) wf(1,2) wf(1,1) wf(1,0) wf(0,2) wf(0,1) wf(0,0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0 w2 w1 w6 w8 w7 w3 w5 w4

w1 wf0 w2 w7 w6 w8 w4 w3 w5

w2 w1 w0 w8 w7 w6 w5 w4 w3

w3 w5 w4 w0 w2 w1 w6 w8 w7

w4 w3 w5 w1 w0 w2 w7 w6 w8

w5 w4 w3 w2 w1 w0 w8 w7 w6

w6 w8 w7 w3 w5 w4 w0 w2 w1

w7 w6 w8 w4 w3 w5 w1 w0 w2

w8 w7 w6 w5 w4 w3 w2 w1 w0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

On the other hand, we can show an example for the other direction of
Theorem 6. The matrix H is a Butson-Hadamard matrix.

H =

⎡

⎢⎢⎣

ω0 ω2 ω0 ω0

ω0 ω0 ω2 ω0

ω0 ω0 ω0 ω2

ω2 ω0 ω0 ω0

⎤

⎥⎥⎦

Then, f : Z4 → Z4, as follows f(0) = 0, f(1) = 0, f(2) = 0, f(3) = 2.

We now investigate the functions corresponding to γ near Butson Hadamard
matrices. We start with a circulant γ near Butson Hadamard matrix H and
convert the first row of H into a truth table of a function f as in Theorem 6
and Example 8. Then the Walsh transform of f is calculated by Definition 7.
We apply this conversion for the examples obtained by exhaustive search on m
and v by using MAGMA [1]. We tabulate our results in Table 2.

Looking at Table 2, it is seen that the smaller gamma values, the more flat
Walsh spectrum and so the higher nonlinearity. Therefore one can obtain new
families of nonlinear functions by searching matrices BHγ(v,m) for non integer
γ ∈ Z[ζm] having small absolute value.
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Table 2. Samples of Walsh spectrum of some γ near Butson Hadamard matrices

m v γ |γ| truthtable |F̂ |
5 5 ζ35 + ζ25 + 3 1.38 (0, 2, 0, 0, 0) (3.24, 1.90, 1.90, 1.90, 1.90)

6 6 −1 1 (6, 2, 0, 2, 6, 1) (3.60, 1, 1, 4.35, 1, 1)

7 7 2ζ47 + 2ζ37 + 3 0.60 (2, 3, 3, 2, 3, 2, 2) (6.32, 1.22, . . . , 1.22)

8 8 0 0 (5, 7, 1, 5, 1, 7, 5, 5) (2.82, . . . , 2.82)

9 9 ζ59 + ζ49 + 7 5.12 (6, 2, 6, 6, 6, 6, 6, 6, 6) (7.06, 1.97, . . . , 1.97)

10 10 ζ310 − ζ210 + 7 6.38 (0, 6, 7, 3, 5, 2, 5, 3, 7, 6, 0) (3.55, 3.23, 1.32, 2.55, 4.30

3.59, 4.29, 2.55, 1.32, 3.23)

11 11 3ζ611 + 3ζ511 + 5, 0.75 (0, 6, 6, 6, 0, 6, 0, 0, 6, 0, 0) (1.85, 3.42, . . . , 3.42)

11 11 ζ611 + ζ511 + 9 7.08 (0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0) (9.044, 1.979, . . . , 1.979)

11 11 0 0 (0, 6, 7, 3, 5, 2, 5, 3, 7, 6, 0) (3.31, . . . , 3.31)

6 Conclusion

In this paper, we studied the γ near Butson-Hadamard matrices and their crypto-
graphic applications. We studied the existence cases of γ near Butson-Hadamard
matrices for γ ∈ (Z[ζm]∩R)\Z by using the tools from algebraic number theory.

Firstly, we converted the existence condition of a γ near Butson-Hadamard
matrix to an equation over a ring of integers of an cyclotomic number field. Then
we obtained a novel result stating necessary conditions for the nonexistence of
this equation. Then the direct applications of these results to γ near Butson-
Hadamard matrices were shown. We presented examples of nonexistence cases
in details and obtained existence examples by computer search.

Next, the connection of γ near Butson-Hadamard matrices to cryptographic
functions was drawn. Cryptographers look for nonlinear Boolean (multivariate)
functions on residue rings. These functions are used in block ciphers to provide
confidentiality of the message between two parties. In this study, it was shown
that a γ near Butson-Hadamard matrix can be converted to a Boolean func-
tion whose nonlinearity is proportional with the value |γ|. And, the examples
of nonlinear functions obtained from γ near Butson-Hadamard matrices were
presented.
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Abstract. The secret sharing scheme by Dileep et al. [19] uses Level
ordered access structure which is missing in the existing access structures.
In their scheme, sequential reconstruction of the secret is achieved by
adding a virtual player at all the levels except at the first level. In this
paper, we propose a variation of sequential secret sharing scheme for level
ordered access structure (LOAS) [19], where multisecrets are distributed
to multilevels each corresponding to a level by using the concepts of
quadratic residues and discrete logarithm problem. The method consists
of sharing of m secrets in m levels, each corresponding to a level. The
distribution of secrets is based on quadratic residues concept and that of
the discrete logarithm problem. The reconstruction of secrets is such that
players of different levels find their respective level secrets individually
only after they get their immediate higher level permission. Verification
phase is also added at all the levels which guarantees the correctness
of the shares in the presence of any cheater. The comparison of the
proposed secret sharing scheme with existing secret sharing schemes,
time complexity of the scheme and security analysis of the scheme for
passive adversary model are discussed.

Keywords: Hierarchical · Compartmented · Sequential
Quadratic residue · Discrete logarithm problem

1 Introduction

Secret sharing is a method for sharing a secret among a group of participants,
i.e., each participant receives a share or part of the secret. Reconstruction of
secret is possible only when authorized participants pool their shares together;
with individual shares, secret cannot be recovered. Ideality and perfectness are
the necessary characteristics for a secret sharing scheme concerning of efficiency
and security respectively.

A secret sharing scheme is said to be perfect if any subset of players that is
not in the defined access structure (i.e. unauthorized subset) cannot determine
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any information regarding the secret. A secret sharing scheme is known to be
ideal if each participant receives exactly one share and the domain of both the
secrets and the shares are the same.

Shamir [1] and Blackely [2] are the first to propose secret sharing in which
Shamir has used the standard Lagrange polynomial interpolation, and Blakley
has used linear projective geometry for constructions.

Definition 1 (Access Structure). Let U = {U1, . . . , Un} be a set of n players.
A collection Γ ⊆ 2U of non-empty subsets of U is monotone if for any A,B ⊆ U ,
A ∈ Γ and A ⊆ B imply that B ∈ Γ . An access structure Γ over U is a collection
Γ ⊆ 2U such that it is monotone. Sets in Γ are called authorized, and sets not
in Γ are called unauthorized.

Many access structures are suggested in the literature. Some of these are
the generalised access structure, the (t, n) access structure and the multipartite
access structure. Threshold (t, n) access structure is an important class of access
structure which consists of n shareholders where, an authorized set consists
of any t or more than t players. Less than t players belong to unauthorized
set and they cannot reconstruct the secret. Multipartite access structures may
further be classified into Hierarchical and Compartmented access structures.
Hierarchical access structure is again classified into Disjunctive and Conjunctive
access structures.

Simmons [3] has first proposed the disjunctive multilevel secret sharing
scheme.

Definition 2. Disjunctive hierarchical access structure [7] is a multipartite
access structure in which each level Ui is associated with a threshold ti, 1 ≤
i ≤ m, and the secret can be reconstructed when, for some i, there are at least ti
shareholders who all belong to levels smaller than or equal to Li. Mathematically,

Γ = {V ⊆ U : |V ∩ (∪i
j=1Uj)| ≥ ti, for some i ∈ {1, 2, · · · ,m}}

where U denotes the set of participants.

Tassa [4] has proposed a conjunctive hierarchical secret sharing scheme which
is a variation of disjunctive hierarchical secret sharing scheme.

Definition 3. Conjunctive hierarchical access structure [7] is a multipartite
access structure in which each level Ui is associated with a threshold ti for
1 ≤ i ≤ m, and the secret can be reconstructed when, for every i, there are
at least ti shareholders who all are associated to levels smaller than or equal to
Ui. Mathematically,

Γ = {V ⊆ U : |V ∩ (∪i
j=1Uj)| ≥ ti, for every i ∈ {1, 2, · · · ,m}}

where U denotes the set of participants.

Compartmented access structure Γ is defined as follows.
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Definition 4. Compartmented access structure [7] is a multipartite access struc-
ture in which each compartment is associated with a threshold ti, 1 ≤ i ≤ m,
and the reconstruction of the secret is possible only when, for every i, there are
at least ti shareholders from Ui and a total of at least t0 participants from all
the compartments. Mathematically,

Γ = {V ⊆ U : |V ∩ Ui| ≥ ti, for every i ∈ {1, 2, · · · ,m} and |V | ≥ t0}
where U denotes the set of participants.

The proposed scheme can be applied to scenarios such as an organisation
consisting of different departments in which each department is having a secret
and for reconstruction of secret of a particular department, the immediate above
department has to give permission.

A simple application can be in banking scenarios where, the managers, assis-
tant managers, cashiers, and clerks are in different authority levels. For a clerk
to perform any action, he is not supposed to seek the permission of managers
or assistant managers, but he has to take the permission of his direct higher
officer cashier. To cater this type of requirement Level Ordered Access structure
was proposed by Dileep et al. [19]. They also gave a secret sharing scheme that
realizes this access structure. Here we propose yet another scheme for this access
structure. Our scheme makes use of the concept residues and the well known
discrete logarithm problem.

1.1 Related Work

An ideal secret sharing scheme based on Birkhoff interpolation was proposed by
Tassa. Constructions of the scheme are given in [4]. Later, Tassa and Dyn have
proposed ideal secret sharing scheme for multipartite access structures like hier-
archical and compartmented. These constructions, which are described in [5] are
based on bivariate interpolation. These schemes have a drawback of either requir-
ing a large finite field or having some restrictions on the identities assigned to
the participants or the scheme being perfect in a probabilistic manner. A scheme
is said to be perfect in a probabilistic manner if either a set of unauthorised par-
ticipants can recover the secret or set of authorised participants might not be
able to recover the secret with some probability.

Computationally perfect conjuctive and disjunctive secret sharing schemes
based on error correcting codes were proposed by Tentu et al. in [7,8]. Simmons
[3] has introduced the concept of compartmented secret sharing. He has consid-
ered secret sharing in compartmented and multilevel access structures. Ghodosi
has proposed a scheme [6] for a compartmented access structures by applying
Shamir secret sharing scheme two times, first to get partial secrets and second
to combine them into the required secret. A clear description of two cases of
global threshold being equal to the summation of all local thresholds and global
threshold being greater than the summation of all local thresholds are provided
in the paper.

A multistage secret sharing scheme that uses one-way function was proposed
by [12] He and Dawson in 1994 to share multiple secrets. Public shift techniques
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were used to obtain the true shadows and in order to recover the secrets stage-
by-stage in a predefined manner, successive applications of one-way function is
used. In this scheme, the dealer publishes pn public values. An alternate scheme
was proposed by Harn [13] reducing the number of public values to p(n − t).
Both the schemes proposed by He and Dawson and Harns are claimed to be
multi-use. These are later proved to be of not multiuse by Chang et al. in [14]
by showing that the dealer fails to recover the secrets in the predefined order. In
order to remove the drawbacks Chang has refined the He and Dawson scheme
which using one-way function [14]. Bidyapati has proposed [15] where multiple
secrets are shared among the participants. A practically verifiable multistage
secret sharing scheme based on the YCH scheme that uses the intractability of
the discrete logarithm has been proposed in [16]. we use some of these concepts
in our proposed scheme. A new hierarchical sequential secret sharing scheme
is proposed by Mehrdad Nojoumian [18] which is different from the existing
hierarchical secret sharing schemes.

1.2 Motivation and Contribution

All the existing schemes that realize hierarchical access structures involve sharing
of a single secret among the participants who are in different levels of authority.
Also there is no concept of ordering among the levels. There can be certain
applications which may require ordering among the levels.

Dileep et al. has proposed a level ordered access structure in [19] which
enforces ordering required in some of the applications as against the existing
access structures in the literature. They also gave a secret sharing scheme real-
izing the level ordered access structure in [18,19]. Here, we are proposing yet
another scheme that realizes this level ordered access structure. Our scheme is
based on the concepts of quadratic residue and discrete logarithm problem. Our
scheme is applicable for the case of multi-secrets that are to be shared among
the multi-levels; each corresponding to a level. Reconstruction of a particular
level secret requires its immediate higher level permission (enforcing ordering
concept in the recovery of secrets). In our scheme a verification phase has also
been added at each and every level to check whether the shares submitted by
the shareholders during reconstruction are true or not.

Organization of the paper: The rest of the paper is organized as follows:
Sect. 2 presents some of the preliminaries used in the construction. In Sect. 3,
we presented our proposed Level ordered secret sharing scheme. Comparison
and security analysis of the scheme is presented in Sects. 4 and 5 respectively.
Conclusions of the proposed scheme are discussed in Sect. 6.

2 Preliminaries

Discrete Logarithm Problem: Discrete logarithm problem is used in vari-
ety of applications in the field of cryptography. It is significant because of its
computational difficulty. There are many cryptosystems whose security is based
on the computational difficulty of discrete logarithm problem.
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Definition 5. Given a and g there exists G, where G is a multiplicative group
G, find an integer x, if it exists, such that gx = a. The number x is the discrete
logarithm of a to the base g, which can also be written as x = logg(a).

Quadratic Residues: An integer a ∈ Z is said to be a quadratic residue modulo
n, if there exists a b ∈ Z such that the congruence b2 ≡ a mod n is satisfied,
i.e., if a is a perfect square modulo n. If there is no such b satisfying the above
congruence, then it is called a non quadratic residue.

Computing a square root of an integer is generally a difficult problem. But
if the integer is from a finite field, it can be computed as follows.

Definition 6. Square root of a quadratic residue in a finite field FP can be
calculated in polynomial time.

Given a and P , where a is a quadratic residue modulo P and P is a prime
number such that P ≡ 3 mod 4, then

√
a = a

P+1
4 .

√
a can be found by formula a

P+1
4 .

Secret Sharing Scheme was first introduced by Shamir [1]. The scheme relies
on Lagrange interpolation. In this scheme, the dealer divides the secret S into
n shares so that at least any t number of participants (authorized set of partic-
ipants) can recover the secret S and less than t participants (unauthorized set
of participants) can never recover the secret S.

2.1 Level Ordered Access Structure

A new access structure that is different from the existing multipartite and mul-
tistage access structures is proposed by Dileep et al. in [19]. LOAS imposes an
ordering concept which is missing in the existing secret sharing schemes.

Definition 7. Let U be a set of n participants and let U1, U2, · · · Um be a parti-
tion of the set U. Also let bi be a boolean variable, which we call the activation
index associated with the ith level Ui, 1 ≤ i ≤ m. Define Si, recursively, to be
an authorized set corresponding to the ith level.

1. Si ⊆ Ui and |Si| ≥ ti,
2. ∃ an authorized set (Si−1) whose activation index (bi−1) is True (T), where

b0 = T and S0 = ∅
Dileep et al. [19] proposed a secret sharing scheme that realizes this access

structure in that the participants are divided into different levels of authority
where each level is assigned with a partial secret si (1 � i � m). The master
secret is the partial secret at the last level i.e. sm. Except at the first level,
each and every level contains two parts, the first part containing the set of
players at level i, and the second part containing the virtual player at level i.
At all the levels except at first level, Shamir’s (t, n) secret sharing scheme is
used for the distribution of partial secrets among the set of participants in the
first part and the partial secret of the immediate below level is assigned to the
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virtual player who is at the second part. For the participants at the first level,
Shamir’s (t, n) secret sharing scheme is used for the distribution of partial secret
s1. At each and every level, the partial secrets are recovered by the authorised
participants only after the participants at the lower level have first reconstructed
their partial secret. For the reconstruction of master secret, the partial secrets
are to be recovered based on the specified order which is enforced by adding a
virtual player at each and every level except at the last level whose share will
be the partial secret at its immediate below level.

We are proposing yet another scheme to realize the access structure based
on the quadratic residue concept and the discrete logarithm problem.

3 Proposed Scheme

3.1 Overview

The dealer chooses m secrets s1, · · · , sm one each for the m levels, over FP where
P ≡ 3 mod 4. The dealer then computes partial secrets from the above original
secrets using the quadratic residue concept and the discrete logarithm problem
and shares one each in the respective levels using Shamir’s (t, n) secret sharing
scheme. For reconstructing the secret of a particular level i, the set of authorized
participants at its immediate higher level i.e. i− 1 level are required to find s′

i−1

and pass it to level i as a permission, which can be used to recover the secret
at level i. Without the cooperation of its immediate higher level, no level can
reconstruct its secret.

In the following, the details about the scheme are given, which divides n
players into m levels, where Ui denotes the players at level i for i ∈ (1,m),
and ni denotes the number of participants in that particular level. Threshold ti,
1 ≤ i ≤ m are assigned to respective levels, and m secrets are chosen from FP .
where P is a prime such that P ≡ 3 mod 4.

3.2 Initialization

Let U = {Pij |1 � i � m, 1 � j � ni} (i is the level number and j is the
participant number in that level)

ni is the number of players at the ith level and m is the number of levels.
U = {U1, U2, · · · , Um} be the m levels.
t = {t1, t2, · · · , tm} be the set of thresholds corresponding to the m levels.
Let ni represent the set of players at level Ui, 1 ≤ i ≤ m and n =

∑m
i=1 |ni|

Initialization phase is done in 3 steps.

Dealer:

– Selects m secrets s1,· · · , sm from Fp where P is prime such that P ≡ 3 mod 4.
– Chooses two primes, p and q, N = p ∗ q. Both p and q should be so safe that

no one can factor N efficiently.
– Randomly chooses an integer g from the interval

[
N1/2, N

]
such that g is

relatively prime to p and q. Publish {g,N}.
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Players:

– Each participant Pij in Ui randomly chooses an integer sij from the interval
[2, N ] as her/his own secret shadow (share) where i = 1, · · · ,m, and j =
1, · · · , ni and computes Rij = gsij mod N .

– Then Pij provides Rij and her/his identity number IDij , to the dealer D.

Dealer:

– Dealer must ensure that Rij ’s are unique in each and every level else, demand
the participants to choose different secret shadows (share) until Rij ’s are dif-
ferent in the respective levels, for i = 1, · · · ,m, and j = 1, 2, · · · , ni. Publish
{IDij , Rij}.

3.3 Distribution

Dealer performs the following steps for all the levels.

– Dealer D randomly chooses an integer s0 from the interval [2, N ] such that
s0 is relatively prime to (p − 1) and (q − 1). Then D computes f so that
s0 ∗ f = 1 mod Φ(N), where Φ(N) is the Euler phi-function.

– Compute R0 = g
s0 mod N and Iij = R

s0
ij mod N where j = 1, · · · , ni and

i = 1, · · · ,m.
– Publish {R0, f}.
– Construct (ti − 1) degree polynomial

hi (x) = Si + ai1x
1 + ai2x

2 + · · · + aiti−1x
ti−1 mod P

where 0 < Si, ai1, ai2, · · · , aiti−1 < P .

(1) For i = 1, Si = s1
• Compute y1j = h1 (I1j) mod P , where j = 1, · · · , n1 and distribute

the share (y1j) via secure channel, for j = 1, · · · , n1 to the ith level
participants.

• Find s′
1 = gSi mod P .

(2) For i = 2,m.

1. Find si ∗ s′
i−1,

• If si ∗ s′
i−1 is a quadratic residue in FP , then find partial secret Si =

√
si ∗ s′

i−1
(a) Compute yij = hi (Iij) mod P where j = 1, · · · , ni and Securely share

(yij) for j = 1, · · · , ni to the ith level participants.
• If si ∗ s′

i−1 is not a quadratic residue,
Choose a random number R from FP such that si ∗ s′

i−1 ∗ R is a quadratic
residue modulo P .
(a) With Si = R, Compute rij = hi (Iij) mod P where j = 1, · · · , ni and

Securely share (rij) for j = 1, · · · , ni. to the participants.
(b) With Si =

√
si ∗ s′

i−1 ∗ R, Compute yij = hi (Iij) mod P where j =
1, · · · , ni and securely share (yij) for j = 1, · · · , ni. to the participants.

2. For i = 2,m − 1, find s′
i = gSi mod P .
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3.4 Verification

– Pij computes I
′
ij = R

sij
0 mod N to gain the share, where sij is the shadow

of Pij where j = 1, 2, · · · , ni.
– Anyone can verify I

′
ij provided by Pij .

If I
′f
ij = Rij mod N where j = 1, 2, · · · , ni then I

′
ij is true; else I

′
ij is false

and Pij may be a cheater.

3.5 Reconstruction

Players perform the following steps.

– For i = 1
Using Lagrange Polynomial Interpolation, Si = s1 can be recovered as follows
The polynomial h1 (x) mod P can be found uniquely as follows:
h1 (x) =

∑t1
j=1 yij

∏t1
k=1,k �=j

(
x−I′

ik

I′
ij−I′

ik

)

h1 (x) = Si + ai1x
1 + ai2x

2 + · · · + aiti−1x
ti−1 mod P .

– Any other level, other than level-1 has to perform the following operations to
recover si.
1. Using Lagrange Polynomial Interpolation, Si can be recovered.

The polynomial hi (x) mod P can be found uniquely as follows:
hi (x) =

∑ti
j=1 yij

∏ti
k=1,k �=j

(
x−I′

ik

I′
ij−I′

ik

)

hi (x) = Si + ai1x
1 + ai2x

2 + · · · + aiti−1x
ti−1 mod P .

2. Using Lagrange Polynomial Interpolation, R can be recovered.
The polynomial hi (x) mod P can be found uniquely as follows:
hi (x) =

∑ti
j=1 rij

∏ti
k=1,k �=j

(
x−I′

ik

I′
ij−I′

ik

)

hi (x) = R + ai1x
1 + ai2x

2 + · · · + aiti−1x
ti−1 mod P .

3. i − 1 level finds s′
i−1 = gSi−1 mod P and passes securely to level i.

where Si−1 is found by Lagrange Polynomial Interpolation with
(ti−1, ni−1).

4. Find si = S2
i

s′
i−1∗R mod P .

4 Comparison with Existing Hierarchical Schemes

In the existing hierarchical access structures only a single secret is shared among
the set of participants who are divided into different levels of authority. Moreover
there is no concept of ordering in the levels during the reconstruction of the
secret. In our model, multiple different secrets are shared among the participants
in different authority levels, each one in the corresponding level. The access
structure for each and every level is in such a way that, if they want to recover
their level secret, then they need to take their immediate higher authority level
permission. Ordering concept is enforced in the levels during the reconstruction
of secrets.
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5 Security Analysis

The following security analysis we are discussing is based on the assumptions
that the dealer is honest (dealer doesn’t involve in any malicious activity) and
the channels for communication between any two connecting nodes are secure,
so there is no possibility for the information to leak to non-authenticating node.
Hence, we discuss the security analysis only if the participants in the scheme can
cheat.
Notations used in this scheme are listed below
i : The number of level.
Si : Partial secret of level i which is private.{

Si = s1 i = 1
Si =

√
si ∗ s′

i−1 ∗ R, i = {2,m}
}

P : Prime number which is public.
g : Generator which is also public.
si : Compartment original secret

si =
S2
i

s′
i−1 ∗ R

mod P

s′
i : gSi mod P

R : Random number.
Some of the possible attacks are the following:

– Unauthorized set of participants try to recover the secret si at level i.
– Participants at the immediate lower level try to obtain the secret si of level i.
– Participants at the immediate higher level try to obtain the secret si of level i.
– Participants at the higher and lower levels together try to recover the secret

si of level i.

Lemma 1: Unauthorized set of participants at level i cannot recover the
secret si.

Proof:

si =
S2
i

s′
i−1 ∗ R

mod P

Partial secret Si and a random number R are distributed using Shamir’s (ti, ni)
threshold scheme. Less than ti participants cannot recover R and the partial
secret Si which are essential to recover si. Hence, unauthorized set of participants
cannot recover si.

Lemma 2: The partial secret Si of a level i cannot be obtained by the lower
level participants.
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Proof: At level i,

• The public values are g, P .
• The private value is the partial secret Si.

s′
i = gSi mod P

is calculated and passed to level i + 1. Thus s′
i is known to level i and i + 1

only. Hence the participants at level i + 1 have the knowledge of s′
i, g, P . But

recovering Si from s′
i, g, and P by the i + 1 level participants depends on the

hardness of discrete logarithm problem which is stated in Sect. 2.

Lemma 3: The secret si of a level i cannot be obtained by the higher level
participants.

Proof: i − 1 level participants knows s′
i−1

si =
S2
i

s′
i−1 ∗ R

mod P

Si and R are essential to recover si which can be obtained only by the partici-
pants at ith level using Lagrange polynomial interpolation.

Lemma 4: Higher and lower level participants of level i cannot recover the
secret si.

Proof: At level i,
S2
i = si ∗ s′

i−1 ∗ R mod P

si =
S2
i

s′
i−1 ∗ R

mod P

i − 1 level participants knows s′
i−1.

i + 1 level participants knows s′
i = gSi mod P , but they cannot get Si from

s′
i, g and P due to discrete logarithm problem which is stated in Sect. 2, Defini-

tion 5.
Since Si and R are essential to recover Si, the players at higher and lower

levels together cannot recover si.

5.1 Ideality and Perfectness

Lemma 5: The proposed scheme is not ideal but it is perfect.

Proof: Some of the participants are receiving shares as rij as well as yij , so the
proposed scheme is not ideal. In the proposed scheme, at each and every level,
we apply Shamir’s (t, n) secret sharing scheme for share distribution. In Shamir’s
(t, n) secret sharing scheme, any less than t people cannot reconstruct the secret.
Hence, our scheme is also perfect based on Shamir’s perfect scheme.
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6 Conclusions

A new secret sharing scheme that realizes the level ordered access structure is
proposed, where multiple secrets are shared among the multilevels each corre-
sponding to a level. The concepts of quadratic residues and discrete logarithm
problem are used for sharing of secrets. An ordering concept is enforced in the
levels during reconstruction of secrets. The reconstruction of secrets in each and
every level is subjected to the cooperation of their immediate higher level. A
verification phase has been added at each and every level to check whether the
shares being submitted by the players during the reconstruction phase are correct
or not.
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