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Abstract When (Xt)t≥0 is an ergodic process, the density function ofXt converges
to some invariant density as t → ∞. We will compute and study some asymptotic
properties of pseudo moments estimators obtained from this invariant density, for a
specific class of ergodic processes. In this class of processes we can find the Cox-
Ingersoll & Ross or Dixit & Pindyck processes, among others. A comparative study
of the proposed estimators with the usual estimators obtained from discrete approx-
imations of the likelihood function will be carried out.

1 Introduction

Ergodic diffusion processes like the Cox-Ingersoll & Ross [3], the geometric
Ornstein-Uhlenbeck or Dixit & Pindyck [4] are widely used in the mathematical
finance context, see [2] or [4].

Many times, for ergodic diffusions, the transition density is not known and
the parameter estimation is made using approximations of the likelihood function
based in some kind of discretization or using martingale estimating functions,
see, for instance, [1, 5–7, 12]. In [10], a new parameter estimation technique was
presented and applied to the stochastic processes satisfying the following stochastic
differential equation,

dXt = b(a − Xt)X
γ
t dt + σ

√
X

γ+1
t dBt , a, b, σ > 0, γ ≥ 0, (1)

and for the combination of parameters that makes this processes ergodic.
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The idea was that if (Xt )t≥0 is an ergodic process then as t → ∞ the density
function of Xt converges to the invariant density and then the process parameters
can be estimated from the invariant density as if the observations, X1, . . . , Xn, of
the process were independent and identically distributed (i.i.d.) random variables,
all of them with the same invariant distribution.

Also in [10], pseudo maximum likelihood estimators were deduced from the
invariant density and in the present work we will compute pseudo moments estima-
tors and their asymptotic propertieswill be studied. In the final section a comparative
study, through simulation, will be implemented to compare the pseudo moments
estimators with the pseudo maximum likelihood estimators already mentioned
and also with the usual estimators obtained from discrete approximations of the
transition density.

2 Ergodicity

A continuous time diffusion process

dXt = μ(Xt ; θ)dt + σ(Xt ; θ)dBt ,

with state space R, is said to be ergodic (see, for instance, [9]), if

S(x; θ) =
∫ x

x0

exp

(
−2

∫ y

x0

μ(v; θ)

σ 2(v; θ)
dv

)
dy → ±∞, as x → ±∞,

and

M(θ) =
∫ +∞

−∞
1

σ 2(x; θ)
exp

(
2

∫ x

x0

μ(v; θ)

σ 2(v; θ)
dv

)
dx < ∞,

with x0 an interior point of the state space.
The invariant density is then given by

fθ (x) = 1

M(θ)σ 2(x; θ)
exp

(
2

∫ x

x0

μ(v; θ)

σ 2(v; θ )
dv

)
.

Theorem 1 The processes satisfying the stochastic differential equation (1) are
ergodic, when 2ab > σ 2(γ + 1), with invariant density,

f(α,β)(x) = xα−1e−βxβα

Γ (α)
∼ Gamma(α, β), with α = 2ab

σ 2 − γ, β = 2b

σ 2 .
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Proof The processes have state space ]0,∞[ and with, θ = (a, b, γ, σ ), we have

S(x; θ) =
∫ x

x0

s(y, θ)dy =
∫ x

x0

exp

(
−2

∫ y

x0

b(a − v)vγ

σ 2vγ+1 dv

)
dy

= x
2ab

σ2

0 e
− 2b

σ2
x0

∫ x

x0

y
− 2ab

σ2 e
2b
σ2

y
dy → ±∞, x → +∞, x → 0,

and

M(θ) =
∫ +∞

0

1

σ 2xγ+1 exp

(
2

∫ x

x0

b(a − v)vγ

σ 2vγ+1 dv

)
dx

= x
− 2ab

σ2

0 e
2b
σ2

x0

σ 2

∫ ∞

0
x

2ab

σ2
−γ−1

e
− 2b

σ2
x
dx < ∞, if 2ab > σ 2(γ + 1).

The invariant density is then given by

fθ (x) = x
− 2ab

σ2

0 e
2b
σ2

x0

σ 2 x
2ab

σ2
−γ−1

e
− 2b

σ2
x

⎛
⎜⎝x

− 2ab

σ2

0 e
2b
σ2

x0

σ 2

∫ ∞

0
x

2ab

σ2
−γ−1

e
− 2b

σ2
x
dx

⎞
⎟⎠

−1

= xα−1e−βxβα

Γ (α)
∼ Gamma(α, β), with α = 2ab

σ 2 − γ, β = 2b

σ 2 ,

completing the proof.

3 Estimators and Consistency

If we are working with a strictly stationary ergodic process (for instance, if X0
have already the invariant distribution), then for any t > 0 the random variable
Xt will have the invariant distribution. In this framework we propose to deal with
the observations of the process like if they were identically distributed with the
invariant distribution and then use the invariant density for estimation purposes.
From the previous section we know that the processes satisfying the stochastic
differential equation (1) with 2ab > σ 2(γ +1) are ergodic with the invariant density
Gamma(α, β), where α = 2ab

σ 2 − γ, β = 2b
σ 2 .

In the following, let us suppose that we have observations X1, . . . , Xn of the
process, collected at equally spaced times t1 < . . . < tn and that γ and σ are known
parameters, that is, the only parameters of interest for estimation purposes are a

and b.
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3.1 Pseudo Maximum Likelihood Estimators

We can compute pseudo maximum likelihood estimators, that is, defining the
likelihood function

fX1,...,Xn(α, β; x1, . . . , xn) :=
n∏

i=1

fXi (α, β; xi)

just like in the case of i.i.d. observations and where fXi is theGamma(α, β) density
of Eq. (1).

Since

∀i = 1, . . . , n, fXi (α, β; xi) = xα−1
i e−βxiβα

Γ (α)

we get the likelihood function,

L(α, β; X1, . . . , Xn) =
n∏

i=1

Xα−1
i e−βXiβα

Γ (α)

and the log-likelihood,

log(L(α, β;X1, . . . , Xn)) = (α−1)
n∑

i=1

log(Xi)−β

n∑
i=1

Xi +nα log(β)−n log(Γ (α)).

From differentiating the log-likelihood function and equating to zero, we get (with
ψ(.) the digamma function),

1

n

n∑
i=1

log(Xi) + log

(
2b

σ 2

)
− ψ

(
2X̄nb

σ 2

)
= 0 (2)

with X̄n = 1
n

∑n
i=1 Xi and

a = X̄n + σ 2γ

2b

getting the estimator b̂n of b as the solution of the Eq. (2) and the estimator of a, as

ân = X̄n + σ 2γ

2b̂n

.
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Theorem 2 If 2ab > σ 2(γ +1), the pseudo maximum likelihood estimators ân and
b̂n are almost sure (a.s.) consistent estimators for a and b.

Proof The proof of the theorem can be found in [10].

3.2 Pseudo Moments Estimators

We can obtain the moments estimators for a and b, using the invariant gamma
density and by solving the equations,

{
X̄n = α

β

M2,n = α+α2

β2

,

with X̄n = 1
n

∑n
i=1 Xi the sample mean and M2,n = 1

n

∑n
i=1 X2

i the empirical
second moment.

Solving these equations we get the moments estimators for the parameters a

and b,

ãn = X̄n + M2,n − X̄2
n

X̄n

γ ∧ b̃n = σ 2X̄n

2(M2,n − X̄2
n)

or using the (non-central) sample variance S2
n = 1

n

∑n
i=1(Xi − X̄n)

2,

ãn = X̄n + S2
n

X̄n

γ ∧ b̃n = σ 2X̄n

2S2
n

.

We have the following result about the consistency of the pseudo moments
estimators.

Theorem 3 If 2ab > σ 2(γ + 1), the pseudo moments estimators ãn and b̃n are a.s.
consistent estimators for a and b.

Proof Suppose that ξ is a random variable with the invariant gamma density
Gamma(α, β), where α = 2ab

σ 2 − γ, β = 2b
σ 2 . It is straightforward to prove the

consistency of both estimators, since, using the ergodic theorem, we have that

lim
n→∞ X̄n = E[ξ ] = α0

β0
, a.s.

and

lim
n→∞ S2

n = lim
n→∞

1

n

n∑
i=1

(Xi − X̄n)
2 = V[ξ ] = α0

β2
0

, a.s.
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Then,

lim
n→∞

(
X̄n + S2

n

X̄n

γ

)
= α0

β0
+ γ

β0
= a0 a.s.

and

lim
n→∞

σ 2X̄n

2S2
n

= β0σ
2

2
= b0 a.s.

proving the consistency of the estimators.

Remark 1 We have assumed that σ is known, if σ is unknown the problem of
estimating σ can be solved using the quadratic variation of the process, and
following [11] we get, a estimator for σ 2,

σ̂ 2
1,n =

∑n−1
i=1 (Xi+1 − Xi)

2

∑n−1
i=1 X

γ+1
i Δn

,

or following [12]

σ̂ 2
2,n = 1

T

n−1∑
i=1

(Xi+1 − Xi)
2

X
γ+1
i

.

4 Simulation and Data Analysis

In this section, we will compare through simulation the moments estimators with the
approximate maximum likelihood estimators presented in [10] and the estimators
based in discrete approximations of the log-likelihood function. We will suppose
that the observations are equally spaced, that is, ti+1 − ti = Δ, i = 1, . . . , n.

The estimators for a and b based on the discretized continuous-time likelihood
function, see [1] or [7], ǎn and b̌n, are given by:

ǎn =
∑n−1

i=1
Xi+1−Xi

Xi

∑n−1
i=1 X

γ+1
i − (Xn − X1)

∑n−1
i=1 X

γ

i∑n−1
i=1

Xi+1−Xi

Xi

∑n−1
i=1 X

γ

i − (Xn − X1)
∑n−1

i=1 X
γ−1
i

and

b̌n = 1

Δ

∑n−1
i=1

Xi+1−Xi

Xi

∑n−1
i=1 X

γ
i − (Xn − X1)

∑n−1
i=1 X

γ−1
i

∑n−1
i=1 X

γ−1
i

∑n−1
i=1 X

γ+1
i −

(∑n−1
i=1 X

γ
i

)2 .



Pseudo Maximum Likelihood and Moments Estimators for Some Ergodic Diffusions 341

For simulation purposes, we will perform the generation of the trajectories of the
processes using the approximation strong Taylor scheme of order 1.5, see [8].

The iterative scheme used is the following:

Yi+1 = Yi + b(a − Yi)Y
γ

i Δ + σY
γ +1
2

i ΔB

+ σ 2(γ + 1)

4
Y

γ

i ((ΔB)2 − Δ) + σb(γ (a − Yi) − Yi)Y
3γ −1
2

i ΔZ

+ 1

2

(
b2(a − Yi)(γ (a − Yi) − Yi) + 1

2
bγ σ 2(γ (a − Yi) − a − Yi)

)
Y
2γ−1
i Δ2

+
(

σb

2
(a − Yi) + σ 3(γ − 1)

8

)
(γ + 1)Y

3γ −1
2

i (ΔBΔ − ΔZ)

+ σ 3γ (γ + 1)

4
Y

3γ −1
2

i

(
1

3
(ΔB)3 − Δ

)
ΔB,

where ΔB = √
ΔU1, ΔZ = 1

2Δ
3/2(U1 + U2/

√
3) and U1 and U2 are independent

N(0, 1) random variables.
We simulated 500 trajectories and for the estimation of the parameter a we

present the results when n = 500 in each trajectory, for the parameter b we
considered n = 250, 500, and 1000 observations in each trajectory. We estimated a

and b using the pseudo moments estimators ãn and b̃n and we compared them with
the pseudo maximum likelihood estimators ân and b̂n and the estimators ǎn and b̌n

obtained from the discretized likelihood function.
We considered σ = 0.1, we present Table 1 for γ = 0 and Table 2 for γ = 1 (for

other values of γ we get very similar results), the true value for a is always 1 and
for b we considered the values 0.1, 0.5, 1, and 2.

Table 1 Mean and S.D. (standard deviation) for the estimators of a and b when γ = 0

b = 0.1 b = 0.5 b = 1 b = 2

Num. obs. Estimator Mean S.D. Mean S.D. Mean S.D. Mean S.D.

500 ãn 0.9997 0.0447 1.0001 0.0091 1.0001 0.0047 1.0001 0.0026

ân 0.9997 0.0447 1.0001 0.0091 1.0001 0.0047 1.0001 0.0026

ǎn 0.9997 0.0455 1.0001 0.0092 1.0001 0.0047 1.0001 0.0026

250 b̃n 0.1207 0.0347 0.5147 0.0734 1.0136 0.1151 2.0182 0.2033

500 0.1099 0.0228 0.5051 0.0512 1.0015 0.0819 1.9986 0.1469

1000 0.1037 0.0150 0.4981 0.0351 0.9927 0.0565 1.9851 0.1029

250 b̂n 0.1215 0.0338 0.5228 0.0724 1.0293 0.1137 2.0480 0.2009

500 0.1111 0.0223 0.5125 0.0504 1.0157 0.0809 2.0253 0.1452

1000 0.1050 0.0147 0.5051 0.0347 1.0060 0.0558 2.0099 0.1017

250 b̌n 0.1125 0.0308 0.4048 0.0495 0.6400 0.0573 0.8705 0.0611

500 0.1045 0.0211 0.4007 0.0354 0.6375 0.0406 0.8683 0.0428

1000 0.0995 0.0138 0.3967 0.0249 0.6342 0.0284 0.8657 0.0300
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Table 2 Mean and S.D. (standard deviation) for the estimators of a and b when γ = 1

b = 0.1 b = 0.5 b = 1 b = 2

Num. obs. Estimator Mean S.D. Mean S.D. Mean S.D. Mean S.D.

500 ãn 0.9988 0.0462 1.0001 0.0093 1.0001 0.0048 1.0001 0.0026

ân 0.9980 0.0461 0.9999 0.0093 1.0000 0.0048 1.0000 0.0026

ǎn 0.9978 0.0469 1.0000 0.0093 1.0001 0.0048 1.0001 0.0027

250 b̃n 0.1213 0.0350 0.5169 0.0722 1.0182 0.1143 2.0273 0.2038

500 0.1104 0.0227 0.5075 0.0505 1.0061 0.0816 2.0074 0.1474

1000 0.1041 0.0148 0.5007 0.0347 0.9976 0.0564 1.9943 0.1034

250 b̂n 0.1233 0.0349 0.5253 0.0717 1.0342 0.1131 2.0573 0.2013

500 0.1125 0.0230 0.5150 0.0500 1.0204 0.0807 2.0343 0.1457

1000 0.1059 0.0151 0.5079 0.0346 1.0110 0.0558 2.0192 0.1022

250 b̌n 0.1141 0.0322 0.4035 0.0496 0.6356 0.0572 0.8615 0.0609

500 0.1051 0.0217 0.3994 0.0357 0.6330 0.0410 0.8588 0.0430

1000 0.0997 0.0141 0.3955 0.0250 0.6296 0.0285 0.8561 0.0300

In all the outputs, we can see that the proposed estimators for a and b give good
results, very close to the approximate maximum likelihood estimators and we can
also see that the estimator for b, b̌n based in the score function only produce good
results when the true value of b is 0.1 (small).

5 Conclusion

In this paper we proposed moments estimators for some ergodic processes. The
consistency proof of the proposed estimators and a simulation study to show the
applicability of the estimators were provided. For future research, we have the open
problem of proving the normality of the asymptotic distribution of the estimators.
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