
Modelling the Unfolding Pathway
of Biomolecules: Theoretical Approach
and Experimental Prospect

Carlos A. Plata and Antonio Prados

Abstract We analyse the unfolding pathway of biomolecules comprising several

independent modules in pulling experiments. In a recently proposed model, a criti-

cal velocity vc has been predicted, such that for pulling speeds v > vc it is the module

at the pulled end that opens first, whereas for v < vc it is the weakest. Here, we intro-

duce a variant of the model that is closer to the experimental setup, and discuss

the robustness of the emergence of the critical velocity and its dependence on the

model parameters. We also propose a possible experiment to test the theoretical pre-

dictions of the model, which seems feasible with state-of-art molecular engineering

techniques.
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1 Introduction

The development of the so-called single-molecule experiments in the last decades

has made it possible to carry out research at the molecular level. Biophysics is,

undoubtedly, one of the fields where these techniques have had a bigger impact, trig-

gering a whole new area of investigation on the elastic properties of biomolecules.

Recent accounts of the current development of this enticing field can be found in

Refs. [1–4].

Atomic force microscopy (AFM) stands out because of its extensive use. In par-

ticular, the role played by AFM in the study of modular proteins is crucial [5–7].

Figure 1 shows a sketch of the experimental setup in a pulling experiment of a
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Fig. 1 a Sketch of the

experimental setup in an

AFM experiment with a

modular protein. The

position of the platform is

shifted 𝛥Zp from 1 to 2,

producing an elongation of X
over the molecule and

bending the cantilever a

magnitude 𝛥Zc. From 2 to 3

the force is almost relaxed

because of the unravelling of

one of the modules.

b Force-extension curve in a

typical lenght-control AFM

experiment with a

polyprotein. Each rip in the

force accounts for the

unfolding of a module.

Taken from [3]

molecule comprising several modules. The biomolecule is stretched between the

platform and the tip of the cantilever. The spring constant of the cantilever is kc,
which is usually in the range of 100 pN/nm. Here, we consider the simplest situation,

in which the total length of the system 𝛥Zp = 𝛥Zc + X is controlled. The stretching

of the molecule makes the cantilever bend by 𝛥Zc, and then the force can be recorded

as F = kc𝛥Zc.
The outcome of the above described experiment is a force-extension curve, simi-

lar to panel (b) in Fig. 1. This force-extension curve provides a fingerprint of the elas-

tomechanical properties of the molecule under study. When molecules composed of

several structural units, such as modular polyproteins, are pulled, a sawtooth pattern

comes about in the force-extension curve [5–7]. At certain values of the length, there

are almost vertical “force rips”: each force rip marks the unfolding of one module.

Interestingly, these force rips already appear when the molecule is quasi-statically

pulled, a limit that can be explained by means of an equilibrium statistical mechan-

ics description [8]. When the molecule is pulled at a finite rate, the appearance of

these force rips can still be explained by the system partially sweeping the metastable

region of the equilibrium branches [9].

The unfolding pathway is, roughly, the order and the way in which the structural

units of the system unravel. It has been recently found out that the unfolding pathway

depends on the pulling velocity and the pulling direction [7, 10–12]. Particularly, in

[11], different unfolding pathways are observed in SMD simulations on the Maltose

Binding Protein. The authors reported that for low pulling speeds the first unit to
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unfold is the least stable, whereas for high pulling speed it is the closest to the pulled

end, regardless of their relative stability.

Very recently, a toy-like model has been proposed to qualitatively understand the

above experimental framework [13]. Specifically, each module is represented by a

nonlinear spring, characterised by a bistable free energy that depends on the mod-

ule extension. Therein, the two basins represent its folded and unfolded states. The

spatial structure of the system is retained in its simplest way: each module extends

from the end point of the previous one to its own endpoint (which coincides with

the start point of the next). Moreover, each module endpoint obeys an overdamped

Langevin equation with forces stemming from the bistable free energies and white

noise forces with amplitudes verifying the fluctuation-dissipation theorem.

In the above model, the unfolding pathway was found to depend on the pulling

velocity. In the simplest non-trivial case, there is only one module that is different

from the rest, which is also the furthest from the pulled end. In this situation, only one

critical velocity vc shows up: for pulling velocities vp < vc, it is the weakest module

that opens first but for vp > vc it is the module at the pulled end. In addition, analytical

results were derived for this critical velocity by introducing some approximations:

mainly two, (i) perfect length control and (ii) the deterministic approximation, that

is, our neglecting of the stochastic forces. This was done by means of a perturbative

solution of the deterministic equations in both the pulling velocity and an asymmetry

parameter, which measures how different the potentials of the modules are.

The main aim of this work is twofold. First, we would like to refine the above

theoretical framework, making it closer to the experimental setup in AFM. In par-

ticular, we would like to look into the effect of a more realistic modelling of the

length-control device. Instead of considering perfect length-control, we consider a

device with a finite value of the stiffness, both at the end of the one-dimensional

chain (as originally depicted in Ref. [13]) and at the start point thereof, which is

where it is usually situated in the AFM experiments, see Fig. 1. Second, we would

like to discuss how our theory could be checked in a real experiment with modular

proteins.

This chapter is structured as follows. First, we introduce the original model and

discuss its most relevant results in Sect. 2. In Sect. 3, we study the role played by the

location of the restoring spring and the finite value of its spring constant. We provide

some details about the free energy modelling employed for each of the modules in

Sect. 4. Section 5 is devoted to discuss a possible AFM experiment in order to test

our theory. Finally, we wrap up the main conclusions which emerge from our work.

2 Revision of the Model and Previous Results

Here, we briefly review the model that was originally put forward in Ref. [13]. We

consider a polyprotein comprising N modules. When the molecule is stretched, the

simplest description is to portray it as a one-dimensional chain. We define the coor-

dinates qi, (i = 0,… ,N) in such a way that the i-th unit extends from qi−1 to qi, the
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Fig. 2 Sketch of the model for a molecule comprising four units. Therein, the units are denoted

by rectangles and have potentials Ui(xi), with xi being the extension of the i-th unit’s. The unit

endpoints qi are represented by the beads, and the extensions are thus xi = qi − qi−1 (by definition,

q0 = 0). The spring stands for the length-controlling device attached to the pulled end q4, whose

contribution to the system free energy is assumed to be harmonic with stiffness kc

extension of the i-th unit is xi = qi − qi−1. Moreover, as shown in Fig. 2, the pulling

device is assumed to be connected to the right (pulled) end of the chain.

We assume Langevin dynamics for the qi coordinates (q0 = 0),

𝛾 q̇i = − 𝜕

𝜕qi
A(q0,… , qN) + 𝜁i i > 0, (1)

in which the 𝜁i are Gaussian white noise forces, such that

⟨𝜁i(t)⟩ = 0, ⟨𝜁i(t)𝜁j(t′)⟩ = 2𝛾kBT𝛿ij𝛿(t − t′), (2)

with kB being the Boltzmann constant, and 𝛾 and T being the friction coefficient

(assumed to be common for all the units) and the temperature of the fluid in which

the protein is immersed, respectively. The global free energy function of the system

is
1

A(q0,… , qN) =
N∑

i=1
Ui(qi − qi−1) +

1
2
kc(L − qN)2. (3)

In the previous equation, we have considered an elastic term due to the finite stiffness

kc of the controlling device, which is located at the pulling end as shown in Fig. 2.

Finally, L stands for the desired length program and Ui(xi) is the single unit contri-

bution, which only depends on the extension, to A. Consequently, the force exerted

over the biomolecule is kc(L − qN). We consider length-controlled experiments at

constant pulling velocity, that is, L̇ = vp.

When kc → ∞, the control over the length is perfect and qN → L in such a way that

kc(L − qN) → F, being F a Lagrange multiplier. That is, the perfect length-controlled

situation is the same that a force-controlled one but with F the force needed to main-

1
In Ref. [13], this free energy was denoted by G. Here, we have preferred to employ A because

the relevant potential in length-controlled situations is the Hemlholtz-like free energy, and G is

usually the notation reserved for the Gibbs-like potential G = A − FL, which is the relevant one in

force-controlled experiments [8, 9].
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tain a total length equal to L. Note that there is no contribution to the free energy

coming from the pulling device in this limit, since kc(L − qN)2∕2 = F2∕(2kc) → 0.

The approach in Ref. [13] tries to keep things as simple as possible. Then, the evo-

lution equations for the extensions are written by assuming (i) perfect length control

and (ii) the deterministic approximation, obtained by neglecting the noise terms.

Note that the evolution equations in the latter approximation are sometimes called

the macroscopic equations [14], which are

𝛾 ẋ1 = −U′
1(x1) + U′

2(x2), (4a)

𝛾 ẋi = −2U′
i (xi) + U′

i+1(xi+1) + U′
i−1(xi−1), 1 < i < N, (4b)

𝛾 ẋN = −2U′
N(xN) + U′

N−1(xN−1) + F, (4c)

F = 𝛾vp + U′
N(xN). (4d)

So far, nothing has been said about the shape of the single-unit contributionsUi to the

free energy. In order to maintain a general approach, we only request the functions

Ui(x) − Fx to become a double well for some interval of forces. Each well stands for

the folded and the unfolded basins of each module. Now, we separate these functions

in a main part common to all units and a separation from this main part weighted by

an asymmetry parameter 𝜉,

Ui(x) = U(x) + 𝜉𝛿Ui(x), U′
i (x) = U′(x) + 𝜉𝛿fi(x). (5)

We have done the same separation in the derivative, by defining 𝛿fi(x) = 𝛿U′
i (x).

It is possible to solve the system (4) by means of a perturbative expansion in the

pulling velocity vp and the asymmetry 𝜉. Indeed, if we retain only linear order terms

in vp and 𝜉, the corrections due to finite pulling rate and asymmetry are not coupled.

This perturbative solution, when the system starts from an initial condition in which

all the units are folded, is shown to be [13]

xi = 𝓁 +
𝜉𝛿f (𝓁) − vp𝛾

N2 − 1
6N

U′′(𝓁)
+

vp𝛾
i(i − 1)
2N

− 𝜉𝛿fi(𝓁)

U′′(𝓁)
, (6)

where 𝓁 = L∕N stands for the specific length per module and the over-bar means

average over the units. Note that, if all the free energies are equal (𝜉 = 0) and we are

not pulling (vp = 0), the total length will be reasonably equally distributed among

all the units. Moreover, it is worth emphasising that this solution is approximate, it

diverges when U′′(𝓁) → 0. This shows that this perturbative solution breaks down

when the average length per module 𝓁 reaches the stability threshold 𝓁b, such that

U′′(𝓁b) = 0.

We are interested in a criterion that allows us to discern which unit is the first

to unfold and we hope that our perturbative solution is good enough in this regard.

Since the folded state ceases to exist when x reaches 𝓁b, it is reasonable to assume

that the first module to unfold is precisely the one for which xi = 𝓁b is attained for the
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shortest time. In Eq. (6), we can see that the finite pulling term favours the unfolding

of modules that are nearer to the pulled end, whereas the asymmetry term favours

the unfolding of the weaker units (those with the lowest values of 𝛿fi).
We can compute the pulling velocities vi(j) for which each couple of modules

(i, j), j > i, reach simultaneously the stability threshold. They are determined by the

condition

xi(𝓁c) = xj(𝓁c) = 𝓁b, (7)

which gives both the value of 𝓁c (or time tc) at which the stability threshold is reached

and the relationship between vp and 𝜉. Then, in a specific system with known 𝛿fi’s
we can predict what are the critical velocities that separate regions inside which

the first unit to unfold is different. In Ref. [13], some examples of the use of this

theory are provided, which show a good agreement with simulations of the Langevin

dynamics (1).

The simplest configuration in which a critical velocity arises is the following. Let

us consider a chain of N units, all of them with the same contribution to the free

energy, except the first one (the furthest from the pulled end). Therefore, 𝛿fi(x) = 0,

i ≠ 1, 𝛿f1(x) ≠ 0. Moreover we will assume that 𝛿f1(𝓁b) < 0, that is, the first module

is weaker than the rest. For such a configuration, there appears only one critical

velocity, which is given by [13]

𝛾vc
𝜉

= −
𝛿f1(𝓁b)
N − 1

. (8)

For vp < vc, the first module to unfold is the weakest one, whereas for vp > vc the

unfolding starts from the pulled end. In Ref. [13], a more general situation is inves-

tigated but, here, we restrict ourselves to this configuration.

3 Relevance of the Stiffness

In a real AFM experiment, the stiffness is finite and, as a result, the control over

the length is not perfect. Furthermore, the position that is externally controlled is,

usually, that of the platform and the main elastic force stems from the bending of the

tip of the cantilever, as depicted in Fig. 1. Thus, it seems more reasonable to model

the pulling of the biomolecule in the way sketched in Fig. 3.

Some authors [15] have used other elastic reactions that reflect the attachment by

means of flexible linkers among the platform and the pulled end qN , and between

consecutive modules. Here, we will consider a perfect absorption, in order to keep

the model as simple as possible. In the next two subsections, we study the effect of

the finite value of the stiffness kc and the location of the spring, respectively, on the

unfolding pathway.
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Fig. 3 Sketch of the model for a protein with four units. It is identical to Fig. 2, except for the

position of the length-controlling device, which is now located at the fixed end

3.1 Finite Stiffness

Here, we still consider the model depicted in Fig. 2, that is, the spring is situated at

the end of the chain, but with a finite value of the stiffness kc. Also, we consider the

macroscopic equations (zero noise), which are

𝛾 ẋ1 = −U′
1(x1) + U′

2(x2), (9a)

𝛾 ẋi = −2U′
i (xi) + U′

i+1(xi+1) + U′
i−1(xi−1), 1 < i < N, (9b)

𝛾 ẋN = −2U′
N(xN) + U′

N−1(xN−1) + kc

(

L −
N∑

k=1
xk

)

. (9c)

This system differs from that in Eq. (4) because in the last equation the Lagrange

multiplier F is substituted by the harmonic force kc(L −
∑N

k=1 xk). As in the previous

case, this system is analytically solvable by means of a perturbative expansion in vp
and 𝜉. The approximate solution for the extension xi is

xi = 𝓁 +
𝜉Nkc𝛿f (𝓁) − vp𝛾kc

[3U′′(𝓁) + kc(N − 1)]N(N + 1)
6[Nkc + U′′(𝓁)]

U′′(𝓁)[Nkc + U′′(𝓁)]

+
vp𝛾kci(i − 1) − 2𝜉[Nkc + U′′(𝓁)]𝛿fi(𝓁)

2U′′(𝓁)[Nkc + U′′(𝓁)]
. (10)

Here 𝓁 ≠ L∕N, it stems from the relation

U′(𝓁) = kc(L − N𝓁). (11)

We can see easily how we reobtain (6) taking the limit kc → ∞ in (10), as it should be.

Although the solution is slightly different, it still breaks down when U′′(𝓁) vanishes,

that is, when 𝓁 → 𝓁b. Therefore, to the lowest order, again we have to seek a solution

of (7), with the extensions given by (10), and substitute 𝓁c ≃ 𝓁b therein. This leads

to the same critical velocities found for the infinite stiffness limit.
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3.2 Location of the Elastic Reaction

As depicted in Fig. 1, in an AFM experiment the distance between the moving plat-

form and the fixed cantilever is the controlled quantity. Then, the model sketched in

Fig. 3 is closer to the experimental setup: the left end corresponds to the fixed can-

tilever, with q0 standing for 𝛥Zc, and the right end represents the moving platform.

Thus, the free energy of this setup is given by

A(q0,… , qN) =
N∑

i=1
Ui(qi − qi−1) +

1
2
kcq20 . (12)

From the free energy (12), we derive the Langevin equations by making use of

Eq. (1). The macroscopic equations (zero noise) read

𝛾 ẋ1 = −2U′
1(x1) + U′

2(x2) + kc

(

L −
N∑

k=1
xk

)

, (13a)

𝛾 ẋi = −2U′
i (xi) + U′

i+1(xi+1) + U′
i−1(xi−1), 1 < i < N, (13b)

𝛾 ẋN = −U′
N(xN) + U′

N−1(xN−1) + vp. (13c)

In the infinite stiffness limit, kc → ∞, the harmonic contribution tends to a new

Lagrange multiplier F such that
∑

xi = L. Therefrom, it is obtained that F = U′
1(x1)

and the resulting system is exactly equal to that in Eq. (4). This is logical: if the

spring is totally stiff and then the control over the length is perfect, the two models

are identical.
2

The system (13) can be solved in an analogous way, by means of a perturbative

expansion in the asymmetry 𝜉 and the pulling velocity vp. The result is

xi = 𝓁 +
𝜉Nkc𝛿f (𝓁) − vp𝛾kc

[3U′′(𝓁) + kc(N − 1)]N(N + 1)
6[Nkc + U′′(𝓁)]

U′′(𝓁)[Nkc + U′′(𝓁)]

+
vp𝛾kci

(

i − 1 + 2U′′(𝓁)
kc

)

− 2𝜉[Nkc + U′′(𝓁)]𝛿fi(𝓁)

2U′′(𝓁)[Nkc + U′′(𝓁)]
. (14)

Again, we can reobtain (6) taking the infinite stiffness limit in (14). Although the

final solution for the extension is different from the previous one, when we look for

2
It is worth emphasising that the two variants of the model, with the spring at either the fixed

or moving end, have the same number of degrees of freedom. In Fig. 2, q0 = 0 and our degrees

of freedom are qi, i = 1,… ,N, whereas in Fig. 3 we have the dynamical constraint qN = L and the

degrees of freedom are qi, i = 0,… ,N − 1. In the limit as kc → ∞, we have both constraints, q0 = 0
and qN = L, in both models, making it obvious that they are identical.
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the critical velocities and make the approximation 𝓁c ≃ 𝓁b we get the same analytical

results for them.

Our main conclusion is that the existence of a set of critical velocities, setting

apart regions where the first unit to unfold is different, is not an artificial effect of

the limit kc → ∞. Indeed, at the lowest order, all the versions of the studied model,

independently of the value of the stiffness and the location of the spring, give the

same critical velocities. This robustness is an appealing feature of the theory, and

makes it reasonable to seek this phenomenology in real experiments.

4 Shape of the Bistable Potentials

Different shapes for the double-well potentials have been considered in the literature,

mainly simple Landau-like quartic potentials to understand the basic mechanisms

underlying the observed behaviours [8, 9, 11] and more complex potentials when

trying to obtain a more detailed, closer to quantitative, description of the experi-

ments [9, 16–18]. For the sake of concreteness, we restrict ourselves to the proposal

made by Berkovich et al. [16, 17]. Therein, the free energy of a module is represented

by the sum of a Morse potential, which mimics the enthalpic minimum of the folded

state, and a worm-like-chain (WLC) term [19], which accounts for the entropic con-

tribution to the elasticity of the unfolded state. Specifically, the free energy is written

as

U(x) = U0

[(

1 − e−2b
x−Rc
Rc

)2

− 1

]

+
kBT
4P

Lc

(
1

1 − x
Lc

− 1 − x
Lc

+ 2x2
L2c

)

. (15)

This shape has shown to be useful for some pulling experiments with actual pro-

teins as titin I27 or ubiquitin [16, 17]. Therein, each parameter has a physical inter-

pretation. First, in the WLC part, we have: (i) the contour length Lc, which is the

maximum length for a totally extended protein, and (ii) the persistence length P,

which measures the characteristic length over which the chain is flexible. Both of

them, Lc and P, can be measured in terms of the number of amino acids in the chain.

Second, for the Morse contribution, we have: (iii) Rc, which gives the location of the

enthalpic minimum and (iv) U0 and b, which measure the depth and the width (in a

non-trivial form) of the folded basin. The stability threshold 𝓁b cannot be provided

as an explicit function of the parameters in Berkovich et al.’s potential. However, we

can always estimate it numerically, solving U′′(𝓁b) = 0 for a specific set of parame-

ters.

As we anticipated in Sect. 2, here we will focus in a very specific configuration

where only the first module is different from the rest. Consistently, we use U(x) to

represent the free energy of each of the identical modules, and U1(x) for that of the

first one. In particular, we consider that the first unit has a slightly different con-

tour length, Lc + 𝛥. Therefore, we can linearise U1(x) around U(x), using the natural



146 C. A. Plata and A. Prados

asymmetry parameter 𝜉 = 𝛥∕Lc ≪ 1. Therefore,

U′
1(x;Lc + 𝛥) ≃ U′(x;Lc) + 𝜉𝛿f1(x;Lc), (16)

where

𝛿f1(x;Lc) ≡ Lc
𝜕U′(x;Lc)

𝜕Lc
= −

kBT
2P

⎡
⎢
⎢
⎢
⎣

x
Lc

(
1 − x

Lc

)3 + 2x
Lc

⎤
⎥
⎥
⎥
⎦

. (17)

This linearisation is useful for the direct application of our theory to some engineered

systems, see the next section.

5 Experimental Prospect

In the experiments, the observation of the unfolding pathway is not trivial at all. The

typical outcome of AFM experiments is a force-extension curve (FEC) in which the

identification of the unfolding events is, in principle, not possible when the modules

are identical. Thus, in order to test our theory, molecular engineering techniques

that manipulate proteins adding some extra structures, such as coiled-coil [20] or

Glycine [21] probes, come in handy. For instance, a polyprotein in which all the

modules except one have the same contour length may be constructed in this way. A

reasonable model for this situation is a chain with modules described by Berkovich et

al. potentials with the same parameters for all the modules, with the exception of the

contour length of one of them. According to our theory, a critical velocity emerges

(8) and it may be observed because the unfolding of the unit that is different can be

easily identified in the FEC, see below.

Let us consider an example of a possible real experiment for a polyprotein with

N = 10 modules. We characterise the modules by Berkovich et al. potentials with

parameters,

P = 0.4 nm, Lc = 30 nm, Rc = 4 nm, (18a)

b = 2, U0 = 100 pN nm, kBT = 4.2 pN nm, (18b)

and the friction coefficient 𝛾 = 0.0028 pN nm
−1

s [16]. We call this system M10: since

all the modules are equal in M10, it is not a very interesting system from the point

of view of our theory. Nevertheless, we can consider a mutant species M
′
10 that is

identical to M10 except for the module located in the first position (the fixed end),

which has an insertion adding 𝛥 to its contour length. Our theory gives an estimate

for the critical velocity vc by using (8).

In Fig. 4, we compare the theoretical estimate for the critical velocity with the

actual critical velocity obtained by integration of the dynamical system (13). Specifi-

cally, we have considered a system with spring constant kc = 100 pN/nm. The numer-
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Fig. 4 Critical velocities for M
′
10 systems. The parameter 𝛥 stands for the additional contour length

of the first module. Numerical values (circles) are compared with two theoretical estimates: “com-

plete” (dashed line) and linear (solid line)

ical strategy to determine vc has been the following: starting from a completely folded

state we let the system evolve obeying (13), with a “high” value of vp (well above the

critical velocity), up to the first unfolding. We tune vp down until it is observed that

the first module that unfolds is the weakest one: this marks the actual critical veloc-

ity. There are two theoretical lines: the solid line stems from the rigorous application

of (8), with 𝛿f1 given by (17), and vc is a linear function of 𝜉, whereas the dashed line

corresponds to the substitution in (8) of 𝜉𝛿f1(x) by U′
1(x;Lc + 𝛥) − U′(x;Lc), with-

out linearising in the asymmetry 𝜉. Note the good agreement between theory and

numerics, specially in the “complete” theory where, for the range of plotted values,

the relative error never exceeds 5%. Interestingly, the computed values of the critical

velocity lie in the range of typical AFM pulling speeds, from 10 to 104 nm/s [22].

Below vc, it is always the weakest unit that unfolds first. Above vc, the unit that

unfolds first is the pulled one. For the sake of concreteness, from now we consider

an specific molecule M
′
10 fixing 𝛥 = 2 nm. Using the linear estimation (17) in (8),

we get a critical velocity vc ≃ 16 nm/s that, as stated above, is in the range of the

typical pulling speeds in AFM experiments.

In Fig. 5, we plot the extension of each unit vs the total extension qN − q0 in our

notation (X in Fig. 1), which is a good reaction coordinate [23]. We have numerically

integrated Eq. (13) for two values of vp: one below and one above vc, namely vp = 10
nm/s and vp = 22 nm/s. The red trace stands for the weakest unit extension whereas

the blue one corresponds to the pulled module. We can see that, for vp = 10 nm/s <

vc, the first unit that unfolds is the weakest one, whereas for vp = 22 nm/s > vc that
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Fig. 5 Evolution of the extensions of the different units as a function of the length of the system

qN − q0 in a pulling experiment. The potential parameters are given in Eq. (18), and the pulling

speeds are vp = 10 nm/s < vc (top) and vp = 22 nm/s > vc (bottom). The stiffness is kc = 100
pN/nm, which lies in the range of typical AFM values. The red line corresponds to the weakest

unit and the blue line to the pulled one

is no longer the case. Specifically, the first unit that unfolds is the pulled one, and the

weakest unfolds in the 4-th place.

The plots in Fig. 5 are the most useful in order to detect the unfolding pathway

of the polyprotein. Unfortunately, they are not accessible in the real experiments, for

which the typical output is the FEC. Thus, we have also plotted the FEC in order to

bring to light the expected outcome of a real experiment. In Fig. 6, we show the FEC
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Fig. 6 Top: FEC for the pulling experiment in Fig. 5. Two pulling speeds are considered, specif-

ically vp = 10 nm/s (subcritical, solid) and vp = 22 nm/s (supercritical, dashed). Bottom: zoom of

the region of interest, showing the shift between the peaks stemming from the increased contour

length of the mutant module

for the two considered velocities in the same graph (solid line for the lower speed

and dashed line for the higher one).

The FECS in Fig. 6 are superimposed until the first force rip, which corresponds

to the first unfolding event (that of the mutant module for the slower velocity and that

of the pulled unit for the faster one). As the mutant unit has a longer contour length

than the rest, a shift between the curves in the next three pikes is found, because



150 C. A. Plata and A. Prados

the effective contour length of the polyprotein has an extra contribution of 2 nm.

Reasonably, for the higher velocity, this shift disappears when the mutant module

unfolds, and the curves are once again superimposed. This plot clearly shows how

the existence of a critical velocity in a real experiment could be sought.

6 Conclusions

We have provided a useful theoretical framework in the context of modular proteins

or, in general, of biomolecules comprising several units that unfold (almost) inde-

pendently. Therein, according to our theory, it should be possible to find the emer-

gence of a set of critical velocities which separate regions where the first module that

unfolds is different. Although we focus on the biophysical application of the theory,

it is worth highlighting that similar models are used in other fields. Many physical

systems are also “modular”, since they comprise several units [24], and thus a similar

phenomenology may emerge. Some examples can be found in studies of plasticity

[25, 26], lithium-ion batteries [27, 28] or ferromagnetic alloys [29].

The development of our theory has shown that the position and value of the elastic

constant kc of the length-controlled device is roughly irrelevant for the existence and

value of the critical velocities. The derived expressions for the critical velocities are,

to the lowest order, independent of the spring position and stiffness. Notwithstand-

ing, our theory completely neglects the noise contributions and thus the units unfold

when they reach their limit of stability, that is, at the force for which the folded basin

disappears. This is expected to be relevant for biomolecules that follow the maximum
hysteresis path, using the same terminology as in [9, 24], completely sweeping the

metastable part of the intermediate branches of the FEC.

The numerical integration of the evolution equations for a realistic potential point

out that our proposal for an experiment is, in principle, completely feasible. There-

fore, our work encourages and motivates new experiments, in which the predicted

features about the unfolding pathway of modular biomolecules could be observed.

Finally, the discussion in the previous paragraph on the relevance of thermal noise

makes it clear that an adequate choice of the biomolecule is a key point when trying

to test our theory.
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