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Abstract Angiogenesis is a complex multiscale process by which diffusing vessel
endothelial growth factors induce sprouting of blood vessels that carry oxygen and
nutrients to hypoxic tissue. There is strong coupling between the kinetic parameters
of the relevant branching—growth—anastomosis stochastic processes of the capil-
lary network, at the microscale, and the family of interacting underlying biochemi-
cal fields, at the macroscale. A hybrid mesoscale tip cell model involves stochastic
branching, fusion (anastomosis) and extension of active vessel tip cells with reaction-
diffusion growth factor fields. Anastomosis prevents indefinite proliferation of active
vessel tips, precludes a self-averaging stochastic process and ensures that a determin-
istic description of the density of active tips holds only for ensemble averages over
replicas of the stochastic process. Evolution of active tips from a primary vessel to a
tumor adopts the form of an advancing soliton that can be characterized by ordinary
differential equations for its position, velocity and a size parameter. A short review
of other angiogenesis models and possible implications of our work is also given.

1 Introduction

The growth of blood vessels out of a primary vessel or angiogenesis is a complexmul-
tiscale process responsible for organ growth and regeneration, tissue repair, wound
healing and many other natural operations in living beings [1–5]. Angiogenesis is
triggered by lack of oxygen (hypoxia) experienced by cells in some tissue. Such
cells segregate growth factors that diffuse and reach a nearby primary blood vessel.
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In response, the vessel wall opens and issues endothelial cells that move towards the
hypoxic region, build capillaries and bring blood, oxygen and nutrients to it. Once
blood and oxygen have reached the hypoxic region, segregation of growth factors
stops, anti-angiogenic substances may be segregated and a regular vessel network
may have been put in place, after pruning capillaries with insufficient blood flow.
In normal functioning, angiogenic and anti-angiogenic activities balance. Imbalance
may result in many diseases including cancer [6]. In fact, after a tumor installed in
tissue reaches some 2mm size, it needs additional nutrients and oxygen to continue
growing. Its hypoxic cells segregate growth factors and induce angiogenesis. Unlike
normal cells, cancerous ones continue issuing growth factors and attracting blood
vessels, which also supply them with a handy transportation system to reach other
organs in the body.

Tumor-induced angiogenesis research started with J. Folkman’s pioneering work
in 1971 [6]. In addition to vast experimental research [7], models and theory [8]
substantially contribute to understanding angiogenesis and developing therapies. In
angiogenesis, events happening in cellular and subcellular scales unchain endothelial
cell motion and proliferation and build millimeter scale blood sprouts and networks
thereof [2–5]. Models range from very simple to extraordinarily complex and often
try to illuminate someparticularmechanism; see the review [8].Realisticmicroscopic
models involve postulatingmechanisms and a large number of parameters that cannot
be directly estimated from experiments, but they often yield qualitative predictions
that can be tested. An important challenge is to extract mesoscopic and macroscopic
descriptions of angiogenesis from the diverse microscopic models.

During angiogenesis, the relevant branching, growth and anastomosis (vessel
fusion) stochastic processes of the capillary network at the microscale are strongly
coupled to the interacting underlying biochemical and mechanical fields at the
macroscale. In Sect. 2, we consider a hybrid mesoscale tip cell model that involves
stochastic branching, anastomosis and extension of active vessel tip cells with
reaction-diffusion growth factor fields [9]. Numerical simulations of the model show
that anastomosis prevents indefinite proliferation of active vessel tips [10]. Then fluc-
tuations about the mean of the density of active tips are not small and the stochastic
process is not self-averaging. However, as shown in Sect. 3, it is possible to obtain
a deterministic description of the density of active tips for ensemble averages over
replicas of the stochastic process. The deterministic description consists of an integro-
partial differential equation for the density of active vessel tips coupled to a reaction-
diffusion equation for the growth factor [9, 10]. As shown in Sect. 4, the evolution
of active tips from a primary vessel to a tumor adopts the form of an advancing
soliton-like wave that can be characterized by ordinary differential equations for its
position, velocity and a size parameter [11, 12]. These results may pave the way to
assess optimal control of angiogenesis and therapies based on it.

What are the implications of our work? As described in Sect. 5, there are other
models related to ours in which the vessel extension is described by random walks
[13, 14], and our methodology may be used to extract deterministic descriptions
for the density of active tips amenable to analysis. We could also seek to extend
microscopic cellular Potts models (described in Sect. 6) to mesoscales and study
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them using our methods. The role of blood flow in remodeling vascular networks
is briefly considered in Sect. 7. Further remarks are included in our conclusions in
Sect. 8.

2 Langevin Tip Cell Models

Tip cell models assume that the tip cells are motile and non-proliferating whereas
stalk cells build the blood vessel following the trajectories of the former. Assuming
that the tip cells form point particles, their trajectories constitute the blood vessels
advancing toward the tumor. In 1991, Stokes and Lauffenburger considered the capil-
lary sprouts as particles of unit mass subject to chemotactic, friction and white noise
forces [15, 16]. The distribution of tumor angiogenic factors (TAF) issuing from a
small circular tumor is a known stationary non-uniform function. Associated to each
sprout, its cell density satisfies a rate equation that takes into account proliferation,
elongation, redistribution of cells from the parent vessel, branching and anastomosis.
They did not consider the depletion effect that advancing sprouts would have on the
TAF concentration. Later tip cell models combined a continuum description of fields
influencing cell motion (chemotaxis, haptotaxis, …) with random walk motion of
individual sprouts that experience branching and anastomosis. Capasso and Morale
[17] used ideas from these approaches to propose a hybrid model of Langevin-Ito
stochastic equations for the sprouts undergoing chemotaxis, haptotaxis, branching
and anastomosis coupled to reaction-diffusion equations for the continuum fields.
In this model, the evolution of the continuum fields is influenced by the growing
capillary network through smoothed (or mollified) versions thereof [18]. Capasso
and Morale also attempted to derive a continuum equation for the density of mov-
ing tip cells from the stochastic equations but could not account for branching and
anastomosis [17]. In what follows, we present a simplified hybrid model that ignores
haptotaxis and derive a deterministic description for the density of active tips [9, 10,
19]. As in the Capasso-Morale model, the influence of haptotaxis can be included by
adding reaction-diffusion equations for fibronectin and matrix-degrading enzymes
[20]. The influence of blood circulation through the newly created blood vessels and
secondary branching therefrom can be modeled as in [21].

We shall consider a slab geometry as indicated in Fig. 1, which is the result of a
numerical simulation of the stochasticmodel. The extension of the i th capillary sprout
with position Xi (t) and velocity vi (t) is given by the nondimensional Langevin-Ito
stochastic equation

dXi (t) = vi (t) dt

dvi (t) = β
[−vi (t) + F

(
C(t,Xi (t))

)]
dt + √

β dWi (t) (1)

for t > T i (T i is the random birth time of the i th tip). Here C(t, x) is the TAF
concentration. At time T i , the velocity of the newly created tip is selected out of a
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Fig. 1 Network of blood vessels simulated by the stochastic model of tumor induced angiogenesis.
The level curves of the density of the tumor angiogenic factor (vessel endothelial growth factor) are
also depicted [11]

normal distribution with mean v0 and variance σ 2
v , while the probability that a tip

branches fromone of the existing ones during an infinitesimal time interval (t, t + dt]
is proportional to

N (t,ω)∑

i=1

α(C(t,Xi (t)))dt. (2)

Here N (t, ω) is the number of tips at time t for a realization ω of the stochastic
process and

α(C) = AC

C + 1
, (3)

where A is a positive constant.We ignore secondary angiogenesis fromnewly formed
capillaries [21]. The tip i disappears at a later random timeΘ i , either by reaching the
tumor or by anastomosis, i.e., by meeting another capillary. At time t , anastomosis
for the i th tip occurs at a point x such that Xi (t) = x and X j (s) = x for another tip
that was at x previously, at time s < t . In (1),Wi (t) are i.i.d. Brownian motions, and
β (friction coefficient) is a positive parameter [9, 10, 12]. The chemotactic force F
controlling tip cell migration in response to the TAF released by tumor cells is

F(C) = δ1

1 + Γ1C
∇xC , (4)
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where δ1, and Γ1 are positive parameters. The TAF diffuses and is consumed by
advancing vessel tips according to [10]

∂C

∂t
(t, x) = κcΔxC(t, x) − χcC(t, x)

∣∣
∣∣∣

N (t,ω)∑

i=1

vi (t) δσx (x − Xi (t))

∣∣
∣∣∣
. (5)

Here κc and χc are positive parameters, while δσx is a regularized delta function (e.g.,
a Gaussian with standard deviation σx ). We are assuming that extending the vessel
consumes TAF. As the vessel extends a length |vi (t)| dt during the time interval
between t and t + dt , the consumption should be proportional to |vi (t)|. The dif-
ference between the sum of the vector lengths and that indicated in (5) is negligible
for the parameters and geometry considered in this paper (it amounts to having a
coefficient 1.28 times larger than χc in the previous equation). Having the length of
the flux vector as in (5) is convenient. Initial and boundary conditions for the TAF
field C have been proposed in [9, 10].

The concentration of all vessels per unit volume in the physical space, at time t
(i.e., the vessel network X(t, ω)) is [10]

δ(x − X(t, ω)) =
t∫

0

N (s,ω)∑

i=1

δσx (x − Xi (s, ω)) ds. (6)

3 Deterministic Description

We shall see that we can understand the results of numerical simulations of the
stochastic process described in the previous section by first finding a deterministic
description of the density of active tips. The latter evolves in the form of a slowly
varying soliton-like wave that we can analyze. Without performing numerical simu-
lations of the stochastic process, we could guess that such a deterministic description
could hold whenever the number of active tips arising from branching becomes very
large. In such a case, we could use the law of large numbers to achieve such a descrip-
tion. This was the point of view adopted in the papers [9, 17]. However, anastomosis
kills off so many active vessel tips that their number hardly grows to a hundred. Then
we need a different point of view in order to derive a deterministic description. The
alternative is the Gibbsian idea of considering an ensemble of replicas of the original
stochastic process and carrying out arithmetic averages over the number of replicas.

We can find a deterministic description of the stochastic model for the densities
of active vessel tips and the vessel tip flux, defined as ensemble averages over a
sufficient number N of replicas (realizations) ω of the stochastic process:
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Fig. 2 Marginal density of active vessel tips resulting from an average over 400 replicas of the
stochastic process according to Eq. (8) at four different times: a 12 h, b 24 h, c 32 h, and d 36 h. At
these times, the numbers of active tips are (a) 56, (b) 69, (c) 72, and (d) 66, [10]

pN (t, x, v) = 1

N

N∑

ω=1

N (t,ω)∑

i=1

δσx (x − Xi (t, ω)) δσv (v − vi (t, ω)), (7)

p̃N (t, x) = 1

N

N∑

ω=1

N (t,ω)∑

i=1

δσx (x − Xi (t, ω)), (8)

jN (t, x) = 1

N

N∑

ω=1

N (t,ω)∑

i=1

vi (t, ω)δσx (x − Xi (t, ω)). (9)

AsN → ∞, these ensemble averages tend to the tip density p(t, x, v), the marginal
tip density p̃(t, x), and the tip flux j(t, x), respectively.

Figures2 and 3 show the outcomes of typical simulations of ensemble averaged
marginal densities: The two-dimensional lump shown in Fig. 2 is created at the pri-
mary vessel at x = 0 and marches to the tumor at x = 1. Its profile along the x axis
is the soliton-like wave shown in Fig. 3.

Reference [10] shows that the angiogenesis model has a deterministic description
based on the following equation for the density of vessel tips, p(t, x, v),
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Fig. 3 Marginal density of active vessel tips at the x axis resulting from an average over 400 replicas
of the stochastic process as in Fig. 2. The primary vessel at x = 0 issues a pulse that marches toward
the tumor at x = 1, [10]

∂p

∂t
(t, x, v) = α(C(t, x)) p(t, x, v)δσv (v − v0) − Γ p(t, x, v)

t∫

0

p̃(s, x) ds

−v · ∇x p(t, x, v) − β∇v · [(F(C(t, x)) − v)p(t, x, v)] + β

2
Δv p(t, x, v), (10)

p̃(t, x) =
∫

p(t, x, v′) dv′. (11)

The two first terms on the right hand side of (10) correspond to vessel tip branching—
from Eqs. (2) and (3)—and anastomosis, respectively. While the branching term fol-
lows from (2) and (3) in a straightforward manner, deducing the anastomosis integral
term is the real breakthrough from past work achieved in [9]. The anastomosis coeffi-
cient, Γ , has to be fitted by comparison of the numerical solution of the deterministic
equations and ensemble averages of the stochastic description, [10]. The other terms
on the right hand side of (10) are in the Fokker-Planck equation that corresponds
to the Langevin equation (1) in the usual manner [22]. While the branching term
follows directly from the stochastic branching process, anastomosis occurs when a
moving vessel tip at time t > 0 encounters a preexisting vessel whose tip was at the
same place at an earlier time s < t . At time t , a moving vessel tip can reach an area
dx about x that is either unoccupied or occupied by another vessel. In the latter case,
it anastomoses. The occupation time density of the area dx about x is proportional
to

∫ t
0 p̃(s, x) ds—the ensemble average of the vessel network density (6). Then the

rate of anastomosis should be proportional to p(t, x, v) times this occupation time
density [10]. Equation (5) becomes



104 L. L. Bonilla et al.

Fig. 4 Marginal density of active vessel tips resulting from a numerical simulation of the determin-
istic equations with appropriate boundary conditions for the same times as in Fig. 2 [9, 10]. Better
agreement between both descriptions requires fine tuning of the boundary conditions

∂C

∂t
(t, x) = κcΔxC(t, x) − χcC(t, x) |j(t, x)|, (12)

where j(t, x) is the current density (flux) vector at any point x and any time t ≥ 0,

j(t, x) =
∫

v′ p(t, x, v′) dv′. (13)

Carpio and collaborators have shown that the deterministic system of Eqs. (10)–(12)
together with appropriate boundary and initial conditions has a unique solution that
depends smoothly on parameters [23, 24].

Figure4 shows that the outcome of a numerical simulation of the deterministic
description is similar to that of the stochastic process.
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4 Soliton and Collective Coordinates

In the overdamped limit of negligible inertia in (1), we obtain the simpler Langevin-
Ito equation: dXi (t) ≈ F(C(t,Xi (t))) dt + β−1/2dWi (t) [11]. By using the
Chapman-Enskog perturbation method whose details are explained in [12], it is then
possible to derive the following reduced equation for the marginal tip density,

∂ p̃

∂t
+ ∇x · (F p̃) − 1

2β
Δx p̃ = μ p̃ − Γ p̃

∫ t

0
p̃(s, x) ds, (14)

μ = α

π

[
1 + α

2πβ(1 + σ 2
v )

ln

(
1 + 1

σ 2
v

)]
. (15)

The drift terms in Eq. (14) are those corresponding to the simpler Langevin-Ito equa-
tion for Xi (t) that results in the overdamped limit. The birth and death terms are
obtained by integration of the corresponding ones on right hand side of (10) over
velocity. However, the perturbation procedure changes the coefficient α(C) to the
related functionμ(C) in (15) [12]. Equation (14) has the following soliton-like solu-
tion for constant F = (Fx , Fy), μ, and zero diffusion, 1/β = 0:

p̃s = (2KΓ + μ2)c

2Γ (c − Fx)
sech2

[√
2KΓ + μ2

2(c − Fx )
(x − X (t))

]

, Ẋ ≡ dX

dt
= c, (16)

where K is a constant. In fact [11], consider p̃s = ∂P(x − ct)/∂t = −c P ′(ξ), ξ =
x − ct , which, inserted in (14) with 1/β = 0, yields

(Fx − c)P ′′ = μP ′ − Γ PP ′ =⇒ (c − Fx )P
′ = Γ

2
P2 − K − μP.

Setting P = ν tanh(λξ) + μ/Γ , we find ν2 = (μ2 + 2KΓ )/Γ 2 and 2νλ(c − Fx )/

Γ = −ν2, thereby obtaining

P = μ

Γ
−

√
2KΓ + μ2

Γ
tanh

[√
2KΓ + μ2

2(c − Fx )
(ξ − ξ0)

]

.

Here ξ0 is a constant of integration. Thus p̃s = ∂P/∂t = −cP ′ is given by (16).
Numerical simulations on a slab geometry show that the marginal tip density

evolves toward (16) after an initial stage [11, 12]. It is an open problem to prove this
stability result even for a one-dimensional version of Equation (14) on the whole
real line and having constant values of F and μ.

A small diffusion and slowly varying continuum fieldC produce a moving soliton
whose shape and speed are slowly changing.We can find them by deducing evolution
equations for the collective coordinates K , c, and X [11, 12]. Then the marginal
density profile at y = 0 can be reconstructed from (16) with spatially averaged Fx
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and μ [12]. Note that p̃s is a function of ξ = x − X and also of x and t through
C(t, x),

p̃s = p̃s

(
ξ ; K , c, μ(C), Fx

(
C,

∂C

∂x

))
. (17)

We assume that the time and space variations of C , which appear when p̃s is differ-
entiated with respect to t or x , produce terms that are small compared to ∂ p̃s/∂ξ .
As explained in [12], we shall consider that μ(C) is approximately constant, ignore
∂C/∂t because the TAF concentration varies slowly (the dimensionless coefficients
κc and χc appearing in the TAF equation (12) are very small according to Table2
of [12]) and ignore ∂2 p̃s/∂i∂ j , where i, j = K , Fx . We now insert (16) into (14),
thereby obtaining

(
Fx − Ẋ

) ∂ p̃s
∂ξ

+ ∂ p̃s
∂K

K̇ + ∂ p̃s
∂c

ċ − 1

2β

(
∂2 p̃s
∂ξ 2

+ 2
∂2 p̃s

∂ξ∂Fx

∂Fx

∂x
+ ∂ p̃s

∂Fx
Δx Fx

)

+ p̃s∇x · F + ∂ p̃s
∂Fx

(
∂Fx

∂t
+ F · ∇x Fx

)
= μ p̃s − Γ p̃s

∫ t

0
p̃sdt. (18)

Equation. (14) with 1/β = 0 and constant F and μ has the soliton solution (16).
Using this fact, we can eliminate the first term on the left hand side of (18) and also
the right hand side thereof. Equation (18) then becomes

∂ p̃s
∂K

K̇ + ∂ p̃s
∂c

ċ = A , (19)

A = 1

2β

∂2 p̃s
∂ξ2

− p̃s∇x · F − ∂ p̃s
∂Fx

(
F · ∇x Fx − 1

2β
Δx Fx

)
+ 1

β

∂2 p̃s
∂ξ∂Fx

∂Fx
∂x

. (20)

We now find collective coordinate equations (CCEs) for K and c. As the lump-like
angiton moves on the x axis, we set y = 0 to capture the location of its maximum.
On the x axis, the profile of the angiton is the soliton (16). We first multiply (19) by
∂ p̃s/∂K and integrate over x . We consider a fully formed soliton far from primary
vessel and tumor. As it decays exponentially for |ξ | 
 1, the soliton is considered
to be localized on some finite interval (−L /2,L /2). The coefficients in the soliton
formula (16) and the coefficients in (20) depend on the TAF concentration at y = 0,
therefore they are functions of x and time and get integrated over x . The TAF concen-
tration varies slowly on the support of the soliton, and therefore we can approximate
the integrals over x by [12]

∫

I

F( p̃s(ξ ; x, t), x)dx ≈ 1

L

∫

I

⎛

⎜
⎝

L /2∫

−L /2

F( p̃s(ξ ; x, t), x)dξ

⎞

⎟
⎠ dx . (21)

The intervalI over whichwe integrate should be large enough to containmost of the
soliton, of extensionL . Thus the CCEs hold only after the initial soliton formation
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stage. Near the primary vessel and near the tumor, the boundary conditions affect
the soliton and we should exclude intervals near them from I . We shall specify
the integration interval I below. Acting similarly, we multiply (19) by ∂ p̃s/∂c and
integrate over x . From the two resulting formulas, we then find K̇ and ċ as fractions.
The factors 1/L cancel out from their numerators and denominators. As the soliton
tails decay exponentially to zero, we can setL → ∞ and obtain the following CCEs
[12]

K̇ =
∫ ∞
−∞

∂ p̃s
∂K A dξ

∫ ∞
−∞

(
∂ p̃s
∂c

)2
dξ − ∫ ∞

−∞
∂ p̃s
∂c A dξ

∫ ∞
−∞

∂ p̃s
∂K

∂ p̃s
∂c dξ

∫ ∞
−∞

(
∂ p̃s
∂K

)2
dξ

∫ ∞
−∞

(
∂ p̃s
∂c

)2
dξ −

(∫ ∞
−∞

∂ p̃s
∂c

∂ p̃s
∂K dξ

)2 , (22)

ċ =
∫ ∞
−∞

∂ p̃s
∂c A dξ

∫ ∞
−∞

(
∂ p̃s
∂K

)2
dξ − ∫ ∞

−∞
∂ p̃s
∂K A dξ

∫ ∞
−∞

∂ p̃s
∂K

∂ p̃s
∂c dξ

∫ ∞
−∞

(
∂ p̃s
∂K

)2
dξ

∫ ∞
−∞

(
∂ p̃s
∂c

)2
dξ −

(∫ ∞
−∞

∂ p̃s
∂c

∂ p̃s
∂K dξ

)2 . (23)

In these equations, all terms varying slowly in space have been averaged over the
interval I . The last term in (20) is odd in ξ and does not contribute to the integrals
in (22) and (23) whereas all other terms in (20) are even in ξ and do contribute. The
integrals appearing in (22) and (23) are calculated in [12]. The resulting CCEs are

K̇ = (2KΓ + μ2)2

4Γβ(c − Fx )2

4π2

75 + 1
5 +

(
2Fx
5c − 2π2

75 − 9
10

)
Fx
c

(
1 − 4π2

15

) (
1 − Fx

2c

)2

− 2KΓ + μ2

Γ c
(
2 − Fx

c

)

(

c∇x · F + F · ∇x Fx − Δx Fx
2β

)

, (24)

ċ = − 7(2KΓ + μ2)

20β(c − Fx )

1 − 4π2

105(
1 − 4π2

15

) (
1 − Fx

2c

) +
F · ∇x Fx − (c − Fx )∇x · F − Δx Fx

2β

2 − Fx
c

, (25)

g(x, y) = 1

I

∫

I
g(x, 0) dx, (26)

in which the functions of C(t, x, y) have been averaged over the interval I after
setting y = 0. We expect the CCEs (24) and (25) to describe the mean behavior of
the soliton whenever it is far from primary vessel and tumor.

Both deterministic or stochastic simulations show that the soliton is formed after
some time t0 = 0.2 (10 h) following angiogenesis initiation. To find the soliton evolu-
tion afterwards,we need to solve theCCEs (24) and (25), inwhich the spatial averages
depend on an interval x ∈ I , which should exclude regions affected by boundaries.
We calculate the spatially averaged coefficients in (24) and (25) by: (i) approximating
all differentials by second order finite differences, (ii) setting y = 0, and (iii) averag-
ing the coefficients from x = 0–0.6 by taking the arithmeticmean of their values at all
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Fig. 5 Comparison of the
marginal tip density profile
p̃(t, x, 0) (obtained from the
stochastic description
averaged over 400 replicas)
to that of the moving soliton,
[11]
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grid points in the intervalI = (0, 0.6]. For x > 0.6, the boundary condition at x = 1
influences the outcome and thereforewe leave values for x > 0.6 out of the averaging
[12]. The initial conditions for the CCEs are set as follows. X (t0) = X0 is the loca-
tion of the marginal tip density maximum, p̃(t0, x = X0, 0). We find X0 = 0.2 from
the stochastic description. We set c(t0) = c0 = X0/t0. K (t0) = K0 is determined so
that the maximummarginal tip density at t = t0 coincides with the soliton peak. This
yields K0 = 39. Solving the CCEs (24) and (25) with these initial conditions and
using (16), we obtain the curves depicted in Fig. 5.

5 RandomWalk Tip Cell Models

These models describe the extension of blood vessels by random walks biased by
chemotaxis or haptotaxis instead of using Langevin equations. The first such model,
due to Anderson and Chaplain [13], is based on a reaction-diffusion description of
angiogenesis. They consider a continuity equation for the density of endothelial cells
(ECs) n (with zero-flux boundary conditions) coupled to equations for the TAF and
fibronectin densities,C and f , respectively. In nondimensional form, these equations
are [13]:
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∂n

∂t
= DΔn − ∇ ·

(
χ

1 + αC
n∇C

)
− ∇ · (ρn∇ f ), (27)

∂ f

∂t
= βn − γ n f, (28)

∂C

∂t
= −ηnC. (29)

Here all parameters are positive. The three terms on the right hand side of (27)
correspond to diffusion of ECs, chemotaxis and haptotaxis, respectively. Note that
chemotaxis has the same form in this equation as in (10) with p replaced by n.
Haptotaxis follows the gradient of fibronectin in the extracellular matrix. Note that
proliferation and death of ECs are not contemplated by (27). In the next step, these
equations are solved by an explicit Euler method in time and finite differences. The
resulting equation for n(t, x, y) ≈ nql,m ,

nq+1
l,m = nql,mW0 + nql+1,mW1 + nql−1,mW2 + nql,m+1W3 + nql,m−1W4, (30)

has the same form as a master equation for a random walk [22], except that the
“transition probabilities” W0 (staying), W1 (moving to the left), W2 (moving to the
right), W3 (moving downwards), and W4 (moving upwards) are not normalized.
However, this is easily fixed by defining

Wi = Wi
∑4

j=0 Wj

, i = 0, 1, . . . , 4, (31)

as new transition probabilities. The random walk associated to these transition prob-
abilities represents extension of vessel tips and replaces the Langevin equation (1).
Branching and anastomosis are introduced as in the Langevin tip cell model, except
that the tips have to wait some maturity time after branching before they are allowed
to branch again. It should be straightforward to find equations for the density of
active vessel tips by using the theory described in previous sections.

The Anderson-Chaplain idea is easy to implement starting from continuum mod-
els of angiogenesis (and therefore it can be immediately generalized by including
more taxis mechanisms, influence of antiangiogenic factors [25], etc), but it has the
drawback of having to rely on the finite difference grid or lattice. A few years later,
Plank and Sleeman proposed non-lattice models independent of the grid [14] using
biased circular random walk models previously introduced by Hill and Häder for
swimming microorganisms [26]. If θ(t) is a continuous random walk on the unit
circle biased by chemo and haptotaxis [14], the trajectory of the corresponding tip
cell is

dx
dt

= v0 (cos θ(t), sin θ(t)). (32)

Thus the tip cells have the same speed v0, directions givenby θ(t) and their trajectories
do not have to follow points on a lattice. While branching and anastomosis are
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modeled as in Sect. 2, the extensions of vessel tips are described by (32) and the
biased circular random walk instead of Langevin equations. The master equation for
the circular random walk is [14]

dPn
dt

= τ̂+
n−1Pn−1 + τ̂−

n+1Pn+1 − (τ̂+
n + τ̂−

n )Pn, (33)

τ̂±
n = 2λ

τ
(
nδ ± δ

2

)

τ
(
nδ + δ

2

) + τ
(
nδ − δ

2

) . (34)

As δ → 0 and n → ∞ so that nδ = θ , the master equation (33) becomes the Fokker-
Planck equation [14]

∂P

∂t
(t, θ) = D

∂

∂θ

[
P(t, θ)

∂

∂θ

(
ln

P(t, θ)

τ (θ)

)]
, (35)

with D = λδ2 for P(t, θ) = P(t, nδ) = Pn(t). Chemo and haptotaxis are included
in the model through the transition probability

τ(θ) = exp[dC cos(θ − θC) + d f cos(θ − θ f )]∫ π

−π
exp[dC cos(s − θC) + d f cos(s − θ f )] ds , (36)

tan θC = ∇C

|∇C | , tan θ f = ∇ f

|∇ f | . (37)

Here τ(θ) is the stationary probability density of the Fokker-Planck equation (35).
Comparisons between numerical simulations of the Anderson-Chaplain and Plank-
Sleeman models are carried out in [14].

The randomwalkmodels of this Section get their input from continuum equations
for EC, TAF and fibronectin densities, but the moving vessel tips characterized by
the random walks do not affect the continuum fields. Their outcomes are numerical
simulations of the stochastic processes, without further elaboration. In contrast to this
somewhat artificial setting, the Langevin tip cell model of Sect. 2 is a hybrid model
in which active vessel tips and continuum fields are fully coupled. Furthermore, we
can derive an equivalent deterministic description from the Langevin tip cell model
and analyze it in terms of a soliton-like attractor. This latter elaboration has also been
carried out for a Langevin tip cellmodel that includes chemotaxis and haptotaxis [20].
It may also beworked out for the randomwalkmodels in an appropriate limit, as their
governing master equation then becomes a Fokker-Planck equation (corresponding
to a Langevin-Ito equation) [22].



Stochastic Models of Tumor Induced Angiogenesis 111

6 Cellular Potts Models

In all the previous models, the cells are treated as point particles. For a more precise
view of haptotaxis, i.e., the motion of ECs over the extracellular matrix (ECM),
we need to consider adhesion and deformation of the cells. This requires a more
microscopic view than that offered by tip cell models or bymore complicatedmodels
that distinguish between tip and stalk ECs and add extra dynamics for them [8].

Often times, ECs and ECM are modeled by a cellular Potts model (CPM) with
Monte Carlo dynamics coupled to continuum fields (elastic fields, TAF, …) [27].
Space in these models consists of a lattice whose cells (lattice sites) may be in
finitely many different states, denoted by type τ and representing ECs, matrix fibers,
tissue cells and interstitial fluid. To account for individual entities (ECs, fibers, etc),
each entity is further associated with a unique identifying number, denoted by σ ,
that is assigned to every lattice site occupied by it. At every Monte Carlo time step,
the cell surface (represented by connected lattice vertices) is updated according to
a set of cell behavior rules (e.g., target cell shape and size) that are translated in an
energy change. Typically, we select randomly a cell x, assign its type, τ(x), to a
randomly chosen neighbor x′, and update accordingly the total energy of the system,
H . Using the Metropolis algorithm, a given update is accepted with probability one
if the change in the total energy of the system, ΔH , is reduced and it is accepted
with probability e−βΔH otherwise (1/β is the Monte Carlo temperature). The energy
in [27] is

H =
∑

sites

Jτ,τ ′(1 − δσσ ′) +
∑

cells

γτ (aσ − Aσ )2 −
∑

cells

∑

sites

μσC(t, x). (38)

The first term in Eq. (38) is the contribution to total energy resulting from cell-cell
and cell-medium adhesion. The second term allows deformation of cells with volume
aσ about a target volume (area in 2D space) Aσ , depending on the Potts parameters
γτ . The target volume is twice that of the initial volume and it corresponds to the
volume at which a cell undergoes mitosis, thereby creating a new cell. Thus cell
proliferation is contemplated in this CPM. A variation of the last term in (38) is

ΔHchem = −μσ [C(t, x) − C(t, x′)], (39)

where x and x′ are two randomly picked neighboring lattice cells, μσ > 0 is the
chemical potential, and Eq. (39) represents chemotaxis favoring motion directed
along theTAFgradient. TheTAFconcentration satisfies a reaction-diffusion equation
[27]. The parameters appearing in the model are chosen in such a way that the
progression of blood vessels occurs in the time scale observed in experiments [27].

Under this framework, each entity (ECs, ECM, …) has a finite volume, a
deformable shape and competes for space. ECs proliferate. Intercellular interactions
occur only at the cells surface and have a cell-type-dependent surface (or adhe-
sion) energy Jτ,τ ′ , which is a measure of the coupling strength between the entities
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τ and τ ′. Other CPMs include an ECM strain-dependent term that favors cell exten-
sion in the direction of principal strain (durotaxis). The force exerted by the ECs on
the ECM is calculated by finite elements [28]. In more complicated models, each cell
contains agents that signal to other cells and adhesion is modeled by a CPM [29].

As in the case of random walk tip cell models, there is a connection between
CPM and a deterministic formulation for a density. In [30], Alber et al. have written
a discrete time master equation for the probability density P(t, r,L) that a cell with
its center of mass at r occupy a rectangle with sides L = (lx , ly) at time t . It is based
on a CPMwith energy given by (38), but with a target perimeter instead of the target
area. The corresponding term in the energy is

Hperim =
∑

cells

[γx (lx − Lx )
2 + γy(ly − Ly)

2]. (40)

Here cells are always rectangles and do not proliferate nor die. Assuming that cells
contain many lattice sites, they change little at each Monte Carlo step. Assuming
further that cell-cell interactions are always binary, the authors derive a Fokker-
Planck equation for P(t, r,L). These formulations would have to be extended to
CPMs that include cell proliferation and be connected to mesoscopic angiogenesis
models: from cell densities to densities of active vessel tip cells.

7 Blood Flow and Vascular Network

Once a vascular network is being created, blood flows through the capillaries, anas-
tomosis enhances flow in some of them and secondary angiogenesis may start in new
vessels. Pries and coworkers have modeled blood flow in a vascular network and the
response thereof to changing conditions such as pressure differences andwall stresses
[31, 32]. This response may remodel the vascular network by changing the radii of
certain capillaries, and altering the distribution of blood flow [31, 32]. McDougall,
Anderson and Chaplain [33] have used this formulation to add secondary branching
from new capillaries induced by wall shear stress to the original randomwalk tip cell
model [13]. Blood flows according to Poiseuille’s law, mass is conserved, there are
empirical expressions for blood viscosity and for the wall shear stresses, and radii of
capillaries adapt to local conditions. Secondary vessel branching may occur after the
new vessel has reached a certain level of maturation and before a basal lamina has
formed about it [21, 33]. During such a time interval, the probability of secondary
branching increases with both the local TAF concentration and the magnitude of the
shear stress affecting the vessel wall. McDougall et al’s. model can be used to figure
out how drugs could be transported through the blood vessels and eventually reach
a tumor [21, 33]. In dense vessel networks, secondary branching may have little
effect on the number of active tips at a given time, as anastomosis could eliminate
secondary branches quickly. Thus we may ignore secondary branching when con-
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sidering the density of active tips in such networks. Of course we cannot ignore it
when describing blood flow and network remodeling.

One missing feature of angiogenesis models that take blood flow into account
seems to be pruning. It is known that capillaries with insufficient blood circulation
may atrophy and disappear. Pruning such blood vessels is an important mechanism
to achieve a hierarchical vascular network such as that observed in retinal vascular-
ization during development [3, 4]. Global optimization and adaptation in developing
networks has been recently shown to lead to highly optimized transport vascular
systems [34, 35]. It would be interesting to adapt these studies to angiogenesis.

8 Conclusions

Angiogenesis is a complex multiscale process by which diffusing vessel endothelial
growth factors induce sprouting of blood vessels that carry oxygen and nutrients
to hypoxic tissue. Cancerous tumor cells profit from this process to prosper, grow
and eventually migrate to other organs. Mathematical models contemplate different
aspects of angiogenesis. Here we have reviewed recent work on a simple tip cell
model that encompasses vessel extension driven by chemotaxis and described by
Langevin equations, stochastic tip branching and vessel fusion (anastomosis). From
the stochastic description, we have derived a deterministic integropartial differential
equation for the density of active tip cells coupled with a reaction-diffusion equation
for the growth factor. The associated initial-boundary value problem is well posed.
It is important to note that anastomosis prevents proliferation of active tips and
therefore the deterministic description is based on ensemble averages over replicas of
the stochastic process. Numerical simulations of both (deterministic and stochastic)
descriptions show that the density of active tips adopts the shape of a two-dimensional
soliton-like wave (angiton) after a formation stage. We have found an analytical
formula for the one-dimensional projection of the soliton and ordinary differential
equations for variables that provide its velocity, position and size. These equations
also characterize the advance of the vessel network for single replicas. Much more
work needs to be carried out to solve mathematical issues arising from our results,
both fromanalysis of the deterministic description and fromestablishingmore precise
conditions for its validity. The description of the soliton should be extended to the
true two-dimensional soliton (angiton) that appears in the numerical simulations and
to the case of a more general geometry than that of the slab. Fluctuations cannot be
ignored in the case of ensemble averages, and future work predicting the evolution
of a real vessel network should include confidence bands about averages. Anti-
angiogenic treatments need to be improved [1, 2], and, in this respect, having better
models and theories about their solutions should help. Therapies are related to optimal
control of angiogenesis and they require accurate mathematical models, validated
by comparison with real data (inverse problems—statistics of random geometric
structures).
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We have also related the specific model we study to other tip cells models in
the literature that describe vessel extension by reinforced random walks instead of
stochastic differential equations. Our methodology may be adapted to these other
models as Langevin equations arise from reinforced random walks in appropriate
limits. All these models describe mesoscales in which cells are just point particles,
thereby ignoring their shapes and a microscopic description thereof. Other models
consider the evolution of individual endothelial cells of variable shape and exten-
sion through cellular Potts models, but the continuation of these models toward the
mesoscale has barely begun. Extending the analysis carried out for our mesoscopic
stochastic tip cell model to microscopic models is a challenge for the future. Blood
circulation through the angiogenic network favors certain vessels, others that do not
have enough perfusion shrink and disappear and secondary branching may occur.
Future work could delve deeper in the topics of vessel remodeling, pruning, forma-
tion of optimal vascular networks and transport of medicals through them.

Apart from the specific application to angiogenesis, we have presented in this
paper methodological contributions for a soundmathematical modeling of stochastic
vessel networks: (a) the use of stochastic distributions, and their mean densities,
describing the vessels, which are random objects of Hausdorff dimension one, cf (6);
(b) reduction of vessel distributions to integrals over time of active tip distributions,
which are random objects of zero Hausdorff dimension, cf (8); (c) characterization
of the attractor of the density of active tips as a soliton whose position, velocity and
size are given as solutions of ordinary differential equations, cf (16), (22) and (23).
In our system, which is strongly out of equilibrium, this attractor plays a similar role
to the stable stationary equilibrium distribution of many physical systems.
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