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Abstract Non-perturbative approaches in nanoscience are discussed. Traditional
applications of these approaches cover description of charge transport and optical
phenomena in nano-scale systems. We focus on finite-size effects in spin systems
near the critical point, based on Monte Carlo (MC) method and some analytical
arguments. We have performed MC simulations of the 3D Ising model for small, as
well as large linear lattice sizes up to L = 2560, providing a numerical evidence for a
recent challenging prediction, according towhich the asymptotic decay of corrections
to finite-size scaling is remarkably slower than it was expected before. Our approach
along with several other non-perturbative approaches, like, e.g., the non-perturbative
nonequilibrium Greens functions (NEGF) method, reveals a potential application of
non-perturbative methods to nanoscience and nanotechnology through condensed
matter physics, including semiconductor physics and physics of disordered systems
like spin glasses.
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1 Introduction

Non-perturbative approaches like Monte Carlo (MC) simulation [1, 2] and non-
perturbative nonequilibriumGreens functions (NEGF)method [3, 4] become increas-
ingly important in nanoscience. Particular applications cover the description of
charge transport and optical phenomena in nano-scale systems such as microelec-
tronic devices, graphene layers, etc.

Perturbative approaches not always provide a satisfactory description of physical
phenomena in such systems. For example, the recent results of [5] show that themany-
body localization (MBL) in translation-invariant systems with two or more very
different energy scales is less robust than perturbative arguments suggest. It possibly
points to the importance of non-perturbative effects, which induce delocalization in
the thermodynamic limit [5]. The importance of non-perturbative effects in laser-
illuminated graphene nanoribbons has been demonstrated in [6].

Here we consider another application—behavior of small and large spin systems
near the phase transition point, based on non-perturbative analytical evaluation of
k-space integrals, as well as MC method. Lattice spin models are considered, where
certain value of the spin variable is related to each lattice site. In the Ising model, the
spin variable σ can take only one of two possible values ±1. In the scalar ϕ4 model,
the spin variable ϕ can take any value within −∞ < ϕ < ∞. Such models exhibit
second-order phase transition in the thermodynamic limit, where the linear lattice
size L tends to infinity. The behavior of these models on finite lattices is described
by the finite-size scaling. Moreover, the scaling behavior near the critical point can
be remarkably varied depending on whether small or large lattices are considered.
This effect is described by corrections to the leading scaling behavior.

Our analytical andMC results serve as a basis for a challenging prediction that the
correction-to-scaling exponent ω has a remarkably smaller value ω ≤ ωmax ≈ 0.38
than the usually accepted ones of about 0.83 [7] in the 3D ϕ4 and Ising models. It
implies a much slower decay of corrections to scaling than it was usually expected.
We have performed MC simulations of the 3D Ising model for small, as well as
large linear lattice sizes up to L = 2560, providing a numerical evidence for this
challenging prediction.

The vicinity of critical point is not the natural domain of validity of any perturba-
tion theory, therefore one should prefer non–perturbative approaches. Among them
are:

• Exact and rigorous analytical solution methods (transfer matrix methods, combi-
natorial methods, Bethe-ansatz)

• Conformal field theory (CFT) analysis
• Non–perturbative renormalization group (RG) analysis
• Numerical transfer–matrix calculations
• Molecular dynamics simulations
• Monte Carlo (MC) simulations.

Recent study of hierarchical Edwards-Anderson model of spin glasses [8] has
shown that non-perturbative effects can be really important in critical phenomena.
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Namely, it has been found that the perturbative approach (ε-expansion) correctly
predicts the existence of the critical point only in certain mean-field region of param-
eters. At the same time, non-perturbative calculations show that the critical point
exists also in the non-mean-field region, where no phase transition is predicted by
the ε-expansion. From the point of view of the renormalization group (RG) theory,
the critical behavior in this region is described by certain non-perturbative fixed
point [8].

The results of [8] refer to the phase transitions in spin glasses, whereas our analyti-
cal andMCarguments, discussed in this paper, allowus to question the validity and/or
accuracy of the perturbative treatments even in the apparently very well studied case
of the 3D Ising model.

Our approach along with several other non-perturbative approaches reveals a
potential application of non-perturbative methods to nanoscience and nanotechnol-
ogy through condensed matter physics as an example.

2 Finite-Size Effects

Finite-size effects are very important in nano-scaled systems. For example, the charge
density in metal nanoparticles after absorption of oxygen shows a very interesting
patterns, which essentially depend on the size of these nanoparticles [9]. As another
example, the importance of finite-size effects in the many-body localization has been
shown in [5].

In our study, it is demonstrated the finite-size effects are pronounced via the finite-
size scaling. We consider behavior of spin systems near the phase transition point
depending on the lattice size, using the standard arguments of the finite-size scaling
theory. For example, magnetic susceptibility χ at the critical temperature scales as
χ ∝ L2−η

(
1 + O

(
L−ω

))
at L → ∞, where η is the critical exponent, describing the

leading asymptotic behavior,whereas the exponentω describes the leading correction
to scaling.

Finite-size scaling and corrections to scaling are important to understand the
difference in the behavior of very small nano-scale systems and large systems in the
thermodynamic limit.

3 Non-perturbative Analytical Arguments

First, we consider the continuous ϕ4 model as one of the simplest basic models in a
hierarchy of spin models. The Hamiltonian H of this model is given by

H

kBT
=

∫ (
r0ϕ

2(x) + c(∇ϕ(x))2 + uϕ4(x)
)
dx, (1)
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where kB is the Boltzmann constant, T is the temperature, ϕ(x) is the local order
parameter—an n-component vector, which depends on the coordinate x, and r0, c, u
are Hamiltonian parameters. Configurations of ϕ(x) obey a constraint, represented
by certain upper cut-off Λ for its Fourier components. Namely, the Hamiltonian in
the Fourier representation reads

H

kBT
=

∑

i,k

(
r0 + c k2

) | ϕi,k |2 + uV−1
∑

i, j,k1,k2,k3

ϕi,k1ϕi,k2ϕ j,k3ϕ j,−k1−k2−k3 , (2)

where ϕ j,k = V−1/2
∫

ϕ j (x)e−ikx dx and ϕ j (x) = V−1/2 ∑

k<Λ

ϕ j,keikx. Here V is the

volume.
The Fourier-transformed two-point correlation function G(k) = 〈| ϕ j,k |〉2 is

important in our following consideration. The case where r0 is a linear function
of T has been studied in [10], showing that, in this case, the leading singularity of
specific heat CV is given by an integral of G(k) over wave vectors, i.e.,

Csing
V = Bξ 1/ν

⎛

⎝
∫

k<Λ

[G(k) − G∗(k)]dk
⎞

⎠

sing

, (3)

where B is a constant, G∗(k) is the critical correlation function, and the superscript
“sing” implies the leading singular part, represented in terms of the correlation length
ξ . It diverges as ξ ∝| T − Tc |−ν , approaching the critical temperature Tc.

Non-perturbative analytical calculation of this integral has been performed in [10],
based on the well known scaling hypothesis (see, e.g., [11]),

G(k) =
∑

i≥0

ξ (γ−θi )/νgi (kξ) , (4)

where γ and ν are the critical exponents of susceptibility and correlation length, the
term with i = 0 (at θ0 = 0) is the leading term, the terms with i > 0 are corrections
to scaling with positive correction-to-scaling exponents θi = ωiν, and gi (kξ) are
scaling functions. The singularity of specific heat in the general form of Csing

V ∝
(ln ξ)λξα/ν has also been accounted for.

In addition, it has been assumed that the contribution of small-k region k < Λ′
is relevant in the limit lim

Λ′→0
lim

ξ→∞. It has been verified by MC simulation tests in

the lattice ϕ4 model [10]. From a physics point of view, this assumption represents
the usual statement about the importance of long-wavelength fluctuations in critical
phenomena.

Based on these scaling assumptions, a theorem has been formulated and proven
in [10], according to which the two–point correlation function contains a correc-
tion exponent θ� = γ + 1 − α − dν = γ − 1, provided that γ > 1 holds. Accord-
ing to the current knowledge, the latter condition is strictly satisfied in two and three
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dimensions. The exponent θ� corresponds to the correction exponentω� = (γ − 1)/ν
in the finite-size scaling. Sinceω� is not necessarily the leading correction-to-scaling
exponent, ω ≤ (γ − 1)/ν is expected for the leading correction exponent. In partic-
ular, we have ω� = 3/4 and ω ≤ 3/4 for the scalar 2D ϕ4 model.

The scalar ϕ4 model belongs to the same universality class as the Ising model.
Although corrections withω = 3/4 tend to cancel in the 2D Isingmodel [10], there is
no reason for such a cancellation in general. Hence, corrections with ω ≤ (γ − 1)/ν
are expected both in ϕ4 and Ising models in three dimensions. Using the widely
accepted estimates γ ≈ 1.24 and ν ≈ 0.63 [12] for the 3D Ising model, we obtain
the upper bound ωmax = (γ − 1)/ν ≈ 0.38 for ω. The prediction of the grouping of
Feynman diagrams (GFD) theory [13] is γ = 5/4, ν = 2/3 and, therefore, ωmax =
0.375. Thus, we can state that in any case ωmax is about 0.38. The value of ω is
expected to be 1/8 according to the GFD theory considered in [13, 14].

The above arguments represent a very challenging prediction, since the cur-
rently widely known estimations of ω give essentially larger than 0.38 values, e.g.,
0.782(5) [15] and 0.832(6) [7].

4 MC Tests for the 3D Ising Model

We consider the 3D Ising model on a simple cubic lattice with periodic boundary
conditions. The Hamiltonian H is given by

H/T = −β

⎛

⎝
∑

〈i j〉
σiσ j + h

∑

i

σi

⎞

⎠ , (5)

where T is the temperature in energy units, β is the coupling constant, h is the
dimensionless (normalized) external field, and 〈i j〉 denotes the pairs of neighboring
spins σi = ±1.

We have performed a detailed MC analysis based on the available simulation data
for linear lattice sizes L , ranging from a small value L = 8 to a relatively very large
value L = 2560, with the aim to test the challenging prediction ω ≤ ωmax ≈ 0.38,
discussed in Sect. 3. These data have been summarized in our papers [16, 17],
where the simulations at h = 0 have been performed with the Wolff single cluster
algorithm [18], using its parallel implementation [19].

The quantities of interest are the magnetization per spin m = N−1 ∑
i σi and the

magnetic susceptibility at zero external field, i.e., χ = lim
h→0

∂〈m〉
∂(βh)

= N 〈m2〉, where
N = L3 is the total number of lattice sites.Weconsiderχ andmagnetizationmoments
at certain pseudocritical coupling, i.e., at β = β̃c(L). This coupling corresponds to
a constant value of 〈m4〉/〈m2〉2 = U .
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Fig. 1 The effective exponent ηeff (L) depending on L−0.16 (left) and L−0.8303 (right). The dashed
straight lines represent the linear fit (left) and a guide to eye (right). The known estimates η =
0.03631(3) [20] andη = 0.318(3) [15] are shownbydashed and dotted horizontal lines, respectively

The pseudocritical coupling converges to the true critical coupling βc as β̃c(L) =
βc + O

(
L−1/ν

)
at L → ∞ for 1 < U < 3 [19]. The constant U = 1.6 has been

chosen, which is close to the critical value of 〈m4〉/〈m2〉2 at β = βc and L → ∞.
According to the finite-size scaling theory, the susceptibility scales as

χ ∝ L2−η
(
1 + O

(
L−ω

))
(6)

at β = βc or β = β̃c(L). It allows to estimate the critical exponent η by fitting theMC
data. However, we do not know precisely the correction term, and a fit without this
term gives us an effective value of the exponent rather than the true critical exponent.

We define the effective exponent ηeff(L) as the average slope of − ln
(
χ/L ′2)

versus ln L ′ plot, evaluated by fitting the data within L ′ ∈ [L/2, 2L] at β = β̃c(L ′).
According to (6), it scales as

ηeff(L) = η + O
(
L−ω

)
(7)

at L → ∞. Hence, the ηeff(L) versus L−ω plot is asymptotically linear at L → ∞.
The best linearity of this plot within L ∈ [96, 1280] (extracted from the susceptibility
data within L ∈ [48, 2560]) is observed at ω = 0.16(36). This plot looks, indeed,
much more linear at ω = 0.16 than at ω = 0.8303, as it can be seen from Fig. 1. The
latter value comes from the estimate of ω = 0.8303(18), obtained by the conformal
bootstrap method in [20], which agrees with the MC value of 0.832(6) obtained
in [7], but is claimed to be more accurate. Other MC values, usually reported in
literature, are between 0.82 and 0.87 (see [7, 21]). The perturbative RG estimates
are somewhat smaller, e.g., ω = 0.799 ± 0.011 [12] and ω = 0.782(5) [15].

The critical exponent η = 0.03631(3), estimated in [20], and η = 0.318(3), esti-
mated in [15], are also indicated in Fig. 1 for comparison. The MC value of [7],
η = 0.03627(10), is very similar to that of [20].
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Fig. 2 The ratio Φ2(L) =
2−4χ(2L)/χ(L/2),
evaluated from MC data at
β = β̃c(L), depending on
L−1/8. The asymptotic
values of Φ2 for
η = 0.03631(3) [20] and
η = 0.318(3) [15] are shown
by dashed and dotted
horizontal lines, respectively

0.35 0.4 0.45 0.5 0.55 0.6

L
-1/8

0.95

0.96

0.97

0.98

Φ
2

Next, in the following, we consider a more direct method, which gives sim-
ilar, but slightly more accurate results for ω. We consider the ratio Φb(L) =
b−4χ(bL)/χ(L/b) at β = β̃c(L), where b is a constant. According to (6), Φb(L)

behaves as
Φb(L) = A + BL−ω (8)

at L → ∞, where A = b−2η and B = ab−2η
(
b−ω − bω

)
. The choice b = 2 is found

to be optimal for the analysis of our data. The Φ2(L) versus L−1/8 plot can be well
approximated by a straight line for large enough lattice sizes L ∈ [80, 1280], as
shown in Fig. 2. It confirms that ω could be as small as 1/8, in agreement with [13,
14]. Considering ω as a fit parameter in (8), the fit over this region of sizes gives
ω = 0.21(29). Taking into account that the asymptotic value of ω is positive, we
can judge from this estimation that ω, most probably, lies between 0 and 0.5. The
asymptotic value of Φ2 is 2−2η. The estimates, corresponding to the same η values
as in Fig. 1, are indicated in Fig. 2 for comparison.

Summarizing the results of this section, our MC estimation suggests that 0 <

ω < 0.5 most probably holds for the correction-to-scaling exponent ω, in agreement
with the analytical arguments in Sect. 2. Our values of 0.16(36) and 0.21(29) are
remarkably smaller than the earlier estimates, e.g., 0.832(6) [7]. Although the latter
MC estimate of [7] is claimed to be very accurate, it has been obtained from relatively
small lattice sizes, i.e., L ≤ 360, as compared to L ≤ 2560 in our current study.
Various estimations from lattice sizes L ≤ 384 have been discussed in [17], clearly
demonstrating that these sizes are still too small for a reliable estimation of ω.

Concerning the exponent η, the plots in Fig. 1 show that η could be similar or
larger than the already mentioned estimates of 0.03631(3) [20] and 0.03627(10) [7].
The effective exponent increases well above the perturbative RG value of 0.318(3)
obtained in [15] (dotted line).
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5 Remarks and Discussion

It should be emphasized that our MC analysis is based on the simulation results for
substantially large lattice sizes as compared to those typically considered in literature,
e.g., L ≤ 360 in [7] and even smaller sizes in other studies. It reveals a possibility
to explain the inconsistency of our actual findings with earlier numerical results
by relating the previous numerical results to a “perturbative” region, whereas our
findings—to a “nonperturbative” region, as explained further on.

The “perturbative” region is a region of not–too–small reduced temperatures in
the thermodynamic limit and not–too–large lattice sizes in the finite–size scaling
regime. It is, very likely, true that the perturbative RGmethods describe just only this
region, due to the fundamental problems recovered in [22] (see Sect. 5.4.6 there). The
“perturbative” region is easily accessible by various numerical methods. It explains
the fact why these methods easily produce the results, which are approximately
consistent with the estimates of the perturbative RGmethod and, therefore, also with
each other. To the contrary, our findings refer to the “non-perturbative” asymptotic
region,which corresponds to substantially larger lattice sizes in the finite–size scaling
regime and extremely small reduced temperatures in the thermodynamic limit. This
region cannot be easily accessed and is not yet properly investigated by numerical
methods.

From the perspective of the non-perturbativeRG approach, the “non-perturbative”
asymptotic region is described by certain non-perturbative fixed point. We assume
that the non-perturbative fixed point is not described by the usual perturbative treat-
ments, just like in the case of spin glasses [8], discussed in Sect. 1. Hence, the critical
exponents can be inconsistent with the perturbative RG estimates.

The results of the ε–expansion coincide with a particular treatment of the confor-
mal field theory (CFT) in [20, 23]. This, however, only implies that the perturbative
fixed point is, indeed, conformally symmetric and consistent with CFT at specific
constraints, assumed in [20, 23].

6 Conclusions

In summary, we conclude the following:

• Non-perturbative approaches become increasingly important in study of critical
phenomena, including their applications in nanoscience and nanotechnology.

• Non-perturbative analytical arguments have been provided for the existence of
certain correction to scaling with exponent ω� = (γ − 1)/ν in the ϕ4 model, and
the leading finite-size correction-to-scaling exponent being ω ≤ (γ − 1)/ν.

• The above statement has been supported by MC simulation results for small and
very large lattices in 2D ϕ4 and 3D Ising models.

• Our results emphasize the importance of corrections to scaling in nano-scale
systems, pointing to a slow crossover in finite-size scaling behavior when the
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system size is varied from small (nano-scale) to large (thermodynamic limit). This
crossover is related to small ω value—remarkably smaller than it was expected
before.
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5. Z. Papić, E.M. Stoudenmire, D.A. Abanin, Ann. Phys. 362, 714–725 (2015)
6. H.L. Calve, P.M. Perez-Piskunov, H.M. Pastawski, S. Roche, L.E.F.F. Torres, J. Phys. Condens.

Matter 25, 144202 (2013)
7. M. Hasenbusch, Phys. Rev. B 82, 174433 (2010)
8. M. Castellana, G. Parisi, Sci. Rep. 5, 12367 (2015)
9. L. Lin, A.H. Larsen, N.A. Romero, V.A. Morozov, C. Glinsvad, F. Abild-Pedersen, J. Greeley,

K.W. Jacobsen, J.K. Nørskov, J. Phys. Chem. Lett. 4, 222–226 (2013)
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