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Abstract The main objective of this review chapter is to give the reader a practical
toolbox for applications in quantitative biology and computational drug discovery.
The computational technique of molecular dynamics is discussed, with special atten-
tion to force fields for protein simulations and methods for the calculation of solva-
tion free energies. Additionally, computational methods aimed at characterizing and
identifying ligand binding pockets on protein surfaces are discussed. Practical infor-
mation about available databases and software of use in drug design and discovery
is provided.
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1 Introduction

Computational drug discovery is a conceptual approach to finding drug-like
molecules by rational design, based on the information regarding their intended
biomolecular target. A drug target is an important molecule, usually a protein,
involved in a particular metabolic or signaling pathway that is specific to a dis-
ease condition. Most approaches attempt to inhibit the functioning of an aberrant or
over-expressed pathway in the diseased state by interfering with the normal activity
of the target.Medicinal compounds as candidate drugs can have their structures ratio-
nally designed at a molecular level in such a way as to optimize their binding to the
active region of their target biomolecule in order to inhibit its activity and to simul-
taneously minimize their effects on other important biomolecules that may cause
undesired side effects. Since many challenges are posed by the large chemical and
biological spaces involved in designing drugs with high specificity and selectivity,
serendipity has traditionally played an additional important role in finding potential
new drugs. Conversely, structure-based drug design requires knowledge of the struc-
ture of the biomolecular target, and it utilizes 3D information about biomolecules
obtained from techniques such as x-ray crystallography and NMR spectroscopy.

The first step in the rational drug design process is usually the identification and
characterization of the biomolecular target, such as a protein or a DNA sequence.
From here, computational techniques can be used to model a drug within the binding
site of the biomolecular target, and this information can be used to design novel drug
panels with enhanced activity. Of the computational techniques available, molecular
dynamics (MD) is particularly important in the investigationof target characterization
and drug-target interactions. In Sect. 2, an overview of the main aspects of MD
simulations—including force field descriptions—and related methods intended to
characterize drug-target binding is provided. In Sect. 3, other computational drug-
discovery strategies, such as binding pocket prediction and molecular docking, are
described. Virtual screening (VS) techniques are also discussed.

2 Molecular Dynamics

2.1 General

Like most experimentally-measured properties of molecular systems, the binding
affinity of a drug to its target is a thermodynamic quantity, i.e., an ensemble average
over a representative statistical ensemble of a system. As a result, the knowledge of
a single 3D structure of a given protein complex—obtained, e.g., from x-ray crys-
tallography or cryo-electron microscopy—even if associated with a global energy
minimum, is not enough to theoretically predict suchmacroscopic properties. Instead,
it is necessary to generate a representative ensemble of conformations of the same
system at a given (typically physiological) temperature. Two popular computational
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methods may be applied to this end: molecular Monte Carlo simulations (MC) [1]
and MD [2]. For the study of dynamic or non-equilibrium properties (e.g., the trans-
port of molecules across biomembranes, chemical reactions, etc.), only the second
method may be utilized. Although MC simulations are simpler than MD ones, they
usually do not lead to any better statistics in a given amount of time [3]. That is
why MD is generally preferred over MC. Popular MD engines include Amber [4],
GROMACS [5], LAMMPS [6], NAMD [7].

MD simulations usually involve the numerical integration of Newton’s equations
of motion for a system of N interacting atoms representing the system of interest,
possibly including the molecules of the surrounding solvent:

mi
d2r i
dt2

� Fi , i � 1 . . . N , (1)

where r i is the position of atom i , mi its mass and Fi is the force acting on it, equal
to the negative derivative of the molecular potential U , i.e., Fi � −∂U/∂ r i .

Using Newton’s equations of motion automatically implies the use of classi-
cal physics, classical MD having the advantage of being far less computationally
demanding than real quantum-dynamical simulations, which require solving the
time-dependent Schrödinger equation for the system of interacting particles forming
the molecule. However, because of classical approximations, standard MD simula-
tions suffer from several limitations that the reader should be aware of. First, elec-
tronic motions are not considered per se. Instead, it is supposed that electrons are
always in their ground state adjusting their dynamics instantlywhen atoms aremoved
(Born-Oppenheimer approximation). Secondly, most potential energy functions U
used to model atomic interactions, commonly referred to as force fields in chemistry
and biology, are empirical thus approximate. They usually consist of a summation
of bonded forces and non-bonded pair-additive forces. Such analytical potentials
include free parameters (e.g., coupling constants, equilibrium bond lengths, van der
Waals radii, etc.), which are estimated by fitting against detailed electronic calcula-
tions or experimental properties (e.g., spectroscopymeasurements, elastic constants)
in order to reproduce observed experimental equilibrium behaviors [8–10]. Typical
classical MD force fields adopt the following functional form:

U �
∑

bonds

Kb(b − b0)
2 +

∑

angles

Kθ(θ − θ0)
2

+
∑

torsions

Kφ[cos(nφ + ϕ) + 1] +
N∑

i< j

(
Ai j

r12i j
− Bi j

r6i j

)
+

N∑

i< j

qiq j

4πε0ri j
. (2)

The first term in Eq. (2) represents the potential between two chemically-bound
atoms, modeled as a simple harmonic potential, b being the distance between the
two atoms and b0 the equilibrium bond length. The proximity between three atoms,
which are connected via chemical bonds can be described with an angle. The second
term in Eq. (2) stands for this angle-dependence involving three atoms and is also
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modeled by a harmonic potential, θ being the angle between the three atoms in
the structure and θ0 its equilibrium value. The third term represents the dihedral
angle (torsion) potential and depends on four atom coordinates. Such a potential
is periodic and is represented by a cosine function with n, the number of maxima
and ϕ, the angular offset. The variable φ is obtained from dihedral angles in the
structure. Noticeably, an additional term may be included in Eq. (2) to model out-of-
plane bending motions, i.e., improper dihedral angles. This is usually done through
a cosine or a harmonic function. The last two terms in Eq. (2) account for non-
bonded interactions and are calculated pairwise between atoms i and j. The fourth
term is the van der Waals potential, which is typically represented by a Lennard-
Jones 6-12 potential. The 1/r6 term is the attractive component while the 1/r12

term approximates Pauli repulsion. Parameters Ai j and Bi j are atom specific while
ri j stands for the distance between atoms i and j. The final term corresponds to
the electrostatic potential between atoms, and is modeled as a Coulomb potential.
Parameters qi and q j represent (fixed) charges on atoms i and j, while the constant
ε0 is the vacuum permittivity. Electrostatic interactions dominate over van der Waals
forces for long-range intermolecular interactions and they play a significant role in
non-chemical binding.

MD simulations result in trajectories, which contain information about the
changes of atomic positions over time, which can be analyzed in great detail to
extract pertinent information regarding the dynamics of the system. This includes
the root-mean-square deviation (RMSD) of ligand and protein atoms, supramolecu-
lar (non-covalent) interactions, changes in the potential energy of the system, short-
lived reaction intermediates [11], conformational changes, flexibility, and optimum
binding modes [12] among many various properties of the biomolecule and its envi-
ronment. In a computer-aided drug design process, the mobility of crystal water
molecules near proteins observed in MD simulations can help identify the amino
acid residues that play an important role in ligand binding. MD simulations can
also be used for studying ionic conductivity [13, 14], where the simulations provide
atomic level insights into ionic mobility. In terms of particular applications, MD has
been successfully used to study clinically important proteins such as HIV-1 gp120
[15], binding sites [16], drug resistance mechanisms [17], and protein folding [18,
19] to name but a few.

2.2 Polarizable Force Fields and Quantum Dynamics

Most standard force fields do not incorporate atomic polarizability effects other than
adjusting atomic partial charges obtained from quantum chemical computations.
However, polarizable force fields include extra degrees of freedom in order to model
electronic charges, usually attached to the nucleus by a spring as in the case of the
shell model [20]. This allows for a dynamic redistribution of atomic dipoles, which
responds to the local chemical environment. More realistic MD simulations, called
ab initiomolecular dynamics (AIMD), can be applied in order to reproduce electronic
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dynamics more accurately [21, 22]. Instead of using a prescribed potential for U ,
AIMD implies solving the time-dependent Schrödinger equation for the many-body
wave function of the electrons assuming the atom nuclei fixed (Born-Oppenheimer
approximation). The Schrödinger equation is generally solved at eachMD step using
density functional theory (DFT) in order to get the potential energy as a function of
the nuclear coordinates. The potential energy is then used to integrate the classical
Newton’s equations given by Eq. (1). Due to the cost of treating electronic degrees
of freedom, the computational cost is far higher than classical MD, implying that
AIMD is only applicable to small molecular systems and short time scales (picosec-
ond). A good trade-off between accuracy and speed is achieved by hybrid quantum
mechanics/molecular mechanics (QM/MM) force fields [23]. In such simulations,
the region of the system in which quantum effects (e.g., bond breaking, quantum
resonance …) take place is treated at an appropriate level of quantum chemistry the-
ory, while the rest is described by a classical molecular mechanics force field [24].
Recently, machine-learning-based algorithms have been suggested as a way to accel-
erate ab initio methods [25]. A significant advantage of AIMD and QM/MM simula-
tions is the ability to study reactions that involve breakage or formation of covalent
bonds, which correspond to multiple electronic states. AIMD has also proved useful
for reproducing typical dynamics and spectral features of liquids such as water [26].
Despite the accuracy provided by quantummethods, classical MD remains a reliable
method to study biomolecular processes in large systems over long simulation times
(up to a few milliseconds) including folding dynamics, conformational molecular
changes as well as non-covalent bindings of drugs to their biological target.

2.3 Molecular Dynamics and Drug Discovery

Molecular dynamics can be used together with other methods to solve a host of prob-
lems in biomolecular modeling [27, 28]. In the case of VSmethods that involve large
libraries of chemical compounds in order to identify a high-affinity small molecule
that is expected to act as an enzyme inhibitor, or a protein-protein interaction blocker,
the calculation of the binding energy of potential hits may help prioritize compounds
for experimental testing.

While docking and scoring remain themostwidely used computational techniques
to predict the binding mode and affinity of a drug to its target due their low compu-
tational cost, these methods are not particularly accurate. More precise approaches
utilize appropriate sampling of the molecular system generated beforehand withMD
simulations as is required when estimating ensemble-averaged quantities like bind-
ing free energies. End-point methods such as linear interaction energy (LIE) and
the molecular mechanics Poisson-Boltzmann Surface Area (MM/PBSA) technique,
which rely only on appropriate samplings of the end states, i.e., the complex and pos-
sibly the free receptor and ligand, have intermediate efficiencies. The LIE method,
originally introduced by Aqvist et al. [29], assumes that the binding free energy can
be written as a linear combination of average interaction energies between the ligand
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and the rest of the system (protein, water and ions). More explicitly, the binding free
energy of the ligand is expressed as [30]:

�Gbind � α
〈
�EL−S

vdW

〉
+ β

〈
�EL−S

el

〉
, (3)

where
〈
�EL−S

vdW

〉 � 〈
EL−S

vdW

〉
bound − 〈

EL−S
vdW

〉
unbound refers to the change in van der

Waals interactions between the bound and unbound states of the ligand. The averages
stand for ensemble averages obtained from MD simulations whereas the L-S label
indicates that the interaction energies are computed only between the ligand and the
surroundings. Similarly,

〈
�EL−S

el

〉 � 〈
EL−S
el

〉
bound

− 〈
EL−S
el

〉
unbound

corresponds to the
change in intermolecular electrostatic interactions between the bound and unbound
states. Parameters α and β are generally obtained empirically using an appropriate
fitting procedure.

Alternatively, MM/PBSA [31], which is arguably the most popular end-point
method, turned out to be successful in a number of drug-design case studies [32–34].
The method basically provides an estimate of the binding free energy as:

�Gbind � 〈�EMM 〉 − T�S + �Gsolv, (4)

where 〈�EMM 〉 − T�S can be regarded as the change in the free energy of the
system in vacuum (gas phase); it includes the change in the molecular mechanics
energy due to the binding 〈�EMM 〉 � 〈EMM 〉bound − 〈EMM 〉unbound and the change
in the conformational entropy �S, usually estimated from normal mode analysis
(NMA) performed on the complex structure and on the free ligand and protein struc-
tures. As in the LIE method, every average quantity corresponds to an ensemble
average obtained from output MD trajectories. The entropy contribution, which is
relatively time-consuming and inaccurate to compute using NMA, can be neglected
if a comparison of states of similar entropy is desired such as in the case of com-
paring two or more ligands binding to the same protein binding site. Finally, �Gsolv

stands for the difference of solvation free energies due to the binding, it is given as
�Gsolv � �Gcomplex

solv − �Glig
solv − �Gprot

solv where every term on the right-hand side
is given as the sum of polar and nonpolar contributions. The polar parts are obtained
by solving the Poisson-Boltzmann (PB) equation or by using the Generalized-Born
(GB) model (as in the MM/GBSA method) whereas the nonpolar terms are esti-
mated from a linear relation to the solvent accessible surface area (SASA). Despite
the fact that MM/PBSA and MM/GBSA are computationally-inexpensive methods,
they contain several crude and questionable approximations, e.g., due to the use of
implicit solvent models to compute the solvation energies [35]. The capability of the
MM/PBSA method to predict the correct binding free energy turns out to be more
sensitive to the investigated system compared to the MM/GBSA method, the latter
being more useful in multi-target comparisons [36]. Noticeably, the MM/PBSA and
GBSA techniques can be used to perform per-residue-free-energy decompositions.
The benefit of such decompositions is twofold: providing important information
about residues which significantly contribute to the binding energy (hot spots) and
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giving insights into the changes in binding free energies due to mutations, especially
single point mutation.

2.4 Alchemical Free Energy Calculations

Another important category of MD-based methods used to estimate the binding free
energy of ligand-protein complexes is called alchemical free energy methods, which
include, for example, free energy perturbation (FEP) and thermodynamic integra-
tion (TI). Alchemical techniques make use of a parameter-dependent Hamiltonian
to smoothly switch between the dynamics of systems with different chemical com-
positions. Applied to drug design, one may think about connecting the bound and
unbound states of a given protein-ligand complex or transforming one ligand to
another one within the same binding pocket. In the simplest case, such connections
can be achieved by a linear combination of the corresponding Hamiltonians:

H(x, p; λ) � (1 − λ)Ha(x, p) + λHb(x, p), (5)

where λ is a parameter which varies from 0 to 1, and, Ha and Hb are the physical
Hamiltonians associated with the two states a and b, e.g., the bound and unbound
systems. The FEP and TI approaches differ in the way of estimating the free energy
difference �Ga→b between states a and b. Within the FEP framework, �Ga→b is
given by the following identity:

�Ga→b � −kBT ln

〈
exp

(
− (Hb(x, p) − Ha(x, p))

kBT

)〉

a

, (6)

where 〈. . .〉a stands for an ensemble average over configurations representative of the
initial state a. In contrast, the free energy difference in the TI approach is computed
from:

�Ga→b �
1∫

0

〈
∂H(x, p; λ)

∂λ

〉

λ

dλ. (7)

Since both FEP and TI identities are based on Boltzmann equilibrium averages,
which require extensive sampling of the complex and free ligand in solution, such
techniques are generally computationally extensive. Other types of methods involv-
ing averages over non-equilibrium trajectories can, however, be used. This is the case
of steered molecular dynamics (SMD) [37]. Applied to drug binding studies, SMD
introduces a non-conservative force used to pull out the ligand from its binding site at
constant speed [38]. The free energy difference during this non-equilibrium process
can be obtained using the Jarzynski equality [39]:



274 J. Preto et al.

�Ga→b � −kBT ln

〈
exp

(
−Wa→b

kBT

)〉
. (8)

Wa→b represents the external work performed on the system during one steered
simulation whereas 〈. . .〉 corresponds to a non-equilibrium average performed over
all the steered trajectories.

2.5 Enhanced Sampling Methods

The above-discussed alchemical methods including SMD can be integrated into a
more general class of method called enhanced sampling methods [40]. As mentioned
above,MD is a very useful and inexpensive tool to study the behavior ofmacromolec-
ular systems in silico. However, the use of MD is limited by the computational time
required to carry out a reasonable length of simulation. This, in turn, is dependent on
the availability of computational hardware and time allocation for high-performance
computing. Depending on the time required for a biomolecular system to reach equi-
librium, MD can be run long enough to represent the evolution of a system from
a few nanoseconds to a few microseconds. Long time-scale dynamical processes,
such as slow conformational changes, protein assembly or ligand-protein binding
processes, are notoriously difficult to model by MD.

In the past few decades, many computational methods have been developed based
onMD simulations to explore relevant transitions between stables states of a system.
In some of these techniques, a biased potential is added to the dynamics along one
or a few collective variables. Such methods require to carefully choose the collective
variables in such a way to facilitate the diffusion towards critical unexplored regions
of the configuration space. The resulting trajectories are eventually unbiased to obtain
the equilibrium distribution as a function of the collective variables used. Popular
techniques performingMDwith a biased potential along specific collective variables
includemetadynamics and umbrella sampling, both of thembeing related to a number
of successful applications to biological systems.

In metadynamics, a positive Gaussian potential is added at regular time intervals
to the free energy landscape of a system [41]. In this way, the system is discouraged to
come back to the previous point, thus favoring the exploration of yet unvisited values
of the collective variable. Asmore andmoreGaussians are added to the true potential,
the system is able to diffuse more freely along this variable. Papers on metadynamics
research have reported a lot of successful applications to biological systems [42,
43]. As an important application, metadynamics—combined with nudged elastic
band—was used to investigate the unbinding process of a ligand away from its
specific protein target and the estimate of the associated binding energy [44].

Umbrella sampling is an enhanced sampling technique where a series of biased
MD simulations are conducted independently. This works by splitting the reaction
coordinate into a series of windows and applying a harmonic potential which acts to
force the reaction coordinate to remain close to the center of each window. Assuming
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the biased trajectories overlap in the space defined by the collective variable, the
resulting biased free energy landscapes can be used to compute the true free energy
profile. This last step is performed by means of the weighted histogram analysis
method (WHAM), which combines the information of the biased simulations so as
to minimize the statistical error made on the resulting probability distribution [45].
In the context of drug-binding studies, umbrella sampling was used to estimate the
potential of mean force for ion permeation and ligand binding to ion channels [46]
and to predict protein–ligand binding structures in kinase systems [47].

3 Other Computational Drug-Discovery Methods

This section is intended to provide an account of other popular useful techniques for
drug design andVS studies that can be used instead or in conjunction withMD-based
methods discussed in the previous section.

3.1 Binding Pocket Prediction

Identifying and characterizing a suitable binding pocket in a 3D protein structure is
a central aspect of any drug discovery study. This step is also relevant to shed light
on biomolecular functions as many proteins are biologically functional only after
interacting with cofactors or other biological molecules.

A common way to define a binding pocket, if a ligand is already bound to it, is to
introduce a distance cut-off. Binding pocket atoms are typically defined whenever
their distance to the ligand is below 4–8 Å. Following is a list of physicochemical
key properties of binding pockets:

• The solvent-accessible surface area (SASA) which is usually computed as the
atoms of the pocket reachable by a solvent probe sphere rolling over the protein
surface.

• The volume of the pocket and its depth which corresponds to the average distance
of the pocket atoms to their nearest water molecules from bulk solvent [48].

• The pocket hydrophobicity which depends on polar and non-polar residues
involved in the binding site.

• The number of hydrogen bond donors and acceptors on the pocket surface.
• The conservation of residues over similar binding pockets of other proteins, which
is particularly relevant for functional sites.

In addition to experimental binding site detection techniques such as NMR-based
methods [49], a number of computational methods can be found which may be
helpful in the process of binding pocket identification of a molecular target. Pocket
finder algorithms are usually tested and validated on protein and ligand datasets. Such
tests are intended to estimate the reliability of identifying the correct binding pocket



276 J. Preto et al.

within the first one to three hits provided by an algorithm. Two popular publicly-
available databases are the Protein Data Bank (PDB) [50], which provides 3D protein
structures for input into the pocket finding algorithms, and the PDBbind database
[51], which contains bound protein structures filtered from the PDB database. The
current version of PDBbind has around 3100 protein-ligand complexes, 1300 of
these having been manually selected to form the refined set with the focus on the
quality of structures and binding data. Due to its large size and manual curation,
the refined set of the PDBbind database provides a suitable benchmark for most
case studies. Further reduced from this, is the core set of 210 complexes. Optimal
databases for pocket prediction testing should include high-resolution, diverse and
non-redundant protein-ligand complexes. Pocket finder algorithms are generally split
into two classes, namely, geometric-based and energetic-based approaches.

Geometry-based algorithms have the advantage of a low computational cost. The
underlying assumption behind such methods is that the ligand binding pocket corre-
sponds to the larger cleft within the protein structure [52, 53]. Therefore, geometrical
criteria may be sufficient to identify the correct binding location on a protein. One
such example, SURFNET [54] is an early-developed program which fits spheres
between pairs of atoms so that they do not contain more than one atom. The binding
pocket is defined as the volume containing the largest number of adjacent spheres.
An improvement of the program, called SURFNET-ConSurf [55], refines the bind-
ing pocket prediction also considering the residue conservation within the binding
site. The SURFNET-ConSurf algorithm was tested on a set of 244 non-redundant,
diverse and representative ligand-protein complexes, obtained by a filtered version
of the PDB database. A 75% rate of successfully recognized native ligand pockets
is reported in the original paper about this method [55].

Another algorithm calledVisGrid [56] is based on geometrical hashing and identi-
fies cavities by considering the visibility of each point in a 3D grid, that is, the fraction
of directions that are not blocked by protein atoms. In this way, a cluster of closely-
located grid points with limited visibility indicates a pocket. VisGrid was compared
with other pocket prediction methods, including SURFNET and LIGSITE, and the
observed success rates on a set of bound and unbound structures were comparable
with existing methods.

LIGSITE [57] uses a grid-based method in which points are either assigned to
the solvent or protein category, and cavities are defined as groups of points in which
solvent points are surrounded by protein points. Although the LIGSITE original
validation identified the correct binding pocket in all the testing cases, a big limita-
tion of this study was the reduced size of the dataset, with only ten ligand-receptor
complexes. Its extension, LIGSITEcsc [58], improves the original algorithm by cal-
culating more accurately the contact between protein surface and solvent using the
Connolly surface, and by re-ranking the identified pockets by their degree of residue
conservation in homolog proteins. The LIGSITEcsc testing process is more signifi-
cant than the LIGSITE one, and a comparison with other geometry-based methods
is also provided. The success rates calculated on a set of 210 non-redundant bound
structures were 75% for LIGSITEcsc, 65% for LIGSITE and 42% for SURFNET.
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The algorithm also showed good performances in recognizing the correct binding
pocket in unbound structures.

Another class of methods dedicated at identifying binding pockets are energy-
based methods which rely on the energetic properties of a binding site. A common
approach of these methods is to use molecular probes to search for favorable interac-
tion sites on a protein, and cluster them together to identify putative pockets. An early
effort resulted in the GRID Fortran code [59]. The probes employed by this algo-
rithm includewater,methyl group, the hydroxyl, amine nitrogen and carboxy oxygen.
Energetic contours are calculated with a function considering a 12-6 Lennard-Jones
term, an electrostatic term and a hydrogen bond term, and negative energy levels
indicate promising interaction sites for each probe.

Laurie and Jackson’s Q-SiteFinder method [60] calculates the interaction energy
of a methyl probe and the grid points generated on the protein structure. A clustering
analysis step links favorable interaction sites to rank putative binding pockets based
on their total interaction energy. Q-SiteFinder was tested on a diverse set of bound
and unbound protein conformations, resulting in success rates of 74% and 71%,
respectively.

EasyMIFs and SITEHOUND [61] are two complementary energy-based tools
developed at the Sanchez lab. The first algorithm calculates the interaction energy
between grid points and molecular probes using the GROMOS force field, while
SITEHOUND recognizes putative binding sites by filtering and clustering the spa-
tial variation of the interaction energy fields calculated by EasyMIFs or any other
grid-based program. Multiple probes are used, as well as different site clustering
algorithms. SITEHOUND’s success rate was evaluated on a set of 77 complexes and
it was reported as 95% (bound structures) and 79% (unbound structures) considering
the binding pocket identified when present in the top three ranked sites.

Another similar energy-based algorithm, AutoLigand [62], was created by the
developers of the popular molecular docking software Autodock. AutoLigand was
reported to have a success rate of 73% when tested on a set of 187 bound structures
and 80% when tested on 96 unbound structures.

3.2 Ligand-Receptor Docking

Molecular docking methods have been developed to predict how a given compound
naturally binds to its biomolecular target, i.e., its binding mode, and to provide an
estimate of its binding affinity. Docking software usually rely on optimization algo-
rithms which include both a search algorithm and a scoring function. Such methods
require at least one ligand structure and one target structure as inputs. The location
of the targeted site should be provided although blind docking approaches [63, 64]
can help deal with unknown binding locations in addition to the pocket prediction
methods discussed in the previous section.

The search algorithms are dedicated to exhaustively explore the conformational
space of the ligand within the targeted pocket. Three groups of such functions have
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been described, namely matching, systematic and stochastic methods. Matching
algorithms are based on shape complementarity between the ligand and the receptor
site, and, possibly, chemical complementarity. Systematic search algorithms explore
the degrees of freedom of the ligand in a progressive way. This class of methods can
be divided in three subgroups:

• Exhaustive algorithms systematically rotate all ligand dihedral angles until an
optimal solution is reached.

• Fragment-based methods break down the ligand into different fragments which
are separately placed within the binding site and re-connected in the last step of
the process.

• Ensemble-based methods pre-generate a large number of ligand conformations,
which are then rigidly placed within the binding site.

The last class of search algorithms includes stochastic methods such as MC and
evolutionary algorithms, which introduce random changes of the degrees of freedom
of the ligands to rapidly reach an optimal solution.

In molecular docking, the binding free energy is calculated using a position-
dependent scoring function. This is required not only to identify the correct binding
pose corresponding to the lowest binding energy, but also to rank a set of tested
compounds according to their affinity to a target. Force-field-based scoring functions
used for docking are similar to MD force fields discussed in Sect. 2.1. In empirical
scoring functions, the different contributions in the binding energies are weighted
with coefficients, set beforehand to reproduce experimental dissociation constants
of known ligand-receptor complexes. The Autodock4 scoring function [65] is an
example of an empirical scoring function where a non-bonded interaction potential
is calculated as

V � WvdW

∑

i j

(
Ai j

r12i j
− Bi j

r6i j

)
+Whb

∑

i j

E(θ)

(
Ci j

r12i j
− Di j

r10i j

)

+Welec

∑

i j

qiq j

ε
(
ri j

)
ri j

+Wsol

∑

i, j

(Si Vj + Sj Vi )e
−r2i j
2σ2 . (9)

The first term represents van der Waals contributions, the second is a hydrogen bond
term, the third is a Coulombic term for electrostatic interactions, and the last is a
desolvation potential. W represents the empirical coefficients, obtained from the
training over 188 bound complexes from a PDB calibration subset. The coefficients
A and B derived from the AMBER force field, while C and D are Autodock inter-
nal parameters. E(θ) depends on the angle of deviation θ from the ideal hydrogen
bond geometry. S and V are a solvation parameter and the volume of the atoms sur-
rounding one atom, respectively. σ is distance-weighting factor of Autodock. The
total Autodock score of a binding pose is calculated by summing the difference of
intra-molecular energies between the bound and unbound forms of the ligand and
the protein, then subtracting the difference of inter-molecular energies. A simple
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entropic term is also included in the final score to model the variation of the sys-
tem entropy upon binding. Knowledge-based scoring functions use the potential of
mean force (PMF), derived from protein-ligand structures and calculated for each i j
ligand-receptor atom pair type as:

wi j (r) � −kBT ln(ρ
(
ri j

)
/ρ∗(ri j

)
), (10)

where kB is the Boltzmann constant, T is the temperature in Kelvin degrees, ρ
(
ri j

)

is the number density of the i j atom pair derived from the structural training set
and ρ∗(ri j

)
is the number density in a reference state. Although knowledge-based

scoring functions do not provide a precise interaction energy potential due to diffi-
culties arising from the reference state calculation, they directly connect the atomic
interactions between ligand and protein to structural data instead of to kinetics as is
the case for empirical methods. Knowledge-based scoring functions turn out also to
be more computationally efficient than force-field-based methods [66, 67]. Finally,
consensus scoring methodologies combine different scoring function outputs of the
same ligand to obtain a single, consensual score. Different combination strategies
can be employed, such as weighting and summing up the ranks or performing a
regression analysis [68].

Accounting for the flexibility of the binding site is an important issue in molec-
ular docking. As a result, different approaches have been proposed to address this
problem. Soft docking algorithms use modified short-range repulsion parameters
for the binding site atoms, which allow the ligand to slightly penetrate through the
surface of the pocket to mimic the induced fit of the binding. Many algorithms also
include the possibility to treat the side chains of pocket residues as flexible, although
such methods still ignore backbone dynamics, while increasing noticeably the com-
putational cost. Using multiple receptor conformations when performing molecular
docking is a popular way to take into account the backbone flexibility [69]. This
approach, called Relaxed Complex Scheme (RCS), relies on NMR or MD-derived
conformational ensembles, which are used as molecular docking targets.

Testing of docking software is usually performed by evaluating the percentage
of docking poses with small enough RMSD (typically 2 Å) compared to the co-
crystallized poses extracted from a high-resolution structural database.

The original implementation of DOCK [70] is an example of geometry-matching
algorithm, where the binding site and the ligand atoms are represented as spheres
that are systematically matched using a shape-based routine. DOCK 6 [71], the latest
version of the program, applies a fragment-based algorithm and a set of different
force-field-based scoring functions which can be selected, such as PBSA, GBSA and
Amber scoring methods. In addition, a minimization step is performed for the ligand
in order to remove minor protein-ligand clashes and relax its internal geometry. The
success rate of the latest DOCK release was estimated around 73% in reproducing
crystallographic poses. The authors tested the algorithm on 1043 structures obtained
from a ligand-receptor database designed as a benchmark for assessing docking
software performances [72].
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Autodock [73], probably the most popular docking software, uses a Lamarckian
genetic algorithm to independently generate a large number of binding poses, scored
with the empirical scoring function described in Eq. (9). A clustering algorithm can
be optionally used to identify the most populated portion of the conformational space
of the ligand, from which the lowest energy pose should match the native one. The
success rate of the latest version, Autodock4 [74], was around 53%when the software
was tested on the calibration structural set.

Autodock Vina [75] utilizes an iterated local search global optimizer searching
method. The Vina scoring function combines aspects from knowledge-based and
empirical potentials. Tested on the same set used for Autodock4, Vina was able to
identify the correct binding pose in 78% of the cases. Noteworthy, Vina scoring
function was trained with the PDBbind refined set, much bigger than the training set
used for the Autodock scoring function.

Glide [76] is a docking software included within the Schrödinger molecular mod-
eling package. It is based on an exhaustive systematic search algorithmused to sample
the ligand conformational space, followed by aminimization step. An optimal choice
for the scoring method [76] is given as a combination of a force-field-based function,
an empirical function (GlideScore) and the strain energy of the ligand conformation.
The pose success rate was reported around 66% when tested on 282 ligand-receptor
complexes selected from the PDB database.

GOLD [77] is another popular docking program. The software maps together
complementary chemical features of the ligand and the receptor within the binding
site. A genetic algorithm is then used to explore different binding modes. Three main
scoring functions are available, namely, Goldscore (force-field-based), Chemscore
(empirical) andAstex Statistical Potential [78] (knowledge-based). Testing ofGOLD
on the CCDC/Astex database [79], a PDB subset designed to test docking software,
resulted in success rates up to 87% depending on the scoring function used. The
correlation coefficients (R2) between experimentally-measured and GOLD binding
affinities were reported between 0.51 and 0.55.

3.3 Virtual Screening

The discovery of a new drug is an expensive and long process. It is estimated that up
to two and half billion dollars and twenty years are required to bring a new product
from the bench to the clinic [80, 81]. Consequently, efforts are made to shorten the
process and reduce the cost. Some of the time and funding savings are expected to
result from a wider use of computational techniques applied to drug discovery. One
of such techniques is called virtual screening (VS). VS refers to an in silico active
compound search against biomolecular targets [82]. It has the advantage of being fast
and inexpensive compared with traditional high throughput screening. Nowadays,
libraries including billions of compounds can be virtually screened depending on the
available computational resources.
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A typical VS workflow consists of sequential series of filtering and scoring steps
aimed at providing a set of promising compounds for experimental validation. VS
methods can be divided in ligand-based VS (LBVS) and structure-based VS (SBVS).
LBVS approaches are computationally faster but they do not provide any estimate of
the binding energy of the ligand. On the other hand, SBVS methods are more com-
putationally expensive but they enable to rank potential hits based on their predicted
binding affinity. Regardless of the chosen approach, a compound database is always
required as starting point for VS. Examples of extensive small molecule repositories
are PubChem [83, 84], ZINC [85] and the National Cancer Institute databases [86].
Such collections usually include millions of compounds that can be downloaded for
screening purposes [87].

LBVS techniques rely solely on the 2D or 3D structure of ligands, ignoring the
biological target. The main assumption behind these methods is that structurally
related compounds share similar activities [88]. Therefore, the structure of at least one
known active compound should be available as template for the computational search,
and a measure of the distance between structures needs to be computed. Simple ways
to represent the chemical structure of a compound in a computer-readable format
are chemical fingerprints or pharmacophore representations. Chemical fingerprints
[89] are binary strings in which each bit codes for the presence or the absence of
particular chemical groups. A widely-used way to compare two fingerprints is to use
the Tanimoto index, given by

TA,B � c

a + b − c
, (11)

where A and B are the two fingerprints, c is the number of bits set to 1 at the same
position in both the fingerprints, and, a and b are the total number of bits set to
1 in A and B, respectively. A publicly-available package which can be used for
fingerprint-based VS is chemfp [90].

Another way to perform LBVS is to use a pharmacophore model of the active
compounds [91], which provides a representation of the ligand from its spatially-
distributed chemical features (hydrogen bond acceptor, hydrogen bond donor,
hydrophobic moiety, ring structure, polar or charged residue) including the distances
between centers forming a chemical structure. In pharmacophore-based VS, the dis-
tance between two ligand structures is usually calculated as the RMSD between
the superposed pharmacophore points. The main benefit of this approach is to iden-
tify molecules with different chemical groups but similar generic features, providing
novel scaffolds to medicinal chemistry. Contrary to most chemical fingerprints, phar-
macophore models also include 3D properties of the ligand.

Data mining and machine learning methods including support vector machines,
neural networks, Bayesian networks and decision trees, are also utilized for LBVS
[92]. LBVS methods are useful in case a 3D structure of the target is not available,
but they can also be used to clean up large databases in order to generate focused
libraries [93]. Indeed, these structurally-related subsets are designed to interact with
a specific target and they are built by screening larger and diverse databases. Focused
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libraries have a limited size compared with the parent databases. Therefore, they can
be rapidly and efficiently screened with SBVS or experimental techniques. LBVS
methods have led to the discovery of novel and promising compoundswith low-range
potency [94]. Examples of such successes are the discovery of anti-cancer tubulin
dimerization inhibitors [95], inhibitors of the 17β-HSD2 enzyme for osteoporosis
treatment [96] and novel scaffolds for the inhibition of the HIV-1 integrase [97].

SBVS methods provides a ranking of the screened compounds based on their
computed binding affinities. Therefore, one or multiple structures of the target are
required. SBVS always relies on molecular docking methods, which are used to
place the compounds within the targeted pocket, and to estimate the binding affinity
from the resulting binding poses. We have already discussed all the docking-related
aspects in Sect. 3.2. The docking scoring functions are designed to quickly estimate
the binding energy froma ligandpose, therefore theyoften donot lead to very accurate
results. Several strategies have been developed to deal with this, including the already
mentioned consensus scoring, MD simulations of the complex structures and/or
more accurate scoring functions (e.g., MM/PBSA or GBSA) [98, 99]. Recently,
SBVS techniqueswere successfully applied to the discovery ofDNA repair inhibitors
[98, 100–103], anti-malarian compounds [104], kinase inhibitors [105] and HIV-1
inhibitors [106, 107].

4 Conclusions

This review chapter provides introductory information regarding the computational
tools currently used in the drug design and discovery process. We have given an
overview of molecular dynamics methods that are very useful in biomolecular target
characterization for drug action. We have also given practical information regarding
the identification of binding pockets for putative inhibitors of proteins, as well as an
overview of molecular docking techniques that are based on the protein-ligand inter-
actions. These interactions and their ranking involving the binding free energy of the
ligand-target pair are used in massive searches for specific and selective inhibitors of
particular protein, a methodology referred to as virtual screening. The latter method-
ology relies on large and diverse databases of pharmacologically-acceptable com-
pounds. Lists of databases and software packages used in all stages of computational
drug design have been presented in this chapter to assist in practical aspects of
research in this area.
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