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Abstract Thin-film modules of all technologies often suffer from performance
degradation over time. Some of the performance changes are reversible and some are
not, which makes deployment, testing, and energy-yield prediction more challeng-
ing. Manufacturers devote significant empirical efforts to study these phenomena
and to improve semiconductor device stability. Still, understanding the underlying
reasons of these instabilities remains clouded due to the lack of ability to characterize
materials at atomistic levels and the lack of interpretation from the most fundamental
material science. Themost commonly alleged causes ofmetastability in CdTe device,
such as “migration of Cu,” have been investigated rigorously over the past fifteen
years. Still, the discussion often ended prematurelywith stating observed correlations
between stress conditions and changes in atomic profiles of impurities or CV doping
concentration.Multiple hypotheses suggesting degradation of CdTe solar cell devices
due to interaction and evolution of point defects and complexes were proposed, and
none of them received strong theoretical or experimental confirmation. It should be
noted that atomic impurity profiles in CdTe provide very little intelligence on active
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doping concentrations. The same elements could form different energy states, which
could be either donors or acceptors, depending on their position in crystalline lattice.
Defects interact with other extrinsic and intrinsic defects; for example, changing
the state of an impurity from an interstitial donor to a substitutional acceptor often
is accompanied by generation of a compensating intrinsic interstitial donor defect.
Moreover, all defects, intrinsic and extrinsic, interact with the electrical potential
and free carriers so that charged defects may drift in the electric field and the local
electrical potential affects the formation energy of the point defects. Such complexity
of interactions in CdTe makes understanding of temporal changes in device perfor-
mance even more challenging and a closed solution that can treat the entire system
and its interactions is required. In this book chapter we first present validation of
the tool that is used to analyze Cu migration in single crystal (sx) CdTe bulk. Since
the usual diffusion analysis has limited validity, our simulation approach presented
here provides more accurate concentration profiles of different Cu defects that lead
to better understanding of the limited incorporation and self-compensation mecha-
nisms of Cu in CdTe. Finally, simulations are presented that study Cu ion’s role in
light soaking experiments of CdTe solar cells under zero-bias and forward-bias stress
conditions.

Keywords Thin-film solar cells · CdTe · Defect migration · Cu
metastability · reliability

1 Introduction

The push towards thin-film technology has been driven largely by predictions of
future economic viability [1–4]. Traditional single-crystal solar cells, such as Si and
GaAs, demonstrate very high efficiencies (20–30%), but the production of crys-
talline material is expensive. The original reason thin-film materials were pursued
was because they use much less material, which is directly related to the cost of
production. Two of the leading thin-film materials are CdTe and CuInGaSe2, chosen
because their direct bandgaps require a smaller absorption length than Si (requires
less thickness for optimum performance). CdTe is a nearly ideal material for ter-
restrial solar cell production, as its band gap of 1.45 eV (room temperature) yields
the maximum theoretical efficiency for a solar cell, of about 32% (see Fig. 1 for
the Schockley-Queisser limit for single cell under AM1.5 illumination.) The current
record one-of-a-kind laboratory research cell was fabricated in 2017 by First Solar
(FSLR) and has an efficiency of 22.1% [5].

Despite overwhelming advances in thin-filmCdTe technology in recent years, per-
formance of thin-film CdTe devices is still a subject to various metastable phenom-
ena that could be characterized by temperature-dependent time constants (activation
energies). Most of these metastable changes in CdTe are known to be reversible and
require different recovery procedures; however, based on experimental and theoret-
ical investigations at First Solar, metastabilities in CdTe device cannot be explained
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Fig. 1 Schockley-Queisser
limit

solely by electronic capture-emission phenomena assuming fixed distributions of
point defects.

Many of the physical properties of crystalline solids are determined by the pres-
ence of native or foreign point defects. In pure compound crystals the native defects
are atoms missing from lattice sites where, according to the crystal structure, atoms
should be (vacancies); atoms present at sites where atoms should not be (intersti-
tials); and atoms occupying sites normally occupied by other atoms (substitutional).
In addition, there may be defects in the electronic structure: quasi-free electrons in
the conduction band or electrons missing from the valence band (holes). In impure or
doped crystals there are also defects involving the foreign atoms. These may occupy
normal lattice sites (substitutional foreign atoms) or interstitial sites (interstitial for-
eign atoms). In elemental crystals similar point defects occur; only misplaced atoms
are missing.

In addition to point defects, the performance of CdTe solar cells is affected by
extended defects which include dislocations, stacking faults, grain boundaries (GBs)
and inclusions of second phases. Dislocations and GBs are well known to attract
impurities, and to promote diffusion [6]. Such effects might be expected to lead to
instability in devices, or to have an influence on the thermal processing conditions
chosen to fabricate certain devices. An example is the inter-diffusion of CdTe and
CdS in polycrystalline solar cells for which the grain boundary diffusion coefficient
has been measured [7]. Grain boundary segregation is well known in metals (e.g.
Cu in Pb [8]), the driving force being strain reduction at the boundary plane. Deco-
ration of grain and twin boundaries in CdTe with Te inclusions is widely reported.
Minor component impurities in CdTe have also been shown to segregate out to grain
boundary regions [9] and to dislocation arrays [10].

The electrical states associated with grain boundaries and dislocations can have
a number of adverse effects on the performance of CdTe solar cells. Firstly, the
deep states associatedwith extended defects can promote undesirable recombination.
Secondly, grain boundaries act as charge transport barriers. This is attributed to the
grain boundary manifold being a charged interface, causing it to present an electrical
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barrier to current transport. Such barriers have been observed directly for CdTe using
the so-called ‘remote’ electron beam induced current (EBIC) method [11] and are
considered responsible for limiting effects in polycrystalline solar cells [12]. Thirdly,
grain boundaries and dislocations may act as conduits for current transport rather
than barriers. The impact of the grain boundaries is likely to depend on their position
in the layer; near surface grain boundaries are likely to be Te-rich (i.e. conducting)
on account of the etching used to prepare contacts, whereas those remote from the
free surface may nevertheless act as recombination centers.

In today’s thin-film CdTe technology, Cu is the key dopant that defines major
performance parameters such as open-circuit voltage (Voc), short-circuit current
(Jsc), and fill-factor (FF) by affecting built-in potential of the junction, collection
efficiency, and resistivity of the back contact [13]. However, fast diffusion of Cu from
the back contact toward the main junction is believed to contribute to degradation
observed in long-term stability studies [14]. It was determined that while modest
amounts of Cu enhance cell performance, excessive amounts degrade device quality
and reduce performance [15]. Evolution of Cu-related point defects and complexes
in CdTe grains and at grain boundaries (GBs) is expected to cause pronounced effect
on device performance leading to observed metastable phenomena.

Interactions of Cu in CdTe involve multiple intrinsic and extrinsic point defects
and complexes, and as a result, cannot be analyzed in isolation from the rest of
the system. Although the other defects in CdTe system could be assumed relatively
slow diffusors at typical operating and storage conditions of CdTe device, direct
measurement of their distributions is very challenging.Moreover, rapid development
of technology involves frequent changes of film growth/activation conditions and,
therefore, resulting setup for Cu-related point defects and complexes. All of the above
makes quantitative understanding of metastable phenomena in CdTe device virtually
impossible with the off-the-shelf tools that researchers have currently.

2 Theoretical Model

As already noted in the Introduction part of this book chapter, the evolution of
Cu-related point defects and complexes in CdTe grains and at GBs is expected to
cause a pronounced effect on device performance leading to observed metastable
phenomena. Interactions of Cu in CdTe involve multiple intrinsic and extrinsic point
defects and complexes, and, as a result, cannot be analyzed in isolation from the rest of
the system. Understanding the fundamentals behind performance and metastability
of CdTe devices requires a model that captures and describes most relevant processes
at the lowest level specific to CdTe system and could be confirmed with experiment.

We consider such a model in a form of a self-consistent system of time-dependent
reaction-diffusion equations [16–18] describing the interactions and the evolution of
point defects and complexes coupled with the Poisson equation (see Fig. 2). Because
device performance is uniquely defined by device geometry, band-structure of semi-
conductors, and distributions of charge and recombination centers, theUnified Solver
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Fig. 2 Schematic block-diagram that illustrates the use of the Unified Solver to tune the model and
study CdTe device metastability

has to be able to simulate macroscopic device characteristics such as current, capaci-
tance and quantum efficiency as a function of the applied bias, DC light intensity, and
ambient temperature. Such capabilities establish a tighter link between the micro-
scopic core of the model and macroscopic experimental verification. The core of the
solution is a multi-level solver that combines macroscopic diffusion-reaction equa-
tions describing sub-systems of the point defects with the global Poisson equation to
forma closed system that is solved in time domain and quasi-3D space utilizing grains
of specific shape. The characteristic length scale of the features is large enough that
the semi-classical approximation (implicitly assumed by using reaction-diffusion
equations) is valid. The developed Unified Solver offers flexibility in choosing (turn-
ing “on” and “off”) models and reactions that involve selected point defects and
complexes in individual materials or domains.

The species under investigation are described by sets of low-level parameters
that include their formation energy, ionization energies and diffusion coefficients for
different charged states, solubility limits, grain boundary segregation parameters.
The evolution of the system for a given set of stressors (temperature, light, and
bias) is calculated based on provided initial conditions (distributions). The solver
outputs the distributions of charged and neutral dopants and recombination states.
Given the device geometry and band structure of semiconductors, the solver uses
these distributions to simulate I-V, C-V and QEV trends that could be confirmed
experimentally on real device structures.
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2.1 Physical Model

A specific example of importance is the penetration of Cu into CdTe absorber using
a high temperature diffusion anneal. The Cu penetration involves several processes,
including the Cu-Cd exchange reaction and the drift/diffusion of mobile defects,
namely Cu+

i andCd+2
i . To simulate such reaction-diffusion process we use a standard

multi-compartment approach [19], which assumes the reactions to happen inside the
finite homogeneous compartments (well-stirred reactors), while the mass transfer
between compartments happens via pure drift/diffusion process without any effect
of defect reactions. Within this multi-compartment approach, we can describe the
reactions using the standard chemical kinetics formalism in application to the defect
chemistry in solid state.

We write the main Cu-Cd exchange reaction of the Cu penetration process as a
bimolecular exchange reaction facilitated by knock-off:

Cu−
Cd + Cd+2

i

K f

�
Kb

Cu+
i + CdCd (1)

where K f and Kb are reaction rate constants. In the forward exchange reaction (1),
the double donor interstitial Cd defect (Cd+2

i ) reacts with the acceptor substitutional
Cu defect (Cu−

Cd ), kicks-out Cu into an interstitial position and occupies its place
forming regular Cd-on-cation-site lattice atom (CdCd ). Such exchange reaction is one
of the three types of elementary bimolecular defect reactions, while two others being
the formation of a complex pair defect of two isolated point defects and the recom-
bination of interstitial point defect with vacancy [20]. The rate of such bimolecular
exchange reaction is proportional to the concentrations of both reactants (Cu−

Cd and
Cd+2

i ).
The backward reaction, knock-off of Cd byCu+

i , is treated asmonomolecular with
only one reactant (Cu+

i ) because in the uniform binary CdTe matrix in the diluted
concentrations approximation, this backward reaction does not require the reactants
(Cu+

i and CdCd ) to find each other (the regular Cd lattice atoms are available nearby
any Cui ). Therefore, the rate of the backward reaction (1) is proportional only to the
concentration of one reactant Cu+

i .
The above considerations allow us to define the reaction rates (R f , Rb) in the

following form: {
R f = K f [Cu−

Cd
][Cd+2

i
]

Rb = Kb[Cu+
i
] (2)

where the superscripts f and b indicate the forward and backward reactions, [X ] is
the concentration of defect X and K f,b is the corresponding reaction rate constant.

As no reliable experimental methods exist for determination of the rates of the
reactions between individual point defects, we use first principles-based analysis to
estimate these reaction rates. Following the standard approach for defect chemistry in
solids, we consider twomajor contributions to the Gibbs free energy of point defects,
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namely the formation enthalpy and the configuration entropy. The calculation of
the formation enthalpy of different atomic configurations in the supercell approach
allows analyzing the potential energy landscapes and finding the most favorable
states of single neutral and charged defects as well as the minimum energy pathways
for single reactions. The inclusion of the configuration entropy changes in defect
reactions allows accounting for the effect of temperature and defect concentrations
on the reaction rates. More details on first-principles calculations can be found in
recent works [20, 21].

Analysis of the potential energy landscape for reacting Cu−
Cd and Cd+2

i defects
shows that the highest energy barrier in the forward reaction (1) is the Cd+2

i diffu-
sion barrier and the formation enthalpy of the products is lower than that of reactants
[20, 22]. This allows us to write the forward rate constant as a steady-state rate con-
stant of diffusion-controlled reaction between non-interacting uniformly distributed
species (see e.g. [22]). To derive the backward rate constant we use the principle of
the detailed balance: {

K f = 4πDRcapt

K b = K f K eqCs
(3)

In Eq. (3), Rcapt represents the capture radius of reactants, here for reaction
between the attractive oppositely charged defects with charges q1, q2 we use the
Onsager capture radius Rq1q2

capt = q1q2
/
4πεε0kT [23]; D is the sum of diffusivi-

ties of reactants dominated by the diffusivity of mobile Cd+2
i defect in our case;

Keq = exp
(−ΔH/

kT

)
is equilibrium constant of reaction (1), ΔH is the change

of formation enthalpy in the forward reaction; Cs = 1.48 × 1022 cm−3 is the con-
centration of regular lattice sites in CdTe. This approach of calculating the reaction
constants delivers equilibrium distribution of defects if the simulation time is long
enough.

The overall time-space evolution of point defects involved in Cu penetration is
described by the following set of reaction-diffusion equations:

⎧⎪⎪⎨
⎪⎪⎩

d[Cu+
i ]

dt = −∇ · JCu+
i

+ R f − Rb

d[Cd+2
i ]

dt = −∇ · JCd+2
i

− R f + Rb

d[Cu−
Cd ]

dt = −R f + Rb

(4)

Note that in Eq. (4), diffusion of CuCd has been ignored due to very small diffu-
sion coefficient [22]. The fluxes JX in Eq. (4) result from both the diffusion due to
concentration gradients and from the drift due to external electrostatic field:

JX = −DX∇[X ] + υX [X ] (5)

Assuming Boltzmann statistics (valid for diluted concentrations) and the charge
θ carried by the defect, its drift velocity υx in electric field F equals to μX F , where
mobilityμX is expressed via diffusion coefficient using Einstein relationμX = θ DX

kT .
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In other words:

υX = θ
DX

kT
F (6)

The ionization states of the defects can be calculated from first principle calculations.
The diffusion coefficients of point defects have temperature dependence provided by
Arrhenius expression:

D = D0 exp

(
−ΔED

kT

)
(7)

where D0 and ΔED are diffusivity prefactor and the energy barrier of elementary
diffusion jumps, respectively. These parameters for many important point defects in
CdTe have been recently calculated from first principles in works [22, 24, 25].

The electric field in the film is determined not only by the electron/hole concentra-
tions, but also by the ionized defect distributions inside the grain and its boundaries
(surfaces), and can be found by solving the Poisson equation:

∇ · (εS∇V ) = −q
(
p − n + [Cu+

i
] + 2[Cd+2

i
] − [Cu−

Cd
]) (8)

In Eq. (8), p stands for the hole concentration, n is the electron concentration and εS
is the spatially varying dielectric constant of the materical that comprise the CdTe
solar cell.

Boundary conditions for diffusion-reaction Eq. (8) are provided by the sink of
defects near the boundary given by:

JGb = −σX
(
CX − Ceq

)
. (9)

In Eq. (9), σX is the recombination/generation rate and Ceq is the equilibrium con-
centration of the defect at the boundary. Usually, the velocity σX is proportional to
the diffusion constant of the defect. In most cases, when the strong sink of defects
at grain boundary is assumed, Ceq is considered to be constant. Beyond this approx-
imation, the effect of grain boundary segregation has to be taken into account. The
accumulation of impurity atoms at boundaries changes the chemical potential and
hence makes Ceq floating. By introducing the floating chemical potential of impu-
rities, the properties of the grain boundary could be taken into account. According
to theories of grain boundary segregation, the bulk concentration at grain surface is
given by:

Csur f ace(t) = exp

(
−ΔG

kT

)
Cb
s (t)

1 − Cb
s (t)

. (10)

Eq. (10) provides connection between the impurity concentrations at grain bound-
ary and bulk by introducing ΔG—the atomic energy difference between the grain
boundary and in the bulk.Cb

s in Eq. (10) represents the fraction of the grain boundary
sites occupied by impurity atoms.
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One can generalize the above notation and compactly write the Poisson and the
diffusion-reaction equations as:

− ∇ · (εs∇V ) = q(p − n +
∑
i

θi Xi )

∂t p − ∇ · (Dp∇ p + μp p∇φ) = R(n, p)

∂t n − ∇ · (Dn∇n + μnn∇φ) = R(n, p)

∂t Xi − ∇ · (Di∇Xi + μiθi Xi∇φ) = Ri (X̄) (11)

where Xi is the concentration of the i th type of defect and θi is the charge of the
i th-type of defect. We also define φ = V + Vbi where Vbi corresponds not only to
the usual built-in-voltage, but also includes terms that account for heterojunctions. In
future analysis this term will include effects due to the change in chemical potentials
for charge carriers in grain boundaries, to account for different materials, or both.
(Note that for neutral particles (θi = 0) this will require including a term in the fourth
equation which is not proportional to θ ). We assume that Vbi is constant with respect
to time and therefore does not require an additional partial differential equation.

2.2 Numerical Methods

The major challenge in numerically solving the system of diffusion-reaction equa-
tions that are coupled to a global Poisson equation solver—given by the Eq. (11)—is
the presence of vastly different time and spatial scales. For example, Cu is a fast
diffusor, whereas the diffusion of Cl occurs on a longer time scale and both of these
are slow compared to energetically favorable ionization reactions.

For the 2D case, we have previously developed a Unified Solver based on the first
order implicit Euler method for the time integration and a Slotboom Finite Element
method in space [19].

2.2.1 Time Splitting

Leaving aside for a moment the issue of space discretization, we developed a time
discretization scheme which allows us to decouple the equations (in the sense that
each equation can be solved independently for a given time step). In particular, there
are two types of coupling. The electrical coupling is the most involved, with every
(charged) defect appearing in Poisson’s equation and the derivative of the potential
appearing in each of the (charged) defect equations. This drift term involves only a
single species of defect, but is nonlocal in space. The other coupling is through the
Ri (X̂) term, which simultaneously couples all of the reaction-diffusion equations,
but acts locally in space.
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The usual first step in the numerical solution of Eq. (11) is to use a Gummel-type
iteration alternating between calculation of Poisson’s equation and the reaction-
diffusion equation [26]. This replaces the solution of a large system of coupled
equations by the repeated solution of many smaller equations. When the number of
degrees of freedom is large (as is usually the case in 2D or 3D), the iterative scheme
will solve the system more efficiently for any reasonable iteration tolerance.

As first step we reformulate the transport equations, using so-called Slotboom

variables of the form ui = e
θi φi
UT Xi . This transforms the transport equations for the

defects into
∂t Xi − ∇ ·

(
μiUT e

− θi φi
UT ∇ui

)
= 0 (12)

The advantage of the formulation is that the spatial differential operator is self-
adjoint in the variables ui , yielding a stable disretization of the transport equation for
large electric fields and, consequently, large spatial variations in the potential φ. We
note that the Slotboom variables, ui , will exhibit a large dynamic range due to the
exponential in the variable transform. Thus, the primary variables will always be the
concentrations Xi and the transport equations will always be discretized in the form

∂t Xi − ∇ ·
(
μiUT e

− θi φi
UT ∇

(
e

θi φi
UT Xi

))
= 0 (13)

where the spatial derivatives are approximated numerically by differentiating ui =
e

θi φi
UT Xi .
We utilize an operator splitting (a fractional step-method) for the time discretiza-

tion of the defect equations, separating the diffusion from the reaction terms. The
operator splitting method is of the following form: Given Xi at time tK and a time
step Δt

• Step 1: Solve

∂t Xi
(1) − ∇ ·

(
μiUT e

− θi φi
UT ∇

(
e

θi φi
UT Xi

(1)
))

= 0, (14)

for tk ≤ t ≤ tk + Δt, Xi
(1) (tk) = Xi (tk)

• Step 2: Solve

∂t Xi
(2) = Ri

(
⇀

X
(2)

)
, f or tk ≤ t ≤ tk + Δt, Xi

(2) (tk) = Xi
(1) (tk + Δt)

(15)
• Step 3: Set

Xi (tk + Δt) = Xi
(2) (tk + Δt) (16)

A simple Taylor expansion argument yields that the above method is first order
in the time step �t . A second order method can be obtained immediately by using a
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standardmodification such asStrang splitting [19], but the advantages of the approach
are limited by the nature of the Gummel iteration.

The advantage of the operator splitting approach is the following: An optimal
simultaneous implementation of the transport and the reaction terms would result in
the solution of a block sparse matrix vector multiplication problem. The matrix will
be NNgrid × N Ngrid where N is the number of defects and Ngrid is the number of
grid points or finite elements. Each block has size N × N and refers to interactions of
defects at a single point in space. Depending on the reaction network structure, each
blockmay be fully dense. For a regular triangular finite element mesh (or a rectilinear
finite difference or finite volume grid), the matrices will be block-pentadiagonal with
a bandwidth of N · √

Ngrid with Ngrid the number of gridpoints or finite elements.
Many algorithms exist for solving such banded sparse systems, but a reasonable lower
bound for the computational complexity for an M × M matrix with bandwidth K is

O(KM). For our matrix, this gives a computation time of O
(
N 2N

3
2
grid

)
. Whereas a

simultaneous implementation may be computationally feasible in one spatial dimen-
sion, the operator splitting approach is essential in higher dimensions when Ngrid is
the product of the number of grid points in each direction.

In contrast to the abovementioned approach, using the splittingmethodwe need to
solve N different matrix-vector multiplication problems for Ngrid × Ngrid matrices
which have the usual banded structure of a 2D finite element problem. (Many defects
exist at lattices cites and do not diffuse, reducing the number of required solves.)
Using the same estimates as above, we predict a speed up factor of N . However,
modern linear algebra packages have optimized solvers for matrices with structures
arriving from discretizing PDEs and our pentadiagional matrices will be solved with
complexities approaching O

(
Ngrid log

(
Ngrid

))
. For large values of Ngrid , the speed-

up here is considerable. Indeed, the speed-up also occurs in 1Dwhere fast tridiagonal
solvers will run in O(3 Ngrid) time.

We must still deal with Poisson’s equation, but since it too is linear in Xi , we
can consider it in the same step as the diffusion equation for the Xi , retaining the
decoupled structure. Note that we are left with significant freedom in the structure
of the iteration. In particular, we note that the reaction equation does not a-priori
respect the boundary conditions of the problem. For realistic final results, we should
therefore choose to calculate the diffusion step last, or proceed by using the Strang-
splitting method discussed above. The general time-splitting scheme is shown in
Fig. 3.

2.2.2 Drift-Diffusion Implementation

Due to our choice of splitting methods above, our spatial discretization scheme can
be optimized for solving only the following problem:

∂t Xi − ∇ ·
(
μiUT e

− θi φi
UT ∇ui

)
= 0 (17)
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Fig. 3 Flow-chart of the Unified Solver. Device simulation is performed for each time step to
obtain self-consistent and real-time electric field and carrier distributions during the diffusion-
reaction simulation. Device simulation for IV, QE and CV is presented in dashed line box and is
currently employed for the modeling of Cu-related metastabilities of CdTe solar cells

This spatial discretization of the problem is flexible, since none of its properties are
dictated by the time-splitting scheme discussed above. In 1D, Scharfetter-Gummel
[26] is appropriate (and in some cases optimal). The 1D version of the Unified Solver
(obviously without grain boundaries) has already been demonstrated [27, 28].

In 2D, however, many of the schemes in the literature [29] do not work as well
as desired. Any scheme which relies upon a-priori knowledge information about the
structure of the devices runs into significant difficulties when the doping can change
throughout time. The doping at many points in the device changes from p-type to
n-type over time. In particular, schemes which require edges perpendicular to the
direction of the electric field will not deal well with the nonlinear wave-fronts asso-
ciated with grain boundary diffusion, let alone complicated grain boundary geome-
tries. To handle these complicated geometries, we choose to use a finite element
method for the 2D Unified Solver. Instead of relying upon an elaborate grid scheme,
we directly discretize the Slotboom variables and use the properties of the scheme
to allow exponential fitting of the charge carriers and defects between nodes.

Spatial Discretization

In order to deal with the complicated geometries which arise from the grain bound-
aries, we seek to solve this equation using finite elements. In the usual way [30], we
will triangulate our domain � = ⋃

Th with small triangles on the grain boundaries
to handle large changes in the gradients. We then take the approximations ui ∈ Vh of
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ui , which are piecewise linear on the triangles, and continuous on the whole domain,
but still satisfy the boundary conditions. Multiplying our equation by a test function
v in the same space and integrating over the domain yields:

∫
�

∂t Xi vdx =
∫

�

∇ ·
(
μiUT e

− θi φi
UT ∇ui

)
vdx (18)

Integrating by parts and separating the terms allows us to calculate the stiffness
and mass matrices:

Ai :=
∑
K∈Th

μiUT

∫
K

−e− θi φi
UT ∇ψ j · ∇ψldx (19)

M i :=
∑
K∈Th

∫
K

ψ jψldx (20)

Details can be found in any finite element method introduction [30]. Combining
the previous results, we can reformulate our PDE by:

∫
�

∂t Xi vdx =
∫

�

∇ ·
(
μiUT e

− θi φi
UT ∇ui

)
vdx

vM(∂t X i ) = vAi u ∀v ∈ Vh (21)

One advantage of finite elements is that zero-flux boundary conditions are incor-
porated naturally. Because we normally want to conserve atomic species during a
simulation, we choose to use zero-flux conditions for all defects. For the carriers we
use Ohmic front and back contacts and the matrices Ai must be modified. The only
complication over traditional methods [29, 30] is that if the doping changes over
time, the boundary conditions must also be updated.

In the usual manner for finite elements, we can assume that this relationship holds
for all admissible functions v and write the equation as a function of u and X only.
Inserting the definition of u to close the equation yields:

M(∂t X i ) = Ai

(
X ie

θi φ
UT

)
(22)

Note that for piecewise linear finite elements, the exponential inside the stiffness
matrix A will be evaluated at the barycenter of the finite elements. In contrast, the
exponential on the left-hand side must be evaluated at the grid points. Thus, for each
entry of the stiffness matrix, this will yield exponentials of the form:

e
−

θiφi (x̂K )

UT e

θiφi (Pi )

UT = e

θi (φi (Pi ) − φi (x̂K ))

UT . (23)
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Note that this form bears great resemblance to the 1D Scharfetter-Gummel expo-
nential [26]. It plays a similar role in allowing a linear problem to approximate
exponential fitting between nodes. We can finish the solution by assuming implicit
Euler for the time derivative:

M
1

Δt
(Xk+1

i − X i
k) = Ai

(
X i

k+1e
θi φ
UT

)
(24)

(
M

Δt
− Aiφ

)
X i

k+1 = M

Δt
X i

k (25)

where the matrix φ = diag
(
e

θi φ
UT

)
. As discussed previously, this scales the stiffness

matrix so that Aiφ is no longer symmetric). Formally, our solution is given by:

X i
k+1 =

(
M
Δt

− Aiφ

)−1 M
Δt

X i
k (26)

(In practice, wewill alwaysworkwith thematrix equation directly instead of actually
inverting the matrix.)

Reaction Step

The system of ordinary differential equations, ∂t Xi = Ri (x̂), in Step 2 of the operator
splitting algorithm is actually quite involved. In general we will have an arbitrary
number of defects and an arbitrary number of reactions. However, these reactions
are all of two very specific forms, either representing the bimolecular reaction of two
defects or the formation/decay of a single defect. We therefore consider only binary
reactions of the form 1 + 2 � 3 + 4, 1 + 2 � 3, 1 � 2 + 3 the reaction terms can
be written as a quadratic form:

Ri

(⇀

X
)

= ⇀

X
T

Ai
⇀

X + bTi
⇀

X (27)

with the matrices Ai and the column vectors bi containing the reaction rates. Increas-
ing the number of defects may increase the total number of possible reactions, but
only 3 or 4 defects will be involved in any particular reaction.

There are two strategies for implementing individual reactions. Each reaction can
be implemented independently or simultaneously.

• A sequential implementation would involve solving each reaction independently.
The j th reaction generates a matrix Ai, j and a vector bi, j . Note that for bimolec-
ular reactions Ai, j has two nonzero entries and bi, j is the zero vector. For forma-
tion/decay reactions, both Ai, j and bi, j have one nonzero entry each. For each j ,
we have the following ODE:
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∂t Xi = Ri
(
x̂
) = ⇀

X
T

(tk) Ai, j
⇀

X (t) + bTi, j
⇀

X , (28)

Each of these reactions can be solved using implicit Euler—see section“Iteration
by Reaction”.

• A simultaneous implementation of the reaction equations will require the numeri-
cal solution of the ODE system by, for example, the implicit Euler method together

with a Newton method for the large quadratic system. The Jacobian ∂
⇀

R

∂
⇀

X
, can then

be easily computed from Eq. (27).

In both cases, there is no need to use a higher ordermethod since the operator splitting
method described in Section A is only of first order.

Iteration by Reaction

Because every considered reaction is of either singlemolecule formation/dissociation
or bimolecular type, we can solve every reaction network using just the explicit
formulas given below. Simply iterating through all possible reactions in any order
gives a first order unconditionally stable method for the reaction step. Experimental
results demonstrate that changing this order has no significant impact on the results
for the case of copper migration.

Formore complex reaction networks complications can occur. These are discussed
elsewhere [28].

1. Single Molecule
Let us consider the reaction given by the rate R2,3

1 :

∂t X1 = K 1
2,3X2X3 − K 2,3

1 X1

∂t X2 = K 2,3
1 X1 − K 1

2,3X2X3

∂t X3 = K 2,3
1 X1 − K 1

2,3X2X3 (29)

This could, for instance, represent the knock-off equation in Eq. (1) where inter-
stitial Copper (X1 = [Cui ]) replaces lattice Cadmium, resulting in Copper atom
at a Cadmium site (X2 = [CuCd ]) and an interstitial Cadmium (X3 = [Cdi ]).
Note that the right hand sides are identical (up to a sign) and that the quan-
tities (X1 + X2) and (X1 + X3) are conserved (corresponding to conservation
of copper and conservation of lattice sites in our example). In particular, if the
superscript refers to the time-step, we have that Xk+1

1 + Xk+1
2 = Xk

1 + Xk
2 and

Xk+1
1 + Xk+1

3 = Xk
1 + Xk

3. We will use these equations to decouple the ODEs.
First, let us use the Implicit Euler method to write the first ODE for the time step
k as an algebraic expression:

1

Δt

(
Xk+1
1 − Xk

1

) = K 1
2,3X

k+1
2 Xk+1

3 − K 2,3
1 Xk+1

1 . (30)
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Since �t should be small, we multiply it out to avoid numerically unstable
division by a small number. Using conservation laws, we can also write Xk+1

2
and Xk+1

3 in terms of Xk+1
1 and the known values of X as time step k:

Xk+1
2 = Xk

1 + Xk
2 − Xk+1

1 (31)

Xk+1
3 = Xk

1 + Xk
3 − Xk+1

1 (32)

Substitution yields:

Xk+1
1 − Xk

1 = K 1
2,3�t

(
Xk
1 + Xk

2 − Xk+1
1

) (
Xk
1 + Xk

3 − Xk+1
1

) − K 2,3
1 �t Xk+1

1
(33)

Careful examination reveals that this is a quadratic equation for Xk+1
1 . Rear-

rangement and expansion yields the three coefficients as:

A = K 1
2,3�t

B = −
(
1 + K 2,3

1 Δt + K 1
2,3�t (2Xk

1 + Xk
2 + Xk

3)
)

C = Xk
1 + K 1

2,3�t
(
Xk
1 + Xk

2

) (
Xk
1 + Xk

3

)
(34)

We can then use the quadratic formula to yield:

Xk+1
1 = −B ± √

B2 − 4AC

2A
= 2C√

B2 − 4AC − B
. (35)

We note that the middle expression has A in the denominator, but that since A
is proportional to �t it may be small. We therefore rearrange the expression
to avoid numerical division by a small number. Because B is always negative
for positive concentrations, we can also determine the appropriate sign of the
square root to obtain our final solution. Finally, since Xk+1

1 is now known, we
can immediately substitute back into our conservation laws to obtain Xk+1

2 and
Xk+1
3 .

2. Bimolecular
Let us consider the reaction R3,4

1,2:

∂t X1 = K 1,2
3,4 X3X4 − K 3,4

1,2 X1X2

∂t X2 = K 1,2
3,4 X3X4 − K 3,4

1,2 X1X2

∂t X3 = K 3,4
1,2 X1X2 − K 1,2

3,4 X3X4

∂t X4 = K 3,4
1,2 X1X2 − K 1,2

3,4 X3X4. (36)
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This could correspond to interstitial Copper (X1 = [Cui]) interacting with Zinc
on a Cadmium lattice cite (X2 = [ZnCd]), resulting in interstitial Zinc (X3 =
[Zni]) and Copper on a Cadmium site (X4 = [CuCd]). Following the method of
the previous section, we can develop three conservation laws and rearrange:

Xk+1
2 = Xk

2 − Xk
1 + Xk+1

1

Xk+1
3 = Xk

3 + Xk
1 − Xk+1

1

Xk+1
4 = Xk

4 + Xk
1 − Xk+1

1 (37)

Discretizing the equation for X1 using the Implicit Eulermethod and substituting
the conservation lawswill yield a quadratic equation for Xk+1

1 in the samemanner
as in the previous section. The coefficients are:

A =
(
K 1,2

3,4 − K 3,4
1,2

)
�t

B = −1 − K 1,2
3,4�t (2Xk

1 + Xk
3 + Xk

4) − K 3,4
1,2�t (Xk

2 − Xk
1)

C = Xk
1 + K 1,2

3,4 (X
k
1 + Xk

3)(X
k
1 + Xk

4) (38)

Comparison with Newton’s Method

Particular care needs to be taken in order to have a computationally stable steady-
states. These states are vital for standard device simulation results such as IV and CV
measurements. By the principle of detailed balance, at equilibrium every individual
reaction will be in equilibrium. This indicates that we will obtain a stable equilibrium
for any iteration order. As noted above, the iteration schemeworkswell for the copper
diffusion case.

However, some problems can occur in far from equilibrium conditions. This
behavior becomes evenmore noticeable when one defect is unstable and hasmultiple
dissociation pathways. For this case, whichever dissociation reaction occurs first in
the iteration will occur preferentially to the later reaction, regardless of the relative
size of the reaction rates.

This behavior does not occur for the Newton iteration scheme. Because the reac-
tions are considered simultaneously, each reaction pathway will occur with relative
frequency exactly governed by the ratio of the reaction rates. In practice, we find
that the Newton method is vastly superior for complicated reaction networks. Fur-
thermore, the method does not present a significant computational issue because the
reactions are local in space and the Jacobian can be generated independently for each
grid point.
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3 Verification of 1D Unified Solver

3.1 Verification of 1D Device Simulation Routine Versus
SCAPS Device Simulator

As discussed in Sect. 2, in 1D version of the Unified Solver, the device simulation
is performed on each time step to obtain self-consistent electric field and carrier
distributions during the diffusion-reaction simulation. Besides, the device simulation
routine serves to obtain the steady-state electric current during the simulation of
current-voltage characteristics of the device. The device simulation routine can use
the defect profiles obtained from the consistent solution of 1D kinetic reaction-
diffusion problem as well as the artificially set uniform or nonuniform defect profiles
similar to other solar cell simulators. In order to verify the accuracy of the device
simulation routine, we performed its rigorous comparison with the widely used in
the community SCAPS solar cell simulation code [31].

In order to perform such comparison,weused the samedevice structures (highly p-
doped back layer, lightly p-doped CdTe layer, highly n-doped front layer), properties
of materials, light absorption spectra and illumination spectra both in 1D Unified
Solver and SCAPS solar cell simulator. By comparing the simulated energy bands,
distributions of free carrier in the dark and under the stress conditions, as well as
JV curves for different doping levels and recombination rates, we conclude that the
device simulation routine of 1DUnified Solver reliably produces accurate solution of
the drift-diffusion problem for free carriers under different bias conditions (Fig. 4).

Fig. 4 Comparison of band diagram (left) and the IV curve calculated with 1D Unified Solver
(dashed lines) and SCAPS solar cell simulator (solid lines) for one of the test device structures
considered in this study
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Fig. 5 Atomic Cu profiles achieved with different annealing recipes. Black pentagrams represent
the control sample without any annealing. Solid lines represent the simulated Cu profiles

3.2 Verification of the Defect Reaction-Diffusion Model on
Experimental Data

3.2.1 Experiment on Cu Penetration

In order to verify the reaction-diffusion model of Cu penetration into CdTe, exper-
imental study of Cu migration in single crystal CdTe was done at First Solar Inc.
(Perrysburg, OH). In this experiment, a thin Cu-containing ZnTe layer was deposited
on sx-CdTe substrates provided by JX Nippon. After deposition, to drive Cu into
CdTe, anneals with different durations were performed at 250, 300 and 350 ◦C.

Measured Cu profiles show strong dependence on the annealing temperature and
duration: Cu penetrates deeper into CdTe as we increase the annealing time/duration
(Fig. 5). The high concentration of Cu appearing in the first 0.5 µm is the residual
Cu concentration from the ZnTe layer. Abnormally high concentration of Cu (>1018

cm−3) in the region (0.5<x<1m) obtained after very high annealing temperatures
(350 ◦C) or long annealing durations (20min at 300 ◦C), was ascribed to the broad-
ening of ZnTe or formation of ZnCdTe, caused by Zn diffusion [32] and will not be
further addressed here.

Another important finding in this experiment is a dip of Cu concentration at the
edge of CdTe adjacent to ZnTe, while the peak of the Cu concentration in the CdTe
layer is situated 1–2m beneath the interface. This is interpreted as a back diffusion
of Cu during the cool down process (SIMS measurements are performed at room
temperature after cooling down the sample).

3.2.2 Simulation

To model this experiment, we created a simulation domain with 15 µm of initially
undopedCdTe and 0.5µmof p-doped ZnTe:Cu layer. 1021 cm−3 initial concentration
of Cui was defined in ZnTe:Cu source layer and a constant 1017 cm−3 p-type doping
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was maintained in this layer during the entire simulation. A 0.45 eV difference in
standard formation energy of Cui in CdTe and ZnTe layers (more favorable in ZnTe)
was used to obtain the best correspondence of the Cu concentration difference across
the interface as achieved by different annealing recipes. This energy difference is in
a qualitative agreement with the results of first principles calculations. We used
Neumann boundary conditions for both ends of the simulation domain to maintain
the conservation of all defects. For carrier transport properties andmaterial properties
we used widely accepted values of polycrystalline CdTe [33]. Although better carrier
lifetime and material quality can be expected in sx-CdTe [34], there should be no
considerable impact on the resulting Cu profiles since no (or negligible) electric
current flows through the samples during the annealing process. To simulate this
experiment on Cu penetration, we included the primary exchange reaction (1) as
well as diffusion of Cui and Cdi into the reaction-diffusion model.

The original built-in electric field between highly p-type doped ZnTe and intrin-
sic CdTe layers prevents Cu+

i from moving into the CdTe region in large amount.
When a small amount of Cui is able to diffuse into CdTe, it quickly knocks Cd
atoms off generating an immobile Cu−

Cd acceptor and mobile Cd2+i donor (backward
reaction (1). Part of Cd2+i is drifted into ZnTe layer under the same built-in elec-
tric field across the interface and, as a result, p-type region starts to form in CdTe.
We note that since the charge is conserved in all reactions, achieving p-type doping
without Cd2+i moving out of CdTe is very difficult within this model. We found that
during the annealing process, the concentration of CuCd does not show a monotonic
increase, a saturation effect is observed instead.

The saturation behavior can be explained by analyzing the distribution of defect
concentrations and the band diagram during annealing (Fig. 5 left bottom). As Cu
forms acceptors in CdTe, an electric field is generated between the Cu occupied
p-type region and the intrinsic CdTe region without Cu, which again prevents further
movement of Cui into the intrinsic region of CdTe. Once the distribution of defects
gets close to the balance of all involved reactions, such as 0.5 < x < 6m region in
Fig. 6, less CuCd will be generated. Hence more Cui can travel through this saturated
region to occupy Cd sites in the newly formed p-i junction area (x > 6m in Fig. 6).

As we have mentioned before, the measured Cu profiles after cooldown show a
dip at CdTe/ZnTe interface. Here we analyze how such dip is formed according to
our model. As we cool down a sample to room temperature, Cui starts to diffuse back
into ZnTe due to the 0.45 eV difference in the standard formation energies of Cui
between CdTe and ZnTe, and reaction (1), which is out of equilibrium now begins to
produce more Cui by kick-out CuCd with available Cdi . After reaction (1) consumes
most of the Cdi , additional Cdi from ZnTe penetrates into CdTe and continues to
kick-out CuCd to reach the new equilibrium among involved reactions. Since only
the interface region can get supplemental Cdi , Cu reduction is more obvious near the
interface (Fig. 6 right). As temperature further decreases, both reaction and diffusion
rates become quite slow. However, this process is not be completely stopped right
after the cooling process. Experimental evidence of Cu movements in CdTe devices
stressed at 65 ◦C has been reported recently [35].
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Fig. 6 Left: Simulated profiles of major Cu-related defects and free carriers (top panel) and band
diagram in the ZnTe:Cu/sx-CdTe structure after 3min of annealing at 350 ◦C (bottom panel). Right:
Simulated profiles of major Cu-related defects in the sample after 3min annealing at 350 ◦C and
an extra 12min cooling process

Another important outcome of this simulation is the insight into the formation and
evolution of doping during the annealing and cooldown.At high temperature, a partial
compensation between Cu−

Cd and Cd2+i is achieved as the atomic Cu concentration
is around 2 × 1017 cm−3 while the hole concentration is one order of magnitude less
(see the line with diamonds (green in the online version) in Fig. 6 left, labeled as
“Free Holes”). In addition, partial ionization of the CuCd acceptors plays a role in
the compensation mechanism since the acceptor level of CuCd is not that shallow.
About 90% of CuCd acceptors in the saturated area are ionized at 350 ◦C according to
detailed results from our simulation. After cooldown, the free carrier concentration
drops below 3×1015 cm−3 level (Fig. 6 right) with only a smaller reduction in atomic
concentration of Cu at room temperature. More importantly, the new compensation
is mostly achieved between Cu−

Cd and Cu+
i . Therefore during cooling, the compen-

sation mechanism is changed in this case. The observed change is a complex process
determined by diffusion, drift, reactions, and temperature-dependent Fermi-Dirac
statistics both for free carriers and CuCd acceptors. Again, the resulting room tem-
perature hole density depends crucially not only on donor-acceptor compensation
but also on the possibility of the ionization of CuCd acceptors.

Simulated free carrier concentration in the saturation region after cooldown are
about an order of magnitude higher than the carrier concentration in poly-crystalline
Cu, Cl-treated CdTe solar cells from Colorado State University [35] (Fig. 7). This
difference stems from a number of factors: the difference in annealing temperatures
and Cu concentration in ZnTe source, not accounting for defect interactions in our
simulations, additional doping compensation by Cl and even the effect of grain
boundaries on the measured CV doping profiles in px-CdTe films. Therefore, even
though, our simulation provides a qualitative understanding of the formation and
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Fig. 7 Simulated and
experimental free carrier
concentrations versus atomic
Cu concentration at room
temperature. Green
pentagrams are measured
free carrier concentrations in
px-CdTe solar cells
fabricated by Colorado State
University

Table 1 Fitted diffusion parameters with calculated theoretically in work [25] (in parenthesis)

Defect D0 (cm2/s) ΔED (eV)

Cui (+) 4.9 × 10−3 (6.3 × 10−3) 0.72 (0.46)

Cui (2+) 3.0 × 10−4 (3.2 × 10−3) 0.72 (0.47)

compensation of doping in CdTe, it is expected that more targeted experiments and
simulations will be performed in the future to explain the peculiarities of doping
formation in px-CdTe.

Table1 shows the comparison of diffusion parameters used to obtain the best
correspondence with experimental curves (Fig. 5) and parameters calculated from
first principles. It is seen, that in our 1D simulation, the diffusion barrier height of
the major specie responsible for Cu penetration (Cu+

i ) is about 0.26 eV higher that
theoretically predicted one. We attribute this discrepancy to the fact that we did not
account for the interactions between the defects and the formation of complexes,
which may influence the overall diffusion kinetics. This effect is worth investigating
in the future studies.

We conclude that the Cu penetration mechanism implemented in the developed
reaction-diffusion model is capable to reproduce the experimental dependence of
the Cu profile on the annealing conditions, to reproduce some specific features of
experimental atomic Cu profiles (dip at the CdTe/ZnTe interface), as well as to
provide a theoretical insight into the process of formation and compensation of Cu
doping in CdTe layer.
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4 Modeling of Light Soaking Effect in CdTe Solar Cells

Nearly all PV technologies exhibit changes in device performance under extended
illumination, or “light soaking”, although the magnitude and the trend of these
changes are not always the same among different technologies. Experiments on
both commercial modules and research cells based on CdTe technology have shown
improvement of cell performance under light stress conditions for up to 20 h [36].
Many accredited such phenomena to the passivation of traps and migration of Cu
ions, however no simulations were previously done to confirm any of these mecha-
nisms. We use the developed 1D Solver to simulate self-consistently the effects of
illumination, bias and temperature on the evolution of defect profiles during stress
and the resulting performance changes of the device.

In this simulation, we employ a simplified dopant compensation model. Namely,
1016 cm−3 Cu−

Cd , 0.4 × 1016 cm−3 Cu+
i and 0.5 × 1016 cm−3 background donor is

assumed as the initial defect distribution in this simulation, resulting in ∼1015 cm−3

equilibrium hole concentration in the quasi-neutral region of CdTe absorber layer
(typical doping in px-CdTe absorber). We use a standard ZnTe/CdTe/CdS device
structure with common electronic properties.

The light stress is typically performed after the dark storage of solar devices.
Therefore, in order to prepare the initial system for light soaking simulations, first,
we simulate the equilibrium of the defects in CdTe cells under dark without any
bias at 65 ◦C (Fig. 8 (left)). In equilibrium, most of the Cu+

i is pushed away from
the depletion region, due to the built-in potential of the p-n diode. As a result, more
uncompensated acceptors appear in the junction area. CuCd acceptor is partially
ionized in the quasi-neutral region, while it is completely ionized in the depletion
region due to low density of holes in that area.

Under light stress condition under applied forwards bias of 0.8V (maximum
power point), the defect equilibrium changes in the following way: (1) Cu+

i moves
closer to the main junction due to the forward bias, reducing the uncompensated
acceptor doping density in the depletion region, (2) part of ionized defects (Cu+

i
and Cu−

Cd ) are converted into the neutral state after capture of light-generated free
carriers, (3) the zero-bias depletion region width increases because of the reduced p-
doping in the junction area (Fig. 8 (right)), (4) carrier collection efficiency improves,
thus increasing the performance.

In order to isolate the effect of ionization degree change due to excess carriers
capture on Cu+

i and Cu−
Cd defects and the effect defect drift under the applied voltage

bias, we simulate different stress conditions with different combinations of illumi-
nation and forward bias (Table 2). Figure9 shows the efficiency changes of the solar
cells as a function of soaking time with different modes. The results of our simu-
lations suggest that both Cu+

i migration towards the junction area and the injection
of excess holes in the depletion region can cause the enhancement of device per-
formance. Simulations with defect migration resulted in the strongest performance
enhancement effect. Moreover, the effect of defect migration in the dark and with
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Fig. 8 Simulated concentrations of defects and free carriers and device energy bands in the dark
(left) and under light soak conditions (right) at 65 ◦C

Table 2 List of stress conditions

Soak Illumination Voltage bias (V) Mechanism

A 1 Sun 0.8 Both

B 1 Sun 0.8 Passivation

C Dark 0.8 Migration

D Dark 0.8 None

E 1 Sun 0.8 No migration

G 1 Sun 0.8 10−12 cm2/s

G 1 Sun 0.8 10−13 cm2/s

applied forward bias is almost the same as the overall effect of applied light and
forward bias.

The kinetics of the performance increase upon such dark to light switching
depends on the diffusivity of mobile species involved in the transformation. Using
high Cu+

i diffusion coefficient (9 × 10−10 cm2/s at 65 ◦C) calculated from the first-
principles [25], only 0.03 h of light stress is enough for device to reach a new
steady-state (see Soak A of Fig. 9). Experimentally observed performance transients
often happen on multi-hour timescale [37, 38]. By decreasing the diffusion coeffi-
cient of Cu+

i down to 10−13 cm2/s, we were able to obtain better agreement with the
experimentally observed 10 h long device performance stabilization. This indicates
that while our model correctly captures the response of the system to the external
stress, the actual kinetic mechanisms behind the redistribution of species may be
more complex than simple diffusion of Cu+

i . This result provides the evidence that
more complicated diffusion mechanisms beyond simple diffusion of Cu+

i may be
involved in the defects redistribution in CdTe. For example, the formation of pair
complex defects can influence the diffusivities of species by slowing down the fast
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Fig. 9 Device performance
changes as a function of
soaking time with various
conditions

diffusion of interstitials as well as introducing additional mechanisms of diffusion of
weakly mobile substitutional defects [20].We expect that inclusion of such advanced
mechanisms into reaction-diffusion simulations will allow to reproduce, understand
and even predict the kinetics of transient performance changes of the real devices.

5 Conclusions

In summary, we have implemented (in MATLAB) self-consistent 2D numerical
solvers for simulating defects reactions and migration in CdTe material. We have
verified the 2D solver using the widely used code for solar cell simulation (SCAPS)
as well as the experimental data on Cu penetration into CdTe. By doing so, we have
shown that the Cu penetrationmechanism based on the Cu-Cd exchange reaction and
implemented in 2D reaction-diffusion solver is able to reproduce the experimental
dependence of Cu profiles in CdTe on the annealing temperature and time. Using
the developed 2D reaction-diffusion solver, we have revealed the new mechanism
of a transient response of CdTe-based solar cell to the applied light-bias conditions.
According to our simulations, the experimentally observed performance enhance-
ment under illumination and/or applied forward bias may be, at least partially, caused
by themigration of defects changing the distribution of doping profile in the absorber.
Based on simulation results, we discuss the possible explanations for limited incor-
poration and compensation mechanisms of Cu dopants inside CdTe bulk as well as
the possible defect migration mechanisms beyond the simple diffusion of intersti-
tials. We expect that the discrepancies between simulations and experiments will
be reduced by inclusion more detailed defect chemistry models with all important
defects and interactions between them and making use of more complicated 2D
simulation framework that includes the effects of grain boundaries.
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