
Chapter 4
Topology by Design in Magnetic
Nano-materials: Artificial Spin Ice

Cristiano Nisoli

Abstract Artificial Spin Ices are two dimensional arrays of magnetic, interacting
nano-structureswhose geometry can be chosen atwill, andwhose elementary degrees
of freedom can be characterized directly. They were introduced at first to study
frustration in a controllable setting, to mimic the behavior of spin ice rare earth
pyrochlores, but at more useful temperature and field ranges and with direct char-
acterization, and to provide practical implementation to celebrated, exactly solvable
models of statisticalmechanics previously devised to gain an understanding of degen-
erate ensembles with residual entropy. With the evolution of nano–fabrication and
of experimental protocols it is now possible to characterize the material in real-time,
real-space, and to realize virtually any geometry, for direct control over the collec-
tive dynamics. This has recently opened a path toward the deliberate design of novel,
exotic states, not found in natural materials, and often characterized by topological
properties. Without any pretense of exhaustiveness, we will provide an introduction
to the material, the early works, and then, by reporting on more recent results, we
will proceed to describe the new direction, which includes the design of desired
topological states and their implications to kinetics.

4.1 Introduction

From quasi-particles, fractionalization, pattern formation, to the nano-machinery of
life in DNA replication and transcription, or to the coherent behavior of a flock, an
ant colony, or a human group, emergent phenomena are generated by the collec-
tive dynamics of surprisingly simple interacting building blocks. Indeed, much of
the more recent research in condensed matter pertains to the modeling of unusual
emergent behaviors, typically from correlated building blocks in natural materials,
either at the quantum or classical level [1]. A few years ago [2] we proposed a differ-
ent approach: design, rather than simply deduce, collective behaviors, through the
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Fig. 4.1 Artificial spin ice in its most common geometries. Left: Atomic force microscopy image
of square ice showing its structure (figures from [2]). Center: a magnetic force microscopy image
of square ice, showing the orientation of the islands’ magnetic moments (north poles in black, south
poles in white); Type-I (pink) Type-II (blue) and Type-III (green) vertices are highlighted (see the
text and Fig. 4.7 for a definition). Right: schematics of honeycomb spin ice

interaction of simple, artificial building blocks whose interaction could lead to exotic
states not seen in natural materials.

Arrays of elongated, mutually interacting, single-domain, magnetic nano-islands
arranged along a variety of different geometries, (Fig. 4.1) were ideal candidates.
The magnetic state of each island could be described by a classical Ising spin, and
advances in lithography allowed their nano-fabrication in virtually any geometry. The
advantage of such approach is twofold: (1) the low energy dynamics, which under-
lies possible exotic states, is dictated by geometry, which here is open to design;
(2) characterization methods—Magnetic Force Microscopy (MFM), PhotoElectron
Emission Microscopy (PEEM), Transmission Electron Microscopy (TEM), Surface
Magneto-Optic Kerr Effect (MOKE), Lorentz Microscopy—allow direct visualiza-
tion of the magnetic degrees of freedom for unprecedented validation. Nano-scale
is an good choice: the size of the building blocks, which are shape-anisotropic,
elongated nano-islands (typically, NiFe alloys 200 × 80 × 5 − 30nm3 patterned by
nano-lithography on a non-magnetic Si substrate), has to be inferior to the typical
magnetic domain, to provide single domains with magnetization directed along the
principal axis, that can be interpreted as switchable spins.

These Artificial Spin Ices (ASI) were employed at first to study frustration in a
controllable setting, to mimic the behavior of spin ice rare earth pyrochlores, but
at more useful temperature and field ranges and with direct characterization, and to
provide practical implementation to celebrated, exactly solvable models of statisti-
cal mechanics previously devised to gain an understanding of degenerate ensembles.
Soon, a growing number of groups has extended the use of ASI [3], to investi-
gate topological defects and dynamics of magnetic charges and spin fragmenta-
tion [4–12], information encoding [13, 14], in and out of equilibrium thermody-
namics [15–24], avalanches [25, 26], direct realizations of the Ising system [27–29],
magnetoresistance and the Hall effect [30, 31], critical slowing down [32], dislo-
cations [33], spin wave excitations [34], and memory effects [35, 36]. Meanwhile
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similar strategies [37–42] have found realization in trapped colloids [43–45], vortices
in nano-patterned superconductors [46, 47] and even at the macroscale [48]. With
the evolution of nano-fabrication and of experimental protocols it is now possible to
characterize the material in real-time, real-space [49–53], and to realize virtually any
geometry, for direct control over the collective dynamics. This has recently opened a
path toward the deliberate design of novel, exotic states [54–58] not found in natural
materials [59, 60].

Frustration is a fundamental ingredient in design: it controls the interplay of
length and energy scales, dictating the emergent dynamical properties that lie at
the boundaries between order and disorder, and leading to a lively, quasi-disordered
ensemble called ice manifold, to be exploited in the design of exotic behaviors.

Correlated spin systems have of course a long history in Physics. In classical sta-
tistical mechanics, the Ising model [61] paved the way to our understanding of long-
range order from symmetry breaking as a second order phase transition, universality
classes and scaling [62], and finally the renormalization group [63] with implications
reaching well beyond condensed mater systems [64]. However, frustrated spin sys-
tems often do not order, generally resulting in quasi-disordered manifolds governed
by some geometric or topological rule. Often their collective dynamics lends itself
to emergent descriptions that are only partially reminiscent of the constitutive spin
structure. The situation is somehow similar to everyday life, where frustration results
from a set of constraints that cannot be all satisfied at the same time, leading to a
manifold of compromises among which the choice is most often equivalent and can
be influenced by a small bias. Thus, obstructed optimization provides high suscep-
tibility that can generate the complex social dynamics we witness everyday. These
analogies between social settings and frustrated materials are not merely philosophi-
cal: ideas borrowed from the frustrated spin ice physics have been exploited in social
networks to describe wealth allocation [65].

Much as in life, frustration is understood in Physics as a set of constraints that
cannot be all satisfied. Typically the constraint is the optimization of an energy,
usually the pairwise interaction between elementary degrees of freedom. This too
leads to a degenerate manifold which preserves non-zero entropy density at low
temperatures, in apparent violation of the third law of thermodynamics.

Wewill see how frustration is exploited in the design of artificial spin ices. Initially,
the aim was pure exploratory science, with the goal to understand frustration and
disorder in a controllable environment that could be characterized directly. These
materials could mimic the frustrated ice rule that defines the exotic manifold of rare
earth pyrochlores (see below), yet at room temperature rather than at the Kelvin
scale. They could also provide the first realization of the celebrated exactly solvable
models of statistical mechanics, such as the antiferromagnetic Ising system on a
triangular lattice described above, or the various vertex models introduced and/or
solved by Lieb, Wu and Baxter between the late 60s and early 80s [66–69]. As both
experimental protocols and theoretical understanding evolved, however, it became
clear how the material could open new paths in a material-by-design effort: instead
of finding, more or less serendipitously, natural materials of interesting or novel
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behavior, one could think about a bottom-up approach, where a suitable design could
produce desired exotic properties.

In this chapter we will start with a brief description of fundamental concepts
and then earlier realizations, fleshing out the basics pertaining to their experimental
protocols, nano-fabrication, and characterization (for details we refer to references
or to the following reviews [3, 70, 71]). Geometric frustration should really be called
topological, as it is essentially a topological property, yet it is based on interaction,
which is instead geometric, and generally not topologically invariant: we will discuss
the two issues in parallel, and see how new approaches and new designs, based on a
different level of frustration, so called vertex-frustration, can indeed allow access to
bona fide topological states.

4.2 Frustration, Topology, Ice, and Spin Ice

The concept of geometric frustration in its broader mathematical form involves a
geometric system, a manifold of degrees of freedom and a set of prescriptions on
how they should arrange with respect to each other. The system is frustrated if there
are loops along which not all these prescriptions can be satisfied (Fig. 4.1). Clearly
the concept is very general and extends beyond Physics. One recognizes topology
immediately in the nature of such definition: any homotopy, that is any continuous
transformation that does not tear those loops, will lead to a system of the same
frustration.

In Physics, in general (a) these “prescriptions” correspond to the optimization of
a certain energy, and (b) that energy is usually a pairwise interaction between binary
degrees of freedom.

An early example is the famous antiferromagnetic Ising model on a triangular
lattice [72], a system of binary spins interacting antiferromagnetically on a trian-
gular lattice (Fig. 4.2). There the interaction among nearest neighbor spins cannot
be satisfied simultaneously on a triangular plaquette, leading to a disordered man-
ifold. The disorder is, however, non-trivial, and its entropy per spin is not merely
s = kB ln(2) � 0.6931kB , because rules apply, due to frustration: of all the energy
links, only one per plaquette is frustrated, and it relieves the frustration on adjacent
plaquettes. Indeed its entropy per spin at T = 0 is s � 0.3383kB , different from zero,
in violation of the third law of thermodynamics, and about half of the entropy of a
completely random configuration.

However, as most realistic interactions in Physics are geometric (for instance, the
dipolar interaction betweenmagnets is anisotropic) they immediately break the topo-
logical structure of frustration in a real system.We will discuss later how renouncing
the point (b) opens the way to great freedom of design in artificial spin ices.

Perhaps the first famous occurrence of frustration in the history of Physics per-
tained to water ice. In the 1930s Giaque and Ashley [73, 74] performed a series of
carefully conducted calorimetric experiments, deduced the entropy of water ice at
very low temperature, and found that it was not zero. The answer to this mystery



4 Topology by Design in Magnetic Nano-materials: Artificial Spin Ice 89

Fig. 4.2 Geometric frustration can be understood schematically as a set of prescriptions that cannot
be satisfied simultaneously around certain loops. The red link on the figure on the left represents
an “unhappy link” in a generally frustrated system. More specifically, for an Ising antiferromagnet
(right) the loop in question is a loop of interactions among nearest neighbors. On a triangular lattice,
triangular loops are frustrated, as one of the three links (red) must be unhappy

would be provided by Linus Pauling a few years later [75]. Ice comes in many crys-
talline forms, but all imply oxygen atoms residing at the center of tetrahedra, sharing
four hydrogen atomswith four nearest neighbor oxygen atoms (Fig. 4.3). Two of such
hydrogens will be covalently bond, and two will realize an hydrogen bond: two are
“in”, two are “out” of the tetrahedron. This is the so called ice-rule previously intro-
duced by Bernal and Fowler [76]. Each tetrahedron has 6 admissible configurations
out of the 24 = 16 ideally possible, and the collective degeneracygrows exponentially
in the number of tetrahedra N as WN , leading to a non-zero entropy per tetrahedron
s = kB lnW for this disordered manifold. In what can be considered as one of the
most precise and felicitous back-of-the envelope estimate in the history of statistical
mechanics, Pauling counted such degeneracy asW = 3/2, remarkably close to both
the experimental value and to the numerical value (W = 1.50685 ± 0.00015 [77]).

These works pointed to the reality of exotic disordered states in the most common
and vital substance on earth. Decades later, they also motivated the introduction by
Lieb, Wu, and Rys of simplified models of mathematical physics, known as vertex
models, which could in many cases be solved exactly [66–68, 79, 80]. Those are two
dimensional models of in-plane spins impinging on vertices, where different energies
are associated to different vertex-configurations, and whose statistical mechanics is
usually solved via transfer matrix methods.

Ice-like systems have then received renewed interest in the 1990s, when unusual
behaviors were discovered in the low temperature regime of rare earth titanates
such as Ho2Ti2O7 whose magnetic moments exhibit a net ferromagnetic interaction
between nearest neighbor spins, yet no ordering at low temperature, suggesting strong
frustration. Similar to protons in water ice, the magnetic moments of these materials
reside on a lattice of corner-sharing tetrahedra, and they are constrained to point either
directly toward or away from the center of a tetrahedron (Fig. 4.3). The resulting
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Fig. 4.3 The ice rule. Left: In water ice oxygen atoms sit at the center of tetrahedra, connected to
each other by a hydrogen atom. Two of such protons are close (covalently bonded) to the oxygen
at the center, two are further away, close to two of the four neighboring oxygens. Right: One might
replace this picture with spins pointing in or out depending on whether the proton is close or far
away. Then two spins point in, two point out. This corresponds to the disposition of magnetic
moments on pyrochlore spin ices, rare earth titanates whose magnetic ensemble does not order at
low temperature, because of frustration, and,much likewater ice, provides non-zero low temperature
entropy density. (Figures from [78])

ferromagnetic interaction favors a 2-in/2out ice-rule. The similarity noted by Harris
et al. [81] was confirmed experimentally by Ramirez et al. [82].

Besides providing important model systems with novel field-induced phase tran-
sitions and unusual forms of glassiness, and an early and practical example of a
classical topological state, spin ices harbor a new fractionalization phenomenon in
their low energy dynamics: emergent magnetic monopoles [78, 83]. To facilitate
understanding consider the two-dimensional schematics of Fig. 4.4, which represent
a disordered ice manifold, an ensemble of spins where all the vertices obey the ice
rule. The reader will notice that it is impossible to explore the manifold by single
spin flips, without breaking the ice-rule. Only by flipping proper loops of spins we
can obtain a new configuration within the ice-manifold. This is already a hint of the
topological nature of the state.

If we flip one spin only, we create two defects (3-in/1-out and vice versa). We
can separate those defects by further flips, and we have two deconfined magnetic
monopoles, and one can prove through multipole expansion that their interaction is
Coulomb [78]. Of course these monopoles are in effect simply the opposite ends
of a long, floppy dipole, in red in figure, called the Dirac string; however, owing to
the disorder of the manifold, the system is no longer reminiscent of the Dirac string
connecting the monopoles. Thus, excitations over the ice manifold can be described
by a fractionalization of the spins into individual, separable magnetic charges which
interact via a Coulomb law.

In view of themore complex geometries that wewill discuss later, let us generalize
the notion of ice manifold and ice rule for a general lattice, or graph, or network [65],
whose edges are spins impinging in vertices of various coordination z. Then we say
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Fig. 4.4 The ice manifold (top left), an ensemble of spins obeying the ice rule (in each vertex two
arrows point in, two out). One can obtain another realization of the ensemble only by flipping a
proper loop of spins. Flipping a single spin creates a couple of magnetic monopoles of opposite
charge (positive is red, negative is blue). The monopoles can be separated by further spin flips
(creating a “Dirac string”, shown in red), interact via Coulomb interaction, but are topologically
protected, as they can only be created and annihilated in pairs

that a vertex of coordination z with n spins pointing toward it has topological charge
q = 2n − z, corresponding to the difference between spins pointing in and out. In
general, we call spin ice systems those in which |q| is minimized locally at each
vertex (typically, but not necessarily, by nearest neighbor spin-spin interaction). For
a lattice of even coordination, such as the square ice or pyrochlore ice introduced
before, the ice manifold is characterized by zero charge on each vertex. However,
for lattices of odd coordination there cannot be any charge cancellation, and thus in
the ice manifold each vertex will have charge q = ±1 in equal fraction, as the total
charge of a system of dipoles must always be zero. That is the case of Kagome ice,
which we will discuss in the next section.

These magnetic charges are topologically protected monopoles in square or
pyrochlore ice: their magnetic charge is indeed also a topological charge and one can
see from Fig. 4.3 that charges can only be created and annihilated in opposite pairs.
One could indeed create a single monopole in an open system but that would simply
imply pushing the second one at the boundaries. If we, however, placed the ensemble
of Fig. 4.3 on a torus, thus without boundaries, then clearly there would not be a net
monopole charge in the bulk. Even in an open system, the total net charge will be
proportional to the flux of the magnetic moment through the boundaries, and as the
latter is bound by the net magnetization of the spins, one finds that the density of net
charge must scale with the reciprocal length of the system. These two-dimensional
considerations extend to the three-dimensional spin ice.
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In more theoretical terms, the topological state of spin ice is an example of a
so called Coulomb phase [84], a phase described not by an order parameter or a
symmetry breaking, such as the ordered phases that fall within the Landau paradigm,
but rather by a solenoidal emergent field (the coarse grained magnetization �M). One
can say that the ice rule and its charge cancellation corresponds to a divergence-free
condition �∇ · �M = 0 on each vertex. Then, amonopole in �x0 is a source of divergence�∇ · �M = qmδ(�x − �x0) of charge qm = Qq where Q = M/L (the magnetic moment
M of the spin divided by its length L), and q is the topological charge of the vertex
defined above. This is considered as an example of classical topological order [85].

Indeed, while quantum topological order has provided a valuable framework to
conceptualize disordered states of spin liquids that escape a Landau symmetry break-
ing paradigm and cannot be obviously characterized by local correlations [86, 87],
the importance of topological states had been recognized even earlier in classical
physics [88]: in the theory of dislocations [89], liquid crystals [90], or topological
transitions [91]. Recently, whether in direct analogy with quantum physics [92], in
purely abstract terms [93, 94], or motivated by real systems such as pyrochlore spin
ices [84, 85, 95], a consistent notion of classical topological order in discrete systems
has been proposed, to conceptualize (i) a degenerate, locally disordered manifold
(ii) described by a topologically non-trivial, emergent field (iii) whose topological
defects (in spin ice, magnetic monopoles [78, 83]) coincide with excitations above
the manifold.

Topological protection implies that states within the manifold can be linked only
via collective changes of entire loops of a discrete degree of freedom. Thus any real-
istic low-energy dynamics happens necessarily above the manifold, through creation,
motion, and annihilation of pairs of protected topological excitations. Typically, their
constrained and discrete kinetics leads to ergodicity breaking, fractionalization and
thus various forms of glassy behaviors [93, 96]. We will see later that such order can
also be found in novel, non-trivial geometries of artificial spin ice characterized by
vertex-frustration, such as Shakti spin ice.

4.3 Simple Artificial Spin Ices

After introducing the main concepts, we warm up to the field of artificial spin ice by
summarizing briefly the early work on classical geometries, based on the square and
honeycomb lattices. Further, more general details about fabrication and characteri-
zation will be discussed in the context of these early realizations.

4.3.1 Kagome Spin Ice

Even before artificial spin ice realizations [16, 97, 98] (Fig. 4.5) honeycomb struc-
tures havebeen extensively studied theoretically as theydescribe the two-dimensional
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Fig. 4.5 Top, from left to right: Schematics and MFM image of the hexagonal arrays with the 8
vertices of the honeycomb/Kagome artificial spin ice. White arrows show the vertex Ice I state, and
the percentages indicate the vertex multiplicity. Type-I vertices have lower energy than Type-II and
correspond to the generalized ice rule. Temperature dependence (top right) of the specific heat c
and entropy per spin s of the Kagome spin ice obtained by [55]. The dashed lines show values of
entropy per spin s = 0.693 (Ising paramagnet), 0.501 (Ice I), and 0.108 (charge-ordered spin ice,
or Ice II). Bottom: the four phases of Kagome ice ordered by increasing temperature. Figures are
adapted from [16, 32, 55]

behavior of the three dimensional spin ice pyrochlores under a magnetic field aligned
along a particular crystalline axis. A honeycomb ice is often called the Kagome spin
ice, as the spins reside on the edges of a honeycomb lattice, which is aKagome lattice,
the honeycomb dual lattice. In the context of artificial spin ice, Kagome represented
the only simple geometry with a degenerate ice manifold. Indeed, as we will see in
the next section, square ice has a frustrated yet perfectly ordered, antiferromagnetic
ground state.

Before proceeding with Kagome ice, some more general details on artificial spin
ice materials are in order, starting with the energetics involved. In general, mag-
netic, elongated nano-islands can be described as nano-spins, binary degrees of
freedom describing their magnetization along their principal axis. This is, however,
already an approximation of the magnetic texture of the nano-structure: indeed both
direct characterization and micromagnetic simulations show potentially significant
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relaxation of the magnetization field at the tips of the islands, due to the local field
of the surrounding islands.

A further approximation, which seems to work surprisingly well, implies describ-
ing the inter-island interaction via a vertex model. There we assign energies to the
various vertex configurations as in Fig. 4.5. The nano-islands beingmagnetic dipoles,
one expects this approach to eventually break down. It does indeed in enticing ways,
revealing inner, low entropy phases within the ice manifold.

The equilibrium phases of the system have been investigated numerically [99,
100] viaMetropolisMonte-Carlo simulations with full dipolar interaction. Figure4.5
shows that at high temperature the system is paramagnetic.As temperature is reduced,
we cross over toward a disordered ice-manifold, called Ice I, where each vertex has
charge ±1. This is as much as a vertex model approximation would explain, as the
ice-rule minimizes the energy of the vertices.

However, at lower temperature, we see a transition toward charge ordering: the
disordered plasma of magnetic charges residing on the vertices orders within an ionic
crystal. The transition is of the Ising class and is due to the Coulomb interaction
among magnetic charges. It can be replicated within a vertex-model approximation
only by adding further interaction via Coulomb coupling between the charges of
the vertices. Note that such state, called Ice II, while being charge ordered, is still
disordered in the spin structure, as there are an exponentially growing (in the number
of spins) number of possible spin configurations that correspond to the charge ordered
state. Finally, further lowering the temperature, another transition leads to an ordered
state, where order is brought in by the long range effects of the dipolar interaction.

These states were variously investigated experimentally. Ice I proved easy to
reach. Indeed, even non-thermal methods were able to reach it [16, 97, 98]. Those
methods pertains to thicker islands that are thus not superparamagnetic at room
temperature (that is, do not flip theirmagnetization under thermal fluctuations). These
islands are therefore coercive enough that MFM would provide a non-destructive
characterization at room temperature. The AC demagnetization [17] of such samples
is sufficient to reach the ice manifold, a fact which already points to its lack of
topological protection.

The facility with which such state could be reached is telling. Indeed, while mag-
netic charges are topologically protected in pyrochlore ices [85], as we saw above,
they are not bona fide topological numbers in the ice manifold of Kagome ice. There,
vertices of odd coordination can gain and lose charge freely from the surrounding,
disordered, and overall neutral plasma of magnetic charges. Consequently, the ice-
manifold can be explored from within by consecutive single-spin flips, without any
need for collective loop-moves such as those shown in Fig. 4.4.

Instead, the charge-ordered state, or Ice II, cannot be explored by individual spin
flips. A glimpse of the Ice II phase shown in Fig. 4.5 should convince that any spin
flip within the manifold will lead out of the manifold, as it will locally destroy the
charge order.

Signatures of the Ice II state were first suspected after AC demagnetization [11].
They were subsequently investigated via thermal methods capable of providing a
bona fide thermal spin ensemble [101, 102]. These are of three kinds: annealing at
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Fig. 4.6 Magnetic charge ordering in Kagome ice. a–e Charge domain maps obtained via Lorenz
TEM relative to the annealing of Fe-Pd alloy artificial Kagome ices of different edge length (from
500 to 300nm) show increasing size of the ionic crystallites of charges as the lattice constant
decreases, and thus the mutual interaction among magnetic charges increases. C is the charge-
charge correlation parameter (C = 1 for a fully charge-ordered state). Images adapted from [101].
f Charge map obtained via MFM after annealing of permalloy Kagome ice of lattice constant
260nm showing incipient domains of charge-ordering and g its static structure factor showing
incipient peaks corresponding to crystalline order. h Static structure factor for lattice constant
490nm, showing no incipient peaks

higher than room temperature followed by characterization at room temperature [52,
101, 102]; thermalizationwith real-time, real-space characterization [51, 53, 57]; and
thermalization without real-space characterization [32, 49]. In the first, the material
is not superparamagnetic at room temperature, but it is heated slightly above the
Curie temperature of the nano-islands (which can vary, depending on the size and
chemical composition of the nano-structure, from about 600 ◦C for permalloy down
to about 100 ◦C for Fe-Pd alloys) and then annealed down into a frozen state, usually
characterized via MFM. In the second method the nano-islands are chosen to be thin
enough (usually thickness of 2–3nm) to be superparamagnetic at room temperature
or below, and thus need to be characterized via PEEM, at a proper beam source. In
the third, various averaged quantities are extracted, such as the average flip rate of
spins, through muon spectroscopy [32]—while spin noise spectroscopy [103, 104]
should also be a viable method.

Figure4.6 shows the results of thermal annealing on artificial hexagonal ice made
of permalloy [102], which demonstrate formation of crystallites of magnetic charges,
due to the Coulomb interaction between the charges themselves. Control over the size
of those ionic crystallites has also been obtained by employing an alloy of iron and
palladium, rather than permalloy, which has a much lower Curie temperature [101].
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However, nobody has yet reported any direct evidence of complete long range charge
order in such a material, nor of the zero entropy phase of spin order (Fig. 4.5).

Indirect indications that such low entropy phases within the Kagome ice
manifold—or at least some kind of phases—can be reached were obtained via muon
spectroscopy studies, involving islands that were too small and therefore too active
to be imaged directly, but whose rate of magnetic flipping could be deduced from the
relaxation time of muons implanted on a gold cap over the two-dimensional array.
There, the critical slowing down of the spins was measured and found to correspond
to that of the numerically predicted transitions, where parameters for the numeri-
cal simulations were taken from the material [32]. These results, the first to probe
deep inside the ice manifold of Kagome lattice, represent a strong corroboration
of the existence of a complex phase diagram, most likely the theoretical predicted
one. However, we should not forget that topological or ordered states can be hard to
reach via spin dynamics of the Glauber kind [105], and that indeed the actual spin
dynamics might be rather more complex than a Glauber model. Indeed these “spins”
are nanoscopic objects with their own magnetic reversal dynamics. Such specificity
might bias certain kinetic pathways, leading to non-equilibration or ergodicity break-
ing even in Ising models that are not susceptible to these phenomena: thus the phases
whose critical slowing down was experimentally revealed could be only reminiscent
of the one predicted at equilibrium, which of course adds to their potential interest.

4.3.2 Square Ice

With the exception of the work of Tanaka et al. [97], early works concentrated on the
square geometry (Fig. 4.1) [2, 15, 16]. Square ice also represented the benchmark
on which to test demagnetization and annealing methods which lead to experimental
protocols for thermal ensembles [20, 49, 52].

It is important to understand that square artificial spin ice does not resemble the
square ice of Lieb [66], or the degenerate square ice described in Fig. 4.4, firstly
because it admits topological defects in the form of magnetic monopoles absent in
the six-vertex model, but most importantly because it is not degenerate. In this sense
it shares similarities with the Rys F-model [80] but those should not be overstated,
as the (physically unnatural) absence of monopoles in the latter leads to an infinitely
continuous transition to antiferromagnetic ordering [67], whereas in the former the
transition is of second order.

Figure4.7 shows the energetic hierarchy of vertices with 90◦ angles (including
those of coordination z = 3, 2 to be discussed later). Because of the anisotropy of
the dipolar interaction, nearest neighbor perpendicular islands interact more strongly
than collinear ones, leading to lifting of degeneracy within the ice manifold. The
system, if modeled at the vertex level, can be described as a J1, J2 antiferromagnetic
Isingmodel on a square lattice, with a transition to antiferromagnetic ordering, which
indeed has been obtained experimentally via thermal annealing, as shown in Fig. 4.7.
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Fig. 4.7 Top:Vertex-configurations for 90◦ angles of coordination z = 4, 3, 2 (degeneracy in brack-
ets) listed in order of increasing energy. Middle: MFM images of thermally annealed square ice at
different lattice constants showing an ordered domain crossed by a Dirac string (for the specimen at
320nm) and a multi-domain ensemble separated by domain walls of monopoles and diract strings
(at 400 and 440nm); note also the frozen in monopole pairs (figures adapted from [102]). Bottom:
the lowest energy state of square ice as an antiferromagnetic tiling of Type-I4 vertices; creating and
separating a monopole pair entails a Dirac string (red) of Type-II4 vertices, that are energetically
more costly than the Type-I4, leading to the linear confinement of the pair
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Within the ordered state of square ice potentially interesting transitions have been
proposed [106–108]: when the system is not degenerate, creating and separating a
couple of monopoles requires energy proportional to the number of Type-II in the
Dirac string (see Fig. 4.7). Much like quarks or Nambu monopoles [109] these pairs
are linearly confined, and the tensile strength of their Dirac string drives the ordering
as the temperature is reduced. However, one can imagine that a topological transition
corresponding to monopole deconfinement might take place under proper conditions
when the energy of the Dirac string is offset by its fluctuating entropy.

Square ice, however, can be made properly degenerate, which means described
by a spin ensemble such as the one of Fig. 4.4, revealing an emergent topological
Coulomb phase. One way is to raise the vertical islands with respect to the horizontal
ones [99], a method that has recently been pursued experimentally [110] demonstrat-
ing a degeneratemanifoldwhose static structure factor coincideswith the numerically
computed one for a six-vertex model, thus providing the first artificial realization of
a two dimensional Coulomb phase. We have also proposed to iterate such design
on the axis perpendicular to the array, and we have designed layered structures that
are geometrically different but topologically equivalent to three dimensional spin ice
pyrochlores [111]. Those have not found realization yet. The only three dimensional
realization of artificial spin ice was obtained by filling the voids of an artificial opal
film with Cobalt [112, 113], a promising approach to bring to room temperature
some of the features of spin ice pyrochlores. Of course, as always with three dimen-
sional realizations, the challenge there lies not only in nano-fabrication, but also in
characterization, as real-space methods are generally surface methods.

Finally, another way to produce a Coulomb phase in square ice has been presented
recently, and involves “rectangular ice” where vertical and horizontal islands differ
in length, and degeneracy is obtained for a proper critical value of their ratio [107,
114].

4.4 Exotic States Through Vertex-Frustration

Until 2014, the only degenerate artificial spin ice was Kagome. As both nano-
fabrication and characterization protocols evolved, it became clear that the initial
inspiration of the entire project—to design exotic behaviors in the geometry of inter-
acting, binary degrees of freedom—could become viable, if not for one problem: in
real systems, the frustration of the pairwise interaction is wedded to the geometry.
What this means is explained in Fig. 4.8 where brickwork spin ice and Kagome spin
ice are shown to lead to completely different ground states, one disordered, the other
ordered, despite the two geometries being topologically equivalent. Indeed, the dipo-
lar interaction is not topologically invariant, but instead depends very much on the
mutual arrangements of the dipoles.

To overcome this limitation and gain freedom in the design of new materials
capable of various states and unusual behaviors, the first step is to decouple frustration
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Fig. 4.8 Geometry versus topology. Topologically equivalent geometries leads to completely dif-
ferent spin ensembles, due to the anisotropy of the dipolar interaction. The honeycomb spin ice
(top right) is topologically equivalent to the ladder spin ice (middle, right) yet the nearest neighbor
interactions lead to an ordered ground state in the latter (see also Fig. 4.7 for the energetic hierar-
chy of the vertices) and a disordered manifold in the former. Pairwise interactions are frustrated
in both systems, however in the honeycomb lattice all the spins interacting in the vertex have the
same mutual angle (top left) and thus any of the three interactions can be frustrated, whereas it
is energetically favorable to frustrate the interaction between parallel spins in the ladder lattice
(middle left). At the bottom is an example of vertex-frustration, where the allocation of vertices of
lowest energy is frustrated, leading to “unhappy vertices” (blue circles) on certain loops, instead of
unhappy energy links (red lines above)

from geometry. As the pairwise interaction is anisotropic, something else will have
to be frustrated. A possibility is the vertex itself.

Consider a geometry made of 90◦ vertices of coordination z = 4, 3, 2 (Fig. 4.7).
Each vertex has a unique configuration of minimal energy (up to a flip of all the
spins). Imagine now arranging them in such a way that, however, not all vertices
can be assigned to the lowest energy configuration [54]. This will lead to “unhappy
vertices” (UV), that is, topologically protected local excitations (Fig. 4.8). In proper
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geometries, the degeneracy of the allocation of such vertices grows exponentially
with the size of the system, leading to a degenerate low energy manifold [54, 58].

Crucial here is that within this manifold the system is usually captured by an
emergent description that considers the allocation of these protected local excitations,
rather than by its spin ensemble. As a consequence, other emergent properties appear
that are in general not obvious nor indeed apparent in the local spin structure.

While vertex models [79] were introduced to describe frustrated systems, they
were themselves not frustrated. They simply subsumed the degeneracy of a frus-
trated system within a degenerate energetics. Vertex-frustrated geometries can thus
be considered the first frustrated vertex models. Vertex-frustration is of course a
nearest-neighbor level concept, although it induces topological states that are col-
lective. However, the real materials being made of dipoles, other phases are present
within their vertex-frustrated low energymanifold,much like inner phases are present
in the diagram of Kagome above. Let us now see how this comes about in three such
geometries: Shakti, Tetris, and Santa Fe.

4.5 Emergent Ice Rule, Charge Screening, and Topological
Protection: Shakti Ice

Consider the Shakti geometry in Fig. 4.9 [55]. Each minimal, rectangular loop of
Shakti is frustrated. What it means is that it must be affected by an odd number of
unhappy vertices [54, 55]. Because each unhappy vertex aways affects two nearby
loops and costs energy, the lowest energy configuration is realized when nearby
loops are dimerized by a single unhappy vertex [54]. If one considers the geometry,
one finds (Fig. 4.9c) that each plaquette made by two rectangular loops will host
two unhappy vertices in 4 possible locations, much like the ice rule in water ice
prescribes that 2 hydrogenatoms are within the tetrahedron containing each oxygen
atom (Fig. 4.3), in 2 of the 4 possible allocations. In both cases the same ice-rule
applies, but here in emergent form: not in terms of the original spins, but in terms
of allocation of unhappy vertices. Thus, the lowest energy manifold, at the nearest
neighbor vertex description employed here, corresponds then to an emergent six-
vertex model. This has been shown experimentally [56].

Nonetheless, as we had cautioned before, this nearest neighbor description defines
the ice-manifold,withinwhich intervene other non-trivial phenomena, due to the long
range nature of the interaction. A particularly interesting one regards the screening of
magnetic charge. Shakti has multiple coordination, therefore while in its low energy
state all the vertices of coordination z = 4 are in the ice rule, they are surrounded by
vertices of coordination z = 3 which always have a magnetic charge ±1 (in natural
units, previously defined), and are disordered. When a vertex of coordination z = 4
hosts a magnetic monopole, the overall neutral plasma of charge around it rearranges
to screen it, as shown in Fig. 4.10 [56].



4 Topology by Design in Magnetic Nano-materials: Artificial Spin Ice 101

Fig. 4.9 Theory of Shakti spin ice. The structure of the system (a) is such that its lowest energy
spin ensemble b is disordered. A look at the spin structure in b does not seem particularly insightful.
However, if we translate that spin map unto the allocation of locally excited vertices, denoted by
circles in c we then see that each plaquette will host two and only two unhappy vertices in four
possible positions. This is equivalent to a six vertex model (d) where pseudo-spins are assigned
to each plaquettes and point toward (away from) the unhappy vertices in plaquette of vertical
(horizontal) long island. Figures adapted from [55]

It is important to understand that magnetic monopoles are not proper topological
charges for Shakti, as they are not protected. Each z = 4 vertex being surrounded by
a sea of charges, it can gain or lose charge to and from it. However, the Shakti state
is a bona fide topological phase, which means that some other topological charge
should be identified in it.

That the manifold has topological protection can be immediately suspected by
noting that a single spin flip takes out of the manifold, and only a proper loop
of collective spin flips realizes change within the manifold. This can be understood
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Fig. 4.10 Realizations of Shakti Ice.On the top left, anMFMimage of Shakti ice after annealing.On
the top right, the experimental data of the left part is translated in terms of allocation of the unhappy
vertices, on plaquettes (black dots). One can see how an emergent ice rule describes the system, as
each plaquette can have only two of four slots for unhappy vertices occupied. Bottom: screening
of monopoles from magnetic charges 〈Qnn〉 denotes the average magnetic charge surrounding a
magnetic monopole on a z = 4 vertex, at the nearest neighbor level. Figures adapted from [56]

easily fromFig. 4.9, as all spins impinging in a z = 3vertex also impinge into z = 4, 2
vertices, which are in their lowest energy in the manifold. Flipping such spin will
thus necessarily cause excitations.

To identify the topological structure, we go back to the properties of the low
energy state. We saw that because each UV affects two nearby plaquettes (Fig. 4.9)
and costs energy, the lowest energy configuration is realized when nearby plaquettes
are “dimerized” by a single UV [54]. The ice manifold of Shakti is thus described
by a dimer cover model on the lattice connecting the rectangular plaquettes, which
is topologically equivalent to a square lattice (Fig. 4.11) (from now on called “dimer
lattice”), and which can be solved exactly [115].

The following is then standard: a discrete, emergent vector field �E can be intro-
duced, perpendicular to each edge, of length 1 (o 3) if the edge is unoccupied (or
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Fig. 4.11 Top: Shaktimanifold as a dimer covermodel. From left to right:Disordered spin ensemble
for the ground state of Shakti icemanifold. Themanifold is completely described by the allocation of
the UVs (circles) which affect two nearby rectangular plaquettes (connected by the blue segments).
Thus, an unhappy vertex is a dimer (blue segments) connecting frustrated plaquettes, and the ground
state is a complete dimer-cover model on the (Ochre color) lattice with nodes in the center of
rectangular plaquettes, topologically equivalent to a square lattice. There we introduce the emergent
vector field �E , as in the text. The circulation of the vector field along any closed loop is zero. Middle
andBottom:The Shakti’s low-energymanifold.XMCD image of Shakti spin ice, for a spin ensemble
with one excitation (red and blue dots) and the corresponding emergent dimer cover representation.
Now excitations appear as multiple occupancy and/or diagonal dimers (Type II2s). �E is no longer
irrotational and its circulation defines the topological charge as q = 1

4

∮
γ

�E · d�l. (Image copyright:
Yuyang Lao.)

occupied) by a dimer, and direction entering (exiting) a gray square of Fig. 4.11 from
top or bottom, and exiting (entering) it from the sides. The “line integral”

∫
γ

�E · d�l
for such a discrete vector field along a directed line γ crossing the edges is the sum
of the vectors along the line with sign taken along the line’s direction. For a complete
cover the emergent field is irrotational (

∮
γ

�E · d�l = 0) leading to the definition of a

“height function” [93] h such that �E = �∇h and thus demonstrating the topological
state.

Beyond the standard dimer model, this picture can incorporate the low-energy
excitations of Shakti ice as scramblings of the cover. As Fig. 4.11 shows, above the
ground state a frustrated plaquette (i.e. a node of the dimer lattice) can be dimer-
ized three times instead of one (over-dimerization) by UVs, or also diagonally by a
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Type-II4 or a Type-II2 vertex. In the presence of such scramblings the emergent vector
field �E is not irrotational anymore. Indeed its circulation around any topologically
equivalent loop encircling a scrambling defines the quantized topological charge of
the defect as q = 1

4

∮
γ

�E · d�l (Fig. 4.11). Thus, the excitations of the Shakti ice man-
ifold are topological charges, turning the discrete scalar field h that defines its order
into a multivalued phase.

We have now the full picture: a topological phase, which cannot be explored from
within, but only via a discrete kinetics of excitations whose topological charge is
conserved. This picture is emergent, and not at all evident from, or indeed reminiscent
of, the original spin structure. It also has consequences for the kinetics, in terms of
ergodicity breaking, non-equilibration, and glassiness, as it is typical of a topological
state with topologically protected excitations, that cannot be reabsorbed into the
manifold individually, and which evolves via a discrete kinetics. All these issues
are still to be investigated in full, as Shakti ice might provide the first artificial,
controllable, modifiable and fully characterizable magnetic system which provides
non-topographic vistas of ergodicity breaking and non-equilibration as consequences
of a classical topological order.

4.6 Dimensionality Reduction: Tetris Ice

While Shakti spin ice provides a topologically protected low-energy manifold, no
such protection is present in the ground state of Tetris ice (Fig. 4.12), which can be
explored by consecutive spin flips. As Fig. 4.12 shows, the lattice can be decomposed
into T-shaped “tetris” pieces and it has a principal axis of symmetry.

The geometry can be considered as layered one-dimensional systems. On the blue
islands in Fig. 4.12 there cannot be any Type-II3 unhappy vertex [54], and therefore
the blue portion of the lattice, which we call backbone, must be ordered at the
lowest energy. The unhappy vertices must reside on the red portions, which we call
staircase, and which therefore remain disordered at low temperature. As temperature
is lowered,we have thus a dimensional reduction of an alternating ordered-disordered
one-dimensional system, which was indeed confirmed experimentally [57].

This dimensional reduction is also apparent in the kinetics. Tetris was the first
of the new geometries to be characterized in real-time, real-space and from the
supplementary information of [57] it is possible to watch clips of its kinetics as the
temperature is lowered or raised. Starting at high temperature, all the spins flip at
about the same rate. As the temperature is lowered, ordered domains begin to form
in correspondence with the backbones, where eventually the spins become static,
while the spins on the staircases continue to fluctuate.

While Tetris spin ice’s lowest energy state described above has been confirmed
experimentally, it follows from a nearest neighbor approximation. The profile of
low energy excitations, however, has not been yet studied in any systematic way,
and promises interesting new effects. For instance, as one-dimensional systems, the
backbones can never order completely, and will always host excitations above the
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Fig. 4.12 Tetris Ice. a XMCD-PEEM image of a 600nm Tetris lattice. The black/white contrast
indicates whether the magnetization of an island has a component parallel or antiparallel to the
polarization of the incident X-ray, which is indicated by the yellow arrow. b Map of the moment
configurations showing ordered backbones (blue) and disordered staircases (red). (Images from
[57].)

low-energy manifold. Of course Tetris is in fact a two-dimensional system, which
decomposes into one-dimensional ones only in the lowest energy configuration.
Slightly above such a manifold, one expects correlations among excitations that
belong to different backbones. Such correlations must be controlled both by themag-
netic interaction between these defects—as Tetris is, after all, a system of dipoles that
can interact at long-range—but also through entropic interactions, since the back-
bones are separated by disordered staircases of non-zero density of entropy. None of
the above issues has yet been studied theoretically, and they might indeed provide a
useful setting to explore the onset of phase decoupling into lower-dimensional states,
a broader problem relevant to liquid crystal phases [116] or weakly coupled sliding
phases [117, 118].

4.7 Polymers of Topologically Protected Excitations: Santa
Fe Ice

We end this vista on how novel and unusual spin ice geometries influence topol-
ogy with Santa Fe of Fig. 4.13, which was inspired by a terra cotta floor in the
homonymous New Mexican capital—incidentally, the oldest in the United States.
While Shakti and Tetris are maximally frustrated, which means that any minimal
loop inside the geometry needs to be affected by an unhappy vertex, in Santa Fe only
the dashed loops in the figure are frustrated and they are surrounded by unfrustrated
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Fig. 4.13 The Santa Fe Ice can support both frustrated (shaded, green) and unfrustrated loops.
There, “polymers” of unhappy vertices (blue dots) thread through unfrustrated loops to connect
frustrated ones. On the right, the brick floor at the convention center in Santa Fe, NewMexico, USA

ones. It is an inviolable topological constraint that at any energy frustrated loops can
be affected by only an odd number of excitations, and unfrustrated ones by only an
even number (or none).

An unhappy vertex on a frustrated loop of Santa Fe lattice affects a nearby unfrus-
trated one. However, an unfrustrated loop can only be affected by an even number
of defects, and thus there will be a second unhappy vertex on it, affecting in turn
a nearby unfrustrated loop, et cetera. It follows that magnetic “polymers”, whose
“monomers” are local protected excitations, must begin from and end into frustrated
loops.

As each monomer costs energy, the lowest energy configuration of the magnetic
ensemble will correspond to the shortest possible polymers, which are made of three
monomers, each connecting nearby frustrated loops as in Fig. 4.13. The entropy of
such a state can easily be computed exactly.As each polymer dimerizes two frustrated
loops, the degeneracy is given by the dimer cover model on the square lattice whose
node ismade of nearby frustrated loops, times the number of ways in which polymers
can be chosen once their pinned ends are fixed. Thus the ice manifold decomposes
into the direct product of two states: the dimer-cover manifold, which selects which
loops are joined by the polymers, and the degeneracy of the polymers themselves.

At low temperature the kinetics will reduce to the fluctuations of the magnetic
polymers without changing the pinning location of their ends, and thus without
changing the dimer cover picture. Thus, the low energy manifold can be explored
from within, but only in part. The kinetics within the manifold remains local and
the polymer’s fluctuations are uncorrelated. As the temperature rises the polymers
lengthen to include more than three monomers. At that point they can bump into
each other, fuse in a cross, and then separate in different ways. This transition can
lead to a different dimerization, as the new polymers, emerging from “collisions”
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of the old ones, are now pinned to different ending point. Thus the dimer-cover
ensemble is explored via this mechanism of polymer colliding, fusing together and
then breaking again into different ones. This of course involves excitations over the
ice manifold, further demonstrating the partial topological protection that pertains
only to the dimer-cover sector of the low-energy manifold.

4.8 Conclusions

We have argued that by assembling together interacting, elementary building blocks,
here Ising spins in the form of single domain, magnetic nano-islands, we can invert a
tendency that has dominated condensed matter physics for half a century. Instead of
finding serendipitously exotic states and behavior in nature, and then model them via
higher level, emergent hamiltonians, one can devise materials—magnetic materials
in this case–that do not exist in nature by developing first the model of their collec-
tive dynamics. Then, advances in nano-lithography and chemical synthesis can allow
for their realization, while new thermal protocols afford characterization, often in
real-time and real-space, for unprecedented direct validation of the theoretical expec-
tations.

We have shown that while the field began with simple geometries, reminiscent of
natural materials, current advances make it possible to realize dedicated geometries
of completely different properties and behaviors. These allow now to access rather
sophisticated topological states, as their emergent description loses reminiscence of
the original degrees of freedom, the underlying spin structure. This approach opens
a new path in the material-by-design effort, on which unusual topological states can
be deliberately designed.

References

1. P.W. Anderson et al., More is different. Science 177(4047), 393–396 (1972)
2. R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N. Samarth,

C. Leighton, V.H. Crespi, P. Schiffer, Artificial ‘spin ice’ in a geometrically frustrated lattice
of nanoscale ferromagnetic islands. Nature 439(7074), 303–6 (2006)

3. C. Nisoli, R. Moessner, P. Schiffer, Colloquium: artificial spin ice: designing and imaging
magnetic frustration. Rev. Mod. Phys. 85(4), 1473 (2013)

4. E. Mengotti, L.J. Heyderman, A.F. Rodríguez, F. Nolting, R.V. Hügli, H.-B. Braun, Real-
space observation of emergent magnetic monopoles and associated Dirac strings in artificial
kagome spin ice. Nat. Phys. 7(1), 68–74 (2010)

5. S. Ladak,D.E.Read,G.K. Perkins, L.F.Cohen,W.R.Branford,Direct observation ofmagnetic
monopole defects in an artificial spin-ice system. Nat. Phys. 6, 359–363 (2010)

6. S. Ladak, D. Read, T. Tyliszczak,W.R. Branford, L.F. Cohen,Monopole defects andmagnetic
coulomb blockade. New J. Phys. 13(2), 023023 (2011)

7. K. Zeissler, S.K.Walton, S. Ladak, D.E. Read, T. Tyliszczak, L.F. Cohen,W.R. Branford, The
non-random walk of chiral magnetic charge carriers in artificial spin ice. Sci. Rep. 3, 1252
(2013)



108 C. Nisoli

8. C. Phatak, A.K. Petford-Long, O. Heinonen, M. Tanase, M. De Graef, Nanoscale structure of
the magnetic induction at monopole defects in artificial spin-ice lattices. Phys. Rev. B 83(17),
174431 (2011)

9. S. Ladak, D.E. Read, W.R. Branford, L.F. Cohen, Direct observation and control of magnetic
monopole defects in an artificial spin-ice material. New J. Phys. 13(6), 063032 (2011)

10. S.D. Pollard, V. Volkov, Y. Zhu, Propagation of magnetic charge monopoles and dirac flux
strings in an artificial spin-ice lattice. Phys. Rev. B 85(18), 180402 (2012)

11. N. Rougemaille, F. Montaigne, B. Canals, A. Duluard, D. Lacour, M. Hehn, R. Belkhou, O.
Fruchart, S. El Moussaoui , A. Bendounan et al., Artificial kagome arrays of nanomagnets: a
frozen dipolar spin ice. Phys. Rev. Lett. 106(5), 057209 (2011)

12. B. Canals, I.-A. Chioar, V.-D. Nguyen, M. Hehn, D. Lacour, F. Montaigne, A. Locatelli, T.O.
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