
Chapter 2
Topology and Geometry in Condensed
Matter

Rossen Dandoloff

2.1 Topology

2.1.1 Introduction

There is an old joke among mathematicians. It goes that way [1]: A mathematician
was asked: What is a topologist? Someone for whom there is no difference between
a doughnut and a coffee cup with a handle.

In general, topology studies continuum properties of spaces that are not affected
by continuous deformations. Such deformations may be e.g. stretching and bend-
ing. Obviously e.g. cutting and gluing do not belong to the allowed deformations.
Usually these properties are studied on what is called topological spaces i.e. a col-
lection of subspaces that are open sets. These open sets satisfying certain conditions
represent a topological space. Some of the most important topological properties
are (a) connectedness, which simply counts the number of holes in the space and
(b) compactness which means a subset of the Euclidean space that is closed and
bounded; closed means that it contains all its boundary points and bounded means
that all its points are at some distance to a given point that is less than some fixed
maximal distance. Some examples a given by a closed interval, a rectangle, an ellipse
circle, a sphere or a finite set of points. An ellipse e.g. is topologically equivalent to
a circle (into which it can be deformed by continuous deformation e.g. stretching)
and a sphere is equivalent to an ellipsoid. Similarly, the set of the numbers 0, 4, 6
and 9 are topologically equivalent - they have one hole each. The numbers 1, 2, 3,
5 and 7 are also topologically equivalent - they have 0 holes each and the number 8
(has two holes) is not topologically equivalent to either set of numbers.
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In fact topology is the newest branch of geometry. It studies different sorts of
spaces and especially the question what distinguishes different geometries. Felix
Klein has suggested that the allowed transformations that keep certain kind of geom-
etry unchanged is in fact its main mark. For example in the ordinary Euclidean
geometry one is allowed to translate and rotate different objects, but bending and
stretching are not allowed. Projective geometry on the other hand recognises differ-
ent views of the same object as an allowed “transformation” within the projective
geometry. The circle and the ellipse are projectively equivalent: all depends on the
point of observation of a circle that may look like a circle or as an ellipse. Topology
allows any continuous transformation that is reversible in a continuous way. Let us
take the ellipse - it is equivalent to a circle or a square because one can continuously
transform it into a circle or a square in a reversible way. If during the transformation
one needs to cross two lines this is not any more a reversible transformation: an
example is the Fig. 2.8. Topology as the almost most fundamental form of geometry
is used in almost all branches of mathematics. It turns out that there is an even more
fundamental form of geometry - the homotopy theory. It was formulated around 1900
by Poincare. Two geometric objects are called homotopic if they can continuously
be transformed from one into the other without cutting and gluing. The number of
allowed transformations is very big and one can deal with them as it is done in alge-
bra. One can use homotopy to classify different geometrical objects and there are
many applications to physics too: spin systems, liquid crystals etc.

Here we will start with the application of homotopy to physics. In order to do
this we will use the notion of order parameter which is widely used in physics. The
order parameter is usually a geometric object (unit vector, tensor etc.) which best
characterizes the state of the physical material that we are studying. For example if
we are studying a three dimensional ferromagnet, the most important property is its
magnetization, which is represented by an unit vector field. The unit vectors of this
vector field may point in any direction (at sufficiently high temperature where the
magnets are not oriented in any particular direction). These vectors may be mapped
to a unit sphere as shown on the Fig. 2.1. The unit sphere is called a target space. If
the ferromagnet is two dimensional, and the magnetization vectors lye in the plane,
then the target space is a circle with unit radius.

In order to fully take advantage of the topology and themapping from the physical
to the order parameter space, we will introduce the so called compactification of the
physical space. Let us explain this on a simple example. Consider a two dimensional
plane with a ferromagnet field on it which at the infinity points to the same direction,
say perpendicular to the plane and upward. From the point of view of the ferromag-
netic field the infinity of the physical plane is characterized by only one single vector
that points up. So, we may bring al the infinity in one point, but then our physical
plane will look like a sphere where the north pole of the sphere is the point which
represents the infinity of the plane.
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Fig. 2.1 Mapping from physical space to order parameter space

2.1.2 Classification of Vector Fields with Homogeneous
Boundary Conditions

Themapping from the compactified physical space (e.g. the sphere S2) onto the target
space (S2 in the case of the ferromagnetic field), allows to classify the different vector
field configurations into separate homotopy classes. The notation is the following:

π2(S2) = π2(S2) = Z(the group of the relative integers) (2.1)

wheren = 0, 1, 2, . . . is an integerwhich labels the corresponding vector field config-
uration. Equation (2.1) means how many times the sphere may wrap another sphere.
As an example let us consider n = 1 - this configuration is such that the mapping of
the vector field on the target space covers the sphere S2 just once, for n = 2 the target
space S2 has been covered twice. It is clear now that it is not possible by continuous
transformation to deform the configuration with n = 1 (here the tips of the vectors
mapped onto the target space cover the sphere once) into configuration with n = 2
(here the tips of the vectors mapped onto the sphere cover S2 twice).

Let us consider now an one dimensional physical space (an infinite line) with a
ferromagnetic field (a unit vector field) on it. We will consider first a magnetization
which lies in the plane perpendicular to the line, i.e. the magnetisation vector may
point in any direction perpendicular to the physical line. It is obvious now that the
target space is an unit circle S1. If the boundary conditions are homogeneous i.e. the
magnetisation vectors at + infinity and at − infinity of the physical line, are parallel,
then we may compactify the line into a circle. Now the different homotopy classes
of configurations are given by the following equation:
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π1(S1) = π2(S2) = Z (2.2)

This equation tells us how many times the circle may wrap around another circle.
The class n ∈ Z means that the magnetization vector points at the same direction at
±∞ and turns once around the line going from−∞ to+∞. Let us note however that
not all spin configurations with homogeneous boundary conditions lead to different
homotopy classes. As an example let us take the line with spins that may point in any
direction i.e. the target space now is s2. Now the topological classification is given
by the following homotopy:

π1(S2) = 0 (2.3)

Here any closed curve (the mapping from the circle to the surface of the sphere) on
S2 may be shrunk to a point.

2.1.3 Classification of Defects in Vector Fields (Mainly Spin
Fields)

In order to better illustrate the role of topology in the classification of defects [2] we
will concentrate only on two dimensional spin fields where spins lye in the plane
i.e. the target space is the circle S1. The case of spin fields (vector fields) may
be generalised to describe liquid crystals as well as there the order parameter is a
headless vector. Now, here the idea is to surround the defect by a closed contour and
to map the vectors on that contour onto the target space, see Fig. 2.2. On Fig. 2.2
we see that the closed curve on target space may be shrunk to a point. This means
that there is no defect inside the loop. The situation would have been different if the
vector field on the circle would have been radial in any point - then the closed curve
on the target space would have wrapped once the circle and the result would have
been the following homotopy equation:

π1(S1) = π2(S2) = Z (2.4)

The defect here represents a source of the vector field. On the other hand if the vector
field is allowed to come out of the plane, the target space becomes S2 and as we have
seen, any closed curve on the sphere can continuously be shrunk to a point, meaning
that there is no defect enclosed by the loop on the plane.

2.1.4 Defects and Homogeneous Boundary Conditions

Let us for a moment come back to our discussion of homogeneous boundary condi-
tions and see what does it mean in view of the preceding discussion of topological
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Fig. 2.2 Mapping from a closed contour around the defect to the order parameter space

classification of defects. If we consider the plane as our physical space, the homoge-
neous boundary condition for a vector field on it means that a loop at infinity (where
the vectors point all in the same direction) will map to a single point on the target
space. Now, let us suppose that there is a point defect somewhere on the plane. If we
draw a closed loop around this defect and map the vectors on the target space we will
get a closed line which we will not be able to shrink to a point. We may deform our
loop on the physical plane to a loop at infinity and the map on the target space would
not be shrinkable to a point. This contradiction tells us that imposing homogeneous
boundary conditions also means that we exclude all point defects from the vector
field.

2.2 Geometry

2.2.1 Energy

So farwehave seen that very often spinfieldswith homogeneous boundary conditions
fall into different homotopy classes. Now we will see what is the consequence for
the energy of these different classes. For simplicity let us consider a ferromagnetic
field – the energy is lowest when all vectors are parallel.

We will consider first the plane R2 which represents the simplest 2D mani-
fold. We will impose on the vector field on R2 homogeneous boundary conditions:
limr→∞�n → �n0. With these boundary conditions we may compactify the plane into
the sphere S2. Now the vector field configurations that may appear on the plane may
be classified in homotopy classes π2(S2) = Z [3]. This topological classification in
general is not related to the energy of the system. We may write the Hamiltonian for
the vector field on R2 as follows:
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H =
∫

(∇�n)
2d2x, �n2 = 1. (2.5)

Nevertheless topology does give some indications about the energy of a field con-
figuration in each homotopy class of equivalence using the Bogomolny inequalities
[4]:

(∂i �n − εi j∂ j �n)
2 ≥ 0, (2.6)

and therefore

H ≥
∫

�n · (∂x �n ∧ ∂y �n)dxdy. (2.7)

It is obvious from (2.6) that when

∂i �n = ±εi j∂ j �n. (2.8)

minimum energy is reached in each class. Equation (2.8) are called “self-dual equa-
tions”. Homotopy is useful for establishing different classes of vector field con-
figurations and may help establish some inequalities regarding the energy in each
configuration but geometry in general is not much more helpful in establishing the
energy of a field configuration. Especially a geometry without an internal length (this
is the case e.g. for the plane R2). Nontrivial filed configurations on the plane R2 may
be scaled (shrunk) to a point without affecting the energy of the configuration. This
happens because the Hamiltonian is symmetric under homothety (stretching of the
space). Let us consider what happens with the Hamiltonian under stretching of the
space by a factor λ: x → λx and y → λy

Eλ =
∫ ∫ ((

∂n

∂λx

)2
+

(
∂n

∂λy

)2
)

dλxdλy =
∫ ∫ ((

∂n

∂x

)2
+

(
∂n

∂y

)2
)

dxdy = E .

(2.9)

The energy of the field configuration is invariant under stretching. As we men-
tioned above this means that the whole configuration may be shrunk into a point.
These topological configurations are energetically metastable. The deeper reason
for this to happen is that there is no internal length (or characteristic length) in the
problem. Naturally there is no length in topology.

2.2.2 Geometry with Intrinsic Length: The Cylinder

As a geometry with intrinsic length wewill consider the cylinder. The intrinsic length
of the cylinder is its radius ρ0.Wewill consider a cylindrically symmetric vector field
(spin field) on the cylinder with radius ρ0. As an immediate consequence of the pres-
ence of the intrinsic length ρ0 we note that the homothety does not apply here and the
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energy does depend on ρ0. The order parameter for the classical Heisenberg model is
the unit vector which covers the sphere S2. It is easier to work with the Euler angles θ
and φ on the unit sphere because they incorporate the constraint (n2 = 1). Our inde-
pendent vector fields will be (θ,�) where �n = (cos θ, sin θ cos�, sin θ sin�).
Here θ is the co-latitude and � is the azimuthal angle. In cylindrical coordinates (ρ,
x , ϕ) we can write the Hamiltonian in the following way [5]

Hisotropic = J
∫ ∫

cylinder

[
(∂xθ)2 + sin2 θ (∂x�)2 + (∂ϕθ)2

ρ20
+ sin2 θ

ρ20
(∂ϕ�)2

]
ρ dxdϕ,

(2.10)
where J is the spin-spin coupling constant.

We will consider our vector field with homogeneous boundary conditions at both
ends of the cylinder, because then we can compactify the cylinder using topological
considerations. Homogeneous boundary conditions in this casemean lim

x→∞ θ ≡ 0[π].
We ask also that lim

x→∞
dθ

dx
= 0. This second condition is required in order to have

finite energy on the infinite cylinder. The fact that
dθ

dx
goes to zero should insure the

convergence of the integral in (2.10). With the homogeneous boundary conditions at
both ends of the cylinder we can make coinside all points at infinity and compactify
the infinite cylinder into a sphere (the ends of the cylinder become the two poles of
the sphere). Then we can map the sphere (the compactified cylinder) onto S2 (the
order parameter manifold) and sowe get π2(S2)=Z. The result is that the spin config-
urations on the infinite cylinder can be classified in different classes of topologically
non-trivial spin distributions [3, 5]. Inside each class, the spin configurations are
topologically equivalent because they belong to the same homotopy class.

In this example we will consider only solutions with cylindrical symmetry. They
will be sufficient for our purposes. For the angles θ and � the following conditions
must apply:

� = ϕ ,
∂θ

∂ϕ
= 0. (2.11)

The Hamiltonian (2.10) then becomes

Hisotropic = 2πρ0 J
∫ +∞

−∞

[(
dθ

dx

)2

+ sin2 θ

ρ20

]
dx . (2.12)

After variation of the Hamiltonian δH = 0, the Euler–Lagrange equation leads to

d2θ(x)

dx2
= 1

2ρ20
sin 2θ. (2.13)

This equation represents the sine-Gordon equation whose solutions are solitons.
This second order differential equation appears in a big variety of physical prob-



42 R. Dandoloff

Fig. 2.3 Cylindrically
symmetric 0 → π twist
soliton on an infinite cylinder

lems e.g. charge-density-wave in different materials, splay waves on membranes,
Bloch wall motion in magnetic crystals, magnetic flux in Josephson lines, propaga-
tion of dislocations in crystals, torsion coupled pendula, two-dimensional models of
elementary particles, etc.

One solution for a configuration which belongs to the first homotopy class and
representing a single spin twist, is given by:

θ = 2 arctan exp
x

ρ0
. (2.14)

A schematic representation is given in Fig. 2.3 The characteristic length ρ of the
cylinder appears explicitly in the solution. In this solution ρ0 represents the width of
the twist soliton.

2.2.3 Geometry with Intrinsic Length: Plane with a Disc
Missing

Nowwewill consider yet another example of a geometrywith intrinsic length namely
a non simply connected plane R2. Here the intrinsic length will be the radius ρ0 of
the disk D2

ρ0
cut off from the plane. First we will consider spins on R2\D2

ρ0
and then

the same classical spin field but in a perpendicular to the plane magnetic field B. In
a cylindrical coordinate system (ρ,φ) he Hamiltonian (the nonlinear sigma model)
reads:

H = 2π
∫ ∞

ρ0

dρ

[
ρθ2ρ + sin2 θ

ρ

]
. (2.15)

Herewe are using theEuler angles representation for the unit vectorn = (sin θ cos�,

sin θ sin�, cos θ), (the spins lie on a unit sphere S2). Without loss of generality we
will assume cylindrical symmetry for the spin configurations: θ = θ(ρ) and � = φ.
The solutions of the Euler–Lagrange (EL) equation will give the configurations with
lowest energy:

θρ + ρθρρ = sin θ cos θ

ρ
. (2.16)
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Fig. 2.4 Field on a plane
with a disc missing

Here we take θ(ρ0) = constant. and define a new radius coordinate ρ = ln(ρ/ρ0)
which will allow us to reduce the EL equation to a simple sine-Gordon equation:

θρρ = sin 2θ

2
. (2.17)

A novel exact half-skyrmion appears to be the solution of this sine-Gordon equation
on the non-simply connected plane shown on Fig. 2.4.

θ(ρ, ρ0) = 2 tan−1 ρ

ρ0
. (2.18)

This solution depends on ρ0, the intrinsic length in the problem and can not be
shrunk to a point like the usual Belavin-Polyakov skyrmion [3]. It is located at ρc =
ρ0 cot(π/8) = ρ0(1 + √

2) with energy 4π (instead of 8π) and topological charge
density

q(ρ) = θρ sin θ

4πρ
= 1

π

ρ20
(ρ2 + ρ20)

2
. (2.19)

Equivalently, the components of the unit vector field are:

nx = 2xρ0

ρ2 + ρ20
, ny = 2yρ0

ρ2 + ρ20
, nz = ρ2 − ρ20

ρ2 + ρ20
. (2.20)
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2.2.4 Interaction Between Geometry and Physical Field

We have seen so far that the intrinsic length of the underlying manifold appears in
the solutions for the vector field distributions i.e. the underlying manifold influences
the vector field. The opposite is true too. In order to illustrate this we will turn our
attention to yet another exact solution of the sine-Gordon equation. We will consider
now a periodic solution of this equation which represents a the soliton lattice [6]. We
note here that the Bogomol’nyi argument can be applied for any period (for which
the unit vector covers S2) of this periodic solution. We note here that for one period
on the rigid cylinder the self-dual equations (2.6) are still valid and therefore any
function that satisfies (2.6) will satisfy the sine-Gordon equation as well (2.13). The
periodic solution of the sine-Gordon equation is given by:

θ = arccos

[
sn

(
x

kρ0
, k

)]
. (2.21)

Let us discuss this periodic solution. The constant k is the modulus of the Jacobi
elliptic function sn (sine-amplitude); the period of the solution is given by 4d =
4ρ0kK (k) where here K (k) is the complete elliptic integral of the first kind. The
periodic solution transforms into the single twist soliton (2.14) solution of the sine-
Gordon equation In the limit k → 1, as lim

k→1
K (k) → ∞, the half period 2d tends

to infinity and at the the boundaries, we get the homogeneous conditions we have
discussed in Sect. 2.2. We can now calculate the energy per soliton (over half period
2d, as θ(±d) ≡ 0[π]):

Hisotropic = 8πJ

k

[
E(k) − k ′2K (k)

2

]
, (2.22)

In this equation k ′ is the complementary modulus (k ′2 = 1 − k2) and E(k) is the
complete elliptic integral of the second kind. In the low soliton density limit, i.e. k
→ 1 [then E(k) → 1], we can expand the exact solution (2.22) and obtain the energy
per soliton which reads:

Hisotropic = 8πJ + 32πJexp

(
−2d

ρ0

)
+ . . . = 8πJ + 2πJk ′2 + . . . . (2.23)

The first term in this expansion represents the self energy of a soliton over one
period (which corresponds to a soliton that stretches from −∞ to +∞. The second
term represents an additional energy that corresponds to the repulsive interaction
between solitons. The periodic solution (2.21) is an exact solution of the sine-Gordon
equation but nevertheless does not satisfy the self duality equations and that is the
reasonwhy the energy per soliton in the periodic solution does not reach theminimum
energy per soliton H 1

isotropic = 8πJ . For a single soliton on a cylinder we have some
sort of “equipartition” relation ρ0

2 (∂xθ)
2 = sin2 θ between “kinetic” energy on the
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Fig. 2.5 Periodic spin soliton and periodic deformation of the cylinder

left and “potential” energy on the right. For the periodic solution the corresponding
relation is:

ρ0
2 (∂xθ)

2 = sin2 θ + k ′2

k2
. (2.24)

Now we see that on the right hand side of this equation there is an additional “poten-
tial” energy ( k ′

k )2 that corresponds to an exponential repulsive interaction between the
solitons. The soliton likes to stretch from −∞ to +∞ but the presence of additional
soliton does not allow this to happen - this is the geometric frustration that appears
in this case. In the limit of a single twist soliton (d → ∞ and k ′ = 0) ( k ′

k )2 = 0 and
we get the energy H 1

isotropic of the single twist soliton: the interaction term vanishes.
There is another possibility that may allow us to diminish the magnetic energy per
soliton on the cylinder. If we allow the cylinder to deform as shown on Fig. 2.5 this
will diminish the magnetic energy per soliton but will require some elastic energy
for the deformation of the cylinder. Allowing for elastic deformations of the cylinder
means that ρ will become x-dependent which will modify the Hamiltonian and the
associated equations as discussed in [6].

2.2.5 Chirality of 1d Spin Configurations

We have seen that the usual homotopy classification of Heisenberg spins (target
space is S2) in one dimension is trivial: π1(S2) = 0. However, there is another
non-trivial topological classification of Heisenberg spins based on chirality [7]. In
order to find out if there are other topological structures in the one dimensional
case one has to better analyse the Heisenberg hamiltonian. As the vector field is
normalised to unity we once again will use the Euler angles representation for
n = (sin θ cosφ, sin θ sin φ, cos θ). Using θ and φ variables the hamiltonian can be
written in the following form:
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H = J
∫ +L

−L
(θ2s + sin θ2φ2

s )ds (2.25)

here s stands for d
ds and s represents the coordinate along R1. This hamiltonian

is not invariant under homothety transformation s → λs and that’s why the spin
configurations are not metastable like in the 2D case. The equations of motion for
this spin hamiltonian have been established by Tjon andWright [8] whereφ and cos θ
represent the conjugated generalised coordinate andmomentum.ThePoisson bracket
gives [φ(x), cos θ(y)] = δ(x − y). Here the generator of translations (momentum)
is given by the following expression:

P =
∫ +L

−L
(1 − cos θ)φsds (2.26)

The momentum operator verifies the Poisson brackets: [φ(s), P] = −φs and
[cos θ(s), P] = − d

ds cos θ(s) [8]. It turns out that P is a constant of the motion
for this Hamiltonian [8].

Now, for our analysis of the possible spin configurations we will map the unit
vector n to the unit tangent of a space. Now, it turns out that different space curves
represent different spin configurations. Here the boundary conditions we will use are
that at±L the spinswill be parallel. In this case different curves representing different
spin configurations will tend to a straight line as s → ±L . Of special interest for us
is the writhe of a curve (which characterises its chirality of the). For a closed curve
it is defined as follows [9]:

Wr = 1

4π

∮
ds

∮
ds ′ (r(s) − r(s ′).(n(s) − n(s ′))

|r(s) − r(s ′)|3 (2.27)

In this case we distinguish two classes of homotopy equivalent curves: one where
two ends of the curve are rotated to each other by 2π and the other where the two
ends are rotated by 4π. The reason for the appearance of these two classes is the fact
that the group SO(3) is non simply connected manifold and closed loops in SO(3)
fall into two classes: those who can be contracted to a point and those for which this
is impossible. For example a triad evolving on such a space curve from s = −L to
s = L traces out a closed curve on SO(3) [10]

We will apply a theorem by Fuller which allows to express Wr as an integral of
a local quantity. We will express Wr with respect to a reference curve C0 (which for
simplicity is taken to be a straight line):

Wr = Wr0 + 1

2π

∫ +L

−L

n0 × n. d
ds (n0 + n)

(1 + n0.n)
ds (2.28)

hereWr0 is thewrithe of the reference curve.A simple calculation gives the following
expression for the writhe:
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Wr = 1

2π

∫ +L

−L
(1 − cos θ)φsds (2.29)

Let us note here that the writhe Wr for the spin configurations (quantity that char-
acterises the chirality of the spin configuration) coincides with the total momentum
P . We have seen that the total momentum P is a conserved quantity - it follows that
Wr is a conserved quantity too. This will lead us to a new class of possible excitations
for the continuous classical spin Heisenberg model. The ground state configuration
is represented by θ = 0 and let us note that the curves whose ends are rotated by
4π also belong to the same class of configurations [10]. In order to calculate the
lower bound for the energy of a configuration that doesn’t belong to the ground state
configuration (curves whose ends are rotated by 2π) we need closed curves. Let us
take first a space curve representing a spin configuration that goes from −L to +L .
This curve is completed by a straight line between −L and −∞ and between +L
and +∞ and is closed by a semi-circle at infinity in order to form a closed curve.
Note that on the straight segments and on the semi-circle at infinity the curvature k
is zero. The writhe is zero for the straight segments when s ∈ ±(L ,∞) as well as
for the infinite semi-circle. This geometrical construction does not change the writhe
of the actual curve. Such a curve belongs to a whole class of configurations which
deform smoothly from one to another and who are separated from the ground state
class by a jump in the writhe Wr . Let us first note that for closed curves [11]:

∮
kds ≥ 2π (2.30)

We note that the curvature k �= 0 only for s ∈ (−L ,+L), and then the above inequal-
ity is equivalent to: ∫ +L

−L
kds ≥ 2π (2.31)

We will use the following Cauchy–Schwarz inequality:

(∫ +L

−L
kds

)2

≤ 2L
∫ +L

−L
k2ds (2.32)

and the following expression for the curvature in Euler angles: k2 = θ2s + sin2 θφ2
s .

Then we can present the following obvious inequality for the energy of the spin
chain:

H = J
∫ +L

−L
(θ2s + sin2 θφ2s )ds = J

∫ +L

−L
k2ds ≥

J
(∫ +L

−L kds
)2

2L
≥ J

4π2

2L
= J

2π2

L
(2.33)

The energy is limited from below for this class of configurations for which both ends
of the representing space curve are rotated at 2π. It is clear that for an infinite chain
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L → ∞ the lower bound goes to 0. On the other hand the barrier which separates
P from the zeroth class remains. The above result is consistent with the inequality
for the elastic energy of thin rod whose ends are rotated by 2π relative to each other
[10] where the result is based on the same property of the rotation group SO(3). In
this case the thin rod has only bending rigidity J and no torsional rigidity.

2.3 Quantum Potential, Thin Tubes, Knots

Yet another interesting application of geometry concerns quantum theory. Especially
the appearance of induced quantum potential on curved surfaces and on curves (thin
tubes) (the effective potential that appears on curved surfaces ormembranes is Ve f f =
− �

2

2m (M2 − K ) where K = k1k2 is the Gaussian curvature and k1 and k2 are the
sectional curvatures and M = 1/2(k1 + k2) is the mean curvature and the effective
potential on curves or in thin tubes is Vef f = − �

2

2m
k2

4 , where k is the curvature of the
axis of the tube [12]. We will briefly discuss the appearance of quantum potential
in a thin tube and give a “hand-waving” argument in favour of it. The argument is
based on Heisenberg’s uncertainty principle, see Fig. 2.6.

It is the obvious that as�ps ≤ �px , the corresponding energies are related as fol-

lows: Es = �p2
s

2m ≤ Ex = �p2
x

2m .This shows that the free particles prefer to be localised
in the bent region of the thin tube.

Let us now, as an example, consider a trefoil knot (knots appear often in polymers).
It has turned out that one may create a qubit using the geometry of a tight trefoil knot
[13].

In mathematics knots are represented as closed, self-avoiding curves embedded
in a three-dimensional space. Any knot can be tied on a thread (or a curve) of any
length and when we pull on both ends of the thread the knot transforms into a point
which means that all conformations are essentially equivalent. Yet another problem
is the lack of characteristic length with does not allow for the introduction of energy
scale. Physics deals with real material knots. The thread has a finite diameter and
pulling the thread on both ends does not transform the knot into a point. The diameter
of the physical thread plays the role of a characteristic length.

In our example we will use a trefoil knot where the thread will have a circular
cross-section with a finite radius. Then we will pull the knot tight. At some point we

Fig. 2.6 Bent thin tube Heiseuberg

ΔXΔρx  ∼ +∼
ΔX ΔSΔρs  ∼ +∼

Δρs < Δρx

ΔS

ΔS > ΔX ⇒
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Fig. 2.7 Tight open knot
and the curvature of its
center ligne

Fig. 2.8 A double well
potential for the tight trefoil
knot

will note that we can not pull any further without changing the cross-section of the
knot. The final confirmation we have reached is called tight open knot. We may get
a tight closed knot simply by “gluing” together the loose ends of the tight open knot.
As seen on Fig. 2.7 there is a plane of symmetry which separates the left from the
right part of the trefoil knot. This most symmetrical conformation of the trefoil knot
appears to be also the most energetically (elastic energy) favourable.

There is no analytical expression for the curvature of the center line of a tight knot,
but there are experimental measurement, which are presented on Fig. 2.7 [14]. There
is compete left-right symmetry of the curvature and there is a flat region (k = 0) in
the middle.

As we have seen, the curvature of a space curve or the centerline of a thin tube
is related to the induced quantum potential. The curvature presented in Fig. 2.8 can
be modelled to represent the following double well potential for the tight knot. See
Fig. 2.8. Finally the tuneling possibility between the two wells splits the localised
level into two and so the tight trefoil knot represents quantum mechanically a two
level system which may be used as a microscopic qubit.

The combination of curved and straight nanobars may produce the same double
well potential as shown in Fig. 2.8. One such combination is shown in Fig. 2.9. The
possibility to create almost any given quantum potential using a combination of
suitable curved nanobars is very big.
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Fig. 2.9 Circular and
straight nanobars create a
double-well potential

The sectors A − B and C − D represent a quarter of a circle (Vef f. = − �
2

2m
k20
4 ,

with k0 = 1
r0
, where r0 is the radius of the circle) and the sector B − C is a straight

line (Vef f. = 0).

2.4 Conclusions

By using topology and geometry we established a link between the order parameter
of the concrete material and the underlying geometry andmake predictions regarding
the bounds of energy imposed by topological and geometrical constraints without
solving the very complicated equations of motion. Classification of defects in differ-
ent materials is also possible. This is true for the classical as well as for the quantum
level of consideration. Further investigations on the quantum level, using topology,
may include the quantum effective potential which is geometric in its nature and may
play an important role in understanding of some properties of nanostructures. Finally
we mention that topology and geometry can not replace solving of the microscopic
equations of motion but may bring additional insights for the understanding of the
fundamental properties of matter.
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