Chapter 1 ®)
Importance of Topology in Materials oo
Science

Sanju Gupta and Avadh Saxena

Abstract We underscore the substantial need for understanding a wide range of mul-
tifunctional materials through the notions of topology-geometry interrelationships
such as genus, Euler characteristic and network connectivity. After introducing the
basic concepts of topology we first illustrate these notions on nanocarbon allotropes
as a case study. Next, we consider the growing class of emergent topological mate-
rials that encompass both real-space and k-space topological materials including
Dirac materials, topological insulators, Weyl semimetals as well as soft and poly-
meric matter, supramacromolecular assemblies and biophotonic materials. Finally,
we emphasize and evaluate metrics to quantify topology in order to study and classify
materials properties relevant for wide ranging modern and future technologies.

1.1 Introduction

The recent blooming of topological notions in condensed matter physics, synthetic
materials chemistry, supramacromolecular chemistry, materials science and bio-
physics has given impetus to the development of new and the revision of many
old concepts in the physical world [1, 2]. These sub-disciplines are being greatly
benefitted by invoking topological concepts to understand novel, complex and emer-
gent states of matter such as quantum Hall systems, topological insulators, Dirac
materials and Weyl semimetals, to name just a few of these new classes of materi-
als. The 2016 Nobel Prizes in Physics and Chemistry are a direct testament to this
observation [1]. If the mainstream materials science can tap into the full power of
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topology, that would certainly open avenues for novel materials synthesis, property
characterization as well as applications [2, 3].

Our aim in this chapter is to answer the key question: why is topology important
for understanding materials? Topology refers to the fact that certain materials prop-
erties remain invariant under continuous deformation such as stretching, bending or
twisting (but without cutting or puncturing at any place in the material systems). It
also means that nearby points remain neighbors during deformation. In this sense a
sphere and ellipsoid are topologically equivalent; so are a cone and disk [2].

First and foremost, we can classify the global topology of a material in terms
of its characteristic genus (or handlebars or holes), number of open boundaries and
local connectivity. Different topological phases of matter can be distinguished by
a topological invariant (usually an integer such as the genus, Chern number, wind-
ing number, etc.) [1]. While a carbon nanoring and NbSe; Mobius strip represent
real-space topological materials, recent interest in Dirac materials and topological
insulators refers to topology in the k- or momentum space usually in terms of the
electronic band structure. Quantum oscillations such as the de Haas-van Alphen
(dHvA) and Shubnikov-de Haas (SdH) oscillations are a direct consequence of the
topology of the Fermi surface of a crystal in a magnetic field. Based on these and
many other illustrative examples mentioned below, we aim to show that the intersec-
tion of topology and materials science is both physically insightful and aesthetically
appealing.

1.2 Essentials of Topology

1.2.1 Genus and Euler Characteristics

First, we introduce the basics of topology. Global topology of a material is described
by a parameter called genus (g), which is an integer characterizing number of holes
[2]. For instance it is zero for a sphere but equal to one for a torus. The genus is
related to another parameter (of a surface) called the Euler characteristic, defined
by x = 2(1 — g). For objects with boundaries or edges it can be expressed as
x =V —E+F,where V, E and F represent the number of vertices, edges and faces
of a polyhedron on the object. The integral over the surface of a material’s Gaussian
curvature K gives 27 times the Euler characteristic (the Gauss-Bonnet theorem),
connecting geometry with topology.

1.2.2 Network Topology

In the context of supramacromolecular architectures metal-organic frameworks
(MOF) and geometric hierarchies inherent to many soft- and biomaterials (e.g. intra-
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cellular structures such as endoplasmic reticulum), topology arises in a different
guise, namely, network topology [2]. Here one focuses on local connectivity at a
given node in the network, i.e. the number of links emanating from a particular node
in the network. Two networks can have identical topology even though their physi-
cal interconnections or links, distances between the nodes and other attributes (e.g.
transport of some quantity through the links) may differ. In biology network topology
may refer to the network of biological interactions, for instance the metabolic net-
work. Topologies commonly observed in biological networks include ring network,
bus network and star network. As examples of the important role of network topol-
ogy in materials, note that sound propagation in granular materials and mechanical
properties of, e.g. siloxane, elastomers crucially depend on their network topology.

1.2.3 Geometry-Topology Interrelationship

As shown in Fig. 1.1 a cup can be continuously deformed into a sphere, thus they
have g =0 and y = 2. A cup with a handle is equivalent to a donut (g = 1, x =0), but
with two handles it is equivalent to a double-donut (or Swedish pretzel, g =2, x =
—2). In the same vein, a cup with three handles can be continuously deformed into
a triple-donut (or German pretzel, g = 3, x = —4). A red blood corpuscle (RBC), a
biological vesicle with one hole, two holes and three holes, respectively, represent g
=0,1,2and 3 or x =2, 0, —2 and —4 objects. Since topology is essentially elastic
geometry, many different geometries may correspond to the same topology, i.e. same
g and . Likewise, a variety of geometrically different networks may belong to the
same topology, that is, a network with given geometry can be continuously deformed
to obtain a network of different geometry.

1.3 Topological Taxonomy of Functional Materials

1.3.1 Nanocarbons

Carbon offers a rich variety of forms depending upon the covalent bonded hybridiza-
tion, i.e. sp>-, sp- and sp-bonded carbons. They exist in at least two natural allotropes
(diamond, graphite) and various man-made or synthetic nanoscale forms (fullerenes,
nanodiamond, carbon nanotubes and graphene). For the past few decades, there is an
overwhelming interest in the family of nanocarbons due to their discernible structural
characteristics at molecular scale and extraordinary physical (optical, mechanical,
electronic) and chemical (electrochemical, biological etc.) properties attributed to
their unique low-dimensional atomic scale lattice bonding structure. Therefore, they
serve as functional building blocks for innovative nanotechnology such as in ultra-
sensitive low-energy consumption electronics and mechanical devices, advanced cat-
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Fig. 1.1 Illustrations of topological objects with different genus, adapted in part from Haldane’s
2016 Nobel lecture (top two rows) and [1], last row
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alyst supports, sensitive biosensors, and microelectromechanical (micro-actuators)
and electrochemical energy conversion and storage (e.g. fuel cell, batteries and super-
capacitors) devices. Nanoscale carbons serve as a posterchild for the contexts where
the interplay of geometry and topology is promising for basic and applied sciences.
Nanocarbon allotropes exhibit numerous topologies with a variety of geometries
ranging from planar (monolayer and multilayer graphene) to closed cage-like (e.g.
fullerenes, hypo- and hyperfullerenes), open-ended (e.g. single-, double-, oligo- and
multi-walled nanotubes), nano rings/nanotori, nanohorns, nanocones and peapods.
All these distinct allotropes of nanocarbon serve as a fertile playing field for expound-
ing the nontrivial notions of global topological attributes (see Table 1.1) [3-5].
Table 1.1 summarizes the global topology metrics of nanocarbons in terms of genus,
g and Euler’s characteristic, . Briefly, we indicate that nanocones, nanodisks and
nanotubes closed at one end are topologically equivalent to a planar graphene sheet
(g =0). Fullerenes (Cq), hypofullerenes (Csg, 50,.), hyperfullerenes (C7o, 34.90,.) and
capped nanotubes have the topology of a sphere (g = 0). Due to boundaries captured
by ¥, open ended nanotubes have a different topology (g = 1, x = 0) than those of
closed nanotubes (g = 0, x = 2). Nanotori and nanorings forms of nanocarbon are
topologically equivalent to a torus (g = 1, x = 0). Furthermore, multi-walled car-
bon nanotubes, nano-onions and peapods (fullerenes nestled in single-walled carbon
nanotubes like a beaded necklace) have complex topologies due to nestled spher-
ical and cylindrical geometries. Among the negative Gaussian curvature (K<O0)
periodic carbons, Schwarzites have a complex topology with g = 3, x = —8 per
unit cell. Similarly, a helicoid-shaped narrow graphene nanoribbon would have
g=0,x=2[5]
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Table 1.1 Topology of nanocarbon allotropes

Geometry Topological characteristics

g (Genus) X (Euler)
Positive Gaussian curvature
Mono-, few- and multi-layer |0 2
graphene (HOPG and Kish
Graphite)
Fullerenes and 0 2
hypo-/hyperfullerenes
Single-walled carbon 1(0) 0(Q2)
nanotube (SWCNT); open
(closed)

Nanoring/nanohoop/nanotori | 1

Nanohorn/nanocone 0

Double-walled (DWCNT), Complex geometries
oligo-walled (OWCNT) and
multi-walled carbon nanotube
(MWCNTSs)

Peapod
Onion-like carbon (OLC)

Negative Gaussian curvature | g (Genus) unit cell X (Euler)

Negatively curved 3 -8
carbons/Schwarzites (3D)

Graphene nanoribbons 00 2(1)
(GNR)/helicoidal (2D);
infinite (finite)

Our goal here is to relate measurable physical properties deduced from reso-
nance Raman spectra of various nanoscale carbons to topological as well as geomet-
ric metrology characteristics. Spontaneous Raman spectroscopy (RS) has emerged
inarguably as a powerful non-invasive analytical tool for structural characterization
of carbon-based materials revealing both collective atomic/molecular motions and
localized lattice vibrations (phonons) [3] besides defects (point or extended defects,
stacking disorder, doping) and finite size of crystallites. The primary reason for
this advantage is the strong Raman scattering response to the m states due to res-
onance enhancement, its simplicity for high-symmetry nanotubes and fullerenes,
its easy access and noninvasive nature. Figure 1.2 shows micro-Raman spectra for
various nanocarbons measured using excitation wavelength of 633 nm (or energy
EL = 1.92 eV) in backscattered configuration. Since all of these materials are sp>
C derivatives, it is instructive to compare the Raman spectral features with planar
highly ordered pyrolytic graphite (HOPG) or multilayer graphene (MLG) and mono-
layer graphene as they are two-dimensional building blocks for sp?> C allotropes
of every other dimensionality. Prominent bands of interest in first- and second-
order Raman spectra are D, G and 2D bands occurring at~1344 cm~!,~1585 cm™!
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and ~2670 cm™!, respectively. The G band is associated with the tangential C-C
stretch or the tangential displacement band having E,, symmetry. For SWCNT, the
G band decomposes into main peaks (G* at 1562 cm~! and G at 1593 cm™!) primar-
ily due to the splitting of interlayer stretching mode attributed to curvature-induced
re-hybridization of o*-nt" states which yields larger elastic constants and therefore
better mechanical properties. The D band is a disorder-activated band with A, sym-
metry arising from various sources including in-plane substitutional heteroatoms,
vacancies, grain boundaries, quantum confinement due to size effects, stacking dis-
order and other point and extended defects. Therefore, D band intensity in principle is
proportional to the phonon density of states analogous to electronic density of states,
applicable to all sp?> C-based materials. It is worthwhile to note the near absence of
D band in monolayer (and multilayer) graphene and HOPG indicative of presence
of marginal defect number density. The stable sp> C spherical cage structures—-
fullerenes (Cgy)—are somewhat lower in yield and the effect of curvature and geom-
etry is displayed in Raman spectral features for spheroids compared with HOPG and
MLG. There are fewer lines for Cg (I}, symmetry) as compared to Cgg (D2g symme-
try) possibly due to deviation from spherical geometry (oblate or prolate). While it is
challenging to analyze complicated Raman spectra due to fullerenes, the downshift
of Ag(2) (pentagonal pinch mode;~1470 cm~ ') and H,(8) band at~1575 em~! s
apparent. Figure 1.2 also shows Raman spectral features due to SWNR, SWNH and
nanocone displaying similar phonon spectra to sp> C material systems, albeit they
have some quantitative differences discussed below. It is imperative to mention that
for low-dimensional carbons (nanocarbons), the 2D band (a second-order D band)
is symmetry allowed by momentum conservation, therefore the overtone Raman
feature is relatively sharp and comparable to G band intensity in contrast to disorder-
activated D band and it becomes an intrinsic feature for sp?> C materials (Fig. 1.2b).

The prominent Raman bands for representative nanocarbon materials are quanti-
tatively analyzed in terms of position of D, G and 2D bands as possible topological
metrics due to their sensitivity toward structural modification and mechanical defor-
mation as well as charge transfer doping thus capturing “weaker” or “group” trends.
Figure 1.3 shows the variation of G band position by itself (panel a) and with 2D
band (panel b) providing subtle information on curvature induced shifts and the nature
of intrinsic point defects (charged or residual). For instance, G band is marginally
upshifted in SWCNT as compared with SWNR leading to microscopic compres-
sive stress attributed to smaller nanotube curvature that is invoked. The G band for
nanocone tip and SWNH shifts to higher value as compared to HOPG; this occurs
due to curved cone surface and phonon confinement attributed to smaller crystallite
sp? C domains. While the presence of G band is a direct indication of sp> C network,
the shift (either decrease or increase) is a measure of (a) different spz-bonded C con-
figurations; (b) curvature-induced re-hybridization and mixed hybridized character
sp>*®; (c) compressive or tensile microscopic stress/strain; and finally, (d) phonon
confinement (localization of vibrational states) and (e) electronic character (n- or
p-type). The tensile strain in graphene planes induces curvature by the introduction
of pentagons in the hexagonal network governed by Euler’s theorem.
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Fig. 1.3 Variation of the position of a G band and b 2D band with G band from Raman spectra for
various nanocarbons along with HOPG and MLG. The values of (g, x ) are also shown in parentheses

While the Raman bands for the nanocone and nanohorn appear at almost similar
positions, the nanoring lies in the category of a different geometry. A quantitative
understanding of Raman lineshape and band position shifts occurring due to geometry
and topology therefore require a detailed accounting for the changes in both phonon
and electronic density of states and concurrent electron-phonon (lattice) interactions
suggested by theoretical studies for nanotori, nanocones and nanohorns [6, 7]. We
have made an attempt to determine the nature of the defects by plotting the 2D band
position with the G band position (see Fig. 1.3b) [8]. It is safer to say that the defects
are mainly p-/n-type (i.e. the G band increases and the 2D band decreases), which
is quite encouraging. Furthermore, the quantitative findings obtained from Raman
spectra are also in agreement with tight-binding calculations for the nanotubes [8].
This knowledge provides a powerful geometric (and possibly topological) metrol-
ogy machinery to understand novel nanocarbons and points to an unprecedented
emergent paradigm in materials science i.e. global topology (and curvature) =» pro-
cess = property =» function =» performance relationships in contrast to traditional
microstructure =» property =» function correlations.

1.3.2 Soft and Polymeric Materials

Analogous to nanocarbons, hard-, soft- and polymeric (liquid crystal supermolecules
and supramolecular chemistry) materials exist in a variety of complex topological
phases and forms, summarized in Table 1.2. Some examples include semiconducting
oxide and BN nanotubes, nanotori, helical gold nanotubes, mesoporous silica net-
works, Mobius conjugated organic materials, di-block and tri-block copolymers as
well as smectic and nematic liquid crystals [2]. Also, foams have interesting network
topology which can change its configuration at a local level, wherein the interface
between two bubbles shrinks to zero length and subsequently expands to a finite
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Table 1.2 Topology of soft-, polymeric, biological matter and supramolecular assemblies

Geometry Topological characteristics Suggested metrology
g (Genus) x (Euler)

Soap bubbles and Network topology Optical imaging

foam

Liquid crystals Complex topology Non-linear optical

(double and fluorescence

quadri-dislocations microscopy, laser

and disclinations; lithography

discotic, nematic with
Schlieren texture)

Di- and tri-block Complex topology Small-angle x-ray and
co-polymers (lamellar neutron scattering
and tubular) (SAXS/SANS)
Bio-membranes 0 2 Optical fluorescence
(lamellar and microscopy and
spherical) SAXS/SANS
Biological vesicles 0/1,1,2 2/0,0, =2 Optical fluorescence
(w/ and w/o holes) imaging
Zeolites 3 -8 HRTEM,
(micro-/mesoporous, SAXS/SANS, x-ray
metallo-organic and neutron
frameworks [MOFs]) tomography
Supramolecular 1 0 Optical fluorescence
assemblies imaging and
SAXS/SANS

length in another direction, thus resulting in a local topology change. For studying
two- and three-dimensional microscopic structure evolution with regard to crystal
grain growth and topological optimization of microstructure besides multicellular
structures such as bubbles, foams, and biological tissues, network topology serves
as an efficient tool [9].

As for polymeric liquid crystals which show complex topology—they are hard in
that they have many interesting symmetries thus exhibit anisotropic elastic behavior,
while their liquid properties enable a soft behavior such that these symmetries are
disrupted by defect structures and their elasticity is dominated by fluctuations away
from an ideal state. Analogous to all broken symmetry materials, liquid crystals admit
topological defects, which are regions forced to be discontinuous by their topological
behavior. Such defects are stable in the sense that they cannot be removed by local
perturbation, rather they must either be moved out to the boundary of the sample or
merged into other topological defects. Of utmost importance is the study of these
topological defects, which are readily visualized. Since the behavior of materials
is often dictated not by bulk properties, but by its defects, akin to the strength of
a chain being determined by its weakest link. Historically, topological defects in
ordered media were studied using the theory of homotopy classes in which homotopy
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groups of the order parameter space are calculated [10—13]. These ideas begin with
identifying defects with small measuring loops or spheres around them. Thus, the
“charge” of the defect is the topological metric (i.e. genus) of the configuration
in the sample on such a measuring circuit [14]. Given the development of three-
dimensional imaging techniques [14] and extensive simulations [15, 16], one has a
way of seeing more globally the topological defects and other interesting topological
features in these samples. These sets include the defects but usually include other
points forming lines or sheets connecting the defects together as well. In general, the
homotopy group approach is not justified when applied to smectic liquid crystals or
other crystalline systems. However, in these smectics there are two classes of defects,
dislocation-type and disclination-type, which are akin to critical points in the sense
of local maxima, minima or saddle points.

1.3.3 Minimal Periodic Surfaces

1.3.3.1 Supramacromolecular Assemblies

Micelles, colloids, micro-emulsions, biological vesicles, microtubules and
supramolecular photochemistry in restricted space belong to this class of materi-
als [2]. Additionally, processes in many bio-macromolecules including DNA and
RNA structure and protein folding, involve network, braid and knot topologies [17].
A network has connected nodes and lines in various ways. Lattices are a special kind
of network in which the lengths are the same in each periodically repeated structure,
called a unit cell. Two networks (‘nets’) have different distances between nodes and
other characteristics yet may have identical topologies. As a special case, a square
lattice is topologically equivalent to an oblique lattice or a rectangular lattice but not
to a triangular Kagome-like lattice. Protein-protein interaction networks (‘interac-
tomes’), and mesoporous materials are examples in which correlations between the
network structure and properties provide useful insights into design strategies.
Metal-Organic Framework, (MOFs, pronounced moffs), are compounds con-
sisting of metal ions or clusters coordinated to organic ligands to form one-, two-,
or three-dimensional structures (Fig. 1.4). They are a subclass of coordination
polymers, with the special feature that they are mesoporous. The organic ligands
included in them are sometimes referred to as “struts”, one example being 1,4-
benzenedicarboxylic acid (BDC). More formally, a metal-organic framework is a
coordination network with organic ligands containing potential voids. A coordina-
tion network is a coordination compound extending through repeating coordination
entities in one dimension, but with cross-links between two or more individual
chains, loops, spiro-links, or a coordination compound extending through repeating
coordination entities in two or three dimensions; and finally, a coordination polymer
is a coordination compound with repeating coordination entities extending in one,
two, or three dimensions [18]. The study of MOFs has been developed from the
study of zeolites, except for the use of preformed ligands. MOFs and zeolites are
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Fig. 1.4 Example of a MOF-5 and b zeolite catalyst. Corresponding ¢ double gyroid and d, e
network topologies with four-connected branching points (dia-net based on diamond structure) or
vertices (chiral qtz-net based on quartz structure) [19]

produced almost exclusively by hydrothermal or solvothermal techniques, where
crystals are slowly grown from a hot solution. In contrast, MOFs are constructed
from bridging organic ligands that remain intact throughout the synthesis [19]. In
some cases, the pores are stable during elimination of the guest molecules (often
solvents) and could be used for the storage of gases such as hydrogen and carbon
dioxide. Other possible applications of MOFs are in gas purification, gas separation,
electro- and photocatalysis, as sensors, energy harvesters and supercapacitors [20].

1.3.3.2 Biophotonic Materials

The topology of mixed di- and triblock copolymers as well as single and double
gyroids in butterfly wings, weevil chitin and bioinspired photonic bandgap crystalline
materials, zeolites and other metallo-organic frameworks belongs to triply periodic
minimal surfaces. Depending upon the relative concentration of the constituents,
temperature and pressure, the topology of block copolymers and biomacromolecular
systems can change from lamellar, globular, and tubular to gyroid and double gyroid
structures [21-23]. The self- and directed-assembly of block copolymers result in
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complex topologies (third row, Table 1.2) as a function of relative concentration of
different types of polymer blocks and the interaction energy between different types
of monomers. Interestingly, the gyroid is a triply periodic minimal surface where
mean curvature H = 0 that belongs to the family of P (primitive) and D (diamond)
Schwarz surfaces and it separates space into two identical labyrinths of passages
discovered by Alan Schéen in 1970.

Biomembranes can be flat (lamellar) or curved depending on the structures they
enclose (fourth row) [24] and they can also morph into a spherical or toroidal topol-
ogy, in some cases with g>1 (fifth row). As indicated, MOFs [25] also form peri-
odic minimal surfaces and gyroid-like structures (sixth row). Finally, supramolecular
assemblies may emerge with a variety of topologies, including spheroidal, periodic
with g = 1, or even a gyroid-like structure [26]. It is thus highly desirable to probe
and quantify the topological attributes of the examples portrayed in Table 1.2.

We reiterate that topology finds its multifaceted presence in a variety of biological
materials, particularly in the context of biophotonics. Some interesting examples
include polarized iridescence in jewel beetle, butterfly chitin, bird keratin [27] and
gyroid-type photonic crystals in diamond weevil and wing scales [28].

1.4 Topological Phases in Condensed Matter

Topological materials: Materials in which topological aspects, usually involving
boundary effects such as surface or edge effects, alter the electronic, transport, mag-
netic and various other properties are christened as topological materials [29]. In par-
ticular, topological superconductors, topological insulators, topological crystalline
insulators, and some Dirac materials (e.g. Weyl semimetals and graphene) are impor-
tant members of this class. To understand topological invariants and the properties of
these materials, topological field theory has been developed recently [30]. Finally, we
note that some of these materials can possibly support the so called non-abelian parti-
cles (or elementary excitations) called anyons, Majorana fermions being an example,
which can enable the current pursuit of topological quantum computing through the
braiding statistics of Majorana fermions. The latter paradigm is a viable approach
for fault-tolerant quantum computation currently under consideration [31].

Topological defects: In general, certain material defects that interpolate between
two different orientation states, e.g. domain walls and those resulting from cer-
tain material discontinuity, for instance disclinations and dislocations, constitute the
broad class of topological defects. Monopole-like excitations and out-of-plane vec-
tor configurations, e.g. skyrmions and vortices, also belong to this class [2]. Clearly,
such defects alter the macroscopic properties of materials, e.g. strength, electronic
transport and magnetic response. Since the presence of toplogical defects affects
materials properties in unusual ways; it is imperative that we are able to control
experimentally the density and generation of these defects.
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1.4.1 Real-Space Topological Materials

While most of the topological materials discussed below such as topological insula-
tors and Weyl semimetals deal with topology in the momentum or k-space, e.g. the
topology of the Fermi surface, synthesizing topological crystals in real space is both
intriguing and important. In fact, a Mobius strip has been synthesized using a crys-
talline ribbon of NbSes3, which is a low-dimensional inorganic conductor exhibiting
charge-density-waves (CDW). The width of such a strip is about one micron whereas
the ring diameter is about 100 ms. Similarly, figure “eight” structures with a dou-
ble twist, knot crystals and Hopf link materials have also been synthesized [32-34].
Interestingly, the various topological arrangements of NbSe; all show CDW phase
transitions. Such topological variants can also be synthesized using TaSe; and TaS;.

Changes in topology with a twist singularity have been observed in soap-film
Mobius strips [35]. In this process the linking number of the film’s Plateau bor-
der and the centerline is altered. Similarly, simulations based on a discrete, lattice
based model have demonstrated the influence of a material’s stretchability on the
equilibrium shape of a Mobius strip [36].

1.4.2 Dirac Materials

The (nonrelativistic) Schrodinger equation describes conventional metals, semicon-
ductors and insulators, for which the electronic energy dispersion of low-lying exci-
tations is quadratic: Eg = p>/2 m". Here p denotes the electron momentum and m” the
effective mass. In contrast, there is a growing family of materials with electronic band
structure that exhibits linear dispersion (Fig. 1.5), called Dirac materials [37, 38].
One salient feature of these materials is that their valence and conduction bands touch
at a few isolated points known as the Dirac points (and the associated band attributes
are called the Dirac cones). These points remain unaltered under perturbations, or
equivalently are topologically protected, as a consequence of certain symmetries.
For graphene, it is the sublattice symmetry, for topological insulators it is the time-
reversal symmetry [39, 40] whereas for topological crystalline insulators [41, 42]
it is the mirror (or a related crystalline) symmetry. In the case of two-dimensional
Dirac materials (that are described by the relativistic Dirac equation) the electronic
energy dispersion is linear in momentum, Ep =co - p+mc2 o. Here 0 = (o4, 0y) are
Pauli matrices and the Fermi velocity vg replaces the speed of light in the material.

An important implication of the linear dispersion of Dirac materials is their
enhanced sensitivity to applied magnetic field in two dimensions. Specifically, elec-
tronic energy level spacing is proportional to /B in massless Dirac materials in
contrast to B in usual materials. The electronic Dirac spectrum in topological insula-
tors, d-wave superconductors and graphene has been measured using angle resolved
photoemission spectroscopy (ARPES) as well as scanning tunneling spectroscopy
(STS) [37]. Beyond graphene, silicon and germanium monolayer structures named
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Fig. 1.5 (Upper panel) Schematic band diagrams for metals without a gap (left), Dirac materials
exhibiting linear band dispersion as well as a Dirac cone (middle) and insulators with a band gap
(right). (Lower panel) Angle-resolved photoemission spectroscopy (ARPES) results for graphene
obtained at the Advanced Light Source at LBNL and the corresponding DFT calculations of density
of states. Adapted in part from [37]

silicene [43], germanene [44], and sp-sp? carbon allotropes called graphynes [45] also
exhibit Dirac cones and thus belong to the growing family of two-dimensional Dirac
materials. Related honeycomb monolayers of phosphorus and tin called phospho-
rene [46] and stanene [47], respectively, represent novel two-dimensional topological
materials. Even a lead based monolayer called plumbene has been theoretically pro-
posed.

Nodal line insulators and semimetals: In some topological semimetals, such as
the strongly spin-orbit coupled compound PbTaSe,, valence and conduction band
touch at one-dimensional Fermi lines known as nodal lines [48]. Unlike the (zero-
dimensional) Weyl points, which are protected against perturbations that preserve
translational symmetry, the protection of nodal lines requires additional crystal sym-
metries, e.g. mirror reflection. They have been studied using ARPES [48], and are
also characterized by an integer topological invariant. Electronic structure calcula-
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tions of these materials and relevant experiments are discussed in Chap. 6 in this
book.

There are three kinds of spin half-integer particles (e.g. electrons) in nature called
fermions that can occur in condensed matter and materials as well as in photonics:
Majorana, Dirac and Weyl. For particles with mass and linear dispersion, graphene
represents a prime example of Dirac particles. Materials comprising particles without
mass but with linear dispersion are called Weyl materials or Weyl semi-metals, e.g.
NbAs, NbP, TaAs and TaP [49, 50]. There has been an intense search for such mate-
rials in recent years. These materials can be viewed as three-dimensional analogs
of graphene with broken time reversal and spatial inversion symmetry. Note that
Weyl semimetals can be characterized by the experimental observation of Fermi
arcs in ARPES [51]. Interestingly, they can also exhibit magnetic monopoles in the
crystal momentum (or reciprocal) space. Particles that possess mass and are also
their own antiparticles are termed Majorana fermions. There has been a great deal
of experimental search for Majorana fermions [50]; it is anticipated that topological
superconductors [52, 53] might possess them as quasi-particles. Beyond their fun-
damental significance, there is growing excitement about their role in topological
quantum computing [31].

1.4.3 Topological Insulators and Topological
Superconductors

Topological insulators (TI), which are metallic at the surface and insulating in the
bulk, and related materials usually have a strong spin-orbit coupling [39, 40]. It is
worth noting that until the discovery of quantum Hall effect (QHE) in 1980 it was
believed that all fundamental laws of nature and phases could be understood in terms
of symmetry (and geometry). However, QHE provided the first instance of a quantum
state with no spontaneous broken symmetry. The behavior of QHE depends only on
the system’s topology and not its specific geometry thus opening up the frontier field
of topological order.

The first two-dimensional TT was discovered in HgTe quantum wells [29]. This
topological state is also known as the quantum spin Hall state. Band inversion is the
main mechanism herein where the spin-orbit coupling inverts the usual ordering of
conduction and valence band. Subsequently, three-dimensional topological insulators
were discovered in materials such as Bi,Se; Bi, Tes and Sb,Tes. The band inversion in
these materials occurs at the Brillouin zone center due to the spin-orbit coupling [29].
The topological surface state comprises a helical Dirac fermion in that the electron
spin is perpendicular to its momentum; in other words it forms a left-handed helical
texture in momentum space. No gap for the surface state can be introduced by a time
reversal invariant perturbation.

Topological insulators can also exist without spin-orbit coupling in the presence
of certain crystal point group symmetry. They are called topological crystalline insu-
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lators (TCI). SnTe is a prime example of a topological crystalline insulator [41,
42]. Lattice periodicity is not a requirement and even quasicrystals can display TI
behavior under appropriate conditions. Recently, a two-dimensional quasicrystal in
the presence of a uniform magnetic field exhibited chiral edge states (in analogy
with Chern insulators in periodic lattices). Such materials have been christened as
topological Hofstadter insulators [54].

The proximity of a superconductor to the surface of a topological insulator can
result in a topological superconductor [52, 53]. The latter is characterized by the
presence of Majorana zero modes. In essence, topological superconductivity involves
edge-mode superconductivity in topological insulators. Note that two-dimensional
topological superconductivity in InAs/GaSb [53] and three-dimensional supercon-
ductivity in CuxBi,Se; [52] has been experimentally observed. Another example
of such a material is Sr,RuQOy (possibly with chiral p-wave superconductivity). We
emphasize that the Berry phase (in momentum space) plays a key role in TI and
topological superconductors.

We can view T1in two ways: (i) as unusual band insulators with surface states (i.e.
obtaining a 3D state from 2D), and (ii) as materials with a quantized magnetoelectric
response (i.e. obtaining a 2D state from 3D). In essence, the notion of TI is a gen-
eralization of the idea of integer quantum hall effect IQHE). In particular, a system
of noninteracting lattice fermions with broken time-reversal symmetry can exhibit
IQHE, which is characterized by a topological invariant called Chern number and
is stable against disorder and interactions. Analogously, a system of noninteracting
Bloch fermions with unbroken time-reversal symmetry corresponds to TI. Akin to
fractional QHE there may well exist fractional TI [55].

1.4.4 Weyl Semimetals

Weyl semimetals refer to solid state crystals whose low energy excitations correspond
to Weyl fermions [56-58]. The latter carry electrical charge even at room temperature.
These materials are a topologically nontrivial phase of matter (Fig. 1.6). Historically,
in 1929 Hermann Weyl showed the existence of a massless fermion as a solution of
the Dirac equation, now known as the Weyl fermion. These materials are three-
dimensional analogs of graphene in that Weyl semimetals show linear dispersion
around certain nodes in the Brillouin zone called Weyl points, which always appear
in pairs. They also exhibit Fermi arcs (Fig. 1.6), which are unclosed lines that start
from one Weyl point and end at the other with opposite chirality (Figs. 1.7 and 1.8),
in addition to chiral magnetotransport.

TaAs represents a typical example of a (type-I) Weyl semimetal (Fig. 1.7). Other
related materials such as WTe, and MoTe, belong to what are known as type-II Weyl
semimetals [59, 60]. For a material to be a Weyl semimetal it must break either the
lattice inversion symmetry or the time-reversal symmetry. In the case when these
two symmetries coexist, there may exist a pair of degenerate Weyl points resulting
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Fig. 1.6 A comparison of the double Dirac cone band structure for a Dirac semimetal (left panel)
CdzAs; and a Weyl semimetal TaAs (middle and right panels). For the Weyl semimetals (a) Fermi
arcs connecting regions of different Chern numbers (C = 0 and C = 1) are depicted. (b) The
corresponding Fermi level is also shown. Adapted in part from [56]

in what is known as a Dirac semimetal. Weyl fermions can be controlled by both the
optical and electrical means (Fig. 1.9).

1.4.5 Other Topological Materials

In topological defects called magnetic monopoles (or magnetic charges) the effective
magnetic field lines emanate from a point radially outward. Such defects have been
likely observed in artificial spin ice (ASI) [61] as well as in current driven chiral
magnets where skyrmion tubes merge or separate at an isolated number of points
[62]. ASI is an assembly of nanomagnets in a particular lattice whereas skyrmion
is a spin texture in which the spin orientation goes from 0 to . Equivalently, the
spin texture covers the unit sphere once. One could think of ASI as a magnetolyte in
analogy with charges in an electrolyte. In these materials one expects a monopole-
antimonopole pair to exist, which is connected by the so called Dirac string. There
is a flux in the interior of a Dirac string which renders the presence of monopoles
consistent with the requirements of Maxwell’s equations. Both skyrmions and ASI
are discussed in detail in Chaps. 4 and 5 in this book.

Penta-Graphene: Based on total energy calculations a new two-dimensional
metastable carbon allotrope, composed entirely of pentagons (that resemble Cairo
pentagonal tiling), has been proposed [63]. It was motivated by the recent proposal
of T12-carbon phase, which can be chemically exfoliated to produce a single layer
penta-graphene. This allotrope exhibits dynamical, thermal and mechanical stability
in addition to a large band gap, ultrahigh mechanical strength and negative Poisson’s
ratio. It can withstand temperatures as large as 1,000 K. However, it still remains to
be experimentally synthesized.
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Fig. 1.7 Spin-orbit coupling (SOC) induced band inversion leading to the formation of topological
insulators (TI), Dirac semimetals (DSM) and Weyl semimetals (WSM). a A full gap is opened
in a TI resulting in metallic surface states. b In DSM and WSM bulk bands are gapped except at
some isolated points with linear dispersion called Dirac points and Weyl points, respectively—they
constitute a three-dimensional analog of graphene. ¢ Type-I WSM in which the Fermi surface
shrinks to zero at the Weyl points when these points are sufficiently close to the Fermi energy. d
Type-1I WSM: the Weyl points represent the touching points between the electron and hole pockets
in the Fermi surface as a result of the strong tilting of the Weyl cone. Adapted from [59]

Rolled-up penta-graphene leads to penta-tubes: Carbon nanotubes solely com-
prising pentagons, which demonstrates the structural versatility of penta-graphene.
Phonon calculations and ab initio molecular dynamics (AIMD) simulations demon-
strate the dynamic and thermal stability of penta-tubes, respectively. Unlike carbon
nanotubes, penta-tubes are semiconducting independent of their chirality [63]. Stack-
ing of penta-graphene layers leads to a three-dimensional stable structure called AA-
T12 carbon, which is also semiconducting and has properties quite different from
T12-carbon. Both electronic structure and phonon dispersion have been calculated
for this layered carbon allotrope. Analogous calculations also suggest a tetragonal
phase of metallic three-dimensional boron-nitride [64].
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Fig. 1.8 Fermi arcs in the Fermi surface of the surface band structure of a Weyl semimetal. a A pair
of Weyl cones (in two different colors) representing two different chiralities exist at nonzero Fermi
energy or at zero Fermi energy. The Fermi arcs connect these two cones. b The chiral anomaly in
these materials can be understood in terms of the zeroth Landau level in the quantum limit. E and
B represent applied electric and magnetic fields. Adapted from [59]
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Fig. 1.9 Control of Weyl fermions by electrical and optical means. a A nonlocal electrical trans-
port device utilizing axial current from the chiral anomaly. b Electrons exhibit unusual paths on
the surface of a Weyl semimetal. ¢ Time-reversal symmetry can be broken by shining an intense
circularly polarized light. d A large photogalvanic current breaks inversion symmetry as well as
any mirror symmetry in the presence of circularly polarized light. Adapted from [60]

Hepta-graphene: Based on density-functional-theory (DFT) calculations a dynam-
ically stable, seven-membered carbon allotrope called hepta-graphene has been pre-
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dicted [65]. It has a rectangular unit cell comprising ten carbon atoms and four
hydrogen atoms. Its band structure is topologically equivalent to that of strongly dis-
torted graphene, i.e. it has Dirac cones which are robust both under compressive and
tensile strain. However, shear strain leads to a band gap, which is tunable. Note that
systems without the hexagonal symmetry rarely exhibit Dirac cones; hepta-graphene
is one such example.

Phagraphene: Another monolayer allotrope of carbon called phagraphene com-
posed of pentagons, hexagons and heptagons has been proposed which also exhibits
Dirac cones in a rectangular lattice and is robust against external uniaxial stress.
However, similar to hepta-graphene a gap is opened in this material under shear
stress [66]. A calculation of the phonon spectra demonstrates this allotrope is also
dynamically stable (akin to hepta-graphene).

Phosphorene and its nanoribbons: Remarkably, the phosphorus analog of
graphene called phosphorene has been synthesized, which is a promising candidate
for thermoelectric applications [67]. Corresponding electronic, optical and transport
properties have been studied for phosphorene as well as phosphorene nanoribbons
including exciton effects. Interestingly, a related single-element based, monolayer
material called borophene [68] has been found to exhibit Dirac cones in addition to
two sublattices with a substantial ionic character.

As noted above, the graphene analog of monolayer black phospohorus, called
phosphorene was isolated in 2014 by mechanical exfoliation [46]. However, in con-
tract to graphene which is gapless, phosphorene has a band gap. Due to its superior
mechanical flexibility and electrostatic control, phosphorene is well suited for flexible
nano-circuits. Subsequently, other similar monolayer materials were either proposed
or synthesized that include silicene, germanene and stanene [69]. Notably, stanene
is a two-dimensional topological insulator.

Time crystals: Recently, the concept of time crystals (both quantum and floquet)
has gained significant attention [70]. In simple terms, crystals whose structure repeats
in time can be called time crystals. Such crystals repeat in time because they are
kicked periodically by laser pulsing or magnetic field, i.e. they are intrinsically out
of equilibrium and break time translation symmetry. They are also called space-time
crystals or four-dimensional crystals and are a novel type of non-equilibrium matter.
In addition to being closely related to dynamical Casimir effect in the context of
zero-point energy, they likely exhibit fopological order which is potentially useful
for quantum computing. Note that topological order violates the classical belief that
ordering requires symmetry breaking. Time-dependent electromagnetic fields driving
a crystalline material can tune its topological properties and may cause it to become
a Floquet topological insulator. Thus the notion of a time crystal can be extended to
Floquet time crystals [70].
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1.5 Metrology and Techniques

1.5.1 High-Resolution Electron Microscopy

Measurements that can provide information about the underlying topological charac-
teristics (e.g. genus, local connectivity) of a material through different experimental
probes such as fluorescence, optical means, etc. constitute what we mean by topolog-
ical metrology. In addition to Raman measurements, small angle X-ray (SAXS) and
neutron scattering (SANS), scanning electron microscopy (SEM), transmission elec-
tron microscopy (TEM)), stimulated Brillouin spectroscopy (SBS), various non-linear
optical imaging techniques such as three-photon excitation fluorescence polarizing
microscopy [71], X-ray tomography [72], electron holography and tomography [73]
and Lorentz TEM [74] provide metrological means to study various aspects of mate-
rials topology.

1.5.2 Nonlinear Optical Imaging

In the context of liquid crystals and colloids many optical imaging techniques have
been invoked to study topological defects such as Schlieren texture and even a more
elaborate defect called a Hopf fibration [2]. In a uniaxial nematic crystal, the Schlieren
defect is essentially the “director field”; it can be observed using a polarizing micro-
scope. On the other hand, the Hopf fibration is an exotic texture which resembles a
series of rings that are wrapped around a torus. It has been observed in chiral nematic
liquid crystals with the aid of holographic optical tweezers in conjunction with fluo-
rescence polarizing microscopy. Similarly, anisotropic optical absorption techniques
have been invoked to study the electronic structure of many of the correlated topo-
logical materials including a giant, nonlinear optical response in Weyl semimetals
[75].

1.5.3 X-Ray Tomography and Electron Holography

X-ray tomography is useful for characterizing porous media and porous networks
including gyroid structures [76]. Similarly, for studying magnetic topological defects
(e.g. vortices and skyrmions) and magnetic microstructures electron holography [73]
and Lorentz TEM [74] are very useful techniques. Depending on the length scale of
the magnetic nanostructure under consideration, magnetic force microscopy can be
used as a complementary imaging technique.
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1.5.4 X-Ray and Neutron Scattering

In order to link materials topology with metrology, small angle X-ray scattering
(SAXS) and small angle neutron scattering (SANS) techniques can be used to reveal
information about the structural and topological phases about nanoscale ordering in
materials. Note that SAXS and SANS have been effectively used to study biomem-
branes, vesicles, certain supramolecular assemblies and di- and triblock copolymer
morphologies in addition to understanding the structure of a variety of mesoporous
materials such as zeolites and MOFs [2].

1.5.5 Elasticity and Deformation Energy Characterization

Biological vesicles and block copolymers having complex topologies with a genus up
to g = 3 have been observed. In contrast, synthetic vesicles with very large values of
g (~50) can occur [83]. To model these systems, we start with the Helfrich-Canham
curvature (Fig. 1.10) free energy [84]: E;, = [dS [5(H — H,)?> +«k,K], where k), =
bending rigidity, ko = Gaussian rigidity, dS = surface element. In addition, Hy denotes
spontaneous mean curvature, K and H are Gaussian and mean curvature, respectively.
By using only topological means (e.g. Bogomol’'nyi decomposition, which is usu-
ally invoked to study topological invariance and indicates that the Helfrich-Canham
energy is greater than or equal to 47k, times a genus dependent term), one can then
calculate the elastic energy of deformation as a function of genus for vesicles [2], as
shown in Fig. 1.11b. The energy increases proportionally with genus and eventually
attains the value of 8, consistent with a mathematical extrapolation called Wilmore
conjecture. From topological analysis, one concludes that the spontaneous bend-
ing energy contribution from any deformation of the vesicles from their metastable
shapes comprises two different topological sets: shapes of spherical topology (g =
0) and shapes of non-spherical topology (g > 0). One can readily apply these ideas
to other topologies and materials. In a similar way, the deformation associated with
negative curvature periodic minimal surfaces, e.g. double gyroids and Schwarzites,
can be calculated, in particular under hydrostatic stress, if one assumes that only
the lattice parameter changes under deformation. Analogously, graphene and car-
bon nanoribbons can exist in helicoidal shape. Their axial deformation can also be
calculated by varying the pitch of the helicoid. In these cases, the elastic energy is
proportional to the material’s bulk (or axial) modulus and the Gaussian curvature.
Figure 1.11 shows the variation of Gaussian curvature K as a function of the
surface parameter T for three different values of the other surface parameter o, and
for the special direction when o = T [Through mathematical formalism for IPMS in the
complex plane, the Gaussian curvature K can be explicitly expressed as a function of
real variables T and o, [4, 5]. The expression for K(o,t) is invariant under the exchange
of ¢ and T and therefore, the two such figures must be identical [5]]. Note that for o
=0, 0.5 and < there is a minimum in K indicating elastically “soft” directions on the
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Fig. 1.10 Illustrations of various topological metrologies of a electron density distribution prop-
erty of topological atoms and molecules [77, 78]. b Butterfly wing scale photonic nanostructure
development using cross-section TEM depicting complex in-folding of the plasma membrane and
SER membrane. The developing nanostructure shows the diagnostic motif of two concentric rings
roughly in a triangular lattice. Yellow and red boxes highlight areas revealing different sections
through the (110) plane of a polarized pentacontinuous core-shell double gyroid (color insets)
[79]. Representative structural morphology of arthropod cuticular nanostructures and SAXS two-
dimensional patterns from the photonic scales or setae [80], high-resolution electron microscopy
revealing topological structures. ¢ Interferogram of a toroidal ferromagnet measured using electron
holography [81]. d Structural diagnoses of representative SAXS profiles of arthropod cuticular
photonic nanostructures. e single- and triple handlebar (g = 1, 3, respectively) textures of col-
loidal particles that are non-spherical and dispersed in liquid crystals as obtained by three-photon
excitation fluorescence polarizing microscopy (3PEF-PM) in addition to optical tweezers [82]

periodic minimal surface. However, for ¢ = 1 we observe a monotonically increasing
“kink like” variation of K with t. Also for the ¢ = 0 case, there are two values (371/50
and 37t/5) for which a local maximum is observed indicating elastically “hard” or
stiff directions. Also note that the elastic energy density is directly proportional to K.
Thus these curves provide a guide to the deformation energy behavior of Schwarzite
surfaces.
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Fig. 1.11 a Variation of Gaussian curvature K for a minimal periodic surface such as Schwarzite as
a function of t for three different values of o and for the special direction when ¢ = T corresponding
to various directions on the unit patch of the P-surface. The inset shows the stress-strain behavior in
three different curves namely, [111], isotropic and transverse directions for SIS triblock copolymer
forming a double gyroid phase [85]. b Elastic deformation energy of vesicles (Eg) versus genus [86]
where blue circles are exact values; crosses are numerical estimates computed with a (Brakke’s)
surface evolver. Note that for large values of g the red curve is an estimated fit to the deformation
energy. Finally, the green line is the asymptotic value of 8

1.5.6 Topological Correlators and Other Metrics

Analogous to usual materials, the notions of two-point and higher order correla-
tions can be generalized to topological correlations. The latter could conceivably be
inferred from a combination of scattering techniques. Similarly, for nets and ram-
ified structures one could envision obtaining network topology correlations (about
local connectivity) from appropriately chosen momentum range in scattering exper-
iments. Geometric measures such as curvature-curvature correlations (both in mean
and Gaussian curvature) can complement the insights gained via topological corre-
lations.

1.6 Computational Topology of Materials

Combining notions from topology and numerical algorithms, the field of computa-
tional topology has emerged. One of the key ideas in this context is the discovery of
topology through algorithms. Although this topic belongs to the realm of computer
science and mathematics, extending it to study the properties of topological materi-
als opens a new avenue of investigation. This is of particular interest for materials
involving network like structures, double gyroids, etc.
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1.6.1 Topological Databases and Visualizing Topology

Over the past two decades topological databases and computer algorithms such as
EPINET and TOPOS [87] have been developed. They are vey useful in designing
extended crystalline frameworks and architectures. In the context of Materials by
Design, Directed Materials for Energy and Environment, and Materials Genome
Initiative (MGI), it is now imperative to create databases for the properties of topo-
logical materials which can in turn be used to predict new topological materials with
desired physical properties targeting specific applications (i.e. Topological Materials
Informatics). On the other hand, the analysis of various databases using techniques
from topology is called topological data analysis (TDA), and it is a growing area of
research which can fruitfully be applied to study materials.

Many tools have been developed to visualize the topology of networks and that of
vector fields (e.g. spin configuration, flow fields, etc.). Some examples include TOPO,
Otter, TorusVis, Kiwi, RadialNet, among others. They also enable us to display var-
ious topological aspects of a structure such as genus and network node connectivity.
Also, one can explore how local topology evolves or changes under parametric vari-
ation in a material. Adopting these tools to understand the structure and properties
of topological materials can lead to an entirely new way of understanding materials
we have discussed in this chapter.

1.6.2 Miscellaneous Topics

In this chapter, we have tried to cover a broad variety of topological materials and their
properties. However, our exposure is not comprehensive as we have not addressed the
fields of topological photonics, topological plasmonics (and metamaterials), mechan-
ical metamaterials (or auxetic materials) as well as the use of topology in charac-
terizing materials microstructure. For the sake of completeness we briefly mention
these topics here.

Topological photonics: Inspired by the observation of topological phases in con-
densed matter (e.g. TT and TCI, see Fig. 1.12) and materials science, analogs of such
phases have been realized in the photonic context ushering in the field of topological
photonics [88]. An ingenious design of wave vector space topologies is enabling
the creation of interfaces supporting entirely new states of light with many useful
properties. For instance, one can create unidirectional waveguides in which light
flows around large imperfections without back-reflection (akin to interfacial elec-
tron transport without dissipation in topological insulators in condensed matter [39,
40]). There has been significant progress in the realization of a whole slew of topo-
logical effects in photonic crystals, photonic quasicrystals, coupled resonators and
metamaterials. In the near future one expects to discover topological mirrors and
new applications of interacting photons by invoking nonlinearity and entanglement.
Some of the technological advantages here involve decreased power consumption,
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Fig. 1.12 Topological crystalline insulator. a High-symmetry points in the Brillouin zone and three
projected surfaces for the rock-salt crystal structure. b Dirac cones in the (001) and (111) surface
Brillouin zones. ¢ Calculated dispersion for the (001) double Dirac cone surface state. Adapted
from [42]

improved coherence in quantum links, avoiding use of isolators in photonic circuits,
etc.

Topological plasmonics: Plasmonic excitations in Dirac materials including single
and bilayer graphene and topological insulators are important both for a fundamen-
tal understanding of these materials as well as for their application in optoelectronic
devices [89]. Recently an analogy between the usual two-dimensional magnetoplas-
mon [90] and p-wave topological superconductors has emerged. Analogs of photonic
topology can be envisioned not only for surface plasmons but also for other bosonic
systems such as magnons, phonons, excitons and exciton-polaritons. The key idea is
that topological effects can be exploited to substantially improve the robustness of
plasmonic, photonic and other devices in the presence of imperfections and various
types of disorder.

Microstructure and topology: Statistical topology of cellular networks using
Poisson-Voronoi cells has been recently developed along with a topological frame-
work for local structure analysis and grain-growth microstructure characterization
[91, 92]. Specifically, within a unified mathematical framework, local structure in
both ordered and disordered materials can be classified by using the topology of the
Voronoi cell associated with a particle (Fig. 1.13). For a given set of particles the
Voronoi cell of a particle refers to a region in real space that is closer to the particle
than to any other. This topological description of local structure offers many advan-
tages for structural analysis compared to continuous descriptions. It also enables to
identify which particles are associated with defects as opposed to belonging to spe-
cific (crystalline) phases. This versatile approach is also applicable to highly defected
solids and glass-forming liquids. Moreover, through the distribution of different topo-
logical types the Voronoi topology aids the characterization of disordered systems
in a statistical manner.

Another important concept that helps our understanding of microstructure is that
of hyperuniformity [93]. One could think of unusual amorphous states of materials
that lie between crystal and liquid as disordered many-particle hyperuniform sys-
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Fig. 1.13 Upper panel: a, b and ¢ Voronoi cells of particles for the BCC, FCC and HCP crystals.
Vertices where more than four Voronoi cells meet are indicated by red circles. Near these vertices
small perturbations in particle positions lead to topological changes. d Space of all possible con-
figurations of n neighbors; it can be divided into regions of constant Voronoi cell topology. Inset
depicts the neighborhood around an FCC point. Lower panel: Sharing of an unstable vertex by six
Voronoi cells in HCP or FCC crystals. A small perturbation can morph the vertex (in A) to either a
four-sided face (in B) or a pair of contiguous triangular faces (in C). Adapted from [92]

tems. Put another way, in a hyperuniform system density fluctuations are completely
suppressed at very large length scales, which means that the structure factor S(k)
tends to zero as the wave vector K vanishes. It provides a unified framework to classify
and categorize certain disordered configurations, crystals and quasicrystals. It is also
important for understanding local fluctuations in the interfacial area of two-phase
media.

1.7 Conclusion

Based on a series of eclectic examples, we elucidated that the topological concepts
are beginning to take a firm foothold in materials science [2]. Our hope is that the
emerging shift from a structure =» property =» functionality traditional paradigm
to a new topology/geometry =» property =» functionality emerging paradigm will
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assist materials scientists to study various usual and topological materials using the
powerful interrelated concepts of (local) geometry and (global) topology. We illus-
trated this paradigm through a variety of materials including nanocarbon allotropes,
soft matter, supramacromolecular assemblies, vesicles, biomembranes and MOFs.

An additional question is to understand the processing-structure-property (PSP)
aspects of materials science for topological materials, i.e. how do synthesis and
processing affect the topology of a material. In other words, how do we develop a
processing-topology-property (PTP) based understanding of materials, which may
lead to insights into interfaces between disparate topological materials and eventually
to advanced manufacturing. This consideration naturally leads to another research
frontier that is emerging: topological dynamics, i.e. keeping track of the time evolu-
tion of either the topology of or the relevant topological phase in a given material of
interest.

The power and role of topology is turning out to be crucial in materials science in
terms of unraveling certain types of defects (e.g. skyrmions, monopoles, hopfions,
vortex lines) and in understanding an emerging class of topological materials with
linear electronic dispersion such as Dirac materials and Weyl semimetals. Graphene,
its two-dimensional siblings, e.g. silicone, germanene and phosphorene [46], in addi-
tion to topological insulators and topological superconductors are paving the way for
unusual and technologically important properties. A variety of external perturbations
including magnetic doping, electric and magnetic fields, light, disorder, temperature
gradient, field gradients, strain and variation in film thickness can be used to alter
and probe these fascinating materials. Inclusion of electronic correlations may lead
to yet more exotic states of matter, e.g. fractional topological insulators [55].

We also discussed a variety of characterization techniques for topological materi-
alsranging from optical imaging to electron holography, from fluorescence polarizing
microscopy to Lorentz TEM, as well as small angle X-ray and neutron scattering.
One aspect of this field that requires substantial progress and is now ripe for new
ideas is that of topological metrology including use of topological correlations (both
in real- and k-space) to characterize different material properties. The field of topo-
logical databases and informatics is still in its infancy. The importance of topology is
thus ineluctable in materials science given the enormity of expected breakthroughs
spanning fundamental and invaluable insights into modern and novel technologies.
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