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Foreword

Topology studies the properties of geometrical objects that remain unaltered when
subjected to transformations known as deformations in the materials context and
homeomorphisms with regard to mathematical objects. It is no wonder that the
concepts and methods of topology permeate modern mathematics and physics.
Over the past few decades, it has also clearly emerged that topological notions have
become pervasive in materials science. New synthesis, characterization, modeling,
and simulation techniques are extending the frontiers of topological materials. For
this reason, there has been a need to bring these new developments and excitement
in a cohesive book to the broader materials community. Both co-editors are well
qualified in this interdisciplinary field as they have diligently worked at the interface
of materials science and topology. They have earnestly promoted this field by
organizing international symposia and workshops on this topic. Similarly, all the
chapter authors bring forth their passion and technical rigor in the book. This book
seamlessly bridges a gap between how materials science is traditionally viewed and
how topological concepts can be gainfully employed to understand complex
materials in an accessible way. This book thus emphatically promotes the emerging
paradigm of geometry/topology ! properties ! applications in the context of soft
and hard condensed matter, biomaterials, and a suite of novel topological materials
including topological insulators, low-dimensional carbons, Dirac- and Weyl
semimetals. There is an emphasis on the role of topological defects such as vortices,
skyrmions, and disclinations which are discussed in the materials that harbor them.
The book will be accessible to a broad cohort of researchers ranging from graduate
students to beginners and advanced practitioners alike.

Sapporo, Japan Satoshi Tanda
Professor, Department of Applied Physics,

Center of Topological Science and Technology
Hokkaido University
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Preface

Role of Topology in Materials Science is a rapidly evolving area of research with
significant cross-fertilization between topological concepts and materials science.
Topology is ubiquitous in physical systems yet most materials are not usually
viewed from this perspective. Beyond the usual structural and geometric descrip-
tions, it is shown how topological considerations lead to the emergence of novel
phases of matter and how to understand their properties from this new vantage
point. One of the major objectives of the book is to establish why topology is
important for understanding modern and future functional materials, to identify
common topology inspired synthetic routes, to develop novel experimental char-
acterization techniques, to evolve theoretical and simulation strategies as well as
topological data analysis, related predictive modelling and phenomenology in
topological materials. The book is likely to be broadly accessible and caters to
junior researchers, graduate students as well as experts in physics and applied
mathematics besides materials science and engineering.

The book contains eleven chapters, which represent partly a review with a broad
perspective and partly original research aimed at identifying open issues in topol-
ogy of materials. The first two chapters describe the basic notions of topology in a
broad spectrum of materials and invoke the concepts of genus, Euler characteristic,
network topology and homotopy classes in the context of low-dimensional carbons
and magnetic materials and interlinking topology and geometry. Both real space
(e.g. Möbius ribbons) and momentum space (e.g. Dirac materials) topological
materials are explored using the topological concepts.

Chapters 3–6 illustrate the importance of topology in condensed matter systems.
Chapter 3 demonstrates the emergence of curvature when non-hexagonal (e.g.
pentagon, heptagon) carbon rings are embedded into the nanoscale graphene sheets.
In particular, emphasis is placed on the geometry-property correlations that are
inherent in fullerene polymers and single walled carbon nanocoils. These structures
show curvature or torsion arising from the local change in the carbon network
topology. Chapter 4 focuses on artificial spin ice as a model system to study
topology by design in magnetic nanomaterials such as permalloy. The role of
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geometric frustration is accentuated here in addition to the concepts of magnetic
monopoles, Dirac strings and ‘magnetricity’.

In Chap. 5, a magnetic topological excitation called a skyrmion is studied in
confined geometries. A skyrmion is a magnetic whirl or a spin configuration quite
distinct from a magnetic vortex and a domain wall. Due to its topological stability
and an extremely low current needed to move it, potential applications in
low-power spintronics and memory devices are discussed. The importance of the
Dzyloshinskii-Moriya interaction in stabilizing skyrmions and the role of con-
finement (using stripes) in creating individual skyrmions are emphasized. Chapter 6
provides an in-depth understanding of topological phases in quantum matter by
virtue of electronic structure calculations and angle-resolved photoemission spec-
troscopy. Broadly described as Dirac materials (i.e. with linear electronic disper-
sion), they include both two- and three-dimensional topological insulators,
topological superconductors, topological crystalline insulators as well as Weyl and
Dirac semi-metals, and are delineated via the Fermi surface evolution and relevant
symmetries. Finally, the effects of electron correlations in creating exotic topo-
logical phases, e.g. topological Kondo insulators, are discussed.

The next two chapters delve into what we may refer to as biological-mathematical
applications of topology. Chapter 7 deals with nanomaterials which may form as wire
network graphs from triply periodic surfaces including gyroids. The analysis entails
symmetric groups, singularity theory and representation theory. The esoteric analysis,
however, leads to very useful results in terms of understanding band structure and
Dirac points in materials discussed in Chap. 4 such as Weyl and Dirac semi-metals.
In the presence of a magnetic field the analysis indicates that the spectrum of the
gyroid wire network can be characterized as the three-dimensional analogue of the
Hofstadter’s butterfly. In chapter 8, knot theory is invoked to explain a variety of
entangled biomolecules such as proteins. Such proteins form knots, links, slipknots
and lassos and their knotting fingerprints are described by relevant databases, e.g.
KnotProt. The key idea here is that entanglement is a global property of a protein
chain. Besides folding of the proteins their functions are portrayed via knotting,
which is not accidental but must play certain biological role.

The subsequent two chapters elaborate on the important role of topology in soft
matter. Chapter 9 nicely captures a slew of rich phenomena in liquid crystals:
nematic, smectic and cholesteric mesophases. Within the homotopy theory of
defects such topological entities as Schlieren textures, disclination loops, hedge-
hogs, skyrmions, torons and Hopf textures are identified and classified. The impact
of geometric constraints on topological properties is clearly illustrated. The topo-
logical characterization of knotted defect lines and construction of the director field
with arbitrary knotted disclination lines are illustrated. Chapter 10 explores the
topologically complex morphologies of block copolymers and associated phase
diagrams. Using both experiments and simulations, it is shown that molecular
architecture (i.e. chain topology) is a defining variable that influences the resulting
self-assembly morphologies. In addition, the interfacial dimensionality changes as
the molecular topology is altered and the structural response is a combination of
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certain motifs. Similarly, colloids and related soft matter also exhibit topology
dictated structures and properties.

Finally, Chap. 11 describes the role of topology in the emergence of structural
colors and iridescence observed in arthropods including beetles, weevils and but-
terflies. Based on electron microscopy and small angle X-ray scattering analysis,
various biophotonic nanostructures are explained in terms of gyroid-like minimal
surfaces. Interestingly, gyroids and other triply periodic minimal surfaces are
invoked in Chap. 7 as well, albeit in the context of wire network graphs to explain
Dirac points in certain lattices.

These eleven chapters discuss a multitude of open questions and set the stage for
future research in this highly multidisciplinary and evolving field. They also pro-
vide a much needed integration between the two broad subject areas, materials
science and topology, which is expected to usher into further insights and a better
understanding of materials from a topological perspective. However, much remains
to be improved and learned such as the detailed topological metrology and com-
putational predictability. Besides seasoned researchers the book will also serve as a
valuable resource for graduate students in materials science and engineering,
condensed matter materials physics, applied mathematics, physical chemistry,
biophysics and other related disciplines.

Bowling Green, Kentucky, USA Sanju Gupta
Los Alamos, New Mexico, USA Avadh Saxena
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Chapter 1
Importance of Topology in Materials
Science

Sanju Gupta and Avadh Saxena

Abstract Weunderscore the substantial need for understanding awide range ofmul-
tifunctional materials through the notions of topology-geometry interrelationships
such as genus, Euler characteristic and network connectivity. After introducing the
basic concepts of topology we first illustrate these notions on nanocarbon allotropes
as a case study. Next, we consider the growing class of emergent topological mate-
rials that encompass both real-space and k-space topological materials including
Dirac materials, topological insulators, Weyl semimetals as well as soft and poly-
meric matter, supramacromolecular assemblies and biophotonic materials. Finally,
we emphasize and evaluatemetrics to quantify topology in order to study and classify
materials properties relevant for wide ranging modern and future technologies.

1.1 Introduction

The recent blooming of topological notions in condensed matter physics, synthetic
materials chemistry, supramacromolecular chemistry, materials science and bio-
physics has given impetus to the development of new and the revision of many
old concepts in the physical world [1, 2]. These sub-disciplines are being greatly
benefitted by invoking topological concepts to understand novel, complex and emer-
gent states of matter such as quantum Hall systems, topological insulators, Dirac
materials and Weyl semimetals, to name just a few of these new classes of materi-
als. The 2016 Nobel Prizes in Physics and Chemistry are a direct testament to this
observation [1]. If the mainstream materials science can tap into the full power of
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topology, that would certainly open avenues for novel materials synthesis, property
characterization as well as applications [2, 3].

Our aim in this chapter is to answer the key question: why is topology important
for understanding materials? Topology refers to the fact that certain materials prop-
erties remain invariant under continuous deformation such as stretching, bending or
twisting (but without cutting or puncturing at any place in the material systems). It
also means that nearby points remain neighbors during deformation. In this sense a
sphere and ellipsoid are topologically equivalent; so are a cone and disk [2].

First and foremost, we can classify the global topology of a material in terms
of its characteristic genus (or handlebars or holes), number of open boundaries and
local connectivity. Different topological phases of matter can be distinguished by
a topological invariant (usually an integer such as the genus, Chern number, wind-
ing number, etc.) [1]. While a carbon nanoring and NbSe3 Möbius strip represent
real-space topological materials, recent interest in Dirac materials and topological
insulators refers to topology in the k- or momentum space usually in terms of the
electronic band structure. Quantum oscillations such as the de Haas-van Alphen
(dHvA) and Shubnikov-de Haas (SdH) oscillations are a direct consequence of the
topology of the Fermi surface of a crystal in a magnetic field. Based on these and
many other illustrative examples mentioned below, we aim to show that the intersec-
tion of topology and materials science is both physically insightful and aesthetically
appealing.

1.2 Essentials of Topology

1.2.1 Genus and Euler Characteristics

First, we introduce the basics of topology. Global topology of a material is described
by a parameter called genus (g), which is an integer characterizing number of holes
[2]. For instance it is zero for a sphere but equal to one for a torus. The genus is
related to another parameter (of a surface) called the Euler characteristic, defined
by χ � 2 (1 − g). For objects with boundaries or edges it can be expressed as
χ � V −E +F , where V , E and F represent the number of vertices, edges and faces
of a polyhedron on the object. The integral over the surface of a material’s Gaussian
curvature K gives 2π times the Euler characteristic (the Gauss-Bonnet theorem),
connecting geometry with topology.

1.2.2 Network Topology

In the context of supramacromolecular architectures metal-organic frameworks
(MOF) and geometric hierarchies inherent to many soft- and biomaterials (e.g. intra-
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cellular structures such as endoplasmic reticulum), topology arises in a different
guise, namely, network topology [2]. Here one focuses on local connectivity at a
given node in the network, i.e. the number of links emanating from a particular node
in the network. Two networks can have identical topology even though their physi-
cal interconnections or links, distances between the nodes and other attributes (e.g.
transport of some quantity through the links) may differ. In biology network topology
may refer to the network of biological interactions, for instance the metabolic net-
work. Topologies commonly observed in biological networks include ring network,
bus network and star network. As examples of the important role of network topol-
ogy in materials, note that sound propagation in granular materials and mechanical
properties of, e.g. siloxane, elastomers crucially depend on their network topology.

1.2.3 Geometry-Topology Interrelationship

As shown in Fig. 1.1 a cup can be continuously deformed into a sphere, thus they
have g = 0 and χ = 2. A cup with a handle is equivalent to a donut (g = 1, χ = 0), but
with two handles it is equivalent to a double-donut (or Swedish pretzel, g = 2, χ =
−2). In the same vein, a cup with three handles can be continuously deformed into
a triple-donut (or German pretzel, g = 3, χ = −4). A red blood corpuscle (RBC), a
biological vesicle with one hole, two holes and three holes, respectively, represent g
= 0, 1, 2 and 3 or χ = 2, 0, −2 and −4 objects. Since topology is essentially elastic
geometry, many different geometries may correspond to the same topology, i.e. same
g and χ. Likewise, a variety of geometrically different networks may belong to the
same topology, that is, a network with given geometry can be continuously deformed
to obtain a network of different geometry.

1.3 Topological Taxonomy of Functional Materials

1.3.1 Nanocarbons

Carbon offers a rich variety of forms depending upon the covalent bonded hybridiza-
tion, i.e. sp3-, sp2- and sp-bonded carbons. They exist in at least two natural allotropes
(diamond, graphite) and various man-made or synthetic nanoscale forms (fullerenes,
nanodiamond, carbon nanotubes and graphene). For the past few decades, there is an
overwhelming interest in the family of nanocarbons due to their discernible structural
characteristics at molecular scale and extraordinary physical (optical, mechanical,
electronic) and chemical (electrochemical, biological etc.) properties attributed to
their unique low-dimensional atomic scale lattice bonding structure. Therefore, they
serve as functional building blocks for innovative nanotechnology such as in ultra-
sensitive low-energy consumption electronics andmechanical devices, advanced cat-
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Fig. 1.1 Illustrations of topological objects with different genus, adapted in part from Haldane’s
2016 Nobel lecture (top two rows) and [1], last row

alyst supports, sensitive biosensors, and microelectromechanical (micro-actuators)
and electrochemical energy conversion and storage (e.g. fuel cell, batteries and super-
capacitors) devices. Nanoscale carbons serve as a posterchild for the contexts where
the interplay of geometry and topology is promising for basic and applied sciences.
Nanocarbon allotropes exhibit numerous topologies with a variety of geometries
ranging from planar (monolayer and multilayer graphene) to closed cage-like (e.g.
fullerenes, hypo- and hyperfullerenes), open-ended (e.g. single-, double-, oligo- and
multi-walled nanotubes), nano rings/nanotori, nanohorns, nanocones and peapods.
All these distinct allotropes of nanocarbon serve as a fertile playing field for expound-
ing the nontrivial notions of global topological attributes (see Table 1.1) [3–5].
Table 1.1 summarizes the global topology metrics of nanocarbons in terms of genus,
g and Euler’s characteristic, χ. Briefly, we indicate that nanocones, nanodisks and
nanotubes closed at one end are topologically equivalent to a planar graphene sheet
(g = 0). Fullerenes (C60), hypofullerenes (C36, 50,..), hyperfullerenes (C70, 84,90,..) and
capped nanotubes have the topology of a sphere (g = 0). Due to boundaries captured
by χ, open ended nanotubes have a different topology (g = 1, χ = 0) than those of
closed nanotubes (g = 0, χ = 2). Nanotori and nanorings forms of nanocarbon are
topologically equivalent to a torus (g = 1, χ = 0). Furthermore, multi-walled car-
bon nanotubes, nano-onions and peapods (fullerenes nestled in single-walled carbon
nanotubes like a beaded necklace) have complex topologies due to nestled spher-
ical and cylindrical geometries. Among the negative Gaussian curvature (K<0)
periodic carbons, Schwarzites have a complex topology with g = 3, χ = −8 per
unit cell. Similarly, a helicoid-shaped narrow graphene nanoribbon would have
g = 0, χ = 2 [5].
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Table 1.1 Topology of nanocarbon allotropes

Geometry Topological characteristics

g (Genus) χ (Euler)

Positive Gaussian curvature

Mono-, few- and multi-layer
graphene (HOPG and Kish
Graphite)

0 2

Fullerenes and
hypo-/hyperfullerenes

0 2

Single-walled carbon
nanotube (SWCNT); open
(closed)

1 (0) 0 (2)

Nanoring/nanohoop/nanotori 1 0

Nanohorn/nanocone 0 2

Double-walled (DWCNT),
oligo-walled (OWCNT) and
multi-walled carbon nanotube
(MWCNTs)

Complex geometries

Peapod

Onion-like carbon (OLC)

Negative Gaussian curvature g (Genus) unit cell χ (Euler)

Negatively curved
carbons/Schwarzites (3D)

3 −8

Graphene nanoribbons
(GNR)/helicoidal (2D);
infinite (finite)

0 (0) 2 (1)

Our goal here is to relate measurable physical properties deduced from reso-
nance Raman spectra of various nanoscale carbons to topological as well as geomet-
ric metrology characteristics. Spontaneous Raman spectroscopy (RS) has emerged
inarguably as a powerful non-invasive analytical tool for structural characterization
of carbon-based materials revealing both collective atomic/molecular motions and
localized lattice vibrations (phonons) [3] besides defects (point or extended defects,
stacking disorder, doping) and finite size of crystallites. The primary reason for
this advantage is the strong Raman scattering response to the π states due to res-
onance enhancement, its simplicity for high-symmetry nanotubes and fullerenes,
its easy access and noninvasive nature. Figure 1.2 shows micro-Raman spectra for
various nanocarbons measured using excitation wavelength of 633 nm (or energy
EL = 1.92 eV) in backscattered configuration. Since all of these materials are sp2

C derivatives, it is instructive to compare the Raman spectral features with planar
highly ordered pyrolytic graphite (HOPG) or multilayer graphene (MLG) andmono-
layer graphene as they are two-dimensional building blocks for sp2 C allotropes
of every other dimensionality. Prominent bands of interest in first- and second-
order Raman spectra are D, G and 2D bands occurring at~1344 cm−1, ~1585 cm−1
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and~2670 cm−1, respectively. The G band is associated with the tangential C-C
stretch or the tangential displacement band having E2g symmetry. For SWCNT, the
G band decomposes into main peaks (G+ at 1562 cm−1 and G at 1593 cm−1) primar-
ily due to the splitting of interlayer stretching mode attributed to curvature-induced
re-hybridization of σ*-π* states which yields larger elastic constants and therefore
better mechanical properties. The D band is a disorder-activated band with A1g sym-
metry arising from various sources including in-plane substitutional heteroatoms,
vacancies, grain boundaries, quantum confinement due to size effects, stacking dis-
order and other point and extended defects. Therefore, D band intensity in principle is
proportional to the phonon density of states analogous to electronic density of states,
applicable to all sp2 C-based materials. It is worthwhile to note the near absence of
D band in monolayer (and multilayer) graphene and HOPG indicative of presence
of marginal defect number density. The stable sp2 C spherical cage structures—-
fullerenes (C60)—are somewhat lower in yield and the effect of curvature and geom-
etry is displayed in Raman spectral features for spheroids compared with HOPG and
MLG. There are fewer lines for C60 (Ih symmetry) as compared to C84 (D2d symme-
try) possibly due to deviation from spherical geometry (oblate or prolate). While it is
challenging to analyze complicated Raman spectra due to fullerenes, the downshift
of Ag(2) (pentagonal pinch mode;~1470 cm−1) and Hg(8) band at~1575 cm−1 is
apparent. Figure 1.2 also shows Raman spectral features due to SWNR, SWNH and
nanocone displaying similar phonon spectra to sp2 C material systems, albeit they
have some quantitative differences discussed below. It is imperative to mention that
for low-dimensional carbons (nanocarbons), the 2D band (a second-order D band)
is symmetry allowed by momentum conservation, therefore the overtone Raman
feature is relatively sharp and comparable to G band intensity in contrast to disorder-
activated D band and it becomes an intrinsic feature for sp2 C materials (Fig. 1.2b).

The prominent Raman bands for representative nanocarbon materials are quanti-
tatively analyzed in terms of position of D, G and 2D bands as possible topological
metrics due to their sensitivity toward structural modification and mechanical defor-
mation as well as charge transfer doping thus capturing “weaker” or “group” trends.
Figure 1.3 shows the variation of G band position by itself (panel a) and with 2D
band (panel b) providing subtle information on curvature induced shifts and the nature
of intrinsic point defects (charged or residual). For instance, G band is marginally
upshifted in SWCNT as compared with SWNR leading to microscopic compres-
sive stress attributed to smaller nanotube curvature that is invoked. The G band for
nanocone tip and SWNH shifts to higher value as compared to HOPG; this occurs
due to curved cone surface and phonon confinement attributed to smaller crystallite
sp2 C domains. While the presence of G band is a direct indication of sp2 C network,
the shift (either decrease or increase) is a measure of (a) different sp2-bonded C con-
figurations; (b) curvature-induced re-hybridization and mixed hybridized character
sp2+δ; (c) compressive or tensile microscopic stress/strain; and finally, (d) phonon
confinement (localization of vibrational states) and (e) electronic character (n- or
p-type). The tensile strain in graphene planes induces curvature by the introduction
of pentagons in the hexagonal network governed by Euler’s theorem.
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Fig. 1.3 Variation of the position of a G band and b 2D band with G band from Raman spectra for
various nanocarbons alongwithHOPG andMLG. The values of (g,χ) are also shown in parentheses

While the Raman bands for the nanocone and nanohorn appear at almost similar
positions, the nanoring lies in the category of a different geometry. A quantitative
understandingofRaman lineshape andbandposition shifts occurringdue to geometry
and topology therefore require a detailed accounting for the changes in both phonon
and electronic density of states and concurrent electron-phonon (lattice) interactions
suggested by theoretical studies for nanotori, nanocones and nanohorns [6, 7]. We
have made an attempt to determine the nature of the defects by plotting the 2D band
position with the G band position (see Fig. 1.3b) [8]. It is safer to say that the defects
are mainly p-/n-type (i.e. the G band increases and the 2D band decreases), which
is quite encouraging. Furthermore, the quantitative findings obtained from Raman
spectra are also in agreement with tight-binding calculations for the nanotubes [8].
This knowledge provides a powerful geometric (and possibly topological) metrol-
ogy machinery to understand novel nanocarbons and points to an unprecedented
emergent paradigm in materials science i.e. global topology (and curvature)� pro-
cess� property� function� performance relationships in contrast to traditional
microstructure� property� function correlations.

1.3.2 Soft and Polymeric Materials

Analogous to nanocarbons, hard-, soft- and polymeric (liquid crystal supermolecules
and supramolecular chemistry) materials exist in a variety of complex topological
phases and forms, summarized in Table 1.2. Some examples include semiconducting
oxide and BN nanotubes, nanotori, helical gold nanotubes, mesoporous silica net-
works, Möbius conjugated organic materials, di-block and tri-block copolymers as
well as smectic and nematic liquid crystals [2]. Also, foams have interesting network
topology which can change its configuration at a local level, wherein the interface
between two bubbles shrinks to zero length and subsequently expands to a finite
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Table 1.2 Topology of soft-, polymeric, biological matter and supramolecular assemblies

Geometry Topological characteristics Suggested metrology

g (Genus) χ (Euler)

Soap bubbles and
foam

Network topology Optical imaging

Liquid crystals
(double and
quadri-dislocations
and disclinations;
discotic, nematic with
Schlieren texture)

Complex topology Non-linear optical
fluorescence
microscopy, laser
lithography

Di- and tri-block
co-polymers (lamellar
and tubular)

Complex topology Small-angle x-ray and
neutron scattering
(SAXS/SANS)

Bio-membranes
(lamellar and
spherical)

0 2 Optical fluorescence
microscopy and
SAXS/SANS

Biological vesicles
(w/ and w/o holes)

0/1, 1, 2 2/0, 0, −2 Optical fluorescence
imaging

Zeolites
(micro-/mesoporous,
metallo-organic
frameworks [MOFs])

3 −8 HRTEM,
SAXS/SANS, x-ray
and neutron
tomography

Supramolecular
assemblies

1 0 Optical fluorescence
imaging and
SAXS/SANS

length in another direction, thus resulting in a local topology change. For studying
two- and three-dimensional microscopic structure evolution with regard to crystal
grain growth and topological optimization of microstructure besides multicellular
structures such as bubbles, foams, and biological tissues, network topology serves
as an efficient tool [9].

As for polymeric liquid crystals which show complex topology—they are hard in
that they have many interesting symmetries thus exhibit anisotropic elastic behavior,
while their liquid properties enable a soft behavior such that these symmetries are
disrupted by defect structures and their elasticity is dominated by fluctuations away
from an ideal state. Analogous to all broken symmetrymaterials, liquid crystals admit
topological defects, which are regions forced to be discontinuous by their topological
behavior. Such defects are stable in the sense that they cannot be removed by local
perturbation, rather they must either be moved out to the boundary of the sample or
merged into other topological defects. Of utmost importance is the study of these
topological defects, which are readily visualized. Since the behavior of materials
is often dictated not by bulk properties, but by its defects, akin to the strength of
a chain being determined by its weakest link. Historically, topological defects in
orderedmedia were studied using the theory of homotopy classes in which homotopy
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groups of the order parameter space are calculated [10–13]. These ideas begin with
identifying defects with small measuring loops or spheres around them. Thus, the
“charge” of the defect is the topological metric (i.e. genus) of the configuration
in the sample on such a measuring circuit [14]. Given the development of three-
dimensional imaging techniques [14] and extensive simulations [15, 16], one has a
way of seeing more globally the topological defects and other interesting topological
features in these samples. These sets include the defects but usually include other
points forming lines or sheets connecting the defects together as well. In general, the
homotopy group approach is not justified when applied to smectic liquid crystals or
other crystalline systems. However, in these smectics there are two classes of defects,
dislocation-type and disclination-type, which are akin to critical points in the sense
of local maxima, minima or saddle points.

1.3.3 Minimal Periodic Surfaces

1.3.3.1 Supramacromolecular Assemblies

Micelles, colloids, micro-emulsions, biological vesicles, microtubules and
supramolecular photochemistry in restricted space belong to this class of materi-
als [2]. Additionally, processes in many bio-macromolecules including DNA and
RNA structure and protein folding, involve network, braid and knot topologies [17].
A network has connected nodes and lines in various ways. Lattices are a special kind
of network in which the lengths are the same in each periodically repeated structure,
called a unit cell. Two networks (‘nets’) have different distances between nodes and
other characteristics yet may have identical topologies. As a special case, a square
lattice is topologically equivalent to an oblique lattice or a rectangular lattice but not
to a triangular Kagome-like lattice. Protein-protein interaction networks (‘interac-
tomes’), and mesoporous materials are examples in which correlations between the
network structure and properties provide useful insights into design strategies.

Metal-Organic Framework, (MOFs, pronounced moffs), are compounds con-
sisting of metal ions or clusters coordinated to organic ligands to form one-, two-,
or three-dimensional structures (Fig. 1.4). They are a subclass of coordination
polymers, with the special feature that they are mesoporous. The organic ligands
included in them are sometimes referred to as “struts”, one example being 1,4-
benzenedicarboxylic acid (BDC). More formally, a metal–organic framework is a
coordination network with organic ligands containing potential voids. A coordina-
tion network is a coordination compound extending through repeating coordination
entities in one dimension, but with cross-links between two or more individual
chains, loops, spiro-links, or a coordination compound extending through repeating
coordination entities in two or three dimensions; and finally, a coordination polymer
is a coordination compound with repeating coordination entities extending in one,
two, or three dimensions [18]. The study of MOFs has been developed from the
study of zeolites, except for the use of preformed ligands. MOFs and zeolites are
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Fig. 1.4 Example of a MOF-5 and b zeolite catalyst. Corresponding c double gyroid and d, e
network topologies with four-connected branching points (dia-net based on diamond structure) or
vertices (chiral qtz-net based on quartz structure) [19]

produced almost exclusively by hydrothermal or solvothermal techniques, where
crystals are slowly grown from a hot solution. In contrast, MOFs are constructed
from bridging organic ligands that remain intact throughout the synthesis [19]. In
some cases, the pores are stable during elimination of the guest molecules (often
solvents) and could be used for the storage of gases such as hydrogen and carbon
dioxide. Other possible applications of MOFs are in gas purification, gas separation,
electro- and photocatalysis, as sensors, energy harvesters and supercapacitors [20].

1.3.3.2 Biophotonic Materials

The topology of mixed di- and triblock copolymers as well as single and double
gyroids in butterflywings,weevil chitin and bioinspired photonic bandgap crystalline
materials, zeolites and other metallo-organic frameworks belongs to triply periodic
minimal surfaces. Depending upon the relative concentration of the constituents,
temperature and pressure, the topology of block copolymers and biomacromolecular
systems can change from lamellar, globular, and tubular to gyroid and double gyroid
structures [21–23]. The self- and directed-assembly of block copolymers result in
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complex topologies (third row, Table 1.2) as a function of relative concentration of
different types of polymer blocks and the interaction energy between different types
of monomers. Interestingly, the gyroid is a triply periodic minimal surface where
mean curvature H = 0 that belongs to the family of P (primitive) and D (diamond)
Schwarz surfaces and it separates space into two identical labyrinths of passages
discovered by Alan Schöen in 1970.

Biomembranes can be flat (lamellar) or curved depending on the structures they
enclose (fourth row) [24] and they can also morph into a spherical or toroidal topol-
ogy, in some cases with g>1 (fifth row). As indicated, MOFs [25] also form peri-
odic minimal surfaces and gyroid-like structures (sixth row). Finally, supramolecular
assemblies may emerge with a variety of topologies, including spheroidal, periodic
with g = 1, or even a gyroid-like structure [26]. It is thus highly desirable to probe
and quantify the topological attributes of the examples portrayed in Table 1.2.

We reiterate that topology finds its multifaceted presence in a variety of biological
materials, particularly in the context of biophotonics. Some interesting examples
include polarized iridescence in jewel beetle, butterfly chitin, bird keratin [27] and
gyroid-type photonic crystals in diamond weevil and wing scales [28].

1.4 Topological Phases in Condensed Matter

Topological materials: Materials in which topological aspects, usually involving
boundary effects such as surface or edge effects, alter the electronic, transport, mag-
netic and various other properties are christened as topological materials [29]. In par-
ticular, topological superconductors, topological insulators, topological crystalline
insulators, and someDirac materials (e.g.Weyl semimetals and graphene) are impor-
tant members of this class. To understand topological invariants and the properties of
thesematerials, topological field theory has been developed recently [30]. Finally, we
note that some of thesematerials can possibly support the so called non-abelian parti-
cles (or elementary excitations) called anyons, Majorana fermions being an example,
which can enable the current pursuit of topological quantum computing through the
braiding statistics of Majorana fermions. The latter paradigm is a viable approach
for fault-tolerant quantum computation currently under consideration [31].

Topological defects: In general, certain material defects that interpolate between
two different orientation states, e.g. domain walls and those resulting from cer-
tain material discontinuity, for instance disclinations and dislocations, constitute the
broad class of topological defects. Monopole-like excitations and out-of-plane vec-
tor configurations, e.g. skyrmions and vortices, also belong to this class [2]. Clearly,
such defects alter the macroscopic properties of materials, e.g. strength, electronic
transport and magnetic response. Since the presence of toplogical defects affects
materials properties in unusual ways; it is imperative that we are able to control
experimentally the density and generation of these defects.
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1.4.1 Real-Space Topological Materials

While most of the topological materials discussed below such as topological insula-
tors and Weyl semimetals deal with topology in the momentum or k-space, e.g. the
topology of the Fermi surface, synthesizing topological crystals in real space is both
intriguing and important. In fact, a Möbius strip has been synthesized using a crys-
talline ribbon of NbSe3, which is a low-dimensional inorganic conductor exhibiting
charge-density-waves (CDW). The width of such a strip is about one micron whereas
the ring diameter is about 100 ms. Similarly, figure “eight” structures with a dou-
ble twist, knot crystals and Hopf link materials have also been synthesized [32–34].
Interestingly, the various topological arrangements of NbSe3 all show CDW phase
transitions. Such topological variants can also be synthesized using TaSe3 and TaS3.

Changes in topology with a twist singularity have been observed in soap-film
Möbius strips [35]. In this process the linking number of the film’s Plateau bor-
der and the centerline is altered. Similarly, simulations based on a discrete, lattice
based model have demonstrated the influence of a material’s stretchability on the
equilibrium shape of a Möbius strip [36].

1.4.2 Dirac Materials

The (nonrelativistic) Schrodinger equation describes conventional metals, semicon-
ductors and insulators, for which the electronic energy dispersion of low-lying exci-
tations is quadratic: ES = p2/2 m*. Here p denotes the electron momentum and m* the
effectivemass. In contrast, there is a growing family ofmaterials with electronic band
structure that exhibits linear dispersion (Fig. 1.5), called Dirac materials [37, 38].
One salient feature of thesematerials is that their valence and conduction bands touch
at a few isolated points known as the Dirac points (and the associated band attributes
are called the Dirac cones). These points remain unaltered under perturbations, or
equivalently are topologically protected, as a consequence of certain symmetries.
For graphene, it is the sublattice symmetry, for topological insulators it is the time-
reversal symmetry [39, 40] whereas for topological crystalline insulators [41, 42]
it is the mirror (or a related crystalline) symmetry. In the case of two-dimensional
Dirac materials (that are described by the relativistic Dirac equation) the electronic
energy dispersion is linear in momentum, ED = c σ · p+mc2 σ. Here σ = (σx, σy) are
Pauli matrices and the Fermi velocity vF replaces the speed of light in the material.

An important implication of the linear dispersion of Dirac materials is their
enhanced sensitivity to applied magnetic field in two dimensions. Specifically, elec-
tronic energy level spacing is proportional to

√
B in massless Dirac materials in

contrast to B in usual materials. The electronic Dirac spectrum in topological insula-
tors, d-wave superconductors and graphene has been measured using angle resolved
photoemission spectroscopy (ARPES) as well as scanning tunneling spectroscopy
(STS) [37]. Beyond graphene, silicon and germanium monolayer structures named
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Fig. 1.5 (Upper panel) Schematic band diagrams for metals without a gap (left), Dirac materials
exhibiting linear band dispersion as well as a Dirac cone (middle) and insulators with a band gap
(right). (Lower panel) Angle-resolved photoemission spectroscopy (ARPES) results for graphene
obtained at the Advanced Light Source at LBNL and the corresponding DFT calculations of density
of states. Adapted in part from [37]

silicene [43], germanene [44], and sp-sp2 carbon allotropes called graphynes [45] also
exhibit Dirac cones and thus belong to the growing family of two-dimensional Dirac
materials. Related honeycomb monolayers of phosphorus and tin called phospho-
rene [46] and stanene [47], respectively, represent novel two-dimensional topological
materials. Even a lead based monolayer called plumbene has been theoretically pro-
posed.

Nodal line insulators and semimetals: In some topological semimetals, such as
the strongly spin-orbit coupled compound PbTaSe2, valence and conduction band
touch at one-dimensional Fermi lines known as nodal lines [48]. Unlike the (zero-
dimensional) Weyl points, which are protected against perturbations that preserve
translational symmetry, the protection of nodal lines requires additional crystal sym-
metries, e.g. mirror reflection. They have been studied using ARPES [48], and are
also characterized by an integer topological invariant. Electronic structure calcula-
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tions of these materials and relevant experiments are discussed in Chap. 6 in this
book.

There are three kinds of spin half-integer particles (e.g. electrons) in nature called
fermions that can occur in condensed matter and materials as well as in photonics:
Majorana, Dirac and Weyl. For particles with mass and linear dispersion, graphene
represents a prime example ofDirac particles.Materials comprising particles without
mass but with linear dispersion are called Weyl materials or Weyl semi-metals, e.g.
NbAs, NbP, TaAs and TaP [49, 50]. There has been an intense search for such mate-
rials in recent years. These materials can be viewed as three-dimensional analogs
of graphene with broken time reversal and spatial inversion symmetry. Note that
Weyl semimetals can be characterized by the experimental observation of Fermi
arcs in ARPES [51]. Interestingly, they can also exhibit magnetic monopoles in the
crystal momentum (or reciprocal) space. Particles that possess mass and are also
their own antiparticles are termed Majorana fermions. There has been a great deal
of experimental search for Majorana fermions [50]; it is anticipated that topological
superconductors [52, 53] might possess them as quasi-particles. Beyond their fun-
damental significance, there is growing excitement about their role in topological
quantum computing [31].

1.4.3 Topological Insulators and Topological
Superconductors

Topological insulators (TI), which are metallic at the surface and insulating in the
bulk, and related materials usually have a strong spin-orbit coupling [39, 40]. It is
worth noting that until the discovery of quantum Hall effect (QHE) in 1980 it was
believed that all fundamental laws of nature and phases could be understood in terms
of symmetry (and geometry). However, QHE provided the first instance of a quantum
state with no spontaneous broken symmetry. The behavior of QHE depends only on
the system’s topology and not its specific geometry thus opening up the frontier field
of topological order.

The first two-dimensional TI was discovered in HgTe quantum wells [29]. This
topological state is also known as the quantum spin Hall state. Band inversion is the
main mechanism herein where the spin-orbit coupling inverts the usual ordering of
conduction andvalenceband. Subsequently, three-dimensional topological insulators
were discovered inmaterials such asBi2Se3 Bi2Te3 andSb2Te3. The band inversion in
thesematerials occurs at the Brillouin zone center due to the spin-orbit coupling [29].
The topological surface state comprises a helical Dirac fermion in that the electron
spin is perpendicular to its momentum; in other words it forms a left-handed helical
texture in momentum space. No gap for the surface state can be introduced by a time
reversal invariant perturbation.

Topological insulators can also exist without spin-orbit coupling in the presence
of certain crystal point group symmetry. They are called topological crystalline insu-

https://doi.org/10.1007/978-3-319-76596-9_6
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lators (TCI). SnTe is a prime example of a topological crystalline insulator [41,
42]. Lattice periodicity is not a requirement and even quasicrystals can display TI
behavior under appropriate conditions. Recently, a two-dimensional quasicrystal in
the presence of a uniform magnetic field exhibited chiral edge states (in analogy
with Chern insulators in periodic lattices). Such materials have been christened as
topological Hofstadter insulators [54].

The proximity of a superconductor to the surface of a topological insulator can
result in a topological superconductor [52, 53]. The latter is characterized by the
presence ofMajorana zeromodes. In essence, topological superconductivity involves
edge-mode superconductivity in topological insulators. Note that two-dimensional
topological superconductivity in InAs/GaSb [53] and three-dimensional supercon-
ductivity in CuxBi2Se3 [52] has been experimentally observed. Another example
of such a material is Sr2RuO4 (possibly with chiral p-wave superconductivity). We
emphasize that the Berry phase (in momentum space) plays a key role in TI and
topological superconductors.

We can view TI in twoways: (i) as unusual band insulators with surface states (i.e.
obtaining a 3D state from 2D), and (ii) as materials with a quantized magnetoelectric
response (i.e. obtaining a 2D state from 3D). In essence, the notion of TI is a gen-
eralization of the idea of integer quantum hall effect (IQHE). In particular, a system
of noninteracting lattice fermions with broken time-reversal symmetry can exhibit
IQHE, which is characterized by a topological invariant called Chern number and
is stable against disorder and interactions. Analogously, a system of noninteracting
Bloch fermions with unbroken time-reversal symmetry corresponds to TI. Akin to
fractional QHE there may well exist fractional TI [55].

1.4.4 Weyl Semimetals

Weyl semimetals refer to solid state crystalswhose low energy excitations correspond
toWeyl fermions [56–58]. The latter carry electrical charge even at room temperature.
These materials are a topologically nontrivial phase of matter (Fig. 1.6). Historically,
in 1929 Hermann Weyl showed the existence of a massless fermion as a solution of
the Dirac equation, now known as the Weyl fermion. These materials are three-
dimensional analogs of graphene in that Weyl semimetals show linear dispersion
around certain nodes in the Brillouin zone called Weyl points, which always appear
in pairs. They also exhibit Fermi arcs (Fig. 1.6), which are unclosed lines that start
from one Weyl point and end at the other with opposite chirality (Figs. 1.7 and 1.8),
in addition to chiral magnetotransport.

TaAs represents a typical example of a (type-I) Weyl semimetal (Fig. 1.7). Other
related materials such asWTe2 andMoTe2 belong to what are known as type-IIWeyl
semimetals [59, 60]. For a material to be a Weyl semimetal it must break either the
lattice inversion symmetry or the time-reversal symmetry. In the case when these
two symmetries coexist, there may exist a pair of degenerate Weyl points resulting
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Fig. 1.6 A comparison of the double Dirac cone band structure for a Dirac semimetal (left panel)
Cd3As2 and a Weyl semimetal TaAs (middle and right panels). For the Weyl semimetals (a) Fermi
arcs connecting regions of different Chern numbers (C = 0 and C = 1) are depicted. (b) The
corresponding Fermi level is also shown. Adapted in part from [56]

in what is known as a Dirac semimetal. Weyl fermions can be controlled by both the
optical and electrical means (Fig. 1.9).

1.4.5 Other Topological Materials

In topological defects called magnetic monopoles (or magnetic charges) the effective
magnetic field lines emanate from a point radially outward. Such defects have been
likely observed in artificial spin ice (ASI) [61] as well as in current driven chiral
magnets where skyrmion tubes merge or separate at an isolated number of points
[62]. ASI is an assembly of nanomagnets in a particular lattice whereas skyrmion
is a spin texture in which the spin orientation goes from 0 to π. Equivalently, the
spin texture covers the unit sphere once. One could think of ASI as a magnetolyte in
analogy with charges in an electrolyte. In these materials one expects a monopole-
antimonopole pair to exist, which is connected by the so called Dirac string. There
is a flux in the interior of a Dirac string which renders the presence of monopoles
consistent with the requirements of Maxwell’s equations. Both skyrmions and ASI
are discussed in detail in Chaps. 4 and 5 in this book.

Penta-Graphene: Based on total energy calculations a new two-dimensional
metastable carbon allotrope, composed entirely of pentagons (that resemble Cairo
pentagonal tiling), has been proposed [63]. It was motivated by the recent proposal
of T12-carbon phase, which can be chemically exfoliated to produce a single layer
penta-graphene. This allotrope exhibits dynamical, thermal and mechanical stability
in addition to a large band gap, ultrahigh mechanical strength and negative Poisson’s
ratio. It can withstand temperatures as large as 1,000 K. However, it still remains to
be experimentally synthesized.

https://doi.org/10.1007/978-3-319-76596-9_4
https://doi.org/10.1007/978-3-319-76596-9_5
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Fig. 1.7 Spin-orbit coupling (SOC) induced band inversion leading to the formation of topological
insulators (TI), Dirac semimetals (DSM) and Weyl semimetals (WSM). a A full gap is opened
in a TI resulting in metallic surface states. b In DSM and WSM bulk bands are gapped except at
some isolated points with linear dispersion called Dirac points and Weyl points, respectively—they
constitute a three-dimensional analog of graphene. c Type-I WSM in which the Fermi surface
shrinks to zero at the Weyl points when these points are sufficiently close to the Fermi energy. d
Type-II WSM: the Weyl points represent the touching points between the electron and hole pockets
in the Fermi surface as a result of the strong tilting of the Weyl cone. Adapted from [59]

Rolled-up penta-graphene leads to penta-tubes: Carbon nanotubes solely com-
prising pentagons, which demonstrates the structural versatility of penta-graphene.
Phonon calculations and ab initio molecular dynamics (AIMD) simulations demon-
strate the dynamic and thermal stability of penta-tubes, respectively. Unlike carbon
nanotubes, penta-tubes are semiconducting independent of their chirality [63]. Stack-
ing of penta-graphene layers leads to a three-dimensional stable structure called AA-
T12 carbon, which is also semiconducting and has properties quite different from
T12-carbon. Both electronic structure and phonon dispersion have been calculated
for this layered carbon allotrope. Analogous calculations also suggest a tetragonal
phase of metallic three-dimensional boron-nitride [64].
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Fig. 1.8 Fermi arcs in the Fermi surface of the surface band structure of aWeyl semimetal. aA pair
of Weyl cones (in two different colors) representing two different chiralities exist at nonzero Fermi
energy or at zero Fermi energy. The Fermi arcs connect these two cones. b The chiral anomaly in
these materials can be understood in terms of the zeroth Landau level in the quantum limit. E and
B represent applied electric and magnetic fields. Adapted from [59]

Fig. 1.9 Control of Weyl fermions by electrical and optical means. a A nonlocal electrical trans-
port device utilizing axial current from the chiral anomaly. b Electrons exhibit unusual paths on
the surface of a Weyl semimetal. c Time-reversal symmetry can be broken by shining an intense
circularly polarized light. d A large photogalvanic current breaks inversion symmetry as well as
any mirror symmetry in the presence of circularly polarized light. Adapted from [60]

Hepta-graphene:Basedondensity-functional-theory (DFT) calculations a dynam-
ically stable, seven-membered carbon allotrope called hepta-graphene has been pre-
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dicted [65]. It has a rectangular unit cell comprising ten carbon atoms and four
hydrogen atoms. Its band structure is topologically equivalent to that of strongly dis-
torted graphene, i.e. it has Dirac cones which are robust both under compressive and
tensile strain. However, shear strain leads to a band gap, which is tunable. Note that
systems without the hexagonal symmetry rarely exhibit Dirac cones; hepta-graphene
is one such example.

Phagraphene: Another monolayer allotrope of carbon called phagraphene com-
posed of pentagons, hexagons and heptagons has been proposed which also exhibits
Dirac cones in a rectangular lattice and is robust against external uniaxial stress.
However, similar to hepta-graphene a gap is opened in this material under shear
stress [66]. A calculation of the phonon spectra demonstrates this allotrope is also
dynamically stable (akin to hepta-graphene).

Phosphorene and its nanoribbons: Remarkably, the phosphorus analog of
graphene called phosphorene has been synthesized, which is a promising candidate
for thermoelectric applications [67]. Corresponding electronic, optical and transport
properties have been studied for phosphorene as well as phosphorene nanoribbons
including exciton effects. Interestingly, a related single-element based, monolayer
material called borophene [68] has been found to exhibit Dirac cones in addition to
two sublattices with a substantial ionic character.

As noted above, the graphene analog of monolayer black phospohorus, called
phosphorene was isolated in 2014 by mechanical exfoliation [46]. However, in con-
tract to graphene which is gapless, phosphorene has a band gap. Due to its superior
mechanical flexibility and electrostatic control, phosphorene iswell suited for flexible
nano-circuits. Subsequently, other similar monolayer materials were either proposed
or synthesized that include silicene, germanene and stanene [69]. Notably, stanene
is a two-dimensional topological insulator.

Time crystals: Recently, the concept of time crystals (both quantum and floquet)
has gained significant attention [70]. In simple terms, crystals whose structure repeats
in time can be called time crystals. Such crystals repeat in time because they are
kicked periodically by laser pulsing or magnetic field, i.e. they are intrinsically out
of equilibrium and break time translation symmetry. They are also called space-time
crystals or four-dimensional crystals and are a novel type of non-equilibrium matter.
In addition to being closely related to dynamical Casimir effect in the context of
zero-point energy, they likely exhibit topological order which is potentially useful
for quantum computing. Note that topological order violates the classical belief that
ordering requires symmetry breaking.Time-dependent electromagnetic fields driving
a crystalline material can tune its topological properties and may cause it to become
a Floquet topological insulator. Thus the notion of a time crystal can be extended to
Floquet time crystals [70].
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1.5 Metrology and Techniques

1.5.1 High-Resolution Electron Microscopy

Measurements that can provide information about the underlying topological charac-
teristics (e.g. genus, local connectivity) of a material through different experimental
probes such as fluorescence, optical means, etc. constitute what wemean by topolog-
ical metrology. In addition to Raman measurements, small angle X-ray (SAXS) and
neutron scattering (SANS), scanning electronmicroscopy (SEM), transmission elec-
tronmicroscopy (TEM), stimulatedBrillouin spectroscopy (SBS), various non-linear
optical imaging techniques such as three-photon excitation fluorescence polarizing
microscopy [71], X-ray tomography [72], electron holography and tomography [73]
and Lorentz TEM [74] provide metrological means to study various aspects of mate-
rials topology.

1.5.2 Nonlinear Optical Imaging

In the context of liquid crystals and colloids many optical imaging techniques have
been invoked to study topological defects such as Schlieren texture and even a more
elaborate defect called aHopf fibration [2]. In a uniaxial nematic crystal, the Schlieren
defect is essentially the “director field”; it can be observed using a polarizing micro-
scope. On the other hand, the Hopf fibration is an exotic texture which resembles a
series of rings that are wrapped around a torus. It has been observed in chiral nematic
liquid crystals with the aid of holographic optical tweezers in conjunction with fluo-
rescence polarizing microscopy. Similarly, anisotropic optical absorption techniques
have been invoked to study the electronic structure of many of the correlated topo-
logical materials including a giant, nonlinear optical response in Weyl semimetals
[75].

1.5.3 X-Ray Tomography and Electron Holography

X-ray tomography is useful for characterizing porous media and porous networks
including gyroid structures [76]. Similarly, for studyingmagnetic topological defects
(e.g. vortices and skyrmions) andmagnetic microstructures electron holography [73]
and Lorentz TEM [74] are very useful techniques. Depending on the length scale of
the magnetic nanostructure under consideration, magnetic force microscopy can be
used as a complementary imaging technique.
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1.5.4 X-Ray and Neutron Scattering

In order to link materials topology with metrology, small angle X-ray scattering
(SAXS) and small angle neutron scattering (SANS) techniques can be used to reveal
information about the structural and topological phases about nanoscale ordering in
materials. Note that SAXS and SANS have been effectively used to study biomem-
branes, vesicles, certain supramolecular assemblies and di- and triblock copolymer
morphologies in addition to understanding the structure of a variety of mesoporous
materials such as zeolites and MOFs [2].

1.5.5 Elasticity and Deformation Energy Characterization

Biological vesicles and block copolymers having complex topologieswith a genus up
to g = 3 have been observed. In contrast, synthetic vesicles with very large values of
g (∼50) can occur [83]. To model these systems, we start with the Helfrich-Canham

curvature (Fig. 1.10) free energy [84]: Es � ∫
dS [ κb

2 (H − Ho)2 + κoK ] ,where κb =

bending rigidity, κ0 =Gaussian rigidity, dS = surface element. In addition, H0 denotes
spontaneousmean curvature, K andH areGaussian andmean curvature, respectively.
By using only topological means (e.g. Bogomol’nyi decomposition, which is usu-
ally invoked to study topological invariance and indicates that the Helfrich-Canham
energy is greater than or equal to 4πκo times a genus dependent term), one can then
calculate the elastic energy of deformation as a function of genus for vesicles [2], as
shown in Fig. 1.11b. The energy increases proportionally with genus and eventually
attains the value of 8π, consistent with a mathematical extrapolation called Wilmore
conjecture. From topological analysis, one concludes that the spontaneous bend-
ing energy contribution from any deformation of the vesicles from their metastable
shapes comprises two different topological sets: shapes of spherical topology (g =
0) and shapes of non-spherical topology (g > 0). One can readily apply these ideas
to other topologies and materials. In a similar way, the deformation associated with
negative curvature periodic minimal surfaces, e.g. double gyroids and Schwarzites,
can be calculated, in particular under hydrostatic stress, if one assumes that only
the lattice parameter changes under deformation. Analogously, graphene and car-
bon nanoribbons can exist in helicoidal shape. Their axial deformation can also be
calculated by varying the pitch of the helicoid. In these cases, the elastic energy is
proportional to the material’s bulk (or axial) modulus and the Gaussian curvature.

Figure 1.11 shows the variation of Gaussian curvature K as a function of the
surface parameter τ for three different values of the other surface parameter σ, and
for the special directionwhenσ= τ [Throughmathematical formalism for IPMS in the
complex plane, the Gaussian curvature K can be explicitly expressed as a function of
real variables τ andσ, [4, 5]. The expression forK(σ,τ) is invariant under the exchange
of σ and τ and therefore, the two such figures must be identical [5]]. Note that for σ

= 0, 0.5 and τ there is a minimum in K indicating elastically “soft” directions on the
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Fig. 1.10 Illustrations of various topological metrologies of a electron density distribution prop-
erty of topological atoms and molecules [77, 78]. b Butterfly wing scale photonic nanostructure
development using cross-section TEM depicting complex in-folding of the plasma membrane and
SER membrane. The developing nanostructure shows the diagnostic motif of two concentric rings
roughly in a triangular lattice. Yellow and red boxes highlight areas revealing different sections
through the (110) plane of a polarized pentacontinuous core-shell double gyroid (color insets)
[79]. Representative structural morphology of arthropod cuticular nanostructures and SAXS two-
dimensional patterns from the photonic scales or setae [80], high-resolution electron microscopy
revealing topological structures. c Interferogram of a toroidal ferromagnet measured using electron
holography [81]. d Structural diagnoses of representative SAXS profiles of arthropod cuticular
photonic nanostructures. e single- and triple handlebar (g = 1, 3, respectively) textures of col-
loidal particles that are non-spherical and dispersed in liquid crystals as obtained by three-photon
excitation fluorescence polarizing microscopy (3PEF-PM) in addition to optical tweezers [82]

periodic minimal surface. However, for σ = 1 we observe a monotonically increasing
“kink like” variation of K with τ. Also for the σ = 0 case, there are two values (3π/50
and 3π/5) for which a local maximum is observed indicating elastically “hard” or
stiff directions. Also note that the elastic energy density is directly proportional to K.
Thus these curves provide a guide to the deformation energy behavior of Schwarzite
surfaces.
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Fig. 1.11 aVariation of Gaussian curvature K for a minimal periodic surface such as Schwarzite as
a function of τ for three different values of σ and for the special direction when σ = τ corresponding
to various directions on the unit patch of the P-surface. The inset shows the stress-strain behavior in
three different curves namely, [111], isotropic and transverse directions for SIS triblock copolymer
forming a double gyroid phase [85]. b Elastic deformation energy of vesicles (Eg) versus genus [86]
where blue circles are exact values; crosses are numerical estimates computed with a (Brakke’s)
surface evolver. Note that for large values of g the red curve is an estimated fit to the deformation
energy. Finally, the green line is the asymptotic value of 8π

1.5.6 Topological Correlators and Other Metrics

Analogous to usual materials, the notions of two-point and higher order correla-
tions can be generalized to topological correlations. The latter could conceivably be
inferred from a combination of scattering techniques. Similarly, for nets and ram-
ified structures one could envision obtaining network topology correlations (about
local connectivity) from appropriately chosen momentum range in scattering exper-
iments. Geometric measures such as curvature-curvature correlations (both in mean
and Gaussian curvature) can complement the insights gained via topological corre-
lations.

1.6 Computational Topology of Materials

Combining notions from topology and numerical algorithms, the field of computa-
tional topology has emerged. One of the key ideas in this context is the discovery of
topology through algorithms. Although this topic belongs to the realm of computer
science and mathematics, extending it to study the properties of topological materi-
als opens a new avenue of investigation. This is of particular interest for materials
involving network like structures, double gyroids, etc.
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1.6.1 Topological Databases and Visualizing Topology

Over the past two decades topological databases and computer algorithms such as
EPINET and TOPOS [87] have been developed. They are vey useful in designing
extended crystalline frameworks and architectures. In the context of Materials by
Design, Directed Materials for Energy and Environment, and Materials Genome
Initiative (MGI), it is now imperative to create databases for the properties of topo-
logical materials which can in turn be used to predict new topological materials with
desired physical properties targeting specific applications (i.e. Topological Materials
Informatics). On the other hand, the analysis of various databases using techniques
from topology is called topological data analysis (TDA), and it is a growing area of
research which can fruitfully be applied to study materials.

Many tools have been developed to visualize the topology of networks and that of
vector fields (e.g. spin configuration, flowfields, etc.). Some examples includeTOPO,
Otter, TorusVis, Kiwi, RadialNet, among others. They also enable us to display var-
ious topological aspects of a structure such as genus and network node connectivity.
Also, one can explore how local topology evolves or changes under parametric vari-
ation in a material. Adopting these tools to understand the structure and properties
of topological materials can lead to an entirely new way of understanding materials
we have discussed in this chapter.

1.6.2 Miscellaneous Topics

In this chapter,we have tried to cover a broad variety of topologicalmaterials and their
properties. However, our exposure is not comprehensive as we have not addressed the
fields of topological photonics, topological plasmonics (andmetamaterials),mechan-
ical metamaterials (or auxetic materials) as well as the use of topology in charac-
terizing materials microstructure. For the sake of completeness we briefly mention
these topics here.

Topological photonics: Inspired by the observation of topological phases in con-
densed matter (e.g. TI and TCI, see Fig. 1.12) and materials science, analogs of such
phases have been realized in the photonic context ushering in the field of topological
photonics [88]. An ingenious design of wave vector space topologies is enabling
the creation of interfaces supporting entirely new states of light with many useful
properties. For instance, one can create unidirectional waveguides in which light
flows around large imperfections without back-reflection (akin to interfacial elec-
tron transport without dissipation in topological insulators in condensed matter [39,
40]). There has been significant progress in the realization of a whole slew of topo-
logical effects in photonic crystals, photonic quasicrystals, coupled resonators and
metamaterials. In the near future one expects to discover topological mirrors and
new applications of interacting photons by invoking nonlinearity and entanglement.
Some of the technological advantages here involve decreased power consumption,
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Fig. 1.12 Topological crystalline insulator. aHigh-symmetry points in the Brillouin zone and three
projected surfaces for the rock-salt crystal structure. b Dirac cones in the (001) and (111) surface
Brillouin zones. c Calculated dispersion for the (001) double Dirac cone surface state. Adapted
from [42]

improved coherence in quantum links, avoiding use of isolators in photonic circuits,
etc.

Topological plasmonics: Plasmonic excitations inDiracmaterials including single
and bilayer graphene and topological insulators are important both for a fundamen-
tal understanding of these materials as well as for their application in optoelectronic
devices [89]. Recently an analogy between the usual two-dimensional magnetoplas-
mon [90] and p-wave topological superconductors has emerged. Analogs of photonic
topology can be envisioned not only for surface plasmons but also for other bosonic
systems such as magnons, phonons, excitons and exciton-polaritons. The key idea is
that topological effects can be exploited to substantially improve the robustness of
plasmonic, photonic and other devices in the presence of imperfections and various
types of disorder.

Microstructure and topology: Statistical topology of cellular networks using
Poisson-Voronoi cells has been recently developed along with a topological frame-
work for local structure analysis and grain-growth microstructure characterization
[91, 92]. Specifically, within a unified mathematical framework, local structure in
both ordered and disordered materials can be classified by using the topology of the
Voronoi cell associated with a particle (Fig. 1.13). For a given set of particles the
Voronoi cell of a particle refers to a region in real space that is closer to the particle
than to any other. This topological description of local structure offers many advan-
tages for structural analysis compared to continuous descriptions. It also enables to
identify which particles are associated with defects as opposed to belonging to spe-
cific (crystalline) phases. This versatile approach is also applicable to highly defected
solids and glass-forming liquids.Moreover, through the distribution of different topo-
logical types the Voronoi topology aids the characterization of disordered systems
in a statistical manner.

Another important concept that helps our understanding of microstructure is that
of hyperuniformity [93]. One could think of unusual amorphous states of materials
that lie between crystal and liquid as disordered many-particle hyperuniform sys-
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Fig. 1.13 Upper panel: a, b and c Voronoi cells of particles for the BCC, FCC and HCP crystals.
Vertices where more than four Voronoi cells meet are indicated by red circles. Near these vertices
small perturbations in particle positions lead to topological changes. d Space of all possible con-
figurations of n neighbors; it can be divided into regions of constant Voronoi cell topology. Inset
depicts the neighborhood around an FCC point. Lower panel: Sharing of an unstable vertex by six
Voronoi cells in HCP or FCC crystals. A small perturbation can morph the vertex (in A) to either a
four-sided face (in B) or a pair of contiguous triangular faces (in C). Adapted from [92]

tems. Put another way, in a hyperuniform system density fluctuations are completely
suppressed at very large length scales, which means that the structure factor S(k)
tends to zero as thewave vector k vanishes. It provides a unified framework to classify
and categorize certain disordered configurations, crystals and quasicrystals. It is also
important for understanding local fluctuations in the interfacial area of two-phase
media.

1.7 Conclusion

Based on a series of eclectic examples, we elucidated that the topological concepts
are beginning to take a firm foothold in materials science [2]. Our hope is that the
emerging shift from a structure � property � functionality traditional paradigm
to a new topology/geometry� property� functionality emerging paradigm will
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assist materials scientists to study various usual and topological materials using the
powerful interrelated concepts of (local) geometry and (global) topology. We illus-
trated this paradigm through a variety of materials including nanocarbon allotropes,
soft matter, supramacromolecular assemblies, vesicles, biomembranes and MOFs.

An additional question is to understand the processing-structure-property (PSP)
aspects of materials science for topological materials, i.e. how do synthesis and
processing affect the topology of a material. In other words, how do we develop a
processing-topology-property (PTP) based understanding of materials, which may
lead to insights into interfaces between disparate topologicalmaterials and eventually
to advanced manufacturing. This consideration naturally leads to another research
frontier that is emerging: topological dynamics, i.e. keeping track of the time evolu-
tion of either the topology of or the relevant topological phase in a given material of
interest.

The power and role of topology is turning out to be crucial in materials science in
terms of unraveling certain types of defects (e.g. skyrmions, monopoles, hopfions,
vortex lines) and in understanding an emerging class of topological materials with
linear electronic dispersion such as Dirac materials andWeyl semimetals. Graphene,
its two-dimensional siblings, e.g. silicone, germanene and phosphorene [46], in addi-
tion to topological insulators and topological superconductors are paving the way for
unusual and technologically important properties. A variety of external perturbations
including magnetic doping, electric and magnetic fields, light, disorder, temperature
gradient, field gradients, strain and variation in film thickness can be used to alter
and probe these fascinating materials. Inclusion of electronic correlations may lead
to yet more exotic states of matter, e.g. fractional topological insulators [55].

We also discussed a variety of characterization techniques for topological materi-
als ranging fromoptical imaging to electron holography, fromfluorescence polarizing
microscopy to Lorentz TEM, as well as small angle X-ray and neutron scattering.
One aspect of this field that requires substantial progress and is now ripe for new
ideas is that of topological metrology including use of topological correlations (both
in real- and k-space) to characterize different material properties. The field of topo-
logical databases and informatics is still in its infancy. The importance of topology is
thus ineluctable in materials science given the enormity of expected breakthroughs
spanning fundamental and invaluable insights into modern and novel technologies.
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Chapter 2
Topology and Geometry in Condensed
Matter

Rossen Dandoloff

2.1 Topology

2.1.1 Introduction

There is an old joke among mathematicians. It goes that way [1]: A mathematician
was asked: What is a topologist? Someone for whom there is no difference between
a doughnut and a coffee cup with a handle.

In general, topology studies continuum properties of spaces that are not affected
by continuous deformations. Such deformations may be e.g. stretching and bend-
ing. Obviously e.g. cutting and gluing do not belong to the allowed deformations.
Usually these properties are studied on what is called topological spaces i.e. a col-
lection of subspaces that are open sets. These open sets satisfying certain conditions
represent a topological space. Some of the most important topological properties
are (a) connectedness, which simply counts the number of holes in the space and
(b) compactness which means a subset of the Euclidean space that is closed and
bounded; closed means that it contains all its boundary points and bounded means
that all its points are at some distance to a given point that is less than some fixed
maximal distance. Some examples a given by a closed interval, a rectangle, an ellipse
circle, a sphere or a finite set of points. An ellipse e.g. is topologically equivalent to
a circle (into which it can be deformed by continuous deformation e.g. stretching)
and a sphere is equivalent to an ellipsoid. Similarly, the set of the numbers 0, 4, 6
and 9 are topologically equivalent - they have one hole each. The numbers 1, 2, 3,
5 and 7 are also topologically equivalent - they have 0 holes each and the number 8
(has two holes) is not topologically equivalent to either set of numbers.
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In fact topology is the newest branch of geometry. It studies different sorts of
spaces and especially the question what distinguishes different geometries. Felix
Klein has suggested that the allowed transformations that keep certain kind of geom-
etry unchanged is in fact its main mark. For example in the ordinary Euclidean
geometry one is allowed to translate and rotate different objects, but bending and
stretching are not allowed. Projective geometry on the other hand recognises differ-
ent views of the same object as an allowed “transformation” within the projective
geometry. The circle and the ellipse are projectively equivalent: all depends on the
point of observation of a circle that may look like a circle or as an ellipse. Topology
allows any continuous transformation that is reversible in a continuous way. Let us
take the ellipse - it is equivalent to a circle or a square because one can continuously
transform it into a circle or a square in a reversible way. If during the transformation
one needs to cross two lines this is not any more a reversible transformation: an
example is the Fig. 2.8. Topology as the almost most fundamental form of geometry
is used in almost all branches of mathematics. It turns out that there is an even more
fundamental form of geometry - the homotopy theory. It was formulated around 1900
by Poincare. Two geometric objects are called homotopic if they can continuously
be transformed from one into the other without cutting and gluing. The number of
allowed transformations is very big and one can deal with them as it is done in alge-
bra. One can use homotopy to classify different geometrical objects and there are
many applications to physics too: spin systems, liquid crystals etc.

Here we will start with the application of homotopy to physics. In order to do
this we will use the notion of order parameter which is widely used in physics. The
order parameter is usually a geometric object (unit vector, tensor etc.) which best
characterizes the state of the physical material that we are studying. For example if
we are studying a three dimensional ferromagnet, the most important property is its
magnetization, which is represented by an unit vector field. The unit vectors of this
vector field may point in any direction (at sufficiently high temperature where the
magnets are not oriented in any particular direction). These vectors may be mapped
to a unit sphere as shown on the Fig. 2.1. The unit sphere is called a target space. If
the ferromagnet is two dimensional, and the magnetization vectors lye in the plane,
then the target space is a circle with unit radius.

In order to fully take advantage of the topology and themapping from the physical
to the order parameter space, we will introduce the so called compactification of the
physical space. Let us explain this on a simple example. Consider a two dimensional
plane with a ferromagnet field on it which at the infinity points to the same direction,
say perpendicular to the plane and upward. From the point of view of the ferromag-
netic field the infinity of the physical plane is characterized by only one single vector
that points up. So, we may bring al the infinity in one point, but then our physical
plane will look like a sphere where the north pole of the sphere is the point which
represents the infinity of the plane.
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Fig. 2.1 Mapping from physical space to order parameter space

2.1.2 Classification of Vector Fields with Homogeneous
Boundary Conditions

Themapping from the compactified physical space (e.g. the sphere S2) onto the target
space (S2 in the case of the ferromagnetic field), allows to classify the different vector
field configurations into separate homotopy classes. The notation is the following:

π2(S2) = π2(S2) = Z(the group of the relative integers) (2.1)

wheren = 0, 1, 2, . . . is an integerwhich labels the corresponding vector field config-
uration. Equation (2.1) means how many times the sphere may wrap another sphere.
As an example let us consider n = 1 - this configuration is such that the mapping of
the vector field on the target space covers the sphere S2 just once, for n = 2 the target
space S2 has been covered twice. It is clear now that it is not possible by continuous
transformation to deform the configuration with n = 1 (here the tips of the vectors
mapped onto the target space cover the sphere once) into configuration with n = 2
(here the tips of the vectors mapped onto the sphere cover S2 twice).

Let us consider now an one dimensional physical space (an infinite line) with a
ferromagnetic field (a unit vector field) on it. We will consider first a magnetization
which lies in the plane perpendicular to the line, i.e. the magnetisation vector may
point in any direction perpendicular to the physical line. It is obvious now that the
target space is an unit circle S1. If the boundary conditions are homogeneous i.e. the
magnetisation vectors at + infinity and at − infinity of the physical line, are parallel,
then we may compactify the line into a circle. Now the different homotopy classes
of configurations are given by the following equation:
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π1(S1) = π2(S2) = Z (2.2)

This equation tells us how many times the circle may wrap around another circle.
The class n ∈ Z means that the magnetization vector points at the same direction at
±∞ and turns once around the line going from−∞ to+∞. Let us note however that
not all spin configurations with homogeneous boundary conditions lead to different
homotopy classes. As an example let us take the line with spins that may point in any
direction i.e. the target space now is s2. Now the topological classification is given
by the following homotopy:

π1(S2) = 0 (2.3)

Here any closed curve (the mapping from the circle to the surface of the sphere) on
S2 may be shrunk to a point.

2.1.3 Classification of Defects in Vector Fields (Mainly Spin
Fields)

In order to better illustrate the role of topology in the classification of defects [2] we
will concentrate only on two dimensional spin fields where spins lye in the plane
i.e. the target space is the circle S1. The case of spin fields (vector fields) may
be generalised to describe liquid crystals as well as there the order parameter is a
headless vector. Now, here the idea is to surround the defect by a closed contour and
to map the vectors on that contour onto the target space, see Fig. 2.2. On Fig. 2.2
we see that the closed curve on target space may be shrunk to a point. This means
that there is no defect inside the loop. The situation would have been different if the
vector field on the circle would have been radial in any point - then the closed curve
on the target space would have wrapped once the circle and the result would have
been the following homotopy equation:

π1(S1) = π2(S2) = Z (2.4)

The defect here represents a source of the vector field. On the other hand if the vector
field is allowed to come out of the plane, the target space becomes S2 and as we have
seen, any closed curve on the sphere can continuously be shrunk to a point, meaning
that there is no defect enclosed by the loop on the plane.

2.1.4 Defects and Homogeneous Boundary Conditions

Let us for a moment come back to our discussion of homogeneous boundary condi-
tions and see what does it mean in view of the preceding discussion of topological
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Fig. 2.2 Mapping from a closed contour around the defect to the order parameter space

classification of defects. If we consider the plane as our physical space, the homoge-
neous boundary condition for a vector field on it means that a loop at infinity (where
the vectors point all in the same direction) will map to a single point on the target
space. Now, let us suppose that there is a point defect somewhere on the plane. If we
draw a closed loop around this defect and map the vectors on the target space we will
get a closed line which we will not be able to shrink to a point. We may deform our
loop on the physical plane to a loop at infinity and the map on the target space would
not be shrinkable to a point. This contradiction tells us that imposing homogeneous
boundary conditions also means that we exclude all point defects from the vector
field.

2.2 Geometry

2.2.1 Energy

So farwehave seen that very often spinfieldswith homogeneous boundary conditions
fall into different homotopy classes. Now we will see what is the consequence for
the energy of these different classes. For simplicity let us consider a ferromagnetic
field – the energy is lowest when all vectors are parallel.

We will consider first the plane R2 which represents the simplest 2D mani-
fold. We will impose on the vector field on R2 homogeneous boundary conditions:
limr→∞�n → �n0. With these boundary conditions we may compactify the plane into
the sphere S2. Now the vector field configurations that may appear on the plane may
be classified in homotopy classes π2(S2) = Z [3]. This topological classification in
general is not related to the energy of the system. We may write the Hamiltonian for
the vector field on R2 as follows:
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H =
∫

(∇�n)
2d2x, �n2 = 1. (2.5)

Nevertheless topology does give some indications about the energy of a field con-
figuration in each homotopy class of equivalence using the Bogomolny inequalities
[4]:

(∂i �n − εi j∂ j �n)
2 ≥ 0, (2.6)

and therefore

H ≥
∫

�n · (∂x �n ∧ ∂y �n)dxdy. (2.7)

It is obvious from (2.6) that when

∂i �n = ±εi j∂ j �n. (2.8)

minimum energy is reached in each class. Equation (2.8) are called “self-dual equa-
tions”. Homotopy is useful for establishing different classes of vector field con-
figurations and may help establish some inequalities regarding the energy in each
configuration but geometry in general is not much more helpful in establishing the
energy of a field configuration. Especially a geometry without an internal length (this
is the case e.g. for the plane R2). Nontrivial filed configurations on the plane R2 may
be scaled (shrunk) to a point without affecting the energy of the configuration. This
happens because the Hamiltonian is symmetric under homothety (stretching of the
space). Let us consider what happens with the Hamiltonian under stretching of the
space by a factor λ: x → λx and y → λy

Eλ =
∫ ∫ ((

∂n

∂λx

)2
+

(
∂n

∂λy

)2
)

dλxdλy =
∫ ∫ ((

∂n

∂x

)2
+

(
∂n

∂y

)2
)

dxdy = E .

(2.9)

The energy of the field configuration is invariant under stretching. As we men-
tioned above this means that the whole configuration may be shrunk into a point.
These topological configurations are energetically metastable. The deeper reason
for this to happen is that there is no internal length (or characteristic length) in the
problem. Naturally there is no length in topology.

2.2.2 Geometry with Intrinsic Length: The Cylinder

As a geometry with intrinsic length wewill consider the cylinder. The intrinsic length
of the cylinder is its radius ρ0.Wewill consider a cylindrically symmetric vector field
(spin field) on the cylinder with radius ρ0. As an immediate consequence of the pres-
ence of the intrinsic length ρ0 we note that the homothety does not apply here and the
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energy does depend on ρ0. The order parameter for the classical Heisenberg model is
the unit vector which covers the sphere S2. It is easier to work with the Euler angles θ
and φ on the unit sphere because they incorporate the constraint (n2 = 1). Our inde-
pendent vector fields will be (θ,�) where �n = (cos θ, sin θ cos�, sin θ sin�).
Here θ is the co-latitude and � is the azimuthal angle. In cylindrical coordinates (ρ,
x , ϕ) we can write the Hamiltonian in the following way [5]

Hisotropic = J
∫ ∫

cylinder

[
(∂xθ)2 + sin2 θ (∂x�)2 + (∂ϕθ)2

ρ20
+ sin2 θ

ρ20
(∂ϕ�)2

]
ρ dxdϕ,

(2.10)
where J is the spin-spin coupling constant.

We will consider our vector field with homogeneous boundary conditions at both
ends of the cylinder, because then we can compactify the cylinder using topological
considerations. Homogeneous boundary conditions in this casemean lim

x→∞ θ ≡ 0[π].
We ask also that lim

x→∞
dθ

dx
= 0. This second condition is required in order to have

finite energy on the infinite cylinder. The fact that
dθ

dx
goes to zero should insure the

convergence of the integral in (2.10). With the homogeneous boundary conditions at
both ends of the cylinder we can make coinside all points at infinity and compactify
the infinite cylinder into a sphere (the ends of the cylinder become the two poles of
the sphere). Then we can map the sphere (the compactified cylinder) onto S2 (the
order parameter manifold) and sowe get π2(S2)=Z. The result is that the spin config-
urations on the infinite cylinder can be classified in different classes of topologically
non-trivial spin distributions [3, 5]. Inside each class, the spin configurations are
topologically equivalent because they belong to the same homotopy class.

In this example we will consider only solutions with cylindrical symmetry. They
will be sufficient for our purposes. For the angles θ and � the following conditions
must apply:

� = ϕ ,
∂θ

∂ϕ
= 0. (2.11)

The Hamiltonian (2.10) then becomes

Hisotropic = 2πρ0 J
∫ +∞

−∞

[(
dθ

dx

)2

+ sin2 θ

ρ20

]
dx . (2.12)

After variation of the Hamiltonian δH = 0, the Euler–Lagrange equation leads to

d2θ(x)

dx2
= 1

2ρ20
sin 2θ. (2.13)

This equation represents the sine-Gordon equation whose solutions are solitons.
This second order differential equation appears in a big variety of physical prob-
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Fig. 2.3 Cylindrically
symmetric 0 → π twist
soliton on an infinite cylinder

lems e.g. charge-density-wave in different materials, splay waves on membranes,
Bloch wall motion in magnetic crystals, magnetic flux in Josephson lines, propaga-
tion of dislocations in crystals, torsion coupled pendula, two-dimensional models of
elementary particles, etc.

One solution for a configuration which belongs to the first homotopy class and
representing a single spin twist, is given by:

θ = 2 arctan exp
x

ρ0
. (2.14)

A schematic representation is given in Fig. 2.3 The characteristic length ρ of the
cylinder appears explicitly in the solution. In this solution ρ0 represents the width of
the twist soliton.

2.2.3 Geometry with Intrinsic Length: Plane with a Disc
Missing

Nowwewill consider yet another example of a geometrywith intrinsic length namely
a non simply connected plane R2. Here the intrinsic length will be the radius ρ0 of
the disk D2

ρ0
cut off from the plane. First we will consider spins on R2\D2

ρ0
and then

the same classical spin field but in a perpendicular to the plane magnetic field B. In
a cylindrical coordinate system (ρ,φ) he Hamiltonian (the nonlinear sigma model)
reads:

H = 2π
∫ ∞

ρ0

dρ

[
ρθ2ρ + sin2 θ

ρ

]
. (2.15)

Herewe are using theEuler angles representation for the unit vectorn = (sin θ cos�,

sin θ sin�, cos θ), (the spins lie on a unit sphere S2). Without loss of generality we
will assume cylindrical symmetry for the spin configurations: θ = θ(ρ) and � = φ.
The solutions of the Euler–Lagrange (EL) equation will give the configurations with
lowest energy:

θρ + ρθρρ = sin θ cos θ

ρ
. (2.16)
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Fig. 2.4 Field on a plane
with a disc missing

Here we take θ(ρ0) = constant. and define a new radius coordinate ρ = ln(ρ/ρ0)
which will allow us to reduce the EL equation to a simple sine-Gordon equation:

θρρ = sin 2θ

2
. (2.17)

A novel exact half-skyrmion appears to be the solution of this sine-Gordon equation
on the non-simply connected plane shown on Fig. 2.4.

θ(ρ, ρ0) = 2 tan−1 ρ

ρ0
. (2.18)

This solution depends on ρ0, the intrinsic length in the problem and can not be
shrunk to a point like the usual Belavin-Polyakov skyrmion [3]. It is located at ρc =
ρ0 cot(π/8) = ρ0(1 + √

2) with energy 4π (instead of 8π) and topological charge
density

q(ρ) = θρ sin θ

4πρ
= 1

π

ρ20
(ρ2 + ρ20)

2
. (2.19)

Equivalently, the components of the unit vector field are:

nx = 2xρ0

ρ2 + ρ20
, ny = 2yρ0

ρ2 + ρ20
, nz = ρ2 − ρ20

ρ2 + ρ20
. (2.20)
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2.2.4 Interaction Between Geometry and Physical Field

We have seen so far that the intrinsic length of the underlying manifold appears in
the solutions for the vector field distributions i.e. the underlying manifold influences
the vector field. The opposite is true too. In order to illustrate this we will turn our
attention to yet another exact solution of the sine-Gordon equation. We will consider
now a periodic solution of this equation which represents a the soliton lattice [6]. We
note here that the Bogomol’nyi argument can be applied for any period (for which
the unit vector covers S2) of this periodic solution. We note here that for one period
on the rigid cylinder the self-dual equations (2.6) are still valid and therefore any
function that satisfies (2.6) will satisfy the sine-Gordon equation as well (2.13). The
periodic solution of the sine-Gordon equation is given by:

θ = arccos

[
sn

(
x

kρ0
, k

)]
. (2.21)

Let us discuss this periodic solution. The constant k is the modulus of the Jacobi
elliptic function sn (sine-amplitude); the period of the solution is given by 4d =
4ρ0kK (k) where here K (k) is the complete elliptic integral of the first kind. The
periodic solution transforms into the single twist soliton (2.14) solution of the sine-
Gordon equation In the limit k → 1, as lim

k→1
K (k) → ∞, the half period 2d tends

to infinity and at the the boundaries, we get the homogeneous conditions we have
discussed in Sect. 2.2. We can now calculate the energy per soliton (over half period
2d, as θ(±d) ≡ 0[π]):

Hisotropic = 8πJ

k

[
E(k) − k ′2K (k)

2

]
, (2.22)

In this equation k ′ is the complementary modulus (k ′2 = 1 − k2) and E(k) is the
complete elliptic integral of the second kind. In the low soliton density limit, i.e. k
→ 1 [then E(k) → 1], we can expand the exact solution (2.22) and obtain the energy
per soliton which reads:

Hisotropic = 8πJ + 32πJexp

(
−2d

ρ0

)
+ . . . = 8πJ + 2πJk ′2 + . . . . (2.23)

The first term in this expansion represents the self energy of a soliton over one
period (which corresponds to a soliton that stretches from −∞ to +∞. The second
term represents an additional energy that corresponds to the repulsive interaction
between solitons. The periodic solution (2.21) is an exact solution of the sine-Gordon
equation but nevertheless does not satisfy the self duality equations and that is the
reasonwhy the energy per soliton in the periodic solution does not reach theminimum
energy per soliton H 1

isotropic = 8πJ . For a single soliton on a cylinder we have some
sort of “equipartition” relation ρ0

2 (∂xθ)
2 = sin2 θ between “kinetic” energy on the
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Fig. 2.5 Periodic spin soliton and periodic deformation of the cylinder

left and “potential” energy on the right. For the periodic solution the corresponding
relation is:

ρ0
2 (∂xθ)

2 = sin2 θ + k ′2

k2
. (2.24)

Now we see that on the right hand side of this equation there is an additional “poten-
tial” energy ( k ′

k )2 that corresponds to an exponential repulsive interaction between the
solitons. The soliton likes to stretch from −∞ to +∞ but the presence of additional
soliton does not allow this to happen - this is the geometric frustration that appears
in this case. In the limit of a single twist soliton (d → ∞ and k ′ = 0) ( k ′

k )2 = 0 and
we get the energy H 1

isotropic of the single twist soliton: the interaction term vanishes.
There is another possibility that may allow us to diminish the magnetic energy per
soliton on the cylinder. If we allow the cylinder to deform as shown on Fig. 2.5 this
will diminish the magnetic energy per soliton but will require some elastic energy
for the deformation of the cylinder. Allowing for elastic deformations of the cylinder
means that ρ will become x-dependent which will modify the Hamiltonian and the
associated equations as discussed in [6].

2.2.5 Chirality of 1d Spin Configurations

We have seen that the usual homotopy classification of Heisenberg spins (target
space is S2) in one dimension is trivial: π1(S2) = 0. However, there is another
non-trivial topological classification of Heisenberg spins based on chirality [7]. In
order to find out if there are other topological structures in the one dimensional
case one has to better analyse the Heisenberg hamiltonian. As the vector field is
normalised to unity we once again will use the Euler angles representation for
n = (sin θ cosφ, sin θ sin φ, cos θ). Using θ and φ variables the hamiltonian can be
written in the following form:
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H = J
∫ +L

−L
(θ2s + sin θ2φ2

s )ds (2.25)

here s stands for d
ds and s represents the coordinate along R1. This hamiltonian

is not invariant under homothety transformation s → λs and that’s why the spin
configurations are not metastable like in the 2D case. The equations of motion for
this spin hamiltonian have been established by Tjon andWright [8] whereφ and cos θ
represent the conjugated generalised coordinate andmomentum.ThePoisson bracket
gives [φ(x), cos θ(y)] = δ(x − y). Here the generator of translations (momentum)
is given by the following expression:

P =
∫ +L

−L
(1 − cos θ)φsds (2.26)

The momentum operator verifies the Poisson brackets: [φ(s), P] = −φs and
[cos θ(s), P] = − d

ds cos θ(s) [8]. It turns out that P is a constant of the motion
for this Hamiltonian [8].

Now, for our analysis of the possible spin configurations we will map the unit
vector n to the unit tangent of a space. Now, it turns out that different space curves
represent different spin configurations. Here the boundary conditions we will use are
that at±L the spinswill be parallel. In this case different curves representing different
spin configurations will tend to a straight line as s → ±L . Of special interest for us
is the writhe of a curve (which characterises its chirality of the). For a closed curve
it is defined as follows [9]:

Wr = 1

4π

∮
ds

∮
ds ′ (r(s) − r(s ′).(n(s) − n(s ′))

|r(s) − r(s ′)|3 (2.27)

In this case we distinguish two classes of homotopy equivalent curves: one where
two ends of the curve are rotated to each other by 2π and the other where the two
ends are rotated by 4π. The reason for the appearance of these two classes is the fact
that the group SO(3) is non simply connected manifold and closed loops in SO(3)
fall into two classes: those who can be contracted to a point and those for which this
is impossible. For example a triad evolving on such a space curve from s = −L to
s = L traces out a closed curve on SO(3) [10]

We will apply a theorem by Fuller which allows to express Wr as an integral of
a local quantity. We will express Wr with respect to a reference curve C0 (which for
simplicity is taken to be a straight line):

Wr = Wr0 + 1

2π

∫ +L

−L

n0 × n. d
ds (n0 + n)

(1 + n0.n)
ds (2.28)

hereWr0 is thewrithe of the reference curve.A simple calculation gives the following
expression for the writhe:
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Wr = 1

2π

∫ +L

−L
(1 − cos θ)φsds (2.29)

Let us note here that the writhe Wr for the spin configurations (quantity that char-
acterises the chirality of the spin configuration) coincides with the total momentum
P . We have seen that the total momentum P is a conserved quantity - it follows that
Wr is a conserved quantity too. This will lead us to a new class of possible excitations
for the continuous classical spin Heisenberg model. The ground state configuration
is represented by θ = 0 and let us note that the curves whose ends are rotated by
4π also belong to the same class of configurations [10]. In order to calculate the
lower bound for the energy of a configuration that doesn’t belong to the ground state
configuration (curves whose ends are rotated by 2π) we need closed curves. Let us
take first a space curve representing a spin configuration that goes from −L to +L .
This curve is completed by a straight line between −L and −∞ and between +L
and +∞ and is closed by a semi-circle at infinity in order to form a closed curve.
Note that on the straight segments and on the semi-circle at infinity the curvature k
is zero. The writhe is zero for the straight segments when s ∈ ±(L ,∞) as well as
for the infinite semi-circle. This geometrical construction does not change the writhe
of the actual curve. Such a curve belongs to a whole class of configurations which
deform smoothly from one to another and who are separated from the ground state
class by a jump in the writhe Wr . Let us first note that for closed curves [11]:

∮
kds ≥ 2π (2.30)

We note that the curvature k �= 0 only for s ∈ (−L ,+L), and then the above inequal-
ity is equivalent to: ∫ +L

−L
kds ≥ 2π (2.31)

We will use the following Cauchy–Schwarz inequality:

(∫ +L

−L
kds

)2

≤ 2L
∫ +L

−L
k2ds (2.32)

and the following expression for the curvature in Euler angles: k2 = θ2s + sin2 θφ2
s .

Then we can present the following obvious inequality for the energy of the spin
chain:

H = J
∫ +L

−L
(θ2s + sin2 θφ2s )ds = J

∫ +L

−L
k2ds ≥

J
(∫ +L

−L kds
)2

2L
≥ J

4π2

2L
= J

2π2

L
(2.33)

The energy is limited from below for this class of configurations for which both ends
of the representing space curve are rotated at 2π. It is clear that for an infinite chain
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L → ∞ the lower bound goes to 0. On the other hand the barrier which separates
P from the zeroth class remains. The above result is consistent with the inequality
for the elastic energy of thin rod whose ends are rotated by 2π relative to each other
[10] where the result is based on the same property of the rotation group SO(3). In
this case the thin rod has only bending rigidity J and no torsional rigidity.

2.3 Quantum Potential, Thin Tubes, Knots

Yet another interesting application of geometry concerns quantum theory. Especially
the appearance of induced quantum potential on curved surfaces and on curves (thin
tubes) (the effective potential that appears on curved surfaces ormembranes is Ve f f =
− �

2

2m (M2 − K ) where K = k1k2 is the Gaussian curvature and k1 and k2 are the
sectional curvatures and M = 1/2(k1 + k2) is the mean curvature and the effective
potential on curves or in thin tubes is Vef f = − �

2

2m
k2

4 , where k is the curvature of the
axis of the tube [12]. We will briefly discuss the appearance of quantum potential
in a thin tube and give a “hand-waving” argument in favour of it. The argument is
based on Heisenberg’s uncertainty principle, see Fig. 2.6.

It is the obvious that as�ps ≤ �px , the corresponding energies are related as fol-

lows: Es = �p2
s

2m ≤ Ex = �p2
x

2m .This shows that the free particles prefer to be localised
in the bent region of the thin tube.

Let us now, as an example, consider a trefoil knot (knots appear often in polymers).
It has turned out that one may create a qubit using the geometry of a tight trefoil knot
[13].

In mathematics knots are represented as closed, self-avoiding curves embedded
in a three-dimensional space. Any knot can be tied on a thread (or a curve) of any
length and when we pull on both ends of the thread the knot transforms into a point
which means that all conformations are essentially equivalent. Yet another problem
is the lack of characteristic length with does not allow for the introduction of energy
scale. Physics deals with real material knots. The thread has a finite diameter and
pulling the thread on both ends does not transform the knot into a point. The diameter
of the physical thread plays the role of a characteristic length.

In our example we will use a trefoil knot where the thread will have a circular
cross-section with a finite radius. Then we will pull the knot tight. At some point we

Fig. 2.6 Bent thin tube Heiseuberg

ΔXΔρx  ∼ +∼
ΔX ΔSΔρs  ∼ +∼

Δρs < Δρx

ΔS

ΔS > ΔX ⇒
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Fig. 2.7 Tight open knot
and the curvature of its
center ligne

Fig. 2.8 A double well
potential for the tight trefoil
knot

will note that we can not pull any further without changing the cross-section of the
knot. The final confirmation we have reached is called tight open knot. We may get
a tight closed knot simply by “gluing” together the loose ends of the tight open knot.
As seen on Fig. 2.7 there is a plane of symmetry which separates the left from the
right part of the trefoil knot. This most symmetrical conformation of the trefoil knot
appears to be also the most energetically (elastic energy) favourable.

There is no analytical expression for the curvature of the center line of a tight knot,
but there are experimental measurement, which are presented on Fig. 2.7 [14]. There
is compete left-right symmetry of the curvature and there is a flat region (k = 0) in
the middle.

As we have seen, the curvature of a space curve or the centerline of a thin tube
is related to the induced quantum potential. The curvature presented in Fig. 2.8 can
be modelled to represent the following double well potential for the tight knot. See
Fig. 2.8. Finally the tuneling possibility between the two wells splits the localised
level into two and so the tight trefoil knot represents quantum mechanically a two
level system which may be used as a microscopic qubit.

The combination of curved and straight nanobars may produce the same double
well potential as shown in Fig. 2.8. One such combination is shown in Fig. 2.9. The
possibility to create almost any given quantum potential using a combination of
suitable curved nanobars is very big.
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Fig. 2.9 Circular and
straight nanobars create a
double-well potential

The sectors A − B and C − D represent a quarter of a circle (Vef f. = − �
2

2m
k20
4 ,

with k0 = 1
r0
, where r0 is the radius of the circle) and the sector B − C is a straight

line (Vef f. = 0).

2.4 Conclusions

By using topology and geometry we established a link between the order parameter
of the concrete material and the underlying geometry andmake predictions regarding
the bounds of energy imposed by topological and geometrical constraints without
solving the very complicated equations of motion. Classification of defects in differ-
ent materials is also possible. This is true for the classical as well as for the quantum
level of consideration. Further investigations on the quantum level, using topology,
may include the quantum effective potential which is geometric in its nature and may
play an important role in understanding of some properties of nanostructures. Finally
we mention that topology and geometry can not replace solving of the microscopic
equations of motion but may bring additional insights for the understanding of the
fundamental properties of matter.
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Chapter 3
Topology-Induced Geometry
and Properties of Carbon Nanomaterials

Hiroyuki Shima and Jun Onoe

Abstract Nanoscale graphene sheets (i.e., sp2-bonded monoatomic carbon layers)
often exhibit drastic changes in their geometry and properties when non-hexagonal
carbon rings are embedded into the original hexagonal lattice. This chapter gives
a short review on the physics of sp2 nanocarbon materials with curved geometry,
together with a concise explanation of the mechanism as to how the presence of
topological defects causes the anomalously curved geometry.A special emphasiswill
be placed on the geometry-property correlation inherent in quasi-one-dimensional
fullerene polymers and single-walled carbon nanocoils, each of which shows geo-
metric curvature or torsion induced by local change in the carbon network topology.

3.1 Introduction

3.1.1 Carbon as a Building Block

Carbon is one of the most wealth-generating elements on the Earth. In view of biol-
ogy, carbon is the root of all living matters, allowing many other chemical elements
(hydrogen, oxygen, nitrogen, etc.) to react with it to produce substantial organic
compounds. From the physico-chemical perspective, carbon is highly versatile in the
sense that it accepts different atomic orbital hybridizations. For instance, hybridiza-
tion of the 2s orbital with all three 2p orbitals (px, py, and pz) in a carbon atom results
in four sp3 hybrid orbitals with tetrahedral geometry. The sp3 orbitals spanning the
three-dimensional (3D) space allow the realization of diamond, one of the most
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attractive materials in the world. Similarly, the s orbital and two p orbitals hybridize
to form three sp2 orbitals with the trigonal planar structure, allowing the formation
of graphene, a two-dimensional (2D) mono-atomic sheet made purely from carbon.
Finally, the s orbital hybridizes with one of the p orbitals to form two sp hybridized
orbitals, whose frontal lobes face away from each other forming a one-dimensional
(1D) straight line.

A direct consequence of the versatility in the hybridized orbitals, each of which
spans a different class of spatial dimension (3D, 2D, and 1D), is the diversity of
carbon-based nanomaterials with various morphologies [1, 2]. Of the intriguing
nanocarbon family, those made by monoatomic carbon layers (i.e., sp2 graphene
sheet) have long been the hot topic in the community of materials science [3]. It is
definitely sure that carbon nanotube is the greatest example among the epoch-making
nanocarbons made by wrapping a graphene sheet [4, 5]. As well, graphene nanorib-
bon, which is a stripe of graphene sheet with a few tens Å in width, is also the one
spotlighted from the discovery in the last decade [6].

Basically, the profoundnature of those sp2 nanocarbons originates from the perfect
hexagonal structure of the monoatomic sheet. And further interesting aspect is that,
it may be richer and variegated if the hexagonal symmetry of the crystalline lattice
is broken locally by introduction of structural defects [7]. So what kind of symmetry
breaking is relevant to the physics of sp2 carbon? See below an overview of the
subject.

3.1.2 Defect in sp2 Nanocarbon

Ideally, an sp2 graphene sheet is a perfect 2D crystal in which the carbon atoms
perfectly align into hexagons. But in reality, a graphene sheet does not show either
perfect horizontality nor perfect hexagonal symmetry. In fact, it inevitably contains
a considerable number of defects.

From structural viewpoints, defects in a graphene sheet (or more generally, in a
monoatomic layer of sp2 carbon) are classified into four groups:

(1) Topological defect;
(2) Presence of sp3 chemical bonds due to hybridization;
(3) Vacancy and/or dislocation;
(4) Non-carbon impurity.

The class of topological defects, written at the top of the list above, is the main topic
of this chapter. A topological defect is produced by introducing non-hexagonal rings
(e.g., pentagons or heptagons) into the perfect graphene sheet with hexagonal sym-
metry. We will see later the presence of topological defects may provide a significant
alteration in the geometry and properties of sp2 nanocarbons. Here, the term “topol-
ogy” means the local connectivity of carbon atoms via covalent bonding, though it
has a more abstract meaning as a mathematical jargon [8]. When being inserted in a
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graphene sheet, a topological defect breaks locally the structural order of the hexag-
onal lattice, altering the connectivity of carbon atoms in a limited region. We will
see in this chapter that the presence of topological defects can cause a significant
alteration in the geometry and properties of the originally planar sp2 nanocarbon
sheets.

Emphasis should be placed on the fact that the defect-induced alteration in geome-
try can allow a new class of anomalously-shaped nanocarbonmaterials endowedwith
surface curvature and/or torsion. Examples include, but are not restricted to, peanut-
shaped fullerene polymers [9], helix-shaped carbon nanocoils [10], and gyroid-
shaped carbon Schwarzite [11].Many intriguing properties of the three anomalously-
shaped nanocarbons have been unveiled in the last decade. Against the backdrop,
the present chapter aims at a bird’s eye view of the latest achievements on the new
family of sp2 nanocarbon materials, together with a concise explanation as to how
the topology of local atomic structure correlates with global geometry of the sp2

nanocarbon materials.

3.2 Topology-Induced Geometry in sp2 Nanocarbon

3.2.1 Surface Curvature Generation in Graphene Sheets

Topological defects play a crucial role in tailoring equilibrium structures of graphene
sheets [12, 13]. This is because insertion of topological defects into a graphene sheet
causes a change in local connectivity of carbon atoms, resulting in a global change
in the geometry of the sheet from the planar to curved structure as explained below.

Figure 3.1 provides a schematic diagram of surface curvature generation by topo-
logical defect insertion [14, 15]. Suppose that we are given a monoatomic graphene
sheet with perfect hexagonal symmetry, as displayed in the middle panel of Fig. 3.1.
Next, we remove a π/3 wedge from the original sheet and pull the two new edges to
connect them with each other. The resulting structure is displayed in the left panel of
Fig. 3.1. A particular attention should be paid to that the local atomic connectivity
is altered only at the central carbon rings, from hexagon to pentagon, while other
hexagon rings surrounding the central non-hexagon ring remain unchanged. This dia-
gram thus shows that artificial insertion of a pentagon ring into the perfect hexagonal
sheet yields a transformation from the flat to a positively curved graphitic layer.

A contrasting situation is illustrated in the right panel of Fig. 3.1. In that situation,
one π/3 wedge hatched in the middle panel is replaced forcibly by an already-
joined two π/3 wedges. As a consequence, the originally flat sheet (middle panel)
is transformed to a saddle-shaped graphitic sheet that has a heptagonal ring at the
center (right panel). Similarly to the previous case, local atomic configuration remains
unchanged except for the central non-hexagonal ring.

We have known that artificial change in the local atomic connectivity at the cen-
ter of a planar graphitic sheet results in a positively or negatively curved graphitic
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Fig. 3.1 Diagram of surface curvature generation by topological defect insertion. A portion of an
initially flat graphene sheet (middle) becomes endowedwith positive (left) or negative (right) surface
curvature when a π/3 wedge (shaded area) of the original sheet is removed or added, respectively.
Reprinted with permission from [15]

Fig. 3.2 A wrinkled
graphene structure. It was
theoretically designed
through a controlled
distribution of topological
defects. Reprinted with
permission from [17]

sheet. So what happens if the central hexagon is replaced by larger rings (e.g.,
octagon, nonagon, or more) or smaller rings (square and triangle)? In principle, a
severely curved sheet with positive or negative surface curvature can be built through
such local connectivity alteration; however, most of them turned out to be unstable
mechanically and thus it will be difficult to synthesize them in reality [16].

The topology-induced change in the surface geometry implies the ability of mor-
phological control of sp2 nanocarbons by artificial insertion of topological defects. In
fact, numerical simulations have suggested that collective behaviors of topological
defects can be utilized to design wrinkled graphene structures in controllable man-
ner. Figure 3.2 shows a thermodynamically stable structure of a defective graphene
sheet obtained by molecular dynamics simulations [17]. The numerically obtained
structure shows concavo-convex shape, involving pentagons at crests and valleys and
heptagons at saddle points. The simulation revealed the mechanical stability of the
periodically curved structure with 4 nm in wavelength and 0.75 nm in amplitude.

It was theoretically predicted that the topology-induced curvature in a graphene
sheet leads to a significant modification of the physical properties [18] such as elec-
tronic band structure [19–21], the charge carrier transport [22, 23], and spin-orbit
couplings [24]. In particular, negatively curved graphene sheets embedding heptag-
onal and octagonal defects have been shown to significantly enhance the capacity
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Fig. 3.3 a Three-dimensional crystal structure of T12-carbon, from which the two-dimensional
pentagon-based sheet (highlighted in yellow) will be exfoliated. Views from the [100] and [001]
directions are displayed. b Two-dimensional all-pentagon-made monoatomic carbon sheet, called
“penta-graphene”. Top and side views are shown. Reprinted with permission from [27]

of graphene based electrodes [25, 26], because of the high surface area compared
with the planar counterpart. More recently, another graphene sheet consisting of only
pentagons (so called “penta-graphene”) has been proposed theoretically as shown in
Fig. 3.3 [27]. It is interesting to note that penta-graphene exhibits a negative Poisson
ratio.

3.2.2 Plastic Deformation of Carbon Nanotubes

Aside from the “planar” graphitic materials, artificial introduction of topological
defects into “tubular” sp2 nanocarbons is also an interesting subject; defect inser-
tion can cause drastic changes in the structure and property of the tubular systems.
For instance, X-branched and T-branched junctions made of carbon nanotubes were
synthesized by inserting topological defects into the joint area of two or more dif-
ferent nanotubes, as demonstrated in Fig. 3.4 [28–30]. These branched nanocarbons
will find useful applications in nanoelectronics [31] and fiber-reinforced composites
[32, 33]. Other interesting examples of anomalously shaped nanotubes include car-
bon nanocoils [34] and bamboo-shaped carbon nanotubes [35–37]. The structural
anomaly observed in these systems relies on the periodic insertion of defects into
the originally straight nanotubes, which causes periodic variation in torsion and/or
curvature that allow coiled and/or twisted structures as metastable states.

Figure 3.5 demonstrates spatial variation in the tube radius caused by topological
defect insertion into a carbon nanotube [38, 39]. The symbol “P” depicted in the
electron microscope image indicates an apex at which one pentagon is embedded
into a graphitic cylinder. The presence of the pentagon causes mechanical strain in
the hexagonal carbon network around the pentagon. To relieve the strain, the cross-
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Fig. 3.4 Left: Molecular models of the X-junction between a thin and wide nanotube. Heptagonal
rings are indicated in red. Right: Atomic models of the T-junction. Reprinted with permission from
[28]

section of the tube slightly deviates from the initial circular shape at the position
indicated by “P”, resulting in an oval shape. Another strain-induced deformation
occurs at a local dent, indicated by “H” in the microscope image of Fig. 3.5. At the
dent, one heptagon is embedded into the graphitic sheet, generating negative surface
curvature near the point. As a result of the paired defects, a pentagon and a heptagon,
the tubular diameter of the carbon nanotube decreases gradually from the trunk to
the tip of the nanotube.

Interestingly, topological defects in carbon nanotubes (and other nanocarbons
having a closed shape) shed light on a beautiful interplay between mathematics and
atomic structures. A typical example is a capped structure of a nanotube obtained
by defect insertion [40]. Figure 3.6 shows an enlarged view of the tip of a capped
carbon nanotube with chirality of (30,0). Two different capped structures, shown
in the panels (a) and (b), are obtained by inserting six pentagon defects at the tip.
An intriguing fact is that the axial symmetry of the resulting capped structure is
dependent on the relative configuration of the topological defects, even if the same
number of defects is inserted. Indeed in Fig. 3.6, the exactly six pentagonal defects
yield five-fold symmetry in the case of (a) and six-fold symmetry in (b) with respect
to the tubular axis, in which more surprisingly, it is prohibited to choose the other
number of pentagons to be embedded; only the six pentagon insertion is allowed for
capping a carbon nanotube regardless of its tube radius and chirality. This restriction
with respect to the number of pentagons is a consequence of amathematical theorem,
called the Gauss-Bonnet theorem [41]. The theorem states that the number of non-
hexagonal rings (i.e., topology) is related to the curvature of the embedding graphene
sheet (i.e., geometry). From the technological perspective, the closed-cap formation
driven by topological defect insertion has been expected to offer the possibility for
the control of the chirality of carbon nanotubes during growth [42].



3 Topology-Induced Geometry and Properties … 59

Fig. 3.5 Left: Electron microscope image of a closed cap at the tip of a multi-walled carbon
nanotube. The successive presence of topological defects changes the diameter of the concentric
tubes gradually toward the tip [38]. Right: Atomistic structure of a capped carbon nanotube, in
which one pentagon and one heptagon are incorporated. The overall picture looks similar to the
image shown in the left panel. Reprinted with permission from [39]

3.3 Stone-Wales Defect

3.3.1 Symmetry Breaking by C–C Bond Rotation

A Stone-Wales (SW) defect, or also called a 5-7-7-5 defect, is the lowest energy
topological defect in sp2 nanocarbons [43]. It is formed by a 90-degree rotation
of a C–C bond in the hexagonal carbon network. The rotation causes atomic re-
configuration at the neighbor from the set of four hexagons to the set of two pentagons
and twoheptagons; see the top panels in Fig. 3.7. This 90-degree bond rotation is often
called a Stone-Wales (SW) transformation. It should be noted that the bond rotation
breaks the hexagonal symmetry of the perfect graphene sheet. Thus the resulting SW
defects scatter carrier transport, degrading the high mobility of carriers, which is the
hallmark of Dirac fermion behavior in graphene [44]. Yet it is not always a bad thing.
In fact, the symmetry breaking induced by SW defect insertion is also manifested by
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Fig. 3.6 Capping a (30,0) zigzag carbon nanotube by inserting six pentagonal carbon rings (marked
by shadow) at the tip. Depending on the defect configuration, two different kinds of axial symmetry
arise in the capped structure: a five-fold and b six-fold symmetry. Top views and overall views are
displayed in the upper and bottom panels, respectively. Reprinted with permission from [40]

the band gap opening in the electronic spectrum of graphene [45]. This finding will
expand the range of possible applications of graphene in nanoelectronics.

3.3.2 Formation Energy

Let us remind that SW transformation is accompanied by the consecutive breaking of
two single C–C bonds. Since the breaking of a single C–C bond in graphene requires
expending energy of nearly 5 eV, the height of the potential barrier preventing the
SW transformation is on the order of a few eV or more [46]. If we choose thermal
activation to overcome the high-energy barrier, it would be necessary to use extremely
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Fig. 3.7 Top: Atomic configuration of a graphene sheet before (left) and after (right) rotating the
C–C bond marked in red. Bottom left: Electron microscopic images of a SW defect. Bottom right:
Simulated results of the atomic configuration obtained by density functional theory. Reprinted with
permission from [53]

high temperatures. Therefore, earlier experimental attempts at artificial production
of SW defects have been based on the high-energy beam irradiation or the action of
mechanical stresses at the stage of the synthesis of the sp2 nanocarbons, as will be
argued in Sect. 3.4.

3.3.3 Out-of-Plane Displacement

One may think that a graphene sheet is flat and purely two-dimensional, even when
a SW defect is present in the sheet. But this is not true; in fact, the lowest-energy
atomic configuration of the SW defect has a sine-wave-like form [47]. In this wavy
structure, the two atoms involved in the rotated C–C bond move out of plane in the
opposite direction. This buckling of the C–C bond at the core of the SW defect gives
rise to the vertical displacement of many atoms around the defect, resulting in a
sine-like shape of the cross section as illustrated in Fig. 3.8 [47].



62 H. Shima et al.

Fig. 3.8 The structure of two buckled SW defects in graphene. Left: Top and side views of the
sine-like buckled SW defect, being identified as the most stable defect structure. Right: Top and side
views of the cosine like buckled SW defect. The rotated bonds at the defect core are highlighted.
Dashed lines indicate 1 × 1 rectangular and hexagonal unit cells. Reprinted with permission from
[47]

It may be non-trivial for readers why the SW defect in graphene does not remain
flat in equilibrium but buckles out of the plane. One plausible mechanism is based on
the release of the excess strain energy induced by the C–C bond rotation [47]. Prior
to the bond rotation, the equilibrium C–C bond length in perfect graphene is 1.42
Å. If we rotated a C–C bond with keeping the original flat shape of the embedding
hexagonal sheet, the separation between the rotated atoms would be compressed to
1.32 Å. Here, the flat structure cannot release the compression efficiently, because
in-plane motion of C atoms in graphene is too much expensive as compared to
out-of-plane motion. Instead of the in-plane deformation, the SW defect exhibits
out-of-plane deformation, as a result of which the compressed C–C bonds can be
expanded enough to release the in-plain strain energy. In fact, displacement of the
SW defect in the direction normal to the graphene sheet results in the pulling of
neighboring atoms out of the plane, because it is energetically favorable for the C–C
bonds that surround the SW defect to remain as close to a planar sp2-bonded network
as possible.

SW defects also affect the side-wall curvature of carbon nanotubes. Figure 3.9
illustrates local deformation of a nanotube caused by SW defect insertion into the
graphitic sidewall [48]. It follows from Fig. 3.9 that the magnitude of out-of-plane
displacement is maximized at the interface between two pentagons. Because of the
significant out-of-plane displacement, addition reactions are most favored at the C–C
double bonds of these positions [49].
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Fig. 3.9 Stone-Wales defect on the sidewall of a single-walled carbon nanotube. Reprinted with
permission from [48]

3.3.4 Microscopic Observation

From an experimental viewpoint, it is difficult to observe SW defects by ordinary
microscope techniques, despite a few indirect evidences have been provided to date
[50–52]. The difficulty stems mainly from the high activation barrier for the SW
transformation, whose energy scale is estimated as a few eV [30]. Due to the high
activation barrier, detection of native topological defects in a pristine sp2 nanocarbon
is statistically unrealistic. Hence most of earlier experiments for identifying topo-
logical defects with an atomistic-scale precision were based on artificial generation
of the defects, with the aid of high-energy beam irradiation and/or high-temperature
heat treatment.

The first direct observation of SW defects was successful on single-walled carbon
nanotubes in 2007 [53]. In the seminal work, high-resolution transmission electron
microscopywith atomic accuracywas used to obtain the image that is displayed in the
left-bottom panel of Fig. 3.6. It is interesting to remind that the defects shown in the
image were those artificially introduced in a pristine non-defective carbon nanotube.
Being exposed to high temperature (≈2300 K) in vacuum, a portion of hexagonal
lattices at the sidewall of nanotubes breaks out, which leads to the fusion of adjacent
nanotubes into a unified single-walled nanotube with large tube diameter [54]. The
large-diameter nanotube thus obtained suffers from substantial amount of structural
imperfection. When rapidly cooled, therefore, a large number of SW defects as well
as other kinds of topological defects are involved in the resulting nanotube; typically
a few SW defects can be detected per 10 nm length (and/or per 10 nm long).

Aside from those found in carbon nanotubes, SW defects were also found in
a flat monolayer graphene [55]. Figure 3.10 shows the microscope image of SW
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Fig. 3.10 Microscope image
of a Stone-Wales defect with
atomic configuration
superimposed. Reprinted
with permission from [55]

defects involved in the two-dimensional graphitic sheet; pentagons and heptagons
are colored in green and red, respectively. The image provides clear evidence for SW
defects existing in the examined graphene layer.

Quite recently, statistical atomic kinetics during SW transformation in graphene
was formulated, enabling the decoupling of the two contributions from high-energy
beam irradiation and thermal excitation to the activation of the C–C bond rotation
[56]. The result indicated the exceptionally high rate of healing for SW defects
generated by irradiation, compared with the healing rate of thermally-induced SW
defects. This implies the complexity in the route of reaction processes toward SW
defect realization in a graphene sheet.

3.4 Defect of 5–7 Paired Type

3.4.1 Dissociation of a SW Defect

It is interesting to note that SW defects on the sidewall of carbon nanotubes can
show a curious mechanical response to the axial load. Upon application of the axial
load to the defective carbon nanotube, a SW defect can dissociate into two separated
5–7 pairs. This tensile-driven dissociation of a SW defect is caused by additional
transformations of C–C bonds that locate in the vicinity of the 5–7 pairs [57]. Now
we suppose that the axial load remains exerting continuously on the nanotube. Then
we will observe further successive transformations of C–C bonds around the 5–7
pairs. Because of the successive transformations, the 5–7 pairs start to migrate along
a helical path that twines around the tube [58].

The migration of the 5–7 pairs along the helical path involves a number of atomic
reconfigurations around it, thus requiring a sufficient amount of energy supply to
proceed. This requisite energy is often supplied in the form of thermal excitation and
the work done by axial strain; it can be also supplied by bend deformation [59, 60].
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Fig. 3.11 a, b A perspective view (a) and a top view (b) of the atomic configuration involving two
5–7 paired defects in a graphene sheet. c, d Bond structures around the defect core in 3D (c) and 2D
projection (d). The color represents the scale of the out-of-plane displacement in a and potential
energy in b–d, respectively (scalebar:1 nm). Reprinted with permission from [61]

The chirality alteration is an important consequence of the 5–7 pair migration.
When the 5–7 pairs complete the full distance from one end to the other end of the
given nanotube, the charity of the tube domain covered by the helical path will be
altered. This chirality change is accompanied by the change in the tube diameter.
Therefore, the defect migration may serve as a driving force for a ductile elongation
behavior of carbon nanotubes under large axial strain, aswas observed in experiments
[57].

3.4.2 As a Seed of Surface Curvature

We have seen in Sect. 3.3 that the presence of SW defects causes a surface curvature
in an originally flat graphene sheet. Similar curvature generation occurs in a graphene
sheet containing topological defects of an isolated 5–7 pair, i.e., an adjacent pair of
pentagonal and heptagonal rings. Figure 3.11 illustrates the wrinkle of an initially flat
graphene produced by inserting two 5–7 defects [61]. As shown in the middle panel,
the two 5–7 defects are placed apart from each other with a separation equivalent to
several hexagonal rings. Then the two defects generate the surface curvature, giving
rise to a large wrinkle near the defect core (see the left panel). The vertical amplitude
of the out-of-plane displacement is estimated to be up to 3.3 Å. The middle panel
of Fig. 3.11 shows the potential energy of carbon atoms around a 5–7 defect, where
atoms involved in the defect exhibit a higher energy than those far from the defect.
In particular, three atoms on the heptagon side have the highest energy. The right
two panels display the 3D distributions of bond lengths around a defect (top) and
the corresponding 2D projection (bottom). It can be clearly observed that the 2D
projection significantly underestimates the length of covalent bonds around the 5–7
defect.
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Fig. 3.12 Schematic
illustration showing the
synthesis of the 1D C60
polymer. Reprinted with
permission from [65]

3.5 Peanut-Shaped C60 Polymers

3.5.1 Fusion of C60 Molecules

In the previous sections, we have seen that alteration in local atomic configuration
of sp2 nanocarbons can lead to a drastic change in the global geometry. Artificial
control of topology in the carbon sheet, therefore, may enable to realize anomalously
shaped sp2 nanomaterials endowed with surface curvature. This section focuses on a
particular class of such anomalously shaped sp2 nanocarbons, called peanut-shaped
fullerene (C60) polymer [9]. It is a quasi-one dimensional (1D) nanostructure obtained
by a series of fusions between C60 molecules [62, 63]. Figure 3.12 shows a schematic
diagram of the synthesis.When irradiated by the high-energy electron beam, two C60

are coalesced with each other via the generalized SW transformation [64]. They are
then transformed into C120 isomers, followed by the synthesis of the 1D C60 polymer
[65].

It has been unveiled that the 1D C60 polymer exhibits unique properties differing
from those of the other nanocarbon allotropes (fullerenes, nanotubes, and graphenes)
[66]. Experimental findings on the Peierls transition [67] and the infrared (IR) absorp-
tion intensity [68, 69] have indeed suggested the intriguing correlation between the
shape and physical properties of the 1DC60 polymers. Themost interesting properties
in view of topology-geometry correlation would be the surface curvature effects on
the electronic properties. Indeed, the 1D C60 polymers commonly show the periodic
modulation in the surface curvature of the sidewall along the tubular axis. This cur-
vature modulation stems from periodic variation in the tube diameter, which results
from periodic insertion of topological defects into a rolled-up graphene sheet. We
will see in the subsequent sections that the periodically modulating curvature of the
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1DC60 polymers drastically changes the nature of collective excitations in themobile
electrons compared with the case of the flat sp2 nanocarbons.

3.5.2 TLL State in C60 Polymers

The 1D C60 polymer is a long, thin, and hollow cylinder whose radius varies peri-
odically in the axial direction. Generally, in low-dimensional systems, Coulombic
interaction between mobile electrons plays a crucial role in their quantum nature and
often creates new collective states. Particularly in one-dimensional systems, such
as the 1D C60 polymer, interacting electrons cannot be regarded as a Fermi-liquid
but as a Tomonaga-Luttinger liquid (TLL) [70]. In the TLL state, the single-particle
excitation spectrum has an energy gap near the Fermi level, and this gap often causes
a power-law anomaly in the measurement data of the system. The hallmark of TLL
states is the power law behavior of the single-particle density of states (DOS), des-
ignated by D (ω, T ), near the Fermi energy EF . Here, ω indicates the energy mea-
sured from EF , and T denotes the absolute temperature. Such power-law anomalies
were experimentally confirmed in carbon nanotubes [71], which are also a quasi-one
dimensional nanocarbon. These facts naturally raise a question as to whether or not
the periodic curvature modulation inherent to the 1D C60 polymers affects the TLL
behavior of the systems if it occurs [72]. Given a significant effect is detected, it
evidences the topology-induced alteration both in the geometry and property of the
1D C60 polymers.

The mentioned above problem was resolved experimentally in 2012 by photoe-
mission spectral (PES) measurements [73]. The measurements revealed the PES
spectra in the vicinity of EF in the temperature range of 30–350 K. As the tempera-
ture decreased, the DOS D (ω, T ) converged to a power-law whose dependence on
the binding energy ω near EF is described by

D (ω, T � 0) ∝ |�ω − EF |α

in an energy range of 18–70meVwith the exponent α of ca. 0.66. In a similarmanner,
the DOS just on EF (i.e., ω � 0) was found to obey the power law with respect to T
as

D (ω � 0, T ) ∝ T α

in the range of 30–350Kwithα being ca. 0.59. It should be emphasized that the above
mentioned values of α, nearly equal to 0.6, are quite larger than that of single-walled
carbon nanotubes (α ∼ 0.5) [71]. It is thus concluded that the feasible increment
in α obtained in the experiment can be attributed to the effect of surface curvature
modulation that are produced by the periodically inserted topological defects along
the tube axis.
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Fig. 3.13 Top: Two different atomic models of the 1D C60 polymers deduced from first-principles
calculations. Constricted portions are occupied by a set of heptagons and octagons in the left-side
model, and by a set of five octagons in the right-side model. Bottom: Dispersion curves and the
densities of states of electrons in the two atomistic systems. Reprinted with permission from [72]

3.5.3 Topology-Based Understanding

Theoretical interpretation regarding theTLLbehavior of the 1DC60 polymer has been
proposed in 2016 [72], shortly after the experimental finding reported in 2012 [73].
The aim of the theoretical workwas to describe the low energy behavior of local DOS
in the 1D C60 polymer using the bosonization procedure. This procedure requires
the knowledge above the Fermi velocity of carriers, which can be evaluated from the
electronic band structures. To secure the quantitative accuracy, the band structures
as well as the atomic configuration of the 1D C60 polymers were deduced from the
first-principles calculations [74], from which the correlation between topological
defects and the TLL nature can be unveiled.

Figure 3.13 shows the energetically stable atomic models of the 1D C60 poly-
mers deduced from the first-principles calculations [74]. To find the two most stable
configurations, more than fifty kinds of 1D C60 polymers having different atomic
structures were analyzed. Through the analysis, it turned out that the total energy
and the stability of the models depend on the number of non-hexagonal rings (i.e.,
pentagon, heptagon, and octagon) embedded and their relative positions. One of the
twomost stable models, depicted in the left-upper panel of Fig. 3.13, is characterized
by that the constricted portions are occupied by a set of heptagons and octagons. On
the other hand, the constricted parts of the other stable model depicted in the right-
upper panel are composed of five octagons. The difference in the formation energy
between the two models was found to be less than 0.7 eV; in actual fabrication of
the 1D C60 polymers, therefore, both atomic configurations are possibly realized.
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The bottom panels of Fig. 3.13 show the electronic energy bands of the two
models. It follows from the graphs that more than one dispersion curves cross the
Fermi level. A difference in the number of Fermi-level crossing points between the
two models is a consequence of the slight difference in the lattice symmetry at the
waist part as mentioned above. Another remarkable feature is that for both models,
the X-shaped band crossing is a little slanted, asymmetric at the crossing point. This
slanted level crossing is in contrast with the fully symmetric level-crossing observed
in the metallic single-walled carbon nanotubes, indicating the effect of periodic
insertion of topological defects in the rolled-up sp2 monoatomic sheet.

The simulation data for the stable lattice structure and the associated electronic
band structure made it possible to obtain an analytic formula for DOS of the 1D
C60 polymers. The formula successfully reproduces the experimental data of PES,
thus describing the effect of topological defects on the TLL nature. Furthermore, the
formula tells us that different Fermi-level-crossing bands result in different power-
law dependence in the PES. This conclusion implies an uncovered crossover in the
spectra at energy on the order of 100 meV, beyond which the value of the exponent
shifts significantly.

3.5.4 Curvature-Based Understanding

We have argued in Sect. 5.3 that the atomistic model involving topological defects
provides the theoretical understanding of the TLL states realized in the 1D C60

polymers. Periodic insertion of defects causes variation in the surface curvature of
the sp2 monoatomic sheet, resulting in the upward shift in the power-law exponent
compared with that of single-walled carbon nanotubes.

The story does not end. If the wavefunctions of the mobile electrons are expanded
over the whole system, as those in 1D C60 polymers [75], there is another theoretical
approach that is useful to describe the low-energy excitations of the electronsmoving
on curved surfaces. In this approach, the discrete atomic structure is approximated as
a continuum thin surface, and the electrons’ motions are assumed to be restricted to
the surface by a confining force perpendicular to the surface [76]. Due to the strong
confinement, quantum excitation energies in the direction normal to the surface are
elevated much higher than those in the tangential direction. As a result, the particle
motion normal to the surface can be disregarded; this approximation allows us to
define an effective Hamiltonian for propagation along the curved surface.

It is well known that, given a curved surface, the effective Hamiltonian describing
the quantum motion on the surface involves an effective scalar potential. The sign
and magnitude of the effective potential depend on the local surface curvature. An
important consequence derived from the effective potential term in the Hamiltonian
is that quantum particles confined to a thin curved layer should behave differently
from those on a flat plane. Namely, the presence of nonzero surface curvature impacts
the quantum motion of electrons in the curved system. In this context, it is expected

https://doi.org/10.1007/978-3-319-76596-9_5
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Fig. 3.14 Left: Schematic illustration of a quantum hollow cylinder with periodic radius modula-
tion. Right: Surface curvature effect on the TLL power-law exponent. Reprinted with permission
from [77]

that the periodic surface curvature inherent in the 1DC60 polymers engenders sizable
effects on their TLL properties.

The problem was addressed theoretically in 2009 using the continuum approxi-
mation [77]. There, the 1D C60 polymers were mapped onto thin, long, and hollow
cylinders; the cylindrical radius is assumed to be varied in a periodic manner, as
analogous to the envelope surface of the real C60 polymers. The tube radius r (z)was
assumed to be periodically modulated in the axial z direction as

r (z) � r0 − δr

2
+

δr

2
cos

(
2π

�
z

)

where the parameter r0 and δr were introduced to express themaximumandminimum
of r (z) as r0 and r0 − δr , respectively; see Fig. 3.14 for the schematic illustration of
the deformed tube. The values of the parameters, r0 � 4.0 Å and � � 8.0 Å, suffice
to reproduce the actual shape of the 1D C60 polymers, while the value of δr may
vary according to the time duration of electron beam irradiation applied to pristine
C60 molecules at the stage of synthesis. It is important to note that the value of δr
determines the degree of curvature-induced scalar potential. Therefore, the central
aim is to be placed on where (or not) the variation in δr causes a certain shift in the
TLL power-law exponent α.

Let us remind that given a TLL state, the single-particle DOS at zero temperature,
D (ω), near EF exhibits a power-law singularity of the following form:

D (ω) ∝ |�ω − EF |α , α � u + u−1

2
− 1

The explicit form of u is derived using the bosonization procedure as follows:
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u �
√
2π�vF + g4 (q) − g2 (q)

2π�vF + g4 (q) + g2 (q)

Here, g4 (q) and g2 (q) are the wavenumber(q)-dependent coupling constants, and
vF is the Fermi velocity, determined by the slope of the electronic dispersion curve at
the Fermi level. Note that the variation in δr causes a change in the dispersion curve;
thus vF is a function of δr . As a consequence, the exponent α should be dependent
on δr , as clearly observed in Fig. 3.14. The plot shows the numerical result of the
δr -dependent α for different Fermi wavenumber kF . The salient feature of Fig. 3.14
is the significant increase in α with increasing δr . Such surface curvature-driven shift
in α is consistent with the experimental finding that α for the 1D C60 polymers is
larger than that for straight-shaped carbon nanotubes. Eventually, the upward shift in
α can be attributed to the effects of geometric curvature as well as topological defect
insertion to the constituent sp2 monoatomic sheet

3.5.5 Electron-Phonon Coupling in C60 Polymers

It is plausible that topological defect insertion, or equivalently, periodicmodulation in
surface curvature, may affect the degree of electron-phonon (e-ph) interaction in the
1D C60 polymers. This is because the spatial profiles both of lattice vibration ampli-
tude and the probability density of electron’s wavefunctions will be dependent on
the atomistic-level topology and global geometry of the system. In general nanocar-
bon allotropes, the e-ph interaction plays the key role in the collective motion of
carriers, as proved in superconductivity [78] and charge density waves (CDW) [79].
Thus the theoretical prediction as well as experimental detection of the strength of
e-ph interaction in the 1D C60 polymers will facilitate the understanding of their
physico-chemical properties and of the contribution from the topological effects on
them.

To proceed with consideration, we remind that in sp2 nanocarbons, the strength of
e-ph coupling is highly dependent on the global geometry of the structures. Denoting
the e-ph coupling strength by λ, it is known that λ ∼ 0.6 for K3C60 having spheri-
cal structure [80], λ ∼ 0.006 for single-walled carbon nanotubes having monolay-
ered tubular structure [81] and λ ∼ 5.4 × 10−4 for multi-walled nanotubes having
concentric-layered cylindrical structure [82]. The wide variation in the values of λ,
despite the common sp2 nature, is plausibly attributed to the difference in the mor-
phology of extended π-conjugation in the system. So what value of λ should be
obtained for the 1D C60 polymers, having an intermediate geometry between the
“spherical” C60 molecules and the “tubular” carbon nanotubes?

In order to estimate λ, carrier relaxation dynamics of the 1D C60 polymers was
examined using femtosecond time-resolved pump-probe spectroscopy [83]. The
measurement data of the femtosecond-transient refractivity was theoretically ana-
lyzed, leading to the conclusion that the magnitude of λ of the 1D C60 polymers to
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be 0.02. This result indicated that topology-induced curvature in the sp2 nanocarbons
significantly affects the magnitude of λ for nanocarbon allotropes.

3.6 Carbon Nanocoil

3.6.1 Benefit from Coiled Structure

Topological defect insertion into sp2 nanocarbon allows to realize not only “curved”
structures but also geometrically “twisted” ones. Carbon nanocoil is a typical exam-
ple of such twisted sp2 nanocarbon, resembling a “telephone cord” attached to a
traditional phone receiver [84]. Carbon nanocoil promises to show both mechanical
flexibility reflecting the coil morphology and the mechanical toughness originating
from the sp2 bonding. Furthermore, unique spiral structures of carbon nanocoils
imply their versatile applications [85] including ultra-sensitive contact with resolu-
tion as high as femtograms [86].

From a historical perspective, the existence of carbon nanocoils was theoretically
predicted in advance of the experimental realization. The predictionwas first reported
in 1993 [10]; it is interesting to note that this was just two years after the seminal
finding on carbon nanotubes. In the theoretically proposed structures, the coiling
arose as a consequence of periodic insertion of topological defects into a perfect
graphitic cylinder. Figure 3.15 presents three different kinds of proposed structures
[10], inwhich the pentagons and heptagons inserted aremarked by black and shadow,
respectively. It should be noted that in the proposed structures, topological defects are
not “defects” but essential building blocks for realizing the atomic coiling network.
Furthermore, the presence of non-hexagonal rings gives a physico-chemical impact
on carbon nanocoils; it was numerically found that local change in the atomic bonding
around the non-hexagonal rings leads to an enhancement of molecular hydrogen
absorption on the outer surface [87]. The enhanced hydrogen absorption on the body
surface indicates the possibility of developing a newclass of hydrogen storage devices
based on carbon nanocoils and/or other defective sp2 layered materials.

3.6.2 Atomistic Modeling

A simple atomistic modelling of carbon nanocoils was suggested in [88]. The mod-
elling is based on insertion of heptagons and pentagons in a periodic manner into a
hexagonal carbon network. First let us suppose a piece of straight carbon nanotube
as depicted in Fig. 3.16a. Next, a pair of pentagons is incorporated onto one side of
the piece (at the position colored in blue), and a pair of heptagons onto the other side
(red). After relaxing the defective tube segment, we will see that it is bent around the
non-hexagonal rings, through which the defect-induced strain energy is relieved [10,
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Fig. 3.15 Various atomic models of carbon coils with the lowest cohesive energy per atom. Pen-
tagons and heptagons (shaded) appear in the outer and inner ridge lines, respectively, amid a back-
ground of the hexagonal lattice. Reprinted with permission from [10]

Fig. 3.16 Procedures of constructing a carbon nanocoil of a (6,6) type from pieces of a (6,6) carbon
nanotube. Reprinted from [88]

89]. Similarly to previous arguments, pentagons generate positive curvature leading
to a local cone shape, while heptagons generate negative curvature leading to a local
saddle shape. The close relation between the defect position and the local change in
the surface curvature is illustrated in Fig. 3.16b.
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To obtain a spiral structure, we have only to connect the many building blocks
already prepared one by one with a certain twisting angle. Figure 3.16c demonstrates
a joint of two segments; repeating the connecting procedure, we finally obtain a
seamless nanocoil as demonstrated in Fig. 3.16d. By changing the tube length at the
two ends of the building block segment, or by varying the nanotube diameter, we
can control coil diameter, coil pitch, and tubular diameter of a carbon nanocoil.

3.6.3 Experimental Realization

It may be surprising that experimental fabrication of carbon nanocoils has a rela-
tively short story. The first electron microscopy observation of carbon nanocoils was
reported in 1994 [90], serving as the pathfinder for the subsequent efforts both of
high-quality production and of physical property investigation in carbon nanocoils.
In the seminal work [90], catalytic decomposition of C2H2 worked successfully to
synthesize carbon nanocoils with 30 nm in pitch and 18 nm in tubular diameter.
Electron diffraction method was used to reveal the multiwalled, hollow, and poly-
gonized structure, indicating that the nanocoils consisted of short straight segments.
These structural features experimentally confirmed are consistent with the theoreti-
cal prediction that the introduction of pentagon-heptagon pairs at regular distances
in a straight carbon nanotube results in the coiling morphology [89].

Since the first synthesis, many researchers have tried to make up these materials.
Production of carbon nanocoils by chemical vapor deposition, laser evaporation, and
opposed flow flame combustion method has been reported to date [5]. In addition
to the “multi”-walled nanocoils with tubular diameters of several tens nanometers
or more [91], indirect evidence of ultrathin “single”-walled carbon nanocoils (with
both tubular diameter and pitch length down to 1 nm) was achieved by electron
microscopy [92].

Among many syntheses so far, the triple-walled carbon nanocoil may be the
thinnest one of which the direct microscopic image was obtained as a proof [93].
Figure 3.17 shows the image of the triple-walled nanocoil, having the fiber diameter
less than 5 nm. It was synthesized by chemical vapor deposition under the following
conditions: reaction temperature is 700 °C, the ratio of the source gas (acetylene,
C2H2) to the dilution gas (nitrogen, N2) is 0.01, and the gas pressure to be 0.67 kPa.
A low C2H2 gas flow rate and a low partial gas pressure were important in reducing
the fiber diameter.

3.6.4 Theoretical Prediction

For general twisted nanomaterials, geometric torsion is thought to result in significant
impact on the coherent transport [94–97] and spin–orbit coupling [98, 99] of electrons
migrating over the system. Namely, quantum transport through a nanoscale material
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Fig. 3.17 Electron
microscope image of a
triple-walled carbon
nanocoil. Reprinted with
permission from [93]

with torsion will be essentially different from that in a curved nanomaterial with no
torsion. This is because geometric torsion of the host material generates an additional
quantum potential that affects the quantummotion of carriers in the system. It is thus
interesting whether such torsion effect is feasible in the quantum nature of carbon
nanocoils; this remains an open question, especially from an experimental viewpoint,
mainly because of the difficulty in synthesizing few-walled carbon nanocoils with
fine crystalline structure.

Numerical efforts have also been underway to unveil the curvature (and/or topol-
ogy) effect on the quantum transport in carbon nanocoils. For instance, tight-binding
simulations have shown that the quantum conductance is quantized due to the trans-
lational symmetry in the coiled direction [100]. Yet the conductance behaviors differ
greatly from those of pristine metallic carbon nanotubes; instead, it looks similar to
those of carbon nanotube superlattices, as a manifestation of the periodic insertion
of topological defects.

The thermal properties of carbon nanocoils are also an interesting subject. Non-
equilibriummolecular dynamics simulations have been used to reveal that the thermal
conductivity in carbon nanocoils is reduced up to 70% compared with that of the
corresponding straight single-walled carbon nanotubes [101]. The extreme reduction
is due to the phonon scattering by coupled defects and folding. Shortly afterward,
phonon thermal transport in carbon nanocoils has been studied in detail [102]. The
three-phonon Umklapp scattering rates and the associated phonon relaxation were
considered in a wide temperature range, and a certain reduction in the thermal con-
ductivity of carbon nanocoils was numerically detected as well.

As a final remark, it warrants comment on a recent finding on the quantum trans-
port of a helicoidal graphene nanoribbon [103]. In this geometry, the twist of the
nanoribbon plays the role of an effective transverse electric field in graphene. Sur-
prisingly, this effective electric field turned out to have a different sign for the two
isospin states; here, isospin is defined with regard to the two components of a Dirac
spinor. As a result, this electric field reverses polarity when the isospin is changed,
leading to a separation of the isospin states of the carriers on the opposing rims of the
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Fig. 3.18 Atomic structural model of a warped nanographene. All of the atoms shown in the image
are carbons; hydrogen atoms on the perimeter are omitted for clarity. Reprinted with permission
from [104]

nanoribbon. From the experimental feasibility, the isospin transitions are expected
with the emission or absorption of microwave radiation which could be adjusted to
be in the THz region.

3.7 State-of-the-Art Curved sp2 Nanocarbons

3.7.1 Nano-“Pringles”

Thefinal section covers several exotic sp2 nanocarbons thatwere fabricated/predicted
in the last few years. The first to be noted is the so-called nano-“Pringle” [104], i.e.,
a piece of warped nanographene comprising 80 carbon atoms joined together in a
network of 26 rings. Figure 3.18 shows the atomic model of a nano-Pringle. Key to
the formation of the grossly warped structure is the addition of five heptagons into
the hexagonal lattice. Nano-Pringles turned out to show high solubility in common
organic solvents and a widened energy gap between the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) [104].

Interestingly, this unique structure was found to have physical and chemical prop-
erties distinct from other all-carbon families. For instance, the first-principles calcu-
lations revealed that the introduction of topological defects significantly changes the
optical absorption spectra of nano-Pringles [105, 106]. In particular, the interaction
between the topological defects was found to enhance the excitonic effect due to the
lattice symmetry breaking, thereby generating the extra peaks at the lower photon
energy side of the main peak.

From chemical perspective, the gas adsorption ability of nano-Pringles has drawn
much attention recently. A series of numerical work has unveiled the adsorption
property of small molecules, such as O2, CO, and SO2, on the nano-Pringles sur-
face. For instance, adsorption of SO2 turned out to induce charge transfer, indicating
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Fig. 3.19 a Nano-Tetrapod structure made of sp2 carbon bondings. It is a junction of four (9, 0)
nanotubes with a zigzag edge. b Chemical bonding near the core of the tetrapod. Trivalent carbon
radicals are emphasized by gray spheres. Reprinted with permission from [109]

that the nano-Pringles can be used as an SO2 sensor [107]. In addition, chemical
adsorption of O2 causes modulation in the HOMO-LUMO gap, implying the poten-
tial utility in optoelectronics [107]. Another salient feature of the nano-Pringles is
the potential utility as the CO chemical sensors, for which the pristine graphene is
not appropriate. Numerical simulation uncovered that the electronic conductivity of
nano-Pringles increases with the CO concentration [108].

3.7.2 Nano- “Tetrapod”

Figure 3.19 displays the second remarkable example of exotic nanocarbons, so to
say, a nano-“Tetrapod” [109]. This three-dimensional open structure is composed of
a carbon network of hexagons and heptagons only. As found in Fig. 3.19, four cut-
off pieces of carbon nanotubes with (9, 0) chirality are glued via several heptagons,
forming a quadruped nanocarbon material. The tetrapod may serve as a building
block of a nanostructured carbon foam [110].

One of the most striking features is that the nano-Tetrapod carries a net magnetic
moment in the ground state. The origin of magnetism in the nano-Tetrapod is the
presence of four unpaired spins in the electronic ground state. Accordingly, the
ground state of the nano-Tetrapod is different either from the spin-polarized states at
the zigzag edge or dangling-bond states, in which the spin polarization is attributed
to the presence of under-coordinated carbon atoms. Instead, themagnetic behavior of
the nano-Tetrapods stems from the trivalent carbon radicals introduced at the center
of the quadruple structure. The radicals are sterically stabilized within the aromatic
system of the otherwise tetravalent carbon atoms. The conclusion that unpaired spins
may be introduced by carbon radicals, not only by under-coordinated carbon atoms,
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Fig. 3.20 Atomic structure of the gyroidal Schwarzite: the [111] orientation (left panel), the [100]
and [010] orientation (top right panels), and the [110] orientation (bottom right panel). The arrow
labeled by b indicates the lattice parameter. Reprinted with permission from [114]

will open a new avenue to design other graphitic structures with negative surface
curvature.

3.7.3 Nano-“Schwarzite”

The last example of exotic sp2 nanocarbons is carbon Schwarzite. It has been known
as a negative-curvature analogue of the fullerenes since the early 1990s [111–113].
Figure 3.20 illustrates the atomic structure of a carbon Schwarzite with gyroidal
type [114], in which non-hexagonal carbon rings stabilize the curved structure.
Schwarzites are distinguished from the well-known sp2 nanocarbon with 0D, 1D
or 2D, by their hyperbolic geometry. Thus, such new type of geometry is expected
to result in novel and fascinating properties.

In mathematics, the negative curvature surfaces of interest are called infinite peri-
odic minimal surfaces, first studied in detail by the mathematician H. A. Schwarz
in the late 19th century [115]. He pointed out that it is not possible to construct an
infinite surface with a constant negative Gaussian curvature; instead, he found that
patches of varying negative Gaussian curvature could be smoothly joined to provide
an infinite surface with zero mean curvature, which is periodic in 3D space. Five
different types of minimal surfaces were known by 1880 [116]; afterword, more than
50 types of distinct minimal surfaces have been discovered [117].

In the community of physics and materials science, Schwarzite structures have
received increasing attention due to the interest in finding a graphene foam [118].
A number of periodic porous carbon structures similar to Schwarzite structures
have been experimentally produced using, for example, templated synthesis [119]
and liquid exfoliation techniques [120]. The enhanced control in the fabrication of
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Schwarzite structures will open the way for versatile applications; hydrogen stor-
age systems [121] and electrolyte diffusion [122] are only a few to mention. Quite
recently, Schwarzite structures have been fabricated along the wall of zeolite pores; it
was demonstrated that La ions embedded in zeolite pores facilitate the carbonization
of ethylene or acetylene, enabling the selective formation of Schwarzite structures
inside the zeolite template [123].

One interesting subject in view of quantum physics is the possible presence of
pseudo-relativistic massless particles (Dirac fermions) in Schwarzite structures. The
density functional calculations have revealed that a linear band crossing merging in
a point for a large gyroidal Schwarzite structure [114]. Such a gapless linear energy
dispersion in low-dimensional nanocarbonshad a tremendous impact on conventional
condensed-matter physics by imposing relativistic physics in the electronic properties
of these nanosystems. Indeed, the electrons in graphene (2D) and carbon nanotubes
(1D) behave like Dirac fermions as described by the crossing of linearly dispersive
electronic bands, also called the Dirac cone. In this context, Schwarzites may be a
remarkable playground to investigate relativistic physics of these exotic fermions,
whereas their essential properties with respect to structural stability, mechanical, and
electronic aspects should be largely investigated [124, 125].

3.8 Perspective

The synthesis or discovery of new materials, for example, fullerenes (1996 Nobel
Prize in Chemistry), nanotubes, and graphene (2010 Nobel Prize in Physics) has
been hitherto done on the basis of (1) knowledge (literature), (2) experience, and (3)
intuition so far. These factors are still important, but it is wondered that we have failed
to find the other fascinating materials close to them thus synthesized/discovered
previously. In addition, it will take an unexpected time to discover the next new
fascinating materials, because of “serendipity” based on (2) and (3) as shown in top
(a) of Fig. 3.21.

Is it impossible that we can synthesize/discover new novel materials beyond
“serendipity”? One possible way is to combine modern geometry with materials
science. It is well known historically that Mathematics has been extensively used as
a good tool in Physics and Chemistry (for example, differential and integral, point
group, vector and tensor, etc.), but we have not seriously considered the correlation
between geometric/topological quantity and physical/chemical quantity (properties)
up to now, because there has been a large gap between mathematical simple model
(point and line) and real materials (different atoms and different interactions between
them).

As introduced in this chapter, geometry/topology can provide not only new forms
but also new properties of nanocarbon materials. If geometric/topological quantity
is correlated with physical/chemical quantity (properties), we can add new index
“mathematics” to materials world consisting of two indexes “physics and chem-
istry” as shown in bottom (b) of Fig. 3.21. Thus we can synthesize/discover new
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Fig. 3.21 Paradigm shift in materials science using Mathematics. Top: Conventional ways to dis-
cover novel materials. Bottom: Mathematics-navigated ways to discover novel materials

materials beyond “serendipity”. More recently, materials informatics [combination
of AI (artificial intelligence) with data-base of materials] has been focused from
a viewpoint of materials development. It is a concern that they can find the opti-
mal solution promptly for a given material, but may hardly find new or unexpected
solution as far as using the data-base.
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Chapter 4
Topology by Design in Magnetic
Nano-materials: Artificial Spin Ice

Cristiano Nisoli

Abstract Artificial Spin Ices are two dimensional arrays of magnetic, interacting
nano-structureswhose geometry can be chosen atwill, andwhose elementary degrees
of freedom can be characterized directly. They were introduced at first to study
frustration in a controllable setting, to mimic the behavior of spin ice rare earth
pyrochlores, but at more useful temperature and field ranges and with direct char-
acterization, and to provide practical implementation to celebrated, exactly solvable
models of statisticalmechanics previously devised to gain an understanding of degen-
erate ensembles with residual entropy. With the evolution of nano–fabrication and
of experimental protocols it is now possible to characterize the material in real-time,
real-space, and to realize virtually any geometry, for direct control over the collec-
tive dynamics. This has recently opened a path toward the deliberate design of novel,
exotic states, not found in natural materials, and often characterized by topological
properties. Without any pretense of exhaustiveness, we will provide an introduction
to the material, the early works, and then, by reporting on more recent results, we
will proceed to describe the new direction, which includes the design of desired
topological states and their implications to kinetics.

4.1 Introduction

From quasi-particles, fractionalization, pattern formation, to the nano-machinery of
life in DNA replication and transcription, or to the coherent behavior of a flock, an
ant colony, or a human group, emergent phenomena are generated by the collec-
tive dynamics of surprisingly simple interacting building blocks. Indeed, much of
the more recent research in condensed matter pertains to the modeling of unusual
emergent behaviors, typically from correlated building blocks in natural materials,
either at the quantum or classical level [1]. A few years ago [2] we proposed a differ-
ent approach: design, rather than simply deduce, collective behaviors, through the
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Fig. 4.1 Artificial spin ice in its most common geometries. Left: Atomic force microscopy image
of square ice showing its structure (figures from [2]). Center: a magnetic force microscopy image
of square ice, showing the orientation of the islands’ magnetic moments (north poles in black, south
poles in white); Type-I (pink) Type-II (blue) and Type-III (green) vertices are highlighted (see the
text and Fig. 4.7 for a definition). Right: schematics of honeycomb spin ice

interaction of simple, artificial building blocks whose interaction could lead to exotic
states not seen in natural materials.

Arrays of elongated, mutually interacting, single-domain, magnetic nano-islands
arranged along a variety of different geometries, (Fig. 4.1) were ideal candidates.
The magnetic state of each island could be described by a classical Ising spin, and
advances in lithography allowed their nano-fabrication in virtually any geometry. The
advantage of such approach is twofold: (1) the low energy dynamics, which under-
lies possible exotic states, is dictated by geometry, which here is open to design;
(2) characterization methods—Magnetic Force Microscopy (MFM), PhotoElectron
Emission Microscopy (PEEM), Transmission Electron Microscopy (TEM), Surface
Magneto-Optic Kerr Effect (MOKE), Lorentz Microscopy—allow direct visualiza-
tion of the magnetic degrees of freedom for unprecedented validation. Nano-scale
is an good choice: the size of the building blocks, which are shape-anisotropic,
elongated nano-islands (typically, NiFe alloys 200 × 80 × 5 − 30nm3 patterned by
nano-lithography on a non-magnetic Si substrate), has to be inferior to the typical
magnetic domain, to provide single domains with magnetization directed along the
principal axis, that can be interpreted as switchable spins.

These Artificial Spin Ices (ASI) were employed at first to study frustration in a
controllable setting, to mimic the behavior of spin ice rare earth pyrochlores, but
at more useful temperature and field ranges and with direct characterization, and to
provide practical implementation to celebrated, exactly solvable models of statisti-
cal mechanics previously devised to gain an understanding of degenerate ensembles.
Soon, a growing number of groups has extended the use of ASI [3], to investi-
gate topological defects and dynamics of magnetic charges and spin fragmenta-
tion [4–12], information encoding [13, 14], in and out of equilibrium thermody-
namics [15–24], avalanches [25, 26], direct realizations of the Ising system [27–29],
magnetoresistance and the Hall effect [30, 31], critical slowing down [32], dislo-
cations [33], spin wave excitations [34], and memory effects [35, 36]. Meanwhile
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similar strategies [37–42] have found realization in trapped colloids [43–45], vortices
in nano-patterned superconductors [46, 47] and even at the macroscale [48]. With
the evolution of nano-fabrication and of experimental protocols it is now possible to
characterize the material in real-time, real-space [49–53], and to realize virtually any
geometry, for direct control over the collective dynamics. This has recently opened a
path toward the deliberate design of novel, exotic states [54–58] not found in natural
materials [59, 60].

Frustration is a fundamental ingredient in design: it controls the interplay of
length and energy scales, dictating the emergent dynamical properties that lie at
the boundaries between order and disorder, and leading to a lively, quasi-disordered
ensemble called ice manifold, to be exploited in the design of exotic behaviors.

Correlated spin systems have of course a long history in Physics. In classical sta-
tistical mechanics, the Ising model [61] paved the way to our understanding of long-
range order from symmetry breaking as a second order phase transition, universality
classes and scaling [62], and finally the renormalization group [63] with implications
reaching well beyond condensed mater systems [64]. However, frustrated spin sys-
tems often do not order, generally resulting in quasi-disordered manifolds governed
by some geometric or topological rule. Often their collective dynamics lends itself
to emergent descriptions that are only partially reminiscent of the constitutive spin
structure. The situation is somehow similar to everyday life, where frustration results
from a set of constraints that cannot be all satisfied at the same time, leading to a
manifold of compromises among which the choice is most often equivalent and can
be influenced by a small bias. Thus, obstructed optimization provides high suscep-
tibility that can generate the complex social dynamics we witness everyday. These
analogies between social settings and frustrated materials are not merely philosophi-
cal: ideas borrowed from the frustrated spin ice physics have been exploited in social
networks to describe wealth allocation [65].

Much as in life, frustration is understood in Physics as a set of constraints that
cannot be all satisfied. Typically the constraint is the optimization of an energy,
usually the pairwise interaction between elementary degrees of freedom. This too
leads to a degenerate manifold which preserves non-zero entropy density at low
temperatures, in apparent violation of the third law of thermodynamics.

Wewill see how frustration is exploited in the design of artificial spin ices. Initially,
the aim was pure exploratory science, with the goal to understand frustration and
disorder in a controllable environment that could be characterized directly. These
materials could mimic the frustrated ice rule that defines the exotic manifold of rare
earth pyrochlores (see below), yet at room temperature rather than at the Kelvin
scale. They could also provide the first realization of the celebrated exactly solvable
models of statistical mechanics, such as the antiferromagnetic Ising system on a
triangular lattice described above, or the various vertex models introduced and/or
solved by Lieb, Wu and Baxter between the late 60s and early 80s [66–69]. As both
experimental protocols and theoretical understanding evolved, however, it became
clear how the material could open new paths in a material-by-design effort: instead
of finding, more or less serendipitously, natural materials of interesting or novel
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behavior, one could think about a bottom-up approach, where a suitable design could
produce desired exotic properties.

In this chapter we will start with a brief description of fundamental concepts
and then earlier realizations, fleshing out the basics pertaining to their experimental
protocols, nano-fabrication, and characterization (for details we refer to references
or to the following reviews [3, 70, 71]). Geometric frustration should really be called
topological, as it is essentially a topological property, yet it is based on interaction,
which is instead geometric, and generally not topologically invariant: we will discuss
the two issues in parallel, and see how new approaches and new designs, based on a
different level of frustration, so called vertex-frustration, can indeed allow access to
bona fide topological states.

4.2 Frustration, Topology, Ice, and Spin Ice

The concept of geometric frustration in its broader mathematical form involves a
geometric system, a manifold of degrees of freedom and a set of prescriptions on
how they should arrange with respect to each other. The system is frustrated if there
are loops along which not all these prescriptions can be satisfied (Fig. 4.1). Clearly
the concept is very general and extends beyond Physics. One recognizes topology
immediately in the nature of such definition: any homotopy, that is any continuous
transformation that does not tear those loops, will lead to a system of the same
frustration.

In Physics, in general (a) these “prescriptions” correspond to the optimization of
a certain energy, and (b) that energy is usually a pairwise interaction between binary
degrees of freedom.

An early example is the famous antiferromagnetic Ising model on a triangular
lattice [72], a system of binary spins interacting antiferromagnetically on a trian-
gular lattice (Fig. 4.2). There the interaction among nearest neighbor spins cannot
be satisfied simultaneously on a triangular plaquette, leading to a disordered man-
ifold. The disorder is, however, non-trivial, and its entropy per spin is not merely
s = kB ln(2) � 0.6931kB , because rules apply, due to frustration: of all the energy
links, only one per plaquette is frustrated, and it relieves the frustration on adjacent
plaquettes. Indeed its entropy per spin at T = 0 is s � 0.3383kB , different from zero,
in violation of the third law of thermodynamics, and about half of the entropy of a
completely random configuration.

However, as most realistic interactions in Physics are geometric (for instance, the
dipolar interaction betweenmagnets is anisotropic) they immediately break the topo-
logical structure of frustration in a real system.We will discuss later how renouncing
the point (b) opens the way to great freedom of design in artificial spin ices.

Perhaps the first famous occurrence of frustration in the history of Physics per-
tained to water ice. In the 1930s Giaque and Ashley [73, 74] performed a series of
carefully conducted calorimetric experiments, deduced the entropy of water ice at
very low temperature, and found that it was not zero. The answer to this mystery
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Fig. 4.2 Geometric frustration can be understood schematically as a set of prescriptions that cannot
be satisfied simultaneously around certain loops. The red link on the figure on the left represents
an “unhappy link” in a generally frustrated system. More specifically, for an Ising antiferromagnet
(right) the loop in question is a loop of interactions among nearest neighbors. On a triangular lattice,
triangular loops are frustrated, as one of the three links (red) must be unhappy

would be provided by Linus Pauling a few years later [75]. Ice comes in many crys-
talline forms, but all imply oxygen atoms residing at the center of tetrahedra, sharing
four hydrogen atomswith four nearest neighbor oxygen atoms (Fig. 4.3). Two of such
hydrogens will be covalently bond, and two will realize an hydrogen bond: two are
“in”, two are “out” of the tetrahedron. This is the so called ice-rule previously intro-
duced by Bernal and Fowler [76]. Each tetrahedron has 6 admissible configurations
out of the 24 = 16 ideally possible, and the collective degeneracygrows exponentially
in the number of tetrahedra N as WN , leading to a non-zero entropy per tetrahedron
s = kB lnW for this disordered manifold. In what can be considered as one of the
most precise and felicitous back-of-the envelope estimate in the history of statistical
mechanics, Pauling counted such degeneracy asW = 3/2, remarkably close to both
the experimental value and to the numerical value (W = 1.50685 ± 0.00015 [77]).

These works pointed to the reality of exotic disordered states in the most common
and vital substance on earth. Decades later, they also motivated the introduction by
Lieb, Wu, and Rys of simplified models of mathematical physics, known as vertex
models, which could in many cases be solved exactly [66–68, 79, 80]. Those are two
dimensional models of in-plane spins impinging on vertices, where different energies
are associated to different vertex-configurations, and whose statistical mechanics is
usually solved via transfer matrix methods.

Ice-like systems have then received renewed interest in the 1990s, when unusual
behaviors were discovered in the low temperature regime of rare earth titanates
such as Ho2Ti2O7 whose magnetic moments exhibit a net ferromagnetic interaction
between nearest neighbor spins, yet no ordering at low temperature, suggesting strong
frustration. Similar to protons in water ice, the magnetic moments of these materials
reside on a lattice of corner-sharing tetrahedra, and they are constrained to point either
directly toward or away from the center of a tetrahedron (Fig. 4.3). The resulting
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Fig. 4.3 The ice rule. Left: In water ice oxygen atoms sit at the center of tetrahedra, connected to
each other by a hydrogen atom. Two of such protons are close (covalently bonded) to the oxygen
at the center, two are further away, close to two of the four neighboring oxygens. Right: One might
replace this picture with spins pointing in or out depending on whether the proton is close or far
away. Then two spins point in, two point out. This corresponds to the disposition of magnetic
moments on pyrochlore spin ices, rare earth titanates whose magnetic ensemble does not order at
low temperature, because of frustration, and,much likewater ice, provides non-zero low temperature
entropy density. (Figures from [78])

ferromagnetic interaction favors a 2-in/2out ice-rule. The similarity noted by Harris
et al. [81] was confirmed experimentally by Ramirez et al. [82].

Besides providing important model systems with novel field-induced phase tran-
sitions and unusual forms of glassiness, and an early and practical example of a
classical topological state, spin ices harbor a new fractionalization phenomenon in
their low energy dynamics: emergent magnetic monopoles [78, 83]. To facilitate
understanding consider the two-dimensional schematics of Fig. 4.4, which represent
a disordered ice manifold, an ensemble of spins where all the vertices obey the ice
rule. The reader will notice that it is impossible to explore the manifold by single
spin flips, without breaking the ice-rule. Only by flipping proper loops of spins we
can obtain a new configuration within the ice-manifold. This is already a hint of the
topological nature of the state.

If we flip one spin only, we create two defects (3-in/1-out and vice versa). We
can separate those defects by further flips, and we have two deconfined magnetic
monopoles, and one can prove through multipole expansion that their interaction is
Coulomb [78]. Of course these monopoles are in effect simply the opposite ends
of a long, floppy dipole, in red in figure, called the Dirac string; however, owing to
the disorder of the manifold, the system is no longer reminiscent of the Dirac string
connecting the monopoles. Thus, excitations over the ice manifold can be described
by a fractionalization of the spins into individual, separable magnetic charges which
interact via a Coulomb law.

In view of themore complex geometries that wewill discuss later, let us generalize
the notion of ice manifold and ice rule for a general lattice, or graph, or network [65],
whose edges are spins impinging in vertices of various coordination z. Then we say
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Fig. 4.4 The ice manifold (top left), an ensemble of spins obeying the ice rule (in each vertex two
arrows point in, two out). One can obtain another realization of the ensemble only by flipping a
proper loop of spins. Flipping a single spin creates a couple of magnetic monopoles of opposite
charge (positive is red, negative is blue). The monopoles can be separated by further spin flips
(creating a “Dirac string”, shown in red), interact via Coulomb interaction, but are topologically
protected, as they can only be created and annihilated in pairs

that a vertex of coordination z with n spins pointing toward it has topological charge
q = 2n − z, corresponding to the difference between spins pointing in and out. In
general, we call spin ice systems those in which |q| is minimized locally at each
vertex (typically, but not necessarily, by nearest neighbor spin-spin interaction). For
a lattice of even coordination, such as the square ice or pyrochlore ice introduced
before, the ice manifold is characterized by zero charge on each vertex. However,
for lattices of odd coordination there cannot be any charge cancellation, and thus in
the ice manifold each vertex will have charge q = ±1 in equal fraction, as the total
charge of a system of dipoles must always be zero. That is the case of Kagome ice,
which we will discuss in the next section.

These magnetic charges are topologically protected monopoles in square or
pyrochlore ice: their magnetic charge is indeed also a topological charge and one can
see from Fig. 4.3 that charges can only be created and annihilated in opposite pairs.
One could indeed create a single monopole in an open system but that would simply
imply pushing the second one at the boundaries. If we, however, placed the ensemble
of Fig. 4.3 on a torus, thus without boundaries, then clearly there would not be a net
monopole charge in the bulk. Even in an open system, the total net charge will be
proportional to the flux of the magnetic moment through the boundaries, and as the
latter is bound by the net magnetization of the spins, one finds that the density of net
charge must scale with the reciprocal length of the system. These two-dimensional
considerations extend to the three-dimensional spin ice.
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In more theoretical terms, the topological state of spin ice is an example of a
so called Coulomb phase [84], a phase described not by an order parameter or a
symmetry breaking, such as the ordered phases that fall within the Landau paradigm,
but rather by a solenoidal emergent field (the coarse grained magnetization �M). One
can say that the ice rule and its charge cancellation corresponds to a divergence-free
condition �∇ · �M = 0 on each vertex. Then, amonopole in �x0 is a source of divergence�∇ · �M = qmδ(�x − �x0) of charge qm = Qq where Q = M/L (the magnetic moment
M of the spin divided by its length L), and q is the topological charge of the vertex
defined above. This is considered as an example of classical topological order [85].

Indeed, while quantum topological order has provided a valuable framework to
conceptualize disordered states of spin liquids that escape a Landau symmetry break-
ing paradigm and cannot be obviously characterized by local correlations [86, 87],
the importance of topological states had been recognized even earlier in classical
physics [88]: in the theory of dislocations [89], liquid crystals [90], or topological
transitions [91]. Recently, whether in direct analogy with quantum physics [92], in
purely abstract terms [93, 94], or motivated by real systems such as pyrochlore spin
ices [84, 85, 95], a consistent notion of classical topological order in discrete systems
has been proposed, to conceptualize (i) a degenerate, locally disordered manifold
(ii) described by a topologically non-trivial, emergent field (iii) whose topological
defects (in spin ice, magnetic monopoles [78, 83]) coincide with excitations above
the manifold.

Topological protection implies that states within the manifold can be linked only
via collective changes of entire loops of a discrete degree of freedom. Thus any real-
istic low-energy dynamics happens necessarily above the manifold, through creation,
motion, and annihilation of pairs of protected topological excitations. Typically, their
constrained and discrete kinetics leads to ergodicity breaking, fractionalization and
thus various forms of glassy behaviors [93, 96]. We will see later that such order can
also be found in novel, non-trivial geometries of artificial spin ice characterized by
vertex-frustration, such as Shakti spin ice.

4.3 Simple Artificial Spin Ices

After introducing the main concepts, we warm up to the field of artificial spin ice by
summarizing briefly the early work on classical geometries, based on the square and
honeycomb lattices. Further, more general details about fabrication and characteri-
zation will be discussed in the context of these early realizations.

4.3.1 Kagome Spin Ice

Even before artificial spin ice realizations [16, 97, 98] (Fig. 4.5) honeycomb struc-
tures havebeen extensively studied theoretically as theydescribe the two-dimensional
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Fig. 4.5 Top, from left to right: Schematics and MFM image of the hexagonal arrays with the 8
vertices of the honeycomb/Kagome artificial spin ice. White arrows show the vertex Ice I state, and
the percentages indicate the vertex multiplicity. Type-I vertices have lower energy than Type-II and
correspond to the generalized ice rule. Temperature dependence (top right) of the specific heat c
and entropy per spin s of the Kagome spin ice obtained by [55]. The dashed lines show values of
entropy per spin s = 0.693 (Ising paramagnet), 0.501 (Ice I), and 0.108 (charge-ordered spin ice,
or Ice II). Bottom: the four phases of Kagome ice ordered by increasing temperature. Figures are
adapted from [16, 32, 55]

behavior of the three dimensional spin ice pyrochlores under a magnetic field aligned
along a particular crystalline axis. A honeycomb ice is often called the Kagome spin
ice, as the spins reside on the edges of a honeycomb lattice, which is aKagome lattice,
the honeycomb dual lattice. In the context of artificial spin ice, Kagome represented
the only simple geometry with a degenerate ice manifold. Indeed, as we will see in
the next section, square ice has a frustrated yet perfectly ordered, antiferromagnetic
ground state.

Before proceeding with Kagome ice, some more general details on artificial spin
ice materials are in order, starting with the energetics involved. In general, mag-
netic, elongated nano-islands can be described as nano-spins, binary degrees of
freedom describing their magnetization along their principal axis. This is, however,
already an approximation of the magnetic texture of the nano-structure: indeed both
direct characterization and micromagnetic simulations show potentially significant



94 C. Nisoli

relaxation of the magnetization field at the tips of the islands, due to the local field
of the surrounding islands.

A further approximation, which seems to work surprisingly well, implies describ-
ing the inter-island interaction via a vertex model. There we assign energies to the
various vertex configurations as in Fig. 4.5. The nano-islands beingmagnetic dipoles,
one expects this approach to eventually break down. It does indeed in enticing ways,
revealing inner, low entropy phases within the ice manifold.

The equilibrium phases of the system have been investigated numerically [99,
100] viaMetropolisMonte-Carlo simulations with full dipolar interaction. Figure4.5
shows that at high temperature the system is paramagnetic.As temperature is reduced,
we cross over toward a disordered ice-manifold, called Ice I, where each vertex has
charge ±1. This is as much as a vertex model approximation would explain, as the
ice-rule minimizes the energy of the vertices.

However, at lower temperature, we see a transition toward charge ordering: the
disordered plasma of magnetic charges residing on the vertices orders within an ionic
crystal. The transition is of the Ising class and is due to the Coulomb interaction
among magnetic charges. It can be replicated within a vertex-model approximation
only by adding further interaction via Coulomb coupling between the charges of
the vertices. Note that such state, called Ice II, while being charge ordered, is still
disordered in the spin structure, as there are an exponentially growing (in the number
of spins) number of possible spin configurations that correspond to the charge ordered
state. Finally, further lowering the temperature, another transition leads to an ordered
state, where order is brought in by the long range effects of the dipolar interaction.

These states were variously investigated experimentally. Ice I proved easy to
reach. Indeed, even non-thermal methods were able to reach it [16, 97, 98]. Those
methods pertains to thicker islands that are thus not superparamagnetic at room
temperature (that is, do not flip theirmagnetization under thermal fluctuations). These
islands are therefore coercive enough that MFM would provide a non-destructive
characterization at room temperature. The AC demagnetization [17] of such samples
is sufficient to reach the ice manifold, a fact which already points to its lack of
topological protection.

The facility with which such state could be reached is telling. Indeed, while mag-
netic charges are topologically protected in pyrochlore ices [85], as we saw above,
they are not bona fide topological numbers in the ice manifold of Kagome ice. There,
vertices of odd coordination can gain and lose charge freely from the surrounding,
disordered, and overall neutral plasma of magnetic charges. Consequently, the ice-
manifold can be explored from within by consecutive single-spin flips, without any
need for collective loop-moves such as those shown in Fig. 4.4.

Instead, the charge-ordered state, or Ice II, cannot be explored by individual spin
flips. A glimpse of the Ice II phase shown in Fig. 4.5 should convince that any spin
flip within the manifold will lead out of the manifold, as it will locally destroy the
charge order.

Signatures of the Ice II state were first suspected after AC demagnetization [11].
They were subsequently investigated via thermal methods capable of providing a
bona fide thermal spin ensemble [101, 102]. These are of three kinds: annealing at
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Fig. 4.6 Magnetic charge ordering in Kagome ice. a–e Charge domain maps obtained via Lorenz
TEM relative to the annealing of Fe-Pd alloy artificial Kagome ices of different edge length (from
500 to 300nm) show increasing size of the ionic crystallites of charges as the lattice constant
decreases, and thus the mutual interaction among magnetic charges increases. C is the charge-
charge correlation parameter (C = 1 for a fully charge-ordered state). Images adapted from [101].
f Charge map obtained via MFM after annealing of permalloy Kagome ice of lattice constant
260nm showing incipient domains of charge-ordering and g its static structure factor showing
incipient peaks corresponding to crystalline order. h Static structure factor for lattice constant
490nm, showing no incipient peaks

higher than room temperature followed by characterization at room temperature [52,
101, 102]; thermalizationwith real-time, real-space characterization [51, 53, 57]; and
thermalization without real-space characterization [32, 49]. In the first, the material
is not superparamagnetic at room temperature, but it is heated slightly above the
Curie temperature of the nano-islands (which can vary, depending on the size and
chemical composition of the nano-structure, from about 600 ◦C for permalloy down
to about 100 ◦C for Fe-Pd alloys) and then annealed down into a frozen state, usually
characterized via MFM. In the second method the nano-islands are chosen to be thin
enough (usually thickness of 2–3nm) to be superparamagnetic at room temperature
or below, and thus need to be characterized via PEEM, at a proper beam source. In
the third, various averaged quantities are extracted, such as the average flip rate of
spins, through muon spectroscopy [32]—while spin noise spectroscopy [103, 104]
should also be a viable method.

Figure4.6 shows the results of thermal annealing on artificial hexagonal ice made
of permalloy [102], which demonstrate formation of crystallites of magnetic charges,
due to the Coulomb interaction between the charges themselves. Control over the size
of those ionic crystallites has also been obtained by employing an alloy of iron and
palladium, rather than permalloy, which has a much lower Curie temperature [101].
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However, nobody has yet reported any direct evidence of complete long range charge
order in such a material, nor of the zero entropy phase of spin order (Fig. 4.5).

Indirect indications that such low entropy phases within the Kagome ice
manifold—or at least some kind of phases—can be reached were obtained via muon
spectroscopy studies, involving islands that were too small and therefore too active
to be imaged directly, but whose rate of magnetic flipping could be deduced from the
relaxation time of muons implanted on a gold cap over the two-dimensional array.
There, the critical slowing down of the spins was measured and found to correspond
to that of the numerically predicted transitions, where parameters for the numeri-
cal simulations were taken from the material [32]. These results, the first to probe
deep inside the ice manifold of Kagome lattice, represent a strong corroboration
of the existence of a complex phase diagram, most likely the theoretical predicted
one. However, we should not forget that topological or ordered states can be hard to
reach via spin dynamics of the Glauber kind [105], and that indeed the actual spin
dynamics might be rather more complex than a Glauber model. Indeed these “spins”
are nanoscopic objects with their own magnetic reversal dynamics. Such specificity
might bias certain kinetic pathways, leading to non-equilibration or ergodicity break-
ing even in Ising models that are not susceptible to these phenomena: thus the phases
whose critical slowing down was experimentally revealed could be only reminiscent
of the one predicted at equilibrium, which of course adds to their potential interest.

4.3.2 Square Ice

With the exception of the work of Tanaka et al. [97], early works concentrated on the
square geometry (Fig. 4.1) [2, 15, 16]. Square ice also represented the benchmark
on which to test demagnetization and annealing methods which lead to experimental
protocols for thermal ensembles [20, 49, 52].

It is important to understand that square artificial spin ice does not resemble the
square ice of Lieb [66], or the degenerate square ice described in Fig. 4.4, firstly
because it admits topological defects in the form of magnetic monopoles absent in
the six-vertex model, but most importantly because it is not degenerate. In this sense
it shares similarities with the Rys F-model [80] but those should not be overstated,
as the (physically unnatural) absence of monopoles in the latter leads to an infinitely
continuous transition to antiferromagnetic ordering [67], whereas in the former the
transition is of second order.

Figure4.7 shows the energetic hierarchy of vertices with 90◦ angles (including
those of coordination z = 3, 2 to be discussed later). Because of the anisotropy of
the dipolar interaction, nearest neighbor perpendicular islands interact more strongly
than collinear ones, leading to lifting of degeneracy within the ice manifold. The
system, if modeled at the vertex level, can be described as a J1, J2 antiferromagnetic
Isingmodel on a square lattice, with a transition to antiferromagnetic ordering, which
indeed has been obtained experimentally via thermal annealing, as shown in Fig. 4.7.
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Fig. 4.7 Top:Vertex-configurations for 90◦ angles of coordination z = 4, 3, 2 (degeneracy in brack-
ets) listed in order of increasing energy. Middle: MFM images of thermally annealed square ice at
different lattice constants showing an ordered domain crossed by a Dirac string (for the specimen at
320nm) and a multi-domain ensemble separated by domain walls of monopoles and diract strings
(at 400 and 440nm); note also the frozen in monopole pairs (figures adapted from [102]). Bottom:
the lowest energy state of square ice as an antiferromagnetic tiling of Type-I4 vertices; creating and
separating a monopole pair entails a Dirac string (red) of Type-II4 vertices, that are energetically
more costly than the Type-I4, leading to the linear confinement of the pair
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Within the ordered state of square ice potentially interesting transitions have been
proposed [106–108]: when the system is not degenerate, creating and separating a
couple of monopoles requires energy proportional to the number of Type-II in the
Dirac string (see Fig. 4.7). Much like quarks or Nambu monopoles [109] these pairs
are linearly confined, and the tensile strength of their Dirac string drives the ordering
as the temperature is reduced. However, one can imagine that a topological transition
corresponding to monopole deconfinement might take place under proper conditions
when the energy of the Dirac string is offset by its fluctuating entropy.

Square ice, however, can be made properly degenerate, which means described
by a spin ensemble such as the one of Fig. 4.4, revealing an emergent topological
Coulomb phase. One way is to raise the vertical islands with respect to the horizontal
ones [99], a method that has recently been pursued experimentally [110] demonstrat-
ing a degeneratemanifoldwhose static structure factor coincideswith the numerically
computed one for a six-vertex model, thus providing the first artificial realization of
a two dimensional Coulomb phase. We have also proposed to iterate such design
on the axis perpendicular to the array, and we have designed layered structures that
are geometrically different but topologically equivalent to three dimensional spin ice
pyrochlores [111]. Those have not found realization yet. The only three dimensional
realization of artificial spin ice was obtained by filling the voids of an artificial opal
film with Cobalt [112, 113], a promising approach to bring to room temperature
some of the features of spin ice pyrochlores. Of course, as always with three dimen-
sional realizations, the challenge there lies not only in nano-fabrication, but also in
characterization, as real-space methods are generally surface methods.

Finally, another way to produce a Coulomb phase in square ice has been presented
recently, and involves “rectangular ice” where vertical and horizontal islands differ
in length, and degeneracy is obtained for a proper critical value of their ratio [107,
114].

4.4 Exotic States Through Vertex-Frustration

Until 2014, the only degenerate artificial spin ice was Kagome. As both nano-
fabrication and characterization protocols evolved, it became clear that the initial
inspiration of the entire project—to design exotic behaviors in the geometry of inter-
acting, binary degrees of freedom—could become viable, if not for one problem: in
real systems, the frustration of the pairwise interaction is wedded to the geometry.
What this means is explained in Fig. 4.8 where brickwork spin ice and Kagome spin
ice are shown to lead to completely different ground states, one disordered, the other
ordered, despite the two geometries being topologically equivalent. Indeed, the dipo-
lar interaction is not topologically invariant, but instead depends very much on the
mutual arrangements of the dipoles.

To overcome this limitation and gain freedom in the design of new materials
capable of various states and unusual behaviors, the first step is to decouple frustration
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Fig. 4.8 Geometry versus topology. Topologically equivalent geometries leads to completely dif-
ferent spin ensembles, due to the anisotropy of the dipolar interaction. The honeycomb spin ice
(top right) is topologically equivalent to the ladder spin ice (middle, right) yet the nearest neighbor
interactions lead to an ordered ground state in the latter (see also Fig. 4.7 for the energetic hierar-
chy of the vertices) and a disordered manifold in the former. Pairwise interactions are frustrated
in both systems, however in the honeycomb lattice all the spins interacting in the vertex have the
same mutual angle (top left) and thus any of the three interactions can be frustrated, whereas it
is energetically favorable to frustrate the interaction between parallel spins in the ladder lattice
(middle left). At the bottom is an example of vertex-frustration, where the allocation of vertices of
lowest energy is frustrated, leading to “unhappy vertices” (blue circles) on certain loops, instead of
unhappy energy links (red lines above)

from geometry. As the pairwise interaction is anisotropic, something else will have
to be frustrated. A possibility is the vertex itself.

Consider a geometry made of 90◦ vertices of coordination z = 4, 3, 2 (Fig. 4.7).
Each vertex has a unique configuration of minimal energy (up to a flip of all the
spins). Imagine now arranging them in such a way that, however, not all vertices
can be assigned to the lowest energy configuration [54]. This will lead to “unhappy
vertices” (UV), that is, topologically protected local excitations (Fig. 4.8). In proper



100 C. Nisoli

geometries, the degeneracy of the allocation of such vertices grows exponentially
with the size of the system, leading to a degenerate low energy manifold [54, 58].

Crucial here is that within this manifold the system is usually captured by an
emergent description that considers the allocation of these protected local excitations,
rather than by its spin ensemble. As a consequence, other emergent properties appear
that are in general not obvious nor indeed apparent in the local spin structure.

While vertex models [79] were introduced to describe frustrated systems, they
were themselves not frustrated. They simply subsumed the degeneracy of a frus-
trated system within a degenerate energetics. Vertex-frustrated geometries can thus
be considered the first frustrated vertex models. Vertex-frustration is of course a
nearest-neighbor level concept, although it induces topological states that are col-
lective. However, the real materials being made of dipoles, other phases are present
within their vertex-frustrated low energymanifold,much like inner phases are present
in the diagram of Kagome above. Let us now see how this comes about in three such
geometries: Shakti, Tetris, and Santa Fe.

4.5 Emergent Ice Rule, Charge Screening, and Topological
Protection: Shakti Ice

Consider the Shakti geometry in Fig. 4.9 [55]. Each minimal, rectangular loop of
Shakti is frustrated. What it means is that it must be affected by an odd number of
unhappy vertices [54, 55]. Because each unhappy vertex aways affects two nearby
loops and costs energy, the lowest energy configuration is realized when nearby
loops are dimerized by a single unhappy vertex [54]. If one considers the geometry,
one finds (Fig. 4.9c) that each plaquette made by two rectangular loops will host
two unhappy vertices in 4 possible locations, much like the ice rule in water ice
prescribes that 2 hydrogenatoms are within the tetrahedron containing each oxygen
atom (Fig. 4.3), in 2 of the 4 possible allocations. In both cases the same ice-rule
applies, but here in emergent form: not in terms of the original spins, but in terms
of allocation of unhappy vertices. Thus, the lowest energy manifold, at the nearest
neighbor vertex description employed here, corresponds then to an emergent six-
vertex model. This has been shown experimentally [56].

Nonetheless, as we had cautioned before, this nearest neighbor description defines
the ice-manifold,withinwhich intervene other non-trivial phenomena, due to the long
range nature of the interaction. A particularly interesting one regards the screening of
magnetic charge. Shakti has multiple coordination, therefore while in its low energy
state all the vertices of coordination z = 4 are in the ice rule, they are surrounded by
vertices of coordination z = 3 which always have a magnetic charge ±1 (in natural
units, previously defined), and are disordered. When a vertex of coordination z = 4
hosts a magnetic monopole, the overall neutral plasma of charge around it rearranges
to screen it, as shown in Fig. 4.10 [56].
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Fig. 4.9 Theory of Shakti spin ice. The structure of the system (a) is such that its lowest energy
spin ensemble b is disordered. A look at the spin structure in b does not seem particularly insightful.
However, if we translate that spin map unto the allocation of locally excited vertices, denoted by
circles in c we then see that each plaquette will host two and only two unhappy vertices in four
possible positions. This is equivalent to a six vertex model (d) where pseudo-spins are assigned
to each plaquettes and point toward (away from) the unhappy vertices in plaquette of vertical
(horizontal) long island. Figures adapted from [55]

It is important to understand that magnetic monopoles are not proper topological
charges for Shakti, as they are not protected. Each z = 4 vertex being surrounded by
a sea of charges, it can gain or lose charge to and from it. However, the Shakti state
is a bona fide topological phase, which means that some other topological charge
should be identified in it.

That the manifold has topological protection can be immediately suspected by
noting that a single spin flip takes out of the manifold, and only a proper loop
of collective spin flips realizes change within the manifold. This can be understood
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Fig. 4.10 Realizations of Shakti Ice.On the top left, anMFMimage of Shakti ice after annealing.On
the top right, the experimental data of the left part is translated in terms of allocation of the unhappy
vertices, on plaquettes (black dots). One can see how an emergent ice rule describes the system, as
each plaquette can have only two of four slots for unhappy vertices occupied. Bottom: screening
of monopoles from magnetic charges 〈Qnn〉 denotes the average magnetic charge surrounding a
magnetic monopole on a z = 4 vertex, at the nearest neighbor level. Figures adapted from [56]

easily fromFig. 4.9, as all spins impinging in a z = 3vertex also impinge into z = 4, 2
vertices, which are in their lowest energy in the manifold. Flipping such spin will
thus necessarily cause excitations.

To identify the topological structure, we go back to the properties of the low
energy state. We saw that because each UV affects two nearby plaquettes (Fig. 4.9)
and costs energy, the lowest energy configuration is realized when nearby plaquettes
are “dimerized” by a single UV [54]. The ice manifold of Shakti is thus described
by a dimer cover model on the lattice connecting the rectangular plaquettes, which
is topologically equivalent to a square lattice (Fig. 4.11) (from now on called “dimer
lattice”), and which can be solved exactly [115].

The following is then standard: a discrete, emergent vector field �E can be intro-
duced, perpendicular to each edge, of length 1 (o 3) if the edge is unoccupied (or
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Fig. 4.11 Top: Shaktimanifold as a dimer covermodel. From left to right:Disordered spin ensemble
for the ground state of Shakti icemanifold. Themanifold is completely described by the allocation of
the UVs (circles) which affect two nearby rectangular plaquettes (connected by the blue segments).
Thus, an unhappy vertex is a dimer (blue segments) connecting frustrated plaquettes, and the ground
state is a complete dimer-cover model on the (Ochre color) lattice with nodes in the center of
rectangular plaquettes, topologically equivalent to a square lattice. There we introduce the emergent
vector field �E , as in the text. The circulation of the vector field along any closed loop is zero. Middle
andBottom:The Shakti’s low-energymanifold.XMCD image of Shakti spin ice, for a spin ensemble
with one excitation (red and blue dots) and the corresponding emergent dimer cover representation.
Now excitations appear as multiple occupancy and/or diagonal dimers (Type II2s). �E is no longer
irrotational and its circulation defines the topological charge as q = 1

4

∮
γ

�E · d�l. (Image copyright:
Yuyang Lao.)

occupied) by a dimer, and direction entering (exiting) a gray square of Fig. 4.11 from
top or bottom, and exiting (entering) it from the sides. The “line integral”

∫
γ

�E · d�l
for such a discrete vector field along a directed line γ crossing the edges is the sum
of the vectors along the line with sign taken along the line’s direction. For a complete
cover the emergent field is irrotational (

∮
γ

�E · d�l = 0) leading to the definition of a

“height function” [93] h such that �E = �∇h and thus demonstrating the topological
state.

Beyond the standard dimer model, this picture can incorporate the low-energy
excitations of Shakti ice as scramblings of the cover. As Fig. 4.11 shows, above the
ground state a frustrated plaquette (i.e. a node of the dimer lattice) can be dimer-
ized three times instead of one (over-dimerization) by UVs, or also diagonally by a



104 C. Nisoli

Type-II4 or a Type-II2 vertex. In the presence of such scramblings the emergent vector
field �E is not irrotational anymore. Indeed its circulation around any topologically
equivalent loop encircling a scrambling defines the quantized topological charge of
the defect as q = 1

4

∮
γ

�E · d�l (Fig. 4.11). Thus, the excitations of the Shakti ice man-
ifold are topological charges, turning the discrete scalar field h that defines its order
into a multivalued phase.

We have now the full picture: a topological phase, which cannot be explored from
within, but only via a discrete kinetics of excitations whose topological charge is
conserved. This picture is emergent, and not at all evident from, or indeed reminiscent
of, the original spin structure. It also has consequences for the kinetics, in terms of
ergodicity breaking, non-equilibration, and glassiness, as it is typical of a topological
state with topologically protected excitations, that cannot be reabsorbed into the
manifold individually, and which evolves via a discrete kinetics. All these issues
are still to be investigated in full, as Shakti ice might provide the first artificial,
controllable, modifiable and fully characterizable magnetic system which provides
non-topographic vistas of ergodicity breaking and non-equilibration as consequences
of a classical topological order.

4.6 Dimensionality Reduction: Tetris Ice

While Shakti spin ice provides a topologically protected low-energy manifold, no
such protection is present in the ground state of Tetris ice (Fig. 4.12), which can be
explored by consecutive spin flips. As Fig. 4.12 shows, the lattice can be decomposed
into T-shaped “tetris” pieces and it has a principal axis of symmetry.

The geometry can be considered as layered one-dimensional systems. On the blue
islands in Fig. 4.12 there cannot be any Type-II3 unhappy vertex [54], and therefore
the blue portion of the lattice, which we call backbone, must be ordered at the
lowest energy. The unhappy vertices must reside on the red portions, which we call
staircase, and which therefore remain disordered at low temperature. As temperature
is lowered,we have thus a dimensional reduction of an alternating ordered-disordered
one-dimensional system, which was indeed confirmed experimentally [57].

This dimensional reduction is also apparent in the kinetics. Tetris was the first
of the new geometries to be characterized in real-time, real-space and from the
supplementary information of [57] it is possible to watch clips of its kinetics as the
temperature is lowered or raised. Starting at high temperature, all the spins flip at
about the same rate. As the temperature is lowered, ordered domains begin to form
in correspondence with the backbones, where eventually the spins become static,
while the spins on the staircases continue to fluctuate.

While Tetris spin ice’s lowest energy state described above has been confirmed
experimentally, it follows from a nearest neighbor approximation. The profile of
low energy excitations, however, has not been yet studied in any systematic way,
and promises interesting new effects. For instance, as one-dimensional systems, the
backbones can never order completely, and will always host excitations above the
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Fig. 4.12 Tetris Ice. a XMCD-PEEM image of a 600nm Tetris lattice. The black/white contrast
indicates whether the magnetization of an island has a component parallel or antiparallel to the
polarization of the incident X-ray, which is indicated by the yellow arrow. b Map of the moment
configurations showing ordered backbones (blue) and disordered staircases (red). (Images from
[57].)

low-energy manifold. Of course Tetris is in fact a two-dimensional system, which
decomposes into one-dimensional ones only in the lowest energy configuration.
Slightly above such a manifold, one expects correlations among excitations that
belong to different backbones. Such correlations must be controlled both by themag-
netic interaction between these defects—as Tetris is, after all, a system of dipoles that
can interact at long-range—but also through entropic interactions, since the back-
bones are separated by disordered staircases of non-zero density of entropy. None of
the above issues has yet been studied theoretically, and they might indeed provide a
useful setting to explore the onset of phase decoupling into lower-dimensional states,
a broader problem relevant to liquid crystal phases [116] or weakly coupled sliding
phases [117, 118].

4.7 Polymers of Topologically Protected Excitations: Santa
Fe Ice

We end this vista on how novel and unusual spin ice geometries influence topol-
ogy with Santa Fe of Fig. 4.13, which was inspired by a terra cotta floor in the
homonymous New Mexican capital—incidentally, the oldest in the United States.
While Shakti and Tetris are maximally frustrated, which means that any minimal
loop inside the geometry needs to be affected by an unhappy vertex, in Santa Fe only
the dashed loops in the figure are frustrated and they are surrounded by unfrustrated
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Fig. 4.13 The Santa Fe Ice can support both frustrated (shaded, green) and unfrustrated loops.
There, “polymers” of unhappy vertices (blue dots) thread through unfrustrated loops to connect
frustrated ones. On the right, the brick floor at the convention center in Santa Fe, NewMexico, USA

ones. It is an inviolable topological constraint that at any energy frustrated loops can
be affected by only an odd number of excitations, and unfrustrated ones by only an
even number (or none).

An unhappy vertex on a frustrated loop of Santa Fe lattice affects a nearby unfrus-
trated one. However, an unfrustrated loop can only be affected by an even number
of defects, and thus there will be a second unhappy vertex on it, affecting in turn
a nearby unfrustrated loop, et cetera. It follows that magnetic “polymers”, whose
“monomers” are local protected excitations, must begin from and end into frustrated
loops.

As each monomer costs energy, the lowest energy configuration of the magnetic
ensemble will correspond to the shortest possible polymers, which are made of three
monomers, each connecting nearby frustrated loops as in Fig. 4.13. The entropy of
such a state can easily be computed exactly.As each polymer dimerizes two frustrated
loops, the degeneracy is given by the dimer cover model on the square lattice whose
node ismade of nearby frustrated loops, times the number of ways in which polymers
can be chosen once their pinned ends are fixed. Thus the ice manifold decomposes
into the direct product of two states: the dimer-cover manifold, which selects which
loops are joined by the polymers, and the degeneracy of the polymers themselves.

At low temperature the kinetics will reduce to the fluctuations of the magnetic
polymers without changing the pinning location of their ends, and thus without
changing the dimer cover picture. Thus, the low energy manifold can be explored
from within, but only in part. The kinetics within the manifold remains local and
the polymer’s fluctuations are uncorrelated. As the temperature rises the polymers
lengthen to include more than three monomers. At that point they can bump into
each other, fuse in a cross, and then separate in different ways. This transition can
lead to a different dimerization, as the new polymers, emerging from “collisions”
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of the old ones, are now pinned to different ending point. Thus the dimer-cover
ensemble is explored via this mechanism of polymer colliding, fusing together and
then breaking again into different ones. This of course involves excitations over the
ice manifold, further demonstrating the partial topological protection that pertains
only to the dimer-cover sector of the low-energy manifold.

4.8 Conclusions

We have argued that by assembling together interacting, elementary building blocks,
here Ising spins in the form of single domain, magnetic nano-islands, we can invert a
tendency that has dominated condensed matter physics for half a century. Instead of
finding serendipitously exotic states and behavior in nature, and then model them via
higher level, emergent hamiltonians, one can devise materials—magnetic materials
in this case–that do not exist in nature by developing first the model of their collec-
tive dynamics. Then, advances in nano-lithography and chemical synthesis can allow
for their realization, while new thermal protocols afford characterization, often in
real-time and real-space, for unprecedented direct validation of the theoretical expec-
tations.

We have shown that while the field began with simple geometries, reminiscent of
natural materials, current advances make it possible to realize dedicated geometries
of completely different properties and behaviors. These allow now to access rather
sophisticated topological states, as their emergent description loses reminiscence of
the original degrees of freedom, the underlying spin structure. This approach opens
a new path in the material-by-design effort, on which unusual topological states can
be deliberately designed.
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Chapter 5
Topologically Non-trivial Magnetic
Skyrmions in Confined Geometries

Haifeng Du and Mingliang Tian

Abstract Magnetic skyrmion is a small magnetic whirl that possesses non-trivial
topology and behaves like a particle. The specially twisted spin arrangement within
skyrmion gives rise to topological stability and low critical current to drive itsmotion,
both of them benefit the potential technological application in memory devices. In
this chapter, we briefly introduce the notation of topology of magnetic skyrmions
and recent progress ranging from the hard disk storage in conventional magnetic
memory device to racetrack memory by using magnetic skyrmions. The related
magnetic phases in skyrmion materials based on the Dzyaloshinskii-Moriya (DM)
interactions are discussed in detail. Furthermore, experimental achievements for the
formation and stability of highly geometry-confined skyrmions are outlined, where
the topological effects are fully embodied.

5.1 Introduction

Magnetic memory devices mainly magnetic hard disk drives (HDD) have been the
primary repository of digital data for more than half a century. Data is recorded in a
thin ferromagnetic filmwith the binary data bits 0 and1 represented by the direction of
magnetization of a small domain (Fig. 5.1). Data read from the disk is accomplished
by transferring the magnetization of the small magnetic domain into electric signals
via the giant magnetoresistance (GMR) effect, while writing data is accomplished
by using the magnetic field to control the direction of the small magnetic domain.
In spite of its extreme success in memory device, the decreased size of the magnetic
domains in HDD may lead to the loss of their magnetic state due to the thermally
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Fig. 5.1 Hard disk drive and an overview of how it works

Fig. 5.2 Spin transfer torque effect in which the orientation of localized magnetic moments can be
controlled by using a spin-polarized current

induced magnetic instability, commonly known as the superparamagnetic limit [1].
Meanwhile, the movable mechanical engines consume large energy and thus set a
limitation on their writing/reading speed.

Therefore, a number of alternative magnetic memory architectures towards
achieving high reliability, performance and capacity data storage have been pro-
posed. A typical one is based on controllable manipulation of magnetic domain
walls (DW) by using electrical current [2]. It is well known that electrons carry not
only charges but also spins. In a non-ferromagnetic material, the spins of electrons
are generally randomly oriented and do not show spin polarization. However, when a
ferromagnetic (FM) component is incorporated into a device, a spin-polarized current
is produced when a current passes through the FM component with fixed magneti-
zation direction, i.e. fixed layer. If this spin-polarized current is further passed into a
second thinner magnetic layer (the “free layer”), its orientation of the magnetization
can be changed due to the transformation of angular momentum of electrons to this
FM layer. This effect is the so-called spin transfer torque (STT) (Fig. 5.2a), and can
be used to flip the orientation of the magnetic domains. This means that domain walls
can be moved by spin polarized current.
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Fig. 5.3 Racetrack memory and an overview of how it works

Based on this effect, a memory device was then proposed by IBM and called
racetrack memory (RM) that actually inherited the bubble memory concept [3].
In the RM (Fig. 5.3), the information bit (0 or 1) is encoded in magnetic domains
separated by domainwalls (DWs) that canmove bymeans of a spin polarized current.
A read/write device is fixed somewhere to polarize or measure the magnetization in
a given domain. By controlling current pulses in the device, the domain walls can be
moved at speeds of hundreds of miles per hour and then can be stopped precisely at
the position needed, allowing massive amounts of stored information to be accessed
in less than a billionth of a second. The advantage of data access speed makes
the racetrack memory so intriguing. Projections are that the racetrack memory can
read or write a bit of information in less than 1–10 ns, depending on the length
of the racetrack, while a hard drive performs the same operation in 3,000,000 ns.
However, because theRMbased on STT effect requires very high current density (jc ~
1012A/m2) tomove the domain walls, together withmany other physical andmaterial
problems such as the pinning effects, the Walker limit, the conventional DW-based
RM turned out too complicated to be competitive compared to HDDs. Increasing
efforts and resources dedicated to the development of the racetrack memory are then
highly required.

In magnets without inversion symmetry, so called chiral magnets, relatively weak
spin-orbit coupling leads to the formation of smooth twisted magnetic structure with
a long period. Recently, a new local magnetic state, named magnetic skyrmion was
discovered in chiral magnets. It has a series of advantages that might allow the
device to be more robust and more efficiently manipulated with currents. Here, we
will give a brief introduction to the magnetic skyrmions. In Sect. 5.2, we review the
topological effect related to magnetic skyrmions. In Sect. 5.3, we concentrate on the
formation mechanism of magnetic skyrmions. In the last section, we turn to some
special properties of geometrically-confined skyrmions.
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5.2 Topological Effect in Magnetic Skyrmions

5.2.1 Topology in Magnetic Materials

Traditionally, study on magnetism has mainly followed the route by exploring its
microscopic magnetic structure, corresponding properties, and then to realize cer-
tain functionality. However, there is now increasing interest to design, predict and
fabricate novel materials with particular property and functionality by delineating
the active role of topology and geometry. The topology class is mathematically char-
acterized by the homotopy theory [4]. The emergent state possesses a property that
is protected in a symmetry sense, and then can be rigorously defined by its corre-
sponding mathematical topological characteristics. One of the important notions in
the homotopy theory is the topological defect, which is a stable configuration of
matter formed in the very early universe and characterized by a homotopy class.
Such configurations are in the original, symmetric or old phase, but they persist after
a phase transition to the asymmetric or new phase is completed. There are a number
of possible types of defects in a magnetic system. To distinguish these topological
defects belonging to one and the same homotopy class, it is convenient to define a
global parameter, named as winding (also skyrmion) number, Q. Such a parameter
is provided by the degree of a mapping f : M →N , where M and N are orientable
and compact manifolds, respectively. In the case of both manifolds belonging to n-
spheres, the winding number of the mapping, deg f , counts how many times M is
wrapped around N under the map f . In two dimensional case, the easy-plane spin
varies as m (τ ) � (cos Φ (τ) , sin Φ (τ)), where 0 ≤ τ ≤ 2π parameterizes the
loop and continuity requires m (0) � m (2π), the winding number can be expressed
as

Q � 1/2π

2π∫

0

∂τΦdτ (5.1)

In fact, before the discovery of magnetic skyrmions, this topology method has
been used to analyze the complex switching processes observed in ferromagnetic
nanoparticles [5]. The switching process involving the creation, propagation, and
annihilation of domain walls with complex internal structure. But, from the topolog-
ical viewpoint, these complex domain walls are composite objects made of only two
or more elementary defects: vortices with integer winding numbers (Q � ±1) and
edge defects with fractional winding numbers (Q � ±1/2). The simplest domain
walls are composed of two edge defects with opposite winding numbers. Creation
and annihilation of the defects are constrained by conservation of a topological
charge. The elementary topological bulk and edge defects will significantly affect
the interaction and domain trajectory in the nanowires. For example, head-to-head
and tail-to-tail magnetic domain walls in the nanowire are two fundamental domains
that behave as free magnetic monopoles carrying a single magnetic charge. They
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attract one another since adjacent walls always carry opposite charges, leading to
annihilation of the two domain walls. However, the topological edge defects that
have the same winding number suppress annihilation of the walls because of a short-
range repulsive interaction [6].

In three-dimensional case, Q is the number of spins winding around the unit ring
after going through the magnetic ring. It can be done by wrapping the spin vector,
m around a unit sphere, where the Q is defined as follows:

Q � 1/4π
∫

m · (
∂xm × ∂ym

)
dxdy (5.2)

According to these definitions, the winding number Q of each configuration also
characterizes the number of magnetic monopoles therein.

5.2.2 Topological Stability of Magnetic Skyrmions
and Emergent Magnetic Monopoles

In magnetic materials, a notable example of a topologically stable object is the
skyrmion [7–10]. It is a swirl-like spin texture, in which the magnetic moments point
in all directions wrapping a unit sphere (Fig. 5.4a). It is then easy to obtain a unit
topological charge (Fig. 5.4c) according to (5.3), while it is zero for conventional spin
textures like the ferromagnetic state. It explained the topological stability ofmagnetic
skyrmions. Two objects or configurations are topologically different if they belong
to a different homotopy group if there exists no continuous transformation of one
configuration into the other without cutting or gluing. The same applies to skyrmions:
skyrmion lattices in chiral magnets can be regarded as macroscopic lattices formed
by topological entities with particle-like properties where the particle-like character
of the skyrmions is reflected in the integer winding number of their magnetization.

It must be noted that a non-trivial topology does not imply in itself energetic sta-
bility. There is in fact unnecessary relation between topology and energetic stability.
Topological stability referred to a system going from one topological state to another
is always accompanied by a discontinuity in the continuous field and is only a math-
ematical concept. For instance, a torus going into a sphere, a rupture must be created
on some part of the torus’s surface. In this case, the torus would be mathematically
described as topologically stable. By contrast, energy stability is always connected to
real physical systems and is described by the free energy, which is required to create
the rupture and is always finite. That is to say, the mathematical concept of topology
is only used to describe a physical system. The attributes of the system including the
energy stability depend on the system’s physical parameters. To build an efficient
link between topological and energy stability, a non-zero phenomenological field
rigidity, which is used to account for the finite energy needed to rupture the field’s
topology, should be introduced. By calculating a breakdown energy-density of the
field, a topology-related energy barrier is introduced. For the magnetic skyrmions,
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Fig. 5.4 Magnetic skyrmion and its properties. a The spin configuration of single skyrmion. b
skyrmion lattice. c Unit topological charge of skyrmion due to the nontrivial spin arrangement. d
Strong spin transfer torque effect (STT)

such a topological barrier is extracted by evaluating the energy routine during the
transition of the skyrmion number or topological charge in the dynamical process of a
skyrmion creation or annihilation. In fact, the barrier height linked to the topological
charge has been theoretically calculated [11].

Leaving the energy stability out of consideration, transition between different
topological classes can lead to some exotic topological state. For the topology-
protected magnetic skyrmions, they cannot be destroyed or created by smooth defor-
mation of other trivial spin textures such as the ferromagnetic state, helical or conical
phase. Then what will be happen when the topological winding in a skyrmion can be
destroyed. By using a magnetic force microscope (MFM) to map out the distribution
and shape of the skyrmions on the surface of the bulk chiral magnets Fe0.5Co0.5Si
[12], the field evolution of magnetic states in the sample surface is revealed. The
skyrmions disappeared as the magnetic field was reduced to zero and were seen
to decay by coalescing with their neighbors to form lines on the surface. At zero
magnetic field, the lines created a tiger-stripe pattern. But, there is no individual
skyrmion within the bulk of the sample. Computer simulations well reproduced the
experimental observation that a similar coalescence occurs beneath the surface. It
is then well established that the formation and destruction of magnetic skyrmions
is driven by the creation and motion of singular defects. The singular points can be
identified with emergent monopoles.
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5.2.3 Topological and Skyrmion Hall Effect

As a result of their unique spin topology, magnetic skyrmions provide a platform to
study many intriguing real-space topological transport phenomena. A well-known
example is the Hall effect, which may show a peculiar behavior arising from non-
trivial spin arrangements. The ordinary Hall effect of a conductor in a perpendicular
magnetic field originates from the Lorentz force acting on the charge carriers. It is
usually measured as a voltage transverse to the current. In ferromagnetic conductors,
an additional anomalous Hall effect (AHE)—for which the theories usually assume
a collinear spin structure—arises from magnetization and spin–orbit interaction and
is present even in zero magnetic field. However, in a non-coplanar spin configuration
the spin chirality of three magnetic moments spanning a triangle can induce a finite
Berry phase and an associated fictitious magnetic field. This field generates an AHE
even without the spin–orbit interaction, the so-called topological Hall effect (THE)
[13, 14]. Thus, the Berry phase reflects the chirality andwinding number of the knots.
The topological Hall effect arises besides the normalHall effect. The topological Hall
resistivity is proportional to the density of emergingmagnetic field, which is the aver-
age density of magnetic field that is associated with the flux quanta �0 contained
in the skyrmion of diameter R. The strength of emergent magnetic field can be as
large as 〈bz〉 ≈ 100 T given a skyrmion of 10 nm in diameter, which thus provides a
unique platform to study the high magnetic field response of electrons. Meanwhile,
based on the well-known Faraday’s law, the motion of a magnetic skyrmion thus
produces a time-dependent electric field 〈Et 〉 that leads to the emergent electromag-
netic induction. These effects have been observed in bulk chiral magnets including
MnSi, GeMn [15].

Another interesting phenomenon is the skyrmion Hall effect [16, 17]. Because
magnetic skyrmion behaves like a particle with a unit topological charge Q � ±1.
Similar to the transverse deflection of charged particles as a result of Lorentz force,
the motion of magnetic skyrmion exhibits a well-defined transverse component as a
result of topological Magnus force. The skyrmion hall effect is directly related to the
device applications. Since skyrmions can be shifted by electrical currents and feel a
repulsive force from the edges of the magnetic track as well as from single defects
in the wire, they can move relatively undisturbed through the track. This is a highly
desired property for racetrack devices, which are supposed to consist of static read-
and write-heads, while the magnetic bits are shifted in the track. However, another
important aspect of skyrmion dynamics originates from skyrmion Hall effect is that
the skyrmions do not onlymove parallel to the applied current, but also perpendicular
to it. This leads to an angle between the skyrmion direction of motion and the current
flow called the skyrmion Hall angle. As a result, the skyrmions should move under
this constant angle until they start getting repelled by the edge of the material and
then keep a constant distance to it. Recent investigation has proved that the billion-
fold reproducible displacement of skyrmions is indeed possible and can be achieved
with high velocities. Furthermore, it turned out that the skyrmion Hall angle depends
on the velocity of the skyrmions, which means that the components of the motion
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Fig. 5.5 Skyrmion-based Racetrack memory

parallel or perpendicular to the current flow do not scale equally with the velocity
of the skyrmions. This is not predicted in the conventional theoretical description of
skyrmions. Part of the solution of this unexpected behavior could be the deformation
of the skyrmion spin structure, calling for more theoretical effort to fully understand
the properties of skyrmion in confined geometries.

5.2.4 Skyrmion-Based Racetrack Memory (RM)

The peculiar twists of the magnetization within the skyrmion give rise to a nontrivial
topology so that the spin current is able to efficiently couple with skyrmion. This
process further links to the topological Hall effect and efficient spin-transfer torque
effect.As a consequence, the critical current density to drive skyrmions is 4 or 5 orders
of magnitude lower than that needed to move the conventional ferromagnetic domain
walls.Moreover, the single skyrmionpossessesmuch smaller size than a conventional
domain. The typical value of the size is on the order of 3–150 nm depending on the
intrinsic parameters of skyrmion materials. These properties including small size,
high stability andmobility all benefit to build future skyrmion-basedRM[18]. Recent
investigations have demonstrated the current-induced creation and motion as well
as electric detecting of individual skyrmions in confined geometries even at room
temperature [19]. These advances raise great expectations for realizing skyrmion-
based RM (Fig. 5.5).
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5.3 Origin of Magnetic Skyrmion

5.3.1 Magnetic Phase Diagram in Chiral Magnets

Within the framework of micromagnetism that is the continuum theory of magnetic
moments, the magnetic microstructure is determined by the couplings among local
magnetic moments. Among them, the common one is the exchange interaction. It
is a purely quantum phenomenon, which has no analogy in the classical world. The
magnetic moments and spontaneous magnetization are realized by the exchange
interaction between electrons. In a simple two-electron picture, exchange gives rise
to ferromagnetic or antiferromagnetic coupling depending on the sign of exchange
constant J . In the discrete model, the most general expression for two sites exchange
energy between neighboring magnetic moments Si and S j is:

Ee � −JSi · S j (5.3)

Although the exchange interaction keeps spins aligned, it does not align them in a
particular direction. This is accomplished by the magnetic anisotropy. Without mag-
netic anisotropy, the spins in a magnet randomly change direction in response to ther-
mal fluctuations and the magnet is superparamagnetic. There are several kinds of
magnetic anisotropy, the most common of which is magnetocrystalline anisotropy.
This is a dependence of the energy on the direction of magnetization relative to
the crystallographic lattice. Another common source of anisotropy can be induced by
internal strains or interface. Single-domain magnets also can have a shape anisotropy
due to the magnetostatic effects of the sample shape. This also belongs to stray field
energy, which is connected with the magnetic field generated by the magnetic body
itself. It arises because each magnetic moment in a ferromagnetic sample represents
a magnetic dipole and therefore contributes to the total magnetic field inside the
sample.

A magnetic moment will try to reduce its energy by aligning itself parallel to
an external magnetic field. The energy that describes the interaction of a magnetic
moment with an applied field B is called Zeeman energy:

Eh � −Si · B (5.4)

Zeeman energy as well as anisotropies are local energy terms because their energy
contributions are determined only by the local values of magnetization vector.

The magnetic structures are determined by the competition among different ener-
gies. These naturally lead to non-collinear spin textures such as magnetic domain
walls, magnetic vortices and magnetic bubbles. Unlike the controllable manipula-
tion of magnetic domains using magnetic field in the HDD, these non-collinear spin
textures may provide new opportunities for the spintronic devices because spins of
conduction electrons can efficiently couple with the localized spin textures via a spin
angular momentum transfer, the so-called spin transfer torque (STT) mechanism.
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Fig. 5.6 Magnetic phases inB20 chiralmagnets. The competition between ferromagnetic exchange
in (a) and non-collinear DM interactions in (b) leads to a helical ground state in (c), which unpins
under the application of a high magnetic field to form the conical phase with its wave vector
along the direction of magnetic field, and then condenses into a skyrmion crystal with a hexag-
onal arrangement if temperature is close to the Curie temperature Tc. Images are taken from
[24]

The formation and stabilization of magnetic skyrmions often require some non-
collinear magnetic interactions. A typical one is the Dzyaloshinskii-Moriya (DM)
interaction [20]. In addition to this coupling, it has also been addressed that mag-
netic dipolar interaction, frustrated exchange interaction [21], and four-spin exchange
interaction [22] are all able to create skyrmions. Among them, the DM-induced
skyrmions have evident advantages including small and tunable size [23], and extra
stability even in highly confined geometries [24]. Due to the importance of DM cou-
plings, it is valuable to introduce its origin before entering the non-collinear magnetic
structures in chiral magnets. DM interactions come from the symmetry-breaking in
the crystal lattice or interface and surface. It is written as [25]:

ED � Di j · (
Si × S j

)
(5.5)

Vectors Di j are the nearest neighbor DM coupling constants and originate from
the symmetry-breaking in the crystal lattice. It is obvious that spins tend to be per-
pendicular to each other under the DM interaction according to (5.5) (Fig. 5.6b).
Competition between ferromagnetic and DM interaction leads to a helical ground
state (Fig. 5.6c). Since DM interaction is coupled to the lattice, it is chiral. The cor-
responding magnetic materials are also called chiral magnets. Including the above-
mentioned Heisenberg exchange and Zeeman energies, the total energy of a B20
helimagnet with the magnetization S in the continuum limit can be written as

E � J (∇S)2 + DS · (∇ × S) − B · S (5.6)
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The emergent magnetic structures in helical magnets can be well explained within
the above-mentioned physical model concerning the DM, ferromagnetic exchange,
and external magnetic interaction. The spin helix is created by the completion
between DM and ferromagnetic exchange interactions. The wave-vector k is fixed
depending on the high symmetry crystal axis (Fig. 5.6a–c). Under the action of a
magnetic field B, a conical phase with k ||B is energetically favorable when the mag-
netic field is of moderate strength and the temperature (T) is lower than the Curie
temperature Tc. A higher field will further transfer the conical phase into a ferro-
magnetic state. Because the rotation sense of both helical and conical states orients
along only one direction, they are called single-twist magnetic structure. By contrast,
magnetic skyrmion is a vortex-like magnetic structure with the magnetization within
the skymion rotating in two directions. Skyrmion thus belongs to double-twist modu-
latedmagnetic configuration. In bulkmaterials, the formation of the skyrmion state is
commonly explained by the thermal fluctuation effect, where skyrmions occupy only
a small temperature-magnetic field (T -B) region in the magnetic phase diagram. The
magnetic phase diagram in Fig. 5.6d represents a common behavior in B20 helical
magnets.

On the contrary, highly stable magnetic skyrmions can be realized by the reduced
dimensionality of helical magnets. It has been confirmed experimentally that thin
plates of B20 magnets with its thickness around the featured skyrmion size can hold
a skyrmion in significantly extended T -B phase region even to the zero tempera-
ture [26]. The extended skyrmion state in low dimensional B20 magnets has been
explained by several different mechanisms. The spatial confinement effects is the
first one [27]. Numerical calculation showed that a type of 3D skyrmion, instead of
conventional 2D case, appears if the thickness of the film is below a threshold. A 3D
skyrmion is characterized by a superposition of double-twist rotation of magnetic
skyrmions in the perpendicular plane and conical modulations along the skyrmion
axis. The 3D skyrmion is proposed to be energetically favorable and then thermo-
dynamically stable in a broad T -B range. The high stability of magnetic skyrmions
in 2D materials such as mechanically thinned flakes and quasi-2D MnSi nanostripes
can be well explained by this mechanism [28]. Beyond 3D-modulated configuration,
highly stable skyrmions can also exist in magnetic materials with the uniaxial mag-
netic anisotropy [29]. In this case, if the external magnetic field is applied along the
direction of easy axis of the system, the energy of conical phase would be signifi-
cantly increased under a combined action of magnetic field and uniaxial anisotropy.
Skyrmion state is thus energetically favorable in large regions of T -B space. But, it
should be noticed that the skyrmion size and crystal lattice constant are also depend on
the strength of uniaxial anisotropy. However, there is no clear experimental evidence
to identify this mechanism. For a thin film with uniaxial anisotropy, if the external
magnetic field is applied in the film plane, extended elliptic skyrmion gratings are
proposed to be energetically favorable if the hard axis of the system is perpendicular
to the film plane. In the highly confined helical magnets, the experimental obser-
vations, as discussed below, cannot be explained by independently using the three
mechanisms.
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5.3.2 Mechanism of DM Interaction

Magnetic skyrmions were first discovered in metallic alloy MnSi by neutron scatter-
ing [8], and later confirmed in semiconductor Fe0.5Co0.5Si by Lorentz Transmission
Electron Microscopy (TEM) [9]. Both materials belong to the same lattice class of
B20, a non-centrosymmetric binary structure, in the Strukturbericht Symbol. Subse-
quent investigation proved that the emergence of skyrmion is a common feature in
other B20 magnets such as FeGe and Cu2OSeO3 [28, 31]. The continuing discovery
of more skyrmion materials is unambiguously an important and urgent task for the
development of skyrmion science. To guide the search for more skyrmion materials,
it is instructive to classify all possible materials with DM interaction by symmetry.
The pioneering phenomenological theory was introduced by Bogdanov et al. [32],
where the technique of symmetric tensor is employed [33, 34] and the classification
of point groups hosting skyrmions is achieved [35].

In detail, the Fourier component of the Heisenberg exchange is given by
EHei (k) � Jk2 |Sk|2, where Sk is the Fourier component of the spin Sk �
1
V ∫ drS (r) exp (ik · r). Under rotations, S transforms in the same way as k. As
a result, EHei (k) is rotationally invariant. Furthermore, the inversion and mirror
symmetries are also respected. Therefore this is a generic quadratic term for all ferro-
magnets. On the other hand, the DM interaction provides a linear term inmomentum;
EDM (k) � i DSk · (k × S−k). Although the rotational symmetry is still preserved,
the inversion symmetry is apparently broken, which is the well-known origin of the
DM interactions. However a long overlooked fact is the broken mirror symmetry in
this DM interaction. This comes from the fact that Sk · (k × S−k) is a pseudoscalar.
Under any improper rotation such as mirror reflection in the lattice, this term flips
sign, and should be ruled out in the energy. This term is a unique feature of lattices,
such as T23 group, with only pure rotations. Now a question arises whether this form
is the only allowed term linear in k for any other material.

To answer this question, we can rewrite any k-linear term as a tensor product

EDM (k) � idi jmki S j
−kSm

k , (5.7)

wheredi jm is a third order tensor that can be constructed fromsymmetry analysis.Any
symmetry operation R can be represented as a 3×3 matrix in natural basis (x, y, z).
Under such operation, vector k transforms as ki → k j R ji , while the pseudovectors
S±k transform as Si → |R| Sj R ji , where |R| is the determinant of R matrix. If R is
an improper rotation, |R| � −1. Once R is a symmetry operation, energy should be
invariant under such rotation, therefore the tensor dijm must satisfy the Neumann’s
principle:

di jm � Rip R jq Rmr dpqr (5.8)

In practice, one does not need to go through all symmetry operations in order
to determine the d tensor. Most operations can be written as products of some
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independent matrices, called generating matrices [36], within the same point
group. For T23 point group, the generating matrices are C2and C3 rotations. The
Neumann’s principle thus leads to the constraint that dxyz � dyzx � dzxy , and
dxzy � dyxz � dzyx . One can symmetrize these parameters by dxyz � S + D and
dxzy � S − D. However because the whole Hamiltonian can be reorganized as∑

k HDM (k) � ∑
k i

(
di jm − dimj

)
ki S j

−kSm
k , the symmetric component S does not

contribute. The resulting Hamiltonian is thus
∑

k i Dεi jmki S j
−kSm

k , which reproduces
the DM interaction in (5.6).

The same method applies to any other lattice. If S−k and Sk have the same index,
its contribution to the Hamiltonian vanishes when completing the summation over
momenta. The relevant terms are 6 components of dxyz permutations, and other
12 components of dxxy , dxyx and their permutations. For future convenience, these
components are symmetrized as dxyz � αS + αA, dyxz � αS − αA, dyzx � βS + βA,
dxzy � βS −βA, dzxy � γS +γA, dzyx � γS −γA, and ξαβ � dααβ −dαβα . As a result,
the total Hamiltonian is given by

E �
∫

d3r
[

J (∇S)2 − B · S + γAS · (∂ẑ × S) +
1

2
(αS + αA − βS + βA)S · (∂x̂ × S)

+
1

2
(−αS + αA + βS + βA)S · (

∂ŷ × S
)
+ ξαβ Sβ∂α Sα

]
(5.9)

where ∂r̂ is the directional derivative along r direction. These linear order derivative
terms are theDM interactions. Under lowmagnetic fieldB, a spin helix is thus formed
along certain directions given the competition between anisotropic DM interaction
and the Heisenberg exchange. The last term in this energy characterizes Neel type
helices and skyrmions, where the magnetic moments are coplanar with the propa-
gation direction, while the rest of the DM terms belong to the Bloch type, where
moments and propagation direction are always perpendicular to each other. A com-
plete list of point groups contributing to nonzero DM interactions is summarized in
the following table (Table 5.1).

The inversion symmetry is lost in any of the classes. In addition, the mirror sym-
metry is also missing in a large portion of the allowed point groups, especially in the
cubic crystal system. Higher order spin anisotropies can be constructed in the same
way. Once elevated, they might change the ground state, such as anti-vortex state in
S4 and D2d once easy axis is established [34, 37]. The B20 compounds, harboring
typical Bloch skyrmions, are located in class B-IV. The most important message
delivered from this derivation is that class B-V, the O group, is described by exactly
the same Hamiltonian as the B20 compounds in class-IV. The spin anisotropies are
also the same in these two classes. Therefore the spin physics observed in B20 com-
pounds are also persistent in theO group. A promising family ofmagnetic skyrmions,
A2Mo3N with A=Fe, Co, Rh, and their alloys is found [35]. Interestingly, the pure
Co2Mo3N shows antiferromagnetic behavior and an unexpected superconducting
phase in Rh2Mo3N at a critical temperature 4.4 K is also found. Searching skyrmion
materials in inversion-asymmetric magnets is a cutting edge topic in magnetism [38].
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Table 5.1 Constraints of nonzero di jk parameters for all possible point groups to create DM inter-
actions. Data is taken from [35]

Class Constraints Point groups

Block type ξαβ � 0

B-I No constraints D2

B-II αS � βS � γS � 0 D4, D3, D6

B-III αA � βA � γA � 0 D2d

B-IV αS � βS � γS ,
αA � βA � γA

T

B-V αS � βS � γS � 0,
αA � βA � γA

O

Neel type α � β � γ � 0

N-I ξ112 � ξ221 � ξ331 � ξ332 �
0

C2v

N-II ξ113 � ξ223, ξ112 � ξ221 �
ξ331 � ξ332 � 0

C3v, C4v, C6v

Mixed type

M-I No constraints C1

M-II α � β � α � 0,
ξ113 � ξ223 � 0

C1h

M-III αA � βA � γA � 0
ξ112 � ξ221 � ξ331 � ξ332 �
0, ξ113 � −ξ223

S4

M-IV αS � βS � γS � 0
ξ112 � ξ221 � ξ331 � ξ332 �
0, ξ113 � −ξ223

C3, C4, C6

5.4 Magnetic Skyrmions in Confined Geometries

As discussed in the first section that the skyrmion-based device is based on the con-
trollable manipulation of individual skyrmions in nanostructured chiral magnets (see
Fig. 5.5), particular attention in the field of skyrmions is now focusing on isolated
skyrmions in confined geometries. This section will discuss the fabrication of nanos-
tructured samples, real space observation of skyrmions, stability and high flexibility
of highly geometrically-confined skyrmions.

5.4.1 Sample Fabrication Techniques

Nanostructured samples can be fabricated by a top-down method from the bulk
by using the dual-beam system (Helios Nanolab, 600i FEI, see Fig. 5.7a), i.e. the
focused ion beam (FIB) and scanning electron microscope (SEM), combined with a
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Fig. 5.7 a FEI Helios Nanolab 600i System. b A schematic of fabricating a wedged-shape FeGe
nanostrip that is chosen to study highly geometrically-confined effect on the skyrmion morphology
by using off-axis electron holography and Lorentz TEM, as discussed below. The detailed sample
fabrication is shown above. In the TEMmeasurements, themagnetic field induced by controlling the
strength of current in object lens is always along the electron beam direction. Both the dimensions
of sample and the coordinate system are marked. c Schematic procedure for fabricating nanodisk
by using FIB-SEM system. d TEM images for the final nanostrip and nanodisk. Images are taken
from [24, 49]

Gas Injection System (GIS), andMicromanipulator (Omniprobe 200+ , Oxford) [39].
Dual Beams system consists of a high-resolution SEM column with a fine-probe ion
source (FIB). These instruments allow the preparation of samples from specific areas
of a sample as well as nano-machining. The OmniProbe AutoProbe™ 200 in situ
sample lift-out system allows the preparation of site specific TEM samples without
the need for support films. Figure 5.7b represents briefly the fabrication process of
wedged nanostrip for the transmission electron microscopy (TEM) observation. In
detail, the whole process is schematically depicted in Fig. 5.7c through Fig. 5.4 steps.

Step 1: Carving a row of FeGe columns on the surface of a FeGe bulk by using FIB
with 30 kV voltage. The process is similar to the procedure to fabricate a TEM spec-
imen [40]. The diameter is designed to be tens to hundreds of nanometers depending
on the requirements. In this process, a thin amorphous layer with a thickness of
20 nm will be produced because of the damage of high energy Gallium ions. The
amorphous surface is further reduced to 2–4 nm by using low energy Gallium ions
with 2–5 kV voltage.

Step 2: Coating the FeGe columns with an amorphous PtCx film. This process
is accomplished by combining the Gas Injection System (GIS) and FIB-SEM dual
beams. It should be noticed that this amorphous PtCx is not a magnetic material so
that it will not affect the magnetic properties of FeGe sample. The coating layers can
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significantly reduce the Fresnel fringes around the sample edges to make it possible
to image the magnetic structure of nanostructured sample by using Lorentz TEM.

Step 3: Transferring the sample into a silicon surface by using an advanced lift-out
method with the help of Omni probe 200+Micromanipulator that possesses rotation
function. In this process, the thin flake is first carved to U-shape and then stuck to the
need tip of Micromanipulator. Then, the FeGe sample coating with two PtCx layers
is released from the needle to the surface of the silicon.

Step 4: Transferring the sample into Cu-Chip for further fabrication by recycling
the steps 1–3.

By slightly changing the procedure including the sample shape and size, a variety
of TEM specimens such as nanostrip, nanodisk and wedged films are all able to be
fabricated (Fig. 5.7d).

5.4.2 Lorentz TEM

Imaging magnetic skyrmions in real space is highly desired to understand the basic
properties of individual skyrmions in confined geometries. The first real space obser-
vation of magnetic skyrmions is accompanied by Lorentz TEM [9]. Since then,
almost every magnetic imaging technique has been used to investigate the static
and dynamical behaviors (Table 5.2). For example, magnetic force microscopy takes
advantage of both the short-range interatomic and long-range magnetostatic interac-
tions between the sharp probe and the magnetic material surface. It has been used to
help unveiling the magnetic monopole [12]. Magneto-optical effects originate from
the interaction between polarized light and the magnetization and have been used
to image the formation of individual skyrmions via geometrical confinement [16].
Pump-probe X-ray transmission electron microscope has high temporal resolution
and has been used to studying the inertia effect of skyrmions. A large effective mass
of magnetic skyrmion was obtained and attributed to the intrinsic breathing mode
that acts as a collective source for inertia [41].

Given the size of individual magnetic skyrmions is commonly 3–150 nm, imag-
ing the complex magnetic structure in nanostructured elements require spatial res-
olution and sensitivity. TEM-based magnetic imaging technique has then obvious
advantages. Traditionally, there are two methods to obtain the magnetic signal in the
TEM. They are Lorentz TEM and electron holograph (EH), respectively, as shown
in Fig. 5.8.

Lorentz TEM relies on the fact that a high energy beam electron will be deflected
by themagnetic induction inside and around themagnetic sample [42]. There are two
modes in Lorentz microscopy: the Fresnel mode, in which domain walls and mag-
netization ripples are observed, and the Foucault mode, where domains are imaged.
For the Fresnel mode, the minimum observed contrast indicates the in-focus position
of the sample. In this position, the domain walls do not appear. Thus out-of-focus
conditions by defocusing the objective lens are used to obtain the magnetic contrast
of domain walls (see the schematic electron path through the sample in Fig. 5.8a).
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Table 5.2 Magnetic imaging techniques

Name Resolution Magnetic field Temperature Remarks

Spatial Time

Lorentz TEM 2 nm ms –0.2–2 T 5–300 K Detect
magnetic
moments
In-plane
components
(Thin films)

MFM 10 nm s –16–16 Ta 2–300 Ka Detect the
leakage
magnetic field

SP-STM Atomic s –9–9 Ta Low Magnetic
moments
atomic
smooth in
sample
surface

X-ray
Holography

20 nm ns Integrateda Unknown Magnetic
moments
ultra-fast
dynamics

SMOKE 300 nm ns –9–9 Ta 2–300 Ka High
sensitivity
Surface
detection

PEEM 5 nm s 0 T Room High
sensitivity
only surface
detection
(1–2 nm)

aIt indicates the parameters can be conveniently adjusted

To illustrate the principle of Fresnel mode, we only consider a sample composed by
two domains with a 180º domain wall in the following.

An electron moving through a region of space with an electrostatic field and a
magnetic induction field B experiences the Lorentz force F: F � e (v × B), where v
is the velocity of the electron. F acts normal to the travel direction of the electron,
a deflection will occur. Note only components of the magnetic induction normal
to the electron beam give rise to a deflection. The deflection angle is linked to the
in-plane magnetization and the thickness of the sample. The Lorentz force from the
magnetic specimen acts on the electrons passing through the specimen and splits each
of the diffraction spots into two (as shown schematically in the Fig. 5.8a). One split
spot contains information from domains with magnetization lying in one direction,
and the other spot contains information from the antiparallel domains. Under in-
focus conditions, there is no magnetic contrast because these deflecting electrons



130 H. Du and M. Tian

Fig. 5.8 a Ray diagram illustrating the Fresnel image of a magnetic thin plate composed by two
180º domain walls. bA real process of reconstructing the in-plane components of a FeGe nanostrip
by using the TIE method. The defocus values used in these images are 196 μm �z � 196μm.
c Schematic diagrams showing different contributions to the electron-optical phase shift arising
from local variations in electrostatic scalar potential and magnetic vector potential measured using
off-axis electron holography. Electrostatic phase contribution ϕE originating from the electrostatic
potential V (r) within and around the TEM specimen. Magnetic phase contribution ϕM originating
from the magnetic vector potential A(r) within and around the TEM specimen. Simplified ray
diagram for off-axis electron holography. Essential components are the coherent electron source,
electromagnetic lenses and electrostatic biprism for separation and overlap of two parts of the
electron wave to form an electron hologram. The object and reference waves can be considered
as originating from two virtual sources S1 and S2. The electron-transparent specimen occupies
approximately half of the field of view. For recording information about the magnetic properties of
the specimen, the conventional TEM objective lens is normally switched off and a non-immersion
Lorentz lens is used as the primary imaging lens. A pre-calibratedmagnetic field can then be applied
to the specimen in the electron beam direction by exciting the conventional objective lens slightly.
The final electron hologram can be recorded digitally for further analysis to yield information about
the projected electromagnetic potential within and around the specimen. Images are taken from [24,
49]

are finally focused in the image plane. Under out-of-focus conditions, the magnetic
domain walls are imaged as alternate bright (convergent) and dark (divergent) lines
depending on the over-focus conditions. The bright lines occur when the domain
walls are positioned such that the magnetization on either side deflects the electrons
toward the wall. This means that the inversion of the magnetic contrast in the domain
wall will be observed when we transfer the over- and under-focus conditions. This
is a common feature in the Fresnel mode images.

From the above discussion that the magnetic contrasts at the domain wall depend
on the defocused conditions, it is thus possible to reconstruct the in-plane distribution
of magnetic components around the domain walls. A commercial software package
QPt has been developed to realize the purpose based on the transport-of-intensity
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equation (5.10) (TIE), where three magnetic images at three defocus values (under-,
in-, and over-focus) were used.

2π

λ

∂ I (x, y)

∂z
� −∇xy.

[
I (x, y) ∇xyφ (x, y)

]
(5.10)

where I (x, y) and φ (x, y) are the intensity and phase distributions of propagating
wave distribution, respectively and λ is the electron wavelength. The desired magne-
tizationm of the sample is further obtained by the Maxwell-Ampére equations with
the relationship

m × n � − �

et
φ (x, y) (5.11)

where e,� and t are the electron charge, the reduced Planck constant and the thickness
of the sample, respectively.n is the unit vector along the beamdirection. The intensity
gradient ∂ I/∂z can be approximately expressed as�I/�z, because the defocus step
�z is usually much less than focal length. Here, a representative process to map the
in-plane magnetic components of skyrmions in a nanostrip is illustrated in Fig. 5.8b.

WhileLorentzTEMprovides a high spatial resolution to image small skyrmions, it
is still very hard to observe small samples. This occurs because of the Fresnel fringe
effect. Under out-of-focus conditions, the abrupt change of the projected electro-
magnetic potentials or sample thickness in the sample will inevitably lead to Fresnel
contrast, which is more obvious around the sample edge [43]. In this sense, the ability
of directly observing the fine magnetic structure by using Lorentz TEM in Fresnel
model assumes that the thickness variation or projected electrostatic potentials are
negligibly small as compared with the magnetic induction contributions [44]. This is
obviously not true around the specimen edges, the abrupt change in thickness leads
to significant variation in Fresnel fringes, smearing out the real magnetic contrast.
The analysis of magnetic information at the edge is thus extremely difficult. Previous
Lorentz TEM investigations on FeGe thin plates have illustrated the artificial con-
trast extends above~100 nm26. Concerning the helical period of FeGe studied here,
it is~70 nm. This is sufficient to completely eradicate or severely distort the real
domain structure of the edge of interest. By contrast, if the nanostructured samples
such as nanodisk and nanostrip are coated by amorphous PtCx, the Fresnel fringes
effect will be significantly decreased because of the negligible thickness variation,
making it possible to observe nanostructured samples.

5.4.3 Off-Axis Electron Holography for Imaging Magnetic
Contrast

According to the Ehrenberg-Siday-Aharonov-Bohm (ESAB) effect in quantum
mechanics, the wave function of an electrically charged particle is affected by the
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electromagnetic potential through which it traverses. In TEM, the phase change of
an electron wave that traverses an electron-transparent specimen (written in one
dimension here for simplicity) can be expressed in the form

ϕE M (x) � ϕE + ϕM � CE

∫
V (x, z) dz − 2π

e

h

¨
B⊥ (x, z) dxdz, (5.12)

where x is a direction in the plane of the specimen, z is the incident electron beam
direction,CE is an interaction constant that takes a value of 6.53×106 rad·V·m−1 at a
microscope accelerating voltage of 300 kV, V is the electrostatic potential within and
around the specimen and B⊥ is the in-plane component of the magnetic induction
within and around the specimen. The total recorded phase ϕE M is the sum of the
electrostatic contribution to the phase ϕE originating from the electrostatic potential
V (r) (see the left-top panel in Fig. 5.8c) and the magnetic contribution to the phase
ϕM (see the left-bottom panel in Fig. 5.8c).

One of the most widely used techniques for recording the total phase ϕE M within
and around a specimen directly is the TEM mode of off-axis electron holography.
The technique requires the use of a highly coherent field emission gun (FEG) elec-
tron source to examine a specimen, in which the region of interest is positioned so
that it occupies approximately half of the field of view. The application of a volt-
age to an electron biprism results in overlap of part of the electron wave that has
passed through vacuum alone with part of the same electron wave that has passed
through the specimen, as shown schematically in right panel in Fig. 5.8c. If the elec-
tron source is sufficiently coherent, then an interference fringe pattern (an electron
hologram) is formed in the overlap region, in addition to an image of the specimen.
The amplitude and the phase of the specimen wave are encoded in the intensity and
the position, respectively, of the interference fringes. For studies of magnetic mate-
rials, a Lorentz lens (a high-strength minilens) allows the microscope to be operated
at high magnification with the objective lens switched off and the sample located
in magnetic-field-free conditions. An external magnetic field can then be applied
to the specimen either by using a magnetizing specimen holder or by exciting the
conventional microscope objective lens to a pre-calibrated value.

It should be noted that the total phase change ϕE M is generally a sum of the
electrostatic contribution to the phase ϕE arising from local variations in specimen
thickness and composition and themagnetic contribution to the phaseϕM arising from
themagnetic vector potential associatedwith the specimen. Since themagnetic phase
information is of primary interest, ϕM has to be separated from ϕE , especially close to
the edge of the nanostructure, where the specimen thickness and composition change
rapidly. This can be obtained by substracting two phase shifts at two temperatures that
are belowand above theCurie temperature ofmagneticmaterial, respectively bacause
the electrostatic contribution to the phase ϕE can be recorded as the temperature is
above the Curie temperature.
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5.4.4 Edge-Mediated Skyrmion Phase and Field-Driven
Cascade Phase Diagram

With the advance in the nanostructured sample fabrication and imaging technology,
it is possible to study the creation, stability and morphology of highly geometry-
confined magnetic skyrmions. These contents are in turn discussed in this and next
sections and closely related to the non-trivial topology of magnetic skyrmions. It
is well known that topological charge is a constant of motion in the space of con-
tinuous functions. Therefore, by changing the spin texture from a ferromagnetic
or collinear state to a skyrmion state, we must change the topological charge. It
is hard to be realized due to an energy barrier, but can be realized in nature by
defects or edges initiating Bloch points or other discontinuous states, facilitating the
switch of the topological charge. This claim is based on topologically protected prop-
erty of skyrmion states. More precisely, in geometrically confined systems (such as
nanowires), skyrmion configurations are not topologically protected and a transition
between uniform and skyrmion state would not be facilitated via singularity (Bloch
Point)—they can always be created or destructed at the boundary [45].

This behavior is actually what was observed in the nanodisk. To investigate the
phase transitions betweendifferent topological classes in detail, a FeGenanodiskwith
a diameter of D~270 nm is fabricated by the above-mentioned top-to-down method.
The size of the nanodisk is designed to be about three times larger than the helical
period of B20 FeGe,~70 nm. The morphology of the nanodisk is shown in Fig. 5.9a.
The orientation of magnetic field B, pointed upward, is marked by red “�”. The
helical ground state is obviously observed at the temperature T ~100 K, as shown in
Fig. 5.9b, in which the dark and bright stripes are the magnetic contrasts standing for
the in-plane magnetic moments distributions. Following the above-mentioned TIE
method, the in-plane magnetic configuration of the spin helix can be constructed
(Fig. 5.1c). The spin helices have four turns and are distorted around the sample
edge (Fig. 5.9c, e) due to the spatial confinement leading to the specific form of the
boundary conditions [30, 46].

Under the action of magnetic field, the spin orientation of the helical state will
be changed, where confined helices with only three turns are formed at B~142
mT. The period of interior helical state is almost unchanged~70 nm (Fig. 5.9d). At
B~162 mT, the helix will change into elongated skyrmions by shrinking the length
of spin helix. These elongated skyrmions are also called bimerons [47] (Fig. 5.9e, n).
This process is always accompanied by forming a completed vortex-like edge state
according to theoretical prediction. But, it should be noted that the observed vortex-
like magnetic contrast around the nanodisk edge is a mixture of real edge state and
Fresnel fringe-induced artificial contrast [48]. With further increasing the magnetic
field, the elongated skyrmions will reduce their size to circular shape. Interestingly,
at the relatively low magnetic field, the new-formed skyrmions always stay together
around the sample edge, as shown in Fig. 5.9f. This gives a strong hint that the
skyrmions attract each other, and also are attracted to the edge [24, 49].
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Fig. 5.9 Magnetic field-driven evolution of magnetic structure in a FeGe nanodisk. a TEM image
of disk that was coated by non-magnetic PtCx. b The spin helix ground state observed by Lorentz
TEM. c–l Magnetic structure as a function of magnetic field with its orientation pointing outward.
The direction and strength of in-plane components are represented by a color wheel in panel (l).
With the increase of themagnetic field, a spin helix transfers intomagnetic skyrmions, which further
move to the center of disk and disappear one by one at highmagnetic field.m–oThe enlarged images
in panels (c), (d), and (i), respectively. p. The fine in-plane magnetic structure for a single skyrmion
in panel (o) p. The magnetic field intervals of hosting varied magnetic structures. N s represents
skyrmion number. Images are taken from [49]

The experimental temperature discussed above is 100 K that is far below the
magnetic transition temperature T c ~280 K [20]. It has been well established that
decreasing temperature does not benefit the formation of magnetic skyrmions. For
example, in 2D FeGe plates with an approximate thickness of the nanodisk, the
lowest temperature of hosting the skyrmion lattice is only about 200 K. Here, the
temperature region of hostingmagnetic skyrmions extends through thewhole interval
possible in the experiment. The significantly enhanced stability of skyrmion phase in
the highly geometry-confined nanodisk is in sharp contrast to the above-mentioned
low stability of skyrmions in bulk [50] and also the thickness-dependent stability in
two dimensional films [28]. This phenomenon implies that geometric confinement
or sample edge may be used to benefit the formation of magnetic skyrmions. Using
the method to calculate the topological charge, we can also project the spin of helical
ground state into a sphere. It is found that the surrounding region for the helical ground
state with distorted edge twists is much larger than that for a pure ground state. It is
actually the distorted edge twists that play a positive role to create skyrmions.

These new-formed skyrmions always stay around the sample edge. With the
increase of the magnetic field, the skyrmions move into the center of the disk
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with an increased distance of skyrmion-skyrmion and skyrmion-edge, as shown in
Fig. 5.9g–j. This common behavior is always observed in the nanodisk with varied
diameter and can be readily explained by the repulsive interactions of skyrmion-
skyrmion and skyrmin-edge [51].

Before the annihilation of these skyrmions at highest magnetic field, they form
a triangle at a magnetic interval B ε [196 mT, 370 mT], as shown in Fig. 5.9i, j.
With the slight increase of the magnetic field to 391 mT, two skyrmions disappear
instantaneously, as shown in Fig. 5.9k and the left one skyrmion stays in the center
of the disk, leaving one skyrmion sitting nearly at the center of the disk due to
the skyrmion-edge repulsive interaction (Fig. 5.9k). The single skyrmion is finally
destroyed at the higher field 398 mT, as shown in Fig. 5.9l.

As mentioned above, skyrmion is a topologically non-trivial spin texture with unit
topological charge. Then, the observed cluster state with varied skyrmion number
N s in the disk belongs to a different topological state. The field-driven cascade
transition between them has thus a common means. Recent magnetoresistance (MR)
measurements on single B20 MnSi nanowires have also demonstrated the cascade
transitions [52]. Interestingly, compared with the cluster state with small number of
skyrmions, both the Lorentz TEM observation and MR measurements showed that
the cluster state with maximum number of skyrmions, Nm

s , had a high stability with
wider magnetic field intervals at such low temperature (Fig. 5.9q). By contrast, from
numerical simulations based on the calculation of equilibrium state, the magnetic
intervals of hosting different skyrmion clusters are more complex and comparable at
certain conditions, depending on the disk size [53].

At high temperature, skyrmions behave like balls in a box and form a closely-
packed arrangement in the disk.A representative phase diagram at varied temperature
and magnetic field is shown in Fig. 5.10. As the temperature T <190 K, skyrmions
distribute sparsely and form a cluster state, in which the Nm

s is nearly fixed. In other
words, the skyrmions do not accommodate the whole disk plane with closed packed
mode as expected theoretically. On the contrary, closely packed skyrmions only form
at high temperature T >190 K. Similar behavior was also found for nanodisks of
different diameters, and provides evidence that the Nm

s at low temperatures is linearly
dependent on the diameter of nanodisk.

5.4.5 High Flexibility of Geometrically-Confined Skyrmions

Mathematically, amagnetic skyrmion has a nontrivial geometrical aspectwith respect
to its spins. Its non-trivial topology persists under continuous deformation, indicating
the tunable skyrmion morphology. For example, the elongated or shrunk skyrmions
show the same unit topological charge (Fig. 5.11). But, the appearance of a non-
trivial topological object should physically be to some extent energy favorable. For
the skyrmion materials studied here, previous theoretical calculation and real-space
imaging on bulk or two-dimensional films have identified that skymions appear in
circle shape and condense into crystal lattice with a fixed lattice constant [9, 37].
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Fig. 5.10 Magnetic phase diagram for a FeGe nanodisk with a diameter of 310 nm. Skyrmions
form a cluster state with its maximal number depending on the turn number of initial helical state
at low temperature. At high temperature, skyrmions form a closely-packed arrangement. Image is
taken from [49]

Accordingly, the benefits of its topological stability are not well exhibited though
its topological properties (chirality and winding number) have been manifested by
the emergent topological Hall effect [14, 15]. By contrast, as the material dimension
is reduced to be comparable to the featured skyrmion size, the topological stability
enables a skyrmion to change its shape or size to match the sample geometry. Inves-
tigating the skyrmion stability in magnetic nanostructures thus provides a model
system to exploit the topological stability under the subject of energy stability.

With the common model describing B20 chiral magnets [27], numerical simu-
lation has confirmed the hypothesis. In detail, consider a nanostripe with a width
Wy that is comparable to single skyrmion size and a length Wx . Figure 5.12 shows
the skyrmion morphology at a middle magnetic field in the nanostripes with varied
width. A critical width W c

y is determined according to the numerical calculations.
Below this critical width, skrymions show shrunk shape. Approximately, the mor-
phology of skyrmions can be described by elliptical shape with their semi-axes a
and b along and perpendicular to a nanostripe, respectively. Above the critical width
W c

y , skyrmions show elongated shape. For a wider nanostripe, two zigzag chains of
skyrmions form. It should be noticed that the numerical simulation is based on real
nanostripes with certain thickness. For a single layer system, theoretical analysis has
demonstrated that elliptical skyrmions would lose its stability from the viewpoint of
energy stability.
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Fig. 5.11 Schematic representations of topological deformation ofmagnetic skyrmions by confined
geometry. Three kinds of skyrmion configurations (regular, shrunk, and elongated) possess the same
unit topological charge, S =1, because the magnetic moments in these skyrmions can all cover the
whole unit sphere only one time

Experimental verification of these elliptical skyrmions has also been done on
a wedged-shape sample fabricated by the above-mentioned top-to-down method
(Fig. 5.7b). The width of the nanostripe is designed to cross the featured skyrmions
lattice constant of FeGe materials (Fig. 5.13a). Due to these ultrasmall sizes, even
coating the sample with amorphous PtCx in the Lorentz TEM cannot obtain the
accurate magnetic structure, especially around the sample edge. By contrast, the off-
axis EH technique, introduced in Sect. 4.2, uses the in-focus condition to make it
possible to accurately map the magnetic induction of nanostructured sample with its
size as small as tens of nanometers. This advance provides a unique opportunity to
test the predicted existence of twisted edge states [55, 56].

At zero magnetic field, the nanostripe shows a helical ground state with complex
arrangements (Fig. 5.13b). Under the action of magnetic field, the spin helices follow
the common evolution of helical magnets and change into skyrmions. Due to the
strong spatial confinement, only a chain of skyrmions appears (Fig. 5.13c). Similar
to the numerical results, shrunk, circular and elongated skyrmions appear in turnwith
the increase of thewidth of nanostripe.As the size of skyrmionswill decreasewith the
increase of magnetic field, two chains of skyrmions at the wide part of the nanostripe
appear at high magnetic field (Fig. 5.13d). Notably, skyrmions in the narrow part
of the nanostripe disappear or migrate at high magnetic field. This implies that the
stability of individual skyrmions in confined geometries depends on the dimension
of the sample.Moreover, a complete chiral edge twist, characterized by a single-twist
rotation of magnetization, is directly observed in the inductionmaps [57]. Physically,
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Fig. 5.12 Skyrmion morphology with varied width for nanostripe with width Wy, length Wx and
thickness L. The magnetization with its three components mx, my and mz is presented by two
color wheels. For clarity, only isosurfaces for mz =0 are plotted. Skyrmions in the nanostripe form
a nonhomogeneous tube with varied shape from longitudinal to transversal ellipticity with the
increase of the sample width. The color wheel stands for the strength and direction of the in-plane
magnetization at each point. Images are taken from [54]

Fig. 5.13 Skyrmion arrangments in a FeGe nanostripe with varied width at T=220 K. a TEM
image of the wedge-shaped FeGe nanostripe. The white frames are the regions chosen for the off-
axis EH measurements. The magnetic field points downward represented by the symbol “⊗”. b–d
field-driven evolution of spin textures in such a nanostripe. Skyrmionswith controllablemorphology
are clearly observed

such an edge state represents a type of surface state in a chiral magnet to preserve
the magnetic chirality of the whole spin texture.
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5.5 Conclusions

We have completed a brief introduction through the field of magnetic skyrmions.
Starting from a description of limitation of present magnetic memory devices, we
have introduced implications of magnetic skyrmions. The demands of skyrmion-
based devices require the exploration of newskyrmionmaterials andunderstandingof
themechanisms for the formation and stability of geometrically-confined skyrmions.
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Chapter 6
Topological Phases of Quantum Matter

Wei-Feng Tsai, Hsin Lin and Arun Bansil

Abstract Role of topology in generating exotic topological phases of quantummat-
ter is discussed. Illustrative examples of 2D quantum spin-Hall insulators, 3D topo-
logical insulators, topological crystalline insulators, and topological Weyl and Dirac
semi-metals are presented. We also comment on topological superconductors and on
the effects of strong electron correlations in driving topological phases.

6.1 Introduction

It is a recent and quite surprising discovery that quantummatter can harbor electronic
states protected by topological considerations not unlike those familiar in the more
common geometrical context. The first such crystalline materials, the topological
insulators (TIs), support topological states protected by constraints of time-reversal
symmetry in the presence of spin-orbit coupling effects. However, it has become clear
since that many new classes of protected states can be created in quantum matter
through combined effects of time-reversal, crystalline and particle-hole symmetries,
and the original field of topological insulators has grown more generally into that
of topological materials. Edges of two-dimensional (2D) topological materials and
surfaces of three-dimensional (3D) topological materials support novel electronic
states. For example, the 1D topological edge states in 2D TIs are forbidden to scatter
due to constraints of time-reversal symmetry. Similarly, the surfaces of 3D TIs sup-
port metallic topological surface states, which are robust against perturbations from
non-magnetic impurities and disorder. The symmetry-protected topological states
provide new pathways for addressing fundamental scientific questions. The topolog-
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Fig. 6.1 a Crumbled and spherical balls have the same genus of g = 0, making them topologically
equivalent. b Similarly, both the doughnut and the coffee cup with one hole are characterized by
g = 1 (from [5])

ical materials are also expected to provide platforms for a new generation of devices
for wide-ranging applications based on exploiting unique properties of protected
states.

In providing an overview of the field, this chapter starts with clarifying how topo-
logical considerations enter condensed matter physics, followed by a discussion of
illustrative examples of 2D quantum spin-Hall insulators, 3D topological insulators,
topological crystalline insulators, and topological Weyl and Dirac semi-metals. We
then comment on topological superconductivity and strongly correlated topological
materials.

The list of references is intended to be minimal. We refer the reader to three
comprehensive articles that have appeared on the subject in the Reviews of Modern
Physics for extensive discussions and as windows on the large literature on various
aspects of topological materials [5, 56, 128].

6.2 Topology in Condensed Matter Physics

Topology in mathematics addresses questions of invariance of global properties of
objects under continuous geometrical deformations. For example, surfaces of spher-
ical and crumpled balls in Fig. 6.1a are topologically equivalent because one surface
can be deformed into the other without requiring any cutting or gluing of the surfaces.
The coffee cup and the doughnut shown in Fig. 6.1b are also topologically equivalent,
but the ball and the doughnut are not. The topological distinctiveness here can be
coded in terms of the so-called genus number g, which counts the number of holes
in the object. The formal connection between geometry and the related topological
invariant g can be rigorously expressed via the celebrated Gauss-Bonnet theorem,∫
S KdS � 2πχ, where K is the local Gaussian curvature, the integration is over the
closed surface, and χ � 2(g − 1). In particular, the ball has a g number of 0, while
the coffee cup or a doughnut a value of 1.

The introduction of topological concepts in condensed matter physics can be
traced back to the 1980s when the integer and fractional quantum Hall (QH) effects
were discovered [83, 154]. The integer QH state occurs when a strong magnetic field
is applied to a two-dimensional (2D) electron gas in a semiconductor. This state hosts
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completely filled (Landau) bands like an insulator, but it also shows the presence of
a non-vanishing Hall conductivity,

σxy � N
e2

h
, (6.1)

which has been found experimentally to be quantized to a precision of 1 part in 109

[84] independent of band structure details. These results clearly show that the QH
state is fundamentally different from an ordinary insulator. The standard Ginzburg-
Landau-Wilson paradigm of symmetry broken phases (emergence of a magnetic
phase, for example, through spin SU(2) symmetry breaking) cannot be used to char-
acterize the QH state.

Robustness of the quantization of Hall conductivity in the QH state is reminiscent
of the topological invariance seen in the geometric context in Fig. 6.1. Indeed, in
1982 Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) provided a new way to
look at the integer QH state by relating a topological invariant, the first Chern number
C, to a physical observable, the Hall conductivity [151]. The key is to recognize that
the 2D band structure of an insulator can be viewed as a mapping between the crystal
momentum k in the first Brillouin zone (FBZ) and the Bloch Hamiltonian H(k).
The gapped band structures can then be classified “topologically” into inequivalent
classes in the sense that within a given class the band structures can be deformed
continuously without closing the band gap. For QH states, the topological invariant
C belongs to the set of integers defined by

C � N � 1

2π

∫

FBZ

F(k)d2k, (6.2)

where F(k) � [∇k × A(k)]z is the Berry curvature derived from the Berry connec-
tion, A(k) � i

∑
n ⊂ occ.〈un(k)|∇kun(k)〉. Here, un(k) are the Bloch states for the

nth band and the summation is over all occupied bands. The integer nature of C is
easy to understand: The surface integral in (6.2) counts the total vorticity of the U(1)
phase of the Bloch wave function in the (magnetic) FBZ [57]. We emphasize that
the integrals here are in momentum space, not the real space.

If one further constrains the 2D system by time-reversal symmetry (TRS), it can
be shown that the Chern number must vanish or that the associated insulating state
must be trivial. However, in 2005, Kane and Mele [77] for graphene and Zhang
et al. [7] for strained semiconductors showed that even when C = 0, the ground state
can be a topologically non-trivial 2D topological insulator (TI), also referred to as a
quantum spin Hall insulator (QSHI). This topological state can be intuitively viewed
as a superposition of two copies of the same integer QH state but with opposite spin
polarizations or Hall conductivities. In other words, assuming Stotz is conserved and
the two spin components are decoupled, the Chern numbers for spin-up (C↑) and
spin-down (C↓) can be defined separately such that C↑= −C↓ as required by TRS.
Obviously, now the charge Chern number C↑+ C↓= 0, but (C↑− C↓)/2, which we
can call as a spin Chern number, can be non-vanishing and encodes a non-trivial
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topological invariant. In general, however, Stotz is not conserved, and the relevant
topological invariant proposed by Fu et al. [48, 50] and others [51, 106, 127], is the
Z2 number ν0,

ν0 � 1

2π

⎡

⎣
∮

∂τ

A(k) · dl −
∫

τ

F(k)d2k

⎤

⎦ , (6.3)

where the integration is over half of the FBZ τ and its boundary ∂τ . Non-trivial
topological number ν0 � 1, similar to the Chern number, also links to a quantized
physical quantity, namely, the change of the “time-reversal polarization” over τ [49].

When the time-reversal invariant topological insulator is generalized to the three-
dimensional (3D) case, the ground state is characterized by four Z2 topological
invariants, see Sect. 6.4 below for further details. One of these four invariants (the
strong index) is associatedwith the axion term of the electrodynamics of the insulator
in compact space [127, 128], Haxion � P3E · B, which is measurable, in principle,
via electromagnetic induction experiments [123] since the TRS quantizes P3 to be
either zero (Z2 trivial) or one-half (Z2 non-trivial).

A remarkable property of time-reversal invariant TIs is the existence of gapless
edge states in 2D or surface states in 3D, which is not necessarily the case in other
types of TIs [43]. This bulk-edge correspondence has been confirmed experimentally
[61, 62, 64]. In particular, the number of Dirac-like edge or surface modes must be
odd in the non-trivial Z2 topological phase, a property that can be used to identify
a Z2 TI. In addition to displaying a linear dispersion around the Dirac points, edge
and surface modes show absence of backscattering for non-magnetic impurities due
to the spin-momentum locking required by constraints of TRS [88, 89, 96, 57] in
the presence of spin-orbit coupling (SOC) effects. As a result, edge modes yield
nearly quantized spin currents, making these modes highly suited for spintronics
applications.

The introduction of crystalline and particle-hole symmetries in the mix greatly
expands the menu of symmetry protected states that can be harbored by quantum
matter. Schnyder et al. give a list of bulk topological invariants possible for each of
the ten classes of Hamiltonians in the presence/absence of three internal symmetries:
TRS, particle-hole symmetry, and chiral (sublattice) symmetry for one-, two-, and
three spatial dimensions [139]. Other examples of studies along these lines are as
follows. Existence of a Z2 phase is found in 3D spinless TRS TIs with C4 point
group symmetry [45], inversion symmetric (IS) TIs [72, 156], reflection symmetry
protected TIs [24, 65, 142], point group symmetric (PGS) TIs [39], and space group
symmetric (SGS) TIs [94, 143, 145].
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6.3 HgTe/CdTe QuantumWells and Quantum Spin-Hall
Insulators

HgTe/CdTe quantum well is the first materials realization of a QSHI, predicted by
Bernevig et al. [7] and then experimentally confirmed by König et al. [88, 89]. In
most common semiconductors, the conduction band is derived from s-type electrons,
while the valence band is composed of p-type electrons. However, for a material such
as HgTe with strong SOC, this “natural order” is inverted as p-like valence states
get pushed above the s-like conduction states. In contrast, this inversion does not
occur in CdTe. Therefore, in a HgTe/CdTe quantum well in which HgTe layers of
thickness d sandwich CdTe layers, the effective strength of the SOC increases with
increasing value of d. Beyond a critical thickness d > dc of the HgTe layers, the
effectively 2D band structure of the quantum well heterostructure becomes inverted
at �, and leads to a bulk nontrivial Z2 number. This theoretical proposal was verified
by Molenkamp’s group by observing a non-vanishing, nearly quantized longitudinal
conductivity plateau as a function of the gate voltage for thickness of the HgTe
layers greater than 6.5 nm. In addition to HgTe/CdTe, InAs/GaSb/AlSb quantum
well systems have also been the subject of much interest [31, 85, 86].

Graphene was one of the earliest proposals for realizing a 2D TI [77], although
its band gap is too small to be accessible experimentally [196]. A possible route
to overcome this difficulty is to introduce adatoms on a graphene sublattice [67].
In the absence of the SOC, the low-energy spectrum of graphene consists of two
gapless (massless) Dirac cones centered at the BZ corners K and K′, which are not
time-reversal invariant momentum (TRIM) points. When the SOC is turned on [77],
a band gap opens up in the spectrum and massive Dirac fermions are generated. SOC
does not induce changes in the parity of eigenstates or band inversions at the TRIM
points � and M. Since the band structure at � is already inverted with respect to M,
the ground state can be shown to be a QSHI with ν0 � 1.

The preceding discussion suggests that graphene-like lattice or structure would
provide a natural breeding ground for realizing 2D TI phases. There have been many
such ‘beyond graphene’ theoretical proposals [14, 102], although the experimental
realization beyond the quantum-well systems has remained elusive. For example,
like graphene a single layer of Si, Ge and Sn atoms can form stable, atomically thin
crystals yielding silicene, germanene and stanene with advantage over graphene of
a stronger SOC. Moreover, unlike the flat structure of graphene, the atomic bonds in
most beyondgraphene2Dmaterials are naturally buckled [93].Honeycomb III-V thin
films are a natural extension of silicene, and low-buckled GaBi, InBi, and TlBi thin
films are predicted to be 2D TIs [26]. Similarly, first-principles calculations predict
films of Sn compounds SnX (X= H, I, Br, Cl, F or OH) to be in the QSH phase [187],
with the hydrogenated version called stanane. The insulating (topological) gap is
predicted to be as large as 300 meV in SnI. Functional thin films of Bi and Sb have
been predicted to be large gap TIs with band gaps ranging from 0.74–1.08 eV [147].

We consider silicene and the related germanene and stanene films to illustrate
advantages of beyond graphene 2D materials for potential spintronics applications.
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Fig. 6.2 a A schematic representation of the band structure of silicene around the K and K′ sym-
metry points in an applied perpendicular electric field. b Design of a spin-filter based on a quantum
point contact geometry with a potential profile U(x). c Spin-polarization of the filter as a function
of the potential barrier height μ0. (from [152])

Band structures of silicene, germanene and stanene are similar, but the SOC-induced
gap predicted in germanene is 23 meV, while that in stanene is 72 meV, which are
large enough to withstand room-temperature excitations [93, 152]. Moreover, the
inversion symmetry (i.e. symmetry of A and B sublattices) in beyond graphene films
can be broken by a perpendicular electric field [30, 152]. As a result, topological
phase transitions between the QSHI and ordinary insulator phases can be realized
and spin degeneracies can be lifted near the K and K′ points through gating control
(see Fig. 6.2a). The spin-split states are nearly 100% spin-polarized and can be tuned
by external fields. These states are thus well-suited for the design of devices for
filtering spins (see Fig. 6.2b, c), and manipulating spin currents [55, 152].

6.4 Z2 Topological Insulators in Three Dimensions

As we already noted in Sect. 6.2 above, one needs four Z2 indices, (ν0; ν1ν2ν3), to
completely classify 3D topological insulators [50]. When all four indices are zero,
the system is an ordinary insulator but if any of the indices is non-zero then we have a
non-trivial TI. (ν1ν2ν3) are ‘weak’ indices and their non-zero values signify a 3D TI,
which is obtained by stacking 2D TIs. ν0 is the “strong” index, and when it assumes
a non-zero value, we have a 3D TI without a 2D analogue. Any surface of a strong
3D TI is guaranteed to host gapless (Dirac) surface bands.

The Z2 indices can be computed by considering the unitary matrix wmn(k) �
〈um(k)| � |un(−k)〉, where |um(k)〉 are occupied Bloch functions, and� denotes the
antiunitary time-reversal symmetry operator. The strong index ν0 is then determined
by the formula [50].

(−1)ν0 �
8∏

i�1

δi , (6.4)
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Fig. 6.3 a The (111) occupied surface bands of Bi0.9Sb0.1 probed by ARPES. The surface bands
cross the Fermi energy five times (excluding time-reversed partners), indicating the non-trivial
topological nature of the system. b 3D Brillouin zone of the alloy and its (111) surface projection.
Schematic evolution of bulk band energies as a function of the replacement percentage x of Bi is
shown. c Resistivity of Bi and the alloy with x = 0.1. (from [61])

where δi � Pf [w(�i )] /
√
Det [w(�i )] � ±1, is evaluated at the TRIM points �i

in the FBZ in terms of the Pfaffian of the matrix w(�i ). The other three Z2 indices
are obtained from partial products of sets of four δi ’s, similar to those of (6.4),
corresponding to TRIM points lying in three independent planes of the FBZ in 3D.
Notably, (6.4) can be simplified for an inversion symmetric system [48]:

δi �
∏

m

ξm(�i ), (6.5)

where the product is over the parities of pairs of occupiedKramer’s doublets resulting
from TRS at the TRIM points without the corresponding TR partners.

Bi1–xSbx alloys were the first material system predicted to host the 3D TI phase
[48], which was later shown to be realized experimentally [61]. The development of
the non-trivial topological phase in this case can be understood through a band inver-
sion mechanism. The key observation is that although Bi and Sb are both semimetals
(see Fig. 6.3c), the orbital nature of conduction and valence bands in Bi and Sb at
the three L-points in the rhombohedral FBZ is opposite (see Fig. 6.3b). As a result,
with increasing Sb content x in the alloy, the band gaps close and reopen at the three
L-points with a critical composition at x ≈ 4%, and the system becomes a direct-gap
semiconductor at x ≈ 8% (see Fig. 6.3b). The telltale topological surface states have
been probed in Bi0.9Sb0.1 via angle-resolved photoemission spectroscopy (ARPES)
[61]. As seen in Fig. 6.3a, the surface state crosses the Fermi level an odd number
of times (excluding time-reversed partners). Interestingly, the quasi-particle interfer-
ence (QPI) patterns in scanning-tunneling-spectroscopy (STS) experiments show the
expected suppression of the backscattering channels due to spin-momentum locking
of the topological surface states [53, 130].

Unlike themultiple surface states found inBi1-xSbx, the second generation 3DTIs,
Bi2Se3, Bi2Te3, and Sb2Te3 host a single Dirac cone (Fig. 6.4a) on their naturally
cleaved (111) surfaces [21, 62, 63, 176, 202]. These TIs contain building blocks
of quintuple layers (QLs) and their non-trivial nature results from band inversions
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Fig. 6.4 a A single spin-polarized, surface Dirac cone is revealed by ARPES in Ca-doped Bi2Se3.
b A chiral left-handed spin texture is observed on the surface Fermi surface. c Band structure of
Bi2Se3 via first-principles calculations is shown with the blue shaded regions representing the bulk
states, and the red dots representing the surface states. d A schematic plot of the spin-momentum
locking surface states in Bi2X3 (1;000) topological insulators. (from [62, 176])

driven by SOC in the p-orbital manifold at the �-point. An important issue for
practical applications of TIs concerns the realization of the true bulk insulating state
and the manipulation of the position of the Fermi level (EF) in the presence of
intrinsic defects in the material. In this connection, it has been shown, for example,
that Ca doping and NO2 surface deposition can tune EF to the Dirac point and fully
remove the bulk conducting band from EF [59, 62], while Sb doping in Bi2Te3
[87, 204] and Bi2Se3 [4] has been shown to control the carrier density and EF. In
(Bi1−xSbx)2Te3 alloy, increasing Sb content shifts EF down from n- to p-type regime.
DFT calculations predict that the position of the topological surface state can be
tuned in heterostructures of a TI with various band insulators [105, 174, 205].

Spin-momentum lockingof topological surface states in a 3DTIhas beenobserved
via spin-ARPES [62, 176] (see Fig. 6.4b, d). Although theDirac node here is expected
to be robust against non-magnetic impurities, doping with magnetic impurities can
open a gap, and such a gap opening has been observed in ARPES measurements on
Fe/Mn doped Bi2Se3 [22, 173, 184]. In particular, spin-ARPES reveals a hedgehog
spin texture of the gapped Dirac cones in Mn-doped Bi2Se3, which is distinct from
that of a gapped Dirac cone due to confinement effects in thin films [114, 184].
Finally, the quantum anomalous Hall effect has been demonstrated in (Bi,Sb)2Te3
thin films [15, 203], where the surface state tunneling gap in the undoped system can
be closed/reopened via Cr doping, and a quantized Hall signal of the expected value
is seen.

Among other TImaterials, we note the large family of tetradymite-like layered TIs
with formulae B2X2X′, AB2X4, A2B2X5, and AB4X7 (A = Pb, Sn, Ge; B = Bi, Sb; X,
X′ = S, Se, Te), which offer substantially greater chemical and materials tunability
compared to their binary cousins discussed above. Many of these compounds have
been synthesized and ARPES results are available [35, 116, 122, 185, 204]. Another
example is Tl-based III-V-VI2 chalcogenides MM′X2 [M = Tl, M′ = Bi or Sb, and X
= Te, Se, or S] [23, 92, 135, 186, 189].
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6.5 Topological Crystalline Insulators

Topological crystalline insulators (TCIs) can be viewed as a natural extension of the
Z2 TIs. However, unlike the Z2 TIs whose topological nature is protected by TRS, the
source of topological protection in TCIs mainly comes from the spatial crystalline
symmetries. Classifications of TCIs based on mirror [24, 65, 142], point-group [39],
non-symmorphic [94, 143] and space group symmetries [145] have been delineated.
TCIs provide a number of features distinct from the Z2 TIs. For instance, TCIs can
support topological surface states with non-linear energy dispersions, and their band
gaps could be opened and controlled by external electric field or strain. Such surface
states, therefore, provide a new playground for exploring novel physicswith potential
applications as field-effect transistors, photodetectors, and nanoelectromechanical
devices [95, 200].

A TCI could be realized without SOC. An example is a 3D TCI model in a tetrag-
onal lattice for spinless fermions, where the topological ground state is protected
by the combination of TRS and C4 point-group symmetries [45]. The TRS operator
with �2 � −1, which plays a central role in protecting a Z2 TI, is now replaced by
(�U )2 � −1, where U is the unitary operator for C4 rotation with respect to z-axis
and �2 � 1 for spinless fermions. Therefore, (ΘU )2 � −1 guarantees two-fold
degeneracy (per spin) at the four �U -invariant momentum points, �, M, Z, and A in
the FBZ, similar to Kramers theorem. The Z2 topological invariant is then given by

(−1)ν0 � δΓ MδAZ , (6.6)

where

δk1k2 � ei
∫ k2
k1

dk·A(k) Pf [w(k2)]
Pf [w(k1)]

(6.7)

in terms of the Berry connection A(k) (see Sect. 6.2) and Pfaffians of the antisym-
metric matrix w(ki ), where wmn(ki ) � 〈um(ki )|U� |un(−ki )〉. The line integrals
are between k1 and k2 in the corresponding 2D planes.

As to systems with SOC, we focus on SnTe and Pb1-xSnx(Se,Te) alloys. These
are the first TCI materials proposed theoretically [65] and later realized experimen-
tally [34, 149, 181]. SnTe is a narrow-band semiconductor with rocksalt structure
(Fig. 6.5a). Its fundamental band gaps are located at the four L points in the face-
centered-cubic (fcc) Brillouin zone, and the ordering of the conduction and valence
bands at these points in SnTe is inverted relative to PbTe [65]. However, this band
inversion occurs at an even number of L points, so that neither SnTe nor PbTe is a
TI but due to the presence of the extra mirror symmetry with respect to the (110)
plane, SnTe is distinct from PbTe and supports a mirror-symmetry protected TCI
phase (Fig. 6.5b). The corresponding topological invariant is the mirror Chern num-
ber nM � −2 [65, 150], which is defined as the difference between the usual Chern
numbers calculated in subspaces separated by the distinct mirror eigenvalues. The
nonzero value of −2 of the mirror Chern number indicates the existence of two pairs
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Fig. 6.5 Crystal and electronic structure of SnTe. a Rocksalt crystal structure. A (001) surface
plane is shown. b FCC Brillouin zone (BZ) and the (001) surface BZ. The (110) mirror plane
crosses the 2D surface BZ along �̄ X̄ . c Electronic structure of SnTe (001) surface around X̄ . The
surface bands are indicated by thick-green lines and bulk bands by the shaded purple area. A Dirac
point of the surface state appears along the �̄ X̄ direction, while the surface band is gapped along
X̄ M̄ . (From [164])

of counter-propagating gapless modes on any crystal surface symmetric about the
(110) mirror plane. On the (001) surface, first-principles results show gapless surface
Dirac cones with non-trivial spin-textures, where each Dirac point sits along �̄ X̄ on
one of the two sides of the X̄ point at EF, while the surface states along �̄M̄ are
gapped (see Figs. 6.5c and 6.6d) [164]. Note that there is another (11̄0) mirror plane
so that there is a total of four Dirac points in the FBZ (Fig. 6.6a), as also observed in
ARPES experiments [115, 181]. This is in sharp contrast to the case of a Z2 TI such
as Bi2Se3, which is protected by TRS, and contains only a single Dirac cone at the
center of the (111) surface plane.

It is interesting to consider how the FS evolves as the EF is lowered below the
Dirac point. Initially, the FS consists of two separate hole pockets located away from
the X̄ point. As we go to lower energies below the EF, these two disconnected hole
pockets reconnect to yield a large X̄ -centered hole pocket and a small X̄ -centered
electron pocket, see Fig. 6.6b, and the system undergoes a change in FS topology (i.e
a Lifshitz transition). Insight into the complex surface electronic structure shown in
Figs. 6.5 and 6.6 can be obtained through a 4×4 model Hamiltonian, which involves
two coaxial Dirac cones [164]. Here, as seen in Fig. 6.6c, one starts with two non-
interacting X̄ -centered “parent” Dirac cones, which are offset vertically in energy.
In SnTe, for example, the lower parent Dirac cone is mainly derived from Sn-pz
orbitals, while the states involved in the higher Dirac cone originate primarily from
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Fig. 6.6 a The (001) surface states of SnTe at Fermi level. b Surface Fermi surface evolution
as the chemical potential decreases (from top to bottom). The change of Fermi surface topology
indicates the presence of a Lifshitz transition. c Schematic of two non-interacting coaxial Dirac
cones centered at X̄ . d As the two Dirac cones interact, gaps open up except at the two “child”
Dirac points, protected by the mirror symmetry (bold blue line) on the two sides of the X̄ point. [a,
b from [65]; c, d from [164]

Te-px orbitals. As Fig. 6.6d shows, when the two parent cones hybridize, a gap opens
up in the spectrum with the exception of the mirror line and leads to the formation
of two “child” Dirac cones away from the X̄ symmetry points, which lie at a lower
energy. Note that since the TRS protects the parent Dirac points, these states cannot
be gapped by breaking the mirror symmetry. The child Dirac points, on the other
hand, can be gapped by removing the mirror symmetry.

In view of the differences in orbital characters of the upper and lower Dirac cones
noted in the preceding paragraph, we would expect intensity asymmetries in the QPI
patterns derived from STS spectra. In particular, the scattering between the states of
pz character in the electron sheet will be strong, but the scattering will be suppressed
between states in the hole sheet [199]. Also, removal of one of the two mirror planes
in the system will yield massive Dirac cones only along one direction, while we
will continue to have massless Dirac cones in the other direction [38, 68, 141].
The simultaneous presence of massive and massless Dirac cones has been adduced
through the observation of three non-dispersive features in the STS spectra from
TCIs [121].

6.6 Topological Semi-metals

The defining feature of topological semimetals is the existence of band touching
points at the Fermi energy, where two or more bands are degenerate at distinct values
of the crystal momentum in the FBZ. In 3D, if one expands around one of these
touching points (assuming double degeneracy), the effective Hamiltonian takes the
following form similar to the Weyl equation in high-energy physics [171]:

H (k) �
∑

i j

vi j kiσ j , (6.8)
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where i, j � 1, 2, 3, the parameters vi j have the dimension of velocity, and σ j are
the three Pauli matrices. The band touching points, calledWeyl points orWeyl nodes,
are stable without the need to invoke extra symmetries as long as each band is non-
degenerate, which requires the breaking of either the TRS or the inversion symmetry.
Each cone then becomes non-degenerate (except at theWeyl point) and, importantly,
each Weyl point becomes associated with a Chern number sgn(Det[vi j ]) � ±1
(called Weyl or chiral charge), which can be computed by using a formula similar
to (6.1). In view of its non-trivial topology, this phase of quantum matter is referred
to as a topological Weyl semimetal. The Weyl points must appear in pairs with ±1
charges in the FBZ [117, 118]. As a consequence, creation or annihilation of Weyl
points always involves a pair of points with opposite charges [157]. The total number
ofWeyl points come in multiples of four for TRS-preserved and two for TRS-broken
systems [12, 120].

The band-touching at Weyl nodes discussed in the preceding paragraph involves
two non-degenerate bands. In contrast, when these two bands are degenerate, we
obtain a fourfold degenerate touching point, which is called a Dirac point or a Dirac
node. There are three distinct possibilities here [191]. (1) The presence of an acci-
dental degeneracy in the band structure, which will occur normally at the critical
phase in transitioning between the non-trivial and trivial insulator phases [108, 109]
(2) The TRIM points when an extra non-symmorphic symmetry is added for pro-
tection [198], a case that has not been observed experimentally. And, (3) when an
extra rotational symmetry is added for protection, where instead of a single Dirac
point, we obtain two Dirac points located at a pair of time-reversal invariant crystal
momenta (time-reversal partners) lying along the rotational axis. Note that a Dirac
node can be viewed as a composite object containing two Weyl nodes of opposite
“charges” and thus possesses zero net charge or Chern number.

One remarkable consequence of bulk Weyl nodes carrying “charges” (+1 as a
source and −1 as a sink) is that the FS associated with surface bands exhibits open
line features or Fermi arcs, which connect the projected Weyl nodes with opposite
charges on the surface BZ (Fig. 6.7d). Fermi arcs provide a distinctive feature for
identifying the Weyl semimetal phase. It is not necessary to have such Fermi arcs in
Dirac semimetals.

The first theoretically predicted and experimentally realized family ofWeyl semi-
metal phases in wide current use is the TaAs family of compounds (TaAs, NbAs,
TaP, and NbP) [71, 99, 169, 179, 194] These compounds assume a body-centered
tetragonal structure that contains two mirror planes,Mx andMy but notMz, resulting
in the breaking of the inversion symmetry (Fig. 6.7a–c). Although there is no C4

rotational symmetry, the structure harbors a screw symmetry consisting of a C4

rotation with a c/2 translation along the z-direction. When SOC is turned off, first-
principles calculations show that band crossing occurs on the kx = 0 and ky = 0mirror
planes, forming four nodal rings in the FBZ, see Fig. 6.7e. When SOC is turned on,
the resulting spin splittings in the absence of inversion symmetry gap out the nodal
rings leaving 12 pairs of gapless band-touching (Weyl) points near the original nodal
rings but away from the mirror planes. Each nodal ring evolves into three pairs of
nodes that can be classified into two groups, one pair in the kz = 2π

c plane (labeled
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Fig. 6.7 a Crystal structure of TaAs. b Topographic image of TaAs’s (001) surface by STM at the
bias voltage −300 mV. c First-principles band structure calculations for bulk TaAs without SOC.
The band crossings near Fermi level are highlighted using a blue box. d Schematic of the presence
of a surface Fermi arc in the simplest Weyl semimetal state where there are only two single Weyl
nodes with opposite charges in the BZ. e Without SOC, there are four nodal rings on the mirror
planes; with SOC, nodal rings are gapped out with only 24 Weyl nodes (small black and white
circles denoting opposite charges) left. f The (schematic) projected Weyl nodes onto (001) surface.
g The calculated Fermi surface on the (001) surface. hARPES measured Fermi surface of the (001)
cleaving plane of TaAs (from [179])

W1) and two pairs away from kz = 2π
c plane (labeled W2). There are 24 Weyl nodes

in total, all with linear dispersions and each carries a chiral charge±1.When the bulk
band structure is projected onto the (001) surface, see Fig. 6.7f, W1 nodes project in
the vicinity of the surface BZ edges, X̄ and Ȳ . The pairs of W2 nodes with the same
chiral charge, on the other hand, project onto the same point on the surface BZ. We
thus obtain 8 projected W2 nodes, each with a total projected chiral charge of ±2,
which are located near the midpoints of the �̄ X̄ and the �̄Ȳ lines.

Further confirmation of the characteristics of theWeyl phase is obtained by exam-
ining surface states on the (001) surface. Theoretical predictions as well as ARPES
experiments in Fig. 6.7g, h show the presence of surface states. The non-trivial nature
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of these states can be established by checking for consistency based on the bulk-edge
correspondence arguments as follows. Two distinct parts in the surface BZ can be
observed, one of crescent-like shape and the other bowtie-like.We expect the number
of Fermi arcs that terminate on each projected W1/W2 Weyl node to be the same
as the magnitude of the corresponding Weyl charge as is seen to be the case here.
Moreover, in the ARPES data the two curves terminating at a W2 node are found
to move (disperse) in the same direction as the initial state energy is varied. This
“co-propagating” behavior indicates that these two energy contours are not closed.
These and other observations justify the non-triviality of the surface states. Fermi
arcs also exhibit non-trivial spin-textures, which have been observed in ARPES [98,
180] and STS [6, 73].

Turning to Dirac semimetals, we consider Na3Bi as an illustrative example. First-
principles band structure computations in Fig. 6.8b show that the lowest bulk con-
duction (Na 3s) and the highest valence (Bi 6px,y,z) bands exhibit a band inversion
of approximately 0.3 eV at � in the FBZ (Fig. 6.8c). Strong SOC does not gap the
inverted bands due to the protection of an additional threefold rotational symmetry
around the [001] direction. Therefore, the bulk bands touch at two locations along the
rotational axis to form Dirac nodes; the associated Dirac bands have been mapped
via ARPES experiments [97, 182]. In order to reveal the topological nature of the
electronic spectrum, one can examine the (100) surface on which the two bulk Dirac
nodes are separated with respect to �̃ after projection onto the surface BZ. This
results in two theoretically predicted Fermi arcs connecting the Dirac nodes, which
are also observed experimentally, see Fig. 6.8c, d. The presence of these non-trivial
surface states confirms the topological nature of Na3Bi with 2D Z2 invariant ν2D � 1
[165, 191].

Two other types of Weyl/Dirac semimetals should be noted. The first are type-II
Weyl/Dirac semimetals, which do not respect Lorentz symmetry, while the type-
I semimetals discussed in the preceding paragraphs respect this symmetry. This
possibility arises when we take i, j � 0, 1, 2, 3 in (6.8) with σ0 as an identity
matrix. Unlike the type-I case, where the FS eventually shrinks to the Weyl/Dirac
points, in the type-II semimetals theWeyl/Dirac cone exhibits strong tilting such that
at the Fermi level the Weyl/Dirac node simply appears as the contact point between
an electron and a hole pocket. Type-IIWeyl and Dirac phases have been theoretically
predicted in (W,Mo) Te2 [9, 28, 70, 160, 175] andVAl3 family [16], respectively. The
second type are the multi-Weyl semimetals in which the Weyl node can carry a Weyl
charge of magnitude greater than one. For instance, the ferromagnetic HgCr2Se4
spinel with nodes protected by C4 point-group symmetry are predicted to carry
charges of ±2 [37].

Weyl/Dirac semimetals can exhibit universal transport phenomena such as large
negative magneto-resistance [11, 13, 146, 177], anomalous Hall effect [12, 186,
193], and chiral magnetic effect [20, 52, 158]. These defining features of Weyl/Dirac
semimetals suggest their unique potential for a new generation of low-power-
consuming applications.
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Fig. 6.8 a The bulk BZ of Na3Bi with Dirac nodes marked by blue crosses and the projected
surface BZs of the (001) and (100) surfaces. b First-principles bulk band calculation with SOC for
Na3Bi. c Schematic of the formation of a topological Dirac semimetal phase due to a band inversion.
The band crossing points are stable without fine tuning because of additional rotation symmetry
along [001]. The inset of c shows the ARPES measured and theoretically calculated surface Fermi
surface. d Schematic band structure from the (100) surface of a topological Dirac semimetal with
red curves representing surface Fermi arc states. Note that only surface states at the bulk Dirac point
energy are shown. (from [183])

6.7 Topological Superconductivity

As we noted in Sect. 6.2 above, the “non-interacting” gapped electronic systems
with a quadratic form of Hamiltonian can belong to ten possible classes, and char-
acterized by either a Z or Z2 topological invariant [81, 139]. The ten classes can be
separated into either insulators or superconductors (SCs). A superconductor in the
weak coupling limit can be described by the Bogoliubov-de Gennes (BdG) formwith
a pairing gap in its spectrum, similar to the insulating gap of an insulator. However,
the SC state is distinct from an insulator by having both the additional particle-hole
symmetry and a broken charge U(1) symmetry. When the SC state is topologically
non-trivial, it supports the existence of topology-protected gapless boundary modes
in accord with the bulk-edge correspondence.
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Topological SCs are drawing great current interest mainly due to the existence
of protected Majorana boundary modes, which result from a non-trivial topology of
the bulk quasiparticle wave functions. These boundary fermions contain only half of
the degrees of freedom in ordinary fermions and may have important applications in
fault-tolerant topological quantum computation [82, 112]. The simplest well-known
2D model systems for such topological SCs are the chiral p+ip (TRS breaking)
[129] and p±ip (TRS preserving) [126, 131] pairing states, which are analogous
to the integer quantum Hall (IQH) and quantum spin Hall (QSH) insulating states,
respectively, but with only half the degrees of freedom. The TRS-breaking (TRS-
preserving) SC hosts chiral propagating (counter-propagating)Majorana edgemodes
[126].

Although many TI materials have been predicted, this is much less the case when
it comes to topological SCs. The challenge here is that in order to obtain a topo-
logical superconductor, we must either have an unconventional pairing symmetry
or a special electronic structure in the normal state. One current approach toward
obtaining topological SCs looks for natural or synthesized materials [1]. Examples
include: Sr2RuO4 which has been predicted to harbor chiral p-wave SC [101]; doped
graphene [8, 76, 111] and SrPtAs [41] may exhibit chiral d-wave SC; doped Bi2Se3
with Cu [60, 172] is argued to be a topological SC with odd-parity [44, 46] as may
also be the case with In-doped SnTe [119, 133], Chiral or time-reversal invariant
triplet SC has been predicted in doped BC3 [19], Sb thin films [69], and doped BiH
[192]. Another approach toward topological SCs involves engineering composite
systems. An example is to consider obtaining the topological SC state via the prox-
imity effect between the surface of a 3D TI and an ordinary s-wave SC [47]. Such a
proximity effect has been observed in Bi2Se3 on a NbSe2 SC substrate [162] as well
as an unconventional d-wave Bi2Sr2CaCu2O8+δ SC substrate [161]. 1D topological
SC could also be realized by putting a 1D chain of magnetic impurities or adatoms
or a helical Shiba chain on an SC substrate [58, 110, 125].

One can go beyond the ten-fold classification scheme that underlies our discussion
so far by invoking additional symmetries. For instance, a new type of topological mir-
ror SC, which is dominated by the mirror symmetry, has been predicted [201]. More
complete classification tables based on various crystalline symmetries have also been
developed [24, 36, 142, 143, 163] Another approach is to reexamine the nodal super-
conductors from the viewpoint of topology [136]. In fact, SCs with unconventional
pairing displaying point- or line-nodes are not uncommon. Although the gapless
systems lack global topological invariants, they nevertheless could be classified via
momentum-dependent topological numbers. Along these lines, nontrivial topology
may be found in the high-Tc cuprates [66, 132, 153], heavy fermion systems [2, 74,
79, 107, 206], noncentrosymmetric SCs [10, 134, 137, 138, 188], and Weyl/Dirac
superconductors [104, 195].
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6.8 Strongly Correlated Topological Materials

The role of strong electronic correlations in generating exotic topological phases of
quantummatter is an area of intense current interest, which we only touch upon with
brief comments onmaterials predictionswhere strong correlation is the key ingredient
that drives the non-interacting system into the topologically non-trivial phase. The
topological phase then has a non-interacting counterpart within the aforementioned
ten-fold classification scheme. Many other possibilities include symmetry-protected
topological phases with short-range entanglement [17, 18, 40], long-range entangled
topological ordered phases [167, 168], and symmetry-enriched topological phases
with fractionalized excitations [25, 90, 100, 148]. We refer the reader to various
review articles for further discussion [140, 155, 166].

A number of correlated materials have been suggested as candidate topological
insulators. Among these, topological Kondo insulators (TKIs) are a relatively simple
type of heavy-fermion compound, where the insulating gap at low temperatures open
up via hybridization between the nearly flat (highly correlated) f -bands and the more
dispersive d bands. The heavy-fermion compound SmB6 has drawn considerable
theoretical and experimental interest in search of a TKI [32, 33, 80]. Experimentally,
optical [54] and transport [42] studies on SmB6 provide evidence for the existence
of a gap. Note, however, that even though the transition to the insulating state starts
below 50 K, conductivity remains finite and saturates below 4 K, suggesting the
presence of in-gap states [3, 27]. A spin-polarized surface state at � lying inside
the bulk band gap and X-centered electron-like bands spanning the gap are seen in
ARPES experiments [29, 75, 113, 178]. These results support a possible TKI ground
state in SmB6. Although not confirmed experimentally, other predicted materials
include SmS [91], as a TKI, and YB6 and YB12 as topological Kondo crystalline
insulators [170].

5d orbitals of Ir in iridium oxides (iridates) provide another attractive playground
for generating correlated SOC effects for realizing topological phases, and iridates
with pyrocholore, perovskite, and layered honeycomb structures have been predicted
to host topological ground states. In particular, Ir-pyrochlores R2Ir2O7 (R = Nd, Sm,
Eu, and Y) could undergo metal-insulator transitions [103]. An LDA+U calculation
predicts the magnetic phase of Y2Ir2O7 to be aWeyl semimetal [159]. Model studies
of Ir-pyrochlores reveal a rich topological phase diagramas a function of the strengths
of electron-electron interaction and SOC [124]. With crystal field splittings induced
by distortion of the IrO6 octahedra, the material could also be driven into topological
insulator [78] and topological Mott insulator [190] phases. In the honeycomb lattice
ofNa2IrO3, aQSH insulator phase and a fractionalizedQSHstate have been proposed
[144, 197]. The predicted topological phases in the iridates have, however, eluded
clear experimental confirmation.
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6.9 Outlook and Conclusions

Anurgent challenge is to find viable new topologicalmaterials of various types so that
the very limited currently available menu of experimentally realized materials can
be expanded, and the many transformational opportunities for fundamental science
and applications potential of these remarkable materials can be explored effectively.
The field is still in its infancy and we can expect many exciting discoveries to emerge
for years to come.
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Chapter 7
Theoretical Properties of Materials
Formed as Wire Network Graphs from
Triply Periodic CMC Surfaces,
Especially the Gyroid

Ralph M. Kaufmann and Birgit Wehefritz-Kaufmann

Abstract We report on our recent results from amathematical study of wire network
graphs that are complements to triply periodic CMC surfaces and can be synthesized
in the lab on the nanoscale. Here, we studied all three cases in which the graphs
corresponding to the networks are symmetric and self-dual. These are the cubic,
diamond and gyroid surfaces. The gyroid is the most interesting case in its geometry
and properties as it exhibits Dirac points (in 3d). It can be seen as a generalization of
the honeycomb lattice in 2d that models graphene. Indeed, our theory works in more
general cases, such as periodic networks in any dimension and even more abstract
settings. After presenting our theoretical results, we aim to invite an experimental
studyof theseDirac points and apossible quantumHall effect. Thegeneral theory also
allows to find local symmetry groups which force degeneracies aka level crossings
from a finite graph encoding the elementary cell structure. Vice-versa one could hope
to start with graphs and then construct matching materials that will then exhibit the
properties dictated by such graphs.

7.1 Introduction

We will first start to review the main motivating examples for our analysis and our
methods. These are the triply periodic constant mean curvature (CMC) surfaces
which are very intriguing objects due to their highly symmetric nature. By a classifi-
cation result, the only triply periodic minimal surfaces whose complements are given
by symmetric and self-dual graphs are the P (cubic), D (diamond) and G (gyroid)
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Fig. 7.1 The double gyroid surface (left) and its complement, the two non–intersecting channel
systems C+ and C− (right)

surfaces (see e.g. [1]). While the cubic and diamond surfaces have been known for
almost two centuries (they were already discovered by Schwarz in 1830 [2]), the
gyroid was an omission in Schwarz’s classification and was only discovered about
50years ago in 1970 by Alan Schoen [3]. As any naturally occurring surface, a phys-
ical version will not be a true 2d object, but will have some, albeit small thickness,
which makes it 3d. Such a thick surface has two sides, each a true 2d surface. Thus,
the interface actually consists of two disconnected surfaces, where each of them is a
surface of the given type. The double gyroid (DG) for instance is such a configuration
of two mutually non–intersecting embedded gyroids which form the boundaries of
the thick gyroid surface.

A single gyroid has symmetry group I4132 while the double gyroid has the sym-
metry group I a3̄d where the extra symmetry comes from interchanging the two
gyroids.1

The actual equations of the gyroid are very complicated and initially only locally
known by a differential equation since it is a CMC surface. To get the true shape
mathematically one can use a computer program, the Brakke Surface Evolver [5].
However, in a good approximation, the surfaces can be visualized by using the level
surfaces [6]. An example of a level surface approximation for the double gyroid is
given by the following formula:

Lt : sin(x) cos(y) + sin(y) cos(z) + sin(z) cos(x) = t

which we use in the visualizations. The double gyroid surface is then modeled by Lt

and L−t for 0 < t <
√
2. It is pictured in Fig. 7.1.

1Here I4132 and I a3̄d are given in the international or Hermann–Mauguin notation for symmetry
groups, see e.g. [4].
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Recently, it was demonstrated that the gyroid can be synthesized in the lab [7].
Both the surface and its complement, which forms a two-channel network (see
Fig. 7.1), can be realized by using nano-porous silica film. It is interesting to note
that the gyroid structure appears spontaneously in nature on the wings of certain
butterflies or beetles to give them their brilliant color [8].

Several variations of these structures have been synthesized, i.e. semiconductor
quantum-wire arrays of PbSe, PbS, and CdSe. The synthesis process involves several
steps. First, the actual surface nanostructure is formed by self-assembly in some
carefully prepared surfactant or block copolymer systems. The nanopores (channels)
are then filled with a semiconductor and the original silica surface is dissolved to
yield the nanowire network. A second semiconductor material may potentially be
grown in the void space to yield a bulk heterojunction semiconductor. The typical
lattice constant of these structures is of the order of 18nm. This means that they are
“supercrystals”, with lattice constants far exceeding atomic length scales. However,
a quantum mechanical treatment is still applicable and the typical length scale is
comparable with graphene (where the length scale is of the order of 10nm). We will
focus on the wire structure in this article.

We performed a theoretical study to predict properties of these materials. Our
approach is comprised of an analysis of the symmetries, the singularities and a
non-commutative model all of which we will briefly explain. This treatment is not
restricted to the particular example of the gyroid and can be used to study any periodic
wire network and even further generalizations. We have applied it to the cases of the
wire networks derived from the cubic, the diamond and the gyroid triply periodic
CMC surfaces as well as other periodic structures such as Bravais lattices and the
honeycomb lattice underlying graphene.

7.1.1 Classical Geometry of the Gyroid and Graph
Approximation for the Channels

Let us first describe in more detail the classical geometry of the gyroid. Details can
be found in [9]. The complement R

3\G of a single gyroid G has two components.
These components will be called the gyroid wire systems or channels.

There are two distinct channels, one left and one right handed. Each of these 3d
channels can be contracted onto an embedded graph, called skeletal graph [3, 10].
We will call these graphs Γ+ and Γ−. Each graph is periodic and trivalent. We fix
Γ+ to be the graph which has the node v0 = ( 58 ,

5
8 ,

5
8 ) in the above approximation.

We will give more details on the graph Γ+ below.
The channel containing Γ+ is shown in Fig. 7.2a. A (crystal) unit cell of the

channel together with the embedded graph Γ+ is shown in Fig. 7.2b and just the
skeletal graph is contained in Fig. 7.2c. The unit cell is obtained by using the simple
lattice translations along the x , y and z axes. Such a cell contains 8 vertices which
are trivalent. The actual symmetry group is bcc and hence higher. If one mods out
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Fig. 7.2 a 3d periodic structure of the gyroid wire network b skeletal graph inside the channel c
skeletal graph with labeled vertices

Fig. 7.3 Abstract quotient
graph used in our
calculation. The bold edges
are a spanning tree and the
vertex 1 is a root of this
spanning tree

by the full symmetry group then an elementary cell will only have 4 points which
are trivalent. This is captured by a graph with 4 vertices where each vertex is linked
to all other vertices. This graph, which is called the full square or the tetrahedral
graph, is abstract. This means that it is not embedded in any real space, but just a
combinatorial object, see Fig. 7.3.

Stating things in a more precise fashion: The graph Γ+ is the graph made up of
the following vertices in the unit cell

v0 =
(
5

8
,
5

8
,
5

8

)
v4 =

(
7

8
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8
,
3

8

)

v1 =
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8

)
v5 =
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)
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)

v3 =
(
5

8
,
3

8
,
7

8

)
v7 =

(
7

8
,
3

8
,
1

8

)
, (7.1)
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and all their translations along the lattice directions and the edges between them
according to the incidences that can be read off from Fig. 7.2.

By combinatorial arguments, we have obtained results about the classical geome-
try of the infinite graph Γ+ [9]. Namely, there are closed loops on the graph Γ+. Each
minimal loop goes through 10 sites and at each point there are 30 oriented minimal
loops or 15 such undirected loops.

Asmentioned, the translational symmetry group for both the gyroid and the double
gyroid is actually the body-centered cubic (bcc) lattice. In our theoretical calculations,
we will deal with a finite graph that is obtained as a quotient graph from Γ+. We can
use the bcc symmetry of the lattice to construct this abstract quotient graph. A set of
generators of the bcc symmetry is

g1 = 1

2
(1,−1, 1), g2 = 1

2
(−1, 1, 1), g3 = 1

2
(1, 1,−1) (7.2)

The passage from the graph of the unit cell with 8 vertices is given by identifying
the vertices. v0 ↔ v6, v1 ↔ v7, v2 ↔ v4 and v3 ↔ v5. The 6 edge vectors are then
represented by the 6 vectors

e1 = 1

4

⎛
⎝−1

1
0

⎞
⎠ , e2 = 1

4

⎛
⎝ 0

−1
1

⎞
⎠ , e3 = 1

4

⎛
⎝ 1

0
−1

⎞
⎠ (7.3)

e4 = 1

4

⎛
⎝1
1
0

⎞
⎠ , e5 = 1

4

⎛
⎝ 0

−1
−1

⎞
⎠ , e6 = 1

4

⎛
⎝−1

0
−1

⎞
⎠ (7.4)

Now, the translates of the points vi , i = 1, . . . , 4 along integer linear combinations
of the g j , j = 1, 2, 3 and the translates of the edge vectors ek, k = 1, . . . , 6 form the
graph Γ+. Taking the quotient by the free Abelian subgroup L that is generated by
the vectors gi , we arrive at the abstract quotient graph Γ̄ = Γ+/L . It is the graph with
4 vertices and 6 edges, where all pairs of distinct vertices are connected by exactly
one edge shown in Fig. 7.3. It turns out that this graph basically suffices to capture
the essential information about the geometry.

The passage from the channel systems to the graphs retains all homotopical in-
formation as does the passage from the thick surface to just one copy of the gyroid,
by shrinking the thickness to zero. Any topological information which is homotopy
invariant (that is basically the information that is invariant under continuous defor-
mations) is encoded in the gyroid surface and the two skeletal graphs. Furthermore,
since the level surface approximation is a deformation of the original gyroid, one
can use this simplification for the study. Notice that not all geometric information
is retained by such a deformation, for instance being a CMC surface is not. Also,
as we have seen, dimensions are not preserved either, what is preserved, however,
are topological charges, singularities, homology, K-theory, etc. These deformation
independent quantities are of course very desirable as a physically realized version
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Fig. 7.4 Fabricated gyroid structure squished by gravity [11]

of the gyroid will not be perfect. Indeed the result of the gyroid, the self-assembly is
actually a gyroid, that is a bit squished, see Fig. 7.4.

The fact that the skeletal graph approximation is valid for the electronic properties
has been shown by a different physical argument: namely, numerical simulations of
a simple wave equation [12] have shown that the lowest-energy wavefunctions are
supported primarily on the junctions. Thus, one may expect to reproduce the low-
energy end of the spectrum by using the tight-binding approximation, in which the
junctions are replaced by the vertices, and the segments connecting them by the edges
of a graph.

We can and will thus continue the study of the wire system by using the graph
approximation.

7.1.2 P and D Surfaces

There are two other triply periodic self–dual and symmetric CMC surfaces- the cubic
(P) and the diamond (D) network. They are shown in Fig. 7.5 together with their wire
networks obtained in the same way as for the gyroid. Here we summarize the results
from [13].

The P surface has a complement which has two connected components each of
which can be retracted to the simple cubical graph whose vertices are the integer
lattice Z

3 ⊂ R
3. The translational group is Z

3 in this embedding, so it reduces to the
case of a Bravais lattice. Its abstract quotient graph is shown in Fig. 7.6 on the left.

The D surface has a complement consisting of two channels each of which can
be retracted to the diamond lattice Γ�. The diamond lattice is given by two copies
of the fcc lattice, where the second fcc is the shift by 1

4 (1, 1, 1) of the standard fcc
lattice, see Fig. 7.5. The edges are nearest neighbor edges. The symmetry group is
Fd3̄m. The quotient graph for the D surface is shown in Fig. 7.6 on the right.
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Fig. 7.5 The cubic (P) (left) and the diamond (D) wire network (right)

Fig. 7.6 Abstract quotient
graphs for the P and D
surfaces

P D

7.2 Theory

7.2.1 Overview

Our method is two–pronged depending on whether or not a background magnetic
field is present. In the absence of a magnetic field, we use singularity theory and
classical geometry to classify topological features such as Dirac points and topo-
logical charges. In the presence of a magnetic field, the classical geometry becomes
non-commutative. Some of the topological invariants carry over, such as a gap clas-
sification, and topological charges aka Chern classes, which could give rise to a
quantum Hall effect. Some other new phenomena appear, which could potentially
lead to new properties as described below.



180 R. M. Kaufmann and B. Wehefritz-Kaufmann

7.2.2 Summary of the Methods

To model the electronic properties of the physical systems, we used a Harper Hamil-
tonian [14, 15] for the graphs described above. Physically, this corresponds to using
the tight-binding approximation and Peierls substitution [16]. The system is thus
modeled by the Hilbert space H = l2(Λ), where Λ are the vertices of the graph
together with the Harper Hamiltonian acting on H that is given by

H =
6∑

i=1

Uei + U �
ei

where the sum is over all edges ei given above. For later generalization, we note
that these edges correspond to the 6 edges of the quotient graph given in Fig. 7.2.
We recall that l2(Λ) are the square summable series on Λ. A typical element/state
is given by φ = (φ)λ∈Λ with φλ ∈ C as complex number that can be imagined to
sit at the site λ and

∑
λ∈Λ |φλ|2 < ∞. In the case without magnetic field Ue is the

translation operator with Ue(φ)λ = φλ−e. Its conjugate U ∗
e is the translation along

−e. In the case with magnetic field the Ue are replaced with so–called magnetic
translation operators as explained in Sect. 7.3.

At this point, we wish to remark that the traditional translation operators used in
absence of a magnetic field (a) commute with each other and (b) are symmetries and
hence commute with the Hamiltonian, whence we call it the commutative case. In
contrast, if there is a magnetic field, translations cease to commute with each other
as their commutator introduces a phase. Likewise they cease to commute with the
Hamiltonian. This is the origin of the non–commutative geometry.

Going back to the commutative case, using Fourier transform the operators can
alternatively be considered as depending on quasi-momenta of the Brillouin zone. It
is this Brillouin zone geometry that the non–commutative version also captures.

In order to present the Harper Hamiltonian as a matrix, we rewrite the Hilbert
space as a direct sum H = ⊕

v Hv where the sum is over the vertices v in an
elementary cell, that is the vertices of the abstract quotient graphs. For instance for
the gyroidHv0 has as elements square summable sequences (φ)λ where now λ is in
the sub–lattice generated by v0 which are all the vertices v of Γ+ that are translates
of v0 by integer linear combinations of the gi , i = 1, 2, 3. Now translation along a
directed edge between starting at v and ending at w will map Hw to Hv, by our
convention.

After Fourier transform theHarper Hamiltonian becomes dependent on the quasi–
momenta of the Brillouin zone. This means that we have a family of Hamiltonians
depending on parameters which parameterize the Brillouin zone. For the 3d skeletal
graphs this is T 3 = S1 × S1 × S1, which we can visualize as a cube [0, 2π ]3 where
opposite sides are identified.

We will describe the results separately for the three surfaces P, D and G.
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7.2.3 The Gyroid Without Magnetic Field

There are 4 vertices in the elementary cell and accordingly in quotient graph. Hence
the Hamiltonian will be a 4 × 4 matrix with translation operators as entries.

HΓ+ =

⎛
⎜⎜⎝

0 U ∗
1 U ∗

2 U ∗
3

U1 0 U ∗
6 U5

U2 U6 0 U4

U3 U ∗
5 U ∗

4 0

⎞
⎟⎟⎠ (7.5)

Here we use the short hand Ui = Uei and U ∗
i = U−ei .

Using a normalization, essentially a change of basis for the lattice generators and
singling out v0 as a special vertex, by conjugation, the Harper Hamiltonian can be
taken to the form [9]

H =

⎛
⎜⎜⎝
0 1 1 1
1 0 A B∗
1 A∗ 0 C
1 B C∗ 0

⎞
⎟⎟⎠ (7.6)

where A, B and C are combinations of translational operators of the form Ue.
We refer to [9] for the details. Using Fourier transform, that is looking at states
with fixed quasi–momenta, we can rewrite them as A = exp(ia), B = exp(ib), C =
exp(ic), with a, b, c ∈ [0, 2π ] taken periodically. Alternatively, we can think of
exp(ia), exp(ib) and exp(ic) as a set of generators for the functions on the 3-torus
T 3. This point of view will be generalized later.

The eigenvalues of H(a, b, c), that is the energies Ei of the different bands depend-
ing on the quasi–momentum k = (a, b, c) are given by the roots of the characteristic
polynomial:

P(a, b, c, z) = z4 − 6z2 + a1(a, b, c)z + a0(a, b, c) (7.7)

where

a1 = −2 cos(a) − 2 cos(b) − 2 cos(c) − 2 cos(a + b + c)

a0 = 3 − 2 cos(a + b) − 2 cos(b + c) − 2 cos(a + c)

The geometry of the dispersion relation, i.e. the set of the Ei as a function of the
quasi-momenta k = (a, b, c), is that one can view the energy spectrum as a cover
of the Brillouin zone. Here over each point k of the Brillouin zone T 3, we have the
Eigenvalues of H(k). Moving around k, we get a cover of T 3 which generically,
i.e. when there is no degenerate Eigenvalue, has 4 sheets. There are degeneracies,
however, when there are less than 4 distinct Eigenvalues and the sheets are glued
together giving ramifications.



182 R. M. Kaufmann and B. Wehefritz-Kaufmann

0 10 20 30

a0

a1

–30

–20

–10

0

10

20

30

Fig. 7.7 The −6 slice of the swallowtail of A3 and the region occupied by the gyroid

This geometry is amenable to study via singularity theory [17]. Indeed mathemat-
ically the geometry is a pull-back of a miniversal unfolding of an A-type singularity.
This allowed us to analytically calculate the singular points in the gyroid spectrum
and to classify them using results of Grothendieck [18].

Let us briefly highlight some of the construction. The first step is the realiza-
tion that in the characteristic polynomial, the coefficients depend on the param-
eters (a, b, c). Since H is traceless, there is no term of z3 in the characteristic
polynomial and we are left with the coefficients ai (a, b, c) of zi for i = 0, 1, 2 with
a2(a, b, c) = −6 being constant. The latter fact is no coincidence, but is a conse-
quence of the type of the graph (it is simply laced) and the fact that it has 6 edges. The
miniversal unfolding of the A3 singularity is given by the cover of the roots of the
polynomial z4 + a2z2 + a1z1 + a0z0, where now the ai can take any complex value
and are regarded as parameters. The base space of the cover is then just the parameter
space of the ai , that is C

3. Again the cover generically has 4 sheets and is ramified
over the locus where some roots coincide. This locus is called the discriminant locus
or the swallowtail. The second crucial observation is then that the ai as depending on
(a, b, c) define a map from the Brillouin zone to the base of the miniversal unfold-
ing, i.e. Ξ : T 3 → C

3 which we called the characteristic map. Since all the values
ai (a, b, c) are real, we can restrict to the real locus R

3 of C
3. The spectrum of H is

singular at (a, b, c) if and only if Ξ(a, b, c) lies in the discriminant locus. We call
these points the singular points, although, of course they are not singular in T 3, but
the cover is singular over them.

The characteristic region is the image of Ξ , that is the region that can be reached
when a, b, c are varied between 0 and 2π . Since a2(a, b, c) = −6, the information
is captured in the a0, a1 plane, which should be considered as the slice at a2 = −6,
that is the plane parallel to the a0, a1 plane in R

3 through (0, 0,−6). This is depicted
in Fig. 7.7.
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Fig. 7.8 The A3 singularity
(the swallowtail)

The curve shown in the figure is the discriminant locus which is explicitly given
by

20736 a0 − 4608 a2
0 + 256 a3

0 + 864 a2
1 − 864 a0 a2

1 − 27 a4
1 = 0 (7.8)

As we showed, the boundaries of the characteristic region are obtained as the
collection of points (a0, a1) for a = b = c and a = b = −c.

The characteristic region is contained in the slice a2 = −6 of the A3 singularity
(the swallowtail, shown in Fig. 7.8) and intersects the discriminant in exactly three
isolated points, the two cusps and the double point of that slice of the swallowtail.
This result was derived analytically.

The two cusps are in the stratum of type A2 (where three roots coincide) and the
double point is in the stratum of type (A1, A1) (where two pairs of roots coincide).
As can be shown the fibers of Ξ over all these point are discrete giving rise to
finitely many points in T 3 at which there are level crossings for the energies. For
the A2 singularities, this is just one point each at each cusp, giving rise to two triple
crossings, while the fiber over (A1, A1) consists of two points. Over each of these
points there are two double crossings and as each single crossing is of type A1, these
are Dirac points, see below.
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Fig. 7.9 Dispersion relation
for the gyroid Harper
Hamiltonian along the
diagonal in the Brillouin
zone. Note the time-reversal
symmetry (TRS)

The dispersion relation (band structure) for the gyroid Harper Hamiltonian, which
we calculated analytically, is shown in Fig. 7.9 along the diagonal in the Brillouin
zone, that is points (a, a, a), on which all the singular points lie.

Notice that the spectrum is symmetric under k → −k, which can be read off from
the Harper Hamiltonian.

Summarizing our results for the band structure of the gyroid Harper Hamiltonian,
wefind twoDirac points for the gyroid at the points ( π

2 , π
2 , π

2 ), ( 3π2 , 3π
2 , 3π

2 ) in thefirst
Brillouin zone. We have shown that at these points, the dispersion relation becomes
linear [19]. They correspond to double crossings in the spectrum. These points are
actually double Dirac points, i.e. there are two double crossings at each of these
points. They can be seen as the 3d- analogue of Dirac points in graphene. There are
further degenerate points in the spectrum at (0, 0, 0) and (π, π, π), which are triple
crossings. See Fig. 7.9. All these are forced by level sticking which we found using
an enhanced symmetry group of a quantum graph [20].

For a general periodic graph with n vertices in an elementary cell one again
obtains a characteristic map, but now to the miniversal unfolding of An−1 singularity.
By a theorem of Grothendieck [18] one knows that there is a stratification of the
discriminant locus obtained by deleting vertices from the An−1 graphs and by also
deleting any edge incident to the vertex.

For instance, in the A3 case (see Fig. 7.8), deleting the left or right vertex leaves
one with the A2 graph and deleting the middle vertex leaves one with two copies of
the A1 graph. Hence the singularity type (A1, A1), the smooth part of the swallowtail,
corresponds to deleting two vertices, which gives the 3 parts of the swallowtail as
strata over which there are A1 singularities. The smallest stratum is obtained by not
deleting any vertex and this is the A3 singularity at the origin, see Fig. 7.10.

In general the singularities are then determined by the strata and the fibers of the
characteristic map Ξ over the swallowtail.
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Fig. 7.10 Stratification of
the A3 singularity

)

A3

A2

A2

( A1, A1

7.2.4 Enhanced Symmetries from a Re-gauging Groupoid

Another reason that singular points have to be present is given by symmetries, which
lead to level sticking. As we will argue, the momentum space geometry is basically
encoded in the quotient graph with certain decorations. In this setting local symme-
tries for the geometry can be induced by so–called quantum enhanced symmetries
of the underlying graph. The procedure for this is not straightforward, though, and
proceeds via re–gauging groupoid and a “lift” of its action to the momentum space
[17]. The result of this rather elaborate process is the existence of projective repre-
sentations of subgroups of the symmetry group of the graph that appear as stabilizers
in the geometric action on the momentum space [21].

Wewill give a cursory overview of the calculus and refer to [17, 21] for the details.
A sample graphical calculation which we now discuss is given in Fig. 7.11. This is a
generalization of the methods of [22].

The main new tool we introduced refers to enhanced graph symmetries, which
arise from certain re-gaugings of the Harper Hamiltonian [20]. The gauge expresses
a choice of basis in which the Hamiltonian becomes a matrix whose entries lie in
the same space of operators. The choice in terms of combinatorial data is given by a
spanning tree and a root r for this spanning tree. Theoperators are then all operators on
Hr . We used such a gauge with r = v0 to obtain the form (7.6) for the Hamiltonian.
The Hamiltonian is then a decoration on the abstract graph. Basically the edge is
decorated by the corresponding operator. The coefficients hvw in the matrix of the
Hamiltonian are then the sum over all edge decorations of the edges connecting the
two vertices v and w. The gauge is reflected in the fact that the edges of the spanning
tree are decorated by the identity operator 1. The first entry in Fig. 7.11 illustrates
this nicely. Accordingly the entries in the first row and column of (7.6) say that the
diagonal entry is 1. Acting by a symmetry of the graph moves the spanning tree and
the root. This consequently breaks the gauge. For instance exchanging the vertices
v0 and v1 of the graph yields the second entry in Fig. 7.11. In order to reestablish the
gauge condition of decoration by units on the spanning tree, that is to re–gauge, one
employs a decoration on the vertices, this is the third part of the figure. The vertex
decorations are again by the same type of operators, which in the commutative case
can be seen as phases. This decoration gives the quantum enhancement. Up to the
initial condition that the root vertex is decorated by the identity, the decoration is
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Fig. 7.11 Sample calculation of re-gauging with edge and vertex factors, see [20]

entirely determined by the two different gaugings and satisfies the requirement that
when the decorations on the vertices act on the edge decoration, by multiplication
from the left by the decoration of the target vertex and on the right by the conjugate
of the source decoration, the decoration of the spanning tree vertices is again just by
identity operators, see part four of the figure.

This type of calculation produces several bits of data. The permutation
matrix, a diagonal matrix which contains the vertex factors and finally a transfor-
mation of the decorations of the edges, which in the example above is (A, B, C) 
→
(A∗, B∗, AC B). This reading off is facilitated by rewriting the abstract graph with
the decorations in parallel to the original graph as shown in the last part of the figure.
Regarding the A, B, C as providing coordinates (a, b, c) of T 3 the latter informa-
tion gives an automorphism of T 3. This means that to each element of the symmetry
group of the finite graph, we obtain a transformation of T 3 and we can look at the
stabilizer subgroups of points on T 3. The product of the two matrices, permutation
and re-gauging, then gives a projective representation of the stabilizer groups, which
are subgroups of the symmetry group of the graph. The fact that these representa-
tions are projective is essential and this is due to the fact that we used the quantum
enhanced version, which allows for re–gauging by vertex decorations.

Table7.1 provides a nice summary of our results [20]. It shows the enhanced
symmetry groups for each of the level crossings. This explains the degeneracy of
each eigenvalue which is also listed in the table. It would not be possible to explain
these degeneracies by the groupS4 acting on the graph alone. Indeed the doubleDirac
point corresponds to 2-dim irreducible projective representations. A classical action
of S4 does not have any 2-dim irreps. The projective representations can be further
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Table 7.1 Possible choices of parameters (a, b, c) leading to non-Abelian enhanced symmetry
groups and degenerate eigenvalues of H . Here A4 is the alternating group and 2A4 its double cover
which is also known as the binary tetrahedral group

a, b, c Group Iso class of type of extension Dim of eigenvalues λ irreps

(0, 0, 0) S4 S4 Trivial 1,3 λ = −1 three
times

λ = 3 once

(π, π, π) S4 S4 Trivializable
Cocycle

1,3 λ = 1 three
times

λ = −3 once

( π
2 , π

2 , π
2 )

( 3π2 , 3π
2 , 3π

2 )

A4 2A4 Isomorphic
extension

2,2 λ = ±√
3

Twice each

characterized by the group extension for which they form a genuine representation,
see, e.g. [23].

7.2.5 Slicing, Chern Classes and Stability Under
Perturbations

In order to find topological charges in 3d, we used Chern classes and a slicing
method. We furthermore started to study deformations of the effective geometry and
could show that the Dirac points remain effectively stable as they carry a minimal
topological charge, which can be detected as jumps in the first Chern classes or
the Berry phase on 2-torus slices of the 3-torus at a given height. This is shown in
Fig. 7.12. The double points give jumps of 1 unit while the triple points give jumps
of 2 units. Furthermore, the triple points do carry a charge, but they can split, and do
so, under deformations as a numerical study shows [24]. The type of splitting can be
explained if the time reversal symmetry is preserved.

The idea behind this is the following. Going back to [25, 26], we know that the
integers in the integer quantum Hall effect (QHE) can be viewed as Chern numbers.
Chern classes can be written as differential forms using Chern–Weil theory [27].
In particular the i th Chern class has a degree 2i differential form representative.
Integrating the form over a 2i–dimensional manifold gives a number. The relevant
classes here are just the first Chern classes. Here the 2–form can be thought of as the
Berry curvature [26, 28]. Since the QHE is on a 2d torus, one can simply integrate
over the torus. Now if we are on the 3-torus, we cannot just integrate over it. The
first Chern class is a 2–form and the second Chern class would be a 4–form. On the
other hand, we can look at a slice 2-torus at fixed height c and integrate the Berry
curvature over just this slice. We will get one Chern number for each band. That
is all the points of the form (a, b, c), say fixed c and a, b ∈ S1 × S1. In order to
have the correct notion of a Berry phase, we should however have a non–degenerate
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(a)
(b)

Fig. 7.12 a Topological charges as functions of the height of a 2-torus slice of the Brillouin zone.
The jumps are step functions and the sloped transition is merely a guide. b The Brillouin torus
as a cube with periodic boundaries, the position of the Dirac points and triple crossings along the
diagonal and two 2-torus slices

Eigenvalue. So this will only work for values of c where no (a, b, c) is singular. In
the gyroid example this means that c �= 0, π

4 , π
2 , 3π

4 . In this way, we get the Chern
number of the ith band as a function of c as a well defined integer outside these
special values of c. Since the Chern number is a topological invariant, it is locally
constant. It does, however, jump when c crosses one of the bad points above. This
jump depends on the local structure of the singularity. It is by ±1 for Dirac points,
but can be more complicated for more complicated singularities. We determined the
local structure over the A2 singular triple crossing points, which told us that the
jumps are by −2, 0, 2 for the three crossing bands. The numerical check is depicted
in the first part of Fig. 7.12, while the second part of the figure shows the slices in
four regions of constant Chern classes.

What is special in 3-d is that these charges are now protected in the sense that
under perturbations, more singular points may appear, but the net jump over these
points is conserved. Numerically we found that the double Dirac points drift apart,
while the triple crossings decay into four double crossings under deformations that
preserve the time reversal symmetry that is present in the original context [24].

We showed [17] that slicing in all three directions actually totally fixes the homo-
logical information obtainable from Berry phases and curvature.

7.2.6 Possible Experimental Verification

It would be intriguing tomeasure theDirac cones in this particularly rich 3d geometry
experimentally. There are two hurdles that have to be overcome. First, one has to find
a material with the right Fermi surface, but this should be possible. The second is that
these Dirac points are buried in the continuum, since cutting at this particular energy



7 Theoretical Properties of Materials Formed as Wire Network Graphs … 189

will form actual Femi surfaces away from the Dirac points. This type of investigation
has been done, however, in topological semimetals [29, 30] using angle-resolved
photoemission spectroscopy (ARPES). The Dirac points for the gyroid lie along the
diagonal slice of the Brillouin zone and it should be possible to find a curve through
them that has a pseudo-gap.

A similar study has been performed in photonics [31] using angle resolved trans-
mission measurement.

Moreover, the Dirac points are stable under symmetry breaking deformations [17,
24] and hence give affirmation of the applicability of the theory to real materials.
Perhaps these effects, including the decay of the higher order singularity, can be used
advantageously. Mathematically there are associated topological charges stemming
from first Chern classes. These manifest themselves as jumps in the first Chern
classes or the integral over the Berry curvature on 2-torus slices. It would also be
very interesting to measure the decay of the triple points that is predicted by global
constraints. Finding the triple points in the 3d material experimentally would be a
great step in realizing properties forced by interesting topology.

Let us now briefly mention the results for the other geometries:

7.2.7 The P Wire Network Without Magnetic Field

It can be shown that the characteristic polynomial is simply a polynomial of degree
1 [19], P(t, z) = z − ∑

i ti , so that after shifting z we are left with just z = 0, which
is not critical. Not surprisingly, there are no singularities. That means that the cover
itself is just the trivial cover of T 3 by itself. Nevertheless the slice geometry is that
of T 2 which supports the quantum Hall effect. Accordingly this example becomes
interesting in the presence of a magnetic field.

In terms of representations, there is only the root of the spanning tree which is
unique. The S3 action permutes the edges and their weights. This yields the per-
mutation action on the T 3. There is no nontrivial cover and the eigenvalues remain
invariant.

7.2.8 The D Wire Network and the Honeycomb Lattice
Without Magnetic Field

We treat the diamond and the honeycomb case in parallel since they have similar
quotient graphs. The graphs Γ̄ are given in Fig. 7.13. The honeycomb lattice is used
to model graphene, and indeed we reproduce the known results about Dirac points
in graphene with our theory. This is a nice cross–check.

After gauging, the Hamiltonians are



190 R. M. Kaufmann and B. Wehefritz-Kaufmann

Fig. 7.13 The graphs Γ̄ for
the diamond (left) and the
honeycomb case (right)

A

B

Hhon =
(

0 1 + U + V
1 + U ∗ + V ∗

)
(7.9)

and

HD =
(

0 1 + U + V + W
1 + U ∗ + V ∗ + W ∗

)
(7.10)

We use U = exp(iu), V = exp(iv), W = exp(iw) with u, v, w real. The fact that
there are sums in the entries is due to the fact that there are multiple edges connecting
the two vertices.

The polynomials are P(u, v, z) = z2 − 3 − 2cos(u) − 2cos(v) − 2 cos(u − v)
and P(u, v, w, z) = z2 − 4 − 2 cos(u) − 2 cos(v) − 2 cos(w) − 2 cos(u − v) −
2 cos(u − w) − 2 cos(v − w). The characteristic regions in R are just the intervals
[−9, 0] and [−16, 0]. The discriminant is the point 0. From this we see that in both
cases we have to have a0 = 0 and the singular locus is simply this fiber.

7.2.8.1 The Honeycomb Case

For the honeycomb, the standard calculation shows that if a0 = 0 then U = V ∗ and
U ∈ {ρ3 := exp(2π i/3), ρ̄3}, which means that the fiber consists of 2 points. These
are the well known Dirac points (ρ3, ρ̄3), (ρ̄3, ρ3).

In terms of representations, we can look at the graph symmetries which are com-
binations of the interchange of the two vertices or the three edges (see Fig. 7.13).
The vertex interchange renders the fixed points u = ±1, v = ±1 which have eigen-
vectors v1 = (1, 1) and v2 = (−1, 1) and eigenvalues 1 + u + v and −(1 + u + v),
respectively. The irreps of the C3 action are tr iv ⊕ ω where ω = exp( 2iπ

3 ).
As far as the edge permutations are concerned the interesting one is the cyclic

permutation (123) which yields the equations

u = v̄, v = v̄u

for fixed points. Hence u3 = 1. We get non–trivial matrices at the two points (ω, ω̄)

and (ω̄, ω). At these points e1, e2 are eigenvectors with eigenvalue 0 and H = 0,
since 1 + u + v = 1 + ω + ω̄ = 0.
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Fig. 7.14 The 3-torus as a
cube with opposite sides
identified and the singular
locus of the diamond case
consisting of three circles
pairwise intersecting in a
point

Denoting the elements of Z/2Z again by +,−, there is an embedding of S3 →
Z/2Z × S3 given by (12) 
→ (−, (12)), (23) 
→ (−, (23)). Notice that (123) 
→
(+, (123)). It is then an easy check that the equations for the fixed points are satisfied
exactly by (ω, ω̄) and (ω̄, ω). The representation is a projective representation of S3

cohomologous to the 2–dim irreducible representation of S3.
The fixed points are exactly the Dirac points of graphene and the symmetry above

forces the degeneracies.

7.2.8.2 The Diamond Case

The equation for the fiber over 0,

−4 − 2cos(u) − 2 cos(v) − 2 cos(w) − 2 cos(u − v) − 2 cos(u − w) − 2 cos(v − w) = 0

has been solved in [19] and the solutions are given by (u, v, w) = (φi , φ j , φk) with
φi = π, φ j ≡ φk + π mod 2π with {i, j, k} = {1, 2, 3}. So in this case the fiber of
the characteristic map is 1–dimensional and the pull–back has singularities along a
locus of dimension 1,which also implies that there are noDirac points. Geometrically
the singular locus are three circles pairwise intersecting in a point. This is shown in
Fig. 7.14.

Looking at representations, things again become interesting. Permuting the
two vertices, we obtain eight fixed points if u, v, w ∈ {1,−1}. The matrix for

this transposition is

(
0 1
1 0

)
. This gives super–selection rules and we know that

v1 = (1, 1) and v2 = (−1, 1) are eigenvectors. The eigenvalues being 1 + u + v + w
and −(1 + u + v + w) at these eight points.

We can also permute the edges with the S4 action. In this case the S3 action
leaving the spanning tree edge invariant acts as a permutation on (u, v, w). The
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relevant matrices however are just the identity matrices and the representation is
trivial. The transposition (12), however, results in the action (u, v, w) 
→ (ū, ūv, ūw)

on T 3, see Fig. 7.11. So to be invariant we have u = 1, but this implies that ρ12 is the
identity matrix. Invariance for (13) and (14) and the three cycles containing 1 are
similar. But, if we look at invariance under the element (12)(34) we are lead to the
equations u = ū, v = ūw, w = ūv. This has solutions u = 1, v = w, for these fixed
points again we find only a trivial action. But for u = −1, v = −w these give rise to
the diagonal matrix diag(1,−1) and hence eigenvectors e1 = (1, 0) and e2 = (0, 1),
but looking at the Hamiltonian, these are only eigenvectors if it is the zero matrix
H(u, v, w) = 0. Indeed the conditions above imply 1 + u + v + w = 0. Similarly,
we find a Z/2Z group for (13)(24) and (14)(23) yielding the symmetric equations
v = −1, u = −w and w = −1, u = −v. These are exactly the three circles found in
[13].

Going to bigger subgroups of S4 we only get something interesting if the stabilizer
group Gt contains precisely two of the double transpositions above. That is the Klein
four group Z/2Z × Z/2Z. The invariants are precisely the intersection points of the
three circles given by u = v = −1 and w = 1 and its cyclic permutations.

To find the 2–dimensional irreducible representations, we look at different Klein
four groups embedded into Z/2Z × S4. If we denote the elements of Z/2Z by +,−,
then we first look at (+, id), (+, (12)(34)), (−, (13)(24)), (−, (14)(23)). The ele-
ment (−, (13)(24)) is the composition of edge permutation (13)(24) togetherwith the
switching of the vertices. It gives the equation u = vw̄ for fixed points, while the fixed
points of (−, (14)(23)) satisfy u = v̄w. Combining these equations with the ones for
(12)(23) above, we find again the solutions u = 1, v = w and u = −1, v = −w. The
difference however is that the representation in the case u = −1 is the irreducible
projective representation of the Klein group corresponding to the irreducible 2–dim
representation of its 2–fold cover given by the quaternion group ±1,±i,± j,±k.
For u = 1 the irreps are one–dimensional and give no new information. Using the
different embeddings of the Klein group we find the 2–dim irreps on the three circles
above responsible for the degeneration of the eigenvalues. These are three lines of
doubly degenerate eigenvalue 0. They are not Dirac points since there is one free pa-
rameter accordingly the fibers of the characteristic map of [19] are one dimensional
which implies that the singular point is not isolated.

Additional cases of planar graphs that do not correspond directly to CMC surfaces
are discussed in [19]. We do not find any Dirac points, either. So the gyroid remains
the only object in this family of 3-d wire networks from CMC surfaces that exhibits
3-d Dirac points.
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7.3 Noncommutative Approach in the Presence
of a Magnetic Field

In the casewithmagnetic field,weused an approach fromnon-commutative geometry
[32–34]. Here the geometry is modeled by a C∗–algebra BΘ , which is the smallest
algebra containing the Hamiltonian and the translational symmetries. The standard
choice of the Hamiltonian is again the Harper Hamiltonian [9] above, but where
now the Ue are replaced by so called magnetic translation operators, which do not
commute, but satisfy

Ue1Ue2 = exp(
∫

R
Bd S)Ue2Ue1 ,

where R is the rectangle spanned by the two vectors e1 and e2. The aim is then to
classify the algebras BΘ that appear when the magnetic field is varied. There Θ

is the magnetic field parameter. The magnetic fields we considered were constant
magnetic fields, so that there are three real parameters for the coefficients of the field.
We often use the quadratic form Θ̂ corresponding to the B–field B = 2πΘ̂ .

The basic ingredients are like in the commutative case. We can gauge by picking
a vertex and a spanning tree, so that the decorations along the spanning tree and
hence the entries in the Hamiltonian are 1. The other decorations are now some
combinations of magnetic translation operators. It turns out, as we showed, that these
operators satisfy the relations of a non-commutative torus, so that the Hamiltonian
becomes a matrix with coefficients in the non–commutative torus.

In particular for the gyroid, we are dealing with the non–commutative 3-torus.
By definition the non-commutative 3-torus T

3
Θ is the C∗ algebra spanned by 3

linearly independent unitary operators Oi that satisfy the commutation relations
Oi O j = exp(2π iθi j )O j Oi for i, j, k = 1, 2, 3, where θi j is a skew-symmetric ma-
trix determined by the magnetic field. The operators in question are the A, B, C of
(7.6), which now just do not commute anymore. The relation to the classic com-
mutative geometry is given by the fact that the commutative unital C∗ algebra of
continuous complex valued functions on T

3
Θ , that is C∗(T3

Θ) = C(T3
Θ, C) is the

C∗ algebra generated by the three functions exp(ia), exp(ib), exp(ic). The lattice
translations can also be written as matrices with entries in the non–commutative 3-
torus. Thus the algebraBΘ is isomorphic to a subalgebra of the C∗ algebra of 4 × 4
matrices with coefficients in the non–commutative (nc) 3-torus.

The inclusion of the nc 3-torus into the algebra BΘ as the lattice translations is
by definition the nc geometry based on the gyroid in a magnetic field. It captures the
non–commutative deformation of the Eigenvalue cover of the Brillouin zone in the
previous discussion. Tomake the connection, we recall that in general a coveringmap
is a special type of surjection π : E → B which when we regard functions yields
a pull–back map going the other way around: π∗ : C∗(B) → C∗(E) which sends a
function f on B to the function f ◦ π on E . In our case B = T

3
Θ the Brillouin zone

and E is the cover by the Eigenvalues aka energies.
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Fig. 7.15 Hofstadter’s butterfly; the image shows the distribution of energy levels E of Bloch
electrons in a magnetic field in 2 dimensions [36]

An upshot of this theory is that some of the methods, like Chern–classes and
K-theory, that is the theory of bundles with addition and formal difference, carry
over to this setting.

7.3.1 Gyroid in the Presence of a Magnetic Field

There are two series of results. Based on a rather abstract K-theoretic argument fol-
lowing [33], our study predicts a distribution of energy gaps in the gyroid spectrum in
terms of the magnetic field that is a 3-d analogue of Hofstadter’s butterfly [35], which
results in the 2d setting for the Bravais lattice Z

2, see Fig. 7.15. To be more precise,
if the magnetic field is a fixed 3-dim vector, for rational values of the magnetic field,
there are finitely many gaps, for irrational values there are possibly infinitely many
gaps. This is a very interesting result that has not yet been checked experimentally
to our knowledge.

The second series of results characterizes the abstract algebra BΘ . Our calcu-
lations lead to the following conclusions: The algebra BΘ is generically the full
matrix algebra and hence Morita equivalent to the non–commutative 3-torus. It is
true sub–algebra only at finitely many rational points in the parameter space given
by the three parameters of the magnetic field, which we listed explicitly [9]. We will
express the results here in terms of the bcc lattice vectors given in (7.2). B repre-
sents the 3–dimensional vector of a constant magnetic field. We define the following
parameters:
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θ12 = 1

2π
B · (g1 × g2), θ13 = 1

2π
B · (g1 × g3), θ23 = 1

2π
B · (g2 × g3)

α1 := e2π iθ12 ᾱ2 := e2π iθ13α3 := e2π iθ23

φ1 = e
π
2 iθ12 , φ2 = e

π
2 iθ31 , φ3 = e

π
2 iθ23 , Φ = φ1φ2φ3

Our results can then be summarized as follows:

1. If Φ �= 1 or not all αi are real thenBΘ = M4(T
3
Θ).

2. If Φ = 1, all αi = ±1, at least one αi �= 1 and all φi are different then BΘ =
M4(T

3
Θ).

3. If φi = 1 for all i then the algebra is the same as in the commutative case.
4. In all other cases (this is a finite list)B is non–commutative andBΘ � M4(T

3
Θ).

It would be very interesting to find andmeasure special properties of a correspond-
ingmaterial at these values of the magnetic field. There should be a hidden symmetry
or charge associated to the reduction of the algebra to a proper sub–algebra.

7.3.2 P Wire Network in a Magnetic Field

For the simple cubic lattice (and also any other Bravais lattice of rank k, the simple
cubic lattice has k = 3): if Θ �= 0 thenBΘ is simply the noncommutative torus T

k
Θ

and if Θ = 0 then thisB0 is the C∗ algebra of T k . There are no degenerate points.
The analysis of [14] of the quantum Hall effect, however, suggests that there is a

non–trivial noncommutative line bundle in the case of k = 2 for non–zero B–field.
Furthermore, in this case there is a non–trivial bundle, not using the noncommutative
geometry, but rather the Eigenfunctions constructed in [25] for the full Hilbert space
H . This is what is also considered in [26].

7.3.3 D Wire Network in a Magnetic Field

We express our results in terms of parameters qi and χi defined as follows: Set
e1 = 1

4 (1, 1, 1), e2 = 1
4 (−1,−1, 1), e3 = 1

4 (−1, 1,−1). For B = 2πΘ let

Θ(−e1, e2) = ϕ1 Θ(−e1, e3) = ϕ2 Θ(e2, e3) = ϕ3 and χi = eiϕi for i = 1, 2, 3
(7.11)

There are three operators U, V, W , given explicitly in [13], which span T
3
Θ and

have commutation relations

U V = q1V U U W = q2WU V W = q3W V (7.12)
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where the qi expressed in terms of the χi are:

q1 = χ̄1
2χ2

2χ
2
3 q2 = χ̄1

6χ̄2
2χ̄3

2 q3 = χ̄1
2χ̄2

6χ2
3 (7.13)

Vice versa, fixing the values of the qi fixes the χi up to eighth roots of unity:

χ8
1 = q̄1q̄2 χ8

2 = q1q̄3 χ8
3 = q2

1 q̄2q3 (7.14)

Other useful relations are q2q̄3 = χ̄4
1χ

4
2 χ̄

4
3 and q2q3 = χ̄8

1 χ̄
8
2 . The algebraBΘ is the

full matrix algebra except in the following cases in which it is a proper subalgebra.

1. q1 = q2 = q3 = 1 (the special bosonic cases) and one of the following is true:

a. All χ2
i = 1 then BΘ is isomorphic to the commutative algebra in the case

of no magnetic field above.
b. Two of the χ4

i = −1, the third one necessarily being equal to 1.

2. If qi = −1 (special fermionic cases) and χ4
i = 1. This means that either

a. all χ2
i = −1 or

b. only one of the χ2
i = −1 the other two being 1.

3. q̄1 = q2 = q3 = χ̄4
2 and χ2

1 = 1 it follows that χ4
2 = χ4

3 . This is a one parameter
family.

4. q1 = q2 = q3 = χ̄4
1 and χ2

2 = 1 it follows that χ4
1 = χ̄4

3 . This is a one parameter
family.

5. q1 = q2 = q̄3 = χ̄4
1 and χ2

1 = χ̄2
2 . It follows that χ

4
3 = 1. This is a one parameter

family.

The same remark asmade above for the gyroid geometry applies. In this case there
is an even more interesting structure that appears in the phase diagram of algebras.

7.3.4 Honeycomb in a Magentic Field

GenericallyBΘ = T
2
Θ . In order to give the degenerate points, let−e1 := (1, 0), e2 =

1
2 (1,

√
3), e3 := 1

2 (1,−
√
3) be the lattice vectors and f2 := e2 − e1 = 1

2 (−3,
√
3),

f3 := e3 − e1 = 1
2 (3,

√
3) the period vectors of the honeycomb lattice. The param-

eters we need are

θ := Θ̂( f2, f3), q := e2π iθ and φ = Θ̂(−e1, e2), χ := eiπφ, thus q = χ̄6

(7.15)
where Θ̂ is the quadratic form corresponding to the B–field B = 2πΘ̂ .

Our results can be summarized as follows:
The algebra BΘ is the full matrix algebra of M2(T

2
θ ) except in the following finite

list of cases [9]
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1. q = 1.
2. q = −1 and χ4 = 1.

The precise algebras are given in [9]. We wish to point out that q = χ = 1 is the
commutative case and q = −χ = 1 is isomorphic to the commutative case, while
the other cases give non–commutative proper subalgebras of M2(T

2
θ ).

7.3.5 Possible 3d Quantum Hall Effect

Another consequence is that with a suitable material the gyroid channels should
exhibit a 3-d quantum Hall effect. The 3-d quantum Hall effect has been predicted
in different materials from isotropic 3-d crystals to layered structures like graphite.
The gyroid system will be particularly well suited to experimental access given that
it is a super-lattice and has a large lattice constant. With the lattice constant being
this large, the magnetic field required to observe the quantum Hall effect will be in
a normal range (see the discussion in [37]). Indeed the quantum Hall effect for the
graphene type lattice was realized at 13–14nm [38].

Another interesting research direction is provided by the nc geometry of the gyroid
in a constant magnetic field which manifests itself in a type of phase diagram. For
generic values of the magnetic field, the effective non-commutative geometry (nc) is
that of the nc 3-torus. However, there are certain families parameterized by special
values of the magnetic field such that the unit fluxes are particularly tuned, which
correspond to different geometries. It would be exciting to find special behavior of
thematerials at these values. The different geometries could entail further topological
quantum numbers, such as those corresponding to the QHE.

7.4 General Theory and Possible Material Design

So far, we have discussed how to start from a real world structure such as a periodic
wire network and obtain properties from its topology via the use of graphs. In the end,
everything devolved to having a finite graph with decorations. We can reverse this
question. Can one construct materials from the finite graph and what properties are
then forced by this? First, one will have to find a periodic graph Γ in real space R

d ,
which is a cover of the finite graph Γ̄ . This means that Γ̄ = Γ/Z

d where Z
d is the

translational symmetry group. By covering theory [39], we can construct such a cover
for each normal subgroup of the fundamental group of Γ . Since Γ is connected, the
fundamental group is the free group Fb where b is the Betti number of the graph Γ̄ .
This is the number of independent loops, which has the following two interpretations.
If we take a spanning tree of Γ̄ and contract it, we are left with a graph with one
vertex and b loops.More technically b is the rank of the first homology group H1(Γ̄ ).
By general covering theory [39] there is a cover ΓN of Γ̄ for each normal subgroup
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N ⊂ Fb, such that Γ̄ = ΓN /(G/N ). In our case, we are thus looking for normal
subgroups N of Fb such that Fb/N � Z

b. One choice for N , which yields the so
called maximal Abelian cover is the commutator subgroup [Fb, Fb] ⊂ Fb. Modding
out by the commutators makes the free group Fb into the free Abelian group Z

b.
There are other smaller covers with the desired property as well.

Following [40, 41] the abstractmaximalAbelian coveΓ can actually be embedded
as a graph Γ ⊂ R

b1 � H1(Γ̄ , R) with Z
b1 acting on the ambient R

b1 inducing the
covering action on Γ . This graph is called canonical placement and has an energy
minimizing property.

With certain assumptions that are called fully commutative toric non–degenerate
case in [20], we can reconstruct all the data from the finite graph using the maximal
Abelian cover. This is the case for our examples. For the smaller covers one also
needs an embedding N ⊂ Fb which has to satisfy certain conditions. One can go one
step further to the nc case as well by adding abstract operators along the edges, and
then generating a C∗ algebra with them by forcing certain commutation relations.
For example, use a spanning tree, then each edge in the graph not in the spanning
tree is decorated with an operator Oe and these operators are chosen to generate the
b–dim non–commutative torus (this is essentially the toric non–degenerate case).
There are more possibilities here as well.

A systematic study of such decorated graphs and their quantum enhanced symme-
try groups could be used for material design. The cover will tell one which structure
to construct in real space and the quantum symmetry groups will then force degen-
eracies such as Dirac cones.

7.5 Discussion and Conclusion

We have treated three cases of wire networks stemming fromminimal CMC surfaces
as well as the honeycomb lattice underlying graphene in the context of a Harper
Hamiltonian on an abstract quotient graph. We were able to derive level crossings
in the band structure analytically and characterize them completely using methods
from singularity theory and representation theory. This leads to a complete theoretical
understanding of all degeneracies in the spectra. Among other results, we showed
that the gyroid wire network is the only geometry exhibiting isolated Dirac points
in 3d. In the presence of a magnetic field, we proposed a new approach from non–
commutative geometry that characterizes the spectrum for the gyroid wire network
as 3d analogue of Hofstadter’s butterfly and leads to a classification of the abstract
algebra BΘ . Combined with specific material dependent properties and knowledge
about the Fermi level, we expect that this leads to new results and predictions about
a possible phase diagram. Let us briefly discuss the series of results that may be
relevant for an experimentalist. The gyroid wire network is a new, complex system
that could exhibit a 3-d quantumHall effect and provide a fractal Hofstadter butterfly,
much like a 3d analog of graphene. Furthermore it has a modified behavior at special
parameters of the magnetic field. Without magnetic field, again parallel to graphene,
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the gyroid has a linear dispersion relation at its Dirac points, which are additionally
protected by topological charges. The feasibility of these speculations comes from
the synthesis of this material at the 18nm scale, which constitutes a super-lattice that
affords the necessary fluxes.

We furthermore propose to use the present study as the starting point to design
specific materials that have desired properties. We argue that it is sufficient to impose
constraints on the abstract finite quotient graph to obtain them in the full lattice
structure. This could be a very powerful method.

More generally our methods apply to a wide range of periodic systems and can
be expanded to other lattices and geometries.

Acknowledgements BK thankfully acknowledges support from the NSF under the grants PHY-
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Chapter 8
Entangled Proteins: Knots, Slipknots,
Links, and Lassos

Joanna I. Sulkowska and Piotr Sułkowski

Abstract In recent years the studies of entangled proteins have grown into thewhole
new, interdisciplinary and rapidly developing field of research. Here we present vari-
ous types of entangled proteins studied within this field, which form knots, slipknots,
links, and lassos.Wediscuss their geometric features and indicatewhat biological and
physical role the entanglement plays. We also discuss mathematical tools necessary
to analyze such structures and present databases and servers assembling information
about entangled proteins: KnotProt, LinkProt, and LassoProt.

8.1 Introduction

Entanglement of geometric objects is an important and fascinating phenomenon. On
one hand it leads to deep mathematical problems, which are studied within branches
of mathematics such as topology; several Fields medals have been awarded for such
work, in particular in knot theory. On the other hand entanglement is common in
Nature and plays a role in physical, chemical, and biological systems. Nobel prizes
related to topology have been awarded in 2016 in physics and chemistry. Topology,
and entanglement in particular, are important, because they take into account not just
local, but global properties of systems under consideration. This sheds new light on
such systems and often requires developing new tools to analyze them.
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The study of topology and entanglement is particularly interesting when it con-
cerns real physical systems, and at the same time poses theoretical and mathematical
challenges. This is the case of entangled proteins, whose studies we summarize in
this work. On one hand, it is unbelievable that such complicated structures would
evolve accidentally, so there must be some physical and biological role of entangle-
ment. On the other hand, the study of entangled proteins poses new mathematical
challenges, for example a description of knots on open chains. Entangled proteins
have been very actively studied in recent years, along with the development of new
mathematical tools that enable their characterization.

In this work we summarize studies of entangled proteins, which in recent years
have gained the status of a new branch of interdisciplinary research, involving bio-
physics, biochemistry, mathematics, and computer science. Historically knotted pro-
teins attracted attention first, so – after a brief introduction on what we mean by
entanglement in general – we discuss first their properties. Subsequently we discuss
properties of other entangled structures identified in proteins: slipknots, links, and
lassos. We present both theoretical and mathematical tools to describe such struc-
tures, as well as their biological role and physical features.

8.2 Entanglement in Proteins

Proteins are long chains made of amino acids. They are often described in terms of
primary, secondary, and tertiary structure. However such a description does not take
into account an important feature of a protein chain that we refer to as entanglement.
To describe it, it is sufficient to represent a protein as a one-dimensional chain, or
a polygonal shape made of a series of segments spanned between consecutive Cα

atoms. From a mathematical perspective, when such a one-dimensional chain is
embedded in a three-dimensional space, it can non-trivially wind around itself. By
the entanglement we understand a pattern of such winding.

There is a branch of mathematics called knot theory, which studies properties
of entangled chains. However the most important feature of chains studied in knot
theory is that they are closed, i.e. they don’t have loose ends. Such entangled closed
chains are called knots, and – apart from closing the chain – they resemble knots
that we know from our daily life. Similarly as in daily life, one can also consider
knots in open chains, especially if the ends of such chains are long enough – however
such knots are not uniquely defined, and they can be untied by a sequence of smooth
manipulations (which do not involve cutting of the chain). On the other hand, knots
on closed chains cannot be untied without cutting a chain – therefore they can be
uniquely defined, and a given type of a knot can be assigned to a given entangled
configuration. In this sense knots, as understood mathematically, are referred to as
topological objects.

It turns out that protein chains can also be knotted [5, 29, 32, 42, 43, 71, 76] – at
least in the imprecise sense of knotting that we use in daily life. As proteins do have
loose ends, it is not possible to assign types of knots uniquely to their configurations.
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Fig. 8.1 Several classes of entangled structures identified in proteins (from left to right): knots,
slipknots, links, lassos. Here we present only one basic example from each of those classes – more
complicated examples are discussed in what follows

Nonetheless, it often happens that termini of a protein are long enough, so that a
type of a knot can be assigned to a protein, at least approximately. For this reason
one can take advantage of various tools and techniques from knot theory when
studying entangled proteins. On the other hand, these tools should be used carefully
and they are often insufficient to characterize configurations of open chains – some
additional information should also be provided in this case, and some new techniques
are necessary to study knotted proteins. As within the last decade it turned out that
knotted proteins are much more common than originally believed, such techniques
have been developed, as we will discuss in what follows. Knotted proteins are the
first class of entangled structures that we discuss in this work – a simple example
of a knot formed in an open chain (which could be a protein backbone) is shown in
Fig. 8.1.

One interesting feature of entangled proteins is that they can form configura-
tions which are trivial from the topological and knot theory viewpoint, however – in
appropriate sense – they are still entangled. One example of such a configuration is
called a slipknot [32, 63]. It consists of two loops, one threaded through the other,
as shown in Fig. 8.1. If two termini of a slipknot are pulled, the two loops disentan-
gle; equivalently, after connecting two termini of a slipknot in the simplest possible
way (e.g. by extending them far away), the configuration represents mathematically
trivial knot. As in knot theory a slipknot configuration would be regarded as trivial,
some novel tools are necessary to describe its geometry – and this is an important
task, because it turns out that the entanglement of the two loops of a slipknot has
interesting consequences and affects proteins’ properties. Proteins with slipknots are
the second class of entangled structures that we discuss in this work.

So far we have briefly explained what we mean by entanglement of open chains.
However the pattern of entanglement can be more involved once additional linkages,
such as disulfide (or other) bridges are taken into account. When such bonds are
present, then proper loops in a protein chain can be also considered (i.e. closed loops
formed by only a part of the whole chain). In principle such proper loops might
themselves be knotted, which however has not been observed to date. Nonetheless,
when two or more loops are present in a given chain, they can be entangled and
form structures called links in knot theory [11], see Fig. 8.1. Such links are non-
trivial topological objects and can be classified using knot theory tools. Links that
are formed on chains with disulfide linkages we call as deterministic, because they
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are made of closed loops and their topology is uniquely determined. In addition, one
can also consider links made of several chains that form a dimer, trimer, etc., after
their termini are connected (e.g. closed on a large sphere) – we call such links as
probabilistic. Proteins with links are the third class of entangled structures discussed
in what follows.

Once disulfide bridges are taken into account, one can also consider configurations
where one or two termini of a protein chain pierce through a loop closed by such
a bridge. Such configurations are called lassos [13, 45], see Fig. 8.1. Even though
they can be regarded as topologically trivial and – similarly to knots in open chains
– cannot be uniquely defined, they also have interesting biological and physical
consequences. Lassos are the last class of entangled structures that we discuss in this
work.

One important conclusion of the work summarized here is that, first of all, entan-
gled structures exist in proteins – even though for a long time it was believed that they
are too complicated to form [42]. Another very important result is that the entangle-
ment has certain biological and physical role.Moreover, studies of entangled proteins
pose new challenges inmathematics, computer science, and other related disciplines.
For all these reasons the new, interdisciplinary field of entangled proteins is rapidly
growing, and despite many fascinating results found in last years, we have no doubts
that a lot more is still to be discovered.

8.3 Proteins with Knots and Slipknots

The first class of entangled proteins that we discuss are proteins with knots. As
mentioned above, because proteins have loose ends, it is not possible to identify
uniquely knots formed by their chains. It is however possible to identify such knots
using probabilistic methods. In this section we present basic properties of knots in
mathematical sense, discuss how to describe knots and slipknots in proteins using this
language, and summarize which (families of) knotted proteins have been identified
to date. We also briefly discuss folding mechanisms and how the presence of knots
affects the function of proteins.

8.3.1 Classification and Description of Knots

To present mathematical knots on closed chains it is useful to project them on a two-
dimensional plane. A type of a knot is then encoded in a pattern of crossings formed
by the projection of the chain. It is always possible to minimize the number of such
crossings by smooth transformations of the chain, which do not involve cutting it.
On the level of the two-dimensional diagram such transformations can be reduced to
three elementary operations, referred to as Reidemeister moves, see Fig. 8.2. Various
topological types of knots can be classified in terms of equivalence classes (with
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Type  I Type  II Type  III

Fig. 8.2 Reidemeister moves

respect to Reidemeister moves) of their diagrams. It is also very useful to introduce
so called knot invariants – various mathematical objects, such as numbers or some
functions, which can be uniquely assigned to a given knot type (so that they do
not change under Reidemester moves). Knot invariants are used to distinguish and
classify knots: they can be computed for two given knots, and if the results are
different, it means that these knots have different topological type. One ultimate goal
of research in knot theory is to construct an invariant which would distinguish all
knots, i.e. if it would take the same value for two knots, it would mean that these two
knots are of the same type. Such an invariant is still not known, however invariants
that we know these days are sufficient to distinguish relatively simple knots found
in proteins.

The simplest knot invariant is the minimal number of crossings in a two-
dimensional knot diagram obtained from the projection of a knot; this is simply
called the number of crossings. For a trivial knot (i.e. unknotted loop), which is
denoted 01, this number is zero. There is no knot with one or two crossings, i.e. any
such configuration can be smoothly reduced to, and represents the unknot. There is
one knot with three crossings, called the trefoil and denoted 31, and one knot with
four crossings, called the figure-eight knot and denoted 41. There are two different
topological types of knots with five crossings, denoted 51 and 52, and three types of
knots with six crossings 61, 62 and 63. Some of the knots mentioned here (in fact
those identified in proteins to date) are shown in Fig. 8.3. The number of different
knots with fixed number of crossings grows very rapidly; for example there are 21
knots with eight crossings, and 165 knots with ten crossings. In the notation we just
mentioned themain number denotes the number of crossings, and the subscript labels
different knots (with a given crossing number) – so that, for example, 31 denotes a
unique (the only one) knot with three crossings.

In addition, each knot may arise in two forms, which differ only by the mirror
image. Sometimes we distinguish the mirror image by adding plus or minus sign in
the notation of the knot; for example two versions (mirror images) of the trefoil knot
are denoted 3+

1 and 3−
1 . For some knots their mirror image is identical to the original

knot – for example 41 knot has this property.
The number of crossings is not a strong invariant – it identifies uniquely only

the unknot, trefoil, and figure-eight knot, and for more crossings there are many
different, inequivalent topological types of knots with the same number of crossings.
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Stevedore’s knot

  Δ(q) = - 2 + 5q - 2q  Δ(q) = - 2 - 3q - 2q  Δ(q) = - 1 + 3q - q   Δ(q)= - 1 - q + q Δ(q) = 1 2 2 2 2

01 1 4 1 5 2 6 13

Fig. 8.3 Unknot (denoted 01, left) and examples of non-trivial knots (in closed chains), which have
been identified in proteins to date: trefoil (denoted 31), figure-8 knot (denoted 41), 52 knot, and
Stevedore’s knot (denoted 61). Below each knot its Alexander polynomial is given

For this reason more powerful knot invariants are introduced. There is a large family
of knot invariants known as knot polynomials, which are much stronger, i.e. they
have different values for more knots, and thus they enable to distinguish more knots.
Such polynomials may depend on one or more variables. For example, the so called
Alexander polynomial �(q) and Jones polynomial J (q) depend on one variable q.
More intricate HOMFLY-PT polynomial P(a, q) [21, 50] depends on two variables,
and reduces to Alexander and Jones polynomials respectively for a = 1 and a = q2.
These polynomials can be determined from a two-dimensional diagram of a knot,
and – as we explain in what follows – we also use them to identify knots in proteins.
Alexander polynomials for knots identified in proteins are given in Fig. 8.3.

One challenge in analyzing knots in proteins is the fact that protein chains are
open. To assign a type of knot to an open chain formed by a protein, one may
transform it into a closed chain by joining its termini. The problem is that such an
operation is not unique, and various knot types may be created depending on how
two termini are connected. One simple way to form a closed loop is to connect two
termini by a straight segment. However such an operation may lead to other knot
than intuitively seen, especially in case when the termini are located far from each
other and the entangled region. It is therefore more reasonable to connect the termini
to two points – or the same point – on a large sphere surrounding a protein [18,
43], see Fig. 8.4. This gives more reasonable results, however the resulting type of
knot may still depend on the details of the method and it is not unique (e.g. it may
depend on the choice of such a point or points on a sphere). The best way to cope
with this problem is to choose many equally distributed points on a sphere, and –
connecting the termini through all those points – compute probability of forming
various knots. This is the method that we often use in order to determine a type of
a protein knot – for example, after connecting the termini as mentioned above, we
calculate the knot polynomial which determines the knot type [29].We also introduce
the minimal probability, typically of the order of 40%, necessary to regard a given
structure as knotted (in other words, if a probability of detecting each type of a knot
by connecting the termini in various ways is smaller than this 40%, we regard the
structure as unknotted). Unless otherwise stated, in case one particular knot type is
assigned to a protein, this means that this knot is formed with the highest probability.
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Fig. 8.4 To assign a knot type to an open chain one can either connect two termini to two points
on a large sphere surrounding this chain (left), or to connect these two termini directly by a straight
segment (right)

Influence of the knot detection method on the type and probability of identified knots
was analyzed among others in [14, 73].

Once we can assign knot types to open chains, we can also define geometric
quantities that characterize such knots, in particular the knot core and knot tails.
The knot core is the shortest subchain of a given chain, for which a given knot type
is detected; it can be easily determined by cutting consecutive residues from both
termini, and checkingwhether the remaining chain is still knotted (in the probabilistic
sense described above). Knot tails, by definition, consist of all residues which do not
form the knot core, i.e. these are parts of the backbone chain between either of
its termini and the knot core. We also characterize protein knots as being deep or
shallow; the latter ones are those which can be untied by thermal fluctuations, and
typically their tails consist of not more than a few residues. Deep knots cannot be
untied by thermal fluctuations and they have longer tails.

In the analysis of protein knots we also use the so called KMT algorithm [34],
which simplifies a given chain without changing its topology. This algorithm works
as follows. We analyze triangles determined by all triples of consecutive residues
(represented by Cα atoms). In case such a triangle is not pierced by any other segment
of the protein chain, we remove the middle residue from a given triangle (and so
reduce the triangle to the segment connecting remaining two residues), see Fig. 8.5.
This operation simplifies the (closed) chain without changing its topological type.
Such operations are performed as long as possible, leading ultimately to a simplified
chain. In particular, if the chain is reduced to only three residues, this means that
the original configuration represented the unknot – therefore the KMT algorithm is
a simple method to check whether a given chain is not knotted (one should however
be careful when interpreting the results of the KMT algorithm – there are certain
peculiar unknotted configurations that cannot be reduced simply to three residues).
It is also useful to use the KMT algorithm before calculation of knot polynomials –
this may significantly reduce their computation time.
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Fig. 8.5 KMT algorithm. If a triangle defined by three consecutive residues (represented by Cα

atoms) is not pierced by any other segment of the backbone chain, then the middle atom in this triple
is removed. This operation is repeated for all consecutive triples of residues as long as possible,
resulting in a simplified chain with the same topology

8.3.2 Proteins with Knots and Slipknots – KnotProt Server
and Database

For a long time it was believed that knots cannot be formed in proteins, due to their
complexity. A possibility of finding knots in proteins was discussed for the first time
by Mansfield, who also found a shallow knot in human carbonic anhydrase [42].
The first example of a deeply knotted protein was found by Taylor in 2000 [71],
and subsequently other examples of knotted proteins were identified [32, 39, 43,
76]. The most complicated protein knot is the Stevedore’s knot 61, identified in [5].
Proteins with slipknots were identified and analyzed e.g. in [32, 63].

These days the main source of data that facilitates detection of knots is the Protein
Data Bank (PDB, or RCSB database), which stores geometric configurations of more
than hundred thousands proteins. It is impossible to identify knots in such a large set
of proteins without the use of mathematical and computer tools. In fact, detection
of a knot even in a single protein is usually impossible just by a naked eye, due
to the complicated entangled structure of the backbone chain. This is why various
algorithms and mathematical techniques that we summarized above, involving in
particular computation of knot polynomials, are indispensable in the search of knots
in proteins. Several databases that store information about knotted proteins were
constructed some years ago, for example [33, 35]. However, a modern database
and server that stores up to date (and regularly updated), and much more extensive
information about proteins with knots and slipknots, is the KnotProt [29], whose
features we summarize in what follows.
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TheKnotProt database, http://knotprot.cent.uw.edu.pl, contains information about
all proteins with knots or slipknots. This database contains not only the information
about a type of a knot in a given protein and some of its geometric features (e.g. the
length of loose ends and the size of the knotted core), but it also presents an internal
geometric structure of a given protein in terms of a matrix diagram, which is called
the knotting fingerprint. The form and properties of such diagrams will be introduced
in the next section. Moreover, the database presents extensive information about the
biological function of proteins with knots and slipknots, structural and homological
similarity to other knotted or unknotted proteins, and various statistics. In addition,
the KnotProt database enables users to upload protein or polymer structures, analyze
whether they form knots or slipknots, and generate their knotting fingerprints.

As of today (spring 2017), there are 993 knotted chains identified in KnotProt,
and 473 chains with slipknots. This is around 2% of all proteins deposited in the
Protein Data Bank. Knotted proteins are found in all kingdoms of life [30]. Knots are
found in globular proteins, including those from mitochondria or a ribosome, and in
membrane proteins. Around 90% of knotted proteins act as enzymes, whose active
site – responsible e.g. for binding ligands – is located in the knotted core. Some
knotted proteins are responsible for DNA binding, and some still have an unknown
function. The biggest family of proteins with a deep knot is the SPOUT family [72].
The smallest and rather deeply knotted protein, frommethanocaldococcus jannaschii,
consists of 92 amino acids and is known as MJ0366. The deepest knot is found in
protein with unknown function from T. pallidum (PDB code: 5ijr chain A) – its tails
have length of at least 100 amino acids. This protein consists of three domains and the
middle one is knotted. A deep knot exists also in the family of membrane proteins,
calcium exchanger protein (e.g. protein with PDB code 4k1c). A protein structure
with an artificial (designed) knot is also known [31].

We present a list of representative proteins with knots and slipknots, based on
the KnotProt database, in Tables8.1 and 8.2. In the first column of these tables
representative entangled proteins are listed, grouped according to their function, and
PDB codes of such representative structures are given in the second column. In
Table8.1 in the third column a type of a knot for the whole chain is provided. In the
last column of both tables knotting fingerprints (whose meaning is explained below)
of respective structures are given.

8.3.3 Knotting Fingerprint for Knots and Slipknots

As we discussed earlier, knots in proteins are formed in open chains, which is sub-
tle from mathematical perspective and enables their identification only in a prob-
abilistic manner. However, once a relevant definition of knots in open chains is
provided, it can be used not only to determine a type of the knot for the whole chain
under consideration, but also for all subchains of such a knot. Such an analysis pro-
vides much more accurate and detailed information about entangled proteins. It also
enables rigorous detection of slipknots, which can be defined as chains which are

http://knotprot.cent.uw.edu.pl
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Table 8.1 A list of families of proteins with knots (following [30]). In the second column a
representative structure of each family is given (PDB codes include the chain identificator as the
last letter, in the subscript). In the third column the knot type is given, and in the last column the
knot fingerprint is provided (whose meaning is explained in the text). A sign in the superscript of
the knot type denotes its chirality

Protein family PDB code Knot Fingerprint

Enzymes:

α-haloacid dehalogenase I 3bjxA 6+
1 K6+

1 6
+
1 413

+
1

Ubiquitin C-terminal hydrolase 2etlA 5−
2 K5−

2 3
−
1 3

−
1

Chromophore binding domain 2o9cA 41 K4141

CII Ketol acid reductoisomerase 1yveL 41 K413
+
1

Mitochondrial apoptosis-inducing factor 1∗ 5fmhA 3−
1 K3−

1 3
−
1

Methyltransferase (α/β knot)

tRNA methyltransferase 1uakA 3+
1 K3+

1

rRNA methyltransferase 2egvA 3+
1 K3+

1

protein methyltransferase 5h5fA 3+
1 K3+

1

Carbonic anhydrase II 1lugA 3+
1 K3+

1

SAM synthetase 1fugA 3+
1 K3+

1

Transcarbamylase fold 1js1X 3+
1 K3+

1

N-acetylglucosamine deacetylase 5bu6A 3+
1 K3+

1

DNA binding:

Zinc-finger fold 2k0aA 3−
1 K3−

1

Ribbon-helix-helix superfamily:

MJO366 2efvA 3−
1 K3−

1

VirC2 2rh3A 3−
1 K3−

1

DndE 4lrvA 3−
1 K3−

1

Unknown function:

Protein from T. pallidum 5jirA 3+
1 K3+

1

Artificial proteins:

Artificially (designed) knotted protein 3mlgA 3−
1 K3−

1

Ribosome subunits:

Mitochondrial ribosomal protein 4v1aw 3−
1 K3−

1 3
−
1 3

−
1 3

−
1

Membrane proteins:

Calcium exchanger protein:

NCX 5hwyA 3+
1 K3+

1

2jlo 4kppA 3+
1 K3+

1



8 Entangled Proteins: Knots, Slipknots, Links, and Lassos 211

Table 8.2 A list of families of proteins with slipknots. In the second column a representative
structure of each family if given (PDB codes include the chain identificator as the last letter, in the
subscript). In the last column the slipknot fingerprint is provided (whose meaning is explained in
the text). A sign in the superscript of the knot type denotes its chirality

Protein family PDB code Slipknot fingerprint

Membrane proteins:

Cation symporter – 2 3qe7 S3+
1 413

+
1 3

+
1 3

+
1

Neurotransmitter symporter 2a65 S3+
1 413

+
1

Hydantoin transporter 2jlo S3+
1 413

+
1

AA-permease 3gia S3+
1 413

+
1

Sodium transporter, SSF 3dh4 S3+
1 413

+
1

Glycine betaine transporter BetP 2wit S3+
1 413

+
1

Glutamate symport protein 4p19 S3+
1 3

+
1

Enzymes:

Colicin-E9 5ew5A S3+
1 3

+
1 3

+
1 3

+
1

Colicin-E7 1yve S3+
1 3

+
1 3

+
1 3

+
1

Colicin-E3 1jch S3+
1 3

+
1 3

+
1 3

+
1

Ectonucleotide pyrophosphatase 4zg6 S3−
1

Cytochrome 5udyA S3+
1

Arginine decarboxylase 2qqdC S3+
1

Nucleotide diphosphatase 3szzA S3+
1

D-ribose pyranase 1ogfA S3+
1

unknotted as a whole, but which possess a subchain which is knotted. It is convenient
to present an information about knotting of all subchains of a given chain in terms
of a matrix diagram, called knotting fingerprint, see Fig. 8.6, which was introduced
in [67] following [32].

More precisely, the knotting fingerprint presents data about knotting of each sub-
chain of a given chain in a lower-triangular part of matrix of the size N × N , where
N is the length of the whole chain. The position (i, j) of this matrix represents a
subchain spanned between i th and j th residue of the backbone chain, and it is col-
ored according to the type of the (most probable) knot formed by this subchain. The
intensity of the color corresponds to the probability of forming such a knot. Typi-
cally such a matrix diagram consists of several approximately rectangular regions,
which represent various types of knots spanned by various subchains. Such a dia-
gram is a source of various interesting information. First, it enables identification
of the minimal length of the knotted region (i.e. the size of the knotted core), the
depth of a knot (i.e. the number of amino acids that can be removed from either end
of the protein chain before converting it from a knot to a different type of knot or
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Fig. 8.6 An illustration of knotting fingerprintswhich shows how to interpret them (following [67]).
Horizontal and vertical edges of each triangle represent the backbone chain (from N to C terminus).
For each point (i, j) in the matrix diagram we verify whether a subchain stretched between i th and
j th residue is knotted – if so, we color this point (in black in this example). If the whole protein
chain forms a knot, then the neighborhood of the left bottom corner of the matrix diagram is black
(left panel). If the whole chain is not knotted but contains a slipknot, then the left bottom corner
is not black (middle and right panels). The location of the black rectangles enables to determine
the knotted core (the largest subchain of the whole chain for which a knot is still detected), and
remaining parts of the chain are referred to as knot tails (left panel). In case of slipknots, we can
analogously determine the location of various parts of the chain, referred to as the slipknot loop,
knotted core, and slipknot tails (middle and right panels)

an unknot), and other geometric data characterizing a knot. Second, the location of
various knots along the chain indicates their biological and physical role, especially
if it is correlated with the location of active sites.

It is also useful to encode the pattern of knots on subchains of a given chain in a
simplified notation, which lists all those types of knots identified in the fingerprint
matrix. For example by K4131 we denote a protein which forms 41 knot, and which
possesses a subchain forming 31 knot; the initial letter K means that the whole
chains forms 41 knot. In case the whole chain forms a slipknot the letter S is used;
for example, S4131 means that the whole chain forms a slipknot, and some of its
subchains form knots of type 41 and 31. Knotting patterns (including the orientation
(or mirror image) of identified knots, denoted by ± in the superscript) of some
representative proteins with knots and slipknots are provided in the last column in
Tables8.1 and 8.2.

In Fig. 8.7 we present examples of the most complicated fingerprints of a knot
and a slipknot found to date. The knotted chain (left) with the fingerprint K61614131
is the structure of DehI (PDB code 3bjx chain A). The chain with the slipknot (right)
with the fingerprint S3141313131 is the crystal structure of uracil transporter–uraa
(PDB code 3qe7A). Fingerprints for all protein structures with knots and slipknots
identified to date can be found in the KnotProt database.

8.3.4 Folding of Knotted Proteins

An important challenge in the study of entangled proteins is to understand and
describe not only their geometric configurations which determine biological
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Fig. 8.7 Most complicated knotting fingerprints identified in the KnotProt database. The knotted
protein (PDB code 3bjx chain A, left) forms 61 knot, and its various subchains form also another
61 knot and 41 and 31 knots – such a configuration is denoted schematically as K61614131. A
protein with slipknot (PDB code 3qe7 chain A, right) is unknotted as a whole, however some of its
subchains form 41 and various 31 knots. Each type of knot is denoted by different color (31 – green,
41 – orange, 61 – blue), whose intensity corresponds to probability of detection of this type of knot.
Cartoon representations of these two proteins are also shown in each case, with colors changing
from red at the N-terminus to blue at the C-terminus

activity and function, but also folding mechanisms which lead to such configura-
tions. Even though some experiments with knotted proteins have been conducted, in
recent years their folding mechanisms have been studied mainly theoretically, using
various coarse grained models. Knots identified in proteins to date are of twist type,
and they can be made in one step, by threading of a tail through a twisted loop (the
number of twists determines the type of the resulting knot). Current results suggest
that knots are not made spontaneously along the protein backbone (and then slight
to the final native location), but they are created in two main steps [64]: the first
is formation of a twisted native loop, and the second is threading a shorter knot
tail through this loop, as shown in Fig. 8.8. In case of proteins with more complex
structure, twisted native loop flips over a core of the protein creating e.g. the 61 knot
also just in one step [5]. Flipping mechanism was also observed for proteins with
slipknots [64].

One of the most commonly analysed proteins are Yibk and YebA, members of
SPOUT family, which possess a deep trefoil knot. Theoretical studies with an unbi-
ased structure based model revealed that these proteins can self tie, via formation of
a twisted loop and threading shorter C-terminal tail [64]. Detailed analysis showed
that the tail threads through the twisted loop in the slipknot configuration and this
threading is a rate limiting step. The same pathway is also observed when non-native
contacts are introduced [79]. Even though these proteins have been very extensively
studied, still only kinetics pathways are known [41, 54, 74].



214 J. I. Sulkowska and P. Sułkowski

Fig. 8.8 Twist knots (which
are found in proteins) are
created by forming a loop
and twisting it several times,
and then threading one
terminus through this loop

The free energy landscape however has been uncovered theoretically for a few
small knotted proteins with rather shallow knots. In particular reversible folding via a
slipknot conformation was observed for the smallest knotted protein (known to date),
MJ0366 [48], with a structure based model, and it was further extensively studied
e.g. in [4, 44]. Furthermore, explicit all atom simulations showed that this protein
can self-tie and electrostatic interactions facilitate tying of a knot [49]. The self-tying
mechanism of MJ0366 was also suggested experimentally [80]. Reversible folding
was also observed for artificially designed proteins [31], where both theoretical and
experimental studies suggested that topological constrains are responsible for their
slower folding [37, 66].

Theoretical studies of proteins with more complex knots, such as 52 and 61, also
suggest that knotting happens just in one step, which in this case corresponds to
flipping the twisted loop over the core of the protein [5, 83]. Moreover folding of
those proteins consists of parallel pathways and intermediates steps. Experimental
studies of these proteins suggest that their folding mechanism involves at least one
intermediate state, see e.g. [2, 36], and proteins are prone to misfold at the final
state of folding [38, 81]. Influence of knot type on folding pathway based on lattice
models was also investigated, e.g. in [20, 56].

Since proteins in vivo are surrounded by crowded environment and their folding
could be supported by chaperons, or they could fold cotranslationally, it was also
analyzedhow these aspects affect knottingmechanism [8, 40, 57]. For example,when
a chaperon is approximated by a cylindrical box, it was found that knotting is still a
rate limiting step, however a chaperon significantly smooths the free energy landscape
for smallest knotted proteins MJ0366, VirC2 and DndE [47], as well as proteins
with complex fingerprint 523131 [83]. Experimental study on YibK, YebA shown
that chaperon can significantly speed up the folding process [40]. Cotranslational
knotting with theoretical methods was extensively studied e.g. in [8].

Even though in principle the folding pathways leading to knotted configurations
have been proposed, the origin (type of interactions) of the driving force needed
to overcome the topological barrier [12, 55], and the influence of chain stiffness
[66], are still under investigation. Moreover it is important to mention that a certain
exception in folding mechanism was observed based on a three domain protein from
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T. Pallidum (PDBcode 5jir chainA)where themiddle domain is knotted. This protein
probably folds via a shallow knot formed at random position [30]. Other approach
to understand free knotting mechanism and reviews discussing folding pathways of
knotted proteins can be found e.g. in [19, 28, 68, 77].

8.3.5 Function of Knotted Proteins

Another crucial challenge, apart from characterizing folding and geometry of entan-
gled proteins, is to understand what is the role and the function of entanglement. This
question is currently actively studied. A review of all knotted proteins shows that
the topological fingerprint is well conserved in proteins separated even by million
years of evolution and very low sequence similarity [67]. Moreover, more than 90%
of known knotted proteins are enzymes, whose active sites are located inside the
knotted core. These observations suggest that knots provide some advantages for the
hosting organism.

Analysis of analogous proteins having the same function – methylation of tRNA
[27] – but different topology also reveals some information about the role of a knot.
An example of such a pair of proteins involves a bacterial one with a trefoil 31 knot
(TrmD), and an eukaryotic one which is unknotted (Trm5). As showed in [7], the
knot responds to the motions of the whole protein, even though it belongs to the rigid
part of the structure. The trefoil knot in the TrmD protein is capable of transferring
the signal coming from the substrates further through the protein, by its internal
moves. Mutations of key residues in the area of the knot suppress this motion and
make the protein unable to conduce the methyl transfer. The fact that the knot plays a
role in the enzymatic function suggests that knots play more profound role than just
stabilizing the structure. Stabilizing role of knots however should not be neglected,
and it is important e.g. in phytochromes, which are red/far-red light photoreceptors
that direct photosensory responses across the bacterial, fungal and plant kingdoms
[17, 78]. The binding pocket of those proteins is stabilized by a deep figure-eight
knot. Some other suggestions about the role of knots are presented in [14, 53].

Additional information about knots in proteins was obtained based onmechanical
manipulations, via single molecule experiment both in vitro and in silico (by com-
puter analysis) [51, 58]. First, molecular dynamics simulations with structure based
model [59, 60] showed that a knotted protein is more resistant than an unknotted one
[61]. Second, it was found in [6, 62] that upon pulling proteins by their termini, knots
tighten along the backbone at deterministic locations. Conditions to untie knotted
proteins were established in [65] and tested experimentally in [84]. Furthermore, it
was shown that knotted proteins can block or be pulled through narrow channels,
depending on the applied force [69, 70, 82]. A surprising tying of a knot on the
protein backbone was also observed in thermal and chemical denaturation [3, 41].
Furthermore, mechanical manipulations of proteins with slipknots showed that they
form certain metastable conformations [25, 26, 63].
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8.4 Links in Proteins

In knot theory, apart from knots, also another class of entangled structures is consid-
ered, which are called links. A link consists of several closed loops (called compo-
nents of a link), such that each of those loops may be knotted, and moreover pairs,
triples, etc. of loops can be simultaneously interlinked. Any knot may be regarded
as a link with only one component. The simplest example of a non-trivial link is the
Hopf link, formed by two loops linked in the simplest possible way. Another link
that can be made out of two loops is the Solomon link. Hopf link and Solomon link
are shown in Fig. 8.9 (in the middle).

Links in proteins have been identified only very recently, and they can be con-
sidered from two perspectives [11]. First, links can be identified in a single protein
chain if it has additional linkages, for example disulfide bridges. Each such bridge
defines a closed loop, and if several such loops are present in one protein chain, then
the whole structure forms a link (which is nontrivial if those loops are interlinked).
Importantly, links defined in such a way are properly defined from mathematical
perspective and there is no need to consider probabilistic methods to identify them –
we call such links deterministic. Once orientation of component loops is introduced
– e.g. induced from the orientation of the backbone fromN to C terminus – the notion
of chirality of links can be defined, see Fig. 8.9.

Fig. 8.9 Deterministic links identified in proteins (following [11]): the Hopf link and the Solomon
link (whose mathematical structure is shown in the middle). In the left a cartoon representation of
a protein forming a given link is shown. A schematic representation of protein backbone is shown
in the right, with two link components in blue and red, the linkages in orange, and remaining parts
of the protein chain in black. The orientation of each component loop can be induced from the
orientation of the backbone from N to C terminus – once it is taken into account, two types of the
Hopf link can be considered
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Table 8.4 Families of proteins (following [11]) with the Solomon link. For each family the function
and a representative chain are given respectively in the second and the third column. L1 and L2
denote the size of the two loops of the Hopf link, P1 and P2 is the signed index of a residue piercing
through each of those loops. “# of hom.” is the number of homologs for a given structure, “# of
loops” is the number of disulfide-based covalent loops in the structure (e.g. if 4, there are 2 covalent
loops forming the Solomon link and two trivial covalent loops), “Size” is the number of residues
in the structure, “Loop sep.” is the sequential distance between the loops

Protein family Classification PDB
code

L1 P1 L2 P2 # of
hom.

# of
loops

Size Loop
sep.

Flocculation
protein

Cell adhesion 2xjpA 146 −218 87 −142 19 4 258 0

−252 −165

Epa1A Cell adhesion 4aslA 129 −221 82 −147 15 3 229 0

−253 −170

On the other hand, links can also be made of several separate chains, which form
dimers, trimers, etc. [15]. To identify such links, each component chain must be
closed (e.g. by connecting its termini on a large sphere, similarly as in the case of
knots), and then the HOMFLY-PT polynomial is calculated. A type of such a link
may depend on details how termini of all chains are connected, and so we call such
links as probabilistic.

All proteins with links identified in the Protein Data Bank are presented in the
LinkProt database [15], available at http://linkprot.cent.uw.edu.pl. As of spring 2017,
124 deterministic and 8456 probabilistic links (1071 linked proteins with 30% of
sequence similarity) have been identified in this database. This database is also reg-
ularly updated, so that it always contains an up to date list of proteins with links.
Deterministic links identified in proteins to date form one of two simplest links –
Hopf link and Solomon link – as shown in examples in Fig. 8.9. Once the orientation
of two component loops is introduced, one can consider two versions of the Hopf
link, and both of them are found in proteins (in this case there is a natural orientation
of each loop induced by the ordering of the protein from N to C terminus). In Fig. 8.9
in the left a cartoon representation of a given protein is shown, and in the right the
protein backbone is shown in a simplified way, with link components colored in
blue and red, linkages (closing the loops) shown in orange, and remaining parts of
the protein chain in black. Furthermore, all non-redundant structures (found to date)
that form deterministic Hopf link, together with their geometric properties and the
function, are listed in Table8.3. Analogous data for non-redundant proteins that form
deterministic Solomon link is shown in Table8.4.

Probabilistic chains identified in LinkProt database form more configurations,
which involve two, three or four components. One of the most interesting configu-
rations is 633 (probabilistic) link, which involves three symmetrically and mutually
interlinked components (note that it should not be confused with the Borromean
rings). As there are many more protein configurations forming probabilistic links, to
learn about their properties we encourage a reader to browse the LinkProt database.

http://linkprot.cent.uw.edu.pl
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Currently the function of links in proteins is not well understood, however they
definitely provide additional topological stability [11] (in addition to stabilizing role
of disulfide bridges and closed loops). Link topology is also responsible for misfold-
ing of a hosted protein [11].

8.5 Proteins with Lassos

The last class of entangled proteins that we discuss are proteins with lassos, intro-
duced systematically in [45]. Lassos can be identified in structures with disulfide (or
other types of) bridges. Similarly as in (deterministic) links, such a bridge defines
a closed loop. By a lasso we mean a configurations which consists of such a loop,
through which some other part (or parts) of the backbone chain is threaded. The
pattern of such threading may be quite complicated: a protein chain may pierce the
loop several times, it can wind around the backbone chain forming a loop, etc. Note
that configurations similar to lassos were studied in [75]; we also stress that lassos
should not be confused with cystein knots [9, 10, 16].

In order to define lassos unambiguously,we propose to span an auxiliary surface of
minimal area (analogous to a soap bubble), called the minimal surface, on the closed
loop. To determine such a surface, or more precisely a triangulated approximation
to such a surface, we use tools and algorithms from computer graphics [45]. The
orientation of the loop (from N to C terminal) induces the orientation of the surface
spanned on this loop, which enables to identify a direction of piercing of this surface
by a protein terminus, as shown in Fig. 8.10.

127

172

Fig. 8.10 An oxidoreductase protein (PDB code 2oiz) forming a lasso (left), with the disulfide
bridge shown in orange (following [45]). In the middle a schematic representation of the protein
chain and the triangulated minimal surface spanned on the loop (closed by the disulfide bridge) are
shown; the surface is pierced, respectively by 127th and 172nd chain segment, at two triangles (in
green and blue color, which indicates the direction of piercing). A baricentric representation of the
minimal surface is shown in the right
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Fig. 8.11 Various types of lassos identified in proteins (following [45]). Theorange segment denotes
a bridge/linkage forming a closed loop. Top row: single lasso, double lasso, and triple lasso (denoted
respectively L1, L2 and L3). Bottom row: supercoiled lasso (denoted L S), and lasso involving two
termini piercing the loop (denoted L L)

Fig. 8.12 More complicated lasso configurations, involving several loops (following [13])

Several lasso motifs identified so far in proteins are shown in Fig. 8.11. One
class of motifs involves one protein terminus piercing the minimal surface once, or
several times from opposite directions, as shown in the first row in this figure. Such
configurations are called single lasso, double lasso, triple lasso, etc., and denoted
respectively L1, L2, L3, etc. Another lasso motif involves one terminus winding
several times around the closed loop and piercing the minimal surface each time
from the same direction; we call such a configuration a supercoiling and denote
it L S. Finally, a configuration where two termini pierce through the closed loop is
denoted L L , or more precisely L Li, j , where i and j denote the number of times each
terminus pierces the minimal surface. For each of those motifs an information about
the direction of piercings and the piercing terminus can also be provided. More
complicated lasso configurations, involving several loops, also exist, for example
such as shown in Fig. 8.12.

An example of a protein forming a lasso of type L2 – an oxidoreductase protein
(PDB code 2oiz) – is shown in Fig. 8.10. Cartoon representation of the protein is
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Table 8.5 Families of proteins with various types of lassos (following [45]). In the first bullet
groups of enzymes are listed in order of decreasing number of occurrences; in the second bullet
PDB classes of non-enzymatic proteins are listed in order of decreasing number of occurrences. In
case of L1 lasso only groups with more than 9 elements are listed

Lasso Protein families

L1 • Hydrolases (85), transferases (15), oxidoreductases (14), lyases (3), isomerase (1)
• Binding protein (26), antimicrobial proteins (16), viral proteins (15), immune
system related (12), transport proteins (12), toxines (11), cytokines (10), membrane
proteins (9) …

L2 • Hydrolases (9), oxidoreductases (9), transferases (4)
• Cytokines (11), immune system, related (3), signaling proteins (3), viral proteins
(3), other (4)

L3 • Hydrolases (2), isomerases (1), oxidoreductases (1);
• Transport proteins (10), allergens (3), immune system related (2), viral proteins
(2), other (2)

L6 • Oxidoreductase (1)

L S • Lyases (3), hydrolases (1);
• Cell adhesion related (5), metal binding protein (2), structural proteins (1),
transport protein (1), GAS(1)

L L • Hydrolases (2)
• Cell adhesion related (2), membrane proteins (2), toxin (1), structural protein (1),
cytokine (1), transport protein (1)

shown in the left, with the disulfide bridge shown in orange. A simplified protein
structure is shown in the middle, with the grey triangulated minimal surface spanned
on the closed loop, pierced by one terminus at two triangles (green and blue color,
indicating the direction of piercing). A baricentric planar representation of the min-
imal surface with pierced triangles is shown in the right. The numbers 127 and 172
indicate the numbers of segments connecting consecutive Cα atoms that pierce the
surface.

All proteins with lassos identified to date are collected in the LassoProt database
[13], available at http://lassoprot.cent.uw.edu.pl. As of spring 2017, there are 6446
structures with lassos in this database, which have been identified in all kingdoms of
life, in globular andmembrane proteins.We list families of these proteins in Table8.5,
togetherwith the number of lasso structures in each family, and grouped into enzymes
and non-enzymes. It truns out that around 18%, i.e. 376 out of 2021 protein structures
with disulfide bonds (data from the year 2015), form lassos in the nonredundant set
(i.e. proteins with sequence similarity lower than 30%). Furthermore, geometric
properties of lassos can be analyzed using the online PyLasso server [46], available
at http://pylasso.cent.uw.edu.pl.

Apart from their geometry, also functions and other properties of proteins with
lassos have been studied. In [1, 52] it was shown that the lassomotif is well preserved
in antimicrobial proteins, where the lasso stabilizes the entire fold. Lassos also have
a therapeutic potential, similarly as proteins with cystein knots [16]. Even though the

http://lassoprot.cent.uw.edu.pl
http://pylasso.cent.uw.edu.pl
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influence of lassos on proteins’ stability and biological activity have been analyzed
systematically only recently, it is already known that e.g. in leptin the presence of a
lasso slows down folding, but facilitates receptor binding [22–24].

8.6 Conclusions

We have presented various types of entangled structures in proteins: knots, slipknots,
links and lassos. Their crucial feature is the fact that the whole protein chain needs
to be considered to identify its type of entanglement; in this sense entanglement is
a global property of a protein chain. Some years ago it was believed that entangled
proteins, in particular knots, cannot exist, due to the complexity of their structure.
However more recently many such structures have been found, and it has become
clear that their existence is not accidental and they must play certain biological and
physical role.

We have also presented databases and servers that assemble and regularly update
information about entangled structures, as well as a plugin that facilitates analysis
of lassos:

• KnotProt, http://knotprot.cent.uw.edu.pl
• LinkProt, http://linkprot.cent.uw.edu.pl
• LassoProt, http://lassoprot.cent.uw.edu.pl
• PyLasso http://pylasso.cent.uw.edu.pl

Apart from geometric structure of all protein chains, also an information on their
function, various classifications, a list of similar chains, etc., are provided in the
above databases. In these websites one can also upload other polymer-like structures,
not necessarily proteins, and analyze if they contain knots, slipknots, links or lassos.

In last few years the studies of entangled proteins have grown into a new, rapidly
developing and interdisciplinary field, which involves methods and techniques from
biophysics, biochemistry, computer science, branches of mathematics such as topol-
ogy and knot theory, etc. There are plenty of opportunities and outstanding questions
in studying entangled proteins, which involve understanding their function, evolu-
tion, folding mechanisms, and other features. We encourage a reader to try to answer
some of these questions too.
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Chapter 9
Topology in Liquid Crystal Phases

Gareth P. Alexander

Abstract Liquid crystals exhibit a rich set of phenomenawith a geometric and topo-
logical flavour. We provide a survey of this in the nematic, smectic and cholesteric
mesophases. Starting with Schlieren textures in nematics, we introduce the topo-
logical methods used to identify and classify point and line defects as well as non-
singular textures. Particular attention is given to the characterisation of disclination
loops and the use of the Pontryagin–Thom construction as a method of visualising
complex three-dimensional textures. We illustrate these with examples drawn from
recent experiments. Smectics have non-uniform ground states, which adds geomet-
rical constraints to their topological properties. We describe the implications this has
for two-dimensional smectics with the aid of a three-dimensional visualisation in
terms of ‘height’ functions. Next, we describe geometrical methods for analysing
line fields in terms of their curvatures and the degeneracies in them, which we call
umbilics. These methods are applied to identify defects in the pitch axis in cholester-
ics. Finally, we provide a brief overview of the topological characterisation of knotted
defect lines in nematics as well as an explicit method for constructing a director field
with arbitrary knotted disclination line.

9.1 Introduction

Liquid crystals are as beautiful and inspiring as they are varied. The termencompasses
the enormous range of soft materials whose properties are in some way intermediate
between those of an isotropic fluid and a crystalline solid. They are at once soft and
flow, and also structured and elastic. Optical microscopy paints them as colourful and
often dramatic textures, whose features include flexible threads, distinctive polarisa-
tion brushes, fingerprint patterns, brightly coloured platelets and exquisite arrays of
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confocal conic sections. Many, or even most, of these are reflections of the topology
inherent in liquid crystals.

Mesophases of liquid crystals have been prominent in the introduction of topo-
logical methods into the characterisation of physical phenomena. The fundamental
defects were identified and classified in topological terms by Frank in his seminal
paper [1]. This was formalised and generalised through the homotopy theory of the
1970s, many of the more subtle aspects of which derive from liquid crystals [2–4].
Over the past 20 years experimental advances have continued to foster the advance-
ment of topological concepts, stimulated by the properties of emulsions and colloidal
inclusions [5–8], and including realisations of the celebrated Hopf map [9, 10] and
the creation of arbitrary knotted defect lines [11, 12].

Topology pervades the physical properties of liquid crystals. Many of their
phase transitions involve the proliferation of defects; the two-dimensional isotropic–
nematic transition is of Berezinskii–Kosterlitz–Thouless type and the cholesteric–
smectic transition is analogous to theAbrikosov transition of type II superconductors,
to give only two examples. Defects and textures can be used to control self-assembly
through the elastic interactions they create [7, 13, 14] and provide novel prospects
for soft photonics andmetamaterials [15, 16]. For the most part, however, this survey
will not address these aspects directly and instead focus on the underlying topology.

The basic liquid crystal phases are the nematic, smectic and cholesteric phases [17,
18]. These are illustrated schematically in Fig. 9.1a. Nematics are orientationally
ordered fluids and the simplest of the liquid crystal mesophases. They are formed
from compounds with an elongated molecular shape; a thin rod, or piece of chalk, in
physicists’ cartoons. Models of rod-like hard particles demonstrate an entropic drive
to a state of coherent alignment, but without any positional order. A fundamental
feature of this nematic alignment is that it is line-like rather than vectorial. Even
if the molecules themselves have a ‘head’ and a ‘tail’ the macroscopic alignment
that they create does not. This has dramatic consequences for the topology of liquid
crystals.

The direction of alignment in a nematic is called the director field. Usually it
is denoted by a unit magnitude vector n, with the understanding that the nematic
symmetry implies that n and −n should be considered physically identical. The set
of all possible orientations for the director at any point is the set of directions in space
at that point, the unit 2-sphere S2, with exactly opposite directions identified. This is
known as the real projective plane RP

2, one of the simplest non-orientable spaces.
In many respects the textures of liquid crystals furnish visual representations of it.

Both the smectic and cholesteric phases share the orientational order of nematics
but also have their own unique characteristics. Smectics possess translational order in
which the positions of themolecules are correlated aswell as their orientations. This is
not the crystalline arrangement of atoms as in a solid but an intermediate arrangement
where the positions are ordered in one dimension but remain uncorrelated, or fluid-
like, in the transverse directions. Smectics are a hybrid of a one-dimensional crystal
and a two-dimensional fluid, resulting in a structure consisting of a family of regularly
spaced fluid layers. It is not unlike the pattern of ridges that form our fingertips, the
grain in a piece of wood, or the contour lines in a topographical map.We shall restrict
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Fig. 9.1 a The main phases of liquid crystals: nematics, smectics and cholesterics. b Curvature
elasticity: splay, twist and bend distortions. c Disclinations, topological point defects, in two-
dimensional nematics

ourselves to the smectic-A phase where the direction of positional order – the layer
normal – coincides with the director field of molecular orientational alignment.

Cholesterics are not really a distinct phase from nematics. Notionally, they differ
only in that the nematicmesogens possess an intrinsic chirality or that a small amount
(� few % weight) of a chiral dopant has been added to an achiral nematic. However,
in terms of their textures, and topology, the difference can be quite striking. They
organise into a non-uniform ground state in which the director field regularly rotates
about a spontaneously chosen direction, called the pitch axis. The regular rotation
gives cholesterics a one-dimensional periodicity with a length scale, called the pitch,
that is anywhere from several hundred nanometres to tens of microns. As a result
they can Bragg scatter light in the optical range, leading to photonic applications in
tunable lasers [19, 20] as well as the basis for structural colour in certain jewelled
beetles [21, 22].

Cholesterics are similar to smectics but they are not the same. In particular, their
periodicity is only in themolecular alignment and they remain full three-dimensional
fluids. Smectics, by contrast, have amodulated density corresponding to their transla-
tional order but themolecules are uniformly aligned in the ground state. Nonetheless,
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the feature of a ground state that is a function of position gives to both materials geo-
metric and topological properties that are still not fully understood [23–26].

The theoretical foundation for understanding liquid crystals was cemented in
Frank’s influential paper [1]. His prescient treatment emphasised both geometric
methods – curvature elasticity – and concepts from topology – disinclinations. The
Frank elasticity derives from an identification of the basic curvature distortions of
the liquid crystal alignment, known as splay, twist and bend, see Fig. 9.1b. Each of
these is associated with the non-vanishing of certain gradients of the director field
and taken together they give rise to the Frank free energy

F =
∫

Ω

{
K1

2

(∇ · n)2 + K2

2

(
n · ∇ × n + q0

)2 + K3

2

(
(n · ∇)n

)2}
dV, (9.1)

for elastic distortions of a liquid crystal. The Ki are known as elastic constants and
the parameter q0 is called the chirality; it is non-zero only in cholesteric materials.

In addition to elastic distortions, liquid crystals also display singularities where
the director is discontinuous in an essential way. The simplest of thesewere identified
and classified by Frank, see Fig. 9.1c, and called by him disinclinations; nowadays
this has transmuted to the term disclination. We take them as a starting point for our
survey of topology in liquid crystals.

9.2 Schlieren Textures and Two-Dimensional Nematics

Two-dimensional nematics serve as something of a prototype for the description of
topology in ordered media. They are typically realised in thin cells with parallel
anchoring conditions, or in films at an oil-water interface. The entire texture can be
visualised directly and one of the principal methods for doing so – under crossed
polarisers with light microscopy – embodies some core topological concepts. These
experimental images are known as Schlieren textures, illustrative examples of which
are shown in Fig. 9.2. It is a pattern of dark brushes where the light does not pass
through the crossed polarisers and marked by isolated points where the brushes
appear to ‘come together’ or ‘pinch off’.

At most points of the sample there is a local orientation, which varies smoothly
from one point to the next. However, there are also certain singular points, called
disclinations, at which the orientation is discontinuous, or ill-defined. These are the
‘pinch’ points of the brushes. They may be characterised by the change in orientation
around any closed loop that encircles the defect, known as a winding number. Let
us represent the orientation in the texture by a unit magnitude vector field n =
(cos(θ(x)), sin(θ(x)), 0) with the understanding that the directions n and −n are to
be considered the same. We have

dn = (− sin(θ), cos(θ), 0
)
dθ and n × dn = (

0, 0, 1
)
dθ, (9.2)
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Fig. 9.2 Examples of Schlieren textures in nematic liquid crystals. Left: director field with four
±1/2 disclinations. A Pontryagin–Thom representation for each texture is overlaid. Right: visual-
isation of brushes seen under crossed polarisers. Regions of the material where the orientation is
either vertical or horizontal appear dark, producing a characteristic pattern of ‘brushes’

or, recast in a purely two-dimensional notation, dθ = εi j ni dn j , where εi j is the
antisymmetric symbol, εi j = −ε j i , with ε12 = +1. It then follows that the winding
number around any closed loop γ can be computed from the formula

w = 1

2π

∫

γ

dθ = 1

2π

∫

γ

εi j ni∂kn j dxk . (9.3)

Since the angle θ can only change by integer multiples of π, the winding number is
always a half-integer, w ∈ 1

2Z. It is easy to ‘see’ this half-integer from the Schlieren
texture. At each disclination in Fig. 9.2 two dark brushes come together; the winding
number is this number of brushes divided by four. The sign of the winding number is
determined experimentally by rotating the crossed polarisers. If the pattern of brushes
co-rotates the disclination has positive winding, while if the pattern counter-rotates
it has negative winding.

Let us spell out a little more why the simple counting works. The brushes corre-
spond to those places in the sample where the local orientation is parallel to either
the polariser or the analyser, so counting them counts the number of times that those
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directions are crossed as you go once around the defect. If the orientation rotates
by a full 2π it will pass through the polariser direction (vertical, say) twice and the
analyser direction (horizontal, say) twice and there will be four brushes in total that
meet at the defect. When there are only two brushes the director passes through the
polariser direction once and the analyser direction once, so that the total rotation is
only by π. Clearly, it is sufficient to only count the number of ‘analyser brushes’,
which tells us the number of times the orientation is horizontal.

The brushes in a Schlieren texture are vivid illustrations of inverse images. In
Fig. 9.2we have overlaid the director pictures with the inverse image of the horizontal
orientation. These are lines whose endpoints are the disclinations. They are oriented
to run from the positive disclinations to the negative ones. Evidently, the topological
information about the director orientation – the winding numbers about each of the
disclinations – is succinctly captured by these inverse images. This correspondence
is an example of the Pontryagin–Thom construction [27, 28], here applied to two-
dimensional nematics. In Sect. 9.3.3 we will extend it to three dimensions.

The positions of the disclinations, and their winding numbers, is sufficient infor-
mation to reconstruct the director field everywhere in the sample, at least in the one-
elastic-constant approximation. In that approximation, the Frank free energy (9.1)
reduces to a simple square gradient form, F = ∫

Ω
K
2 |∇n|2 dV , which in the thin

film geometry we are currently considering with a two-dimensional director field
n = (cos(θ), sin(θ), 0) becomes

F = Kh

2

∫ ∣∣∇θ
∣∣2 d2x, (9.4)

where h is the thickness of the film. The Euler-Lagrange equation then gives that θ
is a harmonic function, ∇2θ = 0. It is convenient to write the solution as

θ = 1

2
Im lnΘ(x + iy), (9.5)

where Θ is a meromorphic function of x + iy and the prefactor of 1
2 accounts for

the nematic symmetry. Meromorphic functions can be represented in terms of their
zeros and poles, together with their orders or multiplicities, so that we can write

θ = 1

2
Im ln

∏
j

(
x − x j + i(y − y j )

)m j =
∑
j

m j

2
arctan

y − y j
x − x j

. (9.6)

It is clear that the winding number at each of the defects is w j = m j/2.
The utility of this explicit expression is not that it represents any real texture

with high precision, as real materials have distinct elastic constants. Still, the texture
in a real material will not be drastically different and, in particular, will be related
to the one-elastic-constant formula by an everywhere smooth rotation of the local
orientation. What (9.6) illustrates is that the topological properties in any texture
allow for its complete reconstruction up to continuous deformation, or homotopy. In
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other words, the relationship between textures and their topological properties is a
two-way street. Given an explicit texture, such as the Schlieren textures in Fig. 9.2,
we can identify the defects and compute their winding numbers. And conversely,
given only the green lines in the left panels of Fig. 9.2 we can reconstruct the entire
texture, up to a smooth rotation. We will see how to extend these constructions to
three-dimensional textures in Sect. 9.3.3.

9.3 The Homotopy Theory of Defects

Winding numbers are homotopy invariants, meaning they are characteristics of the
texture that are preserved under continuous changes to the director field. The study of
properties that are preserved under continuous transformations is known as homotopy
theory.

In three dimensions nematics possess line defects, again called disclinations. Pro-
totypes for them are obtained by simply extending the two-dimensional disclinations
of Fig. 9.1c uniformly into the third dimension. The analogue of winding numbers is
to identify the line defects of three-dimensional nematics with the distinct homotopy
classes of maps S1 → RP

2, which is the two element set Z2. Given the infinite num-
ber of disclinations in two dimensions it can come as a surprise to find that there is
a unique homotopy class in three dimensions. A homotopy connecting the standard
+1/2 and −1/2 profiles can be given as

nt (r,φ, z) =
(
cos

(
1
2φ

)
, cos(πt) sin

(
1
2φ

)
, sin(πt) sin

(
1
2φ

))
, (9.7)

using cylindrical coordinates (r,φ, z). n0 is the +1/2 profile, while n1 is the −1/2,
and the homotopy is simply a rotation of each molecule by angle π about the
x-direction. The homotopy that eliminates the +1 line defect entirely is known as
‘escape in the third dimension’ and is realised, for instance, in cylindrical capillaries
with normal anchoring [29, 30].

These principles of the classification of disclinations in nematics were encapsu-
lated into a homotopy classification of defects developed in the mid 1970s to apply
to any kind of ordered material. The general approach was given as an extension
of Landau’s symmetry breaking theory of phase transitions in which an ordered
mesophase is characterised by the spontaneous reduction of the symmetry group G
of the high temperature (isotropic) phase to a subgroup H of residual symmetries
of the low temperature (ordered) phase. In the case of a nematic we can take the
high temperature group to be the rotation group SO(3) of Euclidean space, while
the symmetry of the low temperature nematic phase is the subgroup D∞ of symme-
tries of a cylinder, or piece of chalk. The ground state manifold is the coset space
G/H = SO(3)/D∞ = RP

2, the real projective plane, and any measurement of the
texture on a measuring loop is a map S1 → RP

2 = G/H so that the defects are
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classified by the (conjugacy classes) of the fundamental group π1(G/H). The for-
malism is excellently summarised in a number of review articles [31–34].

The formalism of homotopy groups, especially as applied in the general context of
symmetry breaking, provides powerful tools for the description of defects in ordered
media, all of which flow freely from the machinery of algebraic topology. Without
going into any details we mention a couple of examples. First, the homotopy groups
π2(RP

2) ∼= Z andπ3(RP
2) ∼= Z inform us that there are an infinite number of distinct

point defects in nematics and also an infinite number of distinct defect free textures,
respectively. We shall describe each of these shortly. Second, the action of π1 on
the other homotopy groups suggests a non-commutativity of defect crossing [35],
characterised by Whitehead products [36]. For instance, this is predicted to arise in
biaxial nematics and cholesterics, but has not yet been observed in either material.

Despite the powerful formal machinery, it is still instructive to approach the topo-
logical description of defects in more physical terms. An example of this is provided
by disclination loops, the understanding of which benefited greatly by the develop-
ment of new experiments focused on them [8, 11, 37, 38]. A second cautionary tale
comes from smectics. Two-dimensional smectics can be described in terms of the
symmetry breaking of the high temperature Euclidean group G = R

2
� SO(2) to

the low temperature group H = (R × Z) � Z2 corresponding to the symmetries of
the smectic phase. Applying the formal machinery leads to the prediction that the
defects are classified by the fundamental group of the Klein bottle, which turns out
to be erroneous [24]. We shall describe this in Sect. 9.5.

9.3.1 Point Defects: Hedgehogs

In addition to line defects, nematics in three dimensions also exhibit singularities at
isolated points. These are referred to colloquially as hedgehogs because the prototype
for such fields is the purely radial texture n = x/|x|. These defects are characterised,
in part, by the behaviour of the director field on any spherical surfaceΣ enclosing the
singular point. This constitutes amapΣ → RP

2 and the different defects correspond
to the different homotopy classes of such maps.

A feature of hedgehogs that contrasts them with disclinations is that they can
be oriented. For instance, the radial hedgehog is conventionally oriented to point
outwards (n = x/|x|) rather than inwards (n = −x/|x|).With a choice of orientation,
the behaviour of the director field on a spherical surface Σ enclosing the singular
point yields a map Σ → S2, and these are known to be classified by degree. There
are a number of equivalent ways of computing the degree of a map. One of the most
common representations is as the integral

deg(n) = 1

4π

∫

Σ

n · ∂x1n × ∂x2n dx1dx2, (9.8)
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k = -2 k = -1 k = +1 k = +2

Fig. 9.3 Representative director fields on spherical surfaces enclosing hedgehogs with different
integer degrees. The k = +1 configuration is called a ‘radial hedgehog’ and k = −1 a ‘hyperbolic
hedgehog’

where (x1, x2) are local coordinates for Σ . Note that deg(n) is not invariant under
n → −n so that it depends upon a choice of orientation for the director field. As a
result the sign of nematic hedgehogs is subject to ambiguity [38].

The degree can take any integer value, corresponding to the homotopy group
π2(RP

2) ∼= Z and giving an integers worth of topologically distinct point defects in
nematics. Representative director fields for each of these hedgehogs can be given as

nk(r, θ,φ) = sin(θ)
[
cos(kφ)ex + sin(kφ)ey

] + cos(θ)ez, (9.9)

where (r, θ,φ) are the standard spherical polar coordinates and k is the integer degree.
A selection of these are illustrated in Fig. 9.3. Of course, for these representatives
there is no pretence that they coincide with free energy minimisers, as was the case
in two-dimensions, (9.6), only that they capture the appropriate topology.

9.3.2 Disclination Loops

The interplay between point and line defects yields one of themost interesting aspects
of the topological theory of defects in nematics. At its heart is the observation that a
disclination loop may shrink to become a point, or conversely a point may ‘open up’
into a loop. Thus disclination loops must somehow carry topological characteristics
pertaining to both line defects and point defects. For instance, suppose a point defect
of degree k opens up to form a loop. A naive expectation is that the ‘hedgehog
charge’ should somehow be conserved. Indeed, any spherical measuring surface
Σ that continues to enclose the entire loop will still record the same degree k, as
expected.

A different characterisation is provided by looking at the behaviour of the director
field on a small tubular neighbourhood of the disclination. This surface is a torus
rather than a sphere and so has different properties. It constitutes a map T 2 → RP

2

that is non-trivial along the meridian of the torus. It turns out that there are only
four homotopy classes of such maps [39], rather than an infinite number. A part of
this comes from whether or not the director field is also non-orientable along the
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longitude of the torus, i.e. whether the disclination loop is linked with any others or
not. The other part is associated to the ‘hedgehog charge’, which undergoes a mod
2 reduction.

One specific texture on a torus surrounding a disclination loop is provided by the
director field

n(x1, x2) = cos
(
πx2/�

)
ex + sin

(
πx2/�

)
ey, (9.10)

where � is the ‘meridional circumference’. It is non-orientable around the meridian
but does not depend upon the longitudinal direction at all.We use it as a starting point
from which we can generate other textures. The basic way in which (9.10) can be
modified is to pick any point in the torus, take a small disc around it, and replace the
director field on the interior of that disc with a configuration representing a degree
1 map. Such modifications generate all of the homotopy classes of maps that have
the same behaviour as the starting one along the longitudinal and meridional cycles.
However, not all of these modifications yield distinct textures. Indeed, performing
two such modifications produces a texture that is homotopic to the original one.

A way of seeing this is to double cover the torus around the meridian, as shown
in Fig. 9.4. It is then possible to orient the director field on the double cover. There is
an obvious 2:1 projection that takes the oriented doubled version back to the proper
director field and everything needs to be consistent with respect to this projection.
This is called equivariance. Modifications must be done consistently between the
two sheets of the cover; that is, a modification by a degree +1 map in one sheet
must be accompanied by an equal and opposite modification by a degree −1 map
at the same location in the other sheet. As shown in Fig. 9.4, there is an equivariant
homotopy, indicated by the dashed red lines, that allows modifications to be removed
in pairs and shows that there are only two homotopy classes of director fields with
the prescribed behaviour around the meridian and longitude.

This is the basic ‘local’ characterisation of disclination loops, but as we shall
describe in Sect. 9.8 there is a lot more to their global properties.

2:1

+

+

-

-

Fig. 9.4 Schematic illustration of the homotopy characterisation of nematic textures on a torus
enclosing a disclination loop. Such textures can be analysed by lifting to a double cover over the
meridional direction that goes around the disclination. Modifications of the texture by degree 1
maps (indicated by coloured dots) appear in pairs in the two sheets of the cover, with opposite
degree. An equivariant homotopy illustrating that two such modifications are homotopic to none at
all is indicated by the dashed red lines
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9.3.3 The Pontryagin–Thom Construction

Schlieren textures present a vivid depiction of the topology in a liquid crystal. Part
of what makes them so effective is that they are two-dimensional, so that everything
can be seen at once on a single screen. Typically, a dense forest of lines showing the
orientation of every molecule in some three-dimensional volume is uninformative
and unilluminating. So there is great value in obtaining an analogous vivid and
accessible depiction of the structure and topology in three dimensions. One method
that is founded on deep results in topology is the Pontryagin–Thom construction
[9, 40].

At its core, a Schlieren texture is about inverse images; it highlights those parts
of the domain that are ‘inverse images’, or preimages, of a particular orientation,
for instance horizontal. The Pontryagin–Thom construction extends this to a more
general setting. We first describe briefly orientable director fields before addressing
the general case. For a more thorough account the reader is especially directed to the
excellent description given by Milnor [27].

For maps into a sphere (polar order) the general construction is really exactly the
same as the two-dimensional Schlieren textures; one looks at the inverse image of
any particular orientation and these preimages convey the topology. Again, they are
one-dimensional curves that end on point defects. The analogue of the orientation
(from plus to minus) of the inverse image curves in two dimensions is that now they
should carry a framing. To give an example of how the inverse image curves convey
the topology, consider the degree of a point defect. As with computing the winding
number in two dimensions, the degree of a point defect can be calculated from a
signed count of preimages. For any y ∈ S2 we count

deg(n) =
∑

x∈n−1(y)

εx, (9.11)

where εx is equal to +1 if the map is orientation preserving at the point x where the
preimage intersects a spherical measuring surface, and is equal to −1 if it is orienta-
tion reversing. The reduction of a three-dimensional texture to a set of framed curves
represents a tremendous compression of information and provides a significantly
simplified visual representation.

The general case of non-orientable director fields is a little more subtle and I
describe it here only in practical terms and also only for situations in which the
orientation at large distances is vertical – for themathematical details see [27, 28, 40].
In this case the appropriate inverse image to display is everywhere that the orientation
is horizontal, the entire equator in RP

2. This will be a two-dimensional surface, or
collection of two-dimensional surfaces, whose boundaries are the point and line
defects in the director field. We will refer to it as a ‘PT surface’. The PT surface is
further decorated in two ways. First, we may colour it by the horizontal orientation
at each point, running from red to green to blue and back to red again. Second, there
is an assignment of ‘normal data’ to the surface. The normal neighbourhood of the
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Fig. 9.5 The Pontryagin–Thom construction for visualisation of three-dimensional nematic tex-
tures. It is the set of points in the texture where the director is horizontal, or the inverse image
of the equator in RP

2. This is a surface that is then coloured according to the different horizontal
directions. The example shown is a toron, and described in Sect. 9.4.3

PT surface, an orientable manifold, maps into a non-orientable Möbius strip around
the equator in RP

2 and the additional data encodes the structure of this map. In
practical terms what this entails is that there are an even number of colour windings
around any orientable cycle of the PT surface and an odd number around any non-
orientable cycle. The examples I consider here involve only orientable PT surfaces,
which effectively renders this second point moot. The PT construction is illustrated
in Fig. 9.5 and employed throughout the remainder of this chapter.

9.4 Illustrations in Liquid Crystals

In this section we describe a selection of textures in liquid crystals that illustrate or
embody some of the topological concepts we have just described.

9.4.1 Skyrmions

Consider a thin film geometry where the domain is quasi-two-dimensional but the
director orientation is unconstrained. A uniform film, with the director aligned along
the normal directions, n = ez say, can bemodified on a disc, of radius R, by replacing
the uniform texture inside it with the director field

n(r,φ) = sin(πr/R)
[− sin(φ)ex + cos(φ)ey

] − cos(πr/R)ez, (9.12)

where (r,φ) are polar coordinates for the disc. Thismodification represents a degree 1
map of the disc to S2, which as long as the boundary conditions, n → ez as r → ∞,
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Fig. 9.6 a Schematic of a single Skyrmion inserted into a background uniform texture. This is a
degree +1 map on a disc that is constant along the boundary. b Hexagonal lattice of Skyrmions.
These configurations are energetically stable in some chiral materials. c Pitch axis of the hexagonal
lattice (see Sect. 9.7) with defects highlighted. The red dots are λ− lines and the yellow dots are the
axes of double twist cylinders

are maintained is topologically robust. These textures have come to be known as
Skyrmions, originally in the context of chiral ferromagnets [41–47] but now also in
the liquid crystal literature [48–50].

In situations where they are energetically favourable they typically rapidly prolif-
erate, leading to phases in which individual Skyrmions pack into hexagonal lattice
arrangements. An example of the director field for a hexagonal lattice of Skyrmions
is shown in Fig. 9.6b. Since the sample geometry is that of a thin film it is possible to
identify the location of each Skyrmion by those points where the director is exactly
parallel to the surface normal direction. Although this method is often used it is not
really topological. One can instead identify the location of Skyrmions by plotting
the maxima of the ‘charge density’ – the integrand of (9.8) – which yields the same
positions and is founded on both geometric and topological concepts. In Sect. 9.6.2
we will describe a dual of this that is shown in Fig. 9.6c.

9.4.2 Colloids

The drive behind much of the recent advances in topology in liquid crystals has
come from the properties of colloidal inclusions [5–8, 11, 37, 38, 51–53]. Initially
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Fig. 9.7 Examples of textures created by colloidal inclusions with normal anchoring conditions.
a Dipole configuration with a satellite hyperbolic hedgehog. b Saturn ring configuration with a
disclination loop encircling the colloid. c Two colloids entangled by a single disclination loop in
the ‘figure Omega’ configuration

these were spherical colloids but platelets, tori, handlebodies up to genus 5 and
even Möbius strips have also been considered. Colloids provide internal boundary
conditions for the liquid crystal with the main point being that these are typically
topologically non-trivial. For instance, when the molecules align along the surface
normal direction then the director field on the colloidal boundary carries a degree.
Spherical colloids have degree +1 and in general the degree is 1 − g, where g is the
genus of the surface [51].

If at large distances the director is uniform then the total degree of all the defects
in the liquid crystal must compensate that presented by the colloidal inclusions.
However, there is large variety in how the liquid crystal achieves this. Even in the
simplest case of a single spherical colloid the degree represented by the surface may
be compensated either by an accompanying hyperbolic hedgehog, as in Fig. 9.7a,
or by a disclination loop, as in Fig. 9.7b, a configuration known as the Saturn ring.
These have different symmetries and create different elastic distortions in the liquid
crystal, the former dipolar and the latter quadrupolar, leading to differences in the
interactions between colloids and the chains and lattice structures that form from
them [54–56].

From the topological perspective, these examples illustrate the interconversion
that is possible between point defects and disclination loops – one slides the Saturn
ring towards one of the poles and shrinks it to a point – a feature that is central to the
more global aspects of nematic topology.With two or more colloids, there arises also
the possibility that a single disclination loop will wrap itself around them all. Several
configurations are possible [8, 57, 58]; we show in Fig. 9.7c one of the original
examples involving two colloids called the ‘figure Omega’. These shapes can be
purely geometric, as in the figure Omega example, or they can involve the formation
of non-trivial knots, links and braids [11, 12, 37]. The topological implications of
such defects will be considered in Sect. 9.8.
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9.4.3 Torons and Hopf Textures

Another class of experiments that has proved especially fruitful in providing new
examples of topology in liquid crystals is from frustrated cholesteric cells. In thin
cells, where the cell gap is comparable to the cholesteric pitch, normal anchoring
conditions can frustrate the natural cholesteric order bymaking the director align uni-
formly along the vertical direction. However, suitable stimulation, with laser tweez-
ers for instance, can prompt the creation of localised twisted structures to relieve the
frustration [9, 10, 59, 60].

One example of these was dubbed the toron [59]. It is a toroidal region of twisted
director field (a circular variation on the double twist cylinder) that is flanked above
and below by hyperbolic hedgehogs. This is the example that we used to illustrate the
Pontryagin–Thom construction in Fig. 9.5. The PT surface is a sphere that ‘pinches’
at the top and bottom where the hedgehogs sit. It separates an interior region where
the director field is tilted downward to some degree from the exterior where it has
an upwards tilt and asymptotically matches the uniformly vertical alignment. The
surface itself is coloured with two full turns of the ‘colour wheel’ conveying a full
2π rotation of the horizontal direction field as you go around the PT surface. Each
colour, for instance the preimage of red (n = ex ), forms a line with endpoints on the
two point defects. That they are not straight lines of longitude reflects the twisting of
the director. With these points being said, the Pontryagin–Thom construction allows
for an effective reconstruction of the director field throughout the sample.

A second texture that can be created under the same conditions is the non-singular
Hopf texture [9]. Schematically it can be thought of as what is obtained if the two
point defects can be made to come together and mutually annihilate to leave behind a
non-trivial smooth texture. The result is shown in Fig. 9.8. It can be thought of as an
illustration of the homotopy group π3(RP

2) ∼= Z, which expresses that there are an
infinite number of distinct everywhere smooth director fields that are different from
the state of uniform alignment. The prototype for these is the celebrated Hopf map,
the generator of π3(S2).

The Hopf map is an assignment of a unit vector to each point inR
3 with boundary

conditions that the vector takes a fixed orientation at large distances. First, we rep-
resent the point (x, y, z) ∈ R

3 in terms of a pair of complex numbers (z1, z2), with
|z1|2 + |z2|2 = 1, by stereographic projection to S3

z1 = 2(x + iy)

x2 + y2 + z2 + 1
, z2 = 2z + i(x2 + y2 + z2 − 1)

x2 + y2 + z2 + 1
. (9.13)

The Hopf map S3 → S2 can be represented in terms of a complex coordinate for S2

by the simple formulaw = z1/z2. Converting this to a unit vector using stereographic
projection gives

nx + iny = 2z1z2, nz = |z1|2 − |z2|2. (9.14)
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Fig. 9.8 The Hopf texture visualised using the Pontryagin–Thom construction. The PT surface
shows all points in the material where the director is horizontal and is coloured according to the
horizontal direction. There are two full colour windings corresponding to a full 2π variation of the
horizontal orientation. The surface is a torus and it can be seen that every orientation describes a
circle on the torus that links with every other orientation exactly once

It is easy to read off from this that nz = 1 everywhere that z2 vanishes, which is the
unit circle in the xy-plane. Similarly, nz = −1 everywhere that z1 vanishes, which
is the z-axis. So the inverse images of these two orientations are linked with each
other, precisely once. This is the characteristic feature of the Hopf map; the inverse
image of any orientation is a circle of points in R

3 and the inverse images of any two
distinct orientations is a pair of circles that are linked precisely once. The linking of
inverse images is a spectacular and instantly recognisable feature of Hopf textures.

9.5 Smectics

Smectics share the orientational order of nematics and have in addition positional
order associated to breaking translational symmetry in one dimension only. They
are described by one-dimensional mass density waves, of the form ρ(x) = ρ0 +
δρ cos

(
2π
a φ(x)

)
, where φ(x) is a phase field whose level sets at integer multiples of

a give the loci of the maxima in the mass density, or, more simply, the positions
of the molecules. The distance between adjacent maxima is the layer spacing, a,
typically equal to the molecular length. In the ground state, the phase field is a linear
function of position, say φ = z, and the layers are equally spaced and flat. Of course,
there are many equivalent, but distinct, ground states, obtained from this one by
uniform translations and rotations. We arrive back at precisely the same ground state
if the translation is by the layer spacing a, or the rotation is by π. This pattern of
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Fig. 9.9 The ground state manifold (GSM) for two-dimensional smectics. Both translational and
rotational symmetries are broken so that both translations and rotations yield equivalent but distinct
ground states. The identifications under translations by the layer spacing, a, and rotations by π give
the topology of the Klein bottle, a non-orientable manifold with non-Abelian fundamental group.
There are two types of defects; disclinations, associated to the rotational freedom, and dislocations,
associated to the translation freedom

identifications leads to a ground state manifold with the topology of the Klein bottle,
see Fig. 9.9.

Following the general rubric would lead to a classification of defects in terms of
the fundamental group of the Klein bottle. This is a non-Abelian group generated
by translations by the lattice spacing, which we shall call ‘shifts’ S, and rotations by
π, which we shall call ‘flips’ F . The defects that correspond to the shifts are called
dislocations, while those that correspond to the flips are the disclinations. The flips
act on the shifts according to FSF−1 = S−1, but this is the only relation and the
fundamental group has the presentation 〈S, F |FSF−1 = S−1〉.

In the classical formulation of the homotopy theory of defects, the allowed dislo-
cations and disclinations in two dimensional smectics (and their properties) would
correspond to this fundamental group. The main point is to understand that this
structure is not correct. Mermin was the first to point out that disclinations of arbi-
trary negative strength can occur in smectics, but positive strength disclinations are
restricted to winding number +1/2 or +1 [31]. In fact more than this is true, the
disclinations are constrained in their geometry in a manner that they are not in a
nematic. To illustrate, the +1 disclination has layers that are concentric circles and a
radial director field; the converse configuration of a circular director field and radial
layers entails uncontrolled variation in the layer spacing and so does not correspond
to any physical smectic texture. This restriction on smectic disclinations was proved
formally by Poénaru [61] as a theorem on measured foliations. We shall restrict
ourselves here to a heuristic pictorial description introduced by Chen [24].

Smectics do not correspond to maps from the domain into the ground state man-
ifold, as is the case for nematics. A way of thinking about this is in terms of Gold-
stone modes. As is well known, the translations and rotations in a smectic are not
described by independent Goldstonemodes; rather, both are captured by the Eulerian
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Fig. 9.10 Height functions and smectics. a A mountain range and its contour map. The contour
map shares the properties of smectic textures. b The smectic ground state is a plane at 45◦ to the
vertical. c A +1/2 disclination and its ‘height function’. d The surface for a smectic dislocation
is a tilted helicoid, or ‘spiral staircase’. e Focal conics arise naturally from the intersections of
mountains with constant slope

displacement field u(x). Indeed smectic order is described entirely by a single func-
tion, the phase field φ(x) that enters the mass density wave. Locally, this is a linear
function of position. The smectic layers are its level sets. Although it is common to
depict the smectic only using the layers, as in Fig. 9.9, it is important to keep in mind
that between the layers the phase field still exists and needs to be well-defined. The
global structure can be represented by displaying the graph of the phase field. This
is a surface in R

3 with coordinates (x, y,φ(x, y)); the level sets of φ – the smectic
layers – are contours of the surface at fixed heights, equal to integer multiples of the
layer spacing.

From this perspective, pictures of smectic layers are seen to share many of the
same characteristics as topographical maps, which proves insightful in understand-
ing disclinations in smectics, see Fig. 9.10. Mountain tops are high points that the
contours of a topographical map loop around; they can be identified with +1 discli-
nations in smectics. Between themountain tops aremountain passes and the contours
around them have the saddle-like structure of −1 disclinations in smectics. Defects
with higher negative winding are possible – they correspond to degenerate moun-
tain passes that simultaneously connect three or more mountain peaks. However,
disclinations with higher positive winding are not possible since combining two
mountains does not produce anything new, only a bigger mountain. Or, what is the
same, between any two mountain peaks there is always a mountain pass. It simply
is not possible to combine two +1 disclinations only in a smectic as there is always
a −1 disclination between them.

The height function picture provides visual intuition for the defects in two-
dimensional smectics. The smectic ground state is a plane with 45◦ slope, whose
contours at φ = na – the smectic layers – are equally spaced. This plane is not
unique. The density ρ is unchanged by the replacements φ → φ + na, for any
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integer n, and φ → −φ, which therefore correspond to equivalent ground states.
Defects in the smectic order correspond to connections between these equivalent
ground states. Some examples of how this appears in the height function picture are
shown in Fig. 9.10.

Immediate extension to three dimensions is hampered by the need to visualise a
complicated three-dimensional surface in R

4. Nonetheless, some progress has been
made in two directions: screw dislocations [26, 62] and focal conics [63–65]. The
latter correspond to the special class of surfaces where the slope is always 45◦, giving
equally spaced layers. Their geometry turns out to be the same as the geometry of
null surfaces in Minkowski space-time [63].

9.6 Geometry of Line Fields

As remarked in the introduction, liquid crystals are highly geometrical and there is
much to be gained from studying their geometry, including additional insight into
topological properties [25, 66, 67]. For the most part, the geometry that we will
describe now is that of vector fields, or more properly of vector bundles. Any liquid
crystal texture defines two natural vector bundles as follows. At every point in the
material the director picks out a preferred direction and so gives a canonical splitting
of the tangent space to R

3 into the line parallel to the director (a rank 1 vector space)
and the 2-plane of all directions perpendicular to it (a rank 2 vector space). These two
vector spaces vary smoothly so long as the director field does, so we have a pair of
vector bundles over the set of points Ω where the director field is well-defined, i.e. a
canonical splitting TR

3|Ω ∼= L ⊕ ξ, where L is the line bundle and ξ the orthogonal
2-plane field. Some examples of this structure are shown in Fig. 9.11.

Gradients of the director field may be separated into those parallel to the local
orientation and those along perpendicular directions, ∇n = ∇‖n + ∇⊥n. More con-
cretely, as liquid crystals are uniaxial there is a local subgroup of the rotation group
isomorphic to SO(2) that preserves the director at any given point and the director
gradients can be decomposed with respect to the action of this group

∂i n j = ni (nk∂k)n j + ∇ · n
2

(
δi j − nin j

) + n · ∇ × n
2

εi jknk + Δi j , (9.15)

Fig. 9.11 Illustrations of plane fields and the geometry of liquid crystals. The examples shown are
a the cholesteric ground state texture, b a Skyrmion
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where the deviatoric part Δi j has the explicit form

Δi j = 1

2

(
δik − nink

)
∂kn j + 1

2

(
δ jk − n jnk

)
∂kni − ∇ · n

2

(
δi j − nin j

)
. (9.16)

The four pieces of the director gradients each have their own geometrical sig-
nificance. The first is equivalent to the vector b = (n · ∇)n representing the bend
distortions of the liquid crystal. It is a vector that is everywhere orthogonal to the
director field and so always lies in the orthogonal 2-planes, i.e. it is a section of ξ.
This means it is not a typical vector field. In particular, because it is an element of
a rank 2 vector space it vanishes generically on sets of codimension 2, so that zeros
of bend occur along one-dimensional lines. A typical vector field only vanishes at
isolated points. Nonetheless, these zeros encode topological information about the
nematic texture. For a regular (tangent) vector field, the zeros encode the Euler char-
acteristic of the space by the celebrated Poincaré–Hopf index theorem [68]. The
zeros of the bend vector realise the more general result that the zero locus of any
section represents the Poincaré dual of the Euler class of the vector bundle [69, 70].
We do not develop this further here but focus instead on the orthogonal part of the
director gradients where similar structures are present.

The last three terms in (9.15) constitute the ‘shape operator’ for the director field.
The terminology is taken from the differential geometry of surfaces. The gradients of
the surface normal as you move around on a surface are known as the shape operator,
as they encode the ‘shape’ of the surface. It is a linear transformation on the tangent
planes of the surface. In a smectic, n is the unit normal to a family of surfaces –
the smectic layers – and the shape operator encodes the ‘shape’ of the layers. The
expression (9.15) is the general case for arbitrary n and not just smectics. It is a linear
transformation on the orthogonal 2-planes ξ.

The first part of the shape operator is isotropic in the orthogonal planes. Its mag-
nitude is the splay of the director field, or its mean curvature. The second is also
isotropic, but a pseudoscalar rather than a scalar. Its magnitude is the twist of the
director field, or its mean torsion. As an operator, it acts on the orthogonal planes by
a π/2 rotation. It is called a complex structure. The final term is the deviatoric part of
the orthogonal director gradients and is a spin-2 object. Locally it is a 2 × 2 matrix
of the form

[
Δ1 Δ2
Δ2 −Δ1

]
whose eigenvectors define the principal directions of curvature.

Again, the terminology extends that of the differential geometry of surfaces, since in
a smectic where n is the normal to a family of layers, these eigenvectors are precisely
the directions of principal curvature of the smectic layers.

9.6.1 Umbilics

Points where the spin 2 field Δ vanishes are places where the shape operator is
locally isotropic. In the classical differential geometry of surfaces such points are
called umbilics and we adopt the same terminology here [66].
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The umbilics of liquid crystal textures are codimension 2 objects – they require
the vanishing of two real numbers Δ1 and Δ2 – and hence occur along extended
one-dimensional curves, which endows them with some additional features com-
pared to the umbilic points of surfaces. Near an umbilic Δ has the form Δ =
|Δ|[ cos(θ) sin(θ)

sin(θ) − cos(θ)

]
, where |Δ| generically vanishes linearly. A loop that goes around

the umbilic gives a map θ : S1 → S1, which carries an integer winding number. This
may be visualised in terms of the eigenvectors of Δ, as is done for the umbilic points
of surfaces. It is easy to see that the eigenvectors wind by half as much as Δ itself,
so that around generic umbilics the profile is the same as the ± 1

2 disclinations of
Fig. 9.1c. We show examples of this in Sect. 9.7.1.

Finally, wemention only in passing that if the umbilic forms a closed loop then the
variation of θ around a longitude will convey a second integer winding number [66],
which is related in part to the linking of umbilics.

9.6.2 Chirality Pseudotensor

One may compose the shape operator with the complex structure (εi jknk) to obtain
another geometric linear transformation on ξ of some interest and importance. This
is known as the chirality pseudotensor [25, 71]

(∇⊥n)ilεl jknk ≡ Ci j = −n · ∇ × n
2

(
δi j − nin j

) + ∇ · n
2

εi jknk + Πi j . (9.17)

Its deviatoric part has the explicit expression

Πi j = 1

4
εilk

[
nl∂kn j + nl∂ j nk − n jnlnm∂mnk

]

+ 1

4
ε jlk

[
nl∂kni + nl∂i nk − ninlnm∂mnk

]
,

(9.18)

and has the same basic properties as Δi j . For instance they both vanish in the same
places – the umbilics – but nonetheless Πi j is an independent quantity. Note in
particular, that Πi j is invariant under the nematic symmetry n → −n whereas Δi j

is not, so that it is globally defined for line fields even though Δi j is not.
Insight into the geometric significance of the chirality pseudotensor comes from

its eigenvectors. The eigenvectors of Δi j define directions of principal curvature for
the director field. Those of Πi j define directions of principal torsion, or twist. These
are of course related since each defines a basis for the orthogonal planes ξ. The
relation is a simple π/4 rotation; it is beautifully illustrated in the experiments of
Armon et al. [72] on the opening of chiral seed pods, and of Efrati and Irvine [71] on
the shapes of chiral elastic strips. The eigenvectors ofΠi j also serve as one definition
of the pitch axis in cholesteric materials [25, 66, 71], as we now describe.
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9.7 Cholesterics

Cholesterics differ from nematics in that they have an intrinsic handedness and
propensity to twist. In terms of the Frank free energy (9.1), cholesterics are materials
for which q0 �= 0. The minimiser, or cholesteric ground state, is the director field

n = cos(q0z) ex + sin(q0z) ey, (9.19)

or any equivalent to this. Its main feature, like the smectic ground state, is that it is
not uniform; the director lies always in the xy-plane with its orientation rotating at
a uniform rate along the z-direction. The axis of rotation is called the pitch axis and
is everywhere orthogonal to the director.

One way of presenting the local order at any point in a cholesteric is to specify the
director field n and also the direction of the pitch axis p. Since these are orthogonal
we also have the direction n⊥ = p × n so that the local order in a cholesteric is an
orthonormal frame. This is really an unoriented frame since the director is properly
a line field. In this picture there are three distinct types of disclination. Defects in
the director but not the pitch axis are called χ lines; defects in the pitch axis but
not the director are called λ lines; and defects in both the director and the pitch are
called τ lines [4, 73]. This triptych corresponds well with observations of defects in
cholesterics [74, 75].

However, the description in terms of a local orthonormal frame has some short-
comings, for both in the form of the free energy and in performing numerical simula-
tions, only the director field needs to be used; separate mention of the pitch axis is not
needed, nor ever given. It would appear that all the necessary information is already
present in the director field. This comes from the geometry of Sect. 9.6. For instance,
the pitch axis can be identified with the positive eigenvector of the deviatoric part
Πi j of the chirality pseudotensor. To see this, consider the cholesteric texture (9.19)
and introduce the basis d1 = − sin(q0z) ex + cos(q0z) ey , d2 = ez for the orthogonal
planes. We then have

∇n = q0d2 ⊗ d1 = −q0
2

[
d1 ⊗ d2 − d2 ⊗ d1

] + q0
2

[
d1 ⊗ d2 + d2 ⊗ d1

]
. (9.20)

Comparing with the general decomposition (9.15), we see that there is no bend,
no splay and the twist is −q0. The final term gives the deviatoric transformation Δ

describing the principal curvatures. Transforming to its torsional counterpart we find

Π = q0
2

[
d2 ⊗ d2 − d1 ⊗ d1

]
, (9.21)

which is diagonal, allowing the eigenvectors, and in particular the positive eigenvec-
tor d2 = ez , to be read off directly. We see that the positive eigenvector corresponds
with the pitch axis.
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Fig. 9.12 λ lines in cholesterics. Main panel: director field of a ‘dislocation’ in a cholesteric. Inset:
pitch axis, with the positions of the two λ lines indicated by the red dots

9.7.1 λ Lines: Defects in the Pitch

The pitch axis is defined everywhere that the eigenvectors of Π are defined, namely
away from the umbilic lines. This gives a physical interpretation of umbilic lines
in cholesterics as the λ defects in the pitch axis, features that are directly visible in
optical microscopy.We show an example of a λ± pair, corresponding to a cholesteric
‘dislocation’, in Fig. 9.12. A second example is provided by the Skyrmion lattice of
Fig. 9.6. Each Skyrmion is surrounded by six− 1

2 profile λ lines and has at its centre a
defect in the pitch with winding number+1, corresponding to a non-generic umbilic.
In the liquid crystal literature this is called the axis of a double twist cylinder.

9.8 Knotted Fields

The experimental construction of knotted disclination lines in liquid crystals [11]
opened up a new field in nematic topology. These were experiments with arrays of
colloids in a twisted nematic, or cholesteric, cell. The disclinations that entangle the
colloids can bemanipulatedwith a laser tweezer to create any knot [12]. Subsequently
knots have also been created in cholesteric droplets [76], handlebody droplets [77]
and with Möbius strip colloids [53].

Knots are fascinating and almost endlessly varied, and bring with them the
whole gamut of low-dimensional topology. This is a burgeoning field across many
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disciplineswith examples of knotted continuous fields also arising in optics [78], fluid
flows [79], superfluids [80, 81] and excitablemedia [82].Amongst the basic questions
that we might like to address are: What aspects of knot theory are directly pertinent
to the physics of nematic liquid crystals? What properties do knotted nematics have?
And, can we give explicit constructions of director fields with knotted disclination
lines in them? The first two questions are answered partially by the homotopy clas-
sification of knotted nematics. The last can be accomplished, in part, by adapting
Maxwell’s descriptions of magnetic fields.

9.8.1 Homotopy Classification

We make no attempt to describe the details of the homotopy classification [83, 84]
and provide only a concise summary of the main results. Fix a knotted disclination
line, K , and assume, for simplicity, that the boundary conditions on the director field
are that it is uniform (and aligned vertically) at large distances. The homotopy classes
of such director fields are given by

[S3 − K , RP
2] ∼= H1

(
Σ(K ); Z

)
/(x ∼ −x), (9.22)

where Σ(K ) is the branched double cover of the knot complement, and the equiv-
alence is as sets, i.e. without the group structure. This is a modestly sophisticated
result. Part of its utility is that the homology group H1(Σ(K ); Z) is relatively easy to
compute from, say, any standard projection diagram for the knot [85]. For instance,
for the figure-eight knot it is Z5, for the 76 knot it is Z19 and for the Kinoshita–
Teresaka knot it is the one element group 0, the same as the unknot.

For any knot, the group H1(Σ(K ); Z) has finite order. Consequently, there are
only a finite number of homotopically distinct nematic textures associated to any
knotted disclination. Links bring something new and in some cases may support
an infinite number of homotopically distinct textures; perhaps the simplest example
where this happens is the (4, 4) torus link, for which H1(Σ(K ); Z) = Z

2 ⊕ Z2.
As one other additional property possessed by links, consider a Pontryagin–Thom
surface for any link. In every homotopy class there is a representative where this is an
orientable surface. The PT surface then induces pairwise linking numbers between
the link components (that are independent of any choice of orientation for the PT
surface) and for some links this distinguishes the homotopy classes. For instance,
for the Hopf link there are two possibilities for the pairwise linking, +1 and −1,
are these are homotopically distinct. Now the complement of the Hopf link has the
homotopy type of a torus, T 2, so that these two pairwise linking numbers give another
interpretation to the Z2 classification of Sect. 9.3.2.
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Fig. 9.13 Examples of knotted disclination lines in nematic liquid crystals. The Pontryagin–Thom
surfaces are the level sets Φ = 0 and are coloured according to the angle Θ . a Kinoshita–Teresaka
knot, planar texture. b (4, 4) torus link, planar texture. The PT surface consists of two interlocked
Hopf link annuli. c, d Examples of non-planar textures on the complement of the 52 (c) and 88 (d)
knots

9.8.2 Construction of Knots in Nematics

In his treatise on electricity and magnetism [86], Maxwell describes the magnetic
fields created by current carrying wires. His constructions can be adapted to give
explicit expressions for director fields containing knotted disclination lines. We refer
to this as the Maxwell construction. Illustrations of it are given in Fig. 9.13.

A loop of wire K carrying a steady current I generates at any point x outside the
wire a magnetic field given by the Biot–Savart formula

B(x) = I

4π

∫

K

(
y(s) − x

) × dy(s)

|y(s) − x|3 , (9.23)

where s is arc length along the wire, whose position is denoted by y(s). Maxwell’s
equations imply that such a magnetic field is curl free and so may be represented
locally as the gradient of a function, the magnetostatic potential. An application of
Stokes’ theorem to the Biot–Savart formula expresses this potential as an integral
over any Seifert surface F for the wire
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B(x) = ∇
(

I

4π

∫

F

x − y
|x − y|3 · dS

)
≡ ∇Φ, (9.24)

where dS is an element of surface area. We will refer to Φ as a phase field. It is a
circle valued function (R/IZ) on the space outside the wire that is independent of the
choice of Seifert surface, or, equivalently a real valued function on the complement
of the Seifert surface that is independent of the choice of surface mod I . It winds
by I on going once around any loop that encircles the wire, or pierces the surface F
with intersection number +1. In what follows it will be convenient to set I = 2π.

We can use the phase field to orient the director in a liquid crystal texture according
to

n(x) = sin
(
Φ(x)/2

)
ex + cos

(
Φ(x)/2

)
ez . (9.25)

It then rotates by π along any loop that encircles the curve K once, which makes
K a disclination line for the director field. This director field has several remarkable
properties. It embeds an arbitrary knotted curve into a liquid crystal texture as a
disclination loop. The texture is entirely planar, with an orientation that lies every-
where in the xz-plane and with boundary conditions that n → ez at large distances
from the knot, as in the construction we have given the phase field vanishes in the
same limit. Finally, since ∇ · B = 0, Φ is a harmonic function and it follows that
this director field is a critical point of the one-elastic-constant free energy, for a fixed
defect set. Of course, in any situation in which the disclination loop is free to move
it will do so, for instance to reduce its length, but if it is fixed then this director field
is a minimiser. At the same time, the construction does present some limitations; for
instance, it does not capture any geometry as the orientation of the liquid crystal is
not directly correlated to the geometry of the curve. In particular, the choice of lying
in the xz-plane is quite arbitrary.

We now describe briefly how to extend the construction to director fields that are
not planar, and covering a representative of every homotopy class for any knot. Think
of the Seifert surface F as a Pontryagin–Thom surface. In this planar representative it
is monochrome. Sowhat we need to do is describe how to colour it. The topologically
interesting ways of colouring it are windings of the colour around the homology
cycles of F . But the preceding Maxwell construction tells us how to generate such
winding angles; we just need a current loop that is ‘dual’ to the winding of this angle.
Maxwell might well have phrased the problem in the language of magnetic fields. If
we wish to construct an angle that winds around some loop we need only thread that
loop with a current carrying wire; the magnetic field that the wire generates will be
the gradient of the angle that is desired.

Inmore formal terms,we have an instance ofAlexander duality; to each homology
cycle of F there corresponds a cycle in the complement of F that has linking number
+1 with the given homology cycle of the surface and 0 with all others (in a basis for
the homology).

So what we can do is choose a loop L , or collection of loops, in the complement
of F , representing any homology cycle of the complement, and generate in the same
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manner as before a phase fieldΘ that winds by 2π around any closed curve that goes
around the loop L . Then the director field

n = sin(Φ/2)
[
cos(Θ) ex + sin(Θ) ey

] + cos(Φ/2) ez, (9.26)

corresponds to a texture with disclination loop K and Pontryagin–Thom surface F
that is coloured by the angle Θ . It is known from the classification of knotted nemat-
ics [84] that this construction captures a representative of every distinct homotopy
class. Not all such colour decorations generate topologically distinct textures. For
instance, there is a unique homotopy class of nematic texture with a disclination loop
in the form of the Kinoshita–Teresaka knot. This can be analysed in the same way
as we did for maps T 2 → RP

2 in our discussion of disclination loops, by lifting to
a double cover and considering equivariant homotopies. This process is described
in [84], including with an explicit application to experiments on knotted defect lines
in toroidal droplets [77].

Remark 1 For the director field (9.26) not to contain any artefacts the singularities
in the angleΘ must lie in the surfaceΦ = 0. However, for the purpose of initialising
numerical simulations one does not need to be precise about this as any artefacts of
the initialisation are removed at the first timestep of typical relaxation algorithms.

Remark 2 We have presented the phase field Φ in terms of an arbitrary choice of
Seifert surface, F , as this proves convenient for our applications to liquid crystals.
A representation that just uses the curve K was given by Maxwell in volume II of
his treatise [86] and can be more convenient for other applications.
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12. S. Čopar, U. Tkalec, I. Muševič, S. Žumer, Proc. Natl. Acad. Sci. U.S.A. 112, 1675 (2015)
13. M. Ravnik, G.P. Alexander, J.M. Yeomans, S. Žumer, Proc. Natl. Acad. Sci. U.S.A. 108, 5188

(2011)
14. A. Nych, U. Ognysta, M. Škarabot, M. Ravnik, S. Žumer, I. Muševič, Nat. Commun. 4, 1489
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Chapter 10
Topologically Complex Morphologies
in Block Copolymer Melts

J. J. K. Kirkensgaard

Abstract Polymers are macromolecules built from chains of subunits. Most syn-
thetic polymers are built from a single subunit, the monomer, and are termed
homopolymers. The connection of two or more homopolymer chains into a larger
macromolecule is termed a block copolymer and these can be made with multiple
components connected into both linear or branched molecular architectures. Block
copolymers remain a subject of significant research interest owing to the control
and reproducibility of physical properties and the many fascinating nanoscale struc-
tures which can be obtained via self-assembly. The self-assembly behaviour of block
copolymers originate from the tendency of the various polymer chains to undergo
phase separation which is inherently constrained due to the molecular connectiv-
ity. This leads to the formation of ordered mesostructures with characteristic length
scales on the order of the chain sizes, typically tens of nanometers. Here the focus
is on the molecular architecture as a topological variable and how it influences the
morphologies one finds in self-assembled block copolymer systems. We present
a range of examples of morphologies with different and sometimes very complex
mesoscale topology, i.e. patternswhich emerges from the tendencyof thesemolecules
to undergo spatial phase separation.

10.1 Introduction

Polymers are macromolecules built from chains of subunits. Naturally occurring
examples of polymers include DNA and proteins built from chains of nucleic and
amino acids respectively or cellulose built from chains of connected glucose units.
Most synthetic polymers are built from a single subunit, themonomer, and are termed
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Fig. 10.1 Block copolymers. Covalent bonding of different polymer chains A, B, C, …results in
block copolymers of varyingmolecular architecture, here a linear AB diblock copolymers and ABC
triblock terpolymers, b star-shaped AB2 miktoarm copolymer and cABC star miktoarm terpolymer

homopolymers. The connection of two or more homopolymer chains into a larger
macromolecule is termed a block copolymer and these can be made with multiple
components connected into both linear or branched molecular architectures as illus-
trated in Fig. 10.1. Block copolymers remain a subject of significant research interest
owing to the control and reproducibility of physical properties and the many fasci-
nating nanoscale structures which can be obtained [1]. The self-assembly behavior
of block copolymers originate from the tendency of the various polymer chains to
undergo phase separation which is however inherently constrained due to the molec-
ular connectivity. This leads to the formation of ordered mesostructures with char-
acteristic length scales on the order of the chain sizes, typically tens of nanometers.
The formation of ordered structures in block copolymer systems stems from a com-
petition between two effects: the entropic penalty associated with chain stretching
and compression causing a preference for domains with constant thickness, and an
enthalpic penalty associated with interfacial energy causing a preference for domain
shapes which minimise surface area. In equilibrium a compromise between these
factors is achieved by forming interfacial surfaces which tend to have approximately
constant mean curvature. The nanostructures described below represent a tremen-
dous potential for future technological applications because they provide a bottom-up
route to materials with tailored optical, mechanical, electrical and photovoltaic prop-
erties (and combinations thereof), for example through phase selective chemistries
or selective sequential removal of the blocks.

In this chapter two notions of topology will be relevant: First we will talk about
the topology of the macromolecules, i.e. the arrangement of chains in the individual
copolymers, but we will use the term ‘molecular architecture’ to describe this. We
will focus in detail on the molecular architecture as a topological variable and how
it influences the morphologies one finds in self-assembled block copolymer sys-
tems. Secondly, we present a range of examples of morphologies with different and
sometimes very complex mesoscale topology, i.e. patterns which emerges from the
tendency of these molecules to undergo spatial phase separation under the constraint
of the molecular connectivity and which show periodicities on the length scale of
the chain sizes as described above. We will restrict ourselves to looking at polymer
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Fig. 10.2 Phase diagrams of AB-type block copolymers. aMorphologies found in AB diblock sys-
tems. S: cubic sphere packing, C: hexagonal cylinders, G: bicontinuous double gyroid, L: Lamellar.
Figure from [2]. b Theoretical phase diagram for AB diblock copolymers. The O70 phase is an
orthorhombic network phase described below. c Theoretical phase diagram for branched AB2 mik-
toarm star copolymer. Phase diagrams from [3]

melts, i.e. polymers in a liquid state above the glass transition temperature without
any added solvent.

10.2 AB Block Copolymers

The simplest block copolymers are AB diblocks where two polymer chains A and
B are connected at a single junction point (see Fig. 10.1a). Diblock copolymers have
been studied for decades and their self-assembly are generally well understood [3].
The structural phase behaviour of AB diblock copolymers is usually described as a
function of two parameters: the composition, i.e. the relative volume fractions of the
two components, and the degree of segregation described by the productχN whereχ

is the Flory-Huggins interaction parameter describing the chemical incompatibility
between the different chains and N is the degree of polymerisation (the length of
the polymer) [4, 5]. A characteristic feature of diblock copolymer self-assembly is
that for increasing segregation, the phase behaviour becomes dominated by the com-
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position. As a function of the composition described by the A component volume
fraction f = f A ( fB = 1 − f A) the universal phase diagram in the strong segregation
limit consists of four ordered morphologies namely lamellar, bicontinuous double
gyroid, hexagonally arranged cylinders and a cubic bcc sphere packing, all in prin-
ciple appearing symmetrically around a 50/50 composition (f = 0.5). These phases
are illustrated in Fig. 10.2a and a complete phase diagram based on a self-consistent
field theory prediction is shown in Fig. 10.2b. The χ parameter for a given polymer
pair is usually temperature dependent so that one can decrease the segregation by
raising the temperature (and vice versa). This means that at f = 0.4 for example one
should in principle be able to find phase transitions from L→G→C→ disorder by
increasing temperature (thus moving vertically in the phase diagram).1 The latter is
termed the order-disorder transition and the others order-order transitions. Inspection
of the morphologies in Fig. 10.2a reveal that these phases are either based on simple
topologies like planes, cylinders, spheres or in the case of the double gyroid, the
more complex topology of networks whose midsurface is describable as a minimal
surface [6]. Whichever it is, an order-order transition often necessitates a change of
topology. Here we will not discuss such phase transitions in detail, but will rather
focus on the effect of changing the molecular architecture and composition.

In Fig. 10.2c a phase diagram of two-component AB2 miktoarm stars are shown.
For a given composition quantified by f , the change inmolecular architecture induces
increased interfacial curvature leading to shifts in the phase diagram, increasing
for example the regions of spherical packings by introducing the A15 phase (see
Fig. 10.3) and also stabilising another new morphology, the perforated lamellae (PL)
where lamellar sheets of the B-component is protruded by hexagonally arranged
pillars of the majority matrix component A. Also, the O70 network phase exhibits
a larger region on the f > 0.5 side of the diagram with the B-component forming
the network and the A-component the matrix [3]. As we shall see below, chang-
ing the molecular architecture allows the formation of spectacular structures when
increasing the number of components to more than two. The formation of low sym-
metry sphere packings is an ongoing topic in soft matter self-assembly [9] with a
prominent example found in a block copolymer melt, namely the discovery of a large
unit cell tetragonal structure known from metal alloys as the σ Frank–Kasper phase
[8], see Fig. 10.3b, c. The low symmetry sphere packings like A15 and the σ phase
are known as approximants to aperiodic quasicrystalline arrangements characterised
by rotational symmetry, but not translational symmetry. The finding of the σ phase
recently led to the discovery of a long-lived metastable dodecagonal quasicrystalline
phase in a block copolymer system [10].

1There are a number of practical subtleties associated with this statement. First of all it requires that
the molecular weight (or N ) is not so large that the temperatures required to reach the transitions
disintegrates the molecules, and second, the temperature range has to be above the glass transition
temperature Tg which is a property of the specific chains. We will assume we are in a region of size
and temperature where the notion of phase transitions makes sense. Note however that in structural
studies of block copolymer morphologies one often utilises the glass transition of one or more of
the chains to effectively ‘freeze’ a given structure by a rapid temperature quench.
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Fig. 10.3 Sphere packings found in block copolymer systems. a Cubic packings BCC, FCC and
A15. Figure from [7]. b, c Frank–Kasper σ -phase. Figure from [8]

10.3 ABC Block Copolymers

The addition of a third component dramatically increases the morphological phase
space as seen with linear ABC terpolymers where a large number of different struc-
tures have been found [1, 11]. A unifying feature between the structures formed in
linear ABC systems and those found in simpler AB systems is that they are all char-
acterised by the interfaces of each pair of polymer species. So speaking in terms of
structural motifs, linear ABC block copolymers also explore variations of the surface
topologies mentioned above: sphere, cylinder, plane, networks/minimal surface, but
in multicolor versions, see Fig. 10.4 for a few examples. Nevertheless, the addition of
a third component still allowsmore detailed control of the resultingmorphologies and
also opens up regions in the phase diagram of new and complex phases. An example
is the poly(isoprene-b-styrene-b-ethylene oxide) linear triblock terpolymer system
(ISO) studied experimentally and theoretically by Bates and colleagues [12] where
several complex network phases are shown to form in the phase region between 2-
and 3-colored lamellar structures, see Fig. 10.4b, c. The orthorhombic O70 phase is a
single net structure while the Q230 andQ214 phases are both of the double gyroid type.
The difference is the molecular packing: in the Q230 the nets are symmetric while in
Q214 the two nets are built from different chemical species lowering the symmetry to
the chiral subgroup since each of the double gyroid nets are chiral enantiomers (of
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opposite handedness). The formation of network phases like the double gyroid is a
well-known phenomena in soft matter self-assembly where it is found ubiquitously
in for example lipid and surfactant systems forming lyotropic liquid crystals [6]. Here
the 3-connected double gyroid appears as one of typically three phases formed, the
others being the 4-connected double diamond phase and the 6-connected primitive
phase - all of cubic symmetry. In pure AB and ABC linear block copolymer melts all
network phases found is of the 3-connected kind which is ultimately a result of the
configurational entropy loss associated with chain stretching which is not penalised
in surfactant type systems: The chain stretching required in polymer systems to fill
network nodes with more than 3 connectors becomes prohibitive for the formation
of those phases unless alleviated by the addition of shorter homopolymers chains
or some kind of nanoparticle which can reside in the nodal centers as space fillers
[13, 14].

However, as illustrated above with the AB2 miktoarm stars a change in molecular
architecture can induce increased interfacial curvature and stabilise new phases.
In Fig. 10.5 a simulated phase diagram is shown of A(BC)2 miktoarm star melts.
A reference structure where each chain is roughly the same length assembles to a
perforated lamellae structure (verified experimentally in [15]) and as each arm length
is varied relative to that a number of new structures appear on the periphery of the
perforated lamellae region. First, as the A arm is shortened, a single gyroid phase
emerges (GLAB) - note that this is a chiral structure - while for longer A arms a double
diamond phase is stabilised. Increasing themiddle B-block leads to a hybrid structure
with the red A component forming a spherical packing while the green C species
forms a 3-connected gyroid-like network. Note that because of the multicomponent
nature of the molecules, the middle B blocks in these phases form topologically very
complex continuous morphologies with channels and cavities.

As mentioned above, a unifying feature between the structures formed in the
linear AB and ABC systems shown in Fig. 10.1 is that they are all characterised
by the interfaces of each pair of polymer species. Although the A(BC)2 miktoarm
stars allow the formation of a range of topologically complex phases, they can still
effectively be though of as a linear ABC molecule only with added splay due to the
two diblock chains. This is because the topology of the star branch point only involves
two of the chain species and so effectively acts in the same way as the connection
of a linear molecule. However, another option when adding a third component is to
make a star-like topology where all species meet at the branch point. Such molecules
are called ABC miktoarm star terpolymers (Fig. 10.1). The self-assembly behaviour
of ABC stars have been investigated experimentally [17] and theoretically [18, 21–
23]. The generic theoretical phase diagram as described by these sources is shown
in Fig. 10.6 under the compositional constraint of two components occupying equal
volume fractions and of symmetric interaction parameters between the different
polymer species. Compared with the self-assembly of linear block copolymers a
fundamental result appears despite these severe constraints: dictated by themolecular
star topology ABC lines are formed where the three different interfaces between AB,
AC and BCmeet [18–21]. As a consequence, a sequence of columnar structures with
cross-sections following various polygonal tiling patterns appears. This sequence of
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Fig. 10.4 Linear ABC triblock copolymer phases. aA selection of structures formed in linear ABC
systems. Figure from [11]. b Theoretical ternary phase diagram showing the appearance of three
different 3-connected network phases [12], the orthorhombic O70 phase and the two cubic double
gyroid phases Q230 and Q214. c Network representations and local molecular configurations of the
networks from b. Figures (b, c) from [12]

tilings has been predicted from all the earlier mentioned theoretical studies and has
been found in a number of experimental ABC 3-miktoarm star terpolymer systems
[17].

Again, one can influence the interfacial curvature by altering the molecular archi-
tecture. In Fig. 10.7 the composition of ABC stars is altered by adding chains of equal
length instead of increasing the length of one chain. Direct comparison with the ABC
star phase diagram in Fig. 10.6 shows that the tiling patterns at x = 2 and x = 3 are
now replaced with new decorations of the bicontinuous motifs of the diamond and
gyroid network patterns. In these new structures one of the two nets are now built
from alternating globular domains of the minority components. The striped double
diamond has been found experimentally in a blend system as described below [24].
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Fig. 10.5 a A(BC)2 miktoarm star. b Simulated phase diagram of A(BC)2 miktoarm stars from
[16]

As mentioned above, the connectivity of ABC stars sets a topological constraint
on the possible self-assembly morphologies but also leads to new possibilities. One
very exciting option set forth byHyde and co-workers is the formation of new tri- and
polycontinuous patterns [20, 25]. They showed that such patterns were topologically
consistent with the star molecular architecture and hypothesised their formation in
star systems. A number of candidate structures were suggested (see Fig. 10.8) and
evaluated in terms of energetics but any of them remains to be found experimentally in
an ABC star system.2 However, by suitably adjusting the molecular architecture and
chemistry of ABC stars it turns out one can favour a thermodynamically stable tricon-
tinuous structure based on three intertwined so-called ths-nets as was demonstrated
using self-consistent field theory in [28] (see Fig. 10.9). This is a spectacular network
structure effectively carving up space into three separated congruent labyrinths, each

2One of the predicted tricontinuous patterns have in fact been identified in both a hard and a soft
matter context. In [26] such a pattern was found in a mesoporous silica and the same structure was
later identified in a lyotropic liquid crystalline surfactant system [27]. However, in those cases the
channels all contain the same material unlike the structures described here which have a different
chemical species inside each channel.
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Fig. 10.6 aGeneric phase diagram forABC3-miktoarm star terpolymers. TheA andB components
are constrained to occupy equal volume fractions and interactions between all unlike components
are symmetric [18, 21–23]. The different phases are placed at their approximate compositional
positions quantified by the parameter x , the volume ratio of the C and A (= B) components. The
tilings are denoted by their Schläfli symbol [18, 21], a set of numbers [k1.k2. . . . .kl ] indicating
that a vertex is surrounded by a k1-gon, a k2-gon,…in cyclic order. Tilings with more than one
topologically distinct vertex are named as [k1.k2.k3; k4.k5.k6]. Color code: A: red, B: blue, C:
green. b Examples of tiling patterns from poly(isoprene-b-styrene-b-2-vinylpyridine) miktoarm
star terpolymers visualized by transmission electron microscopy. Images from [17]

Fig. 10.7 Varying the composition by adding chains of equal length instead of increasing the length
of one chain results in completely new structures [23]. a An ABC2 star (x = 2). b For x = 1 the
result is still the [6.6.6] tiling. c For x = 2 a double diamond network structure is found with one
net built from alternating A and B domains. d For x = 3 the system also forms a striped network
structure but nowwith the topology of the double gyroid structure with one net built from alternating
red and blue domains. Figures from [23]

with a separate chemistry and thus properties. The key to stabilising this structure
stems from the introduction of an extended core which effectively alters the balance
between entropic and enthalpic free energy contributions, ultimately allowing this
new pattern to outfavour the prismatic hexagonal honeycomb.
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Fig. 10.8 Examples of tricontinuous candidate patterns topologically consistentwith the starmolec-
ular architecture [20]. Yellow lines indicate the triple lines along which the star molecular cores
pack. a 3 intertwined diamond nets. b 3 intertwined gyroidal srs-nets (all of same handedness, so
a chiral structure). c 3 intertwined quartz qtz-nets (also chiral). Figure from [28]

Fig. 10.9 a A dual chain core ABC star triblock copolymer. b Triply intergrown ths-nets. c As
in b but showing the interfaces also. d Phase diagram from [28]: As a function of the core volume
fraction and the interaction strength three structures dominate the phase diagram, one of which is
a spectacular tricontinous network structure
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Fig. 10.10 Blending block copolymers. a An asymmetric polystyrene-b-polybutadiene-b-poly(2-
vinylpyridine) (S34B11V55) miktoarm star terpolymer forms a [12.6.4] tiling on its own (subscripts
indicate molecular weight). The minority B component forms the dark 4-sided domains while the S
component forms the white hexagonal domains in the tiling. bWhen blended with a S45V55 diblock
copolymer the tiling pattern remains [12.6.4] but the chemical nature of the hexagons and squares
swap so that B now forms hexagons and S forms squares. Figures from [29]

10.4 Blending Molecular Architectures

Blending polymers has been a heavily used strategy for many years to obtain a mate-
rialwith newproperties akin to alloys inmetallurgy. This also applies to block copoly-
mers where one approach is to swell a particular domain with shorter homopolymer
chains of the same species - in analogy to swelling in lyotropic liquid crystalline
systems. For example, blending an ABC star which alone forms the [6.6.6] tiling pat-
tern with C homopolymer chains can lead to a zinc-blende structure with alternating
AB domains building up a diamond network [24] as the one illustrated in Fig. 10.7c
above. If the swelling agent is not a homopolymer chain but another block copolymer,
compatibility between pairs of blocks of both molecules becomes another control
parameter for structure formation. An example is shown in Fig. 10.10 where blend-
ing an ABC star which forms the [12.6.4] tiling alone with AB diblock copolymers
causes the A and B components to swap polygonal symmetry positions in the tiling
pattern [29]. Thus, blending opens up the possibility of fine-tuning the structures
found in the pure systems or allowing completely new patterns to appear. However,
the possible phase space of a blend of different block copolymers stars is enormous.
The main variables in play are (i) the molecular topology, i.e. the connectivity of the
chains, (ii) the composition, i.e. the volume fractions of the different chains includ-
ing the blend ratio, (iii) the chemical nature of the different polymer species, i.e.
their mutual interaction parameters. Secondary variables can be polydispersity of
the chains and chain flexibility for example [1].

In Fig. 10.11 an example is shown where a series of spectacular structures are
predicted to form in blends of two different miktoarm stars [30]. Blending ABC
and ABD star triblocks in a 50/50 ratio and with the majority domains (green C +
yellow D) 2–7 times longer than the minority components (red A + blue B) a series
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Fig. 10.11 a Blending ABC and ABD 3-miktoarm star terpolymers. All molecules contain equal
sized A (red) and B (blue) arms, and longer C (green) and D (yellow) arms, but also of equal
size. The parameter x (equal to 8/4 = 2 in this image), corresponds to the number ratio of C to A
beads. b C and D domain geometry, a pair of intertwined gyroid nets. c–g Single unit cell snapshots
illustrating the curved striped pattern formed by the minority components A and B for varying x . c
x = 2, d x = 3.67, e x = 6. Note the 3-fold branching for all values of x . Figures from [30]

of complex chiral network structures are predicted to form. The C and D species
form two chiral enantiomeric nets separated by a membrane following the gyroid
surface. As the C and D chains grow, the overall structure remains a chiral gyroid, but
unlike all hitherto found gyroid(-like) structures, the channels in these new structures
constitute majority domains resulting in the formation of a thin hyperbolic film.

Depending on the composition, interactions and molecular architectures in play,
the minority components form remarkable structures on this hyperbolic curved film,
in particular ordered branched structures which can be thought of as ‘hyperbolic
lamellae’. It is important to realise that if the film was flat, regular lamellae would
form, but because of the curvature of the film branching has to occur. Remark-
ably, it turns out that these branched patterns are theoretically related to a family of
tilings in the hyperbolic plane which when embedded on the gyroid surface yields
distinct interwoven chiral nets, always of the same handedness and which changes
topology systematically as a function of composition. The non-chiral nature of the
block copolymer preclude a preferred handedness, which in the numerical simu-
lations results in domains of opposite chirality forming, ultimately giving rise to
defects, see Fig. 10.12. Nevertheless, the ideal mesostructures of these patterns in
three-dimensional space are spectacular and extraordinarily complex. The minor-
ity components form multiple threaded chiral nets (all of equal handedness) whose
topologies are that of the gyroid net. The number of disjoint nets making up the
hyperbolic film can be up to 54 [30]. These intricate self-assemblies of liquid-like
domains thus rival the complex interwovennetworks found in syntheticmetal-organic
frameworks [31].

10.5 Concluding Remarks

The role of molecular architecture (chain topology) has been shown to be a defining
variable influencing the resulting self-assembly morphologies in block copolymer
melts and a number of patterns with complex topology has been presented from
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Fig. 10.12 Comparison of ideal left- (L) and right-handed (R) patterns (top and middle rows)
viewed from various directions with a self-assembled morphology formed in a simulated mixture
of terpolymers with x = 4 (bottom row). The simulated morphologies can be seen to match both
of the ideal left- and right-handed patterns in distinct patches of the unit cell and are therefore of
mixed chirality

experiments and simulations. From a topological perspective perhaps the simplest
way to condense the message presented here is shown in Fig. 10.13. Here symmetric
AB diblocks are compared as a 2-star with an ABC 3-star and a ABCD 4-star and it is
clear that the interfacial dimensionality changes as the molecular topology is altered.
Each pair of species defines a surface and as the surfaces have to meet in space we
go from 2D interfaces to 1D line interfaces and finally to 0D point interfaces in a
cellular packing. In the latter case, Monte Carlo simulations of symmetric ABCD 4-
miktoarm stars by Dotera [32] showed that a 4-colored Kelvin foam was the optimal
packing, and not for example a square 4-colored tiling pattern.

As the molecular composition is altered away from the symmetric case, the
resulting structural response becomes a combination of these motifs as illustrated in
Fig. 10.14. Here an asymmetric ABCD star is shown to form a hexagonal columnar
structure with elements of a [12.6.4] tiling along the cylinder axis, but apart from the
cylinders themselves remains a cellular structure. Manymore structures are expected
to be found in these and higher order block copolymer molecules as combinations
of the topologies displayed here. From a theoretical perspective we can continue
to add chains but the synthetic community is in some sense way ahead of theory:
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In Fig. 10.15 a range of examples are shown of incredible molecular architectures
synthesised in the group of A. Hirao. The potential morphologies and topologies to
be found in these systems is unknown as these molecules are still largely unexplored
structurally both theoretically and experimentally.

(a)

(b)

(c)

Fig. 10.13 The mutual interfacial dimensionality changes with the molecular architecture for sym-
metric block copolymers. a Diblocks form lamellae with 2D (surface) interfaces. b ABC star
triblocks form tiling patterns with 2D and 1D (line) interfaces. c ABCD star tetrablocks form cellu-
lar packings with 2D, 1D and 0D (point) interfaces. This particular cellular packing is a 4-colored
Kelvin foam, i.e. each component forms a closed cell in the shape of a truncated octahedron sur-
rounded by 14 neighbors. This structure has been predicted to form in symmetric ABCD stars [32].
Figure from [32]
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Fig. 10.14 Edge-on (left) and top-down (right) split views of morphology formed in an asymmetric
four-armed ABCD miktoarm star with arm length ratios of 1:4:2:2. Color code: A (red), B (blue),
C (green), D: (yellow)

Fig. 10.15 A selection of possible structures of asymmetric star polymers obtained by Hirao and
co-workers using advanced iterative synthetic techniques. Figure from [33]
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Chapter 11
Topology of Minimal Surface
Biophotonic Nanostructures
in Arthropods

Vinodkumar Saranathan

Abstract Structural colors, includingmany vivid (ultra)violets, blues and greens are
quite ubiquitous in animals and form an important aspect of their physical appear-
ance. These colors, which have evolved over millions of years of evolution for a
persistent color production function, are often used in camouflage and signaling,
including in mate-choice and as warning coloration. By contrast to pigment or dye-
based colors, these fade-proof colors are usually produced by the interference of light
by a stunning diversity of nanostructures in the animal integument, none as spec-
tacular as those found in certain arthropods. Recently, Saranathan et al. (Nano Lett
15:3735–3742, 2015 [1]) diagnosed the photonic nanostructure present in the cuticu-
lar scales and setae of 85genera in 5orders of terrestrial arthropods, using synchrotron
small angle X-ray scattering (SAXS) and electron microscopy. We reported a rich
diversity of nanostructures rivalling those seen in the phase behavior of amphiphilic
surfactants, block copolymer, or lyotropic lipid-water systems, including ordered
and disordered triply-periodic bicontinuous nanoporous networks, perforated lamel-
lar, inverse hexagonal columnar and close-packed spheremorphologies. However, all
these diverse nanostructures can be decomposed into their constituent topology, char-
acterized by either negative, zero or positive Gaussian curvature, but constant mean
curvature—namely, the saddle/hyperboloid (Schwarz’s Primitive P, Schwarz’s Dia-
mond D, Schoen’s Gyroid G) and lamellar-helicoid (Riemann’s) surfaces, cylinder
and sphere. Intriguingly, both the triply periodic saddle (P, D, and G) and the singly
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periodic Riemann surfaces are characterized by zero mean curvature, i.e., the build-
ing blocks of the corresponding nanostructures are all based on minimal surfaces.
In light of this, I review the nanostructure, development, and the biomimetic and
bioinspiration potential of these self-assembled minimal surface biophotonic nanos-
tructures, when the large-scale, defect-free synthesis of mesoscopic nanostructures
with the desired symmetry at optically relevant length scales is not currently facile.

11.1 Introduction

Colors in the biological world, as in the physical world, are produced either chem-
ically via wavelength-selective absorption by pigments or physically as a result of
light scattering from sub-micron features or nanostructures with compositional vari-
ation in the refractive index [2–4]. The latter class of colors called structural colors
are produced as a result of either incoherent scattering from uncorrelated single par-
ticles (as in Rayleigh, Tyndall or Mie scattering) or coherent scattering as a result
of constructive interference or diffraction of incident light due to periodic or quasi-
periodic spatial variations in the refractive index, on the order of visible wavelengths
of light [3, 5].

Structural colors are quite ubiquitous in animals and are known to be produced
generally by the coherent scattering of light from a wide variety of underlying
integumentary biophotonic nanostructures (100–350 nm) [1, 2, 5–12]. These colors
constitute a very important part of the animal appearance, as they are hypothesized
to function in camouflage, mate choice and as aposematic or warning coloration [10,
13–17], having evolved over millions of years of natural and sexual selection. Indeed
many recent studies, even though not done with an explicit comparative evolutionary
framework, suggest that these biophotonic nanostructures comprised of relatively
low refractive index biomaterials (e.g., chitin~1.56; feather β-keratin~1.54 [18]),
are perhaps optimized over evolutionary time for material and/or optical properties
[19–24]. Unsurprisingly, a growing number of studies are turning to biophotonic
nanostructures as a novel source of inspiration for advanced devices and technologies
for use in photonics and sensing [6–9, 25–33].

However, the bioinspiration from and the biomimetics of biophotonic nanos-
tructures have been hitherto hampered by a lack of accurate three-dimensional
structural characterization, despite a long history of scientific inquiry, including
by luminaries such as Newton, Lord Rayleigh, Michelson and Sir C. V. Raman
(detailed in [8]). Considerable progress has been made only recently in diagnosing
and elucidating the notoriously complex, three-dimensional symmetries of these
biophotonic nanostructures, with the application of advanced materials characteri-
zation techniques such as small angle X-ray scattering (SAXS), X-ray tomography
and ptychography [1, 16, 34–38]. Similarly, there has been a dearth of studies
on the growth and development of these biophotonic nanostructures. While it has
become abundantly clear that many of these nanostructures are self-assembled [1,
34, 35, 39–44], the precise details of their biological intra-cellular self-assembly
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processes are still uncertain. This knowledge is of considerable biomimetic and
bioinspirational interest, given that the facile synthesis of large-scale, defect-free,
three-dimensional photonic crystals (PCs) of desired symmetries at these rather
large meso-scales (broadly 100–1000 nm) is rather challenging [22, 45–50].

Arthropods, especially insects, are the most abundant, colorful and ecologically
diverse group of animals. Compared to birds [34, 51–54], lizards and frogs [55] and
other land vertebrates [2, 4], cephalopods and other aquatic animals [10, 29, 56, 57],
terrestrial arthropods unsurprisingly exhibit an unrivalled diversity of biophotonic
nanostructures [1, 6–12] (Fig. 11.1). Recently, using SAXS, and EM, we structurally
characterized the biophotonic nanostructures present inside cuticular scales and setae
from an unprecedented number of taxa belonging to 85 genera in 5 orders of terres-
trial arthropods [1]. In this chapter, I review from a topological point of view beyond
just a language of shape [58–60], the nanostructure, development, and the potential
of these self-assembled biophotonic nanostructures in arthropods, especially those
whose fundamental interfacial topology is based on triply periodic minimal surfaces
(TPMS), to perhaps bio-inspire the design and synthesis of next-generation multi-
functionalities in photonics, sensing, and even energy storage/conversion.

11.2 Topology of Arthropod Biophotonic Nanostructures

In terrestrial animals generally and certainly in arthropods, structural colors espe-
cially iridescence (characterized by a change in hue with angle of observation or
light incidence [3]) is quite frequently generated by the well-studied class of one-
dimensional PCs, including thin-film, multi-layer reflectors and diffraction gratings
[6–11, 61]. This is perhaps because they are the most easily evolvable and evolved
biophotonic nanostructure, for all it takes to produce visible structural colors (think
oil slick or soap bubble) is an optically relevant specification of the thickness of a sin-
gle superficial layer that is optically different (refractive index) from the underlying
matrix on the animal integument [5, 11, 62, 63]. Nevertheless,many beetles including
scarab beetles (Coleoptera: Scarabaeidae), longhorn beetles (Coleoptera: Ceramby-
cidae) and weevils (Coleoptera: Curculionidae), and certain butterflies (Lepidoptera:
Lycaenidae, Papilionidae), bees (Hymenoptera: Apidae), jumping spiders (Araneo-
morphae: Salticidae), and tarantulas (Mygalomorphae: Theraphosidae) (see [1, 35]
and references therein) have structurally colored scales or setae covering the integu-
ment on their elytra/wings, abdomen, and legs. These photonic scales and setae are
known to have a variety of complex, three-dimensional biophotonic nanostructures
within their interior lumen, made up of the polysaccharide chitin and air (see [1, 35]
and references therein).

Amazingly, the diversity of arthropod biophotonic nanostructures spans the
amphiphilic phase space [1], i.e., arthropod biophotonic scales and setae show a
rich polymorphism comparable to those normally seen in the phase behavior of
amphiphilic or lyotropic macromolecules, such as block copolymers [64–67], sur-
factants [68], and lipids [69, 70]. Nanostructural diagnoses based on an indexing of



278 V. Saranathan

Fig. 11.1 Diversity of biophotonic arthropod cuticular nanostructures inside scales or setae. Rep-
resentative light micrographs (first column), scanning electron micrographs (middle), and 2D
SAXS patterns (last column) of: a–c Rhinoscapha sp. (Coleoptera: Curculionidae), single gyroid
(I4132); d–f Pachyrrhynchus yamianus (Coleoptera: Curculionidae), single diamond (Fd-3m);
g–i) Sternotomis mirabilis (Coleoptera: Cerambycidae), simple or primitive cubic (Pm-3m); j–l
Anoplophora versteegi (Coleoptera: Cerambycidae), quasi-ordered spheres; andm–o Amegilla cin-
gulata (Hymenoptera: Apidae), inverse hexagonal columnar. SAXS patterns show the logarithm
of scattering intensity as a function of the scattering wave vector, q, in false color. Scale Bars: a,
m—50 μm; d, g, j—100 μm; b—600 nm; e, n—500 nm; h, k—250 nm; c, f , i, l, o—0.05 nm−1.
Abbreviations: c—chitin; a—air void
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Bragg peaks [71] in the azimuthal SAXS profiles, together with real-space infor-
mation from scanning and transmission EM images revealed that different families
of arthropods have evolved specific classes of biophotonic nanostructure in a dis-
tinct, non-random fashion (Figs. 11.1 and 11.2) [1]. Triply periodic bicontinuous
nanoporous networks with single gyroid (IUCr cubic space group 214, I4132) and
single diamond (IUCr cubic space group 227, Fd-3m) symmetries were found only
in the iridescent scales of snout weevils (Coleoptera: Curculionidae; Figs. 11.1a–f,
and 11.2a, b) [1]. Single gyroid PCs are also known to be present in the wing scales
of certain lycaenid and papilionid butterflies [1, 11, 23, 35, 38, 72]. Triply periodic
networks with simple or primitive cubic (IUCr cubic space group 221, Pm-3m) sym-
metry (Plumber’s nightmare) were present only in the setae of the Sternotomini tribe
of longhorn beetles (Coleoptera: Cerambycidae; Figs. 11.1g–i, and 11.2c) [1].

In general, these triply periodic networks exhibited several salient features quite
remarkable for a biological soft-matter system [1]. First, the X-ray scattering from
many such photonic scales exhibited 8 orders of Bragg peaks or more (Fig. 11.2),
rivalling those typically seen, for instance, in synthetic polymer blends with a high
degree of long-range orientational order [1, 73]. Overall, the degree of long-range
order ranged, however, from monocrystal-like Bragg spots to various degree of
poly-crystallinity (including concentric Debye-Scherrer rings at diagnosable spac-
ings [73]), all the way to sponge-like or highly disordered versions of the networks
exhibiting just the fundamental peak and at most one or two higher-order peaks (see
Fig. S1 in [1]). In some Neotropical weevils colloquially called the “diamond” wee-
vils (Lamprocyphus spp. see Figs. S1.72–80 in [1]; cf. [74]), both single diamond and
single gyroid symmetries were present within the same scale assayed, suggesting a
very interesting epitaxial relationship between these two co-existing phases [75, 76],
albeit unexamined.

Whereas, the photonic scales of other longhorn beetles are comprised of close-
packed arrays of chitin spheres with or without bridging necks (between neighbor-
ing spheres), occurring in ordered (face-centered cubic, fcc; body-centered cubic,
bcc) and quasi-ordered arrangements (e.g., Anoplophora versteegi; Figs. 11.1j–l,
and 11.2d) [1].

A two-dimensional, inverse hexagonal columnar (i.e., a honeycomb arrangement
of cylindrical air holes in chitin) morphology was present in the photonic setae of the
digger beeAmegilla cingulata (Hymenoptera: Apidae: Anthophorini; Figs. 11.1m–o,
and 11.2e) and in a jumping spider (Araneae: Salticidae) [1]. A Bouligand-like [77]
twisted inverse columnar (intermediate between a lamellar and an inverse hexag-
onal) morphology was present in the iridescent setae of the cuckoo bee Thyreus
nitidulus (Hymenoptera: Apidae: Melectini), as well as in the scales of the Hoplia
scarab beetles (Coleoptera: Scarabaeidae) [1]. Finally, a quasi-ordered or amorphous
sponge-like photonic networkwas present in the setae of another cuckoo bee,Thyreus
pictus, while the photonic nanostructures responsible for the purple to blue color in
the setae of many tarantulas (Araneae: Theraphosidae) were found to be perforated
lamellae [1], which are also known in many butterfly wing scales [11, 78–80].

Besides their corresponding space group symmetries, these diverse arthropod
biophotonic nanostructures as well as their materials science analogs in block
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Fig. 11.2 Nanostructural diagnoses of representative SAXS patterns of arthropod cuticular pho-
tonic nanostructures presented in Fig. 11.1. The normalized, azimuthally-averaged SAXS profiles
are shown on a log-log scale. Coleoptera: Curculionidae: a Rhinoscapha sp., single gyroid (I4132),
b Pachyrrhynchus yamianus, single diamond (Fd-3m); Coleoptera: Cerambycidae: c Sternotomis
mirabilis, simple or primitive cubic (Pm-3m),dAnoplophora versteegi, amorphous or quasi-ordered
spheres; Hymenoptera:Apidae: e Amegilla cingulata, inverse hexagonal columnar. The normalized
Bragg peak positional ratios are indexed based on the predictions (colored vertical lines with corre-
sponding squares of the moduli of the Miller indices hkl presented above) of specific space group
symmetries, as per IUCr conventions [1, 71]
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copolymer, lipid-water, and surfactant systems can all be classified based on their
interfacial curvature [59, 69, 81, 82] into constituent topologies—namely, the plane,
cylinder, sphere, saddle or hyperboloid (Schwarz’s Primitive P, Schwarz’s Diamond
D and Schoen’s Gyroid G) and lamellar-helicoid (Riemann’s) surfaces [83–85]
(Fig. 11.3). Interestingly, these topologies all have a constant mean curvature (H =
(κ1 + κ2)/2, where κ1 and κ2 are the principal curvatures along orthogonal planes
normal to the surface) [86, 87], but distinct (0 for cylinder and plane, constant
positive for sphere and negative for saddle) saddle-splay or Gaussian curvature (K =
κ1.κ2). However, the plane (trivially so), the singly periodic Riemann’s surface and
the triply periodic (i.e., translationally invariant in R3) P, D and G surfaces are min-
imal surfaces with zero mean curvature (H=0). The P, D and G TPMS with double
primitive (IUCr space group 229, Im-3m), double diamond (IUCr space group 224,
Pn-3m) and double gyroid (IUCr space group 230, Ia-3d) symmetries respectively
divide the unit cell into two equivalent bicontinuous labyrinths or networks on
either side, each with the corresponding subgroup symmetry when considered alone
(Pm-3m, Fd-3m and I4132) and 6, 4 and 3-fold connectivity respectively [88, 89]
(Fig. 11.3). The lowest attainable genus (i.e., the unit cell has a hole or handle along
each of the three axes) for these TPMS is 3. The P, D, and G TPMS happen to
belong to the same associate or Bonnet family as they are topologically related to
each other by a Bonnet transformation [89–92], suggesting a topological link (for
e.g., in order-order transitions) between these three phases. Let us now turn to the
question of whether we can go beyond just cataloging and elucidate the origin and
self-assembly of these arthropod biophotonic nanostructures, specifically the triply
periodic bicontinuous minimal surface networks.

11.3 Self-assembly of Minimal Surface Biophotonic
Nanostructures

Biological phospholipid bilayer membranes are generally known to self-assemble
into a number of inverse (type-II) lyotropic liquid crystalline phases in aqueousmedia
[59, 81, 93, 94], analogous to the diversity of biophotonic nanostructures reported in
arthropods [1]. In vivo, the so-called cubosomes or cubic membrane morphologies
with double primitive, double diamond and double gyroid symmetries, in addition
to disordered sponge-like networks, tubular networks and lamellar phases, as well
as reversible transition between phases and coexisting phases, have all been reported
within membrane-bound organelles of both plant and animal cells [85, 94–103]. The
self-organization of biological membranes thus appears to be an innate property of
phospholipid bilayers, thought to be regulated by the energetics of membrane cur-
vature, specifically by the interplay between the minimization of interfacial energy
and chain-stretching energy [59, 82, 100, 104]. These cubic membranes have also
been postulated to develop via a topology preserving intersection-free membrane
folding or invagination as opposed to a topologically non-equivalent membrane



282 V. Saranathan

Fig. 11.3 Topology of arthropod minimal surface photonic nanostructures. Top panel: Triply peri-
odic saddle or hyperboloid surfaces (Schwarz’s PrimitiveP with double primitive Im-3m, Schwarz’s
Diamond D with double diamond Pn-3m, and Schoen’s Gyroid G with double gyroid Ia-3d space-
group symmetries). Pairs of parallel minimal surfaces (level set) are illustrated in both “balanced”
and supergroup symmetry-breaking “unbalanced” configurations. Bottom panel: singly periodic
Riemann’s (lamellar-helicoid) surface (Riemann’s surface, image credit: Matthias Weber). The
pores (black arrow) in a perforated lamellar (PL) or a sponge (L3, not shown) morphology can be
modelled as a Riemann’sminimal surfacewith helicoid-like bridges connecting asymptotic lamellar
planes [83–85]
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fusion process [98, 100, 101, 105]. Nonetheless, these morphologies occur with
notably large lattice parameters (50–500 nm) than is typical for lipid-water systems
[85, 94–103]. At a simple reading, it appears then that the in vivo self-assembly and
observed polymorphism of biological bilayer lipid phases is not completely con-
gruent with the thermodynamic phase behavior of lipids seen in bulk systems [94].
However, living cells can apparently generate spontaneous membrane curvature and
induce membrane invagination by physically changing the shape of the membranes
upon binding by certain classes of proteins that vary in shape, molecular weight, and
electrostatic residues [82, 100–102, 104, 106], and perhaps also accounting for the
unique biological length scales of self-assembly. One such membrane inclusion is
the highly-conserved BAR domain protein superfamily [107–110]. Such membrane
inclusions may not only play a regulatory role in the self-assembly of various biolog-
ical lipid phases but may offer a powerful novel paradigm for material synthesis at
the sought after meso-scales by controlling the local conformation/topology of mem-
branes. Therefore, the membrane-binding proteins can perhaps be thought of as the
topological “operator” for choosing among the states of the bilayer polymorphism.

Given that each arthropod family examined has evolved to occupy only specific
regions of the lyotropic phase space [1] (see Sect. 11.2, and Figs. 11.1 and 11.2), it is
tempting to hypothesize that different families or lineages of arthropods have evolved
to independently co-opt this already existing intracellular self-assembly machinery,
along with the controlled expression of lineage-specific membrane-binding proteins
with characteristic bilayer bending (κ) and saddle-splay or Gaussian (κ̄)moduli [81,
82], to template the lyotropic precursors of biophotonic nanostructures with these
rather large lattice constants [1]. However, there is a pressing need for comparative
developmental studies of the biophotonic nanostructure in arthropods in order to
elucidate the precise details of their self-assembly. These studies could take either
a descriptive, observational approach utilizing fluorescence assays of scales in a
time series from developing pupae [111], or perhaps utilize the latest interference
techniques (RNAi, CRISPR-Cas9) to knockdown [112, 113] candidate BAR-like
proteins that could play a putative role in the self-assembly of biophotonic templates,
or ideally opt for a materio-genomic approach integrating high-throughput RNA
sequencing, combined with proteomics to identify the precise regulatory pathways
[114].

Nonetheless, given at least the few developmental studies of biophotonic nanos-
tructures in butterflies [40, 79, 111, 115, 116], here I outline the current state of
knowledge, specifically on the intra-cellular self-assembly of the triply periodic min-
imal surface PCs in beetles and butterflies. Given that arthropod scales and setae are
evolutionarily homologous, being derived from trichogen (shaft-forming) cells in the
integument [117], it is reasonable to suppose that they share or at least have largely
conserved elements of the intra-cellular mechanism of nanostructure development
within the lumen.

Single gyroid PCs in certain papilionid and lycaenid butterfly wing scale cells
are thought to develop via a process eerily reminiscent and perhaps pre-emptive of
a materials engineering approach [35]. Inferring from a structural analogy of motifs
in EM images of developing butterfly scale cells to the self-assembled, core-shell
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Fig. 11.4 Self-assembly of arthropod biophotonic nanostructures. As previously hypothesized in
butterflies [35], single gyroid (I4132) and single diamond (Fd-3m illustrated) PCs in weevils self-
assemble via tandem infoldingof plasmaandSERmembranes in a “balanced”parallel configuration,
into a precursor core-shell double gyroid (Ia-3d) or double diamond (Pn-3m, illustrated) template
within the interior lumen of the scale cell, by analogy to a hypothetical linear pentablock copolymer,
ABCB’A’ (although in practice, the bilayers B and B’ have negligible volume fractions and can
be ignored). In longhorn beetles, bees and spiders, the nanostructure likely develops by a severly
“unbalanced” parallel membrane system to produce nanostructures with the observed~50% or
greater volume fractions. In either case, extra-cellular chitin is “backfilled”, i.e., extruded and
polymerized into only the volume in red, which is continuous with extra-cellular space, after which
the cell dies to leave behind the chitin nanostructure in air. A hypothetical ternary phase diagram
of the developing parallel membrane system within arthropod setae and scales is provided with
chitin filling fractions taken from [1]. Key to shaded symbols: triangles—I4132, diamonds—Fd-
3m, pluses—Pm-3m, circle—quasi-ordered spheres, star—bcc sphere, X—HEX . Abbreviations:
ECS (extra-cellular space), ICS (intra-cellular space), SER (intra-Smooth Endoplasmic Reticulum
space)

morphology seen in triblock copolymer systems [118, 119], Saranathan et al. [35]
have proposed that the plasma membrane of the developing photonic scales invagi-
nate in tandem with smooth endoplasmic reticulum (SER) membranes to form a
(“balanced”) multi-continuous core-shell double gyroid (Ia-3d) precursor [35, 40,
79, 116]. This is analogous to the micro-phase separation of a linear ABC triblock
copolymer that is compositionally asymmetrical about the mid-plane or in essence,
a penta-block copolymer, ABCB′A′ (Fig. 11.4) [120]. It is unclear whether chitin,
which is produced outside the scale cells and can therefore only be deposited into the
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extracellular space co-continuous with one of the two single gyroid cores, is extruded
and polymerized inside the lumen simultaneously with the plasma membrane, once
it starts invaginating or whether the precursor template is already in place within the
scale cell before the chitin extrusion begins [38]. In any case, once the scale cell
matures, the scale cell dies via apoptosis, leaving behind just the “back-filled” single
gyroid (I4132) PC network of chitin in air within its interior lumen [35]. Saranathan
et al. [1] have hypothesized that single diamond PCs in weevil scales develop in
a similar fashion to these single gyroid PCs in butterfly wing scales by virtue of
some weevils also possessing photonic scales with single gyroid symmetry. How-
ever, based on the rather large chitin filling fractions of the nanostructures within
the setae of longhorn beetles and bees, relative to those in weevil scales (Fig. 11.4),
they argued for a distinction in the development of the former purely from physical
space considerations that may well preclude the presence of a second (SER) parallel
membrane system in addition to the plasma membrane within the confines of the
developing setae [1]. The block copolymer analogy here then would be simply be a
triblock copolymer (ABA′ or ABC) in order to produce nanostructures with nearly
50% dielectric fill fractions. An alternate, plausible developmental scenario in pho-
tonic longhorn beetle and bee setae could be that one or likely both bilayermembranes
are highly displaced relative to the mid-plane of the unit cell in the developing cubic
membrane template, leading to a severely “unbalanced” multi-continuous parallel
membrane system in which the volumes enclosed on either side of the membranes
are not equal (Fig. 11.3), unlike the “balanced” or zero-potential case. However,
such “unbalanced” membranes need no longer be minimal, but can still be charac-
terized by a constant mean curvature (the Schoen’s I-WP is a notable exception) [92,
98, 121]. Interestingly, such “unbalanced” membranes have complex symmetries, as
the volumes on either side of the mid-plane are no longer interchangeable and the
complex topologies of such surfaces remain under-investigated [92, 98, 121].

11.4 Biomimetic Potential of Minimal Surface Biophotonic
Nanostructures

Ordered bicontinuous cubic phases based on TPMS are increasingly being applied
in diverse technological applications [31, 33, 49, 122–126], perhaps owing to their
increasing ease of access and prevalence in self-assembled molecular and macro-
molecular systems [65, 66, 81]. In particular, the single diamond and single gyroid
morphologies are of special relevance in opto-electronic applications given their large
and complete bandgaps compared to their super-group double diamond and double
gyroid and other competing structures [22, 127], the latter even more so given its
intrinsic chirality [33, 128, 129]. Tomy knowledge, however, the direct experimental
access of single gyroid and single diamond morphologies via self-assembly is not
yet possible [22], without additional steps to manipulate a double or an alternating
template [49, 50, 130, 131]. Only very recently, has a packing frustration induced
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epitaxial pathway for a double diamond to a single gyroid order-order phase tran-
sition been proposed using self-consistent field theory [132]. Even so, the direct
synthetic self-assembly of single network minimal surface nanostructures at optical
length scales will be far from facile [66, 81], while arthropods appear to have solved
this particular problem over millions of years of evolutionary optimization to explore
the lyotropic or amphiphilic phase space for a color production function [1, 35].

As such, these beetle minimal surface based nanoporous networks can serve as
convenient positive templates for high-epsilon dielectric infiltration [133, 134] or
as direct biotemplates for use in sensing [26, 30]. It would be more productive,
however, to directly interrogate the self-assembly of these biological lipid bilay-
ers into TPMS with large lattice constants and design biomimetic approaches to
self-assemble tunable mesophases for multifunctional applications, but this requires
considerable progress in comparative developmental studies of biophotonic nanos-
tructure. In any case, membrane inclusions (binding proteins) with synthetic lipid
bilayersmayoffer a novel bio-inspired paradigm to overcomeboth the intrinsic length
scales of in vitro lipid self-assembly aswell as facilely synthesize cubic TPMSphases
with sub-group symmetries. Perhaps another tractable bio-inspired approach from
these arthropod nanostructures in the short-term could be renewed attempts to sta-
bilize the self-assembly of linear non-centrosymmetric pentablock copolymers to
achieve optically-relevant lattice spacings [120].

11.5 Conclusion

We have seen how the diversity of arthropod cuticular biophotonic nanostructures
within iridescent scales and setae [1] rival the phase behavior of amphiphilic or
lyotropic macromolecules, such as block copolymers [64–67], surfactants [68], and
lipids [69, 70], but are self-assembled at optical length scales. I have argued how
these ordered and quasi-ordered triply periodic bicontinuous nanoporous networks,
perforated lamellar, inverse hexagonal columnar and close-packed sphere morpholo-
gies found within the lumen of these photonic scales and setae can be topologically
decomposed into saddle surfaces (P,D, andG surfaces), Riemann’s surface, cylinder
and sphere, all of which feature constant mean curvature [1]. However, these saddle
andRiemann’s surfaces also happen to be triply and singly periodicminimal surfaces.
Biological lipid bilayer membranes are known to self-assemble into minimal surface
and other morphologies reminiscent of lyotropic lipid phases but at much larger
length scales, likely using the binding of proteins with intrinsic shapes to induce
spontaneous curvature and control the final membrane topology [82, 100–102, 104,
106]. It appears that different lineages of arthropods have co-opted this for a color pro-
duction function. From a materials perspective, the inclusions/binding of proteins to
overcome intrinsic length scale limitations of bulk lipid self-assembly offers a new
twist on a strictly topological or an elastic geometry perspective of self-assembly
and phase transitions in lipid systems and perhaps offers a bio-inspired or in time,
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a biomimetic route for engineering multifunctional topologies at the increasingly
relevant mesoscales.
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