
Declarative Approaches for Compliance
by Design

Francesco Olivieri1(B) , Guido Governatori1 , Nick van Beest1 ,
and Nina Ghanbari Ghooshchi2

1 Data61, CSIRO, Dutton Park, Brisbane, Australia
{francesco.olivieri,guido.governatori,nick.vanbeest}@data61.csiro.au

2 Griffith University, Brisbane, Australia
nina.ghanbari@griffithuni.edu.au

Abstract. The interest of scholars in devising automated methods to
describe and analyse business processes has increased in the last decades
due to the extreme interest of organisations in achieving their business
objectives while remaining compliant with the relevant normative sys-
tem. Adhering with norms and policies does not only help to avoid severe
sanctions but also results in greater confidence by the consumers, and
prestige for the organisation. Defining processes through the paradigm of
declarative specifications is gaining momentum due to its intrinsic char-
acteristic of being able to capture business as well as normative specifi-
cations within the same framework. We describe some of the state of the
art techniques in the field of Business Process Compliance, focusing on
pros and cons of such techniques, and advancing future lines of research.

1 Introduction

Business processes are used world-wide by organisations at every hierarchical level
for diverse purposes. We can identify two causative reasons. First, they provide a
good source of information about the activities and capabilities of an organisation.
Second, such information is used to improve them. Business Process Management
(BPM) can be described as a “process optimisation process”. Being a holistic man-
agerial approach, BPM considers processes as strategic means of an organisation
that must be understood, analysed, and improved to continually furnish better
and increasingly desirable products to clients. These processes are critical to any
organisation as they often represent a significant proportion of costs.

For the benefits brought by BPM to be effective, suitable representations of
business processes should be given. While an experienced programmer writes
thousands of lines of code, a typical user (or process owner) does not want, or
have the ability, to analyse complicated or convoluted formulas. They instead
want simple, easy to understand representations. In this sense, Business Process
Modelling technology emerged as a strong paradigm for the modelling, analysis,
improvement, and automation of the day-to-day activities of organisations. The
field is now a mature research area with widespread industry adoption. Business
Process Modelling covers a wide variety of methodologies: from graphical mod-
elling languages to ease the understanding of the stakeholders (e.g., YAWL [33],
c© Springer International Publishing AG, part of Springer Nature 2018
A. Beheshti et al. (Eds.): ASSRI 2015/2017, LNBIP 234, pp. 80–97, 2018.
https://doi.org/10.1007/978-3-319-76587-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76587-7_6&domain=pdf
http://orcid.org/0000-0003-0838-9850
http://orcid.org/0000-0002-9878-2762
http://orcid.org/0000-0003-3199-1604
http://orcid.org/0000-0001-5067-1804

Declarative Approaches for Compliance by Design 81

EPC [38], BPMN1) to fully precise mathematical formalisms (e.g., Petri nets
[37], π-calculus [24]) for formal analysis and automated process verification.

All the above mentioned formalisms and representations fall into the family
of imperative approaches: they define a process model as a detailed specification
of a step-by-step procedure that should be followed during the whole execution.
In such a way, they strictly specify how the process will be executed. If from
one side this procedural nature is their strength, it is also their main drawback.
In fact, they suffer from some limitations. First, it is sometimes hard to obtain
precise information about the order of the actions to be performed from the
business requirements. Second, such a paradigm is not suitable to capture flexi-
ble business processes, i.e., processes whose internal structure and relationships
among the various tasks is dynamic and with a large degree of variations (e.g.,
triage processes in hospital emergency rooms). Third, their imperative nature
yields over-specified and highly-structured processes [39] where it is difficult to
define relationships among the atoms. For instance, it is possible to model a sim-
ple statement as “activities A and B should never occur together” only through
a detailed strategy to implement it.

In the opposing direction moves the school of modelling processes by declara-
tive specifications [5,14,30]. Instead of specifying a process step by step, the focus
in this approach being on defining relationships among the tasks to be executed
to achieve a goal, as well as in understanding the behaviour of such “atoms”.
By shifting the focus from the whole process to its basic building blocks, you
gain knowledge regarding which preconditions trigger the activation of a task
(inputs), as well as what happens once a task completes its execution (outputs).
It is indeed a common practice that organisations develop business rules manu-
als for their operations: such business rules may specify constraints that apply
to their business processes (e.g., a customer has to be older than 18 in order to
be eligible for a loan). As organisations grow, so do their processes and business
rules. As a consequence, the number of business rules is generally very large [25].

Another important value of the declarative specification approach is that
we can combine business specifications with normative specifications within a
single framework. This is a crucial aspect of BPM for two reasons. From one
side, the field of Business Process Compliance studies that the business practices
are not in breach with the legislation regulating the organisational environment
[19,34]. Worldwide scandals such as Societe Generale (France), Enron (USA)
and HIH (Australia) forced governments and standard organisations to enact
more restrictive regulatory mandates leading enterprises to massive investments
in the market of compliance related software and services (over $30billion in 2008
[20]). Scholars have studied automated methods to establish whether a business
process is compliant or not with the norms ruling the environment where the
organisation acts in [16–18] and BPC deals with the problem of developing the
above mentioned methods.

Secondly, compliance requirements are usually formulated as a set of rules
that can be checked during, or after, the execution of the business process,

1 http://www.bpmn.org.

http://www.bpmn.org

82 F. Olivieri et al.

called compliance by detection. If a non-compliant behaviour is detected, the
business process needs to be redesigned. Alternatively, the rules can already be
taken into account while modelling the business process. The result is a business
process that is compliant by design. This technique, which goes under the name
of compliance by design, has the advantage that a subsequent verification of
compliance is not required. Automated tools able to generate compliant by design
processes have some clear advantages: (i) being a preventative methodology, a
subsequent compliance verification is not needed, (ii) it is possible to analyse all
possible execution paths within the rules, (iii) the generated business process is
optimised for execution of the business rules and regulations, as it is specifically
designed to exactly represent the behaviour allowed by the rules.

Let us consider which challenges such automated tools need to address. First,
we need a formalism able to represent in a coherent, functional, and possibly
compact manner the business rules, the organisational objectives, and the nor-
mative system. Moreover, the framework should be able to determine whether a
particular objective is attainable without violating the relevant norms in a given
scenario, and which tasks are involved in this process. Thus, the deliberation
effectively generates a plan. A question may arise: why a logical formalism is
suitable to represent (business) processes? The derivation (or formal proof) of a
statement is the final phase of a finite sequence of sentences/steps each of which
is a fact (a statement that is given as a truth), or follows from the preceding
sentences in the sequence by the application of a rule. A typical rule consists
of a set of preconditions (antecedents) and some conclusions (postconditions).
Whenever such preconditions are satisfied, the rule is enabled and produces its
conclusion; absent the preconditions the action cannot be taken and, if it is
taken, the postconditions hold. As such, a derivation has a strong, semantical
correspondence with a trace of a process, and we can hence establish a bijection
between a process and a logic theory. This is in line with the definition of (busi-
ness) process: a task is the result of the successful execution of previous tasks
(preconditions) and, in turn, may take part in the activation of one or more
other tasks. This mechanism fully captures the idea of control flow in terms of
satisfiability over a set of formalised constraints: each derivation can be seen a
simulation of an execution trace. The logical apparatus we take into account is
the one proposed in [14,15].

The second challenge lies in the extraction of the actual process from the
above logical description: we need to “put together” such information to obtain
a structured process, i.e., a process where the tasks in the traces are structured
in sequential, parallel and alternative patterns. To the extent of our knowledge,
two approaches were most successful. The former [28,29] lies within the field of
representing business processes through Business Process Model Notation. The
latter adopts Petri nets for their intrinsic characteristic of permit a direct formal
verification of the net (process) [12].

Our agenda is as follows. We start with Sect. 2, where we give a more detailed
description about capabilities rules and why they are suitable to represent tasks
and control flow. Follows Sect. 3: in there, we introduce the modal, skeptical

Declarative Approaches for Compliance by Design 83

logics which is able to represent actions, norms and goals. Section 4 describes
two different approaches to visualise and operationalise such sets of rules as a
verifiable business process. In Sect. 5 we discuss pros and cons of the two proposed
methods; the related work follows in Sect. 6. We end the paper with Sect. 7.

2 Rules for Declarative Processes

Governatori et al. [14,15] proposed an agent-oriented rule language for the
declarative specifications of norm and goal compliant business processes. The
main idea is that the set of rules can be partitioned into three subsets: a set of
rules describing the “capabilities” of an organisation, a set of rules corresponding
to the norms governing a process, and a set of rules encoding the objectives/goals
of an organisation to fulfil in their processes. The intuition behind the capability
rules is that they model the set of activities/tasks an organisation is able to
carry out, the preconditions required for each task, the effects of executing such
tasks, and the relationships among them. The language upon which the rules
are defined consists of a set of two types of literals: condition literals and task
literals. The condition literals encode the preconditions and effects of tasks or,
in general, state variables for a process, while each task literal corresponds to a
task that could occur in a process.

Capability rules have the following “if . . . then . . . ” form: r : l1, . . . , ln ⇒ ln+1,
where r is a label that uniquely identifies the rule, and each literal li is drawn
from the set of literals Lit = Prop ∪ {¬p| p ∈ Prop}; Prop is a set of propositional
atoms representing conditions ci and tasks tj . This form has the clear advantage
that it immediately relates preconditions to the corresponding effect of perform-
ing the particular action. More specifically, we can identify the following three
patterns: (i) t ⇒ c, where we can look at c as an effect of performing task t
(the effect represented by c thus holds after the execution of task t); (ii) the
pattern c1, . . . cn ⇒ t indicates that c1, . . . cn are preconditions for tasks t, and
task t will be executed after the preconditions hold; (iii) t1, . . . , tn ⇒ t specifies
that the combination of tasks t1, . . . , tn triggers task t, and that task t appears
in the process, if t1, . . . , tn appear in the process, before t. (In other words, this
pattern describes relationships and dependencies among tasks in a process. In
the rule given above, the meaning is that execution of tasks t1, . . . , tn is required
to trigger the execution of task t.)

The rules are then used to form (logical) derivations, where a derivation
D, given a set of facts F represented as literals, is a sequence of literals
D(1), . . . ,D(n), such that if D(m + 1) = l then either l ∈ F or there is a rule
r : l1, . . . , lk ⇒ l such that for all li ∈ D[1..m], i ≤ k, where D[1..m] is the initial
sequence of length m of D.

The rules presented above can be linked to the sequential, parallel, and alter-
native patterns typical of business process modelling techniques to those that
can be found in a logical derivation. Indeed, assume tasks A and B concur to
obtain the resources needed for task C to start its execution. This means that
C may bring about its effects only when both A and B have finished, and that

84 F. Olivieri et al.

A and B have no precedence order with respect to one another, that is they
can be executed in parallel. From a logical perspective, all this information can
simply be represented by a rule where the premises are literals A and B, and
with S as conclusion. Accordingly, a derivation (sequence of rules) can encode a
possible order in which the tasks are executed to achieve a particular business
goal according to the constraints specified by the rules themselves.

Given a set of facts, we can generate a derivation where all applicable rules fire
and their conclusions have been added to the derivation. This derivation contains
all tasks that are executed given the set of facts (hence facts are the input for
a process case). In addition, the derivation contains the literals corresponding
to the conditions to trigger the execution of tasks or for activating obligations,
the effects of the tasks, the obligations in force, and the expected goals. Notice
that obligations and goals are neither actions nor tasks: they only purpose is
to determine whether a process execution of the process is compliant and meet
the organisation objectives (influencing thus the activities or tasks included in
the process). Therefore, rules for goals and norms do not directly contribute to
the structure of the process. Goals and obligations can thus be considered as
special kinds of conditions. Consequently, if we “ignore” obligations, goals and
condition literals from a derivation, then a derivation is a sequence of only those
tasks satisfying the constraints defined by the rules. This is equivalent to a plan
as defined in classical planning [11]. For these reasons, in the present paper, we
concentrate only on the capability rules.

Notice that, while the set of tasks triggered by a case (set of facts) is unique,
multiple derivations are possible. For instance, given the rule ‘t1, t2 ⇒ t3’, the
order in which t1 and t2 are executed does not matter. Accordingly, both ‘t1, t2, t3’
and ‘t2, t1, t3’ are valid derivations (and, consequently, plans conforming to the
specification given by the rule). This means that, given a case, we can generate
a set of plans corresponding to it, which can be understood as alternative ways
in which the process can be executed. Using the idea that a business process can
be understood as a set of traces (where a trace is a sequence of tasks), we can
establish a connection between a set of plans and a business process, where a
process provides a concise (formal and graphical) representation of a set of plans,
which are obtained from a single case and are combined by using constructions
modelling AND-joins and AND-splits. Moreover, given a set of rules, it is possible
to give as input different sets of facts, where each set of facts corresponds to a
common set of instances for the process. For each case, a corresponding set of
plans is created, where the mutually exclusive cases are subsequently merged,
adopting XOR-split and XOR-join patterns.

3 Modal Defeasible Logic

The logic Governatori et al. [14,15] proposed to implement the intuition pre-
sented in Sect. 2 is a modal extension of the well-known skeptical formalism
of Defeasible Logic (DL), first introduced in a seminal work by Nute [27].
Specifically, the logic deploys the non-monotonic mechanism of DL to capture:

Declarative Approaches for Compliance by Design 85

(i) which actions an agent (enterprise) is capable to perform in a given organi-
sational environment by using a belief modality (in other terms, beliefs describe
both what holds true in the environment as well as which actions the agent is
able to perform), (ii) which norms the agent is subject to (by using the obliga-
tion modality), and (iii) which goals the agent might commit to and which are
actually attainable (by using the outcome modality).

A modal defeasible theory consists of five different kinds of knowledge: facts,
strict rules, defeasible rules, defeaters, and a superiority relation. The set of facts
denotes simple pieces of information that are considered always to be true. Rules
are distinguished both on their type (strict, defeasible and defeaters) and on their
modality. Such a modality represents which kind of conclusion the rule may lead
to. Rules are of three modalities: belief rules, obligation rules, and outcome rules.
Belief rules are meant to relate the factual knowledge of an enterprise, and are
composed by: a set of actions an organisation can do, the preconditions under
which tasks can be executed, and the effects derived by the execution of such
tasks (also called postconditions). Specifically, belief rules describe the logical
relationship between preconditions and tasks, tasks and their effects, relation-
ships between tasks, relationships between states. Obligation rules determine
when and which obligations are in force, while outcome rules establish the objec-
tives of an organisation depending on the particular context. Outcome rules take
inspiration by the main stream of the BDI (Belief-Desire-Intention) literature
describing an agent’s mental attitudes. Notions of desire, goal, intention, and
social intention are taken into account in order to describe various degrees of the
agent’s commitment towards its objectives.

A rule is an expression r : A(r) ↪→� C(r) and consists of: (i) a unique name
r, (ii) the antecedent A(r) that which is a finite set of (modal) literals, (iii) an
arrow ↪→∈ {→,⇒,�} denoting, respectively, a strict rule, a defeasible rule and
a defeater, (iv) a modality � ∈ {BEL,OBL,OUT} that which denotes the mode
the consequent literal shall take, i.e. BEL for beliefs, OBL for obligations and
OUT for outcomes (outcomes are themselves distinguished among desires, goals,
intentions, and social intentions, those being intentions compliant with the norms
(it is out of the scope of the present synopsis to go in further details by describing
differences among such mental attitudes), (v) its consequent (or head) C(r) that
which is a single literal, and (vi) the superiority relation � that which is a binary
relation indicating the relative strength of two (conflicting) rules. A strict rule is
a rule in which whenever the premises hold (e.g., facts), so does the conclusion.
On the other hand, a defeasible rule is a rule that can be defeated by contrary
evidence (typically bird fly, but it is not the case for penguins). Defeaters are
rules that cannot be used to draw any conclusion. Their only use is to prevent
some conclusions, i.e., to defeat defeasible rules by producing evidence for the
contrary. Lastly, the superiority relation � among rules is used to define when
one rule overrides the (opposite) conclusion of another one. The infix notation
r � s means that (r, s) ∈�.

86 F. Olivieri et al.

At the heart of the reasoning mechanism of the logic is the notion of deriva-
tion. Intuitively a derivation (or proof) is a sequence of literals where every
element (a conclusion) is either one of the facts, or it has been obtained by pre-
vious steps by applying some rules. A conclusion of a defeasible theory D is a
tagged literal and can have one of the following forms:

– +Δ�q, which means that q is definitely provable in D with mode �, i.e., there
is a definite proof for q, that is a proof using facts and strict rules only;

– −Δ�q, which means that q is definitely not provable in D with mode � (i.e.,
a definite proof for q does not exist);

– +∂�q, which means that q is defeasibly provable in D with mode �;
– −∂�q, which means that q is not defeasibly provable, or refuted in D with

mode �.

Formally, given a defeasible theory D, a proof P of length n in D is a finite
sequence P(1), . . . , P(n) of tagged formulas of the type +Δ�q, −Δ�q, +∂�q and
−∂�q.

The definition of Δ describes just forward chaining of strict rules. Literal
q is definitely provable if either is a fact, or there is a strict rule for q, whose
antecedents have all been previously, definitely proved. On the other hand, literal
q is defeasibly provable (+∂�q) if q is already definitely provable, or we argue
using the defeasible part of the theory. In this last case, there must exist an
applicable strict or defeasible rule for q, while every attack is either discarded,
or defeated by a stronger rule through �. (A rule is merely applicable whenever
each literal in the set of antecedents has already been proved, while a rule is
discarded when at least one of the premises has been previously disproved.)

The sets of positive and negative conclusions form, respectively, the positive
and negative extensions. For reasons we are going to explain in the rest of the
paper, we shall restrict our attention to the positive extension only.

Let us explain how the derivation mechanism works by considering the fol-
lowing two examples. The first one proposes a rather simple theory; aim is to link
derivations to traces. We use second example to show how strict and defeasible
proof tags are obtained, as well as the mechanism underlying the team defeat.

Let D = ({a, b}, R, ∅) be a defeasible theory such that

R = {r0 : a ⇒BEL c
r1 : b ⇒BEL d
r2 : c, d ⇒BEL e}.

It is trivial to notice that all the rules are applicable and actually fire produc-
ing the following positive extension E+

(D) = {+ΔBELa,+ΔBELb,+∂BELa,+∂BELb,
+∂BELc, +∂BELd, +∂BELe} – recall that +Δa implies +∂a. Here, we have six
derivations:

(1) + ΔBELa,+ΔBELb,+∂BELc,+∂BELd,+∂BELe

(2) + ΔBELa,+ΔBELb,+∂BELd,+∂BELc,+∂BELe

Declarative Approaches for Compliance by Design 87

Fig. 1. Two processes representing the traces of theory D.

(3) + ΔBELa,+∂BELc,+ΔBELb,+∂BELd,+∂BELe

(4) + ΔBELb,+ΔBELa,+∂BELc,+∂BELd,+∂BELe

(5) + ΔBELb,+ΔBELa,+∂BELd,+∂BELc,+∂BELe

(6) + ΔBELb,+∂BELd,+ΔBELa,+∂BELc,+∂BELe.

Some considerations. a and b have no precedence order between each other.
The same happens for the tuples: (c, d), (a, d), and (b, c). On the contrary, a
always precedes c, b always precedes d, and so do c and d for e. It is straightfor-
ward to see that such derivations can be visualised as proposed in Fig. 1, where
Fig. 1(a) shows a BPM notation whilst Fig. 1(b) shows a Petri net.

Now consider the next example and let D = (F = {c1, c2, c3, c4, c5, c7, c8}, R, �=
{(r6, r9), (r7, r8)}) be a defeasible theory such that

R = {r0 : c1, c2 →BEL t1; r1 : c3 ⇒BEL t2;
r2 : t1, t2 ⇒BEL c6; r3 : t2 ⇒OBL o;
r4 : c6 ⇒BEL t4; r5 : t4 ⇒BEL o;
r6 : c4 ⇒BEL t3; r7 : c5,OBLo ⇒BEL t3;
r8 : c7 ⇒BEL ∼t3; r9 : c8 ⇒BEL ∼t3;
r10 :⇒OUT out ; r11 : t3 ⇒BEL out}.

We denoted tasks with ti, conditions with cj , the only obligation with o,
and the final outcome with out. In detail, r0 strictly proves +ΔBELt1, while r1
defeasibly proves +∂BELt2. The combination of these two tasks gives (defea-
sibly proves) condition c6, but the execution of t2 also triggers obligation o
(by proving +∂OBLo). Such an obligation is complied with by the execution of
task t4 through the sequential derivation of +∂BELt4 by r4 and +∂BELo by r5.
Now, rules r6 and r7 form a (winning) team defeater to prove t3: the superior-
ities among r6 � r9 and r7 � r8, let r8 and r9 to be defeated. We hence have
two ways to obtain t3. The only outcome is derived by r10, which is obtained
through r11. The positive extension is E+

(D) = {+ΔBELc1, . . . ,+ΔBELc6, +∂BELc1,
. . . ,+∂BELc6, +ΔBELt1, +∂BELt1, +∂BELt2, +∂OBLo, +∂BELc7, +∂BELt3, +∂BELt4,
+∂BELo, +∂OUT out,+∂BELout}.

88 F. Olivieri et al.

4 Visualisation Methods for Compliant Processes

We introduced a modal logic describing (1) what are the sequences of actions
(in terms of literals derivations) an organisation is able/allowed to perform in
a given setting/situation (2) to achieve a set of goals (3) while remaining norm
compliant with a regulative system. The next step is to define the methods to
represent/visualise such derivations (traces) in a compact, explicative manner.
We shall report two different approaches. The former, proposed by Olivieri et al.
in [28,29], adopts a backwards approach and ends up in visualising the process
through the BPM Notation. The latter, recently proposed by Ghanbari et al. in
[12], is otherwise based on the Petri net modelling language.

The algorithms proposed in [14,15] take as inputs (i) a modal logics and
(ii) (factual) literals describing a specific situation. The output is the positive
extension expressing which literals actually hold in that particular setting. This
reflects which norms are active and which tasks can be performed by the organ-
isation. Such literals and the rules where such literals appear in as antecedents
or as conclusions are used by both methods to visualise the final norm and goal
compliant business processes.

4.1 BPMN and the Backwards Approach

We hereafter analyse the approach proposed by Olivieri et al. [14,15]. The logic
described in Sect. 3 is expressive enough to be able to describe most-preferred to
least-preferred objectives. (Such objectives lie within the agent BDI paradigm
and are represented as reparative chains, where an outcome chain like ‘a
 b’
characterises the idea that a is the most preferred outcome, but when a is not
attainable, then b becomes the new outcome the agent strives for. (It is out of
the scope of the present paper to go further in detail on outcome chains and
their implications on the various degrees of the agent’s commitment towards its
goals.)

The algorithms of [14,15] work in a backwards manner. They start by con-
sidering the end literals of the theory in the positive extension (the proved ones),
those representing the attainable outcomes. Exclusive choice patterns are cre-
ated among the outcomes from the same chain. The algorithms then navigate
backwards the derivation tree, rule by rule, until the facts of the theory are
met. Accordingly, only those rules with both conclusion and set of antecedents
in the positive extension are considered. Every time the algorithm considers a
(non-already visited) literal, a new node is created in the graph. Given a rule, an
edge is created between the antecedent of such a rule and its conclusion. If more
than one literal is present in the set of antecedents, an AND-join node is created
in between each literal in the set of antecedents and the conclusion. Finally, if
more than one rule contributes in proving a given literal, an OR-join structure
is made. The final steps of the algorithms consist in giving “more structure” to
the graph: (i) nodes representing condition and obligation literals are removed
and substituted by labels on edges, (ii) literals co-occurrences are identified,

Declarative Approaches for Compliance by Design 89

and lastly (iii) complex synthesis operations on the graph are performed to cre-
ate OR-split and AND-join patterns. The algorithms are proved to be sound,
complete, and to work in polynomial time.

4.2 The Petri Net Approach

In [12], a formal method to visualise and operationalise business rules in the
form of a Petri net is presented. (The reader in need is referred to AppendixA
for a brief excerpt on the Petri net formalism.) Figure 2 provides an overview of
the steps required in [12] to transform a set of rules into a Petri net, representing
the allowed behaviour of the business process according to those rules.

The process to be obtained is imperative and exclusively contains possible
execution paths. That is, it defines what can or should be executed, instead
of what must not be executed (as is normally the case for declarative process
specifications). Consequently, the rules are first pre-processed to remove those
rules that do not directly define possible executions of the process. As such, all
rules with literals that have not been proved can be removed, as these rules
cannot fire and have, therefore, no effect on the resulting process. Additionally,
negative tasks represent the absence of a task and can thus be removed from the
remaining rules (e.g., A,¬B ⇒ C would be A ⇒ C).

The rules are generally grouped in different input cases, each representing
a specific “scenario” or process instance. For each case, a partial Petri net is
obtained, representing the process according to the rules activated (i.e., rules
with antecedents and conclusion proved) for that case. That is, the traces of
each partial Petri net contain exactly all possible derivations from the rules of
its corresponding case. Each literal is represented by a transition in the Petri
net, whereas each rule is represented by a τ transition. As a result, each partial
Petri net essentially contains a sequence of transitions representing subsequent
activities and rules. Multiple rules with an identical antecedent and different
consequence result in concurrent branches in the partial Petri net. For instance,
rules A ⇒ B and A ⇒ C, would introduce two concurrent paths (with B and C,
respectively) after A, whereas B,C ⇒ D would merge both branches into a single
path with D. Each partial Petri net consists of sequences and/or concurrent
branches, as choices are represented by the different cases.

Subsequently, the partial Petri nets are merged into a consolidated Petri net,
representing the full process such that it does not contain any duplicate transition
labels (i.e., each activity is represented only once). Different paths following a

Fig. 2. Method overview (derived from [12]).

90 F. Olivieri et al.

Fig. 3. Consecutive XORs without dependencies.

Fig. 4. Consecutive XORs preserving dependencies.

mutual transition between different partial Petri nets result in exclusive paths
in the merged Petri net.

However, subsequent exclusive choices may not necessarily be independent.
That is, the allowed path at a certain XOR-split may be determined by the
preceding path from the previous XOR-split. Consider, for instance, two cases:
Case 1 = {r1 :⇒ A, r2 : A ⇒ C, r3 : C ⇒ D} and Case 2 = {r4 :⇒ B, r5 : B ⇒

C, r6 : C ⇒ E}. The (simplified) resulting merged Petri net would then look as
shown in Fig. 3. It is easy to see that the merged Petri net would allow two more
traces that are not allowed in the original derivations as specified by Cases 1
and 2 (i.e., 〈A,C, E〉 and 〈B,C,D〉 are not allowed).

This is resolved by adding τ transitions representing the underlying cases that
preserve dependencies of subsequent exclusive branches, without the necessity
of adding conditions. This is shown graphically in Fig. 4, which represents the
same process as depicted in Fig. 3 while maintaining consecutive dependencies as
specified in the rules. As such, after A, E is not possible, while D is not possible
in a trace with B.

Finally, unnecessary τ transitions (i.e., transitions whose removal does not
alter the possible visible traces of the net) can be removed by using the reduction
techniques as described in [26]. The resulting Petri net is an exact imperative
representation of the behaviour as allowed by the input rules.

5 A Brief Analysis of the Two Approaches

5.1 Pros and Cons of the BPMN Approach

Pros:

The modal logics presented before is rich of information regarding all the possible
actions and norms; moreover, the calculus of the extension is not only computa-
tionally efficient but also gives precise information concerning what is actually
attainable in every specific situation, and which norms are actually in force.

Declarative Approaches for Compliance by Design 91

– Methodologies of [28,29] fully exploit such information: the backwards app-
roach guarantees that no information is lost during the computation. There-
fore, the final graph shows which condition literals are used and where, as
well as which norms impact on the process and, again, exactly where (i.e.,
which tasks are influenced).

– We recall that the starting point of the synthesis algorithms was to consider
which the attainable outcomes were: those were embedded in exclusive choice
structures. This gives an immediate feedback to the front-end user about
which the alternative (the most to the least preferred) outcomes are in a
given setting.

– The merging process of different graphs (each of which representing different
initial settings) gives as input a single structured process graph where the
various alternatives are represented through XOR structures. Many XOR
variants were considered, depending on whether (i) there exists a preferred
XOR branch to be executed, (ii) none of the branches involved are to be
preferred to the others, and (iii) a branch that does not actually involve the
execution of any task and it is used to skip the run to the end of the XOR-join
(which is typically considered as the standard course of action).

Cons:

– The merging procedure is not fully operational: the algorithms can only han-
dle the creation of the XOR structures but is not even close to the deepness
reached by methods proposed in [12].

– A proper proof of completeness is missing.
– The OR-join gates created when more rules concur in achieving a node cannot

properly handle the resource consumption.

5.2 Pros and Cons of the Petri Net Approach

Pros:

– This approach has proven to be fast and has shown to outperform state-of-
the-art approaches.

– The resulting Petri net only allows behaviour that is allowed by the rules and
is, as such, guaranteed to be compliant to those rules. More specifically, a
condition-free representation of subsequent exclusive branches is created to
maintain their dependencies without duplicating activities. When required,
these dependencies can be removed automatically to generalise the behaviour
of the Petri net. Existing approaches, however, can only obtain a generalised
Petri net and are, therefore, in many cases not fully compliant with the input
rules.

– Full proofs of soundness and completeness were given.

Cons:

– The approach does not consider processes with loops (for the same reasons
of the other approach).

92 F. Olivieri et al.

– Subsequent dependencies are ensured and enforced by creating a specific coor-
dinating transition for each input case. Naturally, this may complicate the
resulting Petri net in scenarios with many input cases. However, the num-
ber of cases can be significantly reduced by merging, as together they may
represent full behaviour. Merging such cases is a direction for future work.

6 Related Work

Some other approaches attempted to create compliant business process by
design.

The defeasible modal logic we presented departs from the standard BDI
architecture and agent programming languages implementing it (e.g., 3APL-
2APL [6,7], Jason [3]), and extensions with norms in several respects (e.g.,
BOID by [4], while we refer the reader to [1] for an overview). While in the
above mentioned approaches the agent has to select (partially) predefined plans
from a plan library, we propose that the agent generates a business process on
the fly (corresponding to a set of plans) to meet the objectives without violating
the norms it is subject to.

Alechina et al. [2] present a BDI-based agent programming language based
on 2APL for norm-aware agents; a norm-aware agent can deliberate on its goals,
norms, and sanctions before deciding which plan to select and execute. A major
issue of this work is that if a goal triggers two (or more) sanctions, each of which
is lower in rank than the achievement of that goal, the agent will try to achieve
that particular goal even if the sum of the two sanctions is higher in rank.

Automated planning is a technique to organise actions with the aim of achiev-
ing some pre-specified goal starting from the current state of the system [11].
Each action features a set of preconditions, that must be satisfied prior to its
execution, and a set of effects, that specify the state change resulting from its
execution. There are frameworks to generate plans (e.g., KPG [22] and Golog
[10]), but these are typically based on classical AI planning and do not con-
sider norms. In addition, many automated planning approaches in the business
process domain focus on runtime adaptation of pre-specified processes, concern-
ing runtime repair instead of design time process generation based on rules (see
[23,36]). Automated planning techniques require a goal to be specified along
with an initial state. However, in case of multiple initial states, multiple possible
plans need to be generated, that must be merged in order to represent a full
business process [21]. As such, providing a business process model that supports
all possible traces as specified by the rules remains a challenge.

DECLARE provides an approach for declarative specifications of business
processes by means of constraints [30] and graphical representations to visualise
the constraints and the activities in the model [40]. However, the graphical rep-
resentation shows the exact constraints and does not provide an actual process
model imposed by the rules. In [32], Prescher et al. convert a DECLARE model
to a behaviourally equivalent Petri net. However, this approach leads to multiple
transitions representing the same activity and, therefore, an highly complicated

Declarative Approaches for Compliance by Design 93

model. Our approach, on the other hand, provides a model without additional
duplication of transitions. In [8], Giacomo et al. developed an extension on top
of BPMN, BPMN-D, which supports declarative process modelling. It allows to
transform DECLARE models into readable BPMN-D models. This approach,
however, does not support concurrency. Additionally, DECLARE is based on
Linear Temporal Logic, which is not able to represent certain complex norms
[13] and cannot, as such, be used for this purpose.

Sardina et al. [35] provide an account of goals in the view of declarative
aspects by integrating BDI failure mechanisms with Hierarchical Task Network
(HTN) planning techniques. HTN planning is notoriously undecidable even if
no variables are allowed, or PSPACE-hard if restrictions are given. The main
feature of their CANA is its detailed operational semantics where, if a plan fails,
alternative plans for achieving the goal are tried. Compared to theirs, the two
approaches presented in this paper have the advantage that they generate all
possible plans at design time.

7 Future Work

Business Process Compliance is an important field of study given the impor-
tance for enterprises to have business processes which have to be, at the same
time, efficient and compliant with the normative system. Scholars of the fiels
have studied, and proposed, different formalisms to describe workflows, busi-
ness processes, and norms. In the present work, we described two promising
approaches which lie in the school of modelling business processes by declarative
specifications. This school of thoughts differs from the “more stiffed” family of
imperative approaches since it gives knowledge about the relationships among
tasks, but most of all because it allows us to represent in the same framework
business and normative specifications.

The modal logics [14,15] described in Sect. 3 is a powerful tool exactly for this
reason. Still, some drawbacks need to be addressed in future lines of research:
(i) loops are not considered, and (ii) resources consumption.

A Petri Nets

Petri nets (PN) are a popular modelling language used to formalise business pro-
cesses [37]. Petri nets are mathematical models for the description of distributed
systems [31]. Petri nets are directed bi-graphs with nodes consisting of places and
transitions. Transitions within Petri nets represent events, while places represent
conditions. Arcs form directed edges between place-transition pairs. Places may
contain tokens. A distribution of tokens over the places is called a marking. A
transition is enabled and can “fire” when all its input places contain at least
one token. When a transition fires, one token is removed from each input place
and one token is put into each output place. A Petri net is defined formally as
follows [31]:

94 F. Olivieri et al.

Definition 1 (Petri net). A tuple (P,T, A, λ) is a labeled Petri net, where:

– P is a set of places
– T is a set of transitions, such that P ∩ T = ∅

– A ⊆ (P × T) ∪ (T × P) is a set of arcs
– λ : P ∪ T → L is a labelling function.

The Petri net state, often referred to as the net marking, M : P → N0 is a
function that associates a place p ∈ P with a natural number (viz., place tokens).
A marked net N = (P,T, A, λ,M0) is a Petri net (P,T, A, λ) together with an initial
marking M0.

Places and transitions are referred to as nodes. The preset of a node is denoted
by •y = {x ∈ P ∪ T | (x, y) ∈ A}, and the postset of a node is denoted by
y• = {z ∈ P ∪ T | (y, z) ∈ A}.

If ∀p ∈ •t : M(p) > 0, t is said to be enabled. The firing of t, denoted by
M

t
−→ M ′, leads to a new marking M ′, with M ′

(p) = M(p) − 1 if p ∈ •t \ t•,
M ′

(p) = M(p) + 1 if p ∈ t • \ • t, and M ′
(p) = M(p) otherwise. The marking Mn

is said to be reachable from M if there exists a sequence of transition firings
σ = t1t2 . . . tn such that M

t1
−→ M1

t2
−→ . . .

tn
−→ Mn.

A trace is a sequence λ(t1), λ(t2), . . . such that σ = t1, t2, . . . is a sequence of
firing transitions. However, certain control-flow behaviour (like exclusive parallel
branches) requires additional transitions that do not correspond to a task literal.
These transitions are commonly referred to as silent or τ transitions [9]. For
understandability purposes, we will add a label for each τ transition as well
throughout the paper. As such, the set of transition labels L comprises both
labels corresponding to task literals and labels corresponding to τ transitions. A
visible trace is a trace where all τ transitions have been removed (maintaining
the order of the transitions representing task literals). For the remainder of this
work, we shall refer to visible traces as traces.

References

1. Alechina, N., Bassiliades, N., Dastani, M., Vos, M.D., Logan, B., Mera, S.,
Morris-Martin, A., Schapachnik, F.: Computational models for normative multi-
agent systems, pp. 71–92

2. Alechina, N., Dastani, M., Logan, B.: Programming norm-aware agents,
pp. 1057–1064

3. Bordini, R.H., Hübner, J.F.: BDI agent programming in agentspeak using Jason.
In: Toni, F., Torroni, P. (eds.) CLIMA 2005. LNCS (LNAI), vol. 3900, pp. 143–164.
Springer, Heidelberg (2006). https://doi.org/10.1007/11750734 9. (tutorial paper)

4. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.W.N.: Goal generation in
the BOID architecture. Cogn. Sci. Q. 2(3–4), 428–447 (2002)

5. Chesani, F., Mello, P., Montali, M., Riguzzi, F., Sebastianis, M., Storari, S.: Check-
ing compliance of execution traces to business rules. In: Ardagna, D., Mecella, M.,
Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 134–145. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00328-8 13

https://doi.org/10.1007/11750734_9
https://doi.org/10.1007/978-3-642-00328-8_13

Declarative Approaches for Compliance by Design 95

6. Dastani, M.: 2APL: a practical agent programming language. Auton. Agent. Multi-
Agent Syst. 16(3), 214–248 (2008)

7. Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Programming multi-agent sys-
tems in 3APL. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah, S.A. (eds.) Multi-
Agent Programming. Multiagent Systems, Artificial Societies, and Simulated Orga-
nizations (International Book Series), vol. 15, pp. 39–67. Springer, Boston (2005).
https://doi.org/10.1007/0-387-26350-0 2

8. De Giacomo, G., Dumas, M., Maggi, F.M., Montali, M.: Declarative process mod-
eling in BPMN. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE
2015. LNCS, vol. 9097, pp. 84–100. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-19069-3 6

9. Dijkman, R., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)

10. Gabaldon, A.: Making golog norm compliant. In: Leite, J., Torroni, P., Ågotnes,
T., Boella, G., van der Torre, L. (eds.) CLIMA 2011. LNCS (LNAI), vol. 6814, pp.
275–292. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22359-
4 19

11. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann, Burlington (2004)

12. Ghooshchi, N.G., van Beest, N.R.T.P., Governatori, G., Olivieri, F., Sattar,
A.: Visualisation of compliant declarative business processes. In: Proceedings of
EDOC. IEEE (2017, forthcoming)

13. Governatori, G., Hashmi, M.: No time for compliance. In: Proceedings of the Inter-
national Conference on Enterprise Distibuted Object Computing, pp. 9–18. IEEE
(2015)

14. Governatori, G., Olivieri, F., Rotolo, A., Scannapieco, S., Cristani, M.: Picking
up the best goal: an analytical study in defeasible logic. In: Morgenstern, L.,
Stefaneas, P., Lévy, F., Wyner, A., Paschke, A. (eds.) RuleML 2013. LNCS,
vol. 8035, pp. 99–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39617-5 12

15. Governatori, G., Olivieri, F., Scannapieco, S., Rotolo, A., Cristani, M.: The ratio-
nale behind the concept of goal. TPLP 16(3), 296–324 (2016)

16. Governatori, G., Padmanabhan, V., Rotolo, A., Sattar, A.: A defeasible logic for
modelling policy-based intentions and motivational attitudes. Log. J. IGPL 17(3),
227–265 (2009)

17. Governatori, G., Rotolo, A.: A conceptually rich model of business process compli-
ance. In: Link, S., Ghose, A. (eds.) APCCM. CRPIT, vol. 110, pp. 3–12. Australian
Computer Society (2010)

18. Governatori, G., Rotolo, A.: Norm compliance in business process modeling. In:
Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) RuleML 2010. LNCS, vol. 6403, pp.
194–209. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16289-
3 17

19. Governatori, G., Sadiq, S.: The journey to business process compliance. In: Hand-
book of Research on BPM, pp. 426–454 (2008)

20. Hagerty, J., Hackbush, J., Gaughan, D., Jacobson, S.: The governance, risk man-
agement, and compliance spending report, 2008–2009: inside the $32B GRC mar-
ket. AMR Research (2008)

21. Heinrich, B., Schön, D.: Automated planning of process models: the construction
of simple merges. In: 24th European Conference on Information Systems (ECIS)
(2016)

https://doi.org/10.1007/0-387-26350-0_2
https://doi.org/10.1007/978-3-319-19069-3_6
https://doi.org/10.1007/978-3-319-19069-3_6
https://doi.org/10.1007/978-3-642-22359-4_19
https://doi.org/10.1007/978-3-642-22359-4_19
https://doi.org/10.1007/978-3-642-39617-5_12
https://doi.org/10.1007/978-3-642-39617-5_12
https://doi.org/10.1007/978-3-642-16289-3_17
https://doi.org/10.1007/978-3-642-16289-3_17

96 F. Olivieri et al.

22. Kakas, A.C., Mancarella, P., Sadri, F., Stathis, K., Toni, F.: The KGP model of
agency. In: ECAI, pp. 33–37. IOS Press (2004)

23. Marrella, A., Mecella, M.: Continuous planning for solving business process adap-
tivity. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., Schmidt, R.,
Bider, I. (eds.) BPMDS/EMMSAD -2011. LNBIP, vol. 81, pp. 118–132. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21759-3 9

24. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i. Inf. Comput.
100(1), 1–40 (1992)

25. Morgan, T.: Business Rules And Information Systems: Aligning IT With Business
Goals. Addison-Wesley Professional, Reading (2002)

26. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

27. Nute, D.: Defeasible logic. In: Handbook of Logic in Artificial Intelligence and
Logic Programming, vol. 3. Oxford University Press (1987)

28. Olivieri, F., Cristani, M., Governatori, G.: Compliant business processes with
exclusive choices from agent specification. In: Chen, Q., Torroni, P., Villata, S.,
Hsu, J., Omicini, A. (eds.) PRIMA 2015. LNCS (LNAI), vol. 9387, pp. 603–612.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25524-8 43

29. Olivieri, F., Governatori, G., Scannapieco, S., Cristani, M.: Compliant business pro-
cess design by declarative specifications. In: Boella, G., Elkind, E., Savarimuthu,
B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS (LNAI), vol.
8291, pp. 213–228. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-44927-7 15

30. Pesic, M., Schonenberg, H., Van der Aalst, W.M.: Declare: full support for loosely-
structured processes. In: 11th IEEE International Enterprise Distributed Object
Computing Conference, EDOC 2007, pp. 287–300. IEEE Computer Society (2007)

31. Petri, C.A.: Communication with automata, Ph.D. thesis. Universität Hamburg
(1966)

32. Prescher, J., Di Ciccio, C., Mendling, J.: From declarative processes to imperative
models. SIMPDA 14, 162–173 (2014)

33. Russell, N.C., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Designing a work-
flow system using coloured petri nets. In: Jensen, K., Billington, J., Koutny, M.
(eds.) Transactions on Petri Nets and Other Models of Concurrency III. LNCS,
vol. 5800, pp. 1–24. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04856-2 1

34. Sadiq, S., Governatori, G.: Managing regulatory compliance in business processes.
In: vom Brocke, J., Rosemann, M. (eds.) Handbook on Business Process Manage-
ment 2. IHIS, pp. 265–288. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-642-45103-4 11

35. Sardiña, S., Padgham, L.: A BDI agent programming language with failure han-
dling, declarative goals, and planning. Auton. Agent. Multi-Agent Syst. 23(1),
18–70 (2011)

36. van Beest, N.R.T.P., Kaldeli, E., Bulanov, P., Wortmann, J.C., Lazovik, A.: Auto-
mated runtime repair of business processes. Inf. Syst. 39, 45–79 (2014)

37. van der Aalst, W.M.P.: The application of petri nets to workflow management. J.
Circuits Syst. Comput. 8(1), 21–66 (1998)

38. van der Aalst, W.M.P.: Formalization and verification of event-driven process
chains. Inf. Softw. Technol. 41(10), 639–650 (1999)

https://doi.org/10.1007/978-3-642-21759-3_9
https://doi.org/10.1007/978-3-319-25524-8_43
https://doi.org/10.1007/978-3-642-44927-7_15
https://doi.org/10.1007/978-3-642-44927-7_15
https://doi.org/10.1007/978-3-642-04856-2_1
https://doi.org/10.1007/978-3-642-04856-2_1
https://doi.org/10.1007/978-3-642-45103-4_11
https://doi.org/10.1007/978-3-642-45103-4_11

Declarative Approaches for Compliance by Design 97

39. van der Aalst, W.M.P., Pesic, M.: Decserflow: towards a truly declarative service
flow language. In: Leymann, F., Reisig, W., Thatte, S.R., van der Aalst, W.M.P.
(eds.) The Role of Business Processes in Service Oriented Architectures, Dagstuhl
Seminar Proceedings, vol. 06291. Schloss Dagstuhl, Germany (2006)

40. Westergaard, M., Maggi, F.M.: Declare: a tool suite for declarative workflow mod-
eling and enactment. BPM (Demos) 820, 1–5 (2011)

	Declarative Approaches for Compliance by Design
	1 Introduction
	2 Rules for Declarative Processes
	3 Modal Defeasible Logic
	4 Visualisation Methods for Compliant Processes
	4.1 BPMN and the Backwards Approach
	4.2 The Petri Net Approach

	5 A Brief Analysis of the Two Approaches
	5.1 Pros and Cons of the BPMN Approach
	5.2 Pros and Cons of the Petri Net Approach

	6 Related Work
	7 Future Work
	A Petri Nets
	References

