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Preface

The 21st IACR International Conference on Practice and Theory of Public-Key
Cryptography (PKC 2018) was held March 25–29, 2018, in Rio de Janeiro, Brazil. The
conference is sponsored by the International Association for Cryptologic Research
(IACR) and focuses on all technical aspects of public-key cryptography.

These proceedings consist of two volumes including 49 papers that were selected by
the Program Committee from 186 submissions. Each submission was assigned to at
least three reviewers while submissions co-authored by Program Committee members
received at least four reviews. Following the initial reviewing phase, the submissions
were discussed over a period of five weeks. During this discussion phase, the Program
Committee used quite intensively a recent feature of the review system, which allows
Program Committee members to anonymously ask questions to the authors.

The reviewing and selection process was a challenging task and I am deeply grateful
to the Program Committee members and external reviewers for their hard and thorough
work. Many thanks also to Shai Halevi for his assistance with the Web submission and
review software and for his constant availability.

The conference program also included invited talks by Elette Boyle (IDC Herzliya,
Israel) and Hugo Krawczyk (IBM Research, USA). I would like to thank both of them
as well as all the other speakers for their contributions to the program.

Finally, I would like to thank Ricardo Dahab, the general chair, for organizing a
great conference and all the conference attendees for making this a truly intellectually
stimulating event through their active participation.

March 2018 Michel Abdalla
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SOFIA: MQ-Based Signatures
in the QROM

Ming-Shing Chen1,2(B), Andreas Hülsing3(B), Joost Rijneveld4(B),
Simona Samardjiska4(B), and Peter Schwabe4(B)

1 Department of Electrical Engineering, National Taiwan University,
Taipei, Taiwan

mschen@crypto.tw
2 Research Center for Information Technology Innovation,

Academia Sinica, Taipei, Taiwan
3 Department of Mathematics and Computer Science,

Technische Universiteit Eindhoven, Eindhoven, The Netherlands
andreas@huelsing.net

4 Digital Security Group, Radboud University, Nijmegen, The Netherlands
joost@joostrijneveld.nl, simonas@cs.ru.nl, peter@cryptojedi.org

Abstract. We propose SOFIA, the first MQ-based signature scheme
provably secure in the quantum-accessible random oracle model
(QROM). Our construction relies on an extended version of Unruh’s
transform for 5-pass identification schemes that we describe and prove
secure both in the ROM and QROM.

Based on a detailed security analysis, we provide concrete parame-
ters for SOFIA that achieve 128-bit post-quantum security. The result is
SOFIA-4-128 with parameters carefully optimized to minimize signature
size and maximize performance. SOFIA-4-128 comes with an implemen-
tation targeting recent Intel processors with the AVX2 vector-instruction
set; the implementation is fully protected against timing attacks.

Keywords: Post-quantum cryptography · Multivariate cryptography
5-pass identification schemes · QROM · Unruh’s transform
Vectorized implementation

1 Introduction

At Asiacrypt 2016 [11], we presented a post-quantum signature scheme called
MQDSS, obtained by applying a generalized Fiat-Shamir transform to a 5-pass
identification schemes (IDS) with security based on the hardness of solving a
system of multivariate quadratic equations (MQ problem). Unlike previous MQ

This work was supported by the Netherlands Organization for Scientific Research
(NWO) under Veni 2013 project 13114, by the European Commission through the
ICT Programme under contract ICT-645622 PQCRYPTO and by the Faculty of
Computer Science and Engineering at the “Ss. Cyril and Methodius” University.

c© International Association for Cryptologic Research 2018
M. Abdalla and R. Dahab (Eds.): PKC 2018, LNCS 10770, pp. 3–33, 2018.
https://doi.org/10.1007/978-3-319-76581-5_1
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signature schemes, MQDSS comes with a reduction from a random instance
of MQ; it does not need additional assumptions on the hardness of related
problems like the Isomorphism of Polynomials (IP) [29] or MinRank [13,20].

Unfortunately, the security reduction of MQDSS is in the random oracle
model and highly non-tight, while our ultimate goal is (as stated in [11]) a scheme
with a tight reduction from MQ in the quantum random oracle model (QROM)
or even in the standard model. In this paper, we take a step closer towards such
a scheme. More specifically, we propose SOFIA, a digital signature scheme that
is provably EU-CMA secure in the QROM if the MQ problem is hard and allows
for a tight reduction in the ROM (albeit not in the QROM).

To achieve this, we start from Unruh’s transform [33] for transforming
Σ-protocols to NIZK proofs (and signatures) in the QROM. The reason for a
different transform comes from the inherent problems of the Fiat-Shamir trans-
form (and also the generalization to 5-pass schemes) in the QROM. Namely, the
proof technique introduced by Pointcheval and Stern [30] requires rewinding of
the adversary and adaptively programming the random oracle. Not only does
this cause problems in the QROM, but it also produces non-tight proofs in the
ROM. Unruh’s transform avoids these problems by adopting and tweaking an
idea from Fischlin’s transform [21] that solves the rewinding problem.

Recently, Kiltz, Loss, and Pan [27] considered a generalization of the Fiat-
Shamir transform to 5-pass schemes, and provided a tight reduction in the ROM.
However, the technique faces similar issues when it comes to the QROM such
as adaptive programming of the random oracles. Hence, no proof in the QROM
is known. Therefore, it is not applicable for SOFIA. In concurrent work, Kiltz,
Lyubashevsky, and Schaffner [28] provide a viable alternative to Unruh’s trans-
form in the QROM. The authors prove security of the Fiat-Shamir transform in
the QROM, using the additional assumption of “lossiness” of the IDS. While this
requires modifications in the IDS and re-parametrization of MQDSS, it seems
promising future work to see whether one can obtain a more efficient scheme
with a QROM proof this way.

MQDSS builds on a 5-pass MQ-based IDS from [31]. While [31] also intro-
duces a 3-pass IDS, we showed in [11] that the 5-pass scheme leads to smaller
signatures due to a smaller soundness error. Hence, we do not simply apply the
Unruh transform to the 3-pass IDS but extend it such that it applies to any
5-pass IDS with binary second challenge (named q2-IDS in [11]) and thus to the
MQ-based 5-pass IDS from [31]. We prove that the signature scheme resulting
from the application of the transform is post-quantum EU-CMA secure (PQ-
EU-CMA) in the QROM. This proof follows a two-step approach: We first give
a (tight) proof in the ROM, and then discuss the changes necessary to carry over
to the QROM. We then instantiate the construction with the MQ-based 5-pass
IDS by Sakumoto, Shirai, and Hiwatari [31] and provide various optimizations
particularly suited for this specific IDS. These optimizations almost halve the
size of the signature compared to the non-optimized generic transform.

We instantiate SOFIA with carefully optimized parameters aiming at the
128-bit post-quantum security level; we refer to this instance as SOFIA-4-128.
A comparison with MQDSS-31-64 from [11], which targets the same security
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level, shows that the improvements in security guarantees come at a cost: with
123 KiB, SOFIA-4-128 signatures are about a factor of 3 larger than MQDSS-
31-64 signatures and our optimized SOFIA-4-128 software takes about a factor
of 3 longer for both signing and verification than the optimized one for MQDSS-
31-64. However, like MQDSS, SOFIA features extremely short keys; specifically,
SOFIA-4-128 public keys have 64 bytes and the secret keys have 32 bytes.

SOFIA is not the first concrete signature scheme with a proof in the QROM.
Notably, TESLA-2 [1] is a lattice-based signature scheme with a reduction in the
QROM, while Picnic-10-38 [10] is the result of constructing a signature scheme
from a symmetric primitive using the transform by Unruh [33] that was men-
tioned above. Relying on even more conservative assumptions, the hash-based
signature scheme SPHINCS-256 [6] has a tight proof in the standard model.
Although SOFIA-4-128 remains faster than SPHINCS-256 (which is, because
of its standard model assumptions, arguably the ‘scheme to beat’), we do sig-
nificantly exceed its 40 KiB signature size. Conversely, but on a similar note,
SOFIA-4-128 outperforms Picnic-10-38 both in terms of signing speed and sig-
nature size. TESLA-2 remains the ‘odd one out’ with its small signatures but
much larger keys; it strongly depends on context whether this is an upside or a
problem. See Table 3 for a numeric overview of the comparison.

Organization of the paper. Section 2 gives the necessary background on iden-
tification schemes and signature schemes. Section 3 presents the extended Unruh
transform to support q2 identification schemes. Section 4 revisits the 5-pass iden-
tification scheme introduced in [31]. Section 5 introduces the SOFIA signature
scheme and finally Section 6 explains our parameter choices for SOFIA-4-128
and gives details of our optimized implementation.

Availability of software. We place all software presented in this paper into the
public domain to maximize re-usability of our results. It is available for download
at https://joostrijneveld.nl/papers/sofia.

2 Preliminaries

In the following we provide basic definitions used throughout this work. We
are concerned with post-quantum security, i.e., a setting where honest parties
use classical computers but adversaries might have access to a quantum com-
puter. Therefore, we adapt some common security notions accordingly, modeling
adversaries as quantum algorithms.

Digital signatures. In this work we are concerned with the construction of
digital-signature schemes. Due to space limitations, we omit the standard def-
initions for digital signatures and their security. They are included in the full
version of the paper.

Identification schemes. An identification scheme (IDS) is a protocol that
allows a prover P to prove its identity to a verifier V. More formally:

https://joostrijneveld.nl/papers/sofia
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Definition 2.1 (Identification scheme). An identification scheme with secu-
rity parameter k, denoted IDS(1k), is a triplet of PPT algorithms IDS =
(KGen,P,V) such that the key generation algorithm KGen is a probabilistic algo-
rithm that outputs a key pair (sk, pk), and P and V are interactive algorithms,
executing a common protocol. The prover P takes as input a secret key sk and
the verifier V takes as input a public key pk. At the conclusion of the protocol,
V outputs a bit b with b = 1 indicating “accept” and b = 0 indicating “reject”.

For correctness of an IDS, we require that for all (pk, sk) ← KGen() we have
where 〈P(sk),V(pk)〉 refers to the common execution of the protocol between
P with input sk and V on input pk. We denote by trans(〈P(sk),V(pk)〉) the
transcript of messages exchanged during this execution.

In this work we are concerned with canonical 5-pass IDS, where the prover
and the verifier exchange two challenges and replies. More formally:

Definition 2.2 (Canonical 5-pass identification schemes). Consider
IDS = (KGen,P,V), a 5-pass identification scheme with two challenge spaces
C1 and C2. We call IDS a canonical 5-pass identification scheme if the prover
can be split into three subroutines P = (P0,P1,P2) and the verifier into three
subroutines V = (ChS1,ChS2,Vf) such that:

P0(sk) computes the initial commitment com sent as the first message and a
state fstate fed forward to P1. ChS1 computes the first challenge message ch1 ←R

C1, sampling at random from the challenge space C1. P1(fstate, ch1) computes
the first response resp1 of the prover (and updates the state fstate) given access
to the state and the first challenge. ChS2 computes the second challenge message
ch2 ←R C2. P2(fstate, ch2) computes the second response resp2 of the prover given
access to the state and the second challenge. Vf(pk, com, ch1, resp1, ch2, resp2)
upon access to the public key and the whole transcript outputs V’s final decision.

Note that the state forwarded among the prover algorithms can contain all
inputs to previous prover algorithms if they are needed later. We also assume
that the verifier keeps all sent and received messages to feed them to Vf.

We will consider a particular type of 5-pass identification protocols where
the size of the two challenge spaces is restricted to q and 2.

Definition 2.3 (q2-Identification scheme). A q2-Identification scheme IDS
with security parameter k ∈ N is a canonical 5-pass identification scheme where
for the challenge spaces C1 and C2 it holds that |C1| = q and |C2| = 2. Moreover,
the probability that the commitment com takes a given value is ≤ 2−k, where the
probability is taken over the random choice of the input and the used randomness.

Our goal is to construct signature schemes from identification schemes. It
is well known that passively secure identification schemes suffice for this. In
this setting, security is defined in terms of two properties: special soundness
and honest-verifier zero-knowledge (HVZK). To prove security of our signature
scheme, we will make use of the existence of so called q2-extractor which is a
variant of special soundness.
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Definition 2.4 ((computational) PQ-HVZK). Let k ∈ N, IDS(1k) =
(KGen, P,V) an identification scheme with security parameter k. We say that
IDS is computational post-quantum honest-verifier zero-knowledge (PQ-HVZK)
if there exists a probabilistic polynomial time algorithm S, called the simulator,
such that for any polynomial time quantum algorithm A and (pk, sk) ← KGen():

Succpq−hvzk
IDS(1k)

(A) =

|Pr [1 ← A (sk, pk, trans(〈P(sk),V(pk)〉))] − Pr [1 ← A (sk, pk,S(pk))]|=negl(k) .

Intuitively it must be hard for any cryptographic scheme to derive a valid
secret key given a public key. To formally capture this intuition, we need to
define what valid means. For this we define the notion of a key relation.

Definition 2.5 (Key relation). Let IDS be a q2-Identification scheme and R
a relation. We say IDS has key relation R iff R is the minimal relation such that

∀(pk, sk) ← KGen() : (pk, sk) ∈ R

Now that we have defined what valid means, we can define key-one-wayness.

Definition 2.6 (PQ-KOW). Let k ∈ N be the security parameter, IDS(1k) be a
q2-Identification scheme with key relation R. We call IDS post-quantum key-one-
way (PQ-KOW) (with respect to key relation R) if for all quantum polynomial
time algorithms A,

Succpq−kow
IDS(1k)

(A) = Pr
[
(pk, sk) ← KGen(), sk′ ← A(pk) : (pk, sk′) ∈ R

]
= negl(k)

In [11] it was shown that in general, for q2-Identification Schemes, it is not
possible to efficiently extract a matching secret key from two related transcripts
alone (as in the case of 3-pass schemes fulfilling special soundness). In order to
capture the nature of these schemes and provide sufficient conditions for efficient
extraction, we proposed the definition of a q2-Extractor. In the following we give
a slightly refined definition that uses the notion of key relation to capture what
kind of secret key the extractor returns.

Definition 2.7 (q2-Extractor). Let IDS(1k) be a q2-Identification scheme with
key relation R. We say that IDS(1k) has a q2-Extractor if there exists a poly-
nomial time algorithm KIDS, the extractor, that, given a public key pk and four
valid transcripts with respect to pk

trans(1)= (com, ch1, resp1, ch2, resp2), trans(3)= (com, ch′
1, resp

′
1, ch2, resp2),

trans(2)= (com, ch1, resp1, ch
′
2, resp

′
2), trans(4)= (com, ch′

1, resp
′
1, ch

′
2, resp

′
2),

(1)

where ch1 �= ch′
1 and ch2 �= ch′

2, outputs a secret key sk such that (pk, sk) ∈ R
with non-negligible success probability in k.
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3 From q2-IDS to Signatures in the QROM

In [11], we showed that the Fiat-Shamir transform can be generalized to the
case of 5-pass IDS whose ChS2 is bounded to two elements. We showed that the
Pointcheval-Stern proof [30] can be extended to this case, and the obtained sig-
nature scheme can be shown EU-CMA secure in the random oracle model. This
result is further extended to any 2n+1 round identification scheme that fulfills a
certain kind of special soundness in [15]. However, similar to the standard Fiat-
Shamir transform, these proofs rely on the forking lemma, which introduces two
serious problems in the post-quantum setting: rewinding of the adversary, and
adaptively programming the random oracle. While it is known how to deal with
the latter [33], the former seems to become a real show stopper [3]. The only
known way (at the time of writting1) to fix the Fiat-Shamir transform in the
QROM setting is using oblivious commitments [14], which are a certain kind of
trapdoor commitments, effectively avoiding rewinding at the cost of introducing
the necessity of a trapdoor function. This makes the solution not applicable in
our setting as there are no known trapdoor functions with a reduction from the
MQ-problem.

In [33], Unruh proposes a different transform, based on Fischlin’s trans-
form [21], that turns 3-pass zero-knowledge proofs into non-interactive ones
in the QROM. In addition, Unruh shows how to use his transform to obtain
a signature scheme. The transform essentially works by “unrolling” Fischlin’s
transform and then applying a few tweaks. This works, as Fischlin’s transform
already avoids rewinding. The basic idea is to let the signer generate several
transcripts for a commitment. This is iterated for several initial commitments.
Next, the signer “blinds” all responses in the transcripts by applying a length-
preserving hash. All the obtained data is hashed together with the public key
and the message to obtain a challenge vector. This challenge vector determines
one transcript per commitment that has to be unblinded, i.e., for which the
response must be included in the signature. The signature consists of all the
transcripts with “blinded” responses and the unblinded responses for the tran-
scripts identified by the challenge vector. The reasoning behind the transform is
that without knowing the secret key, a forger cannot know sufficiently many valid
openings to be able to include all the challenged responses. On the other hand,
a security reduction can replace the length-preserving hash (modeled as QRO)
by an invertible function (e.g. a QPRP). That way, a reduction can “unblind”
the remaining responses in the signature by inverting the function. Now, it can
be argued that an adversary with non-negligible success probability must have
known several valid transcripts for at least one commitment. The unblinding
reveals those transcripts and they can be used to run the extractor.

Here, we show that a similar transform can be applied to 5-pass IDS with a
binary second challenge (i.e., q2-IDS). Basically, we treat the second challenge-
response round like the first. However, as we have a binary second challenge,
we ask that for each first challenge, a transcript for both values of the second
1 Very recently, Kiltz et al. [28] proposed the use of “lossy” IDS which enabled them

to prove security of the Fiat-Shamir transform in the QROM.
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challenge is generated. The main difference between the security reduction of
Unruh’s transform and our extension to q2-IDS is a more involved argument
to show that we get sufficiently many valid transcripts that follow the pattern
needed to extract a valid secret key. As this argument is essentially independent
of the RO, we first give a proof in the classical ROM. This also allows us to
show that the reduction is tight in the ROM. Afterwards we describe how things
change in the QROM along the lines of Unruh’s QROM proof. This is where the
reduction becomes loose. It remains an interesting open question whether this is
a fundamental issue with QROM reductions or the existing techniques are just
not sufficiently evolved, yet.

3.1 Extending Unruh’s Transform to q2-IDS

Let IDS=(KGen,P,V) be a q2-IDS, with P =(P0,P1,P2), V = (ChS1,ChS2,Vf),
and let r, t ∈ N be two parameters, where 2 � t � q. Moreover let H1 : {0, 1}|resp1|

→ {0, 1}|resp1|, H2 : {0, 1}|resp2| → {0, 1}|resp2|, and H : {0, 1}∗ → {0, 1}�log 2t�r

be hash functions, later modeled as random oracles. We define the following dig-
ital signature scheme (KGen,Sign,Vf). The key generation algorithm just runs
IDS.KGen(). Signature and verification algorithms are given in Figs. 1 and 2.

For ease of exposition, we will use the notation T (j, i, b) for a string that
has the format of a transcript of the IDS (not necessarily a valid transcript),
corresponding to the j-th round of the non-interactive protocol, with i and b
being the indices of the corresponding challenges ch1 and ch2, i.e.

T (j, i, b) := (com(j), ch
(i,j)
1 , resp

(i,j)
1 , ch2 = b, resp

(i,j,b)
2 ),

where j ∈ {1, . . . , r}, i ∈ {1, . . . , t}, b ∈ {0, 1}.

Fig. 1. Signature generation.
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Fig. 2. Verification.

3.2 PQ-EU-CMA-Security in the ROM

In the following, we first establish post-quantum security under key-only attacks
(PQ-KOA). More specifically, we will show that a successful KOA-forger A can
be used to extract a valid secret key for the underlying IDS. Afterwards, we will
extend the result to existential unforgeability under chosen message attacks.

PQ-KOW ⇒ PQ-KOA. The following lemma gives an exact relation between
the key-one-wayness of the identification scheme and the security of the proposed
signature scheme under key-only attacks.

Lemma 3.1. Let k, t, r ∈ N be the parameters of the signature scheme from
Figs. 1 and 2, using a q2-IDS that has a key relation R, a q2-extractor, and is
PQ-KOW secure. Let A be a quantum algorithm that implements a KOA forger
which given only the public key pk outputs a valid message-signature pair (M,σ)
with probability ε. Then, in the random oracle model there exists an algorithm
MA that given oracle access to any such A breaks the KOW security of IDS in
essentially the same running time as the given A and with success probability

ε′ ≥ ε − (qH + 1)2−r log 2t
t+1 . (2)

Moreover, MA only manipulates the random oracles H1,H2 and leaves H
untouched.

Proof. We show how to construct such an algorithm MA. On input of an IDS
public key pk, MA first runs A(pk). Let EA be the event that A outputs a valid
message-signature pair (M,σ) with

σ =
(
md,

{
transred(j), ch

(Ij ,j)
1 , resp

(Ij ,j)
1 , resp

(Ij ,j,Bj)
2 , cr

(Ij ,j,¬Bj)
2

}r

j=1

)
.

Then EA implies that for every j ∈ {1, . . . , r}, T (j, Ij , Bj) is a valid transcript
of IDS and the Verifier Vf accepts. Now, our goal is to use the q2-extractor to
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extract. This means, we need to obtain four valid transcripts T (j, i1, 0), T (j, i1, 1),
T (j, i2, 0), T (j, i2, 1) for some j ∈ {1, . . . , r}. To this end, MA simulates the ran-
dom oracles H1 and H2 for A in the common way. The important point is that
this way MA learns all of A’s queries together with the given responses. Hence,
when given A’s forgery, MA can open all blinded responses in the signature.

Now, MA will only fail to extract if among all the 2tr opened transcripts
of the signature, there are no four valid transcripts with the above pattern.
Consider the event E¬ext which describes this case.

E¬ext: ∀j ∈ {1, . . . , r}, and ∀i1, i2 ∈ {1, . . . , t}, i1 �= i2, at least one of
T (j, i1, 0), T (j, i1, 1), T (j, i2, 0), T (j, i2, 1) is not a valid transcript of the IDS.

We will upper bound Pr[(EA ∩ E¬ext)] and thereby lower bound MA’s suc-
cess probability. Let (M,σ) be A’s output under the event (EA ∩ E¬ext). First,
(M,σ) must be valid because of EA. Now, consider the set S¬ext of tuples(
pk,M, {transfull(j)}r

j=1

)
, such that for every j ∈ {1, . . . , r} there is at most one

I∗
j with T (j, I∗

j , 0) and T (j, I∗
j , 1) being valid transcripts of IDS. It is clear that

A’s output under the event EA ∩ E¬ext must come from S¬ext. Indeed, if a tuple
does not satisfy the given condition, then there exist at least two indices I∗

j , I∗∗
j

such that T (j, I∗
j , 0), T (j, I∗

j , 1), T (j, I∗∗
j , 0), T (j, I∗∗

j , 1) are valid transcripts of
IDS, which is in contradiction to the event E¬ext.

Let
(
pk,M, {transfull(j)}r

j=1

)
be such a tuple. Then the indexes that define

the required openings in σ are obtained as the output of the random oracle H
on input of the tuple, i.e. ((I1, B1), . . . , (Ir, Br)) ← H

(
pk,M, {transfull(j)}r

j=1

)
.

In order for the signature to pass verification, for each j ∈ {1, . . . , r}, the
transcript T (j, Ij , Bj) must be valid. Given the conditions of E¬ext, for each
j ∈ {1, . . . , r}, there are at most t + 1 valid transcripts per j. Hence for the
entire ((I1, B1), . . . , (Ir, Br)) at most (t + 1)r possible values. Thus, the prob-
ability for the adversary to produce a valid signature from such a tuple is
(t+1)r

(2t)r = 2−r log 2t
t+1 .

Now let qH be the number of queries of the adversary to the oracle H. Then

Pr(EA ∩ E¬ext) ≤ (qH + 1)2−r log 2t
t+1 ,

as A can try at most qH tuples to obtain a valid signature and output a signature
based on a new tuple otherwise. Towards obtaining a bound on MA’s success
probability, note that MA succeeds in the event (EA ∩ ¬E¬ext), and

Pr(EA ∩ ¬E¬ext) = Pr(EA) − Pr(EA ∩ E¬ext) ≥ ε − (qH + 1)2−r log 2t
t+1 .

This proves the claimed bound. �

PQ-KOA ⇒ PQ-EU-CMA. Given the above lemma, it suffices to reduce
PQ-KOA to PQ-EU-CMA security to eventually prove PQ-EU-CMA security of
the proposed scheme, i.e. we have to show that we can answer an adversary’s
signature queries without knowledge of a secret key. This is done in the following
lemma. Afterwards we can derive the main theorem of the section.
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Lemma 3.2. Let k, t, r ∈ N be the parameters of the signature scheme from
Figs. 1 and 2 above, using a q2-IDS that is PQ-HVZK. Let A be a quantum
algorithm that breaks the PQ-EU-CMA security of the signature scheme with
probability ε. Then, in the random oracle model there exists an algorithm MA

that breaks the PQ-KOA security of the signature scheme in essentially the same
running time as A and with success probability

ε′ ≥ ε(1 − qSignqH2−rk). (3)

Moreover, MA only manipulates the random oracle H and leaves H1,H2

untouched.

Proof. We show how to construct MA that on input a public key pk of the
signature scheme (which is also a public key for IDS), access to a HVZK-simulator
SIDS for IDS and the random oracles H1,H2,H, breaks the KOA security of
the signature scheme. The running time and success probability of MA are
essentially the same as that of A up to a negligible difference.

Upon receiving the public key pk, MA runs A(pk), simulating all signature
and random oracle queries for A. Whenever A queries H1 or H2, MA simply
forwards the query to his respective RO. For H, MA keeps a local list LH.
Whenever A queries H, MA first checks LH and returns the stored answer if
one exists. Otherwise, MA forwards the query to his oracle H and stores the
query together with the result in LH before returning the response. Whenever
A makes a signature query on a message M , MA does the following:

1. Samples m̃d ←R {0, 1}�log 2t�r and interprets it as challenge string, i.e.,
((I1, B1), . . . , (Ir, Br)) := m̃d.

2. Runs the HVZK-simulator SIDS r times to obtain r valid transcripts of IDS:
{

(com(j), ch
(Ij ,j)
1 , resp

(Ij ,j)
1 , ch

(j)
2 , resp

(Ij ,j,Bj)
2 )

}r

j=1
,

and uses them as the challenged transcripts T (j, Ij , Bj) for j ∈ {1, . . . , r}.
3. Blinds the responses resp

(Ij ,j)
1 and resp

(Ij ,j,Bj)
2 for every j ∈ {1, . . . , r}:

cr
(Ij ,j)
1 ← H1(resp

(Ij ,j)
1 ), cr

(Ij ,j,Bj)
2 ← H2(resp

(Ij ,j,Bj)
2 ).

4. For all j ∈ {1, . . . , r}, and all (i, b) ∈ {1, . . . , t} × {0, 1} \ {(Ij , Bj)}r
j=1,

– samples a first challenge ch
(i,j)
1 ←R ChS1 \ {ch(Ij ,j)

1 , ch
(1,j)
1 , . . . , ch

(i−1,j)
1 },

– samples fake responses resp
(i,j)
1 ←R RespS1, resp

(i,j,b)
2 ←R RespS2,,

– blinds the fake responses cr
(i,j)
1 ← H1(resp

(i,j)
1 ), cr

(i,j,b)
2 ← H2(resp

(i,j,b)
2 ),

– sets transfull(j) := com(j),
{
ch

(i,j)
1 , cr

(i,j)
1 , (cr(i,j,0)2 , cr

(i,j,1)
2 )

}t

i=1
.

5. Checks if there is already an entry for
(
pk,M, {transfull(j)}r

j=1

)
in LH. If so,

MA aborts. Otherwise, MA stores
((

pk,M, {transfull(j)}r
j=1

)
, m̃d

)
in LH.
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6. Outputs the signature

σ =
(
md,

{
transred(j), ch

(Ij ,j)
1 , resp

(Ij ,j)
1 , resp

(Ij ,j,Bj)
2 , cr

(Ij ,j,¬Bj)
2

}r

j=1

)
,

where transred(j) := com(j),
{
ch

(i,j)
1 , cr

(i,j)
1 , (cr(i,j,0)2 , cr

(i,j,1)
2 )

}t

i�=Ij ,i=1
.

Finally, MA outputs whatever A outputs.
Now, MA must succeed with probability at most differing from A’s suc-

cess probability by a negligible additive term as long as it does not abort (to
be more precise, the term is rqSignSuccpq−hvzk

IDS(1k)
(A)). This is the case because

otherwise A could be used to break the PQ-HVZK property of the used IDS.
All RO queries follow the correct distribution and so do the signatures. An
abort only occurs if A queried H before on the value for which MA wants to
program. The value has the form

(
pk,M, {transfull(j)}r

j=1

)
with transfull(j) :=

com(j),
{
ch

(i,j)
1 , cr

(i,j)
1 , (cr(i,j,0)2 , cr

(i,j,1)
2 )

}t

i=1
. The {transfull(j)}r

j=1 term has at
least rk bits of entropy as the commitments have at least k bits of entropy
according to the definition of q2-IDS and there is one commitment for each of
the r rounds. This is merely a very loose (but more than sufficient) lower bound
on the entropy as the blinded responses also add additional entropy. Hence, if
A makes a total of qH queries for H and qSign signature queries, an abort occurs
with probability Pr[abort] ≤ qSignqH2−rk.

Hence, MA succeeds with probability ε′ ≥ ε(1 − qSignqH2−rk). �

PQ-KOW ⇒ PQ-EU-CMA. Combining the two previous lemmas we obtain
the following theorem.

Theorem 3.3. Let k, t, r ∈ N be the parameters of the signature scheme from
Figs. 1 and 2 above using a q2-IDS IDS that is PQ-HVZK and has a PQ-q2-
extractor. Let A be a PQ-EU-CMA forger that succeeds with probability ε. Then,
there exists an algorithm MA, that in the random oracle model breaks the PQ-
KOW security of IDS in essentially the same running time as A and with success
probability

ε′ ≥ ε − εqSignqH2−rk − (qH + 1)2−r log 2t
t+1 . (4)

Proof. Suppose there exists a PQ-EU-CMA forger A that succeeds with non-
negligible probability ε. We construct a PQ-KOW adversary C for the q2-IDS
as follows. C runs A(pk), to construct a key-only forger MA as in Lemma 3.2,
that succeeds with probability (3). Now as in Lemma 3.1, C can extract a valid
secret key sk, in approximately the same time, and with only negligibly smaller
probability (see (2)). This concatenation of the two reductions is possible as the
reduction from Lemma 3.2 only manipulates random oracle H, while the one
from Lemma 3.1 only touches H1,H2. In total the success probability of C is
exactly (4), and the running time of C is essentially the same as that of A. �
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3.3 PQ-EU-CMA Security in the QROM

We now show that with only slight changes, the two lemmas above also hold
in the QROM. We do this in reverse order, starting with the PQ-KOA to PQ-
EU-CMA reduction as it is the easier case. As already the QROM proofs in
Unruh’s work which we build on are non-tight, we only give our arguments in
the asymptotic regime.

PQ-KOA ⇒ PQ-EU-CMA. We will first revisit the reduction from PQ-KOA
to PQ-EU-CMA. We show the following lemma:

Lemma 3.4. Let k, t, r ∈ N be the parameters of the signature scheme from
Figs. 1 and 2 above, using a q2-IDS that is PQ-HVZK. Let A be a quantum
algorithm that breaks the PQ-EU-CMA security of the signature scheme with
probability ε. Then, in the quantum-accessible random oracle model there exists
a quantum algorithm MA that breaks the PQ-KOA security of the signature
scheme in essentially the same running time as A and with success probability

ε′ ≥ ε(1 − negl(k)). (5)

Moreover, MA only manipulates the random oracle H and leaves H1,H2

untouched.

Proof (Sketch). The proof in the ROM above also applies in the QROM with
essentially a single change. The queries to H1 and H2 are still just forwarded
by MA without interaction. This works without any issues in the QROM given
that MA is now a quantum algorithm (which is unavoidable in the QROM).
The only issue is the way MA handles H. It is not possible anymore for MA

to learn A’s queries to H and thereby not possible to abort. However, we only
added the abort condition above for clarity: in the classical case MA could also
simply always program H. Then A’s success probability might change if MA

programmed on an input previously queried by A. However, we still obtain the
same bound on the probability. In the QROM, Unruh showed in [33, Corollary 11]
that this adaptive programming only negligibly changes A’s success probability
(the exact argument for our specific case is exactly the one made in the first
game hop of the proof of Theorem 15 in [33]). From this it follows that MA’s
success probability still only negligibly deviates from that of A. �

PQ-KOW ⇒ PQ-KOA. Now we revisit the reduction from PQ-KOW to PQ-
KOA in the quantum-accessible ROM. While we still do this in the asymptotic
regime, we make the parts of the reduction loss explicit which depend on the
parameters r, t of the scheme. This is to support parameter selection in later
sections.

Lemma 3.5. Let k, t, r ∈ N be the parameters of the signature scheme from
Figs. 1 and 2 above, using a q2-IDS that has a key relation R, a q2-extractor,
and is PQ-KOW secure. Let A be a quantum algorithm that implements a KOA
forger which given only the public key pk outputs a valid message-signature pair
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(M,σ) with probability ε. Then, in the quantum-accessible random oracle model
there exists a quantum algorithm MA that given oracle access to any such A
breaks the KOW security of IDS in essentially the same running time as the
given A and with success probability

ε′ ≥ ε − 2(qH + 1)2−(r log 2t
t+1 )/2. (6)

Moreover, MA only manipulates the random oracles H1,H2 and leaves H
untouched.

Proof (Sketch). A QROM version of our proof is obtained by essentially following
the proof of Lemma 17 in [33]. The changes in the proof above are as follows.
First, MA cannot learn A’s RO queries to H1 and H2 by simulating these the
classical way, anymore. Instead, MA simulates these oracles using one quantum
PRP (QPRP) per oracle with a random secret key per QPRP. QPRPs exist as
shown in [38] and they are quantum indistinguishable from random functions.
Now, MA can open the blinded responses in the signature by inverting the
QPRP using the secret key. Second, the analysis of Pr(EA ∩ E¬ext) changes. As
we have shown, the probability of a tuple from E¬ext to lead to a valid signature is
2−r log 2t

t+1 . We can now follow the analysis in [33] that reduces distinguishing the
constant zero function from a Bernoulli distributed boolean function to finding a
tuple in E¬ext that leads to a valid signature. Thereby we get the claimed bound:

Pr(EA ∩ E¬ext) ≤ 2(qH + 1)2−(r log 2t
t+1 )/2. �

PQ-KOW ⇒ PQ-EU-CMA. Putting the above two lemmas together allows
us to state the following theorem.

Theorem 3.6. Let k, t, r ∈ N be the parameters of the signature scheme above
using a q2-IDS IDS that is computational honest-verifier zero-knowledge and has
a q2-extractor. Let A be a PQ-EU-CMA forger that succeeds with probability ε.
Then, there exists a quantum algorithm MA, that in the quantum-accessible
random oracle model breaks the PQ-KOW security of IDS in essentially the same
running time as A and with success probability

ε′ ≥ (ε − 2(qH + 1)2−(r log 2t
t+1 )/2)(1 − negl(k)).

4 The Sakumoto-Shirai-Hiwatari 5-Pass IDS Scheme

In [31], Sakumoto, Shirai, and Hiwatari proposed two new identification schemes,
a 3-pass and a 5-pass IDS, based on the intractability of the MQ problem. Unlike
previous public key schemes, their solution provably relies only on the MQ prob-
lem (and the security of the commitment scheme), and not on other related prob-
lems in multivariate cryptography such as the Isomorphism of Polynomials (IP)
[29], the related Extended IP [17] and IP with partial knowledge [32] problems
or the MinRank problem [13,20]. Let us quickly recall the MQ problem.
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Definition 4.1 (MQ problem (search version)). Let m,n, q ∈ N, x =
(x1, . . . , xn) and let MQ(n,m,Fq) denote the family of vectorial functions
F : Fn

q → F
m
q of degree 2 over Fq:

MQ(n,m,Fq)={F(x) = (f1(x), ..., fm(x))|fs(x)=
∑

i,j

a
(s)
i,j xixj +

∑

i

b
(s)
i xi|ms=1}.

An instance MQ(F,v) of the MQ (search) problem is defined as:
Given F ∈ MQ(n,m,Fq),v ∈ F

m
q find, if any, s ∈ F

n
q such that F(s) = v.

The decisional version of the MQ problem is NP−complete [23]. It is widely
believed that the MQ problem is intractable even for quantum computers in
the average case, i.e., that there exists no polynomial-time quantum algorithm
that given F ←R MQ(n,m,Fq) and v = F(s) (for random s ←R F

n
q ) outputs a

solution s′ to the MQ(F,v) problem with non-negligible probability.
We will later also need the MQ relation RMQ which is the relation of MQ

instances and solutions:

Definition 4.2 (MQ relation). The MQ relation is the binary relation:
RMQ(m,n,q) ⊆ (MQ(n,m,Fq) ×F

m
q ) ×F

n
q : ((F,v), s)∈RMQ(m,n,q) iff F(s)=v.

We will omit m,n, q whenever they are clear from the context.
In [31], Sakumoto, Shirai, and Hiwatari propose a clever splitting technique,

using the so-called polar form of the function F which is the function G(x,y) =
F(x + y) − F(x) − F(y). Using the polar form and its bilinearity, it becomes
possible to split a secret into two shares, such that none of the shares on its
own leaks anything about the secret. From this result, they showed how to
construct zero knowledge arguments of knowledge for the MQ problem, using
a statistically hiding and computationally binding commitment scheme. They
present a 3- and a 5-pass protocol with differing performance properties. Later,
in [11], the security properties of the 5-pass scheme were reexamined to provide
the minimal requirements for Fiat-Shamir type signatures from 5-pass IDS. For
completeness and better readability we provide the description of the 5-pass IDS,
together with the properties that we will use.

Let (pk, sk) = ((F,v), s) ∈ RMQ be the public and private keys of the prover.
Without loss of generality, let the elements from Fq be α1, . . . , αq. The 5-pass
IDS from [31] is given in Fig. 3.

Theorem 4.3. The 5-pass identification scheme from [31] (see Fig. 3)

1. is computationally PQ-HVZK when the commitment scheme Com is compu-
tationally hiding,

2. has key relation RMQ(m,n,q),
3. is PQ-KOW if the MQ search problem is hard on average, and
4. has a q2-Extractor if the commitment scheme Com is computationally binding

against quantum polynomial time algorithms.
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Fig. 3. The 5-pass IDS by Sakumoto, Shirai, and Hiwatari.

A stronger result of the first statement in the classical case was shown in [31],
namely that the 5-pass IDS is statistically honest-verifier zero-knowledge when
the commitment scheme Com is statistically hiding. Relaxing the requirements
of Com to computationally hiding, weakens the result to computationally HVZK,
since now, it is possible to distinguish (albeit only with negligible probability)
whether the commitment was produced in a valid run of the protocol. This easily
transfers to the post-quantum setting, if Com is computationally hiding against
quantum PPT algorithms.

The second statement holds by construction. The third statement follows
from the second. The q2-Extractor essentially follows from a proof in [11]. In [11]
the existence of a q2-Extractor was proven under the condition that the com-
mitment scheme is computationally binding. The proof shows that there exists
a PPT algorithm that given four valid transcripts of the IDS with the correct
pattern always either extracts a secret key or outputs two valid openings for the
commitment. Hence, as long as the used commitment scheme achieves the tra-
ditional definition of computationally binding also against quantum polynomial
time algorithms, the 5-pass IDS from [31] has a q2-Extractor (as the probability
to output two valid openings must be negligible).

5 Instantiation from the Sakumoto-Shirai-Hiwatari
5-Pass IDS

In the previous sections, we have defined a signature scheme as the result of
a transformed q2-IDS scheme. Here, we define it instantiated with the 5-pass
identification scheme proposed in [31].
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5.1 SOFIA

We define the signature scheme in generic terms by describing the required
parameters and the functions KGen, Sign and Vf, and defer giving concrete
parameters m,n, r, t and Fq for a specific security parameter k to the next section,
where we also instantiate the pseudorandom generators (PRGs) and extendable
output functions (XOFs). For now, we only need to fix 2 � t � q elements of
the field Fq. Without loss of generality, we denote them by α1, . . . , αt.

Key generation. The SOFIA key generation algorithm formally just samples a
MQ relation. Practically, the algorithm is realized as shown in Fig. 4. The secret
key is used as a seed to derive the following values: SF, a seed from which the
system parameter F is expanded; s, the secret input to the MQ function; Srte,
a seed that is used to sample all vectors r(i)0 , t(i)0 and e(i)0 . Note that Srte is not
yet needed during key generation, but is required during signing.

Fig. 4. SOFIA key generation.

Signature generation. For the signing procedure, we assume as input a mes-
sage M ∈ {0, 1}∗ and a secret key sk. The signing procedure is given in Fig. 5.
Note that the scheme definition includes several optimizations to reduce the
signature size. We discuss these later in this section.

The signer begins by effectively performing KGen() to obtain pk and F, and
then iterates through r rounds of the transformed identification scheme to obtain
the transcript. He then uses this as input for XOFtrans to derive a sequence
of indices ((I1, B1), . . . , (Ir, Br)), which effectively dictate the responses that
should be included unblinded in the signature.

Verification. Upon receiving a message M , a signature σ, and a public key pk =
(SF,v), the verifier begins by obtaining the system parameter F and parsing the
signature σ as defined by its construction in Sign(). The verification routine that
follows is listed in Fig. 6.

Optimizations. There are several optimizations that can be applied to signa-
tures resulting from a transformed q2-IDS. Some of them are specific for SOFIA
and some are more general; similar and related optimizations were suggested
in [10,11,33].
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Fig. 5. SOFIA signature generation.

Fig. 6. SOFIA signature verification.
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Excluding unnecessary blindings. The signature contains blindings of all com-
puted responses, as well as a selection of opened responses resp

(Ij ,j)
1 and

resp
(j,Bj)
2 . It is redundant to include the values cr

(Ij ,j)
1 and cr

(j,Bj)
2 , as these

can be recomputed based on the opened responses. This optimization was actu-
ally proposed in the generic Unruh transform [33], and applies to any con-
struction similar to Unruh’s and ours. However, for the verifier to know which
responses were actually opened, they must be able to reproduce the indices
((I1, B1), . . . , (Ir, Br)), which are derived from the transcript, and without the
blinded responses, this transcript is incomplete. To solve this circular depen-
dency, we could include the selected indices in the signature. However, for typ-
ical parameters (see Section 6.1), we can do this more efficiently by breaking
XOFtrans into two parts, composing it of a hash function over the transcript H
and an extendable output function XOFIB to derive the indices from the hash
output. We then include H

(
pk,M, {transfull(j)}r

j=1

)
as part of the signature, so

that the verifier can reconstruct the indices, blind the corresponding responses,
construct transfull, and recompute the same hash for comparison.

Fixed challenge-space definition. Following the generic description of the signa-
ture, the selected α(i,j) are included in the signature. Depending on the specific
choice of t and q, it may be more efficient to include the challenges α(i,j) that
were not selected. However, there is no reason not to take this a step further
and simply fix a challenge space ChS1 of t elements. That way, all the α’s from
ChS1 will be selected and there is no need to include them in the signature. This
not only reduces the signature size, but also simplifies the implementation.

Excluding unnecessary second responses. The underlying IDS from [31] has a
specific property, namely that the second responses do not depend on the previ-
ous state (that is, on the first challenge and response). Therefore, regardless of
the value of α, the second responses are always the same. For this reason, they
need to be included only once per commitment (rather than repeating the same
value t times). Combined with the previous optimization, this implies that one
of the second responses will be opened, and the other will be included blinded.

Omitting commitments. The check that the verifier performs for each round
consists of recomputing c

(j)
Bj

, and comparing it to one of the commits supplied
by the signer. Similar to the above, and as already suggested in [31], the signer
can omit the commits that the verifier will recompute. A hash over all commits
could be included instead, which the verifier can reconstruct using the commits
c
(j)
Bj

he recomputes and the commits c
(j)
¬Bj

the signer includes. However, it turns
out that this hash is not necessary either: as these commitments are part of the
transcript and the verifier is already checking the correctness of the transcript
as per the first optimization, the correctness of the recomputed commitments is
implicitly checked when comparing the two hashes md and md′.
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No need for additional randomness in the commitments. Commitments must be
randomized in order for them to be hiding. This is typically done by including
a randomization string. In our case, r(j)0 , t(j)0 and e(j)0 are all randomly chosen,
already providing sufficient randomness in both c

(j)
0 and c

(j)
1 .

While constructing this scheme, we attempted several other variations.
Notably, we explored opening for multiple α-challenges, but that led to no
improvement in the number of rounds, and, in some cases, to a contradiction of
the zero-knowledge property. Variants that employ a form of internal paralleliza-
tion by committing to multiple values for t0 do reduce the number of rounds,
but increase the size of the transcript disproportionately.

Altogether, the above optimizations are crucial: they add up to around
126 KiB, more than halving the signature size of the scheme that results from
the transform.

5.2 Security of SOFIA

In Section 3 we described an extension of Unruh’s transform to q2-IDS and have
proven that it provides PQ-EU-CMA security in the QROM for any underlying
q2-IDS with a q2-extractor, the HVZK property, and PQ-key-one-wayness. This,
of course, implies that this transform can immediately be applied to the 5-pass
MQ IDS from [31], to give an MQ signature secure in the QROM.

As discussed in the previous subsection, some optimizations can significantly
improve the performance of the scheme. They deviate from the generic construc-
tion, however, causing a need for some changes in the security proof. Fortunately,
only minor changes are required. We specify the following theorem.

Theorem 5.1. Let k ∈ N be the security parameter. The signature scheme
SOFIA is post-quantum existentially unforgeable under adaptive chosen message
attacks in the quantum-accessible random oracle model if the following conditions
are satisfied:

– The search version of the MQ problem is intractable in the average case,
– the hash functions H, H1, H2 as well as the extendable output functions XOFF

and XOFtrans are modeled as quantum-accessible random oracles,
– the commitment function Com is computationally binding and computation-

ally hiding against quantum adversaries, and has O(k) bits of output entropy,
– the pseudorandom generators, PRGrte, PRGsk have outputs computationally

indistinguishable from random for any polynomial-time quantum adversary.

Proof. First let’s consider a signature scheme obtained by applying the optimiza-
tions from the previous section on the signature scheme from Figs. 1 and 2. We
will refer to it as the optimized scheme throughout this proof. We will show that
this optimized scheme is PQ-EU-CMA secure, if the underlying q2-IDS satisfies
the conditions from Theorem4.3. We will assume some additional properties of
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the IDS, that represent a special case of q2-IDS schemes. The optimized scheme
is characterized by the following optimizations.

– We fix the challenge space ChS1 to t elements. Note that this change does not
influence the security arguments at all.

– We assume that the underlying IDS of the optimized scheme is such that
the second response does not depend on the first challenge and response, but
only on the second challenge and the initial output by the prover P0. In this
case, in the signature generation, instead of calculating the second response
as resp

(i,j,ch2)
2 ← P2(fstate(i,j), ch2) for every i ∈ {1, . . . , t}, we calculate it

once per round as resp
(j,ch2)
2 ← P2(fstate(j), ch2). The full transcript is now

{transfull(j)}r
j=1, with transfull(j) = com(j),

{
ch

(i,j)
1 , cr

(i,j)
1

}t

i=1
, (cr(j,0)2 , cr

(j,1)
2 ).

The reduced transcript transred(j) that is included in the signature is influ-
enced similarly.

– Assuming that the underlying IDS is such that com = (c0, c1), we omit from
the signature the commitment cch2 that the verifier recomputes, depending on
the challenge ch2. This alters the content of transred(j) but not of transfull(j).

It is straight forward to verify that Lemma3.1 (and in the QROM,
Lemma 3.5) still hold for the optimized scheme. We only removed duplicate
information from the signature, which the reduction can recompute. The exact
probability of abort in Lemma3.2 might change as we remove some values from
{transfull(j)}r

j=1, maybe reducing its entropy. However, the given bound does not
change as it only depends on the amount of entropy coming from the commit-
ments, which remains unchanged. Thus, the claims of Lemma 3.2 remain valid.

Next, recall (cf. Theorem 4.3) that, under the assumption of intractability of
the MQ problem on average, and assuming computationally binding and com-
putationally hiding properties of Com, the 5-pass IDS from [31] is PQ-KOW,
is HVZK, and has a q2-Extractor. Furthermore, it satisfies the particular prop-
erties that the optimized scheme above requires. Thus applying the optimized
transform on the Sakumoto-Shirai-Hiwatari 5-pass IDS scheme, we obtain a PQ-
EU-CMA secure signature (cf. Theorems 3.3 and 3.6).

To complete the proof, we note that using a standard game hopping argu-
ment, it is straightforward to show that the success probability of a PQ-EU-
CMA adversary against SOFIA is negligibly close to the success probability of
a PQ-EU-CMA adversary against the optimized scheme from the Sakumoto-
Shirai-Hiwatari 5-pass IDS scheme when the outputs of PRGrte and PRGsk are
post-quantum computationally indistinguishable from random. �

6 SOFIA-4-128

Having described the scheme in general terms, we now provide concrete parame-
ters that allow us to specify a specific instance, which we will refer to as SOFIA-
4-128. We present an optimized software implementation and list the results, in
particular in comparison to MQDSS-31-64. All benchmarks mentioned below
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were obtained on a single core of an Intel Core i7-4770K (Haswell) CPU, fol-
lowing the standard practice of disabling TurboBoost and hyper-threading. We
compiled the code using gcc 4.9.2-10, with -O3 and -march = native.

6.1 Parameters

The previous section assumed a number of parameters and functions. Notably,
we must define Fq, the field in which we perform the arithmetic, and n and m,
the number of variables and equations defining the MQ problem. The number
of rounds r is determined by t (i.e. the number of responses resp

(i,j)
1 , bounded

by q in SOFIA) and the targeted security level, using Theorem3.6.
For MQDSS-31-64, the choice of F31 was motivated by the fact that it brings

the soundness error close to 1
2 while providing convenient characteristics for fast

implementation [11]. For SOFIA-4-128, our primary focus is on optimizing for
signature size while still maintaining efficiency. To do so, we compute signature
sizes for a wide range of candidates, and investigate several in more detail by
implementing and measuring the resulting MQ evaluation functions. In particu-
lar, we look at the results of MQ(128, 128,F4), MQ(96, 96,F7) and MQ(72, 72,
F16), and compare to MQ(64, 64, F31) from [11]. Of these, MQ(128, 128, F4)
is the decisive winner, resulting in the smallest signatures while still providing
decent performance. This is also the minimum amongst all candidate systems
we looked at – it is not merely beating F7 and F16, but also less common options
such as F5 and F8. See Table 2 for benchmarks of single evaluation functions and
the related signature sizes. Note that, as the number of rounds r does not depend
on the choice of Fq but merely on t, the signing time scales proportionally.

Parameters for MQ(m,n,Fq). A straightforward method for solving systems
of m quadratic equations in n variables over Fq is by performing exhaustive
search on all possible qn values for the variables, and testing whether they satisfy
the system. Currently, [9] provide the fastest enumeration algorithm for systems
over F2, needing 4 log n ·2n operations. The techniques from [9] can be extended
to other fields Fq with the same expected complexity of Θ(logq n · qn).

In addition, there exist algebraic techniques that analyze the properties of
the ideal generated by the given polynomials. The most important are the algo-
rithms from the F4/F5 family [4,8,18,19], and the variants of the XL algorithm
[12,16,35,36]. Although different in description, the two families bear many sim-
ilarities, which results in similar complexity [37].

In the Boolean case, today’s state of the art algorithms BooleanSolve [5]
and FXL [35], provide improvement over exhaustive search, with an asymptotic
complexity of Θ(20.792n) and Θ(20.875n) for m = n, respectively. Practically,
the improvement is visible for polynomials with more than 200 variables. A
very recent algorithm, the Crossbred algorithm [26] over F2, is likely to further
improve the asymptotic complexity, as the authors report that it passes the
exhaustive search barrier already for 37 Boolean variables. Unfortunately, at the
time of writing, the preprint does not include a detailed complexity analysis
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that we can use (the authors of [26] confirmed that the complexity analysis is
an ongoing work, and will soon be made public).

The current best known algorithms, BooleanSolve [5], FXL [35,36], the Cross-
bred algorithm [26] and the Hybrid approach [8] all combine algebraic techniques
with exhaustive search. This immediately allows for improvement in their quan-
tum version using Grover’s quantum search algorithm [25], provided the cost of
running them on a quantum computer does not diminish the gain from Grover.
Unfortunately, the current literature lacks analysis of the quantum version of
these algorithms. To the best of our knowledge, a detailed analysis has only
been done for pure enumeration using Grover’s search [34], showing that a sys-
tem of n equations in n variables can be solved using Θ(n · 2n/2) operations.

In what follows we will analyze the complexity of the quantum versions of
the Hybrid approach and BooleanSolve, and use the results as a reference point
in choosing parameters for MQ(m,n,Fq) that provide 128 bit post-quantum
security. A similar analysis can be made using the algorithms from the XL family.

First of all, we note that m = n is the best choice in terms of hardness
of the MQ problem. Indeed, if there are more equations than variables, they
provide more information about the solution, so finding one becomes easier. On
the other hand, if there are more variables than equations, we can simply fix
n − m variables and reduce the problem to a smaller one, with m variables.

Let F = (f1, . . . , fm), fi ∈ Fq[x1, . . . , xn]. Without loss of generality, the
equation system that we want to solve is F(x) = 0.

The main complexity in both the Hybrid approach and BooleanSolve comes
from performing linear algebra on a Macaulay matrix MacD(F) of degree D
(with rows formed by the coefficients of monomials of ufi of maximal degree
D). The degree D should be big enough so that a Gröbner basis of the ideal
generated by the polynomials can be obtained by performing linear algebra on
the Macaulay matrix. The smallest such D is called the degree of regularity Dreg,
and for semi-regular systems (which is a very plausible assumption for randomly
generated polynomials) it is given by Dreg(n,m) = 1 + deg(HSq(t)), where

HSq(t) =
[
(1 − t2)m

(1 − t)n

]

+

, for q > 2, and HS2(t) =
[

(1 + t)n

(1 + t2)m

]

+

,

and the + subscript denotes that the series has been truncated before the first
non-positive coefficient. Since Dreg determines the size of the matrix, and thus
the complexity of the linear algebra performed on it, both algorithms first fix k
among the n variables in order to reduce the complexity of the costliest compu-
tational step. Now the linear algebra step is instead performed on MacDreg

(F̃),
where F̃ = (f̃1, . . . , f̃m) and f̃i(x1, . . . , xn−k) = fi(x1, . . . , xn−k, an−k+1, . . . , an),
for some (an−k+1, . . . , an) ∈ F

k
2 . The value of k is chosen such that the overall

complexity is minimized.
Given the linear algebra constant 2 � ω � 3, the complexity of the Hybrid

approach for solving systems of n equations in n variables over Fq is

CHyb(n, k) = Guess(q, k) · CF5(n − k, n), (7)
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where CF5(n,m) = Θ

((
m

(
n + Dreg(n,m) − 1

Dreg(n,m)

))ω)
, is the complexity of

computing a Gröbner basis of a system of m equations in n variables, m � n,
using the F5 algorithm [19], Guess(q, k) = logq(k)qk in the classical case and
Guess(q, k) = logq(k)qk/2 in the quantum case using Grover’s algorithm. Here,
we assume a rather optimistic factor of logq(k) in the quantum case, i.e., it is
the same as in the classical case, as opposed to the factor k from [34].

In the case of F2, the BooleanSolve algorithm performs better than the
Hybrid approach. It reduces the problem to testing the consistency of a related
linear system

u · MacDreg
(F̃) = (0, . . . , 0, 1) (8)

If the system is consistent, then the original system does not have a solution. This
allows for pruning of all the inconsistent branches corresponding to some a ∈ F

k
2 .

A simple exhaustive search is then performed on the remaining branches. It can
be shown that the running time of the algorithm is dominated by the first part
of the algorithm in both the classical and the quantum version, although in the
quantum case the difference is not as big, as a consequence of the reduced com-
plexity of the first part. Therefore, for simplicity, we omit the exhaustive search
on the remaining branches from our analysis. The complexity of the Boolean-
Solve algorithm is given by

CBool(n, k) = Guess(2, k) · Ccons(MacDreg
(F̃)), (9)

where Guess(2, k) is defined the same as in the Hybrid approach, and

Ccons(MacDreg
(F̃)) = Θ(N2 log2 N log log N), N =

Dreg(n−k,n)∑

i=0

(
n

i

)

is the complexity of testing consistency of the matrix (8), using the sparse linear
algebra algorithm from [24].

Table 1 below provides estimates of the minimum requirements for 128 bit
post-quantum security of MQ(n, n,Fq) with regards to BooleanSolve and the
Hybrid Approach using Grover’s search, as well as plain use of Grover’s search.
In the estimates we used ω = 2.3, which is smaller than the best known value
ω = 2.3728639 [22]. We provide the optimal number of fixed variables in brackets,
where actually this number does not equal the number of variables in the initial
system. When this is the case, the optimal strategy is to simply use Grover (fix
all variables), which we denote with G. Note that since any system of n variables
over F2s can be efficiently transformed into a system of sn variables over F2, we
have scaled the results for BooleanSolve for larger F2s accordingly.

As mentioned earlier, a new algebraic method for equations over F2, the
Crossbred algorithm, was proposed very recently [26]. The main idea of this
approach is to first perform some operations on the Macaulay matrix of degree
Dreg(n − k, n) of the given system, and fix variables only afterwards. In par-
ticular, the algorithm first tries to find enough linearly independent elements
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Table 1. Lower bound on number of variables n for 128 bit post quantum security
against the quantum versions of Hybrid approach [8] and BooleanSolve [5]. In brackets
is the number of fixed variables. G denotes that the best strategy is to fix all variables,
i.e. plain Grover search.

F2 F3 F4 F5 F7 F8

BooleanSolve 221 (200) / 111 / / 56

Hybrid G G G G G 84 (57)

Grover 251 158 126 108 90 84

F11 F13 F16 F17 F31 F32

BooleanSolve / / 28 / / 14

Hybrid 77 (51) 73 (43) 69 (40) 69 (40) 61 (30) 60 (21)

Grover 73 68 63 62 51 51

in the kernel of a submatrix of MacDreg(n−k,n), corresponding to monomials of
specialized degree in the variables that will later remain in the system (i.e. will
not be fixed). These can then be used to form new polynomials in the n − k
remaining variables of total small degree d, which added to Macd(F̃) will result
in working with a much smaller Macaulay matrix. The advantage here comes
from using sparse linear algebra algorithms on MacDreg(n−k,n) for the first part
and dense linear algebra only on the smaller Macaulay matrix in the second part.
An external specialization of variables is also possible, but this does not bring
any improvement classically, and we have verified for some parameters (includ-
ing ours) that this is the case also quantumly. Even more, the algorithm can be
split into two distinct parts: thus, the first part, that is more memory demanding
can always be performed on a classical computer, and the second part which can
make use of Grover’s algorithm can be performed on a quantum computer. Since
[26] does not contain a complexity analysis, we refrain from claiming exact secu-
rity requirements based on the quantum version of the algorithm. Nevertheless,
following the description of the algorithm we have estimated the security of our
chosen instance MQ(128, 128,F4). We analyzed both the quantum version of
the algorithm over F2 as described in [26] and the quantum version over F4.

In both cases, as long as the number of the remaining n − k variables is
small, the sparse linear algebra part takes much less time, since in this case
Dreg(n − k, n) is also small. It turns out that actually it is more efficient to
work with a MacD, with D > Dreg(n − k, n), but not too large so that the
cost of the first part becomes significant. The complexity thus, is dominated by
enumeration of k variables in a system in n variables of degree D over F4, and
checking whether the obtained system has a valid solution. Clearly, a quantum
version of this part using Grover can quadraticly speed up the enumeration,
however there will be some additional cost for the Grover oracle.

Our analysis showed that for our parameters, the version over F4 is
much more efficient. Not counting the evaluation cost of the polynomials
and any additional cost of the Grover oracle, the quantum algorithm against
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MQ(128, 128,F4) takes at least 2117 operations for the best found trade-off of
parameters of the algorithm. Very likely, the additional cost we did not take
into account would be much bigger than 211 operations. In total, we can safely
assume that a system of 128 variables over F4 provides 128-bit security against
the quantum version of Crossbred algorithm. We will include a more detailed
analysis for the quantum version once a classical complexity analysis of [26] is
available.

Number of rounds r and blinded responses t per round. The choice
of t provides a trade-off between size and speed; a larger t implies a smaller
error, resulting in less rounds, but more included blinded responses per round
(the additional computational cost of which is insignificant). Interestingly, t = 3
provides the minimal size, followed by t = 4, and, only then, t = 2. The decrease
in rounds quickly diminishes, making t = 3 and t = 4 the most attractive choices.
Note that t is naturally bounded by q, making these the only options for F4.

Table 2. Benchmarks for varying parameter sets.

Cyclesb Size t = 3, r = 438 Size t = 4, r = 378

MQ(128, 128,F4) 21 412 123.22 KiB 129.97 KiB

MQ(96, 96,F7) 36 501 129.00 KiBa 136.20 KiBa

MQ(72, 72,F16) 25 014 136.91 KiB 144.73 KiB

MQ(64, 64,F31) 6 616 [11] 149.34 KiBa 158.15 KiBa

a Assumes optimally packing the elements of Fq, which may not be
practical.
b For single evaluation. In practice, batching provides a speedup. See
Section 6.2.

Given the above considerations (and with a prospect of some convenience of
implementation), we select the parameters n = m = 128, q = 4 and t = 3. For
a security level of 128 bits post-quantum security, it follows from Theorem 3.6
that we must select r such that 2−(r log 2t

t+1 )/2 < 2−128. This implies r = 438.

Required functions. Before being able to implement the scheme, we must
still define several of the functions we have assumed to exist. In particular, we
need: a string commitment function Com; pseudorandom generators PRGsk and
PRGrte; extendable output functions XOFF and XOFIB ; permutation functions
H1 and H2; and a cryptographic hash function H.

We instantiate the extendable output functions, the string commitment func-
tions, the permutations and the hash function with SHAKE-128 [7]. This applies
trivially, except for XOFIB , of which the output domain is a series of ternary
and binary indices (as t = 3). We resolve this by applying rejection sampling to
the output of SHAKE-128 to derive the ternary challenges. Note that this does
not enable a timing attack, as the input to SHAKE-128 is public. For XOFF,
we achieve a significant speedup by dividing its output in four separate pieces,
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generating each of them with a domain-separated call to cSHAKE-128 [7]. For
the application of H to the public key, the message and the transcript, collision
resilience is achieved by absorbing the transcript into the SHAKE-128 state first,
as the included randomness prevents internal collisions.

We also instantiate PRGrte and PRGsk with SHAKE-128, but note that
implementations can make different choices without breaking compatibility. In
fact, for the optimized Haswell implementation discussed in the next section, we
instantiate PRGrte with AES in counter mode, using the AES-NI instruction set.

6.2 Implementation

As part of this work, we provide a C reference implementation and an implemen-
tation optimized for AVX2. The focus of this section is the evaluation of the MQ
function, given the abovementioned parameter set MQ(128, 128,F4). The rest
of the scheme depends on fairly straight-forward operations (such as multiplying
vectors of F4 elements by a constant scalar) and applications of existing imple-
mentations of AES-CTR and SHAKE-128 The used AES-CTR and SHAKE-128
implementations are in the public domain and run in constant time.

Before discussing the computation, we note that the chosen parameters lend
themselves to a very natural data representation. Throughout the entire scheme,
we interpret 256 bit vectors as vectors of 128 bitsliced F4 elements: the low
128 bits make up the lower bits of the two-bit elements, and the high 128 bits
make up the higher bits of each element. This makes operations such as scalar
multiplication very convenient in C code, as this can be easily expressed as logical
operations on bit sequences, but provides an even more important benefit for
AVX2 assembly code. Notably, one vector of F4 elements fits exactly into one
256 bit vector register, with the lower bits now fitting into the low lane and
the higher bits into the high lane. Whereas other parameter sets could result in
having to consider crossing the lanes, in this case the separation is very natural.

When sampling elements in F4 from the output of SHAKE-128 or AES-CTR,
we can freely interpret the random data to be in bitsliced representation. Simi-
larly, we include the elements in the signature in this representation, as signature
verification enjoys precisely the same benefits. Throughout the entire scheme,
there is no point at which we need to actually perform a bitslicing operation.

As a side effect of this choice of representation, it is very natural to perform
the MQ evaluation in constant time. While bigger underlying fields might have
implied approaches based on lookup tables, for vectors over F4 it is much faster
to perform the evaluation using bitsliced field arithmetic.

Evaluating MQ. For a given input x, we split the evaluation into two phases:
computing all quadratic monomial terms xixj , and composing them to evaluate
the quadratic polynomials.

Computing the quadratic terms. To perform the first step, we use a similar app-
roach as was used in [11]. It can be viewed as a combination of their approach
for F2 and for F31, as we now operate on a single register that contains all input
elements, but view each lane as 16 separate single-byte registers. Using vpshufb
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instructions, the elements can be easily arranged such that all multiplications
can be performed using only a minimal number of rotations. We used the script
from [11] as a starting point to generate the arrangement.

A bitsliced multiplication in F4 can be efficiently performed using only a few
logical operations. The inputs to these multiplications are a register containing
x and a register containing some rotated arrangement of x. However, some of
these operations require the low and high lanes of the vector registers to inter-
act, which is typically costly. As x is constant, we speed up these multiplications
by rewriting them as shown below, and presetting two registers that contain
[xhigh|xhigh] and [xhigh ⊕ xlow|xlow], respectively. Note that all of these opera-
tions are not performed on single bits, but rather on 128 bit vector lanes. The
multiplication of 128 elements then requires only two vpand instructions, one
vperm instruction, and a vpxor to combine the results.

chigh = (ahigh ∧ (blow ⊕ bhigh)) ⊕ (alow ∧ bhigh)
clow = (alow ∧ blow) ⊕ (ahigh ∧ bhigh)

Multiplying, and accumulating results. We focus on two approaches to perform
the second and most costly part of the evaluation, in which all of the above
monomials need to be multiplied with coefficients from F and summed into
the output vector. They are best described as iterating either ‘horizontally’ or
‘vertically’ through the required multiplications. For the vertical approach, we
iterate over all2 registers of monomials, broadcasting each of the monomials to
each of the 128 possible positions (using rotations), before multiplying with a
sequence of coefficients from F and adding into an accumulator. Alternatively,
we iterate over the output elements in the outer-most loop. For each output
element, we iterate over all registers of monomials, perform the multiplications
and horizontally sum the results by making use of the popcnt instruction.

Intuitively, the latter approach may seem like more work (notably because it
requires more loads from memory), but in practice it turns out to be faster for our
parameters. The main reason for this is that by maintaining multiple separate
accumulators, loaded monomials can be re-used while still maintaining chains of
logic operations that operate on independent results (as the accumulators are
only joined together later), which leads to highly efficient scheduling.

For both cases, delaying part of the multiplication in F4 provides a significant
speedup. This is done by computing both [x̂high ∧ fhigh|x̂low ∧ flow] and [x̂low ∧
fhigh|x̂high ∧ flow], with f from F and x̂ a sequence of quadratic monomials, and
accumulating these results separately. After accumulating, all multiplications
and reductions can be completed at once, eliminating the duplicate operations
that would otherwise be performed for each of the 65 multiplications.

2 There are n·(n+1)
2

= 8256 such monomials, which results in 64 1
2

256-bit sequences.
We round up to 65 by zeroing out half of the high and half of the low lane. To still
get results that are compatible with implementations on other platforms, we create
similar gaps in the stream of random values used to construct F, ensuring that the
same random elements are still used for the same coefficients.
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Evaluating MQ instances in parallel. As each of the coefficients in F is used
only once, loading these elements from memory causes a considerable burden.
Since F is constant for each evaluation, however, a significant speedup can be
achieved by processing multiple instances of the MQ function in parallel. This
applies in particular to the vertical approach, as its critical section leaves some
registers unused. Horizontally, there is a trade-off with registers used for parallel
accumulators, but there is still considerable gain from parallelizing evaluations.

For SOFIA-4-128, the signer evaluates r = 438 instances of F and its polar
form G on completely independent inputs, which can be trivially batched.

Parallel SHAKE-128 and cSHAKE-128. As will be apparent in the next
section, many cycles are spent computing the Keccak permutation (as part of
either SHAKE-128 or cSHAKE-128). Some of the main culprits are the commit-
ments, the blinding of responses and the expansion of F. While the Keccak
permutation does not provide internal parallelism, it is straightforward to com-
pute four instances in parallel in a 256 bit vector register. This allows us to
seriously speed up the many commitments and blindings, as these are all fully
independent and can be grouped together across rounds. Deriving F can be par-
allelized by splitting it in four domain-separated cSHAKE-128 calls operating on
the same seed, as was alluded to in Section 6.1.

Benchmarks. Evaluating the MQ function horizontally in batches of three
turns out to give the fastest results, measuring in at 17 558 cycles per evaluation.
Evaluating vertically costs 18 598 cycles. The cost for evaluating the polar form
is not significantly different, differing by approximately a hundred cycles from
regular MQ. Generating the monomial terms xiyj + xjyi is somewhat more
costly, but this is countered by the fact that the linear terms cancel out.

To generate a signature, we spend 21 305 472 cycles. Of this, 15 420 520 cycles
can be attributed to evaluating MQ, and 43 954 to AES-CTR. The remainder is
almost entirely accounted for by the various calls to SHAKE-128 and cSHAKE-
128 for the commitments, blindings and randomness expansion. In particular,
expanding F costs 1 120 782 cycles. Note, however, that if many signatures are
to be generated, this expansion only needs to be done once and F can be kept in
memory across subsequent signatures. Verification costs 15 492 686 cycles, and
key generation costs 1 157 112; key generation is dominated by expansion of F.

The keys of SOFIA-4-128 are very small by nature, with the secret key
consisting of only a single 32 byte seed, and the 64 byte public key being made
up of a seed and a single MQ output.

The natural candidate for comparison is MQDSS-31-64 [11]. While MQDSS
has a proof in the ROM, we focus further comparison on post-quantum schemes
that have proofs in the QROM or standard model. See Table 3, below; as
mentioned in the introduction, we include SPHINCS-256 [6] (standard model),
Picnic-10-38 [10] (QROM) and TESLA-2 [2] (QROM). Since [2] does not imple-
ment the TESLA-2 parameter set, we include TESLA-1 (ROM) for context.
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Table 3. Benchmark overview.

|σ|
(bytes)

|pk|, |sk|
(bytes)

Keygen
(cycles)

Signing
(cycles)

Verification
(cycles)

SOFIA-4-128a 126 176 64 32 1 157 112 21 305 472 15 492 686

MQDSS-31-64a 40 952 72 64 1 826 612 8 510 616 5 752 612

SPHINCS-256b 41 000 1056 1088 3 237 260 51 636 372 1 451 004

Picnic-10-38c,d 195 458 64 32 ≈36 000 ≈112 716k ≈58 680 000

TESLA-1a 2 444 11 653k 6 769k ?e 143 402 231 19 284 672

TESLA-2f ≥4.0kg ≥21 799kg ≥7 700kg ?f ?f ?f

a Benchmarked on an Intel Core-i7-4770K (Haswell). b Benchmarked on an Intel Xeon
E3-1275 (Haswell). c Benchmarked on an Intel Core-i7-4790 (Haswell). d Converted from
milliseconds at 3.6GHz. e The benchmarks in [2] omit key generation. In [10], a measure-
ment of approximately 173 billion cycles is reported for the preceding TESLA-768 [1] scheme,
which uses a similar key generation operation but is instantiated with smaller parameters.
f The TESLA-2 parameter set is not implemented in [2]; no benchmarks are available.
g “Sizes are theoretic sizes for fully compressed keys and signatures” [2].
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Abstract. We give a framework for trapdoor-permutation-based sequen-
tial aggregate signatures (SAS) that unifies and simplifies prior work and
leads to new results. The framework is based on ideal ciphers over large
domains, which have recently been shown to be realizable in the ran-
dom oracle model. The basic idea is to replace the random oracle in the
full-domain-hash signature scheme with an ideal cipher. Each signer in
sequence applies the ideal cipher, keyed by the message, to the output
of the previous signer, and then inverts the trapdoor permutation on the
result. We obtain different variants of the scheme by varying additional
keying material in the ideal cipher and making different assumptions on
the trapdoor permutation. In particular, we obtain the first scheme with
lazy verification and signature size independent of the number of signers
that does not rely on bilinear pairings.

Since existing proofs that ideal ciphers over large domains can be real-
ized in the random oracle model are lossy, our schemes do not currently
permit practical instantiation parameters at a reasonable security level,
and thus we view our contribution as mainly conceptual. However, we are
optimistic tighter proofs will be found, at least in our specific application.
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1 Introduction

Aggregate signatures and their variants. Aggregate signature schemes
(AS), introduced by Boneh et al. [6] (BGLS), allow n signatures on different
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messages produced by n different signers to be combined by any third party
into a single short signature for greater efficiency, while maintaining the same
security as n individual signatures. In this paper we are concerned with the
more restricted sequential aggregate signatures (SAS), introduced by Lysyan-
skaya et al. (LMRS) [22] and further studied by [1,5,7,17,21,24]. These schemes,
while still maintaining the same security, require signers themselves to com-
pute the aggregated signature in order, with the output of each signer (so-called
“aggregate-so-far”) used as input to the next during the signing process. This
restriction turns out to be acceptable in several important applications of aggre-
gate signatures, such as PKI certification chains and authenticated network rout-
ing protocols (e.g., BGPsec).

TDP-based SAS. Existing SAS constructions are usually based on trapdoor
permutations (TDPs) [1,7,22,24] or bilinear pairings [1,5,17,21]. In this paper,
we focus on improving and simplifying TDP-based SAS schemes, which are all
in the random oracle (RO) model. We describe existing constructions below, and
illustrate them in Fig. 1.

Fig. 1. Our framework, compared to LMRS, Neven, and BGR.
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The first TDP-based SAS scheme, by Lysyanskaya et al. [22] (LMRS), is
very similar to the full-domain-hash (FDH) signature scheme of Bellare and
Rogaway [2]. Recall that in FDH, the hash function is modeled as a random
oracle whose range is equal to the domain of the TDP, and the signer simply
hashes the message and inverts the TDP on the hash output. In LMRS, the
signer exlcusive-ors the previous signer’s output together with the hash of the
message before inverting the TDP. This procedure enabled the verifier to verify
in reverse order of signing, because exclusive-or could be undone to obtain the
previous signer’s (alleged) output.

Unfortunately, this very simple construction is not secure, and two additional
checks are used in LMRS to achieve security: first, each signer must ensure that
the public keys of all preceding signers are “certified”—i.e., specify permutations;
and second, each signer must verify the signature received from the previous
signers before applying the signing operation. These two checks prevented fast
signing; ideally, each signer would be able to sign independently of others, and
verify when time permitted (this option is called “lazy verification” and was
observed by Brogle et al. [7] to be crucial in authenticated network routing
protocols).

In two successive works by Neven [24] and Brogle et al. [7] (BGR), these two
additional checks were removed (permitting, in particular, lazy verification), but
at a cost to simplicity and signature length. Neven’s scheme eliminated the first
check by introducing a Feistel-like structure with two hash functions, at the cost
of lengthening the signature by a single hash value; BGR, building on top of
Neven, eliminated the second check by lengthening the signature further by a
short per-signer value. These two schemes were complex and had subtle security
proofs.

Our framework. We give a new framework for TDP-based SAS schemes,
which unifies and simplifies prior work as well as leads to improved construc-
tions. We observe that in all three prior TDP-based schemes, the central design
question was how to process the aggregate-so-far together with the message
before applying the hard direction of the TDP; in all three, it was accomplished
using some combination of exclusive-or and random-oracle hash operations which
were designed to ensure that the aggregate-so-far could be recovered during ver-
ification. In other words, achieving invertibility in order to enable verification
was a major design constraint.

Our idea is to build invertibility explicitly into the scheme. In our scheme,
pictured in Fig. 1, we process the aggregate-so-far via a public random permu-
tation (modeled as an ideal cipher), keyed by the message. In other words, our
schemes are in the ideal ideal cipher model, where algorithms have access to a
family of random permutations and their inverses. This model is typically used
for blockcipher-based constructions, where a blockcipher like AES is modeled as
an ideal cipher. In our work, the domain of the ideal cipher is that of the trap-
door permutation, which is usually much larger than the block-length of a typical
block cipher like AES. Fortunately, as shown by a series of works [10,12–14] we
can replace arbitrary-length ideal ciphers by using 8 rounds of Feistel network,
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and obtain the same security in the random oracle as in the ideal cipher model
using indifferentiability arguments [23].

Our Results. Our framework not only simplifies prior work, but gives rise to
more efficient aggregate signatures. Specifically, we obtain:

– A scheme that, like Neven’s, does not require certified TDPs, but may permit
shorter signatures than Neven’s scheme, of length equal to the length of the
TDP output.1

– A scheme that, like BGR, permits lazy verification, but retains constant-size
signatures. This scheme is based on a stronger assumption of adaptive tag-
based TDPs [20] instead of plain TDPs.

If one prefers to stay with plain TDPs, we also obtain a scheme that permits
lazy verification and, like BGR, has signatures that grow with the number of
signers, but still the signatures have the potential to be shorter than in BGR
(with the same caveat as above). We do not compare computational costs of our
scheme vs. Neven’s and BGR’s because the only difference is the (small) number
of additional hashes, which is negligible compared to the cost of evaluating the
TDP.

Main Technique: Chain-to-Zero Lemma. The security proofs for all our
schemes are enabled by a lemma we prove about an ideal cipher keyed by descrip-
tions of functions. We emphasize that the functions are unrelated to the ideal
cipher itself, and that the cipher keyed by a function description results in per-
mutation that is unrelated to the function. This lemma, which we call “Chain-
to-Zero Lemma,” states the following.

Let πk denote the ideal cipher with key k. Recall that accessing π and π−1

requires querying an oracle. Let f and g denote functions with the same domain
and range as π; the function descriptions will also be used as keys for π (again,
we emphasize that the resulting permutations πf and πg have nothing to do with
f and g as functions). Suppose for some a, πg(a) = b, f(b) = c, and πf (c) = d.
We will say that a, b is linked to c, d. In our schemes, linking corresponds to
consecutive steps of the verification algorithm.

A sequence of values in which each pair is linked to the next pair defines a
chain. Signature verification will make sure that the last element of a chain is 0.
The Chain-to-Zero Lemma says that if the last element of the chain is 0, then
with overwhelming probability it was formed via queries to π−1 rather than to
π. In our security proofs, this lemma means that we can program the relevant
queries to π−1, and therefore a forgery can be used to break the underlying TDP.

RSA-based instantiations. The schemes we obtain via our framework are
proven secure under claw-freeness of the underlying TDP, or adaptive claw-
freeness in the tag-based TDPs case. For plain-TDP-based schemes, this means
1 For a comparison at the same security level, one must take into account losses in

the security proofs. Unfortunately, the proofs of [10,12–14] are lossy, so currently
we have to use a much larger domain size of the ideal cipher than the TDP output.
However, we are optimistic tighter proofs will be found; see open problems below.
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that we can use RSA assuming standard one-wayness. For the tag-based TDP
scheme, we can use RSA under a stronger assumption called the instance-
independent RSA assumption [25]. This instantiation hashes to the exponent
(an idea originating from [18]), so verification is more expensive than for stan-
dard RSA.

Perspective and open problems. Compared to prior work, our framework
pushes much of the complexity of security proofs to indifferentiability arguments
that a Feistel network realizes an ideal cipher, and allows working with an ideal
cipher as a clean abstraction. We point out two interesting directions for future
work:

– Known proofs that a Feistel network is indifferentiable from an ideal cipher
are lossy in the sense that the security guarantees obtained are weaker for a
fixed domain size. We conjecture that a weaker property suffices to prove our
Chain-to-Zero Lemma and can be realized via a tight proof. We leave proving
or disproving this conjecture as an interesting direction for future work (and
perhaps fewer Feistel rounds).

– The RSA-based instantiation of our tag-based TDP scheme has an expensive
verification algorithm that performs a full exponentiation modulo N , and its
security relies on a very strong assumption about RSA. It would be interesting
to remove either of these drawbacks. We conjecture that one can actually
prove a negative result here, namely that plain TDPs cannot be used to
realize constant-size lazy-verifying SAS schemes in the RO model, in a black-
box way.

Finally, we mention that an open problem is removing the use of ROs in TDP-
based SAS schemes, although our framework does not shed any light on this
issue.

2 Preliminaries

2.1 Notation and Conventions

Algorithms. If A is an algorithm then y ← A(x1, . . . , xn; r) means we run A on
inputs x1, . . . , xn and coins r and denote the output by y. By y ←$ A(x1, . . . , xn)
we denote the operation of picking r at random and letting y ← A(x1, . . . , xn; r).
By Pr [P (x) : . . .] we denote the probably that P (x) holds after the elided exper-
iment is executed. Unless otherwise indicated, an algorithm may be randomized.
“PPT” stands for “probabilistic polynomial time” and “PT” stands for “polyno-
mial time.” The security parameter is denoted k ∈ N. If we say that an algorithm
is efficient we mean that it is PPT. All algorithms we consider are efficient unless
indicated otherwise.

Strings and vectors. We denote by {0, 1}∗ the set of all (binary) strings,
by {0, 1}n the set of all strings of length n ∈ N , and by {0, 1}≥n the set of all
strings of length at least n ∈ N. If a, b are strings then a‖b denotes an encoding
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from which a and b are uniquely recoverable. Vectors are denoted in boldface,
for example x. We sometimes use set notation with vectors, so that the notation
x ← x ∪ {x} means that the next empty position in x is assigned x. If X is
a random variable over some (finite) probability space then E[X] denotes its
expectation.

Tables. We use the term “table” to refer to an associative array implicitly
initialized to empty. We use the pseudocode “Record x = T [y] in the X-table”
to mean that x is put at index y in table T . We use the pseudocode “X-table
entry x = T [y]” to refer to x as the value at index y in table T .

Simplifying conventions. We implicitly assume that an honestly generated
secret key contains the matching public key. In experiments, we assume that an
adversarially-provided public key can be parsed into the requisite form, and that
if it contains a description of a function f then f is PT. This does not mean we
assume public keys certified by a CA. Indeed, our requirement can be met by
running f via inputting it and its input to some PT algorithm F , say universal
machine that executes f on its input for a fixed amount of time; if f halts with
some output then F outputs it as well, otherwise F outputs a default value.
For simplicity, we also assume trapdoor permutations have domain {0, 1}k but
discuss RSA-based instantiations in AppendixA and Sect. 7.

2.2 Claw-Freeness

Claw-free trapdoor permutations. A trapdoor permutation (TDP) gener-
ator F on input 1k outputs a pair (f, f−1, g) describing permutations f, g on
{0, 1}k, and f−1 describing the inverse of f . For a claw-finding algorithm C and
every k ∈ N, define its CF-advantage against F as

Advcf
F,C(k) = Pr

[
f(x) = g(x′) : (f, f−1, g)←$ F ; (x, x′)←$ C(f, g)

]
.

We say that F is a claw-free if Advcf
F,C(·) is negligible for every PPT C.

The permutation g is only used for security proofs. In our constructions, we
will ignore g and write (f, f−1)←$ F(1k), corresponding to the standard notion
of trapdoor permutations.

(Adaptive) claw-free tag-based TDPs. A tag-based trapdoor permutation
(TB-TDP) generator Ftag with tag-space {0, 1}τ on input 1k outputs a pair
(ftag, f

−1
tag, gtag) describing functions of two inputs: t ∈ {0, 1}τ (called the tag)

and x ∈ {0, 1}k. For every tag t ∈ {0, 1}τ , ftag(t, ·), gtag(t, ·) are permutations
and f−1

tag(t, ·) is the inverse of ftag(t, ·). For a claw-finding algorithm C and every
k ∈ N, define its ACF-advantage against Ftag as

Advacf
F,C(k) = Pr[f(t, x) = g(t, x′) : (f, f−1, g)←$ Ftag(1k); t ←$ {0, 1}k;

(x, x′)←$ Cf−1(·,·)(f, g, t)]

where we require that C does not make a query of the form f−1(t, ·) to its
oracle. We say that F is adaptive claw-free if Advcf

F,C(·) is negligible for every
such PPT C.
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Intuitively, F is adaptive claw-free if it is hard to find a claw even given
access to an inversion oracle for f that may be called on tags other than the
challenge tag. The notion of adaptive claw-freeness is new to this work. It is an
extension of the notion of adaptive one-wayness introduced by Kiltz et al. [20].

Instantiations. Dodis and Reyzin [16] show that any homomorphic or ran-
domly self-reducible trapdoor permutation, in particular RSA [26] is claw-free
(with a tight security reduction to one-wayness).

The notion of adaptive one-wayness for trapdoor permutations) (and more
generally trapdoor functions) was introduced by Kiltz et al. [20]. They show
that RSA gives rise to an adaptive one-way tag-based TDP under the instance-
independent RSA assumption (II-RSA). In AppendixA we show that the same
construction yields an adaptive claw-free tag-based TDP. In the construction,
computing the forward direction is slower than for standard RSA, as it performs
an exponentiation where the exponent is the length of the modulus rather than
a small constant.

2.3 Random Oracle Model

In the random oracle model [2] all parties (all algorithms and adversaries) have
oracle access to a function (“the random oracle”) H : {0, 1}∗ → {0, 1}∗ where
for every x ∈ {0, 1}∗ the value of H(x) is chosen uniformly at random of some
desired output length. By using standard domain separation, it is equivalent
to give all parties oracle access to an unlimited number of independent random
oracles H1,H2, . . . : {0, 1}∗ → {0, 1}∗. It is a well-known heuristic proposed by [2]
to instantiate these oracles in practice via functions constructed appropriately
from a cryptographic hash function.

2.4 Ideal Cipher Model

In the version of the ideal cipher model [27] we consider, all parties (again,
all algorithms and adversaries) have oracle access to two functions (“the ideal
cipher”):

π : {0, 1}∗ × {0, 1}≥k → {0, 1}≥k and π−1 : {0, 1}∗ × {0, 1}≥k → {0, 1}≥k,

where the first is such that for each K ∈ {0, 1}∗ and each input length n ≥ k,
π(K, ·) is an independent random permutation on {0, 1}n. The second is such
that for each K ∈ {0, 1}∗ and each input length n ≥ k, π−1(K, ·) is the inverse of
π(K, ·) on {0, 1}n. Such a model has typically been used to analyze blockcipher-
based constructions in the symmetric-key setting (see, e.g., [4]), where the key
length is fixed to the key length of the blockcipher and the input length is fixed
to the block length.

Our constructions are in the public-key setting, the key length will be
unbounded, and the input length will be at least as long as the input length
of a trapdoor permutation (say 2048 bits in the case of RSA). To implement
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such an ideal cipher in the random oracle model, one can use a Feistel net-
work. Indeed, in their seminal work, Coron et al. [10] show that a 14-round
Feistel network, where the round functions are independent random oracles, is
indifferentiable in the sense of Maurer et al. [23] from a random permutation,
which can then be used to implement the ideal cipher in a straightforward way.
Essentially, indifferentiability implies that any reduction using the random per-
mutation can be translated to one in the random oracle model. A subsequent
sequence of works [12–14] show that 8 rounds is sufficient; the minimal number
of rounds is still open but known to be at least six. Unfortunately, none of these
works are “tight” in the sense that the resulting reduction in the random oracle
model will be very loose. An interesting question for future work is whether
a weaker notion than indifferentiability from an ideal cipher suffices in our
constructions.

3 Sequential Aggregate Signatures

Sequential aggregate signatures (SAS) were introduced by Lysyanskaya et al. [22]
and were subsequently studied by [1,5,7,17,21,24]. Following the work of Brogle
et al. [7] and Fischlin et al. [17] (and in particular using terminology of the latter)
we classify SAS schemes into two types: general and history-free. In a history-
free scheme, the signing algorithm uses only on the current signer’s secret key,
the message, and the aggregate-so-far. In a general scheme, it may also use the
public keys and messages of the previous signers.

3.1 The General Case

Syntax. A (general) sequential aggregate signature (SAS) scheme is a tuple
SAS = (Kg,AggSign,AggVer) of algorithms defined as follows. The key-
generation algorithm Kg on input 1k outputs a public-key pk and matching
secret-key sk. The aggregate signing algorithm AggSign on inputs a secret key
ski, message mi, aggregate-so-far σi−1 and a list of pairs of public keys and
messages ((pk1,m1), . . . , (pki−1,mi−1)) outputs a new aggregate signature σi.
The aggregate verification algorithm AggVer on inputs a list of public keys and
messages (pk1,m1), . . . , (pki,mi) and an aggregate signature σi outputs a bit.

Security. The security notion we use is the same as that in [7,24] and originates
from [1], who strengthen the original notion of [22] to allow repeating public
keys (which they call “unrestricted” SAS). To a general SAS scheme SAS and a
forger F we associate for every k ∈ N a (general) SAS-unforgeability experiment
Expsas-uf

SAS,F (k) that runs in three phases:

• Setup: The experiment generates (pk, sk)←$Kg(1k).
• Attack: Next, the experiment runs F on input pk with oracle access to
AggSign(sk, ·, ·, ·).
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• Forgery: Eventually, F halts with output parsed as (pk1,m1), . . . ,
(pkn,mn), σ. The experiment outputs 1 iff: (1) AggVer((pk1,m1), . . . ,
(pkn,mn), σ) outputs 1, (2) pki∗ = pk for some 1 ≤ i∗ ≤ n, and (3)
F did not make an oracle query of the form AggSign(sk,mi∗ , ((pk1,m1),
. . . , (pki∗−1,mi∗−1))).

Define the (general) SAS-unforgeability advantage of F as

Advsas-uf
SAS,F (k) = Pr

[
Expsas-uf

SAS,F (k) outputs 1
]
.

3.2 The History-Free Case

Syntax. A history-free sequential aggregate signature (HF-SAS) scheme is a
tuple HF-SAS = (Kg,AggSign, AggVer) of algorithms defined as follows. The
key-generation algorithm Kg on input 1k outputs a public-key pk and matching
secret-key sk. The history-free aggregate signing algorithm AggSign on inputs
sk,m, σ′ outputs a new aggregate signature σ. The aggregate verification algo-
rithm AggVer on inputs a list of public key and messages (pk1,m1), . . . , (pki,mi)
and aggregate signature σ outputs a bit.

Security. Security in the history-free case is more restrictive on what is consid-
ered to be a forgery by the adversary than in the general case. In particular, we
follow Brogle et al. [7] in our formulation of security here but leave investigation
of a stronger security model due to Fischlin et al. [17] for furtur work. (As noted
by [7], this strengthening is not needed in applications such as BGPsec.) To an
HF-SAS scheme HF-SAS and a forger F be a forger we associate for every k ∈ N

a history-free SAS unforgeability experiment Exphf-sas-uf
SAS,F (k) that runs in three

phases:

• Setup: The experiment generates (pk, sk)←$Kg(1k).
• Attack: Next, the experiment runs F on input pk with oracle access to
AggSign(sk, ·, ·).

• Forgery: Eventually, F halts with output parsed as (pk1,m1), . . . ,
(pkn,mn), σ. The experiment outputs 1 iff: (1) AggVer((pk1,m1), . . . ,
(pkn,mn), σ) outputs 1, (2) pki∗ = pk for some 1 ≤ i∗ ≤ n, and (3) F
did not make an oracle query of the form AggSign(sk,mi∗ , ·).

Define the history-free SAS-unforgeability advantage of F as

Advhf-sas-uf
HF-SAS,F (k) = Pr

[
Exphf-sas-uf

HF-SAS,F (k) outputs 1
]
.

3.3 Message Recovery

We also consider sequential aggregate signature schemes with message recov-
ery, following [3,24]. The goal is to save on bandwidth. Here we replace the
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verification algorithm by a recovery algorithm, which we view as taking as inputs
a list of public keys and an aggregate signature and outputting either a list of
messages, with the intended meaning that the verifier accepts each message as
authentic under the respective public key, or ⊥, indicating the aggregate signa-
ture is rejected.

4 Our Basic Schemes

We give three basic schemes: a general scheme (where the signing algorithm uses
the public keys and messages of the previous signers in addition to the current
signer’s secret key and message), and two history-free schemes (where the signing
algorithm uses only the current signer’s secret key and message). In this section
we only present the constructions and security theorems. We postpone the proofs
since we later give our main lemma that unifies the proofs.

4.1 SAS1: A General Scheme

Let F be a trapdoor permutation generator. Define SAS1[F ] = (Kg,AggSign,
AggVer) in the ideal cipher model with input length of π and π−1 fixed to k ∈ N,
and where Kg(1k) outputs (f, f−1) generated via F(1k) and:

Alg AggSign(f−1
i ,mi, σi−1, (f1,m1), . . .,

(fi−1,mi−1)):
//This is for the ith signer in the sequence:
If AggVer((f1,m1), . . . , (fi−1,mi−1), σi−1)

outputs 0 then
Return ⊥

If i = 1 then σi−1 ← 0k

xi−1 ← σi−1; Ki ← f1‖m1‖ . . . ‖fi‖mi

yi ← π−1(Ki, xi−1); xi ← f−1
i (yi); σi ← xi

Return σi

Alg AggVer((f1,m1), . . .,
(fn,mn), σ):

xn ← σ
For i = n down to 1 do:

yi ← fi(xi)
K ← f1‖m1‖ . . . ‖fi‖mi

xi−1 ← π(Ki, yi)
If x0 = 0k then return 1
Else return 0

Theorem 1. Suppose F is claw-free. Then SAS1[F ] is aggregate-unforgeable in
the ideal cipher model. In particular, suppose there is a forger F against SAS1[F ]
making at most qπ ideal cipher queries and at most qS signing queries. Then there
is a claw-finding algorithm C against F such that for every k ∈ N

Advsas-ufcma
SAS1[F ],F (k) ≤

(
1

1/(e(qS + 1)) − qπ/2k

)
· Advcf

F,C(k) + q2π/2k.

The running-time of C is that of F plus minor bookkeeping.
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4.2 SAS2: A History-Free Scheme with Randomized Signing

Let F be a trapdoor permutation generator and ρ = ρ(k) be an integer param-
eter. Define SAS2[F ] = (Kg,AggSign,AggVer) where Kg(1k) outputs (f, f−1)
generated via F(1k) and:

Algorithm AggSign(f−1
i ,mi, σi−1):

//This is for the ith signer in the sequence:
If i = 1 then x0 ← 0k and r0 ← ε
Else (xi−1, ri−1) ← σi−1

ri ←$ {0, 1}ρ; Ki ← fi‖mi‖ri

yi ← π−1(Ki, xi−1)
xi ← f−1

i (yi); Append ri to ri−1

σi ← (xi, ri)
Return σi

Algorithm AggVer((f1,m1),
. . . , (fn,mn), σ):
(σn, (r1, . . . , rn)) ← σ
xn ← σn

For i = n down to 1 do:
yi ← fi(xi)
K ← fi‖mi‖ri

xi−1 ← π(Ki, yi)
If x0 = 0k then return 1
Else return 0

Theorem 2. Suppose F is claw-free. Then SAS2[F ] is aggregate-unforgeable in
the ideal cipher model. In particular, suppose there is a forger F against SAS2[F ]
making at most qH queries to H, at most qπ queries to the ideal cipher, and at
most qS signing queries. Then there is a claw-finding algorithm C against F
such that for every k ∈ N

Advhf-sas-ufcma
SAS2[F ],F (k) ≤ 2ρ+k

(2ρ − q2S)(2k − q2π)
· Advcf

F,C(k) + q2π/2k.

The running-time of C is that of F plus minor bookkeeping.

4.3 SAS3: A History-Free Scheme with Deterministic Signing

To get intuition, we first sketch how to forge against SAS2[F ] when randomness
ri is simply omitted. Let Ki = fi‖mi be the ideal cipher key that the i-th
signer “thinks” it is using. Let K ′

i = fi‖m′
i be the ideal cipher key derived

from a message m′
i that it will be duped into signing, and let x′

i−1 be the real
aggregate-so-far. We show how to derive a corresponding fake aggregate-so-far
xi−1. Let yi = π−1(Ki, xi−1) be the value that the i-th signer will apply f−1

i

to. We want to make yi = π−1(K ′
i, x

′
i−1), so that the i-th signer is duped.

But this is easy: In order to force yi = π−1(K ′
i, x

′
i−1), we only have to choose

π−1(Ki, xi−1) = π−1(K ′
i, x

′
i−1) and therefore xi−1 = π(Ki, π

−1(K ′
i, x

′
i−1)). In

essence, to solve this issue we make fi depend on mi as well.

Our construction. Let Ftag be a tag-based trapdoor permutation with tag-
space {0, 1}τ . Let H : {0, 1}∗ → {0, 1}τ be a hash function modeled as a random
oracle. Define SAS3[F ] = (Kg,AggSign,AggVer) where Kg(1k) outputs (f, f−1)
generated via Ftag(1k) and:
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Algorithm AggSign(f−1
i ,mi, σi−1):

//This is for the ith signer in the sequence:
xi−1 ← σi−1

If i = 1 then σi−1 ← 0k

Ki ← fi‖mi

yi ← π−1(Ki, xi−1)
ti ← H(fi‖mi)
xi ← f−1

i (ti, yi)
Return σi = xi

Algorithm AggVer((f1,m1),
. . . , (fn,mn), σ):
xn ← σ
For i = n down to 1 do:

ti ← H(fi‖mi)
yi ← fi(tixi)
K ← fi‖mi‖ri

xi−1 ← π(Ki, yi)
If x0 = 0k then return 1
Else return 0

Theorem 3. Suppose Ftag is adaptive claw-free. Then SAS3[F ] is aggregate-
unforgeable in the ideal cipher and random oracle models. In particular, suppose
there is a forger F against SAS3[F ] making at most qH queries to the random
oracle and at most qπ queries to the ideal cipher. Then there is a claw-finding
algorithm C against Ftag such that for every k ∈ N

Advhf-sas-ufcma
SAS3[F ],F (k) ≤ 2k+τ

(2k − q2π)(2τ − qH)
· Advacf

Ftag,C(k) + q2π/2k.

The running-time of C is that of F plus minor bookkeeping.

5 The Chain-to-Zero Lemma

Here we give a main lemma that will unify security analyses of our schemes.

The setting. Consider an adversary A executing in the ideal cipher model
where the input and output length of the ideal cipher is fixed to k ∈ N, and
where a key of the ideal cipher also describes a function f : {0, 1}k → {0, 1}k

unrelated to the function π : f × {0, 1}k → {0, 1}k. That is, A may submit a
query to π of the form f, y to receive a random x ∈ {0, 1}k, or a query f, x to
π−1 to receive a random y ∈ {0, 1}k.2 For simplicity, we assume that A does
not make the same query twice or ask redundant queries, i.e., does not ask for
π−1[f, x] if it already asked for π[f, y] for some y and got x in response, or vice
versa.

Linking. We say that π-table entry x1 = π[f2, y2] is linked to π-table entry
x0 = π[f1, y1] if f1(x1) = y1. For intuition, one can think of a π-table entry
x0 = π[f1, y1] as indicating that f1 applied to something (which in our construc-
tions correspond to an aggregate-so-far) yielded y1; this entry is linked if the
“something” is also stored in the π-table. See Fig. 2 for a depiction. We induc-
tively define a π-table entry x = π[f, y] to be chained to zero if x = 0k or it
is linked to an entry that is chained to zero. The length of the chain is defined
naturally, where a chain consisting of a single entry 0k = π[f1, y1] has length
one. We say that π-table entry x = π[f, y] is a forward query if it is defined
upon A making a π query. Similarly, we say that π-table entry x = π[f, y] is a
backward query if it is defined upon A making a π−1 query.
2 In the game, we denote by “y” an input to π and by “x” its output for consistency

with our constructions in Sect. 4.
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key = f1

key = f2

y1

x0

x1

y2

f1

Fig. 2. A link between ideal cipher entries.

Lemma 4 (Chain-to-Zero Lemma). Consider an execution A in which it
makes at most q queries. Define BADπ to be the event that some forward query
gets chained to zero. Then Pr [BADπ ] ≤ q2/2k.

In the proof we will make use of the following claims.

Claim. Let f : {0, 1}k → {0, 1}k. Consider choosing random y1, . . . , yq ∈ {0, 1}k,
and let Ymax be the random variable giving the maximum over i of the size of
the pre-image set of f−1(yi). Then E[Ymax] = q.

Proof. Let Yi be the random variable giving the size of the pre-image set of
f−1(yi). We compute

E[Ymax] =
∞∑

x=0

Pr[Ymax > x] ≤
∞∑

x=0

q∑

i=1

Pr[Yi > x] =
q∑

i=1

E[Yi] = q.

Above, for the first (in)equality we the fact that for a nonnegative integer-valued
random variable X, E[X] =

∑∞
x=0 Pr[X > x]. For the second inequality we use

a union bound. For the last (in)equality we use that E[Yi] = 1, because the
expectation is simply the sum all pre-image set sizes divided by the total number
of points.

Now define Coll1 to be the event that a forward query xi = π[fi+1, yi+1] is
such that it is linked to some already existing backward query xi−1 = π[fi, yi],
and Coll2 to be the event that a backward query xi−1 = π[fi, yi] is such that
it is linked to some already existing query xi = π[fi+1, yi+1] (either forward or
backward). Define Coll = Coll1 ∨ Coll2.

Claim. In an execution A as above in which it makes at most q queries, we have
Pr [Coll ] ≤ q2/2k.

Proof. We say that a forward query collides if satisfies the condition for Coll1,
and similarly for a backward query and Coll2. After at most j backward queries
have been made, define the random variable Pj to give the maximum over all
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such queries of the size of the pre-image set f−1(y). We claim that after i queries,
the probability a forward query collides is at most i/2k. This is because for such
a forward query x = π[f, y], we have

Pr [x = π[f, y] collides ] ≤
∞∑

j=1

j · Pr [Pi = j ] · 2−k = E[Pi] · 2−k ≤ i · 2−k,

where the last inequality is by the claim above.
Now if xi−1 = π[fi, yi] is a backward query then yi is random and indepen-

dent, while for any existing query xi = π[fi+1, yi+1] we know fi(xi) is already
defined before yi is chosen. So the probability fi(xi) = yi is 2−k.

Hence, by a union bound the total probability of collision is at most q2/2k.

We are now ready to prove our main lemma.

Proof (of Lemma 4). By a conditioning argument, we have

Pr [BADπ ] ≤ Pr
[
BADπ | Coll

]
+ Pr [Coll ]

≤ Pr
[
BADπ | Coll

]
+ q2/2k

using Claim 5.
Now if BADπ occurs there are two possibilities, either some forward query

x = π[f, y] gets chained to zero by a chain of length i = 1, or it gets chained
to zero by a chain of length i > 1. If i = 1 this would mean that x = 0k. Since
x is random and independent, the probability of this is 2−k. Summing over all
possible queries, the probability that any forward query gets chained to zero by
a chain of length one is at most q/2k.

Now suppose forward query xi = π[fi+1, yi+1] gets chained to zero by a chain
of length i > 1. Then there are two possibilities: this query is chained to zero
immediately when it is defined, or later.

The first possibility would require that there is a π-table entry xi−1 = π[fi, yi]
such that fi(xi) = yi and the entry is already chained to zero by a chain of length
i − 1. By induction on i, xi−1 = π[fi, yi] is a backward query, so it would cause
a collision.

For the second possibility, consider a query that completes the chain from
xi−1 = π[fi, yi] to zero. At the time it is asked, all the other entries in the chain
are already fixed. That query itself must be chained to zero via a chain of length
j, for some 1 ≤ j ≤ i − 1, so let us denote it by xj−1 = π[fj , yj ]. The query
number j+1 in the chain, which we denote by xj = π[fj+1, yj+1], must be linked
to query number j, i.e., it must hold that fj(xj) = yj . Because query number
j − 1 must be chained to zero, again by (strong) induction on i it must be a
backward query, so it would cause a collision.

This completes the proof.
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Remark 5. The Chain-to-Zero Lemma can be extended in the following way.
Instead of functions f : {0, 1}k → {0, 1}k we allow functions f : {0, 1}n →
{0, 1}n, for any n ≥ k, choose x and y in the game’s pseudocode for answering
A’s queries of length n defined in the query, and define x = π[f, y] to be chained
to zero if x = 0kzn−k for any z ∈ {0, 1}n−k, where n is the input length of f .
The statement of the lemma remains unchanged.

6 Proofs for the Basic Schemes

Here we give security proofs of our basic schemes, using the Chain-to-Zero
Lemma. To simplify the proofs, we assume that no query of forger F to the
ideal cipher is asked twice (even in reverse direction) and that all queries needed
in a signing query and for verifying the final forgery are already asked.

6.1 Proof of Theorem1

We give a simpler proof that loses a factor qπ in the reduction rather than qS ;
the improved reduction can be obtained via application of Coron’s technique
using biased coin flipping [9].

Claw finder. Claw-finding algorithm C is given in Fig. 3.

Analysis. Let’s consider executions of the general SAS-unforgeability experi-
ment with F and of the claw-finding experiment with C over a common set of
random coin sequences, where the same coins are used for choices common across
both experiments. Using the terminology of Sect. 5, in the execution of C in its
claw-finding experiment let BADπ be the event that any forward query is chained
to zero and ABORT be the event that C aborts. Let FORGE be the event that
F produces a valid forgery in its general SAS-unforgeability experiment. Then
we have

Advcf
F,C(k) ≥ Pr

[
FORGE ∧ ABORT ∧ BADπ

]

= Pr
[
FORGE | ABORT ∧ BADπ

] · Pr
[
ABORT | BADπ

] ·
Pr

[
BADπ

]
.

The first inequality above is due to the fact that on coin sequences where
C does not abort, the execution of F in its experiment and when run by C is
identical. Hence, on such coin sequences F also forges in its execution by C.

Now by the Chain-to-Zero Lemma (Lemma 4), we have

Pr
[
BADπ

] ≥ 1 − q2π/2k.

Next we claim that
Pr

[
ABORT | BADπ

] ≥ 1/qπ.

To see this, note that there are two places C could abort: answering a signing
query, or after receiving the final forgery. In answering a signing query, we know
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Fig. 3. Claw-finder C for the proof of Theorem 1.

that the aggregate-so-far must verify (otherwise C returns ⊥), so π-table entry
xi−1 = π[f1‖m1‖ . . . ‖f∗‖mi, yi] is chained to zero, and since we are conditioning
on BADπ it must be a backward query. Similarly, upon receiving the F ’s final out-
put, if it is a valid forgery then π-table entry x∗

i∗−1 = π[f∗
1 ‖m∗

1‖ . . . ‖f∗‖m∗
i∗ , y∗

i∗ ]
must also be a backward query. So if C chooses ctr∗ to be such that x∗

i∗−1 =
π[f∗

1 ‖m∗
1‖ . . . ‖f∗‖m∗

i∗ , y∗
i∗ ] was defined on the ctr∗-th query, then C does not

abort. This happens with probability at least 1/qπ since ctr∗ is random and
independent.
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To complete the proof, we claim that

Pr
[
FORGE | ABORT ∧ BADπ

] ≥ Advsas-ufcma
SAS1[F ],F (k) − q2π/2k.

To see this, first note that ABORT is independent of FORGE because the random
choices made by C in determining whether to abort in its claw-finding experiment
do not affect whether F forges in its SAS-unforgeability experiment. Thus

Pr
[
FORGE | ABORT ∧ BADπ

]
= Pr

[
FORGE | BADπ

]
.

Now

Pr
[
FORGE | BADπ

]
=

Pr [FORGE ] − Pr [ FORGE | BADπ ] · Pr [BADπ ]
Pr

[
BADπ

]

≥ Pr [FORGE ] − Pr [BADπ ]
≥ Pr [FORGE ] − q2π/2k

= Advsas-ufcma
SAS1[F ],F (k) − q2π/2k.

Combining the above, we have

Advcf
F,C(k) ≥

(
Advsas-ufcma

SAS1[F ],F (k) − q2π/2k
)

· (
1/qπ − qπ/2k

)

and rearranging yields the theorem.

6.2 Proof of Theorem2

Claw finder. Claw-finding algorithm C is given in Fig. 4.

Analysis. Again, let’s consider executions of the general SAS-unforgeability
experiment with F and of the claw-finding experiment with C over a common
set of random coin sequences with the same coins used for common choices
across both experiments. Using the terminology of Sect. 5, in the execution of
C in its claw-finding experiment let BADπ be the event that any forward query
gets chained to zero. Also in the execution of C in its experiment, let BADr be
the event that π-table entry π[f‖m‖r, y] defined when C answers signing query
of F was previously defined. Let FORGE be the event that F produces a valid
forgery in its experiment. We claim that

Advcf
F,C(k) ≥ Pr

[
FORGE ∧ BADr ∧ BADπ

]

= Pr
[
FORGE | BADr ∧ BADπ

] · Pr
[
BADr | BADπ

] · Pr
[
BADπ

]

≥ Pr
[
FORGE | BADr ∧ BADπ

] · Pr
[
BADr | BADπ

] ·
(
1 − q2π/2k

)

Above, the first inequality is because on a coin sequences on which F forges
in its experiment and on which no π-table entry defined when C answers a
signing query in its experiment was previously defined, the executions of both
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Fig. 4. Claw-finder C for the proof of Theorem 2.

experiments are identical. Hence, on such coin sequences F also forges in its
execution by C. Moreover, since the final output of F is a valid forgery, we know
that π-table entry x∗

i∗−1 = π[f∗‖m∗
i∗‖r∗

i∗ , yi∗ ] is chained to zero. Since we are
conditioning on BADπ, the query on which the above π-table entry is defined
must be a backward query, and since C populates the g∗-table on backwards
queries, on such executions it can successfully find a claw. Finally, the last line
is by the Chain-to-Zero Lemma.

Now we claim Pr
[
BADr | BADπ

] ≤ q2S/2ρ. This is because on each signing
query r is chosen independently at random, in other words BADr and BADπ are
independent, and the probability that x = π[(f,m, r), y] is already defined on
a given signing query is at most qS/2ρ. Summing over all signing queries yields
the claim.
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Finally, we compute

Pr
[
FORGE | BADr ∧ BADπ

]
=

Pr [FORGE ] − Pr [ FORGE | BADr ∧ BADπ ] · Pr [BADr ∧ BADπ ]
Pr

[
BADr ∧ BADπ

]

≥ Pr [FORGE ] − Pr [BADr ∧ BADπ ]
≥ Pr [FORGE ] − Pr [BADπ ]
= Advsas-ufcma

SAS1[F ],F (k) − q2π/2k.

where the last line uses the Chain-to-Zero Lemma. Combining terms yields the
theorem.

6.3 Proof of Theorem3

Claw finder. Claw-finding algorithm C is given in Fig. 5.

Analysis. Again, let’s consider executions of the history-free SAS-unforgeability
experiment with F and of the adaptive claw-finding experiment with C over a
common set of random coin sequences, where the same coins are used choices
common across both experiments. And, in the execution of C, let BADπ be
the event that any forward query is chained to zero. Let ABORT be the event
that C aborts. Let FORGE be the event that F produces a valid forgery in its
experiment. Then we have

Advacf
F,C(k) ≥ Pr

[
FORGE ∧ ABORT ∧ BADπ

]

= Pr
[
FORGE | ABORT ∧ BADπ

] · Pr
[
ABORT | BADπ

] ·
Pr

[
BADπ

]
.

The first inequality above is due to the fact that on coin sequences where C does
not abort and no forward query made by F gets chained to zero, the execution
of F in its experiment and when run by C is identical. Hence, on such coin
sequences F also forges in its execution by C.

Now by the Chain-to-Zero Lemma (Lemma 4), we have

Pr
[
BADπ

] ≥ 1 − q2π/2k.

Next we claim that

Pr
[
ABORT | BADπ

] ≥ 1/qH · (1 − qH/2τ ).

To see this, note that there are three places C could abort: answering a hash
query, answering a signing query, or after receiving the final forgery. Note that
on each hash query where the “Else” is executed, we t = t∗ with probability
1/2τ since t and t∗ are independent and random. Upon receiving the F ’s final
output, if it is a valid forgery then π-table entry x∗

i∗−1 = π[f∗‖m∗
i∗ , y∗

i∗ ] must
be chained to zero and hence be a backward query. So if C chooses ctr∗ to be
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Fig. 5. Adaptive Claw-finder C for the proof of Theorem 3.

such that x∗
i∗−1 = π[f∗‖m∗

i∗ , y∗
i∗ ] was defined on the ctr∗-th query, then C does

not abort. This happens with probability at least 1/qH since ctr∗ is random and
independent.

To complete the proof, we claim that

Pr
[
FORGE | ABORT ∧ BADπ

] ≥ Advsas-ufcma
SAS1[F ],F (k) − q2π/2k.
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To see this, first note that ABORT is independent of FORGE because the random
choices made by C in determining whether to abort in its claw-finding experiment
do not affect whether F forges in its SAS-unforgeability experiment. Thus

Pr
[
FORGE | ABORT ∧ BADπ

]
= Pr

[
FORGE | BADπ

]
.

Now

Pr
[
FORGE | BADπ

]
=

Pr [FORGE ] − Pr [ FORGE | BADπ ] · Pr [BADπ ]
Pr

[
BADπ

]

≥ Pr [FORGE ] − Pr [BADπ ]
≥ Pr [FORGE ] − q2π/2k

= Advsas-ufcma
SAS1[F ],F (k) − q2π/2k

as claimed. Combining the above, we have

Advcf
F,C(k) ≥

(
Advsas-ufcma

SAS1[F ],F (k) − q2π/2k
)

· (
1/qH − q2π/2k

)

and rearranging yields the theorem.

7 Extensions

We extend our basic schemes in a few ways. First, we add message recovery to
them, so that we save on bandwidth. Second, we handle non-binary domains, as
is needed for RSA-based instantiations.

7.1 Adding Message Recovery

To add message recovery to any of our schemes, the first signer can, instead of
using the all-zeros string (of k-bits in length) as the first “aggregate-so-far,” use
n zero bits followed n − k bits of the message for n equal to security parameter
(here we abuse notation and use n as the security parameter, say 128, while k
is the length of the modulus, say 2048). The security proofs are identical except
that they use the extension of the Chain-to-Zero Lemma discussed in Remark 5.
This gives us only security parameters number of bits of bandwidth overhead
from the signature for sufficiently long messages. One issue is that the public
keys of the signers still contribute to bandwidth overhead. It would be interesting
for future work to treat message recovery for sequential aggregate signatures in
the identity-based setting, which avoids public keys, as considered by [5].

7.2 Handling Non-binary Domains

Our RSA-based instantiations in AppendixA have domain not {0, 1}k but ZN for
per-signer N . The problem is that we may have a signer with modulus Ni and a
subsequent signer with modulus Ni+1 such that Ni+1 < Ni. To handle this, there



A Unified Framework for Trapdoor-Permutation-Based SAS 55

are two options. The first option is to append the fractional bit to the aggregate-
so-far, so that the aggregate-so-far may grow by a bit per signer. This is quite
modest growth, and in many applications such as S-BGP the number of signers
is typically small. For highly bandwidth constrained applications, another option
is to first convert the instantiation into one that does have a binary domain by
using the technique of Hayashi et al. [19]. The idea is to exponentiate twice,
reflecting the intermediate result about N . The downside is that this increases
the cost of verification and signing by a factor of two.

Acknowledgements. We thank the anonymous reviewers of PKC 2018 for their help-
ful feedback, as well as Dana Dachman-Soled and Sharon Goldberg for helpful discus-
sions. Adam O’Neill is supported in part by NSF grant 1650419. Leonid Reyzin is
supported in part by NSF grant 1422965.

A RSA-Based Instantiations

We first define a general parameter generation algorithm used in our construc-
tions. An RSA [26] parameter generation algorithm is an algorithm RSAGen that
on input 1k outputs (N, p, q, e, d) where N = pq, p and q are m/2-bit primes for
some m = m(k), and ed = 1 mod φ(N).

RSA trapdoor permutation. An RSA trapdoor permutation generator Frsa

on input 1k returns frsa =(N, e), f−1
rsa =(N, d) where (N, e, d, p, q)←$RSAGen(1k).

On input x ∈ Z
∗
N algorithm frsa outputs xe mod N and on input y ∈ Z

∗
N

algorithm f−1
rsa outputs yd mod N . Dodis and Reyzin [16] show that the RSA

trapdoor permutation generator is claw-free under the standard assumption it
is one-way.

RSA tag-based trapdoor permutation. An RSA tag-based trapdoor per-
mutation generator from Kiltz et al. [20] works as follows. Let H : {0, 1}τ →
{0, 1}η for some η ∈ N be a hash function. Define the tag-based trapdoor per-
mutation generator Frsa-tag with tag-space {0, 1}τ that on input 1k outputs

frsa-tag = N ; f−1
rsa-tag = (p, q)

for where (N, p, q, e, d)←$RSAGen. On inputs t ∈ {0, 1}τ , x ∈ Z
∗
N , algorithm

frsa-tag outputs xH(t) mod N . On inputs t ∈ {0, 1}τ , y ∈ Z
∗
N , algorithm f−1

rsa-tag

computes d ← H(t)−1 mod φ(N) and outputs yd mod N . Kiltz et al. [20] show
that this tag-based trapdoor permutation generator is adaptive one-way assum-
ing the instance-independent RSA assumption [8,20,25] holds and H is division-
intractable [18]. This is plausible if η = m (the modulus length) [11]. The same
proof strategy of Dodis and Reyzin [16] works in the adaptive case and we thus
obtain that this tag-based trapdoor permutation generator is adaptive claw-free
under the same assumptions.
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Abstract. Lattice-based group signature is an active research topic in
recent years. Since the pioneering work by Gordon, Katz and Vaikun-
tanathan (Asiacrypt 2010), ten other schemes have been proposed, pro-
viding various improvements in terms of security, efficiency and function-
ality. However, in all known constructions, one has to fix the number N
of group users in the setup stage, and as a consequence, the signature
sizes are dependent on N .

In this work, we introduce the first constant-size group signature from
lattices, which means that the size of signatures produced by the scheme
is independent of N and only depends on the security parameter λ. More
precisely, in our scheme, the sizes of signatures, public key and users’
secret keys are all of order ˜O(λ). The scheme supports dynamic enroll-
ment of users and is proven secure in the random oracle model under
the Ring Short Integer Solution (RSIS) and Ring Learning With Errors
(RLWE) assumptions. At the heart of our design is a zero-knowledge
argument of knowledge of a valid message-signature pair for the Ducas-
Micciancio signature scheme (Crypto 2014), that may be of independent
interest.

Keywords: Lattice-based cryptography
Constant-size group signatures · Zero-knowledge proofs
Ducas-Micciancio signature

1 Introduction

Group signature, introduced by Chaum and van Heyst [18], is a fundamental
anonymity primitive which allows members of a group to sign messages on behalf
of the whole group. Yet, users are kept accountable for the signatures they issue
since a tracing authority can identify them should the need arise. These two
appealing features allow group signatures to find applications in various real-
life scenarios, such as digital right management, anonymous online communica-
tions, e-commerce systems, and much more. On the theoretical front, designing
secure and efficient group signature schemes is interesting and challenging, since
those advanced constructions usually require a sophisticated combination of care-
fully chosen cryptographic ingredients: digital signatures, encryption schemes,
c© International Association for Cryptologic Research 2018
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and zero-knowledge protocols. Numerous group signature schemes have been
proposed in the last quarter-century, some of which produce very short signa-
tures [2,8]. In the setting of bilinear groups, many schemes [1,12,28,40] achieved
constant-size signatures, which means that the group signatures only contain
O(1) number of group ts. In other words, the signature sizes in those schemes
only depend on the security parameter and are independent of the number N of
group users. In the lattice setting, however, none of the existing constructions
achieved this feature.

Lattice-based group signatures. Lattice-based cryptography has been an
exciting research area since the seminal works of Regev [55] and Gentry et al. [24].
Lattices not only allow to build powerful primitives (e.g., [23,25]) that have no
feasible instantiations in conventional number-theoretic cryptography, but they
also provide several advantages over the latter, such as conjectured resistance
against quantum adversaries and faster arithmetic operations. Along with other
primitives, lattice-based group signature has received noticeable attention in
recent years. The first scheme was introduced by Gordon et al. [26] whose solu-
tion produced signature size linear in the number of group users N . Camenisch
et al. [16] then extended [26] to achieve anonymity in the strongest sense. Later,
Laguillaumie et al. [32] put forward the first scheme with the signature size log-
arithmic in N , at the cost of relatively large parameters. Simpler and more effi-
cient solutions with O(log N) signature size were subsequently given by Nguyen
et al. [52] and Ling et al. [42]. Libert et al. [37] obtained substantial efficiency
improvements via a construction based on Merkle trees which eliminates the need
for GPV trapdoors [24]. More recently, a scheme supporting message-dependent
opening (MDO) feature [56] was proposed in [39]. All the schemes mentioned
above are designed for static groups, and all have signature sizes dependent
on N .

Three lattice-based group signatures that have certain dynamic features were
proposed by Langlois et al. [33], Libert et al. [35], and Ling et al. [43]. The first
one is a scheme with verifier-local revocation (VLR) [9], which means that only
the verifiers need to download the up-to-date group information. The second
one addresses the orthogonal problem of dynamic user enrollments, which was
formalized by Kiayias and Yung [31] and by Bellare et al. [5]. The third one
is a fully dynamic scheme that supports both features, following Bootle et al.’s
model [10]. Again, all these three schemes have signature size O(log N).

In all existing works on lattice-based group signatures, for various reasons,
one has to fix the number N = poly(λ), where λ is the security parameter,
in the setup stage. For the schemes from [16,26,32,33,35,39,42,52] - which are
based on full-fledged lattice-based ordinary signatures [11,17,24], this is due to
the fact that their security reductions have to guess a target user with prob-
ability 1/N , and cannot go through unless N is known in advance. For the
schemes from [37,43] - which associate group users with leaves in lattice-based
Merkle hash trees - this is because the size N of the trees has to be deter-
mined so that the setup algorithm succeeds. As a consequence, the parameters
of those schemes, including the signature sizes, are unavoidably dependent on N .
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This state-of-affairs is somewhat unsatisfactory, considering that the constant-
size feature has been achieved in the pairing setting. This inspires us to investi-
gate the problem of designing constant-size lattice-based group signatures.

Our Results and Techniques. We introduce the first constant-size group
signature scheme from lattices. Here, by “constant-size”, we mean that the sig-
nature size is independent of the number of group users N , as in the context
of pairing-based group signatures [12,28]. The crucial difference between our
scheme and previous works on lattice-based group signatures is that we do not
have to fix N in the setup phase. As a result, the execution of the scheme is
totally independent of N . The sizes of the public key, users’ signing keys and
signatures are of order ˜O(λ). A comparison between our schemes and previous
works, in terms of asymptotic efficiency and functionality, is given in Table 1.

The scheme operates in Bellare et al.’s model for partially dynamic groups [5],
and is proven secure under the hardness of the Ring Short Integer Solution (RSIS)
and the Ring Learning With Errors (RLWE) problems. As for all known lattice-
based group signatures, our security analysis is in the random oracle model.

Table 1. Comparison of known lattice-based group signatures, in terms of asymptotic
efficiency and functionality. The comparison is done based on two governing parame-
ters: security parameter λ and the maximum expected number of group users N = 2�.
Among the listed schemes, the LNW-II [42] scheme and ours are the only ideal-lattice-
based constructions, while other schemes rely on various SIS and LWE assumptions in
the general-lattice setting.

Scheme Sig. size Group PK size Signer’s SK size Functionality

GKV [26] ˜O(λ2 · N) ˜O(λ2 · N) ˜O(λ2) static

CNR [16] ˜O(λ2 · N) ˜O(λ2) ˜O(λ2) static

LLLS [32] ˜O(λ · �) O(λ2 · �) ˜O(λ2) static

LLNW [33] ˜O(λ · �) ˜O(λ2 · �) ˜O(λ · �) VLR

NZZ [52] ˜O(λ + �2) ˜O(λ2 · �2) ˜O(λ2) static

LNW-I [42] ˜O(λ · �) ˜O(λ2 · �) ˜O(λ) static

LNW-II [42] ˜O(λ · �) ˜O(λ · �) ˜O(λ) + � static

LLNW [37] ˜O(λ · �) ˜O(λ2 + λ · �) ˜O(λ · �) static

LLM+ [35] ˜O(λ · �) ˜O(λ2 · �) ˜O(λ) partially dynamic

LMN [39] ˜O(λ · �) ˜O(λ2 · �) ˜O(λ) MDO

LNWX [43] ˜O(λ · �) ˜O(λ2 + λ · �) ˜O(λ) + � fully dynamic

Ours ˜O(λ) ˜O(λ) ˜O(λ) partially dynamic

Our scheme relies on the RSIS-based signature scheme by Ducas and
Micciancio [20], which exploits the “confined guessing” technique [7] in the ring
setting to achieve short public key. We employ the stateful and adaptively secure
version of the scheme, described in [21], which suffices for building group signa-
tures and which allows to work with even shorter key.
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The scheme follows the usual sign-then-encrypt-then-prove approach for con-
structing group signatures. Each user generates a secret-public key pair (x, p) and
becomes a certified group member once receiving a Ducas-Micciancio signature
on his public key p. When generating group signatures, the user first encrypts
his public key p to ciphertext c via a CCA-secure encryption scheme obtained
by applying the Naor-Yung transformation [51] to a variant of the RLWE-based
scheme by Lyubashevsky et al. [47]. Then he proves in zero-knowledge that:
(i) he has a valid secret key x corresponding to p; (ii) he possesses a Ducas-
Micciancio signature on p; and (iii) c is a correct ciphertext of p. The protocol
is then transformed into a signature via the Fiat-Shamir heuristic [22].

To instantiate the above approach, we design a zero-knowledge argument of
knowledge of a valid message-signature pair for the Ducas-Micciancio signature,
which is based on Stern’s framework [57]. We observe that a similar protocol for
the Boyen signature [11] was proposed by Ling et al. [42], but their method is sub-
optimal in terms of efficiency. We thus propose a refined technique that allows to
achieve better communication cost, and hence, shorter signature size. We believe
that our protocol is of independent interest. Indeed, apart from group signatures,
zero-knowledge protocols for valid message-signature pairs are essential ingredi-
ents for designing various privacy-enhancing constructions, such as anonymous
credentials [15], compact e-cash [14,38], policy-based signatures [3,19], and much
more.

On the practical front, as all known lattice-based group signatures, our
scheme is not truly practical. Even though the scheme produces signatures of
constant size ˜O(λ), due to a large poly-logarithmic factor contained in the ˜O
notation, the signature size is too big to be really useful in practice. We, however,
hope that our result will inspire more efficient constructions in the near future.

2 Background

Notations. The set {1, . . . , n} is denoted by [n]. If S is a finite set, then x
$←− S

means that x is chosen uniformly at random from S. When concatenating column
vectors x ∈ R

m and y ∈ R
k, for simplicity, we use the notation (x‖y) ∈ R

m+k

instead of (x�‖y�)�.

2.1 Rings, RSIS and RLWE

Let q ≥ 3 be a positive integer and let Zq = [− q−1
2 , q−1

2 ]. Consider rings of
the form R = Z[X]/(Φ2n(X)) and Rq = (R/qR), where n is a power of 2 and
Φ2n(X) = Xn + 1 is the cyclotomic polynomial of degree n.

We will use the coefficient embedding τ : Rq → Z
n
q that maps ring element

v = v0+v1 ·X+. . .+vn−1 ·XN−1 ∈ Rq to vector τ(v) = (v0, v1, . . . , vn−1)� ∈ Z
n
q .

We will also use the ring homomorphism rot : Rq → Z
n×n
q that maps a ∈ Rq to

matrix rot(a) =
[

τ(a) | τ(a · X) | . . . | τ(a · Xn−1)
]

∈ Z
n×n
q (see, e.g., [49,58]).

These functions allow us to interpret the product y = a · v over Rq as the
matrix-vector product τ(y) = rot(a) · τ(v) mod q.
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When working with vectors over Rq, we often abuse the notations rot and τ .
If A = [a1 | . . . | am] ∈ R1×m

q , then we denote by rot(A) the matrix

rot(A) =
[

rot(a1) | . . . | rot(am)
]

∈ Z
n×mn
q .

If v = (v1, . . . , vm)� ∈ Rm
q , then we let τ(v) = (τ(v1)‖ . . . ‖τ(vm)) ∈ Z

mn
q . Note

that, if y = A · v over Rq, then we have τ(y) = rot(A) · τ(v) mod q.
For a = a0 + a1 · X + . . . + an−1 · XN−1 ∈ R, we define ‖a‖∞ = maxi(|ai|).

Similarly, for vector b = (b1, . . . , bm)� ∈ Rm, we define ‖b‖∞ = maxj(‖bj‖∞).
We now recall the average-case problems RSIS and RLWE associated with the

rings R,Rq, as well as their hardness results.

Definition 1 [44,45,54]. The RSISn,m,q,β problem is as follows. Given a uni-
formly random A = [a1 | . . . | am] ∈ R1×m

q , find a non-zero vector x =
(x1, . . . , xm)� ∈ Rm such that ‖x‖∞ ≤ β and A ·x = a1 ·x1 + . . .+am ·xm = 0.

For m > log q
log(2β) , γ = 16βmn log2 n, and q ≥ γ

√
n

4 log n , the RSISn,m,q,β problem
is at least as hard as SVP∞

γ in any ideal in the ring R (see, e.g., [44]).

Definition 2 [46]. Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution

on R. For s ∈ Rq, let As,χ be the distribution obtained by sampling a
$←− Rq and

e ←↩ χ, and outputting the pair (a, a · s + e) ∈ Rq × Rq. The RLWEn,m,q,χ prob-
lem (the Hermite-Normal-Form version) asks to distinguish m samples chosen
according to As,χ (for s ←↩ χ) and m samples chosen according to the uniform
distribution over Rq × Rq.

Let q = poly(n) be a prime power. Let B = ˜O(n5/4) be an integer and χ be a
B-bounded distribution on R, i.e., it outputs samples e ∈ R such that ‖e‖∞ ≤ B
with overwhelming probability in n. Then, for γ = n2(q/B)(nm/ log(nm))1/4,
the RLWEn,m,q,χ problem is at least as hard as SVP∞

γ in any ideal in the ring R,
via a polynomial-time quantum reduction (see, e.g., [34,46,48,53]).

2.2 Decompositions

We next recall the integer decomposition technique from [41]. For any B ∈ Z+,
define δB := �log2 B	 + 1 = 
log2(B + 1)� and the sequence B1, . . . , BδB

, where
Bj = �B+2j−1

2j 	, for each j ∈ [1, δB ]. As observed in [41], it satisfies
∑δB

j=1 Bj = B

and any integer v ∈ [0, B] can be decomposed to idecB(v) = (v(1), . . . , v(δB))� ∈
{0, 1}δB such that

∑δB

j=1 Bj ·v(j) = v. This decomposition procedure is described
in a deterministic manner as follows:

1. v′ := v
2. For j = 1 to δB do:

(i) If v′ ≥ Bj then v(j) := 1, else v(j) := 0;
(ii) v′ := v′ − Bj · v(j).

3. Output idecB(v) = (v(1), . . . , v(δB))�.
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In this work, we will employ the above decomposition procedure when work-
ing with polynomials in the ring Rq. Specifically, for B ∈ [1, q−1

2 ], we define the
injective function rdecB that maps a ∈ Rq such that ‖a‖∞ ≤ B to a ∈ RδB such
that ‖a‖∞ ≤ 1, which works as follows.

1. Let τ(a) = (a0, . . . , an−1)�. For each i, let σ(ai) = 0 if ai = 0; σ(ai) = −1 if
ai < 0; and σ(ai) = 1 if ai > 0.

2. ∀i, compute wi = σ(ai) · idecB(|ai|) = (wi,1, . . . , wi,δB
)� ∈ {−1, 0, 1}δB .

3. Form the vector w = (w0‖ . . . ‖wn−1) ∈ {−1, 0, 1}nδB , and let a ∈ RδB be
such that τ(a) = w.

4. Output rdecB(a) = a.

When working with vectors of ring elements, e.g., v = (v1, . . . , vm)� such that
‖v‖∞ ≤ B, then we let rdecB(v) =

(

rdecB(v1)‖ . . . ‖rdecB(vm)
)

∈ RmδB .
Now, ∀m,B ∈ Z+, we define matrices HB ∈ Z

n×nδB and Hm,B ∈ Z
nm×nmδB

as

HB =

⎡

⎢

⎣

B1 . . . BδB

. . .
B1 . . . BδB

⎤

⎥

⎦
, and Hm,B =

⎡

⎢

⎣

HB

. . .
HB

⎤

⎥

⎦
.

Then we have

τ(a) = HB · τ(rdecB(a)) mod q and τ(v) = Hm,B · τ(rdecB(v)).

For simplicity of presentation, when B = q−1
2 , we will use the notation rdec

instead of rdec q−1
2

, and H instead of H q−1
2

.

2.3 A Variant of the Ducas-Micciancio Signature Scheme

We recall a variant of the Ducas-Micciancio signature scheme [20,21], which is
to used to design a (partially) dynamic group signature scheme as in the model
of Bellare et al. [5]. Specifically, we use it to enroll new users.

In their papers, Ducas and Micciancio proposed two versions of signature
schemes from ideal lattices: non-stateful and stateful. Note that in a group sig-
nature scheme, there are at most polynomial number of users. Therefore, it is
reasonable to assume there are at most polynomial number of signature queries
to the Ducas-Micciancio signature scheme. Under this assumption, the stateful
version not only reduces the security loss of the proof, but also allows better
parameters ([21, Sect. 4.1]), compared with the non-stateful version. We also
note that in a group signature scheme, the signature scheme used to enroll users
should be adaptively secure. To achieve adaptive security, we thus embed the
chameleon hash function [21, Appendix B.3] into the above non-adaptively secure
version.

Now we summarize the stateful and adaptively secure version of Ducas-
Micciancio signature scheme below. Following [20,21], throughout this work,
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let c > 1 be some real constant and α0 ≥ 1/(c − 1). Let d ≥ logc(ω(log n))
be an integer and {c0, c1 · · · , cd} be a strictly increasing integer sequence with
c0 = 0 and ci = �α0c

i	 for i ∈ [d]. Define Ti = {0, 1}ci for i ∈ [d]. For a tag
t = (t0, t1 . . . , tcd−1)� ∈ Td, let t[i] = (tci−1 , . . . , tci−1)�. Then we can check that
t = (t[1]‖t[2]‖ . . . ‖t[d]). Identify each tag t ∈ Td as t(X) =

∑cd−1
j=0 tjX

j ∈ R and
t[i] as t[i](X) =

∑ci−1
j=ci−1

tjX
j ∈ R.

This variant works with the following parameters. Given the security param-
eter λ, the key generation algorithm works as follows.

– Choose parameter n = O(λ) being a power of 2, and modulus q = 3k for
some positive integer k. Let R = Z[X]/(Xn + 1) and Rq = R/qR.

– Also, let  = �log q−1
2 	 + 1, m ≥ 2
log q� + 2, and m = m + k.

– Let integer d and sequence c0, . . . , cd as described above. Let β = ˜O(n) be a
integer.

– Let S ∈ Z be a state initialized to 0.

The verification key consists of the following:

A,F0 ∈ R1×m
q ;A[0], . . . ,A[d] ∈ R1×k

q ;F,F1 ∈ R1×�
q ;u ∈ Rq

while the signing key is a Micciancio-Peikert [50] trapdoor matrix R ∈ Rm×k
q .

To sign a message p ∈ Rq, let p = rdec(p) ∈ R� whose coefficients are in the
set {−1, 0, 1}. The signer then proceeds as follows.

– Set the tag t = (t0, t1 . . . , tcd−1)� ∈ Td, where S =
∑cd−1

j=0 2j ·tj , and compute

At = [A|A[0] +
∑d

i=1 t[i]A[i]] ∈ R
1×(m+k)
q . Update S to S + 1.

– Sample r ∈ Rm such that ‖r‖∞ ≤ β.
– Let y = F0 · r + F1 · p ∈ Rq and up = F · rdec(y) + u ∈ Rq.
– Using the trapdoor matrix R, generate a ring vector v ∈ Rm+k such that

At · v = up and ‖v‖∞ ≤ β.
– Output the tuple (t, r,v) as a signature for p ∈ Rq.

To verify a signature tuple (t, r,v) on message p ∈ Rq, the verifier computes the
matrix At as above and checks the following conditions hold or not. If yes, he
outputs 1. Otherwise, he outputs 0.

{

At · v = F · rdec(F0 · r + F1 · rdec(p)) + u,

‖r‖∞ ≤ β, ‖v‖∞ ≤ β.

Remark 1. We remark that p = rdec(p) ∈ R� and rdec(y) ∈ R� are ring vectors
with coefficients in the set {−1, 0, 1} while Ducas-Micciancio signature scheme
handles ring vectors with binary coefficients. However, this does not affect the
security of the Ducas-Micciancio signature scheme.

Lemma 1 [20,21]. If we assume there are at most polynomial number of signa-
ture queries and the RSISn,m,q, ˜O(n2) problem is hard, then the above variant of
Ducas-Micciancio signature scheme is existentially unforgeable against adaptive
chosen message attacks.
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2.4 Zero-Knowledge Argument Systems and Stern-Like Protocols

We will work with statistical zero-knowledge argument systems, namely, inter-
active protocols where the zero-knowledge property holds against any cheat-
ing verifier, while the soundness property only holds against computationally
bounded cheating provers. More formally, let the set of statements-witnesses
R = {(y, w)} ∈ {0, 1}∗ × {0, 1}∗ be an NP relation. A two-party game 〈P,V〉 is
called an interactive argument system for the relation R with soundness error e
if the following conditions hold:

– Completeness. If (y, w) ∈ R then Pr
[

〈P(y, w),V(y)〉 = 1
]

= 1.

– Soundness. If (y, w) �∈ R, then ∀ PPT ̂P: Pr[〈 ̂P(y, w),V(y)〉 = 1] ≤ e.

An argument system is called statistical zero-knowledge if there exists a PPT
simulator S(y) having oracle access to any ̂V(y) and producing a simulated
transcript that is statistically close to the one of the real interaction between
P(y, w) and ̂V(y). A related notion is argument of knowledge, which requires
the witness-extended emulation property. For protocols consisting of 3 moves
(i.e., commitment-challenge-response), witness-extended emulation is implied
by special soundness [27], where the latter assumes that there exists a PPT
extractor which takes as input a set of valid transcripts with respect to all pos-
sible values of the “challenge” to the same “commitment”, and outputs w′ such
that (y, w′) ∈ R.

Stern-like protocols. The statistical zero-knowledge arguments of knowledge
presented in this work are Stern-like [57] protocols. In particular, they are Σ-
protocols in the generalized sense defined in [6,29] (where 3 valid transcripts are
needed for extraction, instead of just 2). The basic protocol consists of 3 moves:
commitment, challenge, response. If a statistically hiding and computationally
binding string commitment scheme, such as the KTX scheme [30], is employed
in the first move, then one obtains a statistical zero-knowledge argument of
knowledge (ZKAoK) with perfect completeness, constant soundness error 2/3.
In many applications, the protocol is repeated κ = ω(log λ) times to make the
soundness error negligibly small in λ.

An abstraction of Stern’s protocol. We recall an abstraction of Stern’s
protocol, proposed in [35]. Let K,L, q be positive integers, where L ≥ K and
q ≥ 2, and let VALID be a subset of {−1, 0, 1}L. Suppose that S is a finite set
such that one can associate every φ ∈ S with a permutation Γφ of L elements,
satisfying the following conditions:

{

w ∈ VALID ⇐⇒ Γφ(w) ∈ VALID,

If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.
(1)

We aim to construct a statistical ZKAoK for the following abstract relation:

Rabstract =
{

(M,u),w ∈ Z
K×L
q × Z

K
q × VALID : M · w = u mod q.

}
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The conditions in (1) play a crucial role in proving in ZK that w ∈ VALID: To

do so, the prover samples φ
$←− S and let the verifier check that Γφ(w) ∈ VALID,

while the latter cannot learn any additional information about w thanks to the
randomness of φ. Furthermore, to prove in ZK that the linear equation holds,
the prover samples a masking vector rw

$←− Z
L
q , and convinces the verifier instead

that M · (w + rw) = M · rw + u mod q.
The interaction between prover P and verifier V is described in Fig. 1. The

protocol employs a statistically hiding and computationally binding string com-
mitment scheme COM (e.g., the RSIS-based scheme from [30]).

Fig. 1. Stern-like ZKAoK for the relation Rabstract.

Theorem 1 [35]. Assume that COM is a statistically hiding and computation-
ally binding string commitment scheme. Then, the protocol in Fig. 1 is a statisti-
cal ZKAoK with perfect completeness, soundness error 2/3, and communication
cost O(L log q). In particular:

– There exists a polynomial-time simulator that, on input (M,u), outputs an
accepted transcript statistically close to that produced by the real prover.

– There exists a polynomial-time knowledge extractor that, on input a commit-
ment CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible values
of the challenge Ch, outputs w′ ∈ VALID such that M · w′ = u mod q.
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The proof of the Theorem 1, appeared in [35], employs standard simulation and
extraction techniques for Stern-like protocols (e.g., [30,36,41]). The details are
available in the full version.

Looking ahead, all the relations we consider in this work (Sects. 3.2 and 4.2),
will be reduced to instances of the above abstract protocol.

3 ZKAoK for the Ducas-Micciancio Signature Scheme

This section presents our statistical zero-knowledge argument of knowledge for
a valid message-signature pair for the Ducas-Micciancio signature scheme [20,
21]. In the process, we will need to prove knowledge of a witness vector of the
“mixing” form

(

z ‖ t0 · z ‖ . . . ‖ tcd−1 · z
)

, (2)

where z ∈ {−1, 0, 1}m and t = (t0, . . . , tcd−1)� ∈ {0, 1}cd for some positive
integers m and cd.

We note that, in their ZK protocol for the Boyen signature [11], Ling et al. [42]
also derived a vector of similar form. To handle such a vector in the Stern’s
framework [57], Ling et al. used a permutation in the symmetric group S3m to
hide the value of z and a permutation in the symmetric group S2cd

to hide the
value of t. As a consequence, the cost of communicating the permutations from
the prover to the verifier is 3m logm+2cd log cd bits. This is sub-optimal, because
the cost is much larger than the number of secret bits.

In Sect. 3.1, we put forward a refined permuting technique in which the total
cost for the permutations is exactly the total bit-size of z and t. We then employ
this technique as a building block for our ZK protocol in Sect. 3.2.

3.1 A Refined Permuting Technique

We first observe that the coefficients of the vector described in (2) are highly
correlated: most of them are products of ti and zj , where both ti and zj do
appear at other positions. Thus, to prove the well-formedness of such a vector,
we have to solve two sub-problems: (i) proving that a secret integer z is an
element of the set {−1, 0, 1}; (ii) proving that a secret integer y is the product
of secret integers t ∈ {0, 1} and z ∈ {−1, 0, 1}. Furthermore, these sub-protocols
must be compatible and extendable, so that we can additionally prove that the
same t and z satisfy other relations.

Technique for proving that z ∈ {−1, 0, 1}. For any integer a, let us denote by
[a]3 the integer a′ ∈ {−1, 0, 1} such that a′ = a mod 3. For integer z ∈ {−1, 0, 1},
we define the 3-dimensional vector enc3(z) as follows:

enc3(z) =
(

[z + 1]3, [z]3, [z − 1]3
)� ∈ {−1, 0, 1}3.

Namely, enc3(−1) = (0,−1, 1)�, enc3(0) = (1, 0,−1)� and enc3(1) = (−1, 1, 0)�.
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Now, for any integer e ∈ {−1, 0, 1}, define the permutation πe that transforms
vector v = (v(−1), v(0), v(1))� ∈ Z

3 into vector

πe(v) = (v([−e−1]3), v([−e]3), v([−e+1]3))�.

We then observe that, for any z, b ∈ {−1, 0, 1}, the following equivalence
holds.

v = enc3(z) ⇐⇒ πe(v) = enc3([z + e]3). (3)

In the framework of Stern’s protocol, the above technique in fact allows us
to prove knowledge of z ∈ {−1, 0, 1}, where z may satisfy other relations. To
do this, we first extend z to v = enc3(z). Then, to show that v is a well-

formed extension, we pick a uniformly random e
$←− {−1, 0, 1}, and send πe(v)

to the verifier. Thanks to the equivalence observed in (3), when seeing that
πe(v) = enc3([z + e]3), the verifier should be convinced that v = enc3(z), which
implies that z ∈ {−1, 0, 1}. Meanwhile, since e acts as a “one-time pad”, the value
of z is completely hidden from the verifier. Furthermore, to prove that z satisfies
other relations, we can use the same “one-time pad” e at other appearances of z.
An example of that is to prove that z is involved in a product t · z, which we
now present.

Technique for proving that y = t · z. For any b ∈ {0, 1}, we denote by b the
bit 1 − b. The addition operation modulo 2 is denoted by ⊕.

For any t ∈ {0, 1} and z ∈ {−1, 0, 1}, we construct the 6-dimensional integer
vector ext(t, z) ∈ {−1, 0, 1}6 as follows:

ext(t, z) =
(

t · [z + 1]3, t · [z + 1]3, t · [z]3, t · [z]3, t · [z − 1]3, t · [z − 1]3
)�

.

Now, for any b ∈ {0, 1} and e ∈ {−1, 0, 1}, we define the permutation ψb,e(·)
that transforms vector

v =
(

v(0,−1), v(1,−1), v(0,0), v(1,0), v(0,1), v(1,1)
)� ∈ Z

6

into vector

ψb,e(v) =
(

v(b,[−e−1]3), v(b,[−e−1]3), v(b,[−e]3), v(b,[−e]3), v(b,[−e+1]3), v(b,[−e+1]3)
)�

.

We then observe that the following equivalence holds for any t, b ∈ {0, 1} and
any z, e ∈ {−1, 0, 1}.

v = ext(t, z) ⇐⇒ ψb,e(v) = ext(t ⊕ b, [z + e]3). (4)

Example 1. Let t = 1 and z = −1. Then we have

v = ext(t, z) = (0, 0, 0,−1, 0, 1)� = (v(0,−1), v(1,−1), v(0,0), v(1,0), v(0,1), v(1,1))�.

Suppose that b = 0 and e = 1, then

ψb,e(v) = (v(0,1), v(1,1), v(0,−1), v(1,−1), v(0,0), v(1,0))� = (0, 1, 0, 0, 0,−1)�,

which is equal to ext(1, 0) = ext(1 ⊕ 0, [−1 + 1]3).
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In the framework of Stern’s protocol, the above technique will be used to
prove that y = t · z, as follows. We first extend y to v = ext(t, z). Then, to prove

that v is well-formed, we sample b
$←− {0, 1}, e

$←− {−1, 0, 1}, and demonstrate to
the verifier that ψb,e(v) = ext(t⊕b, [z+e]3). Thanks to the equivalence observed
in (4), the verifier should be convinced that v is well-formed, implying that the
original integer y does have the form t · z. Meanwhile, the random integers b, e
essentially act as “one-time pads” that perfectly hide the values of t and z,
respectively. Moreover, if we want to prove that the same t, z appear elsewhere,
we can use the same b, e at those places.

Next, we will describe the somewhat straightforward generalizations of the
above two core techniques, which enable us to prove knowledge of vector
z ∈ {−1, 0, 1}m as well as vector of the form (2). Based on the above discus-
sions, one can see that the target is to obtain equivalences similar to (3) and (4),
which are useful in Stern’s framework.

Proving that z ∈ {−1, 0, 1}m. For any vector a ∈ Z
m, we will also use the

notation [a]3 to denote the vector a′ ∈ {−1, 0, 1}m such that a′ = a mod 3.
For z = (z1, . . . , zm)� ∈ {−1, 0, 1}m, we define the following extension:

enc(z) =
(

enc3(z1)‖ . . . ‖enc3(zm)
)

∈ {−1, 0, 1}3m.

For any vector e = (e1, . . . , em)� ∈ {−1, 0, 1}m, we define the permutation Πe

that acts as follows. When applied to vector v = (v1‖ . . . ‖vm) ∈ Z
3m consisting

of m blocks of size 3, it transforms v into vector:

Πe(v) =
(

πe1(v1)‖ . . . ‖πem(vm)
)

.

It then follows from (3) that the following holds for any z, e ∈ {−1, 0, 1}m.

v = enc(z) ⇐⇒ Πe(v) = enc([z + e]3). (5)

Handling a “mixing” vector. We now tackle the “mixing” vector discussed
earlier, i.e.,

y =
(

z ‖t0 · z‖ . . . ‖tcd−1 · z
)

.

For any z = (z1, . . . , zm)� ∈ {−1, 0, 1}m and t = (t0, . . . , tcd−1)� ∈ {0, 1}cd ,
we define vector mix(t, z) ∈ {−1, 0, 1}3m+6mcd of the form:

(

enc(z)‖ext(t0, z1)‖ . . . ‖ext(t0, zm)‖ . . . ‖ext(tcd−1, z1)‖ . . . ‖ext(tcd−1, zm)
)

,

which is an extension of vector y. Next, for b = (b0, · · · , bcd−1)� ∈ {0, 1}cd

and e = (e1, . . . , em) ∈ {−1, 0, 1}m, we define the permutation Ψb,e that acts as
follows. When applied to vector

v =
(

v−1‖v0,1‖ . . . ‖v0,m‖ . . . ‖vcd−1,1‖ . . . ‖vcd−1,m

)

∈ Z
3m+6mcd ,
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where block v−1 has length 3m and each block vi,j has length 6, it transforms v
into vector

Ψb,e(v) =
(

Πe(v−1)‖ ψb0,e1(v0,1)‖ . . . ‖ψb0,em(v0,m)‖ . . . ‖
ψbcd−1,e1(vcd−1,1)‖ . . . ‖ψbcd−1,em(vcd−1,m)

)

.

Then, observe that the following desirable equivalence holds for all t,b ∈ {0, 1}cd

and z, e ∈ {−1, 0, 1}m.

v = mix(t, z) ⇐⇒ Ψb,e(v) = mix(t ⊕ b, [z + e]3). (6)

3.2 Zero-Knowledge Protocol for the Ducas-Micciancio Signature

We now present our statistical ZKAoK of a valid message-signature pair for the
Ducas-Micciancio signature scheme. Let n, q,m, k,m, , β, d, c0, . . . , cd as speci-
fied in Sect. 2.3. The protocol can be summarized as follows.

– The public input consists of

A,F0 ∈ R1×m
q ; A[0], . . . ,A[d] ∈ R1×k

q ; F,F1 ∈ R1×�
q ; u ∈ Rq.

– The prover’s secret input consists of message p ∈ Rq and signature (t, r,v),
where

{

t = (t0, . . . , tc1−1, . . . , tcd−1 , . . . , tcd−1)� ∈ {0, 1}cd ;
r ∈ Rm; v = (s‖z) ∈ Rm+k; s ∈ Rm; z ∈ Rk;

– The prover’s goal is to prove in zero-knowledge that ‖r‖∞ ≤ β, ‖v‖∞ ≤ β,
and that the equation

A · s + A[0] · z +
d

∑

i=1

A[i] · t[i] · z = F · y + u (7)

holds for
{

t[i] =
∑ci−1

j=ci−1
tj · Xj

}d

i=1
and

y = rdec (F0 · r + F1 · rdec(p)) ∈ R�. (8)

Our strategy is to reduce the considered statement to an instance of the
abstract protocol from Sect. 2.4. The reduction consists of 2 steps.

Decomposing-Unifying. In the first step, we will employ the decomposition
techniques from Sect. 2.2 together with the notations rot and τ from Sect. 2.1 to
transform Eqs. (7) and (8) into one equation of the form M0 · w0 = u mod q,
where M0,u are public, and the coefficients of vector w0 are in the set {−1, 0, 1}.
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Let s� = τ(rdecβ(s)) ∈ {−1, 0, 1}nmδβ , z� = τ(rdecβ(z)) ∈ {−1, 0, 1}nkδβ

and r� = τ(rdecβ(r)) ∈ {−1, 0, 1}nmδβ . Then, we observe that, Eq. (7) is equiv-
alent to,

[rot(A[0]) · Hk,β ] · z� +
d

∑

i=1

ci−1
∑

j=ci−1

[rot(A[i] · Xj) · Hk,β ] · tj · z∗ +

[rot(A) · Hm,β ] · s� − [rot(F)] · τ(y) = τ(u) mod q,

and Eq. (8) is equivalent to

[rot(F0) · Hm,β ] · r� + [rot(F1)] · τ(rdec(p)) − [H] · τ(y) = 0 mod q.

Now, using basic algebra, we can manipulate the two derived equations: rear-
ranging the secret vectors and combining them, as well as concatenating the
public matrices (namely, those written inside [·]) accordingly. As a result, we
obtain an unifying equation of the form:

M0 · w0 = u mod q,

where u = (τ(u)‖0) ∈ Z
2n
q and M0 are public, and w0 = (w1‖w2), with

{

w1 = (z�‖t0 · z�‖ . . . ‖ tcd−1 · z�) ∈ {−1, 0, 1}(kδβ+cdkδβ)n;
w2 = (s�‖ r�‖ τ(y)‖ τ(rdec(p))) ∈ {−1, 0, 1}(mδβ+�)2n.

Extending-Permuting. In this second step, we will transform the equation
M0 · w0 = u mod q obtained in the first step into an equation of the form
M ·w = u mod q, where the secret vector w satisfies the conditions required by
the abstract protocol. In the process, we will employ the techniques introduced
in Sect. 3.1.

Specifically, we extend the blocks of vector w0 = (w1‖w2) as follows.

w1 �→ w′
1 = mix

(

t, z�
)

∈ {−1, 0, 1}L1 ; (9)

w2 �→ w′
2 = enc(w2) ∈ {−1, 0, 1}L2 .

Then we form vector w = (w′
1‖w′

2) ∈ {−1, 0, 1}L, where

L = L1 + L2; L1 = (kδβ + 2cdkδβ)3n; L2 = (mδβ + )6n.

At the same time, we insert suitable zero-columns to matrix M0 to obtain matrix
M ∈ Z

2n×L
q such that M · w = M0 · w0.

Up to this point, we have transformed the considered relations into one equa-
tion of the desired form M · w = u mod q. We now specify the set VALID that
contains the obtained vector w, the set S and permutations {Γφ : φ ∈ S}, such
that the conditions in (1) hold.

Define VALID as the set of all vectors v′ = (v′
1‖v′

2) ∈ {−1, 0, 1}L, satisfying
the following:
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– There exist t ∈ {0, 1}cd and z� ∈ {−1, 0, 1}nkδβ such that v′
1 = mix(t, z�).

– There exists w2 ∈ {−1, 0, 1}(mδβ+�)2n such that v′
2 = enc(w2).

Clearly, our vector w belongs to this tailored set VALID.
Now, let S = {0, 1}cd × {−1, 0, 1}nkδβ × {−1, 0, 1}(mδβ+�)2n, and associate

every element φ = (b, e, f) ∈ S with permutation Γφ that acts as follows. When
applied to vector v� = (v�

1‖v�
2) ∈ Z

L, where v�
1 ∈ Z

L1 and v�
2 ∈ Z

L2 , it trans-
forms v� into vector

Γφ(v�) =
(

Ψb,e(v�
1) ‖ Πf (v�

2)
)

.

Based on the equivalences observed in (5) and (6), it can be checked that VALID,
S and Γφ satisfy the conditions specified in (1). In other words, we have reduced
the considered statement to an instance of the abstract protocol from Sect. 2.4.

The interactive protocol. Given the above preparations, our interactive pro-
tocol works as follows.

– The public input consists of matrix M and vector u, which are built from A,
(A[0], . . . ,A[d], F,F0,F1, u), as discussed above.

– The prover’s witness is vector w ∈ VALID, which is obtained from the original
witnesses (p, t, r,v), as described above.

Both parties then run the protocol of Fig. 1. The protocol uses the KTX string
commitment scheme COM, which is statistically hiding and computationally
binding under the (R)SIS assumption. We therefore obtain the following result,
as a corollary of Theorem 1.

Theorem 2. Assume that COM is a statistically hiding and computationally
binding string commitment scheme. Then the protocol described above is a sta-
tistical ZKAoK of a valid message-signature pair for the Ducas-Micciancio signa-
ture scheme, with perfect completeness, soundness error 2/3 and communication
cost ˜O(λ).

Proof. For simulation, we simply run the simulator of Theorem1. As for extrac-
tion, we invoke the knowledge extractor of Theorem1 to obtain a vector
w′ ∈ VALID such that M · w′ = u mod q. Then, by “backtracking” the trans-
formations being done, we can extract from w′ a satisfying witness (p′, t′, r′,v′)
for the considered statement.

The perfect completeness, soundness error and communication cost of the
protocol directly follow from those of the abstract protocol in Sect. 2.4. In par-
ticular, the communication cost is:

O(L·log q) = O
(

(kδβ+2cdkδβ)3n·log q+(mδβ+)6n·log q
)

= O(n·log4 n)= ˜O(λ),

for the setting of parameters for the Ducas-Micciancio signature in Sect. 2.3. ��
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4 Constant-Size Group Signatures from Lattices

In Sect. 4.1, we recall the syntax, correctness and security requirements of the
(partially) dynamic group signatures, as in the model of Bellare et al. [5]. In
Sect. 4.2, we describe our main zero-knowledge argument, which will be used as
a building block in our group signature scheme constructed in Sect. 4.3.

4.1 Dynamic Group Signatures

In this section, we recall the syntax, correctness and security definitions of the
(partially) dynamic group signatures, as put forward by Bellare et al. [5]. A
dynamic group signature scheme involves a trusted party who generates the
initial keys, an authority named issuer, an authority named opener and a set
of users who are potential group members. The scheme consists of the following
polynomial-time algorithms.

GKg(λ): Given the security parameter λ, the trusted party runs this algorithm
to generate a triple (gpk, ik, ok). The issue key ik is given to the issuer, the
opening key ok is given to the opener and the group public key gpk is made
public.

UKg(λ): A user who intends to be a group member runs this algorithm to obtain
a personal key pair (upk, usk). It is assumed that upk is public.

〈Join, Iss〉: This is an interactive protocol run by the issuer and a user. If it
completes successfully, the issuer registers this user to the group and this
user becomes a group member. The final state of the Join is the secret signing
key gski while the final state of the Iss is the registration information reg[i]
stored in the registration table reg.

Sign(gpk, gski,M): A group member, using his group signing key gski, runs this
algorithm to obtain a signature Σ on message M .

Verify(gpk,M,Σ): This algorithm outputs 1/0 indicating whether or not Σ is a
valid signature on message M , with respect to the group public key gpk.

Open(gpk, ok, reg,M,Σ): Given gpk, a message-signature pair (M,Σ) and ok,
the opener, who has read-access to the registration table reg, runs this algo-
rithm to obtain a pair (i,Πopen), where i ∈ N∪{⊥}. In case i = ⊥, Πopen = ⊥.

Judge(gpk,M,Σ, i, upki,Πopen): This algorithm outputs 1/0 to check whether or
not Πopen is a proof that i produced Σ, with respect to the group public key
gpk and message M .

Now we recall the correctness and security definitions of dynamic group signa-
tures below.

Correctness requires that for any signature generated by honest group mem-
bers, the following should hold: the signature should be valid; the opening algo-
rithm, given the message and signature, should correctly identify the signer; the
proof returned by the opening algorithm should be accepted by the judge.

Full Anonymity requires that it is infeasible to recover the identity of a signer
from a signature, even if the adversary is given access to the opening oracle. As
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pointed out by [4,5], it is sufficient that the adversary is unable to distinguish
which of two signers of its choice signed a targeted message of its choice.

Traceability requires that every valid signature should be traced to some
group member and the opener is able to generate a proof accepted by the judge.

Non-frameability requires that the adversary is unable to generate a proof,
which is accepted by the judge, that an honest user generated a valid signature
unless this user really did generate this signature.

Formal definitions of correctness and security requirements are available in
the full version.

4.2 The Underlying Zero-Knowledge Argument System

Before describing our group signature scheme in Sect. 4.3, let us first present
the statistical ZKAoK that will be invoked by the signer when generating group
signatures. The protocol is an extension of the one for the Ducas-Micciancio
signature from Sect. 3.2, for which the prover additionally convinces the verifier
of the following two facts.

1. He knows a secret key x ∈ Rm corresponding to the public key p ∈ Rq, which
satisfies ‖x‖∞ ≤ 1 and B · x = p. Here, B ∈ R1×m

q is a public matrix.

2. He has correctly encrypted the vector rdec(p) ∈ R� to a given ciphertext
(c1,1, c1,2, c2,1, c2,2) ∈ (R�

q)
4, under public key (a,b1,b2) ∈ (R�

q)
3. To this

end, he proves that equations

ci,1 = a · gi + ei,1, ci,2 = bi · gi + ei,2 + �q/4	 · rdec(p), (10)

hold for B-bounded randomness g1, g2 ∈ R, and e1,1, e2,1, e1,2, e2,2 ∈ R�.

As the transformations for the “Ducas-Micciancio layer” have been estab-
lished in Sect. 3.2, in the following, we only specify the transformations with
respect to the newly appeared relations.

We will first apply the decomposition techniques in Sect. 2.2 to the secret
objects.

– Let x� = τ(x) ∈ {−1, 0, 1}nm.
– For i ∈ {1, 2}, compute g�

i = τ(rdecB(gi)) ∈ {−1, 0, 1}nδB .
– For i ∈ {1, 2}, compute e�

i,1 = τ(rdecB(ei,1)) and e�
i,2 = τ(rdecB(ei,2)). Note

that they are vectors in {−1, 0, 1}n�δB .

Then the equation B · x = p can be translated as

[rot(B)] · x� − [H] · τ(rdec(p)) = 0n mod q. (11)
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Meanwhile, let a = (a1, . . . , a�)�, {bi = (bi,1, . . . , bi,�)�}i=1,2, then Eq. (10) can
be rewritten as, for i = 1, 2,

⎡

⎢

⎣

rot(a1) · HB

...
rot(a�) · HB

⎤

⎥

⎦
· g�

i + [H�,B ] · e�
i,1 = τ(ci,1) mod q; (12)

⎡

⎢

⎣

rot(bi,1) · HB

...
rot(bi,�) · HB

⎤

⎥

⎦
· g�

i + [H�,B ] · e�
i,2 + �q/4	 · τ(rdec(p)) = τ(ci,2) mod q. (13)

Before proceeding further, let us recall that, in the protocol for the Ducas-
Micciancio signature from Sect. 3.2, at the end of the Decomposing-Unifying
step, we did combine the secret objects into vectors w1,w2 of the form:

{

w1 = (z�‖ t0 · z� ‖ . . . ‖ tcd−1 · z�) ∈ {−1, 0, 1}(kδβ+cdkδβ)n;
w2 = (s� ‖ r� ‖ τ(y) ‖ τ(rdec(p))) ∈ {−1, 0, 1}(mδβ+�)2n.

Since vector τ(rdec(p)) has been counted as a block of vector w2, we now combine
the newly appeared secret vectors in Eqs. (11), (12) and (13) into vector

w3 =
(

x� ‖ g�
1 ‖ g�

2 ‖ e�
1,1 ‖ e�

1,2 ‖ e�
2,1 ‖ e�

2,2

)

∈ {−1, 0, 1}nm+2nδB+4n�δB ,

and let w4 = (w2‖w3) ∈ {−1, 0, 1}L′
4 , for L′

4 = (mδβ+)2n+nm+2nδB+4nδB .
Next, we extend w4 to vector w′

4 = enc(w4) ∈ {−1, 0, 1}L4 , where L4 = 3L′
4,

and form the vector
w̃ =

(

w′
1‖w′

4

)

∈ {−1, 0, 1}˜L,

where w′
1 = mix

(

t, z�
)

∈ {−1, 0, 1}L1 is the “mixing vector” obtained in (9), and
˜L = L1 + L4.

We remark that, by suitably concatenating/extending the matrices and vec-
tors derived from the public input, we can obtain public matrix ˜M and public
vector ũ such that ˜M · w̃ = ũ mod q. Having obtained this desired equation, we
now proceed as in Sect. 3.2.

Define ṼALID as the set of all vectors v′ = (v′
1‖v′

4) ∈ {−1, 0, 1}˜L, satisfying
the following:

– There exist t ∈ {0, 1}cd and z� ∈ {−1, 0, 1}nkδβ such that v′
1 = mix(t, z�).

– There exists w4 ∈ {−1, 0, 1}L′
4 such that v′

4 = enc(w4).

It can be seen that vector w̃ belongs to ṼALID.
Now, let ˜S = {0, 1}cd × {−1, 0, 1}nkδβ × {−1, 0, 1}L′

4 , and associate every
element φ = (b, e, f) ∈ S with permutation ˜Γφ that acts as follows. When applied
to vector v� = (v�

1‖v�
4) ∈ Z

˜L, where v�
1 ∈ Z

L1 and v�
2 ∈ Z

L4 , it transforms v�

into vector
˜Γφ(v�) =

(

Ψb,e(v�
1)‖Πf (v�

4)
)

.
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Based on the equivalences observed in (5) and (6), it can be checked that ṼALID,
˜S and ˜Γφ satisfy the conditions specified in (1). In other words, we have reduced
the considered statement to an instance of the abstract protocol from Sect. 2.4.

The interactive protocol. Given the above preparations, our interactive pro-
tocol works as follows.

– The public input consists of matrix ˜M and vector ũ, which are built from
A, (A[0], . . . ,A[d], F,F0,F1, u), and B, c1,1, c1,2, c2,1, c2,2, a,b1,b2, as dis-
cussed in Sect. 3.2 and above.

– The prover’s witness is vector w̃ ∈ ṼALID, which is obtained from the original
witnesses (p, t, r,v,x, g1, g2, e1,1, e2,1, e1,2, e2,2), as described in Sect. 3.2 and
above.

Both parties then run the protocol of Fig. 1. The protocol uses the KTX string
commitment scheme COM, which is statistically hiding and computationally
binding under the (R)SIS assumption. We therefore obtain the following result,
as a corollary of Theorem 1.

Theorem 3. Assume that COM is a statistically hiding and computationally
binding string commitment scheme. Then the protocol described above is a statis-
tical ZKAoK for the considered statement, with perfect completeness, soundness
error 2/3 and communication cost ˜O(λ).

Proof. For simulation, we simply run the simulator of Theorem1. As for extrac-
tion, we invoke the knowledge extractor of Theorem1 to obtain a vector
w̃′ ∈ ṼALID such that ˜M · w̃′ = ũ mod q. Then, by “backtracking” all the
transformations being done, we can extract from vector w̃′ a satisfying witness
(p′, t′, r′,v′,x′, g′

1, g
′
2, e

′
1,1, e

′
2,1, e

′
1,2, e

′
2,2) for the considered statement.

The perfect completeness, soundness error and communication cost of the
protocol directly follow from those of the abstract protocol in Sect. 2.4. In par-
ticular, the communication cost is:

O(˜L · log q) = O
(

(kδβ + cdkδβ)n · log q +((mδβ + )n+nm+nδB +nδB) · log q
)

,

which is of order O(n · log4 n) = ˜O(λ), for the setting of parameters we use in
the group signature scheme of Sect. 4.3. ��

4.3 Description of Our Scheme

In the description below, the Ducas-Micciancio signature scheme [20,21] as
described in Sect. 2.3 is used to design a group signature scheme for (partially)
dynamic groups. Group public key consists of three parts: (i) a verification key
from the Ducas-Micciancio signature scheme, (ii) two public keys of an extended
version of LPR encryption scheme [47] and (iii) a public matrix B for users to
generate their short secret vectors together with public syndromes as user key
pairs. The issue key is the corresponding signing key of the verification key while
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the opening key is any one of the corresponding secret keys of the two public
keys.

When a user joins the group, it first generates a short vector together with
a public syndrome using matrix B. It then interacts with the issuer. The issuer
signs the public syndrome of this user using the issue key. If the interaction
completes successfully, the user obtains a signature on his syndrome from the
issuer while the issuer registers this user to the group.

Once registered as a group member, the user can sign messages on behalf of
the group. When signing a message, it first encrypts the public syndrome twice
using the two public keys. The user then generates a ZKAoK of his syndrome,
of the signature on the syndrome obtained from the issuer, of the short vector
corresponding to his syndrome and of randomness used in the encryptions of the
syndrome. This ZKAoK protocol is repeated κ = ω(log λ) times to achieve negli-
gible soundness error and made non-interactive via Fiat-Shamir transform [22].
The signature then consists of the NIZKAoK Πgs and the two ciphertexts of the
syndrome. Note that the ZK argument together with double encryption enables
CCA-security of the underlying encryption scheme, which is known as the Naor-
Yung transformation [51]. This enables full anonymity of our group signature
scheme.

When one needs to know the validity of a signature, one simply verifies Πgs.
In case of dispute, the opener can decrypt the syndrome using his opening key.
To prevent corrupted opening, the opener is required to generate a NIZKAoK of
correct opening Πopen. Only when Πopen is a valid proof, will the judger accept
the opening result. Details of the scheme are described below.

GKg(λ): Given the security parameter λ, the trusted party proceeds as follows.
– Choose parameter n = O(λ) being a power of 2, and modulus q = ˜O(n4),

where q = 3k for some positive integer k. Let R = Z[X]/(Xn + 1) and
Rq = R/qR.
Also, let  = �log q−1

2 	 + 1, m ≥ 2
log q� + 2, and m = m + k.
– Choose integer d and sequence c0, . . . , cd as described in Sect. 2.3.
– Choose integer bounds β = ˜O(n), B = ˜O(n5/4), and let χ be a B-bounded

distribution over R.
– Let HFS : {0, 1}∗ → {1, 2, 3}κ, where κ = ω(log λ), be a collision-resistant

hash function, to be modelled as a random oracle in the Fiat-Shamir
transformations [22].

– Let COM be the statistically hiding and computationally binding com-
mitment scheme from [30], to be used in our zero-knowledge argument
systems.

– Draw a uniformly random matrix B ∈ R1×m
q .

– Generate verification key

A,F0 ∈ R1×m
q ;A[0], . . . ,A[d] ∈ R1×k

q ;F,F1 ∈ R1×�
q ; u ∈ Rq

and signing key R ∈ Rm×k
q for the Ducas-Micciancio signature scheme,

as described in Sect. 2.3.
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– Initialize the Naor-Yung double-encryption mechanism [51] with an
extended version of the LPR encryption scheme [47] that allows to
encrypt {−1, 0, 1} ring vectors of length . Specifically, sample s1, s2 ←↩ χ,

e1, e2 ←↩ χ�, a $←− R�
q, and compute

b1 = a · s1 + e1 ∈ R�
q; b2 = a · s2 + e2 ∈ R�

q.

Set the public parameter pp, the group public key gpk, the issue key ik and
the opening key ok as follows:

pp = {n, q, k,R,Rq, ,m,m, χ, d, c0, . . . , cd, B, β, κ,HFS,COM,B},

gpk = {pp,A, {A[j]}d
j=0,F,F0,F1, u,a,b1,b2},

ik = R, ok = (s1, e1).

The trusted party then makes gpk public and sends ik to the issuer and ok
to the opener.
Assume that after receiving ik from the trusted party, the issuer initializes
his internal state S = 0 and the registration table reg.

UKg(gpk): The user samples x ∈ Rm, whose coefficients are uniformly random
in the set {−1, 0, 1}. Then he computes p = B · x ∈ Rq. Set upk = p and
usk = x.

〈Join, Iss〉: When receiving the joining request from a user with public key
upk = p, the issuer verifies that upk was not previously used by a registered
user, and aborts if this is not the case. Otherwise, he proceeds as follows.
– Set the tag t = (t0, t1 . . . , tcd−1)� ∈ Td, where S =

∑cd−1
j=0 2j · tj , and

compute At = [A|A[0] +
∑d

i=1 t[i]A[i]] ∈ R
1×(m+k)
q .

– Using the signing key R, generate a Ducas-Micciancio signature (t, r,v) on
message rdec(p) ∈ R� - whose coefficients are in {−1, 0, 1}. As described
in Sect. 2.3, one has r ∈ Rm, v ∈ Rm+k and

{

At · v = F · rdec(F0 · r + F1 · rdec(p)) + u,

‖r‖∞ ≤ β, ‖v‖∞ ≤ β.
(14)

The issuer then sends the triple (t, r,v) to the user. The latter sets his group
signing key as gsk = (t, r,v,x) while the former stores reg[S] = p and
updates S to S + 1.

Sign(gpk, gski,M): To sign a message M ∈ {0, 1}∗ using gsk = (t, r,v,x), the
group member who has public key p ∈ Rq proceeds as follows.
– Encrypt the ring vector rdec(p) ∈ R�

q with coefficients in {−1, 0, 1} twice.
Namely, for each i ∈ {1, 2}, sample gi ←↩ χ, ei,1 ←↩ χ�, and ei,2 ←↩ χ�

and compute

ci = (ci,1, ci,2)

=
(

a · gi + ei,1,bi · gi + ei,2 + �q/4	 · rdec(p)
)

∈ R�
q × R�

q.
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– Generate a NIZKAoK Πgs to demonstrate the possession of a valid tuple

ζ = (t, r,v,x, p, g1, g2, e1,1, e2,1, e1,2, e2,2) (15)

such that
(i) The conditions from (14) hold.
(ii) c1 and c2 are both correct encryptions of rdec(p) with B-bounded

randomness g1, e1,1, e1,2 and g2, e2,1, e2,2, respectively.
(iii) ‖x‖∞ ≤ 1 and B · x = p.

This is done by running the argument system described in Sect. 4.2.
The protocol is an extension of the one for the Ducas-Micciancio sig-
nature from Sect. 3.2, in which the prover additionally proves state-
ments (ii) and (iii). The protocol is repeated κ = ω(log λ) times to
achieve negligible soundness error and made non-interactive via Fiat-
Shamir heuristic [22] as a triple Πgs = ({CMTi}κ

i=1,CH, {RSPi}κ
i=1)

where CH = HFS(M, {CMTi}κ
i=1, ξ) with

ξ = (A,A[0], . . . ,A[d],F,F0,F1, u,B,a,b1,b2, c1, c2) (16)

– Output the group signature Π = (Πgs, c1, c2).
Verify(gpk,M,Σ): Given the inputs, this algorithm proceeds as follows.

1. Parse Σ as Σ =
(

{CMTi}κ
i=1, (Ch1, . . . , Chκ), {RSP}κ

i=1, c1, c2
)

. If
(Ch1, . . . , Chκ) �= HFS

(

M, {CMTi}κ
i=1, ξ

)

, then return 0, where ξ is as
in (16).

2. For each i ∈ [κ], run the verification phase of the protocol in Sect. 4.2 to
check the validity of RSPi with respect to CMTi and Chi. If any of the
conditions does not hold, then return 0.

3. Return 1.
Open(gpk, ok, reg,M,Σ): Let ok = (s1, e1) and Σ = (Πgs, c1, c2). This algorithm

then does the following.
1. Use s1 to decrypt c1 = (c1,1, c1,2) as follows.

(a) It computes

p′′ =
c1,2 − c1,1 · s1

�q/4	 .

(b) For each coefficient of p′′,
– if it is closer to 0 than to −1 and 1, then round it to 0;
– if it is closer to −1 than to 0 and 1, then round it to −1;
– if it is closer to 1 than to 0 and −1, then round it to 1.

(c) Denote the rounded p′′ as p′ ∈ R�
q with coefficients in {−1, 0, 1}.

(d) Let p′ ∈ Rq such that τ(p′) = H · τ(p′). Recall that H ∈ Z
n×n�
q is the

decomposition matrix for elements of Rq (see Sect. 2.2).
2. If reg does not include an entry p′, then return (⊥,⊥).
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3. Otherwise, generate a NIZKAoK Πopen to demonstrate the possession of
a tuple (s1, e1,y) ∈ Rq × R�

q × R�
q

⎧

⎪

⎨

⎪

⎩

‖s1‖∞ ≤ B; ‖e1‖∞ ≤ B; ‖y‖∞ ≤ 
q/10�;
a · s1 + e1 = b1;
c1,2 − c1,1 · s1 = y + �q/4	 · rdec(p′).

(17)

We remark that conditions in (17) involve only linear secret objects with
bounded norms, and can be handled using the Stern-like techniques from
Sects. 3.2 and 4.2. As a result, we can obtain a statistical ZKAoK for
the considered statement. The protocol is repeated κ = ω(log λ) times
to achieve negligible soundness error and made non-interactive via the
Fiat-Shamir heuristic as a triple ΠOpen = ({CMTi}κ

i=1,CH, {RSP}κ
i=1),

where

CH = HFS

(

{CMTi}κ
i=1,a,b1,M,Σ, p′) ∈ {1, 2, 3}κ. (18)

4. Output (p′,ΠOpen).
Judge(gpk,M,Σ, p′,Πopen): If Verify algorithm outputs 0, then this algorithm

returns 0. Otherwise, this algorithm then verifies the argument ΠOpen w.r.t.
common input (a,b1,M,Σ, p′), in a similar manner as in algorithm Verify.
If Πopen does not verify, then return 0; otherwise, return 1.

4.4 Analysis of the Scheme

Efficiency. We first analyze the efficiency of the scheme described in Sect. 4.3,
with respect to security parameter λ.

– The public key gpk has bit-size O(λ · log2 λ) = ˜O(λ).

– The signing key gski has bit-size O(λ · log2 λ) = ˜O(λ).
– The size of a signature Σ is dominated by that of the Stern-like NIZKAoK

Πgs, which is O(˜L · log q) · ω(log λ), where ˜L denotes the bit-size of a vector
w̃ ∈ ṼALID as described in Sect. 4.2. Recall O(˜L · log q) = O(λ · log4 λ). As a
result, Σ has bit-size O(λ · log4 λ) · ω(log λ) = ˜O(λ).

– The Stern-like NIZKAoK Πopen has bit-size O(λ · log3 λ) · ω(log λ) = ˜O(λ).

Correctness. The correctness of the above group signature scheme relies on
the following facts: (i) the underlying argument systems to generate Πgs and
Πopen are perfectly complete; (ii) the underlying encryption scheme, which is an
extended version of LPR encryption scheme [47] is correct.

Specifically, for an honest user, when he signs a message on behalf of the
group, he is able to demonstrate the possession of a valid tuple ζ of the form (15).
With probability 1, Πgs is accepted by the Verify algorithm, which is implied by
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the perfect completeness of the argument system to generate Πgs. As for the
correctness of the Open algorithm, note that

c1,1 − c1,2 · s1 = b1 · g1 + e1,2 + �q/4	 · rdec(p) − (a · g1 + e1,1) · s1

= (a · s1 + e1) · g1 + e1,2 + �q/4	 · rdec(p) − (a · g1 + e1,1) · s1

= e1 · g1 + e1,2 − e1,1 · s1 + �q/4	 · rdec(p)

where ‖e1‖∞ ≤ B, ‖s1‖∞ ≤ B, ‖g1‖∞ ≤ B, ‖e1,1‖∞ ≤ B, ‖e1,2‖∞ ≤ B. Recall
B = ˜O(n5/4) and q = ˜O(n4). Hence we have:

‖e1 · g1 + e1,2 − e1,1 · s1‖∞ ≤ 2n · B2 + B = ˜O(n3.5) ≤
⌈ q

10
⌉

= ˜O(n4).

With probability 1, the rounding procedure described in the Open algorithm
recovers rdec(p) and hence outputs p, which is the actual signer. Thus the opener
is able to identify the signer of a signature and hence correctness of the Open
algorithm holds.

As the opener correctly recovers rdec(p) and p, it possesses a valid tuple
(s1, e1,y) satisfying conditions in (17). It then follows from the perfect com-
pleteness of the argument system to generate Πopen, the judge will accept the
opening result outputted by the opener and hence correctness of the Judge algo-
rithm holds.

Security. In Theorem 4, we prove that our scheme satisfies the security require-
ments of the Bellare et al. model [5]. For the proof of non-frameability, we will
use the following simple lemma.

Lemma 2. Let B ∈ R1×m
q , where m ≥ 2
log q� + 2. If x is a uniformly random

element of Rm such that ‖x‖∞ ≤ 1, then with probability at least 1 − 2−n, there
exists another x′ ∈ Rm such that ‖x′‖∞ ≤ 1 and B · x = B · x′ ∈ Rq.

Proof. Note that there are in total 3nm elements x ∈ Rm such that ‖x‖∞ ≤ 1.
Among them, there exist at most qn − 1 elements that do not have x′ such
that B · x = B · x′. Hence, the probability that a uniformly random x has a
corresponding x′ for which B · x = B · x′ is at least

3nm − qn + 1
3nm

= 1 − qn − 1
3nm

> 1 − qn

2nqn
= 1 − 2−n.

��

Theorem 4. Assume that the Stern-like argument systems used in Sect. 4.3 are
simulation-sound. Then, in the random oracle model, the given group signa-
ture scheme satisfies full anonymity, traceability and non-frameability under the
RLWE and RSIS assumptions.

In the random oracle model, the proof of Theorem4 relies on the following facts:

1. The Stern-like zero-knowledge argument systems being used are simulation-
sound;
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2. The underlying encryption scheme, which is an extended version of the LPR
encryption scheme [47], via the Naor-Yung transformation [51], is IND-CCA
secure;

3. The variant of Ducas-Micciancio signature scheme described in Sect. 2.3 with
at most polynomial number of signature queries is existentially unforgeable
against adaptive chosen message attacks [20,21];

4. For a properly generated user key pair (x, p), it is infeasible to find x′ ∈ Rm
q

such that ‖x′‖∞ ≤ 1, x′ �= x and B · x′ = p.

The proof of Theorem4 is established by Lemmas 3–5 given below.

Lemma 3. Assume that the RLWEn,�,q,χ problem is hard. Then the given group
signature scheme is fully anonymous in the random oracle model.

The detailed proof of Lemma 3 is available in the full version.

Lemma 4. Assume that the RSIS∞
n,m,q, ˜O(n2)

problem is hard. Then the given
group signature scheme is traceable in the random oracle model.

Proof. We prove traceability by contradiction. Suppose that A succeeds with
non-negligible advantage ε. Then we build a PPT algorithm B that, with non-
negligible probability, breaks the unforgeability of the Ducas-Micciancio signa-
ture scheme from Sect. 2.3, which is based on the hardness of the RSIS∞

n,m,q, ˜O(n2)

problem. It then follows that our construction is traceable.
When given the verification key of the Ducas-Micciancio signature scheme,

the simulator B runs the experiment Exptrace
GS,A(λ) faithfully. B can answer all ora-

cle queries made by A except when A queries the send to issuer SndToI oracle or
add user AddU oracle. However, B can resort to his oracle queries of the signa-
ture scheme. In these two cases, B enrolls the corresponding user to the group.
When A halts, it outputs (M∗,Π∗

gs, c
∗
1, c

∗
2). With non-negligible probability ε, A

wins the experiment. Parse Π∗
gs = ({CMT∗

i }κ
i=1,CH∗, {RSP∗

i }κ
i=1). Let

ξ∗ = (A,A[0], . . . ,A[d],F,F0,F1, u,B,a,b1,b2, c∗
1, c

∗
2).

Then CH∗ = HFS

(

M∗, {CMT∗
i }κ

i=1, ξ
∗) and RSP∗

i is a valid response w.r.t.
CMT∗

i and CH∗
i for i ∈ [κ] by the fact that A wins and hence (Π∗

gs, c
∗
1, c

∗
2) is a

valid signature on message M∗.
We claim that A had queried

(

M∗, {CMT∗
i }κ

i=1, ξ
∗) to the hash oracle HFS

with overwhelming probability. Otherwise, the probability of guessing correctly
the value of HFS

(

M∗, {CMT∗
i }κ

i=1, ξ
∗) is at most 3−κ, which is negligible. There-

fore, with probability ε′ = ε − 3−κ, A had queried the hash oracle HFS. Denote
by θ∗ ∈ {1, 2, . . . , QH} the index of this specific query, where QH is the total
number of hash queries made by A.

Algorithm B then runs at most 32 ·QH/ε′ executions of A. For each new run,
it is exactly the same as the original run until the point of θ∗-th query to the hash
oracle HFS. From this point on, B replies A’s hash queries with uniformly random
and independent values for each new run. This guarantees that the input of θ∗-th
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query A made to HFS is the tuple
(

M∗, {CMT∗
i }κ

i=1, ξ
∗) for each new run while

the output of this hash query is uniformly random and independent for each
new run. To this point, by the forking lemma of Brickell et al. [13], with prob-
ability ≥1/2, B obtains 3-fork involving the same tuple

(

M∗, {CMT∗
i }κ

i=1, ξ
∗)

with pairwise distinct hash values CH(1)
θ∗ ,CH(2)

θ∗ ,CH(3)
θ∗ ∈ {1, 2, 3}κ and corre-

sponding valid responses RSP(1)
θ∗ , RSP(2)

θ∗ , RSP(3)
θ∗ . A simple calculation shows

that with probability 1 − (79 )κ, we have {CH(1)
θ∗,j ,CH

(2)
θ∗,j ,CH

(3)
θ∗,j} = {1, 2, 3} for

some j ∈ {1, 2, . . . , κ}.
Therefore, RSP(1)

θ∗,j , RSP(2)
θ∗,j , RSP(3)

θ∗,j are 3 valid responses for all the chal-
lenges 1, 2, 3 w.r.t. the same commitment CMT∗

j . Since COM is computationally
binding, B is able to extract the witness

t∗ ∈ Td; r∗ ∈ Rm
q ;v∗ ∈ Rm+k

q ;p∗ ∈ R�
q,

such that ‖r∗‖∞ ≤ β, ‖v∗‖∞ ≤ β, ‖p∗‖∞ ≤ 1 and

At∗ · v∗ = F · rdec(F0 · r∗ + F1 · p∗) + u,

and c∗
1, c

∗
2 are correct encryptions of p∗.

Since A wins the game, either we have (i) the Open algorithm outputs (⊥,⊥)
or (ii) the Open algorithm output (p′,Π∗

open) with p′ �= ⊥ but the Judge algorithm
rejects the opening result.

Case (i) implies that, if c∗
1 is decrypted to p′ and p′ ∈ Rq such that τ(p′) =

H · τ(p′) ∈ Z
n
q , then p′ is not in the registration table. From the extraction,

we know that c∗
1 will be decrypted to p∗ by the correctness of our encryption

scheme. Therefore, the intermediate opening result p′ is equal to p∗. On the
other hand, the fact that p′ is not in the registration table implies that B did
not enroll p′ to the group, that is, B did not query p′ to his challenger when
A made the AddU oracle queries or SndToI oracle queries. To summarize, B did
not query signature on p′ and B extracts a signature (t∗, r∗,v∗) on p∗ = p′

such that τ(p′) = H · τ(p′). Therefore (p∗, t∗, r∗,v∗) is a valid forgery of the
Ducas-Micciancio signature scheme.

Case (ii) implies that, if c∗
1 is decrypted to p′ and p′ ∈ Rq such that

τ(p′) = H · τ(p′) ∈ Z
n
q , then p′ is in the registration table and Π∗

open gener-
ated by B is not accepted by the Judge algorithm. From the extraction, we know
that c∗

1 will be decrypted to p∗ by the correctness of our encryption scheme.
Therefore, the intermediate opening result p′ is equal to p∗. On the other hand,
we claim that rdec(p′) �= p′ = p∗. Otherwise, rdec(p′) = p′ = p∗, then B pos-
sesses valid witness to generate the proof Π∗

open. By the perfect completeness
of the underlying argument system generating Π∗

open, it will be accepted by the
judge algorithm with probability 1. This is a contradiction and hence we obtain
rdec(p′) �= p′ = p∗. Recall that in the 〈Join, Iss〉 algorithm, the issuer only gener-
ates signature on rdec(p′). So B only queries the signature on rdec(p′) and hence
(p∗, t∗, r∗,v∗) is a valid forgery of the Ducas-Micciancio signature scheme.

Therefore, with probability at least 1
2 · (ε − 3−κ)(1 − ( 79 )κ), which is non-

negligible, B breaks the unforgeability of the Ducas-Micciancio signature scheme.
This concludes the proof. ��
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Lemma 5. Assume that the RSIS∞
n,m,q,1 problem is hard. Then the given group

signature scheme is non-frameable in the random oracle model.

Proof. We prove non-frameability by contradiction. Suppose that A succeeds
with non-negligible advantage ε. Then we build a PPT algorithm B that solves
a RSISn,m,q,1 instance B ∈ R1×m

q with non-negligible probability.
After B is given a RSIS instance matrix B, it runs the experiment Expnf

GS,A
faithfully. B can answer all the oracle queries made by A since B knows all the
keys. When A halts, it outputs (M∗,Π∗

gs, c
∗
1, c

∗
2, p

∗,Π∗
open). With non-negligible

probability ε, A wins the experiment.
The fact that A wins the game implies (M∗,Π∗

gs, c
∗
1, c

∗
2) is a valid message-

signature pair that was not queried before. By the same extraction technique as
in Lemma 4, we can extract witness x′ ∈ Rm

q and p′ ∈ R�
q such that x′,p′ have

coefficients in {−1, 0, 1}, B ·x′ = p′ with τ(p′) = H · τ(p′) and c∗
1, c

∗
2 are correct

encryptions of p′. By the correctness of the encryption scheme being used, c∗
1

will be decrypted to p′.
The fact that A wins the game also implies (p∗,Π∗

open) is accepted by the
Judge algorithm. It follows from the soundness of the argument system used
to generate Π∗

open that c∗
1 will be decrypted to rdec(p∗). Therefore, we have

p′ = rdec(p∗) and hence p′ = p∗. Note that A wins the game also implies that
p∗ is an honest user with gsk �= ⊥ and A did not query the user secret key x∗

that corresponds to p∗. Thus we obtain: B · x′ = p′ = p∗ = B · x∗, where x∗ has
coefficients in {−1, 0, 1}. By Lemma 2, x′ �= x∗ with probability at least 1/2. In
the case they are not equal, we obtain a non-zero vector y = x′ − x∗ such that
B · y = 0 and ‖y‖∞ = 1.

Therefore, with probability at least 1
2 · (ε − 3−κ)(1 − ( 79 )κ) · 1

2 , which is
non-negligible, B solves a RSISn,m,q,1 instance B ∈ R1×m

q . This concludes the
proof. ��
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Abstract. Attribute-based signature (ABS), originally introduced by
Maji et al. (CT-RSA’11), represents an essential mechanism to allow for
fine-grained authentication. A user associated with an attribute x can
sign w.r.t. a given public policy C only if his attribute satisfies C, i.e.,
C(x) = 1. So far, much effort on constructing bilinear map-based ABS
schemes have been made, where the state-of-the-art scheme of Sakai et
al. (PKC’16) supports the very wide class of unbounded circuits as poli-
cies. However, construction of ABS schemes without bilinear maps are
less investigated, where it was not until recently that Tsabary (TCC’17)
showed a lattice-based ABS scheme supporting bounded circuits as poli-
cies, at the cost of weakening the security requirement.

In this work, we affirmatively close the gap between ABS schemes
based on bilinear maps and lattices by constructing the first lattice-
based ABS scheme for unbounded circuits in the random oracle model.
We start our work by providing a generic construction of ABS schemes for
unbounded-circuits in the rand om oracle model, which in turn implies
that one-way functions are sufficient to construct ABS schemes. To prove
security, we formalize and prove a generalization of the Forking Lemma,
which we call “general multi-forking lemma with oracle access”, captur-
ing the situation where the simulator is interacting with some algorithms
he cannot rewind, and also covering many features of the recent lattice-
based ZKPs. This, in fact, was a formalization lacking in many existing
anonymous signatures from lattices so far (e.g., group signatures). There-
fore, this formalization is believed to be of independent interest. Finally,
we provide a concrete instantiation of our generic ABS construction from
lattices by introducing a new Σ-protocol, that highly departs from the
previously known techniques, for proving possession of a valid signature
of the lattice-based signature scheme of Boyen (PKC’10).

1 Introduction

1.1 Background

Attribute-based signature (ABS) was introduced by [MPR11] as a versatile tool
allowing a signer to anonymously authenticate a message M w.r.t. a public
c© International Association for Cryptologic Research 2018
M. Abdalla and R. Dahab (Eds.): PKC 2018, LNCS 10770, pp. 89–119, 2018.
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signing policy C only if the signer has a signing key associated to an attribute
x ∈ {0, 1}∗ that satisfies C, i.e., C(x) = 1. An attribute-based signature scheme
reveals no information on the signer’s identity or the attribute other than the fact
that the signature is valid, hence the anonymity property of ABS schemes. One of
the central research themes on ABS is to expand the expressiveness of the class of
policies that can be supported by the schemes. In the bilinear map setting, there
has been a long line of interesting works, including ABS schemes for threshold
policy (e.g., [HLLR12]), boolean formula (e.g., [MPR11,OT11,OT13,EGK14])
and the current state-of-the-art; unbounded circuits [SAH16].1

On the other hand, the constructions of ABS schemes without bilinear maps,
in particular ABS schemes from lattices, are much less investigated. To the best
of our knowledge, there are only two major works concerning lattice-based ABS
schemes [EE16,Tsa17]. El Bansarkhani et al. [EE16] construct a lattice-based
ABS scheme for boolean formulas using a non-interactive zero-knowledge (NIZK)
proof system as the main building block, following one of the most promising
ways of constructing ABS schemes [MPR11,EGK14,SAH16]. Informally, a sig-
nature for a signer with attribute x is simply a zero-knowledge proof attesting to
the fact that he has a certificate corresponding to the attribute x issued by the
authority and that the policy C associated to the message M satisfies C(x) = 1.
Although this approach has been very effective in the bilinear map setting where
[SAH16] were able to obtain ABS schemes for unbounded circuits, this has not
been the case for lattices. One of the main reasons behind this is the lack of effi-
cient lattice-based NIZK proof systems for a wide enough language. In particular,
we only have efficient NIZK proof systems tailored for specific languages, such
as proving possession of a solution to the short integer solution (SIS) problem
or the learning with errors (LWE) problem [LNSW13], proving possession of a
valid signature of the Boyen digital signature scheme [Boy10,LLNW14,LNW15]
and so on, which in general does not seem strong enough for constructing ABS
schemes. Recently, [YAL+17] showed (informally) how to construct lattice-based
NIZK proof systems for languages accepted by monotone span programs, how-
ever, this still does not seem strong enough to use as a building block for ABS
schemes supporting unbounded circuits as policies.

Tsabary [Tsa17] constructs lattice-based ABS schemes following a different
approach; they show equivalence between a homomorphic signature (HS) scheme
and a (message-policy) ABS scheme. Therefore, based on the HS construction of
Gorbunov et al. [GVW15], they achieve a lattice-based ABS scheme for bounded
circuits that does not make use of NIZK proof systems.2 Here, by bounded, we
mean that the required hardness assumptions on the LWE and/or SIS problems
1 In our paper, we only consider message-policy ABS schemes. Recall that using uni-

versal circuits, we can convert message-policy ABS schemes into key-policy ABS
schemes [BF14], where the functionality of the secret keys and messages are reversed.

2 We note that the ABS scheme presented in [Tsa17] does not fulfill the standard secu-
rity requirements of (message-policy) ABS schemes as originally defined in [MPR11];
achieving either unforgeability or anonymity in its full capacity comes at the cost of
getting a much weaker version of the other, i.e., one has to choose between single-
key-selective-unforgeability, or leaking information about the signing key.
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grow exponentially in the depth of the circuit, e.g., to base the security of the
ABS scheme under a polynomial LWE assumption, we need to restrict the depth
of the circuit to be O(log λ), where λ is the security parameter. However, it seems
challenging to improve their techniques to ABS schemes for unbounded circuits,
due to the inherent noise-growth incurred by the homomorphic operations of
matrices while computing the circuit gate-by-gate. The only known method of
overcoming these O(log λ) depth barrier concerning homomorphic operations is
the bootstrapping technique of fully homomorphic encryptions [Gen09], however,
it is still an open problem whether there is a signature analogue of this technique.

1.2 Our Contribution

In this paper, we affirmatively close the gap between the state-of-the-art ABS
schemes based on bilinear maps and lattices by constructing the first lattice-
based ABS scheme for unbounded circuits in the random oracle model. We start
by providing a general construction of ABS schemes supporting unbounded-
circuits as policies. We then give an instantiation in the lattice setting showing
that all the building blocks required by our generic construction is obtainable
from lattices. We stress that, despite the expressiveness of the signing policy,
we manage to prove the security of our scheme under surprisingly mild SIS
and LWE assumptions with polynomial modulus size q = Õ(�λ1.5), where �
denotes the length of the inputs to the circuits. Specifically, the required hardness
assumptions are independent of the depth of the circuits that express the policies.
Furthermore, the sizes of the public parameter, signing keys and signatures are
Õ(�λ2), Õ(λ) and Õ((�λ+|C|)λ2), respectively, where |C| is the size of the circuit
(i.e., policy) associated to the message.

To this end we prepare two new tools equipped for the lattice setting: we
provide a generalization of the forking lemma of [PS00] which we call the general
multi-forking lemma with oracle access and further construct a new lattice-based
NIZK proof system for proving possession of a valid Boyen signature [Boy10] that
departs from the previously known techniques (e.g., [LLNW14,LNW15]). Below,
we give a more detailed overview of the techniques we used in our work.

Generic Construction of ABS for Unbounded Circuits. We propose a
generic construction of ABS schemes supporting unbounded depth circuits as
policies in the random oracle model3, which employs the following primitives as
its building blocks; a commitment scheme, a digital signature scheme and a Σ-
protocol for a sufficiently wide relation. As a separate theoretical contribution,
since all of the above primitives are implied from one-way functions, our result
implies that one-way functions are sufficient to construct an ABS scheme for
unbounded circuits in the random oracle model. Here, the random oracle is used
only to convert the underlying Σ-protocol into a NIZK proof system via the
Fiat-Shamir transformation [FS86].

At a high level, the generic construction of our ABS scheme follows closely the
bilinear map based construction of [SAH16] (which is non-generic and proven in
3 In this paper, we only consider circuits that do not have random oracle gates.
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the standard model). We briefly review the construction in slightly more detail;
first, the attribute authority issues a signature σ on an attribute x ∈ {0, 1}�

to certify that a signer is indeed authorized to sign a message on behalf of that
attribute. Then, to sign anonymously, the signer produces a zero-knowledge proof
attesting to the following two facts:

(I) the signature σ issued by the authority is valid, and
(II) the corresponding secret attribute x satisfies the circuit C associated to the

message M.

However, in spite of the similarities shared with the construction of [SAH16],
the security proof of our construction requires a rather sensitive and technical
analysis, which calls for new tools. This difficulty mainly stems from the fact
that security proofs relying on the Fiat-Shamir-based NIZK proof systems are
often times not as simple as the construction appears to be and in some cases
the intuition may fail, e.g., [BPW12,BFW16].

Our proof of security of the generic ABS scheme relies on our generalization
of the forking lemma of [PS00], which we call the general multi-forking lemma
with oracle access. Our forking lemma can be seen as a generalization and a
simplification of the general forking lemma of [BN06] and the improved forking
lemma of [BPVY00]. In particular, we analyze the output behavior of an algo-
rithm when run multiple times on related inputs, instead of when only run twice
as in [BN06], while also providing it with oracle access to a deterministic algo-
rithm. Recall that the original forking lemma of [PS00] applies to Fiat-Shamir
type signature schemes and roughly states that, if there exists a valid forger
A, then one can rewind A initialized with the same randomness tape to find
two accepting transcripts with the same commitment but different challenges,
leading, via the special soundness property of Σ-protocols, to extract the secret
signing key from the transcripts and hence a proof of security of the signature
scheme in the random oracle model.

First, we require the forking lemma to analyze the output behavior of an algo-
rithm on multiple runs to capture the situation arising in the recent lattice-based
NIZK proof systems (e.g., [LNSW13,LLNW14,LNW15]) where the extractor of
the underlying Σ-protocol requires more than two valid transcripts to extract a
witness. Although the improved forking lemma of [BPVY00] captures this mul-
tiplicity of the forking lemma of a particular El Gamal-type signature scheme,
it seems hard to apply in situations like ours where we are not dealing with
regular signature schemes. Our forking lemma, similar to the one of [BN06],
divorces the probabilistic essence of the forking lemma from any particular appli-
cation context. Furthermore, our forking lemma provides worst-case rather than
expected-time guarantees; the improved forking lemma of [BPVY00] roughly
states that an expected O(1/ε) repeated executions of a forger A with advan-
tage ε is required to extract a valid witness. We believe this feature to be more
suitable for standard assumptions that are defined for PPT algorithms, as also
stated in [BN06].

Second, and more importantly, our forking lemma allows the algorithm A
that can be rewinded, to have oracle access to some algorithm O that cannot be
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rewinded. This is a useful feature for the forking algorithm to have in situations
where the simulator cannot rewind all the algorithms which he is interacting
with. This may be easiest to explain with a concrete example; in particular,
when we reduce the eu-cma security of the underlying digital signature scheme
to the security of our ABS scheme, the simulator (which is the eu-cma adversary)
simulates the view of an ABS security game to the ABS adversary A, and answers
the queries made by A using its eu-cma challenger O. At some point when A
outputs a forgery for the ABS security game, the simulator hopes to extract
the witness from the forgery and use it to win his own eu-cma security game.
However, for this particular situation, the problem with all the previous forking
lemmas is that the simulator will not be able to run the forking algorithm in
the specified way; the simulator can rewind A to a particular point where the
fork happens, however, the simulator cannot rewind the eu-cma challenger O
in the same way, since it is outside the simulator’s (i.e., eu-cma adversary’s)
control. Then, since the behavior of A is implicitly dependent on the behavior of
the eu-cma challenger, the standard forking lemma does not provide meaningful
analysis of the output of A on multiple runs. We therefore present a general
multi-forking lemma with oracle access to capture these situations where the
simulator is restricted to rewinding only some of the algorithms he is interacting
with. We note that in case one is willing to use some algebraic problem such as
the SIS or LWE problem as the underlying hardness assumption, these situations
do not show up, since once given a fixed problem instance, the simulator can
reuse it in every run to simulate the view to A.

Finally, one of the benefits of using the Fiat-Shamir-based NIZK proof system
is that we do not have to rely on the dummy attribute technique of those ABS
schemes based on Goth-Sahai NIZK proof systems [MPR11,SAH16] to prove
adaptive unforgeability and hence obtaining a more efficient signing algorithm.
At a high level, this is because Fiat-Shamir based NIZK proof systems can be
simulation-sound and extractable at the same time, whereas Goth-Sahai NIZK
proof systems can only be instantiated to have one of the two properties. There-
fore, during the proof of adaptive unforgeability, since the simulator needs to
set up the common reference string in the extractable mode to extract a witness
from the forgery, the simulator has to rely on these extra dummy attributes,
which are never used in the actual scheme, to simulate signatures (i.e., proofs).

Instantiation from Lattices. To instantiate our generic ABS construction
from lattices, we require three primitives: a signature scheme, a commitment
scheme, and a Σ-protocol for a relation capturing the aforementioned items (I)
and (II). As for the signature scheme, we can use the simple and efficient lattice-
based signature scheme of Boyen [Boy10], which has been extensively studied in
the lattice-based NIZK literatures. In particular, Ling et al. [LNSW13] provides
an efficient Σ-protocol for proving possession of a valid Boyen signature (i.e.,
item (I)). However, unfortunately, it is not known whether the Σ-protocol of Ling
et al. can be extended to prove circuit satisfiability, which is what we require in
item (II), and in fact, recent subsequent results of [LLM+16,YAL+17] suggest
that they are not powerful enough to capture circuit satisfiability. On the other
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hand, Xie et al. [XXW13] provides a lattice-based Σ-protocol for proving NP
relations via arithmetic circuit satisfiability, which is what we exactly require in
item (II), however, it does not seem possible to simply combine the two different
types of Σ-protocols of [LNSW13,XXW13].

To this end, in this paper we present a new Σ-protocol for proving possession
of a valid Boyen signature by expressing the verification algorithm of the Boyen
signature as a simple arithmetic circuit that is compatible with the Σ-protocol
of Xie et al. Specifically, since both items (I) and (II) can now be represented
as arithmetic circuits, we can use the Σ-protocol of Xie et al. to obtain our
desired Σ-protocol. The main observation is that, most operations that show
up in lattice-based cryptography are composed of simple arithmetic operations
such as matrix multiplications, and therefore naturally leads to simple arith-
metic circuit representations. For our particular case, the verification algorithm
of the Boyen signature scheme essentially boils down to checking two simple
conditions; whether a vector z satisfies ‖z‖∞ ≤ β and Az = u mod q, where
we intentionally dismiss the message for simplicity. As it can be seen, the latter
equation is readily expressed by a very simple arithmetic circuit. On the other
hand, the first inequality requires some extra work, however, this too can be
expressed as an simple arithmetic circuit without much overhead by efficiently

encoding predicates such as x
?
∈ {−1, 0, 1} into arithmetic circuits.

2 Preliminaries

2.1 Commitment Schemes with Gap Openings

We define a standard commitment scheme that supports an additional notion
we call gap openings. This additional notion will make it conceptually easier
when we combine it with gap-Σ-protocols, which we later define. Informally,
a commitment scheme with a gap opening is a standard commitment scheme
where there may exist additional valid openings that are never created during
the commitment algorithm.

Definition 1 (Commitments). A commitment scheme with message space M
and commitment space C is a triple of PPT algorithms (C.Gen,C.Com,C.Open)
of the following form:

C.Gen(1λ) → pk: The key generation algorithm takes as input the security param-
eter 1λ and outputs a public commitment key pk.

C.Com(pk,M) → (c, d): The commitment algorithm takes as inputs the com-
mitment key pk and message M ∈ M, and outputs a commitment/opening
pair (c, d). We denote DCom(pk,M) as the set of all possible outputs of this
algorithm under fixed pk and M.

C.Open(pk,M, c, d) → 1\0: The deterministic opening algorithm takes as inputs
the commitment key pk, message M and commitment/opening pair (c, d) as
inputs and outputs 1 or 0. We denote DG-Com(pk,M) as the set of all possible
pairs (c, d) this algorithm outputs 1 under fixed pk and M.
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Here, we require the commitment scheme to satisfy the following correct-
ness notion: for all M ∈ M, pk ← C.Gen(1λ), (c, d) ← C.Com(pk,M) we have
C.Open(pk,M, c, d) = 1.

It is clear that we have DCom(pk,M) ⊆ DG-Com(pk,M) for all pk and M ∈ M.
We say the commitment scheme has a gap-opening when DCom ⊂ DG-Com. We
require the following security notions for a commitment scheme:

Binding. We call the scheme unconditionally (resp. computationally) binding
if for all (resp. PPT) algorithm A, we have the following:

Pr[pk ← C.Gen(1λ); (c,M,M′, d, d′) ← A(pk) :
C.Open(pk,M, c, d) = C.Open(pk,M′, c, d′) = 1 ∧ M 
= M′] ≤ negl(λ)

Note that even though such a pair (c, d) may never be outputted by the com-
mitment algorithm C.Com, the binding property must hold even for adversaries
that output (c, d) ∈ DG-Com(pk,M)\DCom(pk,M).

Hiding. We call the scheme unconditionally (resp. computationally) hiding if for
all (resp. PPT) algorithm A and any message M ∈ M, we have the following:4

Pr[pk ← C.Gen(1λ); b ← {0, 1}; c0 ← C; (c1, d) ← C.Com(pk,M);
b′ ← A(pk,M, cb) : b = b′] ≤ 1/2 + negl(λ)

2.2 Digital Signature Schemes

In this paper, we use deterministic digital signature schemes; a scheme where
the randomness of the signing algorithm is derived from the secret key and mes-
sage. We briefly recall the standard syntax and security notions, and refer the
full version for the exact definition. A deterministic digital signature scheme is a
tuple of PPT algorithms (S.KeyGen,S.Sign,S.Verify), such that the key genera-
tion algorithm S.KeyGen outputs a verification key vk and a signing key sk. The
deterministic signing algorithm S.Sign on input the signing key sk and a message
x outputs a signature σ, and the verification algorithm S.Verify verifies the sig-
nature σ using the verification key vk. We consider the standard security notion
of existential unforgeability under an adaptive chosen message attack (eu-cma).

2.3 Arithmetic Circuit Representation

Here, we explain how we represent an arithmetic circuit. Let C be an arithmetic
circuit over a ring R having � input wires, one output wire and N gates. Here the
gates are labelled by either + (addition) or × (product) gates. The input wires
are indexed by 1, · · · , �, the internal wires are indexed by �+1, · · · , �+N −1 and

4 We assume that the commitment space C is efficiently sampleable. Namely, as long as
the hiding property holds, C may be larger than the set of all possible commitments.
These situations come up in many of the lattice-based commitment schemes.
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the output wire has index � + N . We assume each gate takes only two incoming
wires with multiple fan-out wires, where all the fan-out wires are indexed with
the same index. We specify the topology of an arithmetic circuit by a function
topo : {�+1, · · · , �+N} → {+,×}×{1, · · · , �+N −1}×{1, · · · , �+N −1}. They
map a non-input wire to its first and second incoming wires in which these three
wires are connected by either a gate labelled by + or ×. For (�, i1, i2) ← topo(i),
we require that i1, i2 < i where � ∈ {+,×}.

2.4 Attribute-Based Signature Scheme

An attribute-based signature scheme supporting the class of arithmetic circuits
C = {Cλ}λ∈N and message space {0, 1}∗ is defined by the following four proba-
bilistic polynomial time algorithms (Setup,KeyGen,Sign,Verify):

Setup(1λ, 1�) → (mpk,msk): The setup algorithm takes as input the security
parameter 1λ and the input length 1� of the circuits in C�, and outputs the
master public key mpk and the master secret key msk.

KeyGen(mpk,msk,x) → skx: The signing key generation algorithm takes as input
the master public key mpk, the master secret key msk and an attribute x ∈
{0, 1}�, and outputs a signing key skx.

Sign(mpk, skx, C,M) → Σ: The signing algorithm takes as input the master
public key mpk, a secret key skx associated with an attribute x, a circuit
C ∈ C� and a message M ∈ {0, 1}∗, and outputs a signature σ.

Verify(mpk,M, C,Σ) → Valid/Invalid: The verification algorithm takes as input
the master public key mpk, a message M, a circuit C and a signature Σ, and
outputs Valid or Invalid.

Correctness. We require the following correctness condition to hold: for all
λ, � ∈ N, x ∈ {0, 1}�, C ∈ C� such that C(x) = 1, it holds with all but negligi-
ble probability that Verify(mpk,M, C, Sign(mpk, skx, C,M)) = Valid, where the
probability is taken over the randomness used in (mpk,msk) ← Setup(1λ, 1�) and
skx ← KeyGen(mpk,msk,x).

We require two types of security notions for attribute-based signature
schemes.

Definition 2 (Privacy). The security notion of privacy for an attribute-based
signature scheme is defined by the following game between a challenger and an
adversary A:

Setup. The challenger runs (mpk,msk) ← Setup(1λ, 1�) and gives (mpk,msk)
to A.

Challenge. A outputs a message M ∈ {0, 1}∗, two attributes x0,x1 ∈ {0, 1}�

and a circuit C ∈ C� such that C(x0) = C(x1) = 1 to the challenger.
The challenger first runs skxβ

← KeyGen(mpk,msk,xβ) for β = 0, 1. Then,
it picks a random bit b ← {0, 1} and returns to A the signature Σ∗ ←
Sign(mpk, skxb

, C,M) along with the two secret keys (skx0 , skx1).
Forgery. Finally, A outputs a guess b′ ∈ {0, 1} for b.
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The advantage of A is defined as |Pr[b′ = b] − 1/2|. We say that the attribute-
based signature scheme is computationally private if the advantage of any PPT
algorithm A is negligible. We say it is unconditionally private if the advantage
of any (possibly inefficient) algorithm A is negligible.

Definition 3 (Unforgeability). The security notion of adaptively unforgeable
for an attribute-based signature scheme is defined by the following game between
a challenger and an adversary A:

Setup. The challenger runs (mpk,msk) ← Setup(1λ, 1�) and gives mpk to A.
Queries. A may adaptively make the following queries to the challenger:

– Signing. A submits a signing query on any attribute, message and cir-
cuit tuple (x,M, C) such that C(x) = 1 to the challenger. The challenger
runs skx ← KeyGen(mpk,msk,x). Then, it returns the signature Σ ←
Sign(mpk, skx, C,M) to A.

– Key reveal. A submits a key reveal query on any attribute x to the chal-
lenger. The challenger returns the signing key skx ← KeyGen(mpk,msk,x) to
A.

Forgery. Finally, A outputs a signature (M∗, C∗, Σ∗).

The adversary A wins the game if the following three conditions hold:

(i) Verify(mpk,M∗, C∗, Σ∗) = Valid,
(ii) Adversary A did not submit a key reveal query for x such that C∗(x) = 1,
(iii) Adversary A did not submit a signing query on (x,M∗, C∗) for any x such

that C∗(x) = 1.

The advantage of A is defined as the probability of A winning the above game.
We say that the attribute-based signature scheme is adaptively unforgeable if the
advantage of any PPT algorithm A is negligible.

2.5 General Multi-forking Lemma with Oracle Access

Here we state and prove an extended version of the forking lemma of [PS00],
which will play a central role in our proof of security of our ABS scheme. Our
forking lemma analyzes the output behavior of an algorithm A when run multiple
times on related inputs, instead of when only run twice, while also providing it
with oracle access to a deterministic algorithm O.

Lemma 1 (General Multi-forking Lemma with Oracle Access). Fix an
integer q ≥ 1 and a set H of size h ≥ 2. Let A be a randomized algorithm that has
oracle access to some deterministic algorithm O, where on input par, h1, · · · , hq,
algorithm A returns a pair; the first element is an integer in the range 0, · · · , q
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and the second element is what we refer to as a side output. Let IG be a ran-
domized algorithm called the input generator. The accepting probability of A,
denoted acc, is defined as the probability that J ≥ 1 in the experiment below:

(par, par) ← IG; h1, · · · , hq ← H; (J, σ) ← AO(par,·)(par, h1, · · · , hq).

For a positive integer � ≥ 2, the forking algorithm F
O(par,·)
A,� associated to AO(par,·)

is a randomized oracle algorithm that takes input par and proceeds as in Fig. 1,
where {εk}k∈[�] denotes an arbitrary set of strings. Let

frk = Pr[(par, par) ← IG; (b, {σk}k∈[�]) ← F
O(par,·)
A,� (par) : b = 1].

Then,

frk ≥ acc ·
((

acc

q

)�−1

− f(�)
h

)
, (1)

where f(�) is some universal positive valued function that only depends on the
value �.

Fig. 1. Description of the forking algorithm F
O(par,·)
A,� .

Proof. For any input x = (par, par), denote acc(x) as the probability that J ≥ 1
in the following experiment:

h1, · · · , hq ← H; (J, σ) ← AO(par,·)(par, h1, · · · , hq).

Also, let frk(x) = Pr[(b, {σk}k∈[�]) ← F
O(par,·)
A,� (par) : b = 1]. We claim that there

exists some universal positive valued function f(�) such that for all x,

frk(x) ≥ acc(x) ·
((

acc(x)
q

)�−1

− f(�)
h

)
. (2)
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By taking the expectation of frk(x) over x = (par, par) ← IG and using the
fact E[acc(x)�] ≥ E[acc(x)]� (which follows from Jensen’s inequality), we obtain
Eq. (1). Therefore, to prove the claim, we must prove Eq. (2). Now, for any
input x, with the probabilities taken over the coin tosses of FO(par,·)

A,� (par), frk(x)
is equivalent to the following.

Pr
[
(I(1) = I(k) for all k ∈ [�]) ∧ (I(1) ≥ 1) ∧ (h(k)

I(1) 
= h
(k′)
I(1) for all k, k′ ∈ [�])

]
≥Pr

[
(I(1) = I(k) for all k ∈ [�]) ∧ (I(1) ≥ 1)

]
− Pr

[
(I(1) ≥ 1) ∧ (h(k)

I(1) = h
(k′)
I(1) for some k, k′ ∈ [�])

]
= Pr

[
(I(1) = I(k) for all k ∈ [�]) ∧ (I(1) ≥ 1)

]
− Pr

[
(I(1) ≥ 1)

]
· (1 −

�−1∏
k=1

h − k

h
)

Here, we can rewrite 1 −
∏�−1

k=1
h−k

h = 1
h ·

(∑�−2
k=0 αk(�) · 1

hk

)
, where (αk(�))�−2

k=0

are functions that only depend on �. Since h ≥ 1, we can always upper bound
the right hand side by f(�)/h using some positive valued function f(�) that only
depends on �, where for example, we can use f(�) = (� − 1) · max{|αk(�)|}�−2

k=0.
Here, note that f(�) is some universal function that depends neither on A nor
O. Therefore, we can further rewrite the inequality as follows:

frk(x) ≥ Pr
[
(I(1) = I(k) for all k ∈ [�]) ∧ (I(1) ≥ 1)

]
− acc(x) · f(�)

h
.

Hence, it remains to show that Pr
[(

I(1) = I(k) for all k ∈ [�]
)

∧
(
I(1) ≥ 1

)]
≥

acc(x)�/q�−1. Let R denote the set from which A draws its random coins. For
each i ∈ [q], let Xi : R × Hi−1 → [0, 1] be defined by setting Xi(ρ, h1, · · · , hi−1)
to

Pr[hi, · · · , hq ← H ; (J, σ) ← AO(par,·)(par, h1, · · · , hq; ρ) : J = i]

for all ρ ∈ R and h1, · · · , hi−1 ∈ H. Here, regard Xi as a random variable over
the uniform distribution on its domain. Then,

Pr
[
(I(1) = I(k) for all k ∈ [�]) ∧ (I(1) ≥ 1)

]
=

q∑
i=1

Pr
[
I(k) = i for all k ∈ [�]

]

=
q∑

i=1

(
Pr[I(1) = i] ·

�∏
k=2

Pr[I(k) = i | I(1) = i]
)

(3)

=
q∑

i=1

∑
ρ,h1,··· ,hi−1

Xi(ρ, h1, · · · , hi−1)� · 1

|R| · |H|i−1

=
q∑

i=1

E[X�
i ] ≥

q∑
i=1

E[Xi]�. (4)
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Here Eq. (3) follows from independence of I(k) and I(k
′) for k, k′ ∈ [2, �], and

Eq. (4) follows from Jensen’s inequality where we use the fact that f(x) = x� is
a convex function. Finally, using Holder’s inequality, we obtain

q∑
i=1

E[Xi]� ≥ 1
q�−1

·
(

q∑
i=1

E[Xi]

)�

=
1

q�−1
· acc(x)�.

This completes the proof of Eq. (1), hence concluding our claim.

Remark. As can be checked from the proof, we can set the function f(�) so that
in case � = 2, we have f(2) = 1. Therefore, by setting the deterministic oracle
O to be an oracle that outputs nothing, the above lemma implies the general
forking lemma of [BN06].

3 Gap-Σ-Protocols and Non-interactive Zero-Knowledge
Proofs

Before presenting the main tools we use in this paper, we first recall the definition
of languages and relations. A language L ⊆ {0, 1}∗ is said to have polynomial
time recognizable relation R ⊆ {0, 1}∗ × {0, 1}∗ if L = {x | ∃ws.t.(x,w) ∈ R}
where |w| ≤ poly(|x|). We call the string w a witness to the statement x ∈ L.

3.1 Gap-Σ-Protocols

Σ-protocols are a special type of 3-round interactive proof systems that is also
a proof of knowledge. Below, we define (a special type of) the gap-Σ-protocol,
which is a generalization of the standard Σ-protocol where we allow the extracted
witness to lie in a slightly larger space than the actual witness being proven
during the protocol. Furthermore, the special soundness is defined for cases where
more than 2 valid transcripts are required to extract a witness. These non-
standard formalizations are required, since most of the lattice-based Σ-protocols
are not captured by the standard formalizations.

Definition 4 (Gap-Σ-protocols). Let m be an integer constant and t an
integer-valued function of the security parameter. Let (P,V) be a two-party pro-
tocol, where V is PPT, and let L,L′ ⊆ {0, 1}∗ be languages with witness relations
R,R′ such that R ⊆ R′. Then (P,V) is called a gap-Σm,t-protocol for relations
(R,R′) with challenge space C = {0, 1, · · · ,m − 1}t, if it satisfies the following
conditions:

– 3-move form: The protocol is of the following form:

• The prover P, on input (x,w) ∈ R, sends a commitment α to V.
• The verifier V samples a challenge β ← C and sends it to P.
• The prover P sends a response γ to V, and V decides to accept of reject

based on the protocol transcript (α, β, γ).
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The protocol transcript (α, β, γ) is called a valid transcript if the verifier V
accepts the protocol run.

– Completeness: Whenever (x,w) ∈ R, V accepts with probability 1.
– Soundness: If (x,w) 
∈ R, then any cheating (possibly inefficient) prover P∗

succeeds with probability at most (m−1
m )t. We call this value the soundness

error.
– Special gap-soundness: There exists a PPT algorithm E (the knowl-

edge extractor) which takes m valid transcripts {(α, βi, γi)}i∈[m] for some
statement x ∈ L, where there exists at least one index j ∈ [t] such that
{βi,j}i∈[m] = {0, 1, · · · ,m−1} as inputs, and outputs w such that (x,w) ∈ R′.
Here βi,j denotes the j-th value of the string βi. Note that the knowledge
extractor outputs a witness in the gap relation.

– Special honest-verifier zero-knowledge (HVZK): There exists a PPT
algorithm S (the HVZK simulator) taking x ∈ L as input, that outputs
(α, β, γ) whose distribution is indistinguishable from an accepting protocol
transcript generated by a real protocol run. Although no guarantees on the
outputs are made, the simulator S is also defined over the inputs x 
∈ L.

We call the gap-Σm,t-protocol computationally (resp. statistically) special HVZK
if the simulated transcript is computationally (resp. statistically) indistinguish-
able from a real transcript.

Lastly, we say the gap-Σ-protocol has high-commitment entropy if for all
(x,w) ∈ R and α, the probability that an honestly generated commitment by P
takes on the value α is negligible.

We omit the subscript (m, t) of the gap-Σm,t-protocol whenever it is irrele-
vant to the context. Occasionally, we omit t and simply write gap-Σm-protocol
to emphasize that the soundness error is negligible in the security parameter. We
note that the standard Σ-protocol is a special case of the gap-Σ-protocol where
m = 2,R = R′. In this case the soundness error will simply be 2−t and special
gap-soundness implies special soundness, since if there exists an index j ∈ [t] for
which the binary strings (i.e., the challenges) differ, then it implies that the two
challenges are different. Finally, we assume without loss of generality that all of
the gap-Σ-protocols we consider in this paper have high-commitment entropy,
since the condition can be easily met by appending a super-logarithmic number
of public random bits to the commitments.

Often times, the gap in the relations allows for much more efficient schemes,
and do not affect their usefulness in practice as long as R′ is still a sufficiently
hard relation, e.g., [FO97,DF02,AJLA+12,BCK+14]. We note that for simplic-
ity, in this paper we only consider gap-Σ-protocols that are complete with prob-
ability 1. Namely, our formalization does not capture those gap-Σ-protocols that
are based on the rejection sampling technique such as [Lyu09,Lyu12,BCK+14].5

5 Note that we intentionally disregard [BKLP15] from our work. Although they offer an
attractive rejection sampling-based gap-Σ-protocol for proving arbitrary arithmetic
operations that are more efficient than those of [XXW13] which we use in Sect. 5,
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Finally, we formally describe the Fiat-Shamir transformation [FS86] which
is a technique to make any (gap-)Σ-protocol into a non-interactive proof system
by using a cryptographic hash function.

Definition 5. Let (P,V) be a gap-Σ-protocol with relation (R,R′), and H(·)
a hash function with range equal to the verifier’s challenge space C. The Fiat-
Shamir transformation of gap-Σ is the non-interactive proof system (PH ,VH)
defined as follows:

PH(x,w): Run P(x,w) to obtain a commitment α, and compute β ← H(x, α).
Then complete the run of P with β as the challenge to get the response γ.
Finally output the pair (α, γ)

VH(x, α, γ): Compute β = H(x, α) and return the output of V(α, β, γ).

3.2 Non-interactive Zero-Knowledge Proof Systems

We formalize the notion of non-interactive zero-knowledge (NIZK) proof systems
in the explicitly programmable random oracle model [Wee09], where the zero-
knowledge (ZK) simulator is allowed to explicitly program the random oracle. We
follow the notations provided in [FKMV12] for presentation. Namely, we model
the ZK simulator of a NIZK proof system as a stateful PPT algorithm S that can
operate in two modes: (h, st) ← S(1, st, q) takes care of answering random oracle
queries, and (π, st) ← S(2, st, x) simulates the proof. Here, the calls to S(1, · · · )
and S(2, · · · ) share the common state st that is updated after each invocation of
the simulator. Furthermore, we define three algorithms S1,S2, Ŝ2 that run simu-
lator S internally: S1(q) returns the first output of (h, st) ← S(1, st, q), S2(x,w)
ignores the second input w and returns the first output of (π, st) ← S(2, st, x) if
and only if (x,w) ∈ R (or equivalently x ∈ L), and Ŝ2(x) is essentially the same
as S2(x,w) except that it does not take a second input w and is also defined for
inputs such that x 
∈ L. Observe that S2 and Ŝ2 are identical for inputs x ∈ L,
and unlike S2, Ŝ2 may be invoked to simulate proofs for invalid statements.

Definition 6 (Non-interactive Zero-Knowledge Proof System). Let R
be a relation with an associated language LR. We say a non-interactive proof
system (P,V) is a statistical NIZK proof system for language LR with a (PPT)
ZK simulator S in the random oracle model, if for any algorithm D we have∣∣∣Pr[DH(·),PH(·,·)(1λ) = 1] − Pr[DS1(·),S2(·,·)(1λ) = 1]

∣∣∣ = negl(λ),

where H(·) is modeled as a random oracle, and both P and S2 output ⊥ if
(x,w) 
∈ R. It is called a computational NIZK proof system in case the above
holds only for all PPT algorithms D.

we were not able to verify the correctness of their proof sketch. In particular, the
knowledge extractor for the protocol for proving multiplicative relations could not
be constructed as stated in their paper.
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It is a well known fact that in the random oracle model, the Fiat-Shamir
transformation of any Σ-protocol is a NIZK proof system. It is straightforward
to prove that it is also the case for gap-Σ-protocols, as we state in the following
lemma.

Lemma 2 (Fiat-Shamir NIZK Proof Systems). Let (P,V) be a gap-Σ-
protocol with relation (R,R′) that is computationally (resp. statistically) special
HVZK, and H(·) a hash function with range equal to the verifier’s challenge space
C. Then, in the random oracle model, the non-interactive proof system (PH ,VH)
obtained by the Fiat-Shamir transformation of gap-Σ is a computational (resp.
statistical) non-interactive zero-knowledge proof system for the language LR.

Proof (Proof sketch.). To prove that the proof system (PH ,VH) is a NIZK proof
system for the language LR, it suffices to show that there exists a ZK simulator
S as in the above Definition 6. Below, we construct S by invoking the HVZK
simulator SΣ of the underlying gap-Σ-protocol (P,V):

– S(1, st, q = (x, α)) → (h = β, st): To answer random oracle queries, it searches
the table TH kept in the state st whether an output for q = (x, α) is already
defined. If so it returns the previously defined assigned value. If not, it samples
a uniformly random value β ← C and stores (q = (x, α), h = β) in the table.
Note that this corresponds to algorithm S1.

– S(2, st, x) → (π = (α, β, γ), st): To simulate a proof for the statement x ∈ LR,
it runs the HVZK simulator SΣ on input x to obtain a proof (α, β, γ). Then,
it updates the table TH by adding (q = (x, α), h = β). If TH happens to
be already defined on input q = (x, α), S aborts. This completely specifies
algorithm S2 as required. Observe that the simulator S can also be run on
statements x 
∈ LR using the above method, since SΣ is well-defined for x ∈ L
as well. In particular, the above description for S also specifies algorithm Ŝ2

as well.

Since, we only consider gap-Σ-protocols with high-commitment entropy, the
probability of simulator S aborting is negligible, which ends the proof sketch.

In the following, we use the above algorithm S as the ZK simulator for a
NIZK proof system (PH ,VH) based on the Fiat-Shamir transformation of a gap-
Σ-protocol (P,V). Note that we do not explicitly define the soundness property
of the NIZK proof system, since this property will be implicitly implied when
we construct a knowledge extractor during the security proof.

4 Generic Construction of Attribute-Based Signatures

Preparation. Before presenting our construction, we describe the relations and
languages we require for our NIZK proof system. Our construction relies on a
gap-Σ-protocol for the relations (RABS,R′

ABS) defined below and employs the
Fiat-Shamir transformation provided in Definition 5 to turn it in into a NIZK
proof system. In the following, xi for i ∈ [� + 1, � + N − 1] denotes the values
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assigned to the i-th (internal) wire of C on input x = (x1, · · · , x�) and vkSign,
pkCom denotes the verification key and public commitment key of the underlying
digital signature scheme and commitment scheme, respectively. Then the relation
RABS is defined as follows:

RABS =
{(

statement =
(
vkSign, pkCom, C ∈ C�, cσ, (ci)

�+|C|−1
i=1

)
,

witness =
(
x = (x1, · · · , x�), σ, dσ, (di)

�+|C|−1
i=1

))∣∣∣
the committed values in cσ, (ci)

�+|C|−1
i=1 satisfy the following conditions:

– S.Verify(vkSign,x, σ) = 1
– xi = xi1 �i xi2 for i ∈ [� + 1, � + |C| − 1] for (�i, i1, i2) ← topoC(i)
– 1 = x(�+|C|)1 ��+|C| x(�+|C|)2 for (��+|C|, i(�+|C|)1 , i(�+|C|)2) ← topoC(� + |C|)
– (cσ, dσ) ∈ DCom(pkCom, σ) and (ci, di) ∈ DCom(pkCom, xi) for i ∈ [�+|C|−1]}

Here, recall that DCom(pkCom,M) is the set of all possible outputs of the com-
mitment algorithm C.Com(pkCom,M) . We simply define the corresponding lan-
guage LABS as the language induced by the relation RABS. Furthermore, the
gap-relation R′

ABS is defined analogously to RABS except that we replace the last
condition as follows:

– (cσ, dσ) ∈ DG-Com(pkCom, σ) ∧ (ci, di) ∈ DG-Com(pkCom, xi) for i ∈ [� + |C| − 1]

The only difference between the two relations are the condition on the com-
mitment and opening pairs. In the latter, it is only required that the pairs are
in the set DG-Com(·) and not in the more restricted set DCom(·). Recall that
DG-Com(pkCom,M) is the set of all commitment and opening pairs that the open-
ing algorithm outputs 1 on message M. As we noted in Sect. 3.1, we require this
gap-relation R′

ABS purely for technical reasons, since in many of the lattice-based
Σ-protocols we can only extract witnesses that lie in a slightly larger space than
the actual witnesses being proven in the actual protocol. Similarly to above, we
define the language L′

ABS as the language induced by the relation R′
ABS.

For simplicity, in the following we omit vkSign and pkCom from the statement,
since they are fixed by the Setup algorithm and all signers use the same vkSign

and pkCom.

Construction. Here, we provide our attribute-based signature scheme for
unbounded (arithmetic) circuits. In the following, assume a digital signa-
ture scheme (S.KeyGen, S.Sign, S.Verify), a commitment scheme (C.Gen,C.Com,
C.Open) and a NIZK proof system for the relation RABS.

Setup(1λ, 1�): On input the security parameter 1λ and the input length 1�

for the family of circuits C�, generate a verification key and a signing key
(vkSign, skSign) ← S.KeyGen(1λ, 1�) and a public commitment key pkCom ←
C.Gen(1λ). Then output

mpk = (vkSign, pkCom,H(·), G(·)) and msk = (skSign).
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Here, H(·) and G(·) are hash functions used by the NIZK proof system and
by algorithm Sign, respectively, which are programmed as random oracles in
the security reduction. Further, we assume the output space of G(·) to be
{0, 1}�.6

KeyGen(mpk,msk,x): On input x = (x1 · · · , x�) ∈ {0, 1}�, create a signature on
the attribute x ∈ {0, 1}� by running σ ← S.Sign(skSign,x). Then, output the
secret key as skx = (x, σ).

Sign(mpk, skx, C,M): On input message M ∈ {0, 1}� and circuit C ∈ C� with an
associating topology topoC proceed as follows:

1. Compute h = (h1, · · · , h�) ← G(M, C)7 and create a new circuit Ĉ ∈ C� with
two dummy gates connected to each of the input wires of C. Namely, to the
input wires i ∈ [�] of C, we add a series composition of two addition gates
where one gate adds hi and the other gate adds −hi; on input xi to the i-th
input wire of Ĉ, it first evaluates to xi + hi and then evaluates back to xi,
on which point it gets fed to the i-th (input) wire of C. Here, the value h is
hard-wired into Ĉ, and is considered as one of the internal wires. Further, let
N be the number of gates |Ĉ|.

2. Compute the assignment to each non-input wires in Ĉ(x1, · · · , x�): for all
i ∈ [� + 1, � + (N − 1)], compute (�i, i1, i2) ← topo(i) where �i ∈ {+,×}, and
denote the newly created values (xi)�+N−1

i=�+1 in ascending order as{
xi = xi1 + xi2 if �i = +
xi = xi1 · xi2 if �i = ×

.

3. Create a commitment (cσ, dσ) ← C.Com(pkCom, σ) of the signature σ. Further-
more, for all i ∈ [�+N −1], create a commitment (ci, di) ← C.Com(pkCom, xi)
that commits to the value of each wire in Ĉ (except for the output wire).

4. Generate a NIZK proof π proving that the committed values satisfy relation
RABS. Concretely, it generates a proof for the following conditions.8

• The attribute x = (x1, · · · , x�) committed to (ci)�
i=1 and the signature σ

committed to cσ satisfy the following verification equation:

S.Verify(vkSign,x, σ) = 1. (5)

• For all i ∈ [�+1, �+N−1], the value xi committed to ci satisfy the following
equation: {

xi = xi1 + xi2 if �i = +
xi = xi1 · xi2 if �i = ×

. (6)

6 Here, we do not explicitly define the input and output space of the hash functions,
since it may differ according to the underlying NIZK proof system being used.

7 Here, we assume that we can encode C uniquely into a binary string.
8 Note that we intentionally dismiss the conditions (c, d) ∈ DCom(pkCom, �) as in the

overview, i.e., proving knowledge of a valid opening, since they will be implicitly
proven by the fact that the committed messages satisfy Eqs. (5–7).
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• The values x(�+N)1 and x(�+N)2 committed to c(�+N)1 and c(�+N)2 , respec-
tively, satisfy the following equation:{

1 = x(�+N)1 + x(�+N)2 if ��+N = +
1 = x(�+N)1 · x(�+N)2 if ��+N = ×

. (7)

5. Finally, output Σ =
(
cσ, (ci)�+N−1

i=1 , π
)
.

Verify(mpk,M, C,Σ): Compute h ← G(M, C) and construct the circuit Ĉ as in
Step 1 of the Sign algorithm. Then, verify the proof with respect to the circuit
Ĉ. Output Valid if the proof is verified valid, and output Invalid otherwise.

Correctness. Observe that Ĉ(x) = C(x) for all M,x. Therefore, the correctness
of the scheme follows simply from the correctness of the underlying NIZK proof
system. In particular, a signer that has a certified attribute x such that C(x) = 1
can properly generate a proof proving Eqs. (5–7).

4.1 Security Analysis

Theorem 1 (Privacy). Assume a statistically hiding commitment scheme
with gap-openings and a statistically special HVZK gap-Σ-protocol for rela-
tions (RABS, R′

ABS). Then, converting the gap-Σ-protocol into a Fiat-Shamir
NIZK proof system, the above attribute-based signature scheme is statistically
private in the random oracle model. In case either the hiding property or the spe-
cial HVZK property only holds computationally, then we obtain computational
privacy.

The proof follows naturally from the zero-knowledge property of the NIZK proof
system, and is deferred the full version.

Theorem 2 (Adaptive Unforgeability). Assume a computationally hiding
and a statistically binding commitment scheme with gap openings, a compu-
tationally special HVZK gap-Σm-protocol9 for relations (RABS,R′

ABS) and an
eu-cma secure (deterministic) digital signature scheme. Then, by converting the
gap-Σm-protocol into a Fiat-Shamir NIZK proof system, the above attribute-
based signature scheme is adaptively unforgeable in the random oracle model.

Proof. Assume there exists a PPT adversary BABS that wins the adaptive
unforgeability game with advantage ε = ε(λ). Furthermore, let QH = QH(λ)
be the number of unique random oracle queries BABS makes to H(·) that is
bounded by some polynomial in the security parameter λ. Our proof proceeds in
a sequence of games, where Xi denotes the event the adversary wins in Gamei.
Our final goal is to construct an adversary BSign that breaks the eu-cma security
of the underlying digital signature scheme by using BABS. For our Fiat-Shamir
NIZK proof system, we use the ZK simulator S that we have defined in Lemma 2.
9 Here, recall that we write gap-Σm-protocol, when we make explicit of the fact that

m valid transcripts are requried for special gap-soundness to hold. Furthermore, this
notation also implies that the soundness error is negligible (See Sect. 3.1).
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Gamereal: This game is identical to the real adaptive unforgeability game where
all the random oracle queries to H(·) and G(·) are answered randomly by
the challenger. At the end of the game, BABS outputs a valid forged signature
(M∗, C∗, Σ∗) with probability Pr[Xreal] = ε.

Game1: In this game, we change the way the challenger answers the random
oracle queries to H(·) and the signing queries. Namely, we use the ZK sim-
ulator S associated to the NIZK proof system to answer these. Recall that
simulator S has two modes for running the two oracles S1 and Ŝ2. When
BABS submits a random oracle query to H(·), the challenger relays this to
oracle S1 and returns the value outputted by S1 to BABS. Here, the ran-
dom oracle queries to G(·) are answered by the Game1 challenger as in
the previous game. Furthermore, when BABS submits a signing query on an
attribute, message and circuit tuple (x,M, C) such that C(x) = 1, it first
runs skx = (x, σ) ← KeyGen(mpk,msk,x) and constructs the circuit Ĉ with
N gates using h ← G(M, C) as in Step 1 of the Sign algorithm. Then it pro-
ceeds with Step 2 and 3 to create commitments

(
cσ, (ci)�+N−1

i=1

)
along with

valid openings
(
dσ, (di)�+N−1

i=1

)
. Finally, it invokes Ŝ2 on input the statement(

Ĉ, cσ, (ci)�+N−1
i=1

)
∈ LABS

10 and obtains a proof π, and returns the signa-
ture Σ =

(
cσ, (ci)�+N−1

i=1 , π
)

to BABS. Here, the simulated proofs of Ŝ2 are
distributed negligibly close to the actual proofs in Gamereal by the definition
of the NIZK proof system (See Definition 6), and the fact that the oracles S2

and Ŝ2 are equivalent in case the statement to be proven is in the language.
Hence, |Pr[Xreal] − Pr[X1]| = negl(λ).

Game2: In this game, we change the way the challenger creates the commit-
ment for the signature σ produced during the signing query. In the previous
game, when BABS submitted a signing query on an attribute, message and
circuit tuple (x,M, C) such that C(x) = 1, the challenger created a proper
commitment cσ for the signature σ following Step 3 of the Sign algorithm,
i.e., (cσ, dσ) ← Com(pkCom, σ). In this game, however, the Game2 challenger
will instead sample a random value c in the commitment space CCom and sets
cσ = c. Then, as in Game2, it invokes Ŝ2 on input

(
Ĉ, cσ, (ci)�+N−1

i=1

)
and

obtains a proof π, and returns the signature Σ =
(
cσ, (ci)�+N−1

i=1 , π
)

to BABS.
Here, recall that oracle Ŝ2 is defined to simulate proofs for false statements
that are not in the language LABS as well. Then, the differences in the view
of the adversary in Game1 and Game2 are computationally indistinguishable
due to the computationally hiding property of the commitment scheme.11 In
other words, we have |Pr[X1] − Pr[X2]| = negl(λ).

Game3: In this game, we add an additional winning condition for adversary BABS

to satisfy. Namely, when BABS outputs a forgery (M∗, C∗, Σ∗), the Game3

10 Recall we ignore the public parameters vkSign and pkCom from the statement for
simplicity.

11 More formally, we create qsign hybrid games and swap the commitments of the sig-
nature to a random value in the commitment space one hybrid game at a time until
we have swapped every signature commitments into the desired random form, where
qsign is the number of signature queries BABS makes.
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challenger checks if the random oracle G(·) was ever queried on a message-
circuit pair (M, C) 
= (M∗, C∗) such that Ĉ = Ĉ∗. Note that this implies
G(M, C) = G(M∗, C∗). Hereafter, we say BABS wins if and only if in addition
to the winning condition of the previous game, there are no such message-
circuit pairs. Since, the output values of the random oracle G(·) are uniformly
random over {0, 1}� for � = poly(n), the probability that a collision occurs
for different message-circuit pairs is negligible. Hence, |Pr[X2] − Pr[X3]| =
negl(λ). Below, we denote ε3 = Pr[X3].

In the following, we define the algorithms A and O to be used in the forking
algorithm F

O(par,·)
A,m of the generfal multi-forking lemma with oracle access (See

Lemma 1). Looking ahead, the forking algorithm will be used by adversary BSign

to win the eu-cma security of the underlying digital signature scheme.
To provide the full description of algorithms A and O, we first define the

input generator IG, the set H and the integer q, which are required to define the
inputs for A and O. First, the input generator IG outputs (par, par) where par
constitutes of the verification key vkSign, public commitment key pkCom and any
extra auxiliary parameters required to specify the ABS scheme (e.g., the family of
circuits), and par is simply the signing key skSign. Here, vkSign, skSign and pkCom are
generated by running (vkSign, skSign) ← S.KeyGen(1λ, 1�) and pkCom ← C.Gen(1λ).
Furthermore, we define the set H to be the verifier’s challenge space CΣ of the
underlying gap-Σm-protocol, and set q as QH ; the number of unique random
oracle queries made to H(·) by BABS. To summarize, A will be given par and
h1, · · · , hQH

∈ H as input.
We next specify how algorithms A and O run. First, the deterministic algo-

rithm O is simply defined as the signing algorithm of the underlying determinis-
tic digital signature scheme; O(par, ·) = S.Sign(skSign, ·). Here, O is deterministic
since the signing algorithm is deterministic once fixed a signing key skSign. Next,
we define A as the randomized algorithm that simulates Game3 and outputs
a small modification of the forgery returned by BABS. We first explain how A
simulates Game3: A essentially runs the Game3 challenger, BABS and the ZK
simulator S internally, with two conceptual changes concerning the Game3 chal-
lenger and the ZK simulator S. In particular the Game3 challenger is modified
to an algorithm which we call the Game′

3 challenger, so that it does not run
(vkSign, skSign) ← S.KeyGen(1λ, 1�) anymore. Instead of generating (vkSign, skSign)
on its own, the Game′

3 challenger is provided with vkSign by A, and no longer
possesses skSign. Whenever the Game′

3 challenger requires to run the signing algo-
rithm S.Sign(skSign, ·), A simply invokes O(par, ·) = S.Sign(skSign, ·), which it has
oracle access to, and returns whatever output by O to the Game′

3 challenger.
Furthermore, the ZK simulator S (See Lemma 2) is modified in a way so that
it does not sample a random value hi ← CΣ when invoked on a random oracle
query to H(·). Concretely, on the i-th unique random oracle query to H(·), it
simply outputs the value hi provided by A.12 This is only a conceptual change,
12 More formally, we can think the state st provided to the ZK simulator S includes

(hi)
QH
i=1 , assuming without loss of generality that S knows the bound on the number

of query made by BABS.
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since CΣ = H and hi are sampled uniformly over H. Therefore, the above changes
do not alter the view of BABS. Hence the advantage of BABS winning the game
simulated by A is exactly the same as of Game3. Finally, we describe the out-
put of A. In particular, at the end of the simulation of Game3, BABS outputs a
valid forgery (M∗, C∗, Σ∗) where Σ∗ =

(
c∗
σ, (c∗

i )
�+N−1
i=1 , π∗) with probability ε3.

In the following let χ∗ denote the statement (Ĉ∗, c∗
σ, (c∗

i )
�+N−1
i=1 ), where Ĉ∗ is

the circuit with N gates constructed from C∗ in Step 1 of the Sign algorithm.
Since this is a valid forgery, we must have χ∗ ∈ LABS. Given the forgery of BABS,
A first parses the proof π∗ as (α∗, γ∗), where α∗, γ∗ are the commitment and
response of the underlying gap-Σm-protocol (See Definition 5), respectively. A
then checks whether H(·) was queried on (χ∗, α∗). If not it outputs (0, ε1). Oth-
erwise, there exists an index i∗ ∈ [QH ] for which the challenge H(χ∗, α∗) is set to
hi∗ . In this case, it outputs (i∗, (α∗, hi∗ , γ∗, χ∗,M∗, C∗)). Now, since A simulates
Game3 perfectly and the probability of BABS outputting a valid forgery without
knowledge of the output of H(χ∗, α∗) (i.e., the challenge) is negligible, we have

acc = Pr
[
(i∗, (α∗, hi∗ , γ∗, χ∗,M∗, C∗)) ← AO(par,·)(par, h1, · · · , hQH

) : i∗ ≥ 1
]

≥ ε3 − negl(λ), (8)

where the probability is taken over the choice of (par, par), (hi)
QH

i=1 and the ran-
domness used by A.

Finally we construct an adversary BSign against the eu-cma security of the
underlying digital signature scheme using the forking algorithm F

O(par,·)
A,m . In par-

ticular the advantage of BSign will be εm
3 /Qm−1

H − negl(λ) for a constant m.
Hence, assuming the eu-cma security of the digital signature scheme, ε3 is neg-
ligible. Therefore, since ε = ε3 ± negl(λ), we conclude that ε is negligible, thus
completing the proof. Below, let CSign be the challenger for the eu-cma game of
the underlying digital signature scheme. Also, let vkSign be the verification key
given to BSign and skSign be the signing key used by CSign to answer the signature
queries. In particular, CSign uses the signing algorithm S.Sign(skSign, ·) to answer
signature queries made be BABS. Now, given vkSign, BSign runs pkCom ← C.Gen(1λ)
and prepares par, i.e., the input to A provided by the input generator IG. This
can be done efficiently since par constitutes only of public values: vkSign, pkCom

and some other public auxiliary parameters specifying the ABS scheme. Since
the forking algorithm only requires oracle access to the deterministic algorithm
O(par, ·) = S.Sign(skSign, ·), which is provided by CSign, BSign can properly run the
forking algorithm F

O(par,·)
A,m (par) as specified. Note that par, par are distributed

exactly as the output of the input generator IG defined above. Now, due to
the general multi-forking lemma with oracle access (Lemma 1), we obtain the
following pairs with probability frk:(

1,
{
α(k), h(k), γ(k), χ(k),M(k), C(k)

}
k∈[m]

)
, (9)
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where χ(k) =
(
Ĉ(k), c

(k)
σ , (c(k)i )�+N−1

i=1

)
k∈[m]

. Here, by Eq. (1) of Lemma 1, we

have

frk ≥ acc ·
((

acc

QH

)m−1

− f(m)
|CΣ |

)
=

accm

Qm−1
H

− negl(λ), (10)

where CΣ is the output range of H(·) that is super-polynomially large, m is
a constant representing the number of valid transcripts we require to extract a
witness and f(m) is a universal positive valued function that only depends on m,
i.e., a constant value when viewed as a funtion on the security parameter λ. Now,
we argue that for all k ∈ [m], the values of the commitments α(k) and statements
χ(k) are equivalent, respectively. Let i∗ ∈ [QH ] be the index outputted by A in
the first run inside the forking algorithm F

O(par,·)
A,m (par). Then, up until the i∗-th

unique random oracle query to H(·), the behavior of BABS is the same for every
run, since we fix the randomness being used by the challenger Game′

3, BABS

and the ZK simulator S. This implies that whatever submitted by BABS on the
i∗-th unique random oracle query to H(·), which is the pair (α(k), χ(k)), must
be the same in every run. Let us denote this as (α∗, χ∗ = (Ĉ∗, c∗

σ, (c∗
i )

�+N−1
i=1 )).

Therefore, by running F
O(par,·)
A,m (par), BSign obtains m valid transcript of the form(

α∗, h(k), γ(k), χ∗,M∗, C∗)
k∈[m]

where M∗, C∗ are the same in every run as well,

due to the winning condition we added in Game3 and the fact that Ĉ∗ is the
same in every run.

Next, we show that BSign can properly extract a witness from the valid tran-
scripts using the knowledge extractor of the underlying gap-Σm-protocol (See
special gap-soundness of Definition 4). Recall that the range of the random ora-
cle H(·) is CΣ = {0, 1, · · · ,m − 1}t for some constant m and an integer-valued
function t that is poly-logarithmic in the security parameter λ. Now, by Defi-
nition 4, in order to extract a witness there needs to exist at least one index
j ∈ [t] such that {h

(k)
j }k∈[m] = {0, 1, · · · ,m − 1}. Since each h(k) are sampled

uniformly random over CH = {0, 1, · · · ,m−1}t, the probability of no such j ∈ [t]
existing is (1− m!

mm )t, which is negligible in the security parameter for our choices
of m, t. Therefore, with all but negligible probability, BSign is able to extract a
witness (x∗, σ∗, d∗

σ, (d∗
i )

�+N−1
i=1 ) in the gap-language L′

ABS from the m valid tran-
scripts. Furthermore, since we use a statistically binding commitment scheme,
the (x∗, σ∗) pair extracted from the transcripts are the actual pairs used by BABS

to create a forgery, with all but negligible probability.
Finally, we show that (x∗, σ∗) is a valid signature forgery that allows BSign to

win the eu-cma game between the challenger CSign. Namely, we show that x∗ was
never queried as the key reveal query by BABS in all of the m runs of A. Note that
the only situation A invokes the signing oracle O(par, ·) = S.Sign(skSign, ·) is when
BABS submits a key reveal query to the Game′

3 challenger. This is because we
altered the game in Game2 so that the ZK simulator is used to answer the signing
queries made by BABS. Now, since BABS outputs a valid forgery we have Ĉ∗(x∗) =
1. Then, by the way we construct Ĉ∗(x∗) in Step 1 of the Sign algorithm, we have
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C(x∗) = 1 as well. On the other hand, due to the winning condition of BABS,
BABS must have never made a key reveal query on x∗ such that C∗(x∗) = 1 (in
any of the runs). Therefore, we conclude that x∗ was never queried to the Game′

3

challenger by BABS in any of the runs of A; (x∗, σ∗) is a valid forgery. Hence,
combining Eqs. (8) and (10), the advantage of BSign is εm

3 /Qm−1
H − negl(λ).

4.2 Implications

Since a computationally hiding and statistically binding commitment scheme,
a deterministic digital signature scheme and a computationally special HVZK
Σ-protocols for any NP-language are all implied from one-way functions (See for
example [Nao91,Rom90,PSV06]), we obtain the following lemma as an implica-
tion of our above result:

Lemma 3. If one-way functions exist, then there exist computationally private
and adaptive unforgeable attribute-based signature schemes for unbounded cir-
cuits in the random oracle model.

5 ABS for Unbounded Circuits from Lattices

In this section, we provide an efficient instantiation of our generic ABS construc-
tion for unbounded circuits from lattices. In particular, we prepare a lattice-based
signature scheme and a commitment scheme with gap-openings, and construct
an associating lattice-based gap-Σ-protocol for the relation RABS. We believe our
gap-Σ-protocol for proving possession of a valid signature, which departs from
the previously known stern-type protocol of [LNSW13], to have applications in
other contexts such as group signatures.

5.1 Preparing Tools

We present the underlying lattice-based digital signature scheme and commit-
ment scheme with gap-openings that we use as building blocks for our lattice-
based ABS scheme.

Digital Signature Scheme. Here, we review the lattice-based digital signature
scheme of Boyen [Boy10] with an improved security reduction by [MP12]. Below,
we provide a deterministic version of Boyen’s signature scheme, where the signing
algorithm uses a PRF for generating the required randomness. We defer the
formal definition of lattices and PRFs to the full version. In the following, by
lattice convention, we use the dimension of the lattice n to denote the security
parameter.

Theorem 3. Let n,m, q be positive integers such that m ≥ 2n log q. Let α, β
be positive reals such that α = Ω(

√
�n log q log n) and β = αω(

√
log m). Then,

the following algorithms (S.KeyGen,S.Sign,S.Verify) form a deterministic digital
signature scheme with message space M = {0, 1}� that is eu-cma secure under
hardness of the SIS∞

n,m,q,�Õ(n)
problem.
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S.KeyGen(1n, 1�): It samples a matrix A ∈ Z
n×m
q with a trapdoor TA ∈ Z

m×m

using algorithm TrapGen(1n, 1m, q). It also samples matrices Ai ← Z
n×m
q

for i ∈ [0, �], a vector u ∈ Z
n
q and generates a seed for a PRF by running

r ← PRF.Gen(1n). Finally it outputs the verification key vk and signing key
sk as

vk = (A,A0, · · · ,A�,u), sk = (TA, r).

S.Sign(sk,x): On input the message x ∈ {0, 1}�, it first constructs the matrix
Ax = A0 +

∑�
i=1 xiAi ∈ Z

n×m
q , where xi is the i-th bit of x. Then using

TA, it samples a short vector z ∈ Z
2m such that [A|Ax]z = u mod q using

algorithm SampleLeft(A,Ax,u,TA, α), where the output of PRF.Eval(r,x) is
used as the randomness. Finally, it outputs σ = z as the signature.

S.Verify(vk,x, σ): It first checks that x ∈ {0, 1}�. Next, it checks whether
[A|Ax]z = u mod q and ‖z‖∞ ≤ β. It outputs 1 if all the above check passes,
otherwise it outputs 0.

Commitment Scheme. Here, we present the commitment scheme of [XXW13]
with minor modification. In the following let [·||·] denote the vertical concatena-
tion of vectors.

Theorem 4. Let n, m̄, q be positive integers such that m̄ ≥ 3n, q a prime. Fur-
ther, let γ, γ′ be positive reals such that q ≥ (4γ + 1)2 and γ ≥ γ′ω(log n).13

Then, the following algorithms (C.Gen,C.Com,C.Open) form a computationally
hiding and statistically binding commitment scheme with gap openings under the
hardness of the LWEn,m̄,q,DZ,γ

problem. Here the message space M is Zq and the
commitment space C is Z

m̄
q .

C.Gen(1n): It samples B ← Z
(n+1)×m̄
q and outputs pk = B.

C.Com(pk,M): For a message M ∈ Zq, it samples a random vector s ← Z
n
q .

Then, it samples e ← DZm̄,γ′ until ‖e‖∞ ≤ γ holds.14 Finally, it outputs
(c, d) = (B�[s||M] + e mod q, (s, e)).

C.Open(pk,M, c, d): It first checks if M ∈ Zq. It then parses d = (s, e) and checks
if c = B�[s||M] + e mod q and ‖e‖∞ ≤ 2γ hold. If all the check passes it
outputs 1, otherwise it outputs 0.

Observe that the above commitment scheme has gap-openings; although the
commitment algorithm C.Com only samples vectors e such that ‖e‖∞ ≤ γ, the
opening algorithm C.Open accepts e such that γ < ‖e‖∞ ≤ 2γ as well.

Furthermore, [XXW13] provides three gap-Σ-protocols for proving useful
relations over committed values: ΣOpen for proving knowledge of a valid opening
and ΣAdd, ΣMult

15 for proving arithmetic relations (over Zq) of committed values.
13 Here, we use Lemma 4 of [LLNW14] instead of Lemma 1 of [XXW13] to optimize

the required parameters of the commitment scheme.
14 For our parameter selection, this procedure will end in a constant number of trials

with all but negligible probability.
15 In their paper, they present two protocols for proving arithmetic relations, however,

in our paper we only consider the more efficient protocol in [XXW13], Sect. 4.3.
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We additionally construct one useful gap-Σ-protocol ΣEqTo� for proving that
a commitment opens to a specific value. The details of the construction are
provided in the full version. Then, the above commitment scheme is equipped
with the following four basic gap-Σ-protocols.

Theorem 5. The commitment scheme with gap openings in Theorem 4 has
associating computationally special HVZK gap-Σ-protocols (ΣOpen, ΣEqTo�, ΣAdd,
ΣMult) for the following four relations:

ROpen = {(pk, c), (M, d) | (c, d) ∈ DCom(pk,M)},

REqTo� = {(pk, c,M), d | (c, d) ∈ DCom(pk,M)},

RAdd = {(pk, (ci)3i=1), ((Mi, di)3i=1) | M3 = M1 + M2

∧ (ci, di) ∈ DCom(pk,Mi) for i ∈ [3]},

RMult = {(pk, (ci)3i=1), ((Mi, di)3i=1) | M3 = M1 · M2

∧ (ci, di) ∈ DCom(pk,Mi) for i ∈ [3]}.

The gap-relations (Σ′
Open, Σ

′
EqTo�, Σ

′
Add, Σ

′
Mult) are defined similarly except that

the set DG-Com is used instead of DCom.

The above gap-Σ-protocols of [XXW13] additionally require internally a
standard commitment scheme, which is used by the prover in the first round
to send a commitment to the verifier. Although, we can use the commitment
scheme of [XXW13] provided above, we use the more efficient lattice-based com-
mitment scheme of Kawachi et al. [KTX08] to instantiate the gap-Σ-protocols.
In this case, the communication costs of ΣOpen, ΣEqTo� are ω(m̄ log q log γ log n)
and ΣAdd, ΣMult are ω(m̄ log3 q log γ log n).

Remark 1. The above four basic gap-Σ-protocols can be composed in parallel
to obtain a gap-Σ-protocol for larger relations, e.g., provided with commitments
(ci)4i=1 of the values (Mi)4i=1 satisfying M4 =

∑3
i=1 Mi, we can prove this relation

by creating one extra auxiliary commitment caux for Maux = M1+M2 and running
two ΣAdd in parallel for the statement pairs (pk, c1, c2, caux) and (pk, caux, c3, c4).

5.2 ABS for Unbounded Circuits Based on Lattices

To instantiate the generic ABS construction in Sect. 4 from lattices, it is suffi-
cient to prove that the above digital signature scheme and commitment scheme
are equipped with a gap-Σ-protocol for the relation RABS. Therefore, below we
aim at constructing a gap-Σ protocol for proving Eqs. (5)–(7) in our ABS con-
struction, where the attribute x and Boyen signatures σ are committed using
the commitment scheme of [XXW13]. Here, taking the above Remark 1 into con-
sideration, a gap-Σ-protocol for proving Eqs. (6) and (7), which are essentially
proving that the circuit is computed correctly, can be constructed by simply com-
posing the basic gap-Σ-protocols ΣEqTo�, ΣAdd, ΣMult in parallel. In more detail,
we use ΣAdd and ΣMult to prove that we computed each gates correctly, and
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use ΣEqTo� to prove that the value associated to the output wire is equal to 1.
Therefore, in the following, we only focus on how to construct a gap-Σ-protocol
for proving Eq. (5); we construct a gap-Σ-protocol for proving possession of a
valid Boyen-signature using ΣEqTo�, ΣAdd, ΣMult. Here, we stress that we cannot
simply use the gap-Σ-protocol for proving possession of a valid Boyen-signature
of [LNSW13] for our purpose, since their protocol does not allow us to efficiently
prove possession of messages satisfying complex arithmetic relations.16 In other
words, since Eqs. (5) and (6) share the same witness x = (x1, · · · , x�), we will
not be able to combine the different types of gap-Σ-protocols of [LNSW13] and
[XXW13] to construct a gap-Σ protocol for the relation RABS.

To summarize, our goal is to construct a gap-Σ-protocol for proving pos-
session of a valid Boyen signature σ = z = [z1, · · · , z2m]� ∈ Z

2m, where x
= (x1, · · · , x�) ∈ {0, 1}� is viewed as the message, provided the verification key
vkSign and the commitments to the signature σ and message x. Then, since the
basic gap-Σ-protocols of Theorem 4 allows for parallel composition, our desired
gap-Σ-protocol for the relation RABS is obtained by composing the gap-Σ pro-
tocol for the Boyen signature with the gap-Σ-protocols for Eqs. (6) and (7)
together. Below, we assume the commitment cσ of the signature is provided in
the form (c̄k)k∈[2m] where each c̄i is a commitment of the k-th element zk ∈ Z of
z (viewed as an element in Zq), and the commitment of the message cx is pro-
vided in the form (ci)i∈[�] where each ci is a commitment of the value xi ∈ {0, 1}.
Now, due to the verification algorithm of the Boyen signature scheme, proving
a signature is valid is equivalent to proving the following three statements:

x ∈ {0, 1}� ⇐⇒ xi ∈ {0, 1} for i ∈ [�], (11)
‖z‖∞ ≤ β ⇐⇒ |zk| ≤ β for k ∈ [2m], (12)[
A|A0 +

�∑
i=1

xiAi

]
z = u mod q. (13)

Below we construct gap-Σ-protocols respectively for the above equations by
converting each of them into an arithmetic circuit, and using the basic gap-Σ-
protocols provided in Theorem 4 as building blocks to prove the satisfiability of
each circuit.

Gap-Σ-Protocol for Proving Eq. (11). It is sufficient to prove that for every
i ∈ [�], the commitment ci ← C.Com(pk, xi) opens to either 0 or 1. To do so, we
first create auxiliary commitments czero ← C.Com(pk, 0) and gi ← C.Com(pk, x2

i )
for i ∈ [�]. Then using the commitments (ci)i∈[�] and the auxiliary commitments,
and combining the basic gap-Σ-protocols ΣEqTo�, ΣAdd and ΣMult together, we
construct a gap-Σ-protocol for proving the following statement for all i ∈ [�]:

czero opens to 0 ∧ x2
i = xi · xi ∧ 0 = x2

i − xi

16 The subsequent works of [LLM+16,YAL+17] allow proving possession of a valid
Boyen-signature while also proving possession of messages satisfying some simple
arithmetic relations. However, their protocols are not strong enough to prove arbi-
trary circuits in zero-knowledge.
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Since all arithmetic operations are over the finite field Zq, the only xi that satisfy
the above relations are xi = 0 or 1. Therefore, the above gap-Σ-protocol indeed
proves Eq. (11). The total communication cost is ω(�m̄ log3 q log γ log n)17.

Gap-Σ-Protocol for Proving Eq. (12). Here, for simplicity of the protocol, we
assume that β can be written as 2ζ −1 for some positive integer ζ. Equivalently,
ζ = log(β+1). This does not harm the efficiency nor the security of the signature
scheme by much, since given any β, there always exists a value of the form 2ζ −1
in between β and 2β.

First, we prepare some notations. For k ∈ [2m], let zk,j be the j-th bit
of the binary representation of zk ∈ Z for j ∈ [ζ]. Note that, we extend the
standard binary decomposition to negative integers as well in the obvious way.
In particular, we can bit decompose any zk ∈ [−β, β] as zk =

∑ζ
j=1 2j−1zk,j ,

where zk,j ∈ {−1, 0, 1}.18 Further, set wk,j = 2j−1zk,j for j ∈ [ζ] and
wk,[j′] =

∑j′

j=1 wk,j for j′ ∈ [2, ζ]. Finally, define wk,[1] = wk,1. Next, cre-
ate the following auxiliary commitments for k ∈ [2m]: czero ← C.Com(pk, 0),
ccoeff,j ← C.Com(pk, 2j−1), c̄k,j,μ ← C.Com(pk, zμ

k,j), hk,j ← C.Com(pk, wk,j) for
μ ∈ [3], j ∈ [ζ], and hk,[j′] ← C.Com(pk, wk,[j′]) for j′ ∈ [2, ζ]. Then, using the
commitments (c̄k)k∈[2m], the auxiliary commitments and composing the gap-Σ-
protocols ΣEqTo�, ΣAdd and ΣMult together, we construct a gap-Σ-protocol for
the following statement for all k ∈ [2m], j ∈ [ζ] and j′ ∈ [2, ζ]:19

czero opens to 0 ∧ ccoeff,j opens to 2j ∧ z2k,j = zk,j · zk,j ∧ z3k,j = z2k,j · zk,j ∧
0 = z3k,j − zk,j ∧ wk,j = 2j−1 · zk,j ∧ wk,[j′] = wk,j′ + wk,[j′−1] ∧ 0 = zk − wk,[ζ].

We check that the above statement is equivalent to Eq. (12), i.e., each zk

satisfy |zk| ≤ β for all k ∈ [2m]. First, since q is a prime, the only zk,j

satisfying z3k,j − zk,j = 0 over Zq are −1, 0, 1. Hence, the above statement
proves that zk,j ∈ {−1, 0, 1}. Furthermore, when zk,j ∈ {−1, 0, 1}, we have
|zk| ≤

∑ζ
j=1 2j−1 |zk,j | ≤ 2ζ−1 = β. Therefore, if the above statement holds,

then we must have |zk| ≤ β for all k ∈ [2m]. The total communication cost is
ω(mm̄ log β log3 q log γ log n).

Gap-Σ-Protocol for Proving Eq. (13). We first prepare some notations. Let
as,k (resp., ai,s,k) denote the (s, k1)-th (resp., (s, k2 − m)-th) entry of A (resp.,
Ai) ∈ Z

n×m
q , for s ∈ [n], k1 ∈ [m] (resp., k2 ∈ [m + 1, 2m]) and i ∈ [0, �]. Then,

observe that we can rewrite Eq. (13) using the following equations for s ∈ [n]:

17 Note that ω(f(X)) denotes any function that grows asymptotically faster than
f(X), e.g., log2(X) = ω(log(X)).

18 A subtly is that unlike standard bit decomposition, the bit representation is not
unique anymore, e.g., 11 can be decomposed as (1, 1, 0, 1) or (−1, 0, 1, 1). However,
this will not affect our following argument.

19 Since we prove czero opens to 0 in the above gap-Σ-protocol for proving Eq. (11),
we will not require this when we compose the gap-Σ-protocols together. The same
holds for the aforementioned gap-Σ-protocol for proving Eq. (13).
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m∑
k1=1

as,k1 · zk1 +
2m∑

k2=m+1

(
a0,s,k2 +

�∑
i=1

xi · ai,s,k2

)
· zk2 = us (14)

Next, we prepare some auxiliary values for s ∈ [n] in order to prove the above
equations using the gap-Σ-protocols ΣEqTo�, ΣAdd and ΣMult: wi,s,k2 = xi ·ai,s,k2 ,
w[i′],s,k2 =

∑i′

i=1 wi,s,k2 , as,k2 = a0,s,k2 + w[�],s,k2 for i ∈ [�], i′ ∈ [2, �],

k2 ∈ [m+1, 2m], bs,k = as,k ·zk for k ∈ [2m], bs,[k′] =
∑k′

k1=1 bs,k1 for k′ ∈ [2,m],

bs,[k′] =
∑k′

k2=m+1 bs,k2 for k′ ∈ [m+2, 2m] and ts = bs,[m]+bs,[2m]. Further define
w[1],s,k2 = w1,s,k2 , bs,[1] = bs,1 and bs,[m+1] = bs,m+1. Next, we create auxiliary
commitments for the related values for s ∈ [n]: cmat,s,k1 ← C.Com(pk, as,k1),
cmat,i,s,k2 ← C.Com(pk, ai,s,k2) for i ∈ [0, �], k1 ∈ [m], k2 ∈ [m + 1, 2m], ωi,s,k2 ←
C.Com(pk, wi,s,k2), ω[i′],s,k2 ← C.Com(pk, w[i′],s,k2), αs,k2 ← C.Com(pk, as,k2) for
i ∈ [�], i′ ∈ [2, �], k2 ∈ [m + 1, 2m], βs,k ← C.Com(pk, bs,k) for k ∈ [2m],
βs,[k′] ← C.Com(pk, bs,[k′]) for k′ ∈ [2,m]∪ [m+2, 2m]. Then, using the commit-
ment (ci)�

i=1, (c̄k)k∈[2m], the auxiliary commitments and composing the gap-Σ-
protocols ΣEqTo�, ΣAdd and ΣMult together, we construct a gap-Σ-protocol for the
following statement for all s ∈ [n], i ∈ [�], i′ ∈ [2, �], k1 ∈ [m], k2 ∈ [m + 1, 2m],
k ∈ [2m], k′ ∈ [2,m] ∪ [m + 2, 2m]:

czero opens to 0 ∧
cmat,s,k1 , cmat,0,s,k2 , cmat,i,s,k2 opens to as,k, a0,s,k, ai,s,k, respectively ∧
wi,s,k2 = xi · ai,s,k2 ∧ w[i′],s,k2 = wi′,s,k2 + w[i′−1],s,k2 ∧
as,k2 = a0,s,k2 + w[�],s,k2 ∧ bs,k = as,k · zk ∧ bs,[k′] = bs,k′ + bs,[k′−1] ∧
ts = bs,[m] + bs,[2m] ∧ 0 = us − ts

The above statement can be checked that it is equivalent to proving Eq. (14) for
s ∈ [n]. The total communication cost is ω(�nmm̄ log3 q log γ log n).

Gap-Σ-Protocol for RABS. To summarize, we obtain a gap-Σ-protocol for
proving possession of a valid Boyen signature by composing the gap-Σ-protocols
for proving Eqs. (11–13) together. Then, by composing this protocol with the
aforementioned gap-Σ-protocols for proving Eqs. (6) and (7), we obtain our
desired gap-Σ-protocol for the relation RABS where the total communication
cost is ω((m(�n + log β) + |C|)m̄ log3 q log γ log n). Here, |C| is size of the circuit
(i.e., policy) associated to the message. Thus, we obtain our lattice-based ABS
scheme for unbounded circuits in the random oracle model by instantiating the
generic ABS construction in Sect. 4 with our gap-Σ protocol for RABS.
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Abstract. Structure Preserving Signatures (SPS) allow the signatures
and the messages signed to be further encrypted while retaining the
ability to be proven valid under zero-knowledge. In particular, SPS are
tailored to have structure suitable for Groth-Sahai NIZK proofs. More
precisely, the messages, signatures, and verification keys are required to
be elements of groups that support efficient bilinear-pairings (bilinear
groups), and the signature verification consists of just evaluating one or
more bilinear-pairing product equations. Since Groth-Sahai NIZK proofs
can (with zero-knowledge) prove the validity of such pairing product
equations, it leads to interesting applications such as blind signatures,
group signatures, traceable signatures, group encryption, and delegat-
able credential systems.

In this paper, we further improve on the SPS scheme of Abe, Hofheinz,
Nishimaki, Ohkubo and Pan (CRYPTO 2017) while maintaining only an
O(λ)-factor security reduction loss to the SXDH assumption. In partic-
ular, we compress the size of the signatures by almost 40%, and reduce
the number of pairing-product equations in the verifier from fifteen to
seven. Recall that structure preserving signatures are used in applica-
tions by encrypting the messages and/or the signatures, and hence these
optimizations are further amplified as proving pairing-product equations
in Groth-Sahai NIZK system is not frugal. While our scheme uses an
important novel technique introduced by Hofheinz (EuroCrypt 2017),
i.e. structure-preserving adaptive partitioning, our approach to building
the signature scheme is different and this leads to the optimizations men-
tioned. Thus we make progress towards an open problem stated by Abe
et al. (CRYPTO 2017) to design more compact SPS-es with smaller
number of group elements.
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1 Introduction

Structure-Preserving Signatures (SPS), introduced in [AFG+10], allow the sig-
natures and the messages signed to be further encrypted while retaining the
ability to be proven valid under zero-knowledge. In particular, SPS are tailored
to have structure suitable for Groth-Sahai NIZK proofs [GS12]. More precisely,
the messages, signatures, and verification keys are required to be elements of
groups that support efficient bilinear-pairings (bilinear groups), and the signa-
ture verification consists of just evaluating one or more bilinear-pairing product
equations. Since GS-NIZK proofs can (with zero-knowledge) prove the valid-
ity of such pairing product equations, it leads to interesting applications such
as blind signatures [AO09,AFG+10], group signatures [AHO10], traceable sig-
natures [ACHO11], group encryption [CLY09], and delegatable credential sys-
tems [Fuc11].

While there is a long sequence of works starting with Groth in 2006 [Gro06],
and with the formalization of definition of SPS in [AFG+10], recently there
have been major efficiency improvements in terms of signature size, number of
pairing-product equations and verification time [KPW15,LPY15,JR17]. With
the exception of [HJ12], most of these works that are based on static assumptions
such as SXDH or k-LIN, incur a security reduction loss of factor O(q) or even
O(q2), where q is the number of signature queries. Recently, in a remarkable
work, Abe et al. [AHN+17] show a SPS scheme which is quite compact and
yet has only a O(λ) factor security loss, where λ is the security parameter1.
The security is based on the SXDH assumption in asymmetric bilinear-pairing
groups, which is essentially the decisional Diffie-Hellman (DDH) assumption in
each of the two asymmetric groups.

In this work, we further improve on the SPS scheme of [AHN+17] while main-
taining only a O(λ)-factor security reduction loss. In particular, we compress the
size of the signatures by almost 40% of that in [AHN+17], and reduce the number
of pairing-product equations in the verifier from fifteen to seven (see Table 1 for
more details). Recall, structure-preserving signatures are used in applications by
encrypting the messages and/or the signatures, and hence these optimizations
are further amplified as proving pairing-product equations in Groth-Sahai NIZK
system is not frugal. While our scheme uses an important novel technique intro-
duced in [AHN+17], i.e. structure-preserving adaptive partitioning, our approach
to building the signature scheme is different and this leads to the optimizations
mentioned. It was mentioned as an open problem in [AHN+17] to design more
compact SPSes with smaller number of group elements.

At a high level, signature schemes usually encrypt a secret and prove in
zero-knowledge that such a secret is encrypted in the signature. Since we con-
sider security under chosen-message attacks (EUF-CMA), this entails some type
of simulation-soundness requirement on the zero-knowledge proof. For example,
the encryption scheme may then be required to be CCA2. In the standard model,

1 The work of [HJ12] only encountered a constant factor security loss. However, the
scheme produces signatures that require hundreds of group elements.
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Table 1. Comparison with existing SPS schemes with table adapted from [AHN+17].
(n1, n2) denotes n1 G1 elements and n2 G2 elements. The table gives message, signature
and public key sizes and finally the security loss in the reduction to the listed assump-
tion(s). For [HJ12], the parameter d limits number of signing to 2d. The parameters q
and λ represent the number of signing queries and the security parameter, respectively.

|M | |σ| |pk| Sec. loss Assumption

[HJ12] 1 10d + 6 13 8 DLIN

[ACD+12] (n1, 0) (7, 4) (5, n1 + 12) O(q) SXDH, XDLIN

[ACD+12] (n1, n2) (8, 6) (n2 + 6, n1 + 13 O(q) SXDH, XDLIN

[LPY15] (n1, 0) (10, 1) (16, 2n1 + 5) O(q) SXDH, XDLIN

[KPW15] (n1, n2) (7, 3) (n2 + 1, n1 + 7) O(q2) SXDH

[KPW15] (n1, 0) (6, 1) (0, n1 + 6) O(q2) SXDH

[JR17] (n1, 0) (5, 1) (0, n1 + 6) O(q log q) SXDH

[AHN+17] (n1, 0) (13, 12) (18, n1 + 11) O(λ) SXDH

[AHN+17] (n1, n2) (14, 14) (n2 + 19, n1 + 12) O(λ) SXDH

This paper (n1, 0) (11, 6)a,b (7, n1 + 16) O(λ) SXDH

This paper (n1, n2) (12, 8) (n2 + 8, n1 + 17) O(λ) SXDH
a Based on the optimization in Sect. 5.2; otherwise (11, 7).
b The batched-pairing optimization of Sect. 5.3 has (12, 7).

CCA2 encryption schemes have more or less followed two paradigms: (a) The
Naor-Yung paradigm [NY90] of double CPA encryption, and a simulation-sound
NIZK proof that the double encryption is valid [Sah99], or (b) An augmented
ElGamal Encryption (reminiscent of [Dam92]) along with a hash proof that the
augmentation is valid [CS98]. However until very recently, known solutions to
both these approaches have had two limitations, i.e. these schemes were inher-
ently tag-based and hence not amenable to structure-preservation, and further
they had at least O(q)-factor security loss in reduction to standard assumptions.
In the context of signature schemes, IBEs and CCA2-encryption, a recent flurry
of works [CW13,BKP14,LPJY15,AHY15,GHKW16,Hof17], starting with Chen
and Wee’s almost tightly-secure IBE scheme [CW13], do manage to handle the
second concern but these works (except one) rely on tag-based approaches2, and
hence do not lead to (almost) tightly-secure SPS. The one exception being the
recent work [AHN+17] mentioned above. The work [AHN+17] however does
build on earlier string of works in obtaining tight-security, and in particular
it enhances a technique of [Hof17], called adaptive-partitioning, so as to enable
structure-preservation.

2 A tag is usually either computed using a 1-1 or collision-resistant function or is
chosen afresh at random. In some cases it is clear that the resulting scheme is not
SPS, but there are cases of the latter variety [KPW15,LPY15,JR17] that lead to
SPS, but where it is not clear if a tight reduction can be obtained or not.
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We now briefly discuss message-space partitioning techniques, which is used
in both [AHN+17] and our new SPS. Chen and Wee consider partitioning the
message space (resp. identity space in IBEs) repeatedly into two sets based on
a bit derived from the message or a tag. In this iterative reduction process, they
adjust signatures for messages in one of the two sets so that after logarithmic
number of steps (say, in the size of the tag space) all modified signatures hide
the secret. The partitioning scheme is however based on the message or tag, and
hence this does not lead to structure-preserving signatures. Hofheinz [Hof17]
introduced “adaptive partitioning” in which the partitioning is decided dynam-
ically based on an encrypted partitioning-bit embedded in the signature. This
leads to public-keys that are constant sized (as opposed to O(λ)-sized), but the
strategy is still “tag”-based, and hence not structure-preserving.

In [AHN+17], simulation-soundness (for the Naor-Yung encryption
paradigm) is achieved using Groth-Sahai NIZK proofs for “OR”-systems. The
scheme has almost tight-security reduction due to adaptive partitioning and yet
it is structure-preserving as tags (or hashes) are not used. Very concisely, the
public-key contains a commitment to a bit x which is initially set to zero. Each
signature also contains an encryption of a bit y, which is set arbitrarily in the
scheme (i.e. real world). The “OR” system proves that either y == x or the dou-
ble encryptions of the secret are consistent. Simulation-soundness is achieved by
ensuring that inconsistent double encryptions are only generated in signatures
where the simulator was able to ensure y = x. This requires an intricate sequence
of reduction steps where yi (i.e. y in i-th signature) is first set to M i

j (i.e. the
j-bit in the message M i) and x is set to be the complement of a guess of y∗

(i.e. adversary’s y). Since x �= y∗ with probability at least half, this enforces
soundness of consistency of double encryption, and the result follows by com-
plexity leveraging. The security argument also requires enacting a strategy of
“dynamically” augmenting/strengthening the language that is verified.

In our work, we advantageously use simple split-CRS3 (quasi-adaptive) QA-
NIZK for affine languages introduced in [JR13], wherein the verifier CRS does
not depend on the affine component of an affine language. This greatly sim-
plifies the security proof while also yielding smaller signatures and verification
(PPE) equation sizes. In particular, we do not employ the strategy of augment-
ing/strengthening the language that is verified, but more or less follow the strat-
egy of obtaining signature schemes using augmented ElGamal encryption along
with hash proofs. Moreover, using the enhanced adaptive partitioning technique
of [AHN+17] we are able to do this without using tags or hashes of messages and
hence our scheme is structure-preserving and simultaneously (almost) tightly-
secure. The strategy of obtaining SPS from split-CRS QA-NIZK for affine lan-
guages was first used in [JR17], but that scheme incurred an O(q log q)-factor loss
in security in reduction to the SXDH assumption. Another advantage of using
the split-CRS QA-NIZK of [JR13] is that it is also true-simulation sound (i.e. it is

3 In a split-CRS QA-NIZK, the CRS can be split into two parts, a prover CRS and a
verifier CRS. to prove a statement only the prover CRS is required, and to verify a
statement and its proof only the verifier CRS is required.
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unbounded simulation-sound when the simulator only issues proofs on true state-
ments), and this allows us to give an SPS that does not need discrete logarithm
of message (group) elements. This was required in the construction of [AHN+17],
and thus the final scheme required boot-strapping using a Partial One-time Sig-
nature (POS) scheme (or more complicated GS-NIZK proofs of PPEs). Moreover,
while [AHN+17] also use the POS for boosting an SPS for a single coordinate
message to an SPS for vector messages, we directly construct our SPS for mes-
sage vectors, which saves us a couple of elements in the signature. We leverage
the constant size of QA-NIZKs to achieve this saving. In order to maintain O(λ)
security we first map the message vector to an O(λ)-length bit-string and then
let the reduction games hop through each bit position of this bit-string.

Our scheme also utilizes Groth-Sahai NIZK proofs for “OR”-systems. In par-
ticular, we follow [AHN+17] by having a commitment to bit x in the public-key,
and including an encryption of bit y in each signature. The “OR” system now
proves that either x == y or the augmentation in augmented ElGamal encryp-
tion is correct. In other words, the signature contains ρ = gr, ρ̂ = gbr, and an
(ElGamal) encryption of a secret k0 using randomness r (and ElGamal secret
key d). In Cramer-Shoup CCA2-encryption scheme the hash proof system proves
that ρ and ρ̂ are consistent, i.e. ρ̂ = ρb where gb is in the public-key. Here we
prove the same using Groth-Sahai NIZK and further only as a consequent of
x �= y. At a high level, the security reduction works iteratively as follows (for
simplicity, assume that the discrete log m of each message M is available to the
simulator): in each round j, yi is set to mi

j . Next x is guessed to be the comple-
ment of y∗. With probability half the guess is correct, and then only in messages
where yi

j == x the simulator uses a DDH challenge to replace d = d1 + b · d2 by
d′ = d1 + b′ · d2. This of course requires soundness of ρ̂∗ = (ρ∗)b, which would
indeed hold because the guess x is not equal to y∗, and further one can easily
switch between Groth-Sahai binding and hiding commitments as all “OR”-proofs
in signed messages always remain true. The security proof requires careful use
of pairwise independence to replace k0 by a random function of the prefix of the
message bits mi

≤j , but otherwise uses standard arguments.
We now briefly remark about the efficiency implications of tight-security

reductions. For standard bilinear pairings groups, this point has been well argued
in [AHN+17], where for instance the authors point out that the next standard
level of security for pairings friendly groups from 128-bit security is 192-bits or
256-bits. Moreover, as SPS schemes are just building blocks for applications, the
loss in efficiency is amplified. The authors point out that computing a pairing
in the 192-bit security level is slowed by a factor of 6 to 12 as compared to
those in 128-bit security levels. As shown in Table 2, with batching of pairings
computations in the various pairing-product equations required for signature
verification, both [AHN+17] and our new construction has only at most 2.5 factor
more pairings than the most efficient [JR17] non-tight scheme. Thus, our scheme
(or the [AHN+17] scheme) running at 128-bit security can verify 2.5 to 4.5 times
faster than [JR17] running at 192-bit security. Moreover, our new scheme has
signatures that are shorter than [AHN+17] by a factor of 2/3 (see Table 1).
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Table 2. Comparison of factors relevant to computational efficiency in SPS schemes
with smaller signature sizes. Third column indicates the no. of scalar multiplications
in G1,G2 for signing. Multi-scalar multiplications are counted with a weight 1.5.
For [JR17] a constant pairing is included. Column “Batched” shows the no. of pairings
in a verification when pairing product equations are aggregated by batch verification
techniques [BFI+10].

|M | #(s.mult) #(PPEs) #(Pairings)

in signing Plain Batched

[KPW15] (6, 1) 3 n1 + 11 n1 + 10

[JR17] (6, 1) 2 n1 + 8 n1 + 6

[AHN+17] (n1, 0) (15, 15) 15 n1 + 57 n1 + 16

This paper (13.5, 7.5) 7 n1 + 33 n1 + 22

This paper, Sect. 5.3 (15, 8.5) 10 n1 + 39 n1 + 16

[KPW15] (8, 3.5) 4 n1 + n2 + 15 n1 + n2 + 14

[AHN+17] (n1, n2) (17.5, 16) 16 n1 + n2 + 61 n1 + n2 + 18

This paper (15, 8.5) 8 n1 + n2 + 4 n1 + 24

This paper, Sect. 5.3 (16.5, 9.5) 11 n1 + n2 + 43 n1 + n2 + 18

2 Preliminaries

We will consider cyclic groups G1,G2 and GT of prime order q, with an efficient
bilinear map e : G1 ×G2 → GT . Group elements g1 and g2 will typically denote
generators of the group G1 and G2 respectively. Following [EHK+13], we will use
the notations [a]1, [a]2 and [a]T to denote ag1, ag2, and a · e(g1,g2) respectively
and use additive notations for group operations. When talking about a general
group G with generator g, we will just use the notation [a] to denote ag. The
notation generalizes to vectors and matrices in a natural component-wise way.

For two vector or matrices A and B, we will denote the product A�B as
A · B. The pairing product e([A]1, [B]2) evaluates to the matrix product [AB]T
in the target group with pairing as multiplication and target group operation as
addition.

We recall the Matrix Decisional Diffie-Hellman or MDDH assumptions from
[EHK+13]. A matrix distribution Dl,k, where l > k, is defined to be an effi-
ciently samplable distribution on Z

l×k
q which is full-ranked with overwhelming

probability. The Dl,k-MDDH assumption in group G states that with samples
A ← Dl,k, s ← Z

k
q and s′ ← Z

l
q, the tuple ([A], [As]) is computationally indistin-

guishable from ([A], [s′]). A matrix distribution Dk+1,k is simply denoted by Dk.

2.1 Quasi-Adaptive NIZK Proofs

A witness relation is a binary relation on pairs of inputs, the first called a word
and the second called a witness. Each witness relation R defines a corresponding
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language L which is the set of all words x for which there exists a witness w,
such that R(x,w) holds.

We will consider Quasi-Adaptive NIZK proofs [JR13] for a probability distri-
bution D on a collection of (witness-) relations R = {Rρ} (with corresponding
languages Lρ). Recall that in a quasi-adaptive NIZK, the CRS can be set after
the language parameter has been chosen according to D. Please refer to [JR13]
for detailed definitions.

For our SPS construction we will also need a property called true-simulation-
soundness and an extension of QA-NIZKs called strong split-CRS QA-NIZK. We
recall the definitions of these concepts below.

Definition 1 (Strong Split-CRS QA-NIZK [JR13]). We call a tuple of effi-
cient algorithms (pargen, crsgenv, crsgenp, prover, verifier) a strong split-CRS
QA-NIZK proof system for an ensemble of distributions {Dη} on collection of
witness-relations Rη = {Rρ} with associated parameter language Lpar if there
exists probabilistic polynomial time simulators (crssimv, crssimp, sim), such that
for all non-uniform PPT adversaries A1,A2,A3, and η ← pargen(1λ), we have:

Quasi-Adaptive Completeness:

Pr

⎡
⎢⎢⎣

(CRSv, st) ← crsgenv(η), ρ ← Dη

CRSp ← crsgenp(η, ρ, st)
(x,w) ← A1(η,CRSv,CRSp, ρ)
π ← prover(CRSp, x, w)

:
ver(CRSv, x, π) = 1 if

Rρ(x,w)

⎤
⎥⎥⎦ = 1

Quasi-Adaptive Soundness:

Pr

⎡
⎣

(CRSv, st) ← crsgenv(η), ρ ← Dη

CRSp ← crsgenp(η, ρ, st)
(x, π) ← A2(η,CRSv,CRSp, ρ)

:
ver(CRSv, x, π) = 1 and
not (∃w : Rρ(x,w))

⎤
⎦ ≈ 0

Quasi-Adaptive Zero-Knowledge:

Pr

⎡
⎣

(CRSv, st) ← crsgenv(η)
ρ ← Dη

CRSp ← crsgenp(η, ρ, st)
: Aprover(CRSp,·,·)

3 (η,CRSv,CRSp, ρ) = 1

⎤
⎦

≈

Pr

⎡
⎣

(CRSv, trap, st) ← crssimv(η)
ρ ← Dη

CRSp ← crssimp(η, ρ, st)
: Asim∗

(trap,·,·)
3 (η,CRSv,CRSp, ρ) = 1

⎤
⎦ ,

where sim∗(trap, x, w) = sim(trap, x) for (x,w) ∈ Rρ and both oracles (i.e. prover
and sim∗) output failure if (x,w) �∈ Rρ.

Definition 2 (True-Simulation-Sound [Har11]). A QA-NIZK is called true
-simulation-sound if soundness holds even when an adaptive adversary has
access to simulated proofs on language members. More precisely, for all PPT A,

Pr
[

(CRS, trap) ← crssim(η, ρ)
(x, π) ← Asim(CRS,trap,·,·)(CRS, ρ)

:
x �∈ Lρ and

ver(CRS, x, π) = 1

]
≈ 0,

where the experiment aborts if the oracle is called with some x �∈ Lρ.
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In this paper, we use a strong split-CRS QA-NIZK (pargen, crsgenv, crsgenp,
prover, verifier) for affine linear subspace languages {L[M]1,[a]1}, consisting of
words of the form [Mx + a]1, with parameters sampled from a robust and effi-
ciently witness-samplable distribution D over the associated parameter language
Lpar and with soundness under a Dk-mddh assumption. Robustness means that
the top square matrix of M is full-ranked with overwhelming probability. The
construction is described in [JR17], with a single element proof under the sxdh
assumption.

2.2 Groth-Sahai NIWI Proofs

The Groth-Sahai NIWI (non-interactive witness-indistinguishable) and NIZK
Proof system provides highly efficient proofs for groups with efficient bilinear
pairings [GS12]. We refer the reader to the cited paper for detailed definitions,
constructions and proofs. Here we give a brief overview. As usual, and in line
with Sect. 2.1, a non-interactive proof system for a witness relation R consists of
four probabilistic polynomial time algorithms: pargen, crsgen, prover, ver. Groth-
Sahai proof system satisfies perfect completeness and soundness. Moreover, it
satisfies composable witness indistinguishability. This requires that there be an
efficient probabilistic algorithm crssim such that for all non-uniform polynomial
time adversaries A we have CRS indistinguishability, i.e.,

Pr
[
η ← pargen(1λ), crs ← crsgen(η) : A(crs) = 1

]
≈ Pr

[
η ← pargen(1λ), simcrs ← crssim(η) : A(simcrs) = 1

]
,

and for all adversaries A we also have (perfect witness-indistinguishability)

Pr[η ← pargen(1λ), simcrs ← crssim(η); (x,w0, w1) ← A(simcrs);
π ← prover(simcrs, x, w0) : A(π) = 1]

= Pr[η ← pargen(1λ), simcrs ← crssim(η); (x,w0, w1) ← A(simcrs);
π ← prover(simcrs, x, w1) : A(π) = 1],

where we require that both (x,w0) and (x,w1) are in R.
Groth-Sahai system is a commit and prove system, i.e. all free variables

are first committed to, and then equations are proven w.r.t. the variables in
the commitment. In other words prover above may have two components, one a
randomized commitment algorithm and another an actual prover. An integer (or
Zq) variable can be committed to in either group G1 or G2. These randomized
commitments algorithms are denoted by com1(crs, x; r) or com2(crs, x; r). In the
context of Groth-Sahai NIWI proofs, the algorithm crsgen is referred to as BG,
i.e. binding generator, since such crs lead to binding commitments. The algorithm
crssim is referred to as HG, i.e. hiding generator, as such simcrs lead to hiding
commitments.

The GS proof system is itself structure-preserving for proving satisfiabil-
ity of linear multi-scalar equations and a non-linear quadratic equation. It is
also known that its CRS indistinguishability is tightly reduced to the SXDH
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assumption [GS12]. The maximum (absolute-value) of the difference in the two
probabilities (over all efficient adversaries) will be denoted by ADVcrsind. More
details about the actual commitment schemes can be found in Sect. 5.2. For full
details the reader is referred to [GS12].

2.3 Public-Key Encryption Schemes

Let GEN be an algorithm that, on input security parameter λ, outputs par that
includes parameters of pairing groups.

Definition 3 (Public-key encryption). A Public-Key Encryption scheme
(PKE) consists of proabilistic polynomial-time algorithmsPKE := (Gen,Enc,Dec):

– Key generation algorithm Gen(par) takes par ← GEN(1λ) as input and gener-
ates a pair of public and secret keys (pk, sk). Message space M is determined
by pk.

– Encryption algorithm Enc(pk,M) returns a ciphertext ct.
– Decryption algorithm Dec(sk, ct) is deterministic and returns a message M.

For correctness, it must hold that, for all par ← GEN(1λ), (pk, sk) ← Gen(par),
messages M ∈ M, and ct ← Enc(pk,M), Dec(sk, ct) = M.

Definition 4 (IND-mCPA Security [BBM00]). A PKE scheme PKE is indis-
tinguishable against multi-instance chosen-plaintext attack (IND-mCPA-secure)
if for any qe ≥ 0 and for all ppt adversaries A with access to oracle Oe at most
qe times the following advantage function Advmcpa

PKE (A) is negligible,

Advmcpa
PKE (A) :=

∣∣∣∣Pr
[
b′ = b

∣∣∣∣
par ← GEN(1λ); (pk, sk) ← Gen(par);
b ← {0, 1}; b′ ← AOe(·,·)(pk)

]
− 1

2

∣∣∣∣ ,

where Oe(M0,M1) runs ct∗ ← Enc(pk,Mb), and returns ct∗ to A.

There exist public-key encryption schemes that are structure-preserving,
IND-mCPA secure, and have tight reductions based on compact assumptions.
Examples are ElGamal encryption [ElG84] and Linear encryption [BBS04] based
on the DDH assumption and the Decision Linear assumption, respectively.

2.4 Structure-Preserving Signatures

Definition 5 (Structure-Preserving Signature). A structure-preserving
signature scheme SPS is defined as a triple of probabilistic polynomial time
(PPT) algorithms SPS = (Gen,Sign,Verify):

– The probabilistic key generation algorithm Gen(par) returns the public/secret
key (pk, sk), where pk ∈ G

npk for some npk ∈ poly(λ). We assume that pk
implicitly defines a message space M := G

n for some n ∈ poly(λ).
– The probabilistic signing algorithm Sign(sk, [m]) returns a signature σ ∈ G

nσ

for nσ ∈ poly(λ).
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– The deterministic verification algorithm Verify(pk, [m], σ) only consists of
pairing product equations and returns 1 (accept) or 0 (reject).

Perfect correctness holds if for all (pk, sk) ← Gen(par) and all messages [m] ∈ M
and all σ ← Sign(sk, [m]) we have Verify(pk, [m], σ) = 1.

Definition 6 (Existential Unforgeability against Chosen Message
Attack). To an adversary A and scheme SPS we associate the advantage func-
tion:

ADVCMA
SPS (A) := Pr

[
(pk, sk) ← Gen(par)
([m∗], σ∗) ← ASignO(·)(pk)

:
[m∗] /∈ Qmsg and

Verify(pk, [m∗], σ∗) = 1

]

where SignO([m]) runs σ ← Sign(sk, [m]), adds the vector [m] to Qmsg (initial-
ized with ∅) and returns σ to A. An SPS is said to be (unbounded) EUF-CMA-
secure if for all PPT adversaries A, ADVCMA

SPS (A) is negligible.

3 The New (Almost) Tightly-Secure SPS Scheme

The new scheme is conveniently described in Fig. 1. While a brief overview of
the new scheme was given in the introduction, we now describe it in more detail.

As a first step, we follow the signature scheme of [JR13] (which itself is built
on Cramer-Shoup CCA2-encryption) where the split-CRS QA-NIZK for affine
languages is used. The affine component is a secret k0 which is only part of the
prover CRS of the QA-NIZK and is not part of the verifier CRS (and hence
public key of SPS). The secret k0 or its group representation is encrypted using
an augmented ElGamal encryption scheme. In other words, the signer picks r,
computes s = br, and outputs ρ = [r]1, and ρ̂ = [s]1, where b is a secret key
(normally, in a Cramer-Shoup style CCA-secure encryption scheme [b]1 would be
part of the public key). Since, we cannot use tags (for example by hashing ρ, ρ̂)
in a structure-preserving scheme, the last component of the augmented ElGamal
encryption γ is just computed as [k0]1 + dρ + k · µ, where k is another vector
of secret keys of length n, µ ∈ G

n
1 is a length n (adversarially supplied) input

message and ‘·’ denotes inner product.
The signer provides a QA-NIZK Π3 that γ and ρ̂ are well-formed, as the

language L3 (see Fig. 1) is an affine subspace language. However, so far the
signature components constructed are malleable, as we do not use tags. To this
end, the signer also encrypts a bit z using another ElGamal encryption with
keys (pke, ske). Call the encryption ζ. The bit z is just set to zero. However, in
addition, the signer proves using a Groth-Sahai NIWI that either z is same as
x (where x is a bit committed in the public key) or s = br. To this end, it also
provides a Groth Sahai commitment to br (i.e. t in Fig. 1). Since, for the Groth-
Sahai proof s and t must also be committed using Groth-Sahai commitments
(named cs and ct), the signer must prove that these relate to the same r in the
augmented ElGamal encryption. This is achieved by proving a QA-NIZK for the
linear subspace language L1 (see Fig. 1). Finally, it must also be proven that
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Fig. 1. Structure preserving signature SPSsxdh

the ElGamal encryption of z, i.e. ζ is indeed that of z used in the Groth-Sahai
“OR” proof. This can be proven by either a Groth-Sahai proof or a QA-NIZK
for language L2.
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Thus, the signer produces the following signature on µ:

(ρ, ρ̂, γ, ζ, cs, ct, cz, π, π1, π2, π3) ∈ G
11
1 × G

7
2

The verification of the signature just involves checking all the proofs, i.e. the
Groth-Sahai “OR” proof π for language L, and the three QA-NIZK proofs π1,
π2, π3 for languages L1, L2, L3.

The (almost) tight security of this scheme is proved in the next section. The
crux of the proof is in Lemmas 1 and 2. The hybrid games for these lemmas are
summarized in Figs. 3 and 4. Further, the main transitions in the various hybrid
games in these two lemmas are depicted in Figs. 5 and 6.

4 Security of the SPS Scheme

In this section we state and prove the security of the scheme SPSsxdh described
in Fig. 1.

Theorem 1. For any efficient adversary A, which makes at most Q signature
queries before attempting a forgery, its probability of success in the EUF-CMA
game against the scheme SPSsxdh is at most

ADVtss
Π3

+ 12L(ADVtss
Π1

+ ADVtss
Π2

) + 8L · ADVsxdh

+ (12L + 1)ADVcrsind
Π + 2L · ADVmCPA

ElGamal +
6L + (qs + 1)2 + 1

q

Here L is the least integer greater than the bit size of q, and qs is an upper bound
on the number of signature queries issued by the adversary.

Remark 1. ADVtss
Πi

of a QA-NIZK Πi reduces to sxdh by a factor of (n − t)
where the (affine) linear subspace language is of dimension t within a full space
of dimension n. Also, ADVcrsind

Π of a Groth-Sahai NIZK Π reduces to sxdh by
a factor of 1. Thus the overall reduction in Theorem 1 to sxdh is O(λ).

Proof. We go through a sequence of Games G0 to G3 which are described below
and summarized in Fig. 2. In the following, Probi[X] will denote probability of
predicate X holding in probability space defined in game Gi and WINi will denote
the winning condition for the adversary in game Gi.

Game G0: This game exactly replicates the real construction to the adversary.
So the adversary’s advantage in G0 (defined as WIN0 below) is the EUF-CMA
advantage we seek to bound.

WIN0
�
= (µ∗ �∈ M) and Verify(pk, µ∗, σ∗)

Game G
′
0: In Game G′

0, the challenger lazily simulates (by maintaining a table)
a random function rp from G

n
1 to L-bit strings. Define COL to be the predicate

which returns true when there is a collision, i.e., when any pair of message vectors
from the set of signature queries union the adversarial response message at the
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Fig. 2. Top level games and winning conditions

end get mapped to the same output L-bit string. In this game, the adversary is
allowed to win outright if COL is true at the end:

WIN′
0

�
= COL or ((µ∗ �∈ M) and Verify(pk, µ∗, σ∗))
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The difference in advantage is at most the collision probability, which is
bounded by (qs + 1)2/q.

Game G1: The challenge-response in this game is the same as G0. The winning
condition is now defined as:

WIN1
�
= COL or

WIN0 and σ∗ = (ρ∗, ρ̂∗, γ∗, · · · ) s.t.
(γ∗ = k · µ∗ + [k0]1 + d · ρ∗)
and (ρ̂∗ == bρ∗)

The difference in advantages of the adversary is upper bounded by the
unbounded true-simulation-soundness of Π3:

|Prob1[WIN1] − Prob0[WIN0]| ≤ ADVtss
Π3

(1)

GameG2: In this game, the Groth-Sahai CRS is generated as a hiding CRS, i.e.,
simcrs. Moreover, since all zero is a solution of the equation (s−t)(z−x) = 0, by
witness-indistinguishability property of Groth-Sahai under the hiding CRS, all
proofs and commitments can be generated with all zero witness (i.e., (s, t, z, x) =
(0, 0, 0, 0)). The winning condition WIN2 remains the same as WIN1.

|Prob2[WIN2] − Prob1[WIN1]| ≤ ADVcrsind
Π (2)

Game G3: In this game, the challenger also lazily maintains a function rfL

mapping L-bit strings to Zq. The function rfL has the property that it is a
random and independent function from L-bit strings to Zq except possibly at
one value in the domain (on which the challenger has defined rfL) where the
value of rfL can be k0. In G3, each signature component γi is generated as
k ·µi +[rfL(rp(µi))]1+dρi, instead of k ·µi +[k0]1+dρi. For ease of exposition,
we will denote rp(µi) as νi. The winning condition WIN3 remains the same as
WIN2.

Lemma 1. |Prob3[WIN3] − Prob2[WIN2]| ≤

12L(ADVtss
Π1

+ ADVtss
Π2

) + 8L · ADVsxdh

+ 12L · ADVcrsind
Π + 2L · ADVmCPA

ElGamal +
6L

q

We will prove this Lemma in Sect. 4.1. We now claim that Prob3[WIN3] ≤ 1/q.
To prove this claim, we observe that k0 is absent from the public key as well
as from all the signature responses, except at most one response by property of
rfL and rp and the conjunct COL, which ensures that no rp collision occurred.
Let’s say this is the j-th query. For all queries i �= j, we observe that RFL(μi)
is uniformly random and independent of both k and k0. So all the γis, for i �= j,
might as well be sampled independently randomly.
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Coming back to the special j-th query, we claim that [k0]1+k·µ∗ is uniformly
random and independent of [k0]1+k ·µj , given that μ∗ �= μj . This linear algebra
fact is most conveniently seen by the following information- theoretic argument:
Let α

def= [k0]1 +k ·µj and β
def= [k0]1 +k ·µ∗. Now sample k ← Z

n
q , and k′ ← Zq

independently and randomly. Set k0 such that [k0]1 = [k′]1 − k · µj . Then, k0
is still distributed randomly and independently. Then we have α = [k′]1 and
β = [k′]1 + k · (µ∗ − µj). Thus α is uniformly random and independent of k,
while β has an independent uniformly random distribution due to the additional
term k · (µ∗ −µj), where k is uniformly random and µ∗ −µj is non-zero. Thus
the probability of the adversary producing γ∗ − d · ρ∗ = kµ∗ + [k0]1 is bounded
in probability by 1/q:

Prob3[WIN3] ≤ 1/q.

4.1 Proof of Lemma 1

To prove Lemma 1, we go through a series of L games, each of which has several
sub-games. We will identify G2 with G2,1,0 and G3 with G2,L,10. These games
are summarized in Fig. 3 with a table of transitions given in Fig. 5.

In the following, we will consider various functions rfj , j ∈ [0 . . . L]. rfj

maps j-bit length strings to Zq. Define rf0(ε) = k0, where ε denotes the empty
string. We will maintain the induction hypothesis (over j ∈ [0 . . . L]) that the
function rfj is a random function from its domain to its range except possibly
for at most one string in the domain where its value is k0. Clearly, the base case
holds (j = 0).

Game G2,j,0: For all signature responses i, let νi|j−1 be the (j−1)-length prefix
of νi. We generate γi as k · µi + [rfj−1(νi|j−1)]1 + dρi.

In the base case, i.e., when j = 1, G2,j,0 is indeed the same as G2 by
definition of rf0(ε). For the inductive case, we defer the proof of equivalence of
G2,j,0 and G2,j−1,10 till the description of the latter game.

Game G2,j,1: We also sample (d1, d2) ← Z
2
q and substitute d with d1 + d2b,

instead of sampling it from random. Consequently, we change the winning con-
dition’s γ∗-test conjunct to γ∗ == k · µ∗ + [k0]1 + d1ρ

∗ + d2ρ̂
∗, which is same

as the earlier winning condition as the winning condition also has the conjunct
ρ̂∗ = bρ∗. Also set zi to be νi

k = rp(µi)k, the k-th bit of output of applying the
simulated random function to the query message µi.

Difference in advantage is the IND-mCPA security of the ElGamal encryption
scheme, in switching all the zi plaintexts. Rest of the changes are information
theoretic as x is committed with a hiding CRS and d has the same distribution.

Game G2,j,2: The challenger samples a bit β randomly from {0, 1}. In the
winning condition we introduce a predicate called CheckAbort which behaves as
follows: it returns true and forces the adversary to lose outright if the decryption
of ζ∗ is zero or one and equals β. In the case that decryption of ζ∗ is not zero or
one, then it still forces the adversary to lose at random with probability half. If
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Fig. 3. Going from Game 2 to 3
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the CheckAbort predicate does not force a loss for the adversary, then the rest
of the winning condition remains the same as the previous game.

Since β is information theoretically hidden from the adversary, the adver-
sary’s advantage goes down by exactly a factor of 2.

Game G2,j,3: The challenger sets x = 1 − β. It goes back to binding-CRS crs
for Π. Thus, zi as set above is used in GS-commitment ci

z to zi.
Since si = ti for all i, by Groth-Sahai witness-indistinguishability the differ-

ence in the adversary’s advantage is at most ADVcrsind
Π . (Note that Groth-Sahai

NIWI has perfect composable witness-indistinguishability.)

Game G2,j,4: The challenger removes the conjunct ρ̂∗ == bρ∗ from the winning
condition.

We first check that QA-NIZK Π1 and Π2 are in true-simulation mode, i.e., the
simulator for these QA-NIZK is only issuing simulated proofs on true statements.
For Π1 it is indeed the case as s = b · r = t. For Π2 it is also true, since the
GS commitment of zi is same as zi encrypted in ζi. Now, since dec(ζ∗) �= x
is in the scope of this removed conjunct, by true-simulation soundness of Π2,
z∗ �= x is also in the scope of the removed conjunct. This implies by soundness
of the NIWI that s∗ = t∗. Next, by true-simulation soundness of Π1, ρ̂∗ = bρ∗.
Thus this conjunct is indeed redundant and can be removed. The difference in
advantage is at most ADVtss

Π1
+ ADVtss

Π2
.

Game G2,j,5: We change the computation of γi from

k · µi + [rfj−1(νi|j−1)]1 + d1ρ
i + d2ρ̂

i

to

k · µi +
[
rfj−1(νi|j−1), if(νi

j == β)
rf′

j−1(ν
i|j−1), if(νi

j �= β)

]

1

+ d1ρ
i + d2ρ̂

i.

Here rf′
j is another independent random function from j-bit strings to Zq.

Lemma 2. |Prob2,j,4[WIN2,j,4] − Prob2,j,5[WIN2,j,5]| ≤

4(ADVtss
Π1

+ ADVtss
Π2

) + 4 · ADVsxdh + 4 · ADVcrsind
Π +

3
q

We will prove this Lemma in the next subsection using another sequence of
hybrid games.

Game G2,j,6: We now start rolling the games back. In this game we add back
the condition ρ̂∗ == bρ∗ into the winning condition.

Since z∗ �= x in the scope of this clause, the difference in advantage is
ADVtss

Π1
+ ADVtss

Π2
due to the true-simulation soundness of the QA-NIZKs and

the perfect soundness of GS-NIZK Π.

Game G2,j,7: Challenger (lazily) defines rfj as follows:

rfj(νi|j) def=
{
rfj−1(νi|j−1), if (νi

j = β)
rf′

j−1(ν
i|j−1), if(νi

j �= β)

}
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Since rf′ is random and independent of rf, the induction hypothesis related
to rf continues to hold: if τ is the only (j − 1)-bit string on which rfj−1(τ)
equals k0, then (τ ;β) is the only j-bit string on which rfj equals k0.

The challenger also goes back to sampling d from random, instead of setting
it to d1 + bd2. γi is now computed as (k ·µi +[RFj(νi|j)]1 +dρi). It also changes
the winning condition γ∗-conjunct to γ∗ == k ·µ∗ + [k0]1 + dρ∗, which holds as
ρ̂∗ = bρ∗.

Changes in this game are statistically indistinguishable from the previous
and hence the advantage of the adversary remains the same.

Game G2,j,8: The challenger goes back to generating the hiding CRS for Π.
Further, the Groth-Sahai NIWI proofs and commitments are now generated
using all zero witnesses (i.e., using 0 in place of x and zi).

The difference in adversary’s advantage is at most ADVcrsind
Π .

Game G2,j,9: In the winning condition, we remove the CheckAbort disjunct
where the adversary lost outright in the previous games, i.e., if the decryption of
ζ∗ was 0/1 and equaled β, or with probability half if the decryption was non-0/1.

Since β is information theoretically hidden from the adversary, the adver-
sary’s advantage goes up by exactly a factor of 2.

Game G2,j,10: The challenger sets zi = 0, which also changes the El-Gamal
encryption of zi. It also sets x back to 1.

The difference in adversary’s advantage is the IND-mCPA security of the
ElGamal encryption scheme, in switching all the zi plaintexts. Rest of the
changes are statistically indistinguishable as x is committed with a hiding CRS.

We now observe that game G2,j,10 is same as G2,j+1,0 for j < L and same
as G3 for j = L. This concludes our proof.

4.2 Proof of Lemma 2

The various hybrid games to prove this lemma are depicted in Fig. 4 with a table
of transitions given in Fig. 6.

Game G0: The game H0 is defined to exactly the same as game G2,j,4.

Game H1: In this game, the challenger generates the Groth-Sahai NIWI-CRS
as simcrs, i.e., using the simulator CRS generator. Further, for each query i, if νi

j

is not equal to β, then instead of just picking ri, the challenger picks ri
1 and ri

2 at
random, and sets ρi = ρi

1 + ρi
2 = [ri

1 + ri
2]1. Similarly, it sets si = ti = b(ri

1 + ri
2),

and thus ρ̂i = b[ri
1 + ri

2]1 and a similar change in the generation of γi. Finally, in
generating the Groth-Sahai commitments and proof Π, the challenger uses all
zero witnesses.

By the witness-indistinguishability property of GS-NIWI, and since rest of
the game is statistically the same as the previous game, the adversary’s advan-
tage of winning is at most ADVcrsind

Π .

Game H2: In this game, the adversary also picks a b′ randomly and indepen-
dently from Zq. Next, for each query i, if νi

j is not equal to β, then the challenger
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Fig. 4. Going from game (2, j, 4) to (2, j, 5).

picks ri
1 and ri

2 at random, and sets ρi = [ri
1 + ri

2]1. It sets si = bri
1 + b′ri

2,
ti = b(ri

1 + ri
2). It sets ρ̂i = b[ri

1]1 + b′[ri
2]1 and a similar change in generation of

γi (see Fig. 4).
We now prove that the absolute value of the difference of the advantage in

adversary’s winning probability in H2 and H1 is at most the maximum advan-
tage of winning in an SXDH game. In other words,

|ProbH2(WINH2) − ProbH1(WINH1)| ≤ ADVsxdh.
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To this end, for each Adversary A playing against the challenger in games H1 and
H2, we will build another adversary B that plays against the SXDH challenge.
Say, the adversary B receives an SXDH challenge (g,x,y,w), all elements in G1,
where either w is a real DDH element, i.e., w = (logg x)(logg y)g or w is a fake
DDH element, i.e., is random and independent of the other three elements.

Adversary B next emulates the challenger C against A as follows. It starts
emulating C by letting the first element of the challenge being the group generator
for G1. Next, it emulates rest of C perfectly, except for queries i where νi

j is not
equal to β. In this case, it picks ri

1 and ri
2 at random, and sets ρi = ri

1g + ri
2x.

It sets ρ̂i = ri
1y + ri

2w. It does not need to set si and ti, as these quantities are
only needed in GS commitments and proof, but in game H1 we switched to all
zero witnesses. The quantity γi is also generated using the just defined ρi and
ρ̂i (as well as d1 and d2). Also, the CRS of the QA-NIZK Π1 which includes b in
its language parameter, can also be simulated using the group element x only.

Now, it is easy to check that if the SXDH challenge was real, then B emulated
game H1 to A, and if the SXDH challenge was fake, then B emulated H2 to A.
This proves the claim above.

Game H3: In this game, the Challenger goes back to generating the GS-NIWI
CRS as crs, i.e., using the binding CRS generator. It also generates all GS-
commitments and proofs using real witnesses, i.e., si, ti, zi and x. it also re-
introduces the conjunct ρ̂∗ == bρ∗ in the winning condition.

We now show that the adversary’s advantage in winning in H3 is different
from its advantage in winning in game H2 by

ADVtss
Π1

+ ADVtss
Π2

+ ADVcrsind
Π .

We first prove that the real witnesses, i.e., si, ti, zi and x satisfy the equation
(s − t)(z − x) == 0. Indeed, if zi

j = νi
j is equal to β = 1 − x, i.e., zi

j �= x,
then the challenger generated si = ti, thus the quadratic equation holds. On the
other hand, zi

j = x, in which case also the quadratic equation holds. Thus, by
witness-indistinguishability, the adversary’s advantage in distinguishing between
the two games is at most ADVcrsind

Π .
Next, we prove that the other conjuncts in the winning condition already

imply ρ̂∗ == bρ∗. To ascertain this, we must first check that the QA-NIZK Π1

and Π2 are in true-simulation mode. For cases such that νi
j is equal to β, this is

true as ti = si. In the other cases, note that challenger sets ρ̂i = b[ri
1]1+b′[ri

2]1 =
[si]1. Also ti = b(ri), where ri = ri

1 +ri
2, and ρi = [ri]1. Thus, the two QA-NIZK

are indeed in true-simulation mode. Then, by the true-simulation soundness
of these two, and the perfect soundness of the Groth-Sahai NIWI it follows
that ρ̂∗ == bρ∗ is implied by the other conjuncts in the winning condition:
since dec(ζ∗) �= x holds by true-simulation soundness of Π2, z∗ �= x also holds.
This implies by soundness of the NIWI that s∗ = t∗. Next, by true-simulation
soundness of Π1, ρ̂∗ = bρ∗. This completes the proof of the claim.

Game H4: In this game, instead of pikcing d1 and d2 at random, the challenger
picks d, d′ uniformly and randomly. Note d, d′ are independent of b and b′.
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The challenger changes the γ∗-test conjunct in the winning condition by replac-
ing d1ρ

∗ + d2ρ̂
∗ by dρ∗. Further, in each signature query output it modifies the

computation of γi as follows: if νi
j == β then d1ρ

i +d2ρ̂
i is replaced by dρi. Oth-

erwise, it replaces (d1 +d2b)ρi
1 +(d1 +d2b

′)ρi
2 by (d)ρi

1 +(d′)ρi
2, where ρi

1 = [ri
1]1

and ρi
2 = [ri

2]1.
First note that since ρ̂∗ = bρ∗ is a conjunct in the winning condition, replacing

d1ρ
∗ + d2ρ̂

∗ by dρ∗ is equivalent if d1 + bd2 is replaced by d. It is easy to see (by
pairwise independence) that the adversary’s view in the two games H3 and H4

is statistically indistinguishable, except if b = b′ which happens with probability
at most 1/q.

Game H5: In this game the challenger again removes the conjunct ρ̂∗ = bρ∗

from the winning condition.
We again, first check that the QA-NIZK Π1 and Π2 are in true-simulation

mode. This is indeed the case, as the only change from game H3 to H4 was in
γi computation which is not used in Π1 and Π2. Then by the same argument as
given in H3 indistinguishability from H2, the adversary’s advantage is different
from advantage in game H4 by at most ADVtss

Π1
+ ADVtss

Π2
.

Game H6: In this game the challenger again generates the GS-NIWI CRS as
simcrs, i.e., using the hinding CRS generator. Further, all GS commitments and
proofs use the all zero witnesses.

The adversary’s advantage in game H6 is different from its advantage in H5

by at most ADVcrsind
Π .

Game H7: In this game, the adversary need not pick b′. Next, for each query i,
if νi

j is not equal to β, then the challenger picks ri
1 and ri

2 at random, and sets
ρi = [ri

1 + ri
2]1. It sets si = ti = b(ri

1 + ri
2), Note si and ti are not used in the

GS commitments or proof. It sets ρ̂i = b[ri
1]1 + b[ri

2]1. There is no change in the
generation of γi as it uses d and d′.

By a reduction argument similar to that given for games H1 and H2, the
adversary’s advantage in distinguishing between H6 and H7 is at most ADVsxdh.

Game H8: In this game the Challenger lazily defines another random and inde-
pendent function rf′

j−1 from (j − 1)-bit strings to Zq. Then, for all i such that
νi

j is not equal to β, it replaces in the computation of γi, the function rfj−1 by
rf′

j−1.
Since in each query i, ri

1 and ri
2 are chosen afresh randomly and indepen-

dently, and since all other terms (i.e., other that γi) use one linear combination
of ri

1 and ri
2, namely ri

1 + ri
2, and γi uses a different linear combination, namely

dri
1 + d′ri

2, then conditioned on d �= d′, the transcripts in games H7 and H8 are
statistically identical. The probability of d = d′ is just 1/q, and hence that is the
statistical distance between the distributions of the transcripts in H7 and H8.
Thus, this is also an upper bound on the difference in adversary’s advantage in
the two games.

Game H9: In this game, the adversary also picks a b′ randomly and indepen-
dently from Zq. Next, for each query i, if νi

j is not equal to β, then the challenger
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picks ri
1 and ri

2 at random, and sets ρi = [ri
1 + ri

2]1. It sets si = bri
1 + b′ri

2,
ti = b(ri

1 + ri
2). Note si and ti are not used in the GS commitments or proof. It

sets ρ̂i = b[ri
1]1 + b′[ri

2]1. There is no change in generation of γi (see Fig. 4).
Again, by a similar reduction argument to SXDH assumption, the difference

in adversary’s advantage in games H9 and H8 is at most ADVsxdh.

Game H10: In this game, the challenger generates the GS-NIWI CRS as crs,
i.e., using the binding CRS generator. It also uses the real witnesses, i.e. si, ti, x
and zi in generating the GS commitments and proof. In this game, the challenger
also re-introduces the conjunct ρ̂∗ == bρ∗.

First note that the witnesses si, ti, zi, x do satisfy the quadratic equation for
all queries i, by an argument similiar to that given for games H3 and H2. Then
by repeating the argument there, we also conclude that ρ̂∗ == bρ∗ is implied by
other conjuncts. Thus, the difference in adversary’s advantage is at most

ADVtss
Π1

+ ADVtss
Π2

+ ADVcrsind
Π .

Game H11: In this game, the challenger picks d1, d2 randomly and indepen-
dently (instead of picking d, d′) and setting d = d1 + bd2 and d′ = d1 + b′d2. The
challenger also changes the γ∗-test in the winning condition by replacing dρ∗ by
d1ρ

∗ + d2ρ̂
∗. Further, similar changes are made in the computation of γi (see

Fig. 4).
With the conjunct ρ̂∗ == bρ∗ in place in the winning condition, the new

winning condition is equivalent to the previous winning condition. Moreover,
conditioned on b �= b′, the distribution of d and d′ remains same as in game H10.
Thus, the difference in adversary’s advantage is at most 1/q.

Game H12: In this game, the challenger drops the conjunct ρ̂∗ == bρ∗ from
the winning condition.

Again, by arguments similar to that given for games H2 and H3 the difference
in adversary’s advantage is at most ADVtss

Π1
+ ADVtss

Π2
.

Game H13: In this game the challenger does not pick b′. The challenger picks ri
1

and ri
2 at random, and sets ρi = [ri

1 + ri
2]1. Similarly, it sets si = ti = b(ri

1 + ri
2),

and thus ρ̂i = b[ri
1 + ri

2]1 and a similar change in generation of γi (see Fig. 4).
This is essentially the rewind of going from game H1 to H2. Hence, by a

similar argument, the difference in adversary’s advantage in games H13 and
H12 is at most ADVsxdh.

Game H14: In this game, even for i such that νi
j is not equal to β, the challenger

just picks ri, and defines ρi = [ri]1, si = ti = bri, and ρ̂i = [si]1.
There is no statistical difference in the two games H14 and H13. Now, note

that game H14 is identical to game G2,j,5. This completes the proof.

5 Extensions and Optimizations

We begin this section by extending our construction to messages with elements in
both groups. We then describe an optimization which reduces one group element
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from the ElGamal encryption of z. Next, we describe another optimization that
moves some of the QA-NIZK proofs to Groth-Sahai proofs. While this may
lead to slightly larger signature sizes, it reduces the size of the public-key and
consequently may benefit in batching the various pairings in the verification step.

5.1 Bilateral Message Vectors

We use the same technique employed by [AHN+17] to extend our SPS to sign
bilateral messages, i.e., messages (µ1,µ2) in G

n1
1 ×G

n2
2 . Essentially, we sign µ2

using a Partial One-Time signature scheme (POS) [BS07] of Abe et al. [ACD+16]
which has a one-time public key opk consisting of one element of G1 and one-time
signature osig consisting of 2 elements of G2. The public key opk is appended
to the message vector µ1 making it (n1 + 1)-elements long. Then SPSsxdh is
used to sign the extended G1 vector. The final signature consists of (opk, osig)
and the SPSsxdh signature. Thus the signature has 1 G1 and 2 G2 additional
elements. The public key is extended by (n2 + 1) G1 elements and 1 G2 element
due to the POS public key and an additional SPSsxdh public key for the extra
dimension in G1.

5.2 Double Groth-Sahai Commitments to Replace ElGamal

In the SPS scheme described in Fig. 1, the signer needs to provide an ElGamal
encryption ζ of z, as well as a Groth-Sahai (binding) commitment cz to z (both
in G2). Under the SXDH assumption, this requires a total of four group elements.
Note, the encryption of z just needs to be IND-mCPA secure, and not CCA-
secure.

While in the proof of security in Sect. 4, the challenger does need to decrypt
ζ∗ in some hybrid games (namely, games (2, j, 2–8)), it is the case that the
security proof does not need to employ IND-mCPA security in those hybrid
games (which is only needed in games (2, j, 0–1) and (2, j, 9–10)).

So, it is worthwhile investigating if a double Groth-Sahai commitment which
shares randomness might achieve the same IND-mCPA goal: the decryption to
be performed using a trapdoor for the second commitment, which will not be
used in NIWI proofs. At this point, we briefly describe Groth-Sahai commitments
(under SXDH assumption).

Let g be a generator of group G2 (a cyclic group of order q, with identity
O). The commitment public-key pk is of the form

u1 = (g, Q = χg), u2 = (U ,V).

where χ is chosen at random from Z
∗
q . Note both u1 and u2 are in G

2
2 which

is a Zq-module. The second element u2 can be chosen in two different ways:
u2 = ψu1 or u2 = ψu1 + (O,g). The former choice of u2 gives a perfectly
hiding commitment key, whereas the latter choice of u2 gives a perfectly binding
commitment key (as we will see), and the two choices are indistinguishable under
the DDH assumption in G2.
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Commitments com(pk, x; rx) to x ∈ Zq using randomness rx ∈ Zq work as
follows:

com = (rx, x) · (u1, u2),

where the latter “·” is an inner product.
On a hiding key pk, we have u2 = ψu1 and hence u is in the span of 〈u1〉,

consequently, we get a perfectly hiding commitment. On a binding key pk, the
commitment just becomes an El-Gamal encryption of xg with randomness rx +
xψ, with secret key χ.

While so far we have described the standard Groth-Sahai commitments, we
now describe the alternate double Groth-Sahai commitment. In the double com-
mitment, the public key is expanded to have u′

1 = χ′u1, where χ′ is a random and
independent value from Zq. The value u′

2 is again defined in terms of u′
1 but using

the same factor ψ as used for u2. Thus, u′
2 = ψu1 (hiding) or u′

2 = ψu1 + (O,g)
(binding).

Now double commitments dcom(pk, x; rx) is just 〈c = (rx, x) · (u1, u2), c′ =
(rx, x) · (u′

1, u
′
2)〉.

On a hiding key pk, we have that four-vector (u2;u′
2) is in span of four-

vector (u1, u
′
1) (being a ψ-multiple). And hence dcom is a hiding commitment of

x. In the binding setting, both commitments are ElGamal encryptions of x, first
with secret key χ and the second with secret key χ′ (with common randomness
(rx + xψ).

We also have the freedom to make one of the first public key hiding and the
second binding. However, the double commitment is not hiding in this mixed
case. But, if there are other values that are only committed using the first pub-
lic key (i.e. do not use double commitment) then those commitments are still
hiding. Thus, e.g. in the SPS scheme, both x and zi are committed in the group
G2. Now, for each zi we will use double commitment, whereas for x we will only
commit using (u1, u2). If this latter is in hiding mode and (u′

1, u
′
2) is in binding

mode, then cx is a hiding commitment, and cz for all i is not hiding. More-
over, if (x, z) and (x′, z) are both witnesses for ρ satisfying a witness-relation
R, then the commitments (in this mixed mode) and the proofs are still witness
indistinguishable. This is easily seen (under SXDH assumption) because for each
commitment there is a unique proof satisfying the verification Equation [GS12].

Coming back to the SPS scheme of Fig. 1, we first replace the ElGamal
encryption ζ of z by a double commitment of z using the above expanded public
key in G2. Note, only x and z are GS-committed in G2. Next, the QA-NIZK Π2

now has the language

L2
def=

{
(cz, c

′
z) | ∃(z, rz) : cz = com2(z; rz) and

c′
z = 〈rzg + z[ψ]2, rz(χ′g) + z((χ′ψ + 1)g)〉

}

Note (g, ψg, χ′g, (χ′ψ + 1)g) are public parameters, and the above language
is thus a linear-subspace language, and a single group element QA-NIZK proof
can be given.

Next, note that decryption of ζ∗ which is required in games (2, j, 2–8) can
be performed using secret key χ′. The property that this is a good decryption
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of ζ∗ holds only if the QA-NIZK Π2 is sound and the double commitment is in
binding mode; this in turn requires that Π2 be in true-simulation mode. This
property is only required in games (2, j, 4–6), so the double commitments must
be in binding mode in these games. The only games where the challenger needs
to hide z and/or x lie outside these games. However, there are games where z
is being decrypted using χ′, and yet we need to transition between hiding and
binding modes in G2. In particular, in games (2, j, 1–3) and similarly in games
(2, j, 8–10). So instead, now consider an intermediate game between (2, j, 1)
and (2, j, 2) where the commitment pk for G2 is moved to being mixed, i.e.
binding for χ′ and hiding for χ. In this, the adversary’s advantage changes by at
most ADVcrsind

Π . Next, in game (2, j, 2), the challenger introduces decryption
using χ′. In game (2, j, 3) the challenger moves the first public key of the double
commitment also to binding mode (after setting x = 1−β). This incurs another
penalty of ADVcrsind

Π . Hence forth, till game (2, j, 8) the double commitment
remains binding. The argument is reversed in games (2, j, 8–10).

While this only saves one group element from the SPS scheme, it is worth
recalling that savings can multiply in applications requiring SPS.

5.3 Mixing Groth-Sahai and QA-NIZK Proofs

While the scheme in Fig. 1 is optimized for the size of the signature, its public
key can be larger because of the use of QA-NIZK. In this section, we note that
some of the QA-NIZK (or parts) can be replaced by Groth-Sahai NIZK proofs
without much increase in size of the signatures.

The QA-NIZK Π2 can easily be replaced to be a GS NIZK which just checks
the multi-scalar equation that ζ = (ζa, ζb) satisfy zg2 + ske ζa − ζb = 0, where z
is committed in cz and commitment of El-Gamal secret-key ske is in the public-
key of SPS. The GS proof of this multi-scalar equation is only one group element
(see e.g. Eq. (22) in [AHN+17]).

Next, the QA-NIZK Π1 can be split into two parts, (i) one proving that ρ and
ct are related, which should remain a QA-NIZK –as this can be costly as a GS
proof, and (ii) the other proving the ρ̂ is [s]1, which is just one group element as
a GS proof. The QA-NIZK Π3 remains as it is since true-simulation soundness
is required.

So, this scheme requires an extra group element in the proof as Π1 has
been split. However, this scheme cannot use the optimization of Sect. 5.2. As
for the proof of Theorem 1, note that the proof just employed the GS NIWI
property, whereas now we must use the GS NIZK property, for proving ρ̂ = [s]1.
Fortunately, for such equations it is quite straightforward to convert Groth-Sahai
NIWI to NIZK (for more details see [GS12]).

5.4 Sharing Groth-Sahai and QA-NIZK Public-Key Components

Note that the Groth-Sahai CRS (for each group) consists of four group elements
(under the SXDH assumption), these being u1 = (g, Q = χg), and u2 = (U ,V)
as described above in Sect. 5.2.
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The verifier CRS size of a QA-NIZK depends on the language (i.e. the number
of its defining parameters), but some components of the CRS can be general
group parameters and can be shared with GS CRS. From [JR14] recall that in
a QA-NIZK for language with parameters A the prover and verifier CRS, i.e.
CRSp and CRSv are defined as

CRSp := A ·
[
D
R

]
CRSv =

⎡
⎣
D B
R B
−B

⎤
⎦ · g

where B is a k × k matrix in the k-lin setting, and D and R are simulation
trapdoors. Since SXDH is the k-lin setting with k = 1, B is just a single element.
Moreover, this B matrix can be shared among all the QA-NIZK (in the same
group). In fact, it can also be made the same as one component of the GS CRS,
namely U = ψg.

5.5 Batching Pairings in Pairing-Product-Equations

We first analyze the size of the public key in the scheme of Fig. 1, especially
considering the sharing mentioned in Sect. 5.4. Now the 2 Groth-Sahai CRSes are
of total size (4, 4), including group generators and U that can be shared for QA-
NIZK. The QA-NIZK Π1 verifier CRS is then of size (0, 6). The QA-NIZK Π2

verifier CRS is of size (4, 0) (or, (3, 0) considering the optimization in Sect. 5.2).
The QA-NIZK Π3 verifier CRS is of size (0, n1 + 4). Since the commitment to
x is of size (0, 2), the public key is of size (8, n1 + 16) (or (7, n1 + 16) with
optimization).

As for batch-verification, the number of pairing computations for verification
can be reduced to pairing with g1,g2,U1,U2, cx, cz, and the elements in the
QA-NIZK verification CRSes (other than those shared with GS CRS), which
amounts to a total of (8 + 14 + n1 + 1) = n1 + 23 pairings.

If we use the scheme of Sect. 5.3 then the number of pairings reduce to (8 +
7 + n1 + 1) = n1 + 16 pairings (where one of these pairings is a constant pairing
from the affine split-CRS QA-NIZK).
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Abstract. Structure-preserving signatures on equivalence classes, or
equivalence-class signatures for short (EQS), are signature schemes
defined over bilinear groups whose messages are vectors of group ele-
ments. Signatures are perfectly randomizable and given a signature on
a vector, anyone can derive a signature on any multiple of the vec-
tor; EQS thus sign projective equivalence classes. Applications of EQS
include the first constant-size anonymous attribute-based credentials,
efficient round-optimal blind signatures without random oracles and effi-
cient access-control encryption.

To date, the only existing instantiation of EQS is proven secure in
the generic-group model. In this work we show that by relaxing the
definition of unforgeability, which makes it efficiently verifiable, we can
construct EQS from standard assumptions, namely the Matrix-Diffie-
Hellman assumptions. We then show that our unforgeability notion is
sufficient for most applications.

Keywords: Structure-preserving signatures on equivalence classes
Standard assumptions

1 Introduction

SPS. Structure-preserving signature (SPS) schemes [AFG+10] are defined over
bilinear groups, which are described by three prime-order groups G1, G2, GT and
a bilinear map (pairing) e : G1×G2 → GT . Public keys, messages and signatures
of SPS schemes all consist of elements from G1 and G2 and signatures are verified
by comparing evaluations of pairings applied to elements of the key, the message
and the signature. The primary motivation for the introduction of SPS was
their smooth interoperability with the Groth-Sahai (GS) proof system [GS08],
which provides efficient non-interactive zero-knowledge (NIZK) proofs proving
knowledge of group elements that satisfy sets of pairing-product equations.

Together, SPS and GS proofs enable proving knowledge of signatures,
keys and/or messages, and thereby modular constructions of privacy-preserving
cryptographic protocols. A long line of research [AGHO11,ACD+12,AGOT14,
BFF+15,AKOT15,KPW15,Gro15,Gha16,JR17,AHN+17] has led to schemes
c© International Association for Cryptologic Research 2018
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with improved efficiency, additional properties as well as schemes that are proven
secure under standard computational hardness assumptions. Randomizable SPS
[AGHO11] allow for more efficient schemes in that parts of the signature can,
after randomization, be given in the clear. However, for privacy-preserving appli-
cations, they still inherently require hiding the message and using NIZK proofs.

EQS. Structure-preserving signatures on equivalence classes, or equivalence-
class signatures (EQS) for short, allow similar applications to SPS. Unlike the
latter, they achieve them without requiring any NIZK proofs on top, thereby
yielding more efficient schemes. Intuitively, this is because not only their sig-
natures but also the messages can be randomized. Equivalence-class signatures
were introduced by Hanser and Slamanig [HS14]. Their initial instantiation was
only secure against random-message attacks [Fuc14], which is insufficient for the
intended applications. With Fuchsbauer [FHS14] they subsequently presented a
scheme that satisfies the stronger notion of unforgeability under chosen-message
attacks (EUF-CMA) in the generic group model. They also strengthened the
model of EQS, which later enabled further applications [FHS15].

As for regular SPS, the messages in an EQS system are vectors of group
elements [m]1 ∈ G

�
1 (which in our notation stands for (m1 · P1, . . . ,m� · P1)

with P1 being a generator of G1). EQS provide an additional algorithm that,
given a signature σ for message [m]1, allows to adapt σ to a signature for the
message [μ · m]1 for any μ ∈ Z

∗
p without access to the signing key. A signature

therefore actually signs all multiples of a message at once (as a signature can be
adapted to any of them). In other words, signatures or on equivalence classes of
the equivalence relation “∼” on the message space (G∗

1)
� defined as [m]1 ∼ [n]1

⇔ ∃ s ∈ Z
∗
p : m = s · n.

The definition of EQS moreover requires that signatures are randomizable, in
that adaptation to a new representative leads to a signature that is distributed
like a fresh signature for the new representative. The DDH assumption in group
G1 implies that given a message [m]1 ∈ (G∗

1)
�, then [μ · m]1 for a random μ is

indistinguishable from [m′]1 for a random m′. For EQS signatures DDH thus
implies that given a message signature pair ([m]1, σ), an adapted signature on
a random representative ([μ · m]1, σ′) looks like a fresh signature on a random
message.

It is the latter property that is central in applications that use EQS instead
of SPS+GS-proofs. Instead of having users give (costly) zero-knowledge proofs
that they possess a signature to protect their privacy, it suffices to use an EQS
scheme and have the user randomize the message and adapt the signature every
time they show it. (We discuss applications of EQS in more detail below.)

Existential unforgeability under chosen-message attacks (EUF-CMA) for
EQS is defined with respect to equivalence classes: an adversary that can query
signatures for messages [mi]1 of its choice should be incapable of returning a
signature for a message [m∗]1 such that [m∗]1 is not a multiple of any [mi]1.
(Note that this winning condition cannot be efficiently decided, as this would
amount to breaking DDH.)

The first EQS scheme by FHS [FHS14] signs messages from (G∗
1)

� and sig-
natures consist of 3 group elements. The authors show that this size is optimal
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by relying on an impossibility result [AGO11] for SPS. Security of the FHS
scheme was proved directly in the generic-group model, which amounts to an
interactive assumption. The same authors [FHS15] later provided a scheme from
a non-interactive q-type assumption; the assumption is that the FHS scheme is
secure against random-message attacks (where instead of a signing oracle the
adversary is given signatures for q randomly chosen messages). They then build
a scheme on top of the original scheme and prove EUF-CMA security. However,
the signatures of their scheme are not randomizable, which is required for all
applications of EQS.

The construction of an EQS scheme (which is randomizable) from any non-
interactive assumption is still an open problem.

Applications of EQS. The first application of EQS was to anonymous
(attribute-based) credentials [CL03,CL04,BCKL08,BCC+09,Fuc11], yielding
the first construction for which the cost of showing a credential is independent
of the number of possessed, or showed, or existing attributes. In most schemes a
credential is a signature from the credential-issuing authority on a message rep-
resenting the user’s attributes. When the user wishes to present her credential,
previous constructions require her to give a zero-knowledge proof of possessing
a valid signature from the organization. Using EQS [FHS14] these proofs can
be avoided: the user randomizes the message of its credential by multiplying
it with a random value μ ←r Z

∗
p, adapts the authority’s EQS signature on it

and presents message and signature in the clear. By DDH and the properties of
EQS, this pair looks like a fresh signature on a random message, which yields
unlinkable user anonymity. (See Sect. 5 for more details of this construction.)
Derler, Hanser and Slamanig later added the possibility of revoking users to the
credential scheme [DHS15].

Fuchsbauer et al. [FHS15] used EQS to construct the first round-optimal
blind signature scheme without random oracles nor CRS nor trusted setup with
blindness against fully malicious signers. In order to obtain a blind signature,
the user commits to her message as [c]1, picks μ ←r Z

∗
p and obtains an EQS

signature from the signer on the randomized message (μ · [c]1, [μ]1). The blind
signature is then an adapted signature to ([c]1, [1]1) together with an opening of
[c]1 to the message. While unforgeability relies on EUF-CMA of EQS and the
binding property of the commitment, blindness is proved under an interactive
variant of the DDH assumption.

In follow-up work [FHKS16], the authors changed the used commitment
scheme from perfectly hiding to perfectly binding, which enabled them to prove
blindness under a non-interactive (B)DDH-type assumption. (Another construc-
tion with blindness under a non-interactive assumption was also given by Hanzlik
and Kluczniak [HK17].)

EQS were also used to construct verifiably encrypted signatures [HRS15] and
group signatures without encryption [DS16] (see Sect. 6 for more on this).

Access-control encryption. Access-control encryption [DHO16] is a recently
introduced primitive that models information flow between senders and receivers.
Whereas all forms of encryption only prevent unauthorized receivers from
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obtaining information, access-control encryption (ACE) additionally prevents
unauthorized senders from distributing information.

ACE considers a relation on a set of senders and receivers that specifies
who is allowed to send information to whom. To prevent unauthorized send-
ing, all messages are sent via an authority, called the sanitizer, who can tweak
the messages before broadcasting it; (the sanitizer should however not obtain
information about sender, receiver or content of a message).

Access-control encryption was introduced by Damg̊ard et al. [DHO16] and
two papers have recently improved on it: Badertscher et al. [BMM17] strengthen
the security model by requiring chosen-ciphertext security and non-malleability
of messages, and Kim and Wu [KW17] give the first construction from standard
assumptions for general policies. The only existing efficient constructions are for
restricted classes of policies; the most efficient scheme is the one by Fuchsbauer
et al. [FGKO17] based on EQS.

In their construction any receiver Bob has a public key [k]1 for ElGamal
encryption. If Alice is allowed to send messages to Bob, she obtains an EQS
signature σ on ([1]1, [k]1) from the authority, which serves as a certificate. When
Alice wants to send a message to Bob, she first picks s, r ←r Z

∗
p and adapts σ to

the new representative ([s]1, s · [k]1). She then sends this new message/signature
pair together with an ElGamal encryption ([r]1, r · [k]1 + [m]1) of her message
[m]1 to the sanitizer. The latter verifies the adapted signature and, if correct,
picks t ←r Z

∗
p and sends the following to Bob: ([r]1+t · [s]1, [r ·k+m]1+t · [s ·k]1),

which is a re-randomized encryption of [m]1 under [k]1.
Note that if the pair that the sanitizer uses to randomize the ciphertext

was not a multiple of ([1]1, [k]1), then Bob would receive an encryption of a
random message. Now EUF-CMA of EQS guarantees that the only way Alice
can provide a signature on such a multiple is if she received a certificate for Bob’s
key; that is, if she is allowed to send messages to Bob. On the other hand, by
the EQS randomization properties, the sanitizer does not learn anything about
the intended receiver (nor the encrypted message), since ([s]1, s · [k]1) and the
ElGamal ciphertext look like random group elements to it.

Our contribution
In this work we present the first equivalence-class signature scheme based
on standard assumptions; in particular the family of Matrix-Diffie-Hellman
assumptions [EHK+13], which encompasses well-known assumptions such as the
decision-linear assumption [BBS04]. In order to achieve this, we need to make
two modifications to the model of EQS: the first one is syntactical and the second
one concerns the definition of unforgeability.

Syntax. Whereas in the original EQS model [HS14,FHS14] there is only one
type of signatures, we distinguish between signatures that were output by the
signing algorithm, and which can be adapted and perfectly randomized on the
one hand; and signatures that have been randomized on the other. The latter
type cannot be randomized any further.

We note that we are not aware of any applications where signatures that
have been randomized need to be randomized again by an entity that does not
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know the original signature. In the application to credential systems, the first
(randomizable) signature type would correspond to the credential that is stored
by the user, whereas the second (smaller) type corresponds to credential proofs,
that is, the object presented by the user when proving possession of a credential.
For access control encryption, signatures of the first type are part of an encryp-
tion key, and randomized signatures are issued as part of a ciphertext produced
from this encryption key. For the round-optimal blind signatures [FHS15], the
user receives a (randomizable) signature from the signer, adapts it (to the second
type) and includes it in her blind signature.

Security. We relax the notion of unforgeability considered in the original work
[HS14,FHS14] and make it an efficiently verifiable notion. When the adversary
queries its signing oracle for a signature on a message [m], we require it to present
the discrete logarithm of its elements, that is, a query is of the form m ∈ (Z∗

p)
�.

After the adversary has output a purported forgery on a message [m∗]1 (without
giving its logarithm), the experiment can efficiently check whether it is contained
in one of the classes defined by the queried messages. We call our weakened notion
existential unforgeability under chosen open message attacks (EUF-CoMA).

In Sects. 4–6 we then argue that for most applications of EQS this security
notion is sufficient, as constructions building on EQS either only require EUF-
CoMA or they can be made to with very minor modifications. In particular, we
show this for all applications of EQS in the literature, except for the one to
round-optimal blind signatures.

Our scheme. Our scheme builds upon the affine MAC by Blazy et al. [BKP14],
which we first turn into a structure-preserving and “linear” MAC, that is, a MAC
that allows for deriving a tag of a message μ · [m]1 from a tag for [m]1 ∈ G

�
1

for any scalar μ ∈ Z
∗
p. We then build upon Kiltz and Wee’s [KW15] method

of transforming a MAC into a signature, which has also been used in [KPW15]
in the context of structure-preserving signatures. (Details on our scheme are
provided in a technical overview at the beginning of Sect. 3.)

Overall, we obtain an EQS whose EUF-CoMA security is based on the bilat-
eral variant of the DLIN assumption (where the challenge is given in both groups
G1 and G2), and DDH in G2. More generally, we use the Matrix Decisional
Diffie-Hellman (MDDH) assumption [EHK+13], and its computational variant,
the Kernel Matrix Diffie-Hellman (KMDH) assumption [MRV16], both of which
are parameterized by a distribution of full-rank �×k matrices for some specified
dimensions �, k ∈ N

∗, � > k, and which capture most known standard assump-
tions in pairing groups, such as DLIN and DDH which correspond to particular
matrix distributions (of size � := 3 by k := 2 for DLIN, and � := 2 by k := 1 for
DDH).

We adopt this matrix viewpoint for a more general and overall cleaner exposi-
tion of our construction. In particular, we give a construction that is secure under
the D2k,k-MDDH assumption for any matrix distribution D2k,k with k ≥ 2, and
the Dk′-KerMDH assumption for any matrix distribution Dk′ for k′ ≥ 1. We
summarize the concrete efficiency of our scheme depending on the choices of k
and k′ in Table 1.
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Table 1. Efficiency and security of our scheme for messages from (G∗
1)

� from general
assumptions (middle) and for the most efficient setting k := 2, k′ := 1 (right).

Signature size
(
2k� + (k′ + 1)

)|G1| + 2k|G2| (4� + 2)|G1| + 4|G2|
Public key size k′(k′ + 1 + 2k�)|G2| (4� + 2)|G2|
Secret key size 2k(k′ + 1)� + 2k2

Zp elements 8(� + 1) Zp elements

Pairing to verify 4�k + k′ + 1 8� + 2

Assumption D2k,k-MDDH, Dk′ -KerMDH in G2 D4,2-MDDH and
D1-KerMDH in G2

Concrete assumptions. Suppose we choose the matrix distribution D4,2 to
be the uniform distribution U4,2 over all invertible matrices in Z

4×2
p , and D1

to be the DDH distribution over Z
2
p defined as {(1, a) : a ←r Zp}. Then, U4,2-

MDDH reduces to the bilateral variant of the DLIN assumption (Lemma1),
and D1-KerMDH in G2 reduces to DDH in G2 (Lemma 2). Thus, we obtain an
EQS signature scheme whose EUF-CoMA security is based on DDH in G2 and
bilateral DLIN (which is comparable to the original DLIN [BBS04], which was
for symmetric bilinear groups).

2 Preliminaries

2.1 Notations

We denote by x ←r B the process of sampling an element x from set B uniformly
at random. We denote by λ the security parameter, and by negl(·) any negligible
function of λ. For any k, � ∈ N

∗ such that � > k, and any matrix A ∈ Z
�×k
p , we

write orth(A) := {A⊥ ∈ Z
�×(�−k)
p | A�A⊥ = 0 and A⊥ has full rank}.

2.2 Pairing Groups

Let GGen be a probabilistic polynomial-time (PPT) algorithm that on input 1λ

returns a description PG = (p,G1,G2,GT , e, P1, P2) of asymmetric bilinear
groups where G1, G2, GT are cyclic groups of order p for a 2λ-bit prime p,
P1 and P2 are generators of G1 and G2, respectively, and e : G1 × G2 → GT is
an efficiently computable (non-degenerate) bilinear map. Define PT := e(P1, P2),
which is a generator of GT . We use implicit representation of group elements.
Namely, for s ∈ {1, 2, T} and a ∈ Zp, we define [a]s = aPs ∈ Gs as the implicit
representation of a in Gs. More generally, for a matrix A = (aij) ∈ Z

m×n
p we

define [A]s as the implicit representation of A in Gs:

[A]s :=

⎛
⎜⎝

a11P . . . a1nP
...

...
am1P . . . amnP

⎞
⎟⎠ ∈ G

m×n
s
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Note that from [a]s ∈ Gs it is generally hard to compute the value a (discrete
logarithm problem in Gs). Further, from [b]T ∈ GT , it is hard to compute the
value [b]1 ∈ G1 and [b]2 ∈ G2 (pairing inversion problem). Obviously, given
[a]s ∈ Gs and a scalar x ∈ Zp, one can efficiently compute [ax]s ∈ Gs. Further,
given [a]1, [a]2, one can efficiently compute [ab]T using the pairing e. For two
matrices A, B with matching dimensions define [A]1 • [B]2 := [AB]T ∈ GT ,
which can be computed efficiently using the pairing e : G1 × G2 → GT .

2.3 Matrix Diffie-Hellman Assumptions

We first recall the definitions of the Matrix Decisional Diffie-Hellman (MDDH)
Assumption [EHK+13].

Definition 1 (Matrix Distribution). Let k, � ∈ N
∗, such that � > k. We

call D�,k a matrix distribution if it outputs matrices in Z
�×k
p of full rank k in

polynomial time (w.l.o.g. we assume the first k rows of A ←r D�,k form an
invertible matrix). We write Dk := Dk+1,k.

We define a bilateral variant of the Matrix Decisional Diffie-Hellman (MDDH)
assumption. Namely, [EHK+13] originally defines the D�,k-MDDH assump-
tion in Gs for any s ∈ {1, 2, T} to be distinguishing the two distribu-
tions: ([A]s, [Ar]s) and ([A]s, [u]s), whereas we use the bilateral variant which
consists in distinguishing the two distributions: ([A]1, [A]2, [Ar]1, [Ar]2) and
([A]1, [A]2, [u]1, [u]2) where A ←r D�,k, r ←r Z

k
p and u ←r Z

�
p, for asymmetric

pairings. Note that the bilateral variant is provably no weaker (in the generic
group model) than the unilateral variant in symmetric bilinear groups. Bilateral
variant of the DLIN assumption in asymmetric pairings has already been used
in prior works [LPJY15,AC17].

Definition 2 (D�,k-Matrix Decisional Diffie-Hellman Assumption (D�,k-
MDDH)). Let λ, k, � ∈ N

∗ such that � > k ≥ 2, and let D�,k be a matrix dis-
tribution. We say that the D�,k-Matrix Decisional Diffie-Hellman (D�,k-MDDH)
Assumption holds relative to GGen if for all PPT adversaries A,

AdvMDDH
GGen,D�,k,A(λ) :=

∣∣ Pr
[A (PG, {[A]s, [Ar]s}s∈{1,2}

)
= 1

]

− Pr
[A (PG, {[A]s, [u]s}s∈{1,2}

)
= 1

] ∣∣ = negl(λ),

where the probability is taken over PG := (p,G1,G2,GT , e, P1, P2) ←r GGen(1λ),
A ←r Dk, r ←r Z

k
p,u ←r Z

�
p.

Let Q ≥ 1. For W ←r Z
k×Q
p ,U ←r Z

�×Q
p , we consider the Q-fold D�,k-

MDDH Assumption in Gs, which consists in distinguishing the distributions
{[A]s, [AW]s}s∈{1,2} from {[A]s, [U]s}s∈{1,2}. That is, a challenge for the Q-fold
D�,k-MDDH assumption consists of Q independent challenges of the Dk-MDDH
assumption (with the same A but different randomness w).

Definition 3 (Uniform distribution). Let k, � ∈ N
∗, with � > k. We denote

by U�,k the uniform distribution over all full-rank � × k matrices over Zp.
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Among all possible matrix distributions D�,k, the uniform matrix distribution
U�′,k is the hardest possible instance.

Lemma 1 (D�,k-MDDH implies Q-fold U�′,k-MDDH [EHK+13,
GHKW16]). Let k, �, �′, Q ∈ N

∗, such that � > k, �′ > k, and let D�,k be a
matrix distribution. For any PPT adversary A, there exists a PPT adversary B
such that AdvQ-MDDH

GGen,U�′,k,A(λ) ≤ AdvMDDH
GGen,D�,k,B(λ) + 1

p−1 .

Now we recall the definition of the Dk-Kernel Matrix Decisional Diffie-
Hellman assumption [MRV16], a natural computational analog of the Dk-Matrix
Decisional Diffie-Hellman assumption.

Definition 4 (Dk-Kernel Matrix Diffie-Hellman (Dk-KerMDH) assum-
ption [MRV16]). Let λ, k ∈ N

∗, and Dk be a matrix distribution. We say that
the Dk-Kernel Matrix Diffie-Hellman (Dk-KerMDH) assumption holds relative
to GGen in Gs for s ∈ {1, 2}, if for all PPT adversaries A,

AdvKerMDH
GGen,Dk,Gs,A(λ) := Pr

[
c ∈ orth(A)

∣∣ [c]3−s ← A(PG, [A]s)
]

= negl(λ),

where the probability is taken over PG := (p,G1,G2,GT , e, P1, P2) ←r GGen(1λ),
and A ←r Dk.

Note that the winning condition is efficiently checkable using the pairing:
c ∈ orth(A) ⇔ e([A]s, [c]3−s) = [0]T .

For any matrix distribution Dk, the Dk-KerMDH assumption is weaker than
its decisional counterpart:

Lemma 2 (Dk-MDDH ⇒ Dk-KerMDH [MRV16]). Let k ∈ N
∗, and let Dk

be a matrix distribution. For any PPT adversary A, there exists a PPT adversary
B such that AdvKerMDH

GGen,Dk,Gs,A(λ) ≤ AdvMDDH
GGen,Dk,Gs,B(λ).

2.4 Equivalence-Class Signatures

We recall the definition of structure preserving signatures on equivalence classes
from [FHS14], which we call equivalence-class signatures for short.

Let us denote Span([m]1) := {[μ·m]1 |μ ∈ Zp} and (G�
1)

∗ := G
�
1\{[0]1 ∈ G

�
1}.

Let λ, � ∈ N
∗ and PG := (p,G1,G2,GT , e, P1, P2) be an output of GGen(1λ). An

EQS scheme signs an equivalence class Span([m]1) for [m]1 ∈ (G�
1)

∗, and it allows
to derive from a signature for [m]1 a fresh signature for any vector in Span([m]1)
without access to the secret key.

Our definition slightly differs from that of [FHS14], as we make a syntactical
difference between signatures output by the signing algorithm, which can be re-
randomized, and (final) signatures that have been re-randomized and cannot be
re-randomized again. In [FHS14], these are the same object, but in our scheme,
re-randomizable signatures are vectors of group elements of different dimension
than final signatures. We call the re-randomizable signature pre-signature, and
final signatures simply signatures. Note that the re-randomizability is crucial to
obtain signature adaptation, defined below.
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Definition 5 (EQS). An equivalence-class signature scheme consists of the fol-
lowing PPT algorithms:

– Setup(PG), on input a pairing group PG ←r GGen(1λ), outputs a secret key
sk and a public key pk, which implicitly defines a pre-signature space R and
a signature space S.

– Sign(sk, [m]1 ∈ (G�
1)

∗), on input the secret key sk and a representative [m]1 ∈
(G�

1)
∗ of the equivalence class Span([m]1), outputs a pre-signature ρ that is

valid for the representative [m]1.
– Adapt(pk, ρ ∈ R, μ ∈ Z

∗
p), on input the public key pk, a pre-signature ρ ∈

R, and a scalar μ ∈ Z
∗
p, outputs an updated signature σ ∈ S for the same

equivalence class. If ρ is valid for representative [m]1, then σ is valid for
representative [μ · m]1 of the same equivalence class.

– Ver(pk, [m]1 ∈ (G�
1)

∗, σ ∈ S), on input the public key pk, [m]1 ∈ (G�
1)

∗, and
a signature σ ∈ S, outputs 1 if the signature is valid for [m]1 under pk, and
0 otherwise.

– VerKey(sk,pk), is a deterministic algorithm that on input the secret key sk
and the public key pk checks their consistency and outputs 1 in case the check
is successful, 0 otherwise.

Although there is no algorithm to verify pre-signatures, one can easily do so by
first adapting them using μ := 1 and then applying Ver to the result.

Remark 1. We note that we are not aware of any application of EQS where
a signature that has been re-randomized by some entity A needs to be re-
randomized again by another entity B. (Even in the application to blind sig-
natures in [FHS15], the user only needs to adapt once.) In such applications,
having signatures of different types would pose a problem.

EQS schemes that adhere to the type above can thus be used in all applica-
tions: a user obtains a (pre-)signature of type R and uses it to derive random-
izations (and possibly adaptations to other messages) from it.

Correctness. An EQS (Setup,Sign,Adapt,Ver,VerKey) satisfies correctness if
the following hold:

– Pr[VerKey(sk,pk) = 1], where the probability is taken over (sk,pk) ←r

Setup(1λ);
– for all [m]1 ∈ (G�

1)
∗, μ ∈ Z

∗
p: Pr[Ver(pk, [μ · m]1, σ) = 1] = 1, where the

probability is taken over (sk,pk) ← Setup(1λ), ρ ← Sign(sk, [m]1), σ ←r

Adapt(pk, ρ, μ).

We define a new unforgeability notion, which is weaker than the original EUF-
CMA security definition from [FHS14] (which we restate below for completeness),
but still suffices for many applications, as we show in Sects. 5 and 6. An advantage
of our new definition is that it is efficiently decidable whether the adversary has
won the security game, contrary to EUF-CMA as originally defined.
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EUF-CMA. An EQS scheme EQS := (Setup,Sign,Adapt,Ver,VerKey) satisfies
existential unforgeability under chosen-message attacks (EUF-CMA) if for all
PPT adversaries A,

AdvEUF-CMA
EQS,A (λ) := Pr

[
ExpEUF-CMA

EQS (1λ,A) = 1
]

= negl(λ),

with game ExpEUF-CMA
EQS (1λ,A) defined as follows:

It is still an open problem to construct an EQS scheme that achieves standard
EUF-CMA under standard assumptions.

We now state our new notion, which we call Existential UnForgeability under
Chosen Open Message Attacks (EUF-CoMA). The only difference to EUF-CMA
isthat the adversary has to give the discrete logarithm of messages m ∈ Z

�
p

instead of [m]1 to SignO.

EUF-CoMA. An EQS scheme EQS := (Setup,Sign,Adapt,Ver,VerKey) satis-
fies existential unforgeability under chosen open message attacks if for all PPT
adversaries A,

AdvEUF-CoMA
EQS,A (λ) := Pr

[
ExpEUF-CoMA

EQS (1λ,A) = 1
]

= negl(λ),

with game ExpEUF-CoMA
EQS (1λ,A) defined as follows:

Remark 2 (Decidability of breaks). As opposed to the original definition [FHS14],
our variant allows to efficiently check whether an adversary has won, since for all
m ∈ Qsign, one can efficiently check whether [m�]1 ∈ Span([m]1) (or equivalently
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det[m�‖m]1 = 0) when given m ∈ Z
�
p directly as follows: check whether for some

i ∈ [�]: mi · [m�
1]1 �= m1 · [m�

i ]1.

Signature-Adaptation. An scheme EQS := (Setup,Sign,Adapt,Ver,VerKey)
perfectly adapts signatures if for all (sk,pk, [m]1, μ) with

VerKey(sk,pk) = 1, [m]1 ∈ (G�
1)

∗, μ ∈ Z
∗
p,

the following are identically distributed:
(
ρ := Sign(sk, [m]1),Adapt(pk, ρ, μ)

)
and

(
ρ := Sign(sk, [m]1),Adapt(pk,Sign(sk, [μ · m]1), 1)

)
.

3 EQS from Standard Assumptions

In this section we present our EQS scheme and prove it secure under the Matrix
Diffie-Hellman assumption.

Overview of the construction. We first build a private-key variant of EQS,
that is, a MAC on equivalence classes. Our starting point is a modification of
the affine MAC by Blazy et al. [BKP14, Sect. 3.3], which we make linear instead
of affine. This then allows anyone to multiply the tag of [m]1 ∈ G

�
1 to obtain a

tag of any vector in Span([m]1). We start with recalling the MAC from [BKP14],
which is based on the Dk-MDDH assumption:

BKP: sk :=
(
k0 ←r Z

k+1
p ,K1 ←r Z

�×(k+1)
p ,A ←r Dk

)

Tag(sk, [m]1) :=
(
[(k�

0 + m�K1)t]1, [t]1 := [Au]1
)

with u ←r Z
k
p.

A first idea to make this MAC an “equivalence-class MAC” would be to
omit k0:

First attempt: sk :=
(
K ←r Z

�×(k+1)
p ,A ←r Dk

)

Tag(sk, [m]1) :=
(
[m�Kt]1, [t]1 := [Au]1

)
with u ←r Z

k
p.

Note that now it suffices to multiply [m�Kt]1 by any scalar μ ∈ Z
∗
p to obtain

a tag for [μ ·m]1. One problem with this first attempt though is correctness: our
goal is a structure-preserving MAC, where the verification takes as input a mes-
sage [m]1 ∈ G

�
1, and not m ∈ Z

�
p, as for BKP’s MAC. Thus, we put the vector [t]2

in source group G2, and a tag τ := ([t0]1, [t]2) is considered valid for message [m]1
if [m�]1K•[t]2 = [t0]1•[1]2, where the product “•” is computed using the pairing
e : G1 ×G2 → GT . Note that this change requires to use the Dk-MDDH assump-
tion for k ≥ 2, for instance DLIN, which allows to switch vectors {[Au]s}s∈{1,2}
given in both source groups G1 and G2 to uniformly random over these groups.

Still, we run into another problem when reducing the unforgeability of the
MAC to MDDH: the reduction needs to compute tags for messages [m]1, given
an MDDH challenge {[t]s}s∈{1,2}. This is not possible, since each tag contains
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[m�Kt]1, in source group G1. One solution is to put the latter in the target
group: [m�Kt]T (note that correctness is maintained since we can simply check
[m�]1K•[t]2 = [m�Kt]T ), thereby allowing the reduction to simulate tags. How-
ever, looking ahead, this will pose problems when going from MAC to signature,
since for signatures the public key contains group elements and not Zp elements.

Another solution is to require the adversary against unforgeability of the
MAC to know the discrete logarithm of its challenge messages, that is, the signing
oracle takes as input m ∈ Z

�
p instead of [m]1 ∈ G

�
1 (cf. Definition 5). This way,

the reduction (from unforgeability to MDDH), given m ∈ Z
�
p and its MDDH

challenge {[t]s}s∈{1,2}, can compute tags.

Successful attempt for MAC: sk :=
(
K ←r Z

�×(k+1)
p ,A ←r Dk for k ≥ 2

)

Tag(sk, [m]1) :=
(
[m�Kt]1, [t]2 := [Au]2

)
with u ←r Z

k
p.

In order to transform the MAC into a signature, we use techniques sim-
ilar to those used by Kiltz and Wee [KW15]. We first write the key K� :=
(k1‖ · · · ‖k�) ∈ Z

(k+1)×�
p , and any tag for a message [m]1, as

Tag(sk, [m]1) :=
([∑

i∈[�] mik�
i t

]
1
, [t]2

)
.

Then we carry out the transformation ki ∈ Z
k+1
p → Ki ∈ Z

(k+1)×(k′+1)
p ,

which allows us to publish ([B]2, {[KiB]2}i∈[�]) as the public key, where B ←r

Dk′ . To prove security, we first argue that the Ki have some entropy that is com-
putationally inaccessible from [KiB]2, based on the KerMDH assumption with
respect to [B]2. That entropy is then used to perform the security proof of the
private-key variant of our scheme. To make signatures verifiable, we include the
vectors [mit]1 for all i ∈ [�] as part of the signature, and verify them as follows:

sk :=
({Ki ←r Z

(k+1)×(k′+1)
p }i∈[�],A ←r Dk for k ≥ 2

)

pk :=
(
[B]2, {[KiB]2}i∈[�]

)

σ :=
([∑

i∈[�] miK�
i t

]
1
, {[mit]1}i∈[�], [t]2

)
where t := Au, and u ←r Z

k
p

Ver(pk, [m]1, σ) : checks
∑�

i=1[mit�]1 • [KiB]2 =
[∑

i∈[�] mit�Ki

]
1

• [B]2.

Note that the verification also needs to check that the [mit]1 are consistent
with [t]2 and [m]1, that is, for all i ∈ [�]: [mit]1 • [1]2 = [mi]1 • [t]2, and that
[t]2 �= [0]2, to avoid trivial forgeries. As for the MAC, it is easy to change a
signature for [m]1 to a signature for [μ · m]1 for any μ ∈ Z

∗
p, only knowing pk.

Finally, we want to make it possible to re-randomize signatures (so that it
is impossible to trace back the original signature from a fresh one): we change
[t]2 := [Au]2 to [S]2 := [AU]2, where A ←r Dk, u ←r Z

k
p, and U ←r GLk. Here,

GLk denotes all invertible matrices in Z
k×k
p . This way, a fresh MDDH vector can

be obtained by multiplying [S]2 by a random vector r ←r Z
k
p.

For technical reasons (which we explain in step “Gamei.3 to Gamei.4” on
page 20) we actually require a matrix distribution D2k,k for A ←r D2k,k, with
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Fig. 1. EQS scheme that satisfies EUF-CoMA based on the D2k,k-MDDH (for k ≥ 2)
and Dk′ -KerMDH (for k′ ≥ 1) assumptions.

k ≥ 2, instead of Dk. The size of the matrices Ki needs to be changed accordingly.
Our scheme is given in Fig. 1.

Comparison with linearly homomorphic SPS. Note that the linear homo-
morphism property of our signatures is limited to produce signatures in the same
equivalence class. In particular, when Sign is invoked first on [m]1 ∈ (G�

1)
∗, then

on another input [m′]1 ∈ (G�
1)

∗ it produces a signature with fresh randomness,
that cannot be combined with the signature generated previously on input [m]1.
In that respect, EQS differ from linearly homomorphic structure-preserving sig-
natures, such as those from [KPW15].

Theorem 1 (EUF-CoMA). If the D2k,k-MDDH and Dk′-KerMDH assump-
tions hold relative to GGen, then the EQS scheme in Fig. 1 satisfies EUF-CoMA.
In particular, for any PTT adversary A, there exist PPT adversaries B1 and B2

such that:

AdvEUF-CoMA
EQS,A (λ)

≤ AdvKerMDH
GGen,Dk′ ,B1

(λ) + 2QSign · AdvMDDH
GGen,D2k,k,B2

(λ) +
3kQSign + 1

p
.
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Fig. 2. Game0 through Game2, for the proof of Theorem 1. In each procedure, the
components inside a solid (gray) frame are only present in the games marked by a solid
(gray) frame.

Proof of Theorem 1. We use hybrids Game1 through Game3 defined in Fig. 2.
We denote by Advi the advantage of A in Gamei, that is Pr[Gamei(1λ,A) = 1],
where the probability is taken over the random coins of Gamei and A. Note that
Game0 is ExpEUF-CoMA

EQS (1λ,A).

From Game0 to Game1: We change the verification oracle, using the Dk′-
KerMDDH assumption on [B]2. A pair

(
[m]1, σ = ({[si]1}i∈[�+1], [s]2)

)
that

passes VerO in Game0 but not in Game1 is such that
( ∑�

i=1 s�
i Ki − s�

�+1

)
B = 0,

and
( ∑�

i=1 s�
i Ki − s�

�+1

) �= 0�. We can thus build a PPT algorithm B1 such
that:
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|Adv0 − Adv1| ≤ AdvKerMDH
GGen,Dk′ ,B1

(λ)

as follows. B1 gets a challenge [B]2 for B ←r Dk′ , picks A ←r D2k,k and
Ki ←r Z

2k×(k′+1)
p with which it simulates A’s view. When A outputs a forgery(

[m]1, σ :=
({[si]2}i∈[�+1], [s]1

))
, B computes and returns

∑�
i=1[s

�
i ]1Ki−[s�

�+1]1,
which breaks the KerMDDH assumption whenever Game0 and Game1 differed.

From Game1 to Game2: These two games are in fact equivalently distributed:
for all ki ∈ Z

2k
p , b⊥ ∈ orth(B), the two following distributions are the same:

Ki ←r Z
2k×(k′+1)
p and Ki + kib⊥ , with Ki ←r Z

2k×(k′+1)
p .

Now any occurrence of Ki in Game1 is replaced by Ki +kib⊥ in Game2. Note
that the extra term kib⊥ does not appear in pk, since (Ki + kib⊥)B = KiB.

Game2: We bound Adv2 using a core lemma (Lemma 3), which essentially proves
EUF-CoMA of a private-key variant of our EQS. Namely, we build a PTT adver-
sary A′ such that

Adv2 ≤ AdvcoreA′ (λ),

where AdvcoreA′ (λ) := Pr[Expcore(1λ,A′) = 1] and Expcore(1λ,A′) is defined in
Fig. 3. Using the core lemma, we then get that there exists a PPT algorithm B2

such that:
Adv2 ≤ 2QSign · AdvMDDH

GGen,D2k,k,B2
(λ) +

3kQSign + 1
p

.

We now describe the adversary A′ playing in the security game Expcore in Fig. 3.
It first gets the public key PG ←r GGen(1λ), then samples B ←r Dk′ , picks
b⊥ ∈ orth(B), Ki ←r Z

2k×(k′+1)
p for all i ∈ [�], and runs A on input pk :=(

[B]2, {[KiB]2}i∈[�]

)
.

Then, to simulate oracle SignO in Game2 for query m ∈ (Z�
p)

∗, A′ queries
its own oracle TagO(m) to obtain ([t0]1, [T]1, [T]2). It sets [S]2 := [T]2, and
computes for all i ∈ [�]: [Si]1 := mi[T]1, and [S�+1]1 :=

∑�
i=1 miK�

i [T]1 +
b⊥[t�

0 ]1. Note that with K� =: (k1‖ · · · ‖k�) we have t�
0 =

∑
i∈[�] mik�

i T, thus
the values ki in the simulation of Game2 are implicitly defined by K from Fig. 3,
chosen by A′’s challenger. A′ returns σ :=

({[Si]1}i∈[�+1], [S]2
)

to A.
Finally, when A sends its forgery

(
[m�]1, σ� :=

({[si]1}i∈[�+1], [s]2
))

, A′ uses
it to create a forgery on its own as follows. First, A′ checks that

[s]2 �= [0]2 (1)

∀ i ∈ [�] : [si]1 • [1]2 = [m�
i ]1 • [s]2 (2)

∃ [t0]1 ∈ G1 : [s�
�+1]1 − ∑�

i=1[s
�
i ]1Ki = (b⊥)� · [t0]1 (3)

Note that A′ can efficiently check (3) since it knows b⊥ ∈ Z
k′+1
p . Indeed,

given any vector [x]1 ∈ G
n
1 and y ∈ Z

n
p for some n ∈ N

∗, one can efficiently
compute [det (x‖y)]1 since this only requires computing exponentiations in G1.
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Fig. 3. Experiment for Lemma 3.

Note that if the forgery submitted by A is successful, it must satisfy (1), (2),
and the following equation (cf. Fig. 2):

∑�
i=1[s

�
i ]1

(
Ki + ki(b⊥)�)

= [s�
�+1]1 (4)

which implies (3), with [t0]1 :=
∑�

i=1[s
�
i ]1 · ki.

Thus, if either (1), (2) or (3) fails, then A produced an unsuccessful forgery
and A′ can abort.

Otherwise, A can efficiently compute [t0]1 ∈ G1 satisfying (3), from (b⊥)� ·
[t0]1 and b⊥: let i ∈ [k′ + 1] be such that the i-th coordinate of b⊥ is non-zero
(recall b⊥ �= 0); then [t0]1 is the i-th coordinate of (b⊥)� · [t0]1 divided by
the i-th coordinate of b⊥. Finally, A′ sets [t]2 := [s]2, and returns the forgery(
[m�]1, ([t0]1, [t]2)

)
in Expcore.

When A submits a successful forgery
(
[m�]1, σ� :=

({[si]1}i∈[�+1], [s]2
))

, it
satisfies (1), (2). Moreover, it satisfies (4), which means the value computed by
A′ is

[t0]1 :=
∑�

i=1[s
�
i ]1 · ki. (5)

This implies that the forgery produced by A′ is also successful, since it sat-
isfies

[t]2 �= [0]2 by (1), and
∑�

i=1[m
�
i ]1k

�
i • [t]2 = [t0]1 • [1]2 by (2) and (5).

This concludes the proof that Adv2 ≤ AdvcoreA′ (λ). ��
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To prove the above theorem, we use the following core lemma, which essen-
tially proves the security of a private-key variant of our EQS scheme.

Lemma 3 (Core lemma). For an adversary A′ and a security parameter λ ∈
N

∗, let AdvcoreA′ (λ) := Pr[Expcore(1λ,A′) = 1], with Expcore(1λ,A′) depicted in
Fig. 3. Then for any PPT adversary A′, there exists a PPT algorithm B such
that:

AdvcoreA′ (λ) ≤ 2kQTag · AdvMDDH
GGen,D2k,k,B(λ) +

3kQTag + 1
p

,

where QTag is the number of tag queries.

Proof of Lemma 3. We use hybrids Gamei.1 for i ∈ [QSign + 1], and Gamei.2,
Gamei.3 for i ∈ [QSign], described in Fig. 4, and we denote by Advi the advantage
of A′ in Gamei, that is Pr[Gamei(1λ,A′) = 1], where the probability is taken
over the random coins of Gamei and A′.

Game1.1 is Expcore(1λ,A′).

From Gamei.1 to Gamei.2: We switch the matrices [T]1 and [T]2 computed by
TagO on its i-th query to uniformly random over Z2k×k

p , using the D2k,k-MDDH
assumption. Namely, we show that for all i ∈ [QTag], there is a PPT algorithm
Bi.1 such that

|Advi.1 − Advi.2| ≤ k · AdvMDDH
GGen,D2k,k,G2,Bi.1

(λ) +
k

p
.

First, we argue that the distribution U ←r GLk and U ←r Z
k×k
p are

k
p -close. Then, we use the k-fold D2k,k-MDDH assumption (which reduces to
its 1-fold variant with a security loss of k, via a hybrid argument) to switch
{[A]s, [AU]s}s∈{1,2} to {[A]s, [T]s}s∈{1,2} where T ←r Z

2k×k
p . We give a pre-

cise description of the reduction B′
i.1 to the k-fold D2k,k-MDDH assumption

below. Finally, we use the basis (A|A⊥) of Z
2k
p , where A⊥ ∈ orth(A), and

(A⊥)�A⊥ = Idk×k, the identity matrix in Z
k×k
p , which allows us to write

T ←r Z
2k×k
p as T := AU + A⊥V, with U,V ←r Z

k×k
p .

We now describe adversary B′
i.1 playing against the k-fold D2k,k-MDDH

assumption. Given a challenge
(PG, {[A]s, [Z]s}s∈{1,2}

)
, where [Z]s ∈ G

2k×k
s is

either of the form [AU]s for U ←r Z
k×k
p or uniformly random over G

2k×k
s , B′

i.1

samples K ←r Z
�×2k
p , which it uses to simulate VerO. To simulate TagO(m ∈ Z

�
p)

on its ν-th query, it does the following:

– if ν < i: B′
i.1 samples U ←r GLk, t0 ←r Z

k
p, computes [T]s := [A]sU for all

s ∈ {1, 2}, and returns ([t0]1, [T]1, [T]2) to A′.
– if ν = i: B′

i.1 sets [T]s := [Z]s for all s ∈ {1, 2}, computes [t�
0 ]1 := m�K[T]1,

and returns ([t0]1, [T]1, [T]2) to A′.
– if ν > i: B′

i.1 samples U ←r GLk, computes [T]s := [A]sU for all s ∈ {1, 2},
[t�

0 ]1 := m�K[T]1, and returns ([t0]1, [T]1, [T]2) to A′.
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Fig. 4. Gamei.1 for i ∈ [Qtag + 1] and Gamei.2, Gamei.3 for i ∈ [Qtag] in the proof of
Lemma 3. In each procedure, the components inside a solid (dotted, gray) frame are
only present in the games marked by a solid (dotted, gray) frame. In particular, the

solid frame is present in all games except Gamei.1.

From Gamei.2 to Gamei.3: We show that

|Advi.2 − Advi.3| = 0.

To do so, first consider the selective variant of these games, that is, Game�
i.2

and Game�
i.3, which are as Gamei.2 and Gamei.3 except that the adversary has

to commit to the forgery message [m�]1 beforehand. We will then show that
|Adv�

i.2−Adv�
i.3| = 0. Using complexity leveraging,1 we obtain Adv�

i.2 = p−�·Advi.2

and Adv�
i.2 = p−� · Advi.2, which allows to conclude.

1 Complexity leveraging is a technique that allows to prove adaptive from selective
security: the reduction (playing in the selective game) simply guesses the (adaptive)
adversary’s forgery at the beginning of the game and aborts if its guess later turns
out wrong. The security loss of the reduction is therefore inversely proportional to
the number of guesses (here: number of messages, i.e. p�).
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We now prove that |Adv�
i.2 − Adv�

i.3| = 0. We use the fact that the
distributions:

K ←r Z
�×2k
p and K + M⊥Z(A⊥)� with K ←r Z

�×2k
p ,

are identical, where M⊥ ∈ orth(m��), that is, M⊥ ∈ Z
�×(�−1)
p is a full-rank

matrix such that m��M⊥ = 0; Z ←r Z
(�−1)×2k
p ; and A⊥ ∈ orth(A) such that

(A⊥)�A⊥ = Idk×k.
Since K is distributed like K+M⊥Z(A⊥)�, we replace the former by the lat-

ter in Game�
i.2 and then show that the resulting game is distributed like Game�

i.3.
We start with the oracle VerO

(
[m�]1, τ� := ([t0]1, [t]2, )

)
, which checks:

[m��]1(K + M⊥Z(A⊥)� ) • [t]2 = [m��]1K • [t]2
?= [t0]1 • [1]2,

where the first equality always holds, since m��M⊥ = 0.
Let us now analyze the TagO queries. For the first i − 1 queries, the output

of TagO is independent of K.
Consider the i-th query [m]1 ∈ (G�

1)
∗ to the TagO oracle. We have:

t�
0 := m�KT + m�M⊥Z(A⊥)�(AU + A⊥V) = m�KT + m�M⊥ZV ,

where for the last equality we used (A⊥)�A = 0 and (A⊥)�A⊥ = Idk×k.
Moreover, if the adversary wins the game then m�M⊥ �= 0, as otherwise m is a
multiple of m�, thus the latter is not a valid forgery. Now m�M⊥ �= 0 implies
that m�M⊥Z is identically distributed to w� ←r Z

1×2k
p , as in Gamei.3.

For the remaining TagO queries, TagO(m) computes t�
0 := m�(K +

M⊥Z(A⊥)� )AU = m�KAU, since (A⊥)�A = 0.
All in all, we have thus shown that the modified game (which is distributed

like Game�
i.2) is distributed equivalently to Game�

i.3.

From Gamei.3 to Gamei.4: We show that these two games are statistically close.
This follows from the fact that with probability at least 1 − k

p over the choice
of V ←r Z

k×k
p , V is invertible. In that case, w�V for w ←r Z

k
p is uniformly

random over Z
1×k
p , which means the vector t0 computed by TagO on its i-th

query is itself uniformly random over Z
k
p, as in Gamei.4.

We note that for this step is was crucial that V is a k × k matrix. For the
definition of T from Gamei.2 on, we therefore require that A⊥ ∈ Z

2k×k
p , which

is what forced us to choose A ∈ Z
2k×k
p (rather than A ∈ Z

(k+1)×k
p ).

From Gamei.4 to Gamei+1.1: We switch back the matrices [T]1 and [T]2 com-
puted by TagO on its i-th query to [AU]1 and [AU]2 with U ←r GLk, using
the k-fold D2k,k-MDDH assumption. This transition is similar to the transition
from Gamei.1 to Gamei.2. We defer to the latter for further details.
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GameQtag+1.1: We show that AdvQtag+1.1 = 1
p . In this game there is no information

leaked about K prior to A′’s query to VerO, since all the tags generated by TagO
contain a uniformly random vector [t0]1 ←r G

k
1 . Therefore, the vector [m��]1K

computed by VerO
(
[m�]1, τ� := ([t0]1, [t]2)

)
is uniformly random over G

1×2k
1 ,

which means [m��]1K • [t]2 is uniformly random over GT , independent of [t0]1,
when [t]2 �= [0]2. Thus, we have: AdvQtag+1.1 = 1

p . ��

4 Application to Access Control Encryption

Access Control Encryption. Damg̊ard et al. [DHO16] introduced the notion
of access control encryption (ACE), which allows to control the information flow
between senders and receivers. In their model each sender i ∈ {0, 1}n has an
encryption key eki, and each receiver j ∈ {0, 1}n has a decryption key dkj ;
the system specifies an access control policy P : {0, 1}n × {0, 1}n → {0, 1}, and
communication is allowed from sender i to receiver j iff P (i, j) = 1. Thus, ACE
restricts both what information is being received (this is captured by a so-called
No-Read rule), and what can be sent (captured by a so-called No-Write rule).
To prevent sending of information by unauthorized senders (No-Write rule), it
is necessary to assume that messages are relayed via a special party, called the
sanitizer, which is assumed to be honest (it will behave according to the protocol
specification) but curious (it will try to learn additional information by colluding
with other parties in the system).

More precisely, the No-Read rule stipulates that given all encryptions keys, if
the sanitizer colludes with a set of unauthorized receivers J ⊂ {0, 1}n, it should
not be able to learn any information from an encryption by sender i ∈ {0, 1}n

if P (i, j) = 0 for all j ∈ J . In particular, both the underlying plaintext and
the identity of i should remain hidden. The No-Write rule roughly says that a
collusion of senders I ⊂ {0, 1}n and receivers J ⊂ {0, 1}n such that P (i, j) = 0
for all i ∈ I, j ∈ J that tries to exchange information will be prevented from
doing so by the (in this case honest) sanitizer. (If the sanitizer is corrupt then
it can always distribute information and thereby break the No-Write rule.) We
recall the formal definitions below for completeness.

Construction from EQS. Fuchsbauer et al. [FGKO17] built the first pairing-
based ACE for predicates such as equality (P (i, j) = 1 ⇔ i = j) and range
(P (i, j) = 1 ⇔ i ≤ j), whose ciphertexts contain O(n) group elements. The
work introducing the concept [DHO16] had built ACE from indistinguishability
obfuscation for general circuits and gave an inefficient construction from DDH
with ciphertexts of size O(2n).

One construction from [FGKO17] generically uses EQS, which they instanti-
ated with the scheme from [FHS14] and thus relies on an interactive assumption.
When replacing their EQS with our scheme from Sect. 3, we obtain another effi-
cient ACE. We need to show that the relaxed unforgeability notion satisfied by
our EQS (namely EUF-CoMA; Definition 5) suffices for the security of the ACE.
We note that the resulting ACE (as for [FGKO17]), does not require a private
key for the sanitizer, unlike the original schemes from [DHO16].
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Related works. Recent work [KW17] builds ACE for arbitrary access con-
trol policies based on standard assumptions (such as DDH or LWE), using
(single-key) general-purpose functional encryption and predicate encryption.
Our scheme has the advantage of being much more efficient, although special-
ized to the equality and range predicates. In [BMM17], the authors define new,
stronger security notions for ACE and give constructions that achieve them
under standard assumptions for the equality predicate, which can be lifted to a
disjunction of equalities and to predicates such a range, as shown in [FGKO17].

In the rest of this section, we first recall the definition of ACE from [FGKO17]
and the construction for the equality predicate [FGKO17, Construction 2]. We
then give a proof of its security when the underlying EQS is only EUF-CoMA.
ACE for range can then be obtained from the ACE for equality generically, as
shown in [FGKO17].

Definition 6 (ACE). An access control encryption (ACE) [FGKO17] scheme
is defined by the following PPT algorithms:

– Setup(1λ, P ), on input the security parameter λ ∈ N and a policy P : {0, 1}n×
{0, 1}n → {0, 1}, outputs a master secret key msk and public parameters pp
(which implicitly define the message space M and ciphertext spaces C, C′).

– Gen(msk, i, t) is a deterministic algorithm that on input the master secret key
msk, an identity i ∈ {0, 1}n and a type t ∈ {sen, rec}, specifying whether i
is a sender or a receiver, outputs a key k. We use the following notation for
the types of keys:

• eki ← Gen(msk, i, sen) and call it an encryption key for i ∈ {0, 1}n,
• dkj ← Gen(msk, j, rec) and call it a decryption key for j ∈ {0, 1}n.

– Enc(eki,m), on input an encryption key eki and a message m ∈ M, outputs
a ciphertext c ∈ C.

– San(pp, c), on input the public parameters pp and a ciphertext c ∈ C, outputs
a sanitized ciphertext c′ ∈ C′.

– Dec(dkj , c
′) is a deterministic algorithm that on input a decryption key dkj,

a ciphertext c′ ∈ C′, outputs a message m ∈ M ∪ {⊥}.
Definition 7 (Correctness). For all m ∈ M, i, j ∈ {0, 1}n with P (i, j) = 1:

Pr
[
Dec

(
dkj ,San(pp,Enc (eki,m))

)
= m

] ≥ 1 − negl(λ),

where the probability is taken over (pp,msk) ← Setup(1λ, P ), eki ← Gen(msk, i,
sen), and dkj ← Gen(msk, j, rec).

Complementary to correctness, we require that it is detectable when decryp-
tion does not succeed, formalized as follows.

Definition 8 (Detectability). For all m ∈ M, i, j ∈ {0, 1}n with P (i, j) = 0:

Pr
[
Dec

(
dkj ,San(pp,Enc (eki,m))

)
= ⊥] ≥ 1 − negl (λ) ,

where the probability is taken over (pp,msk) ← Setup(1λ, P ), eki ← Gen(msk, i,
sen), and dkj ← Gen(msk, j, rec).
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No-Read Rule. An access control encryption scheme ACE := (Setup,Gen,
Enc,San,Dec) is said to satisfy the No-Read rule if for all PPT adversaries A,

AdvNo-Read
ACE,A (λ) := Pr

[
ExpNo-Read

ACE (1λ,A) = 1
] − 1

2 = negl(λ),

where the game ExpNo-Read
ACE (1λ,A) is defined as follows:

Recall that Gen is assumed to be a deterministic algorithm, which is why the
experiment need not do any bookkeeping of already-generated keys.

No-Write Rule. An access control encryption scheme ACE := (Setup,Gen,
Enc,San,Dec) is said to satisfy the No-Write rule if for all PPT adversaries A,

AdvNo-Write
ACE,A (λ) := Pr

[
ExpNo-Write

ACE (1λ,A) = 1
] − 1

2 = negl(λ),

where the game ExpNo-Write
ACE (1λ,A) is defined as follows:

Remark 3 (Definition of the No-Write experiment). Oracle OS needs to keep
track of encryption query, since an encryption eki for i such that P (i, j) = 1 for
some j ∈ Qrec would allow A to produce a ciphertext c(0) that once sanitized,
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could be decrypted using dkj , unlike c(1), thus trivially breaking the game. How-
ever, encryption keys queried after the adversary committed to c(0) are useless in
breaking No-Write, as they do not allow for extracting meaningful information
from c(0) by the No-Read rule.

Note that OE needs to return a sanitized ciphertext, since an unsanitized
ciphertext would allow the following attack: an adversary queries eki′ , dkj for
arbitrary i′, j ∈ {0, 1}n such that P (i′, j) = 0, then gets Enc(eki,m) from
OE(i,m) for arbitrary message m and i ∈ {0, 1}n such that P (i, j) = 1. It
then sets c(0) := Enc(eki,m) and sends (c(0), i) to the No-Write experiment. By
correctness, sanitized c(0) could be decrypted using dkj . By detectability, decryp-
tion of sanitized c(1) with dkj will output ⊥ with overwhelming probability.

ACE for Equality. An overview of the ACE by Fuchsbauer et al. [FGKO17,
Construction 2] was given in the introduction (page 4); we recall it in Fig. 5.
For ease of readability, we used randomized notion in the definition of Gen but
emphasize that all randomness is derived deterministically from the PRF key K.
Plugging in our new EQS from Sect. 3 yields an ACE for equality, disjunction of
equality, and for range, as we show that EUF-CoMA of our EQS is sufficient to
prove security of the ACE.

Correctness and detectability follow by inspection.

No-Read rule. The proof does not rely on the EUF-CMA security of the used
EQS scheme and can be found in [FGKO17, Theorem 3]. We provide a sketch
of the proof here. The proof goes through a sequence of hybrids, where in the
first hybrid, we change the way the challenge ciphertext is computed: instead
of containing a signature of the form σ′ ← EQS.Adapt

(
vk,Sign(sk, [1,dkib

]1, s)
)
,

it is computed as σ′ ← EQS.Adapt
(
vk,Sign(sk, [s, s · dkib

]1, 1)
)
. By the perfect

adaptation of the signatures of the EQS, this does not change the distribution
of the adversary’s view.

Then, we use the DDH assumption in G1 to switch the vectors [s, s·dkib
]1 and

[r, r ·dkib
+m]1 one after the other to uniformly random elements from G

2
1. The

underlying plaintext and identity of the sender are then perfectly hidden. We
can do so since by definition of the security game, the adversary is not allowed to
query the decryption key dkib

(which the simulator does not know when relying
on DDH during the game hops).

No-Write rule. Since our EQS achieves a weaker unforgeability notion, we need
to show that it is still sufficient for the ACE to satisfy the No-Write rule. The
proof follows closely the one from [FGKO17], which first replaces the pseudoran-
domness used in Gen by real randomness. Consider the following event E: the
adversary A returns c(0) = ([c0]1, [c1]1, [c2]1, [c3]1, σ′), which contains a success-
ful EQS forgery. That is, ([c2, c3]1, σ′) passes the verification and [c2, c3]1 is not
a multiple of any [1,dkj ] for j ∈ Qsen (where Qsen is the set of identities queried
to OS(·, sen)).
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Fig. 5. ACE for equality, using an EQS (EQS.Setup,EQS.Sign,EQS.Adapt,EQS.Ver,
EQS.VerKey) and a PRF that takes a key K and outputs an element in Zp.

We (1) bound the probability of event E happening using the EUF-CoMA
security of the EQS, and we (2) show that Pr[ExpNo-Write

ACE (1λ,A) = 1 | ¬E] − 1
2

is negligible, using the DDH assumption in G1 and the KEA [BP04].

(1) The reduction B playing the EUF-CoMA game of the EQS simulates the
No-Write experiment for A as follows. Whenever A makes a query con-
taining an identity i for the first time, B samples dki ←r Zp. If it is a
sen query, B queries its signing oracle SignO on (1,dki) ∈ Z

2
p to obtain

σi and returns eki := ([dki]1, σi). Note that since the reduction picks
the secret keys dki itself, it knows the discrete logarithms of the message
being signed by the EQS: thus EUF-CoMA is sufficient. When A returns(
c(0) := ([c0]1, [c1]1, [c2]1, [c3]1, σ′), i′

)
, B then returns ([c2, c3]1, σ′) as its

forgery. This is a successful forgery exactly when E happens.
(2) Pr[ExpNo-Write

ACE (1λ,A) → 1 | ¬E] is bounded exactly as in the original proof
[FGKO17, Theorem 4]. It requires KEA relative to GGen, which states
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that for every PPT algorithm A, which given (p,G1,G2,GT , e, P1, P2) ←
GGen(1λ) and a random [r]1 ←r G1, outputs [s]1, [r · s]1 for some s ∈ Zp,
there exists a PPT extractor which, when given the coins of A, extracts s
with non-negligible probability.

5 Application to Attribute-Based Credentials

Their main application of EQS in the work introducing the concept [HS14,
FHS14] is an anonymous (multi-show) attribute-based credential (ABC) scheme,
for which the authors introduce set commitment schemes with randomizable
commitments.

ABCs. Credential schemes that we consider here let users obtain credentials
for certain attributes that they possess from an organization. The users can
then later show that they possess a credential for any subset of their attributes.
Unforgeability requires that no user can show possession of attributes for which
he was not issued a credential (moreover, users cannot combine their attributes).
Anonymity requires that different showings of the same credential are unlinkable
(credentials are thus multi-show) and that moreover, nothing is leaked about the
contained attributes that are not shown. This property should hold even against
a malicious organization. (See [FHS14] for the formal definitions.)

FHS’s construction. Besides EQS, the second ingredient to constructing ABCs
is a set commitment scheme that the authors introduce. These let one commit
to sets and, besides regular commitment opening, one can open a commitment
to any subset of the committed elements, without revealing anything about
the committed elements that were not opened. Their construction is similar
to polynomial commitments [KZG10] and it is perfectly hiding. The size of a
commitment key is linear in the maximum size of the committed sets, whereas a
commitment consists of a single group element from G

∗
1 and openings are in Z

∗
p.

Openings to subsets (which hide the remaining elements) are in G
∗
1. Moreover,

if [c]1 is a commitment with opening ρ, then s · [c]1 is a commitment to the same
set with opening s · ρ.

Let us sketch the ABC scheme from [FHS14]:

1. A credential for a user consists of a commitment [c]1 to the user’s attributes,
and an EQS signature σ by the organization on ([c]1, [r · c]1, [1]1); it also
contains the opening ρ of [c]1 and the value r.

2. When being issued a credential, the user chooses ρ, r ←r Z
∗
p and sends [c]1 and

r · [c]1 to obtain σ. In addition, the user gives an interactive zero-knowledge
proof of knowledge (zkPoK) [CDM00] of ρ and the organization proves knowl-
edge of its signing key.

3. When showing a credential, the user picks s ←r Z
∗
p and shows an adaptation

of σ to (s · [c]1, s · [r · c]1, [s]1). The user also presents an opening of the
randomized commitment s · [c]1 to the subset of showed attributes.
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Unforgeability of the ABC is showed [FHS14] by reducing a forgery to either
a forgery of an EQS signature or a “forgery” of a subset opening of the com-
mitment. After a slight modification of the issuing protocol, it suffices that the
used EQS scheme satisfies our EUF-CoMA notion of unforgeability:

2’. Credentials are obtained as in [FHS14] (see 2. above), except that the user
gives a zkPoK of ρ and r.

In the proof of anonymity, these zkPoK are simulated anyway, so additionally
proving knowledge of r does not break anything. In the proof of unforgeability,
the simulation can now extract the value r in addition to ρ, which together
with the randomness used to set up the commitment key completely define the
logarithm of a tuple ([c]1, [rc]1, [1]1). In the reduction of ABC unforgeability
to EQS unforgeability, the simulator can thus make its signature queries using
the logarithms (c, r · c, 1) instead of the group elements ([c]1, [r · c]1, [1]1). An
EQS that is secure under our definition is thus sufficient for the application to
anonymous ABCs.

ABCs with revocation. Derler et al. [DHS15] extend the protocol from [HS14]
(which considers a trusted setup of parameters and achieves thus weaker security
than the scheme from [FHS14]) to incorporate revocation of users.

It is easily seen that our slight modifications carry over to their protocol:
extend the interactive proof of knowledge done by the user when obtaining a
credential, so that the simulator in the unforgeability game can extract the
logarithm of the message sent by the user. Again, EUF-CoMA of the EQS scheme
then suffices to prove security.

6 Further Applications

For completeness, let us mention two more applications that only require our
relaxed definition of unforgeability.

6.1 Group Signatures Without Encryption

Inspired by the construction of ABC from EQS, Derler and Slamanig [DS16]
use EQS to construct a dynamic (users can join at any point) group-signature
scheme, which they show satisfies the formal model by Bellare et al. [BSZ05]. In
particular, the scheme is fully (i.e. CCA2-) anonymous (that is, in the anonymity
game the adversary has access to an opening oracle). The scheme (roughly) works
as follows:

– When joining the group, a user first chooses q, r ←r Z
∗
p. The value r will be

linked to the user’s identity and she creates an encryption of [r]2 under the
opener’s public key, which she sends to the issuer together with ([q · r]1, [q]1).
She also proves that the ciphertext encrypts the correct value. The issuer
replies with an EQS signature on the sent pair, from which the user derives
a signature on ([r]1, [1]1), which serves as the signing key.
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– When making a group signature, the user randomizes her key to ([ρ · r]1, [ρ]1)
and makes a “signature of knowledge” proving knowledge of the randomizer ρ.

As for the construction of a credential scheme from EQS in the previous
section, a minor modification of the scheme suffices so that we can use EQS
schemes that are EUF-CoMA secure: during issuing we require the user to make
a zero-knowledge proof of knowledge of r and q. In the proof of traceability
(which is the security notion that relies on unforgeability the EQS scheme), the
reduction can extract these values and thus make an open-message query (qr, q)
to its signing oracle.

6.2 Verifiably Encrypted Signatures

Hanser et al. [HRS15] use EQS to construct verifiably encrypted signatures.
In their scheme, messages are elements from Zp (rather than group elements)
and they are signed by picking s ←r Z

∗
p and producing an EQS signature on

(s·[m]1, [s]1, [1]1). The arbiter’s public key (who can decrypt verifiably encrypted
signatures in case of dispute) is [a]1 and a verifiably encrypted signature is
defined as an EQS signature on ([m · s · a]1, [s · a]1, [a]1).

In the games defining the different security notions the adversary can either
query signatures on messages m ∈ Z

∗
p or verifiably encrypted signatures under

the arbiter’s public key. Since the latter is trusted in all notions, the secu-
rity reduction always knows the discrete logarithms of the message for which
it needs to produce an EQS signature; an EUF-CoMA-secure EQS scheme is
thus sufficient.

7 Conclusion

We have presented the first EQS scheme from standard assumptions and showed
that the relaxed unforgeability notion that it achieves is sufficient for all applica-
tions that have been considered in the literature, except the one to round-optimal
blind signatures.
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Abstract. We propose simple and generic constructions of succinct
functional encryption. Our key tool is exponentially-efficient indistin-
guishability obfuscator (XIO), which is the same as indistinguishability
obfuscator (IO) except that the size of an obfuscated circuit (or the
running-time of an obfuscator) is slightly smaller than that of a brute-
force canonicalizer that outputs the entire truth table of a circuit to
be obfuscated. A “compression factor” of XIO indicates how much XIO
compresses the brute-force canonicalizer. In this study, we propose a sig-
nificantly simple framework to construct succinct functional encryption
via XIO and show that XIO is a powerful enough to achieve cutting-edge
cryptography. In particular, we prove the followings:

– Single-key weakly succinct secret-key functional encryption (SKFE)
is constructed from XIO (even with a bad compression factor) and
one-way function.

– Single-key weakly succinct public-key functional encryption (PKFE)
is constructed from XIO with a good compression factor and public-
key encryption.

– Single-key weakly succinct PKFE is constructed from XIO (even
with a bad compression factor) and identity-based encryption.

Our new framework has side benefits. Our constructions do not rely on
any number theoretic or lattice assumptions such as decisional Diffie-
Hellman and learning with errors assumptions. Moreover, all security
reductions incur only polynomial security loss. Known constructions of
weakly succinct SKFE or PKFE from XIO with polynomial security loss
rely on number theoretic or lattice assumptions.

1 Introduction

1.1 Background

In cryptography, it is one of major research topics to construct more complex
cryptographic primitives from simpler ones in a generic way. Here, “generic”
means that we use only general cryptographic tools such as one-way function and
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public-key encryption. For such a generic construction, we do not use any specific
or concrete algebraic assumptions such as the factoring, decisional Diffie-Hellman
(DDH), learning with errors (LWE) assumptions. Generic constructions are use-
ful in cryptography because they do not rely on any specific structure of under-
lying primitives. It means that even if a specific number theoretic assumption
is broken, say the DDH, a generic construction based on public-key encryption
is still secure since there are many instantiations of public-key encryption from
other assumptions. Moreover, generic constructions are useful to deeply under-
stand the nature of cryptographic primitives.

Many generic constructions have been proposed. For example, one-way func-
tions imply pseudo-random function (PRF) [32], and many other primitives.
However, we understand little of how to construct functional encryption [13,45]
in a generic way despite its usefulness as explained below.

Functional encryption is a generalization of public-key encryption and
enables us to generate functional keys that are tied with a certain
function f . Given such a functional key, we can obtain f(x) by decryption
of ciphertext Enc(x) where x is a plaintext. Functional encryption is a versa-
tile cryptographic primitive since it enables us to achieve not only fine-grained
access control systems over encrypted data but also indistinguishability obfus-
cation (IO) [3,8,11,27].

IO converts computer programs into those that hide secret information in
the original programs while preserving their functionalities. An obvious applica-
tion of IO is protecting softwares from reverse engineering. Moreover, IO enables
us to achieve many cutting-edge cryptographic tasks that other standard cryp-
tographic tools do (or can) not achieve such as (collusion-resistant) functional
encryption, program watermarking, and deniable encryption [21,27,47]. We basi-
cally focus on functional encryption and IO for all circuits in this study.

Many concrete functional encryption and IO constructions have been pro-
posed since the celebrated invention of a candidate graded encoding system
by Garg et al. [26]. However, regarding designing secure functional encryption
and IO, we are still at the “embryonic” stage1. A few candidates of graded
encoding schemes have been proposed [24,26,30]. However, basically speaking,
all are attacked, and most applications (including functional encryption) that use
graded encoding schemes are also insecure [5,18–20,22,23,43]. As an exception,
a few IO constructions are still standing [25,28]2.

The purpose of this study is that we shed new light on how to achieve func-
tional encryption and IO.

The number of functional keys and the size of encryption circuit. In fact, the
hardness of constructing functional encryption depends on certain features of

1 We borrow this term from the talk by Amit Sahai at MIT, “State of the IO: Where
we stand in the quest for secure obfuscation” http://toc.csail.mit.edu/node/981.

2 Martin Albrecht and Alex Davidson maintain the status of graded encoding schemes
and IO constructions at http://malb.io/are-graded-encoding-schemes-broken-yet.
html.

http://toc.csail.mit.edu/node/981
http://malb.io/are-graded-encoding-schemes-broken-yet.html
http://malb.io/are-graded-encoding-schemes-broken-yet.html
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functional encryption such as the number of issuable functional keys and cipher-
texts and the size of encryption circuit.

We say “single-key” if only one functional key can be issued. We also
say q-key or bounded collusion-resistant when a-priori bounded q functional
keys can be issued. If q is an a-priori unbounded polynomial, then we say
“collusion-resistant”. It is known that a single-key secret-key and public-
key functional encryption (SKFE and PKFE) are constructed from standard
one-way function and public-key encryption, respectively [46]. It is also known
that a bounded collusion-resistant PKFE (resp. SKFE) is constructed from
public-key encryption (resp. one-way function) and pseudo-random generator
computed by polynomial degree circuits [34]. However, it is not known whether
collusion-resistant functional encryption is constructed without expensive cryp-
tographic tools such as graded encoding systems [24,26,30] or IO [26].

It is also known that we can construct collusion-resistant PKFE from single-
key weakly succinct PKFE [29,40]. The notion of succinctness for functional
encryption schemes [3,11]3 means the size of encryption circuit is independent
of the function-size. Weak succinctness means the size of the encryption circuit is
sγ ·poly(λ, n) where λ is a security parameter, s is the size of f that is embedded
in a functional key, n is the length of a plaintext, and γ is a constant such that
0 < γ < 1. The results of Garg and Srinivasan [29] and Li and Micciancio [40]
mean that we can arbitrarily increase the number of issuable functional keys
by using succinctness. Moreover, succinct SKFE and PKFE are constructed
from collusion-resistant SKFE and PKFE, respectively [4]. Thus, it is also a
difficult task to construct succinct functional encryption schemes without graded
encoding systems or IO.

The succinctness of functional encryption is also key feature to achieve IO.
Ananth and Jain [3] and Bitansky and Vaikuntanathan [11] show that a sub-
exponentially secure single-key weakly succinct PKFE implies IO.

These facts indicate that it is a challenging task to achieve either collusion-
resistance or succinctness.

Running time of obfuscator. Not only the encryption-time of functional encryption
but also the size of obfuscated circuits and the running time of obfuscators are
important measures.

Lin et al. [41] introduced the notion of exponentially-efficient indistinguisha-
bility obfuscator (XIO), which is a weaker variant of IO. XIO is almost the same
as IO, but the size of the obfuscated circuits is poly(λ, |C|) · 2γn where λ is a
security parameter, C is a circuit to be obfuscated, n is the length of input for
C, and a compression factor γ is some value such that 0 < γ < 1. We note
that the running time of XIO on an input a circuit of n-bit inputs can be 2n.
They prove that if we assume that there exists XIO for circuits and the LWE
problem is hard, then there exists single-key weakly succinct PKFE (and IO if
sub-exponential security is additionally assumed).

3 In some papers, the term “compactness” is used for this property, but we use the
term by Bitansky and Vaikuntanathan [11] in this study.
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Bitansky et al. [9] extend the notion of XIO and define strong XIO (SXIO).
If the running time of the obfuscator is poly(λ, |C|) · 2γn, then we say it is
SXIO. Bitansky et al. show that sub-exponentially secure SXIO and public-key
encryption imply IO. In addition, they prove that single-key weakly succinct
PKFE is constructed from SXIO, public-key encryption, and weak PRF in NC1,
which is implied by the DDH [44] or LWE assumptions [7].

Thus, (S)XIO is useful enough to achieve weakly succinct functional encryp-
tion and IO. In this study, we discuss more applications of SXIO to functional
encryption. In particular, we discuss significantly simple and generic construc-
tions of weakly succinct functional encryption by using SXIO.

From SKFE to PKFE. Bitansky et al. [9] also prove that SXIO is constructed
from collusion-resistant SKFE. Thus, we can construct weakly succinct PKFE
from a weaker primitive than PKFE by the results of Lin et al. and Bitansky
et al., though it is not known whether we can construct collusion-resistant SKFE
from standard cryptographic primitives.

The works of Lin et al. and Bitansky et al. are advancements on how
to construct succinct PKFE from weaker primitives. In particular, Bitansky
et al. provide a nice generic framework for constructing weakly succinct PKFE
from SKFE and public-key encryption. However, their technique is very compli-
cated. Moreover, they still use the DDH or LWE assumptions to achieve weakly
succinct PKFE with polynomial security loss. Thus, it is not known whether we
can construct weakly succinct PKFE with polynomial security loss from SKFE
and public-key encryption in a generic way.

1.2 Our Contributions

The primary contribution of this study is that we propose a signifi-
cantly simple and generic framework to construct single-key weakly succinct
functional encryption by using SXIO. In particular, our constructions are signif-
icantly simpler than those by Bitansky et al. [9]. More specifically, we prove the
following theorems via our framework:

Main theorem 1 (informal): A single-key weakly succinct PKFE is implied
by public-key encryption and SXIO with a sufficiently small compression
factor.

Main theorem 2 (informal): A single-key weakly succinct PKFE is implied
by identity-based encryption and SXIO with a compression factor that is
only slightly smaller than 1.

Main theorem 3 (informal): A single-key weakly succinct SKFE is implied
by one-way function and SXIO with a compression factor that is only slightly
smaller than 1.

Readers might find that the technique (see the overview in Sect. 1.3) in our
framework is a little bit straightforward and a combination of (minor variants
of) well-known or implicitly known techniques. However, we stress that it is
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not a disadvantage but the advantage of our study. We reveal that such a sim-
ple combination of known techniques yields highly non-trivial results above for
the first time. We believe that our simple technique is useful to construct bet-
ter functional encryption (and IO). In fact, Kitagawa, Nishimaki, and Tanaka
extend our technique and obtain an IO construction based only on SKFE [37].
As side benefits of our new framework, our functional encryption schemes have
advantages over previous constructions. In particular, the third main theorem
is totally new. We highlight that all these new theorems incur only polynomial
security loss and do not rely on any specific number theoretic or lattice assump-
tion. These are advantages over the constructions of Lin et al. and Bitansky
et al. [9,41] and the secondary contributions of this study. We explain details of
our results below.

Implication of first and second theorems. There are transformations from a
single-key weakly succinct PKFE scheme to a collusion-resistant one with poly-
nomial security loss [29,40]. Thus, by combining the first or second theorems
with the transformation, we obtain two collusion-resistant PKFE schemes with
polynomial security loss. One is based on public-key encryption and collusion-
resistant (non-succinct) SKFE since collusion-resistant (non-succinct) SKFE
implies SXIO with an arbitrarily small constant compression factor [9]. The other
is based on identity-based encryption and single-key weakly succinct SKFE since
single-key weakly succinct SKFE implies SXIO with a compression factor that is
slightly smaller than 1 [10]. Note that we can also obtain IO constructions from
the same building blocks if we assume that they are sub-exponentially secure by
using the result of Ananth and Jain [3] or Bitansky and Vaikuntanathan [11].

As well as one-way function and public-key encryption, identity-based encryp-
tion [48] is also a standard cryptographic primitive since there are many instan-
tiations of identity-based encryption based on widely believed number theoretic
assumptions and lattice assumptions [12,31].Thus, our second result indicates that
all one needs is to slightly compress the brute-force canonicalizer that outputs an
entire truth table of a circuit to be obfuscated to construct single-key weakly suc-
cinct (or collusion-resistant) PKFE and IO.

Advantages over previous constructions. We look closer at previous works for
comparison. Readers who are familiar with the previous works on PKFE can
skip this part and jump into the part about implication of the third theorem.

Lin et al. [41]: They construct single-key weakly succinct PKFE from XIO and
single-key succinct PKFE for Boolean circuits. It is known that a single key
succinct PKFE for Boolean circuits is constructed from the LWE assump-
tion [33].
Both their construction and ours are generic constructions using (S)XIO.
However, their construction additionally needs single-key succinct PKFE for
Boolean circuits. We have only one instantiation of such PKFE based on the
LWE assumption while our additional primitives (i.e., public-key encryption
and identity-based encryption) can be instantiated based on wide range of
assumptions. This is the advantage of our construction over that of Lin et al.



192 F. Kitagawa et al.

Bitansky et al. [9]: They construct single-key weakly succinct PKFE from
SXIO and public-key encryption with 2O(d) security loss where d is the depth
of a circuit. They introduce decomposable garbled circuit, which is an exten-
sion of Yao’s garbled circuit [49], to achieve succinctness [9]. Decomposable
garbled circuit is implied by one-way function. However, it has two disad-
vantages. One is that it incurs the 2O(d) security loss. The other is that its
security proof is complex.
When we construct single-key weakly succinct (or collusion-resistant) PKFE
only with polynomial security loss, the exponential security loss in the depth
of circuits is a big issue. Thus, Bitansky et al. need weak PRF in NC1 to
achieve single-key weakly succinct (or collusion-resistant) PKFE with poly-
nomial security loss due to the 2O(d) security loss [9, Sect. 5.3]4. If our goal is
constructing IO, then the 2O(d) security loss is not an issue in the sense that
we need sub-exponential security of PKFE to achieve IO [3,11], and we can
cancel the 2O(d) security loss by complexity leveraging.
Decomposable garbled circuit is a useful tool for Bitansky et al.’s construc-
tion. However, the definition is complicated and it is not easy to understand
the security proof. Our unified design strategy significantly simplifies a con-
struction of single-key weakly succinct PKFE based on SXIO. In fact, our
constructions use decomposable randomized encoding [6,35], but decompos-
able randomized encoding is a simple tool and does not incur 2O(d) security
loss.

Using identity-based encryption. We show that we can relax the requirements on
SKFE to achieve PKFE and IO if we are allowed to use identity-based encryption.

Our construction of PKFE using identity-based encryption needs SXIO with
compression factor slightly smaller than 1 that is implied by single-key (weakly)
succinct SKFE while the constructions using public-key encryption need SXIO
with sufficiently small compression factor that is implied by collusion-resistant
SKFE. It is not known whether single-key (weakly) succinct SKFE implies
collusion-resistant SKFE though the opposite is known [4]. Of course, regarding
additional assumptions (public-key encryption and identity-based encryption),
the existence of identity-based encryption is a stronger assumption than
that of public-key encryption. However, identity-based encryption is a stan-
dard cryptographic primitive and the assumption is reasonably mild since
many instantiations of identity-based encryption are known [12,31]. Read-
ers who are familiar with the construction of Bitansky et al. might think
the second theorem is easily obtained from the result of Bitansky et al.,
which actually uses an identity-based encryption scheme constructed from
SXIO and public-key encryption as a building block.5 This is not the case
because their construction uses an SXIO three times in a nested manner

4 They use a bootstrapping technique by Ananth et al. [1], which transforms functional
encryption for NC1 into one for P/poly.

5 Note that our requirements on an identity-based encryption scheme is the same as
theirs on their identity-based encryption scheme.



Simple and Generic Constructions of Succinct Functional Encryption 193

to construct their single-key weakly succinct PKFE scheme. They construct
a single-key weakly succinct PKFE scheme for Boolean functions by using
SXIO and identity-based encryption, and then transform it into a single-
key weakly succinct PKFE scheme for non-Boolean functions by using SXIO
again. Therefore, even if we replace their identity-based encryption scheme
based on SXIO and public-key encryption with an assumption that there exists
identity-based encryption, their construction still requires the use of SXIO two
times in a nested manner, and due to this nested use, it still needs SXIO with
sufficiently small compression factor.

Thus, the advantages of our single-key weakly succinct PKFE schemes over
Bitansky et al.’s construction are as follows:

– Our single-key weakly succinct PKFE scheme does not incur 2O(d) security
loss thus does not need weak PRF in NC1 (implied by the DDH or LWE
assumptions) to support all circuits.

– Our PKFE schemes and proofs are much simpler.
– We can use single-key weakly succinct SKFE instead of collusion-resistant

SKFE (if we use identity-based encryption instead of public-key encryption).

Komargodski and Segev [39]: Komargodski and Segev construct IO for
circuits with inputs of poly-logarithmic length and sub-polynomial size
from a quasi-polynomially secure and collusion-resistant SKFE scheme
for P/poly. They also construct PKFE for circuits with inputs of poly-
logarithmic length and sub-polynomial size from a quasi-polynomially secure
and collusion-resistant SKFE scheme for P/poly and sub-exponentially secure
one-way function. Their reduction incurs super-polynomial security loss.
Thus, the advantages of our single-key weakly succinct PKFE schemes and
IO over Komargodski and Segev’s construction are as follows:
– Our PKFE schemes support all circuits. (When constructing IO by com-

bining previous results [3,11], the construction also supports all circuits.)
– We can use single-key weakly succinct SKFE instead of collusion-resistant

SKFE (if we use identity-based encryption).
– Our PKFE schemes are with polynomial security loss and do not need

sub-exponentially secure one-way function (though we additionally use a
public-key primitive).

We summarize differences between these previous constructions of single-key
weakly succinct (or collusion-resistant) PKFE schemes and ours in Table 1.

Implication of third theorem. We can obtain interesting by-products from the
third theorem.

By-product 1: We show that single-key weakly succinct SKFE is equivalent to
one-way function and SXIO since it is known that such SKFE implies SXIO
with a compression factor that is slightly smaller than 1 [10].
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Table 1. Comparison with previous constructions. OWF, PKE, IBE, GC, dGC,
and dRE denote one-way function, public-key encryption, identity-based encryption,
garbled circuit, decomposable garbled circuit, and decomposable randomized encoding,
respectively. Underlines denote disadvantages. In “supported circuit” column, Csub-poly

log -input

means circuits with inputs of poly-logarithmic length and sub-polynomial size.

Ingredients for 1-key weakly succinct (or collusion-resistant) PKFE Supported circuits

[41] 1-key weakly succinct SKFE, LWE P/poly

[9] collusion-resistant SKFE, PKE, dGC, PRF in NC1(DDH or LWE) P/poly

[39] collusion-resistant SKFE, sub-exponentially secure OWF Csub-poly
log -input

1st thm. collusion-resistant SKFE, PKE, dRE P/poly

2nd thm. 1-key weakly succinct SKFE, IBE, GC, dRE P/poly

By-product 2: We show that the existence of output-compact updat-
able randomized encoding with unbounded number of updates [2] and
one-way function is equivalent to that of single-key weakly succinct SKFE.
Previously, it is known that the existence of output-compact updatable ran-
domized encoding with unbounded number of updates and the hardness of the
LWE problem imply the existence of single-key weakly succinct SKFE [2]. It
is also known that single-key weakly succinct SKFE implies output-compact
updatable randomized encoding with unbounded number of updates. Thus,
we replace the LWE assumption in the results by Ananth, Cohen, and Jain [2]
with one-way function.

1.3 Overview of Our Construction Technique

Our core schemes are q-key weakly collusion-succinct functional encryption
schemes for a-priori fixed polynomial q that are constructed from SXIO and
an additional cryptographic primitive (one-way function, public-key encryption,
or identity-based encryption). Weak collusion-succinctness means the size of the
encryption circuit is sub-linear in the number of issuable functional keys. See
Definition 3 for more details on succinctness. It is known that weakly collusion-
succinct functional encryption is transformed into weakly-succinct one [4,11].

We explain our ideas to achieve q-key weakly collusion-succinct
functional encryption schemes below.

Our main idea in one sentence. We compress parallelized encryption circuits
of a non-succinct scheme based on standard cryptographic primitives by using
SXIO to achieve weak collusion-succinctness.

Starting point. A naive idea to construct a q-key functional encryption scheme
from a single-key non-succinct functional encryption scheme is running q single-
key non-succinct functional encryption schemes in parallel where q is a poly-
nomial fixed in advance. A master secret/public key consist of q master
secret/public keys of the single-key scheme, respectively. A ciphertext consists
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of q ciphertexts of a plaintext x under q master secret or public keys. This
achieves q-key functional encryption.6 However, this simply parallelized scheme
is clearly not weakly collusion-succinct since the size of the encryption circuit is
linear in q. Note that a single-key non-succinct functional encryption scheme is
constructed from a standard cryptographic primitive (such as one-way function,
public-key encryption) [34,46].

Compressing by SXIO. Our basic idea is compressing the encryption circuit of the
simply parallelized scheme by using SXIO. Instead of embedding all q keys in an
encryption circuit, our encryption algorithm obfuscates a circuit that generates
the i-th master secret/public key of the simply parallelized scheme and uses it to
generate a ciphertext under the i-th key where i is an input to the circuit.

For simplicity, we consider the SKFE case. We set a pseudo-random function
(PRF) key K as a master secret key. For a plaintext x, our weakly collusion-
succinct encryption algorithm generates a circuit E′[K,x] that takes as an input
an index i ∈ [q], generates the i-th master secret key MSKi by using the hard-
wired K and the index i, and outputs a ciphertext Enc(MSKi, x) of the single-key
scheme7. A ciphertext of our scheme is sxiO(E′[K,x]). In E′[K,x], each master
secret key is generated in an on-line manner by using the PRF (it is determined
only by K and input i). The encryption circuit size of each Enc(MSKi, x) is inde-
pendent of q because it is the encryption algorithm of the single-key scheme. The
input space of E′[K,x] is [q]. Thus, the time needed to generate the ciphertext
sxiO(E′[K,x]) is poly(λ, |x|, |f |) · qγ from the efficiency guarantee of SXIO. This
achieves weak collusion-succinctness. The size depends on |f |, but it is not an
issue since our goal at this step is not (weak) succinctness. The security is proved
using the standard punctured programming technique [47].

Extension to public-key setting. We achieve a q-key weakly collusion-succinct
PKFE by a similar idea to the SKFE case. Only one exception is that we need
an SXIO to generate not only a ciphertext but also a master public-key to
prevent the size of a master public-key from linearly depending on q. That is,
a master public-key is an obfuscated circuit that outputs a master public-key
of a single-key scheme by using a PRF key. We give the simplified description
of this setup circuit (denoted by S) below for clarity. For the formal description
of S, see Fig. 2 in Sect. 3.2. If we do not use sxiO(S) as the master public key,
we must use {MPKi}i∈[q] as the master public-key and embed them in a public
encryption circuit E′′ since we cannot make PRF key K public. This leads to
linear dependence on q of the encryption time.

Encryption circuit E′′ is almost the same as E′ in the SKFE construction
except that MPK = sxiO(S) is hardwired to generate a master public-key in an
on-line manner. Similarly to the SKFE construction, a ciphertext is sxiO(E′′).

6 In fact, the functional key generation algorithm takes an additional input called
index and is stateful. We ignore this issue here. However, in fact, this issue does not
matter at all. See Remark 2 in Sect. 2 regarding this issue.

7 We ignore the issue regarding randomness of the ciphertext in this section.
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// Description of (simplified) S
Hard-Coded Constants: K.
Input: i ∈ [q]

1. Compute ri
Setup ← FK(i).

2. Compute (MPKi,MSKi) ←
Setup(1λ; ri

Setup).

3. Return MPKi.

// Description of (simplified) E′′

Hard-Coded Constants: MPK, x.
Input: i ∈ [q]

1. Parse sxiO(S) ← MPK.

2. Compute MPKi ← sxiO(S)(i)

3. Return CTi ← Enc(MPKi, x).

This incurs two applications of SXIO in a nested manner (i.e., we obfuscate a
circuit in which another obfuscated circuit is hard-wired). Although the input
space of E′′ is [q] and the size of the encryption circuit of the single-key scheme is
independent of q, the size of sxiO(E′′) polynomially depends on sxiO(S). Thus, a
better compression factor of SXIO for S is required to ensure the weak collusion-
succinctness of the resulting scheme. Such better SXIO is implied by collusion-
resistant (non-succinct) SKFE [9]. See Sect. 3.2 for details of the efficiency
analysis.

Using power of identity-based encryption. To overcome the nested applications
of SXIO, we directly construct a q-key weakly collusion-succinct PKFE from
SXIO, identity-based encryption, and garbled circuit. The main idea is the same.
Our starting point is the single-key non-succinct PKFE scheme of Sahai and
Seyalioglu [46], which is based on a public-key encryption scheme PKE. We use
a universal circuit U(·, x) in which a plaintext x is hard-wired and takes as an
input a function f , which will be embedded in a functional key. Let s := |f |.
The scheme of Sahai and Seyalioglu is as follows.

Setup: A master public-key consists of 2s public-keys of PKE, {pkj
0, pk

j
1}j∈[s].

Functional Key: A functional key for f consists of s secret-keys of PKE,
{skj

fj
}j∈[s] where f = f1 . . . fs and fj is a single bit for every j ∈ [s].

Encryption: A ciphertext of a plaintext x consists of a garbled circuit of U(·, x)
and encryptions of 2s labels of the garbled circuit under pkj

b for all j ∈ [s]
and b ∈ {0, 1}.

Decryption: We obtain labels corresponding to f by using {skj
fj

}j∈[s] and eval-
uate the garbled U(·, x) with those labels.

We can replace PKE with an identity-based encryption scheme IBE by using
identities in [s] × {0, 1}. That is, {pkj

0, pk
j
1}j∈[s] is aggregated into a master

public-key of IBE. A functional key for f consists of secret keys for identities
(1, f1), . . . , (s, fs). In addition, encryptions of 2s labels consist of 2s ciphertexts
for identities (j, b) for all j ∈ [s] and b ∈ {0, 1}. We parallelize this by extending
the identity space into [q] × [s] × {0, 1} to achieve a q-key scheme. We need
compression to achieve weak collusion-succinctness since simple parallelization
incurs the linearity in q.

Our encryption algorithm obfuscates the following circuit ˜E by using an
SXIO. A master public-key of IBE and plaintext x are hard-wired in ˜E. Given
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index i, ˜E generates a garbled circuit of U(·, x) with 2s labels and outputs the
garbled circuit and encryptions of the 2s labels under appropriate identities.
Identities consist of (i, j, fj) ∈ [q] × [s] × {0, 1} for every j ∈ [s]. A ciphertext
of our scheme is sxiO(˜E). Therefore, if secret keys for identities {(i, j, fj)}j∈[s]

are given as functional keys, then we can obtain labels only for f from cor-
responding ciphertexts of IBE output by sxiO(˜E) on the input i, and compute
U(f, x) = f(x).

A master public-key and encryption circuit of the identity-based encryption
are succinct in the sense that their size is sub-linear in |ID| where ID is the
identity space of IBE. That is, the size depends on |ID|α for sufficiently small
constant α.8 In addition, the input space of ˜E is just [q] and the garbled circuit
part of ˜E is independent of q. Therefore, the time needed to generate a ciphertext
sxiO(˜E) is sub-linear in q from the efficiency property of SXIO. Thus, the scheme
is weakly collusion-succinct.

In fact, this PKFE construction is similar to that of Bitansky et al. [9],
but we do not need decomposable garbled circuit because our goal is achieving
weak collusion-succinctness, which allows encryption circuits to polynomially
depend on the size of f (our goal is not weak succinctness at this stage). Thus, a
standard garbled circuit is sufficient for our construction. Moreover, SXIO with
a bad compression factor is sufficient since we use an SXIO only once.

Uniting pieces. It is known that public-key encryption (resp. one-way function)
implies single-key non-succinct PKFE (resp. SKFE) [34,46] and bounded-key
weakly collusion-succinct PKFE (resp. SKFE) implies single-key weakly succinct
PKFE (resp. SKFE) [4,11]. Thus, via our weakly collusion-succinct PKFE (resp.
SKFE), we can obtain single-key weakly succinct PKFE (resp. SKFE) based on
SXIO and standard cryptographic primitives. Figure 1 illustrates our first and
third informal theorems.

Fig. 1. Illustration of our first and third theorems. Dashed lines denote known con-
structions. Purple boxes denote our core schemes. We ignore puncturable PRF in this
figure. It is implied by one-way function. (Color figure online)

8 When we say identity-based encryption, we assume that it satisfies this type of suc-
cinctness. In fact, most identity-based encryption schemes based on number theoretic
or lattice assumptions satisfy it.
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Concurrent and independent work. Lin and Tessaro [42] prove that a collusion-
resistant PKFE scheme for P/poly is constructed from any single-key PKFE
scheme for P/poly (e.g., a PKFE scheme based on public-key encryption pro-
posed by Gorbunov et al. [34]) and IO for ω(log λ)-bit-input circuits.

Their construction is similar to that of our single-key weakly succinct PKFE
scheme for P/poly from public-key encryption and SXIO. One notable differ-
ence is that they use IO for ω(log λ)-bit-input circuits while we use SXIO for
P/poly based on collusion-resistant SKFE for P/poly with polynomial security
loss, which is a weaker tool than theirs.

Organization. This paper consists of the following parts. In Sect. 2, we pro-
vide preliminaries and basic definitions. In Sect. 3, we present our constructions
of weakly collusion-succinct functional encryption schemes based on SXIO and
standard cryptographic primitives. In Sect. 4, we provide a statement about how
to transform weakly collusion-succinct functional encryption schemes into single-
key weakly succinct functional encryption schemes. In Sect. 5, we summarize our
results.

2 Preliminaries

We now define some notations and cryptographic primitives. We omit some
notations and definitions due to limited space.

If X (b) = {X
(b)
λ }λ∈N for b ∈ {0, 1} are two ensembles of random variables

indexed by λ ∈ N, we say that X (0) and X (1) are computationally indistinguish-
able if for any PPT distinguisher D, there exists a negligible function negl(λ),
such that Δ := |Pr[D(X(0)

λ ) = 1] − Pr[D(X(1)
λ ) = 1]| ≤ negl(λ). We write

X (0) c≈δ X (1) to denote that the advantage Δ is bounded by δ.

2.1 Functional Encryption

Secret-Key Functional Encryption (SKFE). We introduce the syntax of
an index based variant SKFE scheme that we call an index based SKFE (iSKFE)
scheme. “Index based” means that, to generate the i-th functional decryption
key, we need to feed an index i to a key generation algorithm. For a single-
key scheme, an iSKFE scheme is just a standard SKFE scheme in which the
key generation algorithm does not take an index as an input since the index is
always fixed to 1. See Remark 2 for details.

Definition 1 (Index Based Secret-key Functional Encryption). Let
M := {Mλ}λ∈N

be a message domain, Y := {Yλ}λ∈N
a range, I := [qk(λ)] an

index space where qk is a fixed polynomial, and F := {Fλ}λ∈N
a class of func-

tions f : M → Y. An iSKFE scheme for M,Y, I, and F is a tuple of algorithms
SKFE = (Setup, iKG,Enc,Dec) where:

– Setup(1λ) takes as input the security parameter and outputs a master secret
key MSK.
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– iKG(MSK, f, i) takes as input MSK, a function f ∈ F , and an index i ∈ I,
and outputs a secret key skf for f .

– Enc(MSK, x) takes as input MSK and a message x ∈ M and outputs a cipher-
text CT.

– Dec(skf ,CT) takes as input skf for f ∈ F and CT and outputs y ∈ Y, or ⊥.

Correctness: We require Dec(iKG(MSK, f, i),Enc(MSK, x)) = f(x) for any x ∈
M, f ∈ F , i ∈ I, and MSK ← Setup(1λ).

Next, we introduce selective-message message privacy [17].

Definition 2 (Selective-Message Message Privacy). Let SKFE be an
iSKFE scheme whose message space, function space, and index space are M,
F , and I, respectively. We define the selective-message message privacy experi-
ment Expsm-mp

A (1λ, b) between an adversary A and a challenger as follows.

1. A is given 1λ and sends (x(1)
0 , x

(1)
1 ), · · · , (x(qm)

0 , x
(qm)
1 ) to the challenger, where

qm is an a-priori unbounded polynomial of λ.
2. The challenger chooses MSK ← Setup(1λ) and a challenge bit b ← {0, 1}.
3. The challenger generates CT(j) ← Enc(MSK, x

(j)
b ) for j ∈ [qm] and sends

them to A.
4. A is allowed to make arbitrary function queries at most |I| = qk times.

For the �-th key query f� ∈ F from A, the challenger generates skf�
←

iKG(MSK, f�, �) and returns skf�
to A.

5. A outputs b′ ∈ {0, 1}. The experiment output b′ if f�(x
(j)
0 ) = f�(x

(j)
1 ) for all

j ∈ [qm] and � ∈ [qk], where qk is the number of key queries made by A;
otherwise ⊥.

We say that SKFE is qk-selective-message message private (or selectively
secure for short) if for any PPT A, it holds that

Advsm-mp
A (λ) := |Pr[Expsm-mp

A (1λ, 0) = 1] − Pr[Expsm-mp
A (1λ, 1) = 1]| ≤ negl(λ).

We further say that SKFE is (qk, δ)-selective-message message private, for some
concrete negligible function δ(·), if for any PPT A the above advantage is smaller
than δ(λ)Ω(1).

Remark 1 (Regarding the number of key queries). Let FE be a functional encryp-
tion scheme. If qk is an unbounded polynomial, then we say FE is a collusion-
resistant functional encryption. If qk is a bounded polynomial (i.e., fixed in
advance), then we say FE is a bounded collusion-resistant functional encryption.
If qk = 1, we say FE is a single-key functional encryption. In this study, our
constructions are bounded collusion-resistant.

Remark 2 (Regarding an index for algorithm iKG). Our definitions of functional
encryptions slightly deviates from the standard ones (e.g., the definition by
Ananth and Jain [3] or Brakerski and Segev [17]). Our key generation algorithm
takes not only a master secret key and a function but also an index, which is
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used to bound the number of functional key generations. This index should be
different for each functional key generation. One might think this is a limitation,
but this is not the case in this study because our goal is constructing single-key
PKFE. For a single-key scheme, |I| = 1 and we do not need such an index.
Index based bounded collusion-resistant functional encryption schemes are just
intermediate tools in this study. In fact, such an index has been introduced by
Li and Micciancio in the context of PKFE [40].9

Next, we introduce notions regarding efficiency, called succinctness for func-
tional encryption schemes.

Definition 3 (Succinctness of Functional Encryption [11]). For a class of
functions F = {Fλ} over message domain M = {Mλ}, we let n(λ) be the input
length of the functions in F , s(λ) = maxf∈Fλ

|f | the upper bound on the circuit
size of functions in Fλ, and d(λ) = maxf∈Fλ

depth(f) the upper bound on the
depth, and a functional encryption scheme is

– succinct if the size of the encryption circuit is bounded by poly(n, λ, log s),
where poly is a fixed polynomial.

– weakly succinct if the size of the encryption circuit is bounded by sγ ·
poly(n, λ), where poly is a fixed polynomial, and γ < 1 is a constant.

– weakly collusion-succinct if the size of the encryption circuit is bounded by
qγ · poly(n, λ, s), where q is the upper bound of issuable functional keys in
bounded-key schemes (that is, the size of the index space of the scheme), poly
is a fixed polynomial, and γ < 1 is a constant.

We call γ the compression factor. The following theorem states that one can
construct IO from any single-key weakly succinct PKFE. We recall that single-
key iPKFE is also single-key PKFE, and vice versa.

Theorem 1 [11]. If there exists a single-key sub-exponentially weakly selectively
secure weakly succinct PKFE scheme for P/poly, then there exists an indistin-
guishability obfuscator for P/poly.

2.2 Indistinguishability Obfuscation

Definition 4 (Indistinguishability Obfuscator). A PPT algorithm iO is an
IO for a circuit class {Cλ}λ∈N if it satisfies the following two conditions.

Functionality: For any security parameter λ ∈ N, C ∈ Cλ, and input x, we
have that Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1.

9 The security definition of Li and Micciancio for index based functional encryption
and ours is slightly different. Their definition allows an adversary to use indices for
key generation in an arbitrary order. On the other hand, our definition does not
allow it. The difference comes from the fact that their goal is constructing collusion-
resistant functional encryption while our goal is constructing single-key functional
encryption. By restricting an adversary to use indices successively from one, we can
describe security proofs more simply.
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Indistinguishability: For any PPT distinguisher D and for any pair of circuits
C0, C1 ∈ Cλ such that for any input x, C0(x) = C1(x) and |C0| = |C1|, it
holds that |Pr [D(iO(C0)) = 1] − Pr [D(iO(C1)) = 1] | ≤ negl(λ). We further
say that iO is δ-secure, for some concrete negligible function δ(·), if for any
PPT D the above advantage is smaller than δ(λ)Ω(1).

Definition 5 (Strong Exponentially-Efficient Indistinguishability
Obfuscation). Let γ < 1 be a constant. An algorithm sxiO is a γ-compressing
SXIO for a circuit class {Cλ}λ∈N if it satisfies the functionality and indistin-
guishability in Definition 4 and the following efficiency requirement:

Non-trivial time efficiency: We require that the running time of sxiO on
input (1λ, C) is at most 2nγ · poly(λ, |C|) for any λ ∈ N and any circuit
C ∈ {Cλ}λ∈N with input length n.

Remark 3. In this paper, when we write “SXIO for P/poly”, we implicitly mean
that SXIO for polynomial-size circuits with inputs of logarithmic length. This
follows the style by Bitansky et al. [9] though Lin et al. [41] use the circuit
class Plog/poly to denote the class of polynomial-size circuits with inputs of
logarithmic length. The reason why we use the style is that we can consider the
polynomial input length if we do not care about the polynomial running time of
sxiO and the input length n obviously must be logarithmic for the polynomial
running time of sxiO from the definition.

3 Collusion-Succinct Functional Encryption from SXIO

In our bounded-key weakly collusion-succinct iSKFE and iPKFE schemes, we
use single-key non-succinct SKFE and PKFE schemes that are implied from
one-way function and public-key encryption, respectively.

Theorem 2 [34]10. If there exists a δ-secure one-way function, then there exists
a (1, δ)-selectively-secure and non-succinct SKFE scheme for P/poly. If there
exists a δ-secure public-key encryption, then there exists a (1, δ)-selectively-
secure and non-succinct PKFE scheme for P/poly.

Throughout this paper, let n and s be the length of a message x and size of a
function f of a functional encryption scheme, respectively as in Definition 3.

3.1 Collusion-Succinct SKFE from SXIO and One-Way Function

We put only our theorem in this section due to limited space. We can understand
an essence of the theorem from the construction in the next section.

10 More precisely, Gorbunov et al. prove that we can construct adaptively secure
schemes, in which adversaries are allowed to declare a target message pair after
the function query phase. However, selective security is sufficient for our purpose.
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Theorem 3. If there exists non-succinct (1, δ)-selective-message message pri-
vate SKFE for P/poly and δ-secure γ̃-compressing SXIO for P/poly where
0 < γ̃ < 1 (γ̃ might be close to 1), then there exists weakly collusion-succinct
(q, δ)-selective-message message private iSKFE for P/poly with compression fac-
tor γ′ such that 0 < γ̃ < γ′ < 1, where q is an a-priori fixed polynomial of λ.

3.2 Collusion-Succinct PKFE from SXIO and Public-Key
Encryption

In this section, we discuss how to construct a bounded-key weakly collusion-
succinct iPKFE scheme from an SXIO and PKE scheme.

Overview and proof strategy. Before we proceed to details, we give a main idea
for our iPKFE scheme.

Analogously to SKFE setting in Sect. 3.1, to achieve collusion-succinctness,
we consider to set a ciphertext as a circuit obfuscated by SXIO that can generate
q ciphertexts of a single-key non-succinct scheme. We need to maintain q encryp-
tion keys succinctly. In the SKFE setting, we maintain q master secret-keys as
one puncturable PRF key. However, we cannot directly use this solution in the
PKFE setting. If we do so in the PKFE setting, since the puncturable PRF key
should be the master secret-key, an encryptor cannot use it. Thus, we need some
mechanism that makes all master public-keys of single-key non-succinct schemes
available to an encryptor maintaining them succinctly.

To generate a succinct master public-key, we generate a setup circuit (denoted
by S1fe in our scheme) that outputs i-th master public-key of a single-key non-
succinct scheme corresponding to an input i, and obfuscate the circuit by SXIO
as explained in Sect. 1.3. An encryptor embeds MPK := sxiO(S1fe) into an
encryption circuit and outputs an obfuscation of this encryption circuit as a
ciphertext. This encryption circuit is hardwired a plaintext x and can output
ciphertexts under all q master public-keys like the encryption circuit in Sect. 3.1.

Our solution means that we must obfuscate a circuit in which an obfuscated
circuit is hardwired (nested applications of SXIO). The nested application still
increases the size of a ciphertext. However, if the compression factor of SXIO for
S1fe is sufficiently small, we can achieve weak collusion-succinctness.

In the security proof, we use the security of a single-key non-succinct scheme
to change a ciphertext of x0 under each master public-key into that of x1 via the
punctured programming approach as the SKFE case. However, in the reduction
to the single-key security, a target master public-key should be given from the
security experiment. This means that we must embed the target master public-
key into the setup circuit instead of generating it in an on-line manner. Thus,
we must apply the punctured programming technique to the setup circuit too
before the reduction to the single-key security. This is what the first hybrid step
in the security proof does. The rest of the proof is almost the same as that of
our iSKFE scheme.
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Fig. 2. Description of S1fe[K].

Our construction. The construction of an iPKFE scheme qFE whose index space
is [q] from an SXIO and public-key encryption scheme is as follows, where q is
a fixed polynomial of λ. Let 1FE = (1FE.Setup, 1FE.KG, 1FE.Enc, 1FE.Dec) be
a single-key non-succinct PKFE scheme and (PRF.Gen,F,Punc) a puncturable
PRF.

qFE.Setup(1λ):
– Generate K ← PRF.Gen(1λ) and S1fe[K] defined in Fig. 2.
– Return (M̂PK, M̂SK) := (sxiO(S1fe),K).

qFE.iKG(M̂SK, f, i):
– Parse K := M̂SK.
– Compute ri ← FK(i) and (MSKi,MPKi) ← 1FE.Setup(1λ; ri).
– Compute ski

f ← 1FE.KG(MSKi, f) and return ̂skf ← (i, ski
f ).

qFE.Enc(M̂PK, x):
– Generate K ′ ← PRF.Gen(1λ) and E1fe[M̂PK,K ′, x] defined in Fig. 3.
– Return ̂CT ← sxiO(E1fe[M̂PK,K ′, x]).

qFE.Dec(̂skf , ̂CT):
– Parse (i, ski

f ) := ̂skf .
– Compute the circuit ̂CT on input i, that is CTi ← ̂CT(i).
– Return y ← 1FE.Dec(ski

f ,CTi).

Theorem 4. If there exists (1, δ)-selectively-secure non-succinct PKFE for
P/poly and δ-secure γ-compressing SXIO for P/poly where γ is an arbitrarily
small constant such that 0 < γ < 1, then there exists (q, δ)-selectively-secure
weakly collusion-succinct iPKFE for P/poly with compression factor β, where q
is an a-priori fixed polynomial of λ, and β is a constant such that 0 < β < 1
specified later.

Proof of Theorem 4. We start with the security proof, then move on to analyzing
succinctness.
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Fig. 3. Description of E1fe[M̂PK, K′, x].

Security Proof. Let us assume that the underlying primitives are δ-secure. Let
A be an adversary attacking the selective security of qFE. We define a sequence
of hybrid games.

Hyb0: The first game is the original selective security experiment for b = 0,
that is ExptselA (1λ, 0). A first selects the challenge messages (x∗

0, x
∗
1) and

receives the master public key M̂PK := sxiO(S1fe[K]) and target cipher-
text sxiO(E1fe[M̂PK,K ′, x∗

0]). Next, A adaptively makes q function queries
f1, . . . , fq such that fi(x∗

0) = fi(x∗
1) for all i ∈ [q] and receives functional

keys ̂skf1 , . . . ,
̂skfq

.
Hybi∗

1 : Let i∗ ∈ [q]. We generate M̂PK as obfuscated S∗
1fe described in Fig. 4.

In this hybrid game, we set ri∗ ← FK(i∗), K{i∗} ← Punc(K, i∗) and
(MPKi∗ ,MSKi∗) ← 1FE.Setup(1λ; ri∗).
When i∗ = 1, the behavior of S∗

1fe is the same as that of S1fe since the hard-
wired MPK1 in S∗

1fe is the same as the output of S1fe on the input 1. Their
size is also the same since we pad circuit S1fe to have the same size as S∗

1fe.
Then, we can use the indistinguishability guarantee of sxiO and it holds that
Hyb0

c≈δ Hyb11.
Hybi∗

2 : The challenge ciphertext is generated by obfuscating E∗
1fe described in

Fig. 5. In this hybrid game, we set r′
i∗ ← FK′(i∗), K ′{i∗} ← Punc(K ′, i∗),

CTi∗ ← 1FE.Enc(MPKi∗ , x∗
0; r

′
i∗), and MPKi∗ ← M̂PK(i∗).

When i∗ = 1, the behavior of E∗
1fe is the same as that of E1fe since the hard-

wired CT1 in E∗
1fe is the same as the output of E1fe on the input 1. Moreover,

both circuits have the same size by padding padE. Then, we can use the
indistinguishability guarantee of sxiO and it holds that Hyb11

c≈δ Hyb12.
In addition, for i∗ ≥ 2, the behavior of E∗

1fe does not change between Hybi∗
1

and Hybi∗
2 . Thus, Hybi∗

1

c≈δ Hybi∗
2 holds for every i∗ ∈ {2, · · · , q} due to the

security guarantee of sxiO.
Hybi∗

3 : We change ri∗ = FK(i∗) and r′
i∗ = FK′(i∗) into uniformly random ri∗

and r′
i∗ . Due to the pseudo-randomness at punctured points of puncturable

PRF, it holds that Hybi∗
2

c≈δ Hybi∗
3 for every i∗ ∈ [q].
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Fig. 4. Circuit S∗
1fe[K{i∗},MPKi∗ ]. The description depends on i∗, but we use the

notion S∗
1fe instead of Si∗

1fe for simpler notations.

Fig. 5. Circuit E∗
1fe[M̂PK, K′{i∗}, x∗

0, x
∗
1,CTi∗ ]. The description depends on i∗, but we

use the notion E∗
1fe instead of Ei∗

1fe for simpler notations.

Hybi∗
4 : We change CTi∗ from 1FE.Enc(MPKi∗ , x∗

0) to 1FE.Enc(MPKi∗ , x∗
1). In

Hybi∗
3 and Hybi∗

4 , we do not need randomness to generate MPKi∗ and CTi∗ .
We just hardwire MPKi∗ and CTi∗ into S∗

1fe and E∗
1fe, respectively. Therefore,

for every i∗ ∈ [q], Hybi∗
3

c≈δ Hybi∗
4 follows from the selective security of 1FE

under the master public key MPKi∗ .
Hybi∗

5 : We change r∗
i and r′

i∗ into ri∗ = FK(i∗) and r′
i∗ = FK′(i∗). We can

show Hybi∗
4

c≈δ Hybi∗
5 for every i∗ ∈ [q] based on the pseudo-randomness at

punctured point of puncturable PRF.

From the definition of S∗
1FE, E

∗
1FE, and Hybi∗

1 , the behaviors of S∗
1FE and E∗

1FE

in Hybi∗
5 and Hybi∗+1

1 are the same. Thus, Hybi∗
5

c≈δ Hybi∗+1
1 holds for every

i∗ ∈ [q − 1] due to the security guarantee of sxiO. It also holds that Hybq
5

c≈δ

ExptselA (1λ, 1) based on the security guarantee of sxiO. This completes the security
proof.

Padding Parameter. The proof of security relies on the indistinguishability of
obfuscated S1fe and S∗

1fe defined in Figs. 2 and 4, and that of obfuscated E1fe and
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E∗
1fe defined in Figs. 3 and 5. Accordingly, we set padS := max(|S1fe|, |S∗

1fe|) and
padE := max(|E1fe|, |E∗

1fe|).
The circuits S1fe and S∗

1fe compute a puncturable PRF over domain [q] and
a key pair of 1FE, and may have punctured PRF keys and a master public
key hardwired. The circuits E1fe and E∗

1fe run the circuit M̂PK and compute
a puncturable PRF over domain [q] and a ciphertext of 1FE, and may have
punctured PRF keys and a hard-wired ciphertext. Note that the size of instances
of 1FE is independent of q. Thus, it holds that

padS ≤ poly(λ, n, s, log q) and padE ≤ poly(λ, n, s, log q, |M̂PK|).

Weak Collusion-Succinctness. To clearly analyze the size of qFE.Enc, we suppose
that SXIO used to obfuscate S1fe and that used to obfuscate E1fe are different.

Let γ′ be the compression factor of the SXIO for S1fe. The input space for
S1fe is [q]. Therefore, by the efficiency guarantee of SXIO, we have

|sxiO(S1fe)| < qγ′ · poly(λ, n, s, log q).

Let γ be the compression factor of the SXIO for E1fe. The input space of E1fe

is also [q]. The size of the encryption circuit qFE.Enc (dominated by generating
the obfuscated E1fe) is

qγ · poly(λ, n, s, log q, |sxiO(S1fe)|) < qγ+cγ′ · poly(λ, n, s),

where c is some constant.
We assume there exists SXIO with an arbitrarily small compression factor.

Thus, by setting γ′ as γ′ < 1−γ
c , we can ensure that β := γ + cγ′ < 1, that is

qFE is weakly collusion-succinct.
This completes the proof of Theorem 4. �

3.3 Collusion-Succinct PKFE from SXIO and Identity-Based
Encryption

In this section, we directly construct a weakly collusion-succinct and weakly
selectively secure iPKFE scheme from an SXIO and identity-based encryption
scheme.

Our construction. The construction of a weakly collusion-succinct and weakly
selectively secure q-key iPKFE scheme qFE for any fixed polynomial q of λ
is based on an SXIO, identity-based encryption scheme11, and garbled circuit
which is implied by a one-way function. Our collusion-succinct iPKFE scheme
11 We stress that the size of the encryption circuit of an identity-based encryption

scheme is |ID|α · poly(λ, �) where � is the length of plaintext, ID is the identity-
space, and α is a constant such that 0 < α < 1. Most identity-based encryption
schemes based on concrete assumptions have such succinct encryption circuits. In
our scheme, ID is just a polynomial size.
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Fig. 6. The description of ELgc. U(·, x) is a universal circuit in which x is hardwired as
the second input.

is weakly selectively secure because we use function descriptions as identities of
identity-based encryption, and the selective security of identity-based encryption
requires adversaries to submit a target identity at the beginning of the game.

We assume that we can represent every function f by a s bit string
(f [1], · · · , f [s]) where s = poly(λ). Let IBE = (IBE.Setup, IBE.KG, IBE.Enc,
IBE.Dec) be an identity-based encryption scheme whose identity space is [q] ×
[s] × {0, 1}, GC = (Grbl,Eval) a garbled circuit, and (PRF.Gen,F,Punc) a PRF
whose domain is [q] × [s] × {0, 1, 2}.

qFE.Setup(1λ):
– Generate (MPKibe,MSKibe) ← IBE.Setup(1λ).
– Set MPK := MPKibe and MSK := MSKibe and return (MPK,MSK).

qFE.iKG(MSK, f, i):
– Parse MSKibe ← MSK and (f [1], · · · , f [s]) := f .
– For every j ∈ [s], compute SKj ← IBE.KG(MSKibe, (i, j, f [j])).
– Return skf := (i, f, {SKj}j∈[s]).

qFE.Enc(MPK, x):
– Parse MPKibe ← MPK and choose K ← PRF.Gen(1λ).
– Return CTfe ← sxiO(ELgc[MPKibe,K, x]). ELgc is defined in Fig. 6.

qFE.Dec(skf ,CTfe):
– Parse (i, f, {SKj}j∈[s]) ← skf .
– Compute the circuit CTfe on input i, that is (˜U, {CTj,α}j∈[s],α∈{0,1}) ←

CTfe(i).
– For every j ∈ [s], compute Lj ← IBE.Dec(SKj ,CTj,f [j]).
– Return y ← Eval(˜U, {Lj}j∈[s]).

Theorem 5. If there exists δ-selectively-secure succinct identity-based encryp-
tion with α-compression (α is a sufficiently small constant) and δ-secure γ̃-
compressing SXIO for P/poly for a constant γ̃ such that 0 < γ̃ < 1 (γ̃ might
be close to 1), then there exists weakly collusion-succinct (q, δ)-weakly-selectively
secure iPKFE for circuits of size at most s with compression factor β, where s
and q are a-priori fixed polynomials of λ and β is a constant such that γ̃ < β < 1
specified later.
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Proof of Theorem 5. We start with the security proof then moving to analyzing
succinctness.

Security Proof. Let us assume that the underlying primitives are δ-secure. Let A
be an adversary attacking weakly selective security of qFE. We define a sequence
of hybrid games.

Hyb0: The first game is the original weakly selective security experiment for b =
0, that is Exptsel

∗
A (1λ, 0). In this game, A first selects the challenge messages

(x∗
0, x

∗
1) and queries q functions f1, . . . , fq such that fi(x∗

0) = fi(x∗
1) for all

i ∈ [q]. Then A obtains an encryption of x∗
0, the master public key, and

functional keys skf1 , . . . , skfq
.

Hybi∗
1 : Let i∗ ∈ [q]. The challenge ciphertext is generated by obfuscating
EL∗

gc described in Fig. 7. In this hybrid game, we set r∗
gc ← FK(i∗‖1‖2),

r∗
i∗‖j‖α ← FK(i∗‖j‖α) for all j ∈ [s] and α ∈ {0, 1}, K{S∗} ← Punc(K,S∗)

where S∗ :=
{

i∗‖1‖2, {i∗‖j‖α}j∈[s],α∈{0,1}
}

, (˜U∗, {L∗
j,α}j∈[s],α∈{0,1}) ←

Grbl(1λ, U(·, x∗
0); r

∗
gc), and CTj,α

i∗ ← IBE.Enc(MPKibe, (i∗, j, α), Lj,α; r∗
i∗‖j‖α)

for all j ∈ [s] and α ∈ {0, 1}. Hereafter, we use r∗
j‖α instead of r∗

i∗‖j‖α for
ease of notation.
When i∗ = 1, the behaviors of ELgc and EL∗

gc are the same from the definition
of EL∗

gc, and so are their size since we pad circuit ELgc to have the same size
as EL∗

gc. Then, we can use the indistinguishability guarantee of sxiO, and it

holds that Hyb0
c≈δ Hyb11.

Hybi∗
2 : We change r∗

gc = FK(i∗‖1‖2) and r∗
j‖α = FK(i∗‖j‖α) into uniformly

random r∗
gc and r∗

j‖α for all j ∈ [s] and α ∈ {0, 1}. Due to the pseudo-

randomness at punctured points of puncturable PRF, it holds that Hybi∗
1

c≈δ

Hybi∗
2 for every i∗ ∈ [q].

Hybi∗
3 : For ease of notation, let f∗ := fi∗ and f be the complement of f , that is,
(f [1], . . . , f [s]) := (1−f [1], . . . , 1−f [s]). Moreover, we omit each randomness
for IBE.Enc since it is uniformly random at this hybrid game. For every j ∈ [s],
we change

– normal ciphertexts CTj,f∗[j]
i∗ ← IBE.Enc(MPKibe, (i∗, j, f∗[j]), L

j,f∗[j]) into

– junk ciphertexts CT
j,f∗[j]
i∗ ← IBE.Enc(MPKibe, (i∗, j, f∗[j]), 0�(λ)), where �

is a polynomial denoting the length of labels output by Grbl.

That is, for identities which do not correspond to the i∗-th function queried
by A, we do not encrypt labels of garbled circuit. We do not change CT

j,f∗[j]
i∗

for all j ∈ [s]. Note that all f1, . . . , fq are known in advance since we con-
sider weakly selective security. A is not given secret keys of IBE for identity
(i∗, j, f∗[j]), so it is hard for A to detect this change. We show Hybi∗

2

c≈δ Hybi∗
3

more formally in Lemma 1 by using the selective security of IBE.
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Fig. 7. The description of EL∗
gc. The description depends on i∗, but we use the notion

EL∗
gc instead of ELi∗

gc for simpler notations. U(·, x) is a universal circuit in which x is
hardwired as the second input.

Lemma 1. It holds that Hybi∗
2

c≈δ Hybi∗
3 for all i∗ ∈ [q] if IBE is selectively

secure.

Proof. First, we define more hybrid games Hj∗ for j∗ ∈ {0, · · · , s} as follows.

Hj∗ : This is the same as Hybi∗
2 except that for j ≤ j∗, CT

j,f∗[j]
i∗ ←

IBE.Enc(MPKibe, i
∗‖j‖ f∗[j], 0�). We see that H0 and Hs are the same as Hybi∗

2

and Hybi∗
3 , respectively.

We show that Hj∗−1
c≈δ Hj∗ holds for all j∗ ∈ [s]. This immediately implies the

lemma.
We construct an adversary B in the selective security game of IBE as follows.

To simulate the weakly selective security game of iPKFE, B runs A attacking qFE
and receives a message pair (x∗

0, x
∗
1) and function queries f1, · · · , fq. B simulates

the game of qFE as follows.

Setup and Encryption: B sets id∗ := i∗‖j∗‖ f∗[j∗] as the target identity to
the challenger of IBE. Note that f∗ = fi∗ .
To set challenge messages of IBE, B computes (˜U∗, {L∗

j,α}j∈[s],α∈{0,1}) ←
Grbl(1λ, U(·, x∗

0)) and sets m∗
0 := L∗

j∗,f∗[j∗]
and m1 := 0�(λ). B sends id∗ and

(m∗
0,m

∗
1) to the challenger of IBE, and receives MPKibe and CT

j∗,f∗[j∗]
i∗ as the

master public-key and target ciphertext of IBE. B sets MPK := MPKibe. To
simulate ciphertexts of qFE, B does the followings.
– For all j ≤ j∗ − 1, B computes CT

j,f∗[j]
i∗ ← IBE.Enc(MPKibe, i

∗‖
j‖f∗[j], Lj,f∗[j]) and CT

j,f∗[j]
i∗ ← IBE.Enc(MPKibe, i

∗‖j‖ f∗[j∗]), 0�).
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– For j = j∗, B computes CT
j∗,f∗[j∗]
i∗ ← IBE.Enc(MPKibe, i

∗‖j∗‖f∗[j∗],
Lj∗,f∗[j∗]).

– For all j ≥ j∗ + 1 and α ∈ {0, 1}, B computes CTj,α
i∗ ← IBE.Enc

(MPKibe, i
∗‖j‖α), Lj,α).

By using these ciphertexts {CTj,α
i∗ }j∈[s],α∈{0,1} , B constructs program EL∗

gc

and sets CT∗
fe := sxiO(EL∗

gc) as the target ciphertext of qFE.
Key Generation: Then, B queries identities (i, 1, fi[1]), . . . , (i, s, fi[s]) for all

i ∈ [q] to the challenger of IBE, receives SKj
i ← IBE.KG(MSKibe, i‖j‖fi[j]),

and sets SKfi
:= (i, fi, {SKj

i}j∈[s]) for all i ∈ [q]. Note that B does not have
to query the challenge identity (i∗‖j∗‖ f∗[j∗]).

Now B sets all values for A and sends MPK, CT∗
fe, and {SKfi

}i∈[q] to A. If B is

given CT
j∗,f∗[j∗]
i∗ = IBE.Enc(MPKibe, i

∗‖j∗‖ f∗[j∗]), L
j∗,f∗[j∗]), then B perfectly

simulates Hj∗−1. If B is given CT
j∗,f∗[j∗]
i∗ = IBE.Enc(MPKibe, i

∗‖j∗‖ f∗[j∗], 0�(λ)),
then B perfectly simulates Hj∗ . Therefore, the advantage of A between Hj∗−1

and Hj∗ is bounded by that of B attacking IBE and it holds that Hj∗−1
c≈δ Hj∗ .

This completes the proof of the lemma. �

Hybi∗
4 : We change (˜U∗, {L∗

j,α}j∈[s],α∈{0,1}) ← Grbl(1λ, U(·, x∗
0)) into a simulated

output (˜U∗, {L∗
j,f∗[j]}j∈[s]) ← Sim.GC(1λ, y∗)) where y∗ := f∗(x∗

0) = f∗(x∗
1).

By the requirement of the game, f∗(x∗
0) = f∗(x∗

1) holds. In this game,
{L∗

j,f∗[j]
}j∈[s] are not generated since the simulator of GC does not gen-

erate them. This is not a problem since for such labels, junk ciphertexts are
generated as in Hybi∗

3 . It holds that Hybi∗
3

c≈δ Hybi∗
4 for every i∗ ∈ [q] due to

the security of the garbled circuit.
Hybi∗

5 : We change the simulated garbled circuit, junk ciphertexts, and punc-
tured PRF keys hardwired into EL∗

gc back into the real garbled circuit, nor-
mal IBE ciphertexts, and un-punctured PRF keys. In this hybrid game,
we set r∗

gc = FK(i∗‖1‖2), r∗
j‖α = FK(i∗‖j‖α) for all j ∈ [s] and

α ∈ {0, 1}, (˜U∗, {L∗
j,α}j∈[s],α∈{0,1}) ← Grbl(1λ, U(·, x∗

1); r
∗
gc), and CTj,α

i∗ ←
IBE.Enc(MPKibe, (i∗, j, α), Lj,α; r∗

j‖α). We can show Hybi∗
4

c≈δ Hybi∗
5 for every

i∗ ∈ [q] in a reverse manner.

It holds Hybi∗
5

c≈δ Hybi∗+1
1 for every i∗ ∈ [q − 1] by the definition of EL∗

gc and

sxiO. That is, Exptsel
∗

A (1λ, 0) = Hyb0
c≈δ Hyb11

c≈δ · · · c≈δ Hybq
5

c≈δ Exptsel
∗

A (1λ, 1)
holds. This completes the security proof.

Padding Parameter. The proof of security relies on the indistinguishability of
obfuscated ELgc and EL∗

gc defined in Figs. 6 and 7, respectively. Accordingly, we
set padEL := max(|ELgc|, |EL∗

gc|).
The circuits ELgc and EL∗

gc compute a puncturable PRF over domain [q], 2s
IBE ciphertexts, and garbled circuit of U(·, x), and may have punctured PRF
keys and a hard-wired ciphertext. Note that the size of set S∗ of punctured
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points of PRF in EL∗
gc is logarithmic in q. Note also that |ID| = 2qs. Thus, due

to the efficiency of IBE, it holds that

padEL ≤ 2s · (2qs)α · poly(λ) + poly(λ, s, log q) ≤ qα · poly(λ, s),

where α is a constant such that 0 < α < 1.

Weak Collusion-Succinctness. The input space for ELgc is [q]. Thus, by the effi-
ciency guarantee of SXIO, the size of the encryption circuit qFE.Enc (dominated
by generating an obfuscated ELgc) is

qγ̃ · poly(λ, padEL) < qγ̃+cα · poly(λ, s),

where γ̃ is a constant such that 0 < γ̃ < 1 and c is some constant.
By using an identity-based encryption scheme whose compression factor α

satisfies α < 1−γ̃
c , we ensure that β := γ̃ + cα < 1, that is qFE is weakly

collusion succinct. This completes the proof of Theorem 5. �

4 Weak Succinctness from Collusion-Succinctness

We state only the theorem due to limited space.

Theorem 6. If there exists weakly collusion-succinct (μ, δ)-weakly-selectively
secure iPKFE (resp. iSKFE) for circuits of size at most s = s(λ) with n = n(λ)
inputs with encryption circuit of size μγ · poly(λ, n, s) where μ = s · polyRE(λ, n)
and polyRE is a fixed polynomial determined by RE, then there exists weakly suc-
cinct (1, δ)-weakly-selectively secure PKFE (resp. SKFE) for circuits of size at
most s = s(λ) with encryption circuit of size sγ′ · poly(λ, n), where γ′ is a fixed
constant such that γ < γ′ < 1.

We can obtain this theorem by slightly modifying the analysis of the trans-
formation by Bitansky and Vaikuntanathan [11, Proposition IV.1].

5 Putting it Altogether

Before summarizing our results, we introduce the following theorems regard-
ing SKFE and SXIO obtained by the results of Brakerski et al. [16] and
Bitansky et al. [9,10]. Note that poly denotes an unspecified polynomial below.

Theorem 7 [9,16]. If there exists (poly, δ)-selective-message message private
and non-succinct SKFE for P/poly, then there exists δ-secure and γ-compressing
SXIO for P/poly where γ is an arbitrary constant such that 0 < γ < 1. (γ could
be sufficiently small)

Theorem 8 [10]. If there exists (1, δ)-selective-message message private and
weakly succinct SKFE for P/poly, then there exists δ-secure and γ̃-compressing
SXIO for P/poly where γ̃ is a constant such that 1/2 ≤ γ̃ < 1.
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We also introduce the following result shown by Garg and Srinivasan [29] stat-
ing that we can transform single-key PKFE into collusion-resistant one strength-
ening selective security and succinctness.

Theorem 9 [29]. If there exists a (1, δ)-weakly-selectively secure and weakly suc-
cinct PKFE scheme for P/poly, then there exists a (poly, δ)-selectively secure and
succinct PKFE scheme for P/poly.

5.1 Transformation from SKFE to PKFE

By Theorems 2, 4, 6 and 7, we obtain the following theorem. We note that
Theorem 4 requires a sufficiently small compression factor for SXIO.

Theorem 10. If there exists δ-secure plain public-key encryption and (poly, δ)-
selective-message message private and non-succinct SKFE for P/poly, then there
exists (1, δ)-selectively secure and weakly succinct PKFE for P/poly.

From this theorem and Theorem9, we obtain the following corollary stating
that collusion-resistant PKFE is constructed from collusion-resistant SKFE if
we additionally assume public-key encryption.

Corollary 1. If there exists δ-secure plain public-key encryption and (poly, δ)-
selective-message message private and non-succinct SKFE for P/poly, then there
exists (poly, δ)-selectively secure and succinct PKFE for P/poly.

We stress that the transformations above incur only polynomial security loss.
We next see that single-key weakly-succinct SKFE is also powerful enough to

yield PKFE if we additionally assume identity-based encryption. By Theorems 5,
6 and 8, we obtain the following theorem since Theorem5 just requires that the
compression factor of SXIO γ̃ is slightly smaller than 1 (no need to be sufficiently
small).

Theorem 11. If there exists δ-secure identity-based encryption and (1, δ)-
selective-message message private and weakly succinct SKFE for P/poly, then
there exists (1, δ)-weakly-selectively secure and weakly succinct PKFE for P/poly.

We stress that the transformation above incurs only polynomial security
loss. We note the following two facts. It was not known whether (1, δ)-selective-
message message private and weakly succinct SKFE for P/poly implies (poly, δ)-
selective-message message private SKFE for P/poly or not before the recent work
of Kitagawa et al. [38]. Moreover, the transformation of Kitagawa et al. incurs
quasi-polynomial security loss.

By combining this theorem with Theorem 9, we obtain the following corollary
stating that we can construct collusion-resistant PKFE from single-key weakly
succinct SKFE if we additionally assume identity-based encryption.

Corollary 2. If there exists δ-selectively-secure identity-based encryption and
(1, δ)-selectively-secure weakly succinct SKFE for P/poly, then there exists
(poly, δ)-selectively secure and succinct PKFE for P/poly.

We stress that the transformation above incurs only polynomial security loss.
Figure 8 illustrates our results stated above.
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Fig. 8. Illustration of our theorems. Dashed lines denote known facts or trivial implica-
tions. White boxes denote our ingredients or goal. Purple boxes denote our key schemes.
Green boxes denote our intermediate tools. All transformations in this figure incur only
polynomial security loss. γ-SXIO (resp. γ̃-SXIO) denotes SXIO with compression factor
γ (resp. γ̃), which is sufficiently small constant of less than 1 (resp. arbitrary constant
of less than 1). We ignore garbled circuit, puncturable PRF, and decomposable RE in
this figure. They are implied by one-way function. (Color figure online)

5.2 Equivalence of SKFE, SXIO, and Updatable RE

By Theorems 2, 3 and 6, we obtain the following theorem.

Theorem 12. If there exists δ-secure one-way function and δ-secure and γ̃-
compressing SXIO for P/poly for a constant γ̃ such that 0 < γ̃ < 1 (γ̃ might be
close to 1), then there exists (1, δ)-selective-message message private and weakly
succinct SKFE for P/poly.

By combining this theorem and Theorem8, we obtain the following corollary
stating that the existence of single-key weakly-succinct SKFE is equivalent to
those of SXIO and one-way function. Note that single-key weakly succinct SKFE
for P/poly trivially implies one-way function.

Corollary 3. A single-key weakly succinct SKFE for P/poly is equivalent to
one-way function and γ̃-compressing SXIO for P/poly such that 0 < γ̃ < 1 (γ̃
might be close to 1).

We can also obtain equivalence of these primitives and updatable
randomized encoding (URE). We introduce the following results related to URE
shown by Ananth et al. [2].
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Theorem 13 [2]. A single-key weakly succinct SKFE for P/poly implies output-
compact URE with an unbounded number of updates.

Theorem 14 [2]. Output-compact URE with an unbounded number of updates
implies a γ̃-compressing SXIO for P/poly where 1

2 ≤ γ̃ < 1.

Note that Ananth et al. prove Theorem 14 for a γ̃-compressing XIO, but it is
easy to observe that their construction of XIO can be extended to γ̃-compressing
SXIO. By Theorems 12 to 14, we can obtain the following corollary.

Corollary 4. A single-key weakly succinct SKFE for P/poly is equivalent to
one-way function and output-compact updatable randomized encoding with an
unbounded number of updates.

Ananth et al. show that single-key weakly-succinct SKFE is equivalent to
the combination of updatable randomized encoding and the LWE assumption.
Regarding the result, Corollary 4 shows that the LWE assumption is replaced
with weaker and general assumption, that is one-way function.
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5. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over GGH13. In: ICALP 2017 (2017)

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Comput. Complex. 15(2), 115–162 (2006)

7. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

8. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

https://doi.org/10.1007/978-3-662-48000-7_32
https://doi.org/10.1007/978-3-319-56614-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42


Simple and Generic Constructions of Succinct Functional Encryption 215

9. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to
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Abstract. We put forth a new notion of distributed public key func-
tional encryption. In such a functional encryption scheme, the secret
key for a function f will be split into shares skfi . Given a ciphertext
ct that encrypts a message x, a secret key share skfi , one can evaluate
and obtain a shared value yi. Adding all the shares up can recover the
actual value of f(x), while partial shares reveal nothing about the plain-
text. More importantly, this new model allows us to establish function
privacy which was not possible in the setting of regular public key func-
tional encryption. We formalize such notion and construct such a scheme
from any public key functional encryption scheme together with learning
with error assumption.

We then consider the problem of hosting services in the untrusted
cloud. Boneh, Gupta, Mironov, and Sahai (Eurocrypt 2014) first studied
such application and gave a construction based on indistinguishability
obfuscation. Their construction had the restriction that the number of
corrupted clients has to be bounded and known. They left an open prob-
lem how to remove such restriction. We resolve this problem by applying
our function private (distributed) public key functional encryption to
the setting of hosting service in multiple clouds. Furthermore, our con-
struction provides a much simpler and more flexible paradigm which is
of both conceptual and practical interests.

Along the way, we strengthen and simplify the security notions of the
underlying primitives, including function secret sharing.

1 Introduction

Cloud computing has the advantages that the cloud servers provide infrastruc-
ture and resources that can hold data, do computation for the clients, and even
host service on behalf of the individual vendor (also called service providers).
Despite those appealing features, major concerns of deploying such a computing
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paradigm are the security and privacy considerations, as data owner does not
have control of the outsourced data.

Functional encryption [BSW11,O’N10] provides a powerful tool to enable
such versatile “outsourcing” without leaking the actual data. In particular, a
data owner can first encrypt his data x and store the ciphertext ct on the cloud
server, and then issue a secret key skf to the cloud for a functionality f that
the data owner would like the cloud to compute. Decrypting ct using skf yields
only f(x) and nothing else. For instance, the client would like to request the
cloud to apply a transformation T to all his files that satisfies a certain condi-
tion described by a predicate P . This can be easily done by defining a following
function g(·), where g(x) = T (x), ifP (x) = 1; otherwise, g(x) = x; the data
owner can simply send such a decryption key skg to the cloud and enable the
cloud to carry on the transformation given only the encrypted files. Those mech-
anisms could potentially enable a very powerful paradigm shift in computing.
For example, content providers can simply focus on producing the data while
offloading all the content management and delivery functionalities to the cloud
provider. Concretely, Netflix streaming services have been migrated to Amazon
cloud [net]. In particular, Netflix could codify their algorithm (such as the recom-
mendation system) f to be skf and let Amazon cloud process all the subscriber
requests expressed as ciphertext.

In many cases, hiding data only is not enough for those applications, as the
function itself may already leak critical or proprietary information. In the above
example, other content providers such as Hulu also hosts their service in the
Amazon cloud [hul], the recommendation system might be one of the compet-
ing advantages of those content vendors. If not protected properly, one service
provider has great interests to infer information about the competing vendor’s
proprietary program via the cloud. For this reason, function privacy was first
proposed by Shen, Shi, Waters in the setting of private key predicate encryption
in [SSW09]. It requires that a decryption key skf does not leak anything about
the function f .

It is easy to see that for a public key functional encryption, standard func-
tion privacy cannot be possible as it is. Since the attacker who has a key skf ,
can generate ciphertext on the fly, and thus obtain values of f(x1), . . . , f(xn) for
the plaintext x1, . . . , xn of his choices. As a result, majority of research along
this line have been carried in two paths: (i) study function privacy in the set-
ting of private key functional encryption such as the elegant work of Brakerski
and Segev [BS15]. (ii) study weakened notion of function privacy by requiring
that the function comes from high-entropy distribution [AAB+13], and those
are studied only in special cases of identity based encryption [BRS13a] and
subspace-membership encryption [BRS13b].1

Private key functional encryption is very useful for data owner to do out-
sourcing, however it is not convenient for sharing applications in which multiple
clients may want to freely encode inputs, i.e., a public encryption operation is
needed. While putting entropy restriction on the functions is a natural choice for

1 Except the nice work of Agrawal et al. [AAB+13] which considered both above cases.
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feasibility of function privacy in specific scenarios, it is not clear how could the
weakened notion be applied in the general setting. In this paper, we are trying
to answer the following question:

Can we find a realistic model that allows us to approach function privacy for
general public key functional encryption?

1.1 Our Contributions

Circumventing impossibility via a distributed model. We initiate the
study of public key, distributed functional encryption. In such a cryptographic
primitive, the secret key of a function f will be split into shares skf

i and dis-
tributed to different parties. Given a secret key share, and a ciphertext ct
that encrypts a message x, one can evaluate locally using skf

i and obtains
Dec(skf

i ,Enc(x)) = yi. Once all the evaluation shares {y1, . . . , yn} are obtained,
everyone can reconstruct the actual evaluation f(x). This new model of dis-
tributed functional encryption naturally generalizes the notion of threshold
decryption to the setting of functional encryption, and enables the joint efforts
to recover an evaluation for a plaintext from a ciphertext (i.e., computing f(x)
from the ciphertext ct), and when the number function shares are not enough,
nothing will be revealed about f(x).

More interestingly, such a new model offers an opportunity to bypass the
impossibility of function privacy in the setting of public key functional encryp-
tion. Intuitively, given only a share skf

i (or multiple shares as long as it is below
the threshold), the adversary can only learn yi which may not be enough to
determine f(x). Formalizing such intuition, we give formal definitions of public
key distributed functional encryption, and transform any public key functional
encryption into a distributed version supporting both message privacy and func-
tion privacy via function secret sharing [BGI15,BGI16,KZ16]. Our construction
can be instantiated from any functional encryption together with Learning With
Error assumption [Reg05] where the construction of function secret sharing is
based on, and reconstruction from shares {y1, . . . , yn} can be done by simply
summing them up.

We remark here that our notion of distributed functional encryption is dif-
ferent from the decentralized key generation of functional encryption [CGJS15].
The latter mainly considers how to distribute the master key setup; while we con-
sider how to split each function into secret key shares, and use such a model as a
basis for studying function privacy. We also emphasize that the goal in this work
is to achieve results generically from functional encryption itself directly, instead
of from stronger primitives such as indistinguishability obfuscation (iO). With
the help of iO or its stronger variant, differing-inputs obfuscation, we know how
to construction multi-input functional encryption [GGG+14] and also function
secret sharing [KZ16], there might be alternative ways to construct distributed
public key functional encryption, which we will not explore in this paper.

Hosting service in multiple clouds securely and efficiently. One of the
most appealing and widely deployed applications of cloud computing is to hosting
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service in the cloud. Boneh, Gupta, Mironov, and Sahai gave the first formal
study of such an application [BGMS15]. The security considerations in this appli-
cation scenario include protecting program (service) information and clients’
inputs against a untrusted cloud and protecting program (service) information
and authorization procedure against untrusted clients. Their construction relied
on indistinguishability obfuscation (iO), and had to restrict the number of col-
luded/corrupted clients for both security. They left as an open problem how to
get rid of such a restriction. As one major application of our function private
functional encryption, we demonstrate how to tackle this challenge in the model
of hosting service in multiple clouds.

Let us elaborate via a concrete example: the popular augmented-reality game
Pokémon Go server was hosted at Google Cloud [pok]. The whole game as a com-
puter program is deployed in Google cloud servers, and players directly interact
with Google cloud to play the game once they are registered. The players try
to catch various level Poke Monsters depending on the locations. Thus the level
and location of the monsters contained in the game program need to be hidden.
At the same time, the business model for such a game is to sell virtual goods,
thus the program that hosts the service in the cloud will have to authenticate
those in-game equipments. If such function is not protected well, when the cloud
is corrupted, such authentication could either be bypassed or even completely
reaped. On the other hand, there were also huge number of security concerns
about the server collecting user private information when playing the game.

The above example highlights the need of securely hosting service in the
cloud, and the service may be provided to millions of clients. One simple obser-
vation we would like to highlight in the paper is that our public key functional
encryption with function privacy is already very close to the powerful notion of
virtual black-box obfuscation (VBB) [BGI+01]. Taking a “detour” from using iO
as in [BGMS15] to using VBB, and then “instantiating” it using our functional
encryption yields a new way of securely hosting service in multiple clouds, and
enables us to achieve much stronger security notions that have no restriction on
the number of corrupted clients. From a high level, to host a service described
as a function f in the cloud, the service provider runs our distributed functional
encryption key generation algorithm and generates shares skf

i for each cloud.
It is not hard to see from the above description, as our construction following

such a paradigm, we can easily extend the functionalities by encode the original
functionality f into other program g to support more advanced properties and
more complex access control.

Moreover, as our distributed functional encryption only relies on a regular
functional encryption instead of a general iO, this new paradigm may potentially
lead efficient constructions that can be actually instantiated. For example, if a
service provider only hosts a couple of functionalities in the cloud, we do not
have to use the full power of general functional encryption, instead we can use
the bounded collusion functional encryption [GVW12] which could be further
optimized for particular functions.



222 X. Fan and Q. Tang

Last, as our reconstruction procedure only requires an addition, it gives min-
imum overhead to the client.

Strengthened and simplified security models, and modular construc-
tions. We note that since the application of hosting service in the cloud is
complex, several underlying building blocks such as function secret sharing as
given are not enough for our applications. We carefully decoupled the complex
security notions of [BGMS15] which handles two properties for each notion. This
simplification helps us identify necessary enhancements of the security notions
of the underlying building blocks, which in turn, enables us to have a smooth
modular construction for the complex object.

Consider the security of the program against untrusted clouds when the
service is hosted in two clouds. A corrupted cloud has one share of the program,
on the mean time, the cloud may pretend to be a client and send requests to
the other cloud for service. This means that considering function privacy against
adversaries that has only partial shares is not enough. We should further allow
the adversary to query the rest of function shares to reconstruct values for a
bunch of points. The desired security notion now is that the adversary should
learn nothing more than the values she already obtained as above. For this
reason, we propose a CCA-type of definition for function privacy. To tackle this,
we revisited the security of function secret sharing and study a CCA-type of
security notion for it (the existing work only considered the CPA version).

Consider the security of the program against untrusted clients. Now a legit-
imate client can send requests and get evaluated at arbitrary points. To ensure
the security of the program which comes from the function privacy in our con-
struction, it naturally requires a simulation style definition. While IND style of
function privacy was considered in most of previous works, even for private key
functional encryption [BS15], we propose to study a simulation based definition
with the CCA-type of enhancement mentioned above.

We show that the simple construction of function secret sharing from Spooky
Encryption [DHRW16] actually satisfies the stronger notions, and we can safely
apply it to construct our distributed functional encryption and eventually lead
to the secure service hosting in multiple clouds.

1.2 Related Work

As mentioned above, despite the great potential of function privacy, our under-
standing of it is limited. Shen, Shi and Waters [SSW09] initiated the research
on predicate privacy of attribute-based encryption in private key setting. Boneh,
Raghunathan and Segev [BRS13a,BRS13b] initiated function privacy research
in public key setting. They constructed function-private public-key functional
encryption schemes for point functions (identity-based encryption) and for sub-
space membership (generalization of inner-product encryption). However, their
framework assumes that the functions come from a distribution of sufficient
entropy.

In an elegant work [AAB+15], Agrawal et al. presented a general framework
of security that captures both data and function hiding, both public key and
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symmetric key settings, and show that it can be achieved in the generic group
model for Inner Product FE [KSW08]. Later, in the private-key setting, Brakerski
and Segev [BS15] present a generic transformation that yields a function-private
functional encryption scheme, starting with any non-function-private scheme for
a sufficiently rich function class.

In [BGMS15], Boneh et al. provide the first formalizations of security for
a secure cloud service scheme. They also provide constructions of secure cloud
service schemes assuming indistinguishability obfuscation, one-way functions,
and non-interactive zero-knowledge proofs.

2 Preliminaries

Notation. Let λ be the security parameter, and let ppt denote probabilistic
polynomial time. We say a function negl(·) : N → (0, 1) is negligible, if for every
constant c ∈ N, negl(n) < n−c for sufficiently large n. We say two distributions
D1,D2 over a finite universe U are ε-close if their statistical distance 1

2 ||D1−D2||1
are at most ε, and denoted as D1 ≈ D2.

2.1 Signature Scheme

In this part, we recall the syntax and security definition of a signature scheme.
A signature scheme Σ = (Setup,Sign,Verify) can be described as

– (sk, vk) ← Setup(1λ): On input security parameter λ, the setup algorithm
outputs signing key sk and verification key vk.

– σ ← Sign(sk,m): On input signing key sk and message m, the signing algo-
rithm outputs signature σ for message m.

– 1 or 0 ← Verify(vk,m, σ): On input verification key vk, message m and signa-
ture σ, the verification algorithm outputs 1 if the signature is valid. Otherwise,
output 0.

For the security definition of signature scheme, we use the following experiment
to describe it. Formally, for any ppt adversary A, we consider the experiment
ExptsigA (1λ):

1. Challenger runs Setup(1λ) to obtain (vk, sk) and sends vk to adversary A.
2. Adversary A sends signing queries {mi}i∈[Q] to challenger. For i ∈ [Q], chal-

lenger computes σi ← Sign(sk,mi) and sends {σi}i∈[Q] to adversary A.
3. Adversary A outputs a forgery pair (m∗, σ∗).

We say adversary A wins experiment ExptsigA (1λ) if m∗ is not queried before
and Verify(vk,m∗, σ∗) = 1.

Definition 1 (Existential Unforgeability). We say a signature scheme Σ
is existentially unforgeable if no ppt adversary A can win the experiment
ExptsigA (1λ) with non-negligible probability.
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2.2 Functional Encryption

We recall the syntax and ind-based security of functional encryption introduced
in [BSW11]. A functional encryption scheme FE for function ensemble F consists
of four algorithms defined as follows:

– (pp,msk) ← Setup(1λ): On input the security parameter λ, the setup algo-
rithm outputs public parameters pp and master secret key msk.

– skf ← Keygen(msk, f): On input the master secret key msk and a function f ,
the key generation algorithm outputs a secret key skf for function f .

– ct ← Enc(pp, μ): On input the public parameters pp and a message μ, the
encryption algorithm outputs a ciphertext ct.

– f(μ) ← Dec(skf , ct): On input a secret key skf for function f and a ciphertext
ct for plaintext μ, the decryption algorithm outputs f(μ).

Definition 2 (Correctness). A functional encryption scheme FE is correct if
for any (pp,msk) ← Setup(1λ), any f ∈ F , and μ ∈ domain(f), it holds that

Pr[Dec(Keygen(msk, f),Enc(pp, μ)) �= f(μ)] = negl(λ)

where the probability is taken over the coins in algorithms Keygen and Enc.

Security Definition. We present the security of functional encryption scheme FE
for function ensemble F by first describing an experiment ExptFEA (1λ) between
an adversary A and a challenger in the following:

Setup: The challenger runs (msk, pp) ← Setup(1λ) and sends pp to adversary A.
Key query phase I: Proceeding adaptively, the adversary A submits function

fi ∈ F to challenger. The challenger then sends back skf ← Keygen(msk, fi)
to adversary A.

Challenge phase: The adversary submits the challenge pair (μ∗
0, μ

∗
1), with the

restriction that fi(μ∗
0) = fi(μ∗

1) for all functions fi queried before. The chal-
lenger first chooses a random bit b ∈ {0, 1} and sends back ct∗ ← Enc(pp, μb)
to adversary A.

Key query phase II: The adversary A may continue his function queries
fi ∈ F adaptively with the restriction that fi(μ∗

0) = fi(μ∗
1) for all function

queries fi.
Guess: Finally, the adversary A outputs his guess b′ for the bit b.

We say the adversary wins the experiment if b′ = b.

Definition 3 (Ind-based Data Privacy). A functional encryption scheme
FE = (Setup,Keygen,Enc,Dec) for a family of function F is secure if no ppt
adversary A can win the experiment ExptFEA (1λ) with non-negligible probability.
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2.3 Spooky Encryption

We recall the definition of spooky encryption, introduced in [DHRW16] in
this part. A public key encryption scheme consists a tuple (Gen,Enc,Dec) of
polynomial-time algorithms. The key-generation algorithm Gen gets as input
a security parameter λ and outputs a pair of public/secret keys (pk, sk). The
encryption algorithm Enc takes as input the public key pk and a bit m and
output a ciphertext ct, whereas the decryption algorithm Dec gets as input the
secret key sk and ciphertext ct, and outputs the plaintext m. The basic cor-
rectness guarantee is that Pr[Decsk(Enc(pk,m)) = m] ≥ 1 − negl(λ), where the
probability is over the randomness of all these algorithms. The security require-
ment is that for any ppt adversary (A1,A2) it holds that

Prb←{0,1}[(m0,m1) ← A1(pk),A2(pk, ctb) = 1] ≤ 1
2

+ negl(λ)

where (pk, sk) ← Gen(1λ), ctb ← Enc(pk,mb) and require |m0| = |m1|.
Definition 4 (Spooky Encryption). Let (Gen,Enc,Dec) be a public key
encryption and Eval be a polynomial-time algorithm that takes as input a (possi-
bly randomized) circuit C with n = n(λ) inputs and n outputs, C : ({0, 1}∗)n →
({0, 1}∗)n, and also n pairs of (public key, ciphertext), and outputs n ciphertext.

Let C be a class of such circuits, we say that Π = (Gen,Enc,Dec,Eval) is
a C-spooky encryption scheme if for any security parameter λ, any randomized
circuit C ∈ C, and any input x = (x1, . . . , xn) for C, the following distributions
are close upto a negligible distance in λ

C(x1, . . . , xn) ≈ SPOOK[C,x] Δ=
{(Dec(sk1, ct′1), . . . ,Dec(skn, ct′n)) : (ct′1, . . . , ct

′
n) ← Eval(C, {(pki, cti)}i)}

where for i ∈ [n], (pki, ski) ← Gen(1λ), cti ← Enc(pki,mi).

A special case of spooky encryption, named additive-function-sharing (AFS)
spooky encryption, allows us to take encryptions cti ← Enc(pki, xi) under n
independent keys of inputs x1, . . . , xn to an n-argument function f , and produce
new ciphertext under the same n keys that decrypts to additive secret shares of
y = f(x1, . . . , xn). Formally, the definition is the following

Definition 5 (AFS-Spooky). Let Π = (Gen,Enc,Dec,Eval) be a scheme
where (Gen,Enc,Dec) is a semantically secure public key encryption. We say
Π is leveled ε-AFS-spooky if Π satisfies
– If for any boolean circuit C computing an n-argument function f :

({0, 1}∗)n → {0, 1}, and any input (x1, . . . , xn) for C, it holds that

Pr[
n∑

i=1

yi = C(x1, . . . , xn) : (ct′1, . . . , ct
′
n) ← Eval(C, {(pki, cti)}i)]

where for i ∈ [n], (pki, ski) ← Gen(1λ), cti ← Enc(pki, xi), yi = Dec(ski, ct
′
i).

– Any n − 1 of the shares yi above are distributed ε-close to uniform.
– We say Π is leveled if the Gen algorithm receives an additional depth param-

eter 1d, and the conditions above hold only for circuit of depth upto d.
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Spooky Encryption with CRS. We say that (Gen,Enc,Dec,Spooky.Eval) is a C-
spooky encryption scheme with CRS, if Definitions 4 and 5 are satisfied if we
allow all algorithms (and the adversary) to get as input also a public uniformly
distributed common random string.

In [DHRW16], the authors showed how to construction ε-AFS-Spooky
Encryption with CRS from Learning With Error assumption (LWE) [Reg05].
Their results can be summarized below:

Theorem 1 [DHRW16]. Assuming the hardness of LWE assumption, there
exists a leveled ε-AFS-spooky encryption scheme.

3 Distributed Public Key FE with Function Privacy

In this section, we give a detailed study of distributed functional encryption
(DFE), and specifically a simplified DFE notion, n-out-of-n threshold functional
encryption. In an (n, n)-DFE scheme, during key generation, we split a secret
key corresponding to the function into n secret key shares {skf

i }n
i=1, and by

running partial decryption on skf
i and a ciphertext ct, we can obtain a share si

of f(x), where ct is an encryption of message x. There is also a reconstruction
process that outputs f(x) on n shares {si}n

i=1. We then define security, including
function privacy and data privacy, with respect to (n, n)-DFE.

To achieve a secure DFE satisfying our security definitions, we rely on a
building block, named function secret sharing [BGI15,BGI16]. We strengthen
the security definition of FSS in comparison with that in [BGI15,BGI16], and
show that a construction2 based on spooky encryption satisfies our generalized
security definition.

3.1 Syntax and Security Definition

We first describe the syntax DFE = (DFE.Setup,DFE.Keygen,DFE.Enc,
DFE.PartDec, DFE.Reconstruct):

– DFE.Setup(1λ, n,F): On input security parameter λ, threshold parameter n
and function ensemble F , the setup algorithm produces (pp,msk) for the
whole system.

– DFE.Keygen(f,msk): On input a function f ∈ F and the secret key ski of this
authority, the key generation algorithm outputs n secret key shares {skf

i }i∈[n]

for the function f .
– DFE.Enc(pp,m): On input the public parameters pp and a message m, the

encryption algorithm outputs a ciphertext ct.
– DFE.PartDec(ct, skf

i ): On input a ciphertext ct and a secret key share skf
i for

function f , the partial decryption algorithm outputs a decryption share si.

2 We remark that the construction was first sketched in [DHRW16]. Here we generalize
it and provide a formal security proof for the stronger notions.
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– DFE.Reconstruct(pp, {si}n
i=1): On input the public parameters pp and decryp-

tion shares {si}n
i=1 for the same ciphertext, the reconstruction algorithm out-

puts f(m).

Definition 6 (Correctness). An (n, n)-DFE scheme is correct if for any
(pp,msk) ← DFE.Setup(1λ, 1n), any f ∈ F , and any m ∈ domain(f), it holds

Pr[DFE.Reconstruct(pp, {DFE.PartDec(ct, skf
i )}n

i=1) �= f(m)] = negl(λ)

where ct ← DFE.Enc(pp,m), skf
i ← DFE.Keygen(f,msk) and the probability is

taken over the coins in algorithms DFE.Keygen and DFE.Enc.

Security Definition of DFE. As mentioned before, we consider both the data
privacy and function privacy for DFE. For completeness, we give both IND-based
and simulation based notions for function privacy. As we know, simulation based
data privacy is infeasible [AGVW13], thus we only give a Ind based definition.
It would be an interesting open problem to consider an alternative model that
simulation based data privacy for functional encryption become feasible, e.g.,
[GVW12] The detailed definitions are below.

Definition 7 (Ind-based function privacy). We first describe an experiment
ExptDFE-func

A (1λ) between an adversary A and a challenger as follows:

– Setup: The challenger runs (msk, pp) ← DFE.Setup(1λ, 1n) and sends pp to
adversary A.

– Key query phase I: Proceeding adaptively, the adversary A submits func-
tion fj ∈ F to challenger. The challenger then sends back {skfj

i }n
i=1 ←

DFE.Keygen(msk, fj) to adversary A.
– Challenge phase: The adversary submits the challenge function pair

(f∗
0 , f∗

1 ) that are not queried before. The challenger first chooses a random
bit b ∈ {0, 1} and computes {skf∗

b
i }i∈[n] ← DFE.Keygen(msk, f∗

b ). Then chal-

lenge selects random n − 1 keys {skf∗
b

i }i∈S and sends them to adversary A.
– Key query phase II: Proceeding adaptively, the adversary A continues

querying function fj ∈ F with the restriction that fj �= f∗
0 and fj �= f∗

1 .
The challenger then sends back {skfj

i }n
i=1 ← DFE.Keygen(msk, fj) to adver-

sary A.
– Guess: Finally, the adversary A outputs his guess b′ for the bit b.

We say the adversary wins the experiment if b′ = b.
A distributed functional encryption scheme Π for a family of function F is

function private if no ppt adversary A can win the experiment ExptDFE-func
A (1λ)

with non-negligible probability.

In the simulation-based definition of function privacy, we additionally allow
adversary to query oracle DFE.Dec(skf∗

n , ·), where skf∗
n is the only secret key

share for challenge function f∗ that is not given to adversary. We then show
that our sim-based function privacy implies ind-based function privacy as defined
above. The detail is as follows:
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Definition 8 (Sim-based function privacy). Let Π be a distributed func-
tional encryption scheme for a function family F . Consider a ppt adversary
A = (A1,A2) and simulator S = (S1,S2,S3)3. We say the function secret shar-
ing scheme Π is simulation-secure if the following two distribution ensembles
(over the security parameter λ) are computationally indistinguishable:

Real Distribution:
1. (pp,msk) ← DFE.Setup(1λ, n).
2. (f∗, τ) ← ADFE.Keygen(msk,·)

1 (pp).
3. {skf∗

i }n
i=1 ← DFE.Keygen(msk, f∗).

4. α ← ADFE.Keygen(msk,·),DFE.Dec(skf
∗

n ,·)
2 (pp, {skf∗

i }n−1
i=S , τ).

5. Output (pp, f∗, τ, α).

Ideal Distribution:
1. pp ← S1(1λ, n).
2. (f∗, τ) ← AS2(·)

1 (pp).
3. {skf∗

i
}n

i=1 ← S2(|f∗|).
4. α ← AS2(·),Sf∗

3 (·)
2 (pp, {skf∗

i }n−1
i=1 , τ).

5. Output (pp, f∗, τ, α).

where on query ct = Enc(pp, x) made by adversary A2, simulator Sf∗
3 (·) makes

a query to the oracle f∗.

Remark 1. We note that if a DFE construction satisfies sim-based function pri-
vacy, then we can show that it also satisfies ind-based function privacy. The
challenger in the ind-based experiment ExptDFE-func

A (1λ) first uses simulation
S1(1λ, n) to generate pp. For key queries fi, challenger responses by computing
{skfij

}n
j=1 ← S2(fi). For challenge function (f∗

0 , f∗
1 ), the challenger chooses a

random bit b (let f∗ = f∗
b ) and computes {skf∗

i
}n

i=1 ← S2(f∗). Then by sim-
based function privacy as defined above, the responses for key queries simulated
by S2 are indistinguishable from real execution and the bit b is chosen from
random, thus we show that it also satisfies ind-based function privacy.

Next, we adapt the standard ind-based data privacy for a DFE scheme.

Definition 9 (Ind-based data privacy). We first describe an experiment
ExptDFE-data

A (1λ) between a challenger and an adversary A as below:

– Setup: The challenger runs (msk, pp) ← DFE.Setup(1λ, 1n) and sends pp to
adversary A.

– Key query phase I: Proceeding adaptively, the adversary A submits func-
tion fj ∈ F to challenger. The challenger then sends back {skfj

i }n
i=1 ←

DFE.Keygen(msk, fj) to adversary A.

3 Looking ahead, we abuse the notation of S2 in the ideal distribution, by allowing it
taking two kinds of inputs: 1. the description of function f , 2. the size of function f .
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– Challenge phase: Adversary submits the challenge message pair (m∗
0,m

∗
1)

with the restriction that fi(m0) = fi(m1) for all queried fi. The challenger
first chooses a random bit b ∈ {0, 1} and computes ct ← DFE.enc(pp,mb).
Then send ct to adversary.

– Key query phase II: The same as Key query phase I with the restriction
that the query fi satisfies fi(m0) = fi(m1).

– Guess: Finally, the adversary A outputs his guess b′ for the bit b.

We say the adversary wins the experiment if b′ = b.
A distributed functional encryption scheme Π for a family of function F is

data private if no ppt adversary A can win the experiment ExptDFE-data
A (1λ)

with non-negligible probability.

3.2 Building Block: Function Secret Sharing

A function secret sharing scheme provides a method to split this function into a
set of separate keys, where each key enable it to efficiently generate a share of
evaluation f(x), and yet each key individually does not reveal information about
the details of function f . In [BGI15,BGI16], Boyle et al. formalized the syntax
and security definition of function secret sharing. In this part, we first revisit the
definition of function secret sharing along with a new security definition.

Syntax and Security Definition A (n, n)-function secret sharing scheme
for a function family F consists of algorithms (FSS.Setup,FSS.ShareGen,
FSS.Reconstruct) described as follows:

– FSS.Setup(1λ, n,F): Given the security parameter λ, the parameter n of the
secret sharing system and the description of function family F , the setup
outputs the public parameters pp.

– FSS.ShareGen(pp, f): Given pp and a function f ∈ F , the share generation
algorithm outputs n shares of function f as {fi}n

i=1.
– FSS.Reconstruct(pp, {fi(x)}n

i=1): Given an input x, evaluating each function
share fi on x, we obtain n output shares {fi(x)}n

i=1. The reconstruction algo-
rithm then aggregates all the share values {fi(x)}n

i=1 and outputs f(x).

Definition 10 (Correctness). We say that an (n, n)-function secret sharing
scheme FSS for function family F is correct, if for any function f ∈ F , ∀x ∈
dom(f), pp ← FSS.Setup(1λ, n,F), we have

f(x) = FSS.Reconstruct(pp, {fi(x)}n
i=1)

where {fi}n
i=1 ← FSS.ShareGen(pp, f).
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Security definition of FSS. In [BGI15,BGI16], Boyle et al. proposed a ind-based
security definition. In their security definition, adversary is given n− 1 shares of
function fb, where fb is chosen randomly from (f0, f1) of adversary’s choice. It
requires that adversary cannot guess bit b correctly with overwhelming probabil-
ity. We enhance the security of FSS by modeling it as simulation-based CCA-type
one. More specifically, in additional to the n − 1 shares of challenge function f∗,
the adversary is given oracle access to the function share generation algorithm of
his choice (different from challenge function f∗). Moreover, the adversary is given
oracle access to the share that she is not holding for f∗. The security requires that
adversary cannot tell real execution from simulated one. The detailed definition
is below.

Definition 11 (CCA-type of Security, Sim-based). Let Π be a function
secret sharing scheme for a function family F . Consider a ppt adversary A =
(A1,A2) and simulator S = (S1,S2,S3)4. We say the function secret sharing
scheme Π is simulation-secure if the following two distribution ensembles (over
the security parameter λ) are computationally indistinguishable:

Real Distribution:
1. pp ← FSS.Setup(1λ, n,F).
2. (f∗, τ) ← AFSS.ShareGen(pp,·)

1 (pp)
3. {f∗

i }n
i=1 ← FSS.ShareGen(pp, f∗)

4. α ← AFSS.ShareGen(pp,·),f∗
n(·)

2 (pp, {f∗
i }n−1

i=1 , τ)
5. Output (pp, f∗, τ, α).

Ideal Distribution:
1. pp ← S1(1λ, n,F).
2. (f∗, τ) ← AS2(·)

1 (pp).
3. {f∗

i }n−1
i=1 ← S2(|f∗|)

4. α ← AS2(·),Sf∗
3 ({f∗

i }n−1
i=1 ,·)

2 (pp, {f∗
i }n−1

i=1 , τ).
5. Output (pp, f∗, τ, α).

where on query x made by adversary A2, simulator Sf∗(·)
3 (·) makes a single query

to oracle f∗(·) on x.

FSS Construction. Let SP = (SP.Gen,SP.Enc,SP.Dec,SP.Eval) be a F-AFS-
spooky encryption as defined in Definition 4. To make the description simpler,
we add a temporary algorithm, f̂i(x) ← LocalEval(f̂i, x), which locally evaluates
x using the i-th share f̂i. The construction of function secret sharing scheme Π =
(FSS.Setup,FSS.ShareGen,FSS.Reconstruct) for poly(λ)-depth circuit family F is
the following:

4 Looking ahead, we overload the notation of S2 in the ideal distribution, by allowing
it to take two kinds of inputs: 1. the description of a function f ; 2. the size of a
function f .



Making Public Key Functional Encryption Function Private, Distributively 231

– FSS.Setup(1λ, n,F): The setup algorithm outputs public parameter pp =
(n,F) for the system.

– FSS.ShareGen(pp, f): On input a function f ∈ F , the share generation algo-
rithm first generates a n-out-of-n secret sharing {fi}n

i=1 of the descrip-
tion of f , and for i ∈ [n] computes (SP.pki,SP.ski) ← SP.Gen(1λ).
Then for i ∈ [n], encrypt the description share using spooky encryp-
tion SP.Enc(pki, fi). Output the i-th share of function f as fi =
(SP.ski, {SP.pki}n

i=1, {SP.Enc(SP.pki, fi)}n
i=1).

– FSS.LocalEval(fi, x): On input the i-th share fi, which is composed of the
items (SP.ski, {SP.pki}n

i=1, {SP.Enc(SP.pki, fi)}n
i=1), and a value x, run the

spooky evaluation {ci}n
i=1 = SP.Eval(Cx, {SP.Enc(SP.pki, fi)}n

i=1), where the
circuit Cx(·) is defined in Fig. 1.
Then output si = SP.Dec(SP.ski, ci).

– FSS.Reconstruct(pp, {si}n
i=1): Given the n shares {si}n

i=1 of function f(x), the
reconstruction algorithm outputs f(x) =

∑n
i=1 si.

Hardcode: value x. Input: {SP.Enc(SP.pki, fi)}n
i=1.

1. Compute f̂ =
∑n

i=1 SP.Enc(SP.pki, fi).

2. Compute f̂(x).

Fig. 1. Description of function Cx(·)

Correctness Proof. The correctness of our FSS construction is proved using
properties of F-AFS-spooky encryption as defined in Definition 4.

Lemma 1. Our FSS construction described above is correct (c.f. Definition 10).

Proof. Assuming wlog that the evaluate algorithm is deterministic, we
obtain the same {ci}n

i=1 = SP.Eval(Cx, {SP.Enc(SP.pki, fi)}n
i=1) in algorithm

FSS.LocalEval(f̂i, x), for i ∈ [n]. By the correctness of F-AFS-spooky encryp-
tion as stated in Definition 4, we have

∑n
i=1 si = Cx({fi}n

i=1) = f(x), where
si = SP.Dec(SP.ski, ci).

Security Proof. In this part, we show that our construction of FSS is secure as
defined in Definition 11. Intuitively, for function queries other than the challenge
one, the simulation computes in the exactly same method as the real execution.
For the challenge function, we rely on the semantic security and psedurandom-
ness of n − 1 evaluations of challenge function shares on any input, provided by
the underlying spooky encryption to show the indistinguishability between real
and simulated executions. The proof detail is the following.

Theorem 2. Let SP be a secure F-AFS-spooky encryption as defined in Defi-
nition 4. Our construction of FSS described above is secure (c.f. Definition 11).
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Proof. We first describe the simulation algorithm S = (S1,S2,S3) that are used
in the proof.

– S1(1λ, n,F): Run FSS.Setup(1λ, n,F) to obtain pp and output pp.
– S2(inp): On input inp = fi or inp = |f∗|:

• On input function fi, first look for (fi, {fij}n
j=1) in local stor-

age. If found, output (fi, {fij}n
j=1). Otherwise, compute {fij}n

j=1 ←
FSS.ShareGen(pp, fi) and store (fi, {fij}n

j=1) locally. Then output
(fi, {fij}n

j=1).
• On input size |f∗|, first choose n − 1 bit strings ti of size |f∗|. For i ∈ [n]

computes (SP.pki,SP.ski) ← SP.Gen(1λ). Then for i ∈ [n − 1], encrypt
the description share using spooky encryption cti ← SP.Enc(pki, ti), and
ctn ← SP.Enc(pki, 0|f∗|). Output f∗

j = (SP.skj , {SP.pki}n
i=1, {cti}n

i=1) for
j ∈ [n − 1].

– Sf∗
3 ({f∗

i }i∈S , x): On input n − 1 shares {f∗
i }i∈S and x, for i ∈ S, compute

yi ← FSS.LocalEval(f∗
i , x). Then call the oracle f on input x to obtain y =

f∗(x). Output yn = y − ∑
i∈S yi.

The view of adversary includes (pp, f∗, τ, α), where (τ, α) are states that incor-
porate adversary’s queries to FSS.ShareGen(pp, ·) (or S2) and f∗

i/∈[S] (or S3).
As we described above, S1(1λ, n,F) computes FSS.Setup(1λ, n,F) as a subrou-
tine, so the output pp is identical in these two procedures. For each function
query fi, S2(fi) calls FSS.ShareGen(pp, fi) as a subroutine, so the output of
S2(fi) is identical to that of FSS.ShareGen(pp, fi). For challenge function query
S2(|f∗|), the shares given to adversary are f∗

j = (SP.skj , {SP.pki}n
i=1, {cti}n

i=1)
for j ∈ [n − 1]. By the semantic security of underlying spooky encryption,
ctn remains secure. By the second property of spooky encryption (c.f. Defini-
tion 4), any n−1 of the shares yi above are distributed ε-close to uniform, where
yi = FSS.LocalEval(f∗

i , x) for any x.
Lastly, on query x, in the real execution, adversary gets back yn = f∗

n(x),
while in the ideal execution, he gets back yn = y − ∑

i∈S yi, where yi ←
FSS.LocalEval(f∗

i , x). Also by property of spooky encryption as stated in Defini-
tion 5, the n − 1 shares {yi} are distributed ε-close to uniform. Thus, yn in the
ideal execution is a valid share and is identical to that in real execution.

3.3 Instantiation of DFE from FSS

Let FSS = (FSS.Setup,FSS.ShareGen,FSS.LocalEval,FSS.Reconstruct) be a func-
tion secret sharing scheme for function ensemble F , and FE = (FE.Setup,
FE.Keygen, FE.Enc,FE.Dec) be a functional encryption. The description of DFE
scheme DFE = (Setup,Keygen,Enc,PartDec,Reconstruct) is as follows:

– DFE.Setup(1λ, n): Run the FSS setup algorithm FSS.pp ← FSS..Setup(1λ, n)
and the FE setup algorithm (FE.pp,FE.msk) ← FE.Setup(1λ). Output the
public parameters pp and master secret key msk as

pp = (FSS.pp,FE.pp), msk = FE.msk
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– DFE.Enc(pp,m): Run the FE encryption algorithm ct ← FE.Enc(FE.pp,m).
Output ciphertext ct.

– DFE.Keygen(msk, f): Given a function f ∈ F and msk, the key generation
algorithm first runs the share generation algorithm in FSS as {fi}n

i=1 ←
FSS.ShareGen(FSS.msk, f), and then compute the key shares by running the
FE key generation as skf

i ← FE.Keygen(FE.msk, Ci), for i ∈ [n], where the
function Ci(·) is defined as in Fig. 2.
Output the secret key shares {skf

i }n
i=1.

– DFE.PartDec(ct, skf
i ): Given the i-th secret key share skf

i , compute and output
si = FE.Dec(skf

i , ct).
– DFE.Reconstruct(pp, {si}n

i=1): Output the reconstructed result as f(m) =∑n
i=1 si.

Hardcode: function share fi Input: value x.

Compute and output ci = FSS.LocalEval(fi, x)

Fig. 2. Description of function Ci(·)

Correctness Proof. The correctness proof of our DFE construction follows
directly from the correctness of FSS and FE. First by the correctness of FSS
scheme FSS, the output of circuit Ci (c.f. Fig. 2) satisfies

∑n
i=1 ci = f(m).

Secondly, by correctness of functional encryption scheme FE, the output of
si = FE.Dec(ski

f , ct), where ski
f is secret key for circuit Ci satisfies si = ci.

Therefore in DFE.Keygen(msk, f), we also get f(m) =
∑n

i=1 si.

Security Proof. In this part, we show that our construction of DFE satisfies
(sim-based) function privacy and data privacy as defined above. The function
privacy of our DFE construction mainly is based on the sim-based security of
FSS (c.f. Definition 11), thus in our proof below, we use the simulation algorithm
of FSS to setup the system and answer adversary’s queries. The data privacy of
our DFE construction directly follows the ind-based data privacy of underlying
functional encryption (c.f. Definition 3).

Theorem 3. Let FSS be function secret sharing scheme satisfying security as
defined in Definition 11, our construction of DFE described above is function
private (c.f. Definition 8).

Proof. We first describe the simulation algorithm S = (S1,S2,S3) based on the
simulation algorithms of FSS, (FSS.S1,FSS.S2) (as described in the proof of
Theorem 2), that are used in the proof.

– S1(1λ, n): Run the FSS simulated setup algorithm FSS.pp ← FSS.S1(1λ, n)
and the FE setup algorithm (FE.pp,FE.msk) ← FE.Setup(1λ). Send pp =
(FSS.pp,FE.pp) to adversary.
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– S2(f): On input function query f , first look for (f, {skf
i }n

i=1) in local storage.
If found, send (fi, {skf

i }n
i=1) to adversary. Otherwise, S2 runs the simulation

algorithm FSS.S2(f) of FSS to obtain {fi}n
i=1 as shares of function f . Then

for i ∈ [n], compute skf
i ← FE.Keygen(msk, fi) and store (f, {skf

i }n
i=1) locally.

Send (f, {skf
i }n

i=1) to adversary.
– Sf∗

3 ({skf∗
i }n−1

i=1 , ct): On input ciphertext query ct, first compute x =
FE.Dec(skid, ct), where skid ← FE.Keygen(msk, id) and id denotes the iden-
tity function. Then for i ∈ [n − 1], compute si = FE.Dec(skf∗

i , ct). Output
sn = f(x) − ∑n−1

i=1 si.

In the following, we show, that adversary’s view (pp, f∗, τ, α), where (τ, α)
are states that incorporate adversary’s queries to DFE.Keygen (or S2) and
DFE.Dec(skf∗

n , ·) (or S3), are indistinguishable in the two executions. As
described above, S1 computes the FSS simulated setup FSS.S1 and a real
FE.Setup as subroutines, by the security of underlying FSS scheme, we have
the distribution of public parameters in real and ideal executions are statisti-
cally close. Similarly, by the security of underlying FSS scheme, the function
shares {fi}n

i=1 ← FSS.S2(f) computed in simulation S2(f) is indistinguish-
able from that in the real execution DFE.Keygen(f), thus the responses for key
queries in the real and ideal executions are indistinguishable. Lastly, the out-
put sn = Sf∗

3 ({skf∗
i }n−1

i=1 , ct), where ct = FE.enc(pp, x), satisfies
∑n

i=1 si = f(x),
where si = FE.Dec(skf∗

i , ct) can be computed by the adversary himself. In con-
clusion, the view of adversary in real execution is indistinguishable from that in
the ideal execution.

Theorem 4. Let FE be functional encryption scheme satisfying ind-based data
privacy as defined in Definition 3, our construction of DFE described above is
data private (c.f. Definition 9).

Proof. The ciphertext in our DFE construction is indeed a FE ciphertext, thus
by ind-based data privacy of FE scheme, our construction of DFE is data private.

4 Hosting Services Securely in Multiple Clouds

In [BGMS15], the authors consider a setting of hosting service in untrusted
clouds: there exist three parties: Service provider who owns a program and setups
the whole system, cloud server where the program is hosted, and arbitrary many
clients. Intuitively speaking, the service provider wants to host the program P on
a cloud server, and additionally it wants to authenticate clients who pay for the
service provided by program P . This authentication should allow a legitimate
user to access the program hosted on the cloud server and compute output
on inputs of his choice. Moreover, the program P could contain proprietary
information, thus needs to be kept confidential. The authors in [BGMS15] also
require that the scheme satisfies some essential properties:
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Weak client: The amount of work performed by client should only depends on
the size of input and security parameter, but independent of the running time
of program P .

Delegation: The work performed by the service provider includes one-time
setup of the whole system and authentication clients. The amount of work in
one-time setup phase should be bounded by a fixed polynomial in the program
size, while the amount of work incurred in authentication should only depend
on the security parameter.

Polynomial slowdown: The running time of encoded program (running on
cloud server) is bounded by a fixed polynomial in the running time of
program P .

Boneh et al. give a construction based on indistinguishability obfuscation, and
their construction suffers from a restriction that the number of corrupted clients
should be pre-fixed [BGMS15]. In this section, we generalize the above model
by distributing encoded program shares to multiple cloud servers and resolve
the open problem that to remove the restriction on number of corrupted clients
from [BGMS15].

In our Distributed Secure Cloud Service (DSCS) scheme, the service provider
generates a set of encoded program shares for program P , and then hosts each
encoded program share on one cloud server. Any authenticated users can access
the encoded program shares hosted multiple cloud servers and compute output
on inputs of his choice. We also require that our DSCS scheme satisfied the above
three properties.

4.1 Syntax and Security Definitions

The Distributed Secure Cloud Service scheme consists of algorithms DSCS =
(DSCS.Prog,DSCS.Auth,DSCS.Inp,DSCS.Eval,DSCS.Reconstruct) with details
as follows:

– DSCS.Prog(1λ, n, P ): On input the security parameter λ, the threshold
parameter n and a program P , it returns the distributed encoded program
{P̃i}n

i=1 and a secret sk to be useful in authentication.
– DSCS.Auth(id, sk): On input the identity id of a client and the secret sk, it

produces an authentication token tokenid for the client.
– DSCS.Inp(tokenid, x): On input the authentication token tokenid and an input

x, it outputs an encoded input x̃ and α which is used by the client to later
decode the evaluated results.

– DSCS.Eval(P̃i, x̃): On input the encoded program P̃i and input x̃, it produces
the encoded distributed result ỹi = P̃i(x̃).

– DSCS.Reconstruct({P̃i(x̃)}n
i=1): On input the evaluated result {P̃i(x̃)}n

i=1, it
reconstructs the result P (x).

Similar to the analysis in [BGMS15], the procedure goes as follows: the service
provider first runs the procedure Prog(1λ, P ) to obtain the distributed encoded
program {P̃i}n

i=1 and the secret σ. Then for i ∈ [n], it will send P̃i to cloud
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server i. Later, the service provider will authenticate users using σ. A client with
identity id, who has been authenticated, will encode his input using procedure
Inp(1λ, σid, x). The client will send x̃ to cloud i, for i ∈ [n]. For i ∈ [n], the cloud
will evaluate the program P̃i on encoded input x̃ and return the result Pi(x).
Finally, the client can run Reconstruct({Pi(x)}n

i=1) to obtain the result P (x).

Security definitions. In [BGMS15], the authors consider two cases for security
definition, namely untrusted cloud security and untrusted client security. We
generalize their security definition to the DSCS setting. More specifically, we
decouple the case of untrusted cloud security into two subcases, program privacy
and input privacy in untrusted cloud security. And in untrusted client security,
we enhance it by allowing the set of corrupt clients colluding with some corrupt
servers. In various security definitions below, we assume that the service provider
is uncompromisd.

For program privacy in untrusted cloud case, the service provider first setup
the whole system based on program (P0, P1) submitted by adversary. In the sys-
tem, the adversary can corrupts a set of servers and also has access to authen-
tication and encoding oracles, but he cannot tell which program Pb is used to
setup the system. The only restriction here is that P0 and P1 are of the same
size.

Definition 12 (Untrusted Cloud Security – Program Privacy). For the
program privacy case in untrusted cloud setting, we first describe the following
experiment Exptprog(1λ) between a challenger and adversary A:

– Setup: The adversary sends challenge programs (P0, P1) to challenger. The
challenger choose a random bit b ∈ {0, 1} and obtains the challenge encoded
program ({P̃i}n

i=1, sk) ← DSCS.Prog(1λ, n, Pb) and sends {P̃i}n−1
i=1 to adver-

sary A.
– Query phase: Proceeding adaptively, the adversary A can submit the follow-

ing two kinds of queries:
• Authentication query: A sends identity idi to challenger. The chal-
lenger computes tokenidi ← DSCS.Auth(id, sk) and sends back tokenidi .

• Input query: A sends (x, id) to challenger. The challenger computes
ct ← DSCS.Inp(tokenid, x), where tokenidi ← DSCS.Auth(id, sk). Then
send back ct.

– Guess: Finally, the adversary A outputs his guess b′ for the bit b.

We say the adversary wins the experiment if b′ = b.
A DSCS scheme is program private in untrusted cloud setting if no ppt

adversary A can win the experiment Exptprog(1λ) with non-negligible probability.

For input privacy in untrusted cloud security, the service provider first sets up
the whole system using program P submitted by adversary. Then in the system,
the adversary corrupts all servers, and additionally has access to authentica-
tion oracles, but he cannot distinguish the encryption of two message (m0,m1),
where P (m0) = P (m1). Put simply, beyond the evaluation of program, he learns
nothing about the underlying message.
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Definition 13 (Untrusted Cloud Security – Input Privacy). For the
input privacy case in untrusted cloud setting, we first describe the following
experiment Exptinp(1λ) between a challenger and adversary A:

– Setup: The adversary sends challenge program P to challenger. The chal-
lenger runs ({P̃i}n

i=1, sk) ← DSCS.Prog(1λ, n, P ) and sends {P̃i}n
i=1 to adver-

sary A.
– Authentication query phase I: Proceeding adaptively, the adversary

A sends identity idi to challenger. The challenger computes tokenidi ←
DSCS.Auth(id, sk) and sends back tokenidi .

– Challenge phase: Adversary submits the challenge message pair
(m0,m1, id

∗) with the constraint that P (m0) = P (m1). The challenger first
chooses a random bit b ∈ {0, 1} and computes ct ← DSCS.Inp(tokenid,mb),
where tokenid∗

i
← DSCS.Auth(id∗, sk). Then send ct to adversary.

– Authentication query phase II: The same as Authentication query
phase I with the restriction that the query idi does not equal id∗ in the chal-
lenge phase

– Guess: Finally, the adversary A outputs his guess b′ for the bit b.

We say the adversary wins the experiment if b′ = b.
A DSCS scheme is data private in untrusted cloud setting if no ppt adversary

A can win the experiment Exptinp(1λ) with non-negligible probability.

Remark 2. We note that in the above data privacy definition, the challenge phase
can be access multiple times as long as the query pair (m0,m1, id

∗
i ) satisfies

P (m0) = P (m1), and challenger use the same random bit b in generating the
challenge ciphertext.

For untrusted client security, a collection of corrupt clients with the help of
a subset of corrupt servers do not learn anything beyond the program’s output
with respect to their identities on certain inputs of their choice, and if a client
is not authenticated, it learns nothing.

Definition 14 (Untrusted Client Security). Let DSCS be the secure Dis-
tributed Secure Cloud Service scheme as described above. We say the scheme
satisfies untrusted client security if the following holds. Let A be a ppt adver-
sary who corrupts 	 clients I = {id1, . . . , id�}. Consider any program P , let
Q = poly(λ). The experiment described below requires one additional procedure
decode. Based on these two procedures, we define simulator S = (S1,S2). Con-
sider the following two experiments:

The experiment Real(1λ) is as follows:
1. ({P̃}n

i=1, sk) ← DSCS.Prog(1λ, n, P ).
2. For all i ∈ [	], tokenidi ← DSCS.Auth(idi, sk).
3. For i ∈ [Q], A({P̃}n−1

i=1 ) adaptively sends an encoding x̃i, using identity
id, and gets back response

ỹij = P̃j(xi) ← DSCS.Eval(P̃j , x̃i),∀j ∈ [n]

4. Output ({P̃}n−1
i=1 , {tokenidi}i∈[�], {ỹij}).
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The experiment IdealP(1λ) is as follows:
1. {P̃ ′

i}n
i=1 ← S1(1λ, n).

2. For all i ∈ [	], tokenidi ← S2(idi)
3. For i ∈ [Q], A({P̃}n−1

i=1 ) adaptively sends an encoding x̃i, using identity
id,
– If id /∈ I, then return ỹij = ⊥ for j ∈ [n].
– Otherwise, compute xi = decode(σ, x̃i). Then the simulator sends

(id, xi) to oracle P and obtains yi = P (id, xi). Simulator then sends
shares {yij}j∈[n] of yi to adversary A.

4. Output ({P̃}n−1
i=1 , {tokenidi}i∈[�], {ỹij}).

Then we have Real(1λ)
c≈ SimP(1λ).

4.2 Our DSCS Construction

Let DFE = (DFE.Setup,DFE.Keygen,DFE.Enc,DFE.PartDec,DFE.Reconstruct)
be a distributed functional encryption and Σ = (Σ.Setup, Σ.Sign, Σ.Verify) be
an existential unforgeable signature scheme. We describe our construction for
DSCS as follows:

– DSCS.Prog(1λ, n, P ): First run

(DFE.pp,DFE.msk) ← DFE.Setup(1λ, n), (Σ.sk, Σ.vk) ← Σ.Setup(1λ)

Then let the augmented program Paug be

And compute {skPaug

i }n
i=1 ← DFE.Keygen(DFE.msk, Paug). For i ∈ [n], define

the distributed encoded program P̃i
5 as

Output {P̃i}n
i=1 and secret sk = (Σ.sk,DFE.pp).

– DSCS.Auth(id, sk): First parse sk = (Σ.sk,DFE.pp), and then compute σid ←
Σ.Sign(Σ.sk, id). Output tokenid = (σid,DFE.pp).

– DSCS.Inp(tokenid, x): First parse tokenid = (σid,DFE.pp), then compute ct ←
DFE.Enc(DFE.pp, σid||x). Output ciphertext x̃ = ct.

– DSCS.Eval(P̃i, x̃): Compute and output ỹi = P̃i(x̃).
– DSCS.Reconstruct({ỹi}n

i=1): Compute and output y = DFE.Reconstruct
({ỹi}i∈[n]).

Correctness Proof. The correctness proof of our DSCS construction follows
directly from the correctness of underlying distributed functional encryption
scheme DFE and signature scheme Σ. As we described above, in the distributed
encoded program P̃i, it outputs ⊥ for an invalid signature, otherwise outputs
ỹi = DFE.PartDec(skPaug

i , ct), where ct = DFE.Enc(DFE.pp, σid||x). By correct-
ness of DFE, the output of DSCS.Reconstruct({ỹi}n

i=1) is P (x).

5 We note that the distributed encoded program P̃i does not require obfuscation.
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Security Proof. In this part, we show that our DSCS construction satisfies
untrusted cloud security (program and data privacy) and untrusted client secu-
rity as defined above. Intuitively, the program privacy in untrusted cloud setting
can reduce to the ind-based function privacy of underlying DFE scheme, thus in
the proof we construction a reduction that reduces the program privacy property
to the ind-based function privacy of DFE scheme. The data privacy in untrusted
cloud setting can be based on ind-based data privacy of DFE scheme, so sim-
ilarly we show a reduction that bounds this two properties together. Lastly,
the untrusted client security is based on the sim-based function privacy of DFE
scheme. Therefore, we use the simulation algorithms of DFE to do the simulation
for our DSCS construction. The detailed proofs are as follows.

Theorem 5. Let distributed functional encryption DFE satisfy ind-based func-
tion privacy (c.f. Definiton 7), then our DSCS construction described above sat-
isfies program privacy in untrusted cloud setting (c.f. Definition 12).

Proof. We describe a reduction B against the ind-based function privacy
of underlying DFE scheme. If the adversary A can win the experiment
ExptDFE-func

A (1λ) as defined in Definition 7, then reduction B can also win the
experiment Exptprog(1λ) as defined in Definition 12. The description of reduction
B is as follows:

– Setup: B interacts with the challenger of DFE to obtain DFE.pp and computes
(Σ.vk, Σ.sk) ← Σ.Setup(1λ). Then B invokes adversary A to get the chal-
lenge programs (P 0, P 1). Next, B sends the augmented program (P 0

aug, P
1
aug)

(as described in Fig. 3) to the challenger of DFE, and the challenger sends

back {skP b
aug

i }n
i=1. Lastly, B sends {P̃i}n−1

i=1 to adversary, where {P̃i}n
i=1 are

constructed as in Fig. 4 using {skP b
aug

i }n
i=1 as input.

– Identity query: On input identity query idi, B computes σid ←
Σ.Sign(Σ.sk, id) and sends back tokenid = (σid,DFE.pp) to adversary A.

– Input query: On input (x, id), B computes ct ← DSCS.Inp(tokenid, x), where
tokenidi ← DSCS.Auth(id, sk). Then send back ct.

– Guess: B receives adversary A’s guess b′. And B outputs b′ as his guess for
the DFE experiment ExptDFE-func(1λ).

Hardcode: DFE.pp, Σ.vk and program P Input: signature σ, value x and id.

1. If Σ.Verify(σ, id, Σ.vk) = 0, output ⊥.
2. Compute and output P (x).

Fig. 3. Description of augmented program Paug

Hardcode: sk
Paug

i and algorithm DFE.Dec. Input: ciphertext ct.

Compute and output DFE.PartDec(sk
Paug

i , ct).

Fig. 4. Description of distributed encoded program P̃i
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We now argue that the adversary’s view ({P̃i}n−1
i=1 , {tokenid}, {ct}) in real exe-

cution is identical here as produced by reduction B. This follows obviously, as
{P̃i}n

i=1 is generated in the same way with the help of the challenge of DFE,
tokenid is valid signature of identity id. The ciphertexts {ct} are generated in the
same way in both executions. Therefore, a correct guess b′ from adversary A is
a correct guess for experiment ExptDFE-func(1λ).

Theorem 6. Let distributed functional encryption DFE satisfy ind-based data
privacy (c.f. Definiton 9), then our DSCS construction described above satisfies
input privacy in untrusted cloud setting (c.f. Definition 13).

Proof. We describe a reduction B against the ind-based data privacy of underly-
ing DFE scheme. If the adversary A can win the experiment ExptDFE-data(1λ) as
defined in Definition 9, then reduction B can also win the experiment Exptinp(1λ)
as defined in Definition 13. The description of reduction B is as follows:

– Setup; B interacts with the challenger of DFE to obtain DFE.pp and computes
(Σ.vk, Σ.sk) ← Σ.Setup(1λ). Then B invokes adversary A to get the program
P . Next, B sends the augmented program Paug (as described in Fig. 3) to the
challenger of DFE, and the challenger sends back {skPaug

i }n
i=1. Lastly, B sends

{P̃i}n
i=1 to adversary, where {P̃i}n

i=1 are constructed as in Fig. 4.
– Authentication query phase I: On input identity query idi, B computes

σid ← Σ.Sign(Σ.sk, id) and sends back tokenid = (σid,DFE.pp) to adversary A.
– Challenge phase: On input (m0,m1, id

∗) from adversary, where P (m0) =
P (m1), B first computes σid∗ ← Σ.Sign(Σ.sk, id∗), and sends (m0||σid∗ ,m1||
σid∗) to challenger, and receives challenge ciphertext ct∗.

– Authentication query phase II: Same as Authentication query phase I.
– Guess: B receives adversary A’s guess b′. And B outputs b′ as his guess for

the DFE experiment ExptDFE-data(1λ).

We now argue that the adversary’s view ({P̃i}n
i=1, {tokenid}, ct∗) in real execution

is identical here as produced by reduction B. This follows obviously, as {P̃i}n
i=1 is

generated in the same way with the help of the challenge of DFE, tokenid is valid
signature of identity id. For the challenge ciphertext ct∗, since P ′(m0||σid∗) =
P ′(m1||σid∗), so the query (m0||σid∗ ,m1||σid∗) is a valid one. Therefore, a correct
guess b′ from adversary A is a correct guess for experiment ExptDFE-data(1λ).

Theorem 7. Let distributed functional encryption DFE satisfy sim-based func-
tion privacy (c.f. Definition 8) and Σ be an existential unforgeable signature
scheme (c.f. Definition 1), then our DSCS construction described above satisfies
untrusted client security (c.f. Definition 14).

Proof. Based on the simulation algorithms of distributed functional encryption
(DFE.S1,DFE.S2,DFE.S3) (c.f. Definition 8), we first describe the simulation
algorithms (S1,S2) and procedure decode as follows:

– S1(1λ, n): The simulation S1 first runs DFE.S1(1λ, n) to obtain DFE.pp, and
Σ.Setup(1λ) to obtain (Σ.vk, Σ.sk). Then S1 chooses a random program P ′ of
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the same size as P , and computes {skP ′
aug

i }n
i=1 ← DFE.S2(P ′

aug), where P ′
aug is

the augmented program of P ′ (c.f. Fig. 3). Then compute {P̃ ′
i}n

i=1 as described
in Fig. 4 and send back {P̃ ′

i}n−1
i=1 to adversary.

– S2(idi): On input identity idi, S2 computes σidi ← Σ.Sign(Σ.sk, idi). Send
back tokenidi = (σidi ,DFE.pp).

– decode(x̃i, id): On input ciphertext x̃ and identity id, it first computes
{skIndi }n

i=1 ← DFE.S2(Ind), where Ind denotes the identity function, i.e.
Ind(x) = x, for any x. Then compute xi||σid = DFE.Reconstruct(DFE.pp,
{sj}n

j=1), where sj = DFE.PartDec(x̃i, sk
Ind
j ) for j ∈ [n]. Output ⊥ if

Σ.Verify(Σ.vk, id, σid) = 0. Otherwise, choose n − 1 random values {yij}n−1
j=1 ,

then query DFE.SP
3 on input (xi, {yij}n−1

j=1 ) to get yin. Lastly, send back
{yij}n

j=1 back to adversary.

In the following, we show that adversary’s view ({P̃}n−1
i=1 , {tokenidi}i∈[�], {ỹij})

in the two executions are indistinguishable. By the sim-based function pri-
vacy of DFE, {P̃}n−1

i=1 in the two executions are indistinguishable. The tokens
({tokenidi}i∈[�] are computed identically in the two execution, thus they are
indistinguishable in two executions. For query (x̃i, id), by the unforgeability of
signature scheme Σ, if the underlying plaintext of x̃i does not contain a valid
signature of id, then both executions output ⊥ for query (x̃i, id). Otherwise, by
the sim-based function privacy of DFE, the output {yij}n

j=1 returned by simu-
lation DFE.SP

3 is indistinguishable from that in the real execution. Therefore,
we reach the conclusion that our DSCS construction satisfies untrusted client
security.

Additional properties. We remark that there are multiple additional proper-
ties we can consider for the application of hosting service in a cloud.

First, we can inherit the two extra properties of verifiability and persistent
memory mentioned briefly in [BGMS15]. The verifiability requires that the valid-
ity of the results returned by the server can be checked, same as [BGMS15], we
can rely on the technology of verifiable computation [GHRW14]. Persistent mem-
ory property is to consider the server can maintain a state for each client across
different invocations. We can do the same as in [BGMS15] except the client needs
to return the aggregated value back after each invocation.

Furthermore, we remark that as our construction is very simple and easy to
extend, we can further support many other properties as well. Here we only list
two examples. (i) Our current version and previous work [BGMS15] only puts
the authentication on the client, once authorized, the client can query the cloud
unlimitedly. If the service provider wants to post more fine grained control on
each input data, we can further enable this by embedding the access structure
into the function. (ii) We can further support client anonymity that the server
(even all of them collude) cannot recognize whether two queries are from the
same client. Currently, the client will submit the authentication token together
with the data. It is easy to see that if we replace the token with an anonymous
credential, we can have the additional anonymity.
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5 Conclusion and Open Problems

We study the problem of public key functional encryption in a distributed model.
Such a model enables us to circumvent the impossibility of function privacy in
public key functional encryption. We formulated such a new primitive and gave a
construction from functional secret sharing, which can be obtained from learning
with error assumption. We showcased the power of our new primitive by applying
it to host services in multiple clouds.

One important observation of our distributed public key functional encryp-
tion is that achieving function privacy in this alternative model yields the power
of virtual black-box obfuscation (essentially), which could potentially help cir-
cumvent other theoretic impossibilities in a distributed model. Another observa-
tion that may benefit application is that our construction is generic that upgrades
any functional encryption. In some applications, we may only need a functional
encryption for a special class of functions, which could have efficient construc-
tions. This in turn yields potentially practical solutions for a class of important
problems, such as encrypted search [SSW09], and copyright protection [KT15].

We leave the exploration of those interesting questions as open problems.
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Abstract. This paper presents two non-generic and practically efficient
private key multi-input functional encryption (MIFE) schemes for the
multi-input version of the inner product functionality that are the first
to achieve simultaneous message and function privacy, namely, the full-
hiding security for a non-trivial multi-input functionality under well-
studied cryptographic assumptions. Our MIFE schemes are built in bilin-
ear groups of prime order, and their security is based on the standard
k-Linear (k-LIN) assumption (along with the existence of semantically
secure symmetric key encryption and pseudorandom functions). Our con-
structions support polynomial number of encryption slots (inputs) with-
out incurring any super-polynomial loss in the security reduction. While
the number of encryption slots in our first scheme is apriori bounded,
our second scheme can withstand an arbitrary number of encryption
slots. Prior to our work, there was no known MIFE scheme for a non-
trivial functionality, even without function privacy, that can support an
unbounded number of encryption slots without relying on any heavy-
duty building block or little-understood cryptographic assumption.

Keywords: Multi-input functional encryption · Inner products
Full-hiding security · Unbounded arity · Bilinear maps

1 Introduction

Functional encryption (FE) [12,36] is a new vision of modern cryptography that
aims to overcome the potential limitation of the traditional encryption schemes,
namely, the so called “all-or-nothing” control over decryption capabilities, i.e.,
parties holding the legitimate decryption key can recover the entire message
encrypted within a ciphertext, whereas others can learn nothing. Specifically, FE
offers additional flexibility by supporting restricted decryption keys which enable
decrypters to learn specific functions of encrypted messages, without revealing
any additional information. More precisely, an FE scheme for a function family
F involves a setup authority which holds a master secret key and publishes pub-
lic system parameters. An encrypter uses the public parameters (along with a
secret encryption key provided by the setup authority in case of a private key
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scheme) to encrypt its message m belonging to some supported message space
M, creating a ciphertext ct. A decrypter may obtain a private decryption key
sk corresponding to some function f ∈ F from the setup authority provided the
authority deems that the decrypter is entitled for that key. Such a decryption
key sk corresponding to certain decryption function f can be used to decrypt
a ciphertext ct encrypting some message m to recover f(m). The basic secu-
rity requirement for an FE scheme is the privacy of encrypted messages against
collusion of decrypters, i.e., an arbitrary number of decrypters cannot jointly
retrieve any more information about an encrypted message beyond the union of
what they each can learn individually.

Multi-input functional encryption (MIFE), introduced by Goldwasser et al.
[23], is a generalization of FE to the setting of multi-input functions. An MIFE
scheme has several encryption slots, and messages can be encrypted to different
slots independently. A MIFE decryption key for an n-input function f simultane-
ously decrypts a set of n ciphertexts, each of which is encrypted with respect to
one of the n input slots associated with f , to unveil the joint evaluation of f on
the n messages encrypted within those n ciphertexts. Just like single-input FE
the primary security requirement for an MIFE scheme as well is the privacy of
encrypted messages against collusion attacks. However, unlike single-input FE,
the formalization of this security notion in case of MIFE is somewhat subtle. In
their pioneering work, Goldwasser et al. [23] presented a rigorous framework to
formally capture message privacy for MIFE, both in the public key and in the
private key regimes.

MIFE is particularly useful in scenarios where informations, which need to
be processed together during decryption, become available at different points
of time or are supplied by different parties. In fact, MIFE can be employed in a
wide range of applications pertaining to computation and mining over encrypted
data coming from multiple sources. Examples include executing search queries
over encrypted data-bases, processing encrypted streaming data, non-interactive
differentially private data releases, multi-client delegation of computations to
external servers, and many more. All of these applications are in fact relevant in
both the public key and the private key regimes.

In view of its countless practical applications, a series of recent works have
attempted to construct MIFE schemes based on various cryptographic tools.
These constructions can be broadly classified into two categories. The first line of
research has tried to build MIFE schemes for general multi-input functionalities,
e.g., arbitrary polynomial-size circuits [6,13,23,24,28] or Turing machines [7].
Unfortunately however, all such MIFE constructions rely on highly strong crypto-
graphic primitives like indistinguishability obfuscation [8,20], single-input FE for
general circuits [20,21], or multilinear maps [17,19], neither of which is currently
instantiable using efficient building blocks or under well-studied cryptographic
assumptions. Consequently, a second line of research have emerged whose focus
is to design concretely efficient MIFE schemes based on standard assumptions
for specific multi-input functionalities, e.g., comparison [15,16,31] or multi-input
inner product [3,27,30]. However, majority of the existing works on MIFE have
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concentrated merely on achieving the basic security notion, namely, message
confidentiality.

Unfortunately, message confidentiality is not sufficient in several advanced
applications of FE, rather privacy also needs to be ensured for the functions for
which the decryption keys are issued. This is especially important in situations
where the decryption functions themselves contain sensitive informations. Con-
sider the following scenario: Suppose a hospital subscribes to an external cloud
server for storing medical records of its patients. In order to ensure confidential-
ity of the records and, at the same time, remotely perform various computations
on the outsourced data from time to time, a promising choice for the hospital
is to use an FE scheme to encrypt the records locally prior to uploading to the
cloud server. Now, suppose the hospital wishes to retrieve the list of all patients
who is receiving treatment for a certain chronic disease from the cloud server.
For this, the hospital needs to provide the cloud server a decryption key for
the corresponding functionality. However, if the FE scheme used by the hospi-
tal possesses no function privacy, then the cloud server would get to know the
functionality from the decryption key provided by the hospital. Thus, after per-
forming the assigned computation, if the cloud server notices the name of some
celebrity in the obtained list of patients, it would at once understand that the
particular celebrity is suffering from such a chronic disease, and it may leak the
information to the media possibly for financial gain. This is clearly undesirable
from the privacy point of view.

In order to address such scenarios, several recent works have studied the
notion of function privacy in the context of FE, both in the single-input setting
[4,9–11,14,18,25,27,32,33,38,39] and in the multi-input setting [6,13,28,32].
Intuitively, function privacy demands that the decryption keys leak no addi-
tional information about the functions embedded within them, beyond what is
revealed through decryption. However, it has been observed that the extent to
which function privacy can be realized differs dramatically between the public
key and the private key regimes. In fact, in the public key setting, where any-
one can encrypt messages, only a weak form of function privacy can be realized
[10,11,25]. More precisely, in order to capture function privacy for FE in the
public key setting, the framework must assume that the functions come from
a certain high-entropy distribution. On the contrary, function-private FE (both
the single-input and the multi-input versions) has been shown to possess great
potentials in the private key setting, not only as a stand-alone feature, but also
as a very useful building block [5,6,28,29,32,33]. Consequently, the research on
function-private FE has been focused primarily on the private key setting. How-
ever, despite of its immense theoretical and practical significance, so far, there
are only a handful of function-private FE schemes available in the literature that
can be implemented in practice [9,18,27,32,33,39], and all of them have been
designed for single-input functions, precisely, inner products. In case of function-
private MIFE, the only known concrete construction is the recent one due to Lin
[32]. She has constructed a private key function-private MIFE scheme for comput-
ing inner products of arbitrary polynomial degree, where standard inner product
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is a degree 2 function. However, her construction employs multilinear maps, and
thus is currently uninstantiable in practice.

In this work, our goal is to design practical private key function-private MIFE
scheme supporting a polynomial number of encryption slots, incurring only poly-
nomial loss in the security reduction. Goldwasser et al. [23] have already shown
that private key MIFE for general functionalities supporting a polynomial number
of encryption slots is equivalent to full-fledged indistinguishability obfuscation.
Hence, it seems impossible to design such highly expressive MIFE scheme without
a sub-exponential security loss [22]. In fact, all existing private key MIFE schemes
for general functionalities [6,13,23,28] do suffer from at least a quasi-polynomial
security loss to support even a poly-logarithmic number of encryption slots.
Hence, we concentrate on a specific multi-input functionality that has a wide
range of real-life applications, namely, the natural multi-input generalization of
the inner product functionality. This functionality has been first considered by
Abdalla et al. [3]. Concretely, a multi-input inner product function f{ #»y ι}ι∈S

is
associated with a set S of encryption slot indices and vectors #»y ι ∈ Z

m for all
ι ∈ S. It takes as input a set of vectors { #»x ι}ι∈S with the same index set S,
where #»x ι ∈ Z

m for all ι ∈ S, and outputs
∑

ι∈S

#»x ι · #»y ι, where #»x ι · #»y ι represents

the inner product of the vectors #»x ι and #»y ι over Z. It is required that the norm
of each component inner product #»x ι · #»y ι is smaller than some upper bound B.
Observe that this functionality is different from the high-degree inner product
functionality considered by Lin [32]. The multi-input inner product functionality
captures various important computations arising in the context of data-mining,
e.g., computing weighted mean of informations supplied by different parties.
Please refer to [3] for a comprehensive exposure of the practical significance of
the multi-input inner product functionality.

Abdalla et al. [3] have presented an MIFE scheme for the multi-input inner
product functionality described above in the private key setting, using bilinear
groups of prime order. Their construction supports a fixed polynomial number of
encryption slots and multi-input inner product functions associated with a fixed
index set S of polynomial size, as well as incurs only a polynomial loss in the
security reduction. Precisely, the index set S in their construction is of the form
S = [n] = {1, . . . , n}, where n is the number of encryption slots – a polynomial
determined at the time of setup, for the multi-input inner product functions.
Their construction achieves adaptive message privacy against arbitrary collusion,
as per the framework of Goldwasser et al. [23], in the standard model under the
well-studied k-Linear (k-LIN) assumption [37]. Prior to the work of Abdalla et al.
[3], two independent works, namely, [27,30] were able to realize a two-input
variant of their result, of which [27] achieved it in the generic group model.
However, none of these constructions guarantee function privacy. In fact, in
their paper [3], Abdalla et al. have posed the construction of a function-private
MIFE scheme for the multi-input inner product functionality based on the k-LIN
assumption in prime order bilinear groups as an open problem.
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Our Contribution

In this paper we solve the above open problem. More specifically, we construct
two concretely efficient standard-model private key MIFE schemes for the multi-
input inner product functionality in prime order bilinear groups that are the
first to achieve function privacy under well-studied cryptographic assumptions.
In fact, our constructions achieve the unified notion of message and function
privacy, namely, the full-hiding security, formulated by Brakerski et al. [13] in
the context of private key MIFE by combining the corresponding notion in the
context of private key single-input FE [4,14] with the framework for message
privacy of MIFE [23], under the k-LIN assumption (along with the existence
of semantically secure symmetric key encryption and pseudorandom functions).
Both of our constructions support polynomial number of encryption slots and
are free from any super-polynomial loss in the security reduction. Our MIFE
schemes withstands any polynomial number of decryption key queries and any
polynomial number of ciphertext queries for each encryption slot. We employ the
elegant technique of dual pairing vector spaces (DPVS) introduced by Okamoto
and Takashima [34,35], and are implementable using both symmetric and asym-
metric bilinear groups. Just like [3], our first construction supports an apriori
fixed number of encryption slots and a fixed slot index set for the multi-input
inner product functions. These limitations are removed in our second construc-
tion. More precisely, our second construction is capable of supporting an apriori
unbounded number of encryption slots and multi-input inner product functions
with arbitrary slot index sets of any polynomial size. In fact, this construc-
tion is the first MIFE scheme for a non-trivial functionality with an unbounded
number of encryption slots, built using efficient cryptographic tools and under
well-studied complexity assumptions. The only prior MIFE construction which
achieves this feature [7] has been designed using heavy machineries and relies
on little-understood cryptographic assumption like public-coin differing input
obfuscation [26]. Moreover, the MIFE construction of [7] has been developed in
public key setting and possesses no function privacy.

Our MIFE constructions are very efficient. When instantiated under the Sym-
metric External Diffie-Hellman (SXDH) assumption (k = 1 version of the k-LIN
assumption) and a symmetric key encryption (SKE) whose secret key size is λ
bits, the ciphertexts of our bounded MIFE scheme consist of 2m + 3 group ele-
ments and a λ-bit string, while the decryption keys consist of n(2m + 3) group
elements. We would like to mention that these group elements are encrypted by
SKE. The master secret key comprises of n(2m + 3)2 elements of the underlying
finite field and n λ-bit strings. The encryption incurs one encryption of SKE and
2m+3 exponentiations, while key generation algorithm incurs one encryption of
SKE and n(2m+3) exponentiations. On the other hand, the decryption algorithm
involves (n + 1) executions of the decryption algorithm of SKE and n(2m + 3)
pairing operations followed by an exhaustive search step over a polynomial-
size range of possible values. Here, m and n respectively denote the length of
the vectors and the size of the index set associated with the multi-input inner
product functionality. Observe that these figures are already in close compliance
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with the n-fold extension of the most efficient standard-model full-hiding single-
input FE construction for inner products known till date, namely, the scheme by
Lin [32] (which is also designed under the SXDH assumption). The exhaustive
search step in the decryption algorithm is reminiscent of all currently known
bilinear-map-based FE constructions for inner products, both in the single-input
and in the multi-input settings. In unbounded scheme, the ciphertext size and
decryption key size are the same as bounded scheme, while the master secret
key consists of two pseudorandom function (PRF) keys and (2m + 3)2 elements
of the underlying finite field. The encryption incurs two PRF evaluations and
2m + 3 exponentiations, while the key generation algorithm incurs n executions
of the encryption algorithm of SKE, 2n PRF evaluations, and n(2m + 3) expo-
nentiations. The decryption algorithm, on the other hand, involves n executions
of the decryption algorithm of SKE and n(2m + 3) pairing operations followed
by an exhaustive search step similar to the bounded scheme.

Our Techniques

We now explain the principal ideas underlying our MIFE constructions for the
multi-input inner product functionality. In order to simplify the exposition, we
ignore many technicalities in this overview.

Our bounded-arity scheme: Since, the multi-input inner product functional-
ity is a multi-input generalization of its single-input version, a natural first step is
to explore whether we can obtain a private key full-hiding n-input MIFE scheme
for inner products by executing n parallel copies of a private key full-hiding FE
scheme for inner products. The most efficient such scheme available in the litera-
ture is the one due to Lin [32], which is based on the SXDH assumption. However,
the construction is built upon the Decisional-Diffie-Hellman (DDH)-based con-
struction of Abdalla et al. [1] and is not readily amenable to the general k-LIN
assumption. Moreover, the construction is built in a two step approach, namely,
first constructing an FE scheme for inner products achieving only a weaker form
of function privacy, and then bootstrapping to the full-hiding security by using
the conversion of Lin and Vaikuntanathan [33]. We want to avoid such an app-
roach, rather our goal is to design a direct construction of full-hiding MIFE for
multi-input inner products. So, we start with the full-hiding single-input inner-
product FE scheme proposed by Tomida et al. [39]. This construction is direct,
and while originally presented under a variant of the Decisional Linear (DLIN)
assumption, seems naturally generalizable to the k-LIN assumption. Further,
in terms of efficiency, this construction is next to the construction of Lin [32]
among the standard-model private key function-private FE constructions avail-
able in the literature [9,18,32,39]. Besides, this construction has the flexibility
of being implementable in both symmetric and asymmetric bilinear groups.

First, let us briefly review the construction and proof idea of Tomida et al.
[39]. We assume familiarity with the DPVS framework for the rest of this section.
(The background on DPVS is provided in Sect. 2.3.) The master secret key msk

in the construction of Tomida et al. [39] consists of a pair of dual orthog-
onal bases (B, B∗) of a (2m + 5)-dimensional DPVS, where m is the length
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of the ciphertext and decryption key vectors. Out of the 2m + 5 dimensions,
m + 4 dimensions are utilized in the real construction, while the rest are used
in performing various hybrid transitions in the security proof. Note that the use
of such hidden dimensions is a powerful feature of the DPVS framework, and it
has been proven to be instrumental in deducing various complex security proofs
in the literature. The ciphertext ct of [39] encrypting an m-dimensional vector
#»x is given by ct = ( #»x ,

#»
0 m,

#»
0 2, ϕ1, ϕ2, 0)B, where ϕ1, ϕ2

U←− Fq. On the other
hand, the decryption key sk corresponding to some m-dimensional vector #»y is
of the form sk = ( #»y ,

#»
0 m, γ1, γ2,

#»
0 2, 0)B∗ , where γ1, γ2

U←− Fq. Here, ( #»v )W, for
any vector #»v with entries in Fq and any basis W of a DPVS, signifies the linear
combination of the members of W using the entries of #»v as coefficients. The
decryption algorithm works by computing e(ct, sk) followed by performing an
exhaustive search step over a specified polynomial-size range to determine the
output. The correctness readily follows by the dual orthogonality property of
(B, B∗).

Recall that in the full-hiding security experiment for single-input inner prod-
uct FE [4,14], first the challenger B sets up the system and samples a random bit
β

U←− {0, 1}. Next, the adversary A is allowed to adaptively make any polynomial
number of ciphertext and decryption key queries to B. In order to make a cipher-
text query, A submits a pair of message vectors ( #»x 0,

#»x 1) to B, while to make a
decryption key query, A submits a pair of vectors ( #»y 0,

#»y 1) to B. Depending on
the random bit β, B returns respectively an encryption of #»xβ and a decryption
key for vector #»y β to the adversary in response to the respective queries. Finally,
the adversary has to correctly guess the random bit β to win the experiment.
The restriction on the queries of A is that for all pairs of vectors ( #»x 0,

#»x 1) for
which a ciphertext query is made and for all pairs of vectors ( #»y 0,

#»y 1) for which
a decryption key query is made, it should hold that #»x 0 · #»y 0 = #»x 1 · #»y 1.

In order to prove security of the construction of [39] in the above full-hiding
model, the following hybrid transitions are performed: The initial hybrid is
the real full-hiding experiment with the challenge bit β = 0, i.e., where the
forms of the ciphertexts and decryption keys returned to A are respectively
ct

∗ = ( #»x 0,
#»
0 m,

#»
0 2, ϕ1, ϕ2, 0)B and sk

∗ = ( #»y 0,
#»
0 m, γ1, γ2,

#»
0 2, 0)B∗ , while the

final hybrid corresponds to the real full-hiding experiment with β = 1, i.e., where
the forms of the ciphertexts and decryption keys returned to the adversary are
of the form ct

∗ = ( #»x 1,
#»
0 m,

#»
0 2, ϕ1, ϕ2, 0)B and sk

∗ = ( #»y 1,
#»
0 m, γ1, γ2,

#»
0 2, 0)B∗

respectively. Towards achieving this change, first, applying a combination of
a computational change using the DLIN assumption, in conjunction with a
conceptual transformation of the underlying bases, the form of the cipher-
texts are altered one by one to ct

∗ = ( #»x 0,
#»x 1,

#»
0 2, ϕ1, ϕ2, 0)B. In the next

step, applying another combination of computational and conceptual changes,
the form of the queried decryption keys are changed one by one to the form
sk

∗ = (
#»
0 m, #»y 1, γ1, γ2,

#»
0 2, 0)B∗ . This is the most subtle transition step, and

this is where we have to rely crucially on the restriction of the security model.
More precisely, observe that before altering the decryption keys, decrypting the
queried ciphertexts using the queried decryption keys result in #»x 0 · #»y 0, whereas
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after the transformation, the decryption results are #»x 1 · #»y 1. However, thanks
to the restriction of the full-hiding security experiment, we can ensure that the
decryption results in the two cases are the same, and thus the change cannot
be detected through decryption. After this step, the forms of ciphertexts and
decryption keys are further altered respectively to ct

∗ = ( #»x 1,
#»x 0,

#»
0 2, ϕ1, ϕ2, 0)B

and sk
∗ = ( #»y 1,

#»
0 m, γ1, γ2,

#»
0 2, 0)B∗ , with the help of another conceptual basis

transformation. Once this step is executed, the forms of the queried ciphertexts
are changed to ct

∗ = ( #»x 1,
#»
0 m,

#»
0 2, ϕ1, ϕ2, 0)B using a reverse transformation

to the one used in the first step. Observe that this last step takes us to the
experiment corresponding to β = 1.

Let us now consider an MIFE scheme for the n-input inner product function-
ality obtained by an n-fold extension of the above single-input scheme. More
precisely, consider an n-input MIFE scheme having the following specifications:
The master secret key msk consists of n independently generated master secret
keys for the single-input scheme, i.e., msk = {mskι = (Bι, B

∗
ι )}ι∈[n]. The cipher-

text of some vector #»x ι with respect to index ι ∈ [n] is simply a single-input
FE ciphertext for #»x ι with respect to mskι, i.e., the ciphertext has the form
ctι = (ι, cι = ( #»x ι,

#»
0 m,

#»
0 2, ϕι,1, ϕι,2, 0)Bι

), where ϕι,1, ϕι,2
U←− Fq. On the other

hand, a decryption key associated with a set of n vectors { #»y ι}ι∈[n] is given by a
set of n decryption keys {skι}ι∈[n], where skι is the single-input FE secret key
for #»y ι with respect to mskι, i.e., sk = {kι = ( #»y ι,

#»
0 m, γι,1, γι,2,

#»
0 2, 0)B∗

ι
}ι∈[n],

where γι,1, γι,2
U←− Fq for all ι ∈ [n]. To decrypt a set of n ciphertexts {ctι}ι∈[n]

using a decryption key sk, one first computes
∏

ι∈[n]

e(cι,kι), and then performs an

exhaustive search step. It is easy to see that the correctness follows analogously
to the single-input case.

However, one can readily observe that the above n-input extension is not
secure. In particular, the construction leaks partial information. Precisely, notice
that for each ι ∈ [n], one can easily recover #»x ι · #»y ι by computing e(cι,kι),
whereas ideally one should only be able to learn

∑

ι∈[n]

#»x ι · #»y ι. Abdalla et al. [3]

also faced a similar challenge while constructing their MIFE scheme by building
on a single input inner product FE scheme. In order to overcome this prob-
lem, they introduced additional randomness within ciphertexts and decryption
keys. Precisely, in order to generate a ciphertext for vector #»x ι with respect to
index ι ∈ [n], they encrypted the vector ( #»x ι, zι), where z1, . . . , zn

U←− Fq are
included within the master secret key. Similarly, while preparing a decryption
key for a set of n vectors { #»y ι}ι∈[n], they sampled a random value r

U←− Fq,
and generated single-input FE decryption keys for the vectors ( #»y ι, r) for all

ι ∈ [n], and additionally create the component kT = g

∑

ι∈[n]
zιr

T . We attempt to
apply their trick to our setting. More precisely, we modify our MIFE construc-
tion as follows: We add one additional dimension in the dual orthogonal bases
(Bι, B

∗
ι ) for each ι ∈ [n], i.e., they are now (2m + 6)-dimensional. A cipher-

text encrypting the vector #»x ι with respect to index ι ∈ [n] is of the form
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ctι = (ι, cι = ( #»x ι,
#»
0 m, zι,

#»
0 2, ϕι,1, ϕι,2, 0)Bι

), where z1, . . . , zn
U←− Fq are parts

of msk, and the decryption key corresponding to a set of n vectors { #»y ι}ι∈[n]

is given by sk = ({kι = ( #»y ι,
#»
0 m, r, γι,1, γι,2,

#»
0 2, 0)B∗

ι
}ι∈[n], kT = g

∑

ι∈[n]
zιr

T ).

Decryption works by first computing [
∏

ι∈[n]

e(cι,kι)]/kT = g

∑

ι∈[n]

#»x ι· #»y ι

T , and then

performing an exhaustive search step to recover
∑

ι∈[n]

#»x ι · #»y ι.

Let us now consider the security of the modified construction. For simplicity,
assume that the adversary queries a single decryption key and a single ciphertext
for each of the n encryption slots. The full-hiding security model for private key
MIFE [13] is an extension of its single-input counter part, but is significantly
more complicated compared to it. Analogous to the single-input case, in this
multi-input security model, in order to make a ciphertext query for the ιth slot,
the adversary has to submit a pair of vectors ( #»x ι,0,

#»x ι,1), whereas for making
a decryption key query, the adversary has to submit a pair of sets of n vec-
tors ({ #»y ι,0}ι∈[n], { #»y ι,1}ι∈[n]). However, unlike the single-input setting, now the
restriction on the queries is that

∑

ι∈[n]

#»x ι,0 · #»y ι,0 =
∑

ι∈[n]

#»x ι,1 · #»y ι,1. Let us try to

argue security of our modified construction by taking a similar path to that taken
by Tomida et al. [39]. We start with the case where the challenge bit β = 0, i.e.,
when the ciphertexts and decryption key returned to the adversary have the form
ct

∗
ι = (ι, c∗

ι = ( #»x ι,0,
#»
0 m, zι,

#»
0 2, ϕι,1, ϕι,2, 0)Bι

), for ι ∈ [n], and sk
∗ = ({k∗

ι =

( #»y ι,0,
#»
0 m, r, γι,1, γι,2,

#»
0 2, 0)B∗

ι
}ι∈[n], kT = g

∑

ι∈[n]
zιr

T ). Just like [39], first, using a
combination of computational changes using the DLIN assumption, in conjunc-
tion with a conceptual transformation to the underlying bases, we can alter the
forms of all the ciphertexts to ct

∗
ι = (ι, c∗

ι = ( #»x ι,0,
#»x ι,1, zι,

#»
0 2, ϕι,1, ϕι,2, 0)Bι

).
After this step is done, we would have to change the form of the queried decryp-
tion key sk

∗ so that the first 2m coefficients of each k∗
ι become (

#»
0 m, #»y ι,1). In

order to achieve this change, we first perform a computational change to k∗
ι , for

each ι ∈ [n], with the help of the DLIN assumption to k∗
ι = ( #»y ι,0,

#»
0 m, r, γι,1, γι,2,

#»
0 2, ωι)B∗

ι
, where ωι

U←− Fq for all ι ∈ [n]. Next, we need to perform a concep-
tual transformation to the underlying bases in each slot so that the first two
m blocks of each k∗

ι gets interchanged. However, this conceptual change would
generate the term #»x ι,0 · #»y ι,0 − #»x ι,1 · #»y ι,1 in the (2m + 6)th coefficient of each
ciphertext ctι. In the single-input case, such a term vanishes by the restriction
on the ciphertext and decryption key queries. But, unlike the single-input case,
now #»x ι,0 · #»y ι,0 is not guaranteed to be equal to #»x ι,1 · #»y ι,1 for all ι ∈ [n], and
hence the term in the (2m + 6)th coefficient does not vanish.

In order to overcome this problem, we modify the above construction by
introducing a different randomness in each of the n component of the decryption
key rather than using a same shared randomness across all the n components.
More precisely, a decryption key corresponding to a set of n vectors { #»y ι}ι∈[n] has
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the form sk = ({kι = ( #»y ι,
#»
0 m, rι, γι,1, γι,2,

#»
0 2, 0)B∗

ι
}ι∈[n], kT = g

∑

ι∈[n]
zιrι

T ), where

rι
U←− Fq for all ι ∈ [n]. First, observe that this modification does not affect the

correctness. Now, with this modification, we can resolve the above problem as
follows: In the above conceptual change step, we transform the underlying bases
in such a way that not only the first two m blocks of each k∗

ι gets interchanged,
but also each rι gets altered to r̃ι, where r̃ι = rι + [ #»x ι,0 · #»y ι,0 − #»x ι,1 · #»y ι,1]/zι.
Observe that the r̃ι’s are also distributed uniformly and independently over Fq

since rι’s are so. Also, this new basis transformation will create the additional
term [ #»x ι,1 · #»y ι,1− #»x ι,0 · #»y ι,0] in the (2m+6)th coefficient of the queried ciphertext
in each slot that would cancel out the term [ #»x ι,0· #»y ι,0− #»x ι,1· #»y ι,1]. Further, notice
that

∑

ι∈[n]

zιr̃ι =
∑

ι∈[n]

zιrι by the restriction of the full-hiding security experiment

of the multi-input setting, namely,
∑

ι∈[n]

#»x ι,0 · #»y ι,0 =
∑

ι∈[n]

#»x ι,1 · #»y ι,1.

Note that our actual construction and security proof, which is presented
under the general k-LIN assumption, is more subtle. In our actual construction,
we observe that replacing the zι values with the scalar 1 and choosing the rι

values associated with a decryption key under the restriction that
∑

ι∈[n]

rι = 0

is sufficient to argue the security proof. As a result of this modification, we are
able to remove the kT component from the decryption keys. Also, in the actual
construction, we reduce the dimension of the underlying bases further by making
a more careful use of the randomness.

Our unbounded-arity scheme: In our bounded-arity scheme, the setup algo-
rithm makes n random dual orthogonal bases for n-input case, and stores them
as a master secret key. The first problem is how to make these bases unbound-
edly from a master secret key, whose size is independent from n. Considering
that our scheme is private-key MIPE, to get an idea of making them from a
pseudorandom function is not difficult. That is, we prepare a randomly chosen
pseudorandom function key as a master secret key in a setup phase, and in
encryption or key generation, we can generate dual orthogonal bases from the
pseudorandom function with its input being the slot index when they are needed.
Actually, this naive idea works in a conditional full-hiding security model, where
for each decryption key, all indices included in the decryption keys are queried in
ciphertext query. The crucial point is that, for some decryption key queried by
the adversary, if all indices that are included in the decryption key are queried
in ciphertext query, then all corresponding vectors must satisfy some restrictions
to avoid a trivial attack. Concretely, for each decryption key skS for a index set
S and vectors { #»y ι}ι∈S , all vectors #»x ι for slot ι ∈ S queried in ciphertext query,
satisfy the following restriction s.t.

∑

ι∈S

#»x ι,0 · #»y ι,0 =
∑

ι∈S

#»x ι,1 · #»y ι,1. When we con-

struct our bounded-arity scheme, we first construct a scheme that is secure in
the conditional full-hiding security model, and then we convert it into one that
has full-hiding security with no conditions by a generic transformation, similarly
to Abdalla et al. [3]. We leverage such a restriction in the proof of the underlying
scheme.
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In the conversion, we prepare a random bit string kι for each index. Next, we
encrypt all decryption keys and ciphertexts of the underlying scheme with SKE
using K =

⊕n
ι=1 kι as a secret key. Then, we append the random bit string kι to

ciphertexts for index ι. By the construction, if there exist some indices that are
not queried in ciphertext query, an adversary cannot compute K and all cipher-
texts and decryption keys are completely hidden from the adversary. Therefore
we can exclude such a situation and focus on the conditional full-hiding security
model. However, this generic transformation does not work in the unbounded
arity-case, because a set of ciphertexts (or indices) needed for decryption differs
by each decryption key. Then we do not know how to convert an unbounded-
arity scheme secure under the conditional full-hiding security model into one
with full-hiding security.

To solve this problem, we introduce a new construction and new proof tech-
niques. Our solution inherits the spirit of the above technique due to Abdalla
et al. [3], but is not completely generic. The basic scheme is that making use of
pseudorandom functions as mentioned earlier. Then we introduce another pseu-
dorandom function, which takes an index of slots ι as an input and outputs a
random bit string kι, which is assigned for each index. Those bit strings are
appended to corresponding ciphertexts like the above generic transformation,
but we do not encrypt ciphertexts with SKE, or even cannot because it is impos-
sible to decide which indices are needed for decryption in the unbounded case.
Instead we encrypt each decryption key with SKE, using the all bit strings cor-
responding to the index set of decryption key, as a secret key of SKE in some
way. We can see that if there are some indices which are not queried in cipher-
text query (we call such indices as absent indices), then the decryption keys
which contain absent indices will be completely hidden from the adversary. It is
because to obtain the secret keys of SKE, the adversary needs all bit strings kι

(or ciphertexts) for the corresponding indices.
In this construction, however, we cannot use a generic transformation because

ciphertexts are not encrypted with SKE. Instead we consider a series of hybrids
in the same manner as bounded-arity case for the security proof. During the
hybrids, we encounter the problem that there are some decryption keys that
have absent indices, and therefore these decryption keys and ciphertexts might
not satisfy the restriction as explained above. To solve the problem, we leverage
the power of SKE, and it enables us to go the hybrids ahead. More precisely,
for the decryption keys that have absent indices, we use the power of SKE, and
for the other decryption keys, we use the power of the basic scheme. But here,
if we define the secret key of SKE to encrypt a decryption key for a set S as⊕

ι∈S kι, likely to the generic transformation of the bounded case, we realize
that we cannot make a reduction algorithm for SKE. This problem is mainly
due to the flexibleness of decryption keys, that is, a set, which can be associated
with secret keys, is not determined in the scheme. Observe that in the bounded
case, the set is determined as {1, . . . , n}. Consider the case where the adversary
has a decryption key for a set {1, 2, 3} (say K123), one for {1, 2} (say K12) and
a ciphertext for index 3. Then the adversary cannot compute the secret key for
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these decryption keys, i.e., K123 =
⊕3

ι=1 kι and K12 =
⊕2

ι=1 kι. However, the
adversary has k3, which is appended to the ciphertext for index 3, and knows
K123 = K12 ⊕ k3. This correlation becomes a obstacle for the reduction. To
circumvent this obstacle, we introduce another encrypting method. That is, we
iteratively encrypt a decryption key with SKE, making each bit strings kι be a
secret key. Then such a correlation does not appear over every decryption key.

The final difficulty is that the adversary asks for decryption keys and cipher-
texts in adaptive manner. Consequently, the challenger cannot know which type a
queried decryption key will be, one that has absent indices or one does not, at the
point where the decryption key is queried. Then we need to carefully construct
reduction algorithms and evaluate successful probabilities of the reductions.

Concurrent Work

Concurrently and independently to our work, Abdalla et al. [2] have also con-
sidered the problem of constructing function-private MIFE scheme for the multi-
input inner product functionality supporting a polynomial number of encryp-
tion slots under standard assumption. They have first presented a semi-generic
scheme that achieves the full-hiding security only in a selective sense. They have
subsequently overcome the selective restriction in a concrete instantiation of
their semi-generic construction. However, similar to our first MIFE scheme, their
construction can only support an apriori fixed number of encryption slots and a
fixed slot index set for the multi-input inner product functions. Their concrete
adaptively full-hiding MIFE scheme is built in prime order bilinear group setting
under the k-MDDH assumption, which subsumes the k-LIN assumption used
in our construction. When instantiated under the SXDH assumption, while our
construction contains 4n(m2 − 1) more field elements in the master secret key,
it involves 2 and 2n + 1 less group elements in ciphertexts and decryption keys
respectively compared to their scheme. On the other hand, our scheme incurs
2 and 2n + 1 less exponentiations in encryption and key generation procedures
respectively, as well as requires 2n less pairing operations during decryption
compared to theirs. Recall that m and n respectively denote the length of the
vectors and the size of the index set associated with the multi-input inner prod-
uct functionality.

2 Preliminaries

In this section we present various definitions and decisional problems used in
this paper.

2.1 Notations

Let λ ∈ N denotes the security parameter and 1λ be its unary encoding. Let N

and Z denote the set of all positive integers and the set of all integers respectively,
while Fq, for any prime power q ∈ N, denotes the finite field of integers modulo p.
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For s ∈ N and t ∈ N ∪ {0} (with t < s), we let [s] = {1, . . . , s} and [t, s] =
{t, . . . , s}. For any set Z, z

U←− Z represents the process of uniformly sampling
an element z from the set Z, and |Z| signifies the size or cardinality of Z. For a
probabilistic algorithm R, we denote by κ = R(Θ;Φ) the output of R on input
Θ and the content of the random tape being Φ, while κ

R←− R(Θ) represents
the process of sampling κ from the output distribution of R on input Θ with
a uniform random tape. On the other hand, for any deterministic algorithm D,
κ = D(Θ) denotes the output of D on input Θ. We use the abbreviation PPT to
mean probabilistic polynomial-time. We assume that all the algorithms are given
the unary representation 1λ of the security parameter λ as input and will not
write 1λ explicitly as input of the algorithms when it is clear from the context.
For any finite field Fq and m ∈ N, let #»v denotes a vector (v(1), . . . , v(m)) ∈ Z

m

or F
m
q , where v(j) ∈ Z or Fq respectively, for all j ∈ [m]. The all zero vectors

in F
m
q will be denoted by

#»
0 m. For any two vectors #»v , #»w ∈ Z

m or F
m
q , #»v · #»w

stands for the inner product of the vectors #»v and #»w over the integers, i.e.,
#»v · #»w =

∑

j∈[m]

v(j)w(j) ∈ Z. For any multiplicative cyclic group G of order q

and any generator g ∈ G, let u represents the m-dimensional vector of group
elements (gv(1)

, . . . , gv(m)
) ∈ G

m, for some #»v ∈ F
m
q . By 1m

G
we denote the m-

dimensional vector (1G, . . . , 1G) ∈ G
m, where 1G represents the identity element

of the group G. We use A = (aj,t) to represent a matrix with entries aj,t ∈ Fq.
By Aᵀ we will signify the transpose of the matrix A, while by A∗ the matrix
(A−1)ᵀ. Let GL(
, Fq) denotes the set of all 
 × 
 invertible matrices over Fq. A
function negl : N → R

+ is said to be negligible if for every c ∈ N, there exists
T ∈ N such that for all λ ∈ N with λ > T , |negl(λ)| < 1/λc.

2.2 Some Essential Cryptographic Tools

Definition 2.1 (Pseudorandom Functions: PRFs): A pseudorandom func-
tion family F = {Fλ}λ∈N with key space K = {Kλ}λ∈N, domain X = {Xλ}λ∈N,
and range Y = {Yλ}λ∈N is a function family that consists of functions Fλ :
Kλ × Xλ → Yλ. Let Rλ be a set of functions consists of all functions whose
domain and range are Xλ and Yλ respectively. For all PPT adversary A, the
following condition holds;

AdvprfA (λ) =
∣
∣
∣Pr[1

R←− AF (K,·)] − Pr[1 R←− AR(·)]
∣
∣
∣ ≤ negl(λ),

where F ∈ Fλ, K
U←− Kλ, and R

U←− Rλ.

Definition 2.2 (Symmetric Key Encryption: SKE): A symmetric key
encryption consists of a tuple of three PPT algorithms (SKE.KeyGen,
SKE.Encrypt, SKE.Decrypt). SKE.KeyGen takes 1λ as an input and outputs a
secret key K. SKE.Encrypt takes a secret key K and a message m and outputs a
ciphertext c. SKE.Decrypt takes a secret key K and a ciphertext c and outputs
a message m′. Correctness of SKE is that

Pr[m = m′|K R←− SKE.KeyGen,m′ = SKE.Decrypt(K,SKE.Encrypt(K,m))] = 1.
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A semantically secure symmetric key encryption scheme satisfies the following
condition. For all PPT adversary A,

AdvskeA (λ) =
∣
∣
∣Pr[1

R←− AO0(·)] − Pr[1 R←− AO1(·)]
∣
∣
∣ ≤ negl(λ),

where an oracle Oβ∈{0,1} chooses a random secret key K as K
R←− SKE.KeyGen

and when it takes a pair of messages (m0,m1), it returns SKE.Encrypt(K,mβ).

2.3 Bilinear Groups and Dual Pairing Vector Spaces

Definition 2.3 (Bilinear Group): A bilinear group paramsG = (q, G1, G2,
GT , g1, g2, e) is a tuple of a prime integer q ∈ N; cyclic multiplicative groups
G1, G2, GT of order q each with polynomial-time computable group operations;
generators g1 ∈ G1, g2 ∈ G2; and a polynomial-time computable non-degenerate
bilinear map e : G1 × G2 → GT , i.e., e satisfies the following two properties:

– Bilinearity : e(gζ
1 , g

η
2 ) = e(g1, g2)ζη for all ζ, η ∈ Fq.

– Non-degeneracy : e(g1, g2) �= 1GT
, where 1GT

denotes the identity element of
the group GT .

Definition 2.4 (Dual Pairing Vector Spaces: DPVS [34,35]): A dual pair-
ing vector space (DPVS) paramsV = (q, V1, V2, GT , A1, A2, e) by the direct prod-
uct of a bilinear group paramsG = (q, G1, G2, GT , g1, g2, e) is a tuple of a prime
integer q; m-dimensional vector spaces Vχ = G

m
χ over Fq, for χ ∈ [2], under

vector addition ‘�’ and scalar multiplication ‘◦’ defined componentwise; canon-

ical bases Aχ = {aχ,j = (

j−1
︷ ︸︸ ︷
1Gχ

, . . . , 1Gχ
, gχ,

m−j
︷ ︸︸ ︷
1Gχ

, . . . , 1Gχ
)}j∈[m] of Vχ, for χ ∈ [2],

where 1Gχ
is the identity element of the group Gχ, for χ ∈ [2]; and a pair-

ing e : V1 × V2 → GT defined by e(v,w) =
∏

j∈[m]

e(gv(j)

1 , gw(j)

2 ) ∈ GT , for all

v = (gv(1)

1 , . . . , gv(q)

1 ) ∈ V1, w = (gw(1)

2 , . . . , gw(q)

2 ) ∈ V2. Observe that the newly
defined map e is also non-degenerate bilinear, i.e., e satisfies the following two
properties:

– Bilinearity : e(μ ◦ v, η ◦ w) = e(v,w)μη, for μ, η ∈ Fq, v ∈ V1, and w ∈ V2.
– Non-degeneracy : If e(v,w) = 1GT

for all w ∈ V2, then v = 1m
G1

.

We will often omit the symbol ‘◦’ for scalar multiplication and abuse ‘+’ for
the vector addition ‘�’ when it is clear from the context. For any set W =
{w1, . . . ,wm} of vectors in Vχ, for χ ∈ [2], and any vector #»v ∈ F

m
q , let ( #»v )W

represents the vector in Vχ formed by the linear combination of the members
of W with the entries of #»v as the coefficients, i.e., ( #»v )W =

∑

j∈[m]

v(j)wj ∈ Vχ.

Also, for any vector v ∈ Vχ, for χ ∈ [2], and any matrix A = (aj,t) with
entries aj,t ∈ Fq, for j, t ∈ [m], we denote by vA the m-dimensional vector

(g

∑

j∈[m]
aj,1v(j)

χ , . . . , g

∑

j∈[m]
aj,mv(j)

χ ) ∈ Vχ. The DPVS generation algorithm Gdpvs
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Fig. 1. Dual orthogonal basis generator Gob

takes input the unary encoded security parameter 1λ, a dimension value m ∈
N, along with a bilinear group paramsG = (q, G1, G2, GT , g1, g2, e)

R←− Gbpg(),
and outputs a description paramsV = (q, V1, V2, GT , A1, A2, e) of DPVS with
m-dimensional V1 and V2.

We now describe random dual orthogonal basis generator Gob [34,35] in Fig. 1.
This algorithm would be utilized as a sub-routine in our constructions.

2.4 Complexity Assumptions

Assumption 1 (k-Linear: k-LIN [37]): Fix a number χ ∈ [2]. The k-LIN
problem is to guess a bit β̂

U←− {0, 1} given εβ̂ = (paramsG, gξ1
χ , . . . , gξk

χ , gδ1ξ1
χ , . . . ,

gδkξk
χ ,
β̂); where paramsG = (q, G1, G2, GT , g1, g2, e)

R←− Gbpg(); ξ1, . . . , ξk, σ
U←−

Fq\{0}; δ1, . . . , δk
U←− Fq; and 
β̂ = g

∑

j∈[k]
δj

χ or g
σ+

∑

j∈[k]
δj

χ according as β̂ = 0 or
1. The k-LIN assumption states that for any PPT algorithm A, for any security
parameter λ, the advantage of F in deciding the k-LIN problem,

Advk-lin
A (λ) =

∣
∣
∣Pr[1

R←− A(ε0)] − Pr[1 R←− A(ε1)]
∣
∣
∣ ≤ negl(λ),

for some negligible function negl.

We now define a set of decisional problems. We rely on the hardness of these
problems for deriving security of our constructions. We justify the reducibility of
the hardness of these problems to that of the k-LIN problem in the full version
of this paper.
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Definition 2.5 (Problem 1): Problem 1 is to guess a bit β̂
U←− {0, 1} given

�β̂ = (paramsV, gT , {B̂ι, B̂
∗
ι }ι∈[n], {Υι,β̂}ι∈[n]); where paramsG = (q, G1, G2, GT ,

g1, g2, e)
R←− Gbpg(); paramsV = (q, V1, V2, GT , A1, A2, e)

R←− Gdpvs(2m +
2k + 1, paramsG); ν

U←− Fq\{0}; gT = e(g1, g2)ν ;(Bι, B
∗
ι )

R←− Gob(2m +
2k + 1, paramsV, ν); B̂ι = {bι,1, . . . , bι,2m+1, bι,2m+k+1, . . . , bι,2m+2k}, B̂

∗
ι =

{b∗
ι,1, . . . , b

∗
ι,2m+k}, for ι ∈ [n]; α1, . . . , αk

U←− Fq; � U←− Fq\{0}; and Υι,β̂ =
(
#»
0 2m+k, α1, . . . , αk, 0)Bι

or (
#»
0 2m+k, α1, . . . , αk,�)Bι

according as β̂ = 0 or 1.
For any PPT algorithm A, the advantage of A in deciding Problem 1 is defined as

Advp1A (λ) =
∣
∣
∣Pr[1

R←− A(�0)] − Pr[1 R←− A(�1)]
∣
∣
∣ .

Definition 2.6 (Problem 1∗): Problem 1∗ is to guess a bit β̂
U←− {0, 1}

given �β̂ = (paramsV, gT , {B̂ι, B̂
∗
ι }ι∈[n], {Υι,β̂}ι∈[n]); where paramsG =

(q, G1, G2, GT , g1, g2, e)
R←− Gbpg(); paramsV = (q, V1, V2, GT , A1, A2, e)

R←−
Gdpvs(2m+2k+1, paramsG); ν

U←− Fq\{0}; gT = e(g1, g2)ν ; (Bι, B
∗
ι )

R←− Gob(2m+
2k + 1, paramsV, ν), for ι ∈ [n]; B̂ι = {bι,1, . . . , bι,2m+1, bι,2m+k+1, . . . , bι,2m+2k},

B̂
∗
ι = {b∗

ι,1, . . . , b∗
ι,2m+k, b∗

ι,2m+2k+1}, for ι ∈ [n]; α1, . . . , αk
U←− Fq; � U←− Fq\{0};

and Υι,β̂ = (
#»
0 2m, α1, . . . , αk,

#»
0 k, 0)B∗

ι
or (

#»
0 2m, α1, . . . , αk,

#»
0 k,�)B∗

ι
according

as β̂ = 0 or 1, for ι ∈ [n]. For any PPT algorithm A, the advantage of A in
deciding Problem 1∗ is defined as

Advp1∗
A (λ) =

∣
∣
∣Pr[1

R←− A(�0)] − Pr[1 R←− A(�1)]
∣
∣
∣ .

2.5 Notion of Full-Hiding Multi-input Inner Product Functional
Encryption

Definition 2.7 (Multi-input Inner Product Functionality): An
unbounded-arity multi-input inner product function family Fm,B

λ =
{Fm,B

S }, for some m,B ∈ N, consists of the sub-families Fm,B
S of

bounded-arity multi-input inner product functions, where each subfamily
Fm,B

S is parameterized with an index set S ⊆ [t(λ)] for any poly-
nomial t, and contains functions f{ #»y ι}ι∈S

: (Zm)|S| → Z associated
with sets of vectors { #»y ι}ι∈S such that each vector #»y ι ∈ Z

m, where
f{ #»y ι}ι∈S

({ #»x ι}ι∈S) =
∑

ι∈S

#»x ι · #»y ι, for all sets of vectors { #»x ι}ι∈S such that each

vector #»x ι ∈ Z
m and the norm of the inner product | #»x ι · #»y ι| ≤ B for all ι ∈ S.

Without loss of generality, when dealing with MIFE for some bounded-arity
multi-input inner product function family Fm,B

S , we consider the associated
index set S to be [n], and denote the function family as Fm,B

n , where n = |S|.
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Definition 2.8 (Full-Hiding Private Key Bounded-Arity Multi-input
Inner Product Functional Encryption: FH-MIPE): A full-hiding private
key bounded-arity multi-input inner product functional encryption scheme for
an inner product function family Fm,B

n consists of the following polynomial-time
algorithms:

FH-MIPE.Setup(m,n,B): This algorithm takes as input the unary encoded secu-
rity parameter 1λ, along with the length m ∈ N of vectors, the arity n ∈ N of
the multi-input inner product functionality, and the bound B ∈ N on the size
of each component inner products. It generates a master secret key msk and
the corresponding public parameters pp. Observe that we are considering pri-
vate key setting and hence pp is not sufficient to encrypt. It merely includes
some public informations required for decryption, e.g., the group description
in a bilinear-map-based construction.

FH-MIPE.KeyGen(pp,msk, { #»y ι}ι∈[n]): On input the public parameters pp, the
master secret key msk, along with a set of n vectors { #»y ι}ι∈[n] such that
#»y ι ∈ Z

m for all ι ∈ [n], this algorithm outputs a decryption key sk.
FH-MIPE.Encrypt(pp,msk, ι, #»x ι): This algorithm upon input the public param-

eters pp, the master secret key msk, an index ι ∈ [n], and a vector #»x ι ∈ Z
m
p ,

outputs a ciphertext ctι, which includes the index ι in the clear.
FH-MIPE.Decrypt(pp, sk, {ctι}ι∈[n]): On input the public parameters pp, a

decryption key sk, along with a set of n ciphertexts {ctι}ι∈[n], where for
all ι ∈ [n], ctι is a ciphertext prepared for the ιth index, this algorithm either
outputs a value Λ ∈ Z or the distinguished symbol ⊥ indicating failure.

The algorithm FH-MIPE.Decrypt is deterministic while all the others are prob-
abilistic. The algorithms satisfy the following correctness and security require-
ments.

� Correctness: An FH-MIPE scheme is correct if for any security parame-
ter λ ∈ N, any polynomial n in λ, any m,B ∈ N, any two sets of n vectors
{ #»x ι}ι∈[n], { #»y ι}ι∈[n] such that #»x ι,

#»y ι ∈ Z
m with | #»x ι · #»y ι| ≤ B for all ι ∈ [n], we

have

Pr
[
FH-MIPE.Decrypt(pp, sk, {ctι}ι∈[n]) =

∑

ι∈[n]

#»x ι · #»y ι :

(pp,msk) R←− FH-MIPE.Setup(m,n,B);

sk
R←− FH-MIPE.KeyGen(pp,msk, { #»y ι}ι∈[n]);

{ctι
R←− FH-MIPE.Encrypt(pp,msk, ι, #»x ι)}ι∈[n]

] ≥ 1 − negl(λ),

for some negligible function negl.

� Full-Hiding Security: The (indistinguishability-based) full-hiding security
notion for a private key bounded-arity FH-MIPE scheme is formalized through
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the experiment Exptfh-mipeA (β), for random β
U←− {0, 1}, which involves a PPT

adversary A and a PPT challenger B. The experiment is described below:

Setup: B generates (pp,msk) R←− FH-MIPE.Setup(m,n,B) and provides
pp to A.

Query Phase: A is allowed to adaptively make any polynomial number of
queries of the following two types in arbitrary order:

– Decryption key query : In response to the ith decryption key query of
A corresponding to a pair of sets of vectors ({ #»y ι,i,0}ι∈[n], { #»y ι,i,1}ι∈[n])
such that #»y ι,i,0,

#»y ι,i,1 ∈ Z
m for all ι ∈ [n], B forms a decryption key

sk
∗
i

R←− FH-MIPE.KeyGen(pp, msk, { #»y ι,i,β}ι∈[n]) and hands sk
∗
i to A.

– Ciphertext query : To answer a ciphertext query of A for the ιth index
corresponding to a pair of vectors ( #»x ι,tι,0,

#»x ι,tι,1) ∈ (Zm)2, B prepares

a ciphertext ct
∗
ι,tι

R←− FH.MIPE.Encrypt(pp,msk, #»x ι,tι,β) and gives ct
∗
ι,tι

to A.
Let the total number of decryption key query made by A be qkey(≥ 0) and
the total number of ciphertext query made for the ιth index be qct,ι(≥ 0).
The restrictions on the queries of A are that if qct,ι ≥ 1 for all ι ∈ [n], then
for all i ∈ [qkey] and for all (t1, . . . , tn) ∈ [qct,1] × . . . × [qct,n], we must have

∑

ι∈[n]

#»x ι,tι,0 · #»y ι,i,0 =
∑

ι∈[n]

#»x ι,tι,1 · #»y ι,i,1. (2.1)

Guess: A eventually outputs a guess bit β′ ∈ {0, 1}, which is the output of the
experiment.

A private key FH-MIPE scheme is said to be full-hiding if for any PPT adversary
A, for any security parameter λ, the advantage of A in the above experiment,

Advfh-mipeA (λ) =
∣
∣Pr[Exptfh-mipeA (0) = 1] − Pr[Exptfh-mipeA (1) = 1]

∣
∣ ≤ negl(λ),

for some negligible function negl.

Definition 2.9 (Full-Hiding Unbounded Private Key Multi-input
Inner Product Functional Encryption: FH-UMIPE): An unbounded full-
hiding private key multi-input inner product functional encryption scheme for
an inner product function family Fm,B

λ consists of the following polynomial-time
algorithms:

FH-UMIPE.Setup(m,B): This algorithm takes as input the unary encoded secu-
rity parameter 1λ, along with the length m ∈ N of vectors, and the bound
B ∈ N of each inner product values. It generates a master secret key msk and
the corresponding public parameters pp. It publishes pp, while keeps msk to
itself.
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FH-UMIPE.KeyGen(pp,msk, S, { #»y ι}ι∈S): On input the public parameters pp, the
master secret key msk, a set of indices S ⊆ [t(λ)] where t is any polynomial,
along with an |S|-tuple of vectors { #»y ι}ι∈S ∈ (Zm)|S|, this algorithm provides
a decryption key skS including the set S explicitly.

FH-UMIPE.Encrypt(pp,msk, ι, #»x ι): On input the public parameters pp, the mas-
ter secret key msk, an index ι ∈ [2λ], and a vector #»x ι ∈ Z

m, outputs a
ciphertext ctι, which includes the index ι in the clear.

FH-UMIPE.Decrypt(pp, skS , {ctι}ι∈S): On input the public parameters pp, a
decryption key skS associated with S, along with a tuple of |S| ciphertexts
{ctι}ι∈S , where ctι is a ciphertext prepared for the index ι, a decrypter either
outputs a value Λ ∈ N or the distinguished symbol ⊥ indicating failure.

The algorithm FH-UMIPE.Decrypt is deterministic while all the others are prob-
abilistic. The algorithms satisfy the following correctness and security require-
ments.

� Correctness: An FH-UMIPE scheme is correct if for any m,B, λ ∈ N, any set
of indices S ⊆ [t(λ)], where t is any polynomial, any two |S|-tuples of vectors
{ #»x ι}ι∈S , { #»y ι}ι∈S ∈ (Zm)|S| with | #»x ι · #»y ι| ≤ B for all ι ∈ S, we have

Pr
[
FH-UMIPE.Decrypt(pp, skS , {ctι}ι∈S) =

∑

ι∈S

#»x ι · #»y ι :

(pp,msk) R←− FH-UMIPE.Setup(m,B);

skS
R←− FH-UMIPE.KeyGen(pp,msk, S, { #»y ι}ι∈S);

{ctι
R←− FH-UMIPE.Encrypt(pp, ι, #»x ι)}ι∈S

] ≥ 1 − negl(λ)

� Full-Hiding Security: The (indistinguishability-based) full-hiding security
notion for a private key FH-UMIPE scheme is formalized through the experiment
Exptfh-umipeA (β), for random β

U←− {0, 1}, which involves a PPT adversary A and
a PPT challenger B. The experiment is described below:

Setup: B generates (pp,msk) R←− FH-UMIPE.Setup(m,B) and gives pp to A.
Query Phase: A is allowed to adaptively make any polynomial number of

queries of the following two types in arbitrary order:
– Decryption key query : In response to the ith decryption key query of A

corresponding to a set of indices Si ⊆ [t(λ)] for any polynomial t and
a pair of |Si|-tuples of vectors { #»y ι,i,0,

#»y ι,i,1}ι∈Si
∈ ((Zm)|Si|)2, B forms

a decryption key sk
∗
Si,i

R←− FH-UMIPE.KeyGen(pp, msk, Si, { #»y ι,i,β}ι∈Si
)

and hands sk
∗
Si,i

to A.
– Ciphertext query : To answer a ciphertext query of A for the ιth index

corresponding to a pair of vectors ( #»x ι,tι,0,
#»x ι,tι,1) ∈ (Zm)2, B prepares a

ciphertext ct
∗
ι,tι

R←− UFH.MIPE.Encrypt(pp,msk, #»x ι,tι,β) and gives ct
∗
ι,tι

to A.
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Let the total number of decryption key query made by A be qkey(≥ 0) and
the total number of ciphertext query made for the ιth index be qct,ι(≥ 0).
The restrictions on the queries of A are that for each i ∈ [qkey], if qct,ι ≥ 1 for
all ι ∈ Si, then for all {tι}ι∈Si

∈ ∏

ι∈Si

[qct,ι] we must have
∑

ι∈Si

#»x ι,tι,0 · #»y ι,i,0 =
∑

ι∈Si

#»x ι,tι,1 · #»y ι,i,1.

Guess: A eventually outputs a guess bit β′ ∈ {0, 1}, which is the output of the
experiment.

A private key FH-UMIPE scheme is said to be full-hiding if for any PPT adversary
A, for any security parameter λ, the advantage of A in the above experiment,

Advfh-umipeA (λ) =
∣
∣Pr[Exptfh-umipeA (0) = 1] − Pr[Exptfh-umipeA (1) = 1]

∣
∣ ≤ negl(λ),

for some negligible function negl.

3 The Proposed Full-Hiding Bounded Multi-input Inner
Product Functional Encryption Scheme

In this section, we present our FH-MIPE scheme.

3.1 Construction

FH-MIPE.Setup(m,n,B): This algorithm takes as input the unary encoded secu-
rity parameter 1λ, the length m ∈ N of vectors, the arity n ∈ N of the multi-
input inner product functionality, and the bound B ∈ N on each component
inner product. It proceeds as follows:
1. First, it generates a bilinear group paramsG = (q, G1, G2, GT , g1, g2, e)

R←−
Gbpg() with q � nB.

2. Next, it creates paramsV = (q, V1, V2, GT , A1, A2, e)
R←− Gdpvs(2m + 2k +

1, paramsG).
3. Then, it samples random ν

U←− Fq\{0}, and computes gT = e(g1, g2)ν .
4. After that, for ι ∈ [n], it generates (Bι = {bι,1, . . . , bι,2m+2k+1}, B∗

ι =

{b∗
ι,1, . . . , b

∗
ι,2m+2k+1}) R←− Gob(2m + 2k + 1, paramsV, ν) and sets

B̂ι = {bι,1, . . . , bι,m, bι,2m+1, bι,2m+k+1, . . . , bι,2m+2k},

B̂
∗
ι = {b∗

ι,1, . . . , b
∗
ι,m, b∗

ι,2m+1, . . . , b
∗
ι,2m+k}.

5. It publishes the public parameters pp = (paramsV, gT ), while sets the
master secret key msk = {B̂ι, B̂

∗
ι }ι∈[n].

FH-MIPE.KeyGen(pp,msk, { #»y ι}ι∈[n]): On input the public parameters pp, the
master secret key msk, along with a set of n vectors { #»y ι}ι∈[n] such that
#»y ι ∈ F

m
q , this algorithm executes the following steps:
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1. First, it samples random rι, γι,1, . . . , γι,k−1
U←− Fq, for ι ∈ [n], subject to

the restriction that
∑

ι∈[n]

rι = 0.

2. Next, for each ι ∈ [n], it computes

kι =
∑

j∈[m]

y
(j)
ι b∗

ι,j + rιb
∗
ι,2m+1 +

∑

j∈[k−1]

γι,jb
∗
ι,2m+1+j

= ( #»y ι,
#»
0 m, rι, γι,1, . . . , γι,k−1,

#»
0 k, 0)B∗

ι
,

by making use of B̂
∗
ι extracted from msk.

3. It outputs the decryption key sk = {kι}ι∈[n].
FH-MIPE.Encrypt(pp,msk, ι, #»x ι): Taking as input the public parameters pp, the

master secret key msk, an index ι ∈ [n], along with a vector #»x ι ∈ F
m
q , this

algorithm performs the following steps:
1. It selects random ϕι,1, . . . , ϕι,k

U←− Fq, and computes

cι =
∑

j∈[m]

x
(j)
ι bι,j + bι,2m+1 +

∑

j∈[k]

ϕι,jbι,2m+k+j

= ( #»x ι,
#»
0 m, 1,

#»
0 k−1, ϕι,1, . . . , ϕι,k, 0)Bι

,

by utilizing B̂ι extracted from msk.
2. It outputs the ciphertext ctι = (ι, cι).

FH-MIPE.Decrypt(pp, sk, {ctι}ι∈[n]): This algorithm takes as input the public
parameters pp, a decryption key sk = {kι}ι∈[n], and a set of n ciphertexts
{ctι = (ι, cι)}ι∈[n]. It does the following:
1. It first computes LT =

∏

ι∈[n]

e(cι,kι).

2. Then, it attempts to determine a value Λ ∈ Z such that gΛ
T = LT by

performing an exhaustive search over a specified polynomial-size range of
possible values. If it succeeds, then it outputs Λ. Otherwise, it outputs ⊥
indicating failure.

We emphasize that the polynomial running time of our decryption algorithm
is guaranteed by restricting the output to lie within a fixed polynomial-size
range. Note that similar exhaustive search step is used to determine the out-
put in the decryption algorithm of all bilinear-map-based IPE constructions
(both single and multi-input) available in the literature.

Remark 3.1: We would like to mention here that the FH-MIPE scheme
described above can be proven to achieve the full-hiding security only when
the adversary makes at least one ciphertext query for each of the n encryption
indices, i.e., the restriction Eq. (2.1) is applicable. However, using a semantically
secure SKE scheme, one can generically transform any FH-MIPE scheme that
achieves full-hiding security under such restriction to one that achieves the full-
hiding security even when the adversary makes no ciphertext query for some of
the encryption slots. The transformation is rather straightforward and is pre-
sented in the full version of this paper.
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� Correctness: The correctness of the above FH-MIPE construction can be
verified as follows: Observe that for any set of n ciphertexts {ctι = (ι, cι)}ι∈[n],
where ctι = (ι, cι) encrypts some vector #»x ι ∈ F

m
q with respect to the index ι,

for ι ∈ [n], and any decryption key sk = {kι}ι∈[n] corresponding to a set of n
vectors { #»y ι}ι∈[n] such that #»y ι ∈ F

m
q for all ι ∈ [n], we have

LT =
∏

ι∈[n]

e(cι,kι) = g

∑

ι∈[n]

#»x ι· #»y ι

T .

This follows from the expressions of cι,kι, for ι ∈ [n], in conjunction with the fact
that for each ι ∈ [n], Bι and B

∗
ι are dual orthogonal bases. Thus, if

∑

ι∈[n]

#»x ι · #»y ι is

contained within the specified polynomial-size range of possible values that the
decryption algorithm searches, then the decryption algorithm would definitely
output Λ =

∑

ι∈[n]

#»x ι · #»y ι as desired.

3.2 Security

Theorem 3.1 (Security of our FH-MIPE Scheme): Assume that the k-LIN prob-
lem is hard. Then, the FH-MIPE construction described above achieves full-hiding
security under the restriction that the adversary makes at least one cipher-
text query for each encryption index. Additionally, assuming the existance of
a semantically secure SKE scheme, we can generically convert the above FH-
MIPE scheme to one that achieves full-hiding security without any restriction
on the number of ciphertext queries per encryption slot. More formally, for any
PPT adversary A against the full-hiding security of the FH-MIPE construction
obtained by generically converting the above FH-MIPE scheme with the help of
an SKE scheme, there exists a PPT algorithm B1 against the k-LIN problem and
a PPT adversary B2 against the simantic security of SKE such that for any
security parameter λ, we have

Advfh-mipeA (λ) ≤ [4
∑

ι∈[n]

qct,ι + 2qkey]Advk-lin
B1

(λ) + AdvskeB2
(λ).

Proof: Here, we only proof the hull-hiding security of the above FH-MIPE
scheme under the restriction that the adversary makes at least one ciphertext
query per encryption slot. The proof is structured as a hybrid argument over
a series of experiments which differ in the construction of the decryption keys
and/or ciphertexts queried by the adversary A in the full-hiding security model
described in Definition 2.8. In the first hybrid experiment, the queried decryp-
tion keys and ciphertexts are constructed as those in the security experiment
Exptfh-mipeA (0). We then progressively change the ciphertexts and decryption keys
in multiple hybrid steps to those in the security experiment Exptfh-mipeA (1). We
prove that each hybrid is indistinguishable from the previous one, thus proving
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the full-hiding security of the above FH-MIPE construction. Let qkey be the num-
ber of A’s decryption key queries and qct,ι (≥ 1), for ι ∈ [n], be the number of
A’s ciphertext queries for the ιth index. As noted earlier, we consider qct,ι ≥ 1
for all ι ∈ [n]. The hybrid experiments are described below. In these hybrids, a
part framed by a box indicates those terms which were modified in the transition
from the previous game. The sequence of hybrid experiments follow:

� Sequence of Hybrid Experiments

Hyb0: This experiment corresponds to the experiment Exptfh-mipeA (0) described
in Definition 2.8, i.e., the full-hiding security experiment where the random bit
used by the challenger B to generate queried ciphertexts and decryption keys
is β = 0. More precisely, for all ι ∈ [n], tι ∈ [qct,ι], in response to the tthι
ciphertext query of A with respect to index ι corresponding to pair of vectors
( #»x ι,tι,0,

#»x ι,tι,1) ∈ (Fm
q )2, B returns ct

∗
ι,tι

= (ι, c∗
ι,tι

), where

c∗
ι,tι

= ( #»x ι,tι,0,
#»
0 m, 1,

#»
0 k−1, ϕι,tι,1, . . . , ϕι,tι,k, 0)Bι

, (3.1)

and for all i ∈ [qkey], to answer the ith decryption key query of A corresponding to
pair of sets of n vectors ({ #»y ι,i,0}ι∈[n], { #»y ι,i,1}ι∈[n]) such that #»y ι,i,0,

#»y ι,i,1 ∈ F
m
q ,

B generates sk
∗
i = {k∗

ι,i}ι∈[n], where

k∗
ι,i = ( #»y ι,i,0,

#»
0 m, rι,i, γι,i,1, . . . , γι,i,k−1,

#»
0 k, 0)B∗

ι
, for ι ∈ [n]. (3.2)

Here, paramsG = (q, G1, G2, GT , g1, g2, e)
R←− Gbpg(); paramsV = (q, V1, V2, GT ,

A1, A2, e)
R←− Gdpvs(2m + 2k + 1, paramsG); ν

U←− Fq\{0}; (Bι, B
∗
ι )

R←− Gob(2m +

2k+1, paramsV, ν), for ι ∈ [n]; and ϕι,tι,1, . . . , ϕι,tι,k, rι,i, γι,i,1, . . . , γι,i,k−1
U←− Fq

for all ι ∈ [n], tι ∈ [qct,ι], i ∈ [qkey], such that
∑

ι∈[n]

rι,i = 0 for all i ∈ [qkey].

Hyb1 Sequence

Hyb1,ι∗,μι ∗ ,1 (ι∗ ∈ [n], μι∗ ∈ [q
ct,ι∗ ]): Hyb1,0,qct,0,3 coincides with Hyb0. This

experiment is the same as Hyb1,ι∗−1,q
ct,ι∗−1,3, if μι∗ = 1, or Hyb1,ι∗,μι∗ −1,3, if

μι∗ > 1, with the only exception that in response to the μth
ι∗ ciphertext query of

A with respect to index ι∗ corresponding to pair of vectors ( #»x ι∗,μι∗ ,0,
#»x ι∗,μι∗ ,1) ∈

(Fm
q )2, B returns ct

∗
ι∗,μι∗ = (ι∗, c∗

ι∗,μι∗ ), where

c∗
ι∗,μι∗ = ( #»x ι∗,μι∗ ,0,

#»
0 m, 1,

#»
0 k−1, ϕι∗,μι∗ ,1, . . . , ϕι∗,μι∗ ,k, ρι∗,μι∗ )Bι∗ . (3.3)

Here, ρι∗,μι∗
U←− Fq\{0}, and the other variables are formed as in

Hyb1,ι∗−1,q
ct,ι∗−1,3 or Hyb1,ι∗,μι∗ −1,3 according as μι∗ = 1 or μι∗ > 1.

Hyb1,ι∗,μι ∗ ,2 (ι∗ ∈ [n], μι∗ ∈ [q
ct,ι∗ ]): This experiment is analogous to

Hyb1,ι∗,μι∗ ,1 except that to answer the μth
ι∗ ciphertext query of A with respect
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to index ι∗ corresponding to pair of vectors ( #»x ι∗,μι∗ ,0,
#»x ι∗,μι∗ ,1) ∈ (Fm

q )2, B
generates ct

∗
ι∗,μι∗ = (ι∗, c∗

ι∗,μι∗ ), where

c∗
ι∗,μι∗ = ( #»x ι∗,μι∗ ,0,

#»x ι∗,μι∗ ,1 , 1,
#»
0 k−1, ϕι∗,μι∗ ,1, . . . , ϕι∗,μι∗ ,k, ρι∗,μι∗ )Bι∗ . (3.4)

Here, all the variables are created as in Hyb1,ι∗,μι∗ ,1.

Hyb1,ι∗,μι ∗ ,3 (ι∗ ∈ [n], μι∗ ∈ [q
ct,ι∗ ]): This experiment is exactly identical

to Hyb1,ι∗,μι∗ ,2 with the only exception that in response to the μth
ι∗ cipher-

text query of A with respect to the index ι∗ corresponding to pair of vectors
( #»x ι∗,μι∗ ,0,

#»x ι∗,μι∗ ,1) ∈ (Fm
q )2, B returns ct

∗
ι∗,μι∗ = (ι∗, c∗

ι∗,μι∗ ), where

c∗
ι∗,μι∗ = ( #»x ι∗,μι∗ ,0,

#»x ι∗,μι∗ ,1, 1,
#»
0 k−1, ϕι∗,μι∗ ,1, . . . , ϕι∗,μι∗ ,k, 0 )Bι∗ . (3.5)

Here, all the variables are created as in Hyb1,ι∗,μι∗ ,2.

Hyb2 Sequence

Hyb2,υ ,1 (υ ∈ [qkey]): Hyb2,0,3 coincides with Hyb1,n,qct,n,3. This experiment
is analogous to Hyb2,υ−1,3 with the only exception that in response to the
υth decryption key query of A corresponding to the pair of sets of n vectors
({ #»y ι,υ,0}ι∈[n], { #»y ι,υ,1}ι∈[n]) such that #»y ι,υ,0,

#»y ι,υ,1 ∈ F
m
q for all ι ∈ [n], B gives

back sk
∗
υ = {k∗

ι,υ}ι∈[n], where

k∗
ι,υ = ( #»y ι,υ,0,

#»
0 m, rι,υ, γι,υ,1, . . . , γι,υ,k−1,

#»
0 k, ωι,υ )B∗

ι
, for ι ∈ [n]. (3.6)

Here, ωι,υ
U←− Fq\{0} for all ι ∈ [n], such that

∑

ι∈[n]

ωι,υ = 0, and all the other

variables are generated as in Hyb2,υ−1,3.

Hyb2,υ ,2 (υ ∈ [qkey]): This experiment is identical to Hyb2,υ,1 except that in
response to the υth decryption key query of A corresponding to the pair of sets
of n vectors ({ #»y ι,υ,0}ι∈[n], { #»y ι,υ,1}ι∈[n]) such that #»y ι,υ,0,

#»y ι,υ,1 ∈ F
m
q , B returns

sk
∗
υ = {k∗

ι,υ}ι∈[n], where

k∗
ι,υ = (

#»
0 m, #»y ι,υ,1, r̃ι,υ , γι,υ,1, . . . , γι,υ,k−1,

#»
0 k, ωι,υ)B∗

ι
, for ι ∈ [n]. (3.7)

Here, r̃ι,υ
U←− Fq for all ι ∈ [n], such that

∑

ι∈[n]

r̃ι,υ = 0, and all the variables

are generated as in Hyb2,υ,1.

Hyb2,υ ,3 (υ ∈ [qkey]): This experiment is analogous to Hyb2,υ,2 except that to
answer the υth decryption key query of A corresponding to the pair of sets of n
vectors ({ #»y ι,υ,0}ι∈[n], { #»y ι,υ,1}ι∈[n]) such that #»y ι,υ,0,

#»y ι,υ,1 ∈ F
m
q , B gives back

sk
∗
υ = {k∗

ι,υ}ι∈[n], where

k∗
ι,υ = (

#»
0 m, #»y ι,υ,1, r̃ι,υ, γι,υ,1, . . . , γι,υ,k−1,

#»
0 k, 0 )B∗

ι
, for ι ∈ [n]. (3.8)

Here, all the variables are generated as in Hyb2,υ,2.



Full-Hiding (Unbounded) MIPE from the k-LIN Assumption 269

Hyb3: This experiment is identical to Hyb2,qkey,3 with the only exception that for
all ι ∈ [n], tι ∈ [qct,ι], in response to the tthι ciphertext query of A with respect
to index ι corresponding to pair of vectors ( #»x ι,tι,0,

#»x ι,tι,1) ∈ (Fm
q )2, B returns

ct
∗
ι,tι

= (ι, c∗
ι,tι

), where

c∗
ι,tι

= ( #»x ι,tι,1,
#»x ι,tι,0 , 1,

#»
0 k−1, ϕι,tι,1, . . . , ϕι,tι,k, 0)Bι

, (3.9)

and for all i ∈ [qkey], to answer the ith decryption key query of A corresponding to
pair of sets of n vectors ({ #»y ι,i,0}ι∈[n], { #»y ι,i,1}ι∈[n]) such that #»y ι,i,0,

#»y ι,i,1 ∈ F
m
q ,

B generates sk
∗
i = {k∗

ι,i}ι∈[n], where

k∗
ι,i = ( #»y ι,i,1,

#»
0 m , r̃ι,i, γι,i,1, . . . , γι,i,k−1,

#»
0 k, 0)B∗

ι
, for ι ∈ [n]. (3.10)

Here, all the variables are generated as in Hyb2,qkey,3.

Hyb4: This experiment corresponds to the experiment Exptfh-mipeA (1) described
in Definition 2.8, i.e., the full-hiding security experiment where the random bit
used by B to generate the ciphertexts and decryption keys queried by A is β = 1.

� Analysis

Let us now denote by Adv
(h)
A (λ) the advantage of the adversary A, i.e., A’s

probability of outputting 1 in Hybh, for h ∈ {0, {1, ι∗, μι∗ , j}ι∗∈[n],μι∗ ∈[q
ct,ι∗ ],j∈[3],

{2, υ, j}υ∈[qkey],j∈[3], 3, 4}. Then, by the definitions of hybrids, we clearly have
Adv

(0)
A (λ) ≡ Pr[Exptfh-mipeA (0) = 1], Adv(1,0,qct,0,3)

A (λ) ≡ Adv
(0)
A (λ), Adv(2,0,3)

A (λ) ≡
Adv

(1,n,qct,n,3)
A (λ), and Adv

(4)
A (λ) ≡ Pr[Exptfh-mipeA (1) = 1]. Also, observe that

the transition from Hyb3 to Hyb4 is essentially the reverse transition of the
Hyb1 sequence of hybrids with #»x ι∗,μι∗ ,0 and #»x ι∗,μι∗ ,1 interchanged. Therefore,
it follows that

Advfh-mipeA (λ) ≤ 2
∑

ι∗∈[n]

[|Adv(1,ι∗−1,q
ct,ι∗−1,3)

A (λ) − Adv
(1,ι∗,1,1)
A (λ)|

+
∑

μι∗ ∈[2,q
ct,ι∗ ]

|Adv(1,ι∗,μι∗ −1,3)
A (λ) − Adv

(1,ι∗,μι∗ ,1)
A (λ)|

+
∑

μι∗ ∈[q
ct,ι∗ ],j∈[2,3]

|Adv(1,ι∗,μι∗ ,j−1)
A (λ) − Adv

(1,ι∗,μι∗ ,j)
A (λ)|]

+
∑

υ∈[qkey]

[|Adv(2,υ−1,3)
A (λ) − Adv

(2,υ,1)
A (λ)|

+
∑

j∈[2,3]

|Adv(2,υ,j−1)
A (λ) − Adv

(2,υ,j)
A (λ)|]

+ |Adv(2,qkey,3)
A (λ) − Adv

(3)
A (λ)|.

(3.11)
The fact that each term on the RHS of Eq. (3.11) is negligible is formally argued
in a sequence of lemmas presented in the full version of this paper. This completes
the proof of Theorem 3.1. ��
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4 The Proposed Full-Hiding Unbounded Multi-input
Inner Product Functional Encryption Scheme

In this section, we present our FH-UMIPE scheme.

4.1 Construction

For the simplicity, we consider the scheme based on the SXDH(1-Lin) in this
section. However, it is clear that we can instantiate our FH-UMIPE scheme from
k-Lin assumption. We also consider the case where the vector length m is poly-
nomial in λ. Let F1 : {0, 1}λ × {0, 1}λ → F

(2m+3)×(2m+3)
q and F2 : {0, 1}λ ×

{0, 1}λ → {0, 1}λ be pseudorandom functions and (SKE.KeyGen, SKE.Encrypt,
SKE.Decrypt) be a semantically secure secret key encryption scheme whose secret
key space is {0, 1}λ. We require that SKE.KeyGen outputs a randomly chosen
λ-bit string as a secret key K, i.e., K

U←− {0, 1}λ. We abuse the notation such
that for a set of N vectors of M dimensional DPVS D = (d1, . . . ,dN ) and
W ∈ GL(M, Fq), B = DW denotes B = (d1W, . . . ,dNW ).

FH-UMIPE.Setup(m,B): It takes as input the unary encoded security parameter
1λ, the length m ∈ N of vectors, and the bound B ∈ N. It proceeds as follows:
1. First, it generates a bilinear group paramsG = (q, G1, G2, GT , g1, g2, e)

R←−
Gbpg() with q a λ-bit prime.

2. Next, it forms paramsV = (q, V1, V2, GT , A1, A2, e)
R←− Gdpvs(2m + 3,

paramsG), samples ν
U←− Fq\{0}, computes gT = e(g1, g2)ν , gen-

erates (D, D∗) R←− Gob(2m + 3, paramsV, ν), and samples PRF keys
K1,K2

U←− {0, 1}λ. Then it sets D̂ = (d1, . . . ,dm,d2m+1,d2m+2), D̂∗ =
(d∗

1, . . . ,d
∗
m,d∗

2m+1).
3. It publishes the public parameters pp = (paramsV, gT ), while keeps the

master secret key msk = (K1,K2, D̂, D̂∗).
FH-UMIPE.KeyGen(pp,msk, S, { #»y ι}ι∈S): On input the public parameters pp, the

master secret key msk, a set of indices S ⊆ [t(λ)] for any polynomial t, along
with a |S|-tuple of vectors { #»y ι}ι∈S ∈ (Zm)|S|, this algorithm executes the
following steps:
1. First, it creates random dual orthogonal bases for the index ι ∈ S as

follows;

Wι = F1(K1, ι), B
∗
ι = D

∗W ∗
ι .

If Wι for some ι ∈ S is not a regular matrix, then it outputs ⊥ and halts.
2. Next, for each ι ∈ S, it computes decryption keys similarly to the bounded

case;

{rι}ι∈S
U←− Fq s.t.

∑

ι∈S

rι = 0, kι = ( #»y ι,
#»
0 m, rι,

#»
0 2)B∗

ι
.
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3. Let sj be the jth element of S in ascending order. Then it iteratively
encrypts the decryption keys by symmetric key encryption as

C1 =SKE.Encrypt(F2(K2, s1), {kι}ι∈S),
C2 =SKE.Encrypt(F2(K2, s2), C1),

...
C|S| =SKE.Encrypt(F2(K2, s|S|), C|S|−1),

and outputs skS = (C|S|, S) as a decryption key for FH-UMIPE.
FH-UMIPE.Encrypt(pp,msk, ι, #»x ι): Taking as input the public parameters pp,

the master secret key msk, an index ι ∈ [2λ], along with a vector #»x ι ∈ Z
m,

this algorithm performs the following steps:
1. First, it creates random dual orthogonal bases for the index ι as follows;

Wι = F1(K1, ι), Bι = DWι.

If Wι is not a regular matrix, then it outputs ⊥ and halts.
2. Otherwise, it selects random κι

U←− Fq, computes

cι = ( #»x ι,
#»
0 m, 1, κι, 0)Bι

, kι = F2(K2, ι),

and outputs the ciphertext ctι = (cι, kι, ι).
FH-UMIPE.Decrypt(pp, skS , {ctι}ι∈S): A decrypter takes as input the public

parameters pp, a decryption key skS for a set S, and a tuple of |S| ciphertexts
{ctι}ι∈S . It does the following:
1. It first decrypts decryption keys as follows;

C ′
|S|−1 =SKE.Decrypt(ks|S| , C|S|),

...
C ′

1 =SKE.Decrypt(ks2 , C
′
2),

{k′
ι}ι∈S =SKE.Decrypt(ks1 , C

′
1).

2. Next, it computes LT =
∏

ι∈S

e(cι,k
′
ι).

3. Then, it attempts to determine a value Λ ∈ N such that gΛ
T = LT by

performing an exhaustive search over a specified polynomial-size range of
possible values. If it succeeds, then it outputs Λ. Otherwise, it outputs ⊥
indicating failure.

� Correctness: The correctness of our unbounded scheme is presented in the
full version of this paper.
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4.2 Security

Theorem 4.1 (Security of Our FH-UMIPE Scheme): Assume that F1 and F2

are pseudorandom functions, SKE is semantically secure symmetric key encryp-
tion, and SXDH problem is hard, then our FH-UMIPE construction achieves full-
hiding security. More formally, for any PPT adversary A against the full-hiding
security of the proposed FH-UMIPE construction, there exists a PPT algorithm
B1 against the SXDH problem, B2 against the symmetric key encryption scheme,
and B3 and B4 against the pseudorandom functions such that for any security
parameter λ, we have

Advfh-umipeA (λ) ≤ [4
∑

ι∈[2λ]

qct,ι + 2qkey]AdvsxdhB1
(λ) + nmaxqkeyAdv

ske

B2
(λ)

+ 2Advprf1B3
(λ) + 2Advprf2B4

(λ),

where qct,ι is the total number of ciphertext query for the index ι, qkey is the total
number of decryption key query, and nmax is the maximum index of a decryption
key that A queries, i.e., Si ⊆ [nmax] for all i ∈ [qsk].

Proof: The proof of Theorem4.1 is structured as a hybrid argument over a
series of experiments which differ in the construction of the decryption keys
and/or ciphertexts queried by the adversary A in the full-hiding security model
described in Definition 2.9. The hybrid transition is proceeded in the similar way
to the bounded scheme, that is, first we gradually change the ciphertext form
from ( #»x ι,0,

#»
0 m, 1, κι, 0)Bι

to ( #»x ι,0,
#»x ι,1, 1, κι, 0)Bι

. Next, we change the decryp-
tion key form from ( #»y ι,0,

#»
0 m, rι,

#»
0 2)B∗

ι
to (

#»
0 m, #»y ι,1, rι,

#»
0 2)B∗

ι
. Then, switch the

first m coefficients with the second m coefficients and restore the ciphertexts.
The proof of the ciphertexts part is almost same as that of the bounded scheme,
while the decryption key part is more complicated than the bounded one. The
hybrid experiments are described below. In these hybrids, a part framed by a box
indicates those terms which were modified in the transition from the previous
game. The sequence of hybrid experiments follow:

� Sequence of Hybrid Experiments

Hyb0: We denote the jth element of Si in ascending order by si,j . This experi-
ment is the same as Exptfh-umipeA (0) defined in Definition 2.9. That is, when the
challenger receives ( #»x ι,tι,0,

#»x ι,tι,1) from A as a tthι ciphertext query for index ι,
it returns ct

∗
ι,tι

= (c∗
ι,tι

, kι, ι), where

Wι = F1(K1, ι), Bι = DWι,

κι,tι

U←− Fq, c∗
ι,tι

= ( #»x ι,tι,0,
#»
0 m, 1, κι,tι

, 0)Bι
, kι = F2(K2, ι).



Full-Hiding (Unbounded) MIPE from the k-LIN Assumption 273

On the other hand, when the challenger receives (Si, { #»y ι,i,0,
#»y ι,i,1}ι∈Si

) for ith

decryption key query, it returns sk
∗
Si,i

= (C|Si|, Si), where

rι,i
U←− Fq s.t.

∑

ι∈Si

rι,i = 0, Wι = F1(K1, ι), B
∗
ι = D

∗W ∗
ι ,

k∗
ι,i = ( #»y ι,i,0,

#»
0 m, rι,i,

#»
0 2)B∗

ι
for ι ∈ Si,

C|Si| = SKE.Encrypt(F2(K2, si,|Si|), . . . , SKE.Encrypt(F2(K2, si,1), {k∗
ι,i}ι∈Si) . . .).

Hyb1: In this hybrids, we replace pseudorandom functions Fi(Ki, ·) for i ∈ {1, 2}
with random functions Ri(·) U←− Ri,λ, where Ri,λ is a set of functions consists of
all functions that have the same domain and range as Fi. Observe that all dual
orthogonal bases used in the ciphertexts and decryption keys queried by A are
completely independent and random ones by each index after Hyb1.

Hyb2: The all replies for the ciphertext queries are changed as follows;

Wι = R1(ι), Bι = DWι,

κι,tι

U←− Fq, c∗
ι,tι

= ( #»x ι,tι,0,
#»x ι,tι,1 , 1, κι,tι

, 0)Bι
, kι = R2(ι),

and returns ct
∗
ι,tι

= (c∗
ι,tι

, kι, ι).

Hyb3 Sequence

Hyb3,υ (υ ∈ [qkey]): Hyb3,0 is the same as Hyb2. The challenger replies to the
first υ decryption key queries, i.e., the ith decryption key query for all i ≤ υ, as

rι,i
U←− Fq s.t.

∑

ι∈Si

rι,i = 0, Wι = R1(ι), B
∗
ι = D

∗W ∗
ι ,

k∗
ι,i = (

#»
0 m, #»y ι,i,1 , rι,i,

#»
0 2)B∗

ι
for ι ∈ Si,

C|Si| = SKE.Encrypt(R2(si,|Si|), . . . ,SKE.Encrypt(R2(si,1), {k∗
ι,i}ι∈Si

) . . .),

and returns sk
∗
Si,i

= (C|Si|, Si). For the other decryption key queries, the chal-
lenger replies the same way as Hyb2.

Hyb4: In this hybrid, we switch the coefficients of 1 to mth vector with those of
m + 1 to 2mth vector in both decryption key side and ciphertext side. Namely,
the replies for the ciphertext queries are ct

∗
ι,tι

= (c∗
ι,tι

, kι, ι), where

Wι = R1(ι), Bι = DWι,

κι,tι

U←− Fq, c∗
ι,tι

= ( #»x ι,tι,1,
#»x ι,tι,0 , 1, κι,tι

, 0)Bι
, kι = R2(ι),

and the replies for the decryption key queries are sk
∗
Si,i

= (C|Si|, Si), where

rι,i
U←− Fq s.t.

∑

ι∈Si

rι,i = 0, Wι = R1(ι), B
∗
ι = D

∗W ∗
ι ,

k∗
ι,i = ( #»y ι,i,1,

#»
0 m , rι,i,

#»
0 2)B∗

ι
for ι ∈ Si,

C|Si| = SKE.Encrypt(R2(si,|Si|), . . . ,SKE.Encrypt(R2(si,1), {k∗
ι,i}ι∈Si

) . . .).
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Hyb5: This hybrid is the same as Exptfh-umipeA (1) defined in Definition 2.9. That
is, the replies for the ciphertext queries are ct

∗
ι,tι

= (c∗
ι,tι

, kι, ι), where

Wι = F1(K1, ι) , Bι = DWι,

κι,tι

U←− Fq, c∗
ι,tι

= ( #»x ι,tι,1,
#»
0 m , 1, κι,tι

, 0)Bι
, kι = F2(K2, ι) ,

and the replies for the decryption key queries are sk
∗
Si,i

= (C|Si|, Si), where

rι,i
U←− Fq s.t.

∑

ι∈Si

rι,i = 0, Wι = F1(K1, ι) , B
∗
ι = D

∗W ∗
ι ,

k∗
ι,i = ( #»y ι,i,1,

#»
0 m, rι,i,

#»
0 2)B∗

ι
for ι ∈ Si,

C|Si| = SKE.Encrypt( F2(K2, si,|Si|) , . . . , SKE.Encrypt( F2(K2, si,1) , {k∗
ι,i}ι∈Si) . . .).

� Analysis

Let us now denote by Adv
(h)
A (λ) the advantage of the adversary A, i.e., A’s

probability of outputting 1 in Hybh. Then, we can see that

Advfh-umipeA (λ) ≤ |Adv(0)A (λ) − Adv
(1)
A (λ)| + |Adv(1)A (λ) − Adv

(2)
A (λ)|

+
qkey∑

υ=1

|Adv(3,υ−1)
A (λ) − Adv

(3,υ)
A (λ)|

+ |Adv(3,qkey)
A (λ) − Adv

(4)
A (λ)| + |Adv(4)A (λ) − Adv

(5)
A (λ)|.

(4.1)

The fact that each term on the RHS of Eq. (4.1) is negligible is formally argued
in a sequence of lemmas in the full version of this paper. This completes the
proof of Theorem 4.1. ��
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Abstract. In a recent result, Dachman-Soled et al. (TCC ’15) proposed
a new notion called locally decodable and updatable non-malleable codes,
which informally, provides the security guarantees of a non-malleable
code while also allowing for efficient random access. They also considered
locally decodable and updatable non-malleable codes that are leakage-
resilient, allowing for adversaries who continually leak information in
addition to tampering.

The bounded retrieval model (BRM) (cf. Alwen et al. (CRYPTO ’09)
and Alwen et al. (EUROCRYPT ’10)) has been studied extensively in
the setting of leakage resilience for cryptographic primitives. This threat
model assumes that an attacker can learn information about the secret
key, subject only to the constraint that the overall amount of leaked
information is upper bounded by some value. The goal is then to con-
struct cryptosystems whose secret key length grows with the amount of
leakage, but whose runtime (assuming random access to the secret key)
is independent of the leakage amount.

In this work, we combine the above two notions and construct local
non-malleable codes in the split-state model, that are secure against
bounded retrieval adversaries. Specifically, given leakage parameter �, we
show how to construct an efficient, 3-split-state, locally decodable and
updatable code (with CRS) that is secure against one-time leakage of
any polynomial time, 3-split-state leakage function whose output length
is at most �, and one-time tampering via any polynomial-time 3-split-
state tampering function. The locality we achieve is polylogarithmic in
the security parameter.

1 Introduction

Non-malleable codes were introduced by Dziembowski et al. [39] as a relaxation
of error-correcting codes, and are useful in settings where privacy—but not nec-
essarily correctness—is desired. Informally, a coding scheme is non-malleable
against a tampering function if by tampering with the codeword, the function
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either keeps the underlying message unchanged or changes it to an unrelated
message. The main application of non-malleable codes proposed in the liter-
ature is achieving security against leakage and tampering attacks on memory
(so-called physical attacks or hardware attacks) [57,58], although non-malleable
codes have also found applications in other areas of cryptography [25,26,46] and
theoretical computer science [21].

In this work, we go beyond considering non-malleable codes in the context
of physical and/or hardware attacks and consider the problem of providing data
assurance in a network environment. Our main focus is on providing privacy and
integrity for large amounts of dynamic data (such as a large medical database
with many authorized users), while allowing for efficient, random access to the
data. We are interested in settings where all persistent data is assumed vulner-
able to attack and there is no portion of memory that is assumed to be fully
protected. We protect against bounded-retrieval adversaries, who may “leak”
(i.e. download) large amounts of data, as long as the total amount leaked is
bounded a priori.

In the following, we provide context for the contribution of this work by
discussing (1) the limitations of standard non-malleable codes, (2) the recent
notion of locally decodable and updatable non-malleable codes (LDUNMC) [29]
(for settings where large amounts of dynamic data must be protected) and (3)
the reason previous constructions of LDUNMC fall short in our setting.

Drawbacks of standard non-malleable codes. Standard non-malleable codes are
useful for protecting small amounts of secret data stored on a device (e.g. cryp-
tographic secret key) but unfortunately are not suitable in settings where, say,
an entire database must be protected. This is due to the fact that non-malleable
codes do not allow for random access: Once the database is encoded via a non-
malleable code, in order to access just a single location, the entire database must
first be decoded, requiring a linear scan over the database. Similarly, to update
a single location, the entire database must be decoded, updated and re-encoded.

Locally decodable and updatable non-malleable codes (LDUNMC). In a recent
result, [29] proposed a new notion called LDUNMC, which informally speaking,
provides the security guarantees of a non-malleable code while also allowing for
efficient random access (i.e. allowing to decode/update a particular position i of
the underlying message via DECC(i)/UPDATEC(i)). In more detail, we consider
a database D = D1, . . . , Dn consisting of n blocks, and an encoding algorithm
ENC(D) that outputs a codeword C = C1, . . . , Cn̂ consisting of n̂ blocks. As
introduced by Katz and Trevisan [54], local decodability means that in order
to retrieve a single block of the underlying database, one does not need to read
through the whole codeword but rather, one can access just a few locations
of the codeword. In 2014, Chandran et al. [17] introduced the notion of local
updatability, which means that in order to update (or “re-encode”) a single
block of the underlying database, one only needs to update a few blocks of the
codeword.
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As observed by [29], achieving these locality properties requires a modifica-
tion of the definition of non-malleability: Suppose a tampering function f only
modifies one block of the codeword, then it is likely that the output of the
decoding algorithm, DEC, remains unchanged in most locations. (Recall DEC
gets as input an index i ∈ [n] and will only access a few blocks of the codeword
to recover the i-th block of the database, so it may not detect the modifica-
tion.) In this case, the (overall) decoding of the tampered codeword f(C) (i.e.
(DECf(C)(1), . . . ,DECf(C)(n))) can be highly related to the original message,
which intuitively means it is highly malleable.

To handle this, [29] consider a more fine-grained experiment. They require
that for any tampering function f (within some class), there exists a simulator
that computes a vector of decoded messages D∗ and a set of indices I ⊆ [n]. Here
I denotes the coordinates of the underlying messages that have been tampered
with. If I = [n], then the simulator thinks that the decoded messages are D∗,
which should be unrelated to the original messages. On the other hand, if I � [n],
the simulator thinks that all the indices not in I remain unchanged, while those
in I become ⊥. More formally, the output of the experiment is as follows:

1. If I = [n] then output the simulator’s output D∗, else
2. If I �= [n] then for all i ∈ I, set D′(i) = ⊥ and for i /∈ I, set D′(i) = D(i),

where D(i) is the ith block of current underlying message D. Output D′.

This means the tampering function can do one of the following:

1. It destroys block(s) of the underlying messages—i.e. causes DEC to output ⊥
on those blocks—while keeping the other blocks unchanged, OR

2. If it modifies a block of the underlying message to a valid encoding, then
it must have modified all blocks to encodings of unrelated messages, thus
destroying the original message.

It turns out, as shown by [29], that the above is sufficient for achieving
tamper-resilience for RAM computations. Specifically, the above (together with
an ORAM scheme) yields a compiler for any RAM program with the guarantee
that any adversary who gets input/output access to the compiled RAM program
Π running on compiled database D and can additionally apply tampering func-
tions f ∈ F to the database D adaptively throughout the computation, learns
no more than what can be learned given only input/output access to Π running
on database D. Dachman-Soled et al. in [29] considered LDUNMC that are also
leakage-resilient, thus allowing for adversaries who continually leak information
about D in addition to tampering.

Drawbacks of LDUNMC. The final construction in [29] achieved a leakage
resilient, LDUNMC in the split-state and relative leakage model. In the split-
state model, the codeword C is divided into sections called split-states and it
is assumed that adversarial tampering and leakage on each section is indepen-
dent. In the relative leakage model, the amount of information the adversary can
leak is at most � bits, and all parameters of the system (including complexity of
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DEC/UPDATE) scale with �. Thus, a main drawback of the construction of [29]
is that, since their result is in the relative leakage model, the efficiency of the
DEC/UPDATE procedures scales with the amount of leakage � allowed from one
of the two split-states, which gives rise to the following dilemma: If the amount
of leakage, �, is allowed to be large, e.g. � := Ω(n) · log |Σ̂| bits, where log |Σ̂| is
the number of bits in each block of the codeword, then locality is compromised,
since DEC/UPDATE must now have complexity that scales with Ω(n) · log |Σ̂|
and thus will need to read/write to at least Ω(n) data blocks. On the other
hand, if it is required that DEC/UPDATE have locality at most polylog(n), then
it means that leakage of at most � bits, where � := c · polylog(n) · log |Σ̂|, for
some c < 1, can be tolerated. In this work—motivated by a network setting,
in which the adversary typically corrupts a server and modifies memory while
downloading large amounts of data—we allow the adversary’s leakage budget
to be much larger than the complexity of DEC/UPDATE. We do assume that
if an adversary surpasses its budget, its behavior will be detected and halted
by network security monitors. Thus, an adversary cannot simply download the
entire encoded database (in which case security would be impossible to achieve)
without being caught.

1.1 Our Contributions and Results

Our first contribution is the conceptual contribution of introducing the notion
of locally decodable and updatable non-malleable codes in the BRM, which we
believe to be well-motivated, for the reasons discussed above.

We then construct LDUNMC in the split-state model, that are secure against
bounded retrieval adversaries. The bounded retrieval model (BRM) (cf. [9,10])
has been studied extensively in the setting of leakage resilience for crypto-
graphic primitives (e.g. public key encryption, digital signatures and identifi-
cation schemes). This threat model assumes that an attacker can repeatedly
and adaptively learn information about the secret key, subject only to the con-
straint that the overall amount of leaked information is upper bounded by some
value. Cryptosystems in the BRM have the property that while the secret key
length grows with the amount of leakage, the runtime (assuming random access
to the secret key) is independent of the leakage amount. Thus, the parameters
of interest in a bounded retrieval model cryptosystem are the following: (1) The
leakage parameter �, which gives the upper bound on the overall amount of leak-
age; (2) The locality t of the scheme which determines the number of locations
of the secret key that must be accessed to perform an operation (e.g. decryption
or signing); and (3) The relative leakage α := �/|sk|, which gives the ratio of
the amount of leakage to secret key length. Since we consider bounded retrieval
adversaries in the context of locally decodable and updatable codes, our threat
model differs from the standard BRM threat model in the following ways:

– We consider the protection of arbitrary data (not limited to the secret key of
a cryptosystem).
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– We allow adversarial tampering in addition to bounded leakage and do not
assume that any portion of memory is tamper-proof1.

– We assume that both leakage and tampering are split-state, i.e. that the
leakage/tampering functions are applied independently to different sections
of memory.

In our setting, we retain the same parameters of interest �, t, α as above, with
the only differences that each split-state must be able to tolerate at least � bits
of leakage and the overall relative leakage, α is taken to be the minimum relative
leakage over all split-states, where the relative leakage for each split-state is
computed as the maximum amount of allowed leakage for that split-state (which
may be greater than �) divided by the size of that split-state.

We additionally restrict ourselves to a one-time tampering and leakage model
(we discuss below the difficulties of extending to a fully continuous setting),
where the experiment proceeds as follows: The adversary interacts with a chal-
lenger in an arbitrary polynomial number of rounds and may adaptively choose
two rounds i, j where i ≤ j, specifying a single leakage function g ∈ G in round i
and a single tampering function f ∈ F in round j. The adversary gets to observe
the leakage in round i before specifying tampering function f in round j. At the
end of the experiment, the entire decoding of the (corrupted) codeword in each
round is released in addition to the leakage obtained in each round. Our security
requirement follows the ideal/real paradigm and requires that a simulator can
simulate the output of the leakage as well as the decoding of each position in
each round, without knowing the underlying encoded message. More precisely, as
in the definition of [29], in each round the simulator outputs a vector of decoded
data D∗ along with a set of indices I ⊆ [n]. Here I denotes the coordinates
of the underlying messages that have been tampered with. If I = [n], then the
simulator must output a complete vector of decoded messages D∗. On the other
hand, if I � [n], the simulator gets to output “same” for all messages not in I,
while those in I become ⊥. When the output of the real and ideal experiments
are compared, positions designated as “same” are replaced with either the orig-
inal data in that position or with the most recent value placed in that position
by an update instruction. We next state our main result:

Theorem 1 (Informal). Under standard assumptions we have that for security
parameter λ ∈ N and � := �(λ), there exists an efficient, 3-split-state, LDUNMC
(with CRS) in the bounded retrieval model that is secure against one-time tam-
pering and leakage for tampering class F and leakage class G, where

– F consists of all efficient, 3-split-state functions f = (f1, f2, f3).
– G consists of all efficient, 3-split-state functions g = (g1, g2, g3), such that

g1, g2, g3 each output at most � bits.

The scheme has locality t := t(λ) ∈ polylog(λ) and relative leakage α := α(λ) ∈
1
8 − o(1).

1 [37] also allowed for tampering in the BRM setting, but required portions of memory
to be completely tamper-proof.
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In fact, the number of bits leaked from the third split-state can be much
larger than � and, in particular, will depend on the total size of the data being
stored. The above theorem guarantees that, regardless of the size of the database,
the relative leakage (for all three split-states) will be at least 1

8 − o(1).
The above theorem can be instantiated assuming the existence of collision-

resistant hash functions with subexponential security, NIZK with simulation
sound extractability and identity-based hash proof systems, which can be real-
ized from a variety of assumptions including standard assumptions in bilinear
groups and lattices.

To obtain our result of a RAM-compiler against 3-split-state adversaries in
the BRM, we note that using the same construction and proof of Theorem
4.6 in [29], we obtain a tamper and leakage resilient compiler TLR-RAM =
(CompMem,CompNext) that is one-time tamper and leakage resilient w.r.t. func-
tion families F ,G above, given an ORAM compiler that is access-pattern hiding
and a one-time non-malleable and leakage resilient LDUNMC w.r.t. function fam-
ilies F ,G as above. Moreover, the locality of the final compiled program, is t · t′,
where t is the locality of the underlying LDUNMC and t′ is the locality of the
underlying ORAM.

Applications. Our encoding scheme can be used to protect data privacy and
integrity while a RAM program is being computed on it in situations where:
(1) the data is stored across at least 3 servers, (2) the attacker can corrupt all
servers and launch a fully coordinated attack, (3) the attacker cannot down-
load too much data from any of the servers at once. (3) can be justified either
by assuming that the attacker has limited storage capacity or that an attacker
who tries to download too much data will be detected by network security mon-
itors. The advantage of using our approach of LDUNMC versus simply using
encryption to achieve privacy and a Merkle tree to achieve integrity is that our
approach allows tampering and leakage on all persistent data, whereas the for-
mer approach requires certain parts of memory (e.g. the parts storing the secret
keys for encryption/decryption and the root of the Merkle tree) to be leak and
tamper-free.

Difficulty of achieving continual tampering and leakage in the BRM setting. In
order to achieve continual security in the BRM model an attacker must be pre-
vented from running an attack in which it internally simulates the decode algo-
rithm by leaking the required information from the appropriate split-state each
time a read request is issued (this would trivially break privacy). The overall
leakage of such an attack is bounded—and so it will always qualify as a BRM
attack—since the local decodability property guarantees that only a small num-
ber of locations will be read. Indeed, our construction is vulnerable to such an
attack: We store the first part of the secret key in one split-state, the second
part of the secret key in a second split-state and ciphertexts in the third split-
state. An attacker can first leak a target ciphertext from the third split-state,
learn the locations required for decryption from the first split-state, leak those
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locations, then learn the locations required for decryption from the second split-
state and leak those locations. It is unlikely (over the coins of update) that
during this three-round attack any of the relevant locations in the first and sec-
ond split-states are overwritten by the updater, since the few locations accessed
by an update are randomly distributed. Thus, after three rounds of leakage the
attacker has sufficient information to decrypt the target ciphertext. We leave
open the question of whether such an attack can be generalized to show an
impossibility result for continual LDUNMC in the BRM.

1.2 Techniques

Our construction proceeds in three stages:

Leakage Only (2-split-state construction). Here the attacker submits a single
split-state leakage function g := (g1, g2) and is not allowed to tamper. To achieve
security, we encrypt the database block-by-block using a CPA-secure public key
encryption (PKE) scheme in the BRM model. The codeword then has two split-
states: The first contains the secret key and the second contains the ciphertexts.
The locality and relative leakage of the scheme will be the same as that of the
underlying encryption scheme. Even though the leakage is on both the secret
key and ciphertexts, regular PKE in the BRM is sufficient since the leakage
g := (g1, g2) on both split-states is submitted simultaneously.

Leakage and Partial Tampering (2-split-state construction). Here the attacker
submits a split-state leakage function g := (g1, g2) followed by a split-state tam-
pering function f = (f1, f2), where f1 is required to be the identity function. In
terms of the previous construction, this means that the attacker gets to tamper
with the ciphertexts only, but not the secret key. A first attempt to extend the
previous construction is to use a CCA-secure PKE scheme in the BRM instead
of a CPA-secure scheme. This will allow the simulator to use the CCA oracle to
decrypt any encrypted blocks of the database that have been modified via tam-
pering, thus ruling out mauling attacks on any individual block. Unfortunately, it
does not prevent mauling attacks across blocks. Namely, some encrypted blocks
can be replaced with fresh valid encryptions while others remain the same, lead-
ing to a valid, decoded database which is different, but correlated to the original
data. To prevent this, we tie together the encrypted blocks in the database using
a Merkle tree and store the Merkle tree in the second split-state along with the
ciphertexts. During decode and update, we check that the relevant ciphertext
block is consistent with the Merkle root. Unfortunately, this still does not work
since the tampering function f2 can be used to update the Merkle tree and
root to be consistent with the modified ciphertexts at the leaves. Therefore, we
additionally store a secret key for a signature scheme in the BRM model in the
first split-state and include a signature on the root of the Merkle tree in the
second split-state, which is verified during each decode and update. Note, how-
ever, that existentially unforgeable signatures are impossible in the BRM model,
since an attacker can always use its leakage query g1 to learn a signature on a
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new message. Nevertheless, so-called entropic signatures are possible [10,11]2.
Entropic signatures guarantee unforgeability for message distributions that have
high entropy, even conditioned on the adversary’s view after receiving the output
of g1 but before receiving the output of g2. Thus, to argue non-malleability we
show that either (1) The ciphertexts contained in the second split-state are all
low entropy, conditioned on the adversary’s view after receiving the output of g1
but before receiving the output of g2. In this case, it means that I = [n], i.e. all
the ciphertexts have been modified and so the decryption across all blocks will
lead to an unrelated database or (2) At least one ciphertext has high entropy,
conditioned on the adversary’s view after receiving the output of g1 but before
receiving the output of g2. In this case, we argue that the root of the Merkle tree
has high entropy and so an adversary who produces a forged signature violates
the entropic security of the BRM signature scheme. We refer reader to the full
version of the paper [27] for further details.

Full Leakage and Tampering (3-split-state construction). When trying to extend
the above construction to allow tampering on the secret (and public) keys, it
becomes clear that the entire secret key cannot be stored in a single split-state
due to the following trivial attack: The adversary leaks a single ciphertext from
the second split-state using leakage function g2 and subsequently tampers with
the first split-state using a tampering function f1 such that f1 does nothing if
the leaked ciphertext decrypts to 0, and otherwise erases the entire contents
of the first split-state. Such an attack clearly breaks non-malleability, since the
entire codeword will decode properly if the leaked block contained a 0, and
decode to ⊥ otherwise. To overcome this attack, we introduce a third split-state:
We store the secret keys across the first two split-states and store the public
keys and ciphertexts in the third. We also replace the CCA-secure public key
encryption scheme in the BRM with a new primitive we introduce called CCA
secure SS-BRM public key encryption, which may be of independent interest
(See Subsect. 2.2 for the definition and the full version of the paper [27] for a
construction and security proof). Given leakage parameter �, such an encryption
scheme stores the secret key in a split-state and guarantees CCA security even
under � bits of split-state leakage both before and after seeing the challenge
ciphertext. The final construction is as follows: The first split-state stores the
first part of secret key of the SS-BRM PKE scheme, the secret key of the BRM
signature scheme, and a Merkle tree of the former two keys with root R1. The
second split-state stores the second part of the secret key of the SS-BRM PKE
scheme, and a Merkle tree of the key with root R2. The third split-state contains
the ciphertexts, Merkle tree and signature on the root as in the previous con-
struction and, in addition, stores a simulation-sound NIZK proof of knowledge
2 The constructions cited above are in the random oracle model. However, as discussed

in the full version of the paper [27], the primitive we require is slightly weaker than
regular entropic signatures in the BRM and can be constructed in a straightforward
manner in the standard model, without use of random oracles. For conceptual sim-
plicity we present our constructions and state our theorems in terms of the existence
of entropic signatures in the BRM.
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of the pre-images of R1 and R2, with local verifiability (this is the reason a CRS
is necessary). The property of local verifiability is necessary to ensure locality
of decode/update and is achieved by using a probabilistically checkable proof
(PCP) on top of a regular NIZK. Note that while computation of the PCP is
expensive, this need only be done a single time, during the encode procedure,
but the proof remains static during decode/update. Decode/update proceed as
in the previous construction and additionally, during each decode/update, the
proof is verified using the local verifier. Each time a location is accessed in the
first or second split-state during decode/update, the corresponding locations in
the Merkle tree of the first and second split-state are checked and compared with
the R1 and R2 values contained in the proof statement in the third split-state.
If they do no match, an error is outputted. In the security proof, we reduce a
leakage/tampering adversary A to an adversary A′ against the SS-BRM PKE
scheme. To achieve this, when A submits its tampering query f = (f1, f2, f3),
A′ will use its post challenge leakage query to output a bit corresponding to
each leaf block in the first and second split-state indicating whether the block
is consistent with the corresponding Merkle root, R1 or R2. Now in order to
decode and update there are two cases, if the hash values R1 or R2 change, then
the statement of the NIZK changes and a candidate encryption and signature
secret key can be extracted from the proof. If the public keys, R1 and R2 do not
change, then the candidate encryption and signature secret keys are the orig-
inal keys and the CCA oracle can be used for decryption. In addition, during
each decode/update, before the candidate secret keys are used to perform the
decryption or signing operation, the post-challenge leakage is used to verify that
the corresponding blocks needed to perform the operation are consistent with
the R1 and R2 values contained in the proof. If yes, the candidate key is used
to decrypt or sign. If not, then an error is produced. See Sect. 3.

On 2 vs 3 split-states. A natural question is whether we can reduce the number
of split-states to 2, which would be optimal. Towards answering this question,
recall our newly introduced notion CCA secure SS-BRM public key encryption,
(described in the previous section), which given leakage parameter �, stores the
secret key in a split-state and guarantees CCA security even under � bits of
split-state leakage before and after seeing the challenge ciphertext. This notion
gives rise to a 3-split-state construction of LDUNMC in the BRM model, since
each split-state of the key and the ciphertext must be stored separately. We note
that our construction of CCA secure SS-BRM public key encryption, given in
the full version [27] achieves a stronger notion of security, where the secret key
sk := sk1||sk2 is split into two parts and two phases of leakage are allowed: In
the first phase, leakage is allowed on sk1 and on (sk2, c), where c is the chal-
lenge ciphertext. Then, the challenge ciphertext is given to the adversary and an
additional leakage query is allowed on sk1 and on sk2. While this notion seems
useful for achieving 2-split-state construction of LDUNMC in the BRM model,
since sk1 can be stored in one split-state and (sk2, c) in the other, this approach
does not work for our construction (as we elaborate below). We therefore choose
to present the simpler notion of CCA secure SS-BRM public key encryption in
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Subsect. 2.2 and we refer reader to the full version of the paper [27] for the
construction/security proof.

The above does not help in reducing our construction from 3 to 2 split-states
since our proof requires one of the split-states (which contains the ciphertexts,
the Merkle tree, the signature on the root and the simulation-sound NIZK proof
of knowledge) to be entirely public, and thus must be stored in a separate state,
apart from both sk1 and sk2. This allows us to fully simulate the entire contents of
the split-state after the tampering function has been applied, which enables us to
use the NIZK knowledge extractor to extract the encryption and signature secret
keys from the (tampered) NIZK proof (as described previously). We cannot rely
on the BRM security of the encryption/signature scheme to instead leak the
extracted witness, since the witness corresponds to the encryption and signature
secret keys, which are required to be larger than the allowed leakage bound, �,
in order for security of the encryption/signature scheme to be possible.

1.3 Related Work

Non-malleable Codes. The concept of non-malleability, introduced by Dolev et
al. [34] has been applied widely in cryptography, in both the computational and
information-theoretic setting. Error-correcting codes and early works on tam-
per resilience [45,50] gave rise to the study of non-malleable codes. The notion
of non-malleable codes was formalized in the seminal work of Dziembowski
et al. [39]. Split state classes of tampering functions introduced by Liu and
Lysyanskaya [62], have subsequently received much attention with a sequence
of improvements achieving reduced number of states, improved rate, or other
desirable features [1–3,7,20,36,56]. Recently [6,12,13,19,41] gave efficient con-
structions of non-malleable codes for “non-compartmentalized” tampering func-
tion classes. Other works on non-malleable codes and memory tampering attacks
include [4,5,16,23,42,51–53].

There are also several inefficient, existential or randomized constructions for
much more general classes of functions in addition to those above [22,39,44].
Choi et al. [24], in the context of designing UC secure protocols via tamperable
hardware tokens, consider a variant of non-malleable codes which has determin-
istic encoding and decoding. In contrast, our work relies on both randomized
encoding and decoding, as does the recent work of [12]. Chandran et al. [17]
introduced the notion of locally updatable and locally decodable codes. This
was extended by Dachman-Soled et al. [29] who introduced the notion of locally
decodable and updatable non-malleable codes with the application of construct-
ing compilers that transform any RAM machine into a RAM machine secure
against leakage and tampering. This application was also studied by Faust et
al. [43]. Recently, Chandran et al. [18] studied information-theoretic local non-
malleable codes. Dachman-Soled et al. [28] gave tight upper and lower bounds
on the construction of LDUNMC.

Memory Leakage Attacks. Recently, the area of Leakage Resilient Cryptogra-
phy has received much attention by the community. Here, the goal is to design
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cryptographic primitives resistant to arbitrary side-channel attacks, permitting
the adversary to learn information about the secret key adaptively, as long as the
total amount of leaked information is bounded by some leakage parameter �. The
majority of the results are in the Relative Leakage Model, which allows the sys-
tems parameters to depend on � with aim of making � as large as possible relative
to the length of the secret key. Akavia et al. [8] started the study of side-channel
attacks in the public-key setting by showing Regev’s encryption scheme [67] is
leakage resilient in the relative leakage model. Naor and Segev [63] constructed
new public-key schemes based on non-lattice assumptions, which allowed for
more leakage and achieved CCA security. Katz and Vaikuntanathan [55] subse-
quently developed signature schemes in the relative leakage model.

The Bounded Retrieval Model (BRM). Introduced in [30,35], the model assumes
a bound � on the overall amount of information learned by the adversary during
the lifetime of the system (usually by setting � very large). This model differs
from the relative leakage model since it ensures that all the system parameters,
except the length of the secret key, are independent of �. Dziembowski [35],
constructed a symmetric key authenticated key agreement protocol in Random
Oracle model for the BRM setting, which was subsequently extended to stan-
dard model [15]. Password authentication and secret sharing in the BRM, was
studied in [30], and [38] respectively. Non-interactive symmetric key encryption
schemes using partially compromised keys were constructed by [66] implicitly
and by [31] explicitly. The first public key cryptosystems in the BRM were pro-
vided by [10] who built leakage-resilient identification schemes, leakage-resilient
signature schemes (in the random oracle model), and provided tools for convert-
ing schemes in relative leakage model to the BRM. Recently, Faonio et al. [40]
presented a construction of another weaker variant of leakage resilient signa-
ture schemes (introduced by [65]); in BRM using random oracles. The first PKE
scheme in the BRM was provided by [9] based on assumptions like lattices,
quadratic residuosity and bilinear maps. Alwen et al. [11] provide an excellent
survey of various leakage resilient primitives in BRM.

2 Preliminaries

In this section we introduce the preliminaries on local non-malleable codes, RAM
and bounded retrieval model.

2.1 Preliminaries on Local Non-malleable Codes

In this section we first review the notion of decodable and updatable codes. We
then present one time tampering and leakage experiment.

Definition 1 (Locally Decodable and Updatable Code). Let Σ, Σ̂ be sets
of strings, and n, n̂, p, q be some parameters. An (n, n̂, p, q) locally decodable and
updatable coding scheme consists of three algorithms (ENC,DEC,UPDATE) with
the following syntax:
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− The encoding algorithm ENC (perhaps randomized) takes input an n-block
(in Σ) database and outputs an n̂-block (in Σ̂) codeword.

− The (local) decoding algorithm DEC takes input an index in [n], reads at most
p blocks of the codeword, and outputs a block of the database in Σ. The overall
decoding algorithm simply outputs (DEC(1),DEC(2), . . . ,DEC(n)).

− The (local) updating algorithm UPDATE (perhaps randomized) takes inputs
an index in [n] and a string in Σ ∪ {ε}, and reads/writes at most q blocks
of the codeword. Here the string ε denotes the procedure of refreshing without
changing anything.

Let C ∈ Σ̂n̂ be a codeword. For convenience, we denote DECC ,UPDATEC

as the processes of reading/writing individual blocks of the codeword, i.e. the
codeword oracle returns or modifies an individual block upon a query. Recall
that C is a random access memory where the algorithms can read/write to the
memory C at individual different locations.

Definition 2 (Correctness). An (n, n̂, p, q) locally decodable and updatable
coding scheme (with respect to Σ, Σ̂) satisfies the following properties. For any
database D = (D1,D2, . . . , Dn) ∈ Σn, let C = (C1, C2, . . . , Cn̂) ← ENC(D) be a
codeword output by the encoding algorithm. Then we have:

− for any index i ∈ [n],Pr[DECC(i) = Di] = 1, where the probability is over the
randomness of the encoding algorithm.

− for any update procedure with input (i, v) ∈ [n] × Σ ∪ {ε} and for all j ∈ N,
let C(j+1) be the resulting codeword by running UPDATEC(j)

(i, v). Then we
have Pr[DECC(j+1)

(i) = v] = 1, where the probability is over the encoding
and update procedures. Moreover, the decodings of the other positions remain
unchanged.

Following [29], our definition includes a third party called the updater, who
reads the underlying messages and decides how to update the codeword. This
notion captures the RAM program computing on the underlying, unencoded
data. The adversary learns the location that the updater updated the messages,
but not the content of the updated messages.

Our experiment is interactive and consists of rounds: The adversary adap-
tively chooses two rounds i, j such that i ≤ j, submits a leakage function in
round i, gets its output and then submits a tampering function in round j. We
assume WLOG that at the end of each round, the updater runs UPDATE, and
the codeword will be somewhat updated and refreshed. The security experiment
then considers the decoding of the entire message after each round.

Definition 3 (One Time Tampering and Leakage Experiment). Let λ
be the security parameter, F ,G be some families of functions. Let (ENC, DEC,
UPDATE) be an (n, n̂, p, q)-locally decodable and updatable coding scheme with
respect to Σ, Σ̂. Let U be an updater that takes input a database D ∈ Σn and
outputs an index i ∈ [n] and v ∈ Σ ∪ {ε}. Flags Leaked and Tampered will be set
to 0 and let r be the total number of rounds. Then for any blocks of databases
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D = (D1,D2, . . . , Dn) ∈ Σn, and any (non-uniform) adversary A, any updater
U define the following experiment TamperLeakA,U,D:

− Let D(0) = D. The challenger first computes an initial encoding C(0) ←
ENC(D).

− Then the following procedure repeats, at each round j, recall C(j) be the cur-
rent codeword and D(j) be the underlying database:
– The updater computes (i(j), v) ← U(D(j)) for the challenger. The chal-

lenger runs UPDATEC(j)
(i(j), v).

– A sends either a tampering function f ∈ F and/or a leakage function
g ∈ G or ⊥ to the challenger.

– if Leaked is 0 and g is sent by A, the challenger sends back a leakage
� = g(C(j+1)) and sets Leaked to 1.

– if Leaked is 1, Tampered is 0 and f is sent by A, the challenger replaces
the codeword with f(C(j+1)) and sets Tampered to 1.

– if Leaked is 1, Tampered is 1, ignore any function sent by A.
– We define D(j+1) def=

(
DECC(j+1)

(1), . . . ,DECC(j+1)
(n)

)
. Where C(j+1) is

the tampered codeword.
– A may terminate the procedure at any point.

− Let r be the total number of rounds. At the end, the experiment outputs(
�,D(0), . . . , D(r)

)
.

Definition 4 (One Time Non-malleability and Leakage Resilience
against Attacks). An (n, n̂, p, q)-locally decodable and updatable coding scheme
with respect to Σ, Σ̂ is non-malleable against F and leakage resilient against G
if for all ppt (non-uniform) adversaries A, and ppt updater U , there exists
some ppt (non-uniform) simulator S such that for any D = (D1, . . . , Dn) ∈
Σn,TamperLeakA,U,D is (computationally) indistinguishable to the following
ideal experiment IdealS,U,D:

− The experiment proceeds in rounds. Let D(0) = D be the initial database.
− At each round j, the experiment runs the following procedure:

– At the beginning of each round, the updater runs (i(j), v) ← U(D(j)) and
sends the index i(j) to the simulator. If v = ε, set D(j+1) := D(j) oth-
erwise the experiment updates D(j+1) as follows: D(j+1) := D(j) for all
coordinates except i(j), and set D(j+1)[i(j)] := v.

– S outputs (I(j+1),w(j+1)), where I(j+1) ⊆ [n].
– Define

D(j+1) =
{

w(j+1) if I(j+1) = [n]
D(j+1)|I(j+1) := ⊥,D(j+1)|Ī(j+1) := D(j+1)|Ī(j+1) otherwise

where x|I denotes the coordinates x[v] where v ∈ I, and bar denotes
complement.

− Let r be the total number of rounds. S outputs � and the experiment outputs(
�,D(0), . . . , D(r)

)
.
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2.2 Preliminaries on RAM and Primitives in the BRM

We define random access machine, public key encryption in BRM and signature
schemes in the BRM and introduce a new construction called Split-State Public
Key Encryption in Bounded Retrieval Model (SS-BRM-PKE).

Preliminaries on Random Access Machines. We consider RAM programs
to be interactive stateful systems 〈Π, state,D〉, where Π denotes a next instruc-
tion function, state denotes the current state stored in registers, and D denotes
the content of memory. Upon input state and a value d, the next instruction func-
tion outputs the next instruction I and an updated state state′. The initial state
of the RAM machine, state, is set to (start, ∗). We denote by AD(x), the execution
of RAM algorithm A with random access to array D and explicit input x. We
define operator Access which outputs the access patterns of AD(x), and denote
by I the locations in D accessed by AD(x). Thus, we write I

Access←−−−− AD(x).

Public Key Encryption in the BRM. A public key encryption scheme (E)
in the BRM consists of the algorithms (KeyGen,Encrypt,Decrypt), which are all
parameterized by a security parameter λ and a leakage parameter �. The syntax
and correctness property of an encryption scheme follow the standard notion
of public-key encryption. We define the following CPA game, with leakage �,
between an adversary A and a challenger.

– Key Generation: The challenger computes (pk, sk) ← KeyGen(1λ, 1�) and
gives pk to the adversary A.

– Leakage: The adversary A selects a PPT function g : {0, 1}∗ → {0, 1}� and
gets g(sk) from the challenger.

– Challenge: The adversary A selects two messages m0,m1. The challenger
chooses b ← {0, 1} uniformly at random and gives c ← Encryptpk(mb) to the
adversary A.

– Output: The adversary A outputs a bit b′ ∈ {0, 1}. We say that A wins the
game if b′ = b.

For any adversary A, the advantage of A in the above game is defined as
AdvCPA

E,A (λ, �) def= |Pr[A wins] − 1
2 |.

Definition 5 (Leakage-Resilient PKE). [9] A public-key encryption scheme
E is leakage-resilient, if for any polynomial �(λ) and any PPT adversary A, we
have AdvCPA

E,A (λ, �(λ)) = negl(λ).

Definition 6 (PKE in the BRM). [9] We say that a leakage-resilient
PKE scheme is a PKE in the BRM, if the public-key size, ciphertext size,
encryption-time and decryption-time (and the number of secret-key bits read by
decryption) are independent of the leakage-bound �. More formally, there exist
polynomials pksize, ctsize, encT, decT, such that, for any polynomial � and any
(pk, sk) ← KeyGen(1λ, 1�), m ∈ M, c ← Encryptpk(m), the scheme satisfies:

1. Public-key size is |pk| ≤ O(pksize(λ)), ciphertext size is |c| ≤ O(ctsize(λ, |m|)).
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2. Run-time of Encryptpk(m) is ≤ O(encT(λ, |m|)).
3. Run-time of Decryptsk(c), and the number of bits of sk accessed is ≤

O(decT(λ, |m|)).

The relative-leakage of the scheme is α
def
= �

|sk| .

Alwen et al. [9] give a generic transformation to construct a CCA-secure PKE
scheme in the BRM using Naor-Young “double encryption” paradigm.

Signature Scheme in BRM. Consists of three algorithms: (Gen,Sign,Verify).
Attacker is separated into two parts, first part, A1, will interact with leakage
oracle and signing oracle and output an arbitrary hint for the second part, A2.
A2 only accesses signature oracle and tries to forge the signature of a message.
The Entropic Unforgeability attack Game EUGλ

� is as follows:

1. Challenger select (vk, help, skσ) ← Gen(1λ) and gives vk to A1.
2. Adversary A1 is given access to signing oracle Sskσ

(·) and leakage oracle
Oλ,�

skσ
(.) and outputs a hint v ∈ {0, 1}∗.

3. Adversary A2 is given access to hint v and signing oracle Sskσ (·) and outputs
message, signature pair (m,σ).

We define the advantage of the attacker A = (A1,A2) to be the probability that
Verifyvk(m,σ) = 1 and that the signing oracle was never queried with m.

Definition 7 (Signature Scheme). [10] Let V iewA1 be a random variable
denoting the view of A1 which includes its random coin and the responses it
gets from signing oracle and leakage oracle. Let MSGA2 be a random variable
of the messages output by A2 in EUGλ

� . Adversary A = (A1,A2) is entropic
if H̃∞(MSGA2 | V iewA1) ≥ λ for security parameter λ. We say a signature
scheme is entropically unforgeable with leakage � if the advantage of adversary
A in EUGλ

� is negligible in λ.

Remark 1. Entropic signatures in the BRM can be constructed in the random
oracle (RO) model (cf. [10,11]). Combining a signature scheme in the relative
leakage model (with additional properties) such as [55] with the leakage ampli-
fication techniques of [10], it may be possible to construct entropic signatures in
the BRM without RO. However, as discussed in full version of the paper [27],
the primitive we require is slightly weaker than regular entropic signatures in
the BRM and can be constructed in a straightforward manner in the standard
model, without RO. Nevertheless, for conceptual simplicity we present our con-
structions and state our theorems in terms of the existence of entropic signatures
in the BRM.

Split-State Public Key Encryption in the BRM (SS-BRM-PKE). We
define a new primitive called as Split-State Public Key Encryption in Bounded
Retrieval Model (SS-BRM-PKE) with the following properties:

1. The secret key sk is stored in the split-state sk1||sk2 and the adversary is
allowed to obtain leakage on sk1 and sk2 independently.
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2. The encryption scheme is secure in the bounded retrieval model, as defined
in Definition 6 with respect to the split-state leakage.

3. The encryption scheme is chosen plaintext attack (CPA)-secure even in the
presence of adversary who can observe the access pattern of the blocks of pk
and sk1||sk2 accessed during encryption and decryption procedure.

4. The scheme is CPA-secure against an adversary getting additional split-state
leakage (bounded) on the secret key, even after receiving the ciphertext.

Formally, a public key encryption scheme (E) in the SS-BRM consists of the
algorithms (KeyGen,Encrypt,Decrypt), which are all parameterized by a security
parameter λ and a leakage parameter �. The syntax and correctness property of
an encryption scheme follow the standard notion of public-key encryption. We
define the following semantic-security game (SS-BRM-PKE-CPA) with leakage �
between an adversary A and a challenger.

– Key Generation: The challenger computes (pk, sk1||sk2) ← KeyGen(1λ, 1�)
and gives pk to the adversary A.

– Message Commitment: The adversary A selects two messages m0,m1.
– Pre-challenge Leakage: The adversary A selects a PPT function g :=

(g1, g2) : {0, 1}∗ × {0, 1}∗ → {0, 1}� × {0, 1}� and gets L1 := g1(sk1), L2 :=
g2(sk2) from the challenger.

– Challenge: The challenger chooses b ← {0, 1} uniformly at random and
gives c ← Encryptpk(mb) to the adversary A.

– Encryption Access Patterns: The challenger also sends the access pattern
(i(1), i(2), . . . , i(t)) corresponding to the encryption procedure, to A.

– Post-challenge Leakage: The adversary A selects a PPT function
g′ := (g′

1, g
′
2) : {0, 1}∗ × {0, 1}∗ → {0, 1}� × {0, 1}� and gets L′

1 :=
g′
1(L1, L2, c, sk1), L′

2 := g′
2(L1, L2, c, sk2) from the challenger.

– Decryption Access Patterns: The challenger also sends the access pattern
(S1, S2) Access←−−−− Decryptsk1||sk2(c), to A. Si is a set of indices si

j of ski for
i ∈ {1, 2} and j ∈ [n], where |sk1| = |sk2| = n. Also, |Si| = t, where t is the
number of locations of sk1 and sk2 required to be accessed to decrypt any
ciphertext.

– Output: The adversary A outputs a bit b′ ∈ {0, 1}. We say that A wins the
game if b′ = b.

For any adversary A, the advantage of A in the above game is defined as
AdvSS-BRM-PKE-CPA

E,A (λ, �) def= |Pr[A wins]− 1
2 |. It should be noted that the decryp-

tion access patterns indicating which parts of secret key were accessed during
the decryption must be provided to the adversary only after the leakage infor-
mation, otherwise the adversary can simply ask for the leakage on the secret key
positions “relevant” to the decryption of the challenge ciphertext.

Chosen Ciphertext Attack (CCA) security for SS-BRM-PKE can be defined as
the natural analogue of the above SS-BRM-PKE-CPA security experiment above.
We refer reader to full version of the paper [27] for the formal definition and the
construction. Given a SS-BRM-PKE-CPA scheme, a SS-BRM-PKE-CCA scheme
can be constructed via the double encryption paradigm (cf. [9,60,64]).
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2.3 Additional Preliminaries

In this section we present definitions which are being used in the constructions.

Definition 8 (Entropy). The min-entropy of a random variable X is
defined as H∞(X) = − log(maxx Pr [X = x]). The conditional min-entropy
of a random variable X, conditioned on the experiment E is H̃∞(X|E) =
− log(maxA Pr

[AE(·)() = X
]
). In the special case that E is a non-interactive

experiment which simply outputs a random variable Z, it is written as H̃∞(X|Z).

Definition 9 (Seed-Dependent Condenser [33]). An efficient function
Cond : {0, 1}n × {0, 1}d → {0, 1}m is a seed-dependent ([H∞ ≥ k] →ε [H∞ ≥
k′], t)-condenser if for all probabilistic adversaries A of size at most t who take a
random seed S ← {0, 1}d and output (using more coins) a sample X ← A(S) of
entropy H∞(X|S) ≥ k, the joint distribution (S,Cond(X;S)) is ε-close to some
(S,R), where H∞(R|S) ≥ k′.

We present the collision resistant hash function and Merkle Tree which are
being used to prevent mauling attacks.

Definition 10 (Collision-Resistant Hash Function Family [33]). A fam-
ily of hash functions H := {h : {0, 1}∗ → {0, 1}m} is (t, δ)-collision-resistant if
for any (non-uniform) attacker B of size at most t,

Pr [H(X1) = H(X2) ∧ X1 �= X2] ≤ δ where H ← H and (X1,X2) ← B(H).

Theorem 2 (Theorem 4.1 [33]). Fix any β > 0. If H is a (2t, 2β−1/2m)-

collision-resistant hash function family, then Cond(X;H)
def
= H(x) for H ← H

is a seed-dependent (([H∞ ≥ m−β+1] → [H∞ ≥ m−β+log ε]), t)-condenser.

Definition 11 (Merkle Tree). Let h : X × X → X be a hash function that
maps two blocks of messages to one.3 A Merkle Tree Treeh(M) takes as input
a message M = (m1,m2, . . . , mn) ∈ X n. Then it applies the hash on each pair
(m2i−1,m2i), resulting in n/2 blocks. Then again, it partitions the blocks into
pairs and applies the hash on the pairs, which results in n/4 blocks. This is
repeated log n times, resulting a binary tree with hash values, until one block
remains. We call this value the root of Merkle Tree denoted Rooth(M), and the
internal nodes (including the root) as Treeh(M). Here M can be viewed as leaves.

Theorem 3. Assuming h is a collision resistant hash function. Then for
any message M = (m1,m2, . . . , mn) ∈ X n, any polynomial time adversary
A,Pr

[
(m′

i, pi) ← A(M,h) : m′
i �= mi, pi is a consistent path with Rooth(M)

]
≤

negl(λ).
Moreover, given a path pi passing through the leaf mi; and a new value m′

i,
there is an algorithm that computes Rooth(M ′) in time poly(log n, λ), where
M ′ = (m1, . . . , mi−1,m

′
i,mi+1, . . . , mn).

3 Here we assume |X | is greater than the security parameter.
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In the following we present simulation-sound extractable NIZK proof for
which an efficient construction can be found in [47].

Definition 12 (NIZK Proof System). Let R be an efficiently computable
binary relation. For pairs (x,w) ∈ R we call x the statement and w the witness.
Let L be the language consisting of statements in R. A proof system for a relation
R consists of a crs generation algorithm (CRSGEN), prover (P) and verifier (V),
which satisfy completeness and soundness properties as follows.

Definition 13 (Completeness). For all x ∈ L and all the witnesses w

Pr [V(crs, x, π ← P(crs, x, w)) = 1] ≥ 1 − negl(λ)

Definition 14 (Computational Zero-Knowledge). We call (CRSGEN,P,V)
an NIZK proof for relation R if there exists a polynomial time simulator S =
(S1,S2) such that for all non-uniform polynomial time adversaries A we have

Pr
[
crs ← CRSGEN(1λ) : AP(crs,.,.)(crs) = 1

]
c≈

Pr
[
(crs, τ) ← S1(1λ) : AS(crs,τ,.,.)(crs) = 1

]

where S(crs, τ, x, w) = S2(crs, τ, x) for (x,w) ∈ R and both oracles output failure
if (x,w) /∈ R.

Definition 15 (Simulation-Sound Extractability [47]). Consider an NIZK
proof of knowledge (CRSGEN,P,V,S1,S2, E1, E2). Let SE1 be an algorithm that
outputs (crs, τ, ξ) such that it is identical to S1 when restricted to the first two
parts (crs, τ). We say the NIZK proof is simulation sound if for all non-uniform
polynomial time adversaries we have

Pr[(crs, τ, ξ) ←SE1(1λ); (x, π) ← AS2(crs,τ,·)(crs, ξ);w ← E2(crs, ξ, x, π) :
(x, π) /∈ Q and (x,w) /∈ R and V(crs, x, π) = 1] ≈ 0

(1)

where Q is the list of simulation queries and responses (xi, πi).

Definition 16 (Probabilistically Checkable Proofs [14]). For functions
r, q : N → N we say that a probabilistic oracle machine V is a (r, q)-PCP
verifier if, on input a binary string x of length n and given oracle access to a
binary string π, V runs in time 2O(r(n)), tosses r(n) coins, makes q(n) queries
to π, and outputs either 1 (“accept”) or 0 (“reject”). A language L belongs in
the class PCPs[r(n), q(n)] if there exists a (r, q)-PCP verifier VL such that the
following holds:

1. Completeness: If x ∈ L then there exists π such that PrR[V π
L (x;R) = 1] = 1.

2. Soundness: If x /∈ L then for every π it holds that PrR[V π
L (x;R) = 1] < 1/2.

Theorem 4 (PCP Theorem). NP = PCP[O(log n), O(1)].
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To achieve negligible soundness, we can run the verifier polylogarithmic
number of times in parallel, which results in polylogarithmic number of ver-
ifier queries to the proof, π. In [14], they give constructions of PCPs with
the above properties, which also allow for knowledge extraction. I.e., assum-
ing PrR[V π

L (x;R) = 1] ≥ 1/2, there is an efficient extractor which, given π, can
extract a witness w for the statement x ∈ L.

3 Achieving Full One-Time Tamper and Leakage
Resilience (OT-TLR)

We next present our construction to achieve full resilience against one time leak-
age and tampering attacks. The relevant definitions can be found in Subsect. 2.3.
As a preliminary step, we present a construction for achieving resilience against
one time leakage and partial tampering attacks and we refer to full version of
the paper [27] for the details of the construction.

Construction Π = (ENC,DEC,UPDATE). Let E = (KeyGen,Encrypt,Decrypt)
be a CCA-secure SS-BRM-PKE scheme, V = (Gen,Sign,Verify) be a signature
scheme in the BRM and H is a family of collision resistance hash functions and
ΠNIZK ,ΠPCP which are NIZK and PCP proof systems, respectively. Then we
consider the following coding scheme:

Preprocessing. crs ← CRSGEN(1λ) and h ← H are sampled and CRS := (crs, h)
is published. Note that the size of CRS depends on security parameter, but not
on the size of the database nor on the leakage parameter �. Note that CRS is
implicit input to all algorithms.

ENC(D): On input database D = (D1,D2, . . . , Dn) ∈ Σn:

– Choose (pk, sk1ε, sk
2
ε) ← E .KeyGen(1λ, 1�), where sk1ε ∈ Σ̂n′

1 , sk2ε ∈ Σ̂n′
2 , and

define skε := (sk1ε||sk2ε), (vk, skσ) ← V.Gen(1λ).
– Set D̃0 := 0.
– Compute D̃i ← E .Encryptpk(Di) for i ∈ [n]. Let D̃ := D̃0, . . . , D̃n. Set4 TD̃ :=

Treeh(D̃), σ := V.Signskσ (RD̃), where RD̃ := Rooth(TD̃).
– Construct the hash tree for secret keys sk1ε, skσ, Tsk1 = Treeh(sk1ε, skσ) and

Rsk1 := Rooth(Tsk1). Repeat the same procedure for secret key sk2ε and
compute Tsk2 = Treeh(sk2ε) and Rsk2 := Rooth(Tsk2).

– For the statement xNIZK = (pk, vk)|| “I know pre-images of hashes Rsk1 , Rsk2”
and witness w = (skε||skσ) construct the proof
πNIZK ← ΠNIZK .P(crs, xNIZK , w).

– For the statement xPCP = “I know an accepting NIZK proof for the statement
xNIZK”, construct a proof πPCP ← ΠPCP .P(crs, xPCP , πNIZK).

4 We additionally pad the tree T with dummy leaves consisting of uniform random
values to ensure that the relative leakage on the second split state, C2 is at least 1

6
.
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– Output codeword C := (C1, C2, C3) ∈ Σ̂n1 × Σ̂n2 × Σ̂n3 , where

C1 := (sk1ε, skσ, Tsk1 , Rsk1) C2 := (sk2ε, Tsk2 , Rsk2)
C3 := (pk, vk, D̃, TD̃, RD̃, σ, πPCP )

DECC(i): On input i ∈ [n]:

– Parse C := (sk1ε, skσ, Tsk1 , Rsk1 , sk
2
ε, Tsk2 , Rsk2 , pk, vk, D̃, TD̃, RD̃, σ, πPCP ).

– Check whether D̃0 := 0. If not, output ⊥ and terminate.
– Read path pi in TD̃, corresponding to leaf i and use pi to recompute R̂ =

Rooth(pi).
– Check that R̂ := RD̃. If not, output ⊥ and terminate.
– Check that V.Verifyvk(RD̃, σ) = 1. If not, output ⊥ and terminate.
– Run ΠPCP .V(crs, xPCP , πPCP ) if outputs 0, output ⊥ and terminate.
– For each accessed location of sk1ε and sk2ε, read the paths in Tsk1 and Tsk2 ,

respectively. Compute R̂sk1 = Rooth(Tsk1), R̂sk2 = Rooth(Tsk2) and verify that
R̂sk1 = Rsk1 and R̂sk2 = Rsk2 for each of them. If any of the verification failed,
output ⊥ and terminate.

– Output Di := E .Decryptsk
1
ε||sk2ε(D̃i).

UPDATEC(i, v): On inputs an index i ∈ [n], and a value v ∈ Σ:

– Run DECC(i). If it outputs ⊥, set D̃0 := 1, write back to memory and termi-
nate.

– Parse C := (sk1ε, skσ, Tsk1 , Rsk1 , sk
2
ε, Tsk2 , Rsk2 , pk, vk, D̃, TD̃, RD̃, σ, πPCP ).

– Set D̃′
i ← E .Encryptpk(v). Let D̃′ := D̃0, . . . D̃i−1, D̃

′
i, D̃i+1, . . . , D̃n.

– Read path pi in TD̃, corresponding to leaf i and use (pi, D̃
′
i) to compute a

new path p′
i (that replaces D̃i by D̃′

i). Set R′
D̃

= Rooth(p′
i). Let T ′

D̃
denote

the updated tree.
– Compute σ′ := V.Signskσ (R′

D̃
).

– For each accessed location of skσ read the paths in Tsk1 . Compute R̂sk1 =
Rooth(Tsk1) and verify that R̂sk1 = Rsk1 for each of them. If any of the verifi-
cation failed, output ⊥ and terminate.

– Write back (D̃′
i, T

′
D̃

, p′
i, R

′
D̃

, σ′) yielding updated codeword C ′ := (C ′
1, C

′
2, C

′
3)

where

C ′
1 := (sk1ε, skσ, Tsk1 , Rsk1) C ′

2 := (sk2ε, Tsk2 , Rsk2)
C ′

3 := (pk, vk, D̃′, T ′
D̃′ , R

′
D̃′ , σ

′, πPCP ).

Locality of the construction. DEC and UPDATE must read the entire CRS,
whose size depends only on security parameter λ and not on the size of the
data. In addition, using the SS-BRM-PKE scheme, refer to full version [27] for
construction, (along with sub-exponentially hard PRG), and the PCP of [14],
DEC and UPDATE must make polylog(λ) number of random accesses to C.

Remark 2. Note that although computing the PCP proof πPCP is expensive, it
is only done a single time, during ENC, but remains static during UPDATE.
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Theorem 5. For security parameter λ ∈ N, leakage parameter � := �(λ),
alphabet Σ such that log |Σ| ∈ Ω(λ), and database size n := n(λ): Assume
E = (KeyGen,Encrypt,Decrypt) is a CCA-secure SS-BRM PKE scheme with
leakage parameter 2� + λ and relative leakage α < 1, V = (Gen,Sign,Verify) is a
signature scheme in the BRM with leakage parameter 2�+λ and relative leakage
α < 1,H is a family of collision resistant hash functions with sub-exponential
security, and ΠNIZK ,ΠPCP are NIZK with simulation-sound extractability and
PCP proof systems, respectively. Then Π is a one-time tamper and leakage
resilient locally decodable and updatable code taking messages in Σn to code-
words in Σ̂n1 × Σ̂n2 × Σ̂n3 , which is secure against tampering class

F̄ def=
{

f : Σ̂n1 × Σ̂n2 × Σ̂n3 → Σ̂n1 × Σ̂n2 × Σ̂n3 and |f | ≤ poly(λ), s. t.:
f = (f1, f2, f3), f1 : Σ̂n1 → Σ̂n1 , f2 : Σ̂n2 → Σ̂n2 , f3 : Σ̂n3 → Σ̂n3 .

}
,

and is leakage resilient against the class

Ḡ def=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

g : Σ̂n1 × Σ̂n2 × Σ̂n3 → {0, 1}� × {0, 1}� × {0, 1}n3·log |Σ̂|
6

and |g| ≤ poly(λ), s.t.:
g = (g1, g2, g3), g1 : Σ̂n1 → {0, 1}�, g2 : Σ̂n2 → {0, 1}�,

g3 : Σ̂n3 → {0, 1}n3·log |Σ̂|
6 .

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

.

Moreover, Π has relative leakage α
8 − o(1).

Proof. To prove the theorem, for any efficient adversary A, we must construct a
simulator S, such that for any initial database D ∈ Σn and any efficient updater
U , the experiment of one time attack TamperLeakA,U,D is indistinguishable
from the ideal experiment IdealS,U,D.

The simulator S first samples random coins for the updater U , so its output
just depends on its input given the random coins. Then S works as follows:

− Initially S samples (pk, sk1ε, sk
2
ε) ← E .KeyGen(1λ, 1�), (vk, skσ) ← V.Gen(1λ),

crs ← CRSGEN(1λ) and h ← H, sets D̃0 = 0 and generates n encryptions
of 0, i.e., D̃1, D̃2, . . . , D̃n where D̃i ← E .Encryptpk(0) for i ∈ [n]. Let D̃(1) :=
D̃0, D̃1, . . . , D̃n. S computes T

(1)

D̃
:= Treeh(D̃(1)). Let σ(1) = V.Signskσ (R(1)

D̃
),

where R
(1)

D̃
is the root of the tree T

(1)

D̃
. S computes Tski := Treeh(ski) for

i ∈ {1, 2}, Rski denotes the root of the tree Tski . S keeps global variables
flag, Leaked,Tampered = 0.

− At each round j, let C(j) := (C(j)
1 , C

(j)
2 , C

(j)
3 ), where

C
(j)
1 := (sk1ε, skσ, Tsk1 , Rsk1) C

(j)
2 := (sk2ε, Tsk2 , Rsk2)

C
(j)
3 := (pk, vk, D̃(j), T

(j)

D̃
, R

(j)

D̃
, σ(j), πPCP ),

denote the current simulated codeword stored by S and let w(j) denote the
simulator’s output in the previous round. In the first round, w

(0)
i := same for

all i ∈ [n]. In each round, S does the following:
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Simulating Update:
– If flag = 0,S does the following: Receives an index i(j) ∈ [n] from the

updater. Runs UPDATEC(j)
(i(j), 0). Let C(j+1) be the resulting codeword

after the update.
– If flag = 1,S does the following: Computes (i(j), v) ← U(w(j)) on his

own, and runs UPDATEC(j)
(i(j), v). Let C(j+1) be the resulting codeword

after the update.
Simulating the Round’s Output:

– S sets (D̃0, D̃1, . . . , D̃n) := D̃(j+1).
– S emulates the adversary A and receives g1, g2, g3 ∈ Ḡ and f1, f2, f3 ∈ F̄ .
– If Leaked is 0, then S computes �1 := g1(sk1ε, skσ, Tsk1 , Rsk1), �2 :=

g2(sk2ε, Tsk2 , Rsk2), �3 := g3(pk, vk, D̃(j+1), T
(j+1)

D̃
, R

(j+1)

D̃
, σ(j+1), πPCP )

sets � := (�1, �2, �3) and sets Leaked to 1.
– If Leaked = 1 and Tampered = 0,S computes C ′ = (C ′

1, C
′
2, C

′
3) where

C ′
1 := (sk

′1
ε , sk′

σ, T ′
sk1

, R′
sk1

) := f1(C1) C ′
2 := (sk

′2
ε , T ′

sk2
, R′

sk2
) := f2(C2)

C ′
3 := (pk′, vk′, D̃′, T ′

D̃′ , R
′
D̃′ , σ

′, π′
PCP ) := f3(C3).

and sets Tampered to 1.
– If flag = 0,S does the following:

• S sets I(j+1) = {u : ∀u ∈ [n] s.t. D̃′
u �= D̃u ∨ DECC′

(u) = ⊥}, i.e.
the indices where D̃′ is not equal to D̃ or where decode evaluates to
⊥. S sets I(j+1) = [n] if x′

NIZK �= xNIZK . If I(j+1) = [n],S sets
flag := 1. If I(j+1) �= [n],S outputs {�,w(j+1)}, where w(j+1)[i] = ⊥
for i ∈ I(j+1) and w(j+1)[i] = same for i /∈ I(j+1).

– If flag = 1,S simulates the real experiment faithfully: For i ∈ [n],S sets
w(j+1)[i] := DEC(C′)(i), i.e. running the real decoding algorithm. Then S
outputs {�,w(j+1)}.

To show TamperLeakA,U,D ≈ IdealS,U,D, we consider several hybrids.

Hybrid H0: This is exactly the experiment IdealS,U,D.

Hybrid H1: Change πPCP to a simulated proof, using ZK property of the under-
lying NIZK.

Claim 3.1. H0
c≈ H1.

Event EV3: xNIZK �= x′
NIZK , the verifier accepts, but the extractor fails to

extract the witness from πPCP .
The following claim is due to the simulation-sound extractability property of

the proof system.

Claim 3.2. EV3 occurs with negligible probability in hybrid H1.
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Hybrid H2: We use the knowledge extractor of the PCP and NIZK to extract
sk′

ε, sk
′
σ. Everything in the decoding algorithm remains the same up to the final

bullet in which the decryption is done by using sk′
ε, instead of using the contents

of memory. Everything in the update algorithm also remains the same up to
second to last bullet, where signing will now be done with sk′

σ, instead of using
the contents of memory.

The following claim is due to collision resistance of h.

Claim 3.3. H1
c≈ H2.

Hybrid H3: The simulator does not encrypt all 0’s (i.e. E .Encryptpk(0)); instead,
it encrypts the real messages.

Claim 3.4. H2
c≈ H3.

Proof. Assume there exists an efficient adversary A distinguishing hybrids H2

and H3 with non-negligible advantage. We construct an efficient adversary A′

breaking the SS-BRM-PKE-CCA security of the encryption scheme E . A′ partic-
ipates externally in the security game for the SS-BRM PKE scheme (See Sub-
sect. 2.2 for definition) while internally instantiating A. We next describe A′:

− A′ receives pk from Key Generation of its external challenger.
− A′ samples (vk, skσ) ← V.Gen(1λ), h ← H, (crs′, τ, ξ) ← SE1(1λ). A′ sets

CRS := (crs′, h).
− Let D1, . . . , Dn denote the initial contents of the database. A′ runs the

updater (with fixed coins, as described above) to obtain all the updates
D′

1, . . . , D
′
p in advance (where p := p(λ) for polynomial p(·) denotes the run-

time of the Updater). A′ submits vectors of messages D0,D1, of dimension
n + p, as Message Commitment. Where D0 is a vector of all 0’s and D1

corresponds to the messages as described above.
− A′ instantiates A on input CRS and waits to receive leakage query (g1, g2, g3)

from A.
− Upon receiving leakage query (g1, g2, g3),A′ submits the following Pre-

challenge split-state leakage query to its challenger:

G1(sk1ε) := (Rooth(Treeh(sk1ε, skσ)), g1(sk1ε, skσ, Tsk1 , Rsk1))

G2(sk2ε) := (Rooth(Treeh(sk2ε), g2(sk
2
ε, Tsk2 , Rsk2)),

where Rsk1 := Rooth(Treeh(sk1ε, skσ)) and Rsk2 := Rooth(Treeh(sk2ε)).
− A′ receives in return the output of its leakage queries (Rsk1 ||�1, Rsk2 ||�2)

as well as challenge ciphertexts D̃i, i ∈ [n] and D̃′
j , j ∈ [p]. Let D̃(1) :=

(D̃1, . . . , D̃n, D̃′
1, . . . , D̃

′
p). A′ computes T

(1)

D̃
:= Treeh(D̃(1)) and computes

σ(1) = V.Signskσ (R(1)

D̃
), where R

(1)

D̃
:= Rooth(Treeh(D̃(1))). A′ keeps global

variables flag, Leaked,Tampered = 0.
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− A′ uses the simulated proof π′
NIZK ← S2(crs′, τ, xNIZK = (Rsk1 , Rsk2)) to

construct the simulated PCP proof π′
PCP . Note that A′ now knows the entire

contents of the third partition of the codeword, C3 := (pk, vk, D̃(1), T
(1)

D̃
, R

(1)

D̃′ ,

σ(1), π′
PCP )). Also note that we assume the proof π′

PCP contains the state-
ment x′

PCP (and thus also x′
NIZK) to be proven, which includes the hash

values Rsk1 , Rsk2 .
− A′ rewinds A back to the beginning and instantiates A.
− At each round j, let

C
(j)
3 := (pk, vk, D̃(j), T

(j)

D̃
, R

(j)

D̃
, σ(j), π′

PCP )

denote the third partition of the current simulated codeword stored by A′. We
maintain the invariant that A′ knows the entire contents of C

(j)
3 , for j ∈ [p].

Let w(j) denote the simulator’s output in the previous round. In the first
round, w

(0)
i := same for all i ∈ [n]. In each round, A′ does the following:

Simulating Update:
– If flag = 0,A′ does the following: Computes the next index i(j) ∈ [n]

generated by the updater. Runs UPDATE
C(j)

(i(j),⊥, D̃′
j). Let C(j+1) be

the resulting codeword after the update.
– If flag = 1,A′ does the following: Computes (i(j), v) ← U(w(j)) on his

own, and runs UPDATE
C(j)

(i(j), v,⊥). Let C(j+1) be the resulting code-
word after the update.

Simulating the Round’s Output:

– A′ sets (D̃0, D̃1, . . . , D̃n) := D̃(j+1), TD̃ := T
(j+1)

D̃
, and RD̃ := R

(j+1)

D̃
and

σ = σ(j+1).
– A′ emulates the adversary A and receives g1, g2, g3 ∈ Ḡ, f1, f2, f3 ∈ F̄ .
– If Leaked is 0, then A′ computes �3 := g3(C

(j+1)
3 ) (recall �1, �2 were

received previously), returns � := (�1, �2, �3) to A and sets Leaked to 1.
– If Leaked is 1 and Tampered is 0, then A′ computes C ′

3 := f3(C
(j+1)
3 ),

and sets Tampered to 1. A′ submits the following Post-challenge split-
state leakage query to its challenger: F1(sk1ε) := f ′

1(sk
1
ε, skσ, R

(j+1)

sk1
) and

F2(sk2ε) := f ′
2(sk

2
ε, R

(j+1)

sk2
), where f ′

1 computes C ′
1 := f1(C

(j+1)
1 ) and then

outputs a vector η1 ∈ {0, 1}n′
1 such that for all i ∈ [n′

1],η1[i] = 1 if the
path pi in the Merkle tree in C ′

1 is consistent with the root contained in
π′

PCP and 0 otherwise. Similarly, f ′
2 computes C ′

2 := f2(C
(j+1)
2 ) and then

outputs a vector η2 ∈ {0, 1}n′
2 such that for all i ∈ [n′

2],η2[i] = 1 if the
path pi in the Merkle tree in C ′

2 is consistent with the root contained in
π′

PCP and 0 otherwise.
– A′ additionally receives the Decryption Access Patterns for the chal-

lenge ciphertexts, i.e. , (S1
i , S2

i ) Access←−−−− E .Decryptsk
1
ε||sk2ε(D̃i), i ∈ [n] and

(S1
j , S2

j ) Access←−−−− E .Decryptsk
1
ε||sk2ε(D̃′

j), j ∈ [p].
– If flag = 0,A′ does the following:
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• A′ sets I(j+1) = {u : ∀u ∈ [n] s.t. D̃′
u �= D̃u ∨ DEC

C′
(u) = ⊥}, i.e.

the indices where D̃′ is not equal to D̃ or where decode evaluates
to ⊥. A′ checks π′

PCP and sets I(j+1) = [n] if x′
NIZK �= xNIZK . If

I(j+1) = [n],A′ sets flag := 1. If I(j+1) �= [n],S outputs {�,w(j+1)},
where w(j+1)[i] = ⊥ for i ∈ I(j+1) and w(j)[i] = same for i /∈ I(j+1).

– If flag = 1,A′ sets w(j+1)[i] := DEC
(C′)

(i), for i ∈ [n], and outputs
{�,w(j+1)}.

− Once p rounds have completed, A′ outputs whatever A does and terminates.

DEC,UPDATE are defined as follows.

− DEC
C

(i): On input i ∈ [n] in round j ∈ [p]:
– Parse C3 := (pk′, vk′, D̃, TD̃, RD̃, σ, π′

PCP ).
– Check whether D̃0 := 0. If not, output ⊥ and terminate.
– Read path pi in TD̃, corresponding to leaf i and use pi to recompute

R̂ = Rooth(pi).
– Check that R̂ := RD̃. If not, output ⊥ and terminate.
– Check that V.Verifyvk

′
(RD̃, σ) = 1. If not, output ⊥ and terminate.

– Run VPCP (crs′, π′
PCP ) if outputs 0, output ⊥ and terminate.

– Let (S1
j ,S2

j ) be decryption access patterns; ∀s1 ∈ S1
j and ∀s2 ∈ S2

j , if
η1[s1] = 1 and η2[s2] = 1 then continue. Else, output ⊥ and terminate.

– If x′
NIZK �= xNIZK output Di := E .Decryptsk

′
ε(D̃i), where

sk′
ε ← ΠNIZK .E2(crs′, ξ, πNIZK) is the secret key extracted from the

proof π′
PCP . E2 is the witness extractor similar to Definition 15. Else,

compute Di := E .Decryptskε(D̃i), by querying the decryption oracle for
the CCA secure SS-BRM-PKE with the original secret key.

− UPDATE
C

(i, v, D̃′
j): On inputs an index i ∈ [n], a value v ∈ Σ and a ciphertext

D̃′
j ∈ Σ̂ in round j ∈ [p]:
– Run DEC

C
(i). If it outputs ⊥, set D̃0 := 1, write back to memory and

terminate.
– Parse C3 := (pk′, vk′, D̃, TD̃, RD̃, σ, π′

PCP ).
– If v = ⊥. Let D̃′ := D̃0, . . . , D̃i−1, D̃

′
j , D̃i+1, . . . , D̃n. Read path pi in TD̃,

corresponding to leaf i and use (pi, D̃
′
j) to compute a new path p′

i (that
replaces D̃i by D̃′

j). Set RD̃′ = Rooth(p′
i). Let TD̃′ denote the updated

tree.
– If v �= ⊥, set D̃′′

i ← E .Encryptpk
′
(v). Otherwise, set D̃′′

i := D̃′
j . Let D̃′ :=

D̃0, . . . , D̃i−1, D̃
′′
i , D̃i+1, . . . , D̃n. Read path pi in TD̃, corresponding to

leaf i and use (pi, D̃
′′
i )) to compute a new path p′

i (that replaces D̃i by
D̃′′

i ). Set RD̃′ = Rooth(p′
i). Let TD̃′ denote the updated tree.

– Let Sσ
j

Access←−−−− V.Signskσ (RD̃′); ∀s ∈ Sσ
j , if η1[s] = 1 then continue. Else,

output ⊥ and terminate.
– If x′

NIZK �= xNIZK Compute σ′ := V.Signsk
′
σ (R′

D̃
), where sk′

σ ←
E2(crs, ξ, πNIZK) is the secret key extracted from the proof π′

PCP . E2

is the witness extractor similar to Definition 15. Otherwise, compute
σ′ := V.Signskσ (R′

D̃
), where skσ is the original secret key.
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– Write back (D̃′
i, p

′
i, RD̃′ , σ′) yielding updated codeword

C ′
3 := (pk′, vk′, h, D̃′, TD̃′ , RD̃′ , σ

′, π′
PCP ).

If D̃i, i ∈ [n] and D̃′
j , j ∈ [p] are encryptions of all 0’s then the view of A is

identical to its view in Hybrid H2. Alternatively, if D̃i, i ∈ [n] and D̃′
j , j ∈ [p]

are encryptions of the honest data values, then the view of A is identical to
its view in Hybrid H3. Thus, if A distinguishes with non-negligible advantage,
then A′ distinguishes encryptions of all 0’s from encryptions of correct data with
non-negligible advantage, breaking the CCA security of the encryption scheme
and resulting in contradiction.

Hybrid H4: In the case that pk, vk are changed and flag = 1, go back to using
sk1ε and sk2ε for decryption.

The following claim is due to collision resistance of h.

Claim 3.5. H3
c≈ H4.

Hybrid H5: Go back to using the real crs and real proof πPCP .
The following claim is due to the zero knowledge property of the proof system.

Claim 3.6. H4
c≈ H5.

Hybrid H6: This is exactly the experiment TamperLeakA,U,D.

Claim 3.7. H5
c≈ H6.

Proof. The only difference between H5 and real experiment is the case where

flag = 0, D̃′
u �= D̃u and DECC′

(u) �= ⊥,

(S would output ⊥ at position u whereas real experiment would output
DECC′

(u) �= ⊥) which can only happen if events EV1 or EV2 occur (see Fig. 1
for their definition).

We next claim that both events occur with negligible probability, thus show-
ing that Hybrids H5 and H6 differ with negligible probability.

Event EV1:

– pk′||vk′ = pk||vk. (otherwise flag = 1)
– I(j+1) �= [n]. (otherwise flag = 1)
– R′ �= R(j+1).
– Verify(vk, R′, σ′) = 1.

Event EV2:

– pk′||vk′ = pk||vk. (otherwise flag = 1)
– I(j+1) �= [n]. (otherwise flag = 1)
– R′ = R(j+1).
– For some i ∈ I(j+1), we have that for

D̃′
i and corresponding path p′

i, R′
D̃

=
Rooth(p′

i).

Fig. 1. Events EV1 and EV2.
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Claim 3.8. EV1 and EV2 occur with negligible probability in H5.

We omit the proof of the above claim since it is nearly identical to the
corresponding claims in the proof of the construction for partial one-time tamper
and leakage resilience and we refer reader to the full version of the paper [27] for
that proof.

This completes the proof of Theorem 5.
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Abstract. In this work, we settle the relations among a variety of secu-
rity notions related to non-malleability and CCA-security that have been
proposed for commitment schemes in the literature. Interestingly, all our
separations follow from two generic transformations. Given two appro-
priate security notions X and Y from the class of security notions we
compare, these transformations take a commitment scheme that fulfills
notion X and output a commitment scheme that still fulfills notion X
but not notion Y .

Using these transformations, we are able to show that some of
the known relations for public-key encryption do not carry over to
commitments. In particular, we show that, surprisingly, parallel non-
malleability and parallel CCA-security are not equivalent for commit-
ment schemes. This stands in contrast to the situation for public-key
encryption where these two notions are equivalent as shown by Bellare et
al. at CRYPTO ‘99.

1 Introduction

A commitment scheme is a two-party protocol that enables one party, called the
sender, to commit himself to a value, while keeping it hidden from others and
to later reveal that value to the other party, called the receiver. Commitment
schemes belong to the most important building blocks of cryptography and have
many applications including coin flipping protocols, signature schemes and zero-
knowledge proofs.

Non-malleability (first introduced in [15]) is an important security notion
for commitment schemes that is, like its counterpart for encryption schemes,
concerned with defending against man-in-the-middle attacks. Informally, a com-
mitment scheme is called (stand-alone) non-malleable if it is impossible for a
man-in-the-middle adversary that receives a commitment to a value v to “suc-
cessfully” commit to a related value ṽ.
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Several variants of non-malleability have been defined in the literature. For
parallel non-malleability [16] the adversary receives multiple commitments in
parallel and commits to multiple values in parallel. For concurrent non-malle-
ability [26] the adversary receives and sends multiple commitments in an arbi-
trary schedule determined by the adversary.

There are many works on non-malleable commitment schemes in the litera-
ture, e.g., [11,13,16,18,19,22,27,31]. Non-malleable commitment schemes have
numerous applications in the field of multi-party computation. For instance,
parallel non-malleable commitment schemes have been used for constructing
round-efficient (six round) MPC protocols [16], concurrently non-malleable com-
mitment schemes have been used as a building block for black-box MPC proto-
cols [31] and (stand-alone) non-malleable commitment schemes have been used
for concurrently composable protocols [27].

Another security notion related to non-malleability is CCA-security [25].
A commitment scheme is called CCA-secure if it remains hiding even if the
adversary has access to an oracle that “breaks” polynomially many commit-
ments. There exist several relaxed variants of CCA-security. For parallel CCA-
security [24] the adversary can ask the oracle a single query that consists of
polynomially many commitments sent to the oracle in parallel. For one-one
CCA-security [23] the adversary can ask the oracle a single query that consists
of exactly one commitment.

CCA-secure commitment schemes are a central building block for concur-
rently secure multi-party computation in the plain model, i.e., without trusted
setup apart from authenticated channels. CCA-secure commitment schemes were
introduced by [9] in the context of “angel-based security”. Angel-based security,
first proposed by [30], relaxes the security notion of the universal composability
framework (UC) [6] in order to circumvent the broad impossibility results of the
latter. In the angel-based security framework, concurrently secure multi-party
computation in the plain model can be achieved for (almost) every cryptographic
task [9,10,23–25]. This stands in contrast to the UC framework where many
important functionalities such as commitments or zero-knowledge cannot be
realized in the plain model (see, e.g., [7,8]). Moreover, parallel CCA-secure com-
mitment schemes [5,23] and one-one CCA-secure commitment schemes [23,24]
were used as building blocks for several recent round-efficient concurrently secure
general multi-party computation protocols in the plain model.

Considering this great variety of useful security notions, it is a natural ques-
tion to ask how these notions are related. Surprisingly, only a few relations have
been analyzed so far (cf. Fig. 1). Most works focus either on security notions
related to CCA-security or on security notions related to non-malleability. In
this work we focus on the relations between the two concepts and provide a more
complete relation diagram. Motivated by public-key encryption, we also define
and analyze the hierarchy of q-bounded CCA-security [14], where the adversary
can adaptively ask the oracle at most q queries for a fixed natural number q.

Related Work. This work is in the vein of a series of papers establish-
ing relations between different variants of security definitions for public-key
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encryption and commitments such as [1–4,12,14,29]. For instance, Bellare
et al. [1] prove relations among non-malleability-based and indistinguishability-
based notions of security for public-key encryption. In particular, they
show that IND-CCA2-security and NM-CCA2-security are equivalent.
Bellare and Sahai [3] show that the indistinguishability-based definition of non-
malleable encryption is equivalent to the simulation-based definition. More-
over, they show that non-malleability is equivalent to indistinguishability for
public-key encryption under a “parallel chosen ciphertext attack”. Bellare
et al. [2] show that standard security for commitment schemes does not imply
selective opening security. Böhl et al. [4] analyze the relations between indis-
tinguishability-based and simulation-based definitions of selective opening secu-
rity for public-key encryption.

For the class of security notions for commitment schemes that are consid-
ered in this work, only a few relations are resolved, however. Pandey et al. [28]
show that CCA-security implies concurrent non-malleability. In [13] Ciampi
et al. show that the non-malleable commitment scheme from a preliminary ver-
sion of [20] is not concurrently non-malleable. Lin et al. [26] construct a commit-
ment scheme that separates non-malleability and parallel non-malleability. The
remaining relations are, to the best of our knowledge, unsettled.

Our Contribution. We settle the relations among a variety of security notions
related to non-malleability and CCA-security that have been proposed for com-
mitment schemes in the literature (see Fig. 1).1

Our results show, in particular, that some of the known results from previous
works that dealt with public-key encryption do not carry over to the case of
commitment schemes. In particular, the result of Bellare and Sahai [3], who
showed that parallel non-malleability and parallel CCA-security are equivalent
for public-key encryption schemes, does not hold for commitment schemes, in
general. These two notions are only equivalent for non-interactive commitment
schemes (see Appendix A).

Interestingly, we are able to obtain all of our separation results using two
generic transformations. Given two appropriate security notions X and Y from
the class of security notions we compare in this work, these transformations take
a commitment scheme that fulfills notion X and output a commitment scheme
that still fulfills notion X but not notion Y . Both transformations are fully
black-box and require no additional computational assumptions.

The first transformation is used for separations where Y is a CCA-related
security notion. The key idea of this transformation is to expand a commit-
ment scheme that fulfills a security notion X by a “puzzle phase” where the
sender sends a specific computationally hard puzzle to the receiver. If the receiver
answers with a correct solution, then the sender “gives up” and sends his input

1 Note that we always use statistically binding commitment schemes in this work,
since we want the committed values in the experiments for CCA-security and non-
malleability (as well as their variants) to be uniquely defined (with overwhelm-
ing probability). We note that using strong computationally binding commitment
schemes would also work.
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Concurrent
non-malleability

Parallel
non-malleability

Non-malleability

CCA-security

Parallel CCA-security

One-one CCA-security

2-bounded
CCA-security

3-bounded
CCA-security

†
‡‡

‡‡‡‡

*

*

* only for non-interactive commitment schemes

Fig. 1. The relations between several security notions for commitment schemes. The
dotted arrows indicate trivial implications. The thin solid arrows indicate relations
proved in the literature (see [28] for † and [13] for ‡) or separating commitment schemes
from the literature (such as the scheme 〈C̃, R̃〉 from [26] for ‡‡). The thick arrows
indicate our results.

to the receiver who can then trivially win in the security game in this case.
If the puzzle is tailored appropriately, then the expanded commitment scheme
still fulfills notion X but fails to fulfill notion Y . Intuitively, this separation
holds because an adversary in the Y -security game has access to an oracle that
“breaks” the puzzle but an adversary in the X-security game does not.

The second transformation is used for separations where Y is a variant of
non-malleability. This transformation expands a given commitment scheme by
adding a “share phase” in which the sender commits to two random shares of his
input in a specific order. This is done in such a way that a man-in-the-middle
adversary is able to forward these commitments to the receiver in his experiment.
After the commit phase is over, these shares will be opened by the implicit oracle
in the experiment and given to the distinguisher, who can then reconstruct the
committed value.

On Black-Box Separations. We note that the separations proven in this work
differ from black-box separations. Separating a security notion X from a security
notion Y by a black-box separation means that one cannot construct a scheme
satisfying X from a scheme satisfying Y in a black-box manner.

Black-box separations are stronger than our separations. However, we note
that one cannot achieve black-box separations between the security notions
described in this work. This is because, given a (statistically binding) com-
mitment scheme satisfying any of the security notions considered in this work,
one can construct a commitment scheme satisfying any other security notion in
this work in a black-box way. This can be shown as follows: First, each of the
notions described in this work implies the standard hiding property for commit-
ment schemes. Furthermore, given a commitment scheme that is binding and
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hiding, one can construct a one-way function in a black-box way [21]. Moreover,
[23] showed how to construct a CCA-secure commitment scheme from any one-
way function in a black-box way. Since CCA-security implies any other notion
described in this work, the statement follows. This transformation is, of course,
highly redundant and inefficient and therefore only of theoretical interest.

2 Preliminaries and Definitions

For any x ∈ {0, 1}∗, we let |x| denote the size of x. If S is a set, then s
$← S

denotes the operation of picking an element s of S uniformly at random. We use
the term ppt as abbreviation for probabilistic polynomial time (in the security
parameter) in the context of algorithms or machines. We write A(x) to indicate
that A is an algorithm with input x, we write AO(x) to indicate that A is
an algorithm with input x and black-box access to the oracle O and we write
y ← A(x) to denote the output y of A with input x.

The term negligible is used for denoting functions that are (asymptotically)
smaller than one over any polynomial. More precisely, a function f(·) from non-
negative integers to reals is called negligible if for every constant c > 0 and all
sufficiently large k, it holds that |f(k)| < k−c.

Commitment Schemes. A commitment scheme is a two-phase two-party pro-
tocol in which one party, the sender, commits himself in the first phase (the com-
mit phase) to a value while keeping it secret from the other party, the receiver.
In the second phase (the reveal phase) the sender reveals the value he committed
to. At the end of this phase the receiver outputs this value. In addition to the
requirement that both sender and receiver run in polynomial time, we require
that a commitment scheme fulfills the following two properties:

– Hiding : The commit phase yields no knowledge of the value to the receiver.
This also applies to cheating receivers.

– Binding : Given the transcript of the interaction in the first phase, there exists
at most one value that the receiver can accept as the correct opening in the
reveal phase. This also applies to cheating senders.

For a formal definition see [17]. In this work we focus on statistically binding
and computationally hiding (string) commitment schemes, i.e., the binding prop-
erty holds against unbounded adversaries, while the hiding property only holds
against computationally bounded (non-uniform) adversaries. This is because
committed values are then uniquely defined with overwhelming probability.

In a tag-based commitment scheme both parties get a bit string called tag as
additional input. We will denote by Comtag(v) a (possibly interactive) commit-
ment to the value v ∈ {0, 1}k under the tag tag ∈ {0, 1}k using the commitment
scheme Com.2 In the following, we only consider tag-based commitment schemes
2 Note that if we later use a formulation like “the sender sends Comtag(v) to the

receiver”, we do not necessarily assume that the commitment scheme is non-
interactive and hence consists of only one message. We rather use this formulation
as an abbreviation for “the sender commits to v under the tag tag to the receiver
using the commitment scheme Com”.
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because the definitions of security notions considered here require tag-based
commitment schemes.

CCA-Secure Commitment Schemes. Roughly speaking, a tag-based com-
mitment scheme Com is said to be CCA-secure [25], if the value committed to
using a tag tag remains hidden even if the receiver has access to an oracle that
“breaks” polynomially many commitments using a different tag tag′ �= tag for
him. In this work we consider committed value oracles (oracles that return the
committed value) only, but not decommitment oracles (oracles that return the
full decommitment information).

The CCA-oracle Occa for Com acts as follows in an interaction with an adver-
sary A: It participates with A in polynomially many sessions of the commit phase
of Com as an honest receiver (the adversary determines the tag he wants to use
at the start of each session). At the end of each session, if the session is valid,
the oracle returns the unique value v committed to in the interaction; other-
wise, it returns ⊥. Note that if a session has multiple valid committed values,
the CCA-oracle also returns ⊥. The statistical binding property guarantees that
this happens with only negligible probability.

Let ExpccaCom,A(k) denote the output of the following probabilistic experiment:
Let Occa be the CCA-oracle for Com. The adversary has access to Occa during
the entire course of the experiment. On input 1k, z, the adversary AOcca picks a
tag tag and two strings v0 and v1 with |v0| = |v1| and sends this triple to the

experiment. The experiment randomly selects a bit b
$←− {0, 1} and then commits

to vb using the tag tag to AOcca . Finally, AOcca sends a bit b′ to the experiment,
which outputs 1 if b = b′ and 0 otherwise. The output of the experiment is
replaced by ⊥ if during the execution the adversary queries the oracle on a
commitment that uses the challenge tag tag.

Definition 1 (CCA-secure commitment scheme). Let Com be a tag-based
commitment scheme and Occa be the CCA-oracle for Com. We say that Com is
CCA-secure, if for every ppt-adversary A and all z ∈ {0, 1}∗ the advantage

AdvccaCom,A(z)(k) := Pr[ExpccaCom,A(z)(k) = 1 ] − 1
2

is a negligible function.

Parallel CCA-Secure Commitment Schemes. Parallel CCA-secure com-
mitment schemes are for example defined by Kiyoshima [23]. The parallel CCA-
oracle Opcca is defined like the CCA-oracle, except that the adversary is restricted
to a parallel query, i.e., the adversary can only send a single query that may con-
tain multiple commitments sent in parallel. Let ExppccaCom,A(k) define the output
of the security game for parallel CCA-security (PCCA). The formal definition is
then analogous to the definition of CCA-security.

One-One CCA-Secure Commitment Schemes. One-one CCA-secure com-
mitment schemes are for example defined by Kiyoshima [23]. The one-one CCA-
oracle O1cca is defined like the CCA-oracle, except that the adversary is restricted



318 B. Broadnax et al.

to a single query consisting of exactly one commitment. Let Exp1ccaCom,A(k) define
the output of the security game for one-one CCA-security (1CCA). The formal
definition is then analogous to the definition of CCA-security.

q-Bounded CCA-Secure Commitment Schemes. The q-bounded CCA-
oracle Oqcca is defined like the CCA-oracle, except that the adversary is restricted
to q ∈ IN queries where each query consists of exactly one commitment. Let
Expqcca

Com,A(k) define the output of the security game for q-bounded CCA-security
(qCCA). The formal definition is then analogous to the definition of CCA-
security. Note that by definition 1-bounded CCA-security equals one-one CCA-
security.

Non-malleable Commitment Schemes. We now specify a definition of non-
malleable commitment schemes that is essentially a game-based variant of the
definition by Goyal et al. [20]. It is easy to see that the two definitions are
equivalent. Using a game-based variant of [20] makes it easier to compare this
notion with CCA-security.

Let ExpnmCom,A,D(k) denote the output of the following probabilistic experi-
ment: On input 1k, z, the adversary A picks a tag tag and two strings v0 and
v1 with |v0| = |v1|, sends this triple to the sender S and gets back the challenge
commitment Comtag(vb), where b is a random bit chosen by the sender. The
adversary then sends a commitment Com

˜tag(ṽb) to the receiver R. If ˜tag = tag,
ṽb is set to ⊥. At the end of this interaction the adversary outputs his view
viewA and the receiver outputs the value ṽb. Note that the experiment plays the
role of the sender and the receiver in the interaction. Also note that the receiver
has implicit access to a super-polynomial-time oracle O that breaks the received
commitment for him and that the adversary’s view contains the randomness of
the adversary and a transcript of all messages sent and received by the adversary.
After the interaction has finished, the distinguisher D gets z, the view viewA of
the adversary and the value ṽb as input and outputs a bit b′. The experiment
outputs 1 if b = b′ and 0 otherwise.

Definition 2 (Non-malleable commitment scheme). A commitment
scheme Com is non-malleable if for every ppt man-in-the-middle adversary A,
for every ppt distinguisher D and all z ∈ {0, 1}∗ the advantage

AdvnmCom,A(z),D(k) := Pr[ExpnmCom,A(z),D(k) = 1 ] − 1
2

is a negligible function.

Concurrent Non-malleable Commitment Schemes. Tag-based concurrent
non-malleable commitment schemes are examined by Lin et al. [26]. Here, man-
in-the-middle adversaries are participating in left and right interactions in which
m = poly(k) commitments take place (where k ∈ IN is the security parameter).

In the concurrent setting, the adversary A is simultaneously participating
in m left and right interactions. He sends a triple of sequences (tag, v0, v1)
with tag = (tag1, . . . , tagm), v0 = (v0

1 , . . . , v
0
m) and v1 = (v1

1 , . . . , v
1
m) to the
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sender and receives commitments to values vb
1, . . . , v

b
m with tags tag1, . . . , tagm

from the sender S and commits to values ṽb
1, . . . , ṽ

b
m with tags ˜tag1, . . . , ˜tagm

to the receiver R. For any i such that ˜tagi = tagj for some j, set ṽb
i = ⊥.

Let ExpcnmCom,A,D(k) define the output of the security game for concurrent non-
malleability (CNM). The formal definition is then analogous to the definition of
non-malleability.

Parallel Non-malleable Commitment Schemes. A relaxed notion of con-
current non-malleability is parallel non-malleability [16]. Here, like for concurrent
non-malleability, the adversary receives m commitments from the sender and
sends m commitments to the receiver. However, for parallel non-malleability the
commitments are always sent in parallel. Again, any commitment in the right
interaction that uses a tag that is also present in the left interaction is con-
sidered invalid. Let ExppnmCom,A,D(k) define the output of the security game for
parallel non-malleability (PNM). The formal definition is then analogous to the
definition of non-malleability.

O-One-Way Commitment Schemes. Informally speaking, a tag-based com-
mitment scheme Com with message space {0, 1}k and tag space {0, 1}k is said to
be O-one-way, if no ppt-adversary can break a commitment to a random value,
even with access to the oracle O. The property can be formally defined with a
security game. Let ExpowCom,A,O(k) denote the output of the following probabilis-
tic experiment: The experiment generates a random value v and a random tag
tag, i.e., v

$← {0, 1}k, tag
$← {0, 1}k. It then sends the commitment Comtag(v)

as challenge to the ppt-adversary AO. On input 1k, z, the adversary now tries
to break the commitment and sends at some time his solution v′ back to the
experiment which outputs 1 if v = v′ and 0 otherwise. Note that during the
entire course of the game the adversary has access to the oracle O. The output
of the experiment is replaced by ⊥ if during the execution the adversary queries
the oracle on a commitment that uses the challenge tag tag.

Definition 3 (O-one-way commitment scheme). Let Com be a tag-based
commitment scheme and O be a specific oracle for it. We say that Com is O-
one-way, if for every ppt-adversary A and all z ∈ {0, 1}∗ the advantage

AdvowCom,A(z),O(k) := Pr[ExpowCom,A(z),O(k) = 1 ]

is a negligible function.

This definition can be instantiated with various oracles. For example,
Occa-one-wayness describes a security notion where the one-way adversary
has access to the CCA-oracle for the commitment scheme in question. Note
that CCA-security implies Occa-one-wayness. Similarly, parallel CCA-security
implies Opcca-one-wayness, one-one CCA-security implies O1cca-one-wayness
and q-bounded CCA-security implies Oqcca-one-wayness. Also note that non-
malleability (and its stronger variants) implies ε-one-wayness for the empty ora-
cle ε. Note that the empty oracle just returns ⊥ for each query.

Extractable Commitment Schemes. Finally, we define extractable commit-
ment schemes:
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Definition 4 (Extractable commitment scheme). Let Com be a statisti-
cally binding commitment scheme. Then, Com is extractable if there exists a
ppt oracle machine E (the “extractor”) such that for any ppt sender S∗, ES∗

outputs a pair (τ, σ) such that

– τ is identically distributed to the view of S∗ at the end of interacting with an
honest receiver R in the commit phase.

– the probability that τ is accepting and σ �= ⊥ is negligible.
– if σ �= ⊥, then it is statistically impossible to decommit τ to any value other

than σ.

3 The First Transformation: Puzzle-Solution Approach

In this section, we describe the first transformation in this work. We call this
approach the puzzle-solution approach because the general idea is to expand a
commitment scheme by a puzzle phase that is executed at the beginning. Let
X and Y be security notions for commitment schemes for which one wants to
show that X does not imply Y . For the first transformation, Y will always be a
CCA-related security notion. Let OX be the oracle an adversary can use in the
security game for the notion X. Let analogously OY be the oracle an adversary
can use in the security game for the notion Y (note that these oracles can be the
“empty oracle”). Let Com be a (possibly interactive) commitment scheme that
fulfills X. We will sometimes call Com the base commitment scheme.

3.1 The Construction

Using Com, one can then define the separating commitment scheme, which we
will denote by Com′. We define Com′ as output of a transformation PComGen that
gets a base commitment scheme, a number l ∈ IN and a string sch ∈ {seq, par}
as input, i.e., Com′ ← PComGen(Com, l, sch).

In the commitment scheme Com′ the sender S, who wants to commit to a
value v given a tag tag, first sends a puzzle to the receiver R and, depending on
whether R solves the puzzle or not, sends v either as plaintext or commits to v
using the base commitment scheme Com. The puzzle consists of l commitments
to random messages (using Com) that are either sent in parallel (if sch = par) or
sequentially (if sch = seq) to R. More specifically, the sender randomly generates

l tags of length k and l values also of length k, i.e., (tag1p, . . . , tagl
p)

$←− ({0, 1}k
)l,

(w1, . . . , wl)
$←− ({0, 1}k

)l.
If sch = par, the sender commits in parallel to (w1, . . . , wl) under the tags

(tag1p, . . . , tagl
p) to the receiver. The receiver then answers with a possible solu-

tion to the puzzle by simply guessing, i.e., sending random (w′
1, . . . , w

′
l). The

sender then checks if for all i ∈ {1, . . . , l} it holds that wi = w′
i. If this is the

case, S sends v as plaintext to the receiver. If it does not hold, S commits to v
using the tag tag and the commitment scheme Com to R.
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If sch = seq, the sender sequentially commits to (w1, . . . , wl) under the tags
(tag1p, . . . , tagl

p) to the receiver. More specifically, he first commits to w1 using the
tag tag1p and the commitment scheme Com and waits for the possible solution.
The receiver R then sends a random value w′

1 to S. If the solution is incorrect,
then S commits to v using the tag tag and the base commitment scheme Com
to R. Otherwise, he continues the puzzle phase by sending the second puzzle
commitment, i.e., Comtag2

p
(w2), to R and again waits for the possible solution.

The receiver R then sends another random value w′
2 to S. If the solution is

incorrect, then S commits to v using the tag tag and the commitment scheme
Com. Otherwise, he continues by sending the third puzzle commitment and so
forth. If R has correctly solved all l puzzle commitments, S sends v as plaintext
to the receiver.

Remark 1. When designing the separating commitment scheme, l and sch should
be carefully picked. The puzzle should be selected in such a way that it can be
solved with OY but not with OX .

3.2 The Proof Strategy

To prove that X does not imply Y , one shows that the constructed commitment
scheme Com′ still fulfills X if the base commitment scheme Com fulfills X, but
not Y .

Show that Com′ is not Y -secure. For that purpose, one constructs an adver-
sary A, who breaks the Y -security of Com′. The strategy for A is to let OY solve
the puzzle for him. He then gets the challenge value as plaintext and can thus
trivially win in the security game for Y .

The probability that A wins the game is overwhelming because the only
possibilities how A can lose are: (1) the oracle solves the puzzle it gets before
the query, (2) a session with the oracle has multiple valid committed values and
OY thus returns ⊥, (3) during the execution the adversary queries the oracle on a
commitment that uses the challenge tag (which happens if a puzzle commitment
uses the challenge tag). Since one can show that each possibility occurs only with
negligible probability, the overall winning probability of A is overwhelming.

Show that Com′ is X-secure (under the assumption that Com is X-
secure). Let A be an adversary on Com′ in the security game for X, who wins
the game with non-negligible advantage. Depending whether or not A solves at
least one puzzle3 in the security game for X, one has to distinguish two cases. For
each case one builds an adversary who breaks the X-security of the commitment
scheme Com.

Case 1: A solves at least one puzzle. In this case, one constructs an adversary
B1 on the OX -one-wayness of Com. Recall that X-security implies OX -one-
wayness for our cases. We denote by n the number of challenge commitments
3 Note that for example in the concurrent non-malleability security game multiple

puzzles (with l = 1 for each puzzle) are sent (one for each session).
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A awaits. Since each of the n corresponding puzzles contains l commitments, A
expects in total m = l · n puzzle commitments. The strategy of B1 is then first
to randomly generate m−1 puzzle values and tags and to randomly select a j ∈
{1, . . . , m}. After B1 has received the challenge Comtag(v) from the experiment,
he starts to send A the puzzle(s). For all puzzle commitments except the jth he
uses the honestly generated values and tags. As jth puzzle commitment he uses
the challenge. After A has sent the solution to the jth puzzle commitment (aka
the challenge), B1 terminates the simulation of A and sends A’s solution to the
jth puzzle commitment as his own solution to the experiment.

If A asks his oracle OX during the game, B1 sends random answers in the
puzzle phase (to simulate the oracle) and forwards the actual oracle query to his
own OX . There is a chance that B1’s experiment returns ⊥ at the end of the
experiment. This happens if one of A’s oracle queries contains a tag that equals
B1’s challenge tag. This case may occur with non-negligible probability because
the challenge tags of A and B1 are not necessarily identical. Fortunately, the
opposite event also occurs with non-negligible probability.

The adversary B1 thus wins his game if A solves the puzzle commitment that
is the challenge and A’s oracle queries do not involve the challenge tag.

Case 2: A solves none of the puzzles. In this case one builds an adversary
B2 on the X-security of Com. The strategy of B2 is to send random puzzle(s) to
A, who fails to solve them (by assumption). After the puzzle phase, B2 forwards
his own challenge to A. The adversary B2 also forwards A’s solution as his own
solution to the experiment.

If A asks his oracle OX during the game, B2 sends random answers in the
puzzle phase (to simulate the oracle) and forwards the actual oracle query to his
own OX . Here, the challenge tags of A and B2 are always identical (because B2

forwards it to his experiment), so the possibility of B2’s experiment outputting
⊥ is not a problem in this case.

The adversary B2 thus wins his game if A wins his own game and solves no
puzzle.

4 A Concrete Example of the Puzzle Solution Approach:
Concurrent Non-malleability Does Not Imply
CCA-Security

In this section, we apply the puzzle-solution approach to separate the notion of
CCA-security from the notion of concurrent non-malleability.4 To this end, we
define Com′ as Com′ ← PComGen(Com, 1, seq) where Com is a statistically bind-
ing, concurrent non-malleable commitment scheme. The puzzle hence consists
of just one commitment (thus the scheduling does not matter in this case). We
follow the proof strategy described in Sect. 3.
4 While the separation of CCA-security from concurrent non-malleability is not very

surprising, we have nonetheless chosen to give a full proof for this separation. This
is because this proof is one of the easier applications of our puzzle-solution approach
and therefore (hopefully) a good example for the reader.
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Theorem 1 (CNM � CCA). If Com is a statistically binding, concurrent
non-malleable commitment scheme, then Com′ ← PComGen(Com, 1, seq) is also
statistically binding and concurrent non-malleable but not CCA-secure.

Proof. The statistical binding property of Com′ follows readily from the statisti-
cal binding property of the underlying commitment scheme Com. In the follow-
ing, we prove that Com′ is concurrent non-malleable but not CCA-secure.5

Claim 1: Com′ is not CCA-secure. We show that we can build a CCA-
adversary A, such that A wins the CCA-security game for the commitment
scheme Com′ with non-negligible advantage.

The CCA-adversary A acts as depicted in Fig. 2. His strategy is to let the
oracle solve the puzzle he got from the experiment and to hence get the challenge
as plaintext. There are three possibilities how A can lose the game:

– The oracle solves the puzzle, i.e., y = w∗
p.

– The puzzle tag equals the challenge tag, i.e., tag = tagp (in that case the
experiment returns ⊥ as result instead of a bit).

– The query sent to the oracle has more than one valid opening (in that case
the oracle returns w′

p = ⊥).

The first possibility occurs with probability 1/2k because the oracle uniformly
selects a solution. The second possibility also occurs with probability 1/2k because
the puzzle tag is uniformly selected. The third possibility occurs with negligi-
ble probability, which we denote by negl1(k), because Com is by assumption
statistically binding. Thus, A’s advantage is non-negligible:

AdvccaCom′,A(k) = Pr[ExpccaCom′,A(k) = 1] − 1
2

≥ 1 − 1
2k

− 1
2k

− negl1(k) − 1
2

=
1
2

− 1
2k−1

− negl1(k)

Claim 2: Com′ is concurrent non-malleable. Let us assume Com′ is not
concurrent non-malleable. Then we show that Com is also not concurrent non-
malleable. Consider an adversary A and distinguisher DA such that A wins
in the concurrent non-malleability security game for the commitment scheme
Com′ with advantage AdvcnmCom′,A,DA(k). Let m = poly(k), where k is the security
parameter, be the number of concurrent commitment sessions initiated by the
sender in the concurrent non-malleability security game for Com′. Then we can
split up A’s advantage into

AdvcnmCom′,A,DA(k) = Pr[ExpcnmCom′,A,DA(k) = 1 ∧ ∃i : A solves puzzle i]

+ Pr[ExpcnmCom′,A,DA(k) = 1 ∧ �i : A solves puzzle i] − 1
2

(1)

5 For ease of notation, we omit the (non-uniform) input z of the adversary and dis-
tinguisher. The proof can be easily adapted to include this input.
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Expcca A Occa

(tag, v0, v1)
b

$←− {0, 1}
tagp

$←− {0, 1}k
wp

$←− {0, 1}k

If w′
p = wp, send vb

Else, send Comtag(vb)

⊥, if tagp = tag∗
p

1, if b = b′

0, otherwise

tag
$←− {0, 1}k

(v0, v1)
$←−

(

{0, 1}k
)2

tag∗
p

$←− {0, 1}k
w∗
p

$←− {0, 1}k

If y = w∗
p, give up

Else, continue

If x /∈ {v0, v1}, give up
Else, continue

b′ :=

{

1 , if x equals v1
0 , otherwise

y
$←− {0, 1}k

Comtagp(wp)

Comtag∗
p
(w∗

p)

y

Comtagp(wp)

w′
pw′

p

vb / Comtag(vb)
=: x

b′

Fig. 2. Graphical depiction of the behavior of the adversary A in the CCA-security
game for the commitment scheme Com′. Note that w′

p ∈ {wp, ⊥} is either the unique
committed value wp or, if the commitment has more than one valid opening, ⊥.

Hence, in the following it suffices to consider that A wins and

– Case 1: A solves at least one of the m puzzles.
– Case 2: A solves none of the m puzzles.

Case 1: A solves at least one of the m puzzles. Using A we construct an adversary
B1 against the ε-one-wayness (for the empty oracle ε) of the commitment scheme
Com. The adversary B1 acts as depicted in Fig. 3 in the ε-one-way security game
for the commitment scheme Com. His strategy is to mimic the experiment for
A in the concurrent non-malleability security game and to replace a random
puzzle commitment with the challenge he got from his own experiment. Note
that depending on the behavior of A, it may at some time happen that A sends
a puzzle to who he believes is the receiver, but is actually B1. If B1 receives such
a puzzle Com

˜tag
i
p
(w̃i) from A, he acts as an honest receiver and sends a random
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Expow B1

A

(tag,v0,v1)
v

$←− {0, 1}k
tag

$←− {0, 1}k

1, if w′
j = v

0, otherwise

b
$←− {0, 1}

j
$←− {1, . . . ,m}

(tag1p, . . . , tag
j−1
p , tagj+1

p , . . . , tagmp ) $←− {0, 1}k)m−1

(w1, . . . , wj−1, wj+1, . . . , wm) $←− {0, 1}k)m−1

tagjp := tag

wj := v

Comtag(v)

Comtagip
(wi)

w′
i

Comtagi(v
b
i )

w′
j

For i from
1 to m

Fig. 3. Graphical depiction of the behavior of the adversary B1 in the ε-one-way
security game for the commitment scheme Com. Note that tag = (tag1, . . . , tagm),
v0 = (v0

1 , . . . , v0
m) and v1 = (v1

1 , . . . , v1
m).

solution w̃′
i back. The time of A’s interaction with the “receiver” or the contents

of the puzzle do not matter in this case, therefore this interaction is omitted in
Fig. 3.

By construction, B1 wins the game if v equals w′
j , which happens if A cor-

rectly solves the jth puzzle. Thus, the advantage of B1 is as follows:

AdvowCom,B1,ε(k) = Pr[ExpowCom,B1,ε(k) = 1]

≥ Pr[ExpowCom,B1,ε(k) = 1 | ∃i : A solves puzzle i]

· Pr[∃i : A solves puzzle i]

≥ 1
m

· Pr[∃i : A solves puzzle i]

≥ 1
m

· Pr[ExpcnmCom′,A,DA(k) = 1 ∧ ∃i : A solves puzzle i]

(2)

Case 2: A solves none of the m puzzles. Using A, we construct an adversary
B2 against the concurrent non-malleability property of the commitment scheme
Com. For each i ∈ {1, . . . , m}, B2 sends an honestly generated puzzle to A
(thereby simulating the sender), who fails to solve it, and then forwards the ith

commitment he gets from the sender to A. When A interacts with his receiver,
who is simulated by B2, B2 answers randomly in the puzzle phases (to simulate
an honest receiver) and forwards the commitments from A to his own receiver
(cf. Fig. 4).
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S B2

A

R
(tag,v0,v1)(tag,v0,v1)

b
$←− {0, 1}

(tag1p, . . . , tag
m
p ) $←− {0, 1}k)m

(w1, . . . , wm) $←− {0, 1}k)m

If w′
i = wi, give up

yi
$←− {0, 1}k

viewB2 (ṽb1, . . . , ṽ
b
q)

Comtagi(v
b
i )

Comtagip
(wi)

w′
i

Comtagi(v
b
i )

Com
˜tag

i
p
(w̃i)

yi

Com
˜tagi

(ṽbi ) / ṽbi

viewA

Com
˜tagi

(ṽbi )

For i from
1 to m

For i from
1 to m

For i from
1 to m

For i from
1 to m

DB2

b′

Description of DB2 :

• Execute the distinguisher from A,
i.e., b′ ← DA(viewA, (ṽb1, . . . , ṽbq))

(I)

(II)

Fig. 4. Graphical depiction of the behavior of the adversary B2 in the concurrent non-
malleability security game for the commitment scheme Com. At (I) A’s interaction
with the “sender” is depicted and at (II) A’s interaction with the “receiver”. Note
that tag = (tag1, . . . , tagm), v0 = (v0

1 , . . . , v0
m) and v1 = (v1

1 , . . . , v
1
m). Note that

Com
˜tagi

(ṽb
i )/ṽb

i denotes that, depending on whether B2 correctly guessed the solution

yi or not, the ith result value is sent as a commitment or as a plaintext value. In the
(negligible) case that B2 correctly solves a puzzle and gets a value ṽi as plaintext, he
himself commits to this value before sending the commitment to the receiver. Also note
that viewB2 contains viewA.

The advantage of B2 in this case is as follows:

AdvcnmCom,B2,DB2
(k) = Pr[ExpcnmCom,B2,DB2

(k) = 1] − 1
2

≥ Pr[ExpcnmCom,B2,DB2
(k) = 1 | �i : A solves puzzle i]

· Pr[�i : A solves puzzle i] − 1
2

= Pr[ExpcnmCom′,A,DA(k) = 1 | �i : A solves puzzle i]

· Pr[�i : A solves puzzle i] − 1
2

= Pr[ExpcnmCom′,A,DA(k) = 1 ∧ �i : A solves puzzle i] − 1
2

(3)
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Putting things together. Putting Eqs. 2 and 3 back into Eq. 1, we get the following:

AdvcnmCom′,A,DA(k) = Pr[ExpcnmCom′,A,DA(k) = 1 ∧ ∃i : A solves puzzle i]

+ Pr[ExpcnmCom′,A,DA(k) = 1 ∧ �i : A solves puzzle i] − 1
2

≤ m · AdvowCom,B1,ε(k) + AdvcnmCom,B2,DB2
(k) +

1
2

− 1
2

= m · AdvowCom,B1,ε(k) + AdvcnmCom,B2,DB2
(k)

Since Com is by assumption concurrent non-malleable, it holds that
AdvowCom,B1,ε(k) and AdvcnmCom,B2,DB2

(k) are negligible. Thus, AdvcnmCom′,A,DA(k) is
also negligible, which concludes the proof of the theorem. 
�

5 More Instantiations of the Puzzle-Solution Approach

In this section, we show how more separation results can be obtained by appro-
priate instantiations of the puzzle-solution approach. Therefore, we illustrate
how the puzzle-solution approach from Sect. 3 should be instantiated to show
the respective result.

Using the same puzzle and very similar arguments as in the proof of Theo-
rem 1, one can prove that parallel non-malleability does not imply parallel CCA-
security, that non-malleability does not imply one-one CCA-security, that con-
current non-malleability does not imply parallel CCA-security and that parallel
non-malleability does not imply one-one CCA-security.

Theorem 2 (PNM � PCCA). If Com is a statistically binding, parallel
non-malleable commitment scheme, then Com′ ← PComGen(Com, 1, seq) is also
statistically binding and parallel non-malleable but not parallel CCA-secure.

Theorem 3 (NM � 1CCA). If Com is a statistically binding, non-malleable
commitment scheme, then Com′ ← PComGen(Com, 1, seq) is also statistically
binding and non-malleable but not one-one CCA-secure.

Theorem 4 (CNM � PCCA). If Com is a statistically binding, concurrent
non-malleable commitment scheme, then Com′ ← PComGen(Com, 1, seq) is also
statistically binding and concurrent non-malleable but not parallel CCA-secure.

Theorem 5 (PNM � 1CCA). If Com is a statistically binding, parallel non-
malleable commitment scheme, then Com′ ← PComGen(Com, 1, seq) is also sta-
tistically binding and parallel non-malleable but not one-one CCA-secure.

We can prove additional separations using other puzzles.

Theorem 6 (1CCA � PCCA). If Com is a statistically binding, one-one
CCA-secure commitment scheme, then Com′ ← PComGen(Com, 2, par) is also
statistically binding and one-one CCA-secure but not parallel CCA-secure.
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Proof Idea. The puzzle consists of two parallel commitments. It is thus solvable
with a parallel CCA-oracle but not with a one-one CCA-oracle. The probability
that in the reduction of the first case of the second claim the oracle query can
be answered is at least 1/2 − 1/2k (with k the tag length). 
�
Theorem 7 (PCCA � CCA). If Com is a statistically binding, parallel
CCA-secure commitment scheme, then Com′ ← PComGen(Com, 2, seq) is also
statistically binding and parallel CCA-secure but not CCA-secure.

Proof Idea. The puzzle consists of two sequentially sent commitments. It is thus
solvable with a CCA-oracle but not with a parallel CCA-oracle. The probability
that in the reduction of the first case of the second claim the oracle query can
be answered is at least 1/2 − m/2k (with m the number of commitments in the
oracle query and k the tag length). 
�
Theorem 8 (qCCA � (q + 1)CCA). Let q ≥ 1 be a positive integer. If
Com is a statistically binding, q-bounded CCA-secure commitment scheme, then
Com′ ← PComGen(Com, q + 1, seq) is also statistically binding and q-bounded
CCA-secure but not (q + 1)-bounded CCA-secure.

Proof Idea. The puzzle consists of q + 1 sequentially sent commitments. It is
thus solvable with a (q + 1)-bounded CCA-oracle but not with a q-bounded
CCA-oracle. The probability that in the reduction of the first case of the second
claim the oracle query can be answered is at least 1/q+1 − 1/2k (with k the tag
length). 
�

6 The Second Transformation: Sharing Approach

In this section, we settle the remaining separations. Up to now we have been able
to prove our separations using the puzzle-solution approach. However, in order
to prove the remaining separations, we cannot use the puzzle-solution approach
anymore. This is because we need to construct commitment schemes that do not
fulfill a certain variant of non-malleability for the remaining separations. We
can therefore no longer insert a puzzle into a given commitment scheme since an
adversary (i.e., a man-in-the-middle) in a non-malleability-related experiment
does not have a committed value oracle at his disposal that can be used to solve
the puzzle.

We therefore deviate from the puzzle-solution approach in the following way:
Instead of sending a puzzle, i.e., commitments to random strings, we let the
sender commit to shares of the message to be committed to using two different
random tags. This way, the man-in-the-middle will be able to forward the com-
mitments to the shares to the receiver in his experiment. After the commit phase
is over, these shares will then be opened by the implicit oracle in the experiment.
The distinguisher will then be able to reconstruct the message and win in the
experiment.
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Using the above approach, we first show that parallel CCA-security does not
imply concurrent non-malleability. To this end, consider the following scheme
Com′, given a commitment scheme Com:

On input v ∈ {0, 1}k, tag ∈ {0, 1}k, the sender generates message shares
s0, s1 ∈ {0, 1}k such that s0⊕s1 = v. He then sends Comtag0(s0) and Comtag1(s1)
to the receiver in a sequential order using random tags tag0, tag1 ∈ {0, 1}k.
Afterwards, the sender sends Comtag(v) to the receiver. The unveil phase is the
same as in Com (notice that the shares are never unveiled).

First note that, in general, the above construction Com′ does not yield a
separation between concurrent non-malleability and parallel CCA-security, even
if Com is parallel CCA-secure. This is because Com′ may fulfill neither of these
two security notions. For instance, assuming Com is non-interactive, an adversary
against the parallel CCA-security of Com′ can simply forward the two commit-
ments to the shares to his oracle and thereby easily win in his experiment.

In order to obtain a separation, we therefore additionally assume that Com is
extractable. Note that if a statistically binding, parallel CCA-secure commitment
scheme exists, then there also exists a statistically binding, parallel CCA-secure
commitment scheme that is additionally extractable. This is because one-way
functions can be constructed from commitment schemes [21] (in a black-box
way) and [23] showed how to construct an extractable CCA-secure commitment
scheme from one-way functions (in a black-box way).

For the proof of the separation between concurrent non-malleability and par-
allel CCA-security, we use the following experiment as an auxiliary tool:

Definition 5 (RepeatPCCA). RepeatPCCA is like the ordinary parallel
CCA-security game except that the adversary can “reset” the experiment at any
given moment.

More specifically, the adversary (on input 1k, z) first chooses two strings
(v0, v1) such that |v0| = |v1| and a challenge tag tag and sends (v0, v1, tag) to the
experiment. The experiment then chooses a random bit b ← {0, 1} and commits
to vb using the tag tag. The adversary can then send reset to the experiment
or a bit b′. If the adversary sends reset, then he can send new strings (v′

0, v
′
1)

and a new challenge tag to the experiment. The experiment then commits to v′
b

using the new challenge tag (note that the challenge bit b remains the same.) The
adversary may reset the experiment polynomially many times. If the adversary
sends a bit b′, then the experiment outputs 1 if b = b′ and 0 otherwise. Throughout
the experiment, the adversary may send a single parallel query to Opcca on tags
that are different from the current challenge tag. If the adversary sends reset

but hasn’t finished his query yet, then his query is invalidated, i.e., the oracle
ignores all further messages.

Denote by ExprpccaCom,A(k) the output of the above experiment. We say that a
tag-based commitment scheme Com is RepeatPCCA-secure if for every ppt-
adversary A and all z ∈ {0, 1}∗ the advantage

AdvrpccaCom,A(z)(k) := Pr[ExprpccaCom,A(z)(k) = 1 ] − 1
2

is a negligible function.
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We have the following lemma:

Lemma 1. If a commitment scheme is parallel CCA-secure and extractable,
then it is also RepeatPCCA-secure.

Proof Idea. The proof is by reduction to parallel CCA-security. The reduction
B can answer the oracle query of the adversary A against the RepeatPCCA-
security in the following way: If A sends his query during B’s challenge phase,
then B forwards the query to his own parallel CCA-oracle. If A sends his query
before or after B’s challenge phase, then B uses the extractability property. 
�
We are now ready to prove the following theorem:

Theorem 9 (PCCA � CNM). If there exists a statistically binding, paral-
lel CCA-secure commitment scheme, then there also exists a statistically bind-
ing and parallel CCA-secure commitment scheme that is not concurrent non-
malleable.

Proof. Let Com′ be as above with a statistically binding, parallel CCA-secure
and extractable commitment scheme Com as its base commitment scheme (as
noted above, such a Com exists if a statistically binding, parallel CCA-secure
commitment scheme exists).

The statistical binding property of Com′ follows readily from the statistical
binding property of the underlying commitment scheme Com. In the following,
we prove that Com′ is parallel CCA-secure but not concurrent non-malleable.6

Claim 1: Com′ is not concurrent non-malleable. A man-in-the-middle
adversary in the concurrent non-malleability game first sends

(

(v0
1 , . . . , v

0
m),

(v1
1 , . . . , v

1
m), (tag1, . . . , tagm)

)

to the sender, who randomly selects a bit b. The
sender then commits for each i ∈ {1, . . . , m} to the shares sb

i0
and sb

i1
using

random tags and to vb
i using tag tagi to the adversary (with sb

i0
⊕ sb

i1
= vb

i ).
Let h := m

2 �. For each j ∈ {1, . . . , h} the adversary forwards the commit-
ments to sb

j0
and sb

j1
to the sender (as shares for these commitments he just

uses commitments to 0k).7 If m is odd, he chooses 0k as his last message to
commit to (he also uses commitments to 0k as shares). The distinguisher is then
given (sb

10 , s
b
11 , . . . , s

b
h0

, sb
h1

) as input (and possibly 0k) and can thus reconstruct
(vb

1, . . . , v
b
h), which suffices to deduce the correct b if the challenge messages are

chosen appropriately.

Claim 2: Com′ is parallel CCA-secure. Let A be a ppt-adversary against
the parallel CCA-security of Com′. Consider the following hybrids for the com-
mitment scheme Com′: H0 is the ordinary parallel CCA-security game, H1 is
6 For ease of notation, we again omit the (non-uniform) input z of the adversary and

distinguisher. The proof can be easily adapted to include this input.
7 Note that the receiver in Com′ does not “examine” the commitments to the shares.

This would, of course, not work anyway. Since we assume that the commitment
scheme Com is hiding, it is impossible for the receiver to learn the values of the
shares by any efficient procedure.
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like H0 except that the sender now commits to two random and independently
distributed strings s0, t (that therefore do not fulfill s0 ⊕ t = v in general) and
finally H2 that is like H1 except that the sender commits to 0k instead of (his
input) v.

Let outi be the output of the hybrid Hi.

Sub-Claim 1: |Pr[out0 = 1] − Pr[out1 = 1]| ≤ negl(k). Consider the following
adversary B against Com in the RepeatPCCA game: The adversary B simulates
the experiment H0 for A. (∗) After A has sent (v0, v1, tag), B chooses a random
bit b ← {0, 1} and generates shares s0, s1 such that s0 ⊕ s1 = vb and a random
string t ∈ {0, 1}k. The adversary B then sends (s1, t, tag1), where tag1 is a
random tag of length k, to his experiment. Afterwards, B randomly selects one
of the two (sequentially ordered) commit sessions to the shares of vb in the
commit phase of Com′ and inserts his challenge C∗ into the selected session and
Comtag0(s0) into the other session (for a randomly chosen tag tag0 ∈ {0, 1}k).
If the adversary A starts his (parallel) oracle query during the challenge phase
of B (i.e., during the session in which B has inserted his challenge C∗), then B
resets his experiment and repeats the aforementioned strategy (i.e., jumps back
to (∗)).

Otherwise, B answers A’s oracle query in the following way:

Case 1: If A starts his query before B’s challenge phase has begun and A’s query
does not use B’s challenge tag tag1, then B forwards A’s query to his own parallel
CCA-oracle (if A’s query uses B’s challenge tag, then B aborts).

Case 2: If A starts his query after B’s challenge phase is over, then B answers
the query by extracting A.8

Afterwards, B continues simulating the experiment H0 for A. After the sim-
ulated experiment is over, B outputs what the simulated experiment outputs.
The adversary B repeats the experiment at most k − 1 times (and aborts if the
kth iteration leads to another reset).

Denote by BadQuery the event that the adversary A queries the parallel
CCA-oracle during the challenge phase of B in all iterations.

Let j ∈ {1, 2} be the session into which B has chosen to insert his challenge
C∗. Since B chooses j randomly in each iteration and A’s view is independent of
j in each iteration, it holds that Pr[BadQuery] ≤ 1/2k.

Denote by GuessTag the event that A queries his parallel CCA-oracle before
the challenge C∗ has started using B’s challenge tag tag1 in one of the iterations.

8 Note that, in general, B cannot use his own oracle in case 2. This is because, in
this case, A queries his parallel CCA-oracle after B’s challenge phase is over. Hence,
A knows the challenge tag tag1 and may query his parallel CCA-oracle using tag1.
Therefore, B cannot simply forward A’s query to his own parallel CCA-oracle since
A’s query may contain B’s challenge tag. Furthermore, B cannot use the extractabil-
ity property in case 1 since the messages of A’s oracle query and the messages of B’s
challenge phase may overlap in this case. Hence, B cannot extract A since this may
require “rewinding” the experiment of B to a specific point in B’s challenge phase.
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Since the challenge tag tag1 is chosen randomly (from the set of strings of
length k) and A’s view is independent of tag1 before the challenge phase C∗

begins, it holds that Pr[GuessTag] ≤ k·i/2k, where i = poly(k) is the number of
commitments in the parallel oracle query.

Now it holds that conditioned on BadQuery and GuessTag both not occur-
ring, the output of B is either identically distributed to the output of H0 (this
holds if C∗ = Comtag1(s1)) or identically distributed to the output of H1 (this
holds if C∗ = Comtag1(t)).

Let E = BadQuery ∨ GuessTag and let Outputb∗(B) denote the output
of B in the RepeatPCCA-experiment if the challenge bit b∗ was chosen by the
RepeatPCCA-experiment. Then we have the following:

|Pr[out0 = 1] − Pr[out1 = 1]| ≤ Pr[E] + |Pr[out0 = 1|¬E] − Pr[out1 = 1|¬E]|
= Pr[E] + |Pr[Output0(B) = 1|¬E]
− Pr[Output1(B) = 1|¬E]|
≤ k · i + 1

2k
+ negl(k)

= negl′(k)

Note that |Pr[Output0(B) = 1|¬E] − Pr[Output1(B) = 1|¬E]| ≤ negl(k) holds
because Com is RepeatPCCA-secure by Lemma 1 and Pr[¬E] = 1 − k·i+1/2k is
overwhelming in k (see Appendix B).

Sub-Claim 2: |Pr[out1 = 1] − Pr[out2 = 1]| ≤ negl(k). This follows from a
standard reduction argument to the parallel CCA-security of Com. Consider
an adversary B′ against the parallel CCA-security of Com. The adversary B′

simulates the experiment H1 for A. After A has sent (v0, v1, tag), B′ chooses a
random bit b ← {0, 1} and sends (vb, 0k, tag) to his experiment. Afterwards, B′

forwards his challenge C∗ to A as A’s challenge. If A queries his oracle, then B′

forwards this query to his own oracle. After the simulated experiment is over, B′

outputs what the simulated experiment outputs. It holds that the output of B′

is identically distributed to the output of H1 if C∗ = Comtag(vb) and identically
distributed to the output of H2 if C∗ = Comtag(0k). Sub-Claim 2 now follows
from the parallel CCA-security of Com.

Sub-Claim 3: Pr[out2 = 1] = 1/2. This follows from the fact that the view of A
in the hybrid H2 is independent of the challenge bit.
In conclusion, |Pr[out0 = 1]−1/2]| ≤ negl(k). Hence, Com′ is parallel CCA-secure.


�
Using the transformation implied by [21,23] described earlier and Theorem 9, we
also get the following separation:

Theorem 10 (PNM � CNM). If there exists a statistically binding, parallel
non-malleable commitment scheme, then there also exists a statistically bind-
ing and parallel non-malleable commitment scheme that is not concurrent non-
malleable.
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Using similar arguments as in the proof of Theorem9, one can also show that
one-one CCA-security does not imply parallel non-malleability.

Theorem 11 (1CCA � PNM). If there exists a statistically binding, one-
one CCA-secure commitment scheme, then there also exists a statistically binding
and one-one CCA-secure commitment scheme that is not parallel non-malleable.

Proof Idea. This separation follows by adapting the techniques used for the sepa-
ration in Theorem 9. In the commitment scheme Com′ the sender commits to the
shares s0 and s1 in parallel instead of sequentially. The experiment Repeat1CCA
is like RepeatPCCA except that the adversary may now query O1cca instead
of Opcca. 
�
Remark 2. We remark that all results, except for Theorems 3, 5 and 8, carry over
to bit commitment schemes. This can be shown by similar arguments as in the
proofs of Theorems 1 and 9. The main difference for the proofs using the puzzle-
solution approach is that the puzzle consists of k parallel (bit) commitments.
The main difference for the proofs using the sharing approach is that the sender
generates 2k shares. We do not know if Theorems 3, 5 or 8 carry over to bit
commitment schemes because those theorems cannot be proven using the above
modification of the puzzle-solution approach. This is because the number of
queries that can be sent to the oracle in these cases is bounded by a constant.
Hence, the oracle cannot be used to solve a puzzle consisting of k parallel bit
commitments.

Remark 3. We note that the (known) separation between (stand-alone) non-
malleability and parallel non-malleability can also be proven using the shar-
ing approach. This follows from the transformation implied by [21,23] and
Theorem 11.

Remark 4. Note that if one-way functions exist, all base commitment schemes
required for this work exist. In all results one can use, e.g., the commitment
scheme from [9] that is based on one-way functions as base commitment scheme
Com. This scheme is CCA-secure and therefore fulfills all other desired security
notions.

A The Implication Results

Here we prove all our implication results (cf. Fig. 1). The results in themselves
are not surprising, but are included for the sake of completeness. To this end,
we adapt proof techniques from Bellare and Sahai [3]. They show that for
public-key encryption schemes the notions of parallel CCA-security and parallel
non-malleability are equivalent. We show that for non-interactive commitment
schemes this is also the case. However, for interactive commitment schemes the
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situation is different, as we have constructed in Sect. 5 a commitment scheme
that separates the two notions.

Theorem 12 (PCCA ⇒ PNM). Let Com be a parallel CCA-secure commit-
ment scheme. Then Com is also parallel non-malleable.

Proof Idea. By taking the strategy from Bellare and Sahai (cf. proof of Theo-
rem5.3 in [3]) and adapting the proof to commitment schemes, the proof of this
theorem is straightforward. The general strategy for the parallel CCA-adversary
is to forward his challenge to the parallel non-malleability adversary and use
his parallel CCA-oracle to decommit the messages the parallel non-malleability
adversary sends to the receiver. 
�
Note that this proof holds for general commitment schemes, regardless of whether
they are interactive or non-interactive. With a very similar proof one can show
that one-one CCA-security implies non-malleability.

Theorem 13 (1CCA ⇒ (NM). Let Com be a one-one CCA-secure commit-
ment scheme. Then Com is also non-malleable.

In contrast to public-key encryption schemes, the theorem that parallel non-
malleability implies parallel CCA-security only holds for non-interactive com-
mitment schemes.

Theorem 14 (PNM n.-i.===⇒ PCCA). Let Com be a non-interactive, parallel
non-malleable commitment scheme. Then Com is also parallel CCA-secure.

Proof Idea. We again adapt the strategy from Bellare and Sahai (cf. proof of
Theorem 5.2 in [3]). The general strategy for the parallel non-malleability adver-
sary is to forward his challenge to the parallel CCA-adversary and to forward
the oracle query of the parallel CCA-adversary to the receiver. Then the dis-
tinguisher gets what is effectively the oracle answer as input (via the implicit
committed value oracle of the experiment) and can continue the simulation of
the parallel CCA-adversary until he outputs his solution. 
�
With essentially the same proof one can show that non-malleability implies one-
one CCA-security for non-interactive commitment schemes.

Theorem 15 (NM n.-i.===⇒ 1CCA). Let Com be a non-interactive, non-
malleable commitment scheme. Then Com is also one-one CCA-secure.

B A Technical Detail

The statement |Pr[Output0(B) = 1|¬E] − Pr[Output1(B) = 1|¬E]| ≤ negl(k)
holds (cf. proof of Sub-Claim 1 in Theorem9).
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Proof

|Pr[Output0(B) = 1] − Pr[Output1(B) = 1]| =
|Pr[¬E] · (Pr[Output0(B) = 1|¬E] − Pr[Output1(B) = 1|¬E])
+ Pr[E] · (Pr[Output0(B) = 1|E] − Pr[Output1(B) = 1|E])|
≥ Pr[¬E] · |Pr[Output0(B) = 1|¬E] − Pr[Output1(B) = 1|¬E]|
− Pr[E] · |Pr[Output0(B) = 1|E] − Pr[Output1(B) = 1|E]|
(because |x + y| ≥ |x| − |y|)
≥ Pr[¬E] · |Pr[Output0(B) = 1|¬E] − Pr[Output1(B) = 1|¬E]| − Pr[E] · 1
(because |Pr[Output0(B) = 1|E] − Pr[Output1(B) = 1|E]| ≤ 1)

≥ 1
2

· |Pr[Output0(B) = 1|¬E] − Pr[Output1(B) = 1|¬E]| − Pr[E] · 1

(This holds for sufficiently large k becausePr[¬E] is overwhelming.
Note that 1/2 is arbitrary, any constant 0 < c < 1works.)

Since |Pr[Output0(B) = 1] − Pr[Output1(B) = 1]| and Pr[E] are negligible,
|Pr[Output0(B)=1|¬E] − Pr[Output1(B)=1|¬E]| must also be negligible. 
�
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4. Böhl, F., Hofheinz, D., Kraschewski, D.: On definitions of selective opening security.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp.
522–539. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-
8 31
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Abstract. We construct a mathematical group in which an interactive
variant of the very general Uber assumption holds. Our construction uses
probabilistic indistinguishability obfuscation, fully homomorphic encryp-
tion, and a pairing-friendly group in which a mild and standard com-
putational assumption holds. While our construction is not practical, it
constitutes a feasibility result that shows that under a strong but generic,
and a mild assumption, groups exist in which very general computational
assumptions hold. We believe that this grants additional credibility to
the Uber assumption.

Keywords: Indistinguishability obfuscation · Uber assumption

1 Introduction

Cyclic groups in cryptography. Cyclic groups (such as subgroups of the mul-
tiplicative group of a finite field, or certain elliptic curves) are a popular math-
ematical building block in cryptography. Countless cryptographic constructions
are formulated in a cyclic group setting. Usually these constructions are accom-
panied by a security reduction that transforms any adversarial algorithm that
breaks the scheme into an algorithm that solves a computational problem in that
group. Among the more popular computational problems are the (computational
or decisional) Diffie-Hellman problem [25], or the discrete logarithm problem.

The currently known security reductions of several relevant cryptographic
schemes require somewhat more exotic computational assumptions, however.
For instance, the security of the Digital Signature Algorithm is only proven in
a generic model of computation [14] (see also [15]). Moreover, the semi-adaptive
(i.e., IND-CCA1) security of the ElGamal encryption scheme requires a “one-
more type” assumption [33]. The currently most efficient structure-preserving
signature schemes require complex interactive assumptions [1,2]. Finally, some
proofs (e.g., [6,23,24,31]) even require “knowledge assumptions” that essentially
state that the only way to generate new group elements is as linear combinations
of given group elements (with extractable coefficients).
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While more exotic assumptions can thus be very helpful for constructing
cryptographic schemes, their use also has a downside: reductions to more exotic
(and less investigated) assumptions tend to lower our confidence in the corre-
sponding scheme. (See [12,32] for two very different views on this matter).

The Uber-assumption family. An example of a somewhat exotic but very
general and strong class of computational assumptions in a cyclic group set-
ting is the “Uber” assumption family ([10], see also [12]). Essentially, this
assumption states that no efficient adversary A can win the following guess-
ing game significantly better than with probability 1/2. The game is formu-
lated in a group G = 〈g〉 of order q, and is parameterized over polynomials
P1, . . . , Pl, P

∗ ∈ Zq[X1, . . . , Xm]. Initially, the game chooses secret exponents
s1, . . . , sm ∈ Zq uniformly, and hands A the group elements gPi(s1,...,sm), and a
challenge element Z ∈ G with either Z = gP ∗(s1,...,sm) or independently random
Z. Given these elements, A has to guess if Z is random or not.1

Depending on the number m of variables, and the concrete polynomials Pi

and P ∗, the Uber assumption generalizes many popular existing assumptions,
such as the Decisional Diffie-Hellman assumption, the k-Linear family of assump-
tions, and so-called “q-type assumptions”. However, it is a priori not at all clear
how plausible such general assumptions are. In fact, there are indications that,
e.g., q-type assumptions are indeed easier to break than, say, the discrete log
assumption [21].

Fortunately, a number of cryptographic constructions that rely on q-type
assumptions can be transported into composite-order groups, with the advan-
tage that now their security holds under a simpler, subgroup indistinguishabil-
ity assumption [19,20]. However, this change of groups will not work for every
cryptographic construction, and currently we only know how to perform this
technique for a subclass of q-type assumptions.

Our contribution. In this work, we shed new light on the plausibility of Uber-
style assumptions. Concretely, we construct a group in which an interactive
variant of Uber-style assumptions (in which the adversary may choose the Pi

and P ∗ adaptively) holds. We believe that this lends additional credibility to
the Uber assumption itself, and also strengthens plausibility results obtained
from the Uber assumption (see [12] for an overview).

Our construction assumes subexponentially secure indistinguishability obfus-
cation (iO, a very strong but generic assumption), a perfectly correct addi-
tively homomorphic encryption scheme for addition modulo a given prime, and
a pairing-friendly group in which a standard assumption (SXDH, the symmetric
external Diffie-Hellman assumption) holds. We stress that we consider our result
as a feasibility result. Indeed, due to the use of indistinguishability obfuscation,
our construction is far from practical. Still, our result shows that even inter-
active generalizations of the Uber assumption family are no less plausible than

1 Owing to the original application, the Uber assumption family was formulated in [10]
in a setting with a pairing-friendly group, with a final challenge in the target group.
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indistinguishability obfuscation (plus a standard assumption in cyclic groups
and additively homomorphic encryption).

Before describing our results in more detail, we remark that the group we
construct actually has non-unique element encodings (much like in a “graded
encoding scheme” [26], only without any notion of multilinear map). It is hence
possible to compare and operate with group elements, but it is not directly possi-
ble to use, e.g., the encoding of group elements to hide an encrypted message. (In
particular, it is not immediately possible to implement, say, the ElGamal encryp-
tion scheme with our group as there is no obvious way to decrypt ciphertexts.
Signature schemes, however, do not require unique encodings of group elements
and can hence be implemented using our group.) Furthermore, due to techni-
cal reasons our construction requires the maximum degree of the adversarially
chosen polynomials to be bounded a priori.

Related work. Pass et al. [36] introduce semantically secure multilinear (and
graded) encoding schemes (of groups). A semantically secure encoding scheme
guarantees security of a class of algebraic decisional assumptions. On a high level,
the security property requires that encodings are computationally indistinguish-
able whenever there is no way to distinguish the corresponding elements using
only generic operations. The generic multilinear encoding model implies seman-
tic security of a multilinear encoding scheme. Furthermore, Pass et al. show that
many existing iO candidates [5,13,27] that are proven secure in the generic mul-
tilinear encoding model can also be proven secure assuming semantically secure
encoding schemes. Hence, this result relaxes the necessary assumptions to prove
the security of certain iO constructions. Bitansky et al. [8] slightly strengthen the
security property of encoding schemes formulated in [36]. Assuming the resulting
security property allows to prove that existing obfuscation candidates [5] provide
virtual grey-box security2.

In [4] Albrecht et al. construct a group scheme providing a multilinear map
from iO. This result complements earlier results that construct iO from multilin-
ear maps [27,38]. The notion of encoding schemes used in [4] is a direct adaption
of the “cryptographic” multilinear group setting from [11]. In contrast to [8,36],
the encoding scheme of Albrecht et al. provides an extraction algorithm produc-
ing a unique string for all encodings that are equal with respect to the equality
relation of the scheme. Furthermore, [4] requires a publicly available sampling
algorithm that produces encodings for given exponents. Hence, the encoding
scheme of [4] grants adversaries slightly more power.

In this paper we use a similar notion of encoding schemes as in [4]. Further-
more, [8,36] define the security property for encoding schemes implicitly. We, in
contrast, consider a concrete strong interactive hardness assumption that holds
in our encoding scheme.

2 An obfuscator O satisfies virtual grey-box security for a class of circuits C if for any
circuit C ∈ C, a PPT adversary given O(C) can not compute significally more about
C than a simulator given unbounded computational resources and polynomially
many queries to the circuit C.



344 T. Agrikola and D. Hofheinz

Technical approach. The assumption we consider is defined similarly to the
Uber assumption above, only with an interactive and adaptive choice of arbitrary
(multivariate) polynomials Pi, P

∗ over Zq, where q is the order of the group.
That is, there is a secret point s := (s1, . . . , sm) ∈ Z

m
q , and A may freely and

adaptively choose the Pi and P ∗ during the course of the security game. To avoid
trivialities, we require that P ∗ does not lie in the linear span of the polynomials
Pi. We call this assumption the Interactive Uber assumption. For convenience
only, we will describe our approach assuming only univariate polynomials in the
Interactive Uber assumption. However, we will see that similar techniques yield
security even for multivariate polynomials.

Our starting point is a recent work by Albrecht et al. [4], which constructs a
group with a multilinear map from (probabilistic) iO, an additively homomorphic
encryption scheme, a dual mode NIZK proof system, and a group G in which (a
variant of) the Strong Diffie-Hellman assumption [9] holds. For our purposes, we
are not interested in obtaining a multilinear map, however, and we would also like
to avoid relying on a strong (i.e., q-type) assumption to begin with. Moreover, [4]
only proves relatively mild computational assumptions in the constructed group.

In a nutshell, a group element in the construction of [4] has the form

(gz, C = Enc(z), π), (1)

where z ∈ Z is the discrete logarithm of that group element, g ∈ G is a gen-
erator of the used existing group G, Enc is the encryption algorithm of an
additively homomorphic encryption scheme, and π is a non-interactive zero-
knowledge proof of consistency. Concretely, π proves that C encrypts the dis-
crete logarithm z of gz, or that C encrypts a polynomial f with f(w) = z, for
a fixed value w committed to in the public parameters.

In their security analysis, Albrecht et al. [4] crucially use a “switching lemma”
that states that different encodings (gz,Enc(z), π) and (gf(w),Enc(f), π′) are
computationally indistinguishable whenever f(w) = z. This allows to switch to,
and argue about encodings with higher-degree f . Note, however, that any such
encoding must also carry a valid gz = gf(w). Hence, changing the values z = f(w)
in such encodings with higher-degree f (as is often required to prove security)
would seem to already necessitate Uber-style assumptions. Indeed, Albrecht
et al. require a variant of the Strong Diffie-Hellman assumption, a q-type
assumption.

Group elements in our group. To avoid making Uber-style assumptions in
the first place, we simply omit the initial gz value in encodings of group elements,
and modify the consistency proof from Eq. (1). That is, group elements in our
group are of the form

(C = Enc(z), π), (2)

where Enc is the encryption algorithm of an additively homomorphic encryption
scheme, and π is a proof of knowledge of some (potentially constant) polynomial
f ′ with f ′(w) = z or f ′(w) = f(w) (in case C encrypts a polynomial f). The
value w is some point in Zq that is fixed, but hidden, in the public parameters



Interactively Secure Groups from Obfuscation 345

of our group, where q is the group order. The proof of knowledge is realized
through an additional encryption C ′ that contains the polynomial f ′. Hence,
group elements are actually of the form

(C = Enc(z), C ′ = Enc(f ′), π). (3)

In a nutshell, such an encoding implicitly represents the group element gf(w) =
gf ′(w), where f and f ′ are the polynomials defined by C and C ′ respectively. For
clarity, we sometimes omit the component C ′ in this overview.

More precisely, C and C ′ contain representation vectors
#»

f and
#»

f ′ of the
polynomials f and f ′ with respect to a basis {a1, . . ., ad} of Zd

q . That is, given a
vector

#»

f that is encrypted in C, the coefficients of the corresponding polynomial
f are defined as follows

(a1 | . . . | ad)
−1 · #»f (4)

using the homomorphic mapping between polynomials over Zq and vectors in
Z

d
q . This basis is not public, but committed to in the public parameters. The

reason for using a hidden basis is that we need to deal with adaptive queries.
We postpone the details to a subsequent paragraph. In this overview, however,
we will pretend the ciphertexts C and C ′ contain mere polynomials.

Intuitively, the crux of the matter for the proof of security will be to remove
the dependency on the point w. This changes the group structure to be isomor-
phic to Z

d
q which makes it possible to argue with linear algebra.

A public sampling algorithm allows to produce arbitrary encodings of group
elements. Given an exponent z, the sampling algorithm produces the ciphertexts
C and C ′ using the constant polynomials f := f ′ := z and produces the consis-
tency proof accordingly. We remark that our group allows for re-randomization
of encodings assuming some natural additional properties of the homomorphic
encryption scheme.

The group operation is performed in a similar way to [4]. Namely, suppose
we want to add two encodings (Enc(f1), π1) and (Enc(f2), π2). The result-
ing (Enc(f3), π3) should satisfy f3 = f1 + f2 as abstract polynomials. Hence,
Enc(f3) can be computed homomorphically from Enc(f1) and Enc(f2). To
compute the proof π3, however, we require an obfuscated circuit CAdd that
extracts f1, f2, and generates a fresh proof using the knowledge of f3 = f1 + f2
as witness. Thus, the implementation of CAdd needs to know both decryption
keys for C and C ′. (The details are somewhat technical and similar to [4], so
we omit them in this overview.) We prove that it is possible to implement a
circuit C ′′

Add that has almost the same functionality as CAdd but produces a sim-
ulated proof of consistency that is identically distributed to a real one. Hence,
the implementation of C ′′

Add does not need to know the decryption keys. There-
fore, exploiting the security of the used obfuscator, we are able to unnoticeably
replace the obfuscation of CAdd with an obfuscation of C ′′

Add.
We note that our modification to omit the entry gz from the encodings in

Eq. (1) makes it nontrivial to decide whether two given encodings represent
the same group element, or, equivalently, to decide whether a given encoding
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represents the identity element of the group. Recall that an encoding (C =
Enc(f), π) represents the group element gf(w). (This operation is trivial in the
setting of Albrecht et al., since their encodings carry a value gz = gf(w).) Thus,
our construction needs to provide a public algorithm that tests whether a given
encoding (C = Enc(f), π) represents the identity element of the group, i.e. that
tests whether f(w) = 0.

At this point two problems arise. First, this public algorithm must be able
to obtain at least one of the polynomials that are encrypted in C and C ′ respec-
tively. Second, the value w must not be explicitly known during the proof of secu-
rity as our strategy is to remove the dependency on w. We solve both problems
by using an obfuscated circuit CZero for testing whether a given encoding repre-
sents the identity element. More precisely, given an encoding (C = Enc(f), π),
CZero decrypts C (using one fixed decryption key) to obtain the polynomial f .
In order to avoid the necessity to explicitly know the value w, CZero factors the
univariate polynomial f (in Zq[X]), and obtains the small set {x1, . . . , xn} of
all zeros of f .3 As mentioned above, the value w is fixed but hidden inside the
public parameters. Particularly, we store the value w in form of a point function
obfuscation (i.e., in form of a publicly evaluable function po : Zq → {0, 1} with
po(x) = 1 ⇔ x = w, such that it is hard to determine the value w given only
the function description po). The zero testing circuit CZero treats an encoding as
the identity element if f is the zero polynomial or w ∈ {x1, . . . , xn}.

Observe that this implementation of CZero only requires one decryption key
allowing to apply the Naor-Yung strategy [35]. Furthermore, CZero does not need
to know the value w in the clear. Hence, using an obfuscation of this implemen-
tation of CZero avoids both problems described above.

Switching of encodings. Similarly to Albrecht et al. [4] we prove a “switching
lemma” that states that encodings (C1 = Enc(f1), π1) and (C2 = Enc(f2), π2)
are computationally indistinguishable whenever f1(w) = f2(w). In other words,
encodings of the same group element are computationally indistinguishable. To
prove this lemma, we exploit the security of the used double-encryption in a
similar way as in the IND-CCA proof of Naor and Yung [35]. Particularly, when
using an obfuscation of the circuit C ′′

Add, it is not necessary to know both decryp-
tion keys to produce public parameters for the group. We recall that the circuit
CZero only knows the decryption key to decrypt the first component of encodings.
Furthermore, it is possible to produce a consistency proof without knowing the
content of the ciphertexts C and C ′ by simply simulating it in the same way
C ′′

Add does. Therefore, we can reduce to the IND-CPA security of the encryp-
tion scheme. In order to apply the same argument for the first component of
encodings, we need the circuit CZero to forget about the first decryption key. We
accomplish that by replacing the obfuscation of CZero with an obfuscation of the
circuit CZero that uses only the second decryption key instead of the first one.

3 We note that there are probabilistic polynomial time algorithms that factor uni-
variate polynomials over finite fields, for instance the Cantor-Zassenhaus algorithm
[18].
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This is possible due to the security of the obfuscator and the soundness of the
proof system. Then, we can use the same argument as above to reduce to the
IND-CPA security of the encryption scheme.

Obtaining the Interactive Uber assumption in our group. We recall that
the Interactive Uber assumption (in one variable) generates one secret point
s ∈ Zq uniformly at random at which all queried polynomials are evaluated.
To show that the Interactive Uber assumption holds in our group, we first set
up that secret point s as c · w for some independent random c from Z

×
q , where

w is the secret value of our group introduced above. Hence, a polynomial P
that is evaluated at s = c · w can be interpreted as a (different) polynomial in
w. Particularly, given a polynomial P (X), the polynomial P (X) := P (c · X)
satisfies the equation P (s) = P (w). Thus, an encoding that contains the polyno-
mial P (X) determines the exponent of the represented group element to equal
P (w) = P (c · w) = P (s). This observation paves the way for using higher-degree
polynomials P (X) to produce encodings for oracle answers and the challenge. As
the resulting group elements (i.e. the corresponding exponents) remain the same,
the “switching lemma” described above justifies that this modification is unno-
ticeable. Furthermore, by a similar argument as above, we simulate the proofs
of consistency π for every produced encoding, in particular for the encodings
that are produced by the addition circuit.4 As the consistency proof can now be
produced independently of the basis {a1, . . . , ad}, we are able to unnoticeably
“erase” this basis from the commitment in the public parameters.

Our goal now is to alter the structure of the group in the following sense. By
definition, our group is isomorphic to the additive group Zq. We aim to alter that
structure such that our group is isomorphic to the additive group of polynomials
in Zq[X] (of bounded degree). Particularly, we alter the equality relation that
is defined on the set of encodings such that two encodings are considered equal
only if the thereby defined polynomials are equal as abstract polynomials. For
that purpose, we remove the dependency on the point w by altering the point
function obfuscation po such that it maps all inputs to 0. Therefore, the zero
testing circuit CZero only treats an encoding that contains the zero polynomial
as an encoding of the identity element of the group. As the value w is never
used explicitly in the game (as all the proofs of consistency are simulated), this
modification is unnoticeable due to the security property of the point function
obfuscation po. This is a crucial step paving the way for employing arguments
from linear algebra to enable randomization.

The final step requires to randomize the challenge encoding such that there is
no detectable difference between a real challenge and a randomly sampled one.
First, we recall that encodings do not encrypt polynomials in the plain. The
encodings contain the representation of polynomials with respect to some basis
{a1, . . . , ad}. That is, given a polynomial P (X), the encoding corresponding to
gP (s) encrypts the vectors

4 More precisely, we again use an obfuscation of C′′
Add instead of an obfuscation of CAdd

as described above.
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#»

f =
#»

f ′ = (a1 | . . . | ad) · P (c · X)
︸ ︷︷ ︸

=P (X)

, (5)

where P (c ·X) is interpreted as a vector of coefficients in the natural way. There-
fore, the only information about the matrix (a1| . . . |ad) is given by matrix vector
products. To avoid trivialities, the challenge polynomial P ∗ can be assumed not
to lie in the span of the queries P1, . . . , Pl, which is why P ∗(c · X) does not lie
in the span of P1(c · X), . . . , Pl(c · X). Hence, we may resort to an information-
theoretic argument. More precisely, an adversary that is able to adaptively ask for
matrix vector products, information-theoretically learns nothing about matrix
vector products that are linearly independent of its queries. Therefore, the poly-
nomial that is contained in the real challenge encoding information-theoretically
looks like a randomly sampled polynomial (with bounded degree) given that the
matrix (a1| . . . |ad) is uniformly distributed.

Obtaining the multivariate Interactive Uber assumption. The main dif-
ficulty that arises from generalizing our results to the multivariate Interactive
Uber assumption is that we do not have a polynomial-time algorithm that com-
putes all zeros of a multivariate polynomial. Hence, the zero testing circuit CZero

needs to know the point ω := (ω1, . . . , ωm) ∈ Z
m
q in the clear to explicitly eval-

uate the polynomial f that is defined by a given encoding. Our previous proof
strategy, however, crucially relies on removing the dependency on w such that
CZero only treats encodings containing the zero polynomial as encodings of the
identity element. This is equivalent to altering the group structure such that it
is isomorphic to the additive group of polynomials over Zq (of bounded degree).

Although the zero testing circuit CZero knows ω in the clear, it is nevertheless
possible to pursue a similar strategy. Our solution is to gradually alter CZero such
that it “forgets” the components ωi of ω one by one. Particularly, we define
intermediate circuits C

(i)
Zero that test if the polynomial

F
(f)
i (X1, . . . , Xi) := f(X1, . . . , Xi, ωi+1, . . . , ωm) (6)

equals the zero polynomial in Zq[X1, . . . , Xi]. Observe that the original circuit
CZero tests whether F

(f)
0 ≡ 0. Our goal is to unnoticeably establish C

(m)
Zero as zero

testing circuit, as it realizes the stricter equality relation we aim for.
In order to unnoticeably replace an obfuscation of C

(i)
Zero with an obfuscation

of C
(i+1)
Zero , we first alter the implementation of C

(i)
Zero such that it performs the

test whether F
(f)
i is the zero polynomial by evaluating it at a randomly sampled

point r ∈ Z
i
q. Applying the Schwartz-Zippel lemma upper bounds the statistical

distance of the output distributions of the two circuits enabling to reduce this
step to the security of the obfuscator.

Furthermore, the condition that F
(f)
i (r) = F

(f)
i+1(r , ωi+1) = 0 is equivalent to

the condition that the univariate polynomial F
(f)
i+1(r ,Xi+1) is zero at the point

ωi+1. This can be implemented in a similar manner as in the univariate case
using a point function obfuscation of ωi+1. In addition, this circuit contains a
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conceptional logical or statement testing whether the polynomial F
(f)
i+1(r ,Xi+1)

equals the zero polynomial. Using a similar argument as above we are able to
alter the point function obfuscation for ωi+1 to a point function obfuscation that
never triggers.

Hence, our zero testing circuit effectively only tests whether F
(f)
i+1(r ,Xi+1)

equals the zero polynomial in Zq[Xi+1]. Applying the Schwartz-Zippel lemma
again, we are able to unnoticeably alter the implementation of the zero testing
circuit such that it tests whether F

(f)
i+1 equals the zero polynomial in X1, . . . , Xi+1

concluding the argument.

Roadmap. After fixing notation and recalling some basic definitions in Sect. 2,
we present our main group construction in Sect. 3. Our main theorem, Theorem
1, states the validity of (our variant of) the Interactive Uber assumption relative
to the group construction from Sect. 3. For the detailed proofs we refer the reader
to the full version [3].

2 Preliminaries

2.1 Notation

For n ∈ N, let 1n denote the string consisting of n times the digit 1. For a
probabilistic algorithm A, let y ← A(x) denote that y is the output of A on
input x. The randomness which A uses during the computation can be made
explicit by y ← A(x; r), where r denotes the randomness. Let λ denote the
security parameter. We assume that the security parameter is implicitly given
to all algorithms as 1λ.

Let G be a group and let h be a fixed generator of G. Then, [n] denotes the
group element hn.

Let n ∈ N be a number, let K be a field, and let K
n denote the vector space

of n-tuples of elements of K. Further, for any i ∈ {1, . . . , n}, let ei ∈ K
n be the

vector such that the i-th entry of ei equals 1 and any remaining entry equals
0. Then, the set {e1, e2, . . . , en} denotes the standard basis of Kn. Let b1, . . . ,
bi ∈ K

n, then 〈b1, . . . , bi〉 ⊆ K
n denotes the span of those vectors.

2.2 Assumptions

Let (Gλ)λ∈N be a family of finite cyclic groups. If it is clear from the context,
we write G instead of Gλ. We assume that the order q := |∗|G of the group is
known and prime. Let GensG be the set of generators of G. We assume that we
can efficiently sample elements uniformly at random from GensG .

A very basic and well-established cryptographic assumption is the decisional
Diffie-Hellman (DDH) assumption. The DDH assumption states that the distri-
butions ([x], [y], [x · y]) and ([x], [y], [z]) are computationally indistinguishable
for x, y, z ← Zq.
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Definition 1 (Decisional Diffie-Hellman (DDH) assumption). For any
PPT adversary A, the advantage Advddh

G,A(λ) is negligible in λ, where

Advddh
G,A(λ) := Pr

[

A(1λ, [x], [y], [x · y]) = 1|x, y ← Zq

]

−Pr
[

A(1λ, [x], [y], [z]) = 1|x, y, z ← Zq

]

and q is the order of the group G.

Let (G1, G2, e) be finite cyclic groups of prime order |∗|G1 = |∗|G2 and let
e : G1 × G2 → GT be a pairing (i.e. a non-degenerate and bilinear map). The
groups G1, G2, GT , as well as the pairing e depend on the security parameter.
For greater clarity, we omit this dependency in this setting.

A natural extension of the DDH assumption to the bilinear setting is the
symmetric external Diffie-Hellman (SXDH) assumption. The SXDH assumption
states that the DDH assumption holds in both groups G1 and G2.

2.3 Point Obfuscation

In our construction we employ a cryptographic primitive that is called point
obfuscation [16,37]. A point obfuscation serves the purpose to hide a certain
point, but to enable a test whether a given value is hidden inside. Equivalently,
this notion can be seen as an “obfuscation” of a point-function that evaluates
to 1 at exactly this given point and to 0 everywhere else. We require that it is
infeasible to distinguish a point obfuscation that triggers at a randomly sampled
point from a point obfuscation that never triggers. This security requirement is
rather weak compared to similar notions [7].

Definition 2 (Point obfuscation). A point obfuscation for message space
Mλ is a PPT algorithm PObf.

PObf(1λ, x) → po On input a message x ∈ Mλ∪{⊥}, PObf produces a descrip-
tion of the point function

po : Mλ → {0, 1},y →
{

1 ify = x

0 otherwise
.

We require the following two properties to hold:

Correctness: For any x, y ∈ Mλ and any po ← PObf(1λ, x), po(y) → 1 if
and only if x = y.

Soundness: For any PPT adversary A, the advantage Advpo
PObf,A(λ) is negligi-

ble in λ, where

Advpo
PObf,A(λ) := Pr

[

A(1λ, po) = 1|po ← PObf(1λ, x),x ← Mλ

]

− Pr
[

A(1λ, po) = 1|po ← PObf(1λ,⊥)
]

.
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An adaption of a construction proposed in [16] yields a point obfuscation PObf

with message space Zp based on the DDH assumption. Furthermore, a point
obfuscation with message space Zp can be used to construct a point obfuscation
for message space Zq, where q is a prime such that p

q is negligible in λ. For
further details, we refer the reader to the full version [3].

Remark 1. According to a reviewer of TCC 2017, a point obfuscation with mes-
sage space {0, 1}poly(λ) can be constructed from an injective one-way function F
together with a corresponding hardcore bit B.

Given a string x, the tuple (F (x), B(x)) is the obfuscation of x. The tuple
(F (y), 1 − B(y)) is an obfuscation of ⊥, where y is a random element from the
message space.

2.4 Subset Membership Problems

The notion of subset membership problems was introduced in [22]. Informally,
a hard subset membership problem specifies a set, such that it is intractable to
decide whether a value is inside this set or not. Let L = (Lλ)λ∈N be a family
of families of languages L ⊆ Xλ in a universe Xλ = X . Further, let R be an
efficiently computable witness relation, such that x ∈ L if and only if there exists
a witness w ∈ {0, 1}poly(|x|) with R(x, w) = 1, where poly is a fixed polynomial.
We assume that we are able to efficiently and uniformly sample elements from
L together with a corresponding witness, and that we are able to efficiently and
uniformly sample elements from X \ L.

Definition 3 (Hard subset membership problem). The subset member-
ship problem (SMP) L ⊆ X is hard, if for any PPT adversary A, the advantage

Advsmp
L,A(λ) := Pr

[

A(1λ, x) = 1|x ← L
]

− Pr
[

A(1λ, x) = 1|x ← X \ L
]

is negligible in λ.

For our construction we need a family L = (Lλ)λ∈N such that for any L ∈ Lλ

and any x ∈ L, there exists exactly one witness r ∈ {0, 1}∗ with R(x, w) = 1.
Let G = {Gλ} be a family of finite cyclic groups of prime order such that

the DDH assumption holds. A possible instantiation of a hard SMP meet-
ing our requirements is the Diffie-Hellman language Ldh := (Ldh

λ )λ∈N. For
any λ ∈ N, Ldh

λ := {Lg,h | g, h ∈ GensG}, Xλ = GensG × GensG , and Lg,h :=
{(gr, hr) | r ∈ Zq}, where q = |∗|Gk. The SMP Lg,h ⊆ X is hard for randomly
chosen generators g, h ← GensG . Given (gr, hr) ∈ Lg,h, the corresponding unique
witness is r ∈ Zq.

2.5 Non-interactive Commitments

Non-interactive commitment schemes are a commonly used cryptographic prim-
itive [29]. They enable to commit to a chosen value without revealing this value.
Additionally, once committed to a value, this value cannot be changed. In con-
trast to the notion of point obfuscations, a commitment scheme prevents to test
whether a particular value is hidden inside a commitment.
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Definition 4 (Perfectly binding non-interactive commitment scheme
(syntax and security)). A perfectly binding non-interactive commitment
scheme for message space Mλ is a triple of PPT algorithms Com =
(ComSetup, Commit, Open).

ComSetup(1λ) → ck On input the unary encoded security parameter, the algo-
rithm ComSetup outputs a commitment key ck.

Commitck (m) → (com, op) On input the commitment key ck and a message
m ∈ Mλ, Commit outputs a tuple (com, op).

Openck (com, op) → m̃ On input the commitment key ck and a commitment-
opening pair (com, op), Open outputs the committed message m if op is a
valid opening for com. Otherwise, Open outputs ⊥.

We require Com to be perfectly correct, perfectly binding, and computationally
hiding.

Correctness Com is correct if for any λ ∈ N, any ck ← ComSetup(1λ), and
any m ∈ Mλ, Openck (Commitck (m)) = m.

Perfectly binding Com is perfectly binding if it is not possible to find a com-
mitment that has valid openings for more than one message, i.e. for any
(possibly unbounded) adversary A, Advbinding

Com,A (λ) = 0, where

Advbinding
Com,A (λ) := Pr

[

Expbinding
Com,A (λ) = 1

]

.

Computationally hiding Com is computationally hiding if commitments for
different messages are computationally indistinguishable, i.e. for any PPT
adversary A, Advhiding

A (λ) is negligible, where

Advhiding
Com,A(λ) := Pr

[

Exphiding
Com,A(λ) = 1

]

− 1
2
.

The games Expbinding
Com,A (λ) and Exphiding

Com,A(λ) are defined in Fig. 1.

Such a commitment scheme can be obtained from a group in which the DDH
assumption holds.

Fig. 1. The description of the Binding game Expbinding
Com,A (λ) (left) and the Hiding game

Exphiding
Com,A(λ) (right).
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2.6 Dual Mode NIWI Proof System

The notion of dual mode NIWI proof systems abstracts from the NIWI proof
system proposed in [30]. A similar abstraction was used in [4].

Definition 5 (Dual mode NIWI proof system (syntax and security)).
A dual mode non-interactive witness-indistinguishable (NIWI) proof system for
a relation R is a tuple of PPT algorithms Π = (SetupΠ , K, S, Prove, Verify,
Extract).

SetupΠ(1λ) → (gpk, gsk) On input the unary encoded security parameter,
SetupΠ outputs a group key gpk and, additionally, may output some related
information gsk. The relation R is an efficiently computable ternary relation
consisting of triplets of the form (gpk, x, w) and defines a group-dependent
language L. The language L consists of the statements x, such that there
exists a witness w with (gpk, x, w) ∈ R.

K(gpk, gsk) → (crs, tdext) On input the group keys gpk and gsk, K outputs a
binding common reference string (CRS) crs and a corresponding extraction
trapdoor tdext.

S(gpk, gsk) → (crs,⊥) On input the group keys gpk and gsk, S outputs a hiding
CRS crs.

Prove(gpk, crs, x, w) → π On input the public group key gpk, the CRS crs, a
statement x, and a corresponding witness w, Prove produces a proof π.

Verify(gpk, crs, x, π) → {0, 1} On input the public group key gpk, the CRS crs,
a statement x, and a proof π, Verify outputs 1 if the proof is valid and 0 if
the proof is rejected.

Extract(tdext, x, π) → w On input the extraction trapdoor tdext, a statement x,
and a proof π, Extract outputs a witness w.

We require Π to meet the following requirements:

CRS indistinguishability. Common reference strings generated via K(gpk,
gsk) and S(gpk, gsk) are computationally indistinguishable, i.e.

Advcrs
Π,A(λ) := Pr

[

ExpcrsΠ,A(λ) = 1
]

− 1
2

is negligible in λ, where ExpcrsΠ,A(λ) is defined as in Fig. 2.
Perfect completeness under K and S. For any λ ∈ N, any (gpk, gsk) ←

SetupΠ(1λ), any CRS (crs, ·) ← K(gpk, gsk), any (x, w) such that (gpk, x,
w) ∈ R, and any π ← Prove(gpk, crs, x, w), Verify(gpk, crs, x, π) → 1. The
same holds for any (crs, ·) ← S(gpk, gsk).

Perfect soundness under K. For any λ ∈ N, any (gpk, gsk) ← SetupΠ(1λ),
any (crs, ·) ← K(gpk, gsk), any statement x such that there exists no witness
w with (gpk, x, w) ∈ R, and any π ∈ {0, 1}∗, Verify(gpk, crs, x, π) → 0.

Perfect extractability under K. For any λ ∈ N, any key pair (gpk, gsk) ←
SetupΠ(1λ), any (crs, tdext) ← K(gpk, gsk), any (x, π) such that Verify(gpk,
crs, x, π) → 1, and for any w ← Extract(tdext, x, π), w is a satisfying
witness for the statement x, i.e. (gpk, x, w) ∈ R.
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Fig. 2. The description of the CRS inistinguishability game Expcrs
Π,A(λ).

Perfect witness-indistinguishability under S. For any λ ∈ N, any (gpk,
gsk) ← SetupΠ(1λ), any (crs, ·) ← S(gpk, gsk), any (x, w0) and (x, w1)
with (gpk, x, w0), (gpk, x, w1) ∈ R, the output of Prove(gpk, crs, x, w0)
and the output of Prove(gpk, crs, x, w1) are identically distributed.

An exemplary dual mode NIWI proof system satisfying computational CRS
indistinguishability, perfect completeness, perfect soundness, perfect extractabil-
ity, and perfect witness-indistinguishability is the proof system proposed by
Groth and Sahai in [30]. The soundness, in particular the indistinguishability of
common reference strings, of this construction can for instance be based on the
SXDH assumption. The Groth-Sahai proof system allows perfect extractability
for group elements, however, does not provide a natural way to extract scalars.
Nevertheless, perfect extractability can be achieved by using the proof system
for the bit representation of the particular scalars [34].

2.7 Probabilistic Indistinguishability Obfuscation

The notion of probabilistic circuit obfuscation was proposed in [17]. Informally,
probabilistic circuit obfuscation enables to conceal the implementation of proba-
bilistic circuits while preserving their functionality. Let C = (Cλ)λ∈N be a family
of sets Cλ of probabilistic circuits. The set Cλ contains circuits of polynomial
size in λ. A circuit sampler for C is defined as a set of (efficiently samplable)
distributions S = (Sλ)λ∈N, where Sλ is a distribution over triplets (C0, C1, z)
with C0, C1 ∈ Cλ such that C0 and C1 take inputs of the same length and
z ∈ {0, 1}poly(λ).

Definition 6 (Probabilistic indistinguishability obfuscation for a class
of samplers S, [4,17]). A probabilistic indistinguishability obfuscator (pIO)
for a class of samplers S over the probabilistic circuit family C = (Cλ)λ∈N is a
uniform PPT algorithm piO, such that the following properties hold:

Correctness. On input the unary encoded security parameter 1λ and a circuit
C ∈ Cλ, piO outputs a deterministic circuit Λ of polynomial size in |∗|C
and λ. For any λ ∈ N, any C ∈ Cλ, any Λ ← piO(1λ, C), and any inputs
m ∈ {0, 1}∗ (of matching length), there exists a randomness r, such that
C(m; r) = Λ(m).
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Fig. 3. The descriptions of the games Exppio-c
C,z,D(λ) (left), Exppio-ind

piO,S,A(λ) (middle), and

Expsel-ind
S,A (λ) (right). In Exppio-c

C,z,D(λ), D has oracle access to either a probabilistic circuit
C0 using fresh randomness for every oracle query or to a deterministic circuit C1. D
can make an unbounded number of oracle queries with the restriction that no input is
queried twice.

Furthermore, for every non-uniform PPT distinguisher D, every λ ∈ N, every
C ∈ Cλ, and every auxiliary input z ∈ {0, 1}poly(λ), the advantage

Advpio-c
C,z,D(λ) := Pr

[

Exppio-cC,z,D(λ) = 1
]

− 1
2

is negligible in λ, where Exppio-cC,z,D(λ) is defined as in Fig. 3.
Security with respect to S. For any circuit sampler S = {Sλ}λ∈N, for any

non-uniform PPT adversary A, the advantage

Advpio-ind
piO,S,A(λ) := Pr

[

Exppio-indpiO,SA(λ) = 1
]

− 1
2

is negligible in λ, where Exppio-indpiO,SA(λ) is defined as in Fig. 3.

We remark that the construction proposed in [17] also satisfies our definition
of correctness.

Let X : N → N be a function. For our purposes we use a class of circuit
samplers, such that the sampled circuits are functionally equivalent for all inputs
outside of a set X , and the outputs of the circuits are indistinguishable for inputs
inside of this set X . The set X is a subset of the circuits’ domain of cardinality at
most X(λ). Two circuits C0 and C1 are functionally equivalent if for any input
x of matching length and any randomness r, C0(x; r) = C1(x; r).

Definition 7 (X-Ind sampler, [4,17]). Let X : N → N be a function with
X(λ) ≤ 2λ, for all λ ∈ N. The class SX-ind of X-Ind samplers for a circuit
family C contains all circuit samplers S for C satisfying, that for any λ ∈ N,
there exists a set X = Xλ ⊆ {0, 1}∗ with |∗|X ≤ X(λ), such that the following
two properties hold:
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X-differing inputs. For any (possibly unbounded) deterministic adversary A,
the advantage

Adveq$
S,A(λ) := Pr

[

C0(x; r) �= C1(x; r) ∧ x �∈ X
∣

∣

∣

∣

(C0, C1, z) ← Sλ,
(x, r) ← A(C0, C1, z)

]

is negligible in λ.
X-indistinguishability. For any non-uniform PPT distinguisher A = (A1,

A2), the advantage

X(λ) · Advsel-ind
S,A (λ) := X(λ) ·

(

Pr
[

Expsel-indS,A (λ) = 1
]

− 1
2

)

is negligible in λ, where Expsel-indS,A (λ) is defined as in Fig. 3.

For our construction we use an obfuscator for the class SX-ind.
According to Theorem 2 in the proceedings of [17], a pIO which is secure with

respect to SX-ind for a circuit family C that only contains circuits of size at most
λ can be obtained from sub-exponentially secure indistinguishability obfusca-
tion (IO) for deterministic circuits in conjunction with sub-exponentially secure
puncturable PRF. The construction given in [17] satisfies this security require-
ment even if the circuit family C = {Cλ}λ∈N contains circuits with polynomial
size in λ as long as the input length of those circuits is at most λ.

2.8 Fully Homomorphic Encryption Scheme

Let C = (Cλ)λ∈N be a family of sets of polynomial sized circuits of arity a(λ),
i.e. the set Cλ contains circuits of polynomial size in λ. We assume that for any
λ ∈ N the circuits in Cλ share the common input domain ({0, 1}poly(λ))a(λ) for a
fixed polynomial poly(λ). A homomorphic encryption scheme enables evaluation
of circuits on encrypted data. The first fully homomorphic encryption scheme
was proposed in [28]. In this paper, we abide by the notation used in [4].

Definition 8 (Homomorphic public-key encryption (HPKE) scheme
(syntax and security)). A homomorphic public-key encryption scheme with
message space M ⊆ {0, 1}∗ for a deterministic circuit family C = (Cλ)λ∈N of
arity a(λ) and input domain ({0, 1}poly(λ))a(λ) is a tuple of PPT algorithms
Hpke = (Gen, Enc, Dec, Eval).

Gen(1λ) → (pk, sk) On input the unary encoded security parameter 1λ, Gen

outputs a public key pk and a secret key sk.
Enc(pk,m) → c On input the public key pk and a message m ∈ M, Enc outputs

a ciphertext c ∈ {0, 1}poly(λ) for message m.
Dec(sk, c) → m On input the secret key sk and a ciphertext c ∈ {0, 1}poly(λ),

Dec outputs the corresponding message m ∈ M (or ⊥, if the ciphertext is
not valid).
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Fig. 4. The description of the IND-CPA game Expind-cpa
Hpke,A(λ).

Eval(pk,C, c1, . . . , ca(λ)) → c On input the public key pk, a deterministic circuit
C ∈ Cλ, and ciphertexts (c1, . . . , ca(λ)) ∈ ({0, 1}poly(λ))a(λ), Eval outputs a
ciphertext c ∈ {0, 1}poly(λ).

We require Hpke to meet the following requirements:

Perfect correctness. The triple (Gen, Enc, Dec) is perfectly correct as a
PKE scheme, i.e. for any λ ∈ N, any (pk, sk) ← Gen(1λ), any m ∈ M,
and any c ← Enc(pk, m), Dec(sk, c) = m. Furthermore, the evaluation
algorithm Eval is perfectly correct in the sense that for any λ ∈ N, any (pk,
sk) ← Gen(1λ), any m1, . . . , ma(λ) ∈ M, any ci ← Enc(pk, mi), any
C ∈ Cλ, and any c ← Eval(pk, C, c1, . . . , ca(λ)), Dec(sk, c) = C(m1, . . . ,
ma(λ)).

Compactness. The size of the output of Eval is polynomial in λ and indepen-
dent of the size of the circuit C.

Security. For any legitimate PPT adversary A, the advantage

Advind-cpa
Hpke,A(λ) := Expind-cpa

Hpke,A(λ) − 1
2

is negligible in λ, where Expind-cpa
Hpke,A is defined as in Fig. 4. An adversary A

is legitimate if it outputs two messages m0, m1 of identical length.

Without loss of generality, we assume that the secret key is the randomness
that was used during the key generation. This enables to test whether key pairs
are valid.

3 Construction

3.1 Group Scheme

A group scheme is an abstraction from the properties of groups formalized via
a tuple of PPT algorithms. For our purposes, we further abstract this notion to
suit groups where group elements do not necessarily have unique encodings. We
adapt the notion described in [4] which in turn generalizes the notion introduced
in [11]. As demonstrated in [4], such group schemes benefit from the fact that
group elements can be represented with many different encodings. This allows
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to add auxiliary information inside encodings of group elements in order to add
more structure to the group. In our case, however, we exploit that group schemes
with non-unique encodings can be used to conceal the structure of the group.

Definition 9 (Group scheme with non-unique encodings). A group
scheme with non-unique encodings Γ is a tuple of PPT algorithms Γ = (Setup,
Val, Sam, Add, Equal).

Setup(1λ) → pp On input the unary encoded security parameter 1λ, Setup

outputs public parameters pp. In particular, pp contains the group order q.
We assume that pp is given implicitly to the following algorithms.

We assume that any encoding is represented as a bit string. In order to decide,
whether a given bit string is a valid encoding of a group element, Γ provides a
validation algorithm Val. We refer to bit strings causing Val to output 1 as
(valid) encodings of group elements.

Val(h) → {0, 1} On input a bit string h ∈ {0, 1}∗, Val outputs 1 if h is a valid
encoding with respect to pp, otherwise Val outputs 0.

In general, it is not sufficient to compare encodings as bit strings in order to
decide whether they represent the same group element. Hence, a group scheme
needs to define an algorithm that provides this functionality. This algorithm is
called Equal. We require Equal to realize an equivalence relation on the set of
valid encodings. For any valid encoding h ∈ {0, 1}∗, let G(h) denote the equiv-
alence class of this encoding. In other words, G(h) contains all encodings that
correspond to the same group element as the encoding h. For any valid encoding
h, we require that |{a ∈ {0, 1}∗ |Val(a) = 1}/G(h)| = q is the order of the group.
We refer to the equivalence classes in {a ∈ {0, 1}∗ |Val(a) = 1}/G(h) as group
elements.

Equal(a, b) → {0, 1,⊥} On input two valid encodings a and b, Equal outputs
1 if a and b represent the same group element, otherwise Equal outputs 0.
If either a or b is invalid, Equal outputs ⊥.

In order to perform the group operation on two given encodings, we define an
addition algorithm Add.

Add(a, b) On input two valid encodings a and b, Add outputs an encoding cor-
responding to the group element that results from the addition of the group
elements represented by a and b. If either a or b is invalid, Add outputs ⊥.

The sampling algorithm Sam enables to produce an encoding of a group element
and only uses information that is part of the public parameters pp. Let h be a
bit string produced via Sam(1).

For any z ∈ N, let [z] denote the group element corresponding to the equiva-
lence class G(hz), where the group operation is performed using Add. We require
the distribution of Sam(z) to be computationally indistinguishable from uniform
distribution over [z].
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Sam(z) → a On input an exponent z ∈ N, Sam outputs an encoding a from the
equivalence class G(hz).

Given the order q of the group, it is sufficient to provide an addition algorithm
to enable inversion of group elements. To invert a given group element, we use
the square-and-multiply approach to add the given encoding q − 1 times to
itself. Further, it suffices to define an algorithm Zero that tests whether a given
encoding corresponds to the identity element of the group instead of an algorithm
Equal as above. To implement the algorithm Equal on input two encodings a
and b, we invert b, add the result to a and test whether the result corresponds
to the identity element using Zero.

According to [4], a group scheme with non-unique encodings, in addition to
the algorithms defined above, provides an extraction algorithm. The extraction
algorithm, given a valid encoding, produces a bit string such that all encodings
that represent the same group element lead to the same bit string. However,
we omit this algorithm, as our construction does not provide one. It remains
an open problem to extend our construction with an extraction algorithm such
that the validity of the (m,n)-Interactive Uber assumption (see Definition 10)
can still be proven.

3.2 Interactive Uber Assumption

The Uber assumption is a very strong cryptographic assumption in bilinear
groups first proposed in [10] and refined in [12]. It provides a natural framework
that enables to assess the plausibility of cryptographic assumptions in bilinear
groups.

In contrast to the original definition, we consider adaptive attacks (in which
an adversary may ask adaptively for more information about the game secrets
and choose his challenge).

Definition 10 ((m,n)-Interactive Uber assumption for group schemes).
Let m = m(λ) and n = n(λ) such that d :=

(
n+m

m

)

is a polynomial 5 in λ, and
let Γ be a group scheme. The (m,n)-Interactive Uber assumption holds for Γ if
for any legitimate PPT adversary A, the advantage Advuber

Γ,A (λ) is negligible in
λ, where

Advuber
Γ,A (λ) := Pr

[

ExpuberΓ,A (λ) = 1
]

− 1
2
.

The game ExpuberΓ,A (λ) is described in Fig. 5. An adversary A is legitimate, if
and only if it always guarantees P ∗(X) �∈ 〈1, P1(X), . . . , Pl(X)〉 and for any
P (X) ∈ {P ∗(X), P1(X), . . . , Pl(X)}, deg(P (X)) ≤ n in ExpuberΓ,A (λ), where
{P1(X), . . . , Pl(X)} are the polynomials that A requests from its oracle O.

For technical reasons, we need the maximum total degree n of the polynomials
appearing in ExpuberΓ,A (λ) and the number of unknowns m to be bounded a priori.

5 If the parameters m and n both grow at most logarithmically in λ or one of them
grows polynomially in λ while the other one is a constant, the binomial coefficient
d =

(
n+m

m

)
grows polynomially in λ.
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Fig. 5. The description of the (m, n)-Interactive Uber game Expuber
Γ,A (λ). The oracle

O on input a polynomial P (X ), returns an encoding of the group element [P (s)]. We
refer to P ∗(X ) as “challenge polynomial” and to zb as “challenge encoding”. Further,
we call the polynomials that A requests from the oracle O “query polynomials”.

3.3 Our Construction

Inspired by the construction in [4], an encoding of a group element includes
two ciphertexts each encrypting a vector determining an m-variate polynomial
over Zq of maximum total degree n with respect to some randomly sampled
basis {a1, . . . , ad}. That basis is hidden inside the public parameters of the
group scheme via a perfectly binding commitment. An encoding corresponds to
the group element whose discrete logarithm equals the evaluation of the thus
determined polynomial at a random point ω ∈ Z

m
q . That random point ω is

fixed in the public parameters via a point obfuscation po.
For our construction we employ the following building blocks: (i) a dual

mode NIWI proof system Π, (ii) a homomorphic encryption scheme Hpke with
message space M = Z

d
q for a family of circuits of arity a(λ) = 2 adding two

tuples in Z
d
q component-by-component modulo q, (iii) a point obfuscation PObf

for message space Mk = Zq, (iv) a family T D = (T Dλ)λ∈N of families T Dλ of
languages TD in a universe X = Xλ with unique witnesses for y ∈ TD such that
the subset membership problem TD ⊆ X is hard, (v) a perfectly binding non-
interactive commitment scheme Com for message space Z

d×d
q , and (vi) a general

purpose X-Ind pIO piO (i.e. a pIO that is secure with respect to SX-ind for a
circuit family that only contains circuits with input length at most l, where l is
the security parameter used for piO). Let n = n(λ) and let m = m(λ) such that
(
n+m

m

)

is a polynomial in λ. The group scheme we construct depends on n and m.
We emphasize this fact by calling it Γm,n := (Setup, Val, Sam, Add, Equal).
As mentioned above, we provide an algorithm that tests if a given encoding is
an encoding of the identity group element, instead of implementing Equal.

In Fig. 6 we describe the algorithm Setup of our construction. The number
q is a prime number that is greater than 2p(λ) and will serve as the order of
our group scheme. We require p to be a polynomial such that p(λ) ≥ poly(λ),
where poly is used to scale the security parameter of piO. We emphasize that
our construction allows to arbitrarily choose the group order q as long as q is
greater than 2p(λ) and prime. Therefore, q can be understood as an input of
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Fig. 6. The implementation of the Setup algorithm producing public parameters pp.

the algorithm Setup. For the sake of simplicity, we do not write q as input and
assume that Setup generates a suitable group order.

We remark that the circuits CAdd and C
(0)
Zero that appear in the algorithm

Setup implement the addition of two group elements and a test for the identity
element respectively. For a description of these circuits we refer the reader to
Fig. 7. The polynomial poly(λ) ≥ λ that is used to scale the security parameter
for the obfuscator piO upper bounds the input length of these circuits CAdd

and C
(0)
Zero. All versions of addition circuits and all versions zero testing circuits

that appear during the proofs are padded to the same length respectively. We
emphasize that it is necessary to scale the used security parameter as the pIO
piO we rely on is secure with respect to SX-ind for a circuit family that only
contains circuits with input length at most λ′, where λ′ denotes the security
parameter that is used to invoke piO.

Encodings of Group Elements. Encodings of group elements are of the form
h = (C, C ′, π). The first two entries C and C ′ are ciphertexts encrypting vectors
#»

f ∈ Z
d
q and

#»

f ′ ∈ Z
d
q respectively under the public keys pk and pk ′ respectively,

where d is the dimension of the Zq vector space of m-variate polynomials over
Zq with total degree at most n, i.e. d =

(
n+m

m

)

. We require the dimension d
of the vector space to grow at most polynomially in λ. The last entry π is the
so-called consistency proof. We refer to the vectors

#»

f and
#»

f ′ as representation
vectors of the group element and to the tuple (

#»

f ,
#»

f ′) as representation of the
group element. Let α = (α1, . . . , αm) ∈ N

m denote tuples with
∑m

i=1 αi ≤ n
and let

ϕpol : Zd
q → Zq[X ],(. . . , vα, . . . )T →

∑

α

vα · Xα1
1 · · · Xαm

m

be the vector space homomorphism mapping the standard basis of Zd
q to a natural

basis of the vector space of m-variate polynomials of degree at most n. For well-
definedness we use the lexicographical order on the tuples (α1, . . . , αm) ∈ N

m,
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particularly, the first vector of the standard basis of Zd
q is mapped to the constant

polynomial 1. The image of ϕpol is Im(ϕpol) = {p ∈ Zq[X ] |deg(p) ≤ n} and
the kernel is ker(ϕpol) = {0}. Hence, ϕpol is an isomorphism between the vector
spaces Z

d
q and Im(ϕpol).

We recall that Setup(1λ) samples the matrix A uniformly at random from
GLd(Zq) such that the first column equals e1. Hence, the matrix A−1 exists and
has the form A−1 = (a1 | a2 | . . . | ad) such that a1 = e1. The columns a1, . . . ,
ad ∈ Z

d
q form a basis of the vector space Z

d
q .

The coefficients of the representation vectors
#»

f = (f1, . . . , fd)T and
#»

f ′ = (f ′
1,

. . . , f ′
d)

T of a group element define the polynomials f(X ), f ′(X ) ∈ Im(ϕpol) via

f(X ) :=
d
∑

i=1

fi · ϕpol(ai) f ′(X ) :=
d
∑

i=1

f ′
i · ϕpol(ai)

=ϕpol

(

A−1 · #»f
)

=ϕpol

(

A−1 ·
#»

f ′
)

In other words, the representation vectors
#»

f and
#»

f ′ are the representations
of the abstract polynomials f(X ) and f ′(X ) respective to the basis {ϕpol(a1) =
ϕpol(e1), ϕpol(a2), . . . , ϕpol(ad)}. Intuitively, a valid encoding that contains the
representation vector

#»

f ∈ Z
d
q corresponds to the group element [f(ω)], where

ω is the value that is fixed in the public parameters of the group scheme via
po. The same holds for the representation vector

#»

f ′ resulting in a redundant
encoding. This approach is similar to the Naor-Yung paradigm [35].

We call the representation (
#»

f ,
#»

f ′) consistent if both representation vectors
correspond to the same group element, i.e. the evaluation of the corresponding
polynomials f(X ) and f ′(X ) at ω are equal. Otherwise, we call such a repre-
sentation inconsistent. If the representation (

#»

f ,
#»

f ′) is consistent, we call this
representation constant if the corresponding polynomials f(X ) and f ′(X ) are
constant (i.e. are of total degree at most 0). If a consistent representation is
not constant we call this representation non-constant. The purpose of the so-
called consistency proof is to ensure consistency of encodings, i.e. to ensure that
the corresponding representation is consistent. Further, we use the terms con-
stant, non-constant, consistent, and inconsistent to characterize encodings if the
associated representation has the respective properties.

Consistency Proof and Validation Algorithm. The above mentioned con-
sistency proof ensures that the representations, that are encrypted inside of
encodings, are consistent. In other words, the consistency proof ensures that
both representation vectors

#»

f and
#»

f ′ used for an encoding lead to the same
group element. We realize this by using the dual mode NIWI proof system Π to
produce the consistency proof π for a relation R. The relation R is a disjunction
of three main statements R = R1 ∨ R2 ∨ R3:
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The relation R1 is satisfied for representations that are constant and consis-
tent. We formalize this via relation R1.a:

R1.a :=
[

#»

f =
#»

f ′ ∧ deg
(

ϕpol(
#»

f )
)

≤ 0
]

We recall the convention that the degree of the zero polynomial is defined to be
−∞. For technical reasons, we need to make sure that the knowledge of the secret
decryption keys (sk , sk ′) and the knowledge of the used encryption randomness
are both sufficient as witnesses. Thus, additionally to R1.a we define the two
relations Rb and Rc. The relations Rb and Rc connect the ciphertexts C, C ′ of
the encoding with the corresponding representation vectors

#»

f ,
#»

f ′ appearing in
relation R1.a.

Rb :=
[

C = Enc(pk ,
#»

f ;R) ∧ C ′ = Enc(pk ′,
#»

f ′;R′)
]

Rc :=

[

(pk , sk) = Gen(sk) ∧ #»

f = Dec(sk , C) ∧
(pk ′, sk ′) = Gen(sk ′) ∧

#»

f ′ = Dec(sk ′, C ′)

]

At this point we make use of the assumption that a secret decryption key
equals the randomness that was used to produce the corresponding public
encryption key. The relation R1 is defined as follows:

R1 := R1.a ∧ (Rb ∨ Rc) . (7)

Given a consistent and constant representation (
#»

f ,
#»

f ′) and resulting ciphertexts
C and C ′, there are two possible witnesses to produce the consistency proof for
the relation R1: using the secret decryption keys (sk , sk ′,

#»

f ,
#»

f ′) and using the
encryption randomness ((

#»

f , R), (
#»

f ′, R′)).
The relation R2 is satisfied for representations that are consistent. Again, we

formalize this via a relation R2.a:

R2.a :=

⎡

⎢

⎣

ϕpol

(

A−1 · #»f
)

(ω) = ϕpol

(

A−1 ·
#»

f ′
)

(ω) ∧
∀i ∈ {1, . . . , m} : poi(ωi) = 1 ∧
Openck(com, op) = A ∧ A �= ⊥

⎤

⎥

⎦

The relation R2 is defined as follows:

R2 := R2.a ∧ (Rb ∨ Rc) . (8)

Given a consistent representation (
#»

f ,
#»

f ′) and resulting ciphertexts C and C ′,
there are two possible witnesses to produce the consistency proof for the rela-
tion R2: using the secret decryption keys (sk , sk ′,

#»

f ,
#»

f ′, ω, op) and using the
encryption randomness ((

#»

f , R), (
#»

f ′, R′), ω, op). To be precise, the matrix A
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also is part of these witnesses. However, as we can assume that A is a part of
op, we omit this fact in our notation.

The relation R3 introduces a trapdoor enabling production of consistency
proofs for inconsistent encodings.

R3 :=
[

y ∈ TD
]

. (9)

This relation only depends on the instance (TD, y) of the subset membership
problem TD ⊆ X defined in the public parameters. We recall that if y ∈ TD,
there exists a unique witness wy satisfying the witness relation for the SMP.
Hence, the witness for the relation R3 is (wy). Given public parameters pp that
are generated via Setup(1λ), y is not in TD. Therefore, there exists no trapdoor
if pp is generated honestly.

Let rp denote the parts of the public parameters that are necessary to produce
consistency proofs, i.e. rp := (q, pk , pk ′, po, ck , com, TD, y). To be precise, the
corresponding language L has the following form:

L :={x = (q, pk , pk ′, po, ck , com,TD, y
︸ ︷︷ ︸

=rp

, C, C ′) | ∃w : (x,w) ∈ R}

= L1 ∪ L2 ∪ L3,

where Li := {x = (rp, C,C ′) | ∃w : (x,w) ∈ Ri}. For the sake of clarity, we
henceforth omit the parameters rp and treat the tuple (C, C ′) as the statement.

The validation algorithm Val, on input a bit string h ∈ {0, 1}∗, parses h
into (C, C ′, π) and executes Verify(gpk, crs, x, π) of the underlying NIWI proof
system Π for the relation R.

Addition and Zero Algorithm. The implementations of the algorithms Add

and Zero need to know secret information that is associated with the public
parameters, for instance the secret decryption keys. Therefore, we implement
these algorithms as probabilistic circuits and “hard-code” the necessary secret
parameters inside. The security requirement of the employed obfuscator piO
enables to conceal the implementation of these circuits and, hence, conceals the
secret parameters that are hard-coded. The PPT algorithms Add and Zero

simply execute the respective obfuscated circuit Λadd and Λzero.
In Fig. 7 we present the implementation of the circuit CAdd and the imple-

mentation of the circuit C
(0)
Zero. We remark that CZero only uses the representation

vector
#»

f and ignores the representation vector
#»

f ′. This enables to exploit the
Naor-Yung like double encryption.

The addition circuit CAdd is similar to the one constructed in [4]. The dif-
ference is limited to the fact that in our case CAdd differentiates between three
instead of two different possibilities to produce the new consistency proof. The
encodings of group elements in the construction of [4] are of the form (h, C,
C ′, π), where C and C ′ are some ciphertexts and π is a corresponding con-
sistency proof. The value h is the group element in an underlying group that
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Fig. 7. Circuit CAdd (left) for addition of two group elements, and circuit C
(0)
Zero (right)

for testing whether a given encoding is an encoding of the identity element. Additionally
to the publicly available parameters gpk and rp, CAdd has the secret decryption keys
sk , sk ′, the values ω, the opening op, and the extraction trapdoor tdext hard-coded.
The circuit C

(0)
Zero knows the publicly available parameter q and additionally has the

secret parameters sk , ω, and A hard-coded. The circuit ⊕ realizes addition in Z
d
q .

is represented by the encoding. As h uniquely identifies the represented group
element, the equality test simply compares these values of the given encodings.
In our case, however, the encodings do not contain a similar entry. Therefore,
the implementation of the equality test, or rather the zero test, needs to decrypt
the ciphertext C in order to be able to make a statement about the represented
group element.

Sampling Algorithm. The sampling algorithm Sam, on input an exponent
z ∈ N, uses the representation (

#»

f ,
#»

f ′) := ((z, 0, . . . , 0)T , (z, 0, . . . , 0)T ) to
produce an encoding of the requested group element. The consistency proof is
produced for relation R1 using the witness ((

#»

f , R), (
#»

f ′, R′)), where R and
R′ are the randomnesses that are used to encrypt

#»

f and
#»

f ′ respectively. If
the sampling algorithm does not receive any input, it samples the exponent
z from {0, . . . , q − 1} uniformly at random and proceeds as above. Due to
the IND-CPA security of Hpke, the distribution of the output of Sam(z) is
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computationally indistinguishable from uniform distribution over the equivalence
class G(Sam(z)).

We remark that our group scheme allows for re-randomization of encodings.
To re-randomize a given encoding, we sample an encoding of the identity element
and use the addition algorithm to add it to the encoding to be randomized. We
require the employed homomorphic encryption scheme to satisfy an additional
natural property. Namely, we require that ciphertexts can be re-randomized by
homomorphically adding a fresh ciphertext of 0. This property is also known as
circuit privacy.

3.4 Main Theorem

Theorem 1. Let Γm,n be the group scheme constructed in Sect. 3.3. Further,
let piO be a probabilistic indistinguishability obfuscator with respect to SX-ind

for a circuit family containing circuits with input length at most poly(λ), let
T D = (T Dλ)λ∈N be a family of families T Dλ = {TD} of languages TD ⊆ Xλ

such that the subset membership problem is hard, let Π be a dual mode NIWI
proof system, let Hpke be an IND-CPA secure HPKE scheme, let Com be a
perfectly binding non-interactive commitment scheme, and let PObf be a point
obfuscation. Then, the (m,n)-Interactive Uber assumption (cf. Definition 10)
holds for Γm,n.

In Table 1 we give an overview on the proof of Theorem 1. Informally, the
“Switching lemma” states that encodings containing different representations of
the same group element are hard to distinguish. The distribution p̃p denotes
the distribution of public parameters that are sampled according to Setup with
the difference that y is sampled from within the trapdoor language TD. The
distribution p̂p denotes the same distribution as p̃p with the difference that the
CRS is sampled in hiding mode and Λadd is computed for an addition circuit
that simulates consistency proofs and, hence, does not need to know the matrix
A or the value ω. On a high level, the “Swap lemma” states that these two
distributions of public parameters are computationally indistinguishable.

The distribution pp(i) (for i ∈ {0, . . . , m}) denotes the same distribution
as p̂p with the difference that Λzero is an obfuscation of a zero testing circuit
that tests whether the polynomial f(X1, . . . , Xi, ωi+1, . . . , ωm) equals the zero
polynomial. Furthermore, the point obfuscations in p̂p obfuscate ⊥ whereas the
point obfuscations in pp(i) obfuscate the values ωi+1, . . . , ωm. The distribution
pp is the same as pp(m) with the difference that Λzero is produced for a zero
testing circuit that simply tests whether the representation vector

#»

f equals zero
in Z

d
q and, hence, does not need to know the matrix A and ω anymore.

The “Randomization lemma” basically states that the images of a certain
subspace under a randomly sampled vector space isomorphism do not leak any
information on the behavior of that isomorphism on pre-images that do not lie
in that span.

For the formal definitions and the full proofs we refer the reader to the full
version [3].
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Table 1. An overview on the steps of the proof of 1. The boxes emphasize changes
compared to the previous game. Let Wi denote the witness that is used to prove relation
Ri for i ∈ {1, 2, 3}. The witnesses W1 and W2 contain the used encryption randomness.
Further, for a polynomial P (X ), let RP := A ·ϕ−1

pol(P (c◦X )), and for a vector v∗ ∈ Z
d
q ,

let Rv∗ := ϕpol

(
A−1 · v∗)

(ω) · e1.



368 T. Agrikola and D. Hofheinz

Acknowledgements. We would like to thank Antonio Faonio, Pooya Farshim, and
Jesper Buus Nielsen for many interesting discussions. We would also like to thank the
reviewers for many helpful comments.

References

1. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 37

2. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively
randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54242-8 29

3. Agrikola, T., Hofheinz, D.: Interactively secure groups from obfuscation. Cryptol-
ogy ePrint Archive, report 2018/010. https://eprint.iacr.org/2018/010 (2018)

4. Albrecht, M.R., Farshim, P., Hofheinz, D., Larraia, E., Paterson, K.G.: Multilinear
maps from obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS,
vol. 9562, pp. 446–473. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49096-9 19

5. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 13

6. Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
273–289. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-
8 17

7. Bellare, M., Stepanovs, I.: Point-function obfuscation: a framework and generic
constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9563, pp. 565–594. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49099-0 21

8. Bitansky, N., Canetti, R., Kalai, Y.T., Paneth, O.: On virtual grey box obfuscation
for general circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 108–125. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 7

9. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

10. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

11. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Con-
temp. Math. 324(1), 71–90 (2003)

12. Boyen, X.: The uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.)
Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85538-5 3

https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-54242-8_29
https://doi.org/10.1007/978-3-642-54242-8_29
https://eprint.iacr.org/2018/010
https://doi.org/10.1007/978-3-662-49096-9_19
https://doi.org/10.1007/978-3-662-49096-9_19
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-540-28628-8_17
https://doi.org/10.1007/978-3-662-49099-0_21
https://doi.org/10.1007/978-3-662-49099-0_21
https://doi.org/10.1007/978-3-662-44381-1_7
https://doi.org/10.1007/978-3-662-44381-1_7
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3


Interactively Secure Groups from Obfuscation 369

13. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 1

14. Brown, D.R.L.: Generic Groups, Collision Resistance, and ECDSA. Des. Codes
Cryptograph. 35(1), 119–152 (2005)

15. Brown, D.R.L.: Toy factoring by Newton’s method. IACR ePrint Archive, report
2008/149 (2008). http://eprint.iacr.org/2008/149

16. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052255

17. Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic
circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 468–497. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 19

18. Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over
finite fields. Math. Comput. 36, 587–592 (1981)

19. Chase, M., Maller, M., Meiklejohn, S.: Déjà Q all over again: tighter and broader
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Abstract. We construct a graded encoding scheme (GES), an approxi-
mate form of graded multilinear maps. Our construction relies on indis-
tinguishability obfuscation, and a pairing-friendly group in which (a suit-
able variant of) the strong Diffie–Hellman assumption holds. As a result
of this abstract approach, our GES has a number of advantages over
previous constructions. Most importantly:

– We can prove that the multilinear decisional Diffie–Hellman (MDDH)
assumption holds in our setting, assuming the used ingredients are
secure (in a well-defined and standard sense). Hence, our GES does
not succumb to so-called “zeroizing” attacks if the underlying ingre-
dients are secure.

– Encodings in our GES do not carry any noise. Thus, unlike pre-
vious GES constructions, there is no upper bound on the number
of operations one can perform with our encodings. Hence, our GES
essentially realizes what Garg et al. (EUROCRYPT 2013) call the
“dream version” of a GES.

Technically, our scheme extends a previous, non-graded approximate
multilinear map scheme due to Albrecht et al. (TCC 2016-A). To intro-
duce a graded structure, we develop a new view of encodings at different
levels as polynomials of different degrees.

Keywords: Multilinear maps · Graded encoding schemes
Indistinguishability obfuscation

1 Introduction

The GGH candidate multilinear map. In 2013, Garg, Gentry, and Halevi
(GGH) [22] proposed the first plausible construction of an (approximate) multi-
linear map (MLM). In a nutshell, an MLM is a map e : Gκ −→ GT (for groups
G and GT ) that is linear in each input. Of course, we are most interested in
the case of “cryptographically interesting” groups G (in which, e.g., computing
discrete logarithms is infeasible), non-trivial maps e (with non-trivial kernel),
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and preferably large values of κ. The surprising cryptographic consequences of
such “cryptographically interesting” MLMs were already investigated in 2003
by Boneh and Silverberg [6], but an actual construction of an MLM remained
elusive until the candidate construction of GGH.

Unfortunately, GGH only presented an “approximate” MLM in the following
sense:

– Instead of group elements, their e inputs (and outputs) are encodings. An
encoding is a non-unique representation of a group element, and there is
no guarantee about which particular encoding the group operation (or e)
outputs. However, every encoding allows to derive a “canonical form” that
uniquely determines the encoded group element. (This canonical form allows
no further operations, though.)

– Each encoding carries a “noise level” that increases with each operation. If
the noise level grows beyond a certain threshold, no further operations are
possible.

However, the GGH MLM also has an important graded property that allows
to evaluate e partially, in a sense we will detail later. In particular this graded
structure has made the GGH MLM tremendously useful: notable applications
of graded MLMs include indistinguishability obfuscation [23], witness encryp-
tion [25], attribute-based encryption for general circuits [24], and constrained
pseudorandom functions for general circuits [7]. Furthermore, graded MLMs
enable a very powerful class of programmable hash functions [32], which in turn
allows to implement random oracles in certain “algebraic” applications [20,33].

After GGH’s MLM construction, several other (graded and approximate)
MLM constructions have been proposed [15,16,28,34]. However, all of these
constructions (including the original GGH scheme) succumb to cryptanalytic
attacks [12–14,37]. In particular, currently there is no obvious way to instantiate
schemes relying on multilinear maps, e.g., the schemes from [7,20,24,25,33].1

Graded MLMs. There is one (approximate) MLM construction of Albrecht,
Farshim, Hofheinz, Larraia, and Paterson (AFHLP) [2] that does not fall victim
to any of the mentioned cryptanalytic attacks on MLMs. However, this construc-
tion does not offer a graded MLM, and thus cannot be used to bootstrap, e.g.,
witness encryption. Graded MLMs are algebraic tools that can enable other alge-
braic tools such as multilinear Groth-Sahai proofs, or multilinear programmable
hash functions. It is thus still an interesting open problem whether graded MLMs
exist, and whether the results of [23] can be augmented to even show equivalence
to indistinguishability obfuscation.

Our contribution. In this work, we construct graded, approximate MLMs
that do not succumb to any of the known attacks. Technically, we extend the
non-graded MLM construction from AFHLP [2] to a graded MLM. We prove

1 We note, however, that the cryptographic tasks that the constructions from [7,25] aim
to achieve can be directly achieved with indistinguishability obfuscation [1,23,42].
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that the multilinear decisional Diffie–Hellman (MDDH) assumption [22] holds
relative to our MLM, provided that the used ingredients are secure.

Interestingly, our MLM has two technical features that previous graded
approximate MLMs do not have:

1. Our encodings do not carry any noise (although they are not unique). In
particular, there is no limit on the number of operations that one can perform
with our encodings.

2. The canonical forms derived from encodings allow further group operations
(but no further pairings).

Our new MLM (when implemented with the indistinguishability obfuscator from
[23,26]) currently forms the only plausible graded MLM, and thus the only plau-
sible way to implement a number of MLM-based constructions [7,20,24,25,33].

Furthermore, our construction is generic and modular. In particular, we
reduce the quest to develop a secure (graded) MLM to the quest for a secure
indistinguishability obfuscator. This seems natural (and is standard in most areas
of cryptography), but given the history of previous MLM candidates (which were
based on complex algebraic or combinatorial assumptions), this is not an “under-
stood feature” at all for MLMs.

In fact, taken together with recent constructions of indistinguishability obfus-
cation (iO) from multilinear maps (e.g., [3,23,35,36]), our result shows a (some-
what loose) equivalence of indistinguishability obfuscation (iO) and (graded and
approximate) MLMs, in the presence of a pairing-friendly group. This equiva-
lence is loose in the following sense. First, the assumptions on both ends of the
equivalence do not match: some of these works (e.g., [23]) construct iO from
MLMs which support very strong computational assumptions (much stronger
than MDDH) or require asymmetric multilinear maps. On the other hand, we
use iO to construct symmetric MLMs in which we can (at this point) only prove
comparatively mild (though still useful) computational assumptions (such as
MDDH). Still, there seems no inherent barrier to proving stronger computational
assumptions for our construction, or to adapt our construction to asymmetric
pairings, and we leave open to tighten this equivalence. Second, going through
our equivalence suffers subexponential security loss. Namely, we require proba-
bilistic indistinguishability obfuscation, which can be constructed from iO [11],
but currently only through a sub-exponential reduction.

However, we note that such an equivalence would not be highly surprising
given recent results on constructing iO from MLMs [3,35]. These works only
require “one-shot” (but asymmetric) MLMs, and not even graded encodings as
we construct them.

Related Work. Our work is closely related to [2], since the non-graded MLM
there serves as a starting point for our graded MLM. We will summarize their
construction in Sect. 4 and give an informal overview below.

Recently, Paneth and Sahai [39] have shown a near-equivalence of a suitable
abstraction of MLMs with iO. Their result requires no computational assump-
tions at all, but also does not consider MLMs in our sense. In particular, they
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construct an abstraction of a MLM that only admits restricted access to encod-
ings similar to the one in [23]. Beyond the group operation and the multilinear
map, efficient procedures for, e.g., uniform sampling, comparison or rerandom-
ization of encodings, are not part of this abstraction. Conversely, our notion of
a MLM, like the ones from [2,22], contains descriptions of efficient procedures
for these tasks.

It would be interesting to see how the restricted MLMs of [39] can be used
to instantiate the constructions from [5,8,20,33] directly, i.e., without making
the detour via iO. However, since iO alone is not even known to imply one-way
functions (see [29] for a discussion), this will require additional assumptions.

Pass et al. [40] give a security definition of graded MLMs that requires that
whenever encodings are generically equivalent (that is, cannot be distinguished
with generic operations alone), they should be computationally indistinguishable
as encodings. They show that this MLMs which satisfy this strong assumption
imply indistinguishability obfuscation. It is not clear, however, how to construct
such strongly secure MLMs (without resorting to idealized models such as the
generic group model).

1.1 The (Non-graded) Approximate Multilinear Map of AFHLP

Encodings. Since our own construction is an extension of the (non-graded)
approximate MLM of [2], we first recall their work. Simplifying slightly, AFHLP
encode a group element gz (from a cyclic group G of order p) as

h = (gz, c = Enc((α, β), pk), π),

where

– c is a homomorphic encryption (under some public key pk) of exponents
α, β ∈ Zp,

– π is a non-interactive zero-knowledge proof that these exponents represent z
in the sense that gz = gαuβ for a publicly known group element u. (Hence, if
we write u = gω, we have z = α + β · ω.)

Hence, AFHLP simply enhance the group element gz ∈ G by an encrypted
representation of its discrete logarithm z (and a suitable consistency proof).
This added information will be instrumental in computing a multilinear map on
many encodings. Note that since c and π will not be uniquely determined, there
are many possible encodings of a G-element gz.

Addition. Encodings in the AFHLP construction can be added with an
(obfuscated) public circuit Add. This circuit takes as input two encodings
h1 = (gz1 , c1, π1) and h2 = (gz2 , c2, π2), and computes the new encoding
h1 + h2 = (gz, c, π) as follows:

1. gz = gz1+z2 is computed using the group operation in G;
2. c is computed homomorphically from c1 and c2 (adding the encrypted expo-

nent vectors (αi, βi));
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3. the consistency proof π is computed using the decryption key sk as a witness
to show that the resulting c indeed contains a valid representation of z =
z1 + z2.

Here, only the computation of π requires secret information (namely, the decryp-
tion key sk). This secret information allows to derive a valid representation (α, β)
of gz. The most delicate part of the security proof from [2] is to argue that the
obfuscated circuit knowing sk does not help in solving (a multilinear variant of)
the decisional Diffie–Hellman problem.

The multilinear map. The AFHLP encodings can also be multiplied with an
(obfuscated) public circuit Mult; this takes as input κ encodings h1, . . . , hκ with
hi = (gzi , ci, πi), and outputs a single group element g

∏κ
i=1 zi . (Hence, elements

from the target group GT are trivially and uniquely encoded as G-elements.) To
compute g

∏
zi from the hi, Mult first checks the validity of all proofs πi, and

then uses the decryption key sk to retrieve representations (αi, βi). If all πi are
verifying proofs, we may assume that zi = αi + βi · ω (for u = gω), so we can
write

g
∏κ

i=1 zi =
κ∏

i=0

(gωi

)γi for (γ0, . . . , γκ) = (α1, β1) ∗ · · · ∗ (ακ, βκ), (1)

where “∗” denotes the convolution product of vectors.2 The values gωi

(for i ≤ κ)
are hardwired into Mult, so Mult can compute g

∏
zi through (1). Note that this

way, Mult can compute a κ-linear map on encodings, but not a (κ + 1)-linear
map. This observation is the key to showing that the MDDH assumption holds
in this setting. (Indeed, the MDDH assumption states that given κ+1 encodings
h1, . . . , hκ+1 as above, it is hard to distinguish g

∏κ+1
i=1 zi from random.)

1.2 Our New Graded Encoding Scheme

Before proceeding any further, we briefly recall the notions of a graded multilin-
ear map and a graded encoding scheme.

Graded maps. In a graded multilinear map setting, we have groups G1, . . . ,Gκ,
and (efficiently computable) bilinear maps ei,j : Gi ×Gj −→ Gi+j for i + j ≤ κ.
Hence, the ei,j also allow the evaluation of a multilinear map e : Gκ

1 −→ Gκ

iteratively, e.g., through

e(g1, . . . , gκ) := e1,κ−1(g1, e1,κ−2(g2, · · · , e1,1(gκ−1, gκ) · · · )).

However, the ei,j also allow “partial” evaluation of e, which is the key to entirely
new applications such as those in [7,23–25].

2 Recall that the multiplication of polynomials can be implemented through the
convolution product on the respective coefficient vectors. In particular, we have∑κ

i=0 γiX
i =

∏κ
i=1(αi + βiX).
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Unfortunately, we do not currently know how to implement such a “clean”
graded multilinear map. Instead, all known graded MLM constructions work
on encodings (i.e., non-unique representations of group elements). Such a con-
struction is usually called a graded encoding scheme (GES). Following the GES
notation, we will henceforth also call an encoding of a G�-element a level -�
encoding.

In the following, we will describe the main ideas for our GES.

Encodings in our scheme. In our GES, we generalize the linear representation
of exponents in AFHLP to polynomials of higher degree. Additionally, we divide
encodings into levels by restricting the maximum degree of the representing
polynomial in each level. More formally, level-� encodings take the form

h = (gz, c = Enc(P, pk), π, �),

where

– gz ∈ G for a cyclic group G (that does not depend on �) of prime order p,
– P ∈ Zp[X] is a polynomial of degree up to �, represented by its coefficient

vector from Z
�+1
p ,

– c is the encryption (under a fully homomorphic encryption scheme) of P ,
– π is a non-interactive zero-knowledge proof of the equality gz = gP (ω), where

ω is defined through public values u0, . . . , uκ ∈ G with ui = gωi

. (Hence,
gz = gP (ω) is equivalent to gz =

∏
i uγi

i for P (X) =
∑

i γiX
i.)

The encodings of AFHLP can be viewed as level-1 encodings in our scheme (with
linear polynomials P ).

Adding encodings. Encodings can be added using a public (obfuscated) circuit
Add that proceeds similarly to the AFHLP scheme. In particular, Add adds the
gz and c parts of the input encodings homomorphically, and derives a consistency
proof π with the decryption key sk as witness.

Multiplying encodings. The pairings ei,j : Gi×Gj −→ Gi+j are implemented
over our encodings by (obfuscated) circuits Multi,j . Circuit Multi,j takes as
input two encodings h1 = (gz1 , c1, π1, i) and h2 = (gz2 , c2, π2, j) at levels i and j,
respectively. The output of Multi,j is a level-(i+j) encoding h = (gz, c, π, i+j),
computed as follows:3

– gz is computed as gz = g(P1·P2)(ω), where the polynomials P1 and P2 are
extracted from c1 and c2 with sk , then multiplied to form P := P1·P2 ∈ Zp[X],
and finally used to compute

g(P1·P2)(ω) = gP (ω) =
i+j∏

�=0

uγ�

� for P (X) =
i+j∑

�=0

γ�X
�.

(Since the u� are public, this value can be computed as long as i + j ≤ κ.)
3 Since Multi,j can be used to multiply two encodings at level i as long as 2i ≤ κ, our

GES can be viewed as symmetric. We note that we do not deal with the construction
of generalized GES (see [22, Appendix A] for a definition).
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– c is computed homomorphically from c1 and c2, as an encryption of the
polynomial P1 · P2.

– The consistency proof π (showing that indeed gz = gP (ω) for the polynomial
P encrypted in c) is computed with the decryption key sk as witness.

The key insight needed to show that the MDDH assumption holds for our
GES is the same as in AFHLP’s non-graded, approximate MLM. Namely, observe
that any Multi,j can only multiply encodings if i + j ≤ κ. To compute the first
component gz of any “higher-level” encoding, knowledge of gω�

for � > i + j

seems to be required. Under the SDDH assumption in G, such gω�

look random,
even when given u0, . . . , uκ. Of course, to turn this observation into a full proof,
more work is required.

Neglected details. For a useful GES, it should be possible to generate encod-
ings with “known discrete logarithm”; that is, we would like to be able to gen-
erate encodings for an externally given (or at least known) z ∈ Zp. For this
reason, the standard way to generate encodings (at any level) is to set up P as
a constant polynomial of the form P (X) = z ∈ Zp. (That is, we “reserve space”
in c for polynomials P of degree � in level-� encodings, but, by default, use only
constant polynomials.) For this type of encoding with “low-degree P ,” however,
our security argument above does not apply. Rather, it requires that the degree
of P increases at higher levels.

Hence, the central technical piece in our MDDH security proof will be a
“switching theorem” that allows to replace a low-degree P in an encoding with
an equivalent high-degree P ′ (that satisfies P ′(ω) = P (ω)). The proof of this
switching theorem is delicate, since it must work in a setting with (obfuscated)
algorithms that use the decryption key sk . (Note that free access to sk would
allow the retrieval of the used polynomial P from an encoding, and hence would
prevent such a switching of polynomials.)

To this end, we will use double encryptions c (instead of the single encryption
c = Enc(P, pk) described above), along with a Naor–Yung-style consistency
proof in π. However, this consistency proof does not show equality of encryptions,
but equivalence of encrypted representations P, P ′ in the sense of P (ω) = P ′(ω).
This allows to switch representations without invalidating the consistency of
the double encryption. As a result, the full consistency language used for π
is considerably more complicated than the one sketched before. Additionally,
the proof of our switching theorem requires a special and explicit “simulation
trapdoor” and Groth–Sahai-style dual-mode proof systems.

We note that similar complications arose already in AFHLP’s proof, and
required similar measures. The main technical difference in our setting is that our
multiplication circuits Multi,j output encodings (and not just group elements
as in the multilinear map of AFHLP). Hence, our Multi,j circuits also need to
construct consistency proofs π, which requires additional secrets (as witnesses)
in the description of Multi,j and which entails additional steps in our switching
theorem. (We give more details on the technical differences with AFHLP in the
main body. However, we note that, in addition to providing a graded encoding
scheme, we also provide simplified and tighter proofs.
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Fortunately, the indistinguishability obfuscator from [23] requires only a rel-
atively weak MLM variant and hence is not affected by the above-mentioned
cryptanalyses.4

Assumptions. In summary, our construction uses a cyclic group in which the
SDDH assumption holds, a probabilistic indistinguishability obfuscation scheme
[11], a perfectly correct fully homomorphic encryption (FHE), a dual-mode non-
interactive zero-knowledge proof systems, and a language with hard membership.
All of these assumptions are implied by pairing-friendly SDDH groups (equipped
with an asymmetric pairing) and sub-exponentially secure indistinguishability
obfuscation (see [31]). We stress that plausible candidates for both ingredients
exist (e.g., by combining [22,23] to an indistinguishability obfuscator candidate).

Road map. We first recall some preliminaries in Sect. 2 and the GES definition in
Sect. 3. Section 4 recalls the AFHLP construction. We are then ready to present
our GES construction in Sect. 5, and establish our central technical tool (the
“switching theorem”) in Sect. 6. We prove the hardness of MDDH in Sect. 7. In
the appendices, we give a technical overview of AFHLP and the full proofs of
the theorems from the main body of the paper.

2 Preliminaries

Notation. We denote the security parameter by λ ∈ N and assume that it is
implicitly given to all algorithms in the unary representation 1λ. By an algo-
rithm we mean a stateless Turing machine. Algorithms are randomized unless
stated otherwise, and ppt as usual stands for “probabilistic polynomial-time.”
In this paper, by a ppt algorithm we mean an algorithm that runs in polyno-
mial time in the security parameter (rather than the total length of its inputs).
Given a randomized algorithm A we denote the action of running A on input(s)
(1λ, x1, . . .) with uniform random coins r and assigning the output(s) to (y1, . . .)
by (y1, . . .)←$ A(1λ, x1, . . . ; r). For a finite set X, we denote its cardinality by
|X| and the action of sampling a uniformly random element x from X by x←$ X.
We write [k] := {1, . . . , k}. Vectors are written in boldface x, and slightly abusing
notation, running algorithms on vectors of elements indicates component-wise
operation. Throughout the paper ⊥ denotes a special error symbol, and poly(·)
stands for a fixed (but unspecified) polynomial. A real-valued function negl(λ)
is negligible if negl(λ) ∈ O(λ−ω(1)). We denote the set of all negligible functions
by Negl. We use bracket notation for elements in G, i.e., writing [z] and [z′] for
two elements gz and gz′

in G and [z] + [z′] for their product gzgz′
.

Circuits. A polynomial-sized deterministic circuit family C := {Cλ}λ∈N is a
sequence of sets Cλ of poly(λ)-sized deterministic circuits (for a fixed polyno-
mial poly(λ)). We assume that for all λ ∈ N all circuits C ∈ Cλ share a common
4 A recent attack on MLMs (see [37]) tackles even the weak MLM security require-

ments the indistinguishability obfuscator from [23] has. However, the construction
of [23] (resp., its MLM building block) can be suitably enhanced to thwart this
attack [26].
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input domain ({0, 1}λ)a(λ), where a(λ) is the arity of the circuit family, and
an output co-domain {0, 1}λ. A randomized circuit family is defined similarly
except that the circuits also take random coins r ∈ {0, 1}rl(λ), for a polynomial
rl(λ) specifying the length of necessary random coins. To make the coins used
by a circuit explicit (e.g., to view a randomized circuit as a deterministic one)
we write C(x; r).

2.1 Homomorphic Public-Key Encryption

Syntax.A homomorphic public-key encryption (PKE) scheme for a determin-
istic circuit family C = {Cλ}λ∈N

of arity at most a(λ) is a tuple of ppt algo-
rithms Π := (Gen,Enc,Dec,Eval) such that (Gen,Enc,Dec) is a conven-
tional public-key encryption scheme with message space {0, 1}λ and Eval is a
deterministic algorithm that on input a public key pk a circuit C ∈ Cλ and cipher-
texts c1, . . . , cn with n ≤ a(λ) outputs a ciphertext c. Without loss of generality,
we assume that secret keys of a homomorphic PKE scheme are the random coins
used in key generation. This will allow us to check key pairs for validity.

Correctness and compactness. For the scheme Π := (Gen,Enc,Dec),
we require perfect correctness as a PKE scheme; that is, for any λ ∈ N, any
m ∈ {0, 1}λ, any (sk , pk)←$ Gen(1λ), and any c ←$ Enc(m, pk) we have that
Dec(c, sk) = m. We also require the FHE scheme to be fully compact in the
following sense. For any λ ∈ N, any m1, . . . ,mn ∈ {0, 1}λ with n ≤ a(λ),
any C ∈ Cλ, any (sk , pk)←$ Gen(1λ) and any ci ←$ Enc(mi, pk) we have that
Eval(pk ,C, c1, . . . , cn) is in the range of Enc(C(m1, . . . ,mn), pk).

A fully homomorphic encryption (FHE) scheme is a homomorphic PKE that
correctly and compactly supports any circuit family containing polynomial-sized
circuits of polynomial arity (for any a priori fixed polynomial bounds on the
size and arity). In our constructions, full correctness and compactness are used
to ensure that the outputs of the addition and multiplications circuits can be
iteratively operated on. This in particular means that our GES is “noise-free”
in the sense that its correctness is not affected by the number of operations
operated on encodings.

A perfectly correct FHE scheme can be constructed from probabilistic indis-
tinguishability obfuscation (and a re-randomizable public-key encryption scheme
such as ElGamal), see [11]. (We note that the FHE scheme from [11] only enjoys
perfect correctness when the obfuscator and encryption scheme are also perfectly
correct.)

Security. The IND-CPA security of a homomorphic PKE scheme is defined
identically to a standard PKE scheme without reference to the Dec and Eval
algorithms. Formally, we require that for any legitimate ppt adversary A :=
(A1,A2),

Advind-cpa
Π,A (λ) := 2 · Pr

[
IND-CPAA

Π(λ)
] − 1 ∈ Negl,

where game IND-CPAA
Π(λ) is shown in Fig. 1 (left). Adversary A is legitimate if

it outputs two messages of equal lengths.
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Fig. 1. Left: IND-CPA security of a (homomorphic) PKE scheme. Middle: Indistin-
guishability security of an obfuscator. We require A1 to output two circuits of equal
sizes. Right: Static-input (a.k.a. selective) X-IND property of A := (A1, A2).

2.2 Obfuscators

Syntax and correctness. A ppt algorithm Obf is called an obfuscator for
a (deterministic or randomized) circuit class C = {Cλ}λ∈N if Obf on input
the security parameter 1λ and the description of a (deterministic or random-
ized) circuit C ∈ Cλ of arity a(λ) outputs a deterministic circuit C. For deter-
ministic circuits, we require Obf to be perfectly correct in the sense the cir-
cuits C and C are functionally equivalent; that is, that for all λ ∈ N, all
C ∈ Cλ, all C ←$ Obf(1λ,C), and all mi ∈ {0, 1}λ for i ∈ [a(λ)] we have
that C(m1, . . . ,ma(λ)) = C(m1, . . . ,ma(λ)). For randomized circuits, the authors
of [11] define correctness via computational indistinguishability of the outputs
of C and C. For our constructions we do not rely on this property and instead
require that C and C are functionally equivalent up to a change in randomness;
that is, for all λ ∈ N, all C ∈ Cλ, all C ←$ Obf(1λ,C) and all mi ∈ {0, 1}λ

for i ∈ [a(λ)] there is an r such that C(m1, . . . ,ma(λ)) = C(m1, . . . ,ma(λ); r).
We note that the construction from [11] is correct in this sense as it relies on
a correct indistinguishability obfuscator and a PRF to internally generate the
required random coins.

Security. The security of an obfuscator Obf requires that for any legitimate
ppt adversary A := (A1,A2)

Advind
Obf ,A(λ) := 2 · Pr

[
INDA

Obf (λ)
] − 1 ∈ Negl,

where game IND is shown in Fig. 1 (middle). Depending on the adopted notion
of legitimacy, different security notions for the obfuscator emerge; we consider
the following one.

X-IND samplers [11]. Roughly speaking, the first phase of A := (A1,A2) is
an X-IND sampler if there is a set X of size at most X such that the circuits
output by A are functionally equivalent outside X , and furthermore within X
the outputs of the circuits are computationally indistinguishable. Formally, let
X(·) be a function such that X(λ) ≤ 2λ for all λ ∈ N. We call A := (A1,A2) an
X-IND sampler if there are sets Xλ of size at most X(λ) such that the following
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two conditions hold: (1) For all (even unbounded) D the advantage function
below is negligible.

Adveq
A,D(λ) := Pr

[
(C0,C1, st)←$ A1(1λ); (x, r)←$ D(C0,C1, st) :

C0(x; r) �= C1(x; r) ∧ x /∈ Xλ

]

(2) For all non-uniform ppt distinguishers D := (D1,D2) it holds that

X(λ) · Advsel-ind
A,D (λ) := X(λ) ·

(
2Pr

[
Sel-INDD

A(λ)
]

− 1
)

∈ Negl,

where game Sel-INDD
A(λ) is shown in Fig. 1 (right). This game is named “static-

input-IND” in [11]. and has a selective (or static) flavor since D1 chooses a
differing-input x before it gets to see the challenge circuits. We call an obfuscator
meeting this level of security a probabilistic indistinguishability obfuscator [11]
and use PIO instead of Obf to emphasize this.

Remark. We note that samplers that output two (possibly randomized) circuits
(C0,C1) for which the output distributions of C0(x) and C1(x) are identical on
any input x, are Sel-IND-secure for any function X(λ). The circuits samplers
that we will use in our security proofs enjoy this property.

2.3 Dual-Mode NIZK Proof Systems

In our constructions we will be relying on special types of “dual-mode” non-
interactive zero-knowledge (NIZK) proof systems. These systems have two com-
mon reference string (CRS) generation algorithms that produce indistinguishable
CRSs in the “binding” and “hiding” modes. They are also perfectly complete
in both modes, perfectly sound and extractable in the binding mode, and per-
fectly witness indistinguishable (WI) and perfectly zero knowledge (ZK) in the
hiding mode. The standard prototype for such schemes are the pairing-based
Groth–Sahai proofs [30], and using a generic NP reduction to the satisfiabil-
ity of quadratic equations we can obtain a suitable proof system for any NP
language.5 We formalize the syntax and security of such proof systems next.

Syntax. A (group) setup algorithm G is a ppt Turing machine that on input
1λ outputs gpk . A ternary relation R(gpk , x, w) is a deterministic algorithm
that outputs 1 for true or 0 for false. A dual-mode extractable non-interactive
zero-knowledge (NIZK) proof system Σ for setup G and relation R consists of
six algorithms as follows. (1) BCRS(gpk) on input gpk in the support of G
outputs a (binding) CRS crs and an extraction trapdoor tde; (2) HCRS(gpk)
on input gpk in the support of G outputs a (hiding) CRS crs and a simulation

5 We note that extraction in Groth–Sahai proofs does not recover a witness for all
types of statements. (Instead, for some types of statements, only gwi for a witness
variable wi ∈ Zp can be recovered.) Here, however, we will only be interested in
witnesses w = (w1, . . . , wn) ∈ {0, 1}n that are bit strings, in which case extraction
always recovers w. (Extraction will recover gwi for all i, and thus all wi too.).
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trapdoor tdzk; (3) Prove(gpk , crs, x, w) on input gpk a first coordinate in the
support of G, a CRS crs, an instance x, and a witness w, outputs a proof π;
(4) Verify(gpk , crs, x, π) on input gpk , crs, an instance x, and a proof π, outputs
1 for accept or 0 for reject; (5) WExt(tde, x, π) on input an extraction trapdoor
tde, an instance x, and a proof π, outputs a witness w; and (6) Sim(tdzk, x)
on input the simulation trapdoor tdzk and an instance x, outputs a simulated
proof π.

We require the extractable dual-mode NIZK Σ for (G,R) to meet the fol-
lowing requirements.

CRS indistinguishability. For gpk ←$ G(1λ), the two CRSs generated with
BCRS(gpk) and HCRS(gpk) are computationally indistinguishable. Formally,
we require the advantage of any ppt adversary A defined below to be negligible.

Advcrs
Σ,A(λ) :=2· Pr

[
b←${0, 1}; gpk ←$ G(1λ); (crs0, tde)←$BCRS(gpk);

(crs1, tdzk)←$ HCRS(gpk); b′ ←$ A(gpk , crsb) : b = b′] − 1

Perfect completeness. For any λ ∈ N, any gpk ←$ G(1λ), any (crs, tde)
←$ BCRS(gpk), any (x,w) where it holds that R(gpk , x, w) = 1, and any
π ←$ Prove(gpk , crs, x, w), it holds that Verify(gpk , crs, x, π) = 1. We require
this property to also hold for any choice of hiding CRS.

Perfect soundness under BCRS. For any λ ∈ N, any gpk ←$ G(1λ), any
CRS (crs, tde)←$ BCRS(gpk), any x where it holds that R(gpk , x, w) = 0 for
all w ∈ {0, 1}∗, and any π ∈ {0, 1}∗ we have that Verify(gpk , crs, x, π) = 0.

Perfect extraction under BCRS. For any λ ∈ N, any gpk ←$ G(1λ), any
CRS (crs, tde)←$ BCRS(gpk), any (x, π) with Verify(gpk , crs, x, π) = 1, and
any w ←$ WExt(tde, x, π) we have that R(gpk , x, w) = 1.

Perfect Witness Indistinguishability under HCRS. For any λ ∈ N, any
gpk ←$ G(1λ), any (crs, tdzk)←$ HCRS(gpk), and any (x,wb) such that R(gpk ,
x, wb) = 1 for b ∈ {0, 1}, the two distributions πb ←$ Prove(gpk , crs, x, wb) are
identical.

Perfect Zero Knowledge underHCRS. For any λ ∈ N, any gpk ←$ G(1λ),
any (crs, tdzk)←$ HCRS(gpk), and any (x,w) such that R(gpk , x, w) = 1,
the two distributions π0 ←$ Prove(gpk , crs, x, w) and π1 ←$ Sim(tdzk, x) are
identical.

2.4 Languages with Hard Membership

In our proofs of security we also rely on languages for which the membership
problem is hard and whose yes-instances have unique witnesses. Formally, such a
language family is defined as a tuple of four algorithms Λ := (GenL,YesSamL,
NoSamL,RL) as follows. (1) GenL(1λ) is randomized and on input the secu-
rity parameter outputs a language key lk ; (2) YesSamL(lk) is randomized and
on input the language key lk outputs a yes-instance y; (3) NoSamL(lk) is
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randomized and on input the language key lk outputs a no-instance y; and
(4) RL(lk , y, w) is deterministic and on input lk , an instance y and a witness w
outputs 1 for true or 0 for false.

We require RL to satisfy the following correctness requirements. For all λ ∈
N, all lk ←$ GenL(1λ) and all y ←$ YesSamL(lk) there is a w ∈ {0, 1}∗ such
that RL(lk , y, w) = 1. For a given lk , we denote the set of yes-instance by Llk . For
all λ ∈ N, all lk ←$ GenL(1λ) and all y ←$ NoSamL(lk) there is no w ∈ {0, 1}∗

such that RL(lk , y, w) = 1. We also require RL to have unique witnesses: for
all λ ∈ N, all lk ←$ GenL(1λ), all y ←$ YesSamL(lk) and all w,w′ ∈ {0, 1}∗ if
RL(lk , y, w) = RL(lk , y, w′) = 1 then w = w′.

Finally, the language is required to have a hard membership problem in the
sense that for any ppt adversary A

Advmem
Λ,A (λ) := 2· Pr

[
b ←$ {0, 1}; lk ←$ GenL(1λ); y0 ←$ NoSamL(lk);

y1 ←$ YesSamL(lk); b′ ←$ A(lk , yb) : b = b′] − 1 ∈ Negl.

Such languages can be instantiated using the DDH problem as follows. Algo-
rithm GenL(1λ) outputs the description of a prime-order group (G, g, p, 1) as
lk . Algorithm YesSamL(lk) samples a Diffie–Hellman tuple (ga, gb, gab), and
NoSamL(lk) outputs a non-Diffie–Hellman tuple (ga, gb, gc) for a random c �= ab
(mod p) when b = 0. Relation RL on instance (g1, g2, g3) and witness w = a
checks if g1 = ga and g3 = ga

2 . The hardness of membership for this language
family follows from the DDH assumption.

3 Graded Encoding Schemes

We start by recalling (a slight variant of) the definition of graded encoding
systems from Garg, Gentry and Halevi (GGH) [22].

κ-graded encoding system. Let R be a (non-trivial) commutative ring and
S := {S

(a)
i ⊂ {0, 1}∗ : a ∈ R, 0 ≤ i ≤ κ} a system of sets. Then (R,S) is called

a κ-graded encoding system if the following conditions are met.

1. For each level i ∈ {0, . . . , κ} and for any a1, a2 ∈ R with a1 �= a2 we have
that S

(a1)
i ∩ S

(a2)
i = ∅.

2. For each level i ∈ {0, . . . , κ}, the set {S
(a)
i : a ∈ R} is equipped with a

binary operation “+” and a unary operation “−” such that for all a1, a2 ∈ R

and every u1 ∈ S
(a1)
i , u2 ∈ S

(a2)
i it holds that

u1 + u2 ∈ S
(a1+a2)
i and − u1 ∈ S

(−a1)
i .

Here a1 + a2 and −a1 denote addition and negation is R.
3. For each two levels i, j ∈ {0, . . . , κ} with i+j ≤ κ, there is a binary operation

“×” such that for all a1, a2 ∈ R and every u1 ∈ S
(a1)
i , u2 ∈ S

(a2)
j it holds

that

u1 × u2 ∈ S
(a1·a2)
i+j .

Here a1 · a2 denotes multiplication in R.
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The difference to the GGH definition is that we do not require the opera-
tions “+” and “×” to be associative or commutative. (Indeed, our upcoming
construction does not satisfy these properties.) We are not aware of any applica-
tions that require the associativity or commutativity of encodings. However, we
stress that the operations “+” and “×” must respect the ring operations from
R. For instance, while we may have (u1 + u2) + u3 �= u1 + (u2 + u3) for some
ui ∈ S

(ai)
j , both the left-hand and the right-hand sides lie in S

(a1+a2+a3)
j .

Throughout the paper, we refer to an element a ∈ R as an exponent and a
bit string u ∈ S

(a)
i as an encoding of a. Further, we write Si :=

⋃
a∈R S

(a)
i for

the set of all level-i encodings.
We now define graded encoding schemes by introducing explicit algorithms

for manipulating encodings of a graded encoding system.

κ-graded encoding scheme. Let (R,S) be a κ-graded encoding system. A
graded encoding scheme (GES)

Γ = (Setup,Eq,Add,Mult,Sam,Ext)

associated to (R,S) consists of the following ppt algorithms.

Setup(1λ, 1κ): On input the security parameter 1λ and the (multi)linearity 1κ,
it outputs parameters of Γ (which are assumed to be provided to all other
algorithms). We note that this algorithm runs in time poly(λ) as long as κ
is polynomial in λ.

Eqi(h1, h2): For i ∈ {0, . . . , κ} and two encodings h1 ∈ S
(a)
i and h2 ∈ S

(b)
i , this

deterministic algorithm outputs 1 if and only if a = b in R.
Addi(h1, h2): This deterministic algorithm performs the “+” operation of (R,S)

in level i. For i ∈ {0, . . . , κ} and encodings h1 ∈ S
(a1)
i and h2 ∈ S

(a2)
i this

algorithm outputs an encoding in h ∈ S
(a1+a2)
i .

Multi,j(h1, h2): This deterministic algorithm performs the “×” operation of
(R,S). For i, j ∈ {0, . . . , κ} with i + j ≤ κ and encodings h1 ∈ S

(a1)
i and

h2 ∈ S
(a2)
j this algorithm outputs an encoding in S

(a1·a2)
i+j .

Sami(a): For i ∈ {0, . . . , κ} and a ∈ R, this probabilistic algorithm samples an
encoding from S

(a)
i .

Exti(h): For i ∈ {0, . . . , κ} and input h ∈ Si, this deterministic algorithm
outputs a bit string. Algorithm Exti is required to respect membership in
S

(a)
i , i.e., it outputs identical strings for any two encodings h1, h2 ∈ S

(a)
i .

Our definition of a GES essentially implements the “dream version” of GESs
[22], but differs in two aspects:

– GGH do not permit sampling for specific values a ∈ R. (Instead, GGH provide
an algorithm to sample a random a along with its encoding.)

– GGH’s zero-testing algorithm is substituted with an equality test (through
Eqi) above. Our equality test must only work for consistent encodings from
some S

(a)
i and S

(b)
i . In contrast, the dream version of GGH requires that the

set S
(0)
i is efficiently recognizable.
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4 Approximate Multilinear Maps

We recall the approximate multilinear maps due to AFHLP [2]. The authors
construct both symmetric and asymmetric multilinear maps. Their symmetric
construction can be seen as a starting point for our GES.

4.1 Syntax

We start with the syntax of multilinear group (MLG) schemes [2]. Informally, a
κ-MLG scheme is a restricted form of a graded encoding scheme where encodings
belong to levels 0, 1 and κ only and the Mult algorithm takes κ encodings at
level 1 and outputs an encoding at level κ. We formalize MLG schemes in terms
of a GES.

Symmetric MLG schemes. A symmetric κ-linear group scheme is a κ-graded
encoding scheme associated to (R,S), where (R,S) is defined similarly to a κ-
graded encoding system except that S := {S

(a)
i ⊂ {0, 1}∗ : a ∈ R, i ∈ {0, 1, κ}}

and the “×” operation is redefined as a κ-ary map that for any a1, . . . , aκ ∈ R

and any u1 ∈ S
(a1)
1 , . . . , uκ ∈ S

(aκ)
1 satisfies

u1 × · · · × uκ ∈ S(a1···aκ)
κ .

The associated Mult algorithm on inputs hi ∈ S
(ai)
1 for i ∈ [κ] outputs an encod-

ing in S
(a1···aκ)
κ . Algorithms Eq, Add, Sam and Ext are defined analogously

and restricted to i ∈ {0, 1, κ} only.

4.2 Overview of AFHLP

In a nutshell, [2] works with redundant encodings of elements h of the base group
G of the form h = gx0(gω)x1 where gω comes from an SDDH instance. Vector
x = (x0, x1) represents element h. The set S1 consists of all strings of the form
(h, c1, c2, π) where h ∈ G, ciphertext c1 is a homomorphic encryption under
public key pk1 of a vector x representing h, ciphertext c2 is a homomorphic
encryption under a second public key pk2 of another vector y also representing
h, and π is a NIZK proof showing consistency of the two vectors x and y. Here
consistency means that the plaintexts vectors x and y underlying c1 and c2
encode the same group element h. Note that each element of the base group G

is multiply represented in S1, but that equality of elements in S1 is easy to test
(via checking the equality of first components).

Addition of two elements in S1 is carried out by an obfuscation of a circuit
CAdd[sk1, sk2], which has the two secret keys hardwired in. The circuit checks
the respective proofs, adds the group elements in G and uses the additive homo-
morphic property of the encryption scheme to combine ciphertexts. It then uses
witness (sk1, sk2) to generate a NIZK proof showing equality of encodings. Note
that the new encoding is as compact as the two input encodings.



386 P. Farshim et al.

The multilinear map on inputs (hi, ci,1, ci,2, πi) for 1 ≤ i ≤ κ is computed
using an obfuscation of a circuit CMap[sk1, ω], which has sk1 and ω hardwired
in. The circuit recovers the exponents of hi in the form (xi,1 + ω · xi,2) from
ci,1 via the decryption algorithm Dec(·, sk1). It then uses these to compute the
group element g

∏
i(xi,1+ω·xi,2), which is defined to be the output of Mult. (The

target set Sκ is therefore G, the base group.) The κ-linearity of Mult follows
immediately from the form of the exponent. See the full version [19] for technical
details.

In the original paper, this construction is generalized to the asymmetric set-
ting via representations of the form g〈x,ω〉 with x,ω ∈ Z

�
N for � ∈ {2, 3} (where

〈x,ω〉 denotes inner products modulo the base-group order). The special case
ω := (1, ω) then gives an MLG scheme where MDDH is shown to be hard. We
refer the reader to the original work [2] for the details.

5 The GES Construction

We now present our construction of a graded encoding scheme Γ according to
the syntax introduced in Sect. 3. We will use the following ingredients in our
construction. A similar set of building blocks were used in [2].

1. A group setup algorithm SetupG(1λ) that samples (the description of) a
group G, along with a random generator g of G and the group order p and
the identity element 1.6 We implicitly assume efficient algorithms for checking
group membership, performing the group operation, inversion, and randomly
sampling group elements. We further assume a unique binary representation
for every group element and a randomness extractor for this group.

2. A general-purpose probabilistic indistinguishability obfuscator PIO that we
assume is secure against X-IND samplers.

3. A perfectly correct and IND-CPA-secure fully homomorphic PKE scheme Π
with plaintext space Z

κ+1
p .

4. An extractable dual-mode NIZK proof system Σ.
5. A language family Λ with hard membership problem and unique witnesses.

Given the above components, with formal syntax and security as defined in
Sect. 2, our graded encoding scheme Γ consists of the algorithms detailed in the
sections that follow. (See the introduction for an intuition.)

5.1 Setup

The Setup algorithm of Γ gets as input 1λ and 1κ. It samples parameters
ppG ←$ SetupG(1λ) with ppG := (G, g , p, 1), generates two encryption key pairs
(pk j , sk j)←$ Gen(1λ) for j = 1, 2, and an element ω ←$ ∈ Zp. We will refer to
G as the base group. It sets

[ω] := ([ω], . . . , [ωκ]),
6 It is conceivable that our security proofs also hold for non-prime p up to statistical

defect terms related to randomization of elements modulo a composite number.
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a vector of κ elements in the base group G, with κ the number of desired levels
It then samples lk ←$ GenL(1λ), and sets

gpk := (ppG, pk1, pk2, [ω], lk).

We define G(1λ) to be the randomized algorithm that runs the above steps and
outputs gpk . This algorithm will be used to define the NIZK proof system.

The Setup algorithm continues by generating a binding CRS (crs ′, tde)
←$ BCRS(gpk), and also a no-instance of Llk via y ←$ NoSamL(lk). It sets
crs := (crs ′, y). (The relation R that the NIZK should support will be defined
shortly in Sect. 5.2.)

Finally, it constructs two obfuscated circuits CMult and CAdd of circuits CMult

and CAdd, which will be described in Sects. 5.3 and 5.4, respectively. Setup also
selects a seed hk for a randomness extractor and outputs the scheme parameters

pp := (gpk , crs, hk ,CAdd,CMult).

5.2 Encodings and Equality

Level-0 encodings. We treat algorithms for level-0 encodings separately in
our construction as they behave somewhat differently to those from the other
levels. For instance, when multiplied by other encodings, they do not result
in an increase in encoding levels. The canonical choice for level-0 encodings is
the ring Zp, which we adopt in this paper. These encodings, therefore, come
with natural algorithms for generation, manipulation and testing of elements.
Algorithm Mult when applied to inputs one of which is at level 0 corresponds
to multiplication with the element in the zeroth level. The latter can in turn be
implemented with a shift-and-add algorithm that employs the encoding addition
Add of Sect. 5.3. We omit explicit mention of operations for level-0 encodings
to ease notation and focus on the more interesting cases at levels 1 and above.7

Level-κ encodings. We set Sκ := G in our scheme and use the algorithms
associated with G for generation, equality testing, and addition of encodings
at level κ. Once again, we omit these operations from the addition circuit for
clarity. The multiplication circuit can only be called on a level-κ together with
a level-0 encoding, which we have already excluded. However, we still have to
deal with outputs at level κ in Mult.

Other levels. For 0 < � < κ and z ∈ Zp, the encodings in S
(z)
� consist of all

tuples of the form

h := ([z], c1, c2, π, �),

7 We mention that previous GESs used more complex level-0 encodings, and since
their encodings were noisy, they allowed only a limited number of operations on
each encoding. Hence, implementing Mult on level-0 inputs via shift-and-add could
be too costly in their settings.
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where c1, c2 are two ciphertexts in the range of Enc(·, pk1) and Enc(·, pk2),
respectively,8 and π is a verifying NIZK proof under crs ′ that:

(1) either c1 and c2 contain polynomials P1 and P2 of degree at most �, such
that P1(ω) = P2(ω) = z,

(2) or y ∈ Llk (or both).

More formally, π must be a verifying proof that (gpk , ([z], c1, c2, �)) satisfies one
relation R1 or R2 as follows.

Relation R1 on input gpk , an encoding ([z], c1, c2, �), and a witness (P1, P2,
r1, r2, sk1, sk2) accepts iff all of the following hold:

– [z] ∈ G;
– both P1 and P2 are polynomials over Zp of degree ≤ � (given by their coeffi-

cient vectors);
– both P1 and P2 represent z in the sense that [z] = [P1(ω)] and [z] = [P2(ω)];
– both ci are encryptions of (or decrypt to) Pi in the following sense:

for both i ∈ {1, 2} : ci = Enc(Pi, pk i; ri)
∨

for both i ∈ {1, 2} : (pk i, sk i) = Gen(sk i) ∧ Pi = Dec(ci, sk i).

Note that there are two types of witnesses that can be used in proof generation
for R1, namely (P1, P2, r1, r2) and (sk1, sk2).

Let RL be the relation for the trapdoor language Λ. Relation R2, given gpk ,
an encoding, and a witness wy, accepts iff RL(lk , y, wy) accepts. (Note that the
output of R2 is independent of input encodings.) Hence, intuitively, R2 provides
an explicit trapdoor to simulate consistency proofs (in case y ∈ Llk ).

We define R := R1 ∨ R2 and assume that Σ is a proof system with respect
to (G,R) with G as defined in Sect. 5.1.

Valid and consistent encodings. The following convention will be useful in
the context of valid of encodings and the correctness of out scheme. We call an
encoding h valid if the proof π verifies correctly under crs ′. We write Val�(h)
iff h is valid and the level implicit in h matches �. We call h consistent (with
respect to gpk) if h is in the language defined by the first three conditions of
relation R1 as well as the first clause of the disjunction above. (In particular, the
corresponding ciphertexts ci are possible outputs of Enc(Pi, pk i); this implies
that these ciphertexts behave as expected under the homomorphic evaluation
algorithm Eval.) Note that consistency implies validity but the converse is not
necessarily the case and hence a valid encoding may not lie in any S�. For
example this would be the case if an “anomalous” ciphertext decrypts correctly
to a valid representation, but does not lie in the range of Enc. Furthermore,
validity can be publicly and efficiently checked, while this is not necessarily the
8 This “honest-ciphertext-generation” condition is necessary for the (bi)linearity of

our addition and multiplication algorithms. Unfortunately, this also prevents the
sets S

(z)
� from being efficiently recognizable.
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case for consistency. We note, however, that if the encryption scheme does not
allow for anomalous ciphertexts, our GES would also have efficiently recognizable
encodings. We leave the construction of such FHE schemes as an open problem.

Algorithm Eq. The equality algorithm Eq� returns 1 iff the first components
of the inputs match. The correctness of this algorithm follows from the fact that
the base group G has unique representations. (Recall from GES syntax that Eq�

is only required to work with respect to consistent encodings.)

Polynomial representations. A significant conceptual difference with the
work of AFHLP is that we represent exponents in Zp with polynomials instead
of vectors. This generalization enables natural notion of levels corresponding to
the degrees of the representing polynomials. We observe that a level-� encoding
h is not a valid level-�′ encoding if �′ �= � as the perfectly sound proof π included
in h depends on the instance and in particular on the level.

5.3 Addition

We now provide a procedure for adding two level-� encodings h = ([z], c1, c2, π, �)
and h′ = ([z′], c′

1, c
′
2, π

′, �) in S�. Conceptually, our addition circuit operates sim-
ilarly to that of AFHLP. The main difference is that encodings contain polyno-
mials and the levels. We exploit the structure of the base group as well as the
homomorphic properties of the encryption scheme to “add together” the first
and second components of the inputs. We then use (sk1, sk2) as a witness to
generate a proof π′′ that the new tuple is well formed. For technical reasons we
check both the validity of h and h′ (by checking π and π′) and their consistency
(using (sk1, sk2)).

Figure 2 details the operation of the addition circuit CAdd. A PIO of this
circuit will be made public via the parameters pp. We emphasize that step 5,

Fig. 2. The probabilistic circuit used to add encodings for levels 1 ≤ � ≤ κ − 1. The
checks at 5 are never passed in an honest execution of the protocol. We emphasize that
the test in step 5 is implemented using the values [ωi]. The random coins needed for
randomized operations are internally generated after obfuscating with PIO.
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that is, the explicit consistency check, is never reached under a binding crs ′ (due
to the perfect soundness of the proof system), but they may be reached with a
hiding crs ′ later in the security analysis. Let us expand on this.

In the analysis, we need to specify how CAdd behaves if it encounters valid
inputs (in the sense the proofs pass NIZK verification), but nevertheless are
inconsistent in the sense that at least one of encodings does not decrypt to a
valid representation. Let us call such inputs bad.

With the knowledge of secret keys, such bad inputs can be recognized, and
the natural choice would be to define CAdd to abort when this is the case. With
this choice, however, we run into the following problem. During the security proof
we will set the addition circuit to answer all valid inputs (including bad ones)
with simulated proofs. On the other hand, the original addition circuit rejects
such inputs. (Furthermore, it cannot even simulate proofs for wrong statements,
and hence cannot answer bad inputs with valid-looking proofs.)

On a high level, we would like to modify how CAdd reacts on bad inputs
so that it uses a NIZK simulation trapdoor on bad inputs. The difficulty with
this strategy is that no such simulation trapdoor exists when the NIZK CRS
is binding. Hence, we create our own NIZK trapdoor through an extra “OR
branch” in the proved statement (akin to the Feige–Lapidot–Shamir transform).
This gives us a little more flexibility in defining and using that trapdoor.

More specifically, recall that our CRS is of the form crs = (crs ′, y) where
crs ′ is a binding CRS for the dual-mode NIZK proof system, and y is a no-
instance of Llk . However our actual means to fake proofs will be to switch y to a
yes-instance and use a witness wy to produce proofs. Specifically, in the security
proof, we will eventually let CAdd use a simulation trapdoor wy (instead of a
simulation trapdoor for the NIZK). The benefit of this is that CAdd will know
an extraction trapdoor td ′

e (that of course only exists if the CRS crs ′ is in the
binding mode) which it can use to extract a witness from a given proof π. Thus,
whenever CAdd encounters a bad input, it can extract a witness w′

y, which must
at that point be a simulation trapdoor wy. This simulation trapdoor wy can then
immediately be used to produce a fake proof π′′ even upon bad inputs. In other
words, CAdd knows no simulation trapdoor a priori, but it can extract one from
any simulated proof for a false statement.

The Add� algorithm simply runs the obfuscated circuit on the input encod-
ings and �. The correctness of this algorithm follows from that of Π, the com-
pleteness of Σ and the correctness, in our sense, of the (probabilistic) obfuscator
PIO. Note that FHE correctness is only guaranteed to hold with respect to
ciphertexts that are in the range of encryption or evaluation (and not necessar-
ily for anomalous ones that decrypt correctly). This, in particular, means that
we cannot enlarge the set of encodings to contain all valid ones (as opposed to
just consistent ones) to get efficient decidability of encoding sets as correctness
can no longer be established. (See also remark on validity on page 18.) Note that
full compactness ensures that the ciphertexts output by Add� are in the range
of encryption, and hence they can be further operated on with Eval.
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5.4 Multiplication

Given two encodings h = ([z], c1, c2, π, �) and h′ = ([z′], c′
1, c

′
2, π

′, �′) at levels �
and �′ respectively, the multiplication algorithms operates analogously to addi-
tion as follows. The corresponding circuit CMult has both decryption keys and
now also ω ∈ Zp hardwired in. After validity checks and decrypting the input
ciphertexts, it performs the multiplication of the polynomials encrypted under
ci and c′

i homomorphically using a convolution operation on the coefficient vec-
tors. However, it cannot obviously compute the element [zz′] in the base group
G. Suppose c1 and c′

1 encrypt polynomials P and P ′ of degrees at most � and
�′ respectively and such that [z] = [P (ω)] and [z′] = [P ′(ω)]. The multiplication
circuit uses the explicit knowledge of ω and polynomials P and P ′ to compute
[zz′] = [(P ∗ P ′)(ω)].9 Circuit CMult is shown in Fig. 3. Note that similarly to
addition, step 6 performs explicit checks of consistency of encodings that will
only be used in the analysis under a hiding crs ′.

The correctness of these maps follows from the correctness of Π and PIO,
and the completeness of Σ.

Enabling graded multiplication. The main difference between our circuit
CMult and that of [2] is that here we need to output auxiliary information
(c1, c2, π) for multiplied encodings at output levels below κ. This information
allows the multiplication algorithm to operate in a graded fashion as any out-
put encoding by CMult can be fed back into CMult as long as it lies at a level

Fig. 3. Circuit used for multiplying encodings for levels 1 ≤ �, �′ ≤ κ − 1. Step 6 is
never reached in an honest execution of the protocol with a binding crs. The random
coins needed for randomized operations are internally generated after obfuscating with
PIO.

9 Observe that with the explicit knowledge of P ∗ P ′ and the powers ([ωi])1≤i≤κ it is
also possible to compute [zz′] as long as P ∗P ′ is of degree ≤κ; this will be exploited
in the security analysis in Sect. 7.
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� < κ.10 In order to enable CMult to generate this auxiliary information, we use
an encryption scheme that is also homomorphic with respect to multiplication in
the plaintext ring. In contrast, AFHLP only rely on an additively homomorphic
encryption scheme.

5.5 Sampling

Given polynomials P1 and P2 of degree at most � and satisfying P1(ω) = P2(ω) =
z we can generate an encoding from S

(z)
� by computing

h ← (
[z], c1 = Enc(P1, pk1; r1), c2 = Enc(P2, pk2; r2),

π = Prove(gpk , crs, ([z]i, c1, c2, �), (P1, P2, r1, r2); r), �
)
.

(2)

Hence, our sampling algorithm Sam�(z) sets P1(X) = P2(X) = z ∈ Zp and
computes an encoding through (2). We call these the canonical encodings of z,
independently of �. We note that this procedure is that in [2] adapted to the
generalized notion of polynomial representations.

5.6 Extraction

Since at each level � the first component [z] is unique for each set S
(z)
� , we may

extract a uniform string from h = ([z], c1, c2, π, �) for a uniform z by applying a
randomness extractor seeded with hk to [z].

6 Indistinguishability of Encodings

We show that a key property used by AFHLP in the analysis of their multilinear
map [2, Theorem 5.3] is also exhibited by our graded scheme. Roughly speaking,
this property states that for any given level �, any two valid encodings of the
same Zp-element are computationally indistinguishable. This claim is formalized
via the κ-Switch game shown in Fig. 4. Note that in this game, we allow the
adversary to not only choose the representation polynomials, but also let him
see part of the private information not available through the public parameters,
namely the exponent ω.

Theorem 1 (Encoding switch). Let Γ be the GES constructed in Sect. 5 with
respect to an X-IND-secure probabilistic obfuscator PIO, an IND-CPA-secure
encryption scheme Π, a dual-mode NIZK proof system Σ, and a language family
Λ. Then, encodings of the same ring element z ∈ Zp are indistinguishable at
all levels. More precisely, for any legitimate ppt adversary A there are ppt

adversaries B1, B2, B3 and B4 of essentially the same complexity as A such that
for all λ ∈ N

Advκ-switch
Γ,A (λ)≤3 · (

Advmem
Λ,B1

(λ) + 6 · Advind
PIO,B2

(λ) +Advcrs
Σ,B3

(λ)
)
+ 2 · Advind-cpa

Π,B4
(λ).

10 Recall that encodings at level κ can only be multiplied with level-0 encodings, i.e.,
with elements in Zp.
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Fig. 4. Game formalizing the indistinguishability of encodings. (This game is specific
to our construction Γ from Sect. 5.) An adversary is legitimate if it outputs polynomials
such that P0,1(ω) = P0,2(ω) = P1,1(ω) = P1,2(ω) of degree at most �. We note that A
gets explicit access to secret exponent ω generated at setup. Here rl(λ) is a polynomial
indicating the length of the random coins used by the encryption algorithm.

The proof of this result follows largely that in [2] and we include it in the
full version [19] of this paper. The main difference is that we have to deal with
obfuscations of the new multiplication circuit.

Proof (Outline). We proceed via a sequence of 5 games, starting with κ-Switch
and ending in a game where the challenge encoding is independent of the bit
b. Figure 5 shows the steps used in the proof of the theorem. We use helper
Lemma 1 for changing the addition and multiplication circuits to “forget” (one
or both) the secret keys and the extraction trapdoor. We now justify each of
these steps in more detail below. See the full version [19] of this paper for a full
proof.

Fig. 5. Outline of the proof steps of Theorem 1. The underlined secret key in the
“CMult knows” column indicates the key that is used in decryption to construct [z′′].
For instance, in Game0, key sk1 is used to obtain P1 and P ′

1, which are then used to
compute [z′′] = [(P1 ∗ P ′

1)(ω)] within CMult.
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Game0: This is the κ-Switch game with a binding crs ′ and y �∈ Llk . The addition
and multiplication circuits are defined in Figs. 2 and 3, respectively.

Game1: We change the public parameters so that they include a hiding crs ′, a
yes instance y via YesSamL(lk) and obfuscations of circuits ĈAdd and Ĉ(1)

Mult

(see Fig. 6). Thus, the second circuit uses sk1 to decrypt the first ciphertexts
given as inputs. Observe that these circuits use the witness wy to y ∈ Llk to
produce the output proofs π′′, and therefore the simultaneous knowledge of
decryption keys sk1, sk2 is no longer needed. The difference with the previous
game can be bounded by our helper Lemma1 with i = 1, where we rely on
PIO security, CRS indistinguishability, and the membership problem.

Game2: This game generates the second challenge ciphertext c2 by encrypting
polynomial P1,2 even when b = 0. We bound this transition via the IND-CPA
security of Π with respect to pk2. The reduction will choose a first decryp-
tion key sk1 and a witness wy so as to be able to construct Ĉ(1)

Mult. It will
also generate a NIZK simulation trapdoor tdzk (recall the CRS is in the hid-
ing mode) to construct simulated proofs π for the (inconsistent) challenge
encoding hb. Note that the perfect ZK property guarantees that these proofs
are identically distributed to the real ones in Game1.

Game3: The public parameters are changed back to include a binding crs ′, a no-
instance y /∈ Llk and a (PIO) obfuscation of the original circuits CAdd, CMult

with both decryption keys hardwired. The difference with the previous game
is bounded again via Lemma 1 (in the reverse direction and with i = 1).

Game4: This transitions is defined analogously to that introduced in Game1

except that this time we invoke Lemma 1 with i = 2 and switch to circuits
ĈAdd and Ĉ(2)

Mult. Observe that knowledge of sk1 is no longer needed.
Game5: This transitions is defined analogously to that introduced in Game2.

The only difference is that this game generates the first challenge ciphertext
c1 by encrypting P1,1 even when b = 0.

Finally, note that the challenge encoding in Game5 is independent of the
random bit b and the advantage of any (even unbounded) adversary A is 0.

In the proof of Theorem 1, we need the next Lemma for changing the addition
and multiplication circuits to “forget” (one or both) the secret keys and the
extraction trapdoor. The proof can be found in the full version [19] of this paper.

Lemma 1 (Forgetting secret keys). Let Γ be the GES from Sect. 5 with
respect to an X-IND-secure probabilistic obfuscator PIO, an IND-CPA-secure
encryption scheme Π, a dual-mode NIZK proof system Σ, and a language family
Λ. For i = 1, 2, consider the modified parameter generation algorithm Setup(i)

that samples a yes-instance y ∈ Llk and outputs obfuscations of the circuits ĈAdd

and Ĉ(i)
Mult shown in Fig. 6. Let

Advκ-forget
Γ,i,A (λ) := 2 · Pr

[
pp0 ←$ Setup(1λ, 1κ); pp1 ←$ Setup(i)(1λ, 1κ);

b ←$ {0, 1}; b′ ←$ A(ppb) : b = b′] − 1.
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Fig. 6. Top: Circuit ĈAdd where witness wy to y ∈ Llk is used to produce π′′. Note
that the secret keys (sk1, sk2) or the extraction trapdoor tde are no longer used by this

circuit. Bottom: Circuits Ĉ
(i)
Mult were only one key sk i is used to decrypt Pi and P ′

i and
witness wy to y ∈ Llk is used to produce π′′. The secret key sk3−i and the extraction
trapdoor tde are not used by this circuit.

Then, for any i ∈ {1, 2} and any ppt adversary A there are ppt adversaries
B1,B2 and B3 of essentially the same complexity as A such that for all λ ∈ N

Advκ-forget
Γ,i,A (λ) ≤ Advmem

Λ,B1
(λ) + 6 · Advind

PIO,B2
(λ) + Advcrs

Σ,B3
(λ).

7 Hardness of MDDH

We are now ready to show that MDDH is hard for our GES. We improve [2] by
providing a simpler and tighter proof of security. One corollary of our result is
that there are no “zeroizing” attacks on our scheme as such attacks immediately
lead to the break of MDDH [12,13,22]. We start by providing formal definition
of MDDH as well as the strong DDH problem whose hardness we assume in our
analyses.

The q-SDDH problem [4,43]. For q ∈ N we say that the q-SDDH problem is
hard for a group G if

Advq-sddh
G,A (λ) := 2 · Pr

[
q-SDDHA

G
(λ)

] − 1 ∈ Negl,

where game q-SDDHA
G

(λ) is shown in Fig. 7 (left). We note that this assump-
tion can only hold in asymmetric pairing-friendly groups. (With such asymmet-
ric pairings, we could then implement, e.g., the dual-mode NIZK proof system
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Fig. 7. Left: The SDDH problem. Here p = p(λ) denotes the group order implicit in
pp. Right: The MDDH problem. The sampler algorithms output canonical encodings.
The κ-ary algorithm Mult is defined by applying the 2-ary algorithm Mult of the
scheme iteratively to inputs.

from [30].) It is not too difficult to show via re-randomization of the group gen-
erator that hardness of q-SDDH implies that of (q − 1)-SDDH. We use this fact
to simplify our theorem statement below.

The κ-MDDH problem [6,22]. For κ ∈ N we say that the κ-MDDH problem is
hard for a GES Γ if

Advκ-mddh
Γ,A (λ) := 2 · Pr

[
κ-MDDHA

Γ (λ)
] − 1 ∈ Negl,

where game κ-MDDHA
Γ (λ) is shown in Fig. 7 (middle).

The (κ,m, n, r0, r1, l)-RANK problem [18]. For κ,m, n, r0, r1 ∈ N and a level
function l : [m] × [n] −→ [κ], we say that the (κ,m, n, r0, r1, l)-RANK problem
is hard for a GES Γ if

Adv(κ,m,n,r0,r1,l)-rank
Γ,A (λ) := 2 · Pr

[
(κ,m, n, r0, r1, l)-RANKA

Γ (λ)
] − 1 ∈ Negl,

where game (κ,m, n, r0, r1, l)-RANKA
Γ (λ) is shown in Fig. 7 (right).

7.1 Hardness of MDDH

Recall that the GES of Sect. 5 represents an element z ∈ Zp at level � with
polynomials P1 and P2 of degree at most � such that Pj(ω) = z.

Theorem 1 (κ-SDDH =⇒ κ-MDDH). Let Γ be the GES constructed in Sect. 5
with respect to a base group G and an X-IND-secure probabilistic obfuscator
PIO.

Then, assuming the κ-SDDH assumption (see Fig. 7) holds in G, and using
our switching lemma, the κ-MDDH assumption holds in Γ.

More specifically, for any κ ∈ N and any ppt adversary A there are ppt

adversaries B1, B2 and B3 of essentially the same complexity as A such that for
all λ ∈ N

Advκ-mddh
Γ,A (λ) ≤ (κ + 1) · Advκ-switch

Γ,B1
(λ) + Advind

PIO,B2
(λ) + Advκ-sddh

G,B3
(λ).
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Proof (Outline). We provide a simpler proof compared to that of [2, Theorem 6.2]
at the expense of relying on the slightly stronger κ-SDDH (instead of the (κ −
1)-SDDH) problem. At a high level, our reduction has two steps: (1) Switch all
encodings from polynomials of degree 0 to those of degree 1; and (2) Randomize
the κ-MDDH challenge using the κ-SDDH instance. The key difference with the
proof of [2, Theorem 6.2] is that we no longer need to carry out a two-step
process to randomize the exponent of the MDDH challenge. In particular, we
do not change the implementation of the multiplication circuit according to a
κ-SDDH challenge. We outline the proof along a sequence of κ + 5 games here
and leave the full details to the full version [19].

Game0: This is the κ-MDDH problem (Fig. 7, middle). We use Pi,1 and Pi,2 to
denote the canonical degree-zero representation polynomials of ai as gener-
ated by the sampler Sam1(ai).

Game1–Gameκ+1: In these games we gradually switch the polynomials repre-
sentations for level-1 encodings hi for 1 ≤ i ≤ κ + 1 so that they take the
form

Pi,1(X) = Pi,2(X) = X + ai − ω.

These polynomials are still valid and their degrees are exactly 1. Hence when
multiplied together, the resulting polynomial will be of degree s(κ+1). Each
of these hops can be bounded via the κ-Switch game via Theorem 1.

Gameκ+2: This game only introduces a conceptual change: ai for 1 ≤ i ≤ κ + 1
are generated as ai + ω. The distributions of these values are still uniform
and the exponent of the MDDH challenge when b = 1 is now

z1 =
κ+1∏

i=1

(ai + ω),

which is a polynomial in ω of degree κ.
Gameκ+3: In this game we replace CMult with C∗

Mult, a circuit that uses the
implicit values [ωi] for 0 ≤ i ≤ κ in steps 5 and 6. (Note that [P (ω)] can
be computed using [ωi] when the coefficients of P are explicitly known.)
This change does not affect the functionality of the multiplication circuit
and hence we can bound this hope via PIO security. As a result, the explicit
knowledge ω is no longer needed to generate the multiplication circuit.

Gameκ+4: In this game, we replace [ωκ] with a random value [σ] in challenge
preparation. (Note that level-κ encodings correspond to the base group.) We
can bound this hop via the κ-SDDH game.

In the final game the challenge exponent (when b = 1) is fully randomized.
This means that the challenge is independent of b in Gameκ+4, which concludes
the proof.

7.2 Downgrading Attacks

It might appear that our GES could be subject to a “downgrading” attack as
follow. Start with any consistent encoding h at level � whose representation



398 P. Farshim et al.

polynomial is of degree 0. Then “maul” h into an encoding at a lower level
�′ < � by simply changing � to �′ in h. Then use this malleability to attack, say,
MDDH where challenge encodings are canonical and of degree 0 (see Sect. 5.5).

What is crucial and prevents this downgrade attack is the proof system. The
consistency proof π proves that the encrypted values correspond to a polynomial
P of degree up to � such that P (ω) = z. Note that this statement depends on �.
Hence, a proof for a level-2 encoding cannot be “reused” for a level-1 encoding,
as in the attack: a single proof will not necessarily pass against two different
statements even if they both have the same witness. In order to downgrade, the
proof would have to be changed.

Indeed, suppose that one had a method for changing a proof π2 of a level-2
encoding to a proof π1 of the level-1 encoding (that is derived by simply omitting
encrypted coefficients, as in a downgrading attack). Consider what happens if
one start with equivalent level-2 encoding (in the sense of our switching lemma)
with degree-2 polynomials P . Then, the statement that π1 proves becomes false,
so any such attack would contradict the soundness of the proof system.
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Abstract. Certain RSA-based protocols, for instance in the domain of
group signatures, require a prover to convince a verifier that a set of
RSA parameters is well-structured (e.g., that the modulus is the prod-
uct of two distinct primes and that the exponent is co-prime to the group
order). Various corresponding proof systems have been proposed in the
past, with different levels of generality, efficiency, and interactivity.

This paper proposes two new proof systems for a wide set of properties
that RSA and related moduli might have. The protocols are particularly
efficient: The necessary computations are simple, the communication is
restricted to only one round, and the exchanged messages are short.
While the first protocol is based on prior work (improving on it by reduc-
ing the number of message passes from four to two), the second protocol
is novel. Both protocols require a random oracle.

1 Introduction

A common property of cryptographic primitives in the domain of public-key
cryptography (PKC) is that there is, in most cases, a natural distinction between
a secret-key holder (SKH) and a public-key holder (PKH). For instance, in the
digital signature (DS) context the SKH is the signer, and in public-key encryp-
tion (PKE) the SKH is the receiver; the verifier and the sender, respectively, are
PKHs. The security properties of such schemes are typically focused on protect-
ing primarily the SKH: In the signature context, unforgeability means that the
signer cannot be impersonated by an adversary, and security notions for PKE
require that messages encrypted to the receiver remain confidential. Thus, nat-
urally, the SKH has a vital interest in its keys being properly generated, i.e., in
a way covered by the security model, while this is only of secondary importance
to the PKH.

In some PKC applications, however, also parties not holding the secret key
might require assurance about that the key material has been generated in a
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proper way. Typical examples arise in multi-party settings where the SKH man-
ages a set of mutually distrusting parties who require protection from each other.
For instance, in group signature schemes there is a group manager that issues
certificates to registered parties, allowing them to sign messages on behalf of
the whole group. While the resulting signatures should in principle be anony-
mous (cannot be linked to the particular signer), to prevent misuse there is often
a traceability feature that allows the group manager to revoke the anonymity
of a signer by creating a publicly-verifiable non-interactive proof that testifies
that an indicated signer created a particular signature. If such a tracing option
exists, the group manager should however not be able to falsely accuse a mem-
ber of having signed some document. Many group signature schemes have been
proposed in the past, but some of them (e.g., [1]) provably provide the latter
property only if the group manager’s keys are properly formed.1 Other settings
where trust in the secret keys generated by other parties is required include
e-cash [13], cryptographic accumulators [9], undeniable signatures [18], double-
authentication preventing signatures [2,27].

If a cryptographic scheme is solely based on the discrete logarithm prob-
lem (DLP) in a prime-order group, checking that keys of the type X = gx are
well-formed is a trivial job (because all keys are well-formed). In the RSA set-
ting the situation is more subtle: Given parameters (N, e), before assuming the
security of the system the PKH might want to be convinced that the following
questions can be answered affirmatively: (1) does N have precisely two prime
divisors, (2) is N square-free, (3) is e coprime to ϕ(N), i.e., is the mapping
m �→ me mod N a bijection (rather than lossy). Further, in some settings it
might be necessary to know (4) whether N = pq is a safe-prime modulus, i.e.,
whether (p−1)/2 and (q−1)/2 are primes by themselves. In settings specifically
based on the hardness of factoring an additional question might be (5) whether
squaring is a bijection on QR(N), more specifically (6) whether N is a Blum
integer, and even more specifically (7) whether N is a Rabin–Williams integer.2

What are known approaches for convincing participants of the validity of
predicates like the ones listed above? In some research papers corresponding
arguments are just missing [1], or they are side-stepped by explicitly assuming
honesty of key generation in the model [2]. Other papers refer to works like [10]
that propose non-interactive proof systems for convincing verifiers of the valid-
ity of such relations. Concretely, [10] provides a NIZK framework for showing
that an RSA number is the product of two safe primes. While powerful, the
NIZK technique turns out to be practically not usable: The argument is over the
intermediate results of four Miller–Rabin tests, a large number of range tests,
1 Concretely, the protocol from [1] is presented in the safe-prime-RSA setting where
N = pq with p = 2p′ + 1, q = 2q′ + 1 such that p, q, p′, q′ are all primes. Some of
the security properties of [1] hold in respect to the CDH problem in Z

∗
N . If N = pq

and thus Z
∗
N = Z

∗
p × Z

∗
q as it should, CDH is arguably hard. However, if the group

manager announces a malformed N that is made up of a large number of (small)
prime factors, solving CDH becomes easy.

2 An RSA modulus N = pq is a Blum integer if p ≡ q ≡ 3 (mod 4), and it is a
Rabin–Williams integer if p ≡ 3 (mod 8) and q ≡ 7 (mod 8).
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etc., making the resulting proof string prohibitively long. Another approach is to
pick prime numbers, moduli, and exponents in a certain way such that showing
specific properties becomes feasible with number-theoretic techniques. Working
with restricted parameter classes might however remove standard conformance
and render implementations less efficient; for instance, the authors of [23] develop
tools for showing that the mapping m �→ me is a permutation, but these tools
work only for fairly large values of e.

A third approach is tightly connected with the number-theoretic structures
that motivate the requirements for the conditions listed above. (It is less general
than the NIZK approach of [10] but usually does not require picking parameters
in a specific way.) For instance, if an application of RSA requires that e be
coprime to ϕ(N) then this is for a specific reason, namely that information shall
not be lost (but remain recoverable) when raising it to the power of e. Thus,
instead of abstractly checking the e | ϕ(N) relation, a corresponding check could
be centered precisely around the information-loss property of the exponentiation
operation. Our results are based on this strategy. Our techniques are inspired
by, and improving on, prior work that we describe in detail in the following.

1.1 Interactive Zero-Knowledge Testing of Certain Relations

We reproduce results of Gennaro et al. [19]. As a running example, consider the
question of whether e | ϕ(N) holds, where N is an RSA modulus and e a small
prime exponent. The relation holds if and only if the mapping x �→ xe mod N
is bijective, characterized by all y ∈ Z

∗
N having an eth root. This motivates an

(interactive) protocol in which a prover convinces a verifier of relation e | ϕ(N)
by first letting the verifier pick a random value y ∈ Z

∗
N and send it to the prover,

then letting the prover (who knows the factorization of N) compute the eth root
x ∈ Z

∗
N of y and return it to the verifier, and finally letting the verifier accept

if and only if xe = y mod N . Prover and verifier may run multiple repetitions of
this protocol, each time with a fresh challenge y. If the prover is able to return
a valid response for each challenge, then the verifier is eventually convinced of
the e | ϕ(N) claim. Indeed, if e � ϕ(N), then only about one of e elements of Z

∗
N

have an eth root, so the protocol would detect this with high probability and a
cheating prover would be caught.

Note that if the protocol would be deployed in precisely the way we described
it, it would be of limited use. The reason is that it is not zero-knowledge; in
particular, the prover would effectively implement an ‘eth root oracle’ for values y
arbitrarily picked by the verifier, and this would likely harm the security of
most applications. The proposal of [19] considers fixing this by making sure that
challenges y are picked in a sufficiently random way. Concretely, the full protocol
[19, Sect. 4.1] involves four message passes as follows: (1) the verifier picks y1 ∈
Z

∗
N and sends a commitment to this value to the prover, (2) the prover picks y2 ∈

Z
∗
N and sends this value to the verifier, (3) the verifier opens the commitment;

both parties now compute y ← y1y2, (4) the prover computes the eth root of y
and sends it to the verifier. Unfortunately, the security analysis of [19] does not
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cover the full protocol; rather it restricts attention to only the last prover-to-
verifier message and shows that it is zero-knowledge under the assumption that
value y “can be thought as provided by a trusted third party” [19, Sect. 2.3]. We
stress that a proof for the full four-message protocol is not immediate: Proving
it zero-knowledge seems to require assuming an extractability property of the
commitment scheme (so that the simulator can find ‘the right’ y2 value), and the
increased interactiveness calls for a fresh analysis in a concurrent communication
setting anyway (if the protocol shall be of practical relevance). Neither of these
issues is mentioned, let alone resolved, in [19].

1.2 Our Results

We construct practical protocols for convincing a verifier that certain relevant
number-theoretic properties hold for RSA parameters. This includes statements
on the number of prime factors of the modulus, its square-freeness, etc. Con-
cretely, we propose two generic protocol frameworks that can be instantiated to
become proof systems for many different relations: The first framework is based
on [19] and effectively compresses the first three messages of the full protocols
into a single one by, intuitively speaking, using a random oracle to implement
the mentioned trusted third party. Precisely, continuing our running example,
we let the verifier only specify a random seed r and let both parties derive value
y as per y ← H(r) via a random oracle. The random oracle model turns out to
be strong enough to make the full protocol sound and zero-knowledge. Because
of the reduced number of message passes, concurrency is not an issue.

The second framework is similar in spirit but uses the random oracle in a
different and novel way. Here, the challenge y can be freely picked by the verifier
(no specific distribution is required), the prover again computes the eth root x
of it, but instead of sharing x with the verifier it only discloses the hash H(x)
of it. Note that, unless the verifier knows value x anyway, if H behaves like a
random oracle then the hash value does not leak anything.

We highlight that the second protocol has two important advantages over
the first: (1) The first protocol requires a random oracle that maps into the
‘problem space’ (here: challenge space Z

∗
N ). However, for some number-theoretic

tests, e.g., whether N is a Blum integer, the problem space we (and [19]) work
with is QR(N), i.e., the set of quadratic residues modulo N , and for such spaces
it is unclear how to construct a random oracle mapping into them. Note that, in
contrast, the second protocol does not require hashing into any particular set.
(2) Some number-theoretic relations allow for an easier check when the second
framework is used. For instance, identifying Blum integers involves the prover
computing the four square roots that quadratic residues always have. In the first
protocol framework, returning all four square roots is prohibitive as this would
immediately allow for factorizing N . In the second framework, however, hash
values of all square roots can be returned without doing harm to security.

Please consider Sect. 5 for the full list of number-theoretic properties for
which we provide a proof system.
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1.3 Related Work

We note that techniques similar to ours appear implicitly or explicitly in a cou-
ple of prior works. For instance, the validation of RSA parameters is a com-
mon challenge in password-based key agreement; in particular, adversaries might
announce specially crafted parameters (N, e) that would lead to partial password
exposure. The work of Zhu et al. [34] addresses this, but without a formal analy-
sis, by pursuing approaches that are similar to our second protocol instantiated
with one particular number-theoretic relation. The work of [28] provides a secu-
rity analysis of [34]. (It seems, however, that the analysis is incomplete: The
output length of the hash function does not appear in the theorem statement,
but for short output lengths the statement is obviously wrong.) We conclude by
noting that both [28,34], and also a sequence of follow-up works in the domain
of password-based key agreement, employ variants of our two protocols in an
ad-hoc fashion, and not at the generic level and for the large number of number-
theoretic problems as we do.

A higher level of abstraction, also in the domain of password-based key agree-
ment, can be found in the work of Catalano et al. [11]. Their work considers
exclusively our first approach. Further, while considering soundness and zero-
knowledge definitions for language problems, their constructions are not on that
level but directly targeting specific number-theoretic problems.

Considering proof systems not relying on random oracles, basically any
desired property of an RSA modulus can be proven by employing general zero-
knowledge proof systems for NP languages [8,20,21]. However, these protocols
are usually less efficient than proof systems designed to establish a particular
property. Thus a vast amount of papers provides systems of the latter type. Tar-
geted properties include that an RSA modulus N has factors of approximately
equal size [6,12,16,17,24] or is the product of two safe primes [10]. The approach
of having the prover provide solutions to number-theoretic problems is taken in
several proof systems. Concretely, there are protocols of this type proving that
N is square-free [7,19], has at most two prime factors [5,19,25,29], satisfies a
weakened definition of Blum integer [5,29], is the product of two almost strong
primes [19]. A shortcoming common to the protocols deciding whether N has
at most two prime factors is that they either have a two-sided error or have to
impose additional restrictions on N , the first leading to an increased number of
repetitions of the protocol in order to achieve security, the latter to artificially
restricted choices of N .

Bellare and Yung [3] show that any trapdoor permutation can be certified,
i.e., they provide a protocol to prove that a function is invertible on an over-
whelming fraction of its range. Kakvi et al. [23] show that given an RSA modu-
lus N and an exponent e such that e ≥ N1/4 Coppersmith’s method can be used
to efficiently determine whether the RSA function x �→ xe defines a permutation
on Z

∗
N . However, their result does not apply to exponents of size smaller than

N1/4. A proof for RSA key generation with verifiable randomness is given in [22].
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The protocol makes use of the protocols of [7,29] as subroutines and relies on
a trusted third party. Benhamouda et al. [4] provide a protocol proving in the
random oracle model that at least two of the factors of a number N were gen-
erated using a particular prime number generator. However, in order to achieve
security the construction requires N to be the product of many factors, which
usually is prohibitive in the RSA setting.

We note that a topic in cryptography somewhat connected to our work is the
fraudulent creation of parameters. More specifically, the works in [30–33] consider
Kleptography, i.e., the creation of asymmetric key pairs by an adversary-modified
generation algorithm such that, using a trapdoor, the adversary can recover the
secret key from the public key. Preventing such attacks is not the goal of our
work, and our protocols will indeed not succeed in catching properly performed
Kleptography.

By nothing-up-my-sleeves (NUMS) parameter generation one subsumes tech-
niques to propose parameters for cryptosystems in an explainable and publicly
reproducible way. For instance, the internal constants of the hash functions of
the SHA family are derived from the digits of the square and cube roots of
small prime numbers, making the existence of trapdoors (e.g., for finding col-
lisions) rather unlikely. While we do not advise against NUMS techniques, we
note that using them restricts freedom in parameter generation and thus might
break standard conformance and lead to less efficient systems. Moreover, and
more relevantly in the context of our work, NUMS techniques typically apply to
DL-based cryptosystems and not to RSA-based ones.

1.4 Organization

The overall focus of this work is on providing practical methods for proving
certain properties of RSA-like parameter sets. Our interactive proof systems,
however, follow novel design principles that promise finding application also
outside of the number-theoretic domain. We thus approach our goal in a layered
fashion, by first exposing our proof protocols such that they work for abstract
formulations of problems and corresponding solutions, and then showing how
these formalizations can be instantiated with the number-theoretic relations we
are interested in.

More concretely, the structure of this article is as follows: In Sect. 2 we fix
notation and recall some general results from number theory. In Sect. 3 we for-
mulate a variant of the is-word-in-language problem and connect it to problems
and solutions in some domain; we further introduce the concept of a challenge-
response protocol for proving solutions of the word problem. In Sect. 4 we study
two such protocols: Hash-then-Solve, which is inspired by the work of [19], and
Solve-then-Hash, which is novel. Finally, in Sect. 5 we show how RSA-related
properties can be expressed as instances of our general framework so that they
become accessible by our proof systems.
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2 Preliminaries

We fix notation and recall basic facts from number theory.

2.1 Notation

Parts of this article involve the specification of program code. In such code
we use assignment operator ‘←’ when the assigned value results from a constant
expression (including from the output of a deterministic algorithm), and we write
‘←$’ when the value is either sampled uniformly at random from a finite set or is
the output of a randomized algorithm. In a security experiment, the event that
some algorithm A outputs the value v is denoted with A ⇒ v. In particular,
Pr[A ⇒ 1] denotes the probability, taken over the coins of A, that A outputs
value 1. We use bracket notation to denote associative arrays (a data structure
that implements a ‘dictionary’). For instance, for an associative array A the
instruction A[7] ← 3 assigns value 3 to memory position 7, and the expression
A[2] = 5 tests whether the value at position 2 is equal to 5. Associative arrays
can be indexed with elements from arbitrary sets. When assigning lists to each
other, with ‘ ’ we mark “don’t-care” positions. For instance, (a, ) ← (9, 4) is
equivalent to a ← 9 (value 4 is discarded). We use the ternary operator known
from the C programming language: If C is a Boolean condition and e1, e2 are
arbitrary expressions, the expression “C ? e1 : e2” evaluates to e1 if C holds,
and to e2 if C does not hold. We further use Iverson brackets to convert Booleans
to numerical values. That is, writing “[C]” is equivalent to writing “C ? 1 : 0”.
If A is a randomized algorithm we write [A(x)] for the set of outputs it produces
with non-zero probability if invoked on input x. If u, v are (row) vectors of values,
u‖v denotes their concatenation, i.e., the vector whose first elements are those
of u, followed by those of v. We use symbol ∪· to indicate when the union of two
sets is a disjoint union.

2.2 Number Theory

We write N = {1, 2, 3, . . .} and P ⊆ N for the set of natural numbers and prime
numbers, respectively. For every natural number N ∈ N we denote the set of
prime divisors of N with P(N). Thus, for any N ∈ N there exists a unique family
(νp)p∈P(N) of multiplicities νp ∈ N such that

N =
∏

p∈P(N)

pνp .

We denote with odd(N) the ‘odd part’ of N , i.e., what remains of N after all
factors 2 are removed; formally, odd(N) =

∏
p∈P(N),p�=2 pνp .

Consider N ∈ N and the ring ZN = Z/NZ. The multiplicative group Z
∗
N of

ZN has order ϕ(N) =
∏

p∈P(N)(p − 1)pνp−1, where ϕ is Euler’s totient function.
By the Chinese Remainder Theorem (CRT) there exists a ring isomorphism

ψ : ZN
∼−→ ×

p∈P(N)

Zpνp .
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For N, e ∈ N consider the exponentiation mapping x �→ xe mod N . This
mapping is 1-to-1 on Z

∗
N iff gcd(e, ϕ(N)) = 1. The general statement, that holds

for all N, e, is that the exponentiation mapping is L-to-1 for

L =
∏

p∈P(N)

gcd(e, ϕ(pνp)). (1)

We write QR(N) for the (group of) quadratic residues (i.e., squares) modulo N .

3 Challenge-Response Protocols for Word Problems

We define notions of languages, statements, witnesses, and a couple of algo-
rithms that operate on such objects. We then introduce the notion of a challenge-
response protocol for the word problem in such a setting.

3.1 Associating Problems with the Words of a Language

Statements, candidates, witnesses. Let Σ be an alphabet and let L ⊆ U ⊆
Σ∗ be languages. We assume that deciding membership in U is efficient, while for
L this might not be the case. Each element x ∈ Σ∗ is referred to as a statement.
A statement x is a candidate if x ∈ U . A statement x is valid if x ∈ L; otherwise,
it is invalid. (Thus, in general there coexist valid and invalid candidates.) For all
candidates x we assume a (possibly empty) set of witnesses Wx such that valid
candidates are characterized by having a witness: ∀x ∈ U : |Wx| ≥ 1 ⇐⇒ x ∈ L.

Relating problems with candidates. For all candidates x ∈ U let Px

be a problem space and Sx a solution space, where we require that decid-
ing membership in Px is efficient. Let Relx ⊆ Px × Sx be a relation that
(abstractly) matches problems with solutions. For any problem P ∈ Px we
write Solx(P) := {S | (P ,S ) ∈ Relx} ⊆ Sx for the set of its solutions.
Not necessarily all problems are solvable, so we partition the problem space
as Px = P+

x ∪· P−
x such that precisely the elements of P+

x have solutions:
P ∈ P+

x ⇐⇒ |Solx(P)| ≥ 1 and, equivalently, P ∈ P−
x ⇐⇒ Solx(P) = ∅. We

extend relation Relx to Rel∗x := Relx ∪(P−
x ×{⊥}) by marking problems without

solution with the special value ⊥, and we extend notion Solx to Sol∗x such that
for all P ∈ P−

x we have Sol∗x(P) = {⊥}. We require that every candidate has at
least one problem-solution pair: ∀x ∈ U : |Relx| ≥ 1.

We assume four efficient algorithms, Verify, Sample, Sample∗, and Solve,
that operate on these sets. Deterministic algorithm Verify implements for all
candidates the indicator function of Rel , i.e., decides whether a problem and
a solution are matching. More precisely, Verify takes a candidate x ∈ U ,
a problem P ∈ Px, and a potential solution S ∈ Sx for P , and outputs
a bit that indicates whether (P ,S ) is contained in Relx or not. Formally,
∀x ∈ U , (P ,S ) ∈ Px × Sx : Verify(x,P ,S ) = 1 ⇐⇒ (P ,S ) ∈ Relx. Algo-
rithm Sample is randomized, takes a candidate x ∈ U , and outputs a (matching)
problem-solution pair (P ,S ) ∈ Relx. Algorithm Sample∗ is randomized, takes a
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candidate x ∈ U , and outputs a pair (P ,S ) ∈ Rel∗x (note that S = ⊥ if P ∈ P−
x ).

Finally, deterministic algorithm Solve takes a (valid) statement x ∈ L, a witness
w ∈ Wx for it, and a problem P ∈ Px, and outputs the subset of Sx that contains
all solutions of P . (If no solution exists, Solve outputs the empty set.) Formally,
∀x ∈ L, w ∈ Wx,P ∈ Px : Solve(x,w,P) = Solx(P).

If we write P =
⋃ Px, S =

⋃ Sx, Rel =
⋃ Relx, Rel∗ =

⋃ Rel∗x, W =
⋃ Wx,

where the unions are over all x ∈ U , a shortcut notation for the syntax of the
four algorithms is

U × P × S → Verify → {0, 1}
U → Sample →$ Rel
U → Sample∗ →$ Rel∗

L × W × P → Solve → Powerset(S)

Number of solutions, spectrum, solvable-problem density. Note that
different problems P ∈ P+ have, in general, different numbers of solutions. For
any set M ⊆ U of candidates, the spectrum #M collects the cardinalities of the
solution sets of all solvable problems associated with the candidates listed in M.
Formally,

#M := {|Solx(P)| : x ∈ M,P ∈ P+
x }.

Consequently, max #L is the largest number of solutions that solvable prob-
lems associated with valid candidates might have, and min #(U \ L) is the
smallest number of solutions of solvable problems associated with invalid candi-
dates. Further, for a set M ⊆ U the solvable-problem density distribution ΔM,
defined as

ΔM := {|P+
x |/|Px| : x ∈ M},

indicates the fractions of problems that are solvable (among the set of all prob-
lems), for all candidates in M. Most relevant in this article are the derived
quantities min ΔL and max Δ(U \ L).

Uniformity notions for sampling algorithms. For the two sampling algo-
rithms defined above we introduce individual measures of quality. For Sample
we say it is problem-uniform (on invalid candidates) if for all x ∈ U \ L the
problem output by Sample(x) is uniformly distributed in P+

x . Formally, for all
x ∈ U \ L,P ′ ∈ P+

x we require that

Pr[(P , ) ←$ Sample(x) : P = P ′] = 1/|P+
x |.

Further we say that Sample is solution-uniform (on invalid candidates) if for all
x ∈ U \ L and each pair (P ,S ) output by Sample(x), solution S is uniformly
distributed among all solutions for P . Formally, we require that for all x ∈
U \ L, (P ′,S ′) ∈ [Sample(x)] we have

Pr[(P ,S ) ←$ Sample(x) : S = S ′ | P = P ′] = 1/|Solx(P ′)|.



412 B. Auerbach and B. Poettering

For Sample∗ we say it is problem-uniform (on valid candidates) if for all x ∈ L
the problem output by Sample∗(x) is uniformly distributed in Px. Formally, for
all x ∈ L,P ′ ∈ Px we require that

Pr[(P , ) ←$ Sample∗(x) : P = P ′] = 1/|Px|.
Further we say that Sample∗ is solution-uniform (on valid candidates) if for all
x ∈ L and each pair (P ,S ) output by Sample∗(x), the solution S is uniformly
distributed among all solutions of P (if a solution exists at all, i.e., if S �= ⊥).
Formally, we require that for all x ∈ L, (P ′,S ′) ∈ [Sample∗(x)] we have

Pr[(P ,S ) ←$ Sample∗(x) : S = S ′ | P = P ′] = 1/|Sol∗x(P ′)|.

3.2 Challenge-Response Protocols

In the context of Sect. 3.1, a challenge-response protocol (CRP) for (L,U) spec-
ifies a (verifier) state space St , a challenge space Ch, a response space Rsp,
and efficient algorithms V1,P,V2 such that V = (V1,V2) implements a stateful
verifier and P implements a (stateless) prover. In more detail, algorithm V1 is
randomized, takes a candidate x ∈ U , and returns a pair (st , c), where st ∈ St is
a state and c ∈ Ch a challenge. Prover P, on input of a valid statement x ∈ L,
a corresponding witness w ∈ Wx, and a challenge c ∈ Ch, returns a response
r ∈ Rsp. Finally, deterministic algorithm V2, on input a state st ∈ St and a
response r ∈ Rsp, outputs a bit that indicates acceptance (1) or rejection (0).
An overview of the algorithms’ syntax is as follows.

U → V1 →$ St × Ch
L × W × Ch → P →$ Rsp

St × Rsp → V2 → {0, 1}
We define the following correctness and security properties for CRPs.

Correctness. Intuitively, a challenge-response protocol is correct if honest
provers convince honest verifiers of the validity of valid statements. Formally,
we say a CRP is δ-correct if for all valid candidates x ∈ L and corresponding
witnesses w ∈ Wx we have

Pr [(st , c) ←$ V1(x); r ←$ P(x,w, c) : V2(st , r) ⇒ 1] ≥ δ.

If the CRP is 1-correct we also say it is perfectly correct.
Soundness. Intuitively, a challenge-response protocol is sound if (dishonest)

provers cannot convince honest verifiers of the validity of invalid statements.
Formally, a CRP is ε-sound if for all invalid candidates x ∈ U \ L and all
(potentially unbounded) algorithms P∗ we have

Pr [(st , c) ←$ V1(x); r ←$ P∗(x, c) : V2(st , r) ⇒ 0] ≥ ε.

If the CRP is 1-sound we also say it is perfectly sound. To quantity 1 − ε we
also refer to as the soundness error.
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Zero-knowledge. Intuitively, a challenge-response protocol is (perfectly) zero-
knowledge if (dishonest) verifiers do not learn anything from interacting with
(honest) provers, beyond the fact that the statement is valid. Formally, a
CRP is (perfectly) zero-knowledge if there exists a simulator S such that for
all (potentially unbounded) distinguishers D, all valid candidates x ∈ L, and
all corresponding witnesses w ∈ Wx, we have

|Pr[DP(x,w,·) ⇒ 1] − Pr[DS(x,·) ⇒ 1]| = 0.

Here, with P(x,w, ·) and S(x, ·) we denote oracles that invoke the prover
algorithm P on input x,w, c and the simulator S on input x, c, respectively,
where challenge c is in both cases provided by distinguisher D on a call-by-call
basis.

In Sect. 4 we study two frameworks for constructing challenge-response pro-
tocols of the described type. The analyses of the corresponding protocols will be
in the random oracle model, meaning that the algorithms V1,P,V2 have access
to an oracle H implementing a function drawn uniformly from the set of all
functions between some fixed domain and range. Also the above correctness and
security definitions need corresponding adaptation by (1) extending the proba-
bility spaces to also include the random choice of H, and (2) giving all involved
algorithms, i.e., V1,P,V2,P∗,D, oracle access to H. In the zero-knowledge defi-
nition, simulator S simulates both P and H.

4 Constructing Challenge-Response Protocols

In Sect. 3 we linked the word decision problem of a language to challenge-response
protocols (CRP). Concretely, if L ⊆ U are languages, a corresponding CRP
would allow a prover to convince a verifier that a given candidate statement
is in L rather than in U \ L. In the current section we study two such proto-
cols, both requiring a random oracle. The first protocol, Hash-then-Solve, is
inspired by prior work but significantly improves on it, while the second proto-
col, Solve-then-Hash, is novel. The bounds on correctness and security of the
two protocols are, in general, incomparable. In the following paragraphs we give
a high-level overview of their working principles.

Let x ∈ U be a (valid or invalid) candidate statement. In the protocol of
Sect. 4.1 a random oracle H is used to generate problem instances for x as per
P ← H(r), where r is a random seed picked by the verifier. If P has a solution S ,
the prover recovers it and shares it with the verifier who accepts iff the solution is
valid. (If P has multiple solutions, the prover picks one of them at random.) Note
that solving problems is in general possible also for invalid candidates, but the
idea behind this protocol is that it allows for telling apart elements of L and U\L
if the fraction of solvable problems among the set of all problems associated with
valid candidates is strictly bigger than the fraction of solvable problems among
all problems associated with invalid candidates, i.e., if minΔL > max Δ(U \ L).
(As we show in Sect. 5, this is the case for some interesting number-theoretic
decision problems.)
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We now turn to the protocol of Sect. 4.2. Here, the random oracle is not
used to generate problems as above. Rather, the random oracle is used to hash
solutions into bit strings. Concretely, the verifier randomly samples a problem P
with corresponding solution S . It then sends P to the prover who derives the set
of all solutions for it; this set obviously includes S . The prover hashes all these
solutions and sends the set of resulting hash values to the verifier. The latter
accepts if the hash value of S is contained in this set. Note that finding the set
of all solutions for problems is in general possible also for invalid candidates, but
the protocol allows for telling apart valid from invalid candidates if (solvable)
problems associated with valid candidates have strictly less solutions than prob-
lems associated with invalid candidates, i.e., if max #L < min #(U \L). Indeed,
if the verifier does not accept more hash values than the maximum number of
solutions for valid statements, a cheating prover will make the verifier accept
only with a limited probability, while in the valid case the verifier will always
accept. (We again refer to Sect. 5 for number-theoretic problems that have the
required property.)

Let us quickly compare the two approaches. In principle, whether they are
applicable crucially depends on languages L,U and the associated problem and
solution spaces. Note that the random oracles are used in very different ways: in
the first protocol to ensure a fair sampling of a problem such that no solution is
known a priori (to neither party), and in the second protocol to hide those solu-
tions from the verifier that the latter does not know anyway. That the random
oracle in the first protocol has to map into the problem space might represent
a severe technical challenge as for some relevant problem spaces it seems unfea-
sible to find a construction for such a random oracle.3 In such cases the second
protocol might be applicable.

4.1 A GMR-Inspired Protocol: Hash-then-Solve

A general protocol framework for showing that certain properties hold for a
candidate RSA modulus (that it is square-free, Blum, etc.) was proposed by
Gennaro, Micali, and Rabin in [19]. Recall from the discussion in the introduc-
tion that the full version of their protocol has a total of four message passes
and involves both number-theoretic computations and the use of a commitment
scheme. In this section we study a variant of this protocol where the commit-
ment scheme is implemented via a random oracle. The benefit is that the protocol
becomes more compact and less interactive. Concretely, the number of message
passes decreases from four to two.

Let L ⊆ U ⊆ Σ∗ be as in Sect. 3.1, and let l ∈ N be a security parameter.
Let (Hx)x∈U be a family of hash functions (in the security reduction: random
oracles) such that for each x ∈ U we have a mapping Hx : {0, 1}l → Px. Consider
the challenge-response protocol with algorithms V1,P,V2 as specified in Fig. 1.
The idea of the protocol is that the verifier picks a random seed r which it

3 For instance if the problem space is the set of quadratic residues modulo some
composite integer.
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communicates to the prover and from which both parties deterministically derive
a problem as per P ← Hx(r). The prover, using its witness, computes the set S
of all solutions of P , denotes one of them with S , and sends S to the verifier. (If
P has no solution, the prover sends ⊥.) The verifier accepts (meaning: concludes
that x ∈ L) iff S �= ⊥ and S is indeed a solution for P . Importantly, while the
prover selects the solution S within set S in a deterministic way (so that for
each seed r and thus problem P it consistently exposes the same solution even
if queried multiple times), from the point of view of the verifier the solution S
is picked uniformly at random from the set of all solutions of P . This behavior
is implemented by letting the prover make its selection based on an additional
random oracle that is made private to the prover by including the witness w in
each query. Theorem 1 assesses the correctness and security of the protocol.

Fig. 1. Hash-then-Solve: Random-oracle based version of the GMR protocol from [19].
Specifications of the three CRP algorithms can be readily extracted from the code:
algorithm V1 is in lines 00–01, algorithm V2 is in lines 02–05, and algorithm P is in
lines 06–10. The expression of the form S ← $P (S) in line 09 is an abbreviation for
S ← RO(x,w,P ,S), where RO: {0, 1}∗ → S is a (private) random oracle.

Theorem 1. The Hash-then-Solve protocol defined in Fig. 1 is δ-correct and ε-
sound and perfectly zero-knowledge, where

δ = min Δ(L) and ε = 1 − max Δ(U \ L),

if hash functions (Hx)x∈U are modeled as random oracles. For this result
we assume that the Sample∗ algorithm is both problem-uniform and solution-
uniform.

Proof. Correctness. Let x ∈ L and w ∈ Wx. Since Hx is modeled as a random
oracle, problem P assigned in line 07 is uniformly distributed in Px. Set S from
line 08 is empty if P ∈ P−

x and contains elements if P ∈ P+
x . The probability

that the prover outputs a solution, and that the verifier accepts it in line 05, is
thus precisely |P+

x |/|Px|. A lower bound for this value is δ = min Δ(L).
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Soundness. Let x ∈ U \ L. A necessary condition for the verifier to accept in
line 05 is that there exists a solution to problem P = Hx(r), i.e., that P ∈
P+

x . Since Hx is modeled as a random oracle, P is uniformly distributed in Px.
The probability of P having a solution is thus |P+

x |/|Px|. This value is at most
max Δ(U \ L). Thus ε = 1 − max Δ(U \ L) is a lower bound for the probability
of the verifier not accepting in a protocol run.

Zero-knowledge. We show that the protocol is zero-knowledge by specifying and
analyzing a simulator S. Its code is in Fig. 2. The prover oracle P(x,w, ·) and the
random oracle Hx(·) are simulated by algorithms Psim and Hsim, respectively.
Associative array R reflects the input-output map of the random oracle and is
initialized such that all inputs map to special value ⊥. If Hsim is queried on a
seed r, a fresh problem-solution pair is sampled using the Sample∗ algorithm,
the pair is registered in R, and the problem part is returned to the caller. Note
that by the assumed problem-uniformity of Sample∗(x) this is an admissible
implementation of a random oracle that maps to set Px.

The task of the Psim algorithm is to return, for any seed r, a uniformly
picked solution for the problem P = Hx(r); if no solution exists, the oracle shall
return ⊥. This is achieved by returning the solution part of the problem-solution
pair that was sampled using Sample∗ when processing the random oracle query
Hx(r). Note that this argument uses both the solution uniformity of Sample∗

and the fact that the P algorithm from Fig. 1 is deterministic and in particular
always outputs the same solution if a seed is queried multiple times to a P(x,w, ·)
prover. ��

Fig. 2. Simulator S. Associative array R is initialized as per R[·] ← ⊥, i.e., such that
all values initially map to ⊥. Note that lines 00–02 become redundant if one requires
(w.l.o.g.) that Hsim(r) is always queried before Psim(r).

4.2 Our New Protocol: Solve-then-Hash

We propose a new challenge-response protocol for the word decision problem in
languages. Like the one from Sect. 4.1 it uses a random oracle, but it does so in
a quite different way: The random oracle is not used for generating problems,
but for hashing solutions. The advantage is that constructing a random oracle
that maps into a problem space might be difficult (for certain problem spaces),
while hashing solutions to bit strings is always easy.
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Let L ⊆ U ⊆ Σ∗ be as in Sect. 3.1. Let H be a finite set and H: {0, 1}∗ → H
a hash function (in the security reduction: a random oracle). The idea of the
protocol is that the verifier samples a problem-solution pair (P ,S ) and commu-
nicates the problem to the prover, the latter then, using its witness, computes
the sets S of all solutions of P and h of hash values of these solutions, and
returns set h to the verifier, and the verifier finally checks whether the hash
value h of S is contained in this set. An important detail is that the prover uses
pseudorandom bit-strings to pad the returned set of hash values to constant-size:
If k = max #L is the maximum number of solutions of problems associated with
valid candidates, then the prover exclusively outputs sets h of this cardinality.
The algorithms of the corresponding challenge-response protocol are specified in
Fig. 3. (Note that when transmitting h from the prover to the verifier an encod-
ing has to be chosen that hides the order in which elements were added to h.)
The analysis of our protocol is in Theorem2. The main technical challenge of
the proof is that it has to deal with collisions of the random oracle (two or more
solutions might hash to the same string).

Fig. 3. Solve-then-Hash: Our new challenge-response protocol. We assume k =
max #L. Specifications of the three CRP algorithms can be readily extracted from the
code: algorithm V1 is in lines 00–02, algorithm V2 is in lines 03–05, and algorithm P
is in lines 06–12. In line 08, the cardinality of set S is denoted with t. Expressions
of the form h ← $u

v (H) in line 10 are abbreviations for h ← RO(x,w, u, v), where
RO: {0, 1}∗ → H is a (private) random oracle.

Theorem 2. Let k = max #L, m = min #(U \ L), and M = max #(U \ L),
such that k ≤ m ≤ M . Then the Solve-then-Hash protocol defined in Fig. 3 is
perfectly correct and ε-sound and perfectly zero-knowledge, where

ε = 1 − (
k/m + k/|H| + (min(M, q))2/|H|) ≈ 1 − k/m,

if H is modeled as a random oracle and q is the maximum number of random
oracle queries posed by any (dishonest) prover P∗. For this result we assume
that the Sample algorithm is both problem-uniform and solution-uniform.
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Proof. Correctness. Let x ∈ L and w ∈ Wx. Then for (P ,S ) from line 00 we
have S ∈ S in line 07. Further, as x ∈ L we have t ≤ k = max #L in line 08 and
thus |h| ≤ k in line 04 and h ∈ h in line 05. Thus V2 accepts with probability 1.

Soundness. Let x ∈ U \ L be an invalid candidate and P∗ a (malicious) prover.
Let Win denote the event that P∗ succeeds in finding a response h such that ver-
ifier V2 accepts, i.e. the event {(h,P) ←$ V1(x);h ←$ P∗(x,P) : V2(h,h) ⇒ 1}.
Recall that Solx(P) denotes the set of solutions of problem P , and let S1, . . . ,Sl ∈
Solx(P) denote the solutions to the problem on which P∗ queries random ora-
cle H, i.e., the elements such that P∗ queries for H(P ,Si) with i ∈ {1, . . . , l}. We
define Col = {∃i �= j : H(P ,Si) = H(P ,Sj)} as the event that the hash values
of at least two of the queried solutions collide. We have

Pr[Win] = Pr [Win | Col ] Pr [Col ] + Pr [Win | ¬Col ] Pr [¬Col ]
≤ Pr [Col ] + Pr [Win | ¬Col ] .

We conclude that Pr[Win] < k/m + k/|H| + (min(M, q))2/|H| by showing that

(a) Pr [Col ] < (min(M, q))2/|H|
and

(b) Pr [Win | ¬Col ] ≤ k/m + k/|H|.
For claim (a), note that x ∈ U \ L implies that the set Relx(P) of solutions

of problem P has at most max #(U \ L) = M elements. P∗ makes at most q
queries to H. Hence l ≤ min(M, q). We obtain

Pr [Col ] = Pr [∃i �= j : H(P ,Si) = H(P ,Sj)]

≤ l2 Pr [H(P ,S1) = H(P ,S2)] ≤ min(M, q)2/|H|,

where the last two inequalities hold since H is modeled as a random oracle.
We conclude the proof by showing claim (b). Recall that S is the solution

sampled alongside problem P . Since algorithm Sample is solution-uniform, S is
distributed uniformly in Solx(P), which implies that H(P ,S ) is uniformly dis-
tributed in {H(P ,S ′) : S ′ ∈ Solx(P)}. Note that |Solx(P)| ≥ m = min #(U \ L)
and that —conditioned on ¬Col— all values H(P ,S ′) that P∗ knows are dis-
tinct. Conditioned on the events S ∈ {S1, . . . ,Sl} and ¬Col , prover P∗ guesses
H(P ,S ) with probability at most 1/l. If, on the other hand, S /∈ {S1, . . . ,Sl},
then H(P ,S ) is uniformly distributed from P∗’s point of view. Hence its best
chance of guessing it is 1/|H|. Note that Pr[S ∈ {S1, . . . ,Sl}] ≤ l/m. Summing up
—conditioned on ¬Col— P∗’s chance of correctly guessing H(P ,S ) is bounded
by l/m ·1/l+1/|H| = 1/m+1/|H|. Event Win according to line 04 cannot occur
if h contains more than k elements, so we obtain Pr [Win | ¬Col ] ≤ k/m+k/|H|.
Zero-knowledge. We show that the protocol is zero-knowledge by specifying and
analyzing a simulator S. Its code is in Fig. 4. The prover oracle P(x,w, ·) and the
random oracle H(·, ·) are simulated by algorithms Psim and Hsim, respectively.
For oracle H we assume w.l.o.g. that it is not queried twice on the same input.
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Fig. 4. Simulator S for the protocol of Fig. 3. We require (w.l.o.g.) that Hsim(·) is
queried at most once on each input. Expressions of the form h ← $u

v (H) in line 02 are
abbreviations for h ← RO(u, v), where RO: {0, 1}∗ → H is a (private) random oracle.
In line 07, the lengths of vectors RU[P ] and RF[P ] are t−1 and k− t+1, respectively.
In line 08, the new lengths of vectors RU[P ] and RF[P ] are t and k − t, respectively.

Core components of our simulator are the associative arrays RU[·] and RF[·]
that associate problems with used and fresh random hash values, respectively.
The simulator starts with initializing for each problem a vector of k-many fresh
hash values.4 Oracle Hsim on input a problem-solution pair (P ,S ) checks whether
S is a solution to P . If not, a random hash value is returned. Otherwise the vector
of (fresh) hash values RF[P ] associated to P is retrieved. The first element of
this vector is taken as the response of the random oracle query; however, before
the response is output, the element is appended to the vector of (used) hash
values RU[P ] associated to P . Note this procedure will never fail (i.e., never a
value has to be taken from RF[P ] after the list is emptied) since there are at
most k = max #L solutions to P . Queries to Psim on input P are responded with
the set h of all elements contained in RF[P ] and RU[P ], which by definition
of Hsim stays unchanged throughout the simulation. Since these elements are
initialized as random hash values, responses to queries to Psim have the correct
distribution. Furthermore, for every S ∈ Solx(P) we have that Hsim(P ,S ) is
contained in Psim(P). Summing up, the output of Psim and Hsim is correctly
distributed and simulator S provides distinguisher D with a perfect simulation
of P(x,w, ·). ��

4.3 Generalizing the Analysis of the Solve-then-Hash Protocol

We generalize the statement of Theorem 2, making it applicable to a broader
class of languages. Recall that our protocol from Sect. 4.2 decides membership
in a language L ⊆ U if for every (invalid) candidate x ∈ U \L and every solvable
problem P ∈ P+

x the number |Solx(P)| of solutions to P exceeds the maximum
number max #L of solutions to problems associated with valid candidates. We
next relax this condition by showing that for soundness it already suffices if the
4 Of course it is inefficient to assign to each P ∈ Px a vector of values ahead of time.

However, our code can easily be implemented in an equivalent form that uses lazy
sampling.
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expected value of |Solx(P)| (over randomly sampled P ∈ P+
x ) exceeds max #L.

In order to do so, we associate to L and U the function εL,U : [0, 1] → R
+

such that

εL,U (γ) := min{ε′ | ∀x ∈ U \ L : Pr[P ←$ P+
x : max #(L)/|Solx(P)| ≤ ε′] ≥ γ},

i.e., the function that associates to each probability value γ ∈ [0, 1] the small-
est factor ε′ such that for every invalid x a uniformly sampled problem with
probability of at least γ has at least max #(L)/ε′ solutions.

In Theorem 3 we give a correspondingly refined soundness analysis of the
Solve-then-Hash protocol. Note that, as the protocol itself did not change, the
correctness and zero-knowledge properties do not require a new analysis. Note
further that εL,U (1) = max #(L)/min #(U \ L), and that thus the soundness
analysis of Theorem 2 is just the special case of Theorem 3 where γ = 1.

Theorem 3. Let k = max #L and M = max #(U \ L) such that k ≤ M . Then
for every γ ∈ [0, 1] the Solve-then-Hash protocol defined in Fig. 3 is perfectly
correct and ε-sound and perfectly zero-knowledge, where

ε = 1 − (
εL,U (γ) + (1 − γ)/(1 − c) + k/|H| + c

) ≈ γ − εL,U (γ),

if H is modeled as a random oracle, q is the maximum number of random ora-
cle queries posed by any (dishonest) prover P∗ and c = (min(M, q))2/|H|. For
this result we assume that the Sample algorithm is both problem-uniform and
solution-uniform.

Proof. The correctness and zero-knowledge property of the protocol were already
shown in the proof of Theorem2. We thus show the bound on the soundness
error. Fix γ ∈ [0, 1] and let εL,U = εL,U (γ). Let x ∈ U \ L be an invalid
candidate and P∗ a (malicious) prover. Let Win denote the event that P∗

succeeds in finding a response h such that verifier V2 accepts, i.e. the event
{(h,P) ←$ V1(x);h ←$ P∗(x,P) : V2(h,h) ⇒ 1}. Recall that Solx(P) denotes
the set of solutions of problem P , and let S1, . . . ,Sl ∈ Solx(P) denote the solu-
tions to the problem on which P∗ queries random oracle H, i.e., the elements
such that P∗ queries for H(P ,Si) with i ∈ {1, . . . , l}. We define Col = {∃i �= j :
H(P ,Si) = H(P ,Sj)} as the event that the hash values of at least two of the
queried solutions collide. We have

Pr[Win] = Pr [Win | Col ] Pr [Col ] + Pr [Win | ¬Col ] Pr [¬Col ]
≤ Pr [Col ] + Pr [Win | ¬Col ] .

We conclude that Pr[Win] < εL,U + (1 − γ)/(1 − c) + k/|H| + c by showing that

(a) Pr [Col ] < (min(M, q))2/|H| = c

and
(b) Pr [Win | ¬Col ] ≤ εL,U + (1 − γ)/(1 − c) + k/|H|.
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Claim (a) follows as in the proof of Theorem2. In order to prove (b) we denote by
PG the event that the problem P given as input to P∗ by the verifier is “good” in
the sense of having many solutions, i.e. the event {max #(L)/|Solx(P)| ≤ εL,U}.
We have

Pr[Win | ¬Col ] = Pr[Win | ¬Col ∧ PG ] Pr[PG | ¬Col ]
+ Pr[Win | ¬Col ∧ ¬PG ] Pr[¬PG | ¬Col ]

≤ Pr[Win | ¬Col ∧ PG ] + Pr[¬PG | ¬Col ]
≤ Pr[Win | ¬Col ∧ PG ] + Pr[¬PG ]/Pr[¬Col ].

As stated above, we have Pr[¬Col ] ≥ 1−c. Further, by problem-uniformity, P is
distributed uniformly on P+

x and by the definition of εL,U we have Pr[¬PG ] ≤
1 − γ. Hence Pr[¬PG ]/Pr[¬Col ] ≤ (1 − γ)/(1 − c) and it remains to show that
Pr[Win | ¬Col∧PG ] ≤ εL,U +k/|H|. Since S is sampled with (solution-uniform)
Sample, it is distributed uniformly on Solx(P), which implies that H(P ,S ) is
uniformly distributed on {H(P ,S ′) : S ′ ∈ Solx(P)}. Recall that k = max #L.
If event PG occurs then |Solx(P)| ≥ k/εL,U . Further —conditioned on ¬Col—
all values H(P ,S ′) that P∗ knows are distinct. Conditioned on the events S ∈
{S1, . . . ,Sl}, PG and ¬Col prover P∗ guesses H(P ,S ) with probability at most
1/l. If, on the other hand, S /∈ {S1, . . . ,Sl}, then from P∗’s point of view H(P ,S )
is uniformly distributed on H. Hence in this case its best chance of guessing it
is 1/|H|. Note that Pr[S ∈ {S1, . . . ,Sl} | ¬Col ∧ PG ] ≤ l · εL,U/k. Summing
up —conditioned on ¬Col and PG— prover P∗’s chance of correctly guessing
H(P ,S ) is bounded by lεL,U/k · 1/l + 1/|H| = εL,U/k + 1/|H|. Event Win
according to line 04 cannot occur if h contains more than k elements, so we
obtain Pr [Win | ¬Col ] ≤ εL,U + k/|H|. ��

5 Challenge-Response Protocols in the Domain
of Number-Theory

We provide several protocols to prove number theoretic properties of a number
N ∈ N, the corresponding witness being the factorization of N . More formally,
we consider the universe

Lodd = {N ∈ N : ν2 = 0; |P(N)| ≥ 2}

of odd numbers, which have at least two prime factors. Note that Lodd can
be efficiently decided. We associate problem and solution spaces as defined in
Sect. 3.1 to several languages L ⊆ Lodd, hence obtaining membership checking
protocols via Theorems 1 and 2. In most cases the problem and solution space
associated to a statement N ∈ Lodd are defined as Z

∗
N , while the defining rela-

tion RelN for problem b and solution a is of the type b ≡ ae mod N , where the
exponent e is chosen according to the number theoretic property of N we want
to prove. Equation (1) of Sect. 2.2 serves as a primary tool to deduce bounds
on max #(L) and min #(Lodd \ L). Defining RelN in the described way enables
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us to to sample from it as follows. Algorithm Sample first chooses a solution a
uniformly from SN = Z

∗
N . Then the corresponding problem b is set to ae. In this

way a is uniformly distributed on SolN (b) and the proposed algorithm samples
solution-uniformly (for both valid and invalid candidates) as required for the
Solve-then-Hash protocol of Sect. 4.2.

For some of the considered languages the map a �→ ae defines a permutation
on Z

∗
N for every valid statement N ∈ L. In this case every problem is solvable,

we hence have P+
N = PN , and the described sampling algorithm also fulfills

the property of problem-uniformity and can be used in the Hash-then-Solve
protocol of Sect. 4.1. For other of the considered languages the space P+

N of
solvable problems is a proper subset of PN and it seems not feasible to construct
an algorithm with the desired properties. In this cases only the Solve-then-Hash
protocol can be used to decide the language.

Considered languages. We provide a toolbox of protocols checking arguably
the most important properties required of RSA-type moduli. An overview of our
results is given in Table 1. Combining several of the protocols gives a method to
check for properties required of typical applications. For example the property
that the RSA map a �→ ae mod N defined by numbers (N, e) is “good” can be
checked by showing that N has exactly two prime factors and is square free and
that e indeed defines a permutation on Z

∗
N . If an application requires a feature

more specific than the ones we treat, then likely corresponding problem and
solution spaces and a corresponding relation can be found. As a starting point
we consider the languages

Lsf := {N ∈ Lodd : gcd(N,ϕ(N)) = 1}
Lppp := {N ∈ Lodd : |P(N)| = 2}

of square free numbers and prime power products, i.e. numbers having exactly
two prime factors. For both languages the corresponding relation was implicitly

Table 1. Protocols for properties of RSA moduli. Assume k = max #L and m =
min #(U \L). Columns seven and eight indicate whether the Hash-then-Solve (HtS) or
Solve-then-Hash (StH) protocol can be used to decide L. Lpp and Lrsa are intersections
of other decidable languages and can be decided by running the corresponding protocols
in parallel.

L U PN SN RelN k/m HtS StH Sections

Lsf Lodd Z
∗
N Z

∗
N (an, a) 1/3 � � 5.1

Lppp Lodd Z
∗
N Z

∗
N (a2, a) 1/2 � 5.2

Lper Lodd Z
∗
N Z

∗
N (ae, a) 1/2 � � 5.3

Lpp Lodd (Z∗
N )2 (Z∗

N )2 1/2 � 5.4

Lrsa Lodd (Z∗
N )3 (Z∗

N )3 1/2 � 5.4

Lblum Lpp Z
∗
N Z

∗
N (a4, a) 1/2 � 5.5

Lpai Lpp Z
∗
n2 Zn × Z

∗
N (f(n,g)(a), a) 1/2 � � 5.6
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given in [19]. Note that by definition of ϕ(N) condition (gcd(ϕ(N), N) = 1)
implies that νp = 1 for every p ∈ P(N) and hence indeed the number is square
free. Due to the choice of the relation it additionally implies that p � (q − 1) for
every p, q ∈ P(N). Intersecting both languages yields the language

Lpp := {pq ∈ Lodd : p, q ∈ P, p �= q, p � (q − 1), q � (p − 1)}

of prime products. Each N in this language is the product of two distinct
primes, a minimal requirement on RSA moduli. We further give relations for the
languages

Lper := {(N, e) ∈ Lodd × N : a �→ ae defines a permutation}
Lrsa := {(N, e) ∈ Lpp × N : a �→ ae defines a permutation}

of pairs (N, e) such that exponentiation with e defines a permutation on Z
∗
N and

N being a prime product such that e defines a permutation on Z
∗
N . The relations

were implicitly used in [11,34]. Building on the protocol for Lpp we consider the
language

Lblum := {pq ∈ Lpp : p ≡ q ≡ 3 mod 4}

of Blum integers, i.e. prime products with both primes being equal to 3 mod-
ulo 4. We give problem and solution spaces and a corresponding relation, which
up to our knowledge has not been used so far, such that Lblum can be decided
in universe Lpp. Finally, we show that it can be efficiently decided whether the
trapdoor function corresponding to Paillier’s encryption scheme, which corre-
sponds to pairs (N, g) consisting of a prime product N and an element g of Z

∗
N2 ,

indeed defines a bijection. A protocol for this property has up to our knowledge
not been given so far. Note that given (N, g) it is assumed to be hard to decide
whether the corresponding map is bijective, since it has been shown to be a lossy
trapdoor function under the decisional quadratic residuosity assumption [15].

5.1 Deciding Lsf

Consider the language

Lsf := {N ∈ Lodd : gcd(N,ϕ(N)) = 1}

of square free integers, i.e. of odd numbers such that for every p, q ∈ P(N) we
have νp = 1 and p � q−1. We show that Lsf can be decided in universe Lodd. For a
statement N ∈ Lodd let the corresponding witness be its factorization. We define
the corresponding problem and solution spaces and the defining relation as

PN = Z
∗
N

SN = Z
∗
N

RelN = {(b, a) ∈ (Z∗
N )2 : b ≡ aN mod N}.
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RelN is defined via the map Z
∗
N → Z

∗
N ; a �→ aN . By Eq. (1) of Sect. 2.2 this map

is a bijection exactly if N ∈ Lsf , i.e. if gcd(N,ϕ(N)) = 1, and, since N is odd, at
least 3-to-1 if N ∈ Lodd \Lsf . Hence max #(Lsf) = 1 and min #(Lodd \Lsf) = 3.

We now describe the corresponding algorithms. Algorithms Sample samples
from RelN by choosing a ←$ Z

∗
N , setting b ← aN and returning the problem-

solution pair (b, a). As discussed above, since the solution a is sampled at random
and the corresponding problem b is derived from it afterwards, a is uniformly
distributed on SolN (b) and Sample is solution-uniform. Verify on input (b, a)
checks whether b ≡ an mod n and responds accordingly. Note that Nth roots
modulo N can be efficiently computed given the factorization of N . Hence it
is possible to construct the problem solving algorithm Solve and by Theorem2
language Lsf can be decided using the Solve-then-Hash protocol.

For every valid statement N ∈ Lsf the map Z
∗
N → Z

∗
N ; a �→ aN defining the

relation RelN is a bijection. Hence in this case every problem b ∈ PN is solvable.
Further the problems sampled by Sample are uniformly distributed on PN and
solutions are uniformly distributed on the corresponding solution set SolN (b).
Thus Sample is both problem-uniform and solution-uniform, and therefore fulfills
the requirements, which are necessary to be used as sampling algorithm Sample∗

in the Hash-then-Solve protocol of Sect. 4.1.

5.2 Deciding Lppp

Consider the language

Lppp := {N ∈ Lodd : |P(N)| = 2}
of prime power products, i.e. of odd numbers that have exactly two prime factors.
We show that Lppp can be decided in universe Lodd. For a statement N ∈ Lodd

let the corresponding witness be its factorization. We define the corresponding
problem and solution spaces and the defining relation as

PN = Z
∗
N

SN = Z
∗
N

RelN = {(b, a) ∈ (Z∗
N )2 : b ≡ a2 mod N}.

RelN is defined via the map Z
∗
N → Z

∗
N ; a �→ a2. Since N is odd we obtain

by Eq. (1) of Sect. 2.2 that this map is 4-to-1 if N ∈ Lppp, i.e. if N has at
most 2 distinct prime factors, and at least 8-to-1 if N ∈ Lodd \ Lppp. Hence
max #(Lppp) = 4 and min #(Lodd \ Lppp) = 8.

We now describe the corresponding algorithms. Algorithm Sample samples
from RelN by choosing a ←$ Z

∗
N , setting b ← a2 and returning the problem-

solution pair (b, a). Note that Sample is solution-uniform. Verify on input (b, a)
checks whether b ≡ a2 mod N and responds accordingly. Note that square roots
modulo N can be efficiently computed given the factorization of N . Hence it
is possible to construct the problem solving algorithm Solve and by Theorem2
language Lppp can be decided using the Solve-then-Hash protocol.
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Let N ∈ Lppp be a valid statement. The set P+
N of solvable problems

is the set QR(N) of quadratic residues modulo N . Hence a sampling algo-
rithm Sample∗ compatible with the Hash-then-Solve protocol of Sect. 4.1 would
require that (a) the sampled problems are uniformly distributed in Z

∗
N and

(b) if a sampled problem is solvable then it is accompanied by a solution.
While both sampling uniformly from Z

∗
N or sampling uniformly from (b, a) ∈

RelN ⊆ QR(N) × Z
∗
N is easy, it is unclear how to construct an algorithm

with the required properties that does not need access to the factorization of
N . The authors of [19] overcome this problem by imposing additional require-
ments on N . They give a protocol able to verify that pq = N ∈ Lppp such that
p, q �≡ 1 mod 8 and p �≡ q mod 8. For this restricted language exactly one element
of the set {+b,−b,+2b,−2b} has a square root for every b ∈ Z

∗
N . Changing the

relation to pairs (b, a), such that a is the root of one of those elements one then
defines Sample∗ to sample (b, a) with algorithm Sample from above and then
output (c b, a), where c ←$ {+1,−1,+2,−2}.

5.3 Deciding Lper

Consider the language

Lper := {(N, e) ∈ Lodd × N : a �→ ae defines a permutation}
of pairs (N, e) such that the map a �→ ae defines a permutation. We show
that Lper can be decided in universe Lodd. For a statement N ∈ Lodd let the
corresponding witness be its factorization. We define the corresponding problem
and solution spaces and the defining relation as

PN = Z
∗
N

SN = Z
∗
N

RelN = {(b, a) ∈ (Z∗
N )2 : b ≡ ae mod N}.

RelN is defined via the map Z
∗
N → Z

∗
N ; a �→ ae. Since this map is a homo-

morphism, it is at least 2-to-1 if it is not bijective. Hence max #(Lsf) = 1 and
min #(Lodd \ Lsf) = 2.

We now describe the corresponding algorithms. Algorithm Sample samples
from RelN by choosing a ←$ Z

∗
N , setting b ← ae and returning the problem-

solution pair (b, a). Note that Sample is both problem-uniform and solution-
uniform. Verify on input (b, a) checks whether b ≡ ae mod N and responds
accordingly. Note that eth roots modulo N can be efficiently computed given
the factorization of N . Hence it is possible to construct the problem solving
algorithm Solve and by Theorem2 language Lper can be decided using the Solve-
then-Hash protocol.

Further, for every valid statement N ∈ Lper the map Z
∗
N → Z

∗
N ; a �→ ae

defining the relation RelN is a bijection. Hence in this case every problem b ∈ PN

is solvable. Further the problems sampled by Sample are uniformly distributed
on PN and solutions are uniformly distributed on the corresponding solution
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set SolN (b). Thus Sample is both problem-uniform and solution-uniform, and
therefore fulfills the requirements, which are necessary to be used as sampling
algorithm Sample∗ in the Hash-then-Solve protocol of Sect. 4.1.

5.4 Deciding Lpp and Lrsa

Consider the languages

Lpp := {pq ∈ Lodd : p, q ∈ P, p �= q, p � (q − 1), q � (p − 1)}

of prime products, i.e. square-free numbers having exactly two prime factors,
and

Lrsa := {(N, e) ∈ Lpp × N : a �→ ae defines a permutation}
of pairs (N, e) such that N is a prime product and the RSA map Z

∗
N → Z

∗
N ; a �→

ae defines a permutation. We have Lpp = Lppp∩Lsf and Lrsa = Lper∩Lppp∩Lsf .
The protocols deciding Lsf , Lppp and Lper are all defined with respect to the same
universe Lodd. By running them in parallel we hence obtain protocols deciding
Lpp or Lrsa respectively with respect to Lodd.

5.5 Deciding Lblum

Consider the language

Lblum := {pq ∈ Lpp : p ≡ q ≡ 3 mod 4}

of Blum integers. We show that Lblum can be decided in universe Lpp. For a
statement N ∈ Lpp let the corresponding witness be its factorization. We define
the corresponding problem and solution spaces and the defining relation as

PN = Z
∗
N

SN = Z
∗
N

RelN = {(b, a) ∈ (Z∗
N )2 : b ≡ a4 mod N}.

Since all statements are elements of Lpp and hence have two odd prime factors,
every square in Z

∗
N has four square roots. Further, if N a is Blum integer then

each element of QR(N) has exactly one root that is again a square. This implies
that every problem of P+ = {b ∈ Z

∗
N : b ≡ a4 for some a ∈ Z

∗
N} has four

corresponding solutions, i.e. max #(Lsf) = 2. If on the other hand N ∈ Lpp \
Lblum, then every element of the form b = a4 has at least two square roots, which
are elements of QR(N). Hence in this case we obtain min #(Lpp \ Lblum) = 8.

We now describe the corresponding algorithms. Algorithm Sample samples
from RelN by choosing a ←$ Z

∗
N , setting b ← a4 and returning the problem-

solution pair (b, a). Note that Sample is solution-uniform. Verify on input (b, a)
checks whether b ≡ a4 mod N and responds accordingly. Note that 4th roots
modulo N can be efficiently computed given the factorization of N . Hence it
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is possible to construct the problem solving algorithm Solve and by Theorem2
language Lblum can be decided using the Solve-then-Hash protocol.

Let N ∈ Lblum be a valid statement. Since for Blum integers squaring is
a permutation on QR(N), the space of solvable problems is given by QR(N).
Hence as in the case of the relation for language Lppp it seems unfeasible to
construct an alternative sampling algorithm Sample∗ that admits the use of the
Hash-then-Solve protocol of Sect. 4.1.

5.6 Deciding Lpai

Let N ∈ Lpp and g ∈ Z
∗
N2 such that N divides the order of the group generated

by g. In this case the following function associated to N and g, which is used
in Paillier’s encryption scheme [26], defines a bijection that can be efficiently
inverted given the factorization of N .

fn,g :

{
ZN × Z

∗
N → Z

∗
N2

(a1, a2) �→ ga1 aN
2 mod N2

In this section we show that our protocols can be used to check in universe Lpp,
whether a public key (N, g) for the Paillier encryption scheme indeed defines a
bijection. Hence consider the language

Lpai := {(N, g) ∈ Lpp × N : g ∈ Z
∗
N2 , fN,g is permutation}.

Note that the condition g ∈ Z
∗
N2 can be efficiently checked. For a state-

ment N ∈ Lpp let the corresponding witness be its factorization. We define
the corresponding problem and solution spaces and the defining relation as

PN = Z
∗
N2

SN = ZN × Z
∗
N

RelN = {(b, a) ∈ P(N,g) × S(N,g) : b ≡ fN,g(a) mod N}.

RelN is defined via map f(N,g), which is a homomorphism. Hence if it is not
bijective it is at least 2-to-1 and we obtain max #(Lsf) = 1 and min #(Lodd \
Lsf) = 2.

We now describe the corresponding algorithms. Algorithm Sample samples
from RelN by choosing a ←$ ZN × Z

∗
N , setting b ← f(N,g)(a) and returning

the problem-solution pair (b, a). Note that Sample is both problem-uniform
and solution-uniform. Verify on input (b, a) checks whether b ≡ f(N,g)(a) and
responds accordingly. Map f(N,g) can be efficiently inverted given the factoriza-
tion of N . Hence it is possible to construct the problem solving algorithm Solve
and by Theorem 2 language Lpai can be decided using the Solve-then-Hash pro-
tocol.

For every valid statement N ∈ Lpai the map f(N,g) defining the relation RelN
is a bijection. Hence in this case every problem b ∈ PN is solvable. Further the
problems sampled by Sample are uniformly distributed on PN and solutions are
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uniformly distributed on the corresponding solution set SolN (b). Thus Sample
is both problem-uniform and solution-uniform, and therefore fulfills the require-
ments, which are necessary to be used as sampling algorithm Sample∗ in the
Hash-then-Solve protocol of Sect. 4.1.

The constructions can be easily adapted to handle the generalized version of
the trapdoor function from [14], which uses domain ZNs × Z

∗
N and range Z

∗
Ns+1

for some s ∈ N.
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Abstract. We present a secure two-factor authentication (TFA) scheme
based on the possession by the user of a password and a crypto-capable
device. Security is “end-to-end” in the sense that the attacker can attack
all parts of the system, including all communication links and any subset
of parties (servers, devices, client terminals), can learn users’ passwords,
and perform active and passive attacks, online and offline. In all cases
the scheme provides the highest attainable security bounds given the set
of compromised components. Our solution builds a TFA scheme using
any Device-Enhanced PAKE, defined by Jarecki et al., and any Short
Authenticated String (SAS) Message Authentication, defined by Vaude-
nay. We show an efficient instantiation the modular, generic construc-
tion we give is not PAKE-agnostic because it doesn’t even use PAKE,
but the instantiation of this scheme which instantiates DE-PAKE with
PTR+PAKE is PAKE-agnostic as you say of this modular construction
which utilizes any password-based client-server authentication method,
with or without reliance on public-key infrastructure. The security of the
proposed scheme is proven in a formal model that we formulate as an
extension of the traditional PAKE model.

We also report on a prototype implementation of our schemes, includ-
ing TLS-based and PKI-free variants, as well as several instantiations of
the SAS mechanism, all demonstrating the practicality of our approach.

1 Introduction

Passwords provide the dominant mechanism for electronic authentication, pro-
tecting a plethora of sensitive information. However, passwords are vulnerable to
both online and offline attacks. A network adversary can test password guesses
in online interactions with the server while an attacker who compromises the
authentication data stored by the server (i.e., a database of salted password
hashes) can mount an offline dictionary attack by testing each user’s authenti-
cation information against a dictionary of likely password choices. Offline dictio-
nary attacks are a major threat, routinely experienced by commercial vendors,
c© International Association for Cryptologic Research 2018
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and they lead to the compromise of billions of user accounts [6,7,12,15,17,20].
Moreover, because users often re-use their passwords across multiple services,
compromising one service typically also compromises user accounts at other
services.

Two-factor password authentication (TFA), where user U authenticates to
server S by “proving possession” of an auxiliary personal device D (e.g. a smart-
phone or a USB token) in addition to knowing her password, forms a common
defense against online password attacks as well as a second line of defense in
case of password leakage. A TFA scheme which uses a device that is not directly
connected to U’s client terminal C typically works as follows: D displays a short
one-time secret PIN, either received from S (e.g. using an SMS message) or com-
puted by D based on a key shared with S, and the user manually types the PIN
into client C in addition to her password. Examples of systems that are based on
such one-time PINs include SMS-based PINs, TOTP [10], HOTP [14], Google
Authenticator [4], FIDO U2F [2], and schemes in the literature such as [47].

Vulnerabilities of traditional TFA schemes. Existing TFA schemes, both
PIN-based and those that do not rely on PINs, e.g. [1,8], combine password
authentication and 2nd-factor authentication as separate authentication mech-
anisms leading to several limitations. Chief among these is that such TFA solu-
tions remain vulnerable to offline dictionary attacks upon server compromise in
the same way as non-TFA password authentication schemes (i.e. via exposure
of users’ salted hashes), thus perpetuating the main source of password leakage.
Moreover, existing TFA’s have several vulnerabilities against online attacks: (1)
The read-and-copy PIN-transfer is subject to a variety of eavesdropping attacks,
including SMS hijacking1, shoulder-surfing, PIN recording, client-side or device-
side attacks via keyloggers or screen scrapers, e.g. [43], and PIN phishing [16].
(2) The read-and-copy PIN-transfer allows only limited PIN entropy and while,
say, a 6-digit PIN is hard to guess, PIN guessing can be used in a large-scale
online attack against accounts whose passwords the attacker already collected,
e.g. [12,15,17,20]. For example, if the attacker obtains password information
for a large set of accounts, PINs are 6-digit long, and the attacker can try 10
PIN guesses per account, one expects a successful impersonation per 100,000
users. (3) Current PIN-based TFAs perform sequential authentication using the
password and the PIN, i.e. C sends the password to S (over TLS), S confirms
whether pwd is correct, and only then C sends to S the PIN retrieved from D.
This enables online password attacks without requiring PIN guessing or inter-
action with a device, thus voiding the effects of PIN on password-guessing or
password-confirmation online attacks.

Our Contributions. In this paper we aim to address the vulnerabilities of the
currently deployed TFA schemes by (1) introducing a precise security model for
TFA schemes capturing well-defined maximally-attainable security bounds, (2)

1 E.g., SIM card swap attacks [18] and SMS re-direction where PINs are diverted to
the attacker’s phone exploiting SS7 vulnerabilities [21]. The latter led to NIST’s
recent decision to deprecate SMS PINs as a TFA mechanism [19].
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exhibiting a practical TFA scheme which we prove to achieve the strong secu-
rity guaranteed by our formal model, and (3) prototyping several methods for
validating user’s possession of the secondary authentication factor. We expand
on each of these aspects next.

TFA Security Model with End-to-End Security. We introduce a Two-
Factor Authenticated Key Exchange (TFA-KE) model in which a user authenti-
cates to server S by (1) entering a password into client terminal C and (2) proving
possession of a personal device D which forms the second authenticator factor.
In the TFA-KE model, possession of D is proved by the user confirming in the
device equality of a t-bit checksum displayed by D with a checksum displayed by
C. Following [50] (see below), this implements a t-bit C-to-D user-authenticated
channel, which confirms that the same person is in control of client C and device
D. This channel authentication requirement is weaker than the private channel
required by current PIN-based TFAs and, as we show, it allows TFA schemes to
be both more secure and easier to use.

The TFA-KE model, that we define as an extension of the standard Password-
Authenticated Key Exchange (PAKE) [24] and the Device-Enhanced PAKE
(DE-PAKE) [37] models, captures what we call end-to-end security by allow-
ing the adversary to control all communication channels and compromise any
protocol party. For each subset of compromised parties, the model specifies best-
possible security bounds, leaving inevitable (but costly) exhaustive online guess-
ing attacks as the only feasible attack option. In particular, in the common case
that D and S are uncorrupted, the only feasible attack is an active simultaneous
online attack against both S and D that also requires guessing the password and
the t-bit checksum. Compromising server S allows the attacker to impersonate
S, but does not help in impersonating the user to S, and in particular does not
enable an offline-dictionary attack against the user’s password. Compromising
device D makes the authentication effectively password-only, hence offering best
possible bounds in the PAKE model (in particular, the offline dictionary attack
is possible only if D and S are both compromised). Finally, compromising client
C leaks the password, but even then impersonating the user to the server requires
an active attack on D. We prove our protocols in this strong security model.

Practical TFA with End-to-End Security. Our main result is a TFA scheme,
GenTFA that achieves end-to-end security as formalized in our TFA-KE model
and is based on two general tools. The first is a Device-Enhanced Password
Authenticated Key Exchange (DE-PAKE) scheme as introduced by Jarecki et
al. [37]. Such a scheme assumes the availability of a user’s auxiliary device,
as in our setting, and utilizes the device to protect against offline dictionary
attacks in case of server compromise. However, DE-PAKE schemes provide no
protection in case that the client machine C is compromised and, moreover,
security completely breaks down if the user’s password is leaked. Thus, our
approach for achieving TFA-KE security is to start with a DE-PAKE scheme
and armor it against client compromise (and password leakage) using our second
tool, namely, a SAS-MA (Short-Authentication-String Message Authentication)
as defined by Vaudenay [50]. In our application, a SAS-MA scheme utilizes a t-bit
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user-authenticated channel, called a SAS channel, to authenticate data sent from
C to D. More specifically, the SAS channel is implemented by having the user
verify and confirm the equality of two t-bit strings, called checksums, displayed
by both C and D. It follows from [50] that if the displayed checksums coincide
then the information received by D from C is correct except for a 2−t probability
of authentication error. We then show how to combine a DE-PAKE scheme with
such a SAS channel to obtain a scheme, GenTFA, for which we can prove TFA-
KE security, hence provably avoiding the shortcomings of PIN-based schemes.
Moreover, the use of the SAS channel relaxes the required user’s actions from a
read-and-copy action in traditional schemes to a simpler compare-and-confirm
which also serves as a proof of physical possession of the device by the user (see
more below).

We show a concrete practical instantiation of our general scheme GenTFA,
named OpTFA, that inherits from GenTFA its TFA-KE security. Protocol OpTFA
is modular with respect to the (asymmetric) password protocol run between
client and server, thus it can utilize protocols that assume PKI as the traditional
password-over-TLS, or those that do not require any form of secure channels, as
in the (PKI-free) asymmetric PAKE schemes [25,32]. In the PKI case, OpTFA
can run over TLS, offering a ready replacement of current TFA schemes in the
PKI setting. In the PKI-free case one gets the advantages of the TFA-KE setting
without relying on PKI, thus obtaining a strict strengthening of (password-only)
PAKE security [24,44] as defined by the TFA-KE model.

The cost of OpTFA is two communication rounds between D and C, with
4 exponentiations by C and 3 by D, plus the cost of a password authentication
protocol between C and S. In the PKI setting the latter is the cost of establishing
a server-authenticated TLS channel, while in the PKI-free case one can use an
asymmetric PAKE (e.g., [27,36]) with cost (some of it computable offline) of 3
exponentiations for C, 2 for S, and one multi-exponentiation for each.

Implementation and SAS Channel Designs. We prototyped protocol
OpTFA, in both the PKI and PKI-free versions, with the client implemented as a
Chrome browser extension, the device as an Android app, and D-C communica-
tion implemented using Google Cloud Messaging. We also designed and imple-
mented several instantiations of the human-assisted C-to-D SAS channel required
by our TFA-KE solution and model. Recall that a SAS channel replaces the
user’s read-and-copy action of a PIN-based TFA with the compare-and-confirm
action used to validate the checksums displayed by C and D. The security of a
SAS-model TFA-KE depends on the checksum entropy t, called the SAS chan-
nel capacity, hence the two important characteristics of a physical design of a
SAS channel are its capacity t and the ease of the compare-and-confirm action
required of the user. In Sect. 6 we show several SAS designs that present different
options in terms of channel capacity and user-friendliness.

Our base-line implementation of a SAS channel encodes 20-bit checksums as
6-digit decimal PINs, which the user compares when displayed by C and D (no
copying involved). However, we also propose two novel and higher-capacity SAS
channels. In the first design, the device D is assumed to have a camera and the
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checksum calculated by the client is encoded as a QR code and displayed by C.
The user prompts D to capture this QR code which D decodes and compares
against its own computed checksum. The second design is based on an audio
channel implemented using a human speech transcription software. If device D
is a smartphone then the user can read out an alphanumeric checksum displayed
by C into D’s microphone2, and D decodes the audio using the transcriber tool
and compares it to its checksum.

Related Works. We discuss related works in greater detail in Sect. 7. The main
observations are: First, multiple methods have been proposed in the crypto litera-
ture for strengthening password authentication against offline dictionary attacks
in case of server compromise by introducing an additional party in the pro-
tocol (e.g., password-hardened or device-enhanced authentication [23,27,31,37]
and Threshold-PAKE or 2-PAKE, e.g. [28,40,44]), but these schemes offer no
security against an active attacker in case of password leakage or client compro-
mise, hence they are not TFAs. Second, many TFA schemes offer alternatives to
PIN-based TFAs, but none of them offer protection against offline attacks upon
server compromise except for the scheme of [47] (see Sect. 7). Moreover, if these
schemes consider D as an independent entity (rather than a local component of
client C) then they either have on-line security vulnerabilities or they require a
pre-set secure full-bandwidth C-D channel. In our case, we do with just a SAS
channel that as we show in Sect. 6 has several practical implementations. Third,
we are not aware of any attempt to model security of TFA schemes where D and
C are not co-located, nor do we know any PKI-free TFA schemes proposed for
this setting.

Road-Map. In Sect. 2 we present TFA-KE security model. In Sect. 3 we describe
our protocol building blocks. In Sect. 4 we present a practical TFA-KE protocol
OpTFA, and we provide informal rationale for its design choices. In Sect. 5 we
show a more general TFA-KE protocol GenTFA, of which OpTFA is an instance,
together with its formal security proof. In Sect. 6 we report on the implementa-
tion and testing of protocol OpTFA, and we describe several SAS channel designs.
In Sect. 7 we include more detailed direlated works.

2 TFA-KE Security

We introduce the Two-Factor Authenticated Key Exchange (TFA-KE) security
model that defines the assumed environment and participants in our protocols
as well as the attacker’s capabilities and the model’s security guarantees. Our
starting point is the Device-Enhanced PAKE (DE-PAKE) model, introduced
in [37], which extends the well-known two-party Password-Authenticated Key
Exchange (PAKE) model [24] to a multi-party setting that includes users U,
communicating from client machines C, servers S to which users log in, and
auxiliary devices D, e.g. a smartphone. A DE-PAKE scheme has the security
2 Note that thanks to the full resistance of our TFA-KE schemes to eavesdropping,

overhearing the spoken checksum is of no use for the attacker.
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properties of a two-server PAKE (2-PAKE) [28,40] where D plays the role of the
2nd server. Namely, a compromise of either S or D (but not both) essentially does
not help the attacker, and in particular leaks no information about the user’s
password. However, whereas 2-PAKE might be insecure in case of a compromise
of both S and D, in a DE-PAKE the adversary who compromises S and D must
stage an offline dictionary attack to learn anything about the password.

The TFA-KE model considers the same set of parties as in the DE-PAKE
model (which we recall in AppendixA) and all the same adversarial capabili-
ties, including controlling all communication links, the ability to mount online
active attacks, offline dictionary attacks, and to compromise devices and servers.
However, the DE-PAKE model does not consider client corruption or password
leakage. Indeed, in case of password leakage an active adversary can authenticate
to S by impersonating the legitimate user in a single DE-PAKE session with D
and S. Since a TFA scheme is supposed to protect against the client corrup-
tion and password leakage attacks, our TFA-KE model enhances the DE-PAKE
model by adding these capabilities to the adversary while preserving all the other
strict security requirements of DE-PAKE. In general, DE-PAKE requirements
were such that the only allowable attacks on the system, under a given set of
corrupted parties, are the unavoidable exhaustive online guessing attacks for
that setting; the same holds for TFA-KE but with additional best resilience to
client compromise and password leakage.

Note, however, that if C,D,S communicate only over insecure links then an
attacker who learns the user’s password will always be able to authenticate to S
as in the case of DE-PAKE, by impersonating the user to D and S. Consequently,
to allow device D to become a true second factor and maintain security in case
the password leaks, one has to assume some form of authentication in the C to
D communication which would allow the user to validate that D communicates
with the user’s own client terminal C and not with the attacker who performs a
man-in-the-middle attack and impersonates this user to D.

To that end our TFA-KE model augments the communication model by an
authentication abstraction on the client-to-device channel, but it does so without
requiring the client to store any long-term keys (other than the user’s password).
Namely, we assume a uni-directional C-to-D “Short Authenticated String” (SAS)
channel, introduced by Vaudenay [50], which allows C to communicate t bits
to D that cannot be changed by the attacker. The t-bit C-to-D SAS channel
abstraction comes down to a requirement that the user compares a t-bit checksum
displayed by both C and D, and approves (or denies) their equality by choosing
the corresponding option on device D.

As is standard, we quantify security by attacker’s resources that include
the computation time and the number of instances of each protocol party the
adversary interacts with. We denote these as qD, qS , qC , q′

C , where the first two
count the number of active sessions between the attacker and D and S, resp.,
while qC (resp. q′

C) counts the number of sessions where the attacker poses
to C as S (resp. as D). Security is further quantified by the password entropy
d (we assume the password is chosen from a dictionary of size 2d known to
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the attacker), and parameter t, which is called the SAS channel capacity. As we
explain in Sect. 3, a C-to-D SAS channel allows for establishing a D-authenticated
secure channel between D and C, except for the 2−t probability of error [50],
which explains 2−t factors in the TFA-KE security bounds stated below.

TFA Security Definition. We consider a communication model of open chan-
nels plus the t-bit SAS-channel between C and D, and a man-in-the-middle adver-
sary that interacts with qD, qS , qC , q′

C sessions of D,S,C, as described above. The
adversary can also corrupt any party, S, D, or C, learning its stored secrets and
the internal state as that party executes its protocol, which in the case of C
implies learning the user’s password. All other adversarial capabilities as well
as the test session experiment defining the adversary’s goal are as in DE-PAKE
(and PAKE) models – see AppendixA. In particular, the adversary’s advantage
is, as in DE-PAKE and PAKE, an advantage in distinguishing between a random
string and a key computed by S or C on a test session.

The security requirements set by Definition 1 below are the strictest one can
hope for given the communication and party corruption model. That is, wher-
ever we require the attacker’s advantage to be no more than a given bound with
a set of corrupted parties, then there is an (unavoidable) attack - in the form of
exhaustive guessing attack - that achieves this bound under the given compro-
mised parties. Importantly, and in contrast to typical two-factor authentication
solutions, the TFA-KE model requires that the second authentication factor D
not only provides security in case of client and/or password compromise, but
that it also strengthens online and offline security (by 2t factors) even when the
password has not been learned by the attacker.

Definition 1. A TFA-KE protocol TFA is (T, ε)-secure if for any password dic-
tionary Dict of size 2d, any t-bit SAS channel, and any attacker A bounded by
time T , A’s advantage AdvTFAA in distinguishing the tested session key from ran-
dom is bounded as follows, for qS , qC , q′

C , qD as defined above:

1. If S, D, and C are all uncorrupted:

AdvTFAA ≤ min{qC + qS/2t, q′
C + qD/2t}/2d + ε

2. If only D is corrupted: AdvTFAA ≤ (qC + qS)/2d + ε
3. If only S is corrupted: AdvTFAA ≤ (q′

C + qD/2t)/2d + ε
4. If only C is corrupted (or the user’s password leaks by any other means):

AdvTFAA ≤ min(qS , qD)/2t + ε
5. If both D and S are corrupted (but not C), and qS and qD count A’s

offline operations performed based on resp. S’s and D’s state: AdvTFAA ≤
min{qS , qD}/2d

Explaining the bounds. The security of the TFA scheme relative to the
DE-PAKE model can be seen by comparing the above bounds to those in
Definition 2 in AppendixA. Here we explain the meaning of some of these
bounds. In the default case of no corruptions, the adversary’s probability of
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attack is at most min(qC+qS/2t, q′
C+qD/2t)/2d improving on DE-PAKE bound

min(qC+qS , q′
C+qD)/2d and on the PAKE bound (qC+qS)/2d. For simplicity,

assume that qC = q′
C = 0 (e.g., in the PKI setting where C talks to S over TLS

and the communication from D to C is authenticated), in which case the bound
reduces to min(qS , qD)/2t+d. The interpretation of this bound, and similarly for
the other bounds in this model, is that in order to have a probability q/2t+d

to impersonate the user, the attacker needs to run q online sessions with S and
also q online sessions with D. (In each such session the attacker can test one
password out of a dictionary of 2d passwords, and can do so successfully only if
its communication with D is accepted over the SAS channel, which happens with
probability 2−t.) This is the optimal security bound in the TFA-KE setting since
an adversary who guesses both the user’s password and the t-bit SAS-channel
checksum can successfully authenticate as the user to the server.

In case of client corruption (and password leakage), the adversary’s proba-
bility of impersonating the user to the server is at most min(qS , qD)/2t, which
is the best possible bound when the attacker holds the user’s password. In case
of device corruption, the adversary’s advantage is at most (qC+qS)/2d, which
matches the optimal PAKE probability, namely, when a device is not available.
Finally, upon server corruption, the adversary’s probability of success in imper-
sonating the user to any uncorrupted server session is (assuming q′

C = 0 for
simplicity) at most qD/2t+d. In other words, learning server’s private informa-
tion necessarily allows the adversary to authenticate as the server to the client,
but it does not help to impersonate as the client to the server. In contrast, widely
deployed PIN-based TFA schemes that transmit passwords and PINs over a TLS
channel are subject to an offline dictionary attack in this case.

Extension: The Case of C and S Corruption. Note that when C and D are
corrupted, there is no security to be offered because the attacker has possession
of all authenticator factors, the password and the auxiliary device. However, in
the case that both C and S are corrupted one can hope that the attacker could
not authenticate to sessions in S that the attacker does not actively control.
Indeed, the above model can be extended to include this case with a bound of
qD/2t. Our protocols as described in Figs. 3 and 4 do not achieve this bound,
but it can be easily achieved for example by the following small modification
(refer to the figures): S is initialized with a public key of D and before sending
the value zid to D (via C), S encrypts it under D’s public key.

3 Building Blocks

We recall several of the building blocks used in our TFA-KE protocol.

SAS-MA Scheme of Vaudenay [50]. The Short Authentication String Mes-
sage Authentication (SAS-MA) scheme allows the transmission of a message from
a sender to a receiver so that the receiver can check the integrity of the received
message. A SAS-MA scheme considers two communication channels. One that
allows the transmission of messages of arbitrary length and is controlled by an
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active man-in-the-middle, and another that allows sending up to t bits that can-
not be changed by the attacker (neither channel is assumed to provide secrecy).
We refer to these as the open channel and the SAS channel, respectively, and call
the parameter t the SAS channel capacity. A SAS-MA scheme is called secure
if the probability that the receiver accepts a message modified by a (compu-
tationally bounded) attacker on the open channel is no more than 2−t (plus a
negligible fraction). In Fig. 1 we show a secure SAS-MA implementation of [50]
for a sender C and a receiver D. The SAS channel is abstracted as a comparison
of two t-bit strings checksumC and checksumD computed by sender and receiver,
respectively. As shown in [50], the probability that an active man-in-the-middle
attacker between D and C succeeds in changing message MC while D and C
compute the same checksum is at most 2−t. Note that this level of security is
achieved without any keying material (secret or public) pre-shared between the
parties. Also, importantly, there is no requirement for checksums to be secret.
(In Sect. 5 we present a formal SAS-MA security definition.)

Thus, the SAS-MA protocol reduces integrity verification of a received mes-
sage MC to verifying the equality of two strings (checksums) assumed to be
transmitted “out-of-band”, namely, away from adversarial control. In our appli-
cation, the checksums will be values displayed by device D and client C whose
equality the user verifies and confirms via a physical action, e.g. a click, a QR
snapshot, or an audio read-out (see Sect. 6). In the TFA-KE application this
user-confirmation of checksum equality serves as evidence for the physical con-
trol of the terminal C and device D by the same user, and a confirmation of
user’s possession of the 2nd authentication factor implemented as device D.

Fig. 1. SAS Message Authentication (SAS-MA) [50]

SAS-SMT. One can use a SAS-MA mechanism from C to D to bootstrap a
confidential channel from D to C. The transformation is standard: To send a
message m securely from D to C (in our application m is a one-time key and
D’s PTR response, see below), C picks a CCA-secure public key encryption key
pair (sk, pk) (e.g., pair (x, gx)) for an encryption scheme (KG,Enc,Dec), sends



440 S. Jarecki et al.

pk to D, and then C and D execute the SAS-MA protocol on MC = pk. If D
accepts, it sends m encrypted under pk to C, who decrypts it using sk. The
security of SAS-MA and the public-key encryption imply that an attacker can
intercept m (or modify it to some related message) only by supplying its own key
pk′ instead of C’s key, and causing D to accept in the SAS-MA authentication
of pk′ which by SAS-MA security can happen with probability at most 2−t.
The resulting protocol has 4 messages, and the cost of a plain Diffie-Hellman
exchange if implemented using ECIES [22] encryption. We refer to this scheme
as SAS-SMT (SMT for “secure message transmission”).

aPAKE. Informally, an aPAKE (for asymmetric or augmented PAKE) is a
password protocol secure against server compromise [25,32], namely, one where
the server stores a one-way function of the user’s password so that an attacker
who breaks into the server can only learn information on the password through an
exhaustive offline dictionary attack. While the aPAKE terminology is typically
used in the context of password-only protocols that do not rely on public keys,
we extend it here (following [37]) to the standard PKI-based password-over-
TLS protocol. This enables the use of our techniques in the context of TLS, a
major benefit of our TFA schemes. Note that this standard protocol, while secure
against server compromise is not strictly an aPAKE as it allows an attacker
to learn plaintext passwords (decrypted by TLS) for users that authenticate
while the attacker is in control of the server. As shown in [37], dealing with this
property requires a tweak in the DE-PAKE protocol (C needs to authenticate
the value b sent by D in the PTR protocol described below - see also Sect. 6).

DE-PAKE. A Device-Enhanced PAKE (DE-PAKE) [37] is an extension of the
asymmetric PAKE model by an auxiliary device, which strengthens aPAKE
protocols by eliminating offline dictionary attacks upon server compromise.
We discuss DE-PAKE in more detail in Sect. 2 and recall its formal model in
AppendixA. We use DE-PAKE protocols as a main module in our general con-
struction of TFA-KE, and our practical instantiation of this construction, pro-
tocol OpTFA, uses the DE-PAKE scheme of [37] which combines an asymmetric
aPAKE with a password hardening procedure PTR described next.

Password-to-Random Scheme PTR. A PTR is a password hardening proce-
dure that allows client C to translate with the help of device D (which stores a
key k) a user’s master password pwd into independent pseudorandom passwords
(denoted rwd) for each user account. The PTR instantiation from [37] is based
on the Ford-Kaliski’s Blind Hashed Diffie-Hellman technique [31]: Let G be a
group of prime order q, let H ′ and H be hash functions which map onto, respec-
tively, elements of G and κ-bit strings, where κ is a security parameter. Define
Fk(x) = H(x, (H ′(x))k), where the key k is chosen at random in Zq. In PTR
this function is computed jointly between C and D where D inputs key k and
C inputs x = pwd as the argument, and the output, denoted rwd = Fk(pwd), is
learned by C only. The protocol is simple: C sends a = (H ′(pwd))r for r random
in Zq, D responds with b = ak, and C computes rwd = H(x, b1/r). Under the
One-More (Gap) Diffie-Hellman (OM-DH) assumption in the Random Oracle
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Model (ROM), this scheme realizes a universally composable oblivious PRF
(OPRF) [36], which in particular implies that x = pwd is hidden from all
observers and function Fk(·) remains pseudorandom on all inputs which are
not queried to D.

k, Kz

PTR (k , pwd) rwd

σ(rwd), Kz

checksumD

z = RKz(zid)
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uKEKCS KCS
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Fig. 2. Schematic representation of protocol OpTFA of Fig. 3

4 OpTFA: A Practical Secure TFA-KE Protocol

In Sect. 5 we present and prove a general design, GenTFA, of a TFA-KE protocol
based on two generic components, namely, a SAS-MA and DE-PAKE protocols.
But first, in this section, we show a practical instantiation of GenTFA using the
specific building blocks presented in Sect. 3, namely, the SAS-MA scheme from
Fig. 1 and the DE-PAKE scheme from [37] (that uses the DH-based PTR scheme
described in that section composed with any asymmetric PAKE). This concrete
instantiation serves as the basis of our implementation work (Sect. 6) and helps
explaining the rationale of our general construction. OpTFA is presented in Fig. 3.
A schematic representation is shown in Fig. 2.

Enhanced TFA via SAS. Before going into the specifics of OpTFA, we describe
a general technique for designing TFA schemes using a SAS channel. In tradi-
tional TFA schemes, a PIN is displayed to the user who copies it into a login
screen to prove access to that PIN. As discussed in the introduction, this mecha-
nism suffers of significant weaknesses mainly due to the low entropy of PINs (and
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Fig. 3. OpTFA: efficient TFA-KE protocol with optimal security bounds
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inconvenience of copying them). We suggest automating the transmission of the
PIN over a confidential channel from device D to client C. To implement such
channel, we use the SAS-SMT scheme from Sect. 3 where security boils down
to having D and C display t-bit strings (checksums) that the user checks for
equality. In this way, low-entropy PINs can be replaced with full-entropy values
(we refer to them as one-time keys (OTK)) that are immune to eavesdropping
and bound active attacks to a success probability of 2−t. These active attacks
are impractical even for t = 20 (more a denial-of-service than an impersonation
threat) and with larger t’s as illustrated in Sect. 6 they are just infeasible. Note
that this approach works with any form of generation of OTK’s, e.g., time-based
mechanisms, challenge-response between device and server, etc.

4.1 OpTFA Explained

Protocol OpTFA (Fig. 3) requires several mechanisms that are necessary to obtain
the strong security bounds of the TFA-KE model. To provide rationale for the
need of these mechanisms we show how the protocol is built bottom-up to deliver
the required security properties. We stress that while the design is involved the
resultant protocol is efficient and practical. The presentation and discussion of
security properties here is informal but the intuition can be formalized as we do
via the TFA-KE model (Sect. 2), the generic protocol GenTFA in next section
and the proof of Theorem1.

In general terms, OpTFA can be seen as a DE-PAKE protocol using the PTR
scheme from Sect. 3 and enhanced with fresh OTKs transmitted from D to C
via the above SAS-SMT mechanism. The OTK is generated by the device and
server for each session and then included in the aPAKE interaction between C
and S. We note that OpTFA treats aPAKE generically, so any such scheme can
be used. In particular, we start by illustrating how OpTFA works with the stan-
dard password-over-TLS aPAKE, and then generalize to the use of any aPAKE,
including PKI-free ones.

• OpTFA 0.0. This is standard password-over-TLS where the user’s password is
transmitted from C to S under the protection of TLS.

• OpTFA 0.1. We enhance password-over-TLS with the OTK-over-SAS mecha-
nism described above. First, C transmits the user’s password to S over TLS and
if the password verifies at S, S sends a nonce zid to C who relays it to D. On the
basis of zid (which also acts as session identifier in our analysis), D computes a
OTK z = RKz

(zid) where R is a PRF and Kz a key shared between D and S.
D transmits z to C over the SAS-SMT channel and C relays it to S over TLS.
The user is authenticated only if the received value z is the same as the one
computed by S.

This scheme offers defense in case of password leakage. With a full-entropy
OTK it ensures security against eavesdroppers on the D-C link and limits the
advantage of an active attacker to a probability of 2−t for SAS checksums of
length t. However, the scheme is open to online password attacks (as in current
commonly deployed schemes) because the attacker can try online guesses without
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having to deal with the transmission of OTK z. In addition, it offers no security
against offline dictionary attacks upon server compromise.

• OpTFA 0.2. We change OpTFA 0.1 so that the user’s password pwd is only
transmitted to S at the end of the protocol together with the OTK z (it is
important that if z does not verify as the correct OTK, that the server does
not reveal if pwd is correct or not). This change protects the protocol against
online guessing attacks and reduces the probability of the successful testing of a
candidate password to 2−(d+t) rather than 2−d in version 0.1.

• OpTFA 0.3. We add defense against offline dictionary attacks upon server com-
promise by resorting to the DE-PAKE construction of [37] and, in particular,
to the password-to-random hardening procedure PTR from Sect. 3. For this, we
now assume that the user has a master password pwd that PTR converts into
randomized passwords rwd for each user account. By registering rwd with server
S and using PTR for the conversion, DE-PAKE security ensures that offline
dictionary attacks are infeasible even if the server is compromised (case (3) in
Definition 1). Note that the PTR procedure runs between D and C following the
establishment of the SAS-SMT channel.

• OpTFA 0.4. We change the run of PTR between D and C so that the value
a computed by C as part of PTR is transmitted over the SAS-authenticated
channel from C to D. Without this authentication the strict bound of case (3) in
Definition 1 (simplified for q′

C = 0), namely, AdvTFAA ≤ qD/2d+t + ε upon server
compromise, would not be met. Indeed, when the attacker compromises server
S, it learns the key Kz used to compute the OTK z so the defense provided by
OTK is lost. So, how can we still ensure the 2t denominator in the above bound
expression? The answer is that by authenticating the PTR value a under SAS-
MA, the attacker is forced to run (expected) 2t sessions to be able to inject its
own value a over that channel. Such injection is necessary for testing a password
guess even when Kz is known. When considering a password dictionary of size
2d this ensures the denominator 2d+t in the security bound.

• OpTFA 0.5. We add the following mechanism to OpTFA: Upon initialization
of an authentication session (for a given user), C and S run an unauthenticated
(a.k.a. anonymous) key exchange uKE (e.g., a plain Diffie-Hellman protocol) to
establish a shared key KCS that they use as a MAC key applied to all subsequent
OpTFA messages. To see the need for uKE assume it is omitted. For simplicity,
consider the case where attacker A knows the user’s password. In this case, all A
needs for impersonating the user is to learn one value of z which it can attempt
by acting as a man-in-the-middle on the C-D channel. After qD such attempts,
A has probability of qD/2t to learn z which together with the user’s password
allows A to authenticate to S. In contrast, the bound required by Definition 1
in this case is the stricter min{qS , qD}/2t. This requires that for each attempt
at learning z in the C-D channel, not only A needs to try to break SAS-MA
authentication but it also needs to establish a new session with S. For this we
resort to the uKE channel. It ensures that a response z to a value zid sent by
S over a uKE session will only be accepted by S if this response comes back
on the same uKE session (i.e., authenticated with the same keys used by S to
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send the challenge zid). It means that both zid and z are exchanged with the
same party. If zid was sent to the legitimate user then the attacker, even if it
learns the corresponding z, cannot use it to authenticate back to S. We note that
uKE is also needed in the case that the attacker does not know the password.
Without it, the success probability for this case is about a factor 2d/qS higher
than acceptable by Definition 1.

Note. When all communication between C and S goes over TLS, there is no need
to establish a dedicated uKE channel; TLS serves as such.

• OpTFA 0.6. We stipulate that D never responds twice to the same zid value
(for this, D keeps a stash of recently seen zid’s; older values become useless
to the attacker once they time out at the server). Without this mechanism the
attacker gets multiple attempts at learning z for a single challenge zid. However,
this would violate bound (1) (for the case qC = q′

C = 0) min{qS , qD}/2d+t which
requires that each guess attempt at z be bound to the establishment of a new
session of the attacker with S.

• OpTFA 0.7. Finally, we generalize OpTFA so that the password protocol run as
the last stage of OpTFA (after PTR generates rwd) can be implemented with any
asymmetric aPAKE protocol, with or without assuming PKI, using the server-
specific user’s password rwd. As shown in [37], running any aPAKE protocol on
a password rwd produced by PTR results in a DE-PAKE scheme, a property
that we use in an essential way in our analysis.

We need one last mechanism for C to prove knowledge of z to S, namely, we
specify that both C and S use z as a MAC key to authenticate the messages sent
by protocol aPAKE (this is in addition to the authentication of these messages
with key KCS). Without this, an attack is possible where in case that OpTFA
fails the attacker learns if the reason for it was an aPAKE failure or a wrong z.
This allows the attacker to mount an online attack on the password without the
attacker having to learn the OTK. (When the aPAKE is password-over-TLS the
above MAC mechanism is not needed, the same authentication effect is achieved
by encrypting rwd and z under the same CCA-secure ciphertext [33].)

• OpTFA. Version 0.7 constitutes the full specification of the OpTFA protocol,
described in Fig. 3, with generic aPAKE.

Performance: The number of exponentiations in OpTFA is reported in the intro-
duction; implementation and performance information is presented in Sect. 6.

OpTFASecurity. Security of OpTFA follows from that of protocol GenTFA
because OpTFA is its instantiation. See Theorem1 in Sect. 5 and Corollary 1.

5 The Generic GenTFA Protocol

In Fig. 4 we show protocol GenTFA which is a generalization of protocol OpTFA
shown in Fig. 3 in Sect. 4. Protocol GenTFA is a compiler which converts any
secure DE-PAKE and SAS-MA schemes into a secure TFA-KE. It uses the same
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uKE and CCA-PKE tools as protocol OpTFA, but it also generalizes two other
mechanisms used in OpTFA as, resp. a generic symmetric Key Encapsulation
Mechanism (KEM) scheme and an Authenticated Channel (AC) scheme.

A Key Encapsulation Mechanism, denoted (KemE,KemD) (see e.g. [48]),
allows for encrypting a random session key given a (long-term) symmetric key
Kz, i.e., if (zid, z) ← KemE(Kz) then z ← KemD(Kz, zid). A KEM is secure if
key z corresponding to zid �∈ {zid1, ..., zidq} is pseudorandom even given the keys
zi corresponding to all zidi’s. In protocol OpTFA of Fig. 3, KEM is implemented
using PRF R: zid is a random κ-bit string and z = R(Kz, zid). We also generalize
the usage of the MAC function in OpTFA as an Authenticated Channel, defined
by a pair ACSend,ACRec, which implements bi-directional authenticated com-
munication between two parties sharing a symmetric key K [29,34]. Algorithm
ACSend takes inputs key K and message m and outputs m with authentication
tag computed with key K, while the receiver procedure, ACRec(K, ·), outputs
either a message or the rejection symbol ⊥. We assume that the AC scheme is
stateful and provides authenticity and protection against replay.

The security of GenTFA is stated in the following theorem:

Theorem 1. Assuming security of the building blocks DE-PAKE, SAS, uKE,
PKE, KEM, and AC, protocol GenTFA is a (T, ε)-secure TFA-KE scheme for ε
upper bounded by

εDEPAKE + n · (εSAS + εuKE + εPKE + εKEM + 6εAC) + n2/2κ

for n = qHbC + max(qS , qD, qC , q′
C) where qHbC denotes the number of GenTFA

protocol sessions in which the adversary is only eavesdropping, and each quantity
of the form εP is a bound on the advantage of an attacker that works in time
≈ T against the protocol building block P.

As a corollary we obtain a proof of TFA-KE security for protocol OpTFA
from Fig. 3 which uses specific secure instantiations of GenTFA components. The
corollary follows by applying the result of Vaudenay [50], which implies in partic-
ular that the SAS-MA scheme used in OpTFA is secure in ROM, and the result
of [37], which implies that the DE-PAKE used in OpTFA is secure under the
OM-DH assumption if the underlying aPAKE is a secure asymmetric PAKE.

We note that protocol OpTFA optimizes GenTFA instantiated with the DE-
PAKE of [37] by piggybacking the C-D round of communication in that protocol,
a = H ′(pwd)r and b = ak, onto resp. C’s message MC and the plaintext in D’s
ciphertext eD. The security proof extends to this round-optimized case because
SAS-MA authentication of MC and CCA-security of PKE bind DE-PAKE mes-
sages a, b to this session just as the ACSend(KCD, ·) mechanism does in (non-
optimized) protocol GenTFA.

Corollary 1. Assuming that aPAKE is a secure asymmetric PAKE, uKE is
secure Key Exchange, (KG,Enc,Dec) is a CCA-secure PKE, R is a secure PRF,
and MAC is a secure message authentication code, protocol OpTFA is a secure
TFA-KE scheme under the OM-DH assumption in ROM.
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Fig. 4. Generic TFA-KE scheme: protocol GenTFA

Security definition of SAS authentication. For the purpose of the proof
below we state the security property assumed of a SAS-MA scheme which was
informally described in Sect. 3. While [50] defines the security of SAS-MA using a
game-based formulation, here we do it via the following (universally composable)
functionality FSAS[t]: On input a message [SAS.SEND, sid , P ′,m] from an honest
party P , functionality FSAS[t] sends [SAS.SEND, sid , P, P ′,m] to A, and then, if
A’s response is [SAS.CONNECT, sid ], then FSAS[t] sends [SAS.SEND, sid , P,m] to
P ′, if A’s response is [SAS.ABORT, sid ], then FSAS[t] sends [SAS.SEND, sid , P,⊥]
to P ′, and if A’s response is [SAS.ATTACK, sid ,m′] then FSAS[t] throws a coin ρ
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which comes out 1 with probability 2−t and 0 with probability 1− 2−t, and if
ρ = 1 then FSAS[t] sends succ to A and [SAS.SEND, sid , P,m′] to P ′, and if ρ = 0
then FSAS[t] sends fail to A and [SAS.SEND, sid , P,⊥] to P ′.

In our main instantiation of the generic protocol GenTFA of Fig. 4, i.e. in
protocol OpTFA of Fig. 3, we instantiate SAS-MA with the scheme of [50], but
even though the original security argument given for it in [50] used the game-
based security notion, it is straightforward to adopt this argument to see that
this scheme securely realizes the above (universally composable) functionality.

Proof of Theorem 1. Let A be an adversary limited by time T playing the
TFA-KE security game, which we will denote G0, instantiated with the TFA-KE
scheme GenTFA. Let the security advantage defined in Definition 1 for adversary
A satisfy AdvTFAA = ε. Let ΠS

i , ΠC
j , ΠD

l refer to respectively the i-th, j-th, and
l-th instances of S, C, and D entities which A starts up. Let t be the SAS channel
capacity, κ the security parameter, qS , qD, qC , q′

C the limits on the numbers of
rogue sessions of S, D, C when communicating with S, and C when communicat-
ing with D, and let qHbC be the number of GenTFA protocol sessions in which
A plays only a passive eavesdropper role except that we allow A to abort any of
these protocol executions at any step. Let nS = qS + qHbC , nD = qD + qHbC ,
nC = qC + q′

C + qHbC , and note that these are the ranges of indexes i, j, l for
instances ΠS

i , ΠC
j , and ΠD

l . We will use [n] to denote range {1, ..., n}.
The security proof goes by cases depending on the type of corrupt queries

A makes. In all cases the proof starts from the security-experiment game G0

and proceeds via a series of game changes, G1, G2, etc., until a modified game Gi

allows us to reduce an attack on the DE-PAKE with the same corruption pattern
(except in the case of corrupt client C) to the attack on Gi. In the case of the
corrupt client the argument is different because it does not rely on the underlying
DE-PAKE (note that DE-PAKE does not provide any security properties in the
case of client corruption). In some game changes we will consider a modified
adversary algorithm, for example an algorithm constructed from the original
adversary A interacting with a simulator of some higher-level procedure, e.g. the
SAS−MA simulator. Wlog, we use Ai for an adversary algorithm in game Gi.

We will use pi to denote the probability that Ai interacting with game Gi

outputs b′ s.t. b′ = b where b is the bit chosen by the game on the test session.
Recall that when A makes the test session query test(P, i), for P ∈ {S,C}, then,
assuming that instance ΠP

i produced a session key sk, game G0 outputs that
session key if b = 1 or produces a random string of equal size if b = 0 (and if
session ΠP

i did not produce the key then G0 outputs ⊥ regardless of bit b). Note
that by assumption AdvTFAA = ε we have that p0 = 1/2+1/2 ·AdvTFAA = 1/2+ε/2.
Case 1: No party is compromised. This is the case when A makes no corrupt
queries, i.e. it’s the default “network adversary” case. For lack of space we
describe below only the game changes in the proof, and we state what we claim
about the effects of that game change and what assumption we use. The full
details of the proof are included in the full version of the paper [38].

GameG1 : Let Z be a random function which maps onto κ-bit strings. If (zidi, zi)
dentes the KEM (ciphertext,key) pair generated by ΠS

i then in G1 we set
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zi = Z(zidi) instead of using KemE, and we abort if there is ever a collision
in zi values. Security of KEM implies that p1 ≤ p0 + εKEM(nS) + n2

S/2κ.

GameG2 : Here we replace the SAS-MA procedure with the simulator SIMSAS

implied by the UC security of the SAS-MA scheme of [50]. In other words, when-
ever ΠC

j and ΠD
l execute the SAS−MA sub-protocol, we replace this execution

with a simulator SIMSAS interacting with A and the ideal SAS−MA functionality
FSAS[t]. For example, ΠC

j , instead of sending MC = (pk, zid) to A1 and starting a
SAS−MA instance to authenticate MC to D, will send [SAS.SEND, sid ,ΠD

l ,MC]
to FSAS[t], which triggers SIMSAS to start simulating to A the SAS−MA protocol
on input MC between ΠC

j and ΠD
l . The rules of FSAS[t] imply that A can make

this connection either succeed, abort, or, if it attacks it then ΠD
l will abort with

probability 1 − 2−t, but with probability 2−t it will accept A’s message MC
∗

instead of MC. Security of SAS−MA implies that p2 ≤ p1 + min(nC , nD) · εSAS.

GameG3 : Here we re-name entities involved in game G2. Note that adversary
A2 interacts with G2 which internally runs algorithms SIMSAS and FSAS[t], and
that SIMSAS interacts only with FSAS[t] on one end and A2 on the other. We can
therefore draw the boundaries between the adversarial algorithm and the secu-
rity game slightly differently, by considering an adversary A3 which executes
the steps of A2 and SIMSAS, and a security game G3 which executes the rest
of game G2, including the operation of functionality FSAS[t]. In other words, G3

interacts with A3 using the FSAS[t] interface to SIMSAS, i.e. G3 sends to A3 mes-
sages of the type [SAS.SEND, sid ,ΠC

j ,ΠD
l ,MC], and A3’s response must be one

of [SAS.CONNECT, sid ], [SAS.ABORT, sid ], and [SAS.ATTACK, sid ,MC
∗]. Since

we are only re-drawing the boundaries between the adversarial algorithm and
the security game, we have that p3 = p2.

GameG4 : Here we change game G3 s.t. if A sends [SAS.CONNECT, sid ] to let
the SAS-MA instance go through between ΠC

j and ΠD
l with MC containing

ΠC
j ’s key pk, then we replace the ciphertext eD subsequently sent by ΠD

l by
encrypting a constant string instead of Enc(pk, (z,KCD)), and if A passes this
eD to ΠC

j then it decrypts it as (z,KCD) generated by ΠD
l . In other words, we

replace the encryption under SAS-authenticated key pk by a “magic” delivery
of the encrypted plaintext. The CCA security of PKE implies that p4 ≤ p3 +
min(nC , nD) · εPKE.

GameG5 : Here we abort if, assuming that key pk and ciphertext eD were
exchanged between ΠC

j and ΠD
l correctly, any party accepts wrong messages

in the subsequent DE-PAKE execution authenticated by KCD created by ΠD
l .

The authentic channel security implies that p5 ≤ p4 + min(nC , nD) · εAC.

GameG6 : We perform some necessary cleaning-up, and abort if the SAS-MA
instance between ΠC

j and ΠD
l ) sent MC correctly, but adversary did not deliver

ΠD
l ’s response eD back to ΠC

j and yet ΠD
l did not abort in subsequent DE-PAKE.

Since this way ΠC
j has no information about key KCD we get p6 ≤ p5 + qD · εAC.
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GameG7 : We replace the keys created by uKE for every ΠS
i -ΠC

j session in step
I.1 on which A was only an eavesdropper, with random keys. Security of uKE
implies that p7 ≤ p6 + min(nC , nS) · εuKE.

At this point the game has the following properties: If A is passive on the
C-S key exchange in step I then A is forced to be passive on the C-S link in the
DE-PAKE in step III. Also, if A does not attack the SAS−MA and delivers D’s
response to C then A is forced to be passive on the C-D link in the DE-PAKE
in step III (and if A does not deliver D’s response to C then this D instance will
abort too). The remaining cases are either (1) active attacks on the key exchange
in step I or (2) when A attacks the SAS−MA sub-protocol and gets D to accept
MC∗ �= MC or (3) A sends e∗

D �= eD to C. In handling these cases the crucial issue
is what A does with the zid created by S. Consider any S instance ΠS

i in which
the adversary interferes with the key exchange protocol in step I.1. Without loss
of generality assume that the adversary learns key KCS output by ΠS

i in this
step. Note that D keeps a variable zidSet in which it stores all zid values it ever
receives, and that D aborts if it sees any zid more than once. Therefore each
game execution defines a 1-1 function L : [nS ] → [nD]∪{⊥} s.t. if L(i) �=⊥ then
L(i) is the unique index in [nD] s.t. ΠD

L(i) receives MC = (pk, zidi) in step II.1 for
some pk, and L(i) =⊥ if and only if no D session receives zidi. If L(i) �=⊥ then
we consider two cases: First, if MC = (pk, zidi) which contains zidi originates
with some session ΠC

j , and second if MC = (pk, zidi) is created by the adversary.

GameG9 : Let ΠS
i and ΠC

j be rogue sessions s.t. A sends zidi to ΠC
j in step I.2,

but then stop ΠC
j from getting the corresponding zi by either attacking SAS-

MA or misdelivering D’s response eD. In that case neither ΠC
j nor A have any

information about zi, and therefore ΠS
i should reject. Namely, if in G9 we set

ΠS
i ’s output to ⊥ in such cases then p9 ≤ p8 + qS · εAC.

GameG10 : Let ΠS
i and ΠC

j be rogue sessions and A send zidi to ΠC
j as above,

but now consider the case that A lets ΠC
j learn zi but A does not learn zi itself,

i.e. A lets SAS-MA and eD go through. In this case we will abort if in DE-
PAKE communication in Step III between ΠS

i and ΠC
j either party accepts a

message not sent by the other party. Since A has no information about zi the
authenticated channel security implies that p10 ≤ p9 + min(qC , qS) · εAC.

Note that at this point if A interferes with the KE in step I.1 with ses-
sion ΠS

i , sends zidi to some ΠC
j and does not send it to some ΠD

l by sending
[SAS.ATTACK, sid , (pk∗, zidi)] for any l then A is forced to be a passive eaves-
dropper on the DE-PAKE protocol in step III. Note that this holds when L(i) = l
s.t. the game issues [SAS.SEND, sid ,ΠC

j ,ΠD
l , (pk, zidi)] for some pk, i.e. if some

ΠD
l receives value zidi, it receives it as part of a message MC sent by some ΠC

j .

GameG11 : Finally consider the case when A itself sends zidi to D, i.e. when
L(i) = l s.t. A sends [SAS.ATTACK, sid ,MC

∗ = (pk∗, zidi)] in response to
[SAS.SEND, sid ,ΠC

j ,ΠD
l ,MC], but the FSAS[t] coin-toss comes out ρl = 0, i.e. A

fails in this SAS-MA attack. In that case we can let ΠS
i abort in step III because

if ρl = 0 then A has no information about zi = Z(zidi), hence p11 ≤ p10+qS ·εAC.
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After these game changes, we finally make a reduction from an attack on
underlying DE-PAKE to an attack on TFA-KE. Namely, we construct A∗ which
achieves advantage AdvDEPAKE

A∗ = 2 · (p11 − 1/2) against DE-PAKE, and makes
q∗
S , q∗

D, qC , qC rogue queries respectively to S, D, to C on its connection to S, and
to C on its connection with D, where q∗

S = q∗
D = q∗ where q∗ is a random variable

equal to the sum of q = min(qS , qD) coin tosses which come out 1 with probability
2−t and 0 with probability 1 − 2−t. Recall that AdvTFAA = 2 · (p0 − 1/2) and that
by the game changes above we have that |p11 − p0| is a negligible quantity, and
hence AdvDEPAKE

A∗ is negligibly close to AdvTFAA .
The reduction goes through because after the above game-changes A can

either essentially let a DE-PAKE instance go through undisturbed, or it can
attempt to actively attack the underlying DE-PAKE instance either via a rogue
C session or via rogue sessions with device S and server D. However, each rogue
D session is bound to a unique rogue S session, because of the uKE and (zid, z)
mechanism, and for each such D,S session pair, the probability that an active
attack is not aborted is only 2−t. This implies that the (qS , qD, qC) parameters
characterizing the TFA-KE attacker A scale-down to (qS/2t, qD/2t, qC) parame-
ters for the resulting DE-PAKE attacker A∗, which leads to the claimed security
bounds by the security of DE-PAKE. The details of construction for A∗ and the
above argument are included in the full version of this paper [38].
Case 2: Party corruptions. In the full version of the paper [38] we include the
cases of client corruption and of device and/or server corruption, showing that
our scheme achieves all the bounds from Definition 1. Here we just comment on
how these bounds are derived. For the case of device corruption, the value z is
learned by the attacker hence it is equivalent to setting t = 0. Also, rogue queries
to D are free for the attacker hence qD is virtually unbounded (can think of it as
“infinity”). Setting these values in the bound of Case 1, one obtains the claimed
bound (qC + qS)/2d for the case of device corruption. Similarly, in case of server
corruption one sets qS to “infinity”. In addition, and in spite of the attacker
learning z in this case, one obtains a bound involving 2−t thanks to the fact that
we run the PTR protocol over the SAS channel, hence reducing the probability
of the attacker successfully testing a candidate password pwd′ by 2−t. In the
case of client compromise where the attacker learns the user’s password pwd, we
set d = 0 (a dictionary of size 1) and set qC = q′

C = 0 since C is corrupted and
the attacker cannot choose a test session at C. Finally, when both D and S (but
not C) are corrupted one gets the same security as plain DE-PAKE, namely,
requiring a full offline dictionary attack to recover pwd.

6 System Development and Testing

Here we report on an experimental prototype of protocol OpTFA from Fig. 3
on page 12 and present novel designs for the SAS channel implementation.
We experiment with OpTFA using two different instantiations of the password
protocol between C and S. One is PKI-based that runs OpTFA over a server-
authenticated TLS connection; in particular, it uses this connection in lieu of the
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Table 1. Average execution time of OpTFA and its components (10,000 iterations)

Protocol Purpose Parties Average Time in
ms (std. dev.)

SAS (excluding
user’s checksum
validation)

Authenticate
C-D Channel

C and D 128.59 (0.48)

PTR Reconstruct rwd C and D 160.46 (3.71)

PKI-free PAKE PAKE C and S 182.27 (3.67)

PKI PAKE
(TLS)

C-S link
encryption

C and S 32.54 (1.38)

Overall in
PKI-free model

C, D and S 410.77 ms

Overall in PKI
model

C, D and S 263.27 ms

uKE in step I and implements step III by simply transmitting the concatenation
of password rwd and the value z under the TLS authenticated encryption. The
second protocol we experimented with is a PKI-free asymmetric PAKE borrowed
from [27,36]. Roughly, it runs the same PTR protocol as described in Sect. 3 but
this time between C and S. C’s input is rwd and the result Fk(rwd) serves as a
user’s private key for the execution of an authenticated key-exchange between C
and S. We implement the latter with HMQV [41] (as an optimization, the DH
exchange used to implement uKE in step I of OpTFA is “reused” in HMQV).

In Table 1 we provide execution times for the various protocol components,
including times for the TLS-based protocol and the PKI-free one with some
elements borrowed from the implementation work from [37]. We build on the
following platform. The webserver S is a Virtual Machine running Debian 8.0
with 2 Intel Xeon 3.20 GHz and 3.87 GB of memory. Client terminal C is a Mac-
Book Air with 1.3 GHz Intel Core i5 and 4 GB of memory. Device D is a Samsung
Galaxy S5 smartphone running Android 6.0.1. C and D are connected to the same
WiFi network with the speed of 100 Mbps and S has Internet connection speed
of 1 Gbps. The server side code is implemented in HTML5, PHP and JavaScipt.
On the client terminal, the protocol is implemented in JavaScript as an extension
for the Chrome browser and the smartphone app in Java for Android phones.

All DH-based operations (PTR, key exchange and SAS-SMT encryption) use
elliptic curve NIST P-256, and hashing and PRF use HMAC-SHA256. Hashing
into the curve is implemented with simple iterated hashing till an abscissa x on
the curve is found (it will be replaced with a secure mechanism such as [26]).

Communication between C and S uses a regular internet connection between
the browser C and web server S. Communication between C and D (except for
checksum comparison) goes over the internet using a bidirectional Google Cloud
Messaging (GCM) [5], in which D acts as the GCM server and C acts as the
GCM client. GCM involves a registration phase during which GCM client (here
C) registers with the GCM generated client ID to the GCM server (here D), to
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assure that D only responds to the registered clients. In case that the PAKE
protocol in OpTFA is implemented with password-over-TLS, [37] specifies the
need for D to authenticate the PTR value b sent to C (see Sect. 3). In this case,
during the GCM registration we install at C a signature public key of D.

6.1 Checksum Validation Design

An essential component in our approach and solutions (in particular in protocol
OpTFA) is the use of a SAS channel implemented via the user-assisted equal-
ity verification of checksums displayed by both C and D (denoted hereafter as
checksumC and checksumD, resp.). Here we discuss different implementations of
such user-assisted verification which we have designed and experimented with.

Manual Checksum Validation. In the simplest approach, the user compares
the checksums displayed on D and C and taps the Confirm button on D in
case the two match [49]. Although, this type of code comparison has recently
been deployed in TFA systems, e.g., [8], it carries the danger of neglectful users
pressing the confirm button without comparing the checksum strings. Another
common solution for checksum validation is “Copy-Confirm” [49] where the user
types the checksum displayed on C into D, and only if this matches D’s checksum
does D proceeds with the protocol. We implemented this scheme using a 6 digit
number. We stress that in spite of the similarity between this mechanism and
PIN copying in traditional TFA schemes, there is an essential security difference:
Stealing the PIN in traditional schemes suffices to authenticate instead of the
user (for an attacker that holds the user’s password) while stealing the checksum
value entered by the user in OpTFA is worthless to the attacker (the checksum
is a validation code, not the OTK value needed for authentication).

The above methods using human visual examination and/or copying limit the
SAS channel capacity (typically to 4–6 digits) and may degrade usability [46].
As an alternative we consider the following designs (however one may fallback
to the manual schemes when the more secure schemes below cannot be used,
e.g., missing camera or noisy environments).

QR Code Checksum Validation. In this checksum validation model, we
encode the full, 256-bit checksum computed in protocol OpTFA into a hexstring
and show it as a 230×230 pixel QR Code on the web-page. We used ZXing library
to encode the QR code and display it on the web page and read and decode it
D. To send the checksum to D, the user opens the app on D and captures the
QR code. D decodes the QR code and compares checksums, and proceeds with
the protocol if the match happens. In this setting, the user does not need to
enter the checksum but only needs to hold her phone and capture a picture
of the browser’s screen. With the larger checksum (t = 256) active attacks on
SAS-SMT turn infeasible and the expressions 2−t in Definition 1) negligible.

Voice-based Checksum Validation. We implement a voice-based checksum
validation approach that assumes a microphone-equipped device (typically a
smartphone) where the user speaks a numerical checksum displayed by the client
into the device. The device D receives this audio, recognizes and transcribes it
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using a speech recognition tool, and then compares the result with the checksum
computed by D itself. The client side uses a Chrome extension as in the manual
checksum validation case while on the device we developed a transcriber applica-
tion using Android.Speech API. The user clicks on a “Speak” button added to the
app and speaks out loud the displayed number (6-digit in our implementation).
The transcriber application in D recognizes the speech and convert it to text
that is then compared to D’s checksum. To further improve the usability of this
approach one can incorporate a text-to-speech tool that would speak the check-
sum automatically (i.e., replacing the user). The transcription approach would
perhaps be easy for the users to employ compared to the QR-based approach,
but would only be suitable if the user is in an environment that is non-noisy
and allows her to speak out-loud. We note that the QR-code and audio-based
approaches do not require a browser plugin or add-on and can be deployed on
any browser with HTML5 support.

Performance Evaluation. As preliminary information, we report on 30 check-
sum validation iterations performed by one experimenter. The time taken by
manual checksum validation was 8.50 s on average (standard deviation 2.84 s).
The time taken by QR-Coded validation was 4.87 s on average for capturing
the code (standard deviation 1.32s) and 0.02 s on average for decoding the code
(standard deviation 0.00s). The time taken by audio-based validation was 4.08 s
on average for speaking the checksum (standard deviation 0.34 s) and 1.18 s on
average for transcribing the spoken checksum (standard deviation 0.42 s). The
average time for these tasks may vary between different users. The time taken
by the device to perform the checksum comparison is negligible. Our preliminary
testing of these two channels shows virtually-0 error rate.

7 Discussion of Related Work

Device-enhanced password-authentication with security against offline
dictionary attacks (ODA). There are several proposals in cryptographic lit-
erature for password authentication schemes that utilize an auxiliary computing
component to protect against ODA in case of server compromise. This was a
context of the Password Hardening proposal of Ford-Kaliski [31], which was
generalized as Hidden Credential Retrieval by Boyen [27], and then formalized
as (Cloud) Single Password Authentication (SPA) by Acar et al. [23] and as a
Device-Enhanced PAKE (DE-PAKE) by Jarecki et al. [37]. These schemes are
functionally similar to a TFA scheme if the role of the auxiliary component is
played by the user’s device D, but they are insecure in case of password leakage
e.g. via client compromise.3 The threat of an ODA attack on compromise of an

3 We note that [23] also show a Mobile Device SPA, which provides client-compromise
resistance, but it requires the user to type the password onto the device D, and to
copy a high-entropy key from D to C, thus increasing manually transmitted data
even in comparison to traditional TFAs. By contrast, OpTFA dispenses entirely with
manual transmission of information to and from D.



Two-Factor Authentication with End-to-End Password Security 455

authentication server also motivated the notion of Threshold Password Authenti-
cated Key Exchange (T-PAKE) [44], i.e. a PAKE in which the password-holding
server is replaced by n servers so that a corruption of up to t < n of them leaks
no information about the password. In addition to general T-PAKE’s, several
solutions were also given for the specific case of n= 2 servers tolerating t = 1 cor-
ruption, known as 2-PAKE [28,40], and every 2-PAKE, with the user’s device D
playing the role of the second server, is a password authentication scheme that
protects against ODA in case of server compromise. However, as in the case of
[23,27,31,37], if a password is leaked then 2-PAKE offers no security against an
active attacker who engages with a single 2-PAKE session.

TFA with ODA security. Shirvanian et al. [47] proposed a TFA scheme which
extends the security of traditional PIN-based TFAs against ODA in case of server
compromise. However, OpTFA offers several advantages compared to [47]: First,
[47] relies on PKI (the client sends the password and the one-time key, OTK, to
the PKI-authenticated server) while OpTFA has both a PKI-model and a PKI-
free instantiation. Second, [47] assumes full security of the t-bit D-C channel
for OTK transmission while we reduce this assumption to a t-bit authenticated
channel between C and D. Consequently, we improve user experience by replacing
the read-and-copy action with simpler and easier compare-and-confirm. On the
other hand, [47] can use only the t-bit secure D-C link while OpTFA requires
transmission of full-entropy values between D and C.

TFA with the 2nd factor as a local cryptographic component. Some
Two-Factor Authentication schemes consider a scenario where the 2nd factor is
a device D capable of storing cryptographic keys and performing cryptographic
algorithms, but unlike in our model, D is connected directly to client C, i.e. it
effectively communicates with C over secure links. (However, security must hold
assuming the adversary can stage a lunch-time attack on device D, so D cannot
simply hand off its private keys to C.) The primary example is a USB stick, like
YubiKey [13], implementing e.g. the FIDO U2F authentication protocol [2,42].
A generalized version of this problem, including biometric authentication, was
formalized by Pointcheval and Zimmer as Multi-Factor Authentication [45], but
the difference between that model and our TFA-KE notion is that we consider
device D which has no pre-set secure channel with client C. Moreover, to the
best of our knowledge, all existing MFA/TFA schemes even in the secure-channel
D-C model are still insecure against ODA on server compromise, except for the
aforementioned TFA of Shirvanian et al. [47].

Alternatives to PIN-based TFA with remote auxiliary device. Many
TFA schemes improve on PIN-based TFAs by either reducing user involvement,
by not requiring the user to copy a PIN from D to C, or by improving on its online
security, but none of them protect against ODA in case of server compromise,
and their usability and online security properties also have downsides.

PhoneAuth [30] and Authy [11] replace PINs with S-to-D challenge-response
communication channeled by C, but they require a pre-paired Bluetooth con-
nection to secure the C-D channel. A full-bandwidth secure C-D channel reduces
the three-party TFA notion to a two-party setting, where device D is a local
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component of client C, but requiring an establishment of such secure connec-
tion between a browser C and a cell phone D makes a TFA scheme harder to
use. TFA schemes like SlickLogin (acquired by Google) [3], Sound-Login [9], and
Sound-Proof [39] in essence attempt to implement such secure C-to-D channel
using physical security assumptions on physical media e.g. near-ultrasounds [3],
audible sounds [9], or ambient sounds detecting proximity of D to C [39], but
they are subject to eavesdropping attacks and co-located attackers.

Several TFA proposals, including Google Prompt [8] and Duo [1], follow
a one-click approach to minimize user’s involvement if D is a data-connected
device like a smartphone. In [1,8] S communicates directly over data-network to
D, which prompts the user to approve (or deny) an authentication session, where
the approve action prompts D to respond in an entity authentication protocol
with S, e.g. following the U2F standard [2]. This takes even less user’s involve-
ment than the compare-and-confirm action of our TFA-KE, but it does not
establish a strong binding between the C-S login session and the D-S interaction.
E.g., if the adversary knows the user’s password, and hence the TFA security
depends entirely on D-S interaction, a man-in-the-middle adversary who detects
C’s attempt to establish a session with S, and succeeds in establishing a session
with S before C does, will authenticate as that user to S because the honest user’s
approval on D’s prompt will result in S authenticating the adversarial session.

A PAKE and DE-PAKE Security Models

We recall the Device-Enhanced PAKE (DE-PAKE) security model of [37], which
forms a basis of our TFA model, and which extends the the Password Authen-
tication Key Exchange (PAKE) model [24] to the case where the user controls
an auxiliary device which constitutes the user’s second authentication token in
addition to the password. We refer to the full version [38] for a more detailed
and modular presentation of DE-PAKE as an extension of the PAKE model.

Protocol participants. There are three types of protocol participants in DE-
PAKE, client C, server S, and device D. We assume that client C is controlled by
a user U. The role of D can be played by any data-connected entity, including
a hand-held device owned by user U or an auxiliary web service which has an
account for U. (The definition in [37] identifies C with U, but in the TFA context
U and C are separate entities, and U is assumed to operate both client C and
device D.) We assume that C interacts with a unique server S and device D,
but server S interacts with multiple users. For notational convenience we take a
simplifying assumption that in a DE-PAKE protocol both D and S interact only
with client C, and not with each other directly.

Protocol execution. A DE-PAKE protocol has two phases: initialization and
key exchange. In the initialization phase user U chooses a random password
pwd from a given dictionary Dict and interacts with its associated server S and
device D. Initialization produces state σS(U) for server S, which S stores in an
account associated with user U, and state σD for device D, while client C has
no permanent storage except for public parameters. Initialization is assumed to
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be executed securely, e.g., over secure channels. In the key exchange phase, user
types her password pwd into the client C, and the three parties, C on input pwd, D
on input σD, and S on input σS(U), interact over insecure (adversary-controlled)
channels. Parties C and S terminate by outputing a session key or a rejection
symbol, while D has no local output. All parties may execute the protocol mul-
tiple times in a concurrent fashion. Protocol execution by any party defines a
protocol instance, also referred to as a protocol session, denoted respectively
ΠC

i , ΠD
i , or ΠS

i , where integer pointer i serves to differentiates between multiple
protocol instances executed by a given party. Each protocol session by C and S
is associated with a peer identity pid, a session identifier sid which we equate
with the transcript of exchanges with its peer observed by this instance, and
a session key sk. The output of C or S protocol instance consists of the above
three variables, which can be set to ⊥ if the party aborts the session (e.g., when
authentication fails, a misformed message is received, etc.). When a session ΠC

i

or ΠS
i outputs sk �=⊥ we say that it accepts.

Security. To define security we consider a probabilistic attacker A which sched-
ules all actions in the protocol and controls all communication channels with
full ability to transport, modify, inject, delay or drop messages. In addition,
the attacker knows (or even chooses) the dictionaries used by users. The model
defines the following queries or activations through which the adversary interacts
with, and learns information from, the protocol’s participants.
send(P, i, P ′,M): Delivers message M to instance ΠP

i purportedly coming from
P ′. In response to a send query the instance takes the actions specified by the
protocol and outputs a message given to A. When a session accepts, a message
indicating acceptance is given to A. A send message with a new value i (possibly
with null M) creates a new instance at P with pid P ′ (if P �= D).
reveal(P, i): If instance ΠP

i for P ∈ {C,S} has accepted, outputs its session key
sk; otherwise outputs ⊥.
corrupt(P ): Outputs all data held by party P ∈ {D,S}. The state includes σD if
P = D and σS(U) if P = S, but it also includes all temporary session information.
Adversary A gains full control of P , and we say that P is corrupted.
compromise(S,U): Outputs state σS(U) of S. We say that S is U-compromised.
test(P, i): If instance ΠP

i has accepted, for P ∈ {C,S}, this query causes ΠP
i to

flip a random bit b. If b = 1 the instance’s session key sk is output and if b = 0
a string drawn uniformly from the space of session keys is output. A test query
may be asked at any time during the execution of the protocol, but may only be
asked once. We will refer to the party P against which a test query was issued
and to its peer as the target parties.

The following notion taken from [35] is used in the security definition below
to ensure that legitimate messages exchanged between honest parties do not help
the attacker in online password guessing attempts (only adversarially-generated
messages count towards such online attacks). It has similar motivation as the
execute query in [24], but the latter fails to capture the ability of the attacker to
delay and interleave messages from different sessions.
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Rogue send queries: We say that a send(P, i, P ′,M) query is rogue if it was not
generated and/or delivered according to the specification of the protocol, i.e.
message M has been changed or injected by the attacker, or the delivery order
differs from what is stipulated by the protocol (delaying message delivery or
interleaving messages from different sessions is not considered a rogue operation
as long as internal session ordering is preserved). We also consider as rogue any
send(P, i, P ′,M) query where P is uncorrupted and P ′ is corrupted. We call
messages delivered through rogue send queries rogue activations by A, and we
call session which receives rogue mesages rogue session. We denote the number
of rogue sessions of D as qD, of S as qS , the number of rogue sessions of C where
rogue send queries come with the server as the sender as qC , and those where
rogue send queries come with the device as the sender as q′

C .

Matching sessions. Session instances ΠP
i and ΠP ′

j for {P, P ′} = {C,S} are said
to be matching if both have the same session identifier sid (i.e., their transcripts
match), the first has pid = P ′, the second has pid = P , and both have accepted.

Fresh sessions. Session ΠC
i with pid = S is called fresh if none of the queries

corrupt(C), corrupt(S), compromise(S,U), reveal(C, i) or reveal(S, i′) were issued,
where ΠS

i′ is an instance whose session matches ΠC
i . Session ΠS

i with pid = C
is called fresh if none of the queries corrupt(C), reveal(S, i) or reveal(C, i′) were
issued, where ΠC

i′ is an instance whose session matches ΠS
i . Note that ΠS

i can
be fresh even after if query compromise(S,U) or corrupt(S) are issued, as long as
adversary has no access to local information of session ΠS

i .

Correctness. If the adversary forwards all protocol messages then matching ses-
sions between uncorrupted peers output the same session key.

Let DEPAKE be a DE-PAKE protocol and A be an attacker with the above
capabilities running against DEPAKE. Assume that A issues a single test query
against some C or S session and ends its run by outputing bit b′. We say that A
wins if b′ = b where b is the bit chosen by the test session. We define the advantage
of A against DEPAKE as AdvDEPAKE

A = 2 · Pr [A wins against DEPAKE] − 1.

Definition 2. A DE-PAKE protocol is called (qS , qC , q′
C , qD, T, ε)-secure if it is

correct, and for any password dictionary Dict of size 2d and any attacker that
runs in time T , the following properties hold:

1. If S and D are uncorrupted, the following bound holds:

AdvDEPAKE
A ≤ min{qC + qS , q′

C + qD}
2d

+ ε. (1)

2. If D is corrupted then AdvDEPAKE
A ≤ (qC + qS)/2d + ε.

3. If S is corrupted then AdvDEPAKE
A ≤ (q′

C + qD)/2d + ε.
4. When both D and S are corrupted, expression (1) holds but qD and qS are

replaced by the number of offline operations performed based on D’s and S’s
state, respectively.
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Strong KCI Resistance: Discussion. DE-PAKE is intended to provide
stronger notion of security in case of server compromise than PAKE. In PAKE
the adversary can authenticate to S in case of U-compromise through an offline
dictionary attack, but in DE-PAKE this is prohibited. To formalize this require-
ment we follow the treatment of KCI resistance from [41] and we strengthen the
attacker capabilities through a more liberal notion of fresh sessions at a server S.
This is why all sessions considered fresh in the PAKE model are also considered
fresh in the DE-PAKE model, but in addition, in the DE-PAKE model a ses-
sion ΠS

i at server S with peer U is considered fresh even if queries corrupt(S) or
compromise(S,U) were issued as long as all other requirements for freshness are
satisfied and the attacker A does not have access to the temporary state informa-
tion created by session ΠS

i . This relaxation of the notion of freshness captures
the case where the attacker A might have corrupted S and gained access to S’s
secrets (including long-term ones), yet A is not actively controlling S during the
generation of session ΠS

i . In this case we would still want to prevent A from
authenticating as U to S on that session. Definition 2 (item 2) ensures that this
is the case for DE-PAKE secure protocols even when unbounded offline attacks
against S are allowed.
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Abstract. The Bitcoin backbone protocol (Eurocrypt 2015) extracts
basic properties of Bitcoin’s underlying blockchain data structure, such
as “common prefix” and “chain quality,” and shows how fundamental
applications including consensus and a robust public transaction ledger
can be built on top of them. The underlying assumptions are “proofs
of work” (POWs), adversarial hashing power strictly less than 1/2 and
no adversarial pre-computation—or, alternatively, the existence of an
unpredictable “genesis” block.

In this paper we first show how to remove the latter assumption,
presenting a “bootstrapped” Bitcoin-like blockchain protocol relying on
POWs that builds genesis blocks “from scratch” in the presence of adver-
sarial pre-computation. Importantly, the round complexity of the genesis
block generation process is independent of the number of participants.

Next, we consider applications of our construction, including a PKI
generation protocol and a consensus protocol without trusted setup
assuming an honest majority (in terms of computational power). Pre-
vious results in the same setting (unauthenticated parties, no trusted
setup, POWs) required a round complexity linear in the number of
participants.

1 Introduction

As the first decentralized cryptocurrency, Bitcoin [33] has ignited much excit-
ment, not only for its novel realization of a central bank-free financial instrument,
but also as an alternative approach to classical distributed computing problems,
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such as reaching agreement distributedly in the presence of misbehaving par-
ties. Formally capturing such reach has been the intent of several recent works,
notably [21], where the core of the Bitcoin protocol, called the Bitcoin backbone,
is extracted and analyzed. The analysis includes the formulation of fundamental
properties of its underlying blockchain data structure, which parties (“miners”)
maintain and try to extend by generating “proofs of work” (POW, aka “cryp-
tographic puzzle” [3,16,24,37])1, called common prefix and chain quality. It is
then shown in [21] how applications such as consensus (aka Byzantine agree-
ment) [31,36] and a robust public transaction ledger (i.e., Bitcoin) can be built
“on top” of such properties, assuming that the hashing power of an adversary
controlling a fraction of the parties is strictly less than 1/2.

Importantly, those properties hold assuming that all parties—honest and
adversarial—“wake up” and start computing at the same time, or, alternatively,
that they compute on a common random string only made available at the
exact time when the protocol execution is to begin (see further discussion under
related work below). Indeed, the coinbase parameter in Bitcoin’s “genesis” block,
hardcoded into the software, contains text from The Times 03/Jan/2009 issue [5],
arguably unpredictable.

While satisfactory in some cases, such a trusted setup/behavioral assumption
might be unrealistic in other POW-based systems where details may have been
released a lot earlier than the actual time when the system starts to run. A
case in point is Ethereum, which was discussed for over a year before the system
officially kicked off. That’s from a practical point of view. At a foundational level,
one would in addition like to understand what kind of cryptographic primitives
can be realized without any trusted setup assumption and based on POWs, and
whether that is in particular the case for the Bitcoin backbone functionality and
its enabling properties mentioned above.

The former question was recently considered by Andrychowicz and Dziem-
bowski [1], who, building on previous suggestions by Aspnes et al. [2] of using
POWs as an identity-assignment tool and constructions by Fitzi et al. [12,19]
showing how to morph “graded” consistency into global consistency, showed how
to create a consistent PKI using POWs and no other trusted setup, which can
then be used to run secure computation protocols (e.g., [23,38]) and realize any
cryptographic functionality assuming an honest majority among parties. While
this in principle addresses the foundational concerns, it leaves open the questions
of doing it in scalable way—i.e., with round complexity independent of the num-
ber of parties, and in the context of blockchain protocols in particular, designing
one that is provably secure without a trusted setup.

Our contributions. In this paper we answer the above questions. First, we
present a Bitcoin-like protocol that neither assumes a simultaneous start nor
the existence of an unpredictable genesis block, and has round complexity

1 In Bitcoin, solving a proof of work essentially amounts to brute-forcing a hash
inequality based on SHA-256.
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essentially independent of the number of participants2. Effectively, the protocol,
starting “from scratch,” enables the coexistence of multiple genesis blocks with
blockchains stemming from them, eventually enabling the players to converge to
a single blockchain. This takes place despite the adversary being allowed (poly-
nomial in the security parameter) pre-computation time. We work in the same
model as [21] and we assume a 1/2 bound on adversarial hashing power. We call
this protocol the bootstrapped (Bitcoin) backbone protocol. A pictorial overview
of the protocol’s phases, preceded by a period of potential precomputation by
the corrupt players, is given in Fig. 1.

Fig. 1. Timeline and phases of the bootstrapped Bitcoin backbone protocol.

Second, we present applications of our bootstrapped construction, starting
with its original one: a distributed ledger, i.e., a public and permanent summary
of all transactions that honest parties can agree on as well as add their own,
despite the potentially disruptive behavior of parties harnessing less than 1/2
of the hashing power. This entails proving that the ledger’s required security
properties (Persistence and Liveness—cf. [21]) hold in a genesis block-less setting.

Next, we consider the problem of setting up a PKI in our unauthenticated
network setting from scratch. As mentioned above, the idea of using POWs as
an identity-assignment tool was put forth by Aspnes et al. [2]. Here we build
on this idea as well as on the “2-for-1 POWs” technique from [21] to use our
bootstrapped protocol to assign identities to parties. The assignment relation
will possibly assign more than one identity to the same party, while guarantee-
ing that the majority of them is assigned to honest parties. Such an identity
infrastructure/“pseudonymous PKI” has numerous applications, including the
bootstrapping of a proof-of-stake protocol [28,30], and the election of honest-
majority “subcommittees,” which would enable the application of traditional
Byzantine fault-tolerant techniques for ledger creation and maintenance (cf. [7])
to permissionless (as opposed to permissioned) networks.

Finally, applying the 2-for-1 POWs technique we can also solve the consensus
(aka Byzantine agreement) problem [31,36] probabilistically and from scratch,
even if the adversary has almost the same hashing power as the honest parties3,
2 “Essentially” because even though there will be a dependency of the round com-

plexity of the setup phase on the probability of computing POWs, which in turn
depends on the number of parties, this dependency can be made small enough so as
to be considered a constant. See Remark 3.

3 Thus marking a contrast with the 2
3

lower bound for consensus on the number of
honest parties in the traditional network setting with no setup [6].
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and with round complexity independent of the number of parties. Indeed, all
our protocols have round complexity linear in the security parameter, and enjoy
simultaneous termination. We conclude with an additional modification to the
protocol that reduces (by a factor of n) the protocol’s communication costs.

Related work. Nakamoto [32] proposed Bitcoin, the first decentralized cur-
rency system based on POWs while relaxing the anonymity property of a digital
currency to mere pseudonymity. This work was followed by a multitude of other
related proposals including Litecoin, Primecoin [29], and Zerocash [4], and fur-
ther analysis improvements (e.g., [17,18]), to mention a few.

As mentioned above, we work in a model that generalizes the model put
forth by Garay et al. [21], who abstracted out and formalized the core of the
Bitcoin protocol—the Bitcoin backbone. As presented in [21], however, the pro-
tocol considers as valid any chain that extends the empty chain, which is not
going to work in our model. Indeed, if the adversary is allowed polynomial-time
pre-computation, he can prepare a very long, private chain; then, by revealing
blocks of this chain at the rate that honest players compute new blocks, he
can break security. As also mentioned above, to overcome this problem one can
assume that at the time honest parties start the computation, they have access
to a fresh common random string (a “genesis” block). Then, if we consider as
valid only the chains that extend this block, all results proved in [21] follow, since
the probability that the adversary can use blocks mined before honest players
“woke up” is negligible in the security parameter. In this paper we show how
to establish such genesis block directly, and in a number of rounds essentially
independent of the number of participants.

To our knowledge, the idea of using POWs to distributedly agree on some-
thing (specifically, a PKI) in an unauthenticated setting with no trusted setup
was first put forth by Aspnes et al. [2], who suggested to use them as an identity-
assignment tool as a way to combat Sybil attacks [14], and in such a way that the
number of identities assigned to the honest and adversarial parties can be made
proportional to their aggregate computational power, respectively. For example,
by assuming that the adversary’s computational power is less than 50%, one
of the algorithms in [2] results in a number of adversarial identities less than
half of that obtained by the honest parties. By running this procedure in a
pre-processing stage, it is then suggested in [2] that a standard authenticated
broadcast protocol (specifically, the one by Dolev and Strong [13]) could be run.
Such protocols, however, would require that the PKI be consistent, details of
which are not laid out in [2].

They are in [1], where Andrychowicz and Dziembowski address the more
general goal of secure computation in this setting based on POWs, as mentioned
earlier; the POWs are used to build a “graded” PKI, where keys have “ranks.”
The graded PKI is an instance of a “graded agreement,” or “partial consistency”
problem [12,19,20], where honest parties do not disagree “by much,” according
to some metric. In [19], Fitzi calls this the b-set-neighboring problem (“proxcast”
in [12]), with b the number of possible “grades,” and shows how to achieve global
consistency by running the b-set-neighboring protocol multiple times. In [1], the
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fact is used that an unreliable broadcast is available among honest parties to
achieve the same—global consistency on a PKI, where the number of identities
each party gets is proportional to its hashing power, as suggested in [2].

The protocol in [1], however, suffers from a total running time that depends
on the number of parties, because of two factors: (1) the way in which it uses
POWs, and (2) the use of the Dolev-Strong authenticated broadcast protocol
(run multiple times in parallel based on the graded PKI), which takes a linear
number of rounds. Regarding (1), and in more detail, in order to assign exactly
one key per party, a low variance POW scheme is used. This implies that the
time needed by an honest party to mine a POW is going to be proportional to
the ratio of the adversarial hashing power to the hashing power of the weakest
honest party. Otherwise, the “rushing” adversary would be able to compute more
identities in the additional time she has due to the latency of the communication
infrastructure.4 Regarding (2), we note that potentially an expected-constant-
round protocol could be used instead of Dolev-Strong, although the parallel
composition of n instances would require more involved techniques [11].

Furthermore, having a PKI allows parties to generate an unpredictable bea-
con (in the random oracle model), which is then suggested in [1] as a genesis
block-generation method for a new cryptocurrency. Yet, no formal treatment of
the security of the resulting blockchain protocol is presented, and—as already
mentioned—the round complexity of the suggested genesis block generation pro-
cedure is linear in the number of participants, both in contrast to our work.

As in [1], Katz et al. [26] also consider achieving pseudonymous broadcast
and secure computation from POWs (“cryptographic puzzles”) and the existence
of digital signatures without prior PKI setup, but under the assumption of an
existing unpredictable beacon. Finally, Pass et al. [35] consider a partially syn-
chronous model of communication where parties are not guaranteed to receive
messages at the end of each round but rather after a specified delay Δ (cf. [15]),
and show that the backbone protocol can be proven secure in this setting. In
principle, our results about the bootstrapped backbone protocol can be extended
to their setting as shown in [22].

Organization of the paper. The rest of the paper is organized as follows.
In Sect. 2 we describe the network and adversarial model, introduce some basic
blockchain notation, and enumerate the various security properties. In Sect. 3
we present the bootstrapped Bitcoin backbone protocol and its analysis. Appli-
cations are presented in Sect. 4: a robust public transaction ledger, and PKI
generation and consensus without trusted setup and with round complexity inde-
pendent of the number of parties. Due to space limitations, some of the proofs
and further details are presented in the full version of the paper.

4 On the flip side, the benefit of the approach in [1] is that when all honest parties
have the same hashing power, a PKI that maps each party to exactly one identity
and preserves an honest majority on the keys can be achieved. However, in today’s
environments where even small devices (e.g., mobile phones, smart watches) have
powerful CPUs with different clock frequencies, this assumption is arguably weak.
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2 Model and Definitions

We describe our protocols in a model that extends the synchronous communi-
cation network model presented in [21] for the analysis of the Bitcoin backbone
protocol (which in turn is based on Canetti’s formulation of “real world” exe-
cution for multi-party cryptographic protocols [8,9]). As in [21], the protocol
execution proceeds in rounds with inputs provided by an environment program
denoted by Z to parties that execute the protocol.

Next we provide a high level overview of the model, focusing on the differ-
ences that are intrinsic to our setting where the adversary has a precomputation
advantage. The adversarial model in the network is actively malicious following
the standard cryptographic approach. The adversary is rushing, meaning that
in any given round it gets to see all honest players’s messages before deciding
its strategy. Message delivery is provided by a “diffusion” mechanism that is
guaranteed to deliver all messages, without however preserving their order and
allowing the adversary to arbitrarily inject its own messages. Importantly, the
honest parties are not guaranteed to have the same view of the messages deliv-
ered in each round, except for the fact that all honest messages from the previous
round are delivered. Furthermore, the adversary is allowed to change the source
information on every message (i.e., communication is not authenticated). In the
protocol description, we will use Diffuse as the message transmission command
to capture the “send-to-all” functionality that is available in our setting.5 Note
that, as in [21], an adversarial sender may abuse Diffuse and attempt to confuse
honest parties by sending and delivering inconsistent messages to them.

In contrast to [21], where all parties (the honest ones and the ones controlled
by the adversary), are activated for the first time in the execution of the protocol
in the same round6, in our model the environment will choose the round at
which all the honest parties will become active; the corrupted parties, on the
other hand, are activated in the first round. Once honest parties become active
they will remain active until the end of the execution. In each round, after the
honest parties become active, the environment activates each one by providing
input to the party and receives the party’s output when it terminates. When
activated, parties are able to read their input tape Input() and communication
tape Receive(), perform some computation that will be suitably restricted (see
below) and issue a Diffuse message that is guaranteed to be delivered to all
parties at the beginning of the next round.

In more detail, we model the execution in the following manner. We employ
the parameterized system of ITM’s from [9] (2013 version) that is comprised of an
initial ITM Z, called the environment, and C, a control function that is specified
below. We remark that our control function C is suitably restricted compared
to that of [9,10] to take into account restrictions in the order of execution that
are relevant to our setting.
5 In [21] the command name Broadcast is used for this functionality, which we

sometimes also will use informally.
6 After their first-time activation, the environment keeps activating parties in every

round (cf. [8]).
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The execution is defined with respect to a protocol Π, a set of parties
P1, . . . , Pn and an adversary A. The adversary is allowed to corrupt parties
adaptively up to a number of t < n. The protocol Π has access to two resources
or “ideal functionalities,” the random oracle, and the diffusion channel. Initially,
the environment may pass input to either the adversary A or spawn an instance
running the protocol Π which will be restricted to be assigned to the lexico-
graphically smallest honest party (such restrictions are imposed by the control
function [9]). After a party Pi is activated, the environment is restricted to acti-
vate the lexicographically next honest party, except in the case when no such
party is left, in which case the next program to be activated is the adversary A;
subsequently, the round-robin execution order between the honest parties will
be repeated.

Whenever a party is activated the control function allows for q queries to be
made to the random oracle while in the case of an activation of A a number
of t · q queries are allowed where t is the number of corrupted parties. Honest
parties are also allowed to annotate their queries to the random oracle for ver-
ification purposes, in which case an unlimited amount of queries is permitted
(that still counts towards the overall running time of the system execution).
Note that the adversary is not permitted to take advantage of this feature of
the execution. With foresight, this asymmetry will be necessary, since otherwise
it would be trivial for the adversary to break the properties of our protocols
by simply “jamming” the incoming communication tape of the honest parties
with messages whose verification would deplete their access quota to the ran-
dom oracle per activation. Furthermore, for each party a single invocation to the
diffusion channel is permitted. The diffusion channel maintains the list of mes-
sages diffused by each party, and permits the adversary A to perform a “fetch”
operation so that it obtains the messages that were sent. When the adversary A
is activated, the adversary will interact with the diffusion channel, preparing the
messages to be delivered to the parties and performing a fetch operation. This
write and fetch mode of operation with the communication channel enables the
channel to enforce synchrony among the parties running the protocol (cf. [25]).

The term {viewP
Π,A,Z(κ, z)}κ∈N,z∈{0,1}∗ denotes the random variable ensem-

ble describing the view of party P after the completion of an execution with envi-
ronment Z, running protocol Π, and adversary A, on auxiliary input z ∈ {0, 1}∗.
We often drop the parameters κ and z and simply refer to the ensemble by
view

P
Π,A,Z if the meaning is clear from the context. Following the resource-

bounded computation model of [9], it holds that the total length of the execu-
tion is bounded by a polynomial in the security parameter κ and the length of
the auxiliary string |z|, provided that the environment is locally bounded by a
polynomial (cf. Proposition 3 in [9]). Note that the above execution model cap-
tures adversarial precomputation since it permits the environment to activate
the adversary an arbitrary number of times (bounded by a polynomial in the
security parameter κ of course) before the round-robin execution of the honest
parties commences.
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We note that the above modeling obviates the need for a strict upper bound
on the number of messages that may be transmitted by the adversary in each
activation (as imposed by [1]). In our setting, honest parties, at the discretion
of the environment, will be given sufficient time to process all the messages
delivered via the diffusion channel including all messages that are injected by
the adversary.

The concatenation of the view of all parties ever activated in the execution,
say, P1, . . . , Pn, is denoted by viewΠ,A,Z . As in [21], we are interested in proto-
cols Π that do not make explicit use of the number of parties n or their identities.
Further, note that because of the unauthenticated nature of the communication
model the parties may never be certain about the number of participants in a
protocol execution.

In our correctness and security statements we will be concerned with proper-
ties of protocols Π running in the above setting (as opposed to simulation-based
notions of security). Such properties will be defined as predicates over the random
variable viewΠ,A,Z(κ, q, z) by quantifying over all locally polynomial-bounded
adversaries A and environments Z (in the sense of [9]). Note that all our pro-
tocols will only satisfy properties with a small probability of error in κ as well
as in a parameter k that is selected from {1, . . . , κ}. (Note that, in practice, one
may choose k to be much smaller than κ, e.g., k = 6).

2.1 Blockchain Notation

Next, we introduce some basic blockchain notation, following [21]. A block is any
triple of the form B = 〈s, x, ctr〉 where s ∈ {0, 1}κ, x ∈ {0, 1}∗, ctr ∈ N are such
that satisfy predicate validblockD

q (B) defined as

(H(ctr,G(s, x)) < D) ∧ (ctr ≤ q),

where H,G are cryptographic hash functions (e.g., SHA-256) modelled as ran-
dom oracles. The parameter D ∈ N is also called the block’s difficulty level. The
parameter q ∈ N is a bound that in the Bitcoin implementation determines the
size of the register ctr; in our treatment we allow this to be arbitrary, and use it
to denote the maximum allowed number of hash queries in a round. We do this
for convenience and our analysis applies in a straightforward manner to the case
that ctr is restricted to the range 0 ≤ ctr < 232 and q is independent of ctr.

A blockchain, or simply a chain is a sequence of blocks. The rightmost block
is the head of the chain, denoted head(C). Note that the empty string ε is also a
chain; by convention we set head(ε) = ε. A chain C with head(C) = 〈s′, x′, ctr′〉
can be extended to a longer chain by appending a valid block B = 〈s, x, ctr〉
that satisfies s = H(ctr′, G(s′, x′)). In case C = ε, by convention any valid block
of the form 〈s, x, ctr〉 may extend it. In either case we have an extended chain
Cnew = CB that satisfies head(Cnew) = B. Consider a chain C of length m and any
nonnegative integer k. We denote by C�k the chain resulting from the “pruning”
of the k rightmost blocks. Note that for k ≥ len(C), C�k = ε. If C1 is a prefix of
C2 we write C1 � C2.
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2.2 Basic Security Properties of the Blockchain

We are going to show that the blockchain data structure built by our protocol
satisfies a number of basic properties, as formulated in [21,27]. At a high level,
the first property, called common prefix, has to do with the existence, as well as
persistence in time, of a common prefix of blocks among the chains of honest
players [21]. Here we will consider a stronger variant of the property, presented
in [27,34], which allows for the black-box proof of application-level properties
(such as the persistence of transactions entered in a public transaction ledger
built on top of the Bitcoin backbone—cf. Sect. 4).

Definition 1 ((Strong) Common Prefix Property). The strong common
prefix property Qcp with parameter k ∈ N states that the chains C1, C2 reported by
two, not necessarily distinct honest parties P1, P2, at rounds r1, r2, with r1 ≤ r2,
satisfy C�k

1 � C2.

The next property relates to the proportion of honest blocks in any portion
of some honest player’s chain.

Definition 2 (Chain Quality Property). The chain quality property Qcq

with parameters μ ∈ R and k, k0 ∈ N states that for any honest party P with
chain C in viewΠ,A,Z(κ, z), it holds that for any k consecutive blocks of C, exclud-
ing the first k0 blocks, the ratio of adversarial blocks is at most μ.

Further, in the derivations in [21] an important lemma was established relat-
ing to the rate at which the chains of honest players were increasing as the
Bitcoin backbone protocol was run. This was explicitly considered in [27] as
a property under the name chain growth. Similarly to the variant of the com-
mon prefix property above, this property along with chain quality were shown
sufficient for the black-box proof of application-level properties (in this case,
transaction ledger liveness; see Sect. 4).

Definition 3 (Chain Growth Property). The chain growth property Qcg

with parameters τ ∈ R (the “chain speed” coefficient) and s, r0 ∈ N states that
for any round r > r0, where honest party P has chain C1 at round r and chain
C2 at round r + s in viewΠ,A,Z(κ, z), it holds that |C2| − |C1| ≥ τ · s.

3 The Bootstrapped Backbone Protocol

We begin this section by presenting the “bootstrapped” Bitcoin backbone proto-
col, followed by its security analysis. In a nutshell, the protocol is a generalization
of the protocol in [21], which is enhanced in two ways: (1) an initial challenge-
exchange phase, in which parties contribute random values, towards the estab-
lishment of an unpredictable genesis block, despite the precomputation efforts of
corrupt players, and (2) a ranking process and chain-validation predicate that, in
addition to its basic function (checking the validity of a chain’s content), enables
the identification of “fresh” candidate genesis blocks. The ranking process yields
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a graded list of genesis blocks and is inspired by the “key ranking” protocol
in [1], where it is used to produce a “graded” PKI, as mentioned in Sect. 1.

Before describing the bootstrapped backbone protocol in detail, we highlight
its unique features.

– No trusted setup and individual genesis block mining. Parties start without
any prior coordination and enter an initial challenge-exchange phase, where
they will exchange random values that will be used to construct “freshness”
proofs for candidate genesis blocks. The parties will run the initial challenge-
exchange phase for a small number of rounds, and subsequently will try to
mine their own genesis blocks individually. Once they mine or accept a gen-
esis block from the network they will engage in mining further blocks and
exchanging blockchains as in Bitcoin’s blockchain protocol. On occasion they
might switch to a chain with a different genesis block. Nevertheless, as we will
show, quite soon they will stabilize in a common prefix and a single genesis
block.

– Freshness of genesis block impacts chains’ total weight. Chains rooted at a
genesis block will incorporate its weight in their total valuation. Genesis
blocks can be quite “heavy” compared to regular blocks and their total valu-
ation will depend on how fresh they are. Their weight in general might be as
much as a linear number of regular blocks in the security parameter. Further-
more, each regular block in a chain accounts for 3 units in terms of the total
weight of the chain, something that, as we show, will be crucial to account
for differences in terms of weight that are assigned to the same genesis block
by different parties running the protocol (cf. Remark 1).

– Personalized chain selection rule. Given the co-existence of multiple genesis
blocks, a ranking process is incorporated into the chain selection rule that, in
addition to its basic function (checking the validity of a chain’s content) and
picking the longest chain, it now also takes into account the freshness degree
of a genesis block from the perspective of each player running the protocol.
The ranking process effectively yields a graded list of genesis blocks and is
inspired by the “key ranking” protocol in [1], where it is used to produce
a “graded” PKI (see further discussion below). The weight value for each
genesis block will be thus proportional to its perceived “freshness” by each
party running the protocol (the fresher the block the higher its weight). It
follows that honest players use different chain selection procedures since each
predicate is “keyed” with the random coins that were contributed by each
player in the challenge-exchange phase (and thus guaranteed to be fresh from
the player’s perspective). This has the side effect that the same genesis block
might be weighed differently by different parties. Despite these differences,
we show that eventually all parties accept the same chains as valid and hence
will unify their chain selection rule in the course of the protocol.

– Robustness is achieved after an initial period of protocol stabilization. All our
modifications integrate seamlessly with the Bitcoin backbone protocol [21],
and we are able to show that our blockchain protocol is a robust transaction
ledger, in the sense of satisfying the properties of persistence and liveness.
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Nevertheless, contrary to [21], the properties are satisfied only after an initial
period of rounds where persistence is uncertain and liveness might be slower;
this is the period where the parties still stabilize the genesis block and they
might be more susceptible to attacks. Despite this, a ledger built on top of
our blockchain will be available immediately after the challenges exchange
phase. Furthermore, once the stabilization period is over the robust trans-
action ledger behavior is guaranteed with overwhelming probability (in the
length of the security parameter).

3.1 Protocol Description

The bootstrapped Bitcoin backbone protocol is executed by an arbitrary num-
ber of parties over an unauthenticated network (cf. Sect. 2). For concreteness, we
assume that the number of parties running the protocol is n; however, parties
need not be aware of this number when they execute the protocol. Communica-
tion over the network is achieved by utilizing a send-to-all Diffuse functionality
that is available to all parties (and may be abused by the adversary in the sense
of delivering different messages to different parties). After an initial (“challenge”)
phase, each party is to maintain a data structure called a “blockchain,” as defined
above. Each party’s chain may be different, but, as we will prove, under certain
well-defined conditions, the chains of honest parties will share a large common
prefix.

The protocol description intentionally avoids specifying the type of values
that parties try to insert in the chain, the type of chain validation they perform
(beyond checking for its structural properties with respect to the hash functions
G(·),H(·)), and the way they interpret the chain. In the protocol description,
these actions are abstracted by the external functions V (·), I(·), R(·) which are
specified by the application that runs “on top” of the backbone protocol.

The protocol is specified as Algorithm 1. At a high level, the protocol first
executes a challenge-exchange phase for l+1 rounds (l will be determined later),
followed by the basic backbone functions, i.e., mining and broadcasting blocks;
a crucial difference here with respect to the original backbone protocol is that
the chain validation process must also verify candidate genesis blocks, which in
turn requires updating the validation function as the protocol proceeds. (This,
however, only happens in the next l rounds after the challenge phase.) The
protocol’s supporting algorithms are specified next.

The challenge-exchange phase. In order to generate an unpredictable gene-
sis block, players first execute a “challenge-exchange” phase, where they broad-
cast, for a given number of rounds (l + 1), randomly generated challenges that
depend on the challenges received in the previous rounds. The property that is
assured is that an honest player’s k-round challenge, 1 ≤ k ≤ l, depends on the
(k − 1)-round challenges of all honest players. This dependence is made explicit
through the random oracle. The code of the challenge-exchange phase is shown in
Algorithm 2.
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Algorithm 1. The bootstrapped backbone protocol, parameterized by the input
contribution function I(·), the chain reading function R(·), and parameter l.

1: C ← ε
2: st ← ε
3: round ← 1 � Global variable round
4: Gen ← ∅ � Set of candidate genesis blocks
5: Rank ← 〈ε〉
6: (c,A, c) ← exchangeChallenges(1κ)
7: while True do
8: k ← round − l − 2
9: MGen ← {(〈s′, x′, ctr′〉, 〈A′

l+1, . . . , A
′
l+1−k〉)} from Receive()

10: MChain ← chains C′ found in Receive()
11: (Gen, Rank) ← updateValidate(c,A, MGen, Gen, Rank)
12: C̃ ← maxvalid(C, MChain, Gen, Rank)
13: 〈st, x〉 ← I(st, C̃, round, Input(),Receive())
14: Cnew ← pow(x, C̃, c)
15: if C �= Cnew then
16: if C = ε then � New genesis block has been produced
17: Diffuse( (Cnew, 〈Al+1, . . . , Al+1−(k+1)〉) )

18: C ← Cnew

19: Diffuse(C)

20: round ← round + 1
21: if Input() contains Read then
22: write R(xC) to Output()

Validation predicate update. In the original backbone protocol [21], the
chain validation function (called validate—see below) performs a validation of
the structural properties of a given chain C, and remains unchanged throughout
the protocol. In our case, however, where there is no initial fresh common random
string, the function plays the additional role of checking for valid genesis blocks,
and players have to update their validation predicate as the protocol advances
(for the first l rounds after the challenge phase).

Indeed, using the challenges distributed in the challenge-exchange phase of
the protocol, players are able to identify fresh candidate genesis blocks that have
been shared during that phase and are accompanied by a valid proof. In addition,
the valid genesis blocks are ranked with a negative dependence on the round they
were received. In order to help other players to also identify the same genesis
blocks, players broadcast the valid genesis blocks they have accepted together
with the additional information needed by the other players for verification. The
validation predicate update function is shown in Algorithm 3. Recall that Gen
is the set of candidate genesis blocks.

Chain validation. A chain is considered valid if in addition to the checks
performed by the basic backbone protocol regarding the chain’s structural
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Algorithm 2. The challenge-exchange function. Note that variable round is
global, and originally set to 1.

1: function exchangeChallenges(1κ)

2: c1
R← {0, 1}κ

3: Diffuse(c1)
4: round ← round + 1
5: while round ≤ l + 1 do
6: Around ← κ-bit messages found in Receive()

7: rround
R← {0, 1}κ

8: Around ← Around||rround

9: cround ← H(Around) � Compute challenge
10: Diffuse(cround)
11: round ← round + 1

12: return (〈c1, . . . cl〉, 〈A2, . . . Al+1〉, cl+1)

Algorithm 3. The validation predicate update function.

1: function updateValidate(c,A, MGen, Gen, Rank)
2: k ← round − l − 2
3: if k ≥ l then
4: return Gen, Rank � No updates after round 2l + 2

5: for each (〈s′, x′, ctr′〉, 〈A′
l+1, . . . , A

′
l+1−k〉) in MGen do

6: if validblockD
q (〈s, x, ctr〉) ∧ 〈s, x, ctr〉 �∈ Gen then

7: flag ← (H(A′
l+1) = s) ∧ (cl−k ∈ A′

l+1−k)
8: for i = l + 1 − k to l do
9: if H(A′

i) �∈ A′
i+1 then

10: flag ← False

11: if flag = True then
12: Gen ← Gen ∪ 〈s, x, ctr〉
13: Rank[〈s, x, ctr〉] ← l − k
14: Diffuse(〈s, x, ctr〉, 〈A′

l+1, . . . , A
′
l+1−k, Al−k〉) � Augment A′

sequence with own A value.

15: return Gen, Rank

properties, its genesis block is in the Gen list, which is updated by the updat-
eValidate function (Algorithm 3). The chain validation function is shown in
Algorithm 4.

Chain selection. The objective of the next algorithm in Algorithm 1, called
maxvalid, is to find the “best possible” chain. The accepted genesis blocks have
different weights depending on when a player received them. It is possible that
the same genesis block is received by honest players in two different rounds
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(as we show later, those rounds have to be consecutive). In order to take into
account the “slack” introduced by the different views honest players may have
regarding the same block, as well as the different weights different blocks may
have, we let the weight of a chain C be equal to the weight of its genesis block
plus three times its length minus one. The chain selection function is shown in
Algorithm 5.

Algorithm 4. The chain validation predicate, parameterized by q,D, the hash
functions G(·),H(·), and the content validation predicate V (·). The input is C.

1: function validate(C, Gen)
2: b ← V (xC) ∧ (C �= ε) ∧ (tail(C) ∈ Gen)
3: if b = True then
4: 〈s, x, ctr〉 ← head(C)
5: s′ ← H(ctr, G(s, x))
6: repeat
7: 〈s, x, ctr〉 ← head(C)
8: if validblockD

q (〈s, x, ctr〉) ∧ (H(ctr, G(s, x)) = s′) then

9: (s′, C) ← (s, C�1) � Retain hash value and remove the head from C
10: else
11: b ← False
12: until (C = ε) ∨ (b = False)

13: return b

Algorithm 5. The function that finds the “best” chain. The input is a set of
chains and the list of genesis blocks.

1: function maxvalid(C1, . . . , Ck, Gen)
2: temp ← ε
3: maxweight ← 0
4: for i = 1 to k do
5: if validate(Ci, Gen) then
6: weight ← Rank(tail(Ci)) + 3(|Ci| − 1)
7: if maxweight < weight then
8: maxweight ← weight
9: temp ← Ci

10: return temp

The proof-of-work function. Finally, we need to modify the proof-of-work
function in [21], so that when a genesis block is mined, the challenge computed in
the last round of the challenge-exchange phase will be included in the block. This,
in addition to the proof of genesis information sent in the backbone protocol,
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is required so that other honest players accept this block as valid and rank it
accordingly. The code is presented in Algorithm 6.

Algorithm 6. The proof of work function, parameterized by q, D and hash
functions H(·), G(·). The input is (x, C, c).

1: function pow(x, C, c)
2: if C = ε then
3: s ← c � c is required to prove freshness
4: else
5: 〈s′, x′, ctr′〉 ← head(C)
6: s ← H(ctr′, G(s′, x′))

7: ctr ← 1
8: B ← ε
9: h ← G(s, x)

10: while (ctr ≤ q) do
11: if (H(ctr, h) < D) then � Proof of work found
12: B ← 〈s, x, ctr〉
13: break
14: ctr ← ctr + 1

15: return CB � Extend chain

Figure 2 presents the overall structure (phases and corresponding rounds) of
the bootstrapped backbone protocol. Next, we turn to its analysis.

Fig. 2. The different phases of the bootstrapped backbone protocol.
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Remark 1. To understand some of our design choices we briefly give some exam-
ples of simpler protocols that don’t work. For the first example, assume that we
only have one round of challenge exchange i.e. l equal to 1. With some non-
negligible probability, the adversary can send one block to half of the honest
players and another block to the other half. By splitting the honest players in
two groups such that no one in the first group will choose the chain of the second
and vice versa, agreement becomes impossible. Moreover, l must be large enough
so that at least one honest party computes a genesis block with overwhelming
probability. Otherwise the adversary can choose to remain silent and no genesis
block will be mined with non-negligible probability.

For the second example assume that blocks weigh less than 3 units, as in the
original protocol. Also, assume that somehow the problem of the first example
was avoided and honest parties only adopted chains with genesis blocks that
everyone had in their genesis block list. In this case, uniquely successful rounds
would not imply agreement on a single chain (see Fig. 3), as the adversary would
have been able to take advantage of the different views that honest players have
regarding the weight of genesis blocks. However, if we set the block weight to 3,
this event becomes impossible and makes the analysis a lot easier.

G1

G2

G1

G2

P1 P2

G1 6 5
G2 4 5
C1 10 9
C2 8 9
C ′

2 10 11

C1

C2

C1

C ′
2 +2

Fig. 3. An example where blocks weigh 2 units. In the table the weights of the respec-
tive chains are depicted. Initially player P1 has adopted chain C1 and player P2 chain
C2. Then a uniquely successful round happens and C2 is extended to C′

2. Notice that,
P1 will not adopt C′

2 since it has the same weight as C1. If the new block weighted 3
units, all players would have adopted chain C′

2.

3.2 Analysis of the Bootstrapped Backbone Protocol

First, some additional definitions that will become handy in the analysis. We saw
in the previous section that genesis blocks are assigned weights, and, further, that
a single genesis block may have different weights for different parties depending
on when they received it. We extend this notion to chains of blocks.

Definition 4. Let wP (B) be the weight that P assigned to genesis block B. We
define the weight of a chain C with genesis block B (with respect to party P )
to be:

wP (C) = wP (B) + 3(|C| − 1).
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If block B was not received by P until round 2l+1, or if C = ε, then wP (C) = −1.

In [21], all parties assign the same weight to the same chain, i.e., the length of
the chain; thus, for all parties Pi, Pj we have that wPi

(C) = wPj
(C). In contrast,

in our case the genesis block of each chain may have different weight for different
parties, akin to some bounded amount of “noise” that is party-dependent being
added to the chain weights. We are going to show that if the amount of noise
is at most 1, then by letting each new block weigh 3 units our protocol satisfies
the chain growth, common prefix and chain quality properties.

Definition 5. Regarding chains and their weight:

– Define hC = maxP {wP (C)} and �C = minP {wP (C)}.
– Let C(B) denote the truncation of chain C after its block B.
– For a block B of a chain C, define hC(B) = hC(B) and similarly for �C(B).

(Sometimes we will abuse notation and write �(B) instead of �C(B). As long
as no collision happens �(B) is well defined. The same holds for h(B).)

– For chains C1 and C2, define C1 ∩ C2 to be the chain formed by their common
prefix.

The following are important concepts introduced in [21], which we are also
going to use in our analysis:

Definition 6. A round is called:

– successful if at least one honest party computes a solution;
– uniquely successful if exactly one honest party computes a solution.

Definition 7. In an execution blocks are called:

– honest, if mined by an honest party,
– adversarial, if mined by the adversary, and
– u.s. blocks, if mined in a uniquely successful round by an honest player.

Recall that our model is “flat” in terms of computational power in the sense
that all honest parties are assumed to have the same computational power while
the adversary has computational power proportional to the number of players
that it controls. The total number of parties is n and the adversary is assumed
to control up to t of them (honest parties do not know any of these parameters).
Obtaining a new block is achieved by finding a hash value that is smaller than the
difficulty parameter D. Thus, the success probability that a single hash query
produces a solution is p = D

2κ , where κ is the length of the hash. The total
hashing power of the honest players is α = pq(n − t), the hashing power of the
adversary is β = pqt, and the total hashing power is f = α + β. Moreover, in
[21], a lower bound on the probability that a round is uniquely successful was
established; denoted by γ and equal to α − α2. Notice that γ is also a bound for
the probability of a round being just successful.

For each round j, we define the Boolean random variables Xj and Yj as
follows. Let Xj = 1 iff j was a successful round, i.e., at least one honest party
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computed a POW at round j, and let Yj = 1 iff j was a uniquely successful round,
i.e., exactly one honest party computed a POW at round j. With respect to a
set of rounds S, let Z(S) denote the number of POWs obtained by the adver-
sary during the rounds in S (i.e., in qt|S| queries). Also, let X(S) =

∑
j∈S Xj

and define Y (S) similarly. Note that γ|S| ≤ E[Y (S)] ≤ E[X(S)] ≤ α|S| and
E[Z(S)] = β|S|.

Lemma 1. If |S| = k and γ ≥ (1 + δ)β for some δ ∈ (0, 1), then

Pr[Y (S) > (1 +
5δ

9
)Z(S)] > 1 − e−Ω(δ2k).

Proof. By the Chernoff bound we have that:

Pr[Y (S) ≤ (1 − δ

8
)E[Y (S)]] ≤ e− δ2γk

128 and Pr[Z(S) ≥ (1 − δ

9
)E[Z(S)] ≤ e− δ2βk

243 .

Suppose none of the above events happens. Then, from the union bound, we get
that with probability 1 − e−(2 min( β

243 , γ
128 )δ2k−ln(2)) it holds that

Y (S) > (1 − δ

8
)γk ≥ (1 − δ

8
)(1 + δ)βk ≥ (1 +

5δ

9
)(1 +

δ

9
)βk > (1 +

5δ

9
)Z(S).

Remark 2. For ease of exposition, in our analysis we will assume that there are
no collisions; that is, for any two different queries to the random oracle, always
a different response is returned. This would generally be a problem since for
example it would break independence of Xi,Xj , for i 
= j, and we would not
be able to apply the Chernoff bound in the previous lemma. However, since the
probability of a collision happening, as well as all other events we consider, is
at most e−Ω(κ), we can always use the union bound to include the event of no
collision occurring to our other assumptions. In addition, we assume that no two
queries to the oracle are the same, as formalized by the Input Entropy condition
in [21].

Properties of the genesis block generation process. We now establish a
number of properties of the genesis block generation process.

Lemma 2 (Graded Consistency). If any honest party Pi accepts genesis
block B with rank wPi

(B) > 1, then all honest parties accept B with rank at
least wPi

(B) − 1.

Proof. Let wPi
(B) = k > 1. Since Pi accepted B with rank k at some round r,

he must have received a message of the form (B,El+1, . . . , Ek+1), where

– B is a valid block that contains H(El+1);
– Ek+1 contains ck and for k + 2 < j ≤ l + 1, Ej contains H(Ej−1); and
– ck is the challenge computed by Pi at round k.
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Since k > 0, according to Algorithm 3, Pi is going to broadcast (B,El+1, . . . ,
Ek+1, Ak), where H(Ak) = ck is contained in Ek+1 and Ak contains all the
messages received by Pi at round k. All honest-party challenges of round k − 1
were received in this round; therefore, all honest parties have accepted or will
accept block B by the next round and the lemma follows.

Lemma 3 (Validity). Genesis blocks computed by honest parties before round
2l + 2, will be accepted by all honest parties in the next round.

Proof. Suppose honest party Pi mined genesis block B at round m. According to
Algorithm 1, B contains the challenge he has computed at the last round of the
challenge-exchange phase. In addition, when the party broadcasts it, it includes
the message sets Al+1, . . . , Ar, where Aj contains the messages received by Pi

at round j and r = 2l + 2 − m. Since Pi is honest, the following hold:

– B is a valid block that contains H(Al+1);
– for r + 1 < j ≤ l + 1, Aj contains H(Aj−1);
– if cr is the challenge sent by some honest party at round r, then cr is contained

in Ar+1; and
– all honest parties are going to receive the message.

Thus, all honest parties are going to accept B at round m + 1 and the lemma
follows.

Lemma 4 (Freshness). Let r ≤ l + 2. Every block computed before round r
cannot be part of some chain with genesis block B, where wP (B) ≥ r − 1 for
some honest party P , with overwhelming probability in the security parameter κ.

Weak chain growth. We now turn our attention to the weight of chains and
prove a weak chain-growth property. In the original Bitcoin backbone proto-
col [21], it was proved that chains grow at least at the rate of successful rounds,
independently of the adversary’s behavior. Here, at least initially, the chains of
honest parties grow in a “weak” manner, in the sense that the adversary is able
to slow down this growth by using his own blocks. Later on, we will show that
after some specific round our protocol also achieves optimal chain growth.

Lemma 5. Let round r such that l + 2 ≤ r < 2l + 2, and suppose that at round
r an honest party, say, P1 has a chain C such that wP1(C) = d. Then, by round
s, where r ≤ s < 2l + 2, every honest party P will have received a chain C′ of
weight at least wP (C′) = d − 2 + 3

∑s−1
i=r Yi −

∑s−1
i=r Zi.

Proof (Sketch). Note that every time a uniquely successful round happens, the
minimum weight over all parties’ chains will increase by 2. Moreover, if the
adversary has not diffused any block in the same round the minimum weight
increases by 3. By applying this result iteratively, the lemma follows. We refer
the reader to the full version of the paper for the full proof.
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Universal chain validity. A novelty of our construction is that the same genesis
block may have different weight for different parties. Unfortunately, it could be
the case that due to the adversary’s influence, a genesis block is valid for one
party but invalid for another. This could lead to disagreement, in the sense that
some honest parties may adopt a chain that others don’t because it is not valid
for them. We will show that with overwhelming probability such an event cannot
occur for our protocol; as such, chain validity is a “universal” property; if some
honest party accepts a chain C as valid, then C will also be valid for all other
parties.

Notice, that in order to prove the following lemma we need l to be greater
than a value that depends on 1/γ, i.e. the expected time it takes for honest parties
to mine a block, and the security parameter κ (see also Remark 1). Intuitively
l should be large enough so that (i) honest parties mine at least one block at
this time interval, and (ii) any adversarial chain that is based on a genesis block
broadcast at the end of the bootstraping phase will never be adopted by honest
parties (because such genesis block will have too small weight in comparison).

Lemma 6. Suppose that for some δ ∈ (0, 1), 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , and

γ ≥ (1 + δ)β, and that at round r an honest party P has chain C. Then C will
also be valid for all other parties from this round on with probability 1−e−Ω(δ2k).

The complete version of the weak chain growth lemma follows from the argu-
ment we’ve made above.

Corollary 1. Suppose that for some δ ∈ (0, 1), 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f ,

and γ ≥ (1 + δ)β. Let round r such that r ≥ l + 2, and suppose that at round r
an honest party, say, P1 has a chain C such that wP1(C) = d. Then, by round s,
where r ≤ s, every honest party P will have received a chain C′ of weight at least
wP (C′) = d − 2 + 3

∑s−1
i=r Yi −

∑s−1
i=r Zi with probability at most 1 − e−Ω(δ2k).

Remark 3. Note further that the dependency of γ on n does not undermine the
scalability of the round complexity of our protocol. This claim is argued on the
basis that the difficulty level D can be set proportional to 1/n, so that γ can be
treated as a constant and then l is in essence independent of n (note that both
parameters would be polynomials in κ).

A bound on adversarially precomputed blocks. The honest parties begin
mining right after the challenge-exchange phase. Note that it does not help the
adversary to precompute blocks before the challenge-exchange phase, except for
the small probability of the event that some of his blocks happen to extend future
blocks. We have shown that the adversary cannot create a private chain that
honest parties will adopt if he starts mining at the first round of the challenge-
exchange phase. It is though possible to start mining after the first round in order
to gain some advantage over the honest parties. The following lemma provides a
bound on the number of blocks mined during the challenge-exchange phase with
sufficient weight so that they can be later used by the adversary.
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Lemma 7 (Precomputed blocks). Assume 3(1+δ)f < 1 and l > (1−δ)k/γ+3
1−3(1+δ)f ,

for some δ ∈ (0, 1). Let R be the set that contains any adversarial block B mined
before round l + 2, where h(B) > l − 1 − (1 − δ)δ2k. Then Pr[|R| > 5δ

9 kβ] ≤
e−Ω(δ4k).

Proof (Sketch). We first show that the adversary cannot take advantage of blocks
which belong to chains whose genesis block was computed early on in the chal-
lenge exchange phase. Hence, with overwhelming probability she can only use
blocks computed near the end of the challenge exchange phase; remember that
the weight of a genesis block is small if it is mined early in the challenge exchange
phase. By applying appropriate Chernoff bounds the result follows. We refer the
reader to the full version of the paper for the full proof.

We are now ready to prove the security properties listed in Sect. 2.2.

Common Prefix. Every time a uniquely successful round happens all honest
players converge to one chain, unless the adversary broadcasts some new block.
This turns out to be a very important fact and a consequence of it is described
in the next lemma.

Lemma 8. Suppose block B in chain C is a u.s. block and consider a chain C′

such that B 
∈ C′. If �C′ ≥ �C(B)− 1 then there exists a unique adversarial block
B′ such that �C′(B′) ∈ [�C(B) − 1, �C(B) + 1]. Moreover, if B is not a genesis
block, then B′ will also not be a genesis block.

Proof. Assume block B was mined at some round r. If B is not a genesis block,
then for any honest block B′′ mined before round r it should hold that �(B′′) ≤
�(B)−2. Otherwise, at round r no honest party would choose the parent of B to
mine new blocks. If B is a genesis block, then no other honest party has mined
a block in some previous round. On the other hand, for any honest block B′′

mined after round r it must hold that �(B′′) ≥ �(B) − 1 + 3 = �(B) + 2, since
honest parties will only extend chains of length at least �(B)−1 after this round.
Thus, if a block with weight in the given interval exists, it must be adversarial.

For the sake of contradiction, suppose B is not a genesis block while B′ is
a genesis block and let B′′ be the parent of B. Then hC(B′′) < �C′(B′) since
hC(B′′) ≤ �C(B) − 2. This implies than every honest party received B′ before
block B′′. But then, no honest party would mine on the parent of B, because
he would have lower weight than B′, which leads to a contradiction. Hence, the
lemma follows.

We use Lemma 8 in order to show that the existence of a fork implies that the
adversary has mined blocks proportional in number to the time the fork started.

Theorem 1. Assume 3(1+δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1+δ)β, for some real

δ ∈ (0, 1). Let S be the set of the chains of the honest parties from round 2l + 2
and onwards of the bootstrapped backbone protocol. Then the probability that S
does not satisfy the strong common-prefix property with parameter k is at most
e−Ω(δ4k).
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Proof (Sketch). We are going to use Lemma 8 to match u.s. blocks to adversarial
ones. Function � will help us show that the matched blocks are distinct; every
pair of matched blocks is very close with respect to the � function, while pairs
of u.s. blocks can be very far under specific conditions. Initially, we construct
such a matching whenever we have a fork between two chains C1, C2, either by
matching adversarial blocks alternatively to each of the chains or by matching
consecutive u.s. blocks on the same chain to consecutive adversarial blocks in
the other chain.

Using this result, we prove that if a “deep” enough fork exists, the adver-
sary must have mined more blocks than his hashing power allows, which leads
to a contradiction. In more detail, the initial fork implies the existence of some
honestly mined block B that is part of the common prefix of the two chains.
Starting from B we construct a matching of all u.s. blocks mined after it, by
picking “deeper” and “deeper” forks and repeatedly applying the matching pro-
cedure. Using the upper bound on precomputed blocks established in Lemma7,
we can show that the adversary is able to mine a sufficient number of blocks
only with negligible probability. Hence, the theorem follows.

Chain Growth. We proved that after round 2l + 1 the strong common-prefix
property is satisfied. This implies that all players share a common genesis block
after this round. The next lemma shows that this is sufficient in order to get
chain growth at the same level as in the original Backbone protocol.

Lemma 9. Suppose that at round r an honest party P1 has a chain C of weight
wP1(C) = d and all honest parties after round r − 1 adopt chains that share the
same genesis block B. Then, by round s ≥ r, every honest party P will have
received a chain C′ of weight at least wP (C′) = d − 1 + 3

∑s−1
i=r Xi.

Proof. Since all parties adopt chains with the same genesis block after round
r − 1, and P1 has adopted a chain C of weight d, there are two cases: either
(1) �C = d − 1 and any chain that honest parties adopt after round r − 1 has a
weight that is congruent to d or d − 1 modulo 3, or (2) �C = d and the weight
is congruent to d or d + 1 modulo 3. This observation is implied from the fact
that each extra block adds 3 units of weight to the chain and B can only have
two different weights under the views of honest parties.

It is sufficient to study only one of the two cases so w.l.o.g. suppose that
the weight of the chains is congruent to d or d − 1 modulo 3. The proof is by
induction on s− r ≥ 0. For the basis (s = r), observe that if at round r P1 has a
chain C of weight wP1(C) = d, then he broadcast C at an earlier round (than r).
It follows that every honest party P will receive C by round r and wP (C) ≥ d−1.

For the inductive step, note that by the inductive hypothesis every honest
party P has received a chain C′ of weight at least wP (C′) = d′ = d−1+3

∑s−2
i=r Xi

by round s − 1. When Xs−1 = 0 the statement follows directly, so assume
Xs−1 = 1. Observe that every honest party queried the oracle with a chain of
weight at least d′ at round s − 1. It follows that every honest party P successful
at round s− 1 broadcast a chain C′ of weight at least wP (C′) = d′ +3. For every
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other party P ′ it holds that wP ′(C′) ≥ d′ + 2 ≥ d − 1 + 3
∑s−1

i=r Xi − 1. However,
no chain that an honest party adopts can have length d′ + 2, because d′ + 2 is
congruent to d − 2 modulo 3. Thus all honest parties adopt chains that have
length at least d′ + 3 and the lemma follows.

It can be easily shown that Lemma 9 implies the chain growth property after
round 2l + 1.

Theorem 2. Assume 3(1+δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1+δ)β, for some real

δ ∈ (0, 1). The bootstrapped Bitcoin protocol satisfies the chain growth property
for r0 = 2l+2 with speed coefficient (1−δ)γ and probability at least 1−e−Ω(δ4s).

Chain Quality. We first observe a consequence of Theorem 1.

Lemma 10. Assume 3(1+ δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1+ δ)β, for some real

δ ∈ (0, 1). From round 2l + 2 and onwards of the bootstrapped backbone protocol,
the probability that the adversary has a chain which is more than k blocks longer
than the chain of some honest party is at most e−Ω(δ4k).

Proof. Given any execution and an adversary that at a round r has a chain C
which is k blocks longer than the chain C′ of an honest party P , we can define
an adversary such that at round r+1 the common-prefix property does not hold
for parameter k. The adversary simply sends C to P ′ 
= P at round r.

Theorem 3. Assume 3(1+δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1+δ)β, for some real

δ ∈ (0, 1/2). Suppose C belongs to an honest party and consider any k consecutive
blocks of C computed after round 2l+2 of the bootstrapped backbone protocol. The
probability that the adversary has contributed more than (1 + δ

2 )β
γ · k ≤ (1 − δ

3 )k

of these blocks is less than e−Ω(δ5k).

Corollary 2. Assume 3(1+δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1+δ)β, for some real

δ ∈ (0, 1/2). The bootstrapped Bitcoin protocol satisfies the chain-quality property
with parameters μ = (1 + δ

2 )β
γ , k0 = 2f(1 + δ)(l + 1), and k, with probability at

least 1 − eΩ(δ5k).

Proof. Note that the next two events occur with probability at least 1 − eΩ(δ2l),
for any δ ∈ (0, 1). The honest parties in the first l + 1 rounds have computed
at most α(1 + δ)(l + 1) blocks. The adversary, who might have been mining
also during the challenges phase, has computed at most 2β(1 + δ)(l + 1). The
statement then follows from Theorem 3, since α(1+ δ)(l+1)+2β(1+ δ)(l+1) <
2f(1 + δ)(l + 1).

4 Applications of the Bootstrapped Backbone Protocol

In this section we present applications of our construction, starting with its
primary/original one: a distributed ledger, i.e., a public and permanent summary
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of all transactions that honest parties can agree on as well as add their own,
despite the potentially disruptive behavior of parties harnessing less than 1/2
of the hashing power. This entails proving that the ledger’s required security
properties (Persistence and Liveness—cf. [21]) hold in a genesis block-less setting.

Next, we consider the problem of setting up a PKI in our unauthenticated
network setting from scratch, i.e., without any trusted setup. As mentioned in
Sect. 1, the idea of using POWs as an identity-assignment tool was put forth by
Aspnes et al. [2]. Here we build on this idea as well as on the “2-for-1 POWs”
technique from [21] to use our bootstrapped protocol to assign identities to
parties. The assignment relation will possibly assign more than one identities
to the same party, while guaranteeing that the majority of them is assigned to
honest parties.

Finally, applying the 2-for-1 POWs technique we can also solve the consensus
(aka Byzantine agreement) problem [31,36] without any trusted setup, even if
the adversary has almost the same hashing power as the honest parties, and in a
number of rounds independent of the number of parties. Indeed, all our protocols
have round complexity linear in the security parameter, and enjoy simultaneous
termination.

Compared to other works, most notably [1], our approach is different in the
order in which it sets up a “bulletin board” and assigns identities to parties. We
choose to first establish the former—i.e., the ledger—and then assign the iden-
tities; in contrast, in [1] identities are established first in a graded manner, and
then using that infrastructure the parties can implement a broadcast channel.

We now turn to the applications in detail.

Robust public transaction ledger. A public transaction ledger is defined with
respect to a set of valid ledgers L and a set of valid transactions T , each one
possessing an efficient membership test. A ledger x ∈ L is a vector of sequences
of transactions tx ∈ T . Each transaction tx may be associated with one or more
accounts. Ledgers correspond to chains in the backbone protocol. In the proto-
col execution there also exists an oracle Txgen that generates valid transactions.
Note, that it is possible for the adversary to create two transactions that are con-
flicting; valid ledgers must not contain conflicting transaction. We will assume
that the oracle is unambiguous, i.e., that the adversary cannot create transac-
tions that come in ‘conflict’ with the transactions generated by the oracle. A
transaction is called neutral if there does not exist any transactions that comes
in conflict with it.

In order to turn the backbone protocol into a protocol realizing a public
transaction ledger suitable definitions were given for functions V (·), R(·), I(·)
in [21]. Namely, V (〈x1, . . . , xm) is true if its input is a valid ledger. Function
R(C) returns the contents of the chain if they constitute a valid ledger, otherwise
it is undefined. Finally, I(st, C, round, INPUT(), RECEIVE()) returns the largest
subsequence of transactions in the input and receive tapes that constitute a valid
ledger, with respect to the contents of the chain the party already has, together
with a randomly generated neutral transaction. We denote the instantiation of
our protocol with these functions by ΠBoot

PL . For more details we refer to [21].
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Definition 8. A protocol Π implements a robust public transaction ledger in
the q-bounded synchronous setting without trusted setup if there is a round r0 so
that the following two properties are satisfied:

– Persistence: Parameterized by k ∈ N (the “depth” parameter), if in a certain
round after r0 an honest player reports a ledger that contains a transaction
tx in a block more than k blocks away from the end of the ledger, then tx will
always be reported in the same position in the ledger by any honest player
from this round on.

– Liveness: Parameterized by u, k ∈ N (the “wait time” and “depth” parame-
ters, resp.), provided that a transaction either (i) issued by Txgen, or (ii) is
neutral, is given as input to all honest players continuously for u consecutive
rounds after round r0, then there exists an honest party who will report this
transaction at a block more than k blocks from the end of the ledger.

Chain quality, chain growth and the strong common prefix property were
shown in [27] to be sufficient to implement such a ledger7 in a black-box manner.
Our protocol satisfies all these properties after a specific condition is met. Chain
quality holds after the 2f(1 + δ)(l + 1) block in the chain of any player, as
Corollary 2 dictates, and common prefix and chain growth hold after round 2l+2,
according to Theorem 1. Finally, due to chain growth, after at most (2(1+δ)(1−
δ)f/γ + 2)(l + 1) ≤ 14(l + 1) rounds all necessary conditions will have been met
with overwhelming probability.

Lemma 11 (Persistence). Assume 3(1+δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1+δ)β,

for some real δ ∈ (0, 1/2). Then for all k ∈ N protocol ΠBoot
PL satisfies Persistence

after round 2l + 2 with probability 1 − e−Ω(δ5k), where k is the depth parameter.

Lemma 12 (Liveness). Assume 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1 + δ)β,

for some real δ ∈ (0, 1/2). Further, assume oracle Txgen is unambiguous. Then
for all k ∈ N protocol ΠBoot

PL satisfies Liveness after round 14(l+1) with wait time
u = 3

(1−δ)γ · max(k, 1
1−(1+ δ

2 ) β
γ

) rounds and depth parameter k with probability at

least 1 − e−Ω(δ5k).

Corollary 3. Assume 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some

real δ ∈ (0, 1/2). Then protocol ΠBoot
PL implements a robust transaction ledger with

parameter r0 = 14(l + 1).

Fast PKI setup. Next, we use the ledger to generate an honest majority PKI
from scratch in a number of rounds that is linear in the security parameter. The
first idea that we are going to use is that of a 2-for-1 POW described in [21]. At a
high level, the technique allows to do combined mining for two POW schemes in
the price of one. In more detail, we can add additional information in the queries
to the random oracle, and if the response to the query is less than some value

7 A similar definitional approach was pursued in [34].
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T1, then we consider it a valid POW of type 1; if it is greater than some value
T2 we consider it as a valid POW of type 2. T1 and T2 should be appropriately
chosen so that the events of success in either of these POWs are independent.
The second POW is used to “mine” transactions, in the same way blocks are
mined. This guarantees that the number of transactions is proportional to the
hashing power of each player. By having parties broadcast their transactions on
one hand, and making sure that at least one honest block that contains these
transactions is in the chain of all honest parties due to liveness on the other hand,
the protocol in [21] manages to achieve consensus assuming an honest-majority
hashing power.

In our case, transactions will contain the public keys, and in this way we
will obtain an honest-majority PKI. However, in contrast with [21], we cannot
let parties start mining transactions from the beginning of the execution, since
the adversary would have some additional precomputation time. Instead, we
are going to wait for the public ledger to be established, and then use some
of the blocks added by honest parties to guarantee that all transactions where
mined recently enough. In more detail, any POW will be represented by a triple
〈w, ctr, label〉. The verification procedure for “block level” POWs (“block POWs”
for short) will be of the form

H(ctr, 〈G(w), label〉) < T1,

while the verification procedure for the “transaction level” POWs will be of the
form

[H(ctr, 〈label,G(w)〉)]R < T2,

where [a]R denotes the reverse of the bitstring a. In w we are going to encode the
information needed for each application. For example, in block POWs, w will
contain the transactions related to this block as well as the hash of the previous
block. Note that by making one hash query of the form H(ctr, 〈G(w0), G(w1)〉)
and only two comparisons, we will be mining POWs of both types at the same
time. Moreover, if �log(T1)� + �log(T2)� is less than κ, where κ is the size of
the hash’s output, then the events of succeeding in any of the two POWs are
independent, since they depend on different bits of the hash which are sampled
independently and uniformly at random by the random oracle.

Next, we describe our protocol ΠPKI
PL for an honest party P . L1, L2 are con-

stants such that L1 < L2.

– Initialization. P runs ΠBoot
PL , as described so far, until she receives a chain of

length at least L1. We choose L1 so that it is guaranteed that all security
properties hold, and about k new blocks have been inserted in the common-
prefix of the chains of all honest players.

– 2-for-1 mining. Let C be P ’s chain at the end of the initialization phase. From
now on, she is going to do 2-for-1 POW mining, and include in her transaction
POWs (i) the hash of the (L1−k)-th block of C, and (ii) a randomly generated
public key for which she has stored the corresponding secret key. Obviously,
a new key must be generated every time she starts mining a new transaction.
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Whenever P mines a new transaction, she diffuses it to the network, and
whenever she receives one, she includes it in the transactions of the block she
is mining.
The first time P receives a chain of length greater or equal to L2, she runs the
Key extraction procedure (below). The phase ends at round L2

(1−δ)γ , where P

runs the Termination procedure.
– Key extraction. P extracts and stores a set of keys from her current chain

according to the following rules: If chain C′ is her chain at this round, she
stores any public key which belongs to a transaction that (i) is in the first
L2 −k blocks of C′, and (ii) the hash of the block contained in the transaction
matches the hash of the (L1 − k)-th block in her chain.

– Termination. P outputs the keys from the key extraction phase and termi-
nates.

Next, we prove that a consistent PKI with an honest majority is generated
at the end of the execution of protocol ΠPKI

PL . Two properties are guaranteed: (1)
honest parties output the same set of keys and (2) more than half of these keys
have been generated by them. For the rest of this section let α2, β2, f2 be the
corresponding values of α, β, f for the difficulty level T2, e.g. f2 = nq T2

2κ . The full
proof of the following theorem is provided in the full version of the paper.

Theorem 4. Assume 3(1 + δ)f < 1, l > (1−δ)k/γ+3
1−3(1+δ)f , γ ≥ (1 + δ)β, for some

real δ ∈ (0, 1/2) and �log(T1)� + �log(T2)� ≤ κ. Then, for parameters L1 =
14(l + 1)(1 + δ)f + 2k and L2 = L1 + 2k · (1 + 10

δ ) (1+δ)f
(1−δ)γ the following hold for

protocol ΠPKI
PL with probability 1 − e−Ω(δ5k):

– All honest players output the same set of public keys, the size of which is

k
α2

γ

20
δ

≤ N ≤ 60k
f2

γ
(1 +

10
δ

);

– the majority of the keys are generated by honest parties; and
– ΠPKI

PL has round complexity linear in κ.

Proof (Sketch). First, note that the adversary can start precomputing trans-
actions at most 2k/γ rounds before the honest parties. Otherwise, she will be
unable to predict the hash of their chain as dictated by our protocol, since by
the chain quality property the chain of each honest player will contain an honest
block near the tail of the chain. Moreover, again by the chain quality and com-
mon prefix properties, the adversary will stop mining transactions at most 2k/γ
rounds after the honest parties. After this round, she will be unable to insert
her transactions deep enough in the chain for the honest parties to take them
into account. Finally, by choosing an appropriate value for δ, we are sure that
the number of keys mined by the honest parties is greater than the number of
keys mined by the adversary.
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Remark 4. To better understand ΠPKI
PL we compute different parameters of the

system for the Bitcoin network parameters. Assume that f = 2%, α = 1.33%, γ =
1.31%, β = 0.6%, k = 10, and δ = 0.25. The choice of f approximately cor-
responds to a rate of one block per 10 min with a round duration of about
12 s; the adversary’s hashing power is half of that of the honest parties. Then,
l ≈ 623, which corresponds in terms of rounds to about 2 h. Moreover, if we set
f2 to be equal to f /k we have that 80 < N < 600. We note that the parameters
of Bitcoin are quite conservative and that’s why our runtime suffers. In principle,
by carefully analyzing and re-engineering our protocol we can get tighter bounds;
many of the design decisions we got here, were made to aid the readability of
our work.

Remark 5. The probability that some honest party succeeds in mining at least
one transaction is:

Pr[≥ 1 key] = 1 − Pr[0 keys] = 1 − (1 − T2

2κ
)q 20k

(1−δ)γδ ≥ 1 − e− T2
2κ ·q 20k

(1−δ)γδ .

Hence, by setting T2 >
ln( 1

ε )2κ(1−δ)γδ

q·20k , each party will obtain at least one key
with probability at least 1 − ε, for any ε ∈ (0, 1). Note here that T2 and κ must
be carefully chosen to retain the independence of the 2 POWs. In case this is
not possible, the 2-for-1 mining phase may be extended.

Consensus and other applications. Next, we describe how ΠPKI
PL can be used

in other contexts. First, a direct application of our protocol is in the context of
proof of stake protocols. In this type of protocols, blocks are mined by randomly
selecting stake holders with probability proportional to their stake. A typical
requirement for bootstrapping such protocols (e.g. [28,30]), is that in the initial
state of the economy the majority of the coins is controlled by honest parties. By
assigning one coin to each public key produced by our protocol, we can efficiently
and securely bootstrap a proof of stake protocol.

A more general application of ΠPKI
PL is in solving consensus (aka Byzantine

agreement) [31,36], with no trusted setup, and in a number of rounds indepen-
dent of the number of parties. If parties submit transactions containing their
input instead of public keys, it follows that by taking the majority of their out-
put they are going to achieve Byzantine agreement. That is, everyone will agree
on the same value (the Agreement property), and if all honest parties have the
same input v, they are all going to output v (Validity).

Finally, our protocol for the establishment of an honest-majority PKI enables
the application of traditional Byzantine fault-tolerant techniques for ledger cre-
ation and maintenance based on “subcommittees” as opposed to mining (cf. [7])
to permissionless networks. Instead of having arbitrary membership authorities,
these committees can be elected using our protocol with the guarantee of an
honest majority. Note that by changing the difficulty of the transaction-level
POW we can force the number of parties in the committee to be in a specific
predefined interval.
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Reducing the communication cost. While the round complexity of our pro-
tocol is independent of the number of parties, this does not hold for its com-
munication cost, measured by the number of transmitted messages. The reason
is that in the challenge-exchange phase, all parties have to diffuse their random
challenges, thus increasing the communication cost of the protocol by an O(n)
factor. We can redesign the challenge-exchange phase so that the number of dif-
ferent messages diffused by honest parties is independent of their number, and
only depends on the security parameter and the precomputation time available
to the adversary.8 We do this in the following way: instead of having all parties
sent a random challenge in order to be sure that the genesis blocks that are later
mined are fresh, we demand that each random challenge be accompanied by a
POW. This way, all honest parties will be sure that at least one honest chal-
lenge is generated with high probability every O(κ) rounds. Moreover, honest
parties will only diffuse random challenges that are tied to a POW. Thus, the
total number of different messages sent will be upper-bounded by the number
of POWs that the adversary and the honest parties combined have generated.
Also, again different honest parties will have received the same block with at
most one round difference. By combining the above ideas, we can again create
a graded-agreement-type procedure for the genesis blocks and in the same way
achieve consensus. We defer further details to the full version of the paper.
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Abstract. Zero-knowledge (ZK) protocols are undoubtedly among the
central primitives in cryptography, lending their power to numerous
applications such as secure computation, voting, auctions, and anony-
mous credentials to name a few. The study of efficient ZK protocols for
non-algebraic statements has seen rapid progress in recent times, rely-
ing on secure computation techniques. The primary contribution of this
work lies in constructing efficient UC-secure constant round ZK protocols
from garbled circuits that are secure against adaptive corruptions, with
communication linear in the size of the statement. We begin by showing
that the practically efficient ZK protocol of Jawurek et al. (CCS 2013) is
adaptively secure when the underlying oblivious transfer (OT) satisfies
a mild adaptive security guarantee. We gain adaptive security with little
to no overhead over the static case. A conditional verification technique
is then used to obtain a three-round adaptively secure zero-knowledge
argument in the non-programmable random oracle model (NPROM).
Our three-round protocol yields a proof size that is shorter than the
known UC-secure practically-efficient schemes in the short-CRS model
with the right choice of security parameters.

We draw motivation from state-of-the-art non-interactive secure com-
putation protocols and leveraging specifics of ZK functionality show a
two-round protocol that achieves static security. It is a proof, while
most known efficient ZK protocols and our three round protocol are only
arguments.

1 Introduction

Zero-knowledge (ZK) proofs introduced in [36] provide a powerful tool in design-
ing a variety of cryptographic protocols. Since then, they have been an important
building block in various applications. Zero-knowledge proofs allow a prover to
convince a verifier about the validity of a statement, while giving no information
beyond the truth of the statement. Informally, an honest prover should always
convince a verifier about a true statement (completeness). Moreover, a malicious

c© International Association for Cryptologic Research 2018
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verifier learns nothing beyond the validity of the statement (zero-knowledge) and
a malicious prover cannot convince a verifier of a false statement (soundness).
In addition to soundness, a ZK protocol in which the prover’s witness can be
extracted by a simulator offers proof of knowledge.

It is known that every language in NP has a zero-knowledge proof system [34].
Despite this, proving generic statements is inefficient in practice, and there are
few techniques that allow efficient proofs. These techniques almost always apply
to a restricted set of languages, with a series of works [13,39,40,68] on proving
algebraic relationships like knowledge of roots, discrete logarithms etc.

Kilian’s zero-knowledge argument [50] achieves sub-linear communication,
but relies on PCP and is of theoretical interest. Groth [37] gave the first
constant-size non-interactive ZK proofs. Since then, many constructions of
SNARKs (Succinct non-interactive arguments of knowledge) have been pre-
sented [26,28,38,60], and have been implemented as well [23,64]. Though
SNARKs have short proofs and allow efficient verification, they have shortcom-
ings in prover efficiency. The prover performs public-key operations proportional
to the size of the circuit representing the statement. In addition, they rely on a
large trusted parameter; for example, a long common reference string (CRS).

Around the same time that ZK was introduced, Yao introduced secure
two-party computation (2PC) and garbled circuits (GC) [69]. The problem
of general multi-party computation (MPC) [10,33,70] considers a set of par-
ties holding private inputs with the task of computing a joint function while
preserving certain desired security properties. An interesting line of recent
works [3,12,21,31,42,43,45,48] establishes connections between MPC and ZK,
and use the techniques of 2PC and MPC for truly efficient ZK protocols. The
two main streams of works connecting MPC with efficient ZK protocols rely on
“MPC-in-the-head” approach [45,46] and garbled circuit based approach [48],
as elaborated below.

1.1 Efficient ZK Protocols

Ishai et al. [45,46] show how to use an MPC protocol to obtain a ZK proof for an
NP relation in the commitment-hybrid model. This approach, called “MPC-in-
the-head”, provides a powerful tool to obtain black-box constructions for generic
statements without relying on expensive Karp reductions. Recently, this tech-
nique spurred progress in constructing practical ZK protocols [20,31] resulting
in efficient ZK arguments tailored for Boolean circuits, known as ‘ZKBoo’ and
‘ZKBoo++’ respectively. They study variants of the “MPC-in-the-head” frame-
work, plug in different MPC protocols, and provide concrete estimates of sound-
ness. In yet another recent attempt, [3] proposes ‘Ligero’, a 4 round interactive
ZK argument with sub-linear (in the circuit size) proof-size relying on interactive
PCPs and plugging in a refined MPC of [25] in the “MPC-in-the-head” approach.
Specifically, they achieve a proof size of O(λ

√
|C| log |C|). The construction uses

Reed Solomon Codes from coding theory techniques. The marked improvement
in the proof size is obtained by careful tweaking of the protocol parameters.
The prover and verifier time is O(|C| log |C|) symmetric key operations, and
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without any public key operations. The protocol does not require any setup
and the security is proven in the stand-alone setting. The constructions of
[3,20,31] can be made non-interactive using the Fiat-Shamir heuristic in the
programmable RO model.

Jawurek et al. [48] construct a UC-secure ZK protocol (referred to as ZKGC
henceforth) using garbled circuits as the primary building block. The communi-
cation required for their protocol is linear in the size of the circuit implementing
the NP relation, and is also concretely efficient as it achieves malicious security
with only one garbled circuit. However, the protocol is inherently interactive.
ZKGC is essentially a version of Yao’s original constant-round 2PC protocol
where the GC constructor has no input; this yields full malicious security at
little overhead over the semi-honest case as Yao’s protocol in this case is already
secure against a malicious evaluator. The protocol uses oblivious transfer (OT).
The use of OT in ZK protocols dates back to [51]. Notably, Zero-knowledge,
when viewed as a special case of 2PC, allows for a relaxation in the properties
required of the underlying GCs, as noted in [48]. This led to the introduction of
the notion of privacy-free garbling schemes [27], which are optimized for the ZK
setting of [48]. A privacy-free garbling scheme only achieves authenticity, and
leverages privacy-freeness in order to save on communication and computation
costs of garbling. Privacy-free GCs are further studied by Zahur et al. [71], who
construct a privacy-free scheme using the HalfGates approach. Their privacy-
free scheme makes use of FreeXOR [53] to garble and evaluate XOR gates at
no cost, and produces only one ciphertext when garbling an AND gate (along
with two calls to a hash function H). Their construction comprises the current
state-of-the-art in privacy-free garbling for circuits. When formulaic circuits are
of concern, [54] shows how to do privacy-free garbling with zero ciphertext and
with information-theoretic security.

The interactive schemes based on garbled circuits allow for the flexibility
of how the keys for the underlying GCs are constructed and how the garbled
input (i.e. witness) is encoded. This leads to interesting applications making
non-blackbox use of ZKGC [21,52]. For instance, Kolesnikov et al. [52] intro-
duce a new primitive called “attribute selective encryption” as a method of
input encoding in ZKGC in order to construct attribute-based key-exchange.
This allows a client to prove to a server that it holds a certificate corresponding
to its attributes issued by a trusted authority, and that these attributes satisfy a
policy constructed by the server. Note that only proving knowledge of attributes
satisfying a given policy is insufficient in this setting. Another point of com-
parison is that the PROM assumption required by non-interactive ‘MPC-in-the-
head’ based ZK protocols can be used to construct highly efficient adaptively
secure garbled circuits [8] allowing ZKGC and our protocol to be cast in the
online-offline paradigm, with all circuit-dependent communication moved to a
preprocessing stage.

Lastly, we note that all of the above protocols deal with static adversaries,
where the adversary is allowed to choose the party it wishes to corrupt only at the
outset of the protocol. In this work, we are interested in building efficient concur-
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rently composable ZK protocols that can tolerate adaptive adversaries [6,15]. In
the following section, we summarize the literature on practical ZK protocols for
non-algebraic statements, and zero-knowledge protocols secure against adaptive
adversaries.

1.2 Adaptively Secure Zero-Knowledge

An adaptive adversary may dynamically decide which party to corrupt as the
protocol progresses. Its choice of corruptions may be adapted according to the
specific information it sees, possibly even corrupting both the parties. Tolerating
an adaptive adversary in a ZK protocol in the UC setting requires a straight-line
simulator that can generate a transcript on behalf of the prover without knowl-
edge of the witness, and later be able to “explain” the transcript for any given
witness (i.e. concoct valid-looking corresponding local randomness). In [6], the
authors show that the zero-knowledge proof system of GMW [35] is not secure
against adaptive adversaries or else the polynomial hierarchy collapses, and pro-
ceed to build ZK arguments. This work is further advanced in [18] where UC-
secure ZK arguments are presented relying on adaptive commitments schemes.
In [59], it is shown that adaptive ZK proofs exist for all of NP assuming only
one-way functions. They present constructions of adaptively secure ZK proofs
from adaptive instance dependent commitment schemes.

Adaptive ZK via Adaptive MPC. The recent work of Cannetti et al. [19]
shows how to construct constant-round two party computation using garbled
circuits in the standard model. They solve the problem of equivocating a garbled
circuit in order to explain the view of a constructor who has already sent a GC in
Yao’s protocol by means of a functionally equivocal encryption scheme. However
this comes at the cost of a GC whose size is quadratic in the size of the circuit
that is garbled. Previous adaptively secure constant round secure computation
protocols have relied on obfuscation [16,22,24].

Adaptive ZK from MPC-in-the-Head Approach. We note that the “MPC-
in-the-head” approach is likely to generate adaptively secure ZK protocols by
relying on adaptive commitments and possibly adaptively secure MPC. An
adaptive commitment scheme is used to commit to the views of the virtual
parties. The adaptive commitment schemes from standard assumptions [41,42]
may be taxing in terms of both communication and round efficiency. Alterna-
tively, the commitments used in IKOS-style protocols can be implemented in
the programmable random oracle model, allowing the simulator to equivocate
committed views, which yields adaptive security in a straightforward manner.
Another related method is via non-committing encryption (NCE), an approach
that has in other circumstances allowed circumvention of known lower bounds
in the plain model. For instance, the adaptively secure garbling scheme of [8]
uses a programmable RO to achieve NCE, which results in the circumvention
of a lower bound in the online communication complexity of adaptively secure
garbling schemes shown by Applebaum et al. [5].
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Adaptive ZK via 2PC-in-the-Head [42]. The work of [42] uses the “MPC-
in-the-head” technique [46] to construct adaptive ZK proofs. Their use of inter-
active hashing [62] to construct instance dependent commitments to equivocate
committed views requires a non-constant number of rounds. The overall round
complexity of their adaptive ZK protocol is O(μ log μ), where μ is the sound-
ness parameter. The proof size is O(μ|C|poly(λ)) and the poly(λ) factor is Ω(λ).
While their scheme can be made constant round by plugging in the appropriate
instance-dependent commitment scheme, it comes at the cost of proofs that are
quadratic in the size of the circuit implementing the NP relation.

In this work, we explore the possibility of building protocols that lie at the
intersection of all of these desirable qualities. Specifically we address the following
question:

Can we construct constant-round UC-secure ZK protocols that are secure
against adaptive corruptions, with proof size linear in the size of the circuit
that implements the NP relation?

1.3 Our Contributions

Inspired by the recent progress in the domain of garbling schemes as primi-
tives and interesting applications of garbled circuit (GC) based ZK protocols,
we revisit ZK protocols from GCs. Recent works including [21,52] make non-
blackbox use of the GC-based ZK protocols of [48], exploiting particularly the
way the keys for the underlying GCs are constructed and the method by which
the garbled input (i.e. witness) is encoded. Such applications will directly benefit
from any improvement in the domain of garbled circuit based ZK protocols. Our
contributions are listed below.

Efficient Constant-Round Adaptively Secure ZK Protocols. While secu-
rity against static adversaries provides a convenient stepping-stone for designing
protocols against strong malicious attacks, a general real-life scenario certainly
calls for adaptive security where the adversary can use its resources in a gradual
fashion, making dynamic corruption decisions as the protocol progresses. Our
first contribution is to show that the ZK protocol of [48] can be proven to be
adaptively secure in the UC setting if the underlying oblivious transfer (OT)
primitive satisfies a mild adaptive security guarantee. Namely, we require that
the receiver’s communication can be equivocated to any input of the receiver.
Such an OT is referred to as receiver equivocal OT (RE-OT). We show that the
framework of [65] itself, in one of its incarnation, provides RE-OT. Specifically,
the mode of [65] that offers statistical security for the receiver also offers the
flavor of adaptive security that we demand from RE-OT. The main observation
instrumental in crafting the adaptive proof of security for ZKGC is that the
constructor of GC has no input. Therefore, the primary challenge of explain-
ing the randomness of the GC construction in post-execution corruption case is
bypassed.

Next, we focus on reducing the exact round complexity of ZKGC style proto-
cols. We propose a three-round protocol. Since neither zero-knowledge proofs nor
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arguments can be achieved in less than four rounds without additional assump-
tions [32], we devise our protocols in the CRS model where the CRS is short
unlike those used in SNARKs. Starting with ZKGC, our three-round protocol
cuts down two rounds in [48] using the idea of conditional opening [12] of a
secret information that enables garbled circuit verification. That is, the key to
GC verification can be unlocked only when the prover possesses a valid wit-
ness. Though fairly simple, implementing this idea makes the security proof of
the resulting protocol challenging and subtle due to a circularity issue. Loosely
speaking, when the prover does not hold a valid witness, the authenticity of GC
should translate to the security of the key and at the same time, the security of
the key should translate to the authenticity of the GC. We handle this issue by
implementing the conditional disclosure via encryption in the Random Oracle
Model (ROM). While the ZKGC protocol requires at least 5 rounds in its most
round-efficient instantiation, we improve the complexity to three at no additional
cost of communication (in fact with slight improvement), and little change in
computation (one hash invocation versus a commitment in [48]). We show this
protocol to be adaptively secure too, when plugged in with RE-OTs.

In terms of concrete proof size (communication), our three-round protocol
yields a better result than ZKBoo [31] (and even it’s more efficient successor
ZKB++ [20]) both in its interactive and non-interactive form with the right
choice of the security parameters. We assume that circuit C computes the state-
ment to be proven. While our three-round ZK needs a communication of λ|C|
bits (ignoring the circuit-independent parts), [31] needs at least 3.41λ|C| to
achieve the same ( 1

2λ ) soundness. In the table below, we compare our protocol
asymptotically with the existing efficient constructions. Let ‘PKE’ and ‘SKE’
denote the number of public key and respectively secret key operations. We note
that RE-OT can be efficiently constructed assuming DDH assumption, with no
overhead over the regular OT in the framework of [65] (Table 1).

Table 1. Comparison among zero knowledge protocols

Protocols Proof size Prover runtime Verifier runtime Rounds Assumptions Security

ZKGC [48] O(λ · |C|) O(|C|) SKE +

O(n) PKE

O(|C|) SKE +

O(n) PKE

5 Standard

(OWF) +OT

Static

(UC)

ZKBoo [31] O(λ · |C|) O(λ|C|) SKE O(λ|C|) SKE 1 PROM Adaptive

ZKB++ [20] O(λ · |C|) O(λ|C|) SKE O(λ|C|) SKE 1 PROM Adaptive

Ligero

(Arithmetic)

O(λ1.5√|C|) O(|C| log |C|)
SKE

O(|C| log |C|)
SKE

1 PROM Adaptive

Ligero

(Boolean)

O(λ
√|C| log |C|) O(|C| log |C|)

SKE

O(|C| log |C|)
SKE

1 PROM Adaptive

[42] O(μ|C|poly(λ)) O(μ|C|poly(λ))

SKE

O(μ|C|poly(λ))

SKE

O(μ log μ) Standard

(OWP)

Adaptive

ZKGC

(This paper)

O(λ · |C|) O(|C|) SKE +

O(n) PKE

O(|C|) SKE +

O(n) PKE

5 Standard

(OWF) +

RE-OT (DDH)

Adaptive

(UC)

This paper O(λ · |C|) O(|C|) SKE +

O(n) PKE

O(|C|) SKE +

O(n) PKE

3 ROM + RE-OT

(DDH)

Adaptive

(UC)
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2-Round Zero-Knowledge Proofs. We next investigate the possibility of
building efficient GC based ZK protocols with fewer than three rounds of inter-
action. In the spirit similar to that of [42], our two round protocol borrows tech-
niques from non-interactive two-party computation (2PC) literature [1,44,61]
except for the following: We do not need the gadgets for input consistency checks
of the prover, and input recovery mechanisms in case of inconsistent outputs
[56,57,61,67]. Our protocol is a proof, while most known efficient ZK protocols
and our three round protocol are only arguments. The two round ZK may be
cast as a sigma protocol and by applying the Fiat-Shamir transform, one may
obtain NIZK arguments in the random oracle model. Finally, we observe that
for the 2-round and NIZK argument we do not rely on the authenticity property
of the garbling scheme. However, more efficient garbled circuit constructions by
giving up on authenticity is precluded by the result of [4]. While the result of [4]
needs to encode a different circuit (the underlying circuit augmented with a MAC
computation) to achieve authenticity using a private scheme, we show a similar
result while encoding the same underlying circuit. Both results essentially show
that any garbling scheme that satisfies privacy also has authenticity.

1.4 Organization

We begin by briefly discussing definitions and constructions required for this
work in Sect. 2. In Sect. 3 we show that the ZK protocol of [48] is adaptively
secure. Section 4 presents our three-round ZK protocol from conditional disclo-
sure. Section 5 discusses our 2-round ZK. We include our result on authenticity-
free garbling in the full version.

2 Preliminaries

Notation. We denote probabilistic polynomial time by ppt. Let λ be the
security parameter. [n] and [m,n] for n > m denote the sets {1, . . . , n} and
{m,m + 1, . . . , n} respectively. |t| denote the number of bits in a string t. We
use || to denote concatenation of bit strings, and write x

R← X to mean sampling
a value x uniformly from the set X . A function f(·) is said to be negligible if
∀c ∈ N, there exists n0 ∈ N such that ∀n ≥ n0, f(n) < n−c. Let S be an infinite
set and X = {Xs}s∈S , Y = {Ys}s∈S be distribution ensembles. We say X and
Y are computationally indistinguishable, if for any ppt distinguisher D and all
sufficiently large s ∈ S, we have |Pr[D(Xs) = 1] − Pr[D(Ys) = 1]| < 1/p(|s|) for
every polynomial p(·). In the following, we review few building blocks. The ZK
and Oblivious Transfer (OT) functionality are recalled in AppendixB.

2.1 Garbled Circuits

The work of Bellare et al. [9] formalizes Garbling Schemes as a primitive for
modular use in cryptographic protocols, by defining several notions of security,
including obliviousness, privacy and authenticity, of which we are interested in
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the latter two. Informally, privacy aims to protect the privacy of encoded inputs,
while authenticity captures the unforgeability of the output of a garbled circuit
evaluation. Majority of the schemes in the literature, including the classical
scheme of Yao [70], satisfy the two aforementioned properties. Using the language
of [9] for circuits; the circuit itself is a directed acyclic graph, where each gate g
is indexed by its outgoing wire, and its left and right incoming wires A(g) and
B(g) are numbered such that g > B(g) > A(g). Also, a circuit output wire can
not be an input wire to any gate. We denote the number of input wires, gates
and output wires using n, q and m respectively in a circuit C.

At a high-level, a garbling scheme consists of the following algorithms: Gb
takes a circuit as input and outputs a garbled circuit, encoding information, and
decoding information. En takes an input x and encoding information and outputs
a garbled input X. Ev takes a garbled circuit and garbled input X and outputs
a garbled output Y. De takes a garbled output Y and decoding information and
outputs a plain circuit-output (or an error, ⊥). Finally, we use an additional
verification algorithm in the garbling scheme that output 1 or 0 based certain
validity checks performed on a triple (C,C, e). Formally, a garbling scheme is
defined by a tuple of functions Garble = (Gb,En,Ev,De,Ve), described as follows:

– Garble algorithm Gb
(
1λ, C

)
: A randomized algorithm which takes as input

the security parameter and a circuit C : {0, 1}n → {0, 1}m and outputs a
tuple of strings (C, e, d), where C is the garbled circuit, e denotes the input-
wire labels, and d denotes the decoding information.

– Encode algorithm En (x, e): a deterministic algorithm that outputs the garbled
input X corresponding to input x.

– Evaluation algorithm Ev (C,X): A deterministic algorithm which evaluates
garbled circuit C on garbled input X, and outputs a garbled output Y.

– Decode algorithm De (Y, d): A deterministic algorithm that outputs the plain-
text output corresponding to Y or ⊥ signifying an error if the garbled output
Y is invalid.

– Verify algorithm Ve (C,C, e): A deterministic algorithm which takes as input
a circuit C : {0, 1}n �→ {0, 1}m, a garbled circuit (possibly malicious) C,
encoding information e, and outputs 1 when C is a valid garbling of C, and
0 otherwise.

A garbling scheme may satisfy several properties such as correctness, pri-
vacy, authenticity and notions of verifiability. The definitions for correctness,
privacy and authenticity are standard: correctness enforces that a correctly gar-
bled circuit, when evaluated, outputs the correct output of the underlying circuit;
privacy aims to protect the privacy of encoded inputs; authenticity enforces that
the evaluator can only learn the output label that corresponds to the value of the
function. We use two notions of verifiability. One of the notions enforces that
the garbling of a circuit indeed implements the specified plaintext circuit C.
This notion of verification is used in our two-round protocol, NIZK and also in
the Yao-based 2PC protocols using cut-and-choose (where the check circuits are
verified according to this notion) [56,57,61,67]. The other notion of verifiability
introduced in [48] enforces that the garbled output corresponding to a given
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clear output can be extracted for a verified tuple (C,C, e). This is used in our
three round protocol. For the sake of completeness, we give the definitions of
these properties in AppendixA.

We are interested in a class of garbling schemes referred to as projective in [9].
When garbling a circuit C : {0, 1}n �→ {0, 1}m, a projective garbling scheme pro-
duces encoding information of the form e =

(
k0

i , k1
i

)
i∈[n]

, and the encoded input
X corresponding to x = (xi)i∈[n] can be interpreted as X = En(x, e) = (kxi

i )i∈[n].

2.2 Hash Function and Random Oracle Model

We use a hash function H : {0, 1}∗ → {0, 1}poly(λ) which we model as a ran-
dom oracle. Namely, we prove the security of our protocol assuming that H
implements a functionality FRAND which for different inputs x, returns uniform
random output values from the range of H(x). In the proof, we rely on observ-
ability of H i.e. the reduction can observe the queries made to the H by the
distinguisher of certain two views. Note that the simulator does not observe
queries to the random oracle.

3 Adaptive Security of [JKO13]

In this section, we show that the garbled circuit based ZKGC protocol is adap-
tively secure when instantiated with an OT that satisfies a special property of
Receiver Equivocality. We formalize the notion of Receiver Equivocal Oblivi-
ous Transfer which is an OT primitive with mild adaptive security guarantees.
Essentially, we require that the view of a receiver be reconstructable in the case
of a post-execution corruption. A similar notion was introduced in [7]. We show
that the OT framework of [65] is already receiver equivocal when it is instanti-
ated with statistical security against a corrupt sender (“decryption mode”). We
then show that when the zero-knowledge protocol of [48] is instantiated with
RE-OT, it achieves adaptive security without any additional effort. Below, we
formulate RE-OT, recall the construction of [48], describe the adaptive proof
of security of [48] and conclude with an instantiation of RE-OT.

Definition of RE-OT. An oblivious transfer protocol is said to be receiver
equivocal if it is possible to produce the receiver’s message in the protocol without
committing to a choice bit. For this to be meaningful, we also require that it be
possible to efficiently generate the local randomness which when combined with
either choice bit would make an honest receiver output the same message. This
is formalized by requiring the existence of a simulator SRE which can perform
this task, in Definition 3.1.

Definition 3.1 (RE-OT). Let ΠOT = (ΠS
OT,ΠR

OT) be a 2-round OT pro-
tocol securely implementing the FOT functionality in the CRS model where S
and R run their respective algorithms as specified by ΠS

OT(crs, a0, a1,m
R; rS) and

ΠR
OT(crs, σ; rR) respectively. Here, a0, a1 are the sender’s inputs, σ is the receiver’s

choice bit, rS, rR are the sender’s and receiver’s respective local randomness, andmR

is the receiver’s message. Let (crs, t) be the output of the setup functionality for an
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instance of the protocol, where crs is the string that both parties have access to, and t
is the corresponding trapdoor which is accessible only to the simulator S. ThenΠOT

is an RE-OT if there exists an algorithm SRE (crs, t) which outputs
(
mR, rR0 , rR1

)

such that mR = ΠR
OT(crs, 0; rR0 ) = ΠR

OT(crs, 1; rR1 ), and rR0 , rR1
s≈ rR.

On the use of a CRS. We note here that there is nothing inherent in receiver
equivocation that demands a CRS to implement RE-OT. As we are interested in
achieving UC-security, we take the liberty of assuming that the protocol realizing
RE-OT will make use of a CRS. However, this does not preclude the existence of
RE-OT in the standalone model without a CRS, or even a UC-secure RE-OT
in the Global Random Oracle hybrid model [17] alone.

3.1 Recap of [JKO13]

We recall the ZKGC protocol below in the (FCOT,FCOM) hybrid model. The
functionalities are presented in AppendixB (Fig. 1).

Fig. 1. Zero-knowledge from garbled circuits [48]
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3.2 Proof of Adaptive Security for [JKO13] from RE-OT

In this section we show that instantiating the ZKGC protocol with RE-OT
satisfying Definition 3.1 yields a UC-secure protocol realizing FR

ZK (see Fig. 10)
tolerating adaptive adversaries.

Recalling Static Proof of Security. The simulator for a corrupt P plays the
role of an honest verifier V. It constructs and communicates a correct garbled
circuit, extracts the witness acting on behalf of FCOT functionality, and accepts
the proof only if the extracted witness is a valid one. On the other hand the
real verifier accepts when the opening of the commitment is the correct output
wire key Z. In FCOM-hybrid model, we can show that a malicious prover who
is able make a real verifier output ‘accept’ (but not the simulator) can be used
to break authenticity of the underlying garbling scheme. We can use such a
malicious prover P∗ to construct an adversary A for the authenticity game of [9]
as follows:

1. A receives the invalid witness x∗ from P∗ on behalf of FCOT and forwards it
to the authenticity challenger.

2. A receives C,X from the authenticity challenger and forwards it to P∗

3. A receives forged key Z ′ from P∗ on behalf of FCOM and submits it to the
authenticity challenger.

Clearly, the event that A successfully forges an output for the given C,X is
equivalent to the event that P∗ convinces a verifier to output ‘accept’ without
a valid witness. By authenticity of the garbling scheme, this event occurs with
negligible probability.

The simulator for a corrupt V receives the encoding information from V on
behalf of the FCOT functionality and extracts the output 1-key Z using received
garbled circuit and encoding information. It then sends Z to the verifier only
after receiving the correct encoding information from V in the open-all phase.
Otherwise, it sends ⊥ to V. Security in this case follows from the verifiability
(that allows extraction of the output key from encoding information) of the
underlying garbling scheme.

Adaptive Proof of Security. The bottleneck faced in simulating garbled cir-
cuit based protocols for post-execution corruptions usually lies in “explaining”
the randomness of the GC constructor once her input is known. In the case of
two-party computation, equivocating the view of the garbled circuit constructor
requires heavy machinery such as in Canetti et al. [19]. However in the ZKGC
protocol verifier V is the GC constructor and has no input. The simulator can
therefore run the code of honest V, which includes being an honest sender in
the OT protocol (this is also why our OT need not achieve full-fledged adaptive
security). On the prover’s side, receiver equivocality of the OT allows a simu-
lator to equivocate an adaptively corrupted prover’s view of the OT protocol,
as per the witness once known. We make the observation that every step of P
following the OT is independent of the witness. Specifically, once the output key
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Z has been obtained by evaluating the GC sent by V,P does not use the wit-
ness again. Note that the simulator does not need the witness to obtain Z; the
ZKGC simulator invokes the ΠOT simulator in order to extract all inputs of V
and obtain all keys of the GC. Once the simulator obtains Z, the code of honest
P can be run to complete the simulation. The implication of this for simulation
of a post-execution corruption of P is that no additional work needs to be done
besides equivocating the view of P in the OT. We now give a formal proof for
all the cases:

– Simulation for V. The verifier, until it is corrupted, can be simulated follow-
ing the static simulator for the corrupt P, irrespective of when P is corrupted.
As recalled above, the simulation can be carried out by running the code of
honest verifier (constructing a correct garbled circuit, participating in the
RE-OTs with the correct encoding information and sending the correctly
constructed garbled circuit). Upon corruption, the simulator can explain to
the corrupt V the communication by means of the randomness used in its
honest execution of V’s code. The indistinguishability follows from the proof
in the static corrupt prover case.

– Simulation for P. If the prover is corrupted at the outset, then there is
nothing to simulate. So we consider the worst scenario of post-execution cor-
ruption. If the verifier is also not corrupt during the construction of the gar-
bled circuit, then simulator acts on behalf of both the honest parties and
runs the code of honest verifier. In the FCOM-hybrid model, the simulator,
without having access to the actual witness, runs

(
mR, rR0 , rR1

)
← SRE (crs, t)

to generate the transcript that needs to be communicated on behalf of P in
RE-OT instances. The rest of the simulation is straight-forward irrespective
of whether the verifier is corrupt or not. In the final step, the simulator may
have to communicate Z which it picked itself while simulating V in this case.
When P is corrupt in the end, its input xi to the ith RE-OT instance can
be explained as per any input using the randomness rRxi

returned by SRE of
the RE-OTs. On the other hand, if V was corrupt before the garbled circuit
construction phase, then the simulator gets Z via unlocking the GC using
encoding information extracted from the corrupt V’s communication. The
rest remains the same as the previous case.
Security in the former case follows via receiver equivocality of RE-OT. In
the latter, it follows additionally from verifiability that ensures the encoding
information leads to the correct Z with high probability.

3.3 Instantiation of RE-OT

The OT framework of [65] is already receiver equivocal as per Definition 3.1 when
instantiated in “decryption mode”. The protocol can be constructed efficiently
under the Decisional Diffie Hellman, Quadratic Residuosity, or Learning With
Errors hardness assumptions. For simplicity, in this paper we recall the instan-
tiation of ΠPVW and describe SRE

PVW under the DDH hardness assumption alone
(Fig. 2).
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Fig. 2. RE-OT assuming DDH: as per [65]

Theorem 3.2. The protocol ΠPVW in Fig. 2 is a RE-OT, assuming that DDH
is hard for G.

Proof. The protocol ΠPVW in Fig. 2 is proven to realize the FOT functionality
in the UC model by Peikert et al. [65]. It is easy to see how SRE

PVW allows for
receiver equivocation as per Definition 3.1:

– The randomness rRσ provided is interpreted as R’s secret exponent α.
– Recall that the message mR is (gr

0, h
r
0), and candidate randomness output by

SRE
PVW is rR0 = r, and rR1 = rR0 · t−1 = r · t−1.

– Correctness of message mR can be seen as follows:
1. ΠPVW

(
crs, 0; rR0

)
will output

(
g

rR
0

0 , h
rR
0

0

)
= (gr

0, h
r
0) = mR

2. ΠPVW

(
crs, 1; rR1

)
will output

(
g

rR
1

1 , h
rR
1

1

)
=

(
g
(r·t−1)
1 , h

(r·t−1)
1

)

Recall that the trapdoor t relates g0 to g1 as gt
0 = g1 and similarly ht

0 = h1.

Therefore we have that
(

g
(r·t−1)
1 , h

(r·t−1)
1

)
= (gr

0, h
r
0) = mR.

– Finally, rR0 , rR1 = r, r · (t−1) are clearly uniformly random, as r is sampled
uniformly at random.


�
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Also note that RE-OT is strictly weaker than OT with security against
adaptive corruptions; any protocol satisfying the latter notion will necessarily
be receiver-equivocal in order for the receiver’s view to be fully simulatable in
the event of a post-execution corruption.

4 Zero Knowledge in Three Rounds

In this section, we present a 3-round ZK protocol against a malicious verifier
requiring just one GC in the non-programmable random oracle model, with no
increase in communication complexity. Our protocol achieves this by a technique
for non-interactive GC verification which allows us to remove the commitment
and OT-open-all phases from ZKGC. Our approach is reminiscent of the tech-
nique of conditional disclosure of secrets (CDS) [30]. CDS has since been gener-
alized [47], and used in several works, including in applications to improve round
complexity of protocols [2,11]. We show that the protocol is adaptively secure
when the underlying OTs are receiver equivocal.

4.1 High-Level Idea

The high round cost of ZKGC makes it undesirable for many applications. How-
ever its usage of only one GC for an actively secure protocol is an attractive
feature, prompting us to examine whether we can improve on the number of
rounds required to realize ZK with only one GC. We now describe our intuition
behind the protocol, beginning with informal observations about the number of
rounds in ZKGC. Assuming the ZKGC paradigm to be broadly characterized
by a protocol where the verifier V constructs a GC which is then evaluated by
prover P, we make the following (informal) observations:

– As V constructs the GC, P’s witness bits must be encoded as garbled input
and delivered by means of an OT. The most efficient UC-secure OT in the
literature [65] requires 2 rounds to instantiate.

– Assuming the underlying GC to be statically secure in the terminology of
Bellare et al. [8], the GC can at best be sent to P along with the final message
of the OT (if not after the OT).

– P must communicate some information as a ‘response’ to V’s GC ‘challenge’;
for instance the garbled output obtained as a result of evaluating the GC
with her witness. This must necessarily be after she receives the GC, adding
at least one more round after the OT.

In summary, it appears that the ZKGC paradigm requires at least 2 rounds
for the OT, plus the GC transmission, and one round following that. Therefore, a
3-round ZK protocol appears to be optimal in the ZKGC paradigm, informally
suggesting the optimality of our protocol. In the following, we make several
observations that are instrumental to our protocol.

Conditional Verification of Garbled Circuits. We begin by making the
following observation about the original ZKGC protocol: even a prover who does
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not have a witness is given the chance to first commit to her garbled output and
verify that the GC she received was correctly generated. Verification of the GC
is a process that takes two additional rounds of interaction in their protocol.
We ask, can we use conditional disclosure of secrets to reduce the number of
rounds: “can we provide some additional information with a GC that will allow
an evaluator to non-interactively verify that the GC was correctly constructed
only when it possess a valid witness?” We answer this question in the affirmative,
at least for the ZKGC setting. An idea somewhat similar in spirit was proposed
in [12] to construct a three-round ‘weak’ ZK protocol from a garbling scheme
and point-obfuscation. That is, knowing the witness gives the prover access to a
secret via a garbled circuit handed over by the verifier. The secret, then, can be
used to unlock the seed that opens the garbled circuit and enables verifying the
correct construction of the GC. Technique-wise, we depart from the work of [12]
as follows. The secret is encoded in the circuit output in [12] and hence, privacy
of the garbling circuit is one of the properties they rely on to achieve soundness.
On the contrary, the secret, in our case is the output key corresponding to bit 1
and hence, soundness is achieved via authenticity. Qualitatively, their protocol
is not a full-fledged ZK, is in the plain model, has a non-black-box simulator
and relies on strong assumptions such as obfuscation. Our ZK protocol is proven
UC-secure with a black-box simulator and relies on standard assumptions, albeit
assuming a CRS setup.

Interestingly, the intuition behind the ability of [48] to achieve full black-box
simulation was that the relaxation in round complexity rendered the four-round
barrier in the plain model [32] inapplicable. However, our result demonstrates
that the trusted setup required to implement a full black-box simulatable two-
round OT is sufficient to construct a three round zero-knowledge argument using
the concretely efficient [48] technique and a non-programmable random oracle.

Our intuition is implemented as follows: Given that
(
C,

{
(k0

j , k1
j )

}
j∈[n]

,

(k0, k1)
)

← Gb
(
1λ, C

)
and an honest P has obtained encoded input X =

(
k

xj

j

)
j∈[n]

for a witness x = (x1 . . . , xn), she can compute k1 = Ev (C,X). Now
that P has evaluated the GC, we wish to enable her to ‘open’ the GC and verify
that it was constructed correctly. To do this, we provide her with a ciphertext
encrypting some useful information. Concretely, the ciphertext T = H(k1) ⊕ rS,
where H is a random oracle and rS contains the randomness used by the sender
in the OT instances. Once P gets this randomness, she can unlock

{
k0

j , k1
j

}
j∈[n]

and can verify if the circuit has been constructed correctly. In the following, we
formalize the property needed from the OT protocol, namely that the random-
ness of the sender reveals the inputs of the sender.

Sender-Extractability of OT. Let ΠOT = (ΠS
OT,ΠR

OT) be a 2-round OT pro-
tocol securely implementing the FOT functionality in the CRS model where S and
R run their respective algorithm as specified by ΠS

OT and ΠR
OT respectively. Let

crs be the string that both parties have access to. We denote the first message of
the protocol sent by the receiver R by mR = ΠR

OT(crs, σ; rR) where σ is R’s choice
bit and rR his randomness. Let the input of the sender S be a0, a1; we denote the
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second message of the OT protocol, sent by S, by mS = ΠS
OT(crs, a0, a1,m

R; rS).
The receiver can now compute the chosen message, xσ = ΠR

OT(crs, σ,mS; rR).
We assume that ΠOT has the following sender-extractable property: revealing
the randomness of the sender, allows the receiver to reconstruct the sender’s
messages correctly with high probability. That is, there exists a public efficiently
computable function, Ext such that Ext(crs, TOT(a0, a1, σ), rS) outputs (a0, a1)
where TOT(a0, a1, σ) refers to the transcript of ΠOT with sender’s input as a0, a1

and receiver’s input as σ. Namely, TOT(a0, a1, σ) = (mR,mS) where mR and mS

are as defined above.

Definition 4.1. A protocol ΠOT is a secure sender-extractable OT protocol if

– it securely implements FOT in the presence of malicious adversaries, and
– ∀ a0, a1, σ, such that |a0|, |a1| ≤ poly (λ), σ ∈ {0, 1},∃ a PPT algorithm Ext

such that the following probability is negligible in λ.

Pr
(
(a′

0, a
′
1) �= (a0, a1) : Ext(crs, TOT(a0, a1, σ), rS) = (a′

0, a
′
1)

)
.

We note that the protocol of [65] is UC-secure in the CRS model, is 2-rounds,
and satisfies the sender-extractability property of Definition 4.1. We use such a
protocol in our construction.

4.2 Our Construction

At a high-level, our construction proceeds as follows. The verifier constructs a
garbled circuit of the circuit C implementing the relation. The prover obtains
the wire keys corresponding to his witness via an OT protocol. Now, the verifier
sends the garbled circuit to the prover, and, in addition, a ciphertext. This
ciphertext allows the prover to open and verify the garbled circuit, but only if
he possesses a valid witness. The complete description of our protocol ΠZK3 is
presented in Fig. 3. We now prove security of ΠZK3 in Universal Composability
(UC) framework. As we do not rely on programming the Random Oracle, we
can also adapt our proof in the UC setting to use a Global Random Oracle [17].

Theorem 4.2. Let Garble be a correct, authentic, verifiable garbling scheme,
ΠOT be an sender-extractable OT protocol, and H be an extractable random
oracle. The protocol ΠZK3 in Fig. 3 securely implements FR

ZK in the presence of
malicious adversaries.

Proof. To prove the security of our protocol, we describe two simulators. The
simulator SP simulates the view of a corrupt prover and appears in Fig. 4. The
simulator SV simulates the view of a corrupt verifier and is presented in Fig. 5.

Security against a Corrupt Prover P� . We now prove that idealFR
ZK,SP,Z

c≈
realΠZK3,A,Z when A corrupts P. We begin by noting that the simulated and the
real worlds are identical when P uses a valid witness x. The view of a malicious
P� who does not possess a valid witness x is proven to be computationally close
to the simulation through an intermediate hybrid hyb1. The hybrid hyb1 is
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Fig. 3. 3-round GC based zero knowledge protocol

constructed identically to idealFR
ZK,SP,Z with the exception of the criterion to

output accept. In hyb1, the verifier accepts if P� outputs the correct k1 (as in
the real view) regardless of the witness used. We begin our analysis by noting
that unless a P� queries the correct k1 to the random oracle H, the string T
appears completely random. Therefore, given that a P� attempting to distinguish
between the real view and the view generated by hyb1, we branch our analysis
into the following cases:
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Fig. 4. Simulator SP

– P� does not output the correct k1 in either world. Here we assume that
a P� also does not query the correct k1 to the random oracle H to be able to
unlock ciphertext T . If the prover does indeed query the correct k1 to H with
non-negligible probability, we move on to the next case. A P� who is successful
in distinguishing realΠZK3,A,Z from hyb1 in this case can be used to break
OT sender security. The reduction computes a garbled circuit C and sends the
input keys to the OT challenger (by means of the environment for the OTs) as
the sender’s input. The reduction then extracts the input x of P� and forwards
to the OT challenger as the choice bits of the receiver. The response of OT
challenger who computes the sender’s message either by invoking a real sender
i.e. as mS

j = ΠS
OT(crs, k0

j , k1
j ,mR

j ; rSj ),∀j ∈ [n] or by invoking a simulator
i.e. as mS

j = ΠS
OT(crs, kxj

j , 0λ,mR
j ; rSj ),∀j ∈ [n] is sent to the reduction who

further forwards the message to P� along with C and a random T . In case
the OT challenger invokes a simulator the view of P� is identical to hyb1,
whereas when the OT challenger uses a real execution of ΠOT the view of P�

is identical to real (T is random given that the correct k1 is never queried to
H). Therefore, the probability of distinguishing between the REAL and hyb1

view translates to the probability of distinguishing between the real and the
simulated view of the OT protocols for the case when the receiver is corrupt.
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– P� outputs the correct k1 in realΠZK3,A,Z with significantly higher
probability than in hyb1. This case is similar to the previous case in that
P� can be used to break sender security of the OT by computing C locally
in the reduction. If P� outputs a correct k1, the reduction is interacting with
ΠOT whereas if not, the challenger must have invoked the simulator for ΠOT.
The advantage of this reduction is the difference in probabilities with which
P� forges k1 successfully in the real and hyb1 worlds.

– P� outputs the correct k1 in both worlds with almost the same prob-
ability. The corrupt P� can be used directly to break authenticity of the gar-
bling scheme. Clearly the OT message corresponding to inactive input keys
are not used by the corrupt P; the ability to output the correct k1 must be
derivative of the ability to forge a key for the garbled circuit alone. It is there-
fore straightforward to use P� to forge k1 for a given garbled circuit C, as
its view can be generated as per hyb1, which does not require the inactive
garbled circuit keys to compute the OT messages.

Note that in Cases 2 and 3, we consider a P� who outputs k1 to be equivalent
to a P� who queries the random oracle on k1 to unlock T in its effort to distin-
guish real from hyb1. Instead of receiving k1 directly from P�, our reductions
will observe its query to the random oracle.

Finally idealFR
ZK,SP,Z deviates from hyb1 only in its criteria to output accept.

Only a corrupt P who is able to output k1 will be able to distinguish hyb1 from
idealFR

ZK,SP,Z . Such a P can be used directly to forge an output key for a given C
with the same probability (which by authenticity of the garbling scheme, must
be negligible).

Security against a Corrupt Verifier V� . We now argue that idealFR
ZK,SV,Z

c≈
realΠZK3,A,Z when A corrupts V. The above two views of V∗ are shown to be
indistinguishable via a series of intermediate hybrids.

– hyb0: Same as realΠZK3,A,Z .
– hyb1: Same as hyb0, except that OT First Message phase is emulated by

invoking the simulator of ΠOT for corrupt receiver.
– hyb2: Same as hyb1, except that k1 is computed in the following way instead

of running Ev(C,X). The simulator of ΠOT for corrupt receiver is used to
extract (k0

j , k1
j ) for j ∈ [n]. Then Ve2(C,C, {k0

j , k1
j }j∈[n]) is run. If the output

is 0, the prover aborts. Otherwise Ve1 (C, e, 1) is run to extract k1 and the
prover runs the rest of the protocol using k1.

– hyb3: Same as hyb2, except that the following check for abort in GC Evalu-
ation, Verification and Output Disclosure Phase is removed: On com-
puting rS1 || · · · ||rSn = rS = T ⊕ H

(
k1

)
, the prover aborts if any call to the

extractor Ext of the sender’s input to OT returns ⊥.

Clearly, hyb3 = idealFR
ZK,SV,Z . Our proof will conclude, as we show that

every two consecutive hybrids are computationally indistinguishable.
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Fig. 5. Simulator SV

hyb0
c≈ hyb1: The difference between these hybrids lies in the way OT first mes-

sage is generated. In hyb0, the message is generated by a real receiver that pos-
sesses the choice bits x, whereas in hyb1, the simulator for ΠOT for the corrupt
receiver generates the message. The indistinguishability follows via reduction to
the sender security of n instances of OT.

hyb1
c≈ hyb2: The difference between these hybrids lies in the way k1 is com-

puted. In hyb1, k1 is computed as a real prover does. On the other hand, k1

is extracted using Ve1 and the encoding information extracted from the OTs in
hyb2. By the verifiability property (Verifiability I in AppendixA) of the garbling
scheme, the view of V� in hyb2 and hyb1 are indistinguishable.

hyb2
c≈ hyb3: The difference between these hybrids lies in the conditions checked

by P for abort in GC Evaluation, Verification and Output Disclosure
Phase. In the former, the protocol is aborted when one of the invocations to
Ext returns messages different from corresponding input labels which does not
happen in the latter as the check is removed. By the sender extractability of
the OT protocol (Definition 4.1), the hybrids are indistinguishable except with
negligible probability. 
�

4.3 Making ΠZK3 Adaptively Secure

The challenge in achieving adaptive security for ΠZK3 is essentially the same
as ZKGC; once the GC output key Z has been retrieved, all of P’s steps are
independent of the witness.

Simulation for P. Consider the worst case scenario of post-execution corrup-
tion. The simulator runs

(
mR, rR0 , rR1

)
← SRE (crs, t) to generate the first mes-

sage of P, and obtains the GC output key Z either by extracting the encoding
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information from V’s response (if V is corrupt) or using the key it picked itself
when simulating V. The rest of the simulation is straightforward, as the code of
honest P can be run from this point. In case the adversary chooses to corrupt
P, the simulator hands over the randomness rRxi

for each OT instance encoding
witness bit xi.

Simulation for V. As V has no input, the simulator proceeds by running the
code of the honest verifier, with the only difference being that it accepts a proof
by checking whether P has input a valid witness in the OT. A malicious P can
distinguish between the real protocol and the simulation only by forging Z,
for which there is no advantage afforded by adaptive corruptions; a dishonest P
who is successful in this setting can be used to break authenticity of the garbling
scheme just as in the static case.

5 Zero Knowledge in Two Rounds

As discussed in Sect. 4, it seems unlikely that we can do better than three rounds
to obtain a zero-knowledge from only one garbled circuit. Therefore, we explore
whether we can save on the number of rounds when constructing ZK protocols
by allowing multiple garbled circuits. In this section, we adopt a ‘cut-and-choose’
approach in order to construct a GC-based ZK protocol that requires only two
rounds.

Our protocol is similar in spirit to the protocol of [42], who extend the tech-
nique of “MPC-in-the-head” [45]. The “MPC-in-the-head” is a technique intro-
duced by Ishai et al. that allows a generic transformation of an MPC protocol
into a zero-knowledge proof. In [42], the authors extend this idea, and give a
generic transformation from a secure two-party computation protocol to a ZK
proof.

The protocol is essentially a special case of general cut-and-choose. Since
the verifier has no input, we do not have to handle selective failure where the
evaluator’s abort could leak a bit of his input, or ensure input consistency of the
garbler, again, since the circuit is evaluated on an input entirely known to the
garbler. While in [42], the protocol is seen as “2PC-in-the-head”, we cast our
protocol as cut-and-choose, and apply a standard transformation based on OT.
Loosely speaking, choosing to reveal P1’s view in “2PC-in-the-head” in [42] is
equivalent to choosing a circuit to be a check circuit in our protocol; and choosing
to reveal P2’s view corresponds to a circuit being an evaluation circuit. Taking
this view, we get a zero-knowledge argument whereas the “2PC-in-the-head”
of [42] gives a zero-knowledge proof. We note that we do not need to enforce
output recovery when two evaluated circuits result in different outputs. The
output recovery mechanism that is used in general 2PC protocols [1,56–58,61]
relies on authenticity property of the underlying garbling scheme. Our protocol
can be compiled into a NIZK using standard techniques and transformations.

Next, we note that we can upgrade our argument to a proof following the
idea of [42]; we augment our two-round argument with statistically binding com-
mitments to the input GC keys from P. The inputs of P to the OT consist of
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the openings of all commitments (for a check circuit) as one message, and only
the committed keys required to evaluate the GC on the garbled witness as the
other message. Notably, the efficient ZK protocols such as those from garbled cir-
cuits [48] (including our 3 round construction presented in the previous section),
ZKBoo [31], SNARKs and SNARGs are arguments. Our transformation requires
public key operations proportional to the witness size alone whereas the best way
we can think of for transforming ZKBoo to a proof involves public key operations
proportional to the circuit size. For instance, running a 3-out-of-2 OT where the
prover feeds three views that it creates ‘in the head’ as the input of the OT sender
and the verifier chooses two indices picked uniformly at random indicating the
two views to be opened for verification.

Once more, we consider the scenario where a prover P would like to prove to
a verifier V that she knows a witness x for instance z such that C(x) = 1, where
C is the circuit implementing the relation R(z, x).

5.1 Our Construction

Informally, P garbles C to produce μ independent garbled circuits, and sends
them to V, where μ is a statistical security parameter. Meanwhile, V samples a
challenge string c

R← {0, 1}μ. The positions at which bit string c is 0 will indicate
which circuits V would like to verify (check circuits), whereas the positions at
which c is 1 indicate which circuits V would like to evaluate (evaluation circuits).
If all the check circuits are valid, and all the evaluation circuits decode to the
correct output, V believes that P indeed has a witness x for the instance z. P
would have to correctly guess V’s entire challenge string in order to cheat and
avoid detection.

Intuitively, P constructs μ independent garbled circuits of C, and for each
instance acts as a sender in the OT protocol with messages corresponding to
verification and evaluation information, respectively of the garbled circuit C,
while sending the garbled circuit and decoding information directly to V (with
the final message of the OT). V acts as the receiver in the OT protocol with choice
bit ci in the ith OT instance. She receives the first message to check or the second
message to evaluate a given circuit, as per her challenge. When instantiated with
the UC-secure OT in the framework of [65], our protocol requires only 2 rounds.
Our 2-round ZK protocol ΠZK2 is described in Fig. 6. We include a proof that
the protocol is UC-secure in the FOT-hybrid model in the full version.

The zero knowledge protocol ΠZK2 is not a zero knowledge proof. It is only an
argument. We may obtain a proof using the idea of [42], resulting in a 2-round
zero-knowledge proof.

5.2 Our Construction for ZK Proof

The zero knowledge protocol ΠZK2 is not a zero knowledge proof. It is only an
argument. We may obtain a proof using the idea of [42], resulting in a 2-round
zero-knowledge proof. We outline the approach below for completeness, and give
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Fig. 6. 2-round zero-knowledge protocol.

the complete protocol in the full version. For a legitimately constructed garbled
circuit C implementing an unsatisfiable circuit (implying there is no witness for
the statement), an unbounded P� can find a set of keys, completely unrelated
to the legitimate encoding information e, (say, by breaking the security of the
underlying cryptographic primitive used in the garbled circuit) which evaluates
C to the legitimate key corresponding to one. For instance, by breaking the
collision-resistance of the hash function used to garble the gates. With such a
circuit, the verification will always pass when legitimate encoding information is
passed on. On the other hand, the other set of keys will allow to evaluate to 1
despite the fact that C is unsatisfiable. P� can thus convince V of a false state-
ment. To prevent P from cheating we ensure that the wire labels that it provides
for evaluation correspond to the valid encoding information e. This is done by
asking P to commit to the encoding information in a randomly permuted order.
Formally, for circuit i and input wire j, P must prepare and send the following
commitments where eij denotes the encoding information corresponding to jth
input wire of the ith circuit:

(B0
ij ,B1

ij) = (Com(En(bij , eij)),Com(En(1 − bij , eij))), for bij
R← {0, 1}

The commitment Com is statistically binding and computationally hiding com-
mitment scheme ensuring the binding property against an unbounded powerful
P�. An ElGamal based commitment scheme suffices for our requirement. V checks
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if the commitments (B0
ij ,B1

ij) opens to legitimate encoding information if the ith
circuit is a check circuit. On the other hand, if the ith circuit is an evaluation
circuit, then it verifies that every received input wire label is consistent with one
of the given commitments. The commitments used as above makes sure that V
evaluates the evaluation circuits on the legitimate wire labels consistent with e.
The cut-and-choose guarantees that correct circuits are used for evaluation.

A Properties of Garbling Schemes

Definition A.1 (Correctness). A garbling scheme Garble is correct if for all
input lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m and inputs x ∈ {0, 1}n,
the following probability is negligible in λ:

Pr
(
De(Ev(C,En(e, x)), d) �= C(x) : (C, e, d) ← Gb(1λ, C)

)
.

Definition A.2 (Privacy). A garbling scheme Garble is private if for all input
lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m, there exists a ppt simulator
S such that for all inputs x ∈ {0, 1}n, for all probabilistic polynomial-time adver-
saries A, the following two distributions are computationally indistinguishable:

– Real(C, x) : run (C, e, d) ← Gb(1λ, C), and output (C,En(x, e), d).
– IdealS(C,C(x)): output (C′,X, d′) ← S(1λ, C, C(x))

Definition A.3 (Authenticity). A garbling scheme Garble is authentic if for all
input lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n,
and all probabilistic polynomial-time adversaries A, the following probability is
negligible in λ:

Pr

(
Ŷ �= Ev(C,X)
∧De(Ŷ, d) �= ⊥ :

X = En(x, e), (C, e, d) ← Gb(1λ, C)
Ŷ ← A(C, x,C,X)

)

.

Definition A.4 (Verifiability I). A garbling scheme Garble is verifiable if for
all input lengths n ≤ poly(λ), circuits C : {0, 1}n → {0, 1}m, inputs x ∈ {0, 1}n,
and PPT adversaries A, the following probability is negligible in λ:

Pr
(
De (Ev(C,En(x, e)), d) �= C(x) : (C, e, d) ← A(1λ, C)

Ve (C,C, e, d) = 1

)

For completeness, we also require the following property of a verifiable garbling
scheme:

∀ (C, e, d) ← Gb
(
1λ, C

)
, Ve (C,C, e, d) = 1
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B Functionalities

Oblivious Transfer. Oblivious transfer (OT) [49,63,66] is a protocol between
a sender (S) and a receiver (R). In a 1-out-of-2 OT, the sender holds two inputs
a0, a1 ∈ {0, 1}k and the receiver holds a choice bit σ. At the end of the pro-
tocol, the receiver obtains aσ. The sender learns nothing about the choice bit,
and the receiver learns nothing about the sender’s other input. The ideal OT
functionality is recalled below in Fig. 7.

Committed OT and Commitment Functionalities. The FCOT and FCOM

functionalities are provided in Figs. 8 and 9 respectively. The FCOT functionality
can be securely realised in the framework of [65] with an augmentation for the
Open-all property, as discussed in [48]. The FCOM functionality can be securely
and efficiently realised as well [55].

Fig. 7. The ideal functionality FOT for oblivious transfer

Zero Knowledge. A Zero-knowledge (ZK) proof allows a prover to convince a
verifier of the validity of a statement, without revealing any other information
beyond that. Let R be an NP relation, and L be the associated language. L =
{z | ∃x : R(z, x) = 1}. A zero-knowledge proof for L lets the prover convince
a verifier that z ∈ L for a common input z. A proof of knowledge captures not
only the truth of a statement z ∈ L, but also that the prover “possesses” a
witness x to this fact. A proof of knowledge for a relation R(·, ·) is an interactive
protocol where a prover P convinces a verifier V that P knows a x such that
R(z, x) = 1, where z is a common input to P and V. The prover can always
successfully convince the verifier if indeed P knows such a x. Conversely, if P
can convince the verifier with high probability, then he “knows” such a x, that
is, such a x can be efficiently computed given z and the code of P. When the
soundness holds only for a ppt prover, it is called an argument. As in [48], we
define the ideal functionality for zero-knowledge FR

ZK in the framework of [14] in
order to capture all the properties that we require, in Fig. 10.
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Fig. 8. The ideal committing OT functionality

Fig. 9. The ideal commitment functionality

Fig. 10. The zero-knowledge functionality
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Abstract. We introduce a new technique that allows to give a zero-
knowledge proof that a committed vector has Hamming weight bounded
by a given constant. The proof has unconditional soundness and is very
compact: It has size independent of the length of the committed string,
and for large fields, it has size corresponding to a constant number of
commitments. We show five applications of the technique that play on a
common theme, namely that our proof allows us to get malicious secu-
rity at small overhead compared to semi-honest security: (1) actively
secure k-out-of-n OT from black-box use of 1-out-of-2 OT, (2) separa-
ble accountable ring signatures, (3) more efficient preprocessing for the
TinyTable secure two-party computation protocol, (4) mixing with pub-
lic verifiability, and (5) PIR with security against a malicious client.

1 Introduction

Commitments and zero-knowledge proofs are extremely important universal
tools that protocol designers use to upgrade semi-honestly secure protocols to
maliciously secure constructions. This follows the well known paradigm of prov-
ing you “did the right thing”, without revealing any secret data. For this to be
interesting, we want of course that the size of the proofs is small, in order to
have small communication overhead for getting malicious security.

Generic techniques using NP reductions will of course always work, but are
extremely inefficient. If proof size is the only goal to optimise for, then Succinct
Non-Interactive Arguments (SNARGs) give a much better option that works
in general, but it is very costly to construct a proof, though verification can
sometimes be fast [5]. Moreover, soundness is only computational and requires
non-falsifiable assumptions that are regarded as controversial by some. A differ-
ent general approach was introduced in [23] (based on [28]), the ZKBoo protocol,
which is computationally much more efficient than SNARGs and based on stan-
dard assumptions, but the proof size is much larger.

Thus a natural question is: Can we, at least for special types of statements,
have both the prover and the verifier be very efficient, have unconditional sound-
ness based on standard assumptions, and still have the size of the proof be
c© International Association for Cryptologic Research 2018
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much smaller than that of the statement? Where, of course, we would like that
the statements we can prove are useful to get malicious security in meaningful
applications.

More specifically, we consider an arbitrary linearly homomorphic commit-
ment scheme that allows committing to elements in a finite field F (we show
several examples later), and the following scenario: A prover has committed to
a string x ∈ F

n, using n commitments, and claims that the Hamming weight of
x is at most d. Such a statement can be proved with unconditional soundness,
using the techniques based on Σ-protocols from [16], but the size of the proof
would be dominated by the cost of sending a number of commitments that is
linear in n.

Related Work. Efficiently proving properties of one or a small number of com-
mitted values from a public list c1, . . . , cn (of committed or public values) has
been considered in several works. Brands et al. [9] propose a zero-knowledge
protocol for proving non-membership in a list with squareroot complexity in the
size of the list. Groth [25] gives zero-knowledge arguments for algebraic state-
ments about matrices from a list of committed matrices with sublinear commu-
nication complexity. Bayer and Groth [3] give logarithmic size zero-knowledge
arguments of list membership. Groth and Kohlweiss [26] present a logarithmic
size zero-knowledge proof for a list of commitments where at least one commit-
ments opens to 0. This result was improved with respect to practical efficiency
by Bootle et al. [7].

Our contributions. We present a protocol that allows the prover to show in
ZK with unconditional soundness that at most d out of n commitments do not
contain 0, or alternatively, that the Hamming weight of the message vector of
the commitments is at most d. The communication complexity is dominated by
sending O

(
kd

log |F|
)

commitments for an error probability of 2−Ω(k). Thus, if the
size of F is exponential in the security parameter, we only need a constant number
of commitments, and the communication overhead is always independent of n.
Since the complexity grows linearly in d, our construction is more interesting for
small values of d compared to n, and particularly constant d. In addition, the
protocol is public-coin hence can be made non-interactive in the random oracle
model using the Fiat-Shamir paradigm [21].

We show several applications of this type of proof: Our first application is to
efficient secure computation with active security. We obtain an actively secure
d-out-of-n oblivious transfer (OT) protocol which makes only black-box use of
1-out-of-2 OT and hence allows the use of efficient OT extension techniques,
avoiding costly public-key operations [27]. The only previously known black-box
constructions (without relying on public-key assumptions like DDH or pairings)
are not actively secure [34], or only realise a weaker form of approximate d-out-
of-n OT [39]. Our protocol has a communication complexity of O(nk + k2d)
bits, and we show how to reduce this to O(nk) in an amortized setting using
recent advances in homomorphic commitments based on OT and error-correcting
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codes [13]. This gives constant overhead when the sender’s strings are of length
Ω(k), for arbitrary d.1

Second, we construct a separable accountable ring signature scheme. A ring
signature scheme allows to generate signatures proving that someone in a given
set of parties signed the message without revealing the identity of the signer.
Accountability means that the signer can dynamically choose a trusted party who
will be able to compute her (the signer’s) identity from the signature, whereas
no one else can. Separability means that members of the set are not required
to use the same type of key or signature algorithm, but can rather use different
types keys like El Gamal and RSA keys. In our case, the only requirement we
impose on the public key of each participant is that there exists a Σ-protocol for
showing knowledge of the corresponding secret key. Note that accountable ring
signatures imply group signatures where the trusted party is chosen and fixed
at key generation time. We first construct a separable ring signature using the
standard OR-proof technique from [16], and then add accountability using our
compact proofs. Compared to doing the OR-proof only, the involved overhead is
very small: it is additive and independent of the number of parties.

Third, we also show how to apply our compact proof to generate prepro-
cessing data for the TinyTable secure computation protocol [18]. This can give
a concrete reduction in communication complexity of around a factor of two,
compared with previous approaches [30], depending on the sizes of the lookup
table gates used in the circuit.

Fourth, we show how to upgrade the “shuffle in public” paradigm by Adida
and Wikström [1] so that the publicly verifiable proof that the shuffle is correctly
formed has size O(n) (where n is the number of ciphertexts to be shuffled). More
precisely, [1] shows how to make a quite efficient use-once obfuscation of a shuffle
operation that can then be applied later to applying a secret permutation to a
set of ciphertexts. We also show a special purpose MPC protocol that a set of
parties can use to efficiently generate both the obfuscation and the proof.

Finally, we show how to upgrade a standard single-server PIR protocol to be
secure against a malicious client with overhead a factor o(1). This protocol can
be based on any additively homomorphic encryption scheme.

2 Preliminaries

2.1 Definition of Commitment Schemes

We will consider two types of linearly homomorphic commitment schemes that
allow us to commit to elements in a finite field F.

Type 1 commitments. This type of commitment scheme consists of two algo-
rithms KeyGen and Commit. We assume for now that F is a prime field of order
q for some prime q, and will consider extension fields later in Sect. 3.1.

1 One could also obtain constant overhead with generic secure two-party computation
techniques [29], but this would be prohibitively expensive.
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KeyGen is run by a prover P and takes as input 1k, where k is the security
parameter, and outputs a public key pk that is sent to the verifier V . We assume
that the verifier can convince himself that pk is valid, i.e., it is a possible output
from KeyGen. This can be a direct check or via an interactive protocol, but we
will not be concerned with the details of this.

Commit is run by P and takes as input x ∈ F and randomness r ∈ H,
and outputs a commitment Commitpk(x, r) ∈ G (to the verifier), where G,H
are finite groups. To open a commitment c, P sends x, r to V who checks that
c = Commitpk(x, r) and accepts or rejects accordingly.

We assume the commitment scheme is:

Perfectly binding. For any valid public key pk, x is uniquely determined from
Commitpk(x, r).

Computationally hiding. Consider the following experiment: RunKeyGen(1k)
to get pk, give it to a probabilistic polynomial time adversaryA who chooses two
elements x0, x1 ∈ F and gets Commitpk(xb, r) where b is either 0 or 1. A outputs
a guess bit b′. For all such A, we require its advantage

|Pr [b′ = 1 | b = 0] − Pr [b′ = 1 | b = 1]|

to be negligible in k.
Homomorphic. We write the group operations in G and H additively and note

that since F is a prime field, we can think of u ∈ F as an integer and hence,
e.g., ur ∈ H is well defined. We then require Commit to be a homomorphism
in the sense that

uCommitpk(x, r) + vCommitpk(y, s) = Commitpk(ux + vy, ur + vs)

for all x, y, u, v ∈ F and r, s ∈ H.
q-invertible. Note that, since q is the order of F, qc is a commitment to 0 for

any commitment c (by the homomorphic property). In addition, we require
that qc can be “explained” as a commitment to 0, even given only c. More
precisely, there exists a polynomial time computable function f0 : G �→ H
such that for any commitment c ∈ G, we have qc = Commit(0, f0(c)).

The q-inversion property was defined (with minor differences) in [15]. Note
that if H is a vector space over F, then the property is trivially satisfied, we can
set f0(c) = 0.

Type 2 commitments. This type of scheme is defined by an algorithm Verify
and an ideal functionality FCom, which we assume is available to prover P and
verifier V . The parties initially agree on the field F and a statistical security
parameter k, both are sent to FCom once and for all. FCom then sends a global,
private verification key, sk, to V . To commit to a field element x, P sends x to
FCom which then returns a bit string mx to P and also sends a string kx to V .
To open, P sends x,mx to V . Then V runs Verifysk(x,mx, kx) which returns
accept or reject.
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Intuitively, one can think of mx as a MAC on x and kx as a key that V uses
to check the MAC. We assume the commitment scheme is:

Statistically binding. If, when opening a commitment to x, the prover sends
x′,m ′

x and x′ �= x, then V accepts with negligible probability.
Perfectly hiding. For each commitment created by FCom to some x, the dis-

tribution of kx is independent of x (and of any other value sent to FCom).
Homomorphic. The strings mx, kx created for a commitment come from

finite-dimensional vector spaces G,H over F, respectively. Furthermore, for
any two commitments (x,mx, kx) and (y,my, ky) and all u, v ∈ F, we have
that (ux + vy, umx + vmy, ukx + vky) is a valid commitment to ux + vy,
i.e., it can be opened to ux + vy and not to any other value.

Notation. In the following, we will use 〈x〉 as a shorthand for either type of
commitment, so we suppress for simplicity public key and randomness from the
notation. Likewise, we will use 〈x〉 + 〈y〉 = 〈x + y〉 and c〈x〉 = 〈cx〉 for a public
value c ∈ F as a shorthand for applications of the homomorphic properties as
defined above.

2.2 Example Commitment Schemes

Type 1 schemes. An example of a Type 1 commitment scheme is based on
El Gamal encryption with the message in the exponent. More concretely, we let
KeyGen choose p, q to be primes where q divides p−1 and is k bits long. KeyGen
also chooses random elements g, h ∈ Z

∗
p of order q. We then set F = G = Zq,

H = {(gr, gxhr) : x, r ∈ Z}, pk = (p, q, g, h) and Commitpk(x, r) = (gr, gxhr).
This is well known to be hiding under the DDH assumption. Note that if a party
knows the corresponding El Gamal secret key, he cannot decrypt a committed
message since it is in the exponent, but he can decide if a committed value is 0
or not. We may of course do something completely similar in an elliptic curve
group of order q. More generally, a commitment scheme with the right properties
follows from the existence of q-one way functions as introduced in [15], which
implies also constructions based on the quadratic residuosity assumption (for
F = Z2) and generalizations thereof.

Another example can be derived from Paillier encryption [37]. Here the plain-
text space is ZN for an RSA modulus N , which is not a field but nevertheless
compatible with our main construction. See AppendixA for detailed discussion.

It seems tempting to use a somewhat homomorphic encryption scheme based
on (Ring-)LWE as basis for our commitments, simply by letting a commitment
to x be an encryption of x. But this does not quite fit in our model. The reason
is that in this case, the randomness should not be chosen uniformly but must
be small enough to avoid overflow, which, should it happen, would invalidate
binding. This means the prover must convince the verifier that a commitment is
well-formed. Moreover, the above Σ-protocols must be modified to work for this
example and there is a limit to the number of homomorphic operations we can
support. Modulo this, however, it is possible to make our main protocol work in
this case as well.
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Type 2 schemes. We construct Type 2 commitment schemes from UC com-
mitments based on oblivious transfer, which can be used to implement a form
of the FCom functionality. A simple example of FCom is based on information-
theoretic MACs: On initialisation, FCom samples and sends a random field ele-
ment sk := α ∈ F to the verifier, V . To commit to a message x ∈ F from P ,
FCom samples β ∈ F, computes γ = x · α + β to P , before sending mx = γ to P
and kx = β to V . The verification algorithm simply checks that γ = x · α + β.
This is unconditionally hiding and statistically binding if |F| = 2Ω(k), since forg-
ing an opening requires guessing the secret α. Realising this FCom functionality
can be done using 1-out-of-2 correlated oblivious transfer to commit to bits [35],
and repeating this k times allows committing to arbitrary field elements when
|F| ≤ 2k (similarly to [32]). We provide more details in Sect. 4.1.

Another approach is to use recent, more efficient constructions of UC homo-
morphic commitment schemes [13,22], which have message space F� for � = Ω(k).
This has the advantage that arbitrary field elements can be committed to with
o(1) overhead, using only 1-out-of-2 oblivious transfer and error-correcting codes.
However, because the message space is now a vector space and not a finite field,
this can only be applied to our zero-knowledge proof and applications in a batch
setting, where many proofs are carried out in parallel. In AppendixB, we show
how to instantiate FCom in this way, and give a simpler presentation of the
commitment scheme of [13] in terms of code-based information-theoretic MACs.

2.3 Auxiliary Protocols

Proof of Commitment to 0. The homomorphic property of both types of
commitments implies, as is well known, that P can efficiently convince V that a
commitment c contains the value 0:2

1. P sends a = 〈0〉 (using fresh randomness) to V .
2. V sends a random challenge e ∈ F to P .
3. P opens d = a + ec and V checks that d was correctly opened to reveal 0.

It is easy to see that this is a Σ-protocol, i.e., it is complete, honest verifier
zero-knowledge, and special sound in the sense that if any P ∗ can send a and
answer correctly to two different challenges e, e′, he must know how to open c
to reveal 0. To see this for Type 1 commitments, note that we have randomness
values s, s′ such that Commit(0, s) = a + ec and Commit(0, s′) = a + e′c which
implies Commit(0, s−s′) = (e−e′)c. Multiplying by y = (e−e′)−1 on both sides,
we obtain Commit(0, y(s − s′)) = c + tqc for some integer t. By the q-inversion
property we can rewrite this as Commit(0, y(s− s′)− tf0(c)) = c as desired. The
proof for Type 2 commitment is trivial and is left to the reader.

2 This can be useful if revealing the randomness used for c might leak side information,
so that we do not want to simply open c.
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Proof of Multiplication. Another well-known Σ-protocol proves, for commit-
ments cx = 〈x〉, cy = 〈y〉, cz = 〈z〉, that z = xy:

1. P sends V two commitments a = 〈α〉 and b = 〈αy〉 for some random α.
2. V sends a random challenge e ∈ F to P .
3. P opens ecx + a, that is, he reveals w = ex + α. He also opens wcy − ecz − b

to reveal 0.
4. V checks that both openings are valid and that the second opening indeed

reveals 0.

3 Construction of Compact Proofs of Small Hamming
Weight

In this section, we assume that the size of the field F in the commitments is
exponential in the security parameter and hence also (much) larger than n. We
will explain how to get rid of this assumption in Sect. 3.1.

We consider a prover who has committed to a vector of field elements
x = (x1, . . . , xn) and that wants to claim that the Hamming weight of x is
at most d. The idea of the protocol is the following: We first choose distinct ele-
ments a1, . . . , an ∈ F, and think of ai as the “index” of the i’th position in the
committed string. The way these indices are chosen is fixed in advance, i.e., part
of the protocol specification, so that both parties can compute them on their
own. In particular, for a field whose characteristic is no less than n, ai can be
simply chosen as i. Now, if the Hamming weight of x is at most d, there exists
a monic polynomial of degree at most d whose zeros cover the set of indices ai

where xi �= 0. The prover is thus asked to prove the existence of such a polyno-
mial f(x) by committing to its coefficients, and then convince the verifier that∑n

i=1 f(ai)xi = 0.
However, this approach fails if used näıvely: The above equation can be easily

satisfied for an adversarially chosen f(x), whose zeros might not even intersect
with {ai}, since the prover knows the xi’s when he chooses f(x). Therefore,
to ensure soundness, the committed vector x must be randomised appropriately
after the polynomial has been fixed. Multiplying each xi by independent random
values chosen by the verifier will work but requires too much communication. It
is possible to resolve this by replacing independent random values with a series
of values generated by a secure PRG. The drawback of this method is that it
makes the soundness only computational. Below, we propose another idea that
uses less randomness while still giving us unconditional soundness.

Protocol ΠHW: The public input is the committed vector, 〈x1〉, . . . , 〈xn〉.
1. The prover commits to d field elements f0, . . . , fd−1 ∈ F;
2. The verifier sends a random challenge β ∈ F;
3. Both parties compute 〈yi〉 = βi−1〈xi〉 for i = 1, . . . , n and

〈zj〉 =
n∑

i=1

aj
i 〈yi〉 for j = 0, . . . , d;
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4. The prover commits to d field elements g0, . . . , gd−1 ∈ F;
5. Both parties compute

〈v〉 = 〈zd〉 +
d−1∑
j=0

〈gj〉;

6. The prover proves that gj = fjzj for j = 0, . . . , d − 1 and that v = 0, using
the subprotocols described in the preliminaries.

The theorem below makes the informal statement that Protocol ΠHW is
complete, sound and zero-knowledge with respect to the statement that the
Hamming weight of the committed vector is at most d. For Type 1 commit-
ments this more formally means that it is a zero-knowledge proof system for the
language consisting of commitments to a vector of Hamming weight at most d.
We cannot use exactly the same formalization for Type 2 commitments since
here both the prover and the verifier hold private information and there is no
“public” commitment. Instead, we define soundness to mean that if the vector
defined by the values sent to FCom has Hamming weight greater then d, then
the verifier accepts with negligible probability. Completeness means, as usual,
that if prover and verifier are honest, then the verifier accepts. Likewise, zero-
knowledge means, as usual, that the verifier’s view of the protocol with an honest
prover can be simulated with (perfectly) indistinguishable distribution. In the
proof below, we first give the proof for Type 1 commitments and then state the
(minor) changes needed for Type 2.

Theorem 1. Protocol ΠHW is complete, sound and zero-knowledge, with respect
to the statement that the Hamming weight of the committed vector x does not
exceed d.

Proof. We prove the protocol satisfies the completeness, soundness and zero-
knowledge properties. We define the following two polynomials

f(x) = xd +
d−1∑
j=0

fjx
j , F (x) =

n−1∑
i=0

f (ai+1) xi+1x
i,

which will be used in the proof.

Completeness. If the Hamming weight of x does not exceed d, or equivalently,
there exists d indices ai1 , . . . , aid s.t. xi = 0 for all i /∈ S = {i1, . . . , id}, the
prover should determine the values to commit to by

f(x) =
d∏

j=1

(
x − aij

)
, gj = fjzj ,
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and behave as the protocol requires. Computing v, we find

v = zd +
d−1∑
j=0

gj =
n∑

i=1

ad
i β

i−1xi +
d−1∑
j=0

n∑
i=1

fja
j
iβ

i−1xi

=
n∑

i=1

⎛
⎝ad

i +
d−1∑
j=0

fja
j
i

⎞
⎠ βi−1xi =

n∑
i=1

f (ai) βi−1xi

=
∑
i∈S

f (ai) βi−1xi +
∑
i/∈S

f (ai) βi−1xi

=
∑
i∈S

0 · βi−1xi +
∑
i/∈S

f (ai) βi−1 · 0 = 0,

and the verifier will always accept.

Soundness. Note that v = F (β) if gj = fjzj for j = 0, . . . , d − 1. Since the
degree of f (x) is (exactly) d, it has at most d zeros. If there are at least d + 1
non-zero xi’s, F (x) cannot be the zero polynomial. Now that 0 ≤ deg F (x) < n,
the probability that a random field element is a zero of F (x) is at most n−1

|F| . For
the proof to be accepted, either one of the proofs produced by the subprotocols
(to prove gj = fjzj , v = 0) is false and accepted (each of which occurs with
probability at most |F|−1), or β happens to be a zero of F (x). Hence, by union
bound and by our assumption on the size of F, the verifier will reject with
probability 1 − 2−Ω(k).

For Type 2 commitments, the only additional event that could make the
verifier accept is that the prover manages to open any of the commitments in
an incorrect way. But by assumption on Type 2 commitments, this occurs with
exponentially small probability.

Zero-knowledge. We define a machine T that takes two oracles Of ,Og, each of
which provides d field elements. The machine T :

1. Starts an instance of the verifier;
2. Reads d field elements from Of as f0, . . . , fd−1;
3. Outputs 〈fj〉 (committed with fresh randomness);
4. Reads β from the verifier;
5. Computes 〈yi〉 and 〈zj〉 as described in the protocol;
6. Reads d field elements from Og as g0, . . . , gd−1;
7. Outputs 〈gj〉 (committed with fresh randomness);
8. Computes 〈v〉 as described in the protocol;
9. Runs the simulators for “proving” gj = fjzj and v = 0, and outputs the

transcripts.

We will use some special oracles: Oreal
f provides fj ’s the honest prover uses;

Oforged
f provides forged fj ’s, just zeros, for instance. Oreal

g and Oforged
g are defined

similarly.
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The simulator is defined as T taking Oforged
f ,Oforged

g . We employ a stan-
dard hybrid argument to show that the simulator works. Consider the following
distributions:

– D1: the transcript created by the honest prover and the verifier;
– D2: the transcript created by the honest prover and the verifier, but with

simulated transcripts for the subprotocols; or equivalently, the transcript pro-
duced by T taking Oreal

f ,Oreal
g ;

– D3: the transcript created by T taking Oreal
f ,Oforged

g ;
– D4: the transcript created by T taking Oforged

f ,Oforged
g , or equivalently, that

produced by the simulator.

Since the subprotocols are (honest-verifier) zero-knowledge, D1 and D2 are indis-
tinguishable. The difference between D2 and D3 is whether gj ’s contain real or
forged values, and D3 and D4, fj ’s. Since the commitment scheme is hiding,
D2,D3 and D3,D4 are pairs of indistinguishable distributions, which follows
from the definition of hiding by a standard computational reduction.

Formally, let D be an effective distinguisher telling D2 from D3, we build the
following adversary that tries to break the hiding property:

1. The adversary makes a commitment to x and uses it as the public input;
note that since the adversary knows x , it is capable of implementing Oreal

t

(t = f, g);
2. The adversary creates an oracle Ochallenge

g , which:
(a) Runs Oreal

g to produce greal
j ’s;

(b) Runs Oforged
g to produce gforged

j ’s;
(c) Sends the two batches to the challenger, and outputs whatever the chal-

lenger outputs;
3. The adversary runs T with Oreal

f ,Ochallenge
g to obtain a transcript;

4. It sends the transcript to D;
5. If D says the transcript is from D2, the adversary concludes that the commit-

ments the call to Ochallenge
g received from the challenger are those of greal

j ’s;
otherwise, those of gforged

j ’s.

D sees D2 [resp. D3] if Ochallenge
g (the adversary) was given the commitments of

greal
j ’s [resp. gforged

j ’s]. Therefore, the adversary has the same advantage against
the hiding property as D has against D2 and D3. Moreover, the adversary is
also effective. Since the commitment scheme is hiding, the adversary must have
negligible advantage and so must D. A similar construction proves that D3 and
D4 are also indistinguishable.

For Type 2 commitments, the argument becomes simpler: We define the
oracles to output only what the verifier sees when a Type 2 commitment is
created. Further, as these commitments are perfectly hiding, the forged and the
real oracles now output exactly the same distribution, so we immediately get
perfect zero-knowledge.
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3.1 Field Extension

The basic protocol we just described does not work for small fields: we may not
be able to choose n distinct values ai, and even if we can, the field size may be
too small to guarantee a small enough soundness error. In addition, we assumed
the field was prime when defining Type 1 commitments.

We can solve both problems by going to an extension field K, which we choose
as a degree t extension of F, so that |K| is exponential in the security parameter k.
One possible value for t is

⌈
k

log |F|
⌉
.

Going from F to its extension K also requires enlarging G,H. For Type 2
commitments where these are vector spaces, this can be done using the tensor
product, i.e., use G′ = G ⊗ K and H ′ = H ⊗ K, and induce the commitment
schemes accordingly. Type 1 commitments can be extended in a similar manner.
The following is a concrete explanation for extending Type 1 commitments. It
also applies to Type 2 commitments, which is exactly the computational way of
doing tensor products.

We have to fix a basis of K over F in advance. The new sets of randomness
and commitments are G′ = Gt,H ′ = Ht, in which additions are induced natu-
rally. For all b ∈ K and r = (r1, . . . , rt)

T ∈ G′, we first find the matrix Mb of
endomorphism x �→ bx of K under the fixed basis, and define

br = Mb

⎛
⎜⎝

r1

...
rt

⎞
⎟⎠ ,

where the multiplication on the right-hand side is formal and regarding elements
in F as integers. Scalar multiplication in H ′ is defined similarly. For the induction
of commitment algorithm, one simply commits to a ∈ K with randomness r ∈ U ′

by committing coordinatewise. That is, let the coordinates of a under the fixed
basis be (a1, . . . , at)

T, we define

Commitpk(a, r) = (Commitpk(a1, r1), . . . ,Commitpk(at, rt))
T
.

The newly defined Commitpk is binding, hiding and additively homomorphic
thanks to the commitment scheme of F. Moreover, it is trivial to verify that the
commitment scheme is capable of performing scalar multiplication, or precisely
bCommitpk(a, r) = Commitpk(ba, br) for all a, b ∈ K, r ∈ G′, thus linearly homo-
morphic. For the q-inversion property, for all c = (c1, . . . , ct)

T, after a series of
additions and multiplication by clear-text field elements, the resulting commit-
ment is d = Mc for some integer matrix M . Note well that modulo operation
cannot be performed on M in between the operations. However, should d always
contain 0, it must be the case that entries of M are multiples of |F|, there-
fore, by the q-inversion property of the scheme in F, along with its (additively)
homomorphic property, we obtain a similar property that allows us to “explain”
commitments that should always contain 0 as 0.
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If the basis starts with 1 (the field identity), when we are given the input
commitments over F 〈x1〉, . . . , 〈xn〉 for xi ∈ F, we can easily modify these to
commitments over K by appending t − 1 default commitments to 0 to each 〈xi〉
(the randomness input used for these commitments should be deterministic so
that no communication overhead is incurred). We can then execute the main
protocol exactly as described using K instead of F as the base field.

By moving to K, we now get soundness error 2−Ω(k), and the complexity in
terms of number of commitments over F sent is indeed O

(
kd

log |F|
)

as promised
in the introduction.

4 Applications

4.1 Actively Secure d-out-of-n Oblivious Transfer

In a d-out-of-n OT protocol, a sender has n messages, and a receiver wishes to
learn exactly d of these, without revealing to the sender which messages were
chosen. We consider the non-adaptive setting, where the receiver’s d selections
are chosen all at once, and refer to this functionality as

(
n
d

)
-OTk, where the

sender’s messages are strings of length k (the security parameter).
Naor and Pinkas [34] showed how to construct

(
n
d

)
-OT in a black-box manner

from O(d log n) instances of
(
2
1

)
-OT, however, their protocol is only secure in a

half-simulation paradigm, and is vulnerable to selective failure attacks against a
corrupt sender [12]. Another construction by Shankar et al. [41] uses only O(n)
1-out-of-2 OTs, and an elegant mechanism based on secret-sharing to prevent the
receiver from learning more than d messages. However, this is also not fully secure
against a corrupt sender. The only known actively secure protocols are based on
specific assumptions like DDH or pairings [12,24] and require Ω(n) public-key
operations. These are inherently less efficient than constructions based on

(
2
1

)
-OT

as they cannot make use of efficient OT extension techniques, which reduce the
number of public key operations needed for OT to O(k) (independent of the
total number of OTs) [27].

We show how to use the proof of Hamming weight from Sect. 3 to construct
an actively secure protocol for

(
n
d

)
-OTk, which makes only black-box use of(

2
1

)
-OTk and symmetric primitives. The communication cost of the basic protocol

is O(kn+k2d), or can be reduced to an amortized cost of O(kn) in a batch setting,
which is optimal up to a constant factor.

The Commitment Scheme. Our construction uses a specific form of Type
2 homomorphic commitment scheme defined by the functionality FCom below.
Note that this is identical to the aBit functionality from [35] (optimized in [36]),
only here we use it as a commitment scheme instead of for two-party computa-
tion. FCom can be efficiently implemented using black-box access to k oblivious
transfers in a setup phase and a pseudorandom generator.
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Functionality FCom

On initialisation with the security parameter k, the functionality samples
a random field element α ∈ F2k and sends it to PR.
On receiving a message x ∈ F2k from PS :

1. Sample β ∈ F2k at random.
2. Send β to PR and γ := α · x + β to PS .

To commit to a message x, the sender PS sends x to FCom. The verification
algorithm for the receiver, PR, takes as input a message xi and the verification
information (γi, α, βi), then simply checks that γi = α · xi + βi.

The scheme is perfectly hiding, since the verifier’s data α, βi is uniformly
random and independent of the sender’s messages. The scheme is statistically
binding, because opening to x′

i �= xi requires coming up with γ′
i = α · x′

i + βi,
hence γ′

i − γi = α · (x′
i − xi), but this requires guessing α so happens with

probability at most 2−k. The scheme is also linearly homomorphic over F2k ,
since if f : Fn

2k → F2k is a linear map, then

f(α · x1 + β1, . . . , α · xn + βn) = α · f(x1, . . . , xn) + f(β1, . . . , βn),

so applying f to the commitment and opening information results in a valid
commitment to f(x1, . . . , xn).

The functionality FCom can be implemented using 1-out-of-2 string-OT, as
shown in previous works for messages in {0, 1}. To commit to a bit x ∈ {0, 1},
the parties perform an OT where PA is the sender with inputs (β, β + α), for
randomly sampled α, β ∈ F2k , and PB inputs the choice bit x. PB receives
γ = β + x · α, as required. To obtain active security, a consistency check is
needed to ensure that the correct inputs are provided to the OTs. This can be
done with only a small, constant overhead [36] using techniques based on OT
extension [31,35].

We can extend the above to commit to arbitrary field elements instead of
just bits using the homomorphic property, as follows. To commit to the field
element x ∈ F2k , first write x as

∑k
i=1 xi · Xk−1, for xi ∈ F2, where the vector

(1,X, . . . ,Xk−1) defines a basis of F2k over F2. Then, PB commits to the indi-
vidual bits xi, obtaining commitments 〈xi〉, and both parties then compute the
commitment 〈x〉 =

∑k
i=1〈xi〉 · Xi−1.

Efficiency. Using the protocol from [36] (based on [35]), after a setup phase con-
sisting of O(k) OTs, the cost of committing to a bit is that of sending O(k) bits,
plus some computation with a PRG. To commit to an arbitrary field element we
require k bit commitments, which gives a communication cost of O(k2).

d -out-of-n OT Protocol. We now show how to realise
(
n
d

)
-OTk using this

commitment scheme, and applying the zero-knowledge proof of Hamming weight
from Sect. 3. The idea is for the OT receiver to commit to a selection vector
(x1, . . . , xn) ∈ {0, 1}n defining its d choices, and prove that at most d of these
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are non-zero. Then, we use a hash function to convert the commitments to the
xi’s into 1-out-of-2 OTs, where the second message in each OT is one of the
sender’s inputs. The zero-knowledge proof ensures that the receiver learns at
most d of these inputs.

We use the definition of a correlation robust hash function H : F2k → {0, 1}k,
which satisfies the following security property:

Definition 1 [27]. Let n = poly(k) and t1, . . . , tn, α be uniformly sampled from
{0, 1}k. Then, H is correlation robust if the distribution

(t1, . . . , tn,H(t1 ⊕ α), . . . , H(tn ⊕ α))

is computationally indistinguishable from the uniform distribution on 2nk bits.

Protocol: The receiver, PR, has d choices c1, . . . , cd ∈ [n]. The sender, PS ,
inputs strings y1, . . . , yn ∈ {0, 1}k.

1. PR defines x = (x1, . . . , xn) ∈ {0, 1}n to be the weight-d selection vector
defined by PR’s choices.

2. The parties initialise FCom, where PS acts as receiver and obtains α ∈ F2k .
3. PR commits to xi using FCom, for i = 1, . . . , n, and receives γi. PS receives

the commitments βi.
4. PR proves that wH(x ) ≤ d using ΠHW.
5. PS sends to PR the values

zi = H(βi + α) ⊕ yi

6. PR outputs yi = zi ⊕ H(γi), for the values where xi = 1.

Theorem 2. If H satisfies the correlation robustness property then the protocol
above securely realises the

(
n
d

)
-OT functionality in the FCom-hybrid model.

Proof. We first consider the simpler case of a corrupt sender, P ∗
S . The simulator,

S, sends random field elements α, βi to simulate the outputs of FCom to P ∗
S . S

then runs the zero-knowledge simulator from ΠHW. Next, S receives the values
zi from P ∗

S and recovers yi = zi ⊕ H(βi + α), for i = 1, . . . , n. Finally, S sends
the sender’s inputs y1, . . . , yn to the

(
n
d

)
-OT functionality. It is easy to see that

the simulation is identically distributed to the view of P ∗
S in the real protocol,

because the α, βi values are sampled identically to the real protocol, and the zero-
knowledge simulator for ΠHW is perfect when used with Type 2 commitments.

When the receiver, P ∗
R, is corrupted, the simulator S proceeds as follows.

First, S receives the bits x1, . . . , xn as the receiver’s input to FCom, and sends
back random field elements γ1, . . . , γn. S simulates the verifier’s messages in
ΠHW with uniformly random values, and aborts if the proof fails. If the proof
succeeds, then by the soundness property of ΠHW it holds that wH(x ) ≤ d, so
S extracts d choices c1, . . . , cd ∈ {1, . . . , n} from the non-zero entries of x (if
wH(x ) < d then S chooses arbitrary indices for the last d − wH(x ) choices). S
sends c1, . . . , cd to

(
n
d

)
-OT, and receives back the strings yc1 , . . . , ycd . In the final
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step, for the indices i where xi = 1, S sends zi = H(γi) ⊕ yi, and for all i where
xi = 0, S samples zi uniformly from {0, 1}k.

Up until the final step, the simulation for a corrupt receiver is perfect, because
the γi values are identically distributed to those output by FCom, and ΠHW (and
its subprotocols) are public-coin, so the verifier’s messages are uniformly random.
Regarding the zi values, first note that whenever xi = 1, P ∗

R obtains the correct
output yi in both the real and simulated executions. When xi = 0, the zi’s sent in
the protocol are computationally indistinguishable from the simulated random
values, by the correlation robustness property. More formally, suppose there
exists an environment Z and an adversary A, who corrupts the receiver, such
that Z distinguishes the real and ideal executions. We construct a distinguisher
D for the correlation robust function, as follows:

– D receives a correlation robustness challenge (t1, . . . , tn, u1, . . . , un).
– D invokes Z with the corrupt receiver, A, starting a simulated execution of

the d-out-of-n OT protocol. D receives the sender’s inputs y1, . . . , yn, chosen
by Z.

– Instead of sampling γi at random, D sends t1, . . . , tn to simulate these values
sent to A.

– For the indices i where xi = 0, D lets zi = ui ⊕ yi. The rest of the execution
is simulated the same way as S.

– After the execution, D outputs the same as Z.

Note that if the u1, . . . , un values from the challenge are uniformly random,
then the view of Z is identical to the view in the previous simulation. On the
other hand, if u1, . . . , un are computed as H(ti ⊕ α), for some random α ∈
{0, 1}k, then zi = ui ⊕ yi (where xi = 0) is distributed the same as in the real
protocol, so the view of Z is identical to the real execution. Therefore, D breaks
the correlation robustness property of H with exactly the same probability that
Z distinguishes the real and ideal executions.

Efficiency. The main cost of the protocol is the initial n calls to FCom to commit
to the xi bits, followed by running the proof ΠHW, which requires committing
to O(d) additional field elements. Since committing to a bit costs O(k) bits of
communication, and a field element O(k2), we get an overall communication
complexity of O(nk + k2d).

Reducing Communication with Amortization. In a batch setting, where
two parties wish to perform multiple, parallel instances of

(
n
d

)
-OTk, for the same

values of d and n, we can reduce the amortized communication cost to O(nk),
which is optimal up to a constant factor. Instead of using the commitment scheme
FCom, we make use of recent advances homomorphic commitments based on OT
and error-correcting codes [13,22]. These allow to commit to a vector of � field
elements with o(1) communication overhead, for � = Ω(k). When performing
many parallel executions of our protocol, this means steps 1–4 can be done with
only O(nk) amortized communication, instead of O(nk+k2d). However, now we
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have a problem in the final step where the sender hashes the commitments to
transfer its inputs, because this is not compatible with the schemes of [13,22].
To get around this, the receiver will also commit to x1, . . . , xn using FCom, and
then prove that the two sets of commitments contain the same values. This
can be shown by opening a (masked) random linear combination of the FCom

commitments, then opening the same linear combination with the code-based
commitments and checking that these give the same value. We give more details
on this protocol and how to instantiate a Type 2 commitment scheme with
code-based commitments in AppendixB.

4.2 Separable Accountable Ring Signatures

Ring signatures [40] enable a member of a group to leak information on behalf of
the group without compromising its own identity. More precisely, ring signatures
allow a signer to dynamically choose a group of potential signers and then sign
a message on behalf of this group. A verifier can verify that the signature was
indeed created by one of the group members, but cannot learn who the signer is.
In [42], Xu and Yung introduce the notion of accountable ring signatures, where,
in addition to a regular ring signature scheme, the signer can dynamically pick
a trusted entity, called the opener, and, in addition to signing anonymously on
behalf of the group, prove that this entity can revoke the signers anonymity.
Accountable ring signatures imply traditional group signatures [7].

Since the members of a ring signatures are chosen dynamically, realistically
speaking we can not always assume that all members use the same signing algo-
rithm or even have the same type of public keys. Ideally, we would like to have a
ring signature scheme, where we can sign on behalf of a group even if all mem-
bers use different signing algorithms and different types of keys. This issue of
separability has been first considered in the context of identity escrow [33] and
later also in the context of group signatures [10,11]. Here, to the best of our
knowledge, we provide the first construction of accountable ring signatures that
achieves such separability. The only assumption we make on the public keys of
the group members is that there exists a Σ-protocol for proving knowledge of
the corresponding secret key.

Assume there are n parties P1, . . . , Pn, each holding a key pair (pki, ski).
Furthermore, assume that for each key pair, there is a Σ-protocol Σi to prove
knowledge of the secret key ski corresponding to pki. Using an OR-proof [16]
over all Σi, it is straightforward to prove knowledge of one of the secret keys
while not revealing its own identity. Combining such an OR-proof with the Fiat-
Shamir heuristic, we immediately get a separable ring signature scheme. To
construct a separable accountable ring signature scheme, we additionally need
to ensure that the designated opener, who has the key pair

(
pkop, tdop

)
, can

extract the signer’s identity from the Σ-protocol’s transcript. Our main idea
here is to “encode” the signer’s identity into the protocol’s challenge values and
then use our compact proofs to prove that this has been done correctly. More
concretely, recall that when an honest prover Pj does the OR-proof, there will
be a Σ-protocol instance executed for each of the n parties. These will all be
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simulated executions, except the j’th one. Now, we will interpret all challenges
e1, . . . , en in the Σ-protocols as commitments, and exploit the fact that Pj can
choose all the simulated challenges as he likes, only ej will be random. We can
therefore instruct Pj to pick ei where i �= j to be homomorphic commitments
to 0. This means that e1, . . . , en, when seen as commitments, will represent a
vector of Hamming weight at most 1, so Pj will prove this fact using our compact
proof.

Assume we are using computationally hiding, perfectly binding, commit-
ments. A (polynomial time) verifier cannot distinguish commitments to random
bit strings from commitments to 0. Therefore, by the properties of Σ-protocols,
the verifier cannot distinguish a simulated from a real transcript. The opener,
who possesses a trapdoor tdop, can break the hiding property of the commit-
ment scheme. That is, the opener can use tdop to check whether a commitment
contains a specific message, e.g. 0, or not. This is the case if, for example, the
commitment scheme is actually a public-key encryption scheme. To identify a
signer, the opener can open all challenge commitments and find the commitment
to a non-zero value.

We will now describe our separable accountable ring signature scheme in
the form of a group identification scheme with revocable anonymity. Combining
this identification scheme with Fiat-Shamir then gives us our desired signature
scheme. For a full formal definition of accountable ring signatures we refer the
reader to [7].

Group identification scheme with revocable anonymity: Let Encode be
a bijective function that maps elements from the commitment’s message, ran-
domness, and commitment space to bit strings. Let Decode be the inverse of
Encode. Let Pj be the prover and {P1, . . . , Pn} the group. Let

(
pkop, tdop

)
be the

opener’s key pair for a perfectly binding, computationally hiding commitment
scheme, where tdop can be used to break the hiding property of a commitment.

Membership protocol

1. For i �= j, the prover chooses uniformly random values ri, computes ci =
Commitpkop

(0, ri), and encodes it as ei = Encode(ci). Next, for each ei, the
prover uses the simulator Σi to obtain transcripts (ai, ei, zi). Finally, the
prover chooses a random aj according to Σj and sends (a1, . . . , an) to the
verifier.

2. The verifier chooses a random x �= 0 and r and sends the challenge e =
Encode(x, r) to the prover.

3. The prover computes (x, r) = Decode(e), picks commitment cj such that∑n
i=1 ci = Commitpkop

(x, r), and computes proof π for wH((c1, . . . , cn)) ≤ 1
using ΠHW. Knowing aj and ej = Encode(cj), the prover computes zj honestly
according to Σj . It sends (c1, . . . , cn), (z1, . . . , zn), and π to the verifier.

4. The verifier checks the validity of π, it checks that
∑n

i=1 ci = Commitpkop
(x, r),

and finally it checks that for 1 ≤ i ≤ n each transcript (ai, ei, zi) is an
accepting transcript for Σi.
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Anonymity Revocation. Given the transcript {(ai, ei, zi)}1≤i≤n of an invocation
of the membership protocol described above, the opener can, for each i, compute
ci = Decode(ei) and using his trapdoor tdop it can reveal which commitment cj

is to a value not equal 0.
There are two things to note at this point. First, since the commitment

scheme is perfectly binding, even an computationally unbounded opener can not
open any of the commitments to any value other than the actually committed
one. Secondly, the opener only needs to be able to distinguish commitments to 0
from commitments to any other value. In particular, this is a weaker requirement
that recovering the exact committed message.

Security: In the following we provide an informal description of the security
properties of accountable ring signatures. We sketch why our construction is
secure according to these properties. The formal security definitions can be found
in [7].

Full Unforgeability. From a high-level perspective, this property encompasses
two security requirements. First, a corrupted opener cannot falsely accuse any
member of a group of creating a signature. Second, no coalition of corrupted
members in a ring can create an signature on behalf of an honest member.

Proof (sketch). Let σ = (a1, . . . , an, e1, . . . , en, z1, . . . , zn) be a valid signature
created the adversary. Due to the (special) soundness of ΠHW we know that at
most one commitment from e1, . . . , en is not a commitment to 0. Let i be the
index of the commitment that is not equal to 0 and j be the index of an honest
member. Assume the opener accuses Pj of being the signer and consider the two
following cases: If i �= j, then the commitment cj is a commitment to 0 and thus a
malicious opener, who successfully accuses Pj would immediately contradict the
binding property of the commitment scheme. In the case of i = j, the adversary
successfully signed on behalf of an honest member Pj , which would contradict
the (special) soundness of Σj .

Anonymity. This property ensures that nobody but the opener can reveal the
identity of the ring member that created a signature. The anonymity property
has to hold even when the secret keys of all members are revealed.

Proof (sketch). This property directly follows from the hiding property of the
commitment scheme and the witness indistinguishability of the OR-proof con-
struction.

Traceability. This property guarantees that the opener can always identify the
signer and that the opener can provide a publicly verifiable proof thereof.

Proof (sketch). Let σ = (a1, . . . , an, e1, . . . , en, z1, . . . , zn) be a valid signature
created by the adversary. Consider the following cases. If HW(c1, . . . , cn) > 1,
then the adversary can be used to break the soundness property of ΠHW. In the
case of HW(c1, . . . , cn) = 1, let i be the index of the commitment not equal to 0
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and let Pj be the member that is accused by the opener. In this case either Pj

was indeed the signer or we can use the adversary to break the soundness of Σj .

Tracing Soundness. This soundness property ensures that even if all members
in a group and the opener are fully corrupt, the opener can still not accuse two
different members of the ring.

Proof (sketch). This directly follows from the soundness of ΠHW.

4.3 More Efficient Preprocessing for the TinyTable Protocol

TinyTable [18] is a secure two-party computation protocol based on a ‘gate
scrambling’ technique. It evaluates a circuit by expressing every non-linear gate
with its truth table, and using a scrambled version of this table to perform the
secure computation. This leads to a protocol in the preprocessing model with a
very efficient online phase, where each non-linear gate requires just one message
to be sent from each party, and linear gates can be evaluated without interaction.
For small tables such as two-input AND gates, [18] showed to efficiently imple-
ment the preprocessing phase based on TinyOT [35], but for larger tables (such
as representations of the S-boxes in 3-DES or AES) this approach does not scale
well. Keller et al. [30] recently presented a more efficient approach to creating
the masked tables using multiplication triples over a finite field of characteristic
two. For the case of secure computation of AES, this gives a preprocessing phase
that is almost as efficient as the best 2-party computation protocols based on
garbled circuits, but with the benefits of the high throughput available in the
TinyTable online phase.

We show how to further reduce the cost of the preprocessing phase, by com-
bining our compact proof of Hamming weight with secret-shared finite field
multiplications. Our approach requires just one multiplication triple per lookup
table, whereas the previous method [30] needs at least log2 N − 1 triples for a
table of size N (albeit over a smaller field). Our method concretely reduces the
amount of communication needed for the preprocessing by around a factor of
two, for lookup tables of size 32–64.

TinyTable Background. TinyTable uses linearly homomorphic, information-
theoretic MACs to authenticate secret-shared data between the two parties.3

The MACs are identical to our commitments produced by FCom in Sect. 4.1: the
MACs on a shared value x = x1+x2 are of the form γx1 = x1 ·α2+βx1 and γx2 =
x2 · α1 + βx2 , where PA holds (x1, γx1 , βx2 , α1) and PB holds (x2, γx2 , βx1 , α2).
We use the notation 〈x1〉A and 〈x2〉B to denote these committed values held by
PA and PB .

The goal of the preprocessing phase is to produce, for a public lookup table
T = (T [0], . . . , T [n − 1]), the values:

(〈si〉i, 〈vi
0〉i, . . . , 〈vi

n−1〉i

)
i∈{A,B}

3 TinyTable can also be extended to the multi-party setting [30], but here we focus
on the two-party case.
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where vA
j , vB

j are random shares that sum to T [j ⊕ sA ⊕ sB ], and sA, sB are
random strings of length � = log2 n.

In [30], it was shown that it is enough for the parties to produce these values
for the simple table where T [0] = 1 and T [j] = 0 for all j > 0. In other words,
if the above shares satisfy vA

s + vB
s = 1 (where s = sA ⊕ sB is represented as an

integer in {0, . . . , n − 1}), and vA
j + vB

j = 0 for all j �= s, the parties can locally
convert these shares into a scrambled table for any lookup table T of size n.

Preprocessing Protocol. We now show how to compute the above preprocess-
ing data, using the Type 2 commitment scheme from Sect. 4.1 based on FCom,
and our proof of Hamming weight.

Additional Tools. Our protocol also requires the parties to be able to bit
decompose committed values, and multiply secret-shared, committed values. Bit
decomposition of a committed value 〈x〉, for x ∈ F2k , can be done by first com-
mitting to the bits 〈x1〉, . . . , 〈xk〉, then opening 〈x〉 +

∑
i〈xi〉Xi−1 and checking

that this equals zero.
To produce a secret-sharing of the product of two committed values, where

each value is held by a different party, we use a multiplication triple and Beaver’s
technique [4]. The current, most efficient methods of generating multiplica-
tion triples are based on oblivious transfer with the MASCOT [32] or Tiny-
OLE [19] protocols. Note that these protocols create information-theoretic MACs
on shares of the triples, but these MACs have the same form as the commitments
produced by FCom, so we can use them for our purpose.

With these building blocks, our protocol for preprocessing a masked lookup
table of size n is as follows. We assume that FCom operates over the field F22n

and fix (1,X, . . . ,X2n−1) as a basis over F2 of this field.

Protocol ΠPrep:

1. PA samples a random, weight-one vector (a1, . . . , an) ∈ F
n
2 , and PB samples

(b1, . . . , bn) in the same way.
2. Both parties commit to the components of their vectors using FCom, obtaining

〈a1〉A, . . . , 〈an〉A and 〈b1〉B , . . . , 〈bn〉B .
3. Compute

∑n
i=1〈ai〉A and

∑
i〈bi〉B and check that these both open to 1.

4. Run ΠHW twice to prove that wH(a) ≤ 1 and wH(b) ≤ 1.
5. Let 〈a〉A =

∑n
i=1〈ai〉A · Xi−1 and 〈b〉B =

∑n
i=1〈bi〉B · Xi−1.

6. Using a random multiplication triple over F22n , compute commitments 〈cA〉A

and 〈cB〉B , such that cA + cB = a · b.
7. For j ∈ {A,B}, bit decompose 〈cj〉j to obtain 〈cj

1〉j , . . . , 〈cj
2n〉j .

8. For j ∈ {A,B}, Pj outputs (〈cj
1〉j + 〈cj

n+1〉j , . . . , 〈cj
n〉j + 〈cj

2n〉j).

Correctness and security. First note that the check that
∑

i ai =
∑

i bi = 1 rules
out these vectors being all zero, therefore after ΠHW we know that they must
have weight one. This means we can write the corresponding field elements as
a = Xr and b = Xs, where r and s represent the position of the one in each
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party’s random vector. Viewing these as elements of the larger field F22n , the
product computed in step 6 then satisfies c = Xr+s, and has freshly random
shares and MACs from the multiplication triple. The bit decomposition and
computation in steps 7–8 then ensure that the output contains a one in position
r + s (mod n), and is zero elsewhere, as required.

Comparison with Other Approaches. The main cost in our protocol is
that of generating one multiplication triple over F22n . In contrast, the protocol
of [30] requires at least log2 n − 1 triples over a smaller field (depending on
the table size, n). For example, if working over F240 , [30] needs 4 triples for
a table of size 32, but this increases to 7 triples when n = 128 and 11 when
n = 256. We compare the communication complexity of our protocol with [30] in
Table 1. The cost describes the total communication needed to generate enough
triples for one masked table of size n, when using either the MASCOT [32] or
TinyOLE [19] protocols for triple generation. For small tables of sizes 32–64,
our protocol reduces the communication cost by around a factor of 2 compared
with previous work. The reduction in communication seems more significant
with TinyOLE, since MASCOT scales as O(n2) if n is the bit-length of the field,
whereas TinyOLE is O(n).

Table 1. Communication complexity, in kbits, of our protocol and the previous pro-
tocol when instantiated using MASCOT or TinyOLE to generate triples.

Protocol n = 32 64 128 256

[30] 279.0 348.8 488.3 767.4
}
MASCOT

Ours 139.3 360.4 917.8 2612

[30] 225.0 281.3 393.8 618.8
}
TinyOLE

Ours 90.0 180.0 360.0 720.0

4.4 Shuffling in Public

Suppose that n parties wish to run a protocol in which each party inputs a
message and the output is a (secret) permutation of the messages. This is called
a shuffle. Of course, this shuffle could be executed by a trusted party. In absence
of a trusted party, a mixnet [14] can be used. A mixnet consists of a number of
servers and takes n ciphertexts as input. Each server permutes the ciphertexts,
re-encrypts them, and hands them to the next server. If at least one server is
honest, then the resulting permutation is unknown to an adversary. In addition,
each server provides a proof of correct shuffle (e.g. [2,20]). Hence, each server
needs to verify the correctness of all previous shuffles before applying its own,
and only consider the correct shuffles.

In [1], Adida and Wikström presented a new approach to this problem: They
show how to construct an obfuscated program for shuffling a set of n ciphertexts.
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The obfuscated program Pπ depends on a permutation π on n elements, but π
should remain computationally hidden even given Pπ. Obfuscating the shuffle
has the advantage that it can be precomputed. Hence the parties only need to
publish their encrypted messages and then compute the shuffle locally, while
correctness of the shuffle can be verified in advance. Furthermore, the protocols
enjoy public verifiability, i.e. the obfuscated program can be published together
with a correctness proof that can be publicly verified.

The idea is that one takes ciphertexts c1, . . . , cn as input, generated in some
appropriate cryptosystem, and processes them using Pπ locally. If the shuffle is
a re-encryption shuffle, then the output will be a re-encryption of the permuted
messages to ciphertexts c′

1, . . . , c
′
n. If we let m1, . . . , mn and m′

1, . . . , m
′
n denote

the corresponding plaintexts, then the guarantee is that m′
i = mπ(i) for i =

1, . . . , n. The result can then be used for further computation. To obtain the
messages, the parties can e.g. execute a distributed decryption protocol. In case
of a decryption shuffle, the shuffle outputs the permuted messages directly.

The program constructed in [1] represents the shuffle as a permutation
matrix. The obfuscated program has hence size roughly O(n2) ciphertexts and
the correctness proof, using standard techniques as suggested by the authors, is
of the same size. The program can only be used once, but on the other hand it
is reasonably efficient and can be based on cryptosystems with only rather weak
homomorphic properties. The authors propose three construction: The first one
is a generic obfuscator for any somewhat homomorphic encryption (SHE) scheme
allowing one multiplication and many additions. Such a scheme exists e.g. based
on lattices (e.g. [8]) and pairings, e.g. the Boneh, Goh and Nissim cryptosystem
[6]. However, the obfuscated program consists of double encryptions and hence
distributed decryption with active security is expensive. The other two construc-
tions avoid this problem by focussing on specific encryption schemes: the BGN
cryptosystem for a decryption shuffle and Paillier encryption [37] (with some
twists) for a re-encryption shuffle. Of course, one could also use fully homo-
morphic encryption, represent the permutation using only O(n) ciphertexts and
compute the permutations “inside” the encryption, but this would be completely
impractical with current state of the art.

Another protocol for shuffling in public was proposed by Parampalli et al.
[38]. The protocol computes an obfuscated re-encryption shuffle based on the
Damg̊ard-Jurik cryptosystem [17]. By using a permutation network to represent
the shuffle, they could reduce the size of the obfuscated shuffle to O(n log n).
The public proof of correctness has size O(n log n) using standard techniques.
Due to the use of permutation networks, however, the resulting distribution over
permutations may be biased, depending on the network that was used.

In the following, we will show how our techniques can be used to reduce the
size of the public proof for the [1] BGN decryption shuffle to O(n). Further-
more, we sketch an MPC protocol that outputs an obfuscated decryption shuffle
together with a correctness proof.

Revisiting the BGN decryption shuffle. The obfuscated program Pπ as
constructed in [1] uses a public key pk for an SHE scheme as mentioned
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above and consists of a matrix of ciphertexts Pπ = {Epk(Πi,j)}i,j=1...n, where
{Πi,j}i,j=1,...,n is the permutation matrix corresponding to π. It is now clear
that one can apply π to a set of ciphertexts by multiplying the vector of input
ciphertexts by the matrix Pπ.

An obvious question from a practical point of view is of course who produces
Pπ in the first place, and how do we know it is correctly formed? In [1], it is
suggested that Pπ is produced by some secure multiparty protocol and that
this protocol would also produce a zero-knowledge proof that anyone can verify
that Pπ is correctly formed. For this, they used existing techniques for proving
correctness of shuffles, basically doing such a proof for each row (column) of the
matrix. This means that the proof would typically have size O(n2). Using our
techniques we can improve this to O(n) as we now explain:

First, we can observe that the BGN cryptosystem can be seen as an uncon-
ditionally binding and homomorphic commitment scheme based on which our
protocol can run. The proof then consists of two parts: First, show that in each
column and each row, the sum of all entries is 1. This can be done by computing
the product of ciphertexts across each column and row of Pπ and prove using
standard methods that each such product contains 1. Second, we use our pro-
tocol to show that the weight of each row is at most 1. Combined with the first
step, we obtain now that each column and each row has weight exactly 1. These
proofs can be made non-interactive using Fiat-Shamir paradigm and will clearly
imply that the matrix underlying Pπ is indeed a permutation matrix.

Finally, we sketch how to generate the obfuscated program and proof of
correctness in a multiparty protocol. The BGN cryptosystem uses a group of
order N = q1q2 where q1, q2 are primes. Therefore it is convenient to use an MPC
protocol based on linear secret sharing modulo N . This will mean that given a
secret-shared representation of a message m, which we will denote [m], it is easy
using standard methods to securely generate an encryption Epk(m) where pk
is the BGN public key. It is therefore sufficient to generate secret shared values
corresponding to a permutation matrix [Πi,j ]. This can be done, for instance,
if each party (verifiably) secret shares his own permutation matrix, and then
we multiply these using standard matrix multiplication. Generating the proof
of correctness is standard for the most part, by simply emulating the prover’s
algorithm. Whenever the original prover would output a commitment, we will
have a secret-shared representation of the same value, which we can convert to
a BGN encryption (commitment) as we go. One slightly non-standard detail is
that given the i’th row {[Πi,j ]}j=1,...,n, we want to show it has weight at most
1 and for this we need a secret shared representation of the (unique) index j0
where Πi,j0 = 1. But this we can get easily by forming the row [1], [2], . . . , [n]
and computing the inner product with the row {[Πi,j ]}j=1,...,n.

4.5 PIR for Malicious Users

Consider a very simple folklore PIR protocol based on additively homomorphic
encryption, e.g. Paillier, where a user wishes to retrieve single elements. Assume
that the database holds elements d1, . . . , dn. To retrieve a data element j from
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the database, the user could send ciphertexts c1, . . . , cn to the database of which
at most one contains a non-zero message, namely j. The database can then
compute a new ciphertext d =

∑n
i=1 cidi corresponding to the selected element

and return d to the user. Finally, the user can decrypt d to obtain the selected
element dj .

It is easy to see that this protocol has passive security. To achieve security
against a malicious user, one can add our protocol (interactive or non-interactive)
to prove that the user’s first message to the database is well-formed.

Note that using fully homomorphic encryption, one can get an incomparable
solution where the client sends only a single ciphertext containing the index of
the entry he wants (j). The server can now compute, “inside the encryption”,
a ciphertext that contains dj and send it back to the client. This requires much
less communication but cannot be implemented based on only additively homo-
morphic encryption, and has a very large computational overhead compared to
the more standard solution (note that in any solution the server must touch all
entries in the database, or the scheme is not secure).

Acknowledgements. This work has been supported by the European Research
Council (ERC) under the European Unions’s Horizon 2020 research and innovation
programme under grant agreement No. 669255 (MPCPRO); the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 731583
(SODA); and the Danish Independent Research Council under Grant-ID DFF–6108-
00169 (FoCC).

A Considerations for Paillier Construction

In Paillier construction [37] where the clear text space ZN is not a field, some
properties we employ in the construction might not hold. On a field, a polynomial
of degree d has at most d zeros, while on a general ring, this is not true. For
the special case ZN where N = pq is the product of two distinct primes p, q, we
resort to the factorisation assumption.

Factorisation Assumption. Let N = pq where p, q are distinct, uniformly ran-
dom primes of length Ω(k). For all probabilistic polynomial time adversary A,
Pr [A(N) = p or A(N) = q] is negligible in k.

It is well known that if RSA is secure, the above assumption holds. We need
two tweaks in the proof for the soundness of ΠHW instantiated with Paillier com-
mitment schemes.

Malicious f (x). In the protocol the prover selects a monic polynomial f(x) of
degree d. We say such a polynomial is malicious if it has at least d + 1 distinct
zeros on the index set {ai}. The factorisaton of N can be reduced to finding a
malicious polynomial, therefore, the probability that a cheating prover succeeds
commiting to a malicious f(x) is negligible.
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Proof (sketch). Observe that monic linear polynomials cannot be malicious. Let
f(x) be malicious, of degree d > 1 and x0, . . . , xd its d + 1 known, distinct
roots. By division with remainder, we have f(x) = (x − x0)g(x) for some monic
polynomial g(x) of degree d−1. Consider gcd(N,xj −x0) (j = 1, . . . , d), if one of
them is not 1, it must be p or q, giving the factorisation of N . Otherwise, xj −x0

(j = 1, . . . , d) are invertible in ZN . Substituting x1, . . . , xd into the equation of
division, we conclude that g(x) is malicious, of degree d−1 and x1, . . . , xd are its
d distinct zeros. We then continue this process with g(x). However, the process
must stop before reaching linear polynomials by the observation, finding either
p or q.

Weak F(x). The protocol verifies f(ai)xi = 0 with a “checksum” polynomial
F (x) whose coefficients are f(ai)xi, where we exploit the property that F (x)
has at most n zeros if F (x) �= 0. In ZN , F (x) of degree n could have at most
max {pn, qn} distinct roots. This bound still guarantees asymptotic soundness,
but is a great sacrifice of the concrete soundness error. By assuming the hardness
of factorisation, we can prove a better bound. We define a polynomial F (x) on
ZN of degree n to be weak, if it has more than n2 distinct zeros. We shall show
that with negligible probability, the F (x) used in the protocol is weak.

Proof. By Chinese Remainder Theorem, ZN = Zp × Zq. For x0 ∈ ZN , write
x0 = (y0, z0) by this decomposition, where y0 ∈ Zp, z0 ∈ Zq. We can naturally
regard F (x) as polynomial Fp(x) on Zp or Fq(x) in Zq by keeping only the
relevant component (coefficients modulo the corresponding prime). It is trivial
to verify that F (x0) = (Fp(y0), Fq(z0)) and that F (x0) = 0 is equivalent to
Fp(y0) = 0 and Fq(z0) = 0. If neither Fp(x) nor Fq(x) is the zero polynomial,
both of them have at most n distinct roots. In such case, F (x) has at most n2

roots as the set of roots of F (x) is exactly the Cartesian product of the sets of
roots of Fp(x) and Fq(x). Otherwise, suppose Fp(x) is the zero polynomial, the
coefficients of F (x) are multiples of p, while at least one of them is not a multiple
of N . Computing the greatest common divisor of the coefficients of F (x) gives p,
factorising N . Similar argument applies to the case Fq(x) is zero. Note that the
prover is able to find the coefficients of F (x) himself, therefore the F (x) used in
the protocol is weak with negligible probability.

Combining the two tweaks ensures the soundness of the instantiation of ΠHW

with Paillier commitment schemes. Complete and zero-knowledge properties fol-
low by the general proof presented in the text.

It is also noticeable that the method for extension does not work with ZN .
Therefore, N must be large enough for the construction to be sound, which is,
after all, true for practical scenarios.

B Details on Code-Based Homomorphic Commitments

In this section we provide more details on instantiating our protocols using
recent, UC-secure homomorphic commitment schemes, and using this to reduce
the cost of batch d-out-of-n OT.
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B.1 The Type 2 Commitment Scheme

We now show how to instantiate Type 2 commitments with efficient, rate-1
homomorphic commitment schemes based on 1-out-of-2 OT and error-correcting
codes. The commitment functionality, F∗

Com, is given below. We first show how
this gives a Type 2 commitment scheme where the message space is F

� instead
of F, and then discuss how existing homomorphic commitment schemes [13,22]
can be used to realise this functionality.

Functionality F∗
Com

Parameters: F, a finite field; �, the message length; C, an [m, �, s] linear
code over F, where s is the security parameter.
On initialisation with the public parameters, the functionality samples
a random α = (α1, . . . , αm) ∈ {0, 1}m and sends it to PA.
On receiving a message x ∈ F

� from PB :

1. Sample β ∈ F
m at random.

2. Send β to PA and γ := α∗C(x)+β to PB, where ∗ denotes component-
wise product.

Leakage: If PB is corrupt, the adversary may send any number of key
queries of the form (guess, i, bi). If bi = αi then send (success) to the
adversary, otherwise send (abort) to all parties and terminate.

To verify a commitment to x with the opening information (α, β, γ), PA

checks that γ = α ∗ C(x) + β.
Clearly, the scheme is unconditionally hiding as with FCom. To see the sta-

tistical binding property, notice that to forge an opening of a commitment to x,
PB must come up with x′ �= x and γ′ ∈ F

m such that γ′ = α ∗ C(x′) + β. We
then define δ := γ −γ′ = α∗C(x−x′), by linearity of the code. Since x �= x′ and
C has minimum distance s, the Hamming weight of C(x − x′) is at least s, so
coming up with such a δ requires guessing at least s bits of α, with probability
≤ 2−s. Note that including the key queries in F∗

Com does not change the overall
success probability, since for each query a single bit of α can be guessed only
with probability 1/2, and the functionality aborts if any query fails.

This functionality can be realised from the commitment phase of [22] or [13].
To see this, recall that after the commitment phase in these protocols, the sender
holds a committed message x ∈ F

�
2, and a random additive sharing of C(x ),

where C is a linear [m, �, s] error-correcting code. Meanwhile, for each component
of C(x ), the receiver holds exactly one of the two shares. That is, the sender
has two vectors y0,y1 ∈ F

m such that y0 + y1 = C(x ), whereas the receiver
holds a random secret vector (r1, . . . , rn) ∈ {0, 1}m, which is fixed once for all the
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commitments. For the commitment to x , the receiver knows a vector z satisfying
z [i] = yri

[i], from the 1-out-of-2 OT setup phase. Notice that:

z [i] = yri
[i] = (y0 · (1 + ri) + y1 · ri)[i]

= (y0 + ri · (y0 + y1))[i]
= (y0 + ri · C(x ))[i]

This is clearly the same form as the commitments produced by F∗
Com, since we

have z = y0 + r ∗ C(x ).
Note that F∗

Com also allows a corrupt sender to attempt to guess the bits of r ,
but aborts if any guess fails. This is needed because the consistency check in [13],
used to ensure the sender inputs correct codewords, may leak a few of these bits
to a cheating sender. This can be seen from the proof of Lemma 8, where the
exact set of bits of r which the sender attempts to guess is defined. That proof
can be applied directly to show that the commitment phase of Protocol ΠHCOM

from [13] can be used to securely realise F∗
Com. Finally, we remark that although

the protocol in [13] is defined over the field F2, it can be used to commit to vectors
over any finite field with a suitable error-correcting code, and the communication
complexity is still O(m) field elements per commitment.

B.2 Switching Between Schemes

As we will see in the application to d-out-of-n OT in the batch setting (described
in the full version of this paper), it can be useful to use the most efficient, rate-1
homomorphic commitments for the most expensive part of a protocol, before
switching to another homomorphic commitment scheme that is more suited to
the application. This can be done by committing to the messages with both
schemes and then proving that both sets of commitments contain the same mes-
sages. With the Type 2 schemes FCom and F∗

Com, this proof works as follows (and
the same technique can be adapted for any scheme).

Protocol ΠEQ: The input is two sets of committed vectors 〈x 1〉∗, . . . , 〈xn〉∗ and
{〈yi

1〉, . . . , 〈yi
n〉}�

i=1, where 〈·〉∗ denotes a commitment to an element of F� with
F∗

Com and 〈·〉 a commitment using FCom over F. We prove that x j [i] = yi
j for all

i, j.

1. The proves samples at random and commits to r = (r1, . . . , r�) ∈ F
� with

both schemes, obtaining commitments 〈r〉∗, 〈r1〉, . . . , 〈r�〉.
2. The verifier sends a random challenge s ∈ F.
3. The prover opens 〈a〉∗ =

∑n
j=1〈x j〉∗ · sj + 〈r〉∗. Write a = (a1, . . . , a�).

4. The prover opens 〈bi〉 =
∑n

j=1〈yi
j〉 · sj + 〈ri〉, for i = 1, . . . �.

5. The verifier checks that ai = bi for all i.

Completeness is evident, and zero-knowledge holds because the values ri are
uniformly random and used to mask the opened values as one-time pads. To
argue soundness, note that if the proof succeeds then we have ai = bi, and so
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∑n
j=1(x j [i] − yi

j) · sj = 0. However, if the committed inputs were not the same
then there is at least one pair i, j such that x j [i] �= yi

j . This means that the
probability of success is at most n/ |F|, since it corresponds to the degree n
polynomial with coefficients (x j [i] − yi

j)j having a root at s.
Finally, we remark that the communication cost of the protocol is indepen-

dent of n, since it is O(k2�) bits, dominated by committing to the elements
r1, . . . , r� (assuming |F| = 2k).
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Abstract. Bootle et al. (EUROCRYPT 2016) construct an extremely
efficient zero-knowledge argument for arithmetic circuit satisfiability in
the discrete logarithm setting. However, the argument does not treat
relations involving commitments, and furthermore, for simple polyno-
mial relations, the complex machinery employed is unnecessary.

In this work, we give a framework for expressing simple relations
between commitments and field elements, and present a zero-knowledge
argument which, by contrast with Bootle et al., is constant-round and
uses fewer group operations, in the case where the polynomials in the
relation have low degree. Our method also directly yields a batch pro-
tocol, which allows many copies of the same relation to be proved and
verified in a single argument more efficiently with only a square-root
communication overhead in the number of copies.

We instantiate our protocol with concrete polynomial relations to
construct zero-knowledge arguments for membership proofs, polynomial
evaluation proofs, and range proofs. Our work can be seen as a unified
explanation of the underlying ideas of these protocols. In the instanti-
ations of membership proofs and polynomial evaluation proofs, we also
achieve better efficiency than the state of the art.

Keywords: Sigma-protocol · Zero-knowledge argument
Batch-verification · Discrete logarithm assumption

1 Introduction

Zero-knowledge proofs and arguments allow a prover to convince a verifier that a
particular statement is true, without revealing anything beyond that fact. More
formally, the statement is an element u from an NP-language L, and the prover
convinces the verifier that there exists a witness w to the fact that u ∈ L. They
are useful both in theory and in practice, as they can be used to construct
signature schemes, encryption schemes, anonymous credentials, and multi-party
computation schemes with strong security guarantees.
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Zero-knowledge arguments are computationally sound, meaning that cheat-
ing the verifier to accept when u /∈ L reduces to breaking a computational
intractability assumption. In this paper, we focus on the discrete logarithm
assumption. There are many examples of zero-knowledge arguments based on the
discrete logarithm assumption, for both general, NP-complete languages such as
arithmetic circuit satisfiability [7], and for simpler languages such as range and
membership arguments, shuffle arguments, and discrete logarithm relations.

While very efficient, arguments for general statements often make use of
generic reductions and complex machinery, and fail to be as efficient as arguments
specialised for a particular language.

1.1 Contributions

In this paper, we aim to bridge the gap between general and simple languages.
We do this in three ways.

Framework for Low Degree Relations. We provide a framework to describe the
types of languages commonly encountered. Protocols such as the 1-out-of-N
membership argument of [28], and the polynomial evaluation argument of [2]
prove membership in languages where the witnesses are zeroes of low-degree
polynomial relations. In other words, the statement is an arithmetic circuit of low
degree, and part of the witness is a satisfying assignment for the circuit. We give
a general relation which allows us to recover specific protocols by instantiating
with concrete polynomial relations. By separating the task of developing more
efficient ways to perform the zero knowledge proof, and the task of designing
better relations to describe a given language, we can explain the logic behind past
optimisations of membership proofs in [6,28], and produce new optimisations for
membership proofs and polynomial evaluation proofs.

Common Construction Techniques. We unify the approaches used in [2,6,28]
to construct zero-knowledge proofs for membership and polynomial evaluation,
which can all be viewed as employing the same construction method. The con-
structions of zero-knowledge arguments for low degree polynomial relations in
these works proceed by masking an input variable u as fu = ux + ub, using a ran-
dom challenge x and a random blinder ub. During the proof, the polynomial or
circuit from the statement is computed with fu in place of u, so that the original
relation appears in the leading x coefficient. The communication and compu-
tational complexity of the resulting arguments is determined by the degree of
the polynomial relation and the number of inputs. By contrast, the complexity
of general arithmetic circuit protocols is determined by the number of gates. In
the case of [7], the authors embed a polynomial evaluation argument for a poly-
nomial of degree N into a low degree polynomial with log N inputs and degree
log N , obtaining a protocol with O(log N) communication using 3 moves, and
requiring O(log N) exponentiations in a suitably chosen cryptographic group.
On the other hand, a polynomial of degree N requires N multiplication gates to
evaluate in general, so the best arithmetic circuit protocol [7] can only achieve
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O(log N) communication in O(log N) moves, and uses O(N) group exponentia-
tions. In particular, since the cost of computing group exponentiations is much
higher than that of computing finite-field multiplications in the discrete log-
arithm setting, computing O(log N) group exponentiations rather than O(N)
leads to a significant performance advantage when considering implementation
on constrained devices.

Bayer [1] gives two efficient batch proofs for multiplication and polynomial
evaluation, which achieve a square-root communication overhead in the number
of proofs to be batched. The key to achieving square-root overhead in [1] is to
use Lagrange interpolation to embed many instances of the same relation into
a single field element. This technique can be applied more generally to produce
efficient batch proofs for the low-degree relations described above. Furthermore,
by combining this with the polynomial commitment subprotocol in Sect. 3, we
improve the communication cost of the batched proof from

√
tc to

√
tc, where

c is the communication cost of the original non-batched proof, and t is a large
number representing the number of proofs to be batched together.

Efficient Protocols for Applications. We exhibit a general protocol in our frame-
work, and give an efficient batch protocol for proving and verifying t instances of
the same relation simultaneously. We then show how to recover protocols of pre-
vious works with some optimisation. More specifically, we give new 1-out-of-N
membership arguments and polynomial evaluation arguments. Our new instan-
tiations simultaneously decrease communication costs and reduce prover and
verifier computation, while retaining the conceptual clarity and simple 3-move
structure of the originals. As an example, we obtain the most communication
efficient Σ-protocols for membership or non-membership of a committed value in
a public list, in the discrete logarithm setting. We also include an argument for
range proofs, which captures the folklore method for performing range proofs
and demonstrates the expressivity of our general relation. Our arguments all
possess the following desirable properties:

– Perfect completeness and perfect special honest verifier zero-knowledge.
– Computational soundness based on the discrete logarithm assumption.
– Simple 3-move public coin structure.
– Common reference strings are formed from random group elements. They

require no special structure.
– Prover and verifier both have efficient computation.

The discrete logarithm assumption is well-known, well-examined, and widely
used in cryptography. Our protocols rely on the discrete logarithm assumption
in groups with prime order p. The assumption is believed to hold in suitable
subgroups of elliptic-curve groups. The best algorithms for finding discrete loga-
rithms in such elliptic curve groups are still generic algorithms with complexity
Ω(

√
p). For these groups we therefore enjoy lower parameter sizes than protocols

based on RSA groups that are subject to sub-exponential attacks.
The discrete logarithm assumption is also believed to hold in well-chosen

multiplicative sub-groups of finite fields. Finite fields of prime order should have
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moduli of λ3

polylogλ bits in order to achieve λ bits of security against the best
known attacks. This makes protocols communicating large numbers of group ele-
ments highly impractical in this setting. As an improvement on previous works,
in the case where t = 1 and we have a single relation, our protocols can be
tuned so that they only require a constant number of group elements, resulting
in much better efficiency when instantiated in finite fields of prime order, since
the λ3

polylogλ communication cost can then appear as a constant additive factor
rather than a multiplicative one.

As a building block in our arguments, we also present an adaptation of the
polynomial commitment sub-protocol appearing in [7], which allows the prover
to commit to a polynomial so that the verifier can learn an evaluation of the
polynomial in a secure manner.

1.2 Efficiency

Table 1 compares the efficiency of our protocol with other works. One notable
place where we improve communication efficiency over previous proofs is in our
membership and polynomial evaluation proofs, which use a constant number of
group elements, but have better communication efficiency regardless of whether
the proofs are instantiated in elliptic curve groups or multiplicative subgroups
of finite fields. Another is the polynomial evaluation argument with O( log N

log log N )
communication costs, which is an asymptotic improvement over the previous
state-of-the-art, O(log N). Finally, our batch polynomial evaluation argument
improves on [1] by putting the log N cost inside a square root.

1.3 Related Work

Zero Knowledge and Batching. There has been much work constructing efficient
zero-knowledge arguments. For general statements, Kilian [34] gave the first zero-
knowledge argument for circuit-satisfiability with poly-logarithmic communica-
tion complexity, but with high computational complexity. Bootle et al. [7] con-
struct arguments with logarithmic communication complexity and linear compu-
tation costs based on the discrete logarithm assumption. Recent progress [8] yields
zero-knowledge arguments with constant overhead for the prover, and square-root
communication costs, though the large constants involved in the construction pre-
vent it from being practical. For more specialised languages, such as range proofs,
membership arguments, and polynomial evaluation arguments, there are numer-
ous constructions [2,28], including some extremely simple Σ-protocols.

Camenisch and Stadler [15] provide a well-known symbolic notation for
describing statements for zero-knowledge arguments of knowledge, and con-
structing protocols more easily from simple building blocks. By contrast, our
general relation aims to describe languages defined by low degree polynomials
and produce protocols for this case.

The idea of embedding many statements into a single polynomial using
Lagrange interpolation polynomials in a challenge x originates in the quadratic
arithmetic programs of Gennaro et al. [26]. It was used in the context of interac-
tive zero-knowledge arguments by Bayer [1]. The technique was originally applied
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to construct a Hadamard product argument and batched polynomial evaluation
argument. We show here that the same technique can be applied to our general
relation. Earlier work by Gennaro et al. [25] batches Schnorr proofs using simple
powers of x.

Other batch arguments in the literature use methods from [3] and multi-
ply different instances of the proof by small exponents before compressing the
proofs together. This approach may be used to trade soundness for efficiency. Our
batching process proves and verifies the logical AND of many statements simul-
taneously. There are also batch proofs for OR statements [44], and k-out-of-N
batch proofs [29]. Finally, Henry and Goldberg [29] define a notion of conciseness
to characterise batch proofs.

Polynomial Commitments. Our polynomial commitment protocol is a key part
of our zero-knowledge argument, and builds on the polynomial commitment
protocol presented in [7]. Polynomial commitments were first introduced by Kate
et al. [33], who give a construction using bilinear maps. The original construction
has also been extended to the multivariate case [41,46]. Libert et al. [37] also
gave a construction relying on much simpler pairing-based assumptions. Our
polynomial commitment protocol gives square-root communication complexity
based on the discrete logarithm assumption.

Applications. In a membership argument [10,11], a prover demonstrates that a
secret committed value λ is an element of a list L = {λ0, . . . , λN−1}, without
revealing any other information about λ.

In a polynomial evaluation argument [10,23], a prover demonstrates that a
secret committed value v is the evaluation of a public polynomial h(U) at another
secret committed value u.

In a range proof [9,38], a prover demonstrates that a secret committed value
a is an element of the interval [A;B].

One approach to constructing protocols for these applications is to design
an arithmetic circuit which captures the desired conditions on the witness, and
then apply existing zero-knowledge protocols for proving satisfiability in general
circuits. There are currently several efficient arguments in the discrete logarithm
setting. The methods of Cramer et al. [18] lead to arguments with communi-
cation complexity linear in the size of the circuit. The best interactive zero-
knowledge protocol based on the discrete logarithm assumption for arithmetic
circuits [7] yields a logarithmic communication complexity, but requires a non-
constant number of rounds.

There are existing protocols for all three applications in the discrete loga-
rithm setting that do not rely on general Circuit Satisfiability protocols. Cramer
et al. [19] give techniques for composing sigma-protocols, producing proofs for
AND composition, OR composition, and 1-out-of-many statements using sigma
protocols for the individual statements. These techniques can be applied in a
straightforward manner to produce sigma-protocols with linear communication
complexity for the mentioned applications.
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The goals of membership arguments are related to those of zero-knowledge
sets [39]. Membership arguments allow a prover to commit to a secret value and
show that it lies in a public set, without leaking information on the value. On the
other hand, zero-knowledge sets allow the prover to commit to a secret set, and
handle membership and non-membership queries in a verifiable manner, without
leaking information on the set.

Herranz constructs attribute-based signatures [30] using what is essentially
a set membership argument for multiple values. Like this work, the argument
relies only on the discrete logarithm assumption, but the communication com-
plexity is much higher; linear in the size of the set. Camenisch and Chaabouni
[12] also provide set membership proofs with logarithmic communication com-
plexity, and Fauzi et al. [22] construct constant size arguments for more complex
relations between committed sets. The latter two works both rely on pairing-
based assumptions.

Range arguments can be seen as a special case of membership arguments,
where L is simply a list of consecutive integers. Many are based on the strong
RSA assumption, and use Lagrange’s Four-Square Theorem. Couteau et al. show
that this assumption can be replaced by an RSA-variant which is much closer to
the standard RSA assumption [17]. Examples are [27,38]. The work [16] gives an
argument with sub-logarithmic communication complexity in the size of the list,
which is comparable to the efficiency we achieve, and also relies on the hardness
of the discrete logarithm problem, but uses pairings for verification.

Membership arguments also generalise arguments that a committed value lies
in a linear subspace such as [31,32,35], which all make use of pairings. Peng [43]
achieves a square-root complexity. Some existing protocols [2,28] even achieve
logarithmic communication complexity. Our single-value membership proof is an
extension of the latter works where we reduce the number of commitments from
logarithmic to constant.

Cryptographic accumulators, [4,13,14,40], can also be used to give member-
ship proofs. The members of a set are absorbed into a constant-size accumulated
value. Witnesses for set-membership can then be generated and verified using the
accumulated value. Efficient instantiations of accumulators exist and often rely
on the Strong RSA assumption or pairing-based assumptions. An RSA modulus
has to be λ3

polylogλ bits to provide security against factorisation using the General
Number Field Sieve. Security of pairing-based schemes with constant embedding
degree scale similarly due to sub-exponential algorithms for attacking the dis-
crete logarithm problem in the target group. Furthermore, such schemes require
a trusted setup. By contrast, we only require random group elements of size
O(λ) bits for security against discrete logarithm attacks in elliptic curve groups.

Some of the schemes can be adapted to give zero-knowledge arguments for
non-membership, from a variety of settings. For example, [2,43] also give non-
membership arguments in the discrete logarithm setting. Accumulators that sup-
port non-membership arguments have been constructed, based on both pairing
assumptions ([21]) and the strong RSA assumption ([36]).
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1.4 Outline

Section 2 contains preliminary definitions needed to understand our protocols.
Section 3 gives an adaptation of the polynomial commitment scheme used in [5].
Section 4 gives a general batched witness relation and efficient batched argument.
Finally, Sect. 5 gives concrete choices of parameters to obtain zero knowledge
arguments for several useful languages.

2 Preliminaries

Write y = A(x; r) when the algorithm A outputs y on input x with randomness
r. We write y ← A(x) to mean selecting r at random and setting y = A(x; r).
We write y ← S for sampling y uniformly at random from a set S. We define [n]
to be the set of integers 1, . . . , n.

Let λ ∈ N be a security parameter, usually provided to the algorithms in
unary form 1λ. We say that f : N �→ [0, 1], is negligible if for every positive
polynomial p, we have f(λ) ≤ 1

p(λ) for λ � 0. We write f(λ) ≈ g(λ) if |f(λ) −
g(λ)| is negligible. We say that f is overwhelming if f(λ) ≈ 1.

2.1 Assumptions

The results in this paper rely on the Discrete Logarithm Assumption. Let G
be a probabilistic polynomial time algorithm that takes input 1λ and outputs
gk = (G, p, g). Here, G is a cyclic group of order p, which has efficient polynomial
time algorithms for deciding membership and for computing group operations
and inverses. The prime p has λ bits. The group is generated by the element g.

Definition 1 (Discrete Logarithm Assumption). The discrete logarithm
assumption holds relative to G if for all probabilistic polynomial time algo-
rithms A

Pr
[
gk = (G, p, g) ← G(1λ);x ← Zp : x ← A(gk, gx)

]
≈ 0

2.2 Homomorphic Commitment Schemes

A commitment scheme allows a sender to commit to a secret value. Later on, the
sender may open the commitment and reveal the value to another party, who
can check that the value matches what was committed to. Commitment schemes
should be hiding so that information about the secret value is not revealed
prematurely, and binding so that the sender cannot reveal a different value to
the one committed.

A non-interactive commitment scheme consists of two probabilistic polyno-
mial time algorithms (Gen,Com). The first algorithm creates a commitment key
ck ← Gen(1λ). The key specifies a message space Mck, a commitment space
Cck and a randomiser space Rck. The sender commits to m ∈ Mck by selecting
r ← Rck and computing the commitment c = Comck(m; r) ∈ Cck.
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Definition 2 (Hiding). A commitment scheme (Gen,Com) is (computation-
ally) hiding if for all probabilistic polynomial time stateful algorithms A

Pr
[
ck ← Gen(1λ); (m0, m1) ← A(ck); b ← {0, 1}; c ← Comck(mb) : A(c) = b

]
≈ 1

2

If we have equality above then we say that the commitment scheme is perfectly
hiding.

Definition 3 (Binding). A commitment scheme is (computationally) binding
if for all probabilistic polynomial time adversaries A

Pr

⎡
⎣

ck ← Gen(1λ); (m0, r1,m1, r1) ← A(ck) :

m0 
= m1 ∧ Comck(m0; r0) = Comck(m1; r1)

⎤
⎦ ≈ 0

If we have equality above then we say that the commitment scheme is perfectly
binding.

Suppose further that (Mck,+), (Rck,+) and (Cck, ·) are groups.

Definition 4 (Homomorphic Commitment Scheme). We call the com-
mitment scheme homomorphic if for all λ ∈ N and for all ck ← Gen(1λ) the
commitment function Com : Mck × Rck → Cck is a group-homomorphism, i.e.,
for all m,m′ ∈ Mck and all r, r′ ∈ Rck

Comck(m + m′; r + r′) = Comck(m; r) · Comck(m′; r′)

Pedersen Commitments. Our zero-knowledge arguments can be instanti-
ated with any homomorphic, perfectly hiding and computationally binding com-
mitment scheme. For concreteness, we will focus on the Pedersen commitment
scheme [42] to multiple values. The generator outputs a description of a group of
prime order p and a set of random group elements ck = (p,G, g1, . . . , gn, h). The
message space is Z

n
p , the randomness space is Zp and the commitment space is

G. To commit to a vector m = (m1, . . . ,mn) pick r ← Zp and return the com-
mitment c = Comck(m; r) = hr

∏n
i=1 gmi

i . The Pedersen commitment scheme is
homomorphic, perfectly hiding and computationally binding under the discrete
logarithm assumption.

Throughout the paper, we make use of commitments for vectors of different
sizes. We can use the same commitment key for this and just append the vectors
with enough zeros to get length n.

2.3 Σ-Protocols

A Σ-protocol is a 3-move public-coin interactive protocol that enables a prover
to convince a verifier that a particular statement is true. First, the prover sends
an initial message to the verifier. The verifier sends back a randomly selected
challenge. The prover responds to the challenge. Finally, the verifier decides
whether or not to accept the proof based on the conversation.
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We assume a probabilistic polynomial time algorithm G that generates a
common reference string crs known to all parties. In this paper crs consists of
the key for a homomorphic commitment scheme. For Pedersen commitments,
this is just a list of random group elements.

Let R be a polynomial-time decidable relation. We call w a witness for state-
ment u if (crs, u, w) ∈ R. A Σ-protocol for R is a collection of stateful probabilis-
tic polynomial time algorithms (G,P,V). The algorithm G provides a common
reference string (which in our paper will be a commitment key as described
above). Algorithms P,V function as shown in Fig. 1. The challenge space X
is implicitly given by the common reference string. Intuitively, V outputs 1 if
accepting the proof and 0 if rejecting.

Fig. 1. A general Σ-protocol

Algorithms (G,P,V) are a Σ-protocol if they satisfy completeness, special
soundness, and special honest verifier zero-knowledge:

Definition 5 (Perfect Completeness). (G,P,V) is perfectly complete if for
all probabilistic polynomial time algorithms A, we have

Pr
[

crs ← G(1λ); (u,w) ← A(crs); a ← P(crs, u, w);x ← X ; z ← P(x) :
(crs, u, w) /∈ RorV(crs, u, a, x, z) = 1

]
= 1

Definition 6 (n-Special Soundness). (G,P,V) is n-special sound if there
exists a probabilistic polynomial time algorithm χ that uses n accepting tran-
scripts with the same initial message a and distinct challenges to compute the
witness. For all probabilistic polynomial time algorithms A

Pr

⎡
⎣

crs ← G(1λ); (u, a, x1, z1, . . . , xn, zn) ← A(crs);
w ← χ(u, a, x1, z1, . . . , xn, zn) :

(crs, u, w) ∈ Ror∃i ∈ [n]such thatV(crs, u, a, xi, zi) 
= 1

⎤
⎦ ≈ 1,

where the adversary outputs distinct x1, . . . , xn.
If the above holds with equality, then we say that (G,P,V) has perfect n-

special soundness.
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Definition 7 (Special Honest Verifier Zero Knowledge (SHVZK)). We
say that (G,P,V) has SHVZK if there exists a probabilistic polynomial time sim-
ulator S such that for all interactive probabilistic polynomial time algorithms A

Pr
[
crs ← G(1λ); (u, w, x) ← A(crs); a ← P(crs, u, w); z ← P(x) : A(crs, a, z) = 1

]

≈ Pr
[
crs ← G(1λ); (u, w, x) ← A(crs); (a, z) ← S(crs, u, x) : A(crs, a, z) = 1

]

If the above holds with equality, then we say that (G,P,V) has perfect SHVZK.

Full Zero-Knowledge. In real life applications special honest verifier zero-
knowledge may not suffice since a malicious verifier may give non-random chal-
lenges. However, it is easy to convert an SHVZK argument into a full zero-
knowledge argument secure against arbitrary verifiers in the common reference
string model using standard techniques. The conversion can be very efficient and
only costs a small additive overhead. Details of conversion methods can be found
in [20,24,27].

2.4 Relations

In this section, we describe the relations for our zero-knowledge proofs. The
prover’s witness is a secret vector a satisfying some conditions, and an opening
to a commitment C which is computed from a.

This type of relation could be modelled using a relation with a polynomial P
to impose conditions on a, and another polynomial Q to compute the opening
to C. The value r is the randomness used to make the commitment.

P(a) = 0, C = Com(Q(a); r)

For example, a = (a0, a1, a2) could be a secret vector of bits, imposed by P (a) =
a ◦ (1 − a), and Q(a) = a0 + 2a1 + 4a2 could compute the integer represented
by the bits.

We also incorporate a public vector b, which can be seen as a ‘tweak’ and
allows modification of the statement. For example, setting Q(a, b) = a · b, we
can recover the range proof above by using b = (1, 2, 4). We can also get relations
about other knapsacks by using a different value of b.

More formally, let P(a,b),Q(a,b) be length �P , �Q vectors of polynomials of
degrees dP , dQ respectively. Let C be a commitment. Let b ∈ Z

�b
p be a public vec-

tor of field elements. The prover gives a zero-knowledge argument of knowledge
of a ∈ Z

�a
p and r ∈ Zp such that

P(a,b) = 0, C = Com(Q(a,b); r)

We give more general batched proofs which can handle t instances at once.
Let C1, . . . , Cm be commitments. Let t = mn. Let b1,1, . . . ,bm,n ∈ Z

�b
p be public

vectors of field elements. The bi,j values allow a single instance to capture some
variation in the statement. The batched argument is an argument of knowledge
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of values {ai,j}m,n
i,j=1 and {ri}m

i=1, such that P(ai,j ,bi,j) = 0 for i ∈ [m], j ∈ [n],
and the prover knows commitment openings

C1 = Com(Q(a1,1,b1,1), Q(a1,2,b1,2), . . . ,Q(a1,n,b1,n); r1)
C2 = Com(Q(a2,1,b2,1), Q(a2,2,b2,2), . . . ,Q(a2,n,b2,n); r2)
...
Cm = Com(Q(am,1,bm,1), Q(am,2,bm,2), . . . ,Q(am,n,bm,n); rm)

When m = n = 1, we have t = 1 and recover the relation for a zero-knowledge
argument of knowledge for a single instance.

The idea is that Q allows the prover to prove things about parts of the wit-
ness that were included as commitments in the statement for the zero-knowledge
proof. Then P deals with parts of the witness that were not included as com-
mitments in the statement. Therefore, by choosing P and Q appropriately, we
can easily deal with applications where the evaluation of a polynomial is known,
and applications where it is in committed form.

We can easily generalise to the case where multiple polynomials
Q1(a, b), . . . ,Qk(a, b) are given in separate commitments.

2.5 Lagrange Polynomials

Let z1, . . . , zm be distinct points in some field. The Lagrange polynomials
l1(X), . . . , lm(X) are the unique polynomials of degree m − 1 such that li(zj) =
δi,j , where δi,j is the Kronecker-delta. In cryptography, Lagrange polynomials
have been used for secret-sharing [45].

For j ∈ [m], lj(X) can be computed as

�j(X) :=
∏

0≤m≤k
m �=j

X − zm

zj − zm
=

(X − z0)
(zj − z0)

· · · (X − zj−1)
(zj − zj−1)

(X − zj+1)
(zj − zj+1)

· · · (X − zk)
(zj − zk)

3 Polynomial Commitment Schemes

We present a protocol which allows a prover to commit to a polynomial in
the discrete-logarithm setting, using a homomorphic commitment scheme. The
prover may then later reveal to the verifier an evaluation of the polynomial in a
specific point x chosen by the verifier and prove the evaluation is correct. Bootle
et al. [7] dealt with a similar problem for Laurent polynomials with constant term
zero, whose coefficients were single field elements. We use the same techniques
and generalise to the case of vector coefficients. We treat only positive powers
and ignore the condition on the constant term since this suffices for our needs.
However, the case of Laurent polynomials is straightforward and similar to [7].

3.1 Definition

A polynomial commitment scheme (Gen,PolyCommit,PolyEval,PolyVerify)
enables a prover to commit to a secret vector of polynomials h(X) ∈ Z

l
p[X]
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of some known degree N . Later on the prover may choose to evaluate the com-
mitted polynomial in a point x ∈ Zp and send an opening to the verifier.

Gen(1λ) → ck: Gen is a probabilistic polynomial time algorithm that returns
a commitment key ck. The commitment key specifies among other things a
prime p of size |p| = λ.

PolyCommit(ck,h(X)) → (msg1, st): PolyCommit is a probabilistic polynomial
time algorithm that given a commitment key ck and a vector of degree N
polynomials returns a commitment message msg1 and a state st.

PolyEval(st, x) → msg2: PolyEval is a deterministic polynomial time algorithm
that given a state and a point x ∈ Zp returns an evaluation message msg2.

PolyVerify(ck,msg1,msg2, x) → h̄: PolyVerify is a deterministic polynomial
time algorithm that given a commitment key, a commitment message, an
evaluation message and a point x ∈ Zp returns ⊥ if it rejects the input, or a
purported evaluation of the committed vector of polynomials in x.

A polynomial commitment scheme should be complete, (m + 1)-special sound
and special honest verifier zero-knowledge as defined below.

The definition of completeness simply guarantees that if PolyCommit and
PolyVerify are carried out honestly, then PolyVerify will return the correct poly-
nomial evaluation h(x).

Definition 8 (Perfect Completeness)
(Gen,PolyCommit,PolyEval,PolyVerify) has perfect completeness if for all λ ∈
N, for all ck ← Gen(1λ), and all h(X) ∈ Z

l
p[X] of degree N , and all x ∈ Zp

Pr

⎡
⎣

(msg1, st) ← PolyCommit(ck,h(X))
msg2 ← PolyEval(st, x)
h̄ ← PolyVerify(ck,msg1,msg2, x)

: h̄ = h(x)

⎤
⎦ = 1.

The definition of (m + 1)-Special Soundness guarantees that given m + 1
accepting evaluations for different evaluation points, but from the same poly-
nomial commitment message msg1, then it is possible to extract a polynomial
h(X) that is consistent with the evaluations produced. Furthermore, any other
accepting evaluations for the same commitment will also be evaluations of h(X).

Definition 9 (Computational (m + 1)-Special Soundness)
(Gen,PolyCommit,PolyEval,PolyVerify) is (m + 1)-special sound if there exists
a probabilistic polynomial time algorithm χ that uses m+1 accepting transcripts
with the same commitment message msg1 to compute the committed polynomial
h(X). For all probabilistic polynomial time adversaries A and all L ≥ m

Pr

⎡
⎢⎢⎢⎣

ck ← Gen(1λ)

(msg1, x
(0),msg

(0)
2 , . . . , x(L),msg

(L)
2 ) ← A(ck)

h(X) ← χ(ck,msg1, x
(0),msg

(0)
2 , . . . , x(m),msg

(m)
2 )

h̄i ← PolyVerify(ck,msg1,msg
(i)
2 , x(i))

:
There is a h̄i = ⊥
or all h̄i = h(x(i))

⎤
⎥⎥⎥⎦ ≈ 1,

where the adversary outputs distinct points x(0), . . . , x(L) ∈ Zp and the extractor
returns a degree N vector of polynomials.
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Perfect special honest verifier zero-knowledge means that given any evalua-
tion point x and an evaluation h(x), it is possible to simulate msg1,msg2 that
are distributed exactly as in a real execution of the protocol, in a way that is
consistent with the evaluation h(x).

Definition 10 (Perfect Special Honest Verifier Zero Knowledge)
(Gen,PolyCommit,PolyEval,PolyVerify) has perfect special honest verifier zero
knowledge (SHVZK) if there exists a probabilistic polynomial time simulator S
such that for all stateful probabilistic polynomial time adversaries A

Pr

⎡
⎣

ck ← Gen(1λ); (h(X), x) ← A(ck)
(msg1, st) ← PolyCommit(ck,h(X))
msg2 ← PolyEval(st, x)

: A(msg1,msg2) = 1

⎤
⎦

= Pr
[

ck ← Gen(1λ); (h(X), x) ← A(ck)
(msg1,msg2) ← S(ck, x,h(x)) : A(msg1,msg2) = 1

]

3.2 Construction

In the following, we will build a polynomial commitment scheme on top of a
perfectly-hiding, homomorphic commitment scheme (Gen,Com) to vectors in
Z

nl
p . Let us first give some intuition about how the construction will work.

Let h(X) =
∑N

i=0 hiX
i be a polynomial of degree N = (n + 1)m − 1 with

coefficients that are row-vectors in Z
l
p. Define an m × (n + 1)l matrix

⎛
⎜⎜⎜⎝

h0,0 h0,1 · · · h0,n

h1,0 h1,1 · · · h1,n

...
...

. . .
hm−1,0 hm−1,1 · · · hm−1,n

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

h0 hm · · · hnm

h1 hm+1 · · · hnm+1

...
...

. . .
hm−1 h2m−1 · · · hN

⎞
⎟⎟⎟⎠

With this matrix we have h(X) =
∑n

j=0(
∑m−1

i=0 hi,jX
i)Xmj . In the polyno-

mial commitment scheme, the prover commits to each row of the matrix with
commitments {Hi}m−1

i=0 . After receiving a point x from the verifier, the prover
computes for each column h̄j =

∑m
i=0 hi,jx

i and sends them to the verifier as
part of openings of the commitment

∏m−1
i=0 Hxi

i . The verifier can use the homo-
morphic property of the commitments to check that the h̄j values are correctly
formed and compute h(x) =

∑n
j=0 h̄jx

jm.
While the main idea we have sketched above gives the verifier assurance that

the committed polynomial has been correctly evaluated, the prover may not
be happy. The problem is that the solution gives away information about the
coefficients of h(X). We will therefore introduce some random blinding vectors
to ensure no information is leaked about the committed coefficients except the
evaluation of the polynomial. We will also adjust the protocol to handle an
arbitrary polynomial degree N = mn + d for 0 ≤ d < m by shifting the first
column of the matrix.
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We pick random blinders b1, . . . ,bn ← Z
l
p and define an (m + 1) × (n + 1)l

matrix {hi,j}m,n
i=0,j=0 as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0 b1 · · · bn−1 bn

h1 hd+1 · · · h(n−2)m+d+1 h(n−1)m+d+1

...

hd − b1

...
. . . hnm

0 hnm+1

...
...

0 hm+d−1 · · · h(n−2)m+d−1 hN−1

0 hm+d − b2 · · · h(n−2)m+d − bn hN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We can therefore rewrite the polynomial as

h(X) =
m∑

i=0

hi,0X
i +

n∑
j=1

(
m∑

i=0

hi,jX
i

)
X(j−1)m+d.

In the polynomial commitment scheme, the prover commits to each row of the
matrix with commitments {Hi}m

i=0. After receiving a point x from the verifier,
the prover computes for each column h̄j =

∑m
i=0 hi,jx

i and sends them to the
verifier as part of an opening of the commitment

∏m
i=0 Hxi

i . The verifier can
use the opening to check that the h̄j values are correct and compute h(x) =
h̄0 +

∑n
j=1 h̄jx

(j−1)m+d. We describe the full polynomial commitment scheme
below.

Common Input: ck
PolyCommit(ck,h(X)) → (msg1, st): The prover randomly selects b1, . . . ,

bn ← Z
l
p and arranges them into a matrix with entries {hi,j}m,n

i=0,j=0 as fol-
lows: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0 b1 · · · bn−1 bn

h1 hd+1 · · · h(n−2)m+d+1 h(n−1)m+d+1

...

hd − b1

...
. . . bn

0 hnm+1

...
...

0 hm+d−1 · · · h(n−2)m+d−1 hN−1

0 hm+d − b2 · · · h(n−2)m+d − bn hN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For 0 ≤ i ≤ m, the prover randomly selects ri ← Zp and computes a com-
mitment Hi to the ith row of the matrix using randomness ri.

msg1 = ({Hi}m
i=0) , st =

(
h(X), {bj}n

j=1, {ri}m
i=0

)

The prover sends msg1 to the verifier.
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PolyEval(st, x): → (msg2): For 0 ≤ j ≤ n, the prover computes

h̄j =
m∑

i=0

hi,jx
i+1.

The prover also computes r̄ =
∑m

i=0 rix
i.

Set msg2 =
({h̄j}n

j=0, r̄
)
.

The prover sends msg2 to the verifier.
PolyVerify(ck,msg1,msg2, x): → (cmt): The verifier checks whether

com(h̄0, . . . , h̄n; r̄) =
m∏

i=0

Hxi

i .

Return ⊥ if this fails.
After accepting the commitment opening, the verifier returns

h̄ =
m∑

i=0

hi,0x
i +

n∑
j=1

(
m∑

i=0

hi,jx
i

)
x(j−1)m+d.

Lemma 1. The polynomial commitment protocol given above has perfect com-
pleteness, computational (m + 1)-special-soundness, and perfect special honest
verifier zero-knowledge.

Proof. By inspection, it follows that when the prover is honest, the verifier always
recovers h̄ = h(x).

Given x and h(x), we describe an efficient simulator to prove special honest
verifier zero knowledge. The simulator first picks random h̄1, . . . , h̄n ← Z

l
p and

then computes h̄0 = h(x)−∑n
j=1 h̄jx

(j−1)m+d. In other words, the hj are chosen
uniformly at random, conditional on giving the correct evaluation h(x). The
simulator also picks at random r̄ ∈ Zp and r1, . . . , rm ← Zp and sets Hi =
Comck(0; ri). Finally, it computes H0 = Comck(h̄0, . . . , h̄n; r̄)

∏m
i=1 H−xi

i .
This is a perfect SHVZK simulation. First, because the commitment scheme is

perfectly hiding, the commitments H1, . . . , Hm are identically distributed in real
proofs and simulated proofs. The values h̄1, . . . , h̄n and r̄ are also independently
and uniformly at random in real proofs due to the choices of b1, . . . ,bn and r0,
just as in the simulated proofs. Finally, given these random values both real and
simulated proofs, the matching H0 and h̄0 are uniquely determined. This means
we have identical distributions of real and simulated proofs which are consistent
with the evaluation h(x).

Finally, we prove (m+1)-special soundness. Suppose that we are given msg1
and x(0), . . . , x(m),msg

(0)
2 , . . . ,msg

(m)
2 which are all accepting, and where the x(i)

are distinct. Consider the Vandermonde matrix:
⎛
⎜⎜⎜⎝

1 1 · · · 1
x(0) x(1) · · · x(m)

...
...

. . .
...(

x(0)
)m (

x(1)
)m · · · (

x(m)
)m

⎞
⎟⎟⎟⎠
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This matrix is invertible, meaning that for any 0 ≤ k ≤ m, we can take linear
combinations of the columns to obtain (0, . . . , 0, 1, 0, . . . , 0)T , where the kth entry
is 1. We may take the same linear combinations of the verification equation
com(h̄0, . . . , h̄n; r̄) =

∏m
i=0 Hxi

i in order to find openings to each Hk. We now
have that H0, . . . , Hm are commitments to known row vectors (hi,0, . . . ,hi,n)
with known randomness ri. We define the extracted vector of polynomials to
be h(X) =

∑m
i=0 hi,0X

i +
∑n

j=1

(∑m
i=0 hi,jX

i
)
X(j−1)m+d, which is a vector of

degree N polynomials.
By the binding property of the commitment scheme, for each accepting tran-

script, we have

h̄k =
m∑

i=0

hi,0(x(k))i +
n∑

j=1

(
m∑

i=0

hi,j(x(k))i

)
(x(k))(j−1)m+d.

Therefore, all openings are consistent with the extracted polynomial h(X). ��

Communication. The prover must send m+1 group elements and l(n+1)+1
field elements to the verifier.

Computation. Prover computation is dominated by m + 1 multi-
exponentiations of width l(n + 1) + 1 costing approximately lmn

log ln+ l
log l exponen-

tiations. Verifier computation is dominated by a multi-exponentiation of width
l(n + 1) + m + 1 costing approximately ln+m

log(ln+m) exponentiations.

4 Batch Protocol for Low Degree Relations

We give an argument of knowledge of values {ai,j}i∈[m],j∈[n] and {ri}i∈[m], such
that P(ai,j ,bi,j) = 0 for i ∈ [m], j ∈ [n], and the prover knows commitment
openings

C1 = com(Q(a1,1,b1,1), Q(a1,2,b1,2), . . . ,Q(a1,n,b1,n); r1)
C2 = com(Q(a2,1,b2,1), Q(a2,2,b2,2), . . . ,Q(a2,n,b2,n); r2)
...
Cm = com(Q(am,1,bm,1), Q(am,2,bm,2), . . . ,Q(am,n,bm,n); rm)

The protocol we design will be more efficient than repeating t = mn instances
of the basic protocol in parallel, as the communication depends on

√
t rather

than t.
In the following we will refer to the parameters �a, �b, �P , dP , �Q, dQ such

that ai,j ∈ Z
�a
p , bi,j ∈ Z

�b
p , P is a vector of �P (�a + �b)-variate polynomials of

total degree dP , and Q is a vector of �Q (�a + �b)-variate polynomials of total
degree dQ.
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4.1 Intuition Behind Protocol

The protocol embeds multiple instances of the same polynomial equality into
a single polynomial by using Lagrange interpolation polynomials, inspired by
[1,26]. To recover a single instance, simply evaluate the polynomial in one of the
interpolation points.

More concretely, let z1, . . . , zm be distinct points in Zp, and let l1(X), . . . ,
lm(X) be their associated Lagrange polynomials such that li(zj) = δi,j . Let
l0(X) =

∏m
i=1(X − zi). The prover produces the following commitments.

A0 = com(a0,1, a0,2, . . . , a0,n ; r0 )
A1 = com(a1,1, a1,2, . . . , a1,n ; r1 )
A2 = com(a2,1, a2,2, . . . , a2,n ; r2 )
...
Am = com(am,1, am,2, . . . , am,n ; rm )

Here, the values a0,1, . . . ,a0,n ∈ Z
la
p , where the value of the first index is 0, are

blinding values chosen uniformly at random. These are completely unrelated to
the values of the witness, which are a1,1, . . . ,am,n, where the first index has
a value strictly greater than 0. After receiving a random challenge x from the
verifier, the prover sends āj =

∑m
i=0 ai,j li(x) to the verifier for each j ∈ [n].

The verifier now checks the received āj against the commitments Ai. This
proves knowledge of the a values. It remains to demonstrate that ai,j ,bi,j satisfy
the polynomial relations in the statement. Let b̄j =

∑m
i=1 bij li(x). The verifier

evaluates P, Q using āj and b̄j for each j. By definition of āj and b̄j , when
evaluating at an interpolation point zi, we obtain the single evaluation of the
original polynomial, P(ai,j ,bi,j). This implies, for example, that P(āj , b̄j) ≡ 0
mod l0(x), or in other words, that P(āj , b̄j) is a multiple of l0(X) for each j.
The prover must commit to the coefficients of P(āj , b̄j)/l0(x) in advance (as a
polynomial in x), and uses the polynomial commitment scheme to achieve this
for every j simultaneously.

Finally, the prover needs to convince the verifier that the commitments Ci

contain commitments to Q(ai,j ,bi,j). This is done in a similar way to the P poly-
nomial, except here we build up polynomial equalities over committed values.
The full protocol can be found below.

Common Reference String: crs = (ck, z1, . . . , zm) where ck ← Gen(1λ)
and z1, . . . , zm are distinct points in Zp defining Lagrange polynomials
l1(X), . . . , lm(X) such that li(zj) = δi,j and defining l0(X) =

∏m
j=1(X − zj).

Statement: {Ci}i∈[m], {bi,j}i∈[m],j∈[n],P,Q polynomials.
Prover’s Witness: {ai,j}i∈[m],j∈[n], {ri}i∈[m] such that

P(ai,j ,bi,j) = 0 for i ∈ [m], j ∈ [n]

Ci = com(Q(ai,1,bi,1),Q(ai,2,bi,2), . . . ,Q(ai,n,bi,n); ri) for i ∈ [m]
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P → V: Pick r0, s0, . . . , sm ← Zp and a0,1, . . . ,a0,n ← Z
�a
p and c1, . . . , cn ←

Z
�Q
p . Compute

C0 = Comck(c1, . . . , cn; r0) and Ai = Comck (ai,1, . . . , ai,n; si) for i ∈ {0} ∪ [m].

Define

āj(X) =
∑m

i=0 ai,j li(X) b̄j(X) =
∑m

i=1 bi,j li(X)

P∗
j (X) =

P(āj(X),b̄j(X))
l0(X) Q∗

j (X) = cj +
∑m

i=1 Q(ai,j ,bi,j)li(X)−Q(āj(X),b̄j(X))
l0(X)

Run PolyCommit(ck,
{
P∗

j (X)
}

j∈[n]
) → (msgP,1, stP ).

Run PolyCommit(ck,
{
Q∗

j (X)
}

j∈[n]
) → (msgQ,1, stQ).

The prover sends {Ai}i∈[m] and msgP,1,msgQ,1 to the verifier.
P ← V: Send the challenge x ← Zp \ {z1, . . . , zm} to the prover.
P → V: Run

PolyEval(stP , x) → msgP,2 PolyEval(stQ, x) → msgQ,2.

Compute

āj = āj(x) r̄ =
m∑

i=0

rili(x) s̄ =
m∑

i=0

sili(x).

The prover sends {āj}j∈[n], r̄, s̄,msgP,2,msgQ,2 to the verifier.
V: Run

PolyVerify(ck,msgP,1,msgP,2, x) → p̄ = (p̄1, . . . , p̄n)

and
PolyVerify(ck,msgQ,1,msgQ,2, x) → q̄ = (q̄1, . . . , q̄n).

Return 0 if p̄ = ⊥ or q̄ = ⊥.
Check

Comck(ā1, . . . , ān; s̄) =
m∏

i=0

A
li(x)
i .

Compute b̄j = b̄j(x) and check for all j ∈ [n] that

P(āj , b̄j) = p̄j l0(x).

Check that

Comck(
{
q̄j l0(x) + Q(āj , b̄j)

}
j∈[n]

; r̄) =
m∏

i=0

C
li(x)
i .

If all checks are satisfied, then the verifier outputs 1, and otherwise 0.

Lemma 2. The batch protocol has perfect completeness, ms-special-soundness,
and perfect special honest verifier zero-knowledge, wherems =(m max(dP , dQ)+1).
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Proof. Perfect completeness of the protocol follows by perfect completeness of
the PolyCommit sub-protocol, and by careful inspection.

For perfect special honest verifier zero knowledge, we provide an efficient
simulator for the protocol. The simulator selects z1, . . . , zm as the prover. She
then selects āj ← Z

�a
p , r̄, s̄ ← Zp, q̄j ← Z

�Q
p , and A1, . . . , Am as uniformly

random commitments to 0. All these values are distributed exactly as in a real
protocol, where they are also uniformly random.

She then simulates the polynomial commitment and evaluation messages
msgP,1,msgP,2,msgQ,1,msgQ,2 using the evaluation point x and evaluations p̄
and q̄, which are determined by the values already simulated. By the perfect
SHVZK of the polynomial commitment scheme, the simulated values have iden-
tical distribution to the real proofs. Furthermore, since the polynomial commit-
ment simulator takes the polynomial evaluation as input, the simulated poly-
nomial commitments are consistent with the rest of the simulated values in the
outer protocol.

In both the real and simulated protocols, the verification equations now deter-
mine the values of A0 and C0 uniquely, and the simulator can easily compute the
correct values by rearranging the equations. The entire simulated proof therefore
has the same distribution as a real proof.

Finally, we prove special soundness. Suppose that we have ms = (m max
(dP , dQ)+ 1) accepting transcripts for the same first message, and distinct chal-
lenges x.

Pick any m + 1 of the challenges, and note that the matrix

M =

⎛
⎜⎜⎜⎝

l0(x(1)) l1(x(1)) · · · lm(x(1))
l0(x(2)) l1(x(2)) · · · lm(x(2))

...
...

. . .
...

l0(x(m+1)) l1(x(m+1)) · · · lm(x(m+1))

⎞
⎟⎟⎟⎠

is invertible. This follows from linear independence of the polynomials
l0(X), . . . , lm(X). If the determinant was zero, there would be a non-trivial lin-
ear dependence between the columns of the matrix. This would give a non-trival
dependence relation between the polynomials.

Therefore, for each i, it is possible to take a linear combination of the rows
to produce (0, . . . , 0, 1, 0, . . . , 0), where the 1 is at the ith entry. By taking the
same linear combinations of the left and right hand sides of the verification
equationComck(ā1, . . . , ān; s̄) =

∏m
i=0 A

li(x)
i for m + 1 different transcripts, we

can for each i ∈ {0} ∪ [m] extract an opening {ai,j}j∈[n] and si of Ai. By the
binding property of the commitment scheme, we now have in each transcript
that āj is correctly formed as a polynomial determined by the openings of the
Ai evaluated in x.

By the special soundness of the polynomial commitment protocols, we extract
polynomials P∗

j (X) of degree (dP − 1)m, and Q∗
j (X) of degree (dQ − 1)m such

that in each transcript, p̄j = P∗
j (x) and q̄ = Q∗

j (x) for the challenge x appearing
in that transcript.
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Consider the verification equations P(āj , b̄j) = p̄j l0(x). By the binding prop-
erty of the commitment scheme, we have that P(āj(x), b̄j(x)) = P∗

j (x)l0(x)
holds for ms different challenges x. Since ms is larger than the degree of the
polynomial this implies that we have an equality of polynomials. By evaluating
the polynomial expression at a particular interpolation point zi, and parsing
the resulting vector correctly, we see that P(ai,j ,bi,j) = P∗

j (zi)l0(zi) = 0 for
each i, j.

We can in a similar manner to the extraction of the Ai extract openings of
all Ci to values ci,1, . . . , ci,n. The last verification equation tells us that for each
j ∈ [n]

q̄j l0(x) + Q(āj , b̄j) =
m∑

i=0

ci,j li(x).

Since ms is larger than the degree of the polynomials this implies that we have
an equality of polynomials. By plugging in the evaluation points zi, we get
Q(ai,j ,bi,j) = ci,j for each i ∈ [m], j ∈ [n]. ��

Communication. Let k1, k2 be the dimensions of the matrix used in the Poly-
Commit subprotocol when committing to P∗, and similarly, let t1, t2 be the
dimensions of the matrix in the subprotocol for committing to Q∗. The total
communication cost of the protocol is m + k1 + t1 + 4 group elements and
�an + �P n(k2 + 1) + �Qn(t2 + 1) + 4 field elements.

Single Proof Case. When t = mn = 1 and the prover is proving a single relation,
we may choose parameters so that the protocol only uses a constant number of
group elements. Set k1 = t1 = 1, k2 = dP − 1, t2 = dQ − 1. Then the protocol
has communication costs of 7 group elements plus �a + �P dP + �QdQ + 4
field elements. This minimises communication in the case where the protocol is
instantiated over a multiplicative subgroup of a finite field, where group elements
are much bigger than field elements.

In the case where the protocol is instantiated using an elliptic curve group,
group elements and field elements have roughly the same size. Then, we can
minimise the total communication costs by choosing k2 =

⌈√
dP

�P

⌉
, k1 ≈ dP

k2
.

Set t2 =
⌈√

dQ

�Q

⌉
, t1 ≈ dQ

t2
. Then the protocol has costs

√
�P dP +

√
�QdQ + 5

group elements and �a +
√

�P dP +
√

�QdQ + 4 field elements.

Batch Proof Case. When t is large, we choose parameters so that the communi-
cation costs are proportional to

√
t rather than t. Set k2 =

⌈√
dP m
�P n

⌉
, k1 ≈ dP m

k2
.

Set t2 =
⌈√

dQm
�Qn

⌉
, t1 ≈ dQm

t2
. Finally, set m ≈ √

�at, n ≈ t
m . Then the protocol

has communication costs of roughly
√

�at +
√

dP �P t +
√

dQ�Qt group elements
and

√
�at +

√
dP �P t +

√
dQ�Qt field elements.
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Computation. The prover’s computational costs are dominated by

O

(
�at

log �an
+

�Qn

log �Qn
+

�P dP t

log �P nk2
+

�P dP t

log �P nt2

)

exponentiations. Over Zp, the prover must perform

O((�a + �b + �P )tdP log mdP +(�a + �b + �Q)tdQ log mdQ)+ tdPEvalP + tdQEvalQ

multiplications. Here, EvalP is the cost of evaluating P once, and similarly for Q.
The vectors of polynomials P∗(X),Q∗(X) are computed using FFT techniques.

The verifier’s computational costs are dominated by

O

(
m + �an

log(m + �an)
+

m + �Qn

log(m + �Qn)
+

k1 + �P nk2
log(k1 + �P nk2)

+
t1 + �Qnt2

log(t1 + �Qnt2)

)

exponentiations. Over Zp, the verifier must perform

O((�P + �Q)n) + nEvalP + nEvalQ

multiplications.

5 Applications

In this section, we specify concrete choices of relations for P,Q, which give rise
to zero-knowledge arguments for several useful applications.

5.1 Membership Argument with Public List

In membership arguments [10,11], the prover wishes to convince the verifier that
a commitment contains one of the values in a given list L = (λ0, . . . , λN−1).
Groth and Kohlweiss [28] give an efficient membership argument, which with
minor tweaks fits into our framework. For simplicity, we will in the following
assume N is a power of 2.

Statement: (c, λ0, . . . , λN−1)
Witness: �, r such that c = Comck(λ�; r)
Polynomial Encoding: Let m = log2 N and let (l0, . . . , lm−1) be the binary

expansion of l, satisfying lj(1 − lj) = 0 for 0 ≤ j ≤ m − 1. Define lj,1 := lj
and lj,0 = 1 − lj . We have that

N−1∑
i=0

λi

m−1∏
j=0

lj,ij = λl

where we write the binary expansion of i as (i0, . . . , im−1).
Parameter Choice: Writing ◦ for the entry-wise product of two vectors

– �a = log2 N, �b = N, �P = log2 N, dP = 2, �Q = 1, dQ = log2 N
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– a = (l0, . . . , lm−1)
– b = (λ0, . . . , λN−1)
– P(a,b) = a ◦ (1 − a)
– Q(a,b) =

∑N−1
i=0 λi

∏m−1
j=0 lj,ij

An alternative construction was given in [6] that optimises the membership
argument by using an n-ary representation of l. This alternative construction is
captured by our framework as follows, this time assuming for simplicity that N
is a power of n, using different polynomials P and Q.

Polynomial Encoding: Let m = logn N and let (l0, . . . , lm−1) be the n-ary
expansion of l. Let δrs be the Kronecker delta symbol, which is equal to 1
if r = s and 0 otherwise. Consider the bit-string (δl0,0, δl0,1, . . . , δlm−1,n−1),
each element satisfying δi,j(1 − δi,j) = 0, and with

∑n−1
i=0 δlj ,i = 1 for each j.

As described in [6], we have that

N−1∑
i=0

λi

m−1∏
j=0

δj,ij = λl

where ij the jth n-ary digit of i.
Parameter Choice:

– �a = n logn N , �b = N , �P = n logn N , dP = 2, �Q = 1, dQ = logn N
– a = (δl0,1, . . . , δlm−1,n−1), not including δj,0 for any j.
– b = (λ0, . . . , λN−1).
– δlj ,0 = 1 − ∑n−1

i=1 δlj ,i for each j.
– v =

(
δl0,0, . . . , δlm−1,n−1

)
, with the δj,0 included.

– P (a,b) = v ◦ (1 − v)
– Q(a,b) =

∑N−1
i=0 λi

∏m−1
j=0 δj,ij = λl

When t = 1 and we are aiming for a constant number of group elements,
the simple binary version of the argument gives the lowest communication costs.
Otherwise, in the cases where t is large, or where t = 1 and we aim to minimise
the total number of elements communicated, setting n = 3 gives the lowest
communication costs. The protocol efficiency is reported in Table 1.

5.2 Polynomial Evaluation Argument

In a polynomial evaluation argument [10,23], we have a polynomial of degree
N and commitments to a point and its purported evaluation in that point.
The prover wants to convince the verifier that the committed evaluation of the
polynomial is correct.

The most efficient discrete logarithm based polynomial evaluation argument
was given by Bayer and Groth [2]. We will now use our framework of polynomial
relations to capture their protocol.

Statement: (cu, cv, h(X)), where h(X) is a polynomial of degree N .
Witness: u, η, v, ν such that cu =Comck(u; η), cv = Comck(v, ν), and h(u)=v.
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Polynomial Encoding: Set ui = u2i for 0 ≤ i ≤ log2 N − 1, so that
ui = u2

i−1 for each i. If h(X) =
∑N−1

i=0 hiX
i, then we can write h(u) =∑N−1

i=0 hi

∏log2 N−1
j=0 u

ij
j .

Parameter Choice:
– �a = log2 N , �b = N , �P = log2 N − 1, dP = 2, �Q = 1, dQ = log2 N
– a = (u0, . . . , ulog N−1)
– b = (h0, . . . , hN−1)
– P(a,b) = (u1 − u2

0, . . . , ulog N−1 − u2
log N−2)

– Q(a,b) =
∑N−1

i=0 hi

∏log N−1
j=0 u

ij
j

With alternative choices of the matrices P,Q, we can improve the communi-
cation costs of their argument by switching to an n-ary encoding of the powers
in the polynomial.

Polynomial Encoding: Set ui = uni

for 0 ≤ i ≤ logn N − 1, so that ui =
un

i−1 for each i. If h(X) =
∑N−1

i=0 hiX
i, then we can write h(u) =

∑N−1
i=0

hi

∏logn N−1
j=0 u

ij
j , where this time, ij is the jth digit of the nary representation

of i. This gives rise to the efficiencies listed in Table 1.
Parameter Choice:

– �a = logn N , �b = N , �P = logn N , dP = n, �Q = 1, dQ = logn N
– a = (u0, . . . , ulogn N−1)
– b = (h0, . . . , hN−1)
– P(a,b) = (u1 − un

0 , . . . , ulogn N−1 − un
logn N−2)

– Q(a,b) =
∑N−1

i=0 hi

∏logn N−1
j=0 u

ij
j

When t = 1 and we are aiming for a constant number of group elements,
setting n = 4 gives the lowest communication costs. When t = 1 and we aim
to minimise the total number of elements communicated, we set n = log2 N

log2 log2 N .
Otherwise, in the cases where t is large, setting n = 6 gives the lowest commu-
nication costs. The protocol efficiency is reported in Table 1.

We note that [1] gives a batch argument for polynomial evaluation based on
similar ideas. However, ours is more communication efficient.

Remark. The relations above arise from choices of a small set of powers of u
which generate all powers from u to uN−1. This is the same as choosing an
additive basis for [N − 1]. For certain parameter choices, we have found modest
benefits to using more complex bases, such as generalised Zeckendorf bases, but
these give only slight improvements, so are omitted for simplicity.

5.3 Range Proof

In range proofs [9,38], we have a commitment and a range [A;B]. The prover
wants to convince the verifier that the committed value inside the commitment
falls in the given range. A common strategy for constructing a range proof is to
write the committed value in binary, prove all the bits are indeed 0 or 1, and that
their weighted sum yields a number within the range. We now describe this type
of range proof in our framework of polynomial relations, where we for simplicity
focus on intervals [0, N ] with N = 2m − 1.
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Statement: (N, c)
Witness: a, r such that c = Comck(a; r), a ∈ [0, N ].
Polynomial Encoding: Let a0, . . . , am−1 be the binary representation of a,

so that ai(1 − ai) = 0 for 0 ≤ i ≤ m − 1. Then a =
∑m−1

i=0 ai2i.
Parameter Choice:

– �a = m, �b = m, �P = m, dP = 2, �Q = 1, dQ = m + 1
– a = (a0, . . . , am−1)
– b = (20, 21, . . . , 2m−1)
– P(a,b) = a ◦ (1 − a)
– Q(a,b) =

∑m−1
i=0 ai2i

With an alternative choice of P,Q, following [16], it is possible to improve
the communication costs of the argument by using an n-ary base. This gives rise
to the efficiencies listed in Table 1.

Polynomial Encoding: Let N = nm − 1. Let a0, . . . , am−1 be the n-ary
representation of a, so that

∏n−1
k=0(ai − k) = 0 for 0 ≤ i ≤ m − 1. Then

a =
∑m−1

i=0 ain
i.

Parameter Choice:
– �a = m, �b = m, �P = m, dP = n, �Q = 1, dQ = 1
– a = (a0, . . . , am−1)
– b = (1, n, . . . , nm−1)
– P (a,b) = a ◦ (a − 1) ◦ . . . (a − n + 1)
– Q(a,b) =

∑m−1
i=0 ain

i

When t = 1 and we are aiming for a constant number of group elements, setting
n = 4 gives the lowest communication costs. When t = 1 and we aim to minimise
the total number of elements communicated, we set n = log2 N

log2 log2 N . Otherwise,
in the cases where t is large, setting n = 6 gives the lowest communication costs.
The protocol efficiency is reported in Table 1.

6 Conclusion

We have provided zero-knowledge arguments for simple polynomial relations,
relying solely on the discrete logarithm assumption. When we only have one
instance of the argument, t = 1, the single value membership arguments and
polynomial evaluation arguments compiled within our framework improve on the
state of the art both asymptotically and for practical parameters. When there
are many instances, t > 1, we have a batch argument for polynomial relations,
which is significantly more efficient than the näıve solution of repeating single
instance arguments many times.
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Abstract. We revisit the problem of whether the known classic
constant-round public-coin argument/proof systems are witness hiding
for languages/distributions with unique witnesses. Though strong black-
box impossibility results are known, we provide some less unexpected
positive results on the witness hiding security of these classic protocols:

– We give sufficient conditions on a hard distribution over unique wit-
ness NP relation for which all witness indistinguishable protocols
(including all public-coin ones, such as ZAPs, Blum protocol and
GMW protocol) are indeed witness hiding. We also show a wide
range of cryptographic problems with unique witnesses satisfy these
conditions, and thus admit constant-round public-coin witness hid-
ing proof system.

– For the classic Schnorr protocol (for which the distribution of state-
ments being proven seems not to satisfy the above sufficient con-
ditions), we develop an embedding technique and extend the result
of Bellare and Palacio to base the witness hiding property of the
Schnorr protocol in the standalone setting on a relaxed version of
one-more like discrete logarithm (DL) assumption, which essentially
assumes there does not exist instance compression scheme for the
DL problem, and show that breaking this assumption would lead to
some surprising consequences, such as zero knowledge protocols for
the AND-DL language with extremely efficient communication and
highly non-trivial hash combiner for hash functions based on the DL
problem. Similar results hold for the Guillou-Quisquater protocol.

1 Introduction

Witness hiding proof system, introduced by Feige and Shamir [12], is a relaxed
yet natural notion of zero knowledge proof [15]. Instead of requiring an efficient
simulation for the view of the verifier as in zero knowledge proof, witness hiding
property only requires that, roughly speaking, the interaction with honest prover
does not help the verifier compute any new witness for the statement being
proven that he did not know before. One immediate application of such a security
notion is identification: Witness hiding proof allows a prover to prove his identity
c© International Association for Cryptologic Research 2018
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without leaking the associated secret key, and this security notion is sufficient
for preventing impersonation attack from malicious verifiers.

The witness hiding property of some practical protocols, which are usually
not zero knowledge, is often proved via another beautiful and widely applicable
notion of witness indistinguishability introduced in the same paper of [12]. A
witness indistinguishable proof guarantees that if the statement has two inde-
pendent witnesses, then the malicious verifier cannot tell which witness is being
used by the prover in an execution of the protocol. The idea underlying the secu-
rity proof of witness hiding via witness indistinguishability is as follows. Suppose
that for a hard language, each instance has two witnesses and it is infeasible for
an efficient algorithm, given one witness as input, to compute the other one, then
the witness indistinguishable protocol is actually witness hiding with respect to
such instances. This is because we can take one witness as input to play the role
of honest prover and then use the verifier’s ability of breaking witness hiding to
either break witness indistinguishability of this protocol or obtain a new wit-
ness. Therefore, the parallelized version of 3-round public-coin classic protocols
of [3,14] are witness hiding with respect to such languages.

What happens if the hard language consists of instances that have exactly
one witness? This problem has turned out to be quite subtle. The Guillou-
Quisquater [17] and the Schnorr [28] identification protocols are perhaps the
best-known efficient protocols for unique witness relations, but their security has
long remained open. On the positive side, Shoup [29] presented positive result
that the Schnorr identification protocol is secure in the generic group model,
and Bellare and Palacio [2] showed that the security of the Guillou-Quisquater
and Schnorr identification protocols can be based on the so-called one-more RSA
and one-more discrete logarithm assumptions, respectively [1,2]. These security
proofs of course imply that the Schnorr and the Guillou-Quisquater identification
protocols are witness hiding in the standalone setting where there is only a single
execution of the protocol. However, the underlying assumptions/models are quite
strong and non-standard.

Indeed, there is an obstacle in the way of basing constant-round public-coin
protocols for unique witness relations on standard assumptions. As mentioned
before, the basic approach to prove witness hiding of a protocol is to find an
efficient way to exploit the power of the malicious verifier to break some hardness
assumptions. For the instance that has exactly one witness, however, to exploit
the power of the malicious verifier requires the reduction itself to know the
unique witness to the statement being proven in the first place (by the soundness
property of the protocol), which usually does not lead to a desired contradiction
even if the malicious verifier does have the ability to break witness hiding of the
protocol.

Haitner et al. [18] gave the first proof that constant-round public-coin wit-
ness hiding protocols for unique witness relations cannot be based on standard
assumptions via some restricted types of black-box reductions. Pass [24] showed
that if we further require witness hiding to hold under sequential repetition,
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then we can significantly strengthen the impossibility result of [18]. Some sim-
ilar impossibility results on the problem whether we can base the aforemen-
tioned one-more discrete logarithm assumption on standard hardness assump-
tion were also given in [24,30]. We would like to point out that these impossi-
bility results may have some impact on other important problems. For example,
in [23] Pass showed a deep connection between the problem of whether the classic
constant-round public-coin proofs are witness hiding for all NP languages and the
longstanding problem whether we can base one-way functions on NP-complete
problem.

1.1 Our Contribution

Our main contribution reflects an optimistic point of view on the witness hiding
security of the classic public-coin proof systems.

We observe that all previously known impossibility results [18,24] on the
witness hiding of public-coin protocols make an implicit restriction (which has
not been mentioned explicitly in the statements of their main results) on the
black-box reduction: For a distribution (X ,W) on an unique witness relation,
for the proof of lower bound to go through, the (black-box) reduction R is
restricted to invoke the adversarial verifier V ∗ only on instances in X .1

This leaves a problem of whether one can get around these impossibility
results by removing the above restriction on the black-box reduction. We provide
a positive answer to this problem. Specifically, we develop an input-distribution-
switching technique and prove that, for any hard language L, if a distribution
(X ,W) on a unique witness relation RL has an indistinguishable counterpart
distribution over some multiple witnesses relation, then any witness indistin-
guishable protocols (including ZAPs and all known 3-round public-coin proto-
cols, such as Blum protocol and GMW protocol) are indeed witness hiding for
the unique witness distribution (X ,W). We also show a wide range of crypto-
graphic problems with unique witnesses satisfy the “if condition” of this result,
and thus admit constant-round public-coin witness hiding proof system. This is
the first positive result on the witness-hiding property of the classic protocols
for unique witness relations.

For the classic Schnorr protocol (for which the distribution of statements
being proven seems not to satisfy the above sufficient conditions), we develop
an embedding technique and extend the result of [2] to base the witness hiding
property of the standalone Schnorr (and Guillou-Quisquater) protocol based on
a relaxed version of one-more like DL (RSA, respectively) assumption. To see the
plausibility of our still-non-standard assumption, we follow the framework of [19]
and introduce the notion of tailored instance compression, which captures the

1 This restriction can be seen from the last paragraph “on the role of unique witness”,
page 7 of the full version (see http://www.cs.cornell.edu/∼rafael/papers/schnorr.
pdf) of [24]: “...(in the reduction) If the statement x has a unique witness w, we can
ensure that the extracted witness will be identical to the witness that the oracle A
(which is V ∗ in our setting) would have returned..”.

http://www.cs.cornell.edu/~rafael/papers/schnorr.pdf
http://www.cs.cornell.edu/~rafael/papers/schnorr.pdf
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essence of the known one-more like assumptions, and more importantly, provides
new insight into the hardness of one-more DL/RSA problems and allows us to
reveal some surprising consequences of breaking our version of the one-more like
assumptions, including zero knowledge proofs with extremely low communica-
tion complexity for the AND-DL and AND-RSA languages and non-trivial hash
combiner for hash functions based on DL problem.

We summarize our results in the Table 1.

Table 1. Our results for languages with unique witnesses compared to previ-
ous work. Here we refer to the impossibility results of further basing instance
incompressibility/one-more assumptions on standard hard problems as “BB negative
results/evidences”, and refer to the surprising consequences of breaking these assump-
tions as “positive results/evidences” in favor of these assumptions. As we observe, the
impossibility results of [18,24] make an implicit restriction on the black-box reduction.

Security of

Schnorr/GQ

Instance

incompressibility/one-more

assumptions

WH of PC protocols

for unique witness R

BB negative

results/evidences

[24] [24,30] [18,24]

Positive results/

evidences

[2]

This work (with

relaxed assum.)

This work This work

1.2 Techniques

Input-distribution-switching technique: jumping out of the box. As
mentioned before, the previously known impossibility results hold only with
respect to restricted reduction. We introduce an input-distribution-switching
technique to get around these impossibility results for general unique witness
NP relations.

Suppose that, for a hard language L1 with unique witness relation RL1 ,
and a distribution ensemble (X 1,W1) over RL1 , there exists a coupled distribu-
tion ensemble (X 2,W2) over relation RL2 of a language L2 with two or more
witnesses that is indistinguishable from (X 1,W1). What can we say about the
security of the classic public-coin protocols for (X 1,W1)? At least we know that
such protocols are witness indistinguishable for (X 2,W2).

A very vague intuition behind this positive result is that, for the same mali-
cious verifier V ∗, if we invoke V ∗ on both instances in X 1 and X 2, it should have
the same behavior in these two settings since these instances are indistinguish-
able. This vague idea leads us to introduce the input-distribution-switching tech-
nique, which enables us to prove that if the ensembles (X 1,W1) and (X 2,W2)
further satisfy the following properties:

– Given a sample x from X 1, it is hard to find the unique witness for x;
– For every x in the support of X 2, witnesses in RL2(x) are uniformly dis-

tributed.
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Then the classic constant-round public-coin protocols are actually witness hiding
for (X 1,W1).

The proof of this result is a reduction of witness hiding for (X 1,W1) to
witness indistinguishability for (X 2,W2), which is more complicated than one
might imagine. See Sect. 3 for the detailed proof.

The idea of considering different types of distributions X 1 and X 2 on the com-
mon input already appeared in Goldreich’s definition of strong witness indistin-
guishability [13], but there they do not require indistinguishability of (X 1,W1)
and (X 2,W2) since such requirement on the witness distributions W1 and W2

would trivialize the definition of witness indistinguishability.
In our setting, the indistinguishability requirement on witness distributions

W1 and W2 is helpful in achieving significant positive results on witness hid-
ing protocols that bypass some previously known limitations. We give several
examples of such distribution ensembles (X 1,W1) based on standard assump-
tions such as DDH, the existence of lossy trapdoor functions [25] and mixed
commitments [9,16], and applying the above result we show the classic proto-
cols of [3,11,14,16] are actually witness hiding under sequential repetition for a
wide range of useful cryptographic problems with unique witnesses.

Embedding technique and the instance compression problem. Before
proceeding to our embedding reduction, we recall the Schnorr protocol and
Bellare and Palacio’s security proof for it [2]. Let G be a group of prime order
q generated by g, the prover P wants to convince the verifier V of knowledge
of the discrete logarithm (unique witness) w ∈ Zq of an element y = gw ∈ G.
To do so, P first sends a random element a = gr ∈ G to V , and upon receiving
the V ’s challenge c ∈ Zq, it answers with a value z ∈ Zq. V accepts the proof
if and only if gz = a · yc. Note that, if V finally outputs the witness w ∈ Zq at
the end of interaction, then we can build an algorithm R solving two random
discrete logarithm instances y and a at the same time if R is allowed to make
one query to the discrete logarithm solver oracle Odlog: R have y serve as the
common input and a as the first prover message, after receiving V ’s challenge
c, R queries Odlog on a · yc and forwards the response z from the oracle to the
verifier; when V outputs w, R can solve the linear equation z = r+cw mod q and
obtain r. This useful observation was also exploited by Bellare and Palacio [2]
to prove the security of the Schnorr protocol as an identification scheme under
the hardness of one-more discrete logarithm problem.

We now show how to conduct embedding reduction R that leads to better
security proof based on a relaxed version of the one-more DL assumption.

Suppose we are given a set of discrete logarithm instances (y1, y2, . . . , y�)
to solve. For simplicity, we assume � = 2l for some integer l. The first part
of R is a compressing process. R partitions them into �/2 pairs, for each pair
of instances, one serving as the common input and the other serving as the
first prover message in a session, and invokes �/2 incarnations of the verifier in
parallel. After collecting �/2 challenges from the �/2 invocations of the verifier,
R has to solve �/2 new instances in order to answer each verifier. At this point,
rather than querying Odlog on these new instances, R pauses all these interactions
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and partitions the new �/2 instances into �/4 pairs, and then repeats the above
step and invokes �/4 incarnations of the verifier in parallel, and will get �/8 new
instances to solve. Continuing to repeat this, by viewing each partial interaction
with a verifier as a node we get a tree in which each node takes in two instances
and outputs one instance. Finally, R reaches the root and has only one instance
to solve.

The second part of R is an unfolding process. R queries Odlog on the root
instance, then by using the verifier’s power of breaking witness hiding as above,
R is able to solve the two instances flowing into this node. Note that, the two
instances R just solved will help it solve the four instances that flow into the
two nodes at the level above the root (without making queries to oracle any-
more), and repeating this process R will solve all these � instances (y1, y2, . . . , y�).
Observe that in the entire embedding reduction, R makes only a single query
(at the root of the tree) to Odlog and solves all � DL instances. This process is
exemplified in Fig. 2.

The actual embedding reduction needs to make each invocation of the veri-
fier independent by using the random self-reducibility of the discrete logarithm
problem. As we will see, the quantity � can be an arbitrarily large integer, or any
polynomial when the verifier’s success probability is close to 1. Thus, assuming
that it is infeasible for a PPT oracle algorithm to solve � discrete logarithm
instances at the same time when restricted to making a single query to the dis-
crete logarithm solver oracle, the standalone Schnorr protocol is witness hiding.
Similar results can also be obtained for the Guillou-Quisquater’s protocol and
some other Σ-protocols for group homomorphisms.

Our reduction R leads to the following tailored instance compression prob-
lem for DL: Construct a triplet of efficient algorithms (Z,C,U) such that: On
input � instances (y1, ..., y�) of DL, the compression algorithm Z outputs a single
DL instance y; on input (y1, ..., y�) together with their corresponding witnesses
(w1, ..., w�), the witness compression algorithm C2 outputs a witness w to the
instance y ← Z(y1, ..., y�); given the witness w to y, the unfolding algorithm U
outputs all witnesses (w1, ..., w�) to these � instances.

Note that if there exists a successful malicious verifier V , then our reduction
R together with V can be used to construct a good instance compression scheme
for DL problem. Thus, our result on Schnorr protocol can be rephrased as follows:
If the tailored instance compression scheme for DL does not exist, then Schnorr
protocol is secure.

What if instance compression schemes exist for DL and RSA? We observe
that the existence of instance compression scheme for DL/RSA with strong
parameters has somewhat surprising consequences.

The first consequence is that, assuming the existence of good instance com-
pression scheme for DL, then for any polynomial �, the AND-DL statement
{(y1, y2, . . . , y�, g,G) : ∃w1, w2, . . . , w�, s.t. ∧�

i=1 gwi = yi} admits a zero knowl-
edge proof with extremely efficient communication of size O(1) group elements.

2 It is easy to see that we can construct the witness compression algorithm C by
making simple adaptation to the compressing part of our embedding reduction.
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The existence of tailored instance compression scheme for RSA yields a sim-
ilar consequence.

The second consequence is a construction of non-trivial hash combiner for
hash functions based on DL problem. Recall that given a group G, its generator
g and a random element y ∈ G, we have a hash function H(g,y) : (m0,m1) →
gm0ym1 that is collision-resistant. The hash combiner for DL-based hash func-
tions is of particular interest in the scenario where a set of mutually untrusting
parties, given a group G and g, want to set up a single collision-resistant hash
function trusted by every one.

Several previous papers [6,26,27] defined universal hash combiners (that
works for arbitrary hash functions), and showed non-trivial fully black-box com-
biners do not exist. Note that the above hash combiner needs to take the common
parameters of the group and its generator, and works only for DL-based hash
functions. However, it is still inconceivable that the above hash combiner with
large � exists in the real world.

We view these strong consequences as positive evidences for the security of
Schnorr and Guillou-Quisquater protocols.

1.3 Comparison with a Concurrent Work

In a very recent concurrent work [20], Jain et al. develop a new exciting simu-
lation strategy and construct 2/3-round witness hiding protocol based on some
standard number theoretic assumptions for all unique witness NP-relations. Our
Input-distribution-switching technique gives only witness hiding for some cryp-
tographic unique witness relations, however, it applies to existing classic proto-
cols, which are much more efficient and require weaker assumptions3 than the
constructions of [20]. Furthermore, these classic protocols are all public-coin, and
such a property usually makes them more vesertile and applicable.

2 Preliminaries

Due to space limitations, we refer readers to [13,21] for formal definitions of basic
notions and primitives. Here we give only definitions of witness indistinguishable
and witness hiding protocols.

Interactive Proofs. An interactive proof system 〈P, V 〉 [15] for a language L is
a pair of interactive Turing machines in which the prover P wishes to convince
the verifier V of some statement x ∈ L. We denote by 〈P, V 〉(x) the output of
V at the end of interaction on common input x, and without loss of generality,
we have the verifier V outputs 1 (resp. 0) if V accepts (resp. rejects).

Definition 1 (Interactive Proofs). A pair of interactive Turing machines
〈P, V 〉 is called an interactive proof system for language L if V is a PPT machine
and the following conditions hold:
3 Note that the 3-round Blum protocol and GMW protocol can be constructed from

one way permutations.
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– Completeness: For every x ∈ L, Pr[〈P, V 〉(x) = 1] = 1.
– Soundness: For every x /∈ L, and every (unbounded) prover P ∗, there exists

a negligible function μ(n) (where |x| = n) such that

Pr[〈P ∗, V 〉(x) = 1] < μ(n).

An interactive argument [4] is an interactive proof except that for which
soundness is only required to hold against PPT cheating provers. We often use
“protocol” to refer to both proof system and argument system.

Witness Indistinguishability. Witness indistinguishable proof system guar-
antees that if the statement has two independent witnesses, then the malicious
verifier cannot tell which witness is being used by the prover in an execution of
the protocol.

Definition 2 (Witness Indistinguishability). Let L be an NP language
defined by RL. We say that 〈P, V 〉 is witness indistinguishable for relation RL if
for every PPT V ∗ and every sequence {(x,w,w′)}x∈L, where (x,w), (x,w′) ∈ RL

the following two probability ensembles are computationally indistinguishable:

{〈P (w), V ∗〉(x)}x∈L
c≈ {〈P (w′), V ∗〉(x)}x∈L.

Witness Hiding. Loosely speaking, witness hiding of a protocol [12] refers to
the following property: for an input x ∈ L that is being proven, if a verifier can
extract a witness in RL(x) after interacting with the prover, then he could have
done so without such an interaction. This notion is formally defined with respect
to a distribution ensemble over inputs as follows.

Definition 3 (Distribution of Hard Instances). Let L be an NP language
defined by RL. Let X = {Xn}n∈N

be a distribution ensemble. We say that X is
hard for RL if for every PPT machine M

Pr [M(Xn) ∈ RL(Xn)] < μ(n).

Definition 4 (Witness Hiding (under Sequential Repetition)). Let L be
an NP language defined by RL, (X ,W) = {(Xn,Wn)}n∈N be a distribution over
RL. We say 〈P, V 〉 is witness hiding for (X ,W) if for every PPT machine V ∗

Pr [〈P (Wn), V ∗〉 (Xn) ∈ RL(Xn)] < μ(n).

We say that 〈P, V 〉 is witness hiding under sequential repetition if it is witness
hiding for (X ,W) under any polynomially number of sequential repetitions.

Remark 1. According to our definition of witness hiding, it is easy to verify that
if there is witness hiding protocol for (X ,W), then the distribution ensemble
X = {Xn}n∈N

on instances must be hard.
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3 Witness Hiding Protocols for Hard Distributions with
Unique Witnesses

In this section we prove a general theorem on witness hiding of constant-round
public-coin proofs systems for unique witness relations and present its applica-
tions to several cryptographic problems.

3.1 A General Theorem

Let L1 and L2 be NP languages (possibly the same), RL1 and RL2 be their cor-
responding witness relations. Let (X 1,W1) = {(X1

n,W 1
n)}n∈N be a distribution

ensemble over RL1 with unique witnesses, and (X 2,W2) = {(X2
n,W 2

n)}n∈N be a
distribution ensemble over RL2 with multiple witnesses.

Theorem 1. If the above distribution ensembles satisfy the following conditions:

1. (X 1,W1) and (X 2,W2) are computationally indistinguishable.
2. For every PPT machine M , there is negligible function μ(n), such that

Pr
[
(x,w) ← (X2

n,W 2
n);w′ ← M(x,w) : w′ ∈ RL(x) ∧ w 
= w′] < μ(n).

3. For every n and x in X2
n, witnesses in RL2(x) are uniformly distributed.4

Then, any witness indistinguishable proof systems (including the parallelized ver-
sion of 3-round public-coin proofs of [3,14] and ZAPs of [11,16]) are witness
hiding (under sequential repetition) for (X 1,W1).

Proof. Let 〈P, V 〉 be an arbitrary witness indistinguishable proof system. In the
following, we present our proof only for the standalone case. Note that the same
proof works also for these protocols under sequential repetition.

Suppose, towards a contradiction, that there are infinitely many n, a poly-
nomial p, and a PPT verifier V ∗ such that

Pr
[〈

P (W 1
n), V ∗〉 (X1

n) ∈ RL1(X
1
n)

]
>

1
p(n)

. (1)

Let S be the set of such n’s. Fix an n ∈ S and consider the following two
experiments:

EXPb (b ∈ {1, 2}): Sample (x,w) ← (Xb
n,W b

n), play the role of honest prover
P (x,w) and interact with V ∗(x). When V ∗ terminates, output what V ∗

outputs.

Denote by WINb that EXPb outputs a witness for x. By the indistinguisha-
bility of (X 1,W1) and (X 2,W2), we have the following claim (we shall turn to
detailed proof shortly) for some negligible function μ(n):
4 This condition can be significantly relaxed, but we stick to it for simplifying

presentation.
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Claim 1. The probabilility Pr[WIN2] is negligibly close to 1
p(n) , i.e.,

Pr
[
WIN2

]
= Pr

[〈
P (W 2

n), V ∗〉 (X2
n) ∈ RL2(X

2
n)

]
>

1
p(n)

− μ(n). (2)

It follows from the second property of (X2
n,W 2

n) that

Pr
[
(x,w) ← (X2

n,W 2
n) : 〈P (w), V ∗〉 (x) = w′ ∈ RL2(x) ∧ w′ 
= w

]
< μ(n). (3)

Now by (2) and (3), we have

Pr
[
(x,w) ← (X2

n,W 2
n) : 〈P (w), V ∗〉 (x) = w′ ∧ w′ = w

]
>

1
p(n)

− μ(n). (4)

which can be rewritten as

Pr
[(

x,w) ← (X2
n,W 2

n) : 〈P (w), V ∗〉 (x) = w′ ∧ w′ = w
]

=
∑

w

∑

x

Pr [〈P (w), V ∗〉 (x) = w′ ∧ w′ = w] Pr
[
w ← W 2

n |x]
Pr

[
x ← X2

n

]

>
1

p(n)
− μ(n).

Theorem 1 follows from the following two claims.

Claim 2. There exists x in the support of X2
n satisfying the following two con-

ditions:

−
∑

w

Pr [〈P (w), V ∗〉 (x) = w′ ∧ w′ = w] Pr
[
w ← W 2

n |x]
>

1
2p(n)

− μ(n).

−
∑

w

Pr [〈P (w), V ∗〉 (x) = w′ ∈ RL2(x) ∧ w′ 
= w] Pr
[
w ← W 2

n |x]
< μ(n).

Claim 3. There exists x in the support of X2
n, w1, w2 ∈ RL2(x) such that

|Pr [〈P (w1), V ∗〉 (x) = w1] − Pr [〈P (w2), V ∗〉 (x) = w1] | >
1

poly(n)
.

Note that Claim 3 holds for each n ∈ S, and thus we conclude that V ∗ breaks
the witness indistinguishability of 〈P, V 〉 on a sequence {(x,w1, w2)}x∈X2

n,n∈S,
which contradicts the fact that 〈P, V 〉 is witness indistinguishable for multiple
witnesses relation. This proves Theorem 1. ��

We now give the detailed proofs of the above three claims.

Proof (ofClaim 1 ). Let p1(n) = 1
p(n) (as in (1)), and

p2(n) = Pr
[
WIN2

]
= Pr

[〈
P (W 2

n), V ∗〉 (X2
n) ∈ RL2(X

2
n)

]
.

Suppose toward a contradiction that p1 − p2 > 1/poly(n). (w.l.o.g., and we
assume p1 > p2.) Consider the following D for distinguishing (X1

n,W 1
n) and
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(X2
n,W 2

n): Given a sample (x,w) from (Xb
n,W b

n) (for unknown b), D plays the
role of honest prover P (x,w) and interact with V ∗(x). When V ∗ terminates,
output 1 if the output of V ∗ is in RL1(x)5 and 0 otherwise.

Observe that,

Pr[D(X1
n, W 1

n) = 1] − Pr[D(X2
n, W 2

n) = 1]

= Pr[
〈
P (W 1

n), V ∗〉
(X1

n) ∈ RL1(X
1
n)] − Pr[

〈
P (W 2

n), V ∗〉
(X2

n) ∈ RL1(X
2
n)]

= p1 − Pr[
〈
P (W 2

n), V ∗〉
(X2

n) ∈ RL1(X
2
n) ∧ 〈

P (W 2
n), V ∗〉

(X2
n) ∈ RL2(X

2
n)]

− Pr[
〈
P (W 2

n), V ∗〉
(X2

n) ∈ RL1(X
2
n) ∧ 〈

P (W 2
n), V ∗〉

(X2
n) /∈ RL2(X

2
n)]

> p1 − p2 − Pr[
〈
P (W 2

n), V ∗〉
(X2

n) ∈ RL1(X
2
n) ∧ 〈

P (W 2
n), V ∗〉

(X2
n) /∈ RL2(X

2
n)].

Now if the last term

p3(n) = Pr[
〈
P (W 2

n), V ∗〉 (X2
n) ∈ RL1(X

2
n) ∧ 〈

P (W 2
n), V ∗〉 (X2

n) /∈ RL2(X
2
n)]

is negligible, we conclude that D distinguishes (X1
n,W 1

n) and (X2
n,W 2

n), contra-
dicting our assumption. Now we show p3(n) is negligible. For simplicity, denote
by optV ∗(x) the output of V ∗ after interaction with the prover, and we have

p4(n) = Pr[
〈
P (W 1

n), V ∗〉 (X1
n) ∈ RL1(X

1
n) ∧ 〈

P (W 1
n), V ∗〉 (X1

n) /∈ RL2(X
1
n)]

= Pr[(x,w) ← (X1
n,W 1

n) : optV ∗(x) ∈ RL1(x) ∧ optV ∗(x) /∈ RL2(x)]
≤ Pr[(x,w) ← (X1

n,W 1
n) : w ∈ RL1(x) ∧ w /∈ RL2(x)].

The last equation follows from the uniqueness of RL1(x) (that is, the valid wit-
ness output by V ∗ in RL1(x) must be w). Observe that p4 must be negligible
since otherwise RL2 will serve as a distinguisher that can distinguish (X1

n,W 1
n)

and (X2
n,W 2

n).
It follows that p3 is negligible either, since otherwise we will have that |p3−p4|

is non-negligible, and this leads to the following distinguisher D′: Act in the same
way as D, except that D′ output 1 if the output of V ∗ is in RL1(x) but not in
RL2(x). It is easy to verify that D′ can distinguish (X1

n,W 1
n) and (X2

n,W 2
n) with

non-negligible probability. ��
We now turn to the proof of Claim 2.

Proof (ofClaim 2 ). We define the following two random events conditioned on
a given fixed pair (x,w):

– EVENTeq|(x,w): 〈P (w), V ∗〉 (x) = w′ ∧ w′ = w;
– EVENTneq|(x,w): 〈P (w), V ∗〉 (x) = w′ ∈ RL2(x) ∧ w′ 
= w,

5 Note that here we always use RL1 as the tester.
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where both events take over the randomnesses used by P and V ∗. Define the
following two sets:

– H: {x :
∑

w Pr
[
EVENTeq|(x,w)

]
Pr

[
w ← W 2

n |x]
> 1

2p(n) − μ(n)}.
– K: {x :

∑
w Pr

[
EVENTneq|(x,w)

]
Pr

[
w ← W 2

n |x]
< μ(n)}.

Observe that

1
p(n)

− μ(n) < Pr
[(

x,w) ← (X2
n,W 2

n) : 〈P (w), V ∗〉 (x) = w′ ∧ w′ = w
]

=
∑

w

∑

x∈H

Pr
[
EVENTeq|(x,w)

]
Pr

[
w ← W 2

n |x]
Pr

[
x ← X2

n

]

+
∑

w

∑

x/∈H

Pr
[
EVENTeq|(x,w)

]
Pr

[
w ← W 2

n |x]
Pr

[
x ← X2

n

]

=
∑

w

Pr
[
EVENTeq|(x,w)

]
Pr

[
w ← W 2

n |x ∈ H
]
Pr

[
x ← X2

n : x ∈ H
]

+
∑

w

Pr
[
EVENTeq|(x,w)

]
Pr

[
w ← W 2

n |x /∈ H
]
Pr

[
x ← X2

n : x /∈ H
]
,

which, by the definitions of EVENTeq and set H, leads to

Pr
[
x ← X2

n : x ∈ H
]

>
1

2p(n)
− μ(n). (5)

Similarly, by (3), we have

μ(n) > Pr
[(

x,w) ← (X2
n,W 2

n) : 〈P (w), V ∗〉 (x) = w′ ∈ RL2(x) ∧ w′ 
= w
]

=
∑

w

∑

x∈K

Pr
[
EVENTneq|(x,w)

]
Pr

[
w ← W 2

n |x]
Pr

[
x ← X2

n

]

+
∑

w

∑

x/∈K

Pr
[
EVENTneq|(x,w)

]
Pr

[
w ← W 2

n |x]
Pr

[
x ← X2

n

]

=
∑

w

Pr
[
EVENTneq|(x,w)

]
Pr

[
w ← W 2

n |x ∈ K
]
Pr

[
x ← X2

n : x ∈ K
]

+
∑

w

Pr
[
EVENTneq|(x,w)

]
Pr

[
w ← W 2

n |x /∈ K
]
Pr

[
x ← X2

n : x /∈ K
]
,

which, by the definitions of EVENTneq and set K, leads to

Pr
[
x ← X2

n : x ∈ K
]

> 1 − μ′(n) (6)

for some negligible function μ′(n).
Thus, by (5) and (6), we conclude

Pr
[
x ← X2

n : x ∈ H ∩ K
]

>
1

2p(n)
− μ(n) − μ′(n),

which means there exist at least one x in the support of X2
n that satisfies both

conditions of Claim 2, as desired. ��
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The proof of Claim 3 is based on Claim 2.

Proof (ofClaim 3 ). Fix a x in the support of X2
n that satisfies the two condi-

tions of Claim 1. Note that W 2
n is uniformly distributed on RL2(x), and by the

first condition of Claim 2, we have a w1 ∈ RL2(x) such that

Pr [〈P (w1), V ∗〉 (x) = w1] >
1

2p(n)
− μ(n).

By the second condition of Claim 2, we can obtain another witness w2 ∈
RL2(x), w2 
= w1, such that

Pr [〈P (w2), V ∗〉 (x) = w1] < μ(n),

since otherwise, we would have
∑

w

Pr [〈P (w), V ∗〉 (x) = w′ ∈ RL2(x) ∧ w′ 
= w] Pr
[
w ← W 2

n |x]

�
∑

w2( �=w1)

Pr [〈P (w2), V ∗〉 (x) = w1] Pr
[
w2 ← W 2

n |x : w2 
= w1

]

=
∑

w2( �=w1)

Pr [〈P (w2), V ∗〉 (x) = w1]
|RL2(x)| − 1

|RL2(x)|

>
1

poly(n)
· |RL2(x)| − 1

|RL2(x)| ,

which breaks the second condition of Claim 26. Thus we obtain a desired tuple
(x,w1, w2), completing the proof of Claim 3. ��

3.2 Examples of Distributions on Unique Witness Relations

In this subsection, we present several examples of distributions (X 1,W1) on
hard unique witness relations that have coupled distributions (satisfing the “if
conditions” of Theorem 1), including distributions over OR-DDH tuples with
unique witnesses, the images of lossy trapdoor functions and commitments with
unique openings. Thus, for these distributions on unique witness relations, the
classic constant-round public-coin proof systems, such as parallelized version
of classic 3-round public-coin proofs of [3,14] and ZAPs of [11,16], are witness
hiding.

Example 1: OR-DDH Tuples with Unique Witnesses. The first example
is for distribution (X 1,W1) on hard instances with unique witnesses based on
DDH assumption.

6 Note that |RL2(x)| > 1.
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DDH assumption: Let Gen be a randomized algorithm that on security param-
eter n outputs (G, g, q), where G is a cyclic group of order q with generator g.
Then for a randomly chosen triplet (a, b, c), for every PPT algorithm A, there
exists a negligible function μ(n) such that

|Pr[A((G, g, q), ga, gb, gab) = 1] − Pr[A((G, g, q), ga, gb, gc) = 1]| < μ(n).

Now, we consider the following two distribution ensembles (X 1,W1) ={
(X1

n,W 1
n)

}
n∈N

and (X 2,W2) =
{
(X2

n,W 2
n)

}
n∈N

based on the DDH
assumption:

– (X1
n,W 1

n) = {((G, g, q), x, w) : (G, g, q) ← Gen(1n), the instance x is an OR-
DDH tuples (ga1 , ga2 , ga1a2) or (gb1 , gb2 , gc) (where c 
= b1b2) with the unique
witness w = (a1, a2, a1a2)};

– (X2
n,W 2

n) = {((G, g, q), x, w) : (G, g, q) ← Gen(1n), the instance x is an OR-
DDH tuples (ga1 , ga2 , ga1a2) or (gb1 , gb2 , gb1b2) with multiple witnesses w0 =
(a1, a2, a1a2), w1 = (b1, b2, b1b2)}.

Based on Theorem 1, we have that all the witness hiding protocols for
(X 2,W2) above are also witness hiding for (X 1,W1) above, under the DDH
assumption.

Example 2: Lossy Trapdoor Functions. We now present another example
of distribution ensembles (X 1,W1) based on lossy trapdoor functions.

Recall the definition of lossy trapdoor functions [25]. Let n be the security
parameter (representing the input length of the function) and �(n) be the lossi-
ness of the collection.

Definition 5. A collection of (m, k)-lossy trapdoor functions is given by a tuple
of PPT algorithms (Gen,F,F−1). It satisfies the following property:

– Easy to sample an injective function with trapdoor: Geninj(·) := Gen(·, 1)
outputs (s, t) where s is the description of an injective function fs and t is
its trapdoor, F(s, ·) computes the function fs(·) over the domain {0, 1}n, and
F(t, ·) computes the function f−1

s (·). If a value y is not in the image of fs,
then F(t, y) is unspecified.

– Easy to sample a lossy function: Genlossy(·) := Gen(·, 0) outputs (s,⊥) where
s is the description of function fs, and F(s, ·) computes the function fs(·)
over the domain {0, 1}m whose image has size at most 2m−k.

– Hard to distinguish injective and lossy: the first outputs of Geninj and Genlossy
are computationally indistinguishable.

Now we consider the following two distribution ensembles (X 1,W1) ={
(X1

n,W 1
n)

}
n∈N

and (X 2,W2) =
{
(X2

n,W 2
n)

}
n∈N

based on lossy trapdoor
function:

– (X1
n,W 1

n) := {((s, y), w) : s ← Geninj(1n);w ← {0, 1}n; fs(w) = y}.
– (X2

n,W 2
n) := {((s, y), w) : s ← Genlossy(1n);w ← {0, 1}n; fs(w) = y}.
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Note that the description of a lossy function is indistinguishable from that
of an injective function, thus the distribution (X2

n,W 2
n) over the description

of lossy function together with its input-output pair is also indistinguishable
from the distribution (X1

n,W 1
n) over injective function together with its input-

output pair, since otherwise if we have a PPT D′ that can distinguish (X1
n,W 1

n)
from (X2

n,W 2
n), we will have a PPT D that can tell apart lossy functions from

injective ones: When being given a description of a function f , D samples input
w and computes y = f(w) and then invokes D′ on (f, y, w) and outputs what
D′ outputs.

It is also easy to verify (using the fact that there is only a single w such that
f(w) = y for a fixed injective function f and y.)that the second condition of The-
orem 1 holds. When sampling w in the domain of a lossy function f uniformly,
then for a fixed output y, those pre-images of y are uniformly distributed over
{w : f(w) = y}. Hence, the above two distributions satisfy the third condition
of Theorem 1.

Thus, it follows from Theorem 1 that all the witness hiding protocols for
(X 2,W2) above are also witness hiding for (X 1,W1) above, under the existence
of lossy trapdoor functions.

Example 3: Commitments with Unique Openings. Our third example of
distribution ensembles (X 1,W1) is based on mixed commitments [9,16].

A mixed commitment scheme is basically a commitment scheme that has
two different flavors of key generation algorithms. In the binding mode, Gen1
generates a perfectly binding commitment key, in which case a valid commit-
ment uniquely defines one possible message. In the hiding mode, Gen2 generates
a perfectly hiding commitment key, in which case the commitment reveals no
information whatsoever about the message. Moreover, two kinds of keys are
computationally indistinguishable.

Now, we consider the following two distribution ensembles (X 1,W1) =
{(X1

n,W 1
n)}n∈N and (X 2,W2) = {(X2

n,W 2
n)}n∈N based on the mixed

commitments:

– (X1
n,W 1

n) = {((x, pk), (m, r)) : pk ← Gen1(1n);m R←− M ; r R←− R;x ←
Compk(m; r)}.

– (X2
n,W 2

n) = {((x, pk), (m, r)) : pk ← Gen2(1n);m R←− M ; r R←− R;x ←
Compk(m; r)}.

Assuming the existence of mixed commitments, we can use the reasoning
similar to the case of lossy functions and conclude that all the witness hiding
protocols for (X 2,W2) above are also witness hiding for (X 1,W1) above.
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4 Embedding Reduction: The Security of Schnorr
and Guillou-Quisquater Protocols and Instance
Compression

In this section, we develop an embedding reduction technique to base the wit-
ness hiding security7 of Schnorr protocol on non-existence of tailored instance
compression scheme for discrete logarithm.

Similar results can also be obtained for the Guillou-Quisquater’s protocol and
some other Σ-protocols for group homomorphisms. Note that, given a successful
adversary V ∗, our technique yields a tailored instance compression scheme with
parameters much stronger than the ones in [2], and thus strengthens the results
of [2].

The formal study of instance compression was initiated by Harnik and
Naor [19]. We tailor their definition for our purpose. Roughly speaking, a tai-
lored instance compression scheme for a (search) NP problem can compress a
long instance(s) into a shorter instance, and given the solution to the shorter
instance, we can solve all the original instance(s). It should be noted that the
impossibility results of [10] with respect to NP-complete languages also hold for
our tailored definition.

Definition 6 (Tailored Instance Compression for Search Problem). Let
L be an NP language and RL its NP relation, and X = {Xn}n∈N be a distribu-
tion ensemble over L. A (�(·), ε(·))-tailored instance compression scheme for RL

consists of three PPT algorithms (Z,C,U), such that for sufficiently large n:

– (x, st) ← Z(x1, · · · , x�): On input xi ∈ L for i ∈ [�], the PPT instances
compression algorithm Z outputs a single x ∈ L and the state st.

– w ← C((x1, w1), · · · , (x�, w�)): On input (xi, wi) ∈ RL for i ∈ [�], the PPT
witness compression algorithm C outputs a valid witness w to the instance x
generated by Z(x1, · · · , x�).

– (w1, · · · , w�) ← U(x,w, st): On input x ∈ L, st, together with the correspond-
ing witness w ∈ RL(x), the PPT unfolding algorithm U outputs the witnesses
wi ∈ RL(xi) for all i ∈ [�].

– For all w ∈ RL(x), the following holds:

Pr

⎡

⎣
(x1, . . . , x�) ← X�

n;
(x, st) ← Z(x1, . . . , x�);

(w1, . . . , w�) ← U(x,w, st);
: ∧�

i=1 wi ∈ RL(xi)

⎤

⎦ > ε(n)

Remark 2. Our definition is stronger than the one of [19] in several respects.
In the Definition 2.25 of [19], the retrieving algorithm (that corresponds to our
witness compression algorithm) does not take witnesses to (x1, . . . , x�) as input,
and thus is not required to be efficient; the unfolding algorithm above is also not
required in [19], but that is the key for our applications of instance compression
scheme (if exists).
7 Note that witness hiding implies the security of identification protocol.
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Observe that the one-more like assumptions can be rephrased in the frame-
work of instance compression. For example, the one-more DL assumption is
equivalent to assume non-existence of (�, ε)-tailored instance compression scheme
for DL with weaker requirements: (1) The witness compression algorithm is not
required; (2) The instance compression algorithm is allowed to output � − 1
instances (which leads to much weak compression ratio) and the unfolding algo-
rithm needs to take � − 1 witnesses correspondingly.

4.1 The Security of Schnorr Protocol

Let G be a cyclic group of order q with the generator g, where q is a prime
such that q | p − 1, p is a prime 2n−1 ≤ p ≤ 2n. Given a common input x, the
Schnorr protocol allows the prover P to convince the verifier V of knowledge of
the unique discrete logarithm w of x (i.e., x = gw). Formal description of this
protocol can be found in Fig. 1.

Given (g,G), we define the NP relation R(g,G) := {(x,w) : x = gw}. We show
that a successful adversarial verifier will lead to a non-trivial tailored instance
compression scheme for discrete logarithm (DL) instances.

Theorem 2. If there exists a PPT algorithm V ∗ that breaks witness hiding of
Schnorr protocol with probability p (i.e. V ∗ after interaction with the prover P
outputs a valid discrete logarithm w of x with probability greater than p), then
there exists (�, p�−1)-tailored instance compression scheme for DL instances in
G for any �.

Remark 3. It should be noted that for a negligible probability ε, the (�, ε)-
tailored instance compression scheme (if exists) is barely applicable. For achiev-
ing meaningful compression scheme from V ∗, we should set � to be (arbitrary)
constant when p is an inverse polynomial; if p is negligibly close to 1, then � can
be set to be (arbitrary) polynomial. Note also that the technique of [2] gives us
only � = 2.

Fig. 1. Schnorr identification scheme
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DV ∗

input : instances x1, x2 ∈ G, random tape RV

1: Run V ∗ with random tape RV on instance x1;
2: Send x2 as the first prover message to V ∗;

output: output: If V ∗ answers with a challenge c ∈ Zq, output x = xc
1x2; else

output ⊥.

BV ∗

input : z ∈ Zq, x1, x2 ∈ G, random tape RV

1: Execute the Schnorr protocol with V ∗ in exactly the same way as D(x1, x2, RV )
until receiving the challenge c from V ∗;

2: Send z, which is supposed to be such that gz = x1
cx2, to V ∗;

output: If V ∗ outputs the witness w satisfying x1 = gw, output z1 = w and
z2 = z − cw; else output ⊥.

The compression algorithm ZV ∗

input : (x1, x2, · · · , x�)

1: st ← {x1, · · · , x�};
2: set x0

j = xj , for j = 1, 2, · · · , �;
3: for i ← 0 to l − 1 do

4: for j ← 1 to 2l−i−1 do

5: xi
2j−1 ← xi

2j−1 · gri
2j−1 , xi

2j ← xi
2j · gri

2j , where ri
2j−1, r

i
2j

R←− Zq;

6: RV
i
j

R←− {0, 1}poly(n), where poly(n) denotes the length of the random

tape RV
i
j ;

7: xi+1
j ← DV ∗

(xi
2j−1, x

i
2j , RV

i
j) (if D outputs ⊥, return ⊥);

8: Add (xi+1
j , ri

2j−1, r
i
2j , RV

i
j) to st;

9: end

10: end

11: set x ← xl
1;

12: Return x, st;

We first construct two efficient subroutines D and B for our embedding
reduction. On input two instances (x1, x2), the algorithm D interacts with V ∗

(where x1 serves as the common input, and x2 serves as the first prover mes-
sage) until the challenge c from V ∗ is received, and outputs a new instance
xc
1x2; on input discrete logarithm z of xc

1x2, the algorithm B interacts with V ∗

until the output of V ∗ is received, and outputs two discrete logarithms of the
two instances (x1, x2). Formal descriptions of D and B can be found in Algo-
rithm DV ∗

and BV ∗
.

As illustrated in Fig. 2, our embedding black-box reduction naturally cor-
responds to a pair of efficient algorithms, a compression algorithm Z and an
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The unfolding algorithm UV ∗

input : x ∈ G, w ∈ Zq, st

1: set xl
1 ← x, zl

1 ← w;
2: for i = l − 1 to 0 do

3: for j = 1 to 2l−i−1 do
4: Retrieve xi

2j−1, x
i
2j ,r

i
2j−1, r

i
2j and RV

i
j from st;

5: (zi
2j−1, z

i
2j) ← BV ∗

(zi+1
j , xi

2j−1, x
i
2j , RV

i
j) (if B outputs ⊥, return ⊥);

6: zi
2j−1 ← zi

2j−1 − ri
2j−1, zi

2j ← zi
2j − ri

2j ;

7: end

8: end

output: (w1, w2, · · · , w�) = (z0
1 , z0

2 , · · · , z0
� )

unfolding algorithm U. In the first phase, the compression algorithm Z, tak-
ing as input discrete logarithm instances (x1, . . . , x�), invokes D recursively to
generate new instance, each time D transforms two new instances into a new
single one. Z outputs the final single instance x = x3

1 and the corresponding st
consisting of all instances input to D and the random tape of Z.

On input a witness w = z31 to x = x3
1, the unfolding algorithm U invokes B

recursively, by feeding B with a discrete logarithm of an instance, to solve two
instances. Finally, U will solve all instances (x1, x2, ..., x�).

For our analysis to go through, given two instances x1, x2, the compres-
sion algorithm Z has to choose two random strings r1, r2 and a fresh random
tape for V ∗, and then runs D on input (x1g

r1 , x2g
r2). Z will store all these

randomnesses in st. The formal descriptions of Z and U can be found in Algo-
rithm DV ∗

and BV ∗
respectively. Without loss of generality, we assume that � = 2l

for some integer l.

Proof (of Theorem 1). From Fig. 2, we see the symmetry that, on input two
instances (xi

2j−1, x
i
2j), DV ∗

(xi
2j−1, x

i
2j , RV

i
j) generates a new instance xi+1

j ;
whereas, on input a discrete logarithm zi+1

j of xi+1
j , BV ∗

(zi+1
j , xi

2j−1, x
i
2j , RV

i
j)

produces the two discrete logarithms (zi
2j−1, z

i
2j) of the two instances (xi

2j−1, x
i
2j)

that are inputs to D.
We say an algorithm wins if it does not output “⊥”. Note that all

these invocations of D are independent, and that, for every i,j, the V ∗

success probability p is the probability that both DV ∗
(xi

2j−1, x
i
2j , RV

i
j) and

BV ∗
(zi+1

j , x2j−1, x2j , RV
i
j) win, that is,

Pr[DV ∗
(xi

2j−1, x
i
2j , RV

i
j) wins ∧ BV ∗

(zi+1
j , x2j−1, x2j , RV

i
j) wins] = p.

Observe that in the entire reduction there are exactly (� − 1) pairs of invo-
cations of DV ∗

and BV ∗
, thus we have the probability

Pr
[

Pr[(x, st) ← ZV ∗
(x1, x2, · · · , x�);

(w1, w2, · · · , w�) ← UV ∗
(x, st, w)

: ∧�
i=1xi = gwi

]
= p�−1
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Fig. 2. Simplified reduction for � = 8. We assume that V ∗ is deterministic and with
probability 1 it breaks witness hiding of Schnorr protocol.
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Note that when given as input all the witnesses (w1, · · · , w�) of the target
instances (x1, · · · , x�) to Z, Z is able to compute the witness to every instance
output by D. Thus by making a straightforward adaptation of Z we get a PPT
witness compression algorithm C as desired. This completes the proof. ��

4.2 Security of the Guillou-Quisquater Protocol

In this section we state a similar result on Guillou-Quisquater identification pro-
tocol [17]. The reduction is essentially the same as the one for Schnorr protocol,
and here we omit it.

The Guillou-Quisquater Protocol. Let N = pq be an RSA modulus (i.e.
p and q are large distinct primes for security parameter n) and e < φ(N) be
an odd prime satisfying gcd(d, φ(N)) = 1 and ed ≡ 1 mod φ(N). The Guillou-
Quisquater protocol proceeds as follows (See Fig. 3). The prover P wants to
convince the verifier V of the unique e-th root w modulo N of a given number x.
First, P chooses r ∈ Z

∗
N at random and sends a = re mod N to the verifier V .

Upon receiving the verifier’s challenge c, P responses with z = r · wc. V accepts
if and only if ze = a · xc.

Given (e,N), we define the NP relation Re,N := {(x,w) : x = we mod N}.
Similar to the Schnorr protocol, we have the following theorem.

Theorem 3. If there exists a PPT algorithm V ∗ that breaks witness hiding of
Guillou-Quisquater protocol with probability p (i.e. V ∗ after interaction outputs
the witness w with probability greater than p), then there exists (�, p�−1)-tailored
instance compression scheme for RSA instances in Z

∗
N for any �.

Remark 4. We also note that our reduction can also apply to Σ−protocols for
group homomorphisms [7,22].

Fig. 3. GQ identification scheme
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5 Some Consequences of Existence of Good Tailored
Instance Compression Schemes for DL and RSA

In this section, we show some strong consequences of the existence of good tai-
lored instance compression schemes for DL and RSA problems. To simplify our
presentation, we consider only (poly(n), 1 − negl(n))-tailored instance compres-
sion schemes, where poly(n) denotes an arbitrary polynomial in security parame-
ter n. Such an instance compression scheme can be constructed from the efficient
adversary that can break the witness hiding of Schnorr/Guillou-Quisquater pro-
tocol with probability negligibly close to 1. We also stress that, as showed in [24],
even for such an adversary, no black-box reduction can turn it into an algorithm
that breaks some standard assumptions and reach a contradiction.

5.1 Extremely Communication-Efficient Zero Knowledge Protocols
for AND-DL and AND-RSA

Suppose that there is a (poly(n), 1 − negl(n))-tailored instance compression
scheme (Z,C,U) for DL. In this subsection we further assume that the com-
pression algorithm Z is deterministic without loss of generality: Since almost all
possible random tapes for Z are good in the sense that on every such random
tape Z will output an instance, together with some state information, for which
the unfolding algorithm will succeed, we can publish a good random tape and
let each party execute Z on the same random tape when needed8.

The immediate consequence of such a tailored instance compression
scheme is that, for an arbitrary polynomial �, the AND-DL statement,
{(x1, x2, . . . , x�, g,G) : ∃w1, w2 . . . , w�, s.t. ∧�

i=1 gwi = xi}, has a proof of size
|wi|, since we can have both the prover and the verifier run Z on (x1, x2, . . . , x�)
and obtain a single instance x of the same size of xi, and then the prover send
the w (such that gw = x) to the verifier, which accepts if gw = x and all wi,
obtained from the unfolding algorithm U, satisfy gwi = xi.

With this succinct proof for the AND-DL statement, the Feige-Shamir zero
knowledge protocol of [12] for AND-DL statements can be implemented in an
extremely communication-efficient way (with communication of size O(1) group
elements).

Protocol Feige-Shamir

Common input: x1, x2, . . . , x� ∈ G.
The prover P ’s input: w1, w2, . . . , w�, s.t. ∧�

i=1 gwi = xi.

8 Note that in the last item in Definition 6, the probability takes over the randomness
of drawing all the instantces (x1, . . . , x�) and the randomnesses of Z and U. Thus,
when ε(·) is set to be 1 − negl(·), by a simple counting argument, we will have a
single random tape of Z (and U) that works for all but negligible fraction of inputs
of �-tuple (x1, . . . , x�).
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First phase: The verifier chooses w′
0, w

′
1

R←− Zq independently and at random,
computes x′

0 = gw′
0 and x′

1 = gw′
1 , and then executes the 3-round ΣOR protocol

(OR-composition of the Schnorr protocol [8]), in which V plays the role of the
prover, to prove the knowledge of the witness to the statement (x′

0 ∨ x′
1);

Second phase: Both the prover and the verifier run Z on (x1, x2, . . . , x�) and
obtain a new instance x ∈ G, and then the prover runs the witness compression
algorithm C on w1, w2, . . . , w� to obtain w such that gw = x, and proves to the
verifier the knowledge of the witness to the statement (x ∨ x′

0 ∨ x′
1) using ΣOR

protocol of [8].
This leads to the following proposition.

Proposition 1. If there exists a (poly(n), 1−negl(n))-tailored instance compres-
sion scheme for AND-DL, then for an arbitrary polynomial �(n), the AND-DL
statement, {(x1, x2, . . . , x�, g,G) : ∃w1, w2, . . . , w�, s.t. ∧�

i=1 gwi = xi}, has a
zero knowledge protocol with communication complexity of O(1) group elements.

5.2 Special Hash Combiner

The second consequence is a construction of non-trivial hash combiner for hash
functions based on the DL problem, which would help a set of � mutually untrust-
ing parties set up a single trusted collision-resistant hash function from a given
group.

Consider the cyclic group G mentioned in Sect. 4.1. Let x = gw for some
w. hx : Zq

2 → G is collision resistant hash functions (CRHFs) based on DL
problem defined as follows:

hx(m0,m1) = gm0xm1 .

Clearly, finding a collision for hx is equivalent to solving the discrete logarithm
problem w = logg x.

Definition 7 (Hash Combiner for CRHFs Based on DL Problem). A
non-uniform PPT Turing machine H : R × Zq

2 → {0, 1}v is said to be a ran-
domized (k, �)-combiner for CRHFs based on DL, if it satisfies the following
conditions:

– For any given � elements of G (i.e. x1, · · · , x�), for every r ∈ R,
Hx1,x2,··· ,x�(r, ·, ·) is a collision resistant hash function, if at least k compo-
nents xi can be used to construct collision resistant hash functions hxi(·, ·).

– For every PPT adversary B breaking the collision resistent hash combiner
Hx1,x2,··· ,x�(r, ·, ·), there exists a PPT reduction R, s.t. RB can find collisions
for at least �−k+1 hash functions hxi , i ∈ [�], with overwhelming probability.

Now we will show that the combiner for CRHFs based on the DL problem
can be constructed by the compression algorithm for DL instances. The previous
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papers [6,26,27] showed that there doesn’t exist “fully”9 black-box combiners
whose output length is significantly smaller than what can be achieved by triv-
ially concatenating the output of any � − k + 1 of the components. We can
construct a special non-black-box (1, �)-combiner for CRHFs based on DL prob-
lem whose output length is significantly smaller using the instances compression
algorithm mentioned in Corollary 2, under the discrete logarithm assumption.

Proposition 2. Suppose there exists a (poly(n), 1 − negl(n))-tailored instance
compression algorithm for any given �(= poly(n)) DL instances x1, x2, . . . , x� in
G. Then there exists a randomized (1, �)-combiner Hx1,x2,...,x� for CRHFs based
on DL problem, with the same output length v as the regular discrete logarithm
hash functions hxi .

Proof. Assume that there exists (poly(n), 1−negl(n))-tailored instance compres-
sion algorithms for DL. That is, for any polynomial �, there exists a pair of PPT
algorithms (Z,U), for w = logg x, such that

Pr
[

(x, st) ← Z(x1, . . . , x�);
(w1, . . . , w�) ← U(x,w, st) : ∧�

i=1 wi = logg xi

]
> 1 − negl(n).

The combiner has the following form:

H(x1,x2,··· ,x�)(r,m0,m1) = hx(m0,m1) = gm0xm1 .

where x ← Z(x1, x2, · · · , x�), and r is the same random tape as the compression
algorithm Z used.

Note that a pair of collisions for hy will give the discrete logarithm of x, which
in turn can be used (by applying U) to solve all DL instances x1, . . . , x�, and
therefore we can find a pair of collisions for each hash function hxi efficiently.
Thus this combiner is a (1, �)-combiner for CRHFs based on DL problem as
defined in Definition 7. ��

Application of Special Hash Combiner: How to Set up a Global Hash.
Suppose in a multi-party setting, a given number of participants, P1, · · · , P�,
each Pi has its own hash function hxi with the same common parameter G, g,
and want to set up a single hash function trusted by all of them. The need for
a global hash function was also addressed in [5]. While we can’t simple choose
some participant’s hash function as the global hash function for obvious reasons.
we can use our special hash combiner to solve this puzzle: Each participant runs
the instance compression algorithm Z on these (x1, · · · , xl) locally and generates
a single common x ∈ G, and then they set H(g,x) : (m0,m1) → gm0xm1 to be the
global hash function. This function is collision-resistant free since every collision
would lead to a solution to the instance x′, which will enable the unfolding
algorithm U to find all discrete logarithms of these random xi’s, and thus if
there is one xi generated at random by an honest party, no PPT algorithm can
find a collision for H(g,x).
9 Fully black box combiners mean both constructions and security proofs are black-

box.
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6 Open Problems

Our results also leave several interesting problems. The first one is to pinpoint
the necessary and sufficient conditions on the hard distribution that admits
constant-round public-coin witness hiding protocol. It is known that instance
compression scheme is impossible with respect to NP-complete languages, and
that the DL and RSA problems are unlikely to be NP-complete. We wonder
if tailored instance compression schemes (with moderate parameters) exist for
DL/RSA. It is shown that both positive and negative answers to this problem
will have interesting consequences.
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Abstract. We continue the study of statistical zero-knowledge (SZK)
proofs, both interactive and noninteractive, for computational problems
on point lattices. We are particularly interested in the problem GapSPP
of approximating the ε-smoothing parameter (for some ε < 1/2) of an
n-dimensional lattice. The smoothing parameter is a key quantity in the
study of lattices, and GapSPP has been emerging as a core problem in
lattice-based cryptography, e.g., in worst-case to average-case reductions.
We show that GapSPP admits SZK proofs for remarkably low approxima-
tion factors, improving on prior work by up to roughly

√
n. Specifically:

– There is a noninteractive SZK proof for O(log(n)
√

log(1/ε))-
approximate GapSPP. Moreover, for any negligible ε and a larger
approximation factor Õ(

√
n log(1/ε)), there is such a proof with an

efficient prover.
– There is an (interactive) SZK proof with an efficient prover for

O(log n +
√

log(1/ε)/ log n)-approximate coGapSPP. We show this
by proving that O(log n)-approximate GapSPP is in coNP.

In addition, we give an (interactive) SZK proof with an efficient prover
for approximating the lattice covering radius to within an O(

√
n) factor,

improving upon the prior best factor of ω(
√

n log n).

1 Introduction

Informally, a proof system [5,26] is a protocol that allows a (possibly unbounded
and malicious) prover to convince a skeptical verifier of the truth of some state-
ment. A proof system is zero knowledge if the verifier “learns nothing more”
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from the interaction, other than the statement’s veracity. The system is said
to be statistical zero knowledge if the revealed information is negligible, even
to an unbounded verifier; the class of problems having such proof systems is
called SZK. Since their introduction, proof systems and zero-knowledge have
found innumerable applications in cryptography and complexity theory. As a
few examples, they have been used in constructions of secure multiparty compu-
tation [22], digital signatures [9], actively secure public-key encryption [39], and
“ZAPs” [19]. And if a problem has an SZK (or even coAM) proof, it is not NP-
hard unless the polynomial-time hierarchy collapses [11], so interactive proofs
have been used as evidence against NP-hardness; see, e.g., [21,23,26,28].

A proof system is noninteractive [10,25] if it consists of just one message
from the prover, assuming both it and the verifier have access to a truly random
string. Noninteractive statistical zero-knowledge (NISZK) proof systems are espe-
cially powerful cryptographic primitives: they have minimal message complexity;
they are concurrently and even “universally” composable [15]; and their security
holds against unbounded malicious provers and verifiers, without any computa-
tional assumptions. However, we do not understand the class NISZK of problems
that have noninteractive statistical zero-knowledge proof systems nearly as well
as SZK. In particular, while NISZK is known to have complete problems, it is
not known whether it is closed under complement or disjunction [25], unlike
SZK [43,48].

Lattices and proofs. An n-dimensional lattice is a (full-rank) discrete additive
subgroup of Rn, and consists of all integer linear combinations of some linearly
independent vectors B = {b1, . . . ,bn}, called a basis of the lattice. Lattices
have been extensively studied in computer science, and lend themselves to many
natural computational problems. Perhaps the most well-known of these are the
Shortest Vector Problem (SVP), which is to find a shortest nonzero vector in a
given lattice, and the Closest Vector Problem (CVP), which is to find a lattice
point that is closest to a given vector in R

n. Algorithms for these problems and
their approximation versions have many applications in computer science; see,
e.g., [17,30,31,33,34,41,42]. In addition, many cryptographic primitives, ranging
from public-key encryption and signatures to fully homomorphic encryption,
are known to be secure assuming the (worst-case) hardness of certain lattice
problems (see, e.g., [12,14,20,37,44,46]).

Due to the importance of lattices in cryptography, proof systems and zero-
knowledge protocols for lattice problems have received a good deal of attention.
Early on, Goldreich and Goldwasser [21] showed that for γ = O(

√
n/ log n),

the γ-approximate Shortest and Closest Vector Problems, respectively denoted
γ-GapSVP and γ-GapCVP, have SZK proof systems; this was later improved to
coNP for γ = O(

√
n) factors [3].1 Subsequently, Micciancio and Vadhan [38] gave

1 As described, the proofs from [21] are statistical zero knowledge against only hon-
est verifiers, but any such proof can unconditionally be transformed to one that is
statistical zero knowledge against malicious verifiers [24]. We therefore ignore the
distinction for the remainder of the paper.
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different SZK proofs for the same problems, where the provers are efficient when
given appropriate witnesses; this is obviously an important property if the proof
systems are to be used by real entities as components of other protocols. Peikert
and Vaikuntanathan [45] gave the first noninteractive statistical zero-knowledge
proof systems for certain lattice problems, showing that, for example, O(

√
n)-

coGapSVP has an NISZK proof. The proof systems from [45] also have efficient
provers, although for larger Õ(n) approximation factors.

Gaussians and the smoothing parameter. Gaussian measures have become an
increasingly important tool in the study of lattices. For s > 0, the Gaussian
measure of parameter (or width) s on R

n is defined as ρs(x) = exp(−π‖x‖2/s2);
for a lattice L ⊂ R

n, the Gaussian measure of the lattice is then

ρs(L) :=
∑

v∈L
ρs(v).

Gaussian measures on lattices have innumerable applications, including in worst-
case to average-case reductions for lattice problems [37,46], the construction of
cryptographic primitives [20], the design of algorithms for SVP and CVP [1,2],
and the study of the geometry of lattices [7,8,18,47].

In all of the above applications, a key quantity is the lattice smoothing param-
eter [37]. Informally, for a parameter ε > 0 and a lattice L, the smoothing param-
eter ηε(L) is the minimal Gaussian parameter that “smooths out” the discrete
structure of L, up to error ε. Formally, for ε > 0 we define

ηε(L) := min{s > 0 : ρ1/s(L∗) ≤ 1 + ε},

where L∗ := {w ∈ R
n : ∀y ∈ L, 〈w,y〉 ∈ Z} is the dual lattice of L. All

of the computational applications from the previous paragraph rely in some
way on the “smoothness” of the Gaussian with parameter s ≥ ηε(L) where
2−n � ε < 1/2.2 For example, several of the proof systems from [45] start
with deterministic reductions to an intermediate problem, which asks whether a
lattice is “smooth” or well-separated.

The GapSPP problem. Given the prominence of the smoothing parameter in
the theory of lattices, it is natural to ask about the complexity of computing it.
Chung et al. [16] formally defined the problem γ-GapSPPε of approximating the
smoothing parameter ηε(L) to within a factor of γ ≥ 1 and gave upper bounds
on its complexity in the form of proof systems for remarkably low values of γ. For
example, they showed that γ-GapSPPε ∈ SZK for γ = O(1 +

√
log(1/ε)/ log n).

This in fact subsumes the prior result that O(
√

n/ log n)-GapSVP ∈ SZK of [21],

2 For ε = 2−Ω(n) the smoothing parameter is determined (up to a constant factor) by
the dual minimum distance, so it is much less interesting to consider as a separate
quantity. The upper bound of 1/2 could be replaced by any constant less than one.
For ε ≥ 1, ηε(L) is still formally defined, but its interpretation in terms of the
“smoothness” of the corresponding Gaussian measure over L is much less clear.
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via known relationships between the minimum distance and the smoothing
parameter.

Chung et al. also showed a worst-case to average-case (quantum) reduction
from Õ(

√
n/α)-GapSPP to a very important average-case problem in lattice-

based cryptography, Regev’s Learning With Errors (LWE), which asks us to
decode from a random “q-ary” lattice under error proportional to α [46]. Again,
this subsumes the prior best reduction for GapSVP due to Regev. Most recently,
Dadush and Regev [18] showed a similar worst-case to average-case reduction
from GapSPP to the Short Integer Solution problem [4,37], another widely used
average-case problem in lattice-based cryptography.

In hindsight, the proof systems and reductions of [21,37,46] can most nat-
urally be viewed as applying to GapSPP all along. This suggests that GapSPP
may be a better problem than GapSVP on which to base the security of lattice-
based cryptography. However, both [16,18] left open several questions and asked
for a better understanding of the complexity of GapSPP. In particular, while
interactive proof systems for this problem seem to be relatively well understood,
nothing nontrivial was previously known about noninteractive proof systems
(whether zero knowledge or not) for this problem.

1.1 Our Results

In this work we give new proof systems for lattice problems, and extend the
reach of prior proof systems to new problems. Our new results, and how they
compare to the previous state of the art, are as follows.

Our first main result is a NISZK proof system for γ-GapSPPε with γ =
O(log(n)

√
log(1/ε)). This improves, by a Θ(

√
n/ log n) factor, upon the previous

best approximation factor of γ = O(
√

n log(1/ε)), which follows from [45].

Theorem 1. For any ε ∈ (0, 1/2), O(log(n)
√

log(1/ε))-GapSPPε ∈ NISZK.

In fact, we demonstrate two different proof systems to establish this theorem
(see Sect. 3). The first is identical to a proof system from [45], but with a very
different analysis that relies on a recent geometric theorem of [47]. However,
this proof system only works for negligible ε < n−ω(1), so we also show an
alternative that works for any ε ∈ (0, 1/2) via reduction to the NISZK-complete
Entropy Approximation problem [25].

The prover in the proof system from [45] can be made efficient at the expense
of a factor of O(

√
n log n) in the approximation factor. From this we obtain the

following.

Theorem 2. For any negligible 0 < ε < n−ω(1), there is a NISZK proof system

with an efficient prover for O
(√

n log3(n) log(1/ε)
)
-GapSPPε.

Next, we show that O(log n)-GapSPPε ∈ coNP for any ε ∈ (0, 1). This
improves, again by up to a Θ(

√
n/ log n) factor, the previous best known result

of O(1 +
√

n/ log(1/ε))-GapSPPε ∈ coNP, which follows from [7].
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Theorem 3. For any ε ∈ (0, 1/2), O(log n)-GapSPPε ∈ coNP.

From this, together with the SZK protocol of [16] and the result of Nguyen
and Vadhan [40] that any problem in SZK ∩ NP has an SZK proof system with
an efficient prover, we obtain the following corollary. (The proof systems in [16]
do not have efficient provers.)

Corollary 1. For any ε ∈ (0, 1/2), there is an SZK proof system with an effi-
cient prover for O(log n +

√
log(1/ε)/ log n)-coGapSPPε.

Finally, we observe that O(
√

n)-GapCRP ∈ SZK, where GapCRP is the prob-
lem of approximating the covering radius, i.e., the maximum possible distance
from a given lattice. For comparison, the previous best approximation factor was
from [45], who showed that γ-GapCRP ∈ NISZK ⊆ SZK for any γ = ω(

√
n log n).

We obtain this result via a straightforward reduction to O(1)-GapSPPε for con-
stant ε < 1/2, which, to recall, is in SZK [16]. Furthermore, since Guruswami et
al. showed that O(

√
n)-GapCRP ∈ NP ∩ coNP [27], it follows that the protocol

can be made efficient.

Theorem 4. We have O(
√

n)-GapCRP ∈ SZK. Furthermore, O(
√

n)-GapCRP
and O(

√
n)-coGapCRP each have an SZK proof system with an efficient prover.

1.2 Techniques

Sparse projections. Our main technical tool will be sparse lattice projections. In
particular, we use the determinant of a lattice, defined as det(L) := |det(B)| for
any basis B of L, as our measure of sparsity.3 It is an immediate consequence of
the Poisson Summation Formula (Lemma 3) that det(L)1/n ≤ 2η1/2(L). Notice
that this inequality formalizes the intuitive notion that “a lattice cannot be
smooth and sparse simultaneously.”

Dadush and Regev made the simple observation that the same statement is
true when we consider projections of the lattice [18]. I.e., for any projection π
such that π(L) is still a lattice, we have det(π(L))1/rank(π(L)) ≤ 2η1/2(L), where
rank(π(L)) is the dimension of the span of π(L). (Indeed, this fact is immediate
from the above together with the identity (π(L))∗ = L∗∩span(π(L)).) Therefore,
if we define

ηdet(L) := max
π

det(π(L))1/rank(π(L)),

where the maximum is taken over all projections π such that π(L) is a lattice,
then we have

ηdet(L) ≤ 2η1/2(L). (1)

Dadush and Regev conjectured that Eq. (1) is tight up to a factor of polylog(n).
I.e., up to polylog factors, a lattice is not smooth if and only if it has a sparse
3 This is indeed a measure of sparsity because 1/det(L) is the average number of

lattice points inside a random shift of any unit-volume body, or equivalently, the
limit as r goes to infinity of the number of lattice points per unit volume in a ball
of radius r.
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projection. Regev and Stephens-Davidowitz proved this conjecture [47], and the
resulting theorem, presented below, will be our main technical tool.

Theorem 5 ([47]). For any lattice L ⊂ R
n,

η1/2(L) ≤ 10(log n + 2)ηdet(L).

I.e., if η1/2(L) ≥ 10(log n + 2), then there exists a lattice projection π such that
det(π(L)) ≥ 1.

coNP proof system. Notice that Theorem 5 (together with Eq. (1)) immediately
implies that O(log n)-GapSPPε is in coNP for ε = 1/2. Indeed, a projection π
such that det(π(L))1/rank(π(L)) ≥ η1/2(L)/O(log n) can be used as a witness
of “non-smoothness.” Theorem 5 shows that such a witness always exists, and
Eq. (1) shows that no such witness exists with det(π(L))1/rank(π(L)) > 2η1/2(L).
In order to extend this result to all ε ∈ (0, 1), we use basic results about how
ηε(L) varies with ε (See Sect. 4.).

NISZK proof systems. We give two different NISZK proof systems for
O(log(n)

√
log(1/ε))-GapSPPε, both of which rely on Theorem5.

Our first proof system (shown in Fig. 1, Sect. 3.1) uses many vectors
t1, . . . , tm sampled uniformly at random from a fundamental region of the lat-
tice L as the common random string. The prover samples short vectors ei (for
i = 1, . . . , m) from the discrete Gaussian distributions over the lattice cosets
ei + L. The verifier accepts if and only if the matrix E =

∑
eieT

i has small
enough spectral norm. (I.e., the verifier accepts if the ei are “short in all direc-
tions.”) In fact, Peikert and Vaikuntanathan used the exact same proof sys-
tem for the different lattice problem O(

√
n)-coGapSVP, and their proofs of

correctness and zero knowledge also apply to our setting. However, the proof
of soundness is quite different: we show that, if the lattice has a sparse pro-
jection π, then dist(π(ti), π(L)) will tend to be fairly large. It follows that∑ ‖π(ei)‖2 = Tr

( ∑
π(ei)π(ei)T

)
will be fairly large with high probability, and

therefore
∑

eieT
i must have large spectral norm.

Our second proof system follows from a reduction to the Entropy Approxi-
mation problem, which asks to estimate the entropy of the output distribution
of a circuit on random input. Goldreich et al. [25] showed that Entropy Approx-
imation is NISZK-complete, so that a problem is in NISZK if and only if it can
be (Karp-)reduced to approximating the entropy of a circuit. If ηε(L) is small,
then we know that a continuous Gaussian modulo the lattice will be very close
to the uniform distribution, and so (a suitable discretization of) this distribution
will have high entropy. On the other hand, if ηε(L) is large, then Theorem 5 says
that most of the measure of a continuous Gaussian modulo the lattice lies in a
low-volume subset of Rn/L, and so (a discretization of) this distribution must
have low entropy.

This second proof system works for a wider range of ε. In particular, the first
proof system is only statistical zero knowledge when ε is negligible in the input
size, whereas the second proof system works for any ε ∈ (0, 1/2).
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1.3 Organization

The remainder of the paper is organized as follows.

– In Sect. 2 we recall the necessary background on lattices, proof systems, and
probability.

– In Sect. 3 we give two different NISZK proof systems for O(log(n)
√

log(1/ε))-
GapSPPε.

– In Sect. 4 we give a coNP proof system for O(log n)-GapSPPε.
– In Sect. 5 we show that O(

√
n)-GapCRP ∈ SZK, via a simple reduction to

O(1)-GapSPP1/4.

2 Preliminaries

2.1 Notation

For any positive integer d, [d] denotes the set {1, . . . , d}. We use bold lower-
case letters to denote vectors. We write matrices in capital letters. The ith
component (column) of a vector x (matrix X) is written as xi (Xi). The function
log denotes the natural logarithm unless otherwise specified. For x ∈ R

n, ‖x‖ :=√
x2
1 + x2

2 + · · · + x2
n is the Euclidean norm. For a matrix A ∈ R

n×m, ‖A‖ :=
max‖x‖=1 ‖Ax‖ is the operator norm.

We write rBn
2 for the n-dimensional Euclidean ball of radius r. A set S ⊆ R

n

is said to be symmetric if −S = S. The distance from a point x ∈ R
n to a set

S ⊆ R
n is defined to be dist(x, S) = infs∈S dist(x, s). We write S⊥ to denote

the subspace of vectors orthogonal to S. For a set S ⊆ R
n and a point x ∈ R

n,
πS(x) denotes the orthogonal projection of x onto span(S). For sets A,B ⊆ R

n,
we denote their Minkowski sum by A+B = {a+b : a ∈ A,b ∈ B}. We extend a
function f to a countable set in the natural way by defining f(A) :=

∑
a∈A f(a).

Throughout the paper, we write C for an arbitrary universal constant C > 0,
whose value might change from one use to the next.

2.2 Lattices

Here we provide some backgrounds on lattices. An n-dimensional lattice L ⊂ R
n

of rank d is the set of integer linear combinations of d linearly independent
vectors B := (b1, . . . ,bd),

L = L(B) =
{
Bz =

∑

i∈[d]

zi · bi : z ∈ Z
d
}

.

We usually work with full-rank lattices, where d = n. A sublattice L′ ⊆ L is an
additive subgroup of L. The dual lattice of L, denoted by L∗, is defined as the
set

L∗ =
{
y ∈ R

n : ∀v ∈ L, 〈v,y〉 ∈ Z

}
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of all integer vectors having integer inner products with all vectors in L. It is easy
to check that (L∗)∗ = L and that, if B is a basis for L, then B∗ = B(BT B)−1

is a basis for L∗. The fundamental parallelepiped of a lattice L with respect to
basis B is the set

P(B) =
{ ∑

i∈[d]

cibi : 0 ≤ ci < 1
}

.

It is easy to see that P(B) is a fundamental domain of L. I.e., it tiles R
n with

respect to L. For any lattice L(B) and point x ∈ R
n, there exists a unique point

y ∈ P(B) such that y−x ∈ L(B). We denote this vector by y = x mod B. Notice
that y can be computed in polynomial time given B and x. We sometimes write
x mod L when the specific fundamental domain is not important, and we write
R

n/L for an arbitrary fundamental domain.
The determinant of a lattice L, is defined to be det(L) =

√
det(BT B). It is

easy to verify that the determinant does not depend on the choice of basis and
that det(L) is the volume of any fundamental domain of L.

The minimum distance of a lattice L, is the length of the shortest non-zero
lattice vector,

λ1(L) := min
y∈L\{0}

‖y‖.

Similarly, we define
λn(L) := min max

i
‖yi‖,

where the minimum is taken over linearly independent lattice vectors
y1, . . . ,yn ∈ L. The covering radius of a lattice L is

μ(L) := max
t∈Rn

dist(t,L).

The Voronoi cell of a lattice L is the set

V(L) := {x ∈ R
n : ‖t‖ ≤ ‖y − t‖,∀y ∈ L\{0}}

of vectors in R
n that are closer to 0 than any other point of L. It is easy to check

that V(L) is a symmetric polytope and that it tiles R
n with respect to L. The

following claim is an immediate consequence of the fact that an n-dimensional
unit ball has volume at most (2πe/n)n/2.

Claim. For any lattice L ⊂ R
n,

μ(L) ≥
√

n/(2πe) · det(L)1/n.

Lemma 1. For any lattice L ⊂ R
n and r ≥ 0,

|L ∩ rBn
2 | ≤ (5/

√
n)n · (r + μ(L))n

det(L)
.
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Proof. For each vector y ∈ L∩ rBn
2 , notice that V(L)+y ⊆ (r +μ(L))Bn

2 . And,
for distinct vectors y,y′ ∈ L, V(L) + y and V(L) + y′ are disjoint (up to a set
of measure zero). Therefore,

vol((r + μ(L))Bn
2 ) ≥ vol

( ⋃
y∈L∩rBn

2

V(L) + y
)
= |L ∩ rBn

2 |vol(V(L)) = |L ∩ rBn
2 | · det(L).

The result follows by recalling that for any r′ > 0, vol(r′Bn
2 ) ≤ (5r′/

√
n)n.

Lemma 2 ([27]). For any lattice L ⊂ R
n,

E
t∼Rn/L

[dist(t,L)2] ≥ μ(L)2/4,

where t ∈ R
n/L is sampled uniformly at random.

Proof. Let v ∈ R
n such that dist(v,L) = μ(L). Notice that v − t mod L is uni-

formly distributed. And, by the triangle inequality, dist(v − t,L) + dist(t,L) ≥
dist(v,L) = μ(L). So,

E
t∼Rn/L

[dist(t,L)] =
1
2

· E
t∼Rn/L

[dist(v − t,L) + dist(t,L)] ≥ μ(L)/2.

The result then follows by Markov’s inequality.

A lattice projection for a lattice L ⊂ R
n is an orthogonal projection π : Rn →

R
n defined by π(x) := πS⊥(x) for lattice vectors S ⊂ L.

Claim. For any L ⊂ R
n and any lattice projection π, π(L) is a lattice. Fur-

thermore, if t ∈ R
n/L is sampled uniformly at random, then π(t) is uniform

mod π(L).

Proof. The first statement follows from the well known fact that, if W = spanS
for some set of lattice vectors S ⊂ L, then there exists a basis B := (b1, . . . ,bn)
of L such that span(b1, . . . ,bk) = W , where k := dimW . (See, e.g., [35].) From
this, it follows immediately that π(bk+1), . . . π(bn) are linearly independent and
π(L) is the lattice spanned by these vectors, where π := πS⊥ .

The second statement follows from the following similarly well known fact.
Let b̃i := π{b1,...,bi−1}⊥(bi) be the Gram-Schmidt vectors of the basis B
described above. Then, the hyperrectangle

R̃ :=
{∑

i

aib̃i : −1/2 < ai ≤ 1/2
}

is a fundamental domain of the lattice. (See, e.g., [6]) I.e., for each t ∈ R
n/L,

there is a unique representative t̃ ∈ R̃ with t̃ ≡ t mod L. The result then follows
by noting that, if t̃ ∈ R̃ is chosen uniformly at random, then clearly π(t̃) ∈ π(R̃)
is uniform in π(R̃), which is a fundamental region of π(L).
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2.3 Gaussian Measure

Here we review some useful background on Gaussians over lattices. For a positive
parameter s > 0 and vector x ∈ R

n, we define the Gaussian mass of x as ρs(x) =
e−π‖x‖2/s2

. For a measurable set A ⊆ R
n, we define γs(A) = s−n

∫
A

ρs(x) dx. It
is easy to see that γs(Rn) = 1 and hence γs is a probability measure. We define
the discrete Gaussian distribution over a countable set A as

DA,s(x) =
ρs(x)
ρs(A)

,∀x ∈ A.

In all cases, the parameter s is taken to be one when omitted. The following
lemma is the Poisson Summation Formula for the Gaussian mass of a lattice.

Lemma 3. For any (full-rank) lattice L and s > 0,

ρs(L) =
1

det(L)
· ρ1/s(L∗).

We will also need Banaszczyk’s celebrated lemma [7, Lemma 1.5].

Lemma 4 ([7]). For any lattice L ⊂ R
n, shift vector t ∈ R

n, and r ≥ 1/
√

2π,

ρ((L + t) \ √
nBn

2 ) ≤ (√
2πer2e−πr2)n · ρ(L).

Micciancio and Regev introduced a lattice parameter called the smoothing
parameter. For an n-dimensional lattice L and ε > 0, the smoothing parameter
ηε(L) is defined as the smallest s such that ρ1/s(L∗) ≤ 1+ ε. The motivation for
defining smoothing parameter comes from the following two facts [37].

Claim. For any lattice L ⊂ R
n, shift vector t ∈ R

n, ε ∈ (0, 1), and parameter
s ≥ ηε(L),

1 − ε

1 + ε
· ρs(L) ≤ ρs(L − t) ≤ ρs(L).

Lemma 5. For any lattice L, c ∈ R
n and s ≥ ηε(L),

Δ((Ds mod B), U(Rn/L)) ≤ ε/2,

where Ds is the continuous Gaussian distribution with parameter s and U(Rn/L)
denotes the uniform distribution over R

n/L.

We use the following epsilon-decreasing tool which has been introduced
in [16].

Lemma 6 ([16], Lemma 2.4). For any lattice L ⊂ R
n and any 0 < ε′ ≤ ε < 1,

ηε′(L) ≤
√

log(1/ε′)/ log(1/ε) · ηε(L).
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Proof. We may assume without loss of generality that ηε(L) = 1. Notice that
this implies that λ1(L∗) ≥ √

log(1/ε)/π. Then, for any s ≥ 1,

ρ1/s(L∗\{0}) =
∑

exp(−π(s2 − 1)‖w‖2) · ρ(w) ≤ exp(−π(s2 − 1)λ1(L)2)ρ(L∗\{0}) ≤ εs2 .

Setting s :=
√

log(1/ε′)/ log(1/ε) gives the result.

Lemma 7. For any lattice L ⊂ Q
n with basis B whose bit length is β and any

ε ∈ (0, 1/2), we have ηε(L(B)) ≤ 2poly(β)
√

log(1/ε), and λn(L) ≤ 2μ(L) ≤
2poly(β).

2.4 Sampling from the Discrete Gaussian

For any B = (b1, . . . ,bn) ∈ R
n×n, let

‖B̃‖ := max
i

‖π{b1,...,bi−1}⊥(bi)‖,

i.e., ‖B̃‖ is the length of the longest Gram-Schmidt vector of B.
We recall the following result from a sequence of works due to Klein [32];

Gentry et al. [20]; and Brakerski et al. [13].

Theorem 6. There is an efficient algorithm that takes as input a basis B ∈
Q

n×n and any parameter s ≥ ‖B̃‖√
log n and outputs a sample from DL,s, where

L ⊂ R
n is the lattice generated by B.

Corollary 2. There is an efficient algorithm that takes as input a (basis for a)
lattice L ⊂ Q

n and parameter s ≥ 2nηε(L) and outputs a sample from DL,s.

Proof. Combine the above with the celebrated LLL algorithm [33], which in
particular allows us to find a basis for L with ‖B̃‖ ≤ 2n/2ηε(L).

We also need the following result, which is implicit in [7]. See, e.g., [18] for a
proof.

Lemma 8. For any lattice L ⊂ R
n and ε ∈ (0, 1/2),

λn(L) ≤ 2μ(L) ≤ √
n · ηε(L).

In particular, there exists a basis B of L with ‖B̃‖ ≤ λn(L) ≤ √
n · η1/2(L).

Corollary 3. For any lattice L ⊂ Q
n with basis B, there exists preprocessing P

whose size is polynomial in the bit length of B and an efficient algorithm that,
on input P and s ≥ √

n log n · η1/2(L) outputs a sample from DL,s.

Proof. By Lemma 8, there exists a basis B′ with ‖B̃′‖ ≤ √
n · η1/2(L). By

Lemma 7, the bit length of B′ is polynomial in the bit length of B. We use
this as our preprocessing P . The result then follows by Theorem6.
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2.5 Computational Problems

Here we define two promise problems that will be considered in this paper.

Definition 1 (Covering Radius Problem). For any approximation factor
γ = γ(n) ≥ 1, an instance of γ-GapCRP is a (basis for a) lattice L ⊂ Q

n. It is
a YES instance if μ(L) ≤ 1 and a NO instance if μ(L) > γ.

Definition 2 (Smoothing Parameter Problem). For any approximation
factor γ = γ(n) ≥ 1 and ε = ε(n) > 0, an instance of γ-GapSPPε is a (basis
for a) lattice L ⊂ Q

n. It is a YES instance if ηε(L) ≤ 1 and a NO instance if
ηε(L) > γ.

We will need the following result from [16].

Theorem 7. For any ε ∈ (0, 1/2), γ-GapSPPε is in SZK for γ = O(1 +√
log(1/ε)/ log(n)).4

2.6 Noninteractive Proof Systems

Definition 3 (Noninteractive Proof System). A pair (P, V ) is a noninter-
active proof system for a promise problem Π = (ΠYES,ΠNO) if P is a (possibly
unbounded) algorithm and V is a polynomial-time algorithm such that

– Completeness: for every x ∈ ΠYES
n , Pr[V (x, r, P (x, r))accepts] ≥ 1 − ε; and

– Soundness: for every x ∈ ΠNO
n , Pr[∃ π : V (x, r, π)accepts] ≤ ε,

where n is the input length, ε = ε(n) ≤ negl(n), and the probabilities are taken
over r, which is sampled uniformly at random from {0, 1}poly(n).

A noninteractive proof system (P, V ) for a promise problem Π =
(ΠYES,ΠNO) is statistical zero knowledge if there exists a probabilistic
polynomial-time algorithm S (called a simulator) such that for all x ∈ ΠYES, the
statistical distance between S(x) and (r, P (x, r)) is negligible in n. The class of
promise problems having noninteractive statistical zero-knowledge proof systems
is denoted NISZK.

2.7 Probability

The entropy of a random variable X over a countable set S is given by

H(X) :=
∑

a∈S

Pr[X = a] · log2(1/Pr[X = a]).

We will also need the Chernoff-Hoeffding bound [29].

4 In [16], this result is proven only for ε < 1/3. However, it is immediate from, e.g.,
Lemma 6 that the result can be extended to any ε < 1/2.
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Lemma 9 (Chernoff-Hoeffding bound). Let X1, . . . , Xm ∈ [0, 1] be inde-
pendent and identically distributed random variables with X := E[Xi]. Then, for
any s > 0,

Pr
[
mX −

∑
Xi ≥ s

]
≤ exp(−s2/(2m)).

Finally, we will need a minor variant of the above inequality.

Lemma 10. Let X1, . . . , Xm ∈ R be independent (but not necessarily identically
distributed) random variables. Suppose that there exists an α ≥ 0 and s > 0 such
that for any r > 0,

Pr[|Xi| ≥ r] ≤ α exp(−r2/s2).

Then, for any r > 0,

Pr
[ ∑

X2
i ≥ r

]
≤ (1 + α)m exp(−r/(2s2)).

Proof. For any index i, we have

E[exp(X2
i /(2s2))] = 1 +

1
s2

·
∫ ∞

0

r exp(r2/(2s2)) Pr[|Xi| ≥ r] dr

≤ 1 +
α

s2
·
∫ ∞

0

r exp(−r2/(2s2)) dr

= 1 + α.

Since the Xi are independent, it follows that

E

[
exp

( ∑
X2

i /(2s2)
)]

= E

[ ∏

i

exp(X2
i /(2s2))

]
≤ (1 + α)m.

The result then follows by Markov’s inequality.

3 Two NISZK Proofs for GapSPP

Recall the definition

ηdet(L) := max
π

det(π(L))1/rank(π(L)).

We will also need the following definition from [18],

Cη(n) := sup
L

η1/2(L)
ηdet(L)

,

where the supremum is taken over all lattices L ⊂ R
n. In this notation, Theo-

rem 5 is equivalent to the inequality

Cη(n) ≤ 10(log n + 2).

We note that the true value of Cη(n) is still not known. (In particular, the best
lower bound is Cη(n) ≥ √

log(n)/π + o(1), which follows from the fact that
η1/2(Zn) =

√
log(n)/π + o(1).) We therefore state our results in terms of Cη(n).
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3.1 An Explicit Proof System

We first consider the NISZK proof system for
√

n-coGapSVP due to [45],
shown in Fig. 1. We show that this is actually also a NISZK proof system for
O(

√
log(1/ε) · log n)-GapSPPε for negligible ε. (In Sect. 3.2, we show a different

proof system that works for all ε ∈ (0, 1/2), also with an approximation factor
of O(log(n)

√
log(1/ε)).)

Theorem 8. For any ε ≤ negl(n), γ-GapSPPε is in NISZK for

γ := O(Cη(n)
√

log(1/ε)) ≤ O(log(n)
√

log(1/ε))

via the proof system shown in Fig. 1.

We will prove in turn that the proof system is statistical zero knowledge,
complete, and sound. In fact, the proofs of statistical zero knowledge and com-
pleteness are nearly identical to the corresponding proofs in [45].

To prove the zero-knowledge property of the proof system, we consider the
simulator that behaves as follows. Let e1, . . . , em ∈ R

m be sampled indepen-
dently from the continuous Gaussian centered at 0. Let t1, . . . , tm ∈ P(B) such
that ei ≡ ti mod L. The simulator then outputs t1, . . . , tm as the random input
and e1, . . . , em as the proof.

Lemma 11 (Statistical zero knowledge). For any ε ∈ (0, 1) and lattice
L ⊂ Q

n with ηε(L) ≤ 1, the output of the simulator described above is within
statistical distance εm of honestly generated random input and an honestly gen-
erated proof as in Fig. 1. In particular, the proof system in Fig. 1 is statistical
zero knowledge for negligible ε.

Proof. Notice that, conditioned on the random input ti, the distribution of ei is
exactly DL+ti,s. So, we only need to show that the random input t1, . . . , tm ∈
P(B) chosen by the simulator is within statistical distance εm of uniform.
Indeed, this follows from Lemma 5 and the union bound.

NISZK proof system for GapSPP.

Common Input: A basis B for a lattice L ⊂ Q
n.

Random Input : m vectors t1, . . . , tm ∈ P(B), sampled uniformly at random.
Prover P : Sample m vectors e1, . . . , em ∈ R

n independently from DL+ti , and
output them as the proof.

Verifier V : Accept if and only if ei ≡ ti mod L for all i and
∥
∥

∑
eie

T
i

∥
∥ ≤ 3m.

Fig. 1. The non-interactive zero-knowledge proof system for GapSPP, where m :=
100n.
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The proof of completeness is a bit tedious and nearly identical to proofs of
similar statements in [3,18,45]. We include a proof in AppendixA.

Lemma 12 (Completeness). For any lattice L ⊂ Q
n with η1/2(L) ≤ 1, the

proof given in Fig. 1 will be accepted except with negligible probability. I.e., the
proof system is complete.

Soundness. We now show the soundness of the proof system shown in Fig. 1,
using Theorem 5. We note that [18] contains an implicit proof of a very similar
result in a different context. (Dadush and Regev conjectured a form of Theorem5
and showed a number of implications [18]. In particular, they showed that with
non-negligible probability over a single uniformly random shift t ∈ R

n/L, there
is no list of vectors e1, . . . , em ∈ L + t with small covariance.)

Theorem 9. For any lattice L ⊂ R
n with basis B satisfying η1/2(L) ≥ 100Cη(n)

(and in particular any lattice with η1/2(L) ≥ 1000(log(n) + 2)), if t1, . . . , tm are
sampled uniformly from R

n/L, then the probability that there exists any proof
e1, . . . , em with ei ≡ t mod L and

∥∥∥
∑

eieT
i

∥∥∥ ≤ 3m

is at most exp(−Ω(m2)).

Proof. By the definition of Cη(n) there is a lattice projection π such that
det(π(L)) ≥ 100k, where k := rank(π(L)). For any e1, . . . , em with ei ≡ ti

mod L, we have
∥∥
∥

∑
eieT

i

∥∥
∥ ≥

∥∥
∥

∑
π(ei)π(ei)T

∥∥
∥

≥ 1
k

Tr
( ∑

π(ei)π(ei)T
)

=
1
k

∑
‖π(ei)‖2

≥ 1
k

∑
dist(π(ti), π(L))2,

where the first inequality on the spectral norms follows from the fact that
〈u, π(ei)〉 = 〈π(u), π(ei)〉 and ‖π(u)‖ ≤ ‖u‖; the second inequality follows from
the fact that the spectral norm is the largest eigenvalue and the trace is the sum
of the k eigenvalues; and the equality is by definition of trace.

Now by Sect. 2.2, π(ti) is uniformly distributed mod π(L), and therefore by
Lemma 2,

E[dist(π(ti), π(L))2] ≥ μ(π(L))2/4.

Furthermore, since the ti are independent and identically distributed with
dist(π(ti), π(L)) ≤ μ(π(L)), we can apply the Chernoff-Hoeffding bound
(Lemma 9) to get

Pr
[ ∑

dist(π(ti), π(L))2 ≤ mμ(π(L))2/5
]

≤ exp(−Cm2).
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The result follows by noting that μ(π(L))2/(5k) ≥ 3 by Sect. 2.2, together with
the fact that det(π(L)) ≥ 100k.

Corollary 4 (Soundness). For any ε ∈ (0, 1/2) and lattice L ⊂ R
n with basis

B satisfying n ≥ 2 and ηε(L) ≥ 100Cη(n)
√

log(1/ε) (and in particular any
lattice with ηε(L) ≥ 1000(log(n) + 2)

√
log(1/ε)), if t1, . . . , tm are sampled uni-

formly from P(B), then the probability that there exists a proof e1, . . . , em with
ei ≡ t mod L and ∥∥

∥
∑

eieT
i

∥∥
∥ ≤ 3m

is at most exp(−Ω(m2)). In other words, the proof system in Fig. 1 is
exp(−Ω(m2))-statistically sound.

Proof. By Lemma 6, we have η1/2 ≥ 100Cη(n), and the result follows from
Theorem 9.

Making the prover efficient. Finally, following [45] we observe that the prover in
the proof system shown in Fig. 1 can be made efficient if we relax the approxi-
mation factor. In particular, if ηε(L) ≤ 1/

√
n log n, then by Corollary 3, there is

in fact an efficient prover. Theorem2 then follows immediately from the above
analysis.

3.2 A Proof via Entropy Approximation

We recall from Goldreich et al. [25] the Entropy Approximation problem, which
asks us to approximate the entropy of the distribution obtained by calling some
input circuit C on the uniform distribution over its input space. In particular,
we recall that [25] proved that this problem is NISZK-complete. (Formally, we
only need the fact that Entropy Approximation is in NISZK.)

Definition 4. An instance of the Entropy Approximation problem is a circuit
C and an integer k. It is a YES instance if H(C(U)) > k + 1 and a NO instance
if H(C(U)) < k −1, where U is the uniform distribution on the input space of C.

Theorem 10 ([25]). Entropy Approximation is NISZK-complete.

In the rest of this section, we show a Karp reduction from
O(log(n)

√
log(1/ε))-GapSPPε to Entropy Approximation. I.e., we give an effi-

cient algorithm that takes as input a basis for a lattice L and outputs a
circuit CL such that (1) if ηε(L) ≤ 1, then H(CL(U)) is large; but (2) if
ηε(L) ≥ C log(n)

√
log(1/ε), then H(CL(U)) is small.

Intuitively, we want to use a circuit that samples from the continuous Gaus-
sian with parameter one modulo the lattice L. Then, by Lemma 4, if ηε(L) ≤ 1,
the resulting distribution will be nearly uniform over Rn/L. On the other hand,
we know that, with high probability, the continuous Gaussian lies in a set of
volume roughly one. And, by definition, if ηε(L) ≥ Ω(Cη(n)

√
log(1/ε)), then

there exists a projection π such that, say, vol(π(Rn/L)) = det(π(L)) ≥ 100.
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Therefore, the projected Gaussian lies in a small fraction of π(Rn/L) with high
probability.

To make this precise, we must discretize R
n/L appropriately to, say, (L/q)/L

for some large integer q > 1 and sample from a discretized version of the con-
tinuous Gaussian. Naturally, we choose DL/q. The following theorem shows that
DL/q mod L lies in a small subset of (L/q)/L when η1/2(L) is large.

Theorem 11. For any lattice L ⊂ R
n with sufficiently large n and integer q ≥

2n(η2−n(L) + μ(L)), if η1/2(L) ≥ 1000Cη(n) (and in particular if η1/2(L) ≥
104(log(n)+2)), then there is a subset S ⊂ (L/q)/L with |S| ≤ qn/200 such that

Pr
X∼DL/q mod L

[X ∈ S] ≥ 9
10

.

Proof. It is easy to see that DL/q is statistically close to the distribution obtained
by sampling from a continuous Gaussian with parameter one and rounding to
the closest vector in L/q. (One must simply recall from Lemma 4 that nearly all
of the mass of DL/q lies in a ball of radius

√
n and notice that for such short

points, shifts of size μ(L/q) < 2−n have little effect on the Gaussian mass.) It
therefore suffices to show that the above probability is at least 19/20 when X
is sampled from this new distribution. We write CVP(t) for the closest vector in
L/q to t.

By assumption, there is a lattice projection π onto a k-dimensional subspace
such that det(π(L)) ≥ 1000k. Notice that ‖π(CVP(t))‖ ≤ ‖π(t)‖ + μ(L)/q ≤
‖t‖ + 2−n for any t ∈ R

n. In particular, if X is sampled from a continuous
Gaussian with parameter one,

Pr
[‖π(CVP(X))‖ ≥

√
k
] ≤ Pr

[‖π(X)‖ ≥
√

k − 2−n
] ≤ 1

20
,

where we have applied Lemma 10. But, by Lemma 1, there are at most (q/200)k

points y ∈ (π(L)/q)/π(L)) ∩ √
kBk

2 . Therefore, there are at most qn/200k ≤
qn/200 points y ∈ (L/q)/L with 19/20 of the mass, as needed.

Corollary 5. For any lattice L ⊂ R
n with n ≥ 2, ε ∈ (0, 1/2), and integer

q ≥ 2, let X ∼ DL/q mod L. Then,

1. if ηε(L) ≤ 1, then H(X) > n log2 q − 2; but
2. if ηε(L) ≥ 1000Cη(n) · √

log(1/ε) (and in particular if ηε(L) ≥
104 log(n)

√
log(1/ε)) and q ≥ 2n(η2−n(L)+μ(L)), then H(X) < n log2 q −6.

Proof. Suppose that ηε(L) ≤ 1. Then, by Lemma 4, for any y ∈ (L/q)/L,

Pr
X∼DL/q mod L

[X = y] =
ρ(L + y)
ρ(L/q)

≤ 1 + ε

1 − ε
· 1
qn

.

It follows that

H(DL/q mod L) ≥ n log2 q + log2(1 − ε) − log2(1 + ε) > n log2 q − 2,

as needed.
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Suppose, on the other hand, that ηε(L) ≥ 1000Cη(n) · √
log(1/ε) and q ≥

2n(η2−n(L)+μ(L)). By Lemma 6, η1/2(L) ≥ 1000Cη(n), so that by Theorem 11,
there is a set S of size |S| = qn/200 with at least 9/10 of the mass of DL/q mod L.
Therefore,

H(DL/q mod L) ≤ 9
10

· log2 |S| +
1
10

· n log2 q < n log2 q − 6,

as needed.

Corollary 5 shows that, in order to reduce O(log(n)
√

log(1/ε))-GapSPPε

to Entropy Approximation, it suffices to construct a circuit that samples
from DL/q mod L. The main result of this section follows immediately from
Corollary 2.

Theorem 12. There is an efficient Karp reduction from γ-GapSPPε to Entropy
Approximation for

γ := O(Cη(n)
√

log(1/ε)) ≤ O(log(n)
√

log(1/ε)).

and any ε ∈ (0, 1/2). I.e., γ-GapSPPε is in NISZK.

Proof. The reduction behaves as follows on input L ⊂ Q
n. By Lemma 7, we can

find an integer q ≥ 2 with polynomial bit length that satisfies q ≥ 2n(η2−n(L) +
μ(L)). The reduction constructs the circuit CL/q from Corollary 2 and outputs
the modified circuit C(L/q)/L that takes the output from CL/q and reduces it
modulo L. It then outputs the Entropy Approximation instance (C(L/q)/L, k :=
n log2 q − 4).

The running time is clear. Suppose that ηε(L) ≤ 1. Then, by Corollary 5,

H(DL/q mod L) > n log2 q − 2.

Since the output of C(L/q)/L is statistically close to DL/q mod L, it follows that
H(C(L/q)/L(U)) > n log2 q − 3, as needed.

If, on the other hand, ηε(L) ≥ Ω(Cη(n) · √log(1/ε)), then by Corollary 5,

H(DL/q mod L) < n log2 q − 6.

Since the output of C(L/q)/L is statistically close to DL/q mod L, it follows that
H(C(L/q)/L(U)) < n log2 q − 5.

4 A coNP Proof for O(logn)-GapSPP

We will need the following result from [47], which extends Theorem 5 to smaller
ε by noting that ρ1/s(L∗\{0}) decays at least as quickly as ρ1/s(λ1(L∗)).

Theorem 13. For any lattice L ⊂ R
n and any ε ∈ (0, 1/2),

ηε(L)2 ≤ Cη(n)2ηdet(L)2 +
log(1/ε)
πλ1(L∗)2

≤ 100(log n + 2)2ηdet(L)2 +
log(1/ε)
πλ1(L∗)2

.
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Proof. We may assume without loss of generality that ηdet(L) = 1. Then, by
definition, ρ1/Cη(n)(L∗\{0}) ≤ 1/2. Therefore, for any s ≥ Cη(n),

ρ1/s(L∗) = 1 +
∑

w∈L∗\{0}
exp(−π(s2 − Cη(n)2)‖w‖2)ρ1/Cη(n)(w)

≤ 1 +
∑

w∈L∗\{0}
exp(−π(s2 − Cη(n)2)λ1(L∗)2)ρ1/Cη(n)(w)

≤ 1 + exp(−π(s2 − Cη(n)2)λ1(L∗)2)/2,

and the result follows.

Next, we prove an easy lower bound with a similar form (by taking the average
of two trivial lower bounds).

Lemma 13. For any lattice L ⊂ R
n and any ε ∈ (0, 1/2),

ηε(L)2 ≥ ηdet(L)2/8 +
log(2/ε)

2πλ1(L∗)2
.

Proof. First, note that ρ1/s(L∗\{0}) ≥ 2ρ1/s(λ1(L∗)). Rearranging, we see that

ηε(L)2 ≥ log(2/ε)
πλ1(L∗)2

.

On the other hand, recall that for any lattice projection π onto a subspace W ,
det(L∗ ∩ W ) = 1/det(π(L)). I.e., ηdet(L) = maxL′⊆L∗ det(L′)−1/rank(L′). So,
suppose s ≤ ηdet(L)/2. Then, by Lemma 3,

ρ1/s(L∗) = max
L′⊆L∗

ρ1/s(L′) ≥ max
L′⊆L∗

s−rank(L′)/det(L′) ≥ 2.

So, ηε(L)2 ≥ η1(L)2 ≥ ηdet(L)2/4. The result follows by taking the average of
the two bounds.

The main theorem of this section now follows immediately.

Theorem 14. For any ε ∈ (0, 1/2), γ-GapSPPε is in coNP for γ = O(Cη(n)) ≤
O(log n).

Proof. Let γ := 2
√

2Cη(n). On input a lattice L ⊂ R
n, the prover simply sends

a lattice projection π with det(π(L))1/rank(π(L)) = ηdet(L) and a vector w ∈ L∗

with ‖w‖ = λ1(L∗). The verifier checks that π is indeed a lattice projection and
that w ∈ L∗\{0}. It then answers NO if and only if

γ2det(π(L))2/rank(π(L))/8 +
log(1/ε)
π‖w‖2 > γ2. (2)

To prove completeness, suppose that ηε(L) > γ. Then, by Theorem13,

γ2ηdet(L)2/8 +
log(1/ε)
πλ1(L∗)2

≥ ηε(L)2 > γ2.

I.e., there exists a valid proof, as needed.
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To prove soundness, suppose that ηε(L) ≤ 1. Then, by Lemma 13,

ηdet(L)2/8 +
log(1/ε)

2πλ1(L∗)2
≤ ηε(L)2 ≤ 1.

Therefore,

γ2ηdet(L)2/8 +
log(1/ε)
πλ1(L∗)2

≤
γ2ηdet(L)2/8 + log(1/ε)

πλ1(L∗)2

ηdet(L)2/8 + log(1/ε)
2πλ1(L∗)2

≤ max{γ2, 2}
≤ γ2 .

In other words, Eq. (2) cannot hold for any pair w ∈ L∗\{0} and lattice projec-
tion π. I.e., the verifier will always answer YES, as needed.

Finally, we derive the following corollary.

Corollary 6. For any ε ∈ (0, 1/2), γ-coGapSPPε has an SZK proof system with
an efficient prover for

γ := O(Cη(n) +
√

log(1/ε)/ log n) ≤ O(log n +
√

log(1/ε)/ log n).

Proof. By Theorem 7, γ-GapSPPε is in SZK. Since SZK is closed under comple-
ments [43,48], γ-coGapSPPε is in SZK as well. By Theorem 14, γ-coGapSPPε is
in NP. The result then follows by the fact that any language in SZK ∩ NP has
an SZK proof system with an efficient prover [40].

5 An SZK Proof for O(
√
n)-GapCRP

In this section we prove that O(
√

n)-GapCRP is in SZK, which improves the
previous known result by a ω(

√
log n) factor [45]. First we need the following

result from [16].

Lemma 14. For any lattice L and parameter s > 0,

ρs(L) · γs(V(L)) ≤ 1.

Here we prove an upper bound on the smoothing parameter of a lattice in terms
of its covering radius. This bound is implicit in [18].

Lemma 15. For any lattice L ⊂ R
n and ε > 0, we have

ηε(L) ≤
√

π

log(1 + ε)
· μ(L).

In particular, ηε(L) ≤ O(μ(L)) for any ε ≥ Ω(1).
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Proof

ρ1/s(L∗) = s−n · det(L) · ρs(L) (Lemma 3)

≤ s−n · det(L)
γs(V(L))

(Lemma 14)

≤ s−n · det(L)∫
V(L)

s−n · exp(−πx2/s2) dx

≤ det(L)
∫

V(L)
exp(−πμ(L)2/s2) dx

≤ exp(πμ(L)2/s2),

where we used the fact that ‖x‖ ≤ μ(L) for any x ∈ V(L). By setting s =√
π

log(1+ε) · μ(L) we have the desired result.

Theorem 15. The problem O(
√

n)-GapCRP has an SZK proof system with an
efficient prover, as does O(

√
n)-coGapCRP.

Proof. Fix some some constant ε ∈ (0, 1/2). By Lemmas 8 and 15, we know that
there exist C1 and C2 such that

C1ηε(L) ≤ μ(L) ≤ C2

√
n · ηε(L),

and hence there is a simple reduction from O(
√

n)-GapCRP to O(1)-GapSPPε. It
follows from Theorem 7 that O(

√
n)-GapCRP is in SZK. To see that the prover

can be made efficient, we recall from [27] that O(
√

n)-GapCRP is in NP ∩ coNP.
The result then follows by the fact that any language in SZK ∩ NP has an SZK
proof system with an efficient prover [40].

A Proof of Lemma12

Definition 5. For any δ > 0, S ⊆ R
n, we say that A ⊆ S is a δ-net of S if for

each v ∈ S, there is some u ∈ A such that ‖u − v‖ ≤ δ.

Lemma 16. For any δ > 0, there exists a δ-net of the unit sphere in R
n with

at most (1 + 2/δ)n points.

Proof. Let N be maximal such that N points can be placed on the unit sphere
in such a way that no pair of points is within distance δ of each other. Clearly,
there exists a δ-net of size N .

So, it suffices to show that any collection of vectors A in the unit sphere with
|A| > (1 + 2/δ)n must contain two points within distance δ of each other. Let

B :=
⋃

u∈A

((δ/2)Bn
2 + u)

be the union of balls of radius δ/2 centered at each point in A. Notice that
B ⊆ (1 + δ/2)Bn

2 . If all of these balls were disjoint, then we would have
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vol(Bn
2 ) = |A| · (δ/2)nvol(Bn

2 ) > vol((1 + δ/2)Bn
2 ),

a contradiction. Therefore, two such balls must overlap. I.e., there must be two
points within distance δ of each other, as needed.

We will need the following result from [49, Lemma 5.4].

Lemma 17. For a symmetric matrix M ∈ R
n×n and a δ-net of the unit sphere

A with δ ∈ (0, 1/2),

‖M‖ ≤ 1
1 − 2δ

· max
v∈A

|〈Mv,v〉|.

We will also need the following result from [36, Lemma 2.8], which shows that
the discrete Gaussian distribution is subgaussian.

Lemma 18. For any lattice L ⊂ R
n with η1/2(L) ≤ 1, shift vector t ∈ R

n, unit
vector v ∈ R

n, and any r > 0,

Pr
X∼DL−t

[|〈v,X〉| ≥ r] ≤ 10 exp(−πr2).

Proof (Proof of Lemma 12). Let {v1, . . . ,vN} be a (1/10)-net of the unit sphere
with N ≤ 25n, as guaranteed by Lemma 16. By Lemma 18, we have that for
any ei in the proof, any vj , and any r ≥ 0, Pr[|〈vj , ei〉| ≥ r] ≤ 10 exp(−πr2).
Therefore, by Lemma 10

Pr
[ ∑

i

〈vj , ei〉2 ≥ r
]

≤ 2me−πr/2.

Applying the union bound, we have

Pr
[
∃j,

∑

i

〈vj , ei〉2 ≥ r
]

≤ N2me−πr/2.

Taking r := 2m, we see that this probability is negligible. Applying Lemma17
shows that ∥

∥∥
∑

i

eieT
i

∥
∥∥ ≤ 2m · 5

4
< 3m,

except with negligible probability, as needed.
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Abstract. Hash Proof Systems or Smooth Projective Hash Functions
(SPHFs) are a form of implicit arguments introduced by Cramer and
Shoup at Eurocrypt’02. They have found many applications since then,
in particular for authenticated key exchange or honest-verifier zero-
knowledge proofs. While they are relatively well understood in group
settings, they seem painful to construct directly in the lattice setting.

Only one construction of an SPHF over lattices has been proposed in
the standard model, by Katz and Vaikuntanathan at Asiacrypt’09. But
this construction has an important drawback: it only works for an ad-
hoc language of ciphertexts. Concretely, the corresponding decryption
procedure needs to be tweaked, now requiring q many trapdoor inver-
sion attempts, where q is the modulus of the underlying Learning With
Errors (LWE) problem.

Using harmonic analysis, we explain the source of this limitation, and
propose a way around it. We show how to construct SPHFs for standard
languages of LWE ciphertexts, and explicit our construction over a tag-
IND-CCA2 encryption scheme à la Micciancio-Peikert (Eurocrypt’12).
We then improve our construction and our analysis in the case where the
tag is known in advance or fixed (in the latter case, the scheme is only
IND-CPA) with a super-polynomial modulus, to get a stronger type of
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1 Introduction

Harmonic analysis is a powerful tool in geometry of numbers, especially in com-
bination with Gaussian measure, which has lead to important progress on trans-
ference theory [3]. Those tools also played a crucial role for the foundation of
lattice-based cryptography, being at the heart of proofs of worst-case hardness
for lattice problems, such as the Short Integer Solution problem (SIS) and the
Learning with Errors (LWE) problem [14,28,29]. Later, security proofs relied
on a few convenient lemmas in a black-box manner, and for most applications
this was sufficient: lattice-based cryptography quickly caught up with pairing-
based cryptography, for example with the constructions of (Hierarchical) Identity
Based Encryption’s [9,14,27] and beyond [8,15,16].

There nevertheless remains one primitive for which lattice-based cryptogra-
phy is still far behind: Hash Proof Systems or Smooth Projective Hash Func-
tions (SPHFs) [11]. Beyond the original Chosen-Ciphertext secure encryption
scheme of Cramer and Shoup [10], SPHFs give rise to generalized classes of
Authenticated Key Exchange (Password-based, Language-based, . . . ) [2,4,13,
23]. They also have been used in Oblivious Transfer [18,21], One-Time Relatively-
Sound Non-Interactive Zero-Knowledge Arguments [20], and Zero-Knowledge
Arguments [5].

An SPHF can be seen as an implicit (designated-verifier) zero-knowledge
proof for a language. The most useful languages for SPHFs are the languages of
ciphertexts of a given plaintext M .

To our knowledge, there is only one construction of SPHF for a lattice-
based encryption scheme in the standard model, given by Katz and Vaikun-
tanathan [22]. There is also a subsequent work by Zhang and Yu who propose
an interesting new lattice-based SPHF in [30]. But the language of the SPHF
relies on simulation-sound non-interactive zero-knowledge proofs which we do
not know how to construct just under lattice-based assumptions without ran-
dom oracle.

Unfortunately, the only standard-model lattice-based SPHF construction
in [22] has a main drawback: the language of the SPHF is not simply defined as
the set of valid standard LWE ciphertexts. Naturally, the set of valid ciphertexts
of 0 should correspond to the set of ciphertexts close to the lattice defined by
the public key. Instead, their language includes all the ciphertexts c such that at
least one integer multiple is close to the public lattice. This makes the decryption
procedure very costly (about q trapdoor inversions), and forbids the use of super-
polynomial modulus q. This limitation is a serious obstacle to the construction
of a stronger type of SPHF introduced in [23], namely word-independent SPHF
for which the projection key (which can be seen as the public key of the SPHF)
does not depend on the ciphertext c (a.k.a., word in the SPHF terminology).1

This strongly contrasts with SPHFs in a group-based setting, which can
handle classical ElGamal or Cramer-Shoup encryption schemes—for example

1 Word-independent SPHFs are also called KV-SPHF in [5], in reference to [23].
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[11,13]—without any modification of the decryption procedure. This is a techni-
cal hassle to carry when building on top of such an SPHF.

We therefore view as an important question to determine whether this caveat
is inherent to lattice-based SPHFs, or if it can be overcome. We shall find an
answer by re-introducing some harmonic analysis.

Contributions. Our main contribution consists in constructing SPHFs for stan-
dard lattice-based encryption schemes. We provide general theorems to ease the
proofs of correctness and security (a.k.a., smoothness or universality) of SPHFs
over standard lattice-based encryption schemes. We detail two particular instan-
tiations: one over an IND-CCA2 encryption scheme à la Micciancio-Peikert [27],
and one over an IND-CPA restriction of the same scheme. While the second
instantiation is over a simpler language, it is a word-independent SPHF. To
our knowledge, this is the first word-independent SPHF over any lattice-based
language. We remark that while Zhang and Yu construct an interesting approx-
imate word-independent SPHF over a lattice-based language in [30], its correct-
ness is only approximate contrary to our SPHF; and its language also relies on
simulation-sound non-interactive zero-knowledge proofs, which we do not know
how to construct just from lattice assumptions in the standard model.

As with many zero-knowledge-type primitives in the lattice setting [24,25]
and as with the SPHFs of [22] and of [30], there is a gap between the correctness
property and the smoothness property. Concretely, smoothness holds for cipher-
texts which do not decrypt to a given message, while correctness holds only for
honestly generated ciphertexts. However, contrary to [22], we use a standard
encryption scheme and do not need to tweak the decryption procedure nor the
language. We thus avoid the main caveat of the latter paper.

Applications. Having built these new SPHFs, we can now proceed with several
applications showing that the gap between smoothness (or universality) and
correctness is not an issue in most cases. We start by proposing an efficient
password-authenticated key exchange (PAKE) scheme in three flows. We do so
by plugging our first SPHF in the framework from [22]. Following the GK-PAKE
construction from [1] which is an improvement of the Groce-Katz framework
[17,19], we also obtain a PAKE in two flows over lattices in the standard model.
Finally, using our word-independent SPHF together with simulation-sound
non-interactive zero-knowledge proofs (SS-NIZK), by following [23], we obtain a
one-round PAKE.

Compared to the recent work of Zhang and Yu [30], which proposes the first
two-round lattice-based PAKE assuming in addition SS-NIZK, our two-round
PAKE does not require SS-NIZK. While there exist very efficient SS-NIZKs
in the random oracle model for the languages considered by Zhang and Yu,
constructing SS-NIZK in the standard model under a lattice-based assumption
remains an important open problem. Our two-round PAKE is thus the first
two-round PAKE solely based on lattice assumptions in the standard model. In
addition, our one-round PAKE assuming LWE and SS-NIZK is the first one-
round PAKE in this setting and closes an open problem of [30].
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In addition to PAKE, we also show how to construct honest-verifier zero-
knowledge proofs for any NP language from lattice-based SPHF. We conclude by
showing a relaxed version of witness encryption for some lattice-based languages.
Witness encryption is a very recent primitive introduced in [12] which enables a
user to encrypt a message to a given word of some NP language. The message
can be decrypted using a witness for the word.

Technical Overview. Let us now give a technical overview of our main contri-
bution, namely the constructions of new lattice-based SPHFs. We focus on the
language of dual-Regev ciphertexts c of 0: c = As + e ∈ Z

m
q , where A ∈ Z

m×n
q

is a public matrix, while s ∈ Z
n
q and e ∈ Z

m
q correspond to the randomness of

the ciphertext. The vector e is supposed to be small, i.e., c is close to the q-ary
lattice Λ generated by A.

Intuitively, an SPHF allows a prover knowing s and e to prove to a verifier
that c is indeed a ciphertext of 0. The naive and natural construction works as
follows.2 The verifier generates a small random vector hk = h ∈ Z

m
q called a

hashing key. It then “hashes” the ciphertext into a hash value H = R(〈h, c〉) ∈
{0, 1}, where R is a rounding function from Zq to {0, 1} to be chosen later. The
verifier also derives from hk = h, a projection key hp = p = Ath ∈ Z

n
q that

it sends to the prover. The prover can then compute the projected hash value
pH = R(〈p, s〉) from the projection key p and the randomness of the ciphertext
s and e. It can send this projected hash value to the verifier which will accept
the proof, if pH matches its hash value H.

We remark that if indeed c = As + e with e small enough (recall that h is
small as well):

〈h, c〉 = htAs + hte ≈ htAs = 〈p, s〉.
Hence, if R is carefully chosen, we can ensure that with high probability (e.g.,
at least 3/4), H = pH, and the verifier will accept the prover’s “proof.” This
property is called approximate correctness. An SPHF also needs to satisfy a
security property to be useful, called smoothness or universality, which ensures
that if c is far from the q-ary lattice Λ generated by A (in particular if it is
an encryption of 1), then given the projection key p (and A and c), the prover
cannot guess the hash value H with probability more than 1/2+negl(n). In [22],
Katz and Vaikuntanathan argued universality for ciphertexts c, for which every
multiple of c is far from the lattice Λ. To be useful in their PAKE application, the
decryption procedure of the encryption scheme therefore needs to be tweaked
to try to decrypt not only the ciphertext itself but also all its multiples. In
particular, their construction cannot work with super-polynomial moduli.

The question we wish to answer is whether universality holds without this
tweak. In other words, is the condition that jc is far from Λ for all j �= 0 truly

2 Actually, what we construct in this overview are bit-PHF and not SPHF, i.e., the
hash value defined later is just a bit and the security property is universality instead
of smoothness. Classical SPHFs can be derived from these bit-PHFs. See Fig. 2 and
Sect. 2.3.
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necessary or is it is an artifact of the proof? To approach this question, let us
discuss two case studies.

Two case studies. Let us first take a look at the special case where q is even, and
where c is a perfect encryption of 1: c = As + (0, . . . , 0, q/2)t for some s ∈ Z

n
q .

We observe that
〈h, c〉 = 〈p, s〉 + (hm mod 2) · q/2,

where hm is the last coordinate of h. In particular, the distribution of 〈h, c〉,
when h is drawn from a discrete Gaussian (over Z

m), conditioned on A, c and
Ath = p, is concentrated on merely 2 values out of q and is therefore far from
uniform.

Yet, assuming the discrete Gaussian has large enough parameter (more pre-
cisely, twice as large as the smoothing parameter of Z), we note that hm is close to
uniform modulo 2. In that case we observe that while 〈h, c〉 is not itself uniform,
the rounding R(〈h, c〉) is close to uniform when choosing the typical rounding
function R : x ∈ Zq �→ 	2x/q
 mod 2, regardless of the value of 〈p, s〉. So it
seems that the rounding function does not only help in ensuring approximate
correctness, but it can also improve universality of the scheme as well!

Unfortunately, we cannot always expect universality from this trick. Now
assume that q is divisible by 3, and set c = As + (0, . . . , 0, q/3)t. This time,

〈h, c〉 = 〈p, s〉 + (hm mod 3) · q/3

is (almost) uniformly distributed over three values, separated by q/3. In partic-
ular R(〈h, c〉) will take one value with probability (roughly) 1/3, and the other
value with probability (roughly) 2/3. Despite imperfect universality, this still
guarantees some entropy in Hash(h,A, c) knowing A, c, and p.

Harmonic analysis. The core of our work consists in using harmonic analysis
to better understand the caveat of [22], namely that universality is only proven
when all the multiples of the ciphertext are far from the lattice. For that, we
extend the rounding function R to a q-periodic signal R → R.

We proceed to a general analysis (Theorem 3.1), which shows that universal-
ity holds for ciphertexts c such that its multiples jc are far away from the lattice
Λ, for all non-zero integers j corresponding to non-zero real harmonics of the
rounding signal R.

This unravels the causes of the caveat in [22]: the weight of the j-th harmonic
of the naive rounding function R : x ∈ Zq �→ 	2x/q
 mod 2 (seen as a q-periodic
signal, as in Fig. 1a) is as large as Θ(1/j) for odd integers j.

First solution (Universality, Approximate Correctness, Sect. 3). Having identified
the source of the caveat, it becomes clear how to repair it: the rounding should
be randomized, with a weight signal for which only the first harmonic is non-zero
(in addition to the average), namely with a pure cosine weight:

Pr[R(x) = 1] :=
1
2

+
1
2

cos
(

2πx

q

)
.
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Fig. 1. Probability that the rounding functions R(x) of Sects. 3 and 4 output 1

This choice ensures universality as soon as just 1 · c = c is far from the lattice Λ
(Corollary 3.2 and Theorem 3.4).

This solution nevertheless only provides approximate correctness (correctness
holds with probability 3/4 + o(1), see Lemma 3.3), which is also problematic
for some applications. This can be solved using correctness amplification via
error-correcting codes, but at the price of preventing the resulting SPHF to be
word-independent.

Second solution (Imperfect Universality, Statistical Correctness, Sect. 4). In our
second instantiation, we therefore proceed to construct an almost-square round-
ing function (see Fig. 1d, � denotes the convolution operator), which offers sta-
tistical correctness3 and imperfect universality (namely the probability that a
prover knowing only hp = p can guess the hash value H is at most 1/3 + o(1),
as proved in Theorem 4.5). This instantiation requires a more subtle analysis,
taking account of destructive interferences.

We can then amplify universality to get statistical universality (i.e., the above
probability of guessing is at most 1/2 + negl(n) as in our first solution) while
keeping a statistical correctness. Contrary to the correctness amplification, this
transformation preserves the independence of the projection key from the cipher-
text. In particular, if the ciphertexts are from an IND-CPA scheme such as
dual-Regev, then we get the first word-independent SPHF over a lattice-based
language.

3 More precisely, the probability of error is poly(n, σ)/q, which is negl(n) for super-
polynomial approximation factors q/σ.
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We remark that our word-independent SPHF uses a super-polynomial modu-
lus q, to get statistical correctness. It seems hard to construct such an SPHF for
a polynomial modulus, as a word-independent SPHF for an IND-CPA encryp-
tion scheme directly yields a one-round key exchange (where each party sends a
ciphertext of 0 and a projection key, and where the resulting session key is the xor
of the two corresponding hash values) and we do not know of any lattice-based
one-round key exchange using a polynomial modulus.

Open Question. We see as the main open question to extend our techniques
to their full extent in the ring-setting. More precisely, our SPHF only produces
one-bit hashes, and is easily extended to the ring-setting still asking with 1-bit
hash values. This requires costly repetitions for applications, and one would hope
that a ring setting variant could directly produce Θ(n)-bit hash values.

Another important open question is to understand whether our techniques
can further be refined to construct lattice-based IND-CCA encryption schemes
without trapdoor, using ideas from the Cramer-Shoup encryption scheme [10,11]
for example.

Road Map. We start by some preliminaries on lattices and SPHFs in Sect. 2. In
particular, we define several variants of lattice-based (approximate) SPHFs (in
particular universal bit-PHFs) and formally show various transformations which
were only implicit in [22]. We also define the IND-CCA2 encryption scheme
“à la Micciancio-Peikert” we will be using. In Sect. 3, we then show step-by-step
how to construct an SPHF for IND-CCA2 ciphertexts à la Micciancio-Peikert
and how to avoid the caveat of the construction of [22]. In Sect. 4, we con-
struct a word-independent SPHF for ciphertexts under an IND-CPA scheme
à la Micciancio-Peikert, when the modulus is super-polynomial. In Sect. 5, we
conclude by exhibiting several applications.

Figure 2 summarizes our results and the paper road map. All the notions in
this figure are formally defined in Sect. 2.

2 Preliminaries

2.1 Notations

The security parameter is denoted n. The notation negl(n) denotes any function
f such that f(n) = n−ω(1). For a probabilistic algorithm alg(inputs), we may
explicit the randomness it uses with the notation alg(inputs ; coins), otherwise
the random coins are implicitly fresh.

Column vectors will be denoted by bold lower-case letters, e.g., x, and matri-
ces will be denoted by bold upper-case letters, e.g., A. If x is vector and A
is a matrix, xt and At will denote their transpose. We use [A|B] for the hor-
izontal concatenation of matrices, and [A ; B] = [At|Bt]t for the vertical con-
catenation. For x ∈ R

m, ‖x‖ will denote the canonical euclidean norm of x.
We will use B to denote the euclidean ball of radius 1, where, unless specifically
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Fig. 2. Summary of results

stated otherwise, the ball is m-dimensional. If x,y ∈ R
m, 〈x,y〉 will denote their

canonical inner product, and d(x,y) = ‖x − y‖ their distance. If E ⊂ R
m is

countable and discrete, we will denote d(x, E) = miny∈E d(x,y). For a function
f : E → C or f : E → R, f(E) will denote the sum

∑
x∈E f(x). For a, b ∈ R,

[a, b] = {x ∈ R | a ≤ x ≤ b} will denote the closed real interval with endpoints a
and b, 	a�, �a
, and 	a
 will respectively denote the largest integer smaller than
a, the smallest integer greater than a, and the closest integer to a (the largest
one if there are two). The xor of two bit strings a, b ∈ {0, 1}k is denoted by a⊕ b.
The cardinal of a finite set S is denoted |S|.

The modulus q ∈ Z will be taken as an odd prime, for simplicity.

2.2 Lattices and Gaussians

Lattices. An m-dimensional lattice Λ is a discrete subgroup of R
m. Equivalently,

Λ is a lattice if it can be written Λ = {Bs | s ∈ Z
n} where n ≤ m, for some B ∈

R
m×n, where the columns of B are linearly independent. In that case, B is called

a basis of Λ. Then, we define the determinant of Λ as det(Λ) =
√

det(BtB),
which does not depend on the choice of the basis B.

We define the dual lattice of Λ as

Λ∗ = {x ∈ SpanR(Λ) | ∀y ∈ Λ, 〈x,y〉 ∈ Z}.

Recall the identity (Λ∗)∗ = Λ. Given A ∈ Z
m×n
q where m ≥ n, and modulus

q ≥ 2, we define the following q-ary lattices:

Λ(A) = {As | s ∈ Z
n
q } + qZ

m, Λ⊥(A) = {h ∈ Z
m | htA = 0t mod q}.
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Note that up to a scaling factor, Λ(A) and Λ⊥(A) are dual of each other: Λ(A) =
q · Λ⊥(A)∗. For a syndrome p ∈ Z

n
q , we define the coset of Λ⊥(A):

Λ⊥
p (A) = {h ∈ Z

m | htA = pt mod q}.

When there is no confusion about which matrix A is used, we will simply denote
these lattices Λ,Λ⊥, and Λ⊥

p respectively.

Gaussians. If s > 0 and c ∈ R
m, we define the Gaussian weight function on

R
m as

ρs,c : x �→ exp(−π‖x − c‖2/s2).

Similarly, if Λ is an m-dimensional lattice, we define the discrete Gaussian dis-
tribution over Λ, of parameter s and centered in c by:

∀x ∈ Λ, DΛ,s,c(x) =
ρs,c(x)
ρs,c(Λ)

.

When c = 0, we will simply write ρs and DΛ,s. We recall the tail-bound of
Banaszczyk for discrete Gaussians:

Lemma 2.1 ([3, Lemma 1.5], as stated in [28, Lemma 2.10]). For any
c > 1/

√
2π,m-dimensional lattice Λ and any vector v ∈ R

m:

ρs(Λ \ sc
√

mB) ≤ Cmρs(Λ), ρs((Λ + v) \ sc
√

mB) ≤ 2Cmρs(Λ).

where C = c
√

2πe · e−πc2 < 1.

An important quantity associated to a lattice is its smoothing parameter,
introduced by Micciancio and Regev [28]:

Definition 2.2 (Smoothing parameter [28]). For ε > 0, the smoothing
parameter of a lattice Λ, denoted ηε(Λ), is the smallest s > 0 such that
ρ1/s(Λ∗ \ {0}) ≤ ε.

The following lemma states that if the parameter of the discrete Gaussian is
above the smoothing parameter of the lattice, then the Gaussian weight of the
cosets of Λ are essentially the same:

Lemma 2.3 [29, Claim 3.8]. For any lattice Λ ⊂ R
m, c ∈ R

m, and s ≥ ηε(Λ):

(1 − ε)sm det(Λ∗) ≤ ρs(Λ + c) ≤ (1 + ε)sm det(Λ∗).

The smoothing parameter of the dual of a random q-ary lattice can be con-
trolled using the following:

Lemma 2.4 (Corollary of [27, Lemma 2.4]). Fix parameters n, q a prime,
and m ≥ Θ(n log q). Let ε ≥ 2−O(n) and s > 2ηε(Zm). Fix 0 < δ ≤ 1. Then, for
A uniformly random in Z

m×n
q , we have s ≥ η2ε/δ(Λ⊥(A)) except with probability

at most δ over the choice of A.

To instantiate the above, we recall the smoothing parameter of Z
m.

Lemma 2.5 (Corollary of [28, Lemma 3.3]). For all integer m ≥ 1, ε ∈
(0, 1/2), the smoothing parameter of Z

m satisfies ηε(Zm) ≤ C
√

log(m/ε) for
some universal constant C > 0.
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Harmonic analysis. Let us recall the exponential basis of periodic functions
and their vectorial analogues:

ex : y �→ exp(2iπxy), ex : y �→ exp(2iπ〈x,y〉).
The Fourier transform of f : R

m → C is defined by:

f̂(ξ) =
∫
Rm

f(x)e−2iπ〈x,ξ〉dx.

The Fourier transform of the Gaussian weight function ρs is ρ̂s = smρ1/s.
Recall the time-shift-phase-shift identity: if g(x) = f(x)ez (x) for some z ∈ R

m,
then ĝ(ξ) = f̂(ξ − z). Similarly, if g(x) = f(x + t) for some t ∈ R

m, then
ĝ(ξ) = f̂(ξ)et(ξ). For two functions f, g : R

m → C, we will denote by f � g their
convolution product:

f � g(x) =
∫
Rm

f(y)g(x − y)dy.

The Fourier transform turns convolutions into pointwise products, and
conversely:

f̂ � g(ξ) = f̂(ξ) · ĝ(ξ), f̂ · g(ξ) = f̂(ξ) � ĝ(ξ).

Finally, let us recall the Poisson summation formula:

Lemma 2.6 (Poisson summation formula). For any latticeΛ and f : Rm →C,
we have f(Λ) = det(Λ∗)f̂(Λ∗).

Learning with Errors

Definition 2.7 (Learning with Errors (LWE)). Let q ≥ 2, and χ be a
distribution over Z. The Learning with Errors problem LWEχ,q consists in, given
polynomially many samples, distinguishing the two following distributions:

– (a, 〈a, s〉 + e), where a is uniform in Z
n
q , e ← χ, and s ∈ Z

n
q is a fixed secret

chosen uniformly,
– (a, b), where a is uniform in Z

n
q , and b is uniform in Zq.

In [29], Regev showed that for χ = DZ,σ, for any σ ≥ 2
√

n, and q such
that q/σ = poly(n), LWEχ,q is at least as hard as solving worst-case SIVP for
polynomial approximation factors.

Trapdoor for LWE. Throughout this paper, we will use the trapdoors intro-
duced in [27] to build our public matrix A. Define gA (s,e) = As + e, let
Gt = In ⊗ gt, where gt = [1, 2, . . . , 2k] and k = �log q
 − 1, and let H ∈ Z

n×n
q

be invertible.

Lemma 2.8 [27, Theorems 5.1 and 5.4]. There exist two PPT algorithms
TrapGen and g−1

(·) with the following properties assuming q ≥ 2 and m ≥
Θ(n log q):
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– TrapGen(1n, 1m, q) outputs (T ,A0), where the distribution of the matrix A0

is at negligible statistical distance from uniform in Z
m×n
q , and such that

TA0 = 0, where s1(T ) ≤ O(
√

m) and where s1(T ) is the operator norm
of T , which is defined as maxx �=0 ‖Tx‖/‖x‖.4

– Let (T ,A0) ← TrapGen(1n, 1m, q). Let AH = A0 +[0 ; GH] for some invert-
ible matrix H called a tag. Then, we have TAH = GH. Furthermore, if
x ∈ Z

m
q can be written as AH s + e where ‖e‖ ≤ B′ := q/Θ(

√
m), then

g−1
AH

(T ,x,H) outputs (s,e).

More precisely, to sample (T ,A0) with TrapGen, we sample a uniform Ā ∈ Z
m̄×n
q

where m̄ = m − nk = Θ(n log q), and some R ← Dnk×m̄, where the dis-
tribution Dnk×m̄ assigns probability 1/2 to 0, and 1/4 to ±1. We output
T = [−R | Ink] along with A0 = [Ā ; RĀ]. Then, given a tag H, we have:
T (A0 + [0 ; GH])=GH.

Tag-IND-CCA2 LWE Encryption à la Micciancio-Peikert. For our appli-
cations, we will need a (labelled) encryption scheme that is IND-CCA2. This can
be built generically and efficiently from a tag-IND-CCA2 encryption scheme. The
formal definitions and the latter transformation are recalled in the full version [6].
Below, we describe a simplified variant of the scheme of [27, Sect. 6.3].

For this scheme, we assume q to be an odd prime. We set an encoding function
for messages Encode(μ ∈ {0, 1}) = μ · (0, . . . 0, �q/2
)t. Note that 2 ·Encode(μ) =
(0, . . . , 0, μ)t mod q.

Let R be a ring with a subset U ⊂ R× of invertible elements, of size 2n, and
with the unit differences property: if u1 �= u2 ∈ U , then u1 − u2 is invertible in
R. Let h be an injective ring homomorphism from R to Z

n×n
q (see [27, Sects. 6.1

and 6.3] for an explicit construction). Note that if u1 �= u2 ∈ U , then h(u1 − u2)
is invertible, and thus an appropriate tag H = h(u1 − u2) for the trapdoor.

Let (T ,A0) ← TrapGen(1n, 1m, q). The public encryption key is ek = A0,
and the secret decryption key is dk = T .

– Encrypt(ek = A0, u ∈ U , μ ∈ {0, 1}) encrypts the message μ under the public
key ek and for the tag u, as follows: Let Au = A0 + [0 ; Gh(u)]. Pick s ∈ Z

n
q ,

e ← Dm
Z,t where t = σ

√
m·ω(

√
log n). Restart if ‖e‖ > B, where B := 2t

√
m.5

Output the ciphertext:

c = Aus + e + Encode(μ) mod q.

4 The bound on s1(T ) holds except with probability at most 2−n in the original
construction, but for convenience we assume the algorithm restarts if it does not
hold.

5 This happens only with exponentially small probability 2−Θ(n) by Lemma 2.1.
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– Decrypt(dk = T , u ∈ U , c ∈ Z
m
q ) decrypts the ciphertext c for the tag u

using the decryption key dk as follows: Output6

{
μ if g−1

Au
(T , 2c, h(u)) = 2e + (0, . . . , 0, μ) where e ∈ Z

m and ‖e‖ ≤ B′,
⊥ otherwise.

Since �q/2
 is the inverse of 2 mod q, we have:

μ′ := Decrypt(T , u, c) �= ⊥ ⇐⇒ d(c − Encode(μ′), Λ(Au)) < B′.

Suppose that m ≥ Θ(n log q). Note that d(Encode(1), Λ(Au)) > B′ simultane-
ously for all u with overwhelming probability over the randomness of TrapGen
(using a union bound, as in [14, Lemma 5.3] for instance). Then, by Lemma 2.8,
the scheme is correct as long as B ≤ B′, or equivalently σm3/2 · ω(

√
log n) ≤ q.

Theorem 2.9. Assume m ≥ Θ(n log q). The above scheme is tag-IND-CCA2
assuming the hardness of the LWEχ,q problem for χ = DZ,σ.

The precise definition for tag-IND-CCA2 and the proof of the above theorem
are provided in the full version [6].

Remark 2.10. If a constant tag u is hardcoded in Encrypt and Decrypt, then
the resulting encryption scheme is just an IND-CPA scheme using trapdoors
from [27].

Lemma 2.11. Assume m ≥ Θ(n log q). With A0 sampled as above, except with
probability 2−n, it holds that for all u ∈ U , η2−n(Λ⊥(Au)) ≤ C

√
n for some

universal constant C.

Proof. Note that A0 is (about) uniform under the randomness of TrapGen, and
so is Au for a fixed u ∈ U . Apply Lemmas 2.4 and 2.5 with ε = 8−n/2 and
δ = 4−n to Au, ensuring that η2−n(Λ⊥(Au)) ≤ C

√
n except with probability δ.

Conclude by the union bound over the 2n elements u ∈ U . ��

2.3 Approximate Smooth Projective Hash Functions

We consider approximate smooth projective hash functions (approximate
SPHFs) defined in [22].

Languages. We consider a family of languages (Llpar,ltrap)lpar,ltrap indexed by
some parameter lpar and some trapdoor ltrap, together with a family of NP
languages (L̃lpar)lpar indexed by some parameter lpar, with witness relation R̃lpar,
such that:

L̃lpar = {x ∈ Xlpar | ∃w , R̃lpar(x ,w) = 1} ⊆ Llpar,ltrap ⊆ Xlpar,

6 Note that the inversion algorithm g−1
(·) can succeed even if ‖e‖ > B′, depending on

the randomness of the trapdoor. It is crucial to reject decryption nevertheless when
‖e‖ > B′ to ensure CCA2 security. We also recall that B′ := q/Θ(

√
m).
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where (Xlpar)lpar is a family of sets. The trapdoor ltrap and the parameter lpar
are generated by a polynomial-time algorithm Setup.lpar which takes as input a
unary representation of the security parameter n. We suppose that membership
in Xlpar and R̃lpar can be checked in polynomial time given lpar and that mem-
bership in Llpar,ltrap can be checked in polynomial time given lpar and ltrap. The
parameters lpar and ltrap are often omitted when they are clear from context.

We are mostly interested in languages of ciphertexts.

Example 2.12 (Languages of Ciphertexts). Let (KeyGen,Encrypt,Decrypt) be a
labeled encryption scheme. We define the following languages (Setup.lpar =
KeyGen and (ltrap, lpar) = (dk, ek)):

L̃ = {(label, C,M) | ∃ρ, C = Encrypt(ek, label,M ; ρ)},

L = {(label, C,M) | Decrypt(dk, label, C) = M},

where the witness relation R̃ is implicitly defined as: R̃((label, C,M), ρ) = 1 if
and only if C = Encrypt(ek, label,M ; ρ).

Approximate SPHFs. Let us now define approximate SPHFs following [22].

Definition 2.13. Let (L̃lpar ⊆ Llpar,ltrap ⊆ Xlpar)lpar,ltrap be languages defined as
above. An approximate smooth projective hash function (SPHF) for these lan-
guages is defined by four probabilistic polynomial-time algorithms:

– HashKG(lpar) generates a hashing key hk for the language parameter lpar;
– ProjKG(hk, lpar, x ) derives a projection key hp from the hashing key hk, the

language parameter lpar, and the word x ;
– Hash(hk, lpar, x ) outputs a hash value H ∈ {0, 1}ν (for some positive integer

ν = Ω(n)) from the hashing key hk, for the word x ∈ Xlpar and the language
parameter lpar;

– ProjHash(hp, lpar, x ,w) outputs a projected hash value pH ∈ {0, 1}ν from
the projection key hp, and the witness w , for the word x ∈ L̃lpar (i.e.,
R̃lpar(x ,w) = 1) and the language parameter lpar;

which satisfy the following properties:

– Approximate correctness. For any n ∈ N, if (ltrap, lpar) ← Setup.lpar(1n),
with overwhelming probability over the randomness of Setup.lpar, for any x ∈
L̃lpar,ltrap (and associated witness w), the value H output by Hash(hk, lpar, x )
is approximately determined by ProjKG(hk, lpar, x ) relative to the Hamming
metric. More precisely, writing HW(a, b) the Hamming distance between two
strings a, b ∈ {0, 1}ν , the SPHF is ε-correct, if:

Pr
hk

[HW(Hash(hk, lpar, x ),ProjHash(hp, lpar, x ,w)) > ε · ν] = negl(n),

where the probability is taken over the choice of hk ← HashKG(lpar) and the
random coins of Hash and ProjHash.7

7 Contrary to previously known SPHFs, some of our SPHFs have randomized algo-
rithms Hash and ProjHash.
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– Smoothness. For any n ∈ N, if (ltrap, lpar) ← Setup.lpar(1n), with over-
whelming probability over the randomness of Setup.lpar, for all x ∈ X \ Llpar

the following distributions have statistical distance negligible in n:{
(lpar, x , hp,H)

∣∣∣∣ hk ← HashKG(lpar), H ← Hash(hk, lpar, x ),
hp = ProjKG(hk, lpar, x )

}
,

{
(lpar, x , hp,H)

∣∣∣∣ hk ← HashKG(lpar), H ← {0, 1}ν
,

hp = ProjKG(hk, lpar, x )

}
.

Finally, an approximate SPHF is called an SPHF if it is 0-correct. In that
case, we also say that the SPHF is statistically correct.

Approximate Word-Independent SPHFs. For some applications, in par-
ticular the one-round PAKE from [23], a stronger notion of SPHF is required,
where the projection key hp does not depend on the word x and the smoothness
holds even if the word is chosen adaptively after seeing the projection key. We
call such SPHFs approximate word-independent SPHFs and we formally define
them in the full version [6].

Approximate Universal Bit-PHFs. Instead of directly building (approxi-
mate) (word-independent) SPHF, we actually build what we call (approximate)
(word-independent) universal bit-PHF.

Definition 2.14. An approximate universal bit projective hash function (bit-
PHF) is defined as in Definition 2.13 except that the hash values are bits (ν = 1),
and that approximate correctness and smoothness are replaced by the following
properties:

– Approximate correctness. The bit-PHF is ε-correct if for any n ∈ N, if
(ltrap, lpar) ← Setup.lpar(1n), with overwhelming probability over the random-
ness of Setup.lpar, for any x ∈ L̃lpar,ltrap:

Pr
hk

[Hash(hk, lpar, x ) = ProjHash(hp, lpar, x ,w)] ≥ 1 − ε,

where the probability is taken over the choice of hk ← HashKG(lpar) and the
random coins of Hash and ProjHash.

– Universality.8 The bit-PHF is ε-universal if, for any n ∈ N, if
(ltrap, lpar) ← Setup.lpar(1n), with overwhelming probability over the random-
ness of Setup.lpar, for any word x ∈ X \ Llpar, any projection key hp:∣∣∣∣2 · Pr

hk
[Hash(hk, lpar, x ) = 1 | hp = ProjKG(hk, lpar, x )] − 1

∣∣∣∣ ≤ ε,

where the probability is taken over the choice of hk ← HashKG(lpar) and the
random coins of Hash. The bit-PHF is said to be statistically universal if it is
negl(n)-universal. Otherwise, the bit-PHF is said to be imperfectly universal.

8 Our definition of universality is equivalent to the one of Cramer and Shoup in [11],
up to the use of language parameters.
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An approximate bit-PHF is called a bit-PHF if it is negl(n)-correct. In that
case, the bit-PHF is said to be statistically correct. Furthermore, an (approx-
imate) bit-PHF is called an (approximate) (word-independent) bit-PHF, if hp
does not depend on the word x .

From Bit-PHFs to SPHFs. In the full version [6], we show how to generically
convert an approximate ε-correct negl(n)-universal bit-PHF into an approximate
(ε + ε′)-correct SPHF (for any positive constant ε′) and then into an SPHF.
This is used in our first construction in Sect. 3. These transformations were
implicit in [22]. We should point out that even if the original bit-PHF was
word-independent, the resulting (approximate) SPHF would still not be word-
independent: its projection key depends on the word x . If there was way to avoid
this restriction, we actually would get the first one-round key exchange based
on LWE with polynomial modulus.

In the full version [6], we also show how to generically convert an ε-universal
word-independent bit-PHF into a word-independent SPHF, by amplifying the
smoothness or universality property (assuming 1 − ε ≥ 1/poly(n)). We should
point out that the original word-independent bit-PHF is supposed to be statis-
tically correct, contrary to the previous transformation where it could just be
approximately correct.

We recall that the above transformations were summarized in Fig. 2 together
with our results.

3 SPHF for IND-CCA2 Ciphertexts

As we have shown in Sect. 2.3, there exists a generic transformation from approx-
imate bit-PHF to a regular approximate SPHF or even classical SPHF. So, in
this section, we are going to focus on building such an approximate bit-PHF. For
the sake of simplicity, in this section we often call such an approximate bit-PHF
simply a bit-PHF.

3.1 Languages and Natural Bit-PHF

Languages. We want to construct an (approximate) bit-PHF for the lan-
guage of ciphertexts (Example 2.12) for our IND-CCA2 LWE encryption à la
Micciancio-Peikert described in Sect. 2.2. More generally our approach works
with typical trapdoored LWE encryption schemes [9,14].

We first remark that it is sufficient to construct a bit-PHF for the tag-IND-
CCA2 version, i.e., for the following languages:

L̃ = {(u, c, μ) | ∃s,e, c ← Encrypt(A0, u, μ; s,e)}
⊆ {(u, c, μ) | d(c − Encode(μ), Λ(Au)) ≤ B},

L = {(u, c, μ) | Decrypt(T , u, c) = μ}
= {(u, c, μ) | d(c − Encode(μ), Λ(Au)) ≤ B′},



Hash Proof Systems over Lattices Revisited 659

where u ∈ U , c ∈ Z
m
q , μ ∈ {0, 1}, (ltrap, lpar) = (T ,A0) ← TrapGen(1n, 1m, q) =

Setup.lpar(1n), and where Encrypt,Decrypt, B, and B′ are defined in Sect. 2.2.
Indeed, the signature parts, used to transform the tag-IND-CCA2 encryption
scheme into a labeled IND-CCA2 encryption scheme (see the full version [6]),
can be publicly checked by anyone, therefore one can generically adapt the bit-
PHF by overriding Hash to a fresh uniform random value when the signature is
invalid.

We can now fix the tag u ∈ U for the rest of this section, and will simply
denote A for Au and Λ for Λ(Au). Also, note that (u, c, 1) ∈ L̃ (resp. L )
is equivalent to (u, c − Encode(1), 0) ∈ L̃ (resp L ). Therefore we can focus
only on the languages of ciphertexts of 0 for a fixed tag u, and we restrict our
languages to

L̃ = {c ∈ Z
m
q | ∃s,e, c ← Encrypt(A0, 0, u; s,e)} ⊆ {c ∈ Z

m
q | d(c, Λ) ≤ B},

L = {c ∈ Z
m
q | Decrypt(T , c, u) = 0} = {c ∈ Z

m
q | d(c, Λ) ≤ B′},

for the rest of this section.

Natural Bit-PHF. A natural approach to define an approximate bit-PHF is
the following:

– HashKG(A) outputs hk = h ← Dm
Z,s;

– ProjKG(h,A) outputs hp = p = Ath;
– Hash(h,A, c) outputs H = R(〈h, c〉);
– ProjHash(p,A, c, (s,e)) outputs pH = R(〈p, s〉);

where R is a rounding function to be chosen later and s > 0 is a parameter to
be chosen later too.

3.2 Universality

Naive Approach. For now let us just assume R : Zq → Z2 to be the usual
rounding function R(x) = 	2x/q
 mod 2, as in [22]. We have:

〈h, c〉 = ht(As + e) = 〈p, s〉 + 〈h,e〉 ≈ 〈p, s〉,

which guarantees correctness whenever c ∈ L̃ . Indeed 〈h, c〉 is almost uniform
for large enough parameter s, therefore R(〈h, c〉) = R(〈p, s〉) will hold except
with probability ≈2|〈h,e〉|/q.

For universality, we need to prove that Hash(h,A, c) = 〈h, c〉 is uniform
given the knowledge of A,p and c, when c �∈ L . Unfortunately, this seems to
require a stronger assumption than c �∈ L , more precisely, that j · c �∈ L for all
j ∈ Z

∗
q : this is the key lemma [14, Lemma 5.3] (from [22, Lemma 2]).

The caveat is that it is necessary not only for c to be far from Λ, but also for
all its non-zero multiples modulo q: the language is extended to L ′ = {c | ∃j ∈
Z

∗
q , jc ∈ L }. Algorithmically, the price to pay is that the decryption function
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must be changed, and that the usual LWE decryption now must be attempted
for each multiple jc of c to ensure universality for words outside L ′. This makes
the new decryption very inefficient since q is typically quite a large poly(n). This
change of language is also a technical hassle for constructing protocols above the
bit-PHF (or the resulting SPHF).

Note that the key lemma ensures uniformity of 〈h, c〉, while we only need the
uniformity of R(〈h, c〉). We show in the technical overview of the introduction
that this condition is truly necessary and is not an artifact of the proof, at least
for j = 3 by considering c = As+(0, . . . , 0, q/3)t (with q assumed to be divisible
by 3 for the sake of simplicity).

But what should happen in more general cases?

Harmonic Analysis. Let us fix p ∈ Z
n
q and c ∈ Z

m
q . For the rest of the section,

we restrict the rounding function R to have binary values {0, 1}, yet this function
may be probabilistic.

We want to study the conditional probability P = Pr[R(〈h, c〉) = 1 | htA =
pt], where the probability is taken over the randomness of R and the distribution
of h (conditioned on htA = pt); we want P to be not too far from 1/2 when
c �∈ L . For x ∈ Z, denote by r(x) the probability that R(x mod q) = 1. Because
r : Z → [0, 1] is q-periodic, it can be interpolated over the reals by a function of
the form:

r =
∑
j∈Zq

r̂j · ej/q,

where the complex values r̂j ∈ C are the Fourier coefficients of r : Z → [0, 1]. Note
that as we are only interested in the restriction of r on Z (which is q-periodic),
we only need q harmonics to fully describe r. Also note that r(x) ∈ [0, 1] for all
x ∈ Zq, so that |r̂j | ≤ 1 for all j.

We rewrite:

P =
∑

h∈Λ⊥
p

ρs(h)
ρs(Λ⊥

p )
· r(〈h, c〉) =

1
ρs(Λ⊥

p )

∑
j∈Zq

r̂j

∑
h∈Λ⊥

(ρs · ejc/q)(h + h0),

where h0 is any vector of the coset Λ⊥
p . We will now apply the Poisson Summa-

tion Formula (Lemma 2.6): f(Λ⊥) = det((Λ⊥)∗)f̂((Λ⊥)∗) = det(1q Λ)f̂( 1q Λ). Set
f(h) = (ρs · ejc/q)(h + h0). We have:

f̂ = ρ̂s · ev · eh0 = smρ1/s,v · eh0 .

We proceed:

P =
det((Λ⊥)∗)sm

ρs(Λ⊥
p )

∑
j∈Zq

r̂j · (ρ1/s,jc/q · eh0)
(

1
q
Λ

)

P =
det((Λ⊥)∗)sm

ρs(Λ⊥
p )

∑
j∈Zq

r̂j ·
∑
y∈Λ

(ρq/s,jc · eh0/q) (y) .
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Assuming s ≥ ηε(Λ⊥) for some negligible ε ensures that det((Λ⊥)
∗
)sm

ρs(Λ⊥
p )

= 1 +
O(ε) by Lemma 2.3. We shall split the sum into three parts:

– j = 0,y = 0, contributing exactly r̂0 (where r̂0 = 1
q

∑
x∈Zq

r(x) ∈ [0, 1]),
– j = 0,y �= 0, contributing at most |r̂0|ρq/s(Λ \ {0}) in absolute value,
– j �= 0, contributing at most |r̂j |ρq/s(Λ − jc) in absolute value for each j.

We can now bound P :∣∣∣∣ P

1 − O(ε)
− r̂0

∣∣∣∣ ≤ |r̂0|ρq/s(Λ \ {0}) +
∑

j∈Zq\{0}
|r̂j |ρq/s(Λ − jc).

We now want to bound the right-hand side using Lemma2.1, with c = 1
for simplicity. Fix j ∈ Zq \ {0}, and let α = q

√
m/s. If α < d(jc, Λ), then

(Λ − jc) \ αB = (Λ − jc). Also, note that ρq/s(Λ) = ρ1/s( 1q Λ) = ρ1/s((Λ⊥)∗). So,
as long as s ≥ ηε(Λ⊥) for some negligible ε (which we already assumed earlier),
it holds that ρq/s(Λ) ≤ 1 + ε by definition of ηε(Λ⊥). Under those conditions,
ρq/s(Λ − jc) = ρq/s((Λ − jc) \ αB) ≤ 2Cmρq/s(Λ) ≤ 2Cm(1 + ε) is negligible.
Using Lemma 2.1, we deduce the following:

Theorem 3.1. Fix A ∈ Z
m×n
q , c ∈ Z

m
q , and p ∈ Z

n
q , where m is polynomial in

n. Fix a probabilistic rounding function R : Zq → {0, 1} such that for all x ∈ Zq,

Pr[R(x) = 1] = r(x) =
∑
j∈J

r̂jej/q(x),

where J ⊆ Zq and r̂j ∈ C. Let s ≥ ηε(Λ⊥(A)) for some ε = negl(n). Assume
furthermore that

∀j ∈ J \ {0}, s · d(jc, Λ(A)) > q
√

m.

Denote P (c) = Pr[R(〈h, c〉) = 1 | htA = pt], where the probability is taken
over the randomness of R, and the distribution of h ← Dm

Z,s, conditioned on
htA = pt. Then:

|P (c) − r̂0| ≤ (2 + O(ε)) |J |Cm + O(ε) where C =
√

2πe · e−π < 1.

Setting up the Rounding Function. If one wishes to avoid having to attempt
decryption of many multiples of the ciphertext c, one should choose a probabilis-
tic rounding function with a small number of harmonics.

In particular, the typical deterministic rounding function R(x) = 	2x/q
 mod
2—the so-called square-signal—and has harmonic coefficients r̂j decreasing as
Θ(1/j) in absolute value (for odd j ∈ {�−q/2
, . . . , 	q/2�}). With such a round-
ing function, one would still need to attempt trapdoor inversion for q/2 many
multiples of c, as it was already the case in [22].

On the contrary, one may easily avoid costly harmonics by setting the round-
ing function so that 2r(x) = 1 + cos(2πx/q), which has Fourier coefficients
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r̂0 = 1/2, r̂1 = r̂−1 = 1/4, and r̂j = 0 for any other j.9 More precisely, we have
the following corollary by remarking that when c /∈ L and α = q

√
m/s < B′,

we have d(c, Λ) ≥ B′ and (Λ − c) \ (αB) = (Λ − c).

Corollary 3.2. Let A ∈ Z
m×n
q with m = Θ(n log q), and fix p ∈ Z

n
q . Let B′ =

q/Θ(
√

m), and L = {c ∈ Z
m
q | d(c, Λ(A)) ≤ B′}. Suppose that R satisfies:

Pr[R(x) = 1] = r(x) =
1
2

+
1
2

cos
(

2πx

q

)
, (1)

and let s ≥ ηε(Λ⊥(A)) for some ε = negl(n). Suppose also that: s > q
√

m
B′ .

Denote again P (c) = Pr[R(〈h, c〉) = 1 | htA = pt], where the probability is
taken over the randomness of R, and the distribution of h ← Dm

Z,s, conditioned
on htA = pt. Then, for all c �∈ L :

|2P (c) − 1| ≤ 2 (6 + O(ε))Cm + O(ε) ≤ negl(n),

where C =
√

2πe · e−π < 1.

3.3 Approximate Correctness

Let us check that the scheme above achieves approximate correctness, that is,
for all c ∈ L̃ ,Hash(h,A, c) = ProjHash(p,A, c, (s,e)) with probability substan-
tially greater than 1/2. Using our rounding function R, this means that we want
R(〈h, c〉) and R(〈p, s〉) to output the same bit with some probability Q sub-
stantially greater than 1/2, where the two applications of R use independent
coins.

Recall that r(x) is the probability that the rounding function R outputs 1
on input x, and that for c ∈ L̃ , we can write 〈h, c〉 = 〈p, s〉 + 〈h,e〉, where
c = As + e. We argue that as long as 〈h,e〉 is small with respect to q, then our
scheme achieves approximate correctness:

Lemma 3.3. Fix A ∈ Z
m×n
q and c = As + e ∈ L̃ , where m and q are polyno-

mial in n, and where ‖e‖ ≤ B = 2t
√

m. Let s ≥ ηε(Λ⊥(A)) for some ε = negl(n).
Assume that R is the cosine rounding function (Eq. (1)). Let Q be the probability
that R(〈Ath, s〉; coins1) and R(〈h, c〉; coins2) output the same bit, over the ran-
domness of h ← Dm

Z,s, and the randomness of the two independent coins coins1
and coins2 used by R. If tsm = o(q), then Q = 3/4 + o(1).

Proof. As s ≥ ηε(Λ⊥) for ε = negl(n), the distribution of htA, when h ← Dm
Z,s,

is at negligible statistical distance from uniform.
Therefore, Q is negligibly close to Pr[R(x; coins1) = R(x + 〈h,e〉; coins2)]

where the probability is taken over uniform x ∈ Zq, h ← Dm
Z,s, and the random-

ness of the two independent coins coins1 and coins2 used by R.
9 Of course, one could also obtain perfect universality by setting a constant rounding

function r(x) = 1/2, and even avoid the first harmonic, but there is no way to reach
correctness even with amplification in that case.
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Then:

Q =
1
q

∑
x∈Zq

(r(x)r(x + 〈h,e〉) + (1 − r(x))(1 − r(x + 〈h,e〉))) + negl(n)

=
1
2

+
1
q

∑
x∈Zq

1
2

cos
(

2π
x

q

)
cos

(
2π

x + 〈h,e〉
q

)
+ negl(n).

As tsm = o(q), we have 〈h,e〉 = o(q) with overwhelming probability. As cos
is a Lipschitz continuous function, we can approximate the sum by an integral:
Q = 1

2 + 1
2

∫ 1

0
cos2(2πx)dx + o(1) = 3

4 + o(1). ��

3.4 Wrap-Up

Consider the bit-PHF described in Sect. 3.1 instantiating R with the cosine
rounding function (Eq. (1)), together with the encryption scheme of Sect. 2.2.
Let us now show that all the parameters can be instantiated to satisfy secu-
rity and correctness of the encryption scheme, simultaneously with statistical
universality and approximate correctness of the bit-PHF.

IND-CCA2. To base the security of the scheme described in Sect. 2.2 on LWEχ,q

for χ = DZ,σ and σ = 2
√

n,10 we apply Theorem 2.9 with m = Θ(n log q) and
t =

√
mn · ω(

√
log n).

Decryption Correctness. For the encryption scheme to be correct, we want
B < B′, recalling that B := 2t

√
m and B′ := q/Θ(

√
m).

Universality. In Corollary 3.2, we used the hypothesis s ≥ ηε(Λ⊥(Au)) for some
negligible ε. Assuming s ≥ Θ(

√
n), one can apply Lemma 2.11, to ensure the

above hypothesis for ε = 2−n simultaneously for all u ∈ U except with probability
2−n over the randomness of TrapGen.

Still in Corollary 3.2, we also needed s > q
√

m/B′, where B′ = q/Θ(
√

m).
This holds for s = Θ(m).

Approximate correctness. For Lemma 3.3, we assumed that tsm = o(q). Equiva-
lently, it is sufficient that sm3/2n1/2ω(

√
log n) = o(q).

Summary. Therefore, all the desired conditions can be satisfied with q = Θ̃(n3),
m = Θ̃(n), s = Θ̃(n), and t = Θ̃(n). We have proved the following:

Theorem 3.4. Set parameters q = Θ̃(n3),m = Θ̃(n), s = Θ̃(n), t = Θ̃(n).
Define a probabilistic rounding function R : Zq → {0, 1} such that Pr[R(x) =
1] = 1/2+cos (2πx/q) /2. Then, (i) the encryption scheme of Sect. 2.2 is correct
and tag-IND-CCA2 under the hardness of LWEχ,q for χ = DZ,2

√
n; and (ii) the

bit-PHF described in Sect. 3.1 achieves statistical universality and (1/4 − o(1))-
correctness.
10 This is the smallest parameter σ for which LWEχ,q is known reduce to a worst-case

problem. One may of course choose to use a different width for the LWE error, and
derive different appropriate parameters.
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4 Word-Independent SPHF for IND-CPA Ciphertexts

4.1 Overview

In the previous section, we built a bit-PHF with negl(n)-universality but approx-
imate correctness. Even though correctness can be amplified, the transformation
inherently makes the new projection key depend on the word we want to hash,
even if that was not the case for the initial bit-PHF.

We now build a bit-PHF with statistical correctness and K-universality for
some universal constant K < 1 (but using a super-polynomial LWE modulus q).
The main benefit of such a construction is that amplifying universality can be
done regardless of the word we want to hash, that is, the projection key will not
depend on the word. When the tag u of the ciphertext c is known in advance or is
constant (in which case, the encryption scheme is only IND-CPA instead of IND-
CCA2), we therefore get a word-independent bit-PHF which can be transformed
into a word-independent SPHF. This is the first word-independent SPHF for any
lattice-based language.

We use the same natural approach as described in Sect. 3.1. The only differ-
ences with the construction in the previous section are the probabilistic rounding
function we use, and the parameters necessary to argue correctness and univer-
sality. Recall that in the last section, we used a rounding function with only low
order harmonics to get negl(n)-universality.

The starting point is the observation that, for the naive square rounding
introduced in the previous section, the correctness is statistical, but clearly not
negl(n)-universal, depending on which word c is hashed (as seen in the two case
studies in the technical overview in the introduction, where j · c is close to Λ for
some j ∈ Z

∗
q). However, the distribution of R(〈h, c〉) conditioned on htA might

still have enough entropy to give us K-universality, for some constant K < 1. In
other words, we can hope that |2 · Pr[R(〈h, c〉) = 1 | p] − 1| ≤ K for all c ∈ Z

m
q .

Let R� be a rounding function defined by: R�(x) = 1 + 	2x/q
 mod 2, that
is:

∀x ∈ [−q/2, q/2], R�(x) =

{
1 if x ∈ [−q/4, q/4),
0 otherwise.

Using this rounding function gives good correctness: when s ≥ ηε(Λ⊥), 〈h, c〉
is statistically close to uniform in [−q/2, q/2], and therefore R�(〈h, c〉) is a uni-
form bit up to some statistical distance O(ε+1/q) (due to the fact that q is odd).
So for super-polynomial q, we get statistical correctness using R� as rounding
function, as long as 〈h,e〉 is sufficiently small with respect to q.

For universality, we express the probability distribution defined by R�, seen
as a q-periodic function over R, as a Fourier series:

∀x ∈ [−q/2, q/2], r�(x) := Pr[R�(x) = 1] =
∑
j∈Z

r̂�
j · ej/q(x),

where r̂�
j are the Fourier coefficients of the q-periodic function r� : R → R.
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However, one can show that |r̂�
j | = Θ(1/j) (for odd integers j). Therefore, it

is not clear how to show universality with a similar analysis as in Sect. 3.2: the
total contribution of harmonics j such that j · c is close to Λ could potentially
be arbitrarily large!

To solve this issue, we consider a new rounding function R, which has the
same probability distribution as R� but on a negligible fraction of integer points
(so that statistical correctness is preserved), and such that its Fourier coefficients
of high enough order have small enough amplitude.

Then, we use the observation that the set of integers j such that j · c is in Λ
is an ideal of Z, which is proper if c itself is not in Λ. More generally, the set of
small integers j ∈ Z such that j · c is close to Λ is contained in an ideal of Z;
furthermore, if c is far from Λ, then the smallest such ideal is a proper ideal of Z.
This will allow us to discard all harmonics whose order is not in this ideal. As
we will show, the remaining harmonics necessarily have destructive interferences,
which allows us to establish K-universality for some constant K < 1.

The roadmap follows. First, in Sect. 4.2, we smooth the discontinuities of the
probability distribution of the square rounding function r� so that the Fourier
coefficients of high order have small magnitude, but such that we keep statistical
correctness. Then to prove universality, in Sect. 4.3, we show that for c far from
Λ, the set of small j ∈ Z such that j ·c is close to Λ is contained in a proper ideal
of Z. Finally, in Sect. 4.4 we show that the distribution of R(〈h, c〉) conditioned
on htA has some bounded min entropy.

4.2 Smoothing the Discontinuities: A New Rounding Function

In the following, unless specified otherwise, we will see Zq as embedded in
{�−q/2
, . . . , 	q/2�}, and the canonical period we use for q-periodic functions
will be [−q/2, q/2]. Recall that r� satisfies:

∀x ∈ [−q/2, q/2], r�(x) =

{
1 if |x| ∈ [−q/4, q/4),
0 otherwise.

In particular, r� has two discontinuities on q/4 and on −q/4. To smooth those
discontinuities, we consider the convolution product of the square signal r� with
a rectangular signal of appropriate width T such that T/q = negl(n). More
precisely, consider the q-periodic function r� defined on [−q/2, q/2] by:

∀x ∈ [−q/2, q/2], r�(x) =

{
1
2T if |x| ≤ T,

0 otherwise.

We define a new rounding function R such that for all x ∈ R (see Fig. 1):

Pr[R(x) = 1] := r(x) := (r� � r�)(x) :=
∫ q/2

−q/2

r�(u) · r�(x − u) du,

where, in this context, � corresponds to the convolution of q-periodic functions.
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Intuitively, this corresponds to replace the discontinuities on r�(±q/4) by
a linear slope ranging from ±q/4 − T to ±q/4 + T (see Fig. 1). Therefore, over
[−q/2, q/2], the functions r and r� only differ on at most 4�T 
 integer points (the
points on the slope). Recall that if s ≥ ηε(Λ⊥) for some negligible ε, then 〈h, c〉
is statistically close to uniform in {�−q/2
, . . . , 	q/2�}. Therefore, if 〈h,e〉/q and
T/q are negligible, then:

Pr[R(〈h, c〉) �= R(〈p, s〉)] ≤ negl(n),

and we get statistical correctness using such a rounding function.

Lemma 4.1 (Correctness). Suppose that s ≥ ηε(Λ⊥) for some ε = negl(n),
tsm/q = negl(n), and T/q = negl(n). Assume that R satisfies: Pr[R(x) = 1] =
r(x) = (r� � r�)(x). Then the approximate bit-PHF defined in Sect. 3.1 achieves
statistical correctness.

Furthermore, r is q-periodic, and can therefore be expressed as a Fourier
series:

∀x ∈ [−q/2, q/2], r(x) =
∑
j∈Z

r̂jej/q(x),

with Fourier coefficients r̂j . As r = r� � r�, we have r̂j = q · r̂�
j · r̂�

j for j ∈ Z,
where r̂�

j and r̂�
j are the Fourier coefficients of the q-periodic functions r� and r�

respectively. Thus, r̂0 = 1/2, and for j ∈ Z \ {0}, the jth harmonic of r is:

r̂j =
q

2π2Tj2
· sin(πj/2) · sin(2πTj/q) ≤ q

19Tj2
. (2)

4.3 Inclusion of Contributing Harmonics in a Proper Ideal

In the following, we focus on showing that even though we do not have negl(n)-
universality using this new rounding function, we still have some K-universality
for some constant K < 1 (that we can amplify).

We start by a simple useful lemma:

Lemma 4.2. Let N = kq/T for some k. Then
∑

j∈Z, |j|>N |r̂j | ≤ 1/k.

Proof. It follows from Eq. (2) and the fact that for all N > 2:
∑+∞

k=N
1
k2 ≤∑+∞

k=N

(
1

k−1 − 1
k

)
= 1

N−1 . ��

Suppose now that d(c, Λ) ≥ B′. Consider the set of j ∈ Z such that
d(j · c, Λ) ≤ δ for some appropriately chosen δ. Let P = P (c) = Pr[R(〈h, c〉) =
1 | htA = pt], for our new rounding function R. For any h0 ∈ Λ⊥

p , we can show
similarly to Sect. 3.2, that:

P =
det((Λ⊥)∗)sm

ρs(Λ⊥
p )

∑
j∈Z

r̂j

∑
y∈Λ

(ρq/s,jc · eh0/q)(y), (3)
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where det((Λ⊥)
∗
)sm

ρs(Λ⊥
p )

= (1 + O(ε)) as long as s ≥ ηε(Λ⊥). Note that
∑

|j|≥N |r̂j |
can be made arbitrarily small for appropriate N , by Lemma 4.2. Thus only the
terms of the sum corresponding to |j| ≤ N will have a substantial contribution
to the sum above (recall that ρq/s(Λ − jc) ≤ 1 + ε for all c, for appropriate
parameters). Therefore we only consider those small j such that |j| < N for some
appropriately chosen N (with respect to q). Furthermore, for large enough δ, the
terms corresponding to indices j such that d(j · c, Λ) > δ also have a negligible
contribution to the sum by Lemma2.1. For appropriate parameters N and δ to
be instantiated later, let:

J = {j ∈ Z | |j| < N ∧ d(j · c, Λ) ≤ δ}. (4)

As a subset of Z, J is contained in the ideal j0Z of Z, where j0 = gcd(J).
Let us show that it is a proper ideal of Z, i.e., j0 �= 1. To do so, we rely on the
existence of small Bézout coefficients.

Lemma 4.3 (Corollary of [26, Theorem 9]). Let a1, . . . , ak ∈ Z, and let
g = gcd(a1, . . . , ak). Then there exists u1, . . . , uk ∈ Z such that the following
conditions hold:

k∑
i=1

uiai = g,
k∑

i=1

|ui| ≤ k

2
max |ai|.

We can now prove that J is a proper ideal of Z:

Lemma 4.4. Suppose that δN2 < B′. Then, for c ∈ Z
m
q such that d(c, Λ) > B′,

the set J = {j ∈ Z | |j| < N ∧ d(j · c, Λ) ≤ δ} is contained in a proper ideal of Z.

Proof. Let j0 = gcd(J). By definition, J ⊆ j0Z. Suppose by contradiction that
j0 = 1. By Lemma 4.3, there exists a set of integers {uj , j ∈ J} such that∑

j∈J uj ·j = 1 and then
∑

j∈J uj ·(j ·c) = c. But by definition of J, d(j ·c, Λ) ≤ δ
for all j ∈ J , and therefore:

d(c, Λ) ≤ δ ·
∑
j∈J

|uj | ≤ δ · |J |
2

max
j∈J

|j| ≤ δN2 < B′,

which is absurd as we assumed d(c, Λ) > B′. ��

4.4 Imperfect Universality from Destructive Interferences

We now want to quantify how biased R(〈h, c〉) conditioned on htA can be when
c is far from Λ. We start from Eq. (3):

P =
det((Λ⊥)∗)sm

ρs(Λ⊥
p )

∑
j∈Z

r̂j

∑
y∈Λ

(ρq/s,jc · eh0/q)(y),

where det((Λ⊥)
∗
)sm

ρs(Λ⊥
p )

= 1 + O(ε) as long as s ≥ ηε(Λ⊥).
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We split the sum into three parts P = P1 + P2 + P3:

P1. |j| > N ∧ j �∈ j0Z: those indices have a negligible contribution to the sum
by Lemma 4.2.

P2. |j| ≤ N ∧ j �∈ j0Z: those indices contribute negligibly since ρq/s(Λ − jc) is
small as jc is far from Λ (by definition of δ and J ⊂ j0Z).

P3. j ∈ j0Z: the contributing terms. Unlike the previous ones we won’t use
absolute bounds for each term, and must consider destructive interferences.

It remains to study P3, for which a similar computation as in Sect. 3.2 gives:

P3 =
det((Λ⊥)∗)sm

ρs(Λ⊥
p )

∑
j∈j0Z

r̂j

∑
y∈Λ

(ρq/s,jc · eh0/q)(y)

=
∑

h∈Λ⊥
p

ρs(h)
ρs(Λ⊥

p )

∑
j∈j0Z

r̂jej/q(〈h, c〉).

If we were to have j0 = 1 (i.e. j0Z = Z), we could compute the inner sum
simply by inverse Fourier transform, evaluating r at x = 〈h, c〉. Instead, we note
that selecting only the harmonics in j0Z, corresponds in the temporal domain to
averaging the function r over all its temporal shifts by multiples of q/j0. More
formally, recall the identity:

j0−1∑
k=0

ej/j0(k) =

{
j0 if j ∈ j0Z

0 otherwise.

We may now rewrite:

∑
j∈j0Z

r̂jej/q(x) =
1
j0

∑
j∈Z

r̂jej/q(x)
j0−1∑
k=0

ej/j0(k) =
1
j0

j0−1∑
k=0

r(x + k
q

j0
),

Note that 1
j0

∑j0−1
k=0 r�(x + k q

j0
) is not too far away from 1/2: if j0 is even,

this is exactly 1/2 (for all x), and if j0 = 2k + 1, this is either k/j0 or (k + 1)/j0
(depending on x), which is at distance 1/(2j0) ≤ 1/6 from 1/2 (recall that j0 > 1
by Lemma 4.4). Furthermore, we have:

∀x ∈ [−q/2, q/2], r(x) =
1

2T

∫ T

−T

r�(x + u)du,

which gives, for all x ∈ [−q/2, q/2]:
∣∣∣∣∣
1
j0

j0−1∑
k=0

r(x + k
q

j0
) − 1

2

∣∣∣∣∣ ≤ 1
2T

∫ T

−T

∣∣∣∣∣
1
j0

j0−1∑
k=0

r�(x + u + k
q

j0
) − 1

2

∣∣∣∣∣ du ≤ 1/6.

Therefore, P3 is also not too far from 1/2 as a convex combination of values not
too far from 1/2. More precisely we have |P3 − 1/2| ≤ 1/6.

Putting everything together, we can quantify the distance from P to 1/2:
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Theorem 4.5 (Universality). Let A ∈ Z
m×n
q with m = Θ(n log q), and fix

p ∈ Z
n
q . Let B′ = q/Θ(

√
m), and L = {c ∈ Z

m
q | d(c, Λ(A)) ≤ B′}. Let R be as

defined in Sect. 4.2 and let s ≥ ηε(Λ⊥(A)) for some ε = negl(n). Suppose also
that parameters T,N, δ, and k satisfy δ > q

√
m

s , N = kq
T , and δN2 < B′.

Denote again P (c) = Pr[R(〈h, c〉) = 1 | htA = pt], where the probability is
taken over the randomness of R, and the distribution of h ← Dm

Z,s, conditioned
on htA = pt. Then, for all c �∈ L :

|P (c) − 1/2| ≤ 1
6

+ (1 + O(ε))
(

1
k

+ 4NCm

)
,

where C =
√

2πe · e−π < 1.

Remark 4.6. Informally, this theorem states that the second case study of the
technical overview of the introduction is essentially the worst case.

Proof. Writing P = P1 + P2 + P3 as above, we showed that |P3 − 1/2| ≤ 1/6.
Moreover, as s ≥ ηε(Λ⊥(A)), we have:

det((Λ⊥)∗)sm

ρs(Λ⊥
p )

= 1 + O(ε),

and, for any j ∈ Z and c, we also have:
∣∣∣∣∣∣
∑
y∈Λ

(ρq/s,jc · eh0/q)(y)

∣∣∣∣∣∣ ≤ ρq/s(Λ − jc) ≤ 1 + ε.

Therefore, by Lemma 4.2, and as ε = negl(n), we have:

|P1| ≤ (1 + O(ε))(1 + ε)
∑

|j|>N

|r̂j | ≤ 1 + O(ε)
k

.

Furthermore, as δ > q
√

m
s , and |r̂j | ≤ 1 for all j, Lemma 2.1 gives us that

|P2| ≤ 4NCm(1 + O(ε)), which concludes the proof. ��

4.5 Wrap-Up

Let us now show that all the parameters can be instantiated to get approximate
smoothness and correctness for the SPHF, using a rounding function R defined
by Pr[R(x) = 1] = r� � r�(x).

IND-CPA. To apply Theorem 2.9 with Remark 2.10, we can use the fact that
m = Θ(n log q) and t =

√
mn · ω(

√
log n).

Decryption Correctness. For the encryption scheme to be correct, we want
B < B′, with B = 2t

√
m and B′ = q/Θ(

√
m).
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Correctness. For correctness of the bit-PHF, we need a super-polynomial mod-
ulus q, and require T/q to be negligible. Furthermore, we need tsm/q to be
negligible, so that 〈h,e〉 can only take a negligible fraction of values in Zq. Also,
we need s ≥ ηε(Λ⊥(Au)), which is satisfied with high probability by Lemma2.11
for ε = 2−n as long as s ≥ Θ(

√
n).

Bounding the amplitude of high frequencies. The parameter N which upper
bounds the elements of J must be taken so that

∑
|j|≥N |r̂j | is small. By

Lemma 4.2, by taking N = kq/T , this sum is ≤ 1/k.

Threshold distance to Λ defining J . The parameter δ, which denotes how close j ·c
is close to Λ for j ∈ J (Eq. (4)) has to be chosen so that N · ρq/s(Λ−v) must be
small whenever d(v, Λ) ≥ δ. As in the analysis for the cosine rounding function,
setting δ = q

√
m/s implies that ρq/s(Λ − v) ≤ 2Cm(1 + O(ε)) by Lemma 2.1.

Showing that j0 �= 1. We also required δN2 < B′ to conclude that J was included
in a proper ideal of Z. As we have δN2 = Θ

(
q3k

√
m

sT 2

)
, this holds as long as

s ≥ Ω(mk2q2

T 2 ).
Putting everything together, we get the following theorem:

Theorem 4.7. Suppose q = O(2n) is superpolynomial in n,m = Θ(n log q). Set
parameters: (i) T such that T/q and q/T 2 are both negligible in n (using T = q2/3

for instance), (ii) k = Θ(n), and (iii) s ≥ Θ(
√

n) such that s/q = negl(n) and
s = Ω(mk2q2

T 2 ), which exists by construction of T . Define a probabilistic rounding
function R : Zq → {0, 1} such that Pr[R(x) = 1] = r� � r�(x). Then the bit-PHF
described in Sect. 3.1 achieves (1/3+o(1))-universality and statistical correctness.

Proof. The theorem follows from the discussion above and Theorem 4.5 using:
(i) N = kq/T (in which case NCm is negligible in n), and (ii) δ = q

√
m

s . ��

5 Applications

In this section, we present several applications of our new construction. It under-
lines the importance of revisiting this primitive.

5.1 Password-Authenticated Key Exchange

3-Round PAKE. Gennaro and Lindell proposed in [13] a generic framework
for building 3-round PAKE protocols based on an IND-CCA2 encryption scheme
and an associated SPHF. Later in [22], Katz and Vaikuntanathan refined it to
be compatible with approximate SPHF over a CCA2-secure encryption scheme.

We can instantiate the construction in [22] using the encryption scheme à la
Micciancio-Peikert in Sect. 2.2 together with an approximate SPHF generically
derived from the approximate bit-PHF constructed in Sect. 3. This allows us to
achieve a PAKE protocol in three flows, with a polynomial modulus.
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Moving to a 2-Round PAKE. An interesting optimization in cryptography
is to reduce the number of rounds, so that each user only has to speak once. Is
it possible to achieve a PAKE, where each user sends simply one flow?

In [1], the authors revisited the Groce-Katz framework [17]. Their construc-
tion (called GK-PAKE) uses a pseudo-random generator, an IND-CPA encryp-
tion scheme, with a simple regular SPHF on one hand, and an IND-PCA (Indis-
tinguishable against Plaintext-Checkable Attacks) encryption on the other.

Every IND-CCA2 encryption being also IND-PCA, we can trivially meet the
requirements and achieve the expected 2-rounds efficiency, using our SPHF from
Sect. 3.11 Contrary to the construction of Zhang and Yu [30], we do not need a
simulation-sound non-interactive proof (SS-NIZK), which we do not know how
to construct from lattice assumptions in the standard model.

Achieving a 1-Round PAKE. Actually, if we allow ourselves to use SS-NIZK,
we can construct a 1-round PAKE by combining our word-independent SPHF
with the ideas in [23], which solves an open problem in [30]. Concretely, we use
the first instantiation of [23], except that the ElGamal encryption scheme and its
associated SPHF are replaced by our IND-CPA LWE-based encryption scheme
à la Micciancio-Peikert and the word-independent SPHF is the one from Sect. 4.
The SS-NIZK can be a simple variant of the one in [30]. Details are provided in
the full version [6].

5.2 Honest-Verifier Zero-Knowledge

Following the methodology from [7], using our SPHF in Sect. 3, we can construct
honest-verifier zero-knowledge proofs for any NP language of the form L̈ = {ẍ |
∃ẅ , R̈(ẍ , ẅ)} where R̈ is a polynomial-size circuit. At a very high level, the
prover simply encrypts each wire of the circuit using an IND-CPA encryption
scheme12 and then shows the correct evaluation at each gate, using SPHFs.

For the sake of simplicity, we suppose that all gates of the circuit R̈ are
NAND gates. We just need to construct an SPHF for the languages L̃ ⊆ L of
ciphertexts C1, C2, C3 encrypting values (b1, b2, b3) so that b3 = NAND(b1, b2),
such that L̃ is the set of encryptions of bi that fits the NAND gate evaluation,
while L is the set of ciphertexts whose decryptions fit the gate evaluation. We
can do that by combining our SPHFs using the classical techniques described
in [2]. Details are provided in the full version [6].

5.3 Witness Encryption

Witness encryption [12] allows to encrypt a message, with respect to a particular
word x and a language L , instead of using a classical public key. If the word
11 In this application, as in our 3-round PAKE from [22], the gap between correctness

and smoothness is not an issue: the proof of the resulting 2-round PAKE works
exactly as in [1].

12 We actually will use our IND-CCA2 encryption scheme à la Micciancio-Peikert.
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is in the language, then a user knowing a witness for the word can decrypt the
ciphertext, otherwise the ciphertext hides the message.

An SPHF can be used to construct such a primitive as follows: To encrypt a
message M with respect to a word x and a language L , use an SPHF for L to
generate a hashing key hk, a projection key hp, and a hash value H, and output
the ciphertext C = (hp,H ⊕ M). To decrypt such a ciphertext, simply use the
witness w associated with the word x together with the projection key hp to
compute the projected hash value and recover M . Details are available in the
full version [6].

Acknowledgments. We would like to sincerely thank Zvika Brakerski for many useful
and interesting discussions.
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Abstract. Constrained pseudorandom functions allow for delegating
“constrained” secret keys that let one compute the function at certain
authorized inputs—as specified by a constraining predicate—while keep-
ing the function value at unauthorized inputs pseudorandom. In the
constraint-hiding variant, the constrained key hides the predicate. On
top of this, programmable variants allow the delegator to explicitly set
the output values yielded by the delegated key for a particular set of
unauthorized inputs.

Recent years have seen rapid progress on applications and construc-
tions of these objects for progressively richer constraint classes, result-
ing most recently in constraint-hiding constrained PRFs for arbitrary
polynomial-time constraints from Learning With Errors (LWE) [Braker-
ski, Tsabary, Vaikuntanathan, and Wee, TCC’17], and privately pro-
grammable PRFs from indistinguishability obfuscation (iO) [Boneh,
Lewi, and Wu, PKC’17].

In this work we give a unified approach for constructing both of the
above kinds of PRFs from LWE with subexponential exp(nε) approxi-
mation factors. Our constructions follow straightforwardly from a new
notion we call a shift-hiding shiftable function, which allows for deriving
a key for the sum of the original function and any desired hidden shift
function. In particular, we obtain the first privately programmable PRFs
from non-iO assumptions.

1 Introduction

Since the introduction of pseudorandom functions (PRFs) more than thirty years
ago by Goldreich et al. [19], many variants of this fundamental primitive have
been proposed. For example, constrained PRFs (also known as delegatable or
functional PRFs) [9,11,22] allow issuing “constrained” keys which can be used
to evaluate the PRF on an “authorized” subset of the domain, while preserving
the pseudorandomness of the PRF values on the remaining unauthorized inputs.

Assuming the existence of one-way functions, constrained PRFs were first
constructed for the class of prefix-fixing constraints, i.e., the constrained
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key allows evaluating the PRF on inputs which start with a specified bit
string [9,11,22]. Subsequently, by building on a sequence of works [2,3,7] that
gave PRFs from the Learning With Errors (LWE) problem [28], Brakerski and
Vaikuntanathan [14] constructed constrained PRFs where the set of authorized
inputs can be specified by an arbitrary polynomial-time predicate, although for
a weaker security notion that allows the attacker to obtain only a single con-
strained key and function value.

In the original notion of constrained PRF, the constrained key may reveal
the constraint itself. Boneh et al. [8] proposed a stronger variant in which the
constraint is hidden, calling them privately constrained PRFs—also known as
constraint-hiding constrained PRFs (CHC-PRFs)—and gave several compelling
applications, like searchable symmetric encryption, watermarking PRFs, and
function secret sharing [10]. They also constructed CHC-PRFs for arbitrary
polynomial-time constraining functions under the strong assumption that indis-
tinguishability obfuscation (iO) exists [4,17]. Soon after, CHC-PRFs for various
constraint classes were constructed from more standard LWE assumptions:

– Boneh et al. [6] constructed them for the class of point-function constraints
(i.e., all but one input is authorized).

– Thorough a different approach, Canetti and Chen [15] constructed them for
constraints in NC1, i.e., polynomial-size formulas.

– Most recently, Brakerski et al. [13] improved on the construction from [6] to
support arbitrary polynomial-size constraints.

All these constructions have a somewhat weaker security guarantee compared
to the iO-based construction of [8], namely, the adversary gets just one con-
strained key (but an unbounded number of function values), whereas in [8] it
can get unboundedly many constrained keys. Indeed, this restriction reflects a
fundamental barrier: CHC-PRFs that are secure for even two constrained keys
(for arbitrary constraining functions) imply iO [15].

Boneh et al. [8] also defined and constructed what they call privately pro-
grammable PRFs (PP-PRFs), which are CHC-PRFs for the class of point func-
tions along with an additional programmability property: when deriving a con-
strained key, one can specify the outputs the key yields at the unauthorized
points. They showed how to use PP-PRFs to build watermarking PRFs, a
notion defined in [16]. While the PP-PRF and resulting watermarking PRF
from [8] were based on indistinguishability obfuscation, Kim and Wu [23] later
constructed watermarking PRFs from LWE, but via a different route that does
not require PP-PRFs. To date, it has remained an open question whether PP-
PRFs exist based on more standard (non-iO) assumptions.

1.1 Our Results

Our main contribution is a unified approach for constructing both constraint-
hiding constrained PRFs for arbitrary polynomial-time constraints, and privately
programmable PRFs, from LWE with subexponential exp(nε) approximation
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factors (i.e., inverse error rates), for any constant ε > 0. Both objects follow
straightforwardly from a single LWE-based construction that we call a shift-
hiding shiftable function (SHSF). Essentially, an SHSF allows for deriving a
“shifted” key for a desired shift function, which remains hidden. The shifted key
allows one to evaluate the sum of the original function and the shift function.
We construct CHC-PRFs and PP-PRFs very simply by using an appropriate
shift function, which is zero at authorized inputs, and either pseudorandom or
programmed at unauthorized inputs.

CHC-PRFs. In comparison with [13], while we achieve the same ultimate result
of CHC-PRFs for arbitrary constraints (with essentially the same efficiency met-
rics), our construction is more modular and arguably a good deal simpler.1

Specifically, our SHSF construction uses just a few well-worn techniques from
the literature on LWE-based fully homomorphic and attribute-based cryptogra-
phy [5,18,20,21], and we get a CHC-PRF by invoking our SHSF with an arbi-
trary PRF as the shift function. By contrast, the construction from [13] melds
the FHE/ABE techniques with a specific LWE-based PRF [2], and involves a
handful of ad-hoc techniques to deal with various technical complications that
arise.

PP-PRFs. Our approach also yields the first privately programmable PRFs
from LWE, or indeed, any non-iO assumption. In fact, our PP-PRF allows for
programming any polynomial number of inputs. Previously, the only potential
approach for constructing PP-PRFs without iO [23] was from CHC-PRFs having
certain extra properties (which constructions prior to our work did not possess),
and was limited to programming only a logarithmic number of inputs.

1.2 Techniques

As mentioned above, the main ingredient in our constructions is what we call
a shift-hiding shiftable function (SHSF). We briefly describe its properties. We
have a keyed function Eval : K × X → Y, where Y is some finite additive group,
and an algorithm Shift(·, ·) to derive shifted keys. Given a secret key msk ∈ K
and a function H : X → Y, we can derive a shifted key skH ← Shift(msk,H).
This key has the following two main properties:

– skH hides the shifting function H, and
– given skH we can compute an approximation of Eval(msk, ·) + H(·) at any

input, i.e., there exists a “shifted evaluation” algorithm SEval such that for
every x ∈ X ,

SEval(skH , x) ≈ Eval(msk, x) + H(x). (1)

We emphasize that the SHSF itself does not have any pseudorandomness prop-
erty; this will come from “rounding” the function in our PRF constructions,
described next.
1 Our construction was actually developed independently of [13], though not concur-

rently; we were unaware of its earlier non-public versions.
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CHC-PRFs and PP-PRFs. We first briefly outline how we use SHSFs to con-
struct CHC-PRFs and PP-PRFs. To construct a CHC-PRF we instantiate the
SHSF with range Y = Z

m
q for an appropriately chosen q. The CHC-PRF key is

just a SHSF master key msk.

– To evaluate on an input x ∈ X using msk we output �Eval(msk, x)�p, where
�·�p denotes (coordinate-wise) “rounding” from Zq to Zp for some appropriate
p � q.

– To generate a constrained key for a constraint circuit C : X → {0, 1}, we
sample a key k for an ordinary PRF F , define the shift function HC,k(x) :=
C(x) · Fk(x), and output the shifted key

skC ← Shift(msk,HC,k).

Since Shift hides the circuit HC,k, it follows that skC hides C.
– To evaluate on an input x using the constrained key skC , we output

�SEval(skC , x)�p.

Observe that for authorized inputs x (where C(x) = 0), we have HC,k(x) =
0, so SEval(skC , x) ≈ Eval(msk, x) and therefore their rounded counterparts
are equal with high probability. (This relies on the additional property that
Eval(msk, x) is not to close to a “rounding border.”) For unauthorized points x
(where C(x) = 1), to see that the CHC-PRF output is pseudorandom given skC ,
notice that by Eq. (1), the output is (with high probability)

�Eval(msk, x)�p = �SEval(skC , x) − H(x)�p. (2)

Because F is a pseudorandom function, H(x) = Fk(x) completely “randomizes”
the right-hand side above.

Turning now to PP-PRFs, for simplicity consider the case where we want to
program the constrained key at a single input x∗ (generalizing to polynomially
many inputs is straightforward). A first idea is to use the same algorithms as in
the above CHC-PRF, except that to program a key to output y at input x∗ we
define the shift function

Hx∗,y(x) =

{
y′ − Eval(msk, x∗) if x = x∗,
0 otherwise,

(3)

where y′ ∈ Z
m
q is chosen uniformly conditioned on �y′�p = y. As before, the

programmed key is just the shifted key skx∗,y ← Shift(msk,Hx∗,y). By Eq. (1),
evaluating on the unauthorized input x∗ using skx∗,y indeed yields �y′�p = y.
However, it is unclear whether the true (non-programmed) value of the function
at the unauthorized input x = x∗ is pseudorandom given skx∗,y: in particular,
because y is chosen by the adversary, y′ ∈ Z

m
q may not be uniformly random.

To address this issue, we observe that the above construction satisfies a
weaker pseudorandomness guarantee: if the adversary does not specify y but
instead y is uniformly random, then by Eq. (2) the PP-PRF is pseudorandom
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at x∗. This observation leads us to our actual PP-PRF construction: we instan-
tiate two of the above “weak” PP-PRFs with keys msk1 and msk2. To gen-
erate a programmed key for input x∗ and output y, we first generate random
additive shares y1, y2 such that y = y1 + y2, and output the programmed key
skx∗,y := (skx∗,y1 , skx∗,y2) where skx∗,yi

← Shift(mski,Hx∗,yi
) for i = 1, 2. Each

evaluation algorithm (ordinary and programmed) is then defined simply as the
sum of the corresponding evaluation algorithm from the “weak” construction
using the two component keys. Because both programmed keys are generated
for random target outputs yi, we can prove pseudorandomness of the real func-
tion value.

Constructing SHSFs. We now give an overview of our construction of shift-hiding
shifted functions. For simplicity, suppose the range of the functions is Y = Zq;
extending this to Z

m
q (as in our actual constructions) is straightforward. As in

[6,23] our main tools are the “gadget-matrix homomorphisms” developed in the
literature on fully homomorphic and attribute-based cryptography [5,18,20,21].

At a high level, our SHSF works as follows. The master secret key is just
an LWE secret s whose first coordinate is 1. A shifted key for a shift func-
tion H : X → Zq consists of LWE vectors (using secret s) relative to some public
matrices that have been “shifted” by multiples of the gadget matrix G [24];
more specifically, the multiples are the bits of FHE ciphertexts encrypting H,
and the Zq-entries of the FHE secret key sk. To compute the shifted function
on an input x, we do the following:

1. Using the gadget homomorphisms for boolean gates [5,18] on the LWE vec-
tors corresponding to the FHE encryption of H, we compute LWE vectors
relative to some publicly computable matrices, shifted by multiples of G cor-
responding to the bits of an FHE ciphertext encrypting H(x).

2. Then, using the gadget homomorphisms for hidden linear functions [20] with
the LWE vectors corresponding to the FHE secret key, we compute LWE
vectors relative to some publicly computable matrix Bx, but shifted by
(H(x) + e)G where H(x) + e ≈ H(x) ∈ Zq is the “noisy plaintext” aris-
ing as the inner product of the FHE ciphertext and secret key. Taking just
the first column, we therefore have an LWE sample relative to some vector
bx + (H(x) + e)u1, where u1 is the first standard basis (column) vector.

3. Finally, because the first coordinate of the LWE secret s is 1, the above LWE
sample is simply 〈s,bx〉 + H(x) + e ≈ 〈s,bx〉 + H(x) ∈ Zq.

With the above in mind, we then define the (unshifted) function itself on an
input x to simply compute bx from the public parameters as above, and output
〈s,bx〉. This yields Eq. (1).

2 Preliminaries

We denote row vectors by lower-case bold letters, e.g., a. We denote matrices by
upper-case bold letters, e.g., A. The Kronecker product A ⊗ B of two matrices
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(or vectors) A and B is obtained by replacing each entry ai,j of A with the block
ai,jB. The Kronecker product obeys the mixed-product property: (A ⊗ B)(C ⊗
D) = (AC) ⊗ (BD) for any matrices A,B,C,D with compatible dimensions.

2.1 Gadgets and Homomorphisms

Here we recall “gadgets” [24] over Zq and several of their homomorphic proper-
ties, some of which were implicit in [18], and which were developed and exploited
further in [5,20,21].

For an integer modulus q, the gadget (or powers-of-two) vector over Zq is
defined as

g = (1, 2, 4, . . . , 2�lg q�−1) ∈ Z
�lg q�
q . (4)

For every u ∈ Zq, there is an (efficiently computable) binary vector x ∈
{0, 1}�lg q� such that 〈g,x〉 = g · xt = u(mod q). Phrased differently,

(x ⊗ g) · rt = u(mod q) (5)

for a certain binary r ∈ {0, 1}�lg q�2 , namely, the one that selects all the products
of the corresponding entries of x and g.

The gadget matrix is defined as

Gn = In ⊗ g ∈ Z
n×m
q ,

where m = n�lg q�. We often drop the subscript n when it is clear from context.
We use algorithms BoolEval and LinEval, which have the following properties.

– BoolEval(C, x,A), given a boolean circuit C : {0, 1}� → {0, 1}k of depth d,
an x ∈ {0, 1}�, and some A ∈ Z

n×(�+1)m
q , outputs an integral matrix RC,x ∈

Z
(�+1)m×km with mO(d)-bounded entries for which

(A + (1, x) ⊗ G) · RC,x = AC + C(x) ⊗ G, (6)

where AC ∈ Z
n×m
q depends only on A and C (and not on x).2

– LinEval(x,C), given an x ∈ {0, 1}� and a matrix C ∈ Z
n×�m
q , outputs an

integral matrix Rx ∈ Z
2�m×m with poly(m, �)-bounded entries such that, for

all A,C ∈ Z
n×�m
q and k ∈ Z

�
q,

[A + x ⊗ G | C + k ⊗ G] · Rx = B + 〈x,k〉 · G, (7)

where B ∈ Z
n×m
q depends only on A and C (and not on x or k).3

More generally, for x ∈ {0, 1}k� by applying the above to the �-bit chunks
of x, in Eq. (7) we replace 〈x,k〉 · G = (x · kt) · G with (x · (Ik ⊗ kt)) ⊗ G,
and now Rx ∈ Z

(k+1)�m×km, A ∈ Z
n×k�m
q , and B ∈ Z

n×km
q .

2 This property is obtained by composing homomorphic addition and multiplication
of G-multiples; the extra 1 attached to x is needed to support NOT gates.

3 We stress that LinEval does not need to know k, which we view as representing a
secret linear function that is hidden by C.
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2.2 Fully Homomorphic Encryption

We use the GSW (leveled) fully homomorphic encryption scheme [18]
(KG,Enc,Eval), whose relevant properties for our needs are summarized as fol-
lows (we use only a symmetric-key version, which is sufficient for our purposes):

– KG(1λ, q), given a security parameter λ and a requested modulus q, outputs
a secret key k ∈ Z

τ
q (for some τ = poly(λ, log q)).

– Enc(k,m), given a secret key k and a message m ∈ {0, 1}, outputs a ciphertext
ct, which is a binary string.

– Eval(C, ct1, . . . , ct�), given a boolean circuit C : {0, 1}� → {0, 1} and cipher-
texts ct1, ct2, . . . , ct�, outputs a ciphertext ct ∈ {0, 1}τ�lg q�.

Notice that in the above definition there is no explicit decryption algorithm.
Instead we express the essential “noisy” linear relation between the result of
homomorphic evaluation and the secret key: for any k ← KG(1λ, q), any boolean
circuit C : {0, 1}� → {0, 1} of depth at most d, any messages mj ∈ {0, 1} and
ciphertexts ctj ← Enc(k,mj) for j = 1, . . . , �, we have

Eval(C, ct1, . . . , ct�) · (I�lgq� ⊗ kt) = C(m1, . . . , m�) ⊗ g + e(mod q) (8)

for some integral error vector e ∈ [−B,B]�lg q�, where B = λO(d). In other words,
multiplying (the τ -bit chunks of) the result of homomorphic evaluation with the
secret key yields a “noisy” version of a robust encoding of the result (where the
encoding is via the powers of two). While the robust encoding allows the noise
to be removed, we will not need to do so explicitly.

More generally, if the circuit C has k-bit output, then Eval outputs a cipher-
text in {0, 1}τk�lg q� and Eq. (8) holds with I�lg q� replaced by Ik�lg q�.

2.3 Learning with Errors

For a positive integer dimension n and modulus q, and an error distribution χ
over Z, the LWE distribution and decision problem are defined as follows. For an
s ∈ Z

n, the LWE distribution As,χ is sampled by choosing a uniformly random
a ← Z

n
q and an error term e ← χ, and outputting (a, b = 〈s,a〉 + e) ∈ Z

n+1
q .

Definition 1. The decision-LWEn,q,χ problem is to distinguish, with non-
negligible advantage, between any desired (but polynomially bounded) number of
independent samples drawn from As,χ for a single s ← Z

n
q , and the same number

of uniformly random and independent samples over Z
n+1
q .

In this work we use a form of LWE where the first coordinate of the secret
vector s is 1, i.e. s = (1, s̄) where s̄ ← Z

n−1
q . It is easy to see that this is equivalent

to LWE with an (n−1)-dimensional secret: the transformation mapping (a, b) ∈
Z

n−1
q × Zq to ((r,a), b + r) for a uniformly random r ∈ Zq (chosen freshly for

each sample) maps samples from As̄,χ to samples from As,χ, and maps uniform
samples to uniform samples.
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A standard instantiation of LWE is to let χ be a discrete Gaussian distribu-
tion (over Z) with parameter r = 2

√
n. A sample drawn from this distribution

has magnitude bounded by, say, r
√

n = Θ(n) except with probability at most
2−n. For this parameterization, it is known that LWE is at least as hard as quan-
tumly approximating certain “short vector” problems on n-dimensional lattices,
in the worst case, to within Õ(q

√
n) factors [27,28]. Classical reductions are also

known for different parameterizations [12,26].

2.4 One Dimensional Rounded Short Integer Solution

As in [6,14,23] we make use of a special “one-dimensional, rounded” variant of
the short integer solution problem (SIS). For the parameters we will use, this
problem is actually no easier to solve than LWE is, but it is convenient to define
it separately.

Definition 2 (1D-R-SIS [6,14]). Let p ∈ N and let p1 < p2 < · · · < pk be
pairwise coprime and coprime with p. Let q = p · ∏k

i=1 pi. Then for positive
numbers m ∈ N and B, the 1D-R-SISm,p,q,B problem is as follows: given a
uniformly random vector v ← Z

m
q , find z ∈ Z

m such that ‖z‖ ≤ B and

〈v, z〉 ∈ q

p
(Z + 1

2 ) + [−B,B]. (9)

For sufficiently large p1 ≥ B · poly(k, log q), solving 1D-R-SIS is at least as
hard as approximating certain “short vector” problems on k-dimensional lattices,
in the worst case, to within certain B · poly(k) factors [1,6,14,25].

3 Shift-Hiding Shiftable Functions

Here we present our construction of what we call shift-hiding shiftable functions
(SHSFs), which we use in our subsequent constructions of CHC-PRFs and PP-
PRFs. Because there are several parameters and we need some specific algebraic
properties, we do not give an abstract definition of SHSF, but instead just give
a construction (Sect. 3.2) and show the requisite properties (Sect. 3.3).

3.1 Notation

Let GSW = (KG,Enc,Eval) denote the GSW fully homomorphic encryption
scheme (Sect. 2.2), where the secret key is in Z

τ
q for some τ = τ(λ). Recall that

homomorphic evaluation of a function with k output bits produces a τk�lg q�-bit
ciphertext.

Our construction represents shift functions H : {0, 1}� → Z
m
q by (bounded-

size) boolean circuits. Specifically, we let H ′ : {0, 1}� → {0, 1}k for k = m�lg q�
be a boolean circuit where H ′(x) is the binary decomposition of H(x), so that,
following Eq. (5),

(H ′(x) ⊗ g) · (Im ⊗ rt) = H(x) ∈ Z
m
q . (10)
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Let U(H ′, x) = H ′(x) denote a universal circuit for boolean cir-
cuits H ′ : {0, 1}� → {0, 1}k of size σ, and let Ux(·) = U(·, x). Its homomorphic
analogue is as follows: letting z be the total length of fresh GSW ciphertexts
encrypting a circuit of size σ, for any x ∈ {0, 1}� define

Ux : {0, 1}z → {0, 1}τk�lg q� (11)

Ux(ct) = GSW.Eval(Ux, ct). (12)

Observe that Ux can be implemented as a boolean circuit of size (and hence
depth) poly(λ, σ).

3.2 Construction

Here we give the tuple of algorithms (Setup,KeyGen,Eval,Shift,SEval,S) that
make up our SHSF. For security parameter λ and constraint circuit size σ the
algorithms are parameterized by some n = poly(λ, σ) and q = 2poly(λ,σ), with
m = n�lg q� = poly(λ, σ); we instantiate these more precisely in Sect. 3.4 below.

Construction 1. Let X = {0, 1}� and Y = Z
m
q . Define:

– Setup(1λ, 1σ): Sample uniformly random and independent matrices A ∈
Z

n×(z+1)m
q and C ∈ Z

n×τm
q , and output pp = (A,C).

(The n-by-m chunks of A will correspond to the z bits of a GSW encryption
of the shift function; similarly, the chunks of C will correspond to the GSW
secret key in Z

τ
q .)

– KeyGen(pp): Sample s′ ← Z
n−1
q and set s = (1, s′). Output the master secret

key msk = s.
– Eval(pp,msk, x ∈ {0, 1}�): compute

R0 = BoolEval(Ux, 0z,A) ∈ Z
(z+1)m×τk�lg q�m (13)

and let

Ax = (A + (1, 0z) ⊗ G) · R0 − Ux(0z) ⊗ G ∈ Z
n×τk�lg q�m
q . (14)

(Observe that by Eq. (6), Ax = AC for the circuit C = Ux, and does not
depend on the “dummy” ciphertext 0z, which stands in for a GSW encryption
of a shift function.)
Next, compute

R′
0 = LinEval(Ux(0z),C) ∈ Z

τ(k�lg q�+1)m×k�lg q�m (15)

and let
Bx = [Ax + Ux(0z) ⊗ G | C] · R′

0 ∈ Z
n×k�lg q�m
q . (16)
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(Observe that this corresponds to taking k = 0 in Eq. (7), so Bx does not
depend on the “dummy” ciphertext 0z; it depends only on Ax, hence A and x,
and C.)
Finally, output

s · Bx · (Im ⊗ rt ⊗ ut
1) ∈ Z

m
q , (17)

where r ∈ {0, 1}�lg q�2 is as in Eq. (10) and u1 ∈ Z
m is the first standard basis

vector.
– Shift(pp,msk,H): for a shift function H : {0, 1}� → Z

m
q whose binary decom-

position H ′ : {0, 1}� → {0, 1}k can be implemented by a circuit of size σ,
sample a GSW encryption key k ← GSW.KG(1λ, q), then encrypt H ′ bit-by-
bit under this key to obtain a ciphertext ct ← GSW.Enck(H ′). Next, let

a = s(A + (1, ct) ⊗ G) + e (18)
c = s(C + k ⊗ G) + e′ (19)

where e and e′ are error vectors whose entries are sampled independently
from χ. Output

skH = (ct,a, c). (20)
(Recall that A′ = A+ (1, ct) ⊗G and C′ = C+k⊗G support homomorphic
operations on ct and k via right-multiplication by short matrices, using the
gadget homomorphisms. Shifted evaluation, defined next, performs such right-
multiplications on a ≈ sA′, c ≈ sC′.)

– SEval(pp, skH , x): On input skH = (ct,a, c) and x ∈ {0, 1}�, compute

Rct = BoolEval(Ux, ct,A) (21)
ax = a · Rct. (22)

(By Eq. (6), we have ax ≈ s(Ax + Ux(ct) ⊗ G), where recall that Ux(ct) is a
GSW encryption of H ′(x), computed homomorphically.)
Next, compute

R′
ct = LinEval(Ux(ct),C) (23)
bx = [ax | c] · R′

ct. (24)

(By Eqs. (7) for LinEval and (8) for GSW decryption, we have bx ≈ s(Bx +
h′ ⊗ G), where h′ is a noisy version of the robust encoding H ′(x) ⊗ g.)
Finally, output

bx · (Im ⊗ rt ⊗ ut
1) ∈ Z

m
q , (25)

where r,u1 are as in Eval above.
(Here the Im ⊗ rt term reconstructs a noisy version of H(x) ∈ Z

m
q from h′

as in Eq. (10), and the ut
1 ∈ Z

m term selects the first column of G, whose
inner product with s is 1.)

– S(1λ, 1σ): Sample a GSW secret key k ← GSW.KG(1λ, q) and compute
(by encrypting bit-by-bit) ct ← GSW.Enck(C), where C is some arbitrary
size-σ boolean circuit. Sample uniformly random and independent A ←
Z

n×(z+1)m
q ,a ← Z

(z+1)m
q , C ← Z

n×τm
q , c ← Z

τm
q . Output pp = (A,C) and

sk = (ct,a, c).
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3.3 Properties

Here we prove the three main properties of our SHSF that we will use in subse-
quent sections.

Lemma 1 (Shift Hiding). Assuming the hardness of LWEn−1,q,χ and CPA
security of the GSW encryption scheme, for any PPT A and any σ = σ(λ) =
poly(λ),

{RealKeyA(1λ, 1σ)}λ∈N

c≈ {IdealKeyA(1λ, 1σ)}λ∈N
, (26)

where RealKey and IdealKey are the respective views of A in the experiments
defined in Fig. 1.

Proof. Let A be any polynomial-time adversary. To show that Eq. (26) holds we
define a sequence of hybrid experiments and show that they are indistinguishable.

Hybrid H0: This is the experiment RealKey.
Hybrid H1: This is the same as H0, except that we modify how the A and C

are constructed as follows: after we generate ct and k we choose uniformly
random A′ and C′ and set

A = A′ − (1, ct) ⊗ G (27)
C = C′ − k ⊗ G. (28)

Hybrid H2: This is the same as H1, except that we sample the ai and cj

uniformly at random from Z
m
q .

Hybrid H3: This is the same as H2, except that we again directly choose A,C
uniformly at random (without choosing A′,C′).

Hybrid H4: This is the same as H2, except that ct encrypts the (arbitrary)
size-σ circuit C (as in S) instead of H ′, i.e., we set ct ← GSW.Enck′(C).
Observe that this is exactly the experiment IdealKey.

Claim 1. H0 and H1 are identical.

Proof. This is because A′ and C′ are uniformly random and independent of ct
and k.

procedure RealKeyA(1λ, 1ρ)
H ← A(1λ, 1σ)
pp ← Setup(1λ, 1ρ)
msk ← KeyGen(pp)
sk ← Shift(pp,msk,H)
(pp, sk) → A

(a) The real shifted key generation ex-
periment

procedure IdealKeyA(1λ, 1σ)
H ← A(1λ, 1σ)
(pp, sk) ← S(1λ, 1σ)
(pp, sk) → A

(b) The random key generation experi-
ment

Fig. 1. The real and random shifted key generation experiments.
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Claim 2. Assuming the hardness of LWEn−1,q,χ, we have H1
c≈ H2.

Proof. We use any adversary A that attempts to distinguish H1 from H2 to
build an adversary A′ that solves LWEn−1,q,χ with the same advantage. First,
A′ receives samples (A′,a) ∈ Z

n×(z+1)m
q ×Z

(z+1)m
q and (C′, c) ∈ Z

n×τm
q ×Z

τm
q ,

then proceeds exactly as in H1 to interact with A, and outputs what A outputs.
If the samples are LWE samples from As,χ where s = (1, s′) for s′ ← Z

n−1
q , then

a = s · A′ + e = s(A + (1, ct) ⊗ G) + e

c = s · C′ + e′ = s(C + k ⊗ G) + e′

for error vectors e, e′ whose entries are drawn from χ, therefore A’s view is
identical to its view in H1. If the samples are uniformly random, then A’s view
is identical to its view in H2. This proves the claim.

Claim 3. H2 and H3 are identical.

Proof. This is because A′,C′ are uniformly random and independent of ct and k.

Claim 4. If GSW is CPA-secure then H3
c≈ H4.

Proof. This follows immediately from the fact that the GSW secret key k ←
GSW.KG(1λ, q) is used only to encrypt H (yielding ct) or the arbitrary circuit C,
respectively, in H3 and H4.

This completes the proof of Lemma 1.

Lemma 2 (Border Avoiding). For any PPT A, i ∈ [m], λ ∈ N and σ =
poly(λ), assuming the hardness of 1D-R-SIS(z+τ+1)m,p,q,B for some large enough
B = mpoly(λ,σ) = λpoly(λ), we have

Pr
(pp,sk)←S(1λ,1σ)

x←A(pp,sk)

[
Eval(pp, sk, x)i ∈ q

p (Z + 1
2 ) + [−B,+B]

]
≤ negl(λ). (29)

Proof. We show how to use an adversary which finds an x ∈ X such that

SEval(pp, sk, x)i ∈ q
p (Z + 1

2 ) + [−B,+B] (30)

for some i ∈ [m] to solve 1D-R-SIS.
Given a (uniformly random) 1D-R-SIS(z+τ+1)m,p,q,B challenge v = (a, c) ∈

Z
(z+1)m
q × Z

τm
q , we put a, c in the sk given to A, and generate pp in the same

way as in the S algorithm. Let x be a query output by A, and consider the
response

yx = SEval(pp, (ct,a, c), x) (31)
= bx · U (32)

= [a | c]
[
Rct

Iτm

]
· R′

ct · U︸ ︷︷ ︸
T

, (33)
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where Rct,R′
ct are mpoly(λ,σ)-bounded matrices as computed by SEval, and U is

a binary matrix. Now if Eq. (30) holds for some i ∈ [m], then (yx)i ∈ q
p (Z+ 1

2 )+
[−B,B], which means that the ith column of T is a valid 1D-R-SIS(z+τ+1)m,p,q,B

solution to the challenge v = (a, c), as desired.

Lemma 3 (Approximate Shift Correctness). For any shift function
H : {0, 1}� → Z

m
q whose binary decomposition H ′ : {0, 1}� → {0, 1}k can be rep-

resented by a boolean circuit of size σ, and any x ∈ {0, 1}�, pp ← Setup(1λ, 1ρ),
msk ← KeyGen(pp) and skH ← Shift(pp,msk,H), we have

SEval(pp, skH , x) ≈ Eval(pp,msk, x) + H(x) (34)

where the approximation hides some λpoly(λ)-bounded error vector.

Proof. Let a,ax,bx, c,Ax and Bx be as defined in algorithms SEval, Eval and
Shift. First, observe that by definition of a ≈ s(A + (1, ct) ⊗ G), ax = a · Rct,
and Eq. (6), we have

ax ≈ s(A + (1, ct) ⊗ G) · Rct (35)

= s(Ax + Ux(ct) ⊗ G), (36)

where the approximation hides an error vector with entries bounded by
mpoly(λ,σ) = λpoly(λ). Similarly, by definition of bx, the generalized Eq. (7), and
the generalized Eq. (8) we have

bx = [ax | c] · R′
ct (37)

≈ s[Ax + Ux(ct) ⊗ G | C + k ⊗ G] · R′
ct (38)

= s(Bx + (Ux(ct) · (Ik�lg q� ⊗ kt)) ⊗ G) (39)
= s(Bx + (H ′(x) ⊗ g + ex) ⊗ G) (40)

where the approximation hides some λpoly(λ)-bounded error, and ex is also
λpoly(λ)-bounded. Therefore, by Eq. (10), the mixed-product property, and
because G · ut

1 = ut
1 ∈ Z

n
q , and the first coordinate of s is 1, the output of

SEval(pp, skH , x) is

bx · (Im ⊗ rt ⊗ ut
1) ≈ sBx · (Im ⊗ rt ⊗ ut

1) + s((H ′(x) ⊗ g + ex) ⊗ G)

· (Im ⊗ rt ⊗ ut
1) (41)

= Eval(pp,msk, x) + s((H(x) + ex(Im ⊗ rt)) ⊗ ut
1) (42)

= Eval(pp,msk, x) + H(x) + ex(Im ⊗ rt) (43)
≈ Eval(pp,msk, x) + H(x), (44)

where again the approximations hide λpoly(λ)-bounded error vectors, as claimed.

The following is an immediate consequence of Lemma 3.



688 C. Peikert and S. Shiehian

Corollary 1. Fix the same notation as in Lemma 3. If for all i ∈ [m] we have

(SEval(pp, sk, x) − H(x))i /∈ q
p (Z + 1

2 ) + [−B,+B], (45)

then
�SEval(pp, sk, x) − H(x)�p = �Eval(pp,msk, x)�p. (46)

3.4 Parameter Instantiation

We now instantiate the LWE parameters n, q and the 1D-R-SIS parameter k
to correspond with subexponential exp(nε) and exp(kε) approximation factors
for the underlying worst-case lattice problems, for an arbitrary desired constant
ε > 0. Let B = λpoly(λ) be the bound from Corollary 1. For 1D-R-SIS we need to
choose k sufficiently large primes pi = B · poly(λ) = λpoly(λ) to get an approxi-
mation factor of

B · poly(λ) = λpoly(λ)

for k-dimensional lattices. Therefore, we can choose a sufficiently large k =
poly(λ) to make this factor exp(kε). We then set

q = p

k∏
i=1

pi = p · λk·poly(λ) = λpoly(λ),

which corresponds to some λpoly(λ) approximation factor for n-dimensional lat-
tices. Again, we can choose a sufficiently large n = poly(λ) to make this factor
exp(nε).

4 Constraint-Hiding Constrained PRF

In this section we formally define constraint-hiding constrained PRFs (CHC-
PRFs) and give a construction based on our shiftable PRF from Sect. 3.

4.1 Definition

Here we give the definition of CHC-PRFs, specializing the simulation-based def-
inition of [15] to the case of a single constrained-key query.

Definition 3. A constrained function is a tuple of efficient algorithms
(Setup,KeyGen,Eval,Constrain,CEval) having the following interfaces (where the
domain X and range Y may depend on the security parameter):

– Setup(1λ, 1σ), given the security parameter λ and an upper bound σ on the
size of the constraining circuit, outputs public parameters pp.

– KeyGen(pp), given the public parameters pp, outputs a master secret key msk.
– Eval(pp,msk, x), given the master secret key and an input x ∈ X , outputs

some y ∈ Y.



Privately Constraining and Programming PRFs, the LWE Way 689

– Constrain(pp,msk,C), given the master secret key and a circuit C of size at
most σ, outputs a constrained key skC .

– CEval(pp, skC , x), given a constrained key skC and an input x ∈ X , outputs
some y ∈ Y.

Definition 4. A constrained function is a constraint-hiding constrained PRF
(CHC-PRF) if there is a PPT simulator S such that, for any PPT adversary
A (that without loss of generality never repeats a query) and any σ = σ(λ) =
poly(λ),

{RealA(1λ, 1σ)}λ∈N

c≈ {IdealA,S(1λ, 1σ)}λ∈N
, (47)

where Real and Ideal are the respective views of A in the experiments defined in
Fig. 2.

The above simulation-based definition simultaneously captures privacy of the
constraining function, pseudorandomness on unauthorized inputs, and correct-
ness of constrained evaluation on authorized inputs. The first two properties
(privacy and pseudorandomness) follow because in the ideal experiment, the
simulator must generate a constrained key without knowing the constraining
function, and the adversary gets oracle access to a function that is uniformly
random on unauthorized inputs.

For correctness, we claim that the real experiment is computationally
indistinguishable from a modified one where each query x is answered as
CEval(pp, skC , x) if x is authorized (i.e., C(x) = 0), and as Eval(pp,msk, x)
otherwise. In particular, this implies that Eval(pp,msk, x) = CEval(pp, skC , x)
with all but negligible probability for all the adversary’s authorized queries x.
Indistinguishability of the real and modified experiments follows by a routine
hybrid argument, with the ideal experiment as the intermediate one. In par-
ticular, the reduction that links the ideal and modified real experiments itself
answers authorized queries x using CEval, and handles unauthorized queries by
passing them to its oracle.

procedure RealA(1λ, 1σ)
C ← A(1λ, 1σ)
pp ← Setup(1λ)
msk ← KeyGen(pp)
skC ← Constrain(pp,msk,C)
(pp, skC) → A
repeat

x ← A
Eval(pp,msk, x) → A

until A halts

(a) The real experiment

procedure IdealA,S(1λ, 1σ)
C ← A(1λ, 1σ)
(pp, sk) ← S(1λ, 1σ)
(pp, sk) → A
repeat

x ← A
if C(x) = 0 then

CEval(pp, sk, x) → A
else

y ← Y; y → A
until A halts

(b) The ideal experiment

Fig. 2. The real and ideal experiments.
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4.2 Construction

We now describe our construction of a CHC-PRF for domain X = {0, 1}� and
range Y = Z

m
p , which handles constraining circuits of size σ. It uses the following

components:

– A pseudorandom function PRF = (PRF.KG,PRF.Eval) having domain {0, 1}�

and range Z
m
q , with key space {0, 1}κ.

– The shift hiding shiftable function SHSF = (Setup,KeyGen,Eval,Shift,SEval,
Sim) from Sect. 3, which has parameters q,B that appear in the analysis
below.

For a boolean circuit C of size at most σ and some k ∈ {0, 1}κ define the
function HC,k : {0, 1}� → Z

m
q as

HC,k(x) = C(x) · PRF.Eval(k, x) =

{
PRF.Eval(k, x) if U(C, x) = 1
0 otherwise.

(48)

Notice that the size of (the binary decomposition of) HC,k is upper bounded by

σ′ = σ + s + poly(n, log q), (49)

where s is the circuit size of (the binary decomposition of) PRF.Eval(k, ·).
Construction 2. Our CHC-PRF with domain X = {0, 1}� and range Y = Z

m
p

is defined as follows:

– Setup(1λ, 1σ): output pp ← SHSF.Setup(1λ, 1σ′
) where σ′ is defined as in

Eq. (49).
– KeyGen(pp): output msk ← SHSF.KeyGen(pp).
– Eval(pp,msk, x ∈ {0, 1}�): compute yx = SHSF.Eval(pp,msk, x) and output

�yx�p.
– Constrain(pp,msk,C): on input a circuit C of size at most σ, sample a PRF

key k ← PRF.KG(1λ) and output skC ← SHSF.Shift(pp,msk,HC,k).
– CEval(pp, skC , x): on input a constrained key skC and x ∈ {0, 1}�, output

�SHSF.SEval(pp, skC , x)�p.

4.3 Security Proof

Theorem 1. Construction 2 is a constraint-hiding constrained PRF assuming
the hardness of LWEn−1,q,χ and 1D-R-SIS(zσ′+τ+1)m,p,q,B (where z, τ are respec-
tively the lengths of fresh GSW ciphertexts and secret keys as used in SHSF), the
CPA security of the GSW encryption scheme, and that PRF is a pseudorandom
function.

Proof. Our simulator S(1λ, 1σ) for Construction 2 simply outputs
SHSF.S(1λ, 1σ′

). Now let A be any polynomial-time adversary. To show that
S satisfies Definition 4 we define a sequence of hybrid experiments and show
that they are indistinguishable. Before defining the experiments in detail, we
first define a particular “bad” event in all but one of them.
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Definition 5. In each of the following hybrid experiments except H0, each
query x is answered as �yx�p for some yx that is computed in a certain way.
Define Borderline to be the event that at least one such yx has some coordinate
in q

p (Z + 1
2 ) + [−B,B].

Hybrid H0: This is the ideal experiment IdealA,S .
Hybrid H1: This is the same as H0, except that on every unauthorized query x

(i.e., where C(x) = 1), instead of returning a uniformly random value from
Z

m
p , we choose yx ← Z

m
q and output �yx�p.

Hybrid H2: This is the same as H1, except that we abort the experiment if
Borderline happens.

Hybrid H3: This is the same as H2, except that we initially choose a PRF
key k ← PRF.KG(1λ) and change how unauthorized queries x (i.e., where
C(x) = 1) are handled, answering all queries according to a slightly modified
CEval. Specifically, for any query x we answer �yx�p where

yx = SHSF.SEval(pp, sk, x) − C(x) · PRF.Eval(k, x). (50)

Hybrid H4: This is the same as H3, except that (pp, sk) are generated as in
the real experiment. More formally we instantiate pp ← SHSF.Setup(1λ, 1σ′

),
msk ← SHSF.KeyGen(pp) and compute sk ← SHSF.Shift(pp,msk,HC,k).

Hybrid H5: This is the same as H4, except that we answer all evaluation queries
as in the Eval algorithm, i.e., we output �yx�p where

yx = SHSF.Eval(pp,msk, x). (51)

Hybrid H6: This is the same as H5, except that we no longer abort when
Borderline happens. Observe that this is exactly the real experiment RealA.

We now prove that adjacent pairs of hybrid experiments are indistinguishable.

Claim 5. Experiments H0 and H1 are identical.

Proof. This follows directly from the fact that p divides q.

Claim 6. Assuming that 1D-R-SIS(zσ′+τ+1)m,p,q,B is hard, we have H1
c≈ H2. In

particular, in H1 the event Borderline happens with negligible probability.

Proof. Let A be an adversary attempting to distinguish H1 and H2. We want
to show that in H1 event Borderline happens with negligible probability. Let x
be a query made by A. If C(x) = 1 then yx is uniformly random in Z

m
q , so for

any i ∈ [m] we have

Pr[(yx)i ∈ q
p (Z + 1

2 ) + [−B,B]] ≤ 2 · B · p/q = negl(λ). (52)

If C(x) = 0, the claim follows immediately by the border-avoiding property of
SHSF (Lemma 2).

Claim 7. If PRF is a pseudorandom function then H2
c≈ H3.
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Proof. We use any adversary A that attempts to distinguish H2 from H3 to build
an adversary A′ having the same advantage against the pseudorandomness of
PRF. Here A′ is given access to an oracle O which is either PRF.Eval(k, ·) for
k ← PRF.KG(1λ), or a uniformly random function f : {0, 1}� → Z

m
q . We define

A′ to proceed as in H2 to simulate the view of A, except that on each query x
it sets

yx = SHSF.SEval(pp, sk, x) − C(x) · O(x) (53)

and answers �yx�p. Finally, A′ outputs whatever A outputs. Clearly, if O is
PRF.Eval(k, ·) then the view of A is identical to H3, whereas if the oracle is f(·)
then the view of A is identical to its view in H2. This proves the claim.

Claim 8. Assuming the hardness of LWEn−1,q,χ and CPA-security of GSW,
H3

c≈ H4.

Proof. This follows immediately from the shift hiding property of SHSF, i.e.,
Lemma 1.

Claim 9. H4 and H5 are identical.

Proof. This follows by Corollary 1 and noticing that both experiments abort if
Borderline happens.

Claim 10. Under the hypotheses of Theorem 1, we have H5
c≈ H6.

Proof. This follows by combining all the previous claims and recalling that we
have proved that Borderline happens with negligible probability in H1.

This completes the proof of Theorem 1.

5 Privately Programmable PRF

In this section we formally define privately programmable PRFs (PP-PRFs) and
give a construction based on our shiftable PRF from Sect. 3.

5.1 Definitions

We start by giving a variety of definitions related to “programmable functions”
and privately programmable PRFs. In particular, we give a simulation-based
definition that is adapted from [8].

Definition 6. A programmable function is a tuple (Setup,KeyGen,Eval,
Program,PEval) of efficient algorithms having the following interfaces (where
the domain X and range Y may depend on the security parameter):

– Setup(1λ, 1k), given the security parameter λ and a number k of programmable
inputs, outputs public parameters pp.

– KeyGen(pp), given the public parameters pp, outputs a master secret key msk.
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– Eval(pp,msk, x), given the master secret key and an input x ∈ X , outputs
some y ∈ Y.

– Program(pp,msk,P = {(xi, yi)}), given the master secret key msk and k pairs
(xi, yi) ∈ X × Y for distinct xi, outputs a programmed key skP .

– PEval(pp, skP , x), given a programmed key skP and an input x ∈ X , outputs
some y ∈ Y.

We now give several definitions that capture various functionality and secu-
rity properties for programmable functions. We start with the following correct-
ness property for programmed inputs.

Definition 7. A programmable function is statistically programmable if for all
λ, k = poly(λ) ∈ N, all sets of k pairs P = {(xi, yi)} ⊆ X ×Y (with distinct xi),
and all i ∈ [k] we have

Pr
pp←Setup(1λ,1k)
msk←KeyGen(pp)

skP←Program(pp,msk,P)

[PEval(pp, skP , xi) �= yi] = negl(λ). (54)

We now define a notion of weak simulation security, in which the adversary
names the inputs at which the function is programmed, but the outputs are
chosen at random (and not revealed to the adversary). As before, we always
assume without loss of generality that the adversary never queries the same
input x more than once in the various experiments we define.

Definition 8. A programmable function is weakly simulation secure if there is
a PPT simulator S such that for any PPT adversary A and any polynomial
k = k(λ),

{RealWeakPPRFA(1λ, 1k)}λ∈N

c≈ {IdealWeakPPRFA,S(1λ, 1k)}λ∈N
, (55)

where RealWeakPPRF and IdealWeakPPRF are the respective views of A in the
procedures defined in Fig. 3.

procedure RealWeakPPRFA(1λ, 1k)
{xi}i∈[k] ← A(1λ, 1k)
{yi}i∈[k] ← Y
pp ← Setup(1λ, 1k)
msk ← KeyGen(pp)
sk ←

Program(pp,msk, {(xi, yi)})
(pp, sk) → A
repeat

x ← A
Eval(pp,msk, x) → A

until A halts

(a) The real experiment

procedure
IdealWeakPPRFA,S(1λ, 1k)

{xi}i∈[k] ← A(1λ, 1k)

(pp, sk) ← S(1λ, 1k)
(pp, sk) → A
repeat

x ← A
if x /∈ {xi} then

PEval(pp, sk, x) → A
else

y ← Y; y → A
until A halts

(b) The ideal experiment

Fig. 3. The (weak) real and ideal experiments.
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Similarly to Definition 4, the above definition simultaneously captures privacy
of the programmed inputs given the programmed key, pseudorandomness on
those inputs, and correctness of PEval on non-programmed inputs.

Definition 9. A programmable function is a weak privately programmable PRF
if it is statistically programmable (Definition 7) and weakly simulation secure
(Definition 8).

We now define a notion of (non-weak) simulation security for programmable
functions. This differs from the weak notion in that the adversary specifies the
programmed inputs and corresponding outputs, and the simulator in the ideal
game is also given these input-output pairs. The simulator needs this informa-
tion because otherwise the adversary could trivially distinguish the real and
ideal experiments by checking whether PEval(pp, skP , xi) = yi for one of the
programmed input-output pairs (xi, yi). Simulation security itself therefore does
not guarantee any privacy of the programmed inputs; below we give a separate
simulation-based definition which does.

Definition 10. A programmable function is simulation secure if there is a PPT
simulator S such that for any PPT adversary A and any polynomial k = k(λ),

{RealPPRFA(1λ, 1k)}λ∈N

c≈ {IdealPPRFA,S(1λ, 1k)}λ∈N
, (56)

where Real and Ideal are the respective views of A in the procedures defined in
Fig. 4.

We mention that a straightforward hybrid argument similar to one from [6]
shows that simulation security implies that (KeyGen,Eval) is a pseudorandom
function.

Finally, we define a notion of privacy for the programmed inputs. This says
that a key programmed on adversarially chosen inputs and random correspond-
ing outputs (that are not revealed to the adversary) does not reveal anything
about the programmed inputs.

procedure RealPPRFA(1λ, 1k)
P = {(xi, yi)} ← A(1λ, 1k)
pp ← Setup(1λ, 1k)
msk ← KeyGen(pp)
skP ← Program(pp,msk,P)
(pp, skP) → A
repeat

x ← A
Eval(pp,msk, x) → A

until A halts

(a) The real experiment

procedure IdealPPRFA,S(1λ, 1k)
P = {(xi, yi)} ← A(1λ, 1k)
(pp, skP) ← S(1λ,P)
(pp, skP) → A
repeat

x ← A
if x /∈ {xi} then

PEval(pp, skP , x) → A
else

y ← Y; y → A
until A halt

(b) The ideal experiment

Fig. 4. The real and ideal experiments
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procedure
RealPPRFPrivacyA(1λ, 1k)

{xi}i∈[k] ← A(1λ, 1k)
{yi}i∈[k] ← Y
pp ← Setup(1λ, 1k)
msk ← KeyGen(pp)
sk ←

Program(pp,msk, {(xi, yi)})
(pp, sk) → A
(a) The real experiment

procedure
IdealPPRFPrivacyA,S(1λ, 1k)

{xi}i∈[k] ← A(1λ, 1k)

(pp, sk) ← S(1λ, 1k)
(pp, sk) → A
(b) The ideal experiment

Fig. 5. The real and ideal privacy experiments

Definition 11. A programmable function is privately programmable if there is
a PPT simulator S such that for any PPT adversary A and any polynomial
k = k(λ),

{RealPPRFPrivacyA(1λ, 1k)}λ∈N

c≈ {IdealPPRFPrivacyA(1λ, 1k)}λ∈N
, (57)

where RealPPRFPrivacy and IdealPPRFPrivacy are the respective views of A in
the procedures defined in Fig. 5.

We now give our main security definition for PP-PRFs.

Definition 12. A programmable function is a privately programmable PRF if
it is statistically programmable, simulation secure, and privately programmable.

5.2 From Weak PP-PRFs to PP-PRFs

In this section we describe a general construction of a privately pro-
grammable PRF from any weak privately programmable PRF. Let Π ′ =
(Setup,KeyGen,Eval,Program,PEval) be a programmable function with domain
X and range Y, where we assume that Y is a finite additive group. The basic idea
behind the construction is simple: define the function as the sum of two parallel
copies of Π ′, and program it by programming the copies according to additive
secret-sharings of the desired outputs. Each component is therefore programmed
to uniformly random outputs, as required by weak simulation security.

Construction 3. We construct a programmable function Π as follows:

– Π.Setup(1λ, 1k): generate ppi ← Π ′.Setup(1λ, 1k) for i = 1, 2 and output
pp = (pp1, pp2).

– Π.KeyGen(pp): on input pp = (pp1, pp2) generate mski ← Π ′.KeyGen(ppi) for
i = 1, 2, and output msk = (msk1,msk2).

– Π.Eval(pp,msk, x): on input pp = (pp1, pp2), msk = (msk1,msk2), and x ∈
X output

Π ′.Eval(pp1,msk1, x) + Π ′.Eval(pp2,msk2, x).
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– Π.Program(pp,msk,P): on input pp = (pp1, pp2), msk = (msk1,msk2), k
pairs (xi, yi) ⊂ X ×Y, first sample uniformly random ri ← Y for i ∈ [k], then
output skP = (sk1, sk2) where

sk1 ← Π ′.Program(pp1,msk1,P1 = {(xi, ri)}) (58)
sk2 ← Π ′.Program(pp2,msk2,P2 = {(xi, yi − ri)}). (59)

– Π.PEval(pp, skP , x): on input pp = (pp1, pp2), skP = (sk1, sk2), and x ∈ X
output

Π ′.PEval(pp1, sk1, x) + Π ′.PEval(pp2, sk2, x).

Theorem 2. If Π ′ is a weak privately programmable PRF then Construction 3
is a privately programmable PRF.

Proof. This follows directly from Theorems 3 and 4, which respectively prove the
simulation security and private programmability of Construction 3, and from
the statistical programmability of Π ′, which obviously implies the statistical
programmability of Construction 3.

Theorem 3. If Π ′ is a weak privately programmable PRF then Π is simulation
secure.

Due to space constraints, the (straightforward) proof of Theorem3 is deferred
to the full version.

Theorem 4. If Π ′ is weakly simulation secure then Π is privately pro-
grammable.

Proof. Let S ′ be the simulator algorithm for the weak simulation security of Π ′.
Our simulator S(1λ, 1k) for the private programmability of Π simply generates
(ppi, ski) ← S ′(1λ, 1k) for i = 1, 2 and outputs (pp = (pp1, pp2), sk = (sk1, sk2)).
To show that S satisfies Definition 12 we define the following hybrids and show
that they are indistinguishable.

Hybrid H0: This is the experiment RealPPRFPrivacyA from Fig. 5.
Hybrid H1: This experiment is the same as the previous one, except that we

generate (pp1, sk1) ← S ′(1λ, 1k).
Hybrid H2: This experiment is the same as the previous one, except that we

generate (pp2, sk2) ← S ′(1λ, 1k). Observe that this experiment is identical to
the experiment IdealPPRFPrivacyA,S from Fig. 5.

Claim 11. We have H0
c≈ H1.

Proof. Let A be an adversary attempting to distinguish H0 and H1. We build an
adversary A′ against the weak simulation security of Π ′, which runs A internally.
When A outputs {xi}, A′ also outputs {xi}, receiving (pp1, sk1) in response.
Then A′ generates pp2 ← Π ′.Setup(1λ, 1k) and msk2 ← Π ′.KeyGen(pp2),
and chooses uniformly random ri ← Y for i ∈ [k]. It then generates
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sk2 ← Π ′.Program(pp2,msk2, {(xi, ri)}). Finally it gives (pp = (pp1, pp2), sk =
(sk1, sk2)) to A. It is straightforward to see that if A′ is in RealWeakPPRF
(respectively, IdealWeakPPRF) then the view of A is identical to its view H0

(resp., H1). So by weak simulation security of Π ′, we have H0
c≈ H1.

Claim 12. We have H1
c≈ H2.

Proof. This is entirely symmetrical to the proof of Claim 11, so we omit it.

This completes the proof of Theorem 4.

5.3 Construction of Weak Privately Programmable PRFs

In this section we construct a weak privately programmable PRF from our
shiftable function of Sect. 3. We first define the auxiliary function that the con-
struction will use. For {(xi,yi)}i∈[k] ⊂ {0, 1}� × Z

m
q where the xi are distinct,

define the function H{(xi,wi)}i∈[k]
: {0, 1}� → Z

m
q as

H{(xi,wi)}i∈[k]
(x)

{
wi if x = xi for some i,

0 otherwise.
(60)

Notice that the circuit size of H{(xi,wi)}i∈[k]
is upper bounded by some σ′ =

poly(n, k, log q).

Construction 4. Our weak privately programmable PRF with input space
X = {0, 1}� and output space Y = Z

m
p uses the SHSF from Sect. 3 with param-

eters q,B chosen as in Sect. 3.4, and is defined as follows:

– Setup(1λ, 1k): Output pp ← SHSF.Setup(1λ, 1σ′
).

– KeyGen(pp): Output msk ← SHSF.KeyGen(pp).
– Eval(pp,msk, x ∈ {0, 1}�): Compute yx = SHSF.Eval(pp,msk, x) and output

�yx�p.
– Program(pp,msk,P): Given k pairs (xi,yi) ∈ {0, 1}� × Z

m
p where the xi are

distinct, for each i ∈ [k] compute wi as follows: choose y′
i ← Z

m
q uniformly

at random conditioned on �y′
i�p = yi, and set

wi = y′
i − SHSF.Eval(pp,msk, xi). (61)

Output skP ← SHSF.Shift(pp,msk,H{(xi,wi)}).
– PEval(pp, skP , x): output �SHSF.SEval(pp, skP , x)�p.

5.4 Security Proof

Theorem 5. Construction 4 is a weak privately programmable PRF (Defi-
nition 9) assuming the hardness of LWEn−1,q,χ and 1D-R-SIS(zσ′+τ+1)m,p,q,B

(where z, τ are respectively the lengths of fresh GSW ciphertexts and secret keys
as used in SHSF) and the CPA security of the GSW encryption scheme.
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Proof. The proof follows immediately by Theorems 6 and 7 below.

Theorem 6. Assuming the hardness of LWEn−1,q,χ and 1D-R-
SIS(zσ′+τ+1)m,p,q,B and the CPA security of the GSW encryption scheme, Con-
struction 4 is weakly simulation secure.

Proof. Our simulator S(1λ, 1k) for Construction 4 simply outputs (pp, sk) ←
SHSF.S(1λ, 1σ′

). Let A be any polynomial-time adversary. To show that S satis-
fies Definition 10 we define a sequence of hybrid experiments and show that they
are indistinguishable.

Hybrid H0: This is the simulated experiment IdealWeakPPRFA,S (Fig. 3).
Hybrid H1: This is the same as the previous experiment, except that on

query x ∈ {xi}, instead of returning a uniformly random value from Z
m
p ,

we choose yx ← Z
m
q and output �yx�p.

Hybrid H2: This is the same as the previous experiment, except that we abort
if the event Borderline happens, where Borderline is as in Definition 5.

Hybrid H3: This is the same as the previous experiment, except that we ini-
tially choose uniformly random w′

i ← Z
m
q for i ∈ [k] and change how queries

for x ∈ {xi} are answered (the “else” clause in IdealWeakPPRFA,S): for
x = xj , we answer as �yx�p, where

yx = SHSF.SEval(pp, sk, x) − w′
j . (62)

Hybrid H4: This is the same as the previous experiment, except that we gener-
ate pp and sk as follows: we generate pp ← Setup(1λ, 1k), msk ← KeyGen(pp)
and sk ← SHSF.Shift(pp,msk,H{(xi,w′

i)}).
Hybrid H5: This is the same as the previous experiment, except that we answer

all queries as in the Eval algorithm, i.e., we output

�SHSF.Eval(pp,msk, x)�p. (63)

Hybrid H6: This is the same as the previous experiment, except that here we
generate sk as in the real game. Specifically, for each i ∈ [k] we choose a uni-
formly random vector yi ← Z

m
p and uniformly random y′

i ← Z
m
q conditioned

on �y′
i�p = yi, and then set

wi = y′
i − SHSF.Eval(pp,msk, x). (64)

We then set sk ← SHSF.Shift(pp,msk,H{(xi,wi)}).
Hybrid H7: This is the same as the previous experiment, except that we no

longer abort when Borderline happens. Observe that this is the real experiment
IdealRealPPRFA (Fig. 3).

The proofs of indistinguishability (either computational or statistical) for
adjacent hybrids are straightforward, and are deferred to the full version for lack
of space.

Theorem 7. Construction 4 is statistically programmable.
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Proof. Fix any P = {(xi,yi)}i∈[k] ⊂ X ×Y. We need to show that for any i ∈ [k],

Pr
pp←Setup(1λ,1k)
msk←KeyGen(pp)

skP←Program(pp,msk,P)

[⌊
SHSF.SEval(pp, skP , xi)

⌉
p

�= yi

]
= negl(λ). (65)

By Lemma 3 we have

SHSF.SEval(pp, skP , xi) ≈ SHSF.Eval(pp,msk, xi) + H{(xi,wi)}(xi)
= SHSF.Eval(pp,msk, xi) + wi

= y′
i,

where the approximation hides some B-bounded error and the last equality
holds because wi = y′

i − SHSF.Eval(pp,msk, xi). Because y′
i is chosen uni-

formly at random such that �y′
i�p = yi, the probability that some coordinate of

SHSF.SEval(pp, skP , xi) is in q
p (Z + 1

2 ) + [−B,B] is at most 2mBp/q = negl(λ),
which establishes Eq. (65).
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Abstract. The hardness of the learning with errors (LWE) problem is
one of the most fruitful resources of modern cryptography. In particular,
it is one of the most prominent candidates for secure post-quantum cryp-
tography. Understanding its quantum complexity is therefore an impor-
tant goal.

We show that under quantum polynomial time reductions, LWE is
equivalent to a relaxed version of the dihedral coset problem (DCP),
which we call extrapolated DCP (eDCP). The extent of extrapolation
varies with the LWE noise rate. By considering different extents of
extrapolation, our result generalizes Regev’s famous proof that if DCP
is in BQP (quantum poly-time) then so is LWE (FOCS 02). We also dis-
cuss a connection between eDCP and Childs and Van Dam’s algorithm
for generalized hidden shift problems (SODA 07).

Our result implies that a BQP solution for LWE might not require
the full power of solving DCP, but rather only a solution for its relaxed
version, eDCP, which could be easier.

1 Introduction

The Learning With Errors problem LWEn,q,α with parameters n, q ∈ Z and
α ∈ (0, 1) consists in finding a vector s ∈ Z

n
q from arbitrarily many samples

(ai, 〈ai, s〉 + ei) ∈ Z
n
q × Zq, where ai is uniformly sampled in Z

n
q and ei is

sampled from DZ,αq, the discrete Gaussian distribution of standard deviation
parameter αq (i.e., the distribution such that DZ,αq(k) ∼ exp(−πk2/(αq)2) for
all k ∈ Z). Since its introduction by Regev [28,29], LWE has served as a security
foundation for numerous cryptographic primitives (see e.g. an overview in [24]).
The cryptographic attractiveness of LWE stems from two particularly desirable
properties. First, its algebraic simplicity enables the design of primitives with
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advanced functionalities, such as fully homomorphic encryption [8], attribute-
based encryption for all circuits [14] and (single key) functional encryption [13].
Second, LWE is conjectured hard even in the context of quantum computations,
making it one of the most appealing candidate security foundations for post-
quantum cryptography [5]. Current quantum algorithms for LWE do not out-
perform classical ones, but it is not clear whether this is inherent (for example, it
is known that LWE is easier than the Dihedral Coset Problem under polynomial-
time reductions, see below). In this work, we characterize the quantum hardness
of LWE under polynomial-time reductions and show that it is computationally
equivalent (up to small parameter losses) to a quantum problem closely related
to the aforementioned Dihedral Coset Problem.

LWE, Lattices and the Dihedral Coset Problem. LWE is tightly connected to
worst-case approximation problems over Euclidean lattices. In particular, LWE
is an (average-case) instance of the Bounded Distance Decoding problem (BDD)
(see, e.g., [21, Section 5.4]), but is also known to be as hard as worst-case BDD
(with some polynomial loss in parameters) [29]. BDD is the problem of finding
the closest lattice vector to a given target point which is promised to be very close
to the lattice (formally, closer than λ1/γ where λ1 is the length of the shortest
non-zero vector). Classical and quantum connections between BDD and other
problems such as SIVP, GapSVP, uSVP are also known [7,20,23,29].

Regev [25,27] showed that uSVP, and therefore also BDD and LWE, are no
harder to solve than the quantumly-defined Dihedral Coset Problem (DCP). An
instance of DCPN,�, for integer parameters N and �, consists of � quantum reg-
isters in superposition |0, xk〉 + |1, xk + s〉, with a common s ∈ ZN and random
and independent xk ∈ ZN for k ∈ [�]. The goal is to find s (information theoreti-
cally � = O(log N) is sufficient for this task [10]). We note that Regev considered
a variant with unbounded number of registers, but where a fraction of them is
faulty (a faulty state is of the form |b, xk〉 for arbitrary b ∈ {0, 1}, xk ∈ ZN ). In
our work, we assume a non-faulty formulation of DCP.

Still, it is quite possible that DCP is in fact much harder to solve than
LWE. The best known algorithm for DCP, due to Kuperberg [17], runs in time
2O(log �+log N/ log �) which does not improve upon classical methods for solving
LWE. Other variants of the problem were explored in [10,11], and of particular
relevance to this work is a “vector” variant of the problem where ZN is replaced
with Z

n
q (i.e. s and xk are now vectors). These problems behave similarly to

DCP with N = qn.
Finally, Regev showed that DCP can be solved given efficient algorithms for

the subset-sum problem (which is classically defined), however in a regime of
parameters that appears harder to solve than LWE itself.

Extrapolated DCP. The focus of this work is a generalization of the DCP prob-
lem, i.e. rather than considering registers containing |0, xk〉 + |1, xk + s〉, we
allow (1) xi’s and s be n-dimensional vectors, and (2) other than non-uniform
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distribution for amplitudes. We name this problem Extrapolated DCP (EDCP)
as its input registers has more extrapolated states. To be more precise,
EDCP�

n,N,f , with parameters three integers n,N, � and a function f : Z �→ C

with
∑

j∈Z
j · |f(j)|2 < +∞, consists in recovering s ∈ Z

n
N from the following �

states over Z × Z
n
N :
⎧
⎨

⎩

1
√∑

j∈Z
|f(j)|2

·
∑

j∈Z

f(j) |j,xk + j · s〉
⎫
⎬

⎭
k≤�

,

where the xk’s are arbitrary in Z
n
N .1 Note that DCP is the special case of EDCP

for n = 1 and f being the indicator function of {0, 1}.
In [9], Childs and van Dam consider a special case of EDCP where f is the

indicator function of {0, . . . ,M − 1} for some integer M , which we will refer to
as uniform EDCP (or, U-EDCP�

n,N,M ).

Our Main Result. We show that up to polynomial loss in parameters, U-EDCP is
equivalent to LWE. Thus we provide a formulation of the hardness assumption
underlying lattice-based cryptography in terms of the (generalized) Dihedral
Coset Problem.

Theorem 1 (Informal). There exists a quantum polynomial-time reduction
from LWEn,q,α to U-EDCP�

n,N,M , with N = q, � = poly(n log q) and M =
poly(n log q)

α . Conversely, there exists a polynomial-time reduction from U-EDCP
to LWE with the same parameter relationships, up to poly(n log q) factors.

Our proof crucially relies on a special case of EDCP where f is a Gaus-
sian weight function with standard deviation parameter r. We call this problem
Gaussian EDCP (G-EDCP). We show that G-EDCP and U-EDCP are equiva-
lent up to small parameter losses.

EDCP is analogous to LWE in many aspects. The decisional version of LWE
(dLWE) asks to distinguish between LWE samples and random samples of the
form (a, b) ∈ Z

n
q × Zq where both components are chosen uniformly at random.

Similarly, we also consider the decisional version of EDCP, denoted by dEDCP.
In dEDCPn,N,f , we are asked to distinguish between an EDCP state and a state
of the form

|j〉 |x mod N〉 ,

where j is distributed according to the function |f |2, and x ∈ Z
n
N is uniformly

chosen. EDCP enjoys a reduction between its search and decisional variants via
LWE.

1 Note that the assumption on f implies, via Markov’s inequality, that one may restrict
the sum to a finite index set and obtain a superposition which remains within neg-
ligible �2 distance from the countable superposition above.
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Related work. In [9], Childs and van Dam show that U-EDCP�
1,N,M reduces

to the problem of finding all the solutions b ∈ {0, . . . , M − 1}k to the equa-
tion 〈b,x〉 = w mod N , where x and w are given and uniformly random mod-
ulo N . They interpret this as an integer linear program and use lattice reduc-
tion, within Lenstra’s algorithm [19], to solve it. This leads to a polynomial-time
algorithm for U-EDCP�

1,N,M when M = 	N1/k
 and � ≥ k, for any k ≥ 3. Inter-
estingly, finding small solutions to the equation 〈b,x〉 = w mod N is a special
case of the Inhomogeneous Small Integer Solution problem [12] (ISIS), which
consists in finding a small-norm x such that Bx = w mod q, with B ∈ Z

n×m
q

and w ∈ Z
n
q uniform (where q, n,m are integer parameters). A reduction from

the homogeneous SIS (i.e., with w = 0 and x �= 0) to LWE was provided in [31].
It does not seem possible to derive from it a reduction from EDCP to LWE
via the Childs and van Dam variant of ISIS, most notably because the reduc-
tion from [31] does not provide a way to compute all ISIS solutions within a
box {0, 1, . . . ,M − 1}k.

It is not hard to see that, at least so long as M is polynomial, a solution
to DCP implies a solution to EDCP�

n,N,M . Therefore our result implies [25] as
a special case. On the other extreme, our result also subsumes [9] since the
LLL algorithm [18] can be used to solve LWEn,q,α in polynomial time when 1/α
and q are 2Θ(n), which implies a polynomial-time algorithm for EDCP for M =
2Θ(

√
n log N), significantly improving Childs and van Dam’s M = 2εn log N .

Finally, we observe that the LWE to U-EDCP reduction (and the uSVP to
DCP reduction from [27]) can be adapted to a uSVP to U-EDCP reduction, as
explained below. Combining this adaptation with the reduction from U-EDCP to
LWE (via G-EDCP) provides a novel quantum reduction from worst-case lattice
problems to LWE. However, it does not seem to have advantages compared
to [29].

1.1 Technical Overview

As mentioned above, the hardness of LWE is essentially invariant so long as
n log q is preserved, and therefore we restrict our attention in this overview to
the one-dimensional setting. A crucial ingredient in our reduction is a weighted
version of EDCP, denoted by G-EDCP and quantified by a Gaussian weight
function fr(j) =ρr(j) = exp(−πj2/r2), for some standard deviation parameter r.
We refer to this problem as Gaussian EDCP (G-EDCP).

Reducing G-EDCP to LWE. Given an G-EDCP state as input, our reduction
efficiently transforms it into a classical LWE sample with constant success prob-
ability. Thus, making only one query to the LWE oracle, we are able to solve
G-EDCP. More precisely, the reduction input consists of a normalized state
corresponding to

∑
j∈ZN

ρr(j) |j〉 |x + j · s mod N〉, for some integers r  N .
One can think of N as the LWE modulus and of r as the standard deviation
parameter of the LWE error.
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LWE
n,

1
α

,α

U-EDCP 1
α

)n
,poly(n),

1
α

G-EDCP 1
α

)n
,poly(n), 1

α

Lemma 8 Lemma 9

BDDα uSVP1/α

GapSVP1/α

DCP 1
α

)n
,poly(n)

Subset Sum

Theorems 2, 3 Theorem 4

[28, 29]

Lemma 11

[25]

[20]

[25]

Fig. 1. Graph of reductions between the LWE problem (upper-left), worst-case lattice
problems (upper-right), combinatorial problems (lower-right) and the Extrapolated
Dihedral Coset problems (lower-left). Parameters α are given up to poly(n)-factors,
where n is the dimension of the LWE problem. The same n stands for the lattice-
dimension considered in problems of the upper-right corner. The subset-sum problem
stated in the lower-right corner is of density ≈1 (in particular, the expected number of
solutions is constant).

Our first step is to apply a quantum Fourier transform over ZN to the second
register. This gives us a quantum superposition of the form:

∑

a∈ZN

∑

j∈ZN

ω
a·(x+j·s)
N · ρr(j) |j〉 |a〉 .

where ωN = exp(2iπ/N). We then measure the second register and obtain a
value â ∈ ZN . This leaves us with the state:

∑

j∈ZN

ωj·â·s
N · ρr(j) |j〉 |â〉 .

Note that â is uniformly random over ZN , which at the end serves as the first
component of LWE sample. The exponent of relative phase in current state has a
form similar to the second component of LWE sample but without noise. Now we
can benefit from the first register, which stores a superposition corresponding to
a Gaussian distribution over ZN with standard deviation r. Applying a second
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quantum Fourier transform over ZN to the first register gives us a quantum
superposition of the form:

∑

b∈ZN

∑

j∈ZN

ω
j·(â·s+b)
N · ρr(j) |b〉 .

Now the second component of the LWE sample â ·s+ b is stored in the phase
(up to a factor j). Omitting the exponentially small Gaussian tail, we assume
the summation for j is taken over the integers. An application of the Poisson
summation formula transfers â · s + b into a shift of the Gaussian distribution
defined over Z. In other words, the received state is exponentially close to the
superposition: ∑

e∈ZN

ρ1/r

( e

N

)
|−â · s + e〉 .

Once we measure the state above, we obtain a value −â·s+e, where e ←↩ DZ,N/r.
Together with already known â, this gives us an LWE sample:

(−â,−â · s + e) .

In case the input state is of the form |j〉 |x mod N〉, where j is distributed
according to the function ρ2

r, and x ∈ ZN is uniformly chosen (the decisional
case), the reduction outlined above outputs a uniform random pair (a, b) from
ZN ×ZN . This gives a reduction from decisional version of G-EDCP to decisional
version of LWE.

Reducing LWE to G-EDCP. Our reduction from LWE to G-EDCP follows the
general design of Regev’s reduction from uSVP to DCP [27], with several twists
that enable simplifications and improvements. We note that this reduction is
folklore,2 although we could not find it described explicitly.

First, the use of LWE rather than uSVP allows us to avoid Regev’s initial sub-
reduction from uSVP to BDD, as LWE is a randomized variant of BDD. Indeed,
if we consider m samples (ai, ai · s + ei) from LWEn,q,α, then we have a BDD
instance for the lattice Λ = AZq + qZm and the target vector t = b + e ∈ Z

m

with b ∈ Λ satisfying b = A · s mod q.
As Regev’s, our reduction proceeds by subdividing the ambient space R

m

with a coarse grid, setting the cell width between ‖e‖ and λ1(Λ). We map each
point y ∈ R

m to a cell φ(y). By choice of the cell width, we have φ(c1) �= φ(c2)
for any c1 �= c2 in Λ. Also for any c ∈ R

m, the vectors c and c+e are most likely
mapped to the same cell, as e is short. This intuition fails if a border between
two cells falls close to c. This (rare but non-negligibly so) event is the source of
the limitation on the number � of DCP/EDCP states produced by the reduction.
The space subdivision by a grid is illustrated in Fig. 2.

2 https://groups.google.com/d/msg/cryptanalytic-algorithms/uhr6gGrVkIk/XxEv4u
vEBwAJ.

https://groups.google.com/d/msg/cryptanalytic-algorithms/uhr6gGrVkIk/XxEv4uvEBwAJ
https://groups.google.com/d/msg/cryptanalytic-algorithms/uhr6gGrVkIk/XxEv4uvEBwAJ
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d

d

r

Fig. 2. A visualization of the space subdivision. Each radially shaded disk has width
r, the upper bound of the error ‖e‖. Each cell has width d, chosen to be between ‖e‖
and λ1(L)/

√
m. Note that the grid intersects the left-most disk, potentially leading to

an error in the reduction.

Regev’s reduction and ours differ in the way the grid is used to create the
DCP/EDCP states. Let us first briefly recall the core of Regev’s reduction.
Let B = (b1, . . . ,bm) be a basis of Λ and subtract an appropriate combination
of the bi’s from t to get t′ so that the coordinates x′ of the closest vector b′ ∈ Λ
to t′with respect to the bi’s are ≤ 2m (this may be achieved using LLL [18]
and Babai’s nearest plane algorithm [1]). The first step is the creation of a
superposition

∑

x∈Z
m

‖x‖∞≤22m

(|0,x, φ(Bx)〉 + |1,x, φ(Bx − t′)〉) =

|0〉
∑

x∈Z
m

‖x‖∞≤22m

|x, φ(Bx)〉 + |1〉
∑

x∈Z
m

‖x+x′‖∞≤22m

|x + x′, φ(Bx − e)〉 ,

where the equality holds by a change of variable. By measuring the last register,
with overwhelming probability this collapses to |0〉 |xk〉 + |1〉 |xk + x′〉, which
corresponds to an m-dimensional DCP input state with modulus 2O(m). The
whole process can be repeated multiple times using the same input vector t, and
results in different xk’s but a common x′. Each iteration may fail because of an ill-
placed cell delimitation, or if xk +x′ has a coordinate whose magnitude is larger
than 22m. This leads to a bounded number of correct DCP input states. Finally,
m-dimensional DCP can be reduced to 1-dimensional DCP, with a significant
modulus increase: the resulting modulus N is 2O(m2).
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Instead of using a superposition based on the coordinates with respect to
a basis, we exploit the special form of Λ = aZq + qZm (w.l.o.g., assume 1-
dimensional LWE, [7]). We start with the following superposition:
∑

x∈Zq

|0, x, φ(ax)〉 + |1, x, φ(ax − t)〉= |0〉
∑

x∈Zq

|x, φ(ax)〉 + |1〉
∑

x∈Zq

|x + s, φ(ax − e)〉 .

We then measure the last register (classically known and omitted) and hopefully
obtain a superposition |0〉 |x〉 + |1〉 |x + s〉. This approach has several notable
advantages. First, by using a grid over the torus R

m/qRm, the only source of
failure is the position of the cell delimitation (coordinates cannot spill over, they
wrap around). Second, we directly end up with a DCP state, not a vectorial
variant thereof. Third, and most importantly, the DCP modulus N is only q
and not 2O(m2). Note that m should be set as Ω(log q) for s to be uniquely
determined by the LWE samples. This improvement results in a much tighter
reduction.

The improvement stems from the use of a small modulus q rather than large
integer coordinates. It is possible to obtain such a small DCP modulus while
starting from BDD (rather than LWE), by modifying Regev’s reduction as fol-
lows. One may first reduce BDD to a variant thereof that asks to find the coor-
dinates of the BDD solution modulo a small modulus q rather than over the
integers. Such a reduction is presented in [29, Lemma 3.5]. One may then reduce
this BDD variant to DCP as we proceed for LWE. Note that this transforma-
tion makes the BDD to DCP reduction from [27] iterative: the DCP oracle is
called several times, and the input of an oracle call depends on the output of
the previous oracle calls. This is akin to the phenomenon described in the open
questions paragraph from [7].

A further difference between our reduction and the one from [27] is that we
consider larger multiples of s in the input superposition to obtain a state of the
form

∑
j ρr(j) |j〉 |x + js〉, with r ≈ 1/α (up to polynomial factors). This does

not lead to any extra complication, but leads us to G-EDCP rather than DCP,
which we crucially need to allow for a converse reduction. We conjecture that
G-EDCP is strictly easier than DCP.

As Regev [26], we can also improve the resulting deviation parameter r of
G-EDCP by a factor of

√
m using balls’ intersections rather than cube separa-

tion. We consider intersections of balls drawn around a · s and its noisy shifts.
The radius R of each ball is set to be the largest value such that the balls aris-
ing from different s (and their shifts) do not intersect. We are interested in the
intersection area the balls drawn around ±s,±2s, etc. Following Regev [26], this
area is large enough to guarantee that once we measure, we hit a point from the
intersection of all the balls (see grey areas in Fig. 3).

The same algorithm provides a reduction from dLWE to dG-EDCP. Given a
random sample (a,b) ∈ Z

m
q × Z

m
q , it suffices to show that all the balls centered

at as + jb for s ∈ Zq and j ∈ Z, do not intersect with each other. All the points
considered above form the lattice (a|b)Zq + qZ, We argue analogously using
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λ1(Λq(a))

d

R

Fig. 3. A visualization of the balls’ intersections. The lattice points (black dots) are
of distance first minimum of lattice aZq + qZ to each other. The distance between the
two furthest shifts ‖je‖ (red dots) has an upper bound, denoted by d. Each ball has
a radius R chosen to be (approximately) λ1(Λq(a))/2, where Λq(a) = aZq + qZ. Note
that once the shaded gray area is measured, the reduction succeeds in outputting an
G-EDCP sample. For the reduction to work with a constant success probability, the
shaded area has to have a large enough proportion compared to the volume of the balls.
(Color figure online)

the upper-bound on the minima of this lattice. As a result, the superposition
collapses exactly to one of the balls, which gives a random sample of dG-EDCP.

1.2 Open Problems

Towards an alternative reduction from EDCP to LWE. In [9], Childs and van
Dam obtain a state of the form

∑

a∈ZN

∑

j∈{0,...,M−1}�

〈j,y〉=a mod N

ωa·s
N |j〉 .

for some uniform y ∈ Z
�
N . Note the uniform distribution of weights for j. To

recover s, the authors use the Pretty Good Measurement technique from [16]
as was done in [2,3] for similar problems. Implementing this general technique
to this particular setup requires the construction of a POVM with operators
corresponding to superpositions of all the j’s in {0, . . . , M−1}� such that 〈j,y〉 =
a mod N . As we already mentioned, a unitary operator that realizes such a
POVM, uses a lattice-reduction technique as its main subroutine and, hence,
works efficiently only for large values of M .

The question we do not address here is the interpretation of the POVM
technique (and, possibly, a different reduction to LWE) for Gaussian-weighted
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superpositions. It might be simpler to obtain Gaussian j’s rather than uniform
from a cube, and hence it is possible that such a technique may lead to an
improved reduction to LWE.

Hardness of EDCP with more input states. We show in this work that LWE and
U-EDCP are computationally equivalent up to small parameter losses, when the
number of U-EDCP states � is polynomial. In these reductions, the U-EDCP
bound M is within a polynomial factor of the LWE noise rate 1/α. When
more states are available, U-EDCP is likely to become easier. For instance,
with M = 2, the best known algorithms when � is polynomially bounded
are exponential. Oppositely, Kuperberg’s algorithm [17] runs in time 2 ˜O(

√
log N)

when � = 2 ˜O(
√

log N). This suggests that there may be a U-EDCP self-reduction
allowing to trade � for M : Is it possible to reduce EDCPN,�,M to EDCPN,�′,M ′

with �′ ≤ �, while allowing for M ′ ≥ M?

2 Prerequisites

Notations. We use lower case bold letters to denote vectors and upper case
bold to denote matrices. For a vector x, we let ‖x‖∞ denote its �∞ norm and
‖x‖ denote its �2 norm. We let ZN denote the cyclic group {0, 1, · · · , N − 1}
with addition modulo N . We assume we can compute with real numbers. All the
arguments are valid if a sufficiently accurate approximation is used instead. For
a distribution D, the notation x ←↩ D means that x is sampled from D. For a
set S, we let x ←↩ S denote that x is a uniformly random element from S.

For any r > 0, we let ρr(x) denote exp(−π‖x‖2/r2), where x ∈ R
n for a

positive integer n. We let DZ,r denote a Gaussian distribution over the integers
with density function proportional to ρr(·). We let DΛ,r,c denote the Gaussian
distribution over the n-dimensional lattice Λ (for a positive integer n), with
standard deviation parameter r ∈ R and center c ∈ R

n. If c = 0, we omit it.
We let Bn(c, R) denote the n-dimensional Euclidean ball of radius R centered
at c ∈ R

n and Bn denotes the n-dimensional Euclidean unit ball centered at 0.
We use ωN as a short-hand for exp(2πi/N).

For a lattice Λ with a basis B, the parallelepiped P(B) = {Bx : 0 ≤ xi ≤ 1}
is a fundamental domain of Λ. We let λ1(Λ) (resp. λ∞

1 (Λ)) denote the �2-norm
(�∞-norm) of a shortest vector of Λ. We let Λ� = {y ∈ R

n : ∀x ∈ Λ, 〈x,y〉 ∈ Z}
denote the dual of a lattice Λ. We define the smoothing parameter ηε(Λ) as be
the smallest r such that ρ1/r(Λ�\{0}) ≤ ε for an n-dimensional lattice Λ and
positive ε > 0.

For A ∈ Z
m×n
q , we define two lattices Λq(A) = {Ax mod q : x ∈ Z

n
q } and

Λ⊥
q (A) = {y ∈ Z

n
q s.t. Ay = 0 mod q}.

We introduce a variable κ to relate all the parameters involved in the defini-
tions below. Namely, n, q, etc. are actually functions in κ: n(κ), q(κ). We omit
the variable κ for clarity.
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Fig. 4. Graph of reductions between the extrapolated Dihedral Coset Problem instan-
tiated with uniform distribution over {0, 1, . . . , r − 1} (the first and the third problems
from the left) and �-sample Gaussian EDCP with parameter r (the middle problem).
We assume all the parameters n (the dimension), q (the modulus) and r are func-
tions of a common parameter κ. The most relevant choice of such a relation one can
keep in mind is when n, �, q and r are poly(κ). One can trace the losses in the param-
eters (with respect to the number of samples � and to r) once we move from one
problem to another. Notice that some reductions may be performed in two ways. For
example, using the self-reducibility property of EDCP (Lemma 10), we can bypass
Gaussian EDCP and have a more sample-efficient reduction from EDCP with large r
to an EDCP with smaller r. Similarly, Gaussian EDCP can be reduced to DCP either
directly (Lemma 11) or via uniform EDCP.

The two central reductions that show equivalence between LWE and EDCP prob-
lems are on the vertical line. As for EDCP, the LWE parameters n, q, and α are
functions of κ. We present two reductions from LWE to EDCP, the stronger one gives
a tighter result for the error-parameter by a factor of

√
m.

Definition 1 (Search LWE). Given a parameter κ, the input to the search
LWEm

n,q,χ with dimension n ≥ 1, modulus q ≥ 2 and distribution χ over Z,
consists of m ≥ n many samples of the form (a, b) ∈ Z

n
q ×Zq, with a ←↩ Zn

q , b =
〈a, s〉+e and e ←↩ χ, where s ∈ Z

n
q is uniformly chosen. We say that an algorithm

solves the search LWEm
n,q,χ if it outputs s with probability poly(1/(n log q)) in

time poly(n log q).

Definition 2 (Decision LWE). Given a parameter κ, the decisional LWEm
n,q,χ

with dimension n ≥ 1, modulus q ≥ 2 and distribution χ over Z, asks to dis-
tinguish between m ≥ n many LWE samples and random samples of the form
(a, b) ∈ Z

n
q ×Zq, with a ←↩ Zn

q , b ←↩ Zq. We say that an algorithm solves the deci-
sional LWEm

n,q,χ if it succeeds in distinguishing with probability poly(1/(n log q))
in time poly(n log q).
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We let LWEm
n,q,α (resp. dLWEm

n,q,α) denote search (resp. decisional) LWE
problem with m samples of dimension n, modulus q, error distributed as DZ,αq.

Definition 3 (Dihedral Coset Problem). Given a parameter κ, the input
to the DCP�

N with modulus N consists of � states. Each state is of the form
(normalization is omitted)

|0〉 |x〉 + |1〉 |(x + s) mod N〉 , (1)

stored on 1 + �log2 N� qubits, where x ∈ ZN is arbitrary and s ∈ ZN is fixed
throughout all the states. We say that an algorithm solves DCP�

N if it outputs s
with probability poly(1/ log N) in time poly(log N).

Note that Regev in [25] defines the Dihedral Coset problem slightly dif-
ferently. Namely, he introduces a failure parameter f(κ), and with probability
≤ 1/(log N(κ)f(κ)), we have a state of the form |b〉 |x〉 for arbitrary b ∈ {0, 1}n

and x ∈ ZN . Such a state does not contain any information on s. Our defi-
nition takes 0 for the failure parameter. Conversely, Regev’s definition is our
Definition 3 with a reduced number of input states.

Now we define the problem which can be viewed as an extension of DCP.
Analogous to LWE, it has two versions: search and decisional.

Definition 4 (Search Extrapolated Dihedral Coset Problem). Given
a parameter κ, the input to the search Extrapolated Dihedral Coset Problem
(EDCP�

n,N,D) with dimension n, modulus N and a discrete distribution D, con-
sists of � input states of the form (normalization is omitted)

∑

j∈supp(D)

D(j) |j〉 |(x + j · s) mod N〉 , (2)

where x ∈ Z
n
N is arbitrary and s ∈ Z

n
N is fixed for all � states. We say

that an algorithm solves search EDCP�
n,N,D if it outputs s with probability

poly(1/(n log N)) in time poly(n log N).

Definition 5 (Decisional Extrapolated Dihedral Coset Problem). Given
a parameter κ, the decisional Extrapolated Dihedral Coset Problem (dEDCP�

n,N,D)
with modulus N and a discrete distribution D, asks to distinguish between � many
EDCP samples and � many random samples of the form

|jk〉 |xk mod N〉 , (3)

where jk ←↩ D2 and xk ∈ Z
n
N is uniformly chosen for 1 ≤ k ≤ �. We say that an

algorithm solves dEDCP�
n,N,D if it distinguishes the two cases with probability

poly(1/(n log N)) in time poly(n log N).

Different choices of D give rise to different instantiations of EDCP. The two
interesting ones are: (1) D is uniform over ZM for some M ∈ Z, which we further
denote as U-EDCP�

n,N,M and (2) D is Gaussian DZ,r, which we further denote
as G-EDCP�

n,N,r. The former, named the generalized hidden shift problem, was
already considered in [9]. The latter is central in our reductions. Correspondingly,
we call the decisional version of G-EDCP by dG-EDCP.
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Gaussian distribution on lattices. In the following, we recall some important
properties of discrete Gaussian distribution.

Lemma 1. For any κ, r > 0, we have ρr(Z\[−√
κr,

√
κr]) < 2−Ω(κ)ρr(Z).

A proof can be found in Appendix A in the full version [6].
From Lemma 1, we can see that the tail of Gaussian distribution has only

negligible proportion compared to the whole sum. We use this fact within a
quantum superposition state. For a quantum superposition state with Gaussian
amplitudes, the superposition corresponding to Gaussian distribution over full
lattice and the one without Gaussian tail have exponentially small �2 distance.

Lemma 2 ([4, Lemma 1.5(ii)]). For any n-dimensional lattice Λ and u ∈ R
n,

it holds that
ρr(Λ + u\B(0,

√
nr)) < 2−Ω(n)ρr(Λ).

Lemma 3 (Poisson Summation Formula). For any n-dimensional lattice Λ
and vector u ∈ R

n, it holds that

ρr(Λ + u) = det(Λ�) · rn ·
∑

x∈Λ�

e2πi〈x,u〉ρ1/r(x).

The following Lemma is originally due to Grover-Rudolph [15] and was
adapted to Gaussian distribution in [29].

Lemma 4 (Adapted from [29, Lemma 3.12]). Given a parameter κ and an
integer r, there exists an efficient quantum algorithm that outputs a state that is
within �2 distance 2−Ω(κ) of the normalized state corresponding to

∑

x∈Z

ρr(x) |x〉 .

The following two lemmata are well-known facts about lower-bounds on min-
imum of q-ary lattices.

Lemma 5. Given a uniformly chosen matrix A ∈ Z
m×n
q for some positive inte-

gers q, m and n such that m ≥ n, then we have λ∞
1 (Λq(A)) ≥ q(m−n)/m/2 and

λ∞
1 (Λ⊥

q (A)) ≥ qn/m/2 both with probability 1 − 2−m.

Lemma 6. Given a uniformly chosen matrix A ∈ Z
m×n
q for some positive inte-

ger q, m and n such that m ≥ n, then we have λ1(Λq(A)) ≥ min{q,
√

mq(m−n)/m

2
√

2πe
}

with probability 1 − 2−m.

Reductions between EDCP variants. In the following, we show that the EDCP
problem is analogue to the LWE problem in many aspects: (1) Gaussian-EDCP
(G-EDCP�′

n,N,r) and uniform-EDCP (U-EDCP�
n,N,M ) are equivalent, up to small

parameter losses; (2) EDCP enjoys the self-reduction property as we show in
Lemma 10. The main ingredient in both proofs is quantum rejection sampling
due to Ozols et al. [22].
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Lemma 7 ([22, Sect. 4]). There is a quantum rejection sampling algorithm,
which given as input

n∑

k=1

πk |k〉 |ηk〉 ,

for some probability πk, outputs

1
‖p‖

n∑

k=1

pk |k〉 |ηk〉 .

for some pk ≤ πk, with probability ‖p‖2 =
∑n

k=1 p2
k.

Lemma 8 (G-EDCP ≤ U-EDCP). Let N,n and � be integers greater than 1,
r be any real number, and let M = c · r for some constant c such that M is an
integer. Then there is a probabilistic reduction with run-time polynomial in κ,
from G-EDCP�

n,N,r to U-EDCPO(�/κ)
n,N,M .

Proof. We are given as input G-EDCP�
n,N,r states:

⎧
⎨

⎩

∑

j∈Z

ρr(j) |j〉 |(xk + j · s) mod N〉
⎫
⎬

⎭
k≤�

.

Our aim is to find s, given access to a U-EDCPO(�/κ)
n,N,cr oracle for some constant c.

For each G-EDCPn,N,r sample, we proceed as follows. We let sign(x) to
denote the sign of x, its output is either 1 (for ‘ + ’) or 0 (for ‘ − ’). We first
compute the sign of the first register and store it in a new register:

∑

j∈Z

ρr(j) |j〉 |(x + j · s) mod N〉 |sign(j)〉 .

Second, we measure the third register. Note that we observe 1 with probabil-
ity at least 1/2, independently over all k’s. If the observed value is 0, we discard
the state. From states with the observed value 1, we obtain (up to normalization):

∑

j∈Z+

ρr(j) |j〉 |(x + j · s) mod N〉 .

Using quantum rejection sampling (Lemma 7), we transform a G-EDCPN,�,r

state into a U-EDCPn,N,M state of the form
∑

j∈[0,M−1]

|j〉 |(x + j · s) mod N〉

with probability Ω(Mρ2
r(c · r)/r) = Ω(1).

We repeat the above procedure until we obtain O(�/κ) many U-EDCPn,N,M

states, which happens with probability ≥ 1−2−Ω(κ). We call the U-EDCPO(�/κ)
n,N,M

oracle to recover the secret s as the solution for the input G-EDCP�
n,N,r instance.
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Lemma 9 (U-EDCP ≤ G-EDCP). Let N , M , n and � be integers greater than
1, r be any real number, such that M =

√
κ·r = poly(κ) is an integer. Then there

is a probabilistic reduction with run-time polynomial in κ, from U-EDCP�
n,N,M

to G-EDCPO(�/κ1.5)
n,N,r .

Proof. We are given as input � many U-EDCP�
n,N,M states:

⎧
⎨

⎩

∑

j∈[0,M−1]

|j〉 |(x + j · s) mod N〉
⎫
⎬

⎭
k≤�

.

Our aim is to find s, given access to a G-EDCPO(�/κ1.5)
n,N,r oracle where r = M/

√
κ.

For each U-EDCPn,N,M state we proceed as follows. First, we symmetrize
the uniform distribution by applying the function f(x) = x − 	(M − 1)/2
 to
the first register:

∑

j∈[0,M−1]

|j − 	(M − 1)/2
〉 |(x + j · s) mod N〉 =
∑

j′∈
[
−� M−1

2 ,� M−1
2 �

]
|j′〉 |(x′ + j′ · s) mod N〉 ,

where j′ = j − 	(M − 1)/2
, x′ = x + �(M − 1)/2� · s.
Using rejection sampling (Lemma 7), with probability Ω(r/M) = Ω(1/

√
κ)

we transform each U-EDCPn,N,� M−1
2 � state into a G-EDCPn,N,r state:

∑

j′∈
[
−� M−1

2 ,� M−1
2 �

]
ρr(j′) |j′〉 |(x′ + j′ · s) mod N〉 .

According to Lemma 1, the latter is within the �2 distance of 2−Ω(κ) away
from the state ∑

j′∈Z

ρr(j′) |j′〉 |(x′ + j′ · s) mod N〉 .

We repeat the above procedure until we obtain O(�/κ1.5) many G-EDCPn,N,r

states, which happens with probability ≥ 1 − 2−Ω(κ). Then we can use the
G-EDCPO(�/κ1.5)

n,N,r oracle to recover the secret s as the solution to U-EDCP�
n,N,M .

Next, we show the self-reducibility property for EDCP. We refer the reader
to Appendix B in the full version [6] for the proof.

Lemma 10 (EDCP self-reduction). Let N,n, and � be integers greater than 1,
r1 and r2 be such that r1 > r2 and r1/r2 = O(κc) for any constant c. Then there
is a probabilistic reduction with run-time polynomial in κ, from G-EDCP�

n,N,r1

(resp. U-EDCP�
n,N,r1

) to G-EDCPO(�/κc+1)
n,N,r2

(resp. U-EDCPO(�/κc+1)
n,N,r2

).

In the following, we give a reduction from Gaussian-EDCP to DCP. Thus
uniform-EDCP can also be reduced to DCP in two ways: either via self-reduction,
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or via Gaussian-EDCP as the next lemma shows. This result is especially inter-
esting when the parameter r (or M for the uniform-EDCP) is super-polynomially
large, as in this case, Lemma 10 cannot be applied. Lemma below works with
1-dimensional EDCP. This is without loss of generality as we can combine our
main result (equivalence of LWE and EDCP) with the result of Brakerski et al.
[7] (equivalence of LWEn,q,α and LWE1,qn,α).

Lemma 11 (Gaussian-EDCP to DCP). Let N and � be arbitrary integers.
Then there is a probabilistic reduction with run-time polynomial in κ, from
G-EDCP�

1,N,r to DCPO(�/(log r·κ2))
N if r ≥ 3 log N , and from G-EDCP�

1,N,r to

DCPO(�/(r·κ))
N otherwise.

Proof. We are given as input � many G-EDCP1,N,r states:
⎧
⎨

⎩

∑

j∈Z

ρr(j) |j〉 |(xk + j · s) mod N〉
⎫
⎬

⎭
k≤�

.

We show how to find s if we are given access to a DCPO(�/(r·κ))
N oracle for

r < 3 log N , and a DCPO(�/(log r·κ2))
N oracle otherwise.

• Case r ≥ 3 log N .

According to Lemma 8, we can transform � many G-EDCP1,N,r states into
�/κ many U-EDCP1,N,M ′ states with M ′ = 2c · r + 1 for some constant c losing
a factor of κ samples. Assume we obtain �/κ many U-EDCP1,N,M ′ samples. For
each such state, we symmetrize the interval [0,M ′] as in the proof of Lemma 9.
Then we receive a uniform distribution over [−M,M ] for M = (M ′ − 1)/2. We
compute the absolute value of the first register and store it in a new register:

∑

j∈[−M,M ]

|j〉 |(x̂k + j · s) mod N〉 ||j|〉 , (4)

where x̂k = xk − M · s. We measure the third register and denote the observed
value by vk.

We make use of the two well-known facts from number theory. For proofs, the
reader may consult [30, Chap. 5]. First, there exist more than M/ log M many
primes that are smaller than M . Second, N has at most 2 log N/ log log N prime
factors. Thus there are at least M/ log M − 2 log N/ log log N many numbers
smaller than M that are co-prime with all prime factors of N .

From the above, with probability Ω(1/ log M) = Ω(1/ log r), the observed
value vk is non-zero and co-prime with N . If this is not the case, we discard the
state. Otherwise, we obtain (up to normalization):

|−vk〉 |(x̂k − vk · s) mod N〉 + |vk〉 |(x̂k + vk · s) mod N〉 .
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We multiply the value in the second register by v−1
k mod N :

|−vk〉 |(x′
k − s) mod N〉 + |vk〉 |(x′

k + s) mod N〉 ,

where x′
k = x̂k · v−1

k .
Let x̄k = x′

k − s mod N and s̄ = 2 · s mod N . Rewrite the above state as:

|−vk〉 |x̄k〉 + |vk〉 |(x̄k + s̄) mod N〉 .

As we know vk classically, we uncompute the first register and obtain a DCP
state:

|0〉 |x̄k〉 + |1〉 |(x̄k + s̄) mod N〉 . (5)

We repeat the above procedure until we obtain O(�/(log r ·κ2)) many DCPN

states with probability ≥ 1 − 2−Ω(κ).

• Case that r < 3 log N .

The first steps are identical to the proof for the case r ≥ 3 log N : Compute
the absolute value of the first register to get a state as in (4) and measure the
third register. Denote the observed value by vk. Now we keep only those states,
for which vk = 1 was observed. Otherwise, we do not use the state. In case
vk = 1, we can easily transform the result to the state given in (5) analogously
to the proof for r ≥ 3 log N .

Now we show that vk = 1 occurs with probability Ω(1/r) independently over
all k’s. Indeed,

Pr[vk = 1] =
ρr(1)2 + ρr(−1)2

∑
j∈Z

ρr(j)2
≥ 2 · ρr(1)2

∫
R

ρr(x)2dx + 1
=

2 · exp(− 2π
r2 )

r√
2

+ 1
= Ω

(1
r

)
.

We repeat the above procedure until we obtain O(�/(r ·κ)) many DCPN states,
which happens with probability ≥ 1 − 2−Ω(κ).

In both cases considered in this lemma, we can use the DCPO(�/(r·κ))
N oracle

and get the secret s̄. There are at most 2 possible values s such that s̄ = 2s mod
N : if there are 2 possibilities, we uniformly choose either, which decreases the
success probability by at most a factor of 2.

3 Reduction from LWE to EDCP

In this section, we reduce LWEm
n,q,α to G-EDCP�

n,q,r, where r ≈ 1/α up to a
factor of poly(n log q). Analogous to Regev’s reductions from uSVP to DCP, we
present two versions of the reduction from LWE to G-EDCP. The second one is
tighter with respect to the parameter losses. At the end of the section we show
that using the same algorithm, one can reduce the decisional version of LWE to
the decisional version of EDCP (see Definition 5).
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3.1 First Reduction: Using Cube Separation

The main result of this section is the following theorem.

Theorem 2 (LWE ≤ EDCP). Let (n, q, α) be LWE parameters and (n, q, r) be
EDCP parameters. Given m = n log q = Ω(κ) many LWEn,q,α samples, there
exists a probabilistic quantum reduction, with run-time polynomial in κ, from
LWEm

n,q,α to G-EDCP�
n,q,r, where r < 1/(32mκα�qn/m).

The main step of our reduction is to partition the ambient space R
m with an

appropriately chosen grid (cubes). This is analogous to Regev’s reduction from
uSVP to DCP [25]. Lemma 12 shows how we choose the width of the cell in our
grid. Figure 2 gives a 2-dimensional example of such a grid.

Lemma 12. For a constant c ≥ 8, a matrix A ∈ Z
m×n
q is randomly chosen for

integers q, n, m = n log q, and k ≥ m, consider a function

g : (x1, · · · , xm) → (	x1/z − w1 mod q̄
, · · · , 	xm/z − wm mod q̄
),

where z = q/c and z ∈ [1/c, 1/2] · λ∞
1 (Λq(A)), w1, . . . , wm are uniformly chosen

from [0, 1), and q̄ = q/z. Then for any x ∈ Z
n
q , we have the following two

statements.

– For any u = Ax+e1,v = Ax+e2 where ‖e1‖∞, ‖e2‖∞ ≤ λ∞
1 (Λq(A))/(2ck),

with probability (1 − 1/k)m, over the randomness of w1, · · · , wm, we have
g(u) = g(v).

– For any u = Ax+e1,v = Ax̂+e2, where ‖e1‖∞, ‖e2‖∞ ≤ λ∞
1 (Λq(A))/(2ck)

and x �= x̂ ∈ Z
n
q , we have g(u) �= g(v).

Proof

• Proof for the first claim.

Write u = Ax + e1 mod q and v = Ax + e2 mod q for some x ∈ Z
n
q and

‖e1‖∞, ‖e2‖∞ ≤ λ∞
1 (Λq(A))/(2ck).

Let diff denote the event that g(u) �= g(v), and, for all i ≤ m, let diffi

denote the event that the iþ coordinates of g(u) and g(v) differ. Since we choose
w1, . . . , wm independently and uniformly from [0, 1), we can consider each of m
dimension separately and view each e1,i/z+wi and e2,i/z+wi as random 1-dim.
real points inside an interval of length 1. We have

Pr
wi

[diffi] =
|e1,i − e2,i|

z
≤ z/k

z
=

1
k

,

where the inequality follows from the lower-bound on z. This implies

Pr
w

[no diff] =
∏

i≤m

(

1 − Pr
wi

[diffi]
)

≥
(

1 − 1
k

)m

.
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• Proof for the second claim.

Write u = Ax + e1 mod q and v = Ax̂ + e2 mod q for x �= x̂ ∈ Z
n
q and

‖e1‖∞, ‖e2‖∞ ≤ λ∞
1 (Λq(A))/(2ck). Then we have

g(u) =
⌊1
z

· (Ax) +
1
z

· e1 + w mod q̄
⌋
,

g(v) =
⌊1
z

· (Ax̂) +
1
z

· e2 + w mod q̄
⌋
.

Now we show that g(u) and g(v) differ in at least 1 coordinate. This is the
case if the arguments of the floor function differ by 1 in at least one coordinate,
i.e., ‖ 1

zA · (x − x̂) + 1
z (e1 − e2) mod q̄‖∞ ≥ 1.

Assume the contrary is the case. Note that due to our choice of ei and q̄,
‖ 1

z (e1 − e2) mod q̄‖∞ is either at most 1/k or at least q̄ − 1/k. Either way we
have ‖ 1

zA(x − x̂) mod q̄‖∞ < 1 + 1/k or ‖ 1
zA(x − x̂) mod q̄‖∞ > q̄ − 1 + 1/k.

Due to the bounds on z and c, the former case is equivalent to

‖A(x − x̂) mod q̄‖∞ < z + z/k ≤ λ∞
1 (Λq̄(A))

(
1
2 + 1

2k

)
≤ λ∞

1 (Λq̄(A)).

Hence, we have just found a vector in the lattice Λq̄(A) shorter than the mini-
mum of the lattice. In the latter case when ‖ 1

zA · (x− x̂) mod q̄‖∞ > q̄−1/k+1,
we obtain the same contradiction by noticing that Λq̄ contains q̄-ary vectors.

Proof (of Theorem 2). Assume we are given an LWEm
n,q,α instance (A,b0) with

b0 = A · s0 + e0 mod q. Our aim is to find s0 given access to a G-EDCP�
n,q,r

oracle.
We first prepare a necessary number of registers in the state |0〉 and transform

them to the state of the form (normalization omitted)
∑

s∈Zn
q

|0〉 |s〉 |0〉 . (6)

|0〉 Grover
Rudolf

Uf Uf

UEDCP

|0〉 QFTZn
q

|0〉
Ug

|0〉

|0〉 g(a · s − je0)

(6) (7) (3.1) (8) (3.1)

Fig. 5. Quantum circuit for our reduction LWE ≤ EDCP. All the global phases are
omitted. The input registers are assumed to have the required number of qubits. Func-
tion f is defined as Uf |j〉 |s〉 |0〉 → |j〉 |s〉 |As − jb mod q〉. Function Ug is the embed-
ding of function g described in Lemma 12, i.e. Ug |x〉 |0〉 → |x〉 |�x/z − w mod q̄	〉 for
appropriately chosen z,w, q̄.



Learning with Errors and Extrapolated Dihedral Cosets 721

We use Lemma 4 to obtain a state within �2 distance of 2−Ω(κ) away from
∑

s∈Zn
q

( ∑

j∈Z

ρr(j) |j〉
)

|s〉 |0〉 . (7)

According to Lemma 1, the state above is within �2 distance of 2−Ω(κ) away
from3

∑

s∈Z
n
q

j∈Z∩[−√
κ·r,√κ·r]

ρr(j) |j〉 |s〉 |0〉 .

We evaluate the function f(j, s) �→ As − j · b mod q and store the result in
the third register. The next equality follows from a change of variable on s

∑

s∈Z
n
q

j∈Z∩[−√
κ·r,√κ·r]

ρr(j) |j〉 |s〉 |As − j · As0 − je0〉 =
∑

s∈Z
n
q

j∈Z∩[−√
κ·r,√κ·r]

ρr(j) |j〉 |s + js0〉 |As − je0〉 .

Sample w1, . . . , wm uniformly from [0, 1). Set z = q/c for some constant
c ≥ 8, thus we have z ∈ [1/c, 1/2] · λ∞

1 (Λq(A)), where the upper bound holds
with probability 1 − 2−m = 1 − 2−Ω(κ) (see Lemma 5).

For x ∈ Z
m
q , we define

g(x) = (	(x1/z − w1) mod q̄
, . . . , 	(xm/z − wm) mod q̄
),

where q̄ = q/z = c. We evaluate the function g on the third register and store
the result on a new register. We obtain

∑

s∈Z
n
q

j∈Z∩[−√
κ·r,√κ·r]

ρr(j) |j〉 |s + j · s0〉 |As − j · e0〉 |g(As − j · e0)〉 . (8)

We measure the fourth register and do not consider it further. According to
Lemma 1, we have ‖e0‖∞ ≤ √

καq with probability ≥ 1 − 2−Ω(m) = 1 − 2−Ω(κ).
Recall that r < 1/(32m�καqn/m) ≤ 1/(4ckκαqn/m) for c = 8 and k = m�.
Therefore, we have ‖√κr · e0‖∞ ≤ λ∞

1 (Λq(A))/(2ck). Then by Lemma 12, we
obtain ∑

j∈Z∩[−√
κ·r,√κ·r]

ρr(j) |j〉 |s + j · s0〉 |As − j · e0〉

for some s ∈ Z
n
q , with probability (1 − 1/k)m over the randomness of A and

w1, · · · , wm.

3 Here we cut the tail of the Gaussian distribution on the first register. Otherwise, a
measurement that follows leads to a state mixed with noisy vectors from different
lattice points with large (unbounded) noise. However, it has �2 distance exponentially
close to the state we consider in the current algorithm.
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Finally, we evaluate the function (j, s,b) �→ b−As+ j ·b0 on the first three
registers, which gives 0. Discarding this 0-register, the state is of the form

∑

j∈Z∩[−√
κ·r,√κ·r]

ρr(j) |j〉 |s + j · s0〉 .

According to Lemma 1, the above state is within �2 distance of 2−Ω(κ) away
from ∑

j∈Z

ρr(j) |j〉 |s + j · s0〉 .

We repeat the above procedure � times, and with probability (1 − 1
k )m�, we

obtain � many G-EDCP�
n,q,r states
⎧
⎨

⎩

∑

j∈Z

ρr(j) |j〉 |xk + j · s0〉
⎫
⎬

⎭
k≤�

,

where xk ∈ Z
n
q .

Now we can call the G-EDCP�
n,q,r oracle with the above states as input and

obtain s0 as output of the oracle.

3.2 An Improved Reduction: Using Balls’ Intersection

Here we give an improved reduction from LWE to EDCP. Following the idea of
Regev [25, Sect. 3.3], instead of separating the ambient space Z

m by cubes, we
consider intersections of balls drawn around the points As and its shifts. Note
that with this reduction we improve the upper-bound on r essentially by the
factor of

√
m.

Theorem 3. (LWE ≤ EDCP). Let (n, q, α) be LWE parameters and (n, q, r)
be EDCP parameters. Given m = Ω(κ) many LWEn,q,α samples, there
exists a quantum reduction, with run-time polynomial in κ, from LWEm

n,q,α to
G-EDCP�

n,q,r, where r < 1/(6
√

2πe
√

mκ�αqn/m).

We give an intuitive idea of how the reduction works. All the necessary
lemmata and the full proof are given in Appendix B in the full version [6].

Informally, the reduction works as follows. Given an LWE instance (A,b =
As0 +e0) ∈ Z

m×n
q ×Z

m
q , for each s ∈ Z

n
q , we consider (in a superposition over all

such s) a lattice point As together with its small shifts of As−je0, where j’s are
drawn from a small interval symmetric around 0. So far this is exactly what we
did in the first (weaker) reduction. Note that we receive a configuration of points
in Z

m
q as depicted in Fig. 3. Note that contrary to Regev’s reduction, where there

is only one shift (i.e., the DCP case), our extrapolated version considers poly(κ)
shifts thus leading us to the EDCP case.
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Let us fix some As together with its shifts. Draw a ball around each shift of
a maximal radius R such that there is no intersection between the shifts coming
from different lattice points, i.e. there is no j, j′ s.t. B(As − je0, R) ∩ B(As′ −
j′e0, R) �= ∅ for any two s, s′ such that s �= s′. To satisfy this condition, we
can take R almost as large as the first minimum of the lattice Λq(A) (again, see
Fig. 3). With such an R, due to the fact that the shifts are small, the intersection
of the balls drawn around the shifts is large enough (see Lemma 13 in Appendix B
of the full version [6]). Hence, once we measure the register that ‘stores’ our balls,
the resulting state collapses (with large enough probability) to a superposition
of some As for one s and all its shifts. Informally, the higher this probability is,
the tighter the parameters achieved by the reduction.

3.3 Reduction from dLWE to dEDCP

As a corollary to the above theorem, we show that the decisional LWE can be
reduced to decisional EDCP. In fact, to establish the reduction, we use the same
algorithm as for Theorem 3 (a weaker reduction given in Theorem 2 will work
as well). Recall that in the proof, starting from an EDCP sample, we obtain an
LWE sample with non-negligible probability. Corollary 1 below shows that in
case we are given a tuple (A,b) drawn uniformly at random from Z

m×n
q × Z

m
q ,

the procedure described in Theorem 3 outputs a state of the form |j〉 |x mod N〉,
a uniform counterpart to EDCP in the sense of Definition 5. A proof of the
following corollary is given in Appendix B of the full version [6].

Corollary 1 (dLWE ≤ dEDCP). Let (n, q, α) be valid dLWE parameters and
(n, q, r) be valid dEDCP parameters. Given m = Ω(κ) many LWEn,q,α samples,
there exists a quantum reduction, with run-time polynomial in κ, from LWEm

n,q,α

to G-EDCP�
n,q,r, where r < 1/(6

√
2πe

√
mκ�αq(n+1)/m).

4 Reduction from EDCP to LWE

In this section, we reduce G-EDCP�
n,N,r to LWE�

n,N,α, where r ≈ 1/α up to a
factor of poly(n log N). Combined with the result of the previous section, this
gives us equivalence between the two problems: LWE and EDCP, for both search
and decisional variants.

Theorem 4 (EDCP ≤ LWE). Let (n,N, r) be valid EDCP parameters and
(n,N, α) with r = Ω(

√
κ) be valid LWE parameters. Given � = Ω(κ) many

G-EDCPn,N,r samples, there exists a quantum reduction, with run-time polyno-
mial in κ, from G-EDCP�

n,N,r to LWE�
n,N,α, where α = 1/r.
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QFTZN

∑
e∈Zq

ρ 1
r

(
e
q

)
|〈a′

k, s0〉 + e〉

QFTZ
n
N

ak

∑
j∈Z

ρr(j) |j〉 |xk + j · s0〉

(9) (11)

Fig. 6. Reduction from G-EDCP to LWE

Proof. Assume we are given � many EDCPn,N,r instances
⎧
⎨

⎩

∑

j∈Z

ρr(j) |j〉 |xk + j · s0 mod N〉
⎫
⎬

⎭
k∈[�]

.

Our aim is to find s0 given access to an LWE�
n,N,α oracle.

For each input state, the quantum Fourier transform over Zn
N is applied to the

second register, which yields (without loss of generality, consider the kþ sample)
∑

a∈Zn
N

∑

j∈Z

ω
〈a,(xk+j·s0)〉
N · ρr(j) |j〉 |a〉 . (9)

Then we measure the second register and let ak denote the observed value.
Note that each element of Zn

N is measured with probability 1/Nn and that the
distributions for different k’s are independent. Omitting the global phase of each
state, we obtain ∑

j∈Z

ω
〈ak,(j·s0)〉
N · ρr(j) |j〉 |ak〉 . (10)

We omit the second register as we know each ak classically. Since N � r, from
Lemma 1 it follows that the resulting state is within �2 distance of 2−Ω(κ) away
from the state (note the change in the range for j)

∑

j∈ZN

ω
j·〈ak,s0〉
N · ρr(j) |j〉 . (11)

For each such an input state, the quantum Fourier transform over ZN yields
∑

b∈ZN

∑

j∈ZN

ω
j·(〈ak,s0〉+b)
N · ρr(j) |b〉 . (12)

Once again we use Lemma 1 to argue that the state above is within �2 distance
of 2−Ω(κ) away from the state

∑

b∈ZN

∑

j∈Z

ω
j·(〈ak,s0〉+b)
N · ρr(j) |b〉 .
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Using the Poisson summation formula (Lemma 3) and changing the summation
variable to e ← N · j + 〈ak, s0〉 + b, the above state can be rewritten as

∑

b∈ZN

∑

j∈Z

ρ1/r

(
j +

〈ak, s0〉 + b

N

)
|b〉 =

∑

e∈Z

ρ1/r

( e

N

)
|〈a′

k, s0〉 + e mod N〉

where a′
k = −ak mod N . Since r = Ω(

√
κ), we can apply Lemma 1 to the above

state (for a scaled Z-lattice), and instead of the above state, consider the state
that is within a 2−Ω(κ) �2-distance from it, namely:

∑

e∈ZN

ρ1/r

( e

N

)
|〈a′

k, s0〉 + e〉 . (13)

Once we measure the state above, we obtain an LWE sample

(a′
k, 〈a′

k, s0〉 + ek) ,

where ek ←↩ DZ,N/r.
Now we can call the LWEn,N,α oracle for α = 1/r with the above states as

input and obtain s0 as output of the oracle.

4.1 Reduction from dEDCP to dLWE

Similar to the previous section where as a corollary we show that dLWE can be
reduced to dEDCP, we finish this section by a reverse reduction. Again we use
exactly the same reduction algorithm as for the search versions (see Fig. 6). Thus
it remains to show that we can obtain a uniform random sample (a, b) ∈ Z

n
N ×ZN

given as input a state of the form |j〉 |x mod N〉.
Corollary 2 (dEDCP ≤ dLWE). Let (n,N, r) be valid dG-EDCP parameters
and (n,N, α) be valid dLWE parameters. Given � = Ω(κ) many EDCPn,N,r

samples, there exists a quantum reduction, with run-time polynomial in κ, from
dG-EDCP�

n,N,r to dLWE�
n,N,α, where α = 1/r.

Proof. Assume we are given � many samples of EDCPn,N,r either of the form
⎧
⎨

⎩

∑

j∈Z

ρr(j) |j〉 |xk + j · s0〉 mod N

⎫
⎬

⎭
k∈[�]

or of the form
{|jk〉 |xk mod N〉}k∈[�] ,

where jk ←↩ D2
Z,r and xk ∈ Z

n
N is uniform. Our aim is to distinguish between

the above two forms given access to a dLWEn,N,α oracle.
As explained above, we assume that random samples of EDCP are given. For

each input state, after the quantum Fourier transform over Z
n
N on the second

register, we obtain ∑

a∈Zn
N

ω
〈xk,a〉
N |jk〉 |a〉 .
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Then we measure the second register and let ak denote the observed value.
Note that each element of Zn

N is measured with probability 1/Nn and that the
distributions for different k’s are independent. Up to a global phase, we have

|jk〉 |ak〉 .

We omit the second register which is known to us. According to Lemma 1,
with probability 1 − 2−Ω(κ), the value stored in the first register is in the range
[−	N/2
, �N/2� − 1]. Applying QFT over ZN to the first register, we obtain

∑

b∈ZN

ωjk·b
N |b〉 .

Once we measure the state above and let bk denote the observed value. Note
that each element of ZN is measured with probability 1/N and that the distri-
butions for different k’s are independent. We obtain a sample

(ak, bk) ,

where (ak, bk) are uniformly random from Z
n
N × ZN .
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Abstract. This paper suggests to use rounded Gaussians in place of
discrete Gaussians in rejection-sampling-based lattice signature schemes
like BLISS or Lyubashevsky’s signature scheme. We show that this dis-
tribution can efficiently be sampled from while additionally making it
easy to sample in constant time, systematically avoiding recent timing-
based side-channel attacks on lattice-based signatures.

We show the effectiveness of the new sampler by applying it to BLISS,
prove analogues of the security proofs for BLISS, and present an imple-
mentation that runs in constant time. Our implementation needs no pre-
computed tables and is twice as fast as the variable-time CDT sampler
posted by the BLISS authors with precomputed tables.

Keywords: Post-quantum cryptography · Lattice-based cryptography
Signatures · Gaussian sampling · BLISS
Constant-time implementations

1 Introduction

Lattice-based cryptography is a promising candidate for post-quantum cryp-
tography. A key reason for this – especially from an applied point of view –
is that it is known how to construct efficient signature and encryption/key-
exchange schemes from lattice assumptions. As both primitives are needed for
many applications this is an advantage as it allows for code reuse and relying
on one sort of cryptographic hardness assumptions instead of two. For all other
well-established candidate areas of post-quantum cryptography we only know
how to construct efficient and confidence-inspiring signatures or encryption/key-
exchange schemes.
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In this work we take a look at lattice-based signature schemes. The most effi-
cient lattice-based signature scheme with a security reduction from standard lat-
tice problems today is BLISS (Bimodal Lattice Signature Scheme) [11], designed
by Ducas, Durmus, Lepoint and Lyubashevsky. BLISS is one of the few post-
quantum schemes of which there already exists a production-level implementa-
tion. BLISS (or rather its subsequent improvement BLISS-b [10] by Ducas) is
available in the open-source IPsec Linux library strongSwan [24].

BLISS builds on Lyubashevsky’s signature scheme [16] which initiated the
use of rejection sampling to make the signature distribution independent of the
used secret key. In the most basic version of these schemes, a discrete Gaussian
vector is added to a vector that depends on the secret key. The resulting vector
follows a discrete Gaussian distribution that is shifted by a vector that depends
on the secret key. To avoid leaking the secret key, a rejection step is executed
that ensures that the output distribution is independent of the secret key, i.e.
the outputs follow again a centered discrete Gaussian distribution.

The use of discrete Gaussian vectors to blind secrets is a very common app-
roach in lattice-based cryptography. However, it is not trivial to sample from a
discrete Gaussian efficiently. Over the last few years, many works have been pub-
lished that deal with efficient sampling routines for discrete Gaussians, see e.g. [8,
11,12,19,21]. Despite the number of publications, none achieved constant-time
sampling. At CHES 2016, Groot-Bruinderink, Hülsing, Lange, and Yarom [7]
demonstrated that these sampling methods enable a cache attack on BLISS
which recovers the secret key after less than 5000 signatures. While the attack
is only implemented for two samplers, the appendix of the full version surveys
other efficient samplers and shows for each of them that they have similar issues.

In [7], the authors already discuss straightforward approaches for achieving
constant-time implementations of discrete Gaussian samplers, such as determin-
istically loading entire tables into cache or fixing the number of iterations for
some functions by introducing dummy rounds. While such approaches might
work for encryption schemes such as [5], signatures require much wider Gaus-
sians to achieve security. Hence, the impact on efficiency of applying these coun-
termeasures is larger, effectively rendering their use prohibitive.

A different way to deal with such attacks is to complicate the attack. Such a
heuristic approach was proposed by Saarinen [22]. However, this approach does
not fix the vulnerability, as shown by Pessl [18]; this only makes it harder to
exploit it. In consequence, it starts a cat-and-mouse game of attack and fix.

Our contribution. To stop such a cat-and-mouse game before it fully starts,
this work deals with ways to systematically fix the vulnerability. We propose to
take a completely different approach by replacing discrete Gaussians by a dif-
ferent distribution, namely the rounded Gaussian distribution. This distribution
shares the benefits of the discrete Gaussians that (slightly) shifted distributions
are relatively close to centered distributions. However, the security analysis of
using rounded Gaussians in Lyubashevsky’s scheme and in BLISS is somewhat
more involved than for discrete Gaussians as the probability density function of
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rounded Gaussians is the integral of a continuous Gaussian. Our main theoretical
contribution is a proof that it is safe to replace the discrete Gaussian distribu-
tion by a rounded Gaussian distribution in these schemes, while the resulting
rejection rates are identical.

As the name suggests, sampling from a rounded Gaussian is done by sampling
from a continuous Gaussian and rounding the result to an integer. The Box-
Muller method is an efficient way of computing samples of continuous Gaussians
starting from uniformly random numbers, and all steps leading to rounded Gaus-
sian samples are efficiently and easily computed in constant time. We present
a constant-time implementation of rounded Gaussians suitable for the BLISS-I
parameter set and show that it is more than twice as fast as a sampler based on
cumulative distribution tables (CDT) as implemented by the authors of BLISS.
The CDT sampler uses large precomputed tables to speed up sampling. Note
that the CDT sampler is exactly the one that [7] broke at CHES 2016. Using
rounded Gaussians brings better speed and better security. Another benefit of
rounded Gaussians is that they can use the Box-Muller sampler (see Sect. 4.1)
which naturally does not require any precomputed tables, hence can work with
a small code base, and furthermore is extremely easy to implement.

We conclude our work with our second theoretical contribution – a proof
that using rounded Gaussians, sampled using our Box-Muller implementation
is secure. For this we provide a detailed analysis of the new sampler. We study
the difference between (perfect) rounded Gaussians and implementations with
finite precision p using statistical distance and Rényi divergence. We also com-
pare the asymptotic results using these different measures. We instantiate the
calculation for BLISS parameters and the precision achieved by our Box-Muller
implementation to derive bounds on the allowable number of signatures per key
pair.

Related work. Rounded Gaussians are not a new distribution, in fact they
have been used in the initial proposals for learning with errors, but were
replaced by discrete Gaussians to make proofs and protocols easier (the sum
of two discrete Gaussians is a discrete Gaussian). See, e.g. Regev [20, p. 90]
for an overview of distributions and [9] for an analysis of wrapped rounded
Gaussians. Encryption schemes can be secure with narrow non-Gaussian distri-
butions (NTRU/Frodo/New Hope) but signatures are much harder to protect,
need much wider distributions (larger parameter σ), seemed to need discrete
Gaussians, and so far were analyzed only for discrete Gaussians.

The work in this paper is based on Smeets’ masters thesis [23]. After a first
version of our paper was circulated we became aware of a recent paper by Mic-
ciancio and Walter [17] which has a new proposal to perform sampling of discrete
Gaussians in constant time. The target of our paper is very different: Showing
that rounded Gaussians can efficiently be sampled in constant time and that
their use in signature schemes is safe.

Acknowledgements. The authors would like to thank Jacob Appelbaum for
discussions about the implementation; Daniel J. Bernstein for help with the
implementation, benchmarking, and many useful discussions; Leo Ducas for
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discussions about replacing discrete Gaussians in lattice-based signatures; and
Marko Boon for discussions about the standard deviation of the rounded Gaus-
sian distribution.

2 Preliminaries

Vectors, considered as column vectors, will be written in bold lower case let-
ters; matrices will be written in upper case bold letters. For a vector a =
(a1, a2, . . . , an) ∈ R

n, the Euclidean norm is defined by ‖a‖ =
√∑n

i=1 a2
i .

The ∞-norm is defined by ‖a‖∞ = max (|a1|, |a2|, . . . , |an|). The Hamming
weight wt(a) is the number of non-zero positions in a. For two vectors a =
(a1, a2, . . . , an) and b = (b1, b2, . . . , bn), both in R

n, denote the inner product
by 〈a,b〉 =

∑n
i=1 aibi.

In this paper we will be concerned with (discrete) probability functions. For

a distribution h, we denote by x
$←− h that x is sampled according to h. For a

set S we denote by s
$←− S that s ∈ S is sampled uniformly at random from S.

We now cover some background on Gaussian distributions and signature
schemes. We follow Lyubashevsky [16] closely and take definitions from there
with minor modifications. Many lattice-based schemes use rejection sampling to
massage one distribution to fit another. The following m-dimensional version
which samples once from the provided distribution and outputs with a certain
probability depending on both the target distribution and the sample is copied
from Lemma 4.7 of the full ePrint version of [16].

Lemma 2.1 (Rejection Sampling). Let V be an arbitrary set, and h : V → R

and f : Z
m → R be probability distributions. If gv : Z

m → R is a family of
probability distributions indexed by v ∈ V with the property

∃M ∈ R : ∀v ∈ V : Pr[Mgv(z) ≥ f(z); z $←− f ] ≥ 1 − ε,

then the distribution of the output of the following algorithm A:

1: v $←− h
2: z $←− gv

3: output (z,v) with probability min
(

f(z)
Mgv(z)

, 1
)

is within statistical distance ε/M of the distribution of the following algorithm F :

1: v $←− h
2: z $←− f
3: output (z,v) with probability 1/M .
Moreover, the probability that A outputs something is at least (1 − ε)/M .

2.1 Discrete Gaussian Distribution

The discrete Gaussian distribution is based on the continuous Gaussian distri-
bution. The definition of the continuous Gaussian distribution, also called the
Normal distribution, is given by:
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Definition 2.1. The continuous Gaussian distribution over R
m centered at

some v ∈ R
m with standard deviation σ is defined for x ∈ R

m as the (joint)

density ρm
v,σ(x) =

(
1√

2πσ2

)m

e
−‖x−v‖2

2σ2 .

When v = 0, we simply write ρm
σ (x). The definition of the discrete Gaussian

distribution is given by:

Definition 2.2. The discrete Gaussian distribution over Z
m centered at some

v ∈ Z
m with parameter σ is defined for x ∈ Z

m as Dm
v,σ(x) = ρm

v,σ(x)/ρm
σ (Zm),

where ρm
σ (Zm) =

∑
z∈Zm ρm

σ (z).

Note that the discrete Gaussian distribution is defined over all length-m
integer vectors in Z

m. However, samples with large entries have negligible prob-
ability. Implementations need to provision for the maximal size of coefficients
and table-based sampling schemes would require a lot of storage to cover rarely
used values and still not cover all possibilities. Therefore, a tail cut τ is used,
meaning that only integers in [−τσ, τσ]m are sampled. Results about the nec-
essary size of the tail cut can be found in [16] and Lemma A.2. In practice, τ
is often chosen as

√
2λ ln 2, where λ is the security level because that ensures a

negligible loss in values.

2.2 Lyubashevsky’s Signature Scheme

In 2012 Lyubashevsky [16] designed a signature scheme that uses an m × n
matrix S with small coefficients as secret key and the following two matrices as
public key: a random matrix A ∈ Z

n×m
2q ,m = 2n, and the n×n matrix T = AS

mod q, where q is an integer. The matrix A can be shared among all users,
but the matrix T is individual. To sign a message, the signer picks a vector y
according to the m-dimensional discrete Gaussian. Then c = H(Ay mod q, μ),
where H(·) is a hash function, and the potential signature vector z = Sc+y are
computed.

The system then uses rejection sampling to shape the distribution of z to
a centered discrete Gaussian, i.e., to decide whether to output the candidate
signature (z, c). In terms of Lemma 2.1, h is the distribution of Sc, gv is the
m-dimensional discrete Gaussian Dv,σ(z) centered around v = Sc, and f is the
m-dimensional centered discrete Gaussian Dm

σ (z).
Because Dm

σ (z) is independent of S the signatures do not leak information
about the private key.

2.3 Bimodal Lattice Signature Scheme: BLISS

Ducas, Durmus, Lepoint and Lyubashevsky introduced the Bimodal Lattice Sig-
nature Scheme (BLISS) in [11]. BLISS is an improvement of Lyubashevsky’s
signature scheme described above in that signatures are smaller and generated
faster. We only cover signature generation here as we are focusing on the use
of the discrete Gaussian distribution. For a full description of BLISS, see [11].
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BLISS uses a special hash function H mapping to {c ∈ {0, 1}n|wt(c) = κ} for
κ some small constant. A simplified version of the BLISS signature algorithm is
given in Algorithm 2.1.

Algorithm 2.1. Simplified BLISS Signature Algorithm using matrices
Input: Message μ, public key A ∈ Z

n×m
2q and secret key S ∈ Z

m×n
2q

Output: A signature (z, c) of the message μ
1: y ← Dm

σ

2: c ← H(Ay mod 2q, μ) // c ∈ {0, 1}n, wt(c) = κ, κ small constant
3: Choose a random bit b ∈ {0, 1}
4: z ← y + (−1)bSc

5: Output (z, c) with probability 1
/(

M exp
(
− ‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉

σ2

))

Given a message μ, the signing algorithm first samples a vector y from the
m-dimensional discrete Gaussian distribution Dm

σ . Then it computes the hash
c ← H(Ay mod 2q, μ). It samples a random bit b ∈ {0, 1} and computes the
potential signature z ← y + (−1)bSc. Now that the signing algorithm has z, it
performs rejection sampling according to Lemma2.1, i.e., it outputs the signature
(z, c) with probability 1

/(
M exp

(
−‖Sc‖2

2σ2

)
cosh

(
〈z,Sc〉

σ2

))
, where M is some

fixed positive real constant that is set large enough to ensure that this probability
is at most 1 for all choices of c. If the signature algorithm is unsuccessful, it
restarts with a fresh y and continues until a signature is output.

Again, rejection sampling is used to force the distribution of the output z to
be that of a centered Gaussian distribution (i.e., to be independent of Sc).

The bulk of the time in one round of the signing algorithm using BLISS
is spent in the first step in generating m samples from the one-dimensional
Gaussian. The number of repetitions depends on M and the size of Sc.

Bound on ‖Sc‖. The parameter σ of the discrete Gaussian distribution, the
size of Sc, and the rejection rate M control how much the distributions of the
target distribution Dm

σ and the input distribution overlap, i.e., how small ε can
be achieved. For BLISS the input distribution is a bimodal Gaussian distribution
0.5(Dm

−Sc,σ + Dm
Sc,σ). BLISS’ authors show that rejection sampling can be used

without error, i.e., ε = 0 is possible in Lemma 2.1 with resonable choices of σ
and M . In later sections we require an upper bound on ‖Sc‖ for proofs. In [11]
a new measure Nκ(X) of S, adapted to the form of c, is presented.

Definition 2.3. For any integer κ,Nκ : Rm×n → R is defined as:

Nκ(X) = max
I⊂{1,...,n},#I=κ

∑

i∈I

⎛

⎝ max
J⊂{1,...,n},#J=κ

∑

j∈J

Wi,j

⎞

⎠ ,

where W = XT · X ∈ R
n×n.
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With this definition, the authors of [11] show that for any c ∈ {0, 1}n with
wt(c) ≤ κ, we have ‖Sc‖2 ≤ Nκ(S) [11, Proposition 3.2]. In addition to the
use of bimodal Gaussians, this upper bound lowers the parameter σ by a factor
≈√

κ/2 compared to [16].

3 Rounded Gaussian Rejection Sampling

In this section we discuss the applicability of the rounded Gaussian distribution
in rejection-sampling-based signature schemes. After giving a formal definition
of the rounded Gaussian distribution, we provide proofs showing that it can be
used to replace the discrete Gaussian distribution in Lyubashevsky’s signature
scheme and in BLISS. We show the analogies between the rounded Gaussian
distribution and the discrete Gaussian distribution and we point out where the
security reductions differ when rounded Gaussians are used in place of discrete
Gaussians. In practice, the most important question is how the probability in
Step 5 in Algorithm 2.1 (and the equivalent on in Lyubashevsky’s scheme) needs
to change if y is sampled according to the rounded Gaussian distribution instead
of the discrete Gaussian distribution. Note, again, that this step determines the
rejection rate, i.e. how many times the algorithm needs to restart sampling fresh
randomness.

To simplify comparisons and show that rounded Gaussians can be used in
place of discrete Gaussians we follow the presentation and structure from [16]
and [11] very closely. The main difference is that the definition of rounded Gaus-
sians requires integrals over an interval of length 1, while the definition of discrete
Gaussians requires a division by the probability mass at all integers. We essen-
tially have to prove the same lemmas that were shown for discrete Gaussians
in [16] and [11] for rounded Gaussians. In the end closely analogous results hold
but the analysis turns out far more complicated than in the discrete Gaussian
setting because we have to deal with bounding integrals.

3.1 Rounded Gaussian Distribution

We now formally define the rounded Gaussian distribution. Intuitively, the
rounded Gaussian distribution is obtained by rounding samples from a continu-
ous Gaussian distribution to the nearest integer xi. To compute the probability
at an integer xi, we compute the integral over the interval (xi − 1

2 , xi + 1
2 ].

Definition 3.1. The rounded Gaussian distribution over Z
m centered at some

v ∈ Z
m with parameter σ is defined for x ∈ Z

m as

Rm
v,σ(x) =

∫

Ax

ρm
v,σ(s)ds =

∫

Ax

(
1√

2πσ2

)m

exp
(−‖s − v‖2

2σ2

)
ds,

where Ax denotes the area defined by
[
x1 − 1

2 ;x1 + 1
2

)×· · ·× [xm − 1
2 ;xm + 1

2

)
.
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We point out that this gives us vol(Ax) = 1, since the volume of this area is
equal to |(x1 + 1

2 ) − (x1 − 1
2 )| · · · |(xm + 1

2 ) − (xm − 1
2 )|. Note that the parameter

σ in the definition above is the standard deviation of the underlying continuous
Gaussian and not the standard deviation σ′ of the rounded Gaussian distribu-
tion, which is given by σ′ =

√
σ2 + 1

12 + ε(α), where ε(α) is some function of
small value with mean 0.

3.2 Using Rounded Gaussians in Lyubashevsky’s Scheme

The proofs by Lyubashevsky [16] for the discrete Gaussian distribution rely
on several lemmas for which we prove analogous statements in AppendixA.
The following lemma states that the centered rounded Gaussian Rm

σ (z) and
the shifted rounded Gaussian Rv,σ(z) are almost always close, and Theorem 3.1
applies it to the rejection-sampling Lemma 2.1.

Lemma 3.1. For any v ∈ Z
m, if σ = ω(‖v‖√log m), then

Pr
[
Rm

σ (z)/Rm
v,σ(z) = O(1); z $←− Rm

σ

]
= 1 − 2−ω(‖v‖√

log m).

This is proven in AppendixA.

Theorem 3.1. Let V be a subset of Zm in which all elements have norms less
than T, σ be some element in R such that σ = ω(T

√
log m), and h : V → R be

a probability distribution. Then there exists a constant M = O(1) such that the
distribution of the following algorithm A:

1: v $←− h
2: z $←− Rm

v,σ

3: output (z,v) with probability min
(

Rm
σ (z)

MRm
v,σ(z)

, 1
)

is within statistical distance 2−ω(log m)/M of the distribution of the following
algorithm F :

1: v $←− h
2: z $←− Rm

σ

3: output (z,v) with probability 1/M .
Moreover, the probability that A outputs something is at least (1−2−ω(log m))/M .

Proof. The proof of this theorem follows immediately from Lemma3.1 and the
general “rejection sampling” Lemma 2.1. ��

This theorem looks the same for rounded Gaussians and for discrete Gaus-
sians; see Appendix A.1 for a detailed comparison of the results.

3.3 Using Rounded Gaussians in BLISS

In Sect. 3.2 we have shown that we can use the rounded Gaussian distribution
in the rejection sampling scheme by Lyubashevsky [16]. In this section we show
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how to apply the rounded Gaussian distribution to BLISS and that the same
constant as in BLISS can be for rejection sampling.

BLISS randomly flips a bit to decide on adding or subtracting Sc, i.e., for
fixed Sc, z∗ is distributed according to the bimodal rounded Gaussian distribu-
tion gSc(z∗) = 1

2Rm
Sc,σ(z∗) + 1

2Rm
−Sc,σ(z∗). To avoid leaking any information on

the secret key S the scheme requires rejection sampling to change the bimodal
Gaussian to a centered Gaussian f(z∗) = Rm

σ (z∗). The probability to accept is
given by pz∗ = f(z∗) /MgSc(z∗) , where again M is chosen minimal such that
this probability is ≤ 1 for all z∗.

The results of this section are completely analogous to those in [11].
For any z∗ ∈ Z

m, we have

Pr[z = z∗] = 1
2Rm

Sc,σ(z∗) + 1
2Rm

−Sc,σ(z∗)

= 1
2

(
1√

2πσ2

)m ∫
Az∗ exp

(
−‖x−Sc‖2

2σ2

)
+ exp

(
−‖x+Sc‖2

2σ2

)
dx

= exp
(
−‖Sc‖2

2σ2

)(
1√

2πσ2

)m ∫
Az∗ exp

(
−‖x‖2

2σ2

)
cosh

(
〈x,Sc〉

σ2

)
dx.

(1)

The desired output is the centered rounded Gaussian distribution f(z∗), since
we need the centered property to avoid leaking S. Thus by Theorem 3.1, we
should accept the sample z∗ with probability:

pz∗ = f(z∗)/(MgSc(z
∗))

=

(
1√

2πσ2

)m ∫
Az∗ exp

(−‖x‖2/(2σ2)
)
dx

M exp (−‖Sc‖2/(2σ2))
(

1√
2πσ2

)m ∫
Az∗ exp (−‖x‖2/(2σ2)) cosh (〈x,Sc〉/σ2) dx

.

To compute a bound on M , we use Eq. (1) and that cosh(x) > 0 for any x.
This leads to the following upper bound:

pz∗ =

∫
Az∗ exp

(−‖x‖2/(2σ2)
)
dx

M exp (−‖Sc‖2/(2σ2))
∫

Az∗ exp (−‖x‖2/(2σ2)) cosh (〈x,Sc〉/σ2) dx

≤
∫

Az∗ exp
(−‖x‖2/(2σ2)

)
dx

M exp (−‖Sc‖2/(2σ2))
∫

Az∗ exp (−‖x‖2/(2σ2)) dx

= 1/(M exp
(−‖Sc‖2/(2σ2)

)
).

Now M needs to be chosen large enough such that pz∗ ≤ 1. Note that the last
inequality can only be used to estimate M , and not to define the probability.
It suffices that M = exp

(
1/(2α2)

)
’, where α > 0 is such that σ ≥ α‖Sc‖.

We can use the upper bound ‖Sc‖2 ≤ Nκ(S) as in Definition 2.3 to put M =
exp(Nκ(S)/2σ2); here κ denotes the sparsity of c in Algorithm 2.1. This is the
same constant as in BLISS.

3.4 BLISS Security Reduction

The security proof as given in [11] works for the rounded Gaussian distribu-
tion with very little tweaking. This is due to the changes made in the proofs



Rounded Gaussians 737

in Sect. 3.2 and AppendixA. All statements follow through when replacing the
discrete Gaussian distribution with the rounded Gaussian distribution. We do
not need to adjust the proofs for [11, Lemmas 3.3 and 3.5]. The proof for [11,
Lemma 3.4] uses σ ≥ 3/

√
2π which comes from [16, Lemma 4.4]. Our corre-

sponding result is Lemma A.2 which requires σ ≥√2/π. Next to that, we need
to adjust the definitions of f(z) and gSc(z) as above, such that these match the
rounded Gaussian distribution.

4 Practical Instantiation

In this section we discuss how we can implement a sampler for the rounded
Gaussian distribution. A very efficient and easy way to generate samples from
the continuous Gaussian distribution is based on the Box-Muller transform. We
state the algorithm and discuss an early rejection technique to prevent the com-
putation of values which would later be rejected due to the tail cut. Finally,
we analyze the output precision required for an implementation of the rounded
Gaussian distribution.

4.1 Box-Muller Transform

We begin by reviewing the Box-Muller transform [6] which is used to create
centered Gaussian distributed numbers with standard deviation σ = 1 from
uniform random distributed numbers. The algorithm is given as Algorithm4.1
below.

Algorithm 4.1. Box-Muller Sampling
Input: Two uniform numbers u1, u2 ∈ (0, 1]
Output: Two independent centered (continuous) Gaussian distributed numbers x1, x2

with standard deviation σ = 1
1: a ← √−2 ln u1

2: b ← 2πu2

3: (x1, x2) ← (a cos b, a sin b)
4: return (x1, x2)

4.2 Sampling Rounded Gaussians

We can now use the Box-Muller transform to create an algorithm for sampling
according to the rounded Gaussian distribution. For applying rounded Gaussians
to the signature scheme of BLISS, we need centered rounded Gaussians with
parameter σ. This is done by scaling the output xi for i = 1, 2 of the Box-Muller
sampling scheme z′

i = xi · σ and then rounding the nearest integer zi = �z′
i�.
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4.3 Rejection Sampling of Signatures

At the end of Algorithm 2.1 we need to output (z, c) with probability

2
∫

Az∗ exp
(−‖x‖2/(2σ2)

)
dx

M · exp (−‖Sc‖2/(2σ2))
(∫

Az∗ exp
(
−‖x−Sc‖2

2σ2

)
dx +

∫
Az∗ exp

(
−‖x+Sc‖2

2σ2

)
dx
)

(see Sect. 3.2).
Each of the three integrals factors, i.e., can be computed as the product of

one-dimensional integrals. Each one-dimensional integral is
∫ zi+1/2

zi−1/2

exp
(−x2

i

2σ2

)
dxi = σ

√
π

2

(
erf
(

zi + 1/2√
2σ2

)
− erf

(
zi − 1/2√

2σ2

))
,

i.e., a constant times a difference of two nearby values of the standard error
function (erf).

5 Code Analysis and Benchmarks

This section provides details about our implementation. First we give a general
overview over our implementation. Then we discuss the dependency between
floating point precision and allowable number of signatures. We end with timings
and a comparison to the BLISS CDT sampler.

5.1 Implementation Details

We have used the C++ vector class library VCL by Fog [13] for the implemen-
tation of the Box-Muller sampling and the rounded Gaussian sampling. This
library offers optimized vector operations for integers, floating point numbers
and booleans. We use Vec8d, which are vectors with 8 elements of double float-
ing point precision. This means that we are only limited by the maximum size
of the double type, i.e. values of at most 53 bits of precision.

According to [13], the trigonometric and logarithmic functions in VCL have
constant runtime, i.e. there is no timing difference dependent on the input. This
makes the library ideal for constant-time implementations. The square-root func-
tion sqrt(·) takes constant time, unless all 8 inputs are in {0, 1}, which can lead
to a timing difference for the square root. However, this is unlikely to happen:
the sqrt function is applied to 2 lnu1 and the logarithm function is strictly pos-
itive and thus the case of input 0 cannot appear; the probability of sampling 8
consecutive values u1i that all would evaluate 2 lnu1i = 1 is negligible, since each
u1i is sampled from (0, 1] with 53 bit precision, making this an event of proba-
bility at most 2−8·53. Therefore we have chosen not to circumvent this problem
in the implementation, even though one could also sacrifice a vector entry and
force it to have a nontrivial square root computation.

Computing with floating-point numbers causes a drop in precision. While Fog
states that operations in VCL lose at most one bit of precision with exception of
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several explicitly mentioned functions that can lose up to two bits of precision
such as the trigonometric functions, a more careful analysis of the code shows
that other operations keep (close to) the exact precision.

Sampling rounded Gaussians on top of VCL is only a few lines of code and
the data paths are short (see the code listing in Appendix F of the full version
[14]). The input of the code has 53 bits of precision and we loose at most 5 bits
of precision, i.e. the output of the code has at least p = 48 bits of precision.

Remark 1. We were asked how to round floating point numbers in constant
time. While VCL almost trivially rounds the entire vector in constant time, a
bit more care is necessary if one wants to implement this on single values. To
round |A| < 251 compute

(A + (252 + 251)) − (252 + 251)

in two arithmetic instructions or use assembly instructions.

5.2 Considerations Regarding the Precision

Samplers for discrete Gaussians typically require tables precomputed at a certain
precision. This raises the question of how much a low-precision table can skew
the distribution and whether this can lead to attacks. Similarly, floating-point
computations, such as in our sampler, can slowly degrade precision.

An error in the computation of y results in a value y′ which might be slightly
larger or smaller than y. The magnitude of the error depends on the size of the
value, e.g., values close to 0 have higher precision than larger values; in general
the error of y is bounded by |y|2−p.

When computing rounded Gaussians, most errors are insignificant because
most erroneous values still get rounded to the correct integer. However, errors
occurring close to the boundaries of the intervals [z − 1

2 , z + 1
2 ] can lead to

wrong outputs. The interval of values that can possibly round to z is given by
[z − 1

2 − el, z + 1
2 + er), where the left boundary error satisfies |el| ≤ 2−p

∣∣z − 1
2

∣∣

and the right boundary error satisfies |er| ≤ 2−p
∣∣z + 1

2

∣∣.
We define success for the attacker to mean that he breaks the signature

scheme or that he manages to distinguish between the implementation with
precision p and a perfect implementation.

Most papers use the statistical distance (DefinitionB.1) to study the relative
difference between two distributions. In [1] the authors showed that studying
the Rényi divergence between the distributions can lead to better and tighter
estimates.

In this section we work with the known precision p = 48 for our imple-
mentation and using the parameters for BLISS-I [11], we determine how many
signatures an adversary A can observe before the Rényi divergence between
the ideal implementation and the practical implementation becomes larger than
some small constant c; this means, his chance of breaking the system is at most
c times as high compared to the ideal implementation.
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We also provide an analysis of the asymptotic behavior of the precision p
compared to the standard deviation σ, the length m and the number of signa-
tures qs generated. The computations can be found in AppendixB. These results
are naturally less tight because we prioritize readable formulas over best approx-
imations. Accordingly, better results are obtained using numerical computations
once one settles on concrete parameters. The asymptotic analysis is helpful in
determining which distance or divergence to use.

To analyze the allowable number of signatures qs before an attack could
possibly distinguish the distributions, we look at the Rényi divergence of order
∞ as given in [1]:

Definition 5.1. For any two discrete probability distributions P and Q, such
that Supp(P ) ⊆ Supp(Q), the Rényi divergence of order ∞ is defined by

RD∞(P || Q) = max
x∈Supp(P )

P (x)
Q(x)

.

In BLISS using rounded Gaussians we publish m independently sampled inte-
gers distributed according to the 1-dimensional rounded Gaussian distribution
R1

σ to obtain an m-dimensional vector in Rm
σ . Next to that we assume qs sign-

ing queries. This means a potential attacker can learn a vector of length mqs

with entries from the (imprecise) real-world sampler R′1
σ . We want to determine

the probability that an attacker can distinguish between a vector sampled from
Rmqs

σ and R′mqs

σ .
By the probability preservation property (LemmaB.2) of the Rényi diver-

gence, any adversary A having success probability ε on the scheme imple-
mented with imprecise rounded Gaussian sampling has a success probability
δ ≥ ε/RD∞(R′mqs

σ || Rmqs
σ ) on the scheme implemented with the perfect rounded

Gaussian. For a target success probability ε we have to choose δ ≤ ε/ exp(1) to
have only a small, constant loss in tightness.

We need mqs samples to create qs signatures. By the multiplicative prop-
erty of the Rényi divergence (Lemma B.1), we have RD∞(R′mqs

σ || Rmqs
σ ) ≤

RD∞(R′1
σ || R1

σ)mqs , so we can relate the divergence of the one-dimensional
distributions to the mqs dimensional one. The formula becomes

RD∞(R′1
σ || R1

σ) =

max
z∈Supp(R′1

σ)

{∫ z+ 1
2+er

z− 1
2−el

1√
2πσ2

e−x2/(2σ2)dx

/∫ z+ 1
2

z− 1
2

1√
2πσ2

e−x2/(2σ2)dx

}

.

The BLISS-I parameters are σ = 215,m = 2n = 1024, and ε = 2−128, giving
τ =

√
2 · 128 ln(2) = 13.32, and we work with floating point precision p = 48.

We compute RD∞ numerically for the 1-dimensional case with Pari-GP with
precision 200 digits, giving RD∞(R′1

σ || R1
σ) ≈ 1.0000000000203563. Recall we

want RD∞(R′1
σ || R1

σ)mqs ≤ exp(1). For m = 1024 we get that qs = 225 gives
2.01262 < exp(1). This means that we can create 225 signatures, i.e., 1 signa-
ture/min for over 60 years, securely with one key pair. Note also that the choice
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of exp(1) is kind of arbitrary and other constants would be suitable as well. More-
over, provable security continues to degrade slowly after these 225 signatures. As
far as we know, no attack is known that would use the distinguishability of the
distributions.

Several papers, starting with [1], use Rényi divergence RDa of order a to
get much better results regarding the precision. We caution the reader that the
relation δ > εa/(a−1)/RDa, for a = 2, δ = 2−128 and constant RDa = 2, means
ε = 2−64, which is loose to the point of being meaningless. For the same looseness
we could use constant 264 in place of exp(1) in RD∞ and sign 288 times.

5.3 Implementation of Rejection Sampling of Signatures

There are many standard numerical techniques and libraries to efficiently com-
pute the complementary error function 1 − erf to high precision. We use the
following constant-time mixture of standard techniques: for fixed s, the integral
of e−x2

for x ranging from t−s/2 to t+s/2 is e−t2 (which we compute in constant
time using VCL) times a quickly converging power series in t2. For the constants
s = 1/

√
2σ2 relevant to BLISS-I through BLISS-IV, and for the entire range of t

allowed by our tail cut, the truncation error after five terms of this power series
is below the rounding error of double-precision floating-point computation.

Each of the three 1024-dimensional integrals is computed by the bigintegral
function shown in Appendix G of the full version [14], which is implemented in
just four lines of code, on top of the erfdiff function, which is implemented in
just two lines of code, plus a few constants precomputed from σ. The rest of the
code in Appendix G in [14] is for speeding up VCL’s exp by replacing it with a
streamlined fastexp; running a Monte-Carlo sanity check on bigintegral; and
benchmarking bigintegral.

Each call to bigintegral takes just 7800 cycles on a Haswell CPU core
using g++ 4.8.4 with standard compiler options (-O3 -fomit-frame-pointer
-std=gnu++11 -march=native -mtune=native -fabi-version=6), and there
are three integrals in the computation of rejection probabilities. (Dividing the
integrals and comparing to a random number is equivalent to multiplying the
random number by the denominator and comparing to the numerator, which
takes constant time.) We save a lot more than these 3 · 7800 = 23400 cycles in
the sampling step (see Table 5.1). Furthermore, the main point of the approach
is to produce constant-time implementations, and our code is constant time.

There are only a small number of possible inputs to erfdiff. Specifically,
each yi is an integer in [−τσ, τσ], and each entry of Sc is an integer bounded in
absolute value by 3κ for BLISS-I and II and 5κ for BLISS-III and IV, so each
erfdiff input is an integer bounded in absolute value by τσ + 3κ or τσ + 5κ
respectively.

To compute the effects of approximating erf and working with finite-precision
floating-point numbers we calculated the ratio of the result from our calculation
(for all possible erfdiff inputs) to the exact solution, where we used Sage’s
arbitrary-precision error fcn with 1000 bits of precision to very precisely com-
pute the exact solution. The one-dimensional Rényi divergence RD∞ of these
distributions is defined as the maximum of these fractions.
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For example, in 17 s on a 3.5 GHz Haswell core we calculate for BLISS-I that
RD∞(approx calculation || exact calculation) < 1 + 2−46.

Using that RD∞ is multiplicative and (1 + 2−46)2
46

< exp(1) we get that for
m = 1024 we can output 236 signatures without the attacker gaining more than a
factor of exp(1). This is more than the number in Sect. 5.2 so the approximation
is sufficiently good.

5.4 Timings for Sampling Rounded Gaussians

Another property that needs to be compared between the rounded Gaussian
distribution and the discrete Gaussian distribution is the time it takes to generate
one signature. We compare our implementation to the CDT implementation
from http://bliss.di.ens.fr/ which is a proof-of-concept, variable-time sampler
for discrete Gaussians.

Both the discrete Gaussian and the rounded Gaussian can be used in the
BLISS signature scheme as we have shown earlier. We now compare the time
that it takes to generate m = 1024 samples by the two sampling schemes. We
note that in a full implementation there are more steps to generate a signature,
e.g., the rejection step. However, as said before, these steps are not the bottle
neck and take approximately equal time for either sampling scheme; thus we do
not include them in the analysis.

Our implementation starts by drawing random bits from /dev/urandom and
then expanding them using ChaCha20 [3] to 8192 bytes of data. From that 128
vectors of 8 53-bit floating-point variables are initialized with randomness, corre-
sponding to the initial ui values in Algorithm 4.1. The rest of the implementation
follows closely the description of that algorithm.

Both implementations have been compiled using gcc with -O3. The bench-
marks have been run on a Haswell Intel(R) chip, i.e. Intel(R) Xeon(R) CPU
E3-1275 v3 3.50 GHz. All values given in Table 5.1 are given in CPU cycles.
We give the quartiles Q1 and Q3 and the median over 10 000 runs to show the
statistical stability.

In Table 5.1 we can clearly see that the rounded Gaussian implementation
is significantly faster than the discrete Gaussian implementation; the rounded
Gaussian implementation needs noticeably less than half the number of CPU
cycles compared to the discrete Gaussian implementation. We can also see that
generating the randomness takes a significant part of the total CPU cycle count.

While the difference in speed is significant we would like to point out that
the implementation we used for the discrete Gaussians is not fully optimized. It
is hard to predict how much faster a better implementation would be and how
much worse the performance would drop if countermeasures to achieve constant-
time behavior were implemented.

Our motivation after [7] was to find an alternative to hard-to-secure discrete
Gaussians, even if it was slower than current implementations. Our implemen-
tation shows that with less than 40 lines of code rounded Gaussians are at least
fully competitive.

http://bliss.di.ens.fr/
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Table 5.1. CPU cycles analysis for the rounded Gaussian sampling scheme and discrete
Gaussian sampling scheme with m = 1024 run on Intel(R) Xeon(R) CPU E3-1275 v3
3.50 GHz, stating median and quartiles for 10 000 runs.

Name of the scheme Q1 Median Q3

Rounded Gaussians
(including generating randomness)

47532 47576 47616

Rounded Gaussians
(without generating randomness)

27608 27672 27848

Discrete Gaussians
(including generating randomness)

115056 116272 127170

Discrete Gaussians
(without generating randomness)

77424 78136 78876
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The statements in the lemmas proven here differ slightly from those in [16] but
serve analogous purposes.

First we look at the inner product of a rounded Gaussian variable with any
vector in R

m.

Lemma A.1. For any fixed vector u ∈ R
m and any σ, r > 0, we have

Pr[|〈z + y,u〉| > r; z $←− Rm
σ ] ≤ 2e

− r2

2‖u‖2σ2 ,

where y ∈ [− 1
2 , 1

2

]m minimizes exp
(

1
σ2 〈z + y,u〉).

Proof. Let u ∈ R
m be fixed and let y ∈ [− 1

2 , 1
2

]m be such that exp
(

1
σ2 〈z + y,u〉)

is minimized. For any t > 0, we have for the expectation of exp
(

t
σ2 〈z + y,u〉),

taken over all z sampled from Rm
σ :

E
[
exp

(
t

σ2 〈z + y,u〉)] = exp
(

t
σ2 〈y,u〉) E

[
exp

(
t

σ2 〈z,u〉)]
= exp

(
t

σ2 〈y,u〉) ∑
z∈Zm

Pr[z] exp
(

1
σ2 〈z, tu〉)

=
∑

z∈Zm

∫
Az

(
1√

2πσ2

)m

exp
(

−‖x‖2

2σ2

)
dx exp

(
1

σ2 〈z + y, tu〉)

≤ ∑
z∈Zm

∫
Az

(
1√

2πσ2

)m

exp
(

−‖x‖2

2σ2

)
exp

(
1

σ2 〈x, tu〉) dx

=
∑

z∈Zm

∫
Az

(
1√

2πσ2

)m

exp
(

−‖x−tu‖2

2σ2

)
exp

(
t2‖u‖2

2σ2

)
dx

=
∑

z∈Zm
Rm

tu,σ(z) exp
(

t2‖u‖2

2σ2

)

= exp
(

t2‖u‖2

2σ2

)
,

where the last equality follows from the fact that
∑

z∈Zm

Rm
tu,σ(z) = 1 because it

is the sum over the entire range of the probability density function. We proceed
to prove the claim of the lemma by applying Markov’s inequality first and then
the above result. For any t > 0, we have:

Pr [〈z + y,u〉 > r] = Pr
[
exp
(

t
σ2 〈z + y,u〉) > exp

(
tr/σ2

)]

≤ (E
[
exp
(
t〈z + y,u〉/σ2

)]
)/(exp

(
tr/σ2

)
)

≤ exp
(
(t2‖u‖2 − 2tr)/(2σ2)

)
.

The function on the right assumes its maximum at t = r/‖u‖2, so we get
Pr [〈z + y,u〉 > r] ≤ exp

(−r2/(2‖u‖2σ2)
)
. Because the distribution is symmet-

ric around the origin we also know Pr[〈z + y,u〉 < −r] ≤ exp
(−r2/(2‖u‖2σ2)

)
.

By applying the union bound to the two inequalities, we get the probability for
|〈z + y,u〉| > r, which results in the claim of the lemma. ��
Lemma A.2. Under the conditions of LemmaA.1 we have:

1. For any kσ > 1/4(σ + 1), σ ≥ 1,Pr
[
|z| > kσ; z $←− R1

σ

]
≤ 2e

−(k− 1
2 )

2

2 .

2. For any z ∈ Z
m and σ ≥√2/π,Rm

σ (z) ≤ 2−m.

3. For any k > 1,Pr
[
‖z‖ > kσ

√
m; z $←− Rm

σ

]
< 2kme

m
2 (1−k2).
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Proof. Item 1 follows from Lemma A.1 by substituting m = 1, r = kσ − 1
2 and

u = 1. This gives

|z + y| = |z| − 1
2

> r = kσ − 1
2
.

In other words, |z| > kσ. Then we have for the upper bound of the
probability:

2 exp
(

− r2

2‖u‖2σ2

)
= 2 exp

(

−
(
kσ − 1

2

)2

2σ2

)

≤ 2 exp

(

−
(
k − 1

2

)2
σ2

2σ2

)

,

where we use − (kσ − 1
2

)2 ≤ − (k − 1
2

)2
σ2 for σ ≥ 1 in the inequality. Note that

for 0.44 < k < 1.89 item 3 actually provides a better bound.
To prove Item 2, we write

Rm
σ (z) =

(
1√

2πσ2

)m ∫
Az

e−‖x‖2/(2σ2)dx

≤
(

1√
2πσ2

)m

· max
x∈Az

e−‖x‖2/(2σ2) · vol(Az) ≤
(

1√
2πσ2

)m

,

where the first inequality follows from the fact that integrating a continuous
function on a bounded area is bounded from above by the maximum of the
function on the area times the volume of the area. The second inequality follows
from the fact that the volume of the area Az is equal to 1 and e−‖x‖2/(2σ2) ≤ 1
for all x ∈ Az for all z ∈ Z

m. Thus if σ ≥√2/π, we have Rm
σ ≤ 2−m.

For Item 3, we write the following:

Pr
[
‖z‖ > kσ

√
m; z $←− Rm

σ

]

=
∑

z∈Zm,‖z‖>kσ
√

m

(
1√

2πσ2

)m ∫
Az

e−‖x‖2/(2σ2)dx

≤
(

1√
2πσ2

)m ∑

z∈Zm,‖z‖>kσ
√

m

(
max
x∈Az

e−‖x‖2/(2σ2) · vol(Az)
)

≤
(

1√
2πσ2

)m ∑

z∈Zm,‖z‖>kσ
√

m

e−‖z+y‖2/(2σ2),

(2)

where y ∈ [− 1
2 , 1

2 ]m is chosen such that the maximum is attained, i.e. for each
zi we pick yi, i = 1, . . . , m in the following way:

yi =

⎧
⎨

⎩

− 1
2 if zi > 0,
0 if zi = 0,
1
2 if zi < 0.

(3)

We use the second part of a lemma by Banaszczyk [2, Lemma 1.5], saying
that for each c ≥ 1/

√
2π, lattice L of dimension m and u ∈ R

m, we have
∑

z∈L,‖z‖>c
√

m e−π‖z+u‖2
< 2

(
c
√

2πee−πc2
)n∑

z∈L e−π‖z‖2
, and put u = y. If

we scale the lattice L by a factor of 1/s for some constant s, we have that for
all s,

∑

z∈L,‖z‖>cs
√

m

e−π‖z+y‖2/s2
< 2
(
c
√

2πee−πc2
)m∑

z∈L

e−π‖z‖2/s2
.
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Setting L = Z
m and s =

√
2πσ, we obtain

∑

z∈Zm,‖z‖>c
√
2πσ2m

e−‖z+y‖2/(2σ2) < 2
(
c
√

2πee−πc2
)m ∑

z∈Zm

e−‖z‖2/(2σ2).

Finally, by setting c = k/
√

2π in the upper bound for the probability and
applying it to Eq. (2), we get

Pr
[
‖z‖ > kσ

√
m; z $←− Rm

σ

]
< 2kme

m
2 (1−k2)

(
1√

2πσ2

)m ∑

z∈Zm

e−‖z‖2/(2σ2).

Note that
(

1√
2πσ2

)m ∑

z∈Zm

exp(−‖z‖2/(2σ2)) = 1, since it is the probability

density function Rm
σ (z) summed over all possible values. Thus we have

Pr
[
‖z‖ > kσ

√
m; z $←− Rm

σ

]
< 2kme

m
2 (1−k2).

��
The following is the proof of Lemma3.1 from Sect. 3.

Proof. By definition we have

Rm
σ (z)

Rm
v,σ(z)

=

∫
Az

ρm
σ (x)dx

∫
Az

ρm
v,σ(x)dx

=

∫
Az

exp(−‖x‖2/(2σ2))dx
∫

Az
exp(−‖x − v‖2/(2σ2))dx

≤
max
x∈Az

e−‖x‖2/(2σ2) · vol(Az)

min
x∈Az

e−‖x−v‖2/(2σ2) · vol(Az)
=

exp(−‖z + y1‖2/(2σ2))
exp(−‖z − v + y2‖2/(2σ2))

,

where the inequality follows from the fact that integrating a continuous function
on a bounded area is bounded from below by its minimum on the area times the
volume of the area; y1 ∈ [− 1

2 , 1
2

]m is chosen such that the maximum is achieved
for ‖z + y1‖2, and y2 ∈ [− 1

2 , 1
2

]m is chosen such that the minimum is achieved
for ‖z−v+y2‖2. In other words, y1 ∈ [− 1

2 , 1
2

]m is defined as in Eq. (3) and for
y2 ∈ [− 1

2 , 1
2

]m we have for each zi − vi, i = 1, . . . ,m:

y2,i =
{− 1

2 if zi < vi,
1
2 if zi ≥ vi.

(4)

This results in the following formula:

e−‖z+y1‖2/(2σ2)

e−‖z−v+y2‖2/(2σ2)
exp

((‖y2‖2 − ‖y1‖2 + 2〈z,y2 − y1〉
) − 2〈z + y2,v〉 + ‖v‖2

2σ2

)
.

We want to combine ‖y2‖2 − ‖y1‖2 + 2〈z,y2 − y1〉 with the inner product
〈z + y2,v〉 into an inner product of the form 〈z + y,v + a〉 for some a, where
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y ∈ [−1/2, 1/2]m minimizes 〈z + y,v + a〉, such that we can apply LemmaA.1,
where we set u = v + a. We can write

‖y2‖2 − ‖y1‖2 + 2〈z,y2 − y1〉 =
m∑

i=1

(
y2
2,i − y2

1,i + 2zi (y2,i − y1,i)
)
.

Using the definition of y1,i and y2,i, for i = 1, . . . ,m we get the following
expression:

y2
2,i − y2

1,i + 2zi (y2,i − y1,i) =

⎧
⎪⎪⎨

⎪⎪⎩

= −2zi if zi < vi ∧ zi < 0,
= 1

4 if zi = 0,
= 2zi if zi ≥ vi ∧ zi > 0,
= 0 otherwise.

(5)

To create an upper bound of the form −2〈z + y,a〉, where y ∈ [− 1
2 , 1

2

]m

minimizes 〈z + y,v + a〉, we need to determine an expression for a, i.e. we
determine ai such that it fits Eq. (5). This gives us the following expressions for
the coordinates i = 1, . . . ,m:

−2aizi − 2aiyi =

⎧
⎨
⎩

−2aizi + ai if zi < 0,
−ai if zi = 0,

−2aizi − ai if zi > 0.
⇒ ai =

⎧
⎨
⎩

− 2zi
−2zi+1

if zi < 0,

− 1
4

if zi = 0,
− 2zi

2zi+1
if zi > 0.

Now we can write
m∑

i=1

(
y2
2,i − y2

1,i + 2zi (y2,i − y1,i)
) ≤ −2〈z + y,a〉, where a

is chosen as above such that −ziai ≤ 0 and |ai| ≤ 1 for i = 1, . . . , m and y
minimizes 〈z + y,a〉. Given y2 and y, we can write y2 = y + b, where we pick
bi ∈ {−1, 0, 1} for i = 1, . . . ,m such that the equation holds. Then we can write

2〈z + y2,v〉 = 2〈z + y,v〉 + 2〈b,v〉. We have |2〈b,v〉| =
∣∣∣∣

m∑

i=1

2bivi

∣∣∣∣ ≤ 2‖v‖2,
because bi ∈ {−1, 0, 1}, dependent on the value of zi and vi. Combining these
bounds and applying them to the previous result, gives us

exp
(
(
(‖y2‖2 − ‖y1‖2 + 2〈z,y2 − y1〉

)− 2〈z + y2,v〉 + ‖v‖2)/(2σ2)
)

≤ exp
(
(−2〈z + y,a〉 − 2〈z + y,v〉 − 2〈b,v〉 + ‖v‖2)/(2σ2)

)

≤ exp
(
(−2〈z + y,v + a〉 + 3‖v‖2)/(2σ2)

)
.

Lemma A.1 tells us that |〈z+y,v+a〉| ≤ σ
√

2 log m‖v+a‖ with probability
at least 1 − 2− log m if y minimizes 〈z + y,v + a〉 and if v + a ∈ Z

m. Since both
conditions hold, we have

exp
(

−2〈z+y2,v+a〉+3‖v‖2

2σ2

)
< exp

(
2
√
2 log m‖v+a‖+3‖v‖2

2σ2

)

≤ exp
(√

2 log m‖v+a‖√
log m‖v‖ + 3‖v‖2

2 log m‖v‖2

)
= exp

(
3‖v‖+2

√
2 log m‖v+a‖

2 log m‖v‖
)

= O(1),

where the second inequality uses σ = ω(‖v‖√log m) and the final equality uses
‖a‖2 being small. ��
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A.1 Comparison of Proofs for Rounded Gaussians vs. Discrete
Gaussians

As we have mentioned at the beginning of this section, the theorems and proofs
follow the line of the theorems and proofs of Lyubashevsky [16] closely. Here we
give a quick overview of the changes made in the lemmas and theorems next to
replacing the discrete Gaussian with the rounded Gaussian. We do not state in
detail where the proofs differ, since we require different techniques to end up
with similar results.

In Lemma A.1 we use 〈z + y,u〉 with y ∈ [− 1
2 , 1

2

]m minimizing
exp
(

1
σ2 〈z + y,u〉) instead of the 〈z,u〉 that is used in [16, Lemma 4.3].

In Lemma A.2 we require for Item 1 that kσ > 1/4(σ + 1) and σ ≥ 1 instead
of the k > 0 from [16, Lemma 4.4]. Next to that, we get that the probability

< exp
(

−(k− 1
2 )

2

2

)
instead of the < exp

(
−k2

2

)
. For Item 2 we have σ ≥ √2/π

instead of σ ≥ 3/
√

2π. For Item 3 we have 2kme
m
2 (1−k2) instead of kme

m
2 (1−k2).

Theorem 3.1 follows through directly based on the previous lemmas.

B Rényi Divergence

An adversary wins if within qs signing queries he can distinguish the perfect
scheme and an implementation thereof or if he breaks the scheme with the per-
fect implementation. We will upper bound the success probability of any such
adversary dependent on the precision used in the computation.

First we analyze the statistical distance (SD) and then Rényi divergences
(RD) of order 1 and ∞ (Definition 5.1). Based on [1] we expect a lower precision
requirement from the RD analysis. We use the definition of Rényi divergence as
given in [1] and copy the relevant properties of RD from there; see [25] for a
proof of the following lemmas and note that the definitions agree up to taking
logarithms. For completeness we include the statistical difference.

Definition B.1. The statistical distance Δ(P ;Q) between two discrete proba-
bility functions P and Q is defined by

Δ(P ;Q) =
1
2

∑

x∈V

|P (x) − Q(x)| ,

where V = Supp(P ) ∪ Supp(Q) denotes the union of the support of P and the
support of Q.

Definition B.2. For any two discrete probability distributions P and Q, such
that Supp(P ) ⊆ Supp(Q) the Rényi divergences of order 1 is defined by

RD1(P || Q) = exp

⎛

⎝
∑

x∈Supp(P )

P (x) log
P (x)
Q(x)

⎞

⎠ .

For RD the measures are related multiplicatively.
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Lemma B.1 (Multiplicativity). Let a ∈ {1,+∞}. Let P and Q be two dis-
tributions with Supp(P ) ⊆ Supp(Q) of a pair of random variables (Y1, Y2) and
let Y1 and Y2 be independent.

Then we have: RDa(P || Q) = RDa(P1 || Q1) · RDa(P2 || Q2).

We will use the following probability preservation property to quantify the
probability of distinguishing the perfect rounded Gaussian distribution from the
one implemented with finite precision.

Lemma B.2 (Probability Preservation). Let P and Q denote distributions
with Supp(P ) ⊆ Supp(Q). Let A ⊆ Supp(Q) be an arbitrary event. Then Q(A) ≥
P (A) /R∞ (P || Q) .

B.1 Precision for Rounded Gaussians

We now give a formal analysis linking the precision p of the implementation to the
security level of the signature scheme. Computing with floating-point precision
p means that the intermediate value x will be output with a certain error η.
We can write this as x′ = x + η, with |η| ≤ 2−px. After this, x′ is rounded
to the nearest integer, i.e. z = �x′�. Note that this implies that for computing
the probability of sampling z only the interval changes from [z − 1

2 , z + 1
2 ) to

[z− 1
2 −el, z+ 1

2 +er), with |el| ≤ 2−p
∣∣z − 1

2

∣∣ and |er| ≤ 2−p
∣∣z + 1

2

∣∣. The tail cut

forces |z| ≤ τσ and for τ = O(
√

λ) Lemma A.2 implies that exp
(−(τ− 1

2 )
2

2σ2

)
≈

2−λ, i.e. with all but negligible probability the sampled value lies within the tail
bound. For all practical values λ � 2p.

First we analyze the SD to gain a basic understanding of the precision needed
for our sampler in BLISS. After this we analyze two different kinds of RD, since
we expect that the required floating point precision will be smaller, because the
bounds are tighter for other samplers. At the end of this section, we compare all
of these bounds on the precision.

SD-based analysis. We follow [1] in assuming that any forging adversary
A with success probability ≤ δ on the scheme implemented with the perfect
rounded Gaussian sampling has a success probability ε ≤ δ + Δ(R′mqs

σ ;Rmqs
σ )

against the scheme implemented with the truncated rounded Gaussian sam-
pling, with Rmqs

σ , i.e. the success probability ε on the truncated scheme is upper
bounded by the success probability on the perfect scheme δ and the extra infor-
mation we gain by comparing the distributions R′mqs

σ and Rmqs
σ . For a target

success probability ε we have to choose δ ≤ ε/2 for the success probability on
the perfect scheme and we want to determine the lower bound on p such that
Δ(R′mqs

σ ;Rmqs
σ ) ≤ ε/2.

By the union bound this means that we require Δ(R′
σ;Rσ) ≤ ε/(mqs). We

only look at values between the tail bounds, i.e. z ∈ [−τσ, τσ], since any element
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lying outside of the tail bounds is rejected and thus not in the support of R′
σ.

Next to that, we assume that er, el ≤ 2−pτσ, which is the worst case setting.

Δ(R′1
σ(z);R1

σ(z))

= 1
2

τσ∑

z=−τσ

∣∣∣
∫ z+ 1

2+er

z− 1
2−el

1√
2πσ2 e−x2/(2σ2)dx − ∫ z+ 1

2
z− 1

2

1√
2πσ2 e−x2/(2σ2)dx

∣∣∣

≤ 1
2

τσ∑

z=−τσ

∣∣∣
∫ z− 1

2
z− 1

2−|el|
1√

2πσ2 e−x2/(2σ2)dx +
∫ z+ 1

2+|er|
z+ 1

2

1√
2πσ2 e−x2/(2σ2)dx

∣∣∣

≤ 1
2

1√
2πσ2

( −1∑

z=−τσ

∣∣∣
∣|el| exp

(
−(z− 1

2 )
2

2σ2

)
+ |er| exp

(
−(z+ 1

2+|er|)2
2σ2

)∣∣∣
∣

+|el| + |er| +
τσ∑

z=1

∣∣∣
∣|el| exp

(
−(z− 1

2−|el|)2
2σ2

)
+ |er| exp

(
−(z+ 1

2 )
2

2σ2

)∣∣∣
∣

)

≤ 1
2

2−pτσ√
2πσ2

( −1∑

z=−τσ

∣∣∣
∣exp

(
−(z− 1

2 )
2

2σ2

)
+ exp

(
−(z+ 1

2+2−pτσ)2
2σ2

)∣∣∣
∣+ 2

+
τσ∑

z=1

∣∣∣∣exp
(

−(z− 1
2−2−pτσ)2
2σ2

)
+ exp

(
−(z+ 1

2 )
2

2σ2

)∣∣∣∣

)

≤ 2−pτσ√
2πσ2

(
1 +

τσ∑

z=1

(
exp
(

−(z− 1
2−2−pτσ)2
2σ2

)
+ exp

(
−(z+ 1

2 )
2

2σ2

)))
,

where we use in the second to last inequality the assumption that |el|, |er| ≤
2−pτσ and in the last inequality we note that for z < 0 we have

exp
(

− (z− 1
2 )

2

2σ2

)
= exp

(
− (|z|+ 1

2 )
2

2σ2

)
, which matches the term in the sum for

z > 0. Similarly we have exp
(

− (z+ 1
2+2−pτσ)2
2σ2

)
= exp

(
− (|z|− 1

2−2−pτσ)2
2σ2

)
.

This means that we can group both sums under one sum running from 1 to τσ,
which we need to multiply by 2 to compensate for having both distributions in
one sum.

Note that this result looks like a rounded Gaussian centered around 1
2 and a

rounded Gaussian centered around 1
2 +2−pτσ, except that all values for z ≤ 0 are

missing. Due to the symmetric property of the rounded Gaussian distribution,
we know that both rounded Gaussians sum up to ≤ 1

2 . This gives us:

2−pτσ√
2πσ2

(
1 +

τσ∑

z=1

(
exp
(

−(z− 1
2−2−pτσ)2
2σ2

)
+ exp

(
−(z+ 1

2 )
2

2σ2

)))

≤ 2−pτσ
(

1√
2πσ2 + 1

2 + 1
2

)
= 2−pτσ

(
1√

2πσ2 + 1
)

.

We require 2−pτσ
(

1√
2πσ2 + 1

)
≤ (ε/2)/(mqs). Note that 0 < ε < 1 and thus

that log ε < 0. This means that a smaller ε requires a higher level of floating
point precision. This is what we expect; if we want an adversary A to be less
likely to be successful, we need to be more precise in our computations.

If we use the common setting ε = 2−λ, we get the precision requirement

p ≥ log
(
mqsτσ

(√
2πσ2 + 1

))
+ λ − log

(√
2πσ2

)
+ 1. (6)
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RD1-based analysis. According to [1], if a = 1 we have for an arbitrary
event A ⊆ Supp(Q) that Q(A) ≥ P (A) − √ln RD1(P || Q)/2, which is the
probability preservation property (LemmaB.2) for a = 1. This means that we
have δ ≥ ε −

√
ln RD1 (R′mqs

σ || Rmqs
σ ) /2. We follow [1] in bounding the right-

hand side by ε/2. By the multiplicative property of the RD over the mqs inde-
pendent samples needed for signing qs times, we get RD1

(
R′mqs

σ || Rmqs
σ

) ≤(
RD1

(
R′1

σ || R1
σ

))mqs

.
Recall that for the ln function we have ln(x) ≤ x− 1 for x > 0. Note that we

are working with positive numbers, since probabilities lie between zero and one.
If we only look at the elements between −τσ and τσ, we know that they have a
probability > 0. Now we compute the 1-dimensional case.

ln RD1

(
R′1

σ || R1
σ

)

=
∑

z∈Supp(R′1
σ)

R′1
σ(z) ln

(
R′1

σ(z)
R1

σ(z)

)
≤ ∑

z∈Supp(R′1
σ)

R′1
σ(z)

(
R′1

σ(z)
R1

σ(z)
− 1
)

≤ ∑

z∈Supp(R′1
σ)

1√
2πσ2

∫ z+ 1
2+er

z− 1
2−el

exp
(
− x2

2σ2

)
dx

⎛

⎝
∫ z+1

2+er

z− 1
2 −el

exp
(

− x2

2σ2

)
dx

∫ z+1
2

z− 1
2

exp
(

− x2

2σ2

)
dx

− 1

⎞

⎠

≤ ∑

z∈Supp(R′1
σ)

1√
2πσ2

∫ z+ 1
2+er

z− 1
2−el

exp
(
− x2

2σ2

)
dx

·
⎛

⎝
∫ z− 1

2
z− 1

2 −|el| exp
(

− x2

2σ2

)
dx+

∫ z+1
2+|er|

z+1
2

exp
(

− x2

2σ2

)
dx

∫ z+1
2

z− 1
2

exp
(

− x2

2σ2

)
dx

⎞

⎠ .

(7)
We now want to bound this equation. We first look at a bound in the case

z > 0 for the following part of the equation:

∫ z+ 1
2+er

z− 1
2 −el

exp
(
− x2

2σ2

)
dx

⎛
⎝

∫ z− 1
2

z− 1
2 −|el| exp

(

− x2

2σ2

)

dx+
∫ z+1

2+|er|
z+1

2
exp

(

− x2

2σ2

)

dx

∫ z+1
2

z− 1
2

exp
(

− x2
2σ2

)
dx

⎞
⎠

≤ (1 + el + er) exp

(
−(z− 1

2 −el)
2

2σ2

)
exp

(
(z+ 1

2 )2

2σ2

)

·
(

|el| exp

(
−(z− 1

2 −|el|)2
2σ2

)
+ |er| exp

(
−(z+ 1

2 )2

2σ2

))

≤ (1 + er + el)

(
|el| exp

(
−(z+ 1

2 −2(1+|el|))2+2(1+|el|)2
2σ2

)
+ |er| exp

(
−(z− 1

2 −el)
2

2σ2

))
.

If we can find an equivalent bound like this for z < 0 and for z = 0, we
can use the above formula to bound Eq. (7). For z < 0, we have the following
equation that gives an upper bound:
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∫ z+ 1
2+er

z− 1
2 −el

exp
(
− x2

2σ2

)
dx

⎛
⎝

∫ z− 1
2

z− 1
2 −|el| exp

(

− x2

2σ2

)

dx+
∫ z+1

2+|er|
z+1

2
exp

(

− x2

2σ2

)

dx

∫ z+1
2

z− 1
2

exp
(

− x2
2σ2

)
dx

⎞
⎠

≤ (1 + el + er) exp

(
−(z+ 1

2+er)
2

2σ2

)
exp

(
(z− 1

2 )2

2σ2

)

·
(

|el| exp

(
−(z− 1

2 )2

2σ2

)
+ |er| exp

(
−(z+ 1

2+|er|)2
2σ2

))

≤ (1 + er + el)

(
|el| exp

(
−(z+ 1

2+er)
2

2σ2

)
+ |er| exp

(
−(z− 1

2+2(1+|er|))2+2(1+|er|)2
2σ2

) )

≤ (1 + er + el)

(
|el| exp

(
−(|z|− 1

2 −er)
2

2σ2

)

+|er| exp

(
−(|z|+ 1

2 −2(1+|er|))2+2(1+|er|)2
2σ2

) )
.

This means that we have the same result for z > 0 and z < 0, except that
the el’s change into er’s and vice versa. Since el, er ≤ 2−pτσ, we end up with
the following result for z < 0 and z > 0:

∫ z+ 1
2+er

z− 1
2−el

exp
(
− x2

2σ2

)
dx

⎛

⎝
∫ z− 1

2
z− 1

2 −|el| exp
(

− x2

2σ2

)
dx+

∫ z+1
2+|er|

z+1
2

exp
(

− x2

2σ2

)
dx

∫ z+1
2

z− 1
2

exp
(

− x2

2σ2

)
dx

⎞

⎠

≤ (1 + 2−p+1τσ
)
2−pτσ

(
exp
(

−(|z|− 1
2−2−pτσ)2
2σ2

)

+ exp
(

−(|z|+ 1
2−2(1+2−pτσ))2+2(1+2−pτσ)2

2σ2

))
.

Now that we have found a bound for z < 0 and z > 0, we also need to find
a bound for z = 0. If z = 0, we have

∫ z+ 1
2+er

z− 1
2−el

exp
(
− x2

2σ2

)
dx

⎛

⎝
∫ z− 1

2
z− 1

2 −|el| exp
(

− x2

2σ2

)
dx+

∫ z+1
2+|er|

z+1
2

exp
(

− x2

2σ2

)
dx

∫ z+1
2

z− 1
2

exp
(

− x2

2σ2

)
dx

⎞

⎠

≤ (1 + el + er) exp
(

1
8σ2

) (|el| exp
(− 1

8σ2

)
+ |er| exp

(− 1
8σ2

))

= (1 + el + er) (|el| + |er|) ≤ (1 + 2−p+1τσ
)
2−p+1τσ,

where we use el, er < 2−pτσ in the second inequality. Combining the result for
z = 0 with the results for z < 0 and z > 0 gives us:

ln RD1

(
R′1

σ || R1
σ

)

≤ (1 + 2−p+1τσ
)
2−p+1τσ

+
∑

z∈Supp(R′1
σ),z>0

1√
2πσ2

(
1 + 2−p+1τσ

)
2−p+1τσ

(
exp
(

−(|z|− 1
2−2−pτσ)2
2σ2

)

+ exp
(

−(|z|+ 1
2−2(1+2−pτσ))2+2(1+2−pτσ)2

2σ2

))

=
(
1 + 2−p+1τσ

)
2−p+1τσ

(
1 +

∞∑

z=0

1√
2πσ2

(
exp
(

−(z− 1
2−2−pτσ)2
2σ2

)

+ exp
(

−(z+ 1
2−2(1+2−pτσ))2+2(1+2−pτσ)2

2σ2

)))

≤ (1 + 2−p+1τσ
)
2−p+1τσ

(
2 + 2 exp

(
9

4σ2

))
,
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where we use in the last inequality that
∞∑

z=0

1√
2πσ2 exp

(
−(z− 1

2−2−pτσ)2
2σ2

)
≤ 1,

as this sums over parts of a Gaussian centered at −1/2 − 2−pτσ. Similarly,
∞∑

z=0

1√
2πσ2 exp

(
−(z+ 1

2−2(1+2−pτσ))2
2σ2

)
≤ 1 and 1 < (1 + 2−pτσ) < 3

2 , since 0 <

2−pτσ < 1
2 . We note that we could use the stronger bound τσ < 2−p/2+1 here,

which implies that we can use a smaller number in the exp function. However,
the goal is to get rid of p with this equation and for this the current estimate is
sufficient. This means that we can use the equation above to compute the floating
point precision needed in the RD1 setting. First we look at ln RD1(R′mqs

σ ||
Rmqs

σ )/2, before we determine the precision p:

ln RD1(R′mqs

σ || Rmqs
σ )/2 ≤ mqs ln RD1(R′1

σ || R1
σ)/2

≤ mqs

2

(
1 + 2−p+1τσ

)
2−p+1τσ

(
2 + 2 exp

(
9

4σ2

))

= mqs

((
2−p+1τσ + 1

2

)2 − 1
4

) (
1 + exp

(
9

4σ2

))
.

If we now bound this expression by ε2/4 and determine p, we know that this
p also holds in the setting

√
ln RD1(R′mqs

σ || Rmqs
σ )/2 ≤ ε/2. This results in:

mqs

((
2−p+1τσ + 1

2

)2 − 1
4

) (
1 + exp

(
9

4σ2

)) ≤ ε2

4

⇔ (
2−p+1τσ + 1

2

)2 ≤ ε2+mqs(1+exp( 9
4σ2 ))

4mqs(1+exp( 9
4σ2 ))

⇔ 2−p+1 ≤
√

ε2+mqs(1+exp( 9
4σ2 ))−

√
mqs(1+exp( 9

4σ2 ))
2τσ

√
mqs(1+exp( 9

4σ2 ))
.

This means that we have as the floating point precision requirement

p ≥ log

⎛

⎝
τσ
√

mqs

(
1 + exp

(
9

4σ2

))

√
ε2 + mqs

(
1 + exp

(
9

4σ2

))−
√

mqs

(
1 + exp

(
9

4σ2

))

⎞

⎠+ 2. (8)

RD∞-based analysis. For a = +∞, we follow [1] such that we have that
any forging adversary A having success probability ε on the scheme imple-
mented with imperfect rounded Gaussian sampling has a success probability
δ ≥ ε/RD∞(R′mqs

σ || Rmqs
σ ) on the scheme implemented with the perfect

rounded Gaussian, because of the multiplicative property of the RD, as given in
Lemma B.1. If RD∞(R′mqs

σ || Rmqs
σ ) ≤ O(1), then δ = Ω(ε).

We need mqs samples to create qs signatures. By the multiplicative property
of the RD, we have RD∞(R′mqs

σ || Rmqs
σ ) ≤ RD∞(R′1

σ || R1
σ)mqs . We target

δ ≥ ε/ exp(1). We first compute R′1
σ(z)/R1

σ(z) from which the maximum will
automatically follow:

R′1
σ(z)

R1
σ(z)

=

(
∫ z+1

2+er

z− 1
2 −el

1√
2πσ2

e−x2/(2σ2)dx

) /(
∫ z+1

2
z− 1

2

1√
2πσ2

e−x2/(2σ2)dx

)

≤ 1 +

(
∫ z− 1

2
z− 1

2 −|el| e−x2/(2σ2)dx +
∫ z+1

2+|er|
z+1

2
e−x2/(2σ2)dx

) /(
∫ z+1

2
z− 1

2
e−x2/(2σ2)dx

)

.
(9)
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Now we need to find a lower bound for the integral in the denominator. We
start by looking into the case z > 0. We have the following bounds:

∫ z+ 1
2

z− 1
2

e−x2/(2σ2)dx ≥ ∫ z− 1
2+

1
z

z− 1
2

e−x2/(2σ2)dx ≥ 1
z exp

(−(z− 1
2+

1
z )2

2σ2

)

= 1
z exp

(
−(z− 1

2 )
2−2(z− 1

2 )
1
z − 1

z2

2σ2

)
≥ 1

z exp
(−(z− 1

2 )
2

2σ2

)
exp
(−1

σ2

)
,

(10)

where we use that 2
z (z− 1

2 )+ 1
z2 ≤ 2 for z ≥ 1 and z ∈ Z. We bound the integrals

in the numerator the same way as in the RD1 analysis and combine this with
the lower bound from Eq. (9):

1 +
(∫ z− 1

2
z− 1

2 −|el|
e−x2/(2σ2)dx +

∫ z+ 1
2+|er|

z+ 1
2

e−x2/(2σ2)dx

) /(∫ z+ 1
2

z− 1
2

e−x2/(2σ2)dx

)

≤ 1 +
(

|el| exp
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−(z− 1
2 −|el|)2
2σ2

)
+ |er| exp

(
−(z+ 1

2 )2

2σ2

)) /(
1
z
exp

(
−(z− 1

2 )2

2σ2

)
exp
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σ2

))

= 1 + z exp
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(
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2 )2
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) (
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2 −|el|)2
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≤ 1 + z exp
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|el| exp
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2σ2

)
+ |er| exp

(
−z
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≤ 1 + z exp
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1
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) (
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( |el|z
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+ |er|

)
≤ 1 + 2−p(τσ)2 exp

(
1

σ2

) (
exp

(
2−p(τσ)2

σ2

)
+ 1

)
,

where we use in the last inequality that |el|, |er| ≤ 2−pτσ and that |z| ≤ τσ. We
note that 2−p+1 ≤ (τσ)2, which gives us

1 + 2−p(τσ)2 exp
(

1
σ2

) (

exp

(
2−p(τσ)2

σ2

)

+ 1
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≤ 1 + 2−p(τσ)2 exp
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1
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exp
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1
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+ 1

)

≤ exp
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1

2σ2
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+ 1
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.

We have found an upper bound for R′mqs

σ /Rmqs
σ if z > 0. We need to check

if this bound works for any value of z ∈ Z. First we look into the case z < 0. We
want to find a similar bound as in Eq. (10). We have

∫ z+ 1
2
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2

e−x2/(2σ2)dx ≥ ∫ z+ 1
2
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2+ 1
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= 1
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≥ 1
|z| exp

(
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2 )
2

2σ2

)
exp

(
−1
σ2

)
,

(11)

which is the same expression as we had for z > 0. We note that the only difference
between z < 0 and z > 0 is the el and the er, which we already have seen in
the case of RD1. Since we use |el|, |er| ≤ 2−pτσ, we can use the bound found
for z > 0 also in the case z < 0. Now we check if this maximum also works for
z = 0:

R′1
σ(z)

R1
σ(z)

≤
(∫ z+ 1

2+er

z− 1
2 −el

1√
2πσ2

e−x2/(2σ2)dx

) /(∫ z+ 1
2

z− 1
2

1√
2πσ2

e−x2/(2σ2)dx

)

≤ 1 + |er| + |el| ≤ 1 +
1

2
· 2−p +

1

2
· 2−p = 1 + 2−p,
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as we have seen in the computations for RD1. Since this is less than the max-
imum, we can use the upper bound exp

(
2−p(τσ)2 exp

(
1

σ2

) (
exp
(

1
2σ2

)
+ 1
))

to
determine the floating point precision p needed.

We have RD∞(R′mqs

σ || Rmqs
σ ) ≤ RD∞(R′1

σ || R1
σ)mqs and want to find an

expression for p from this. This results in the following equations:

RD∞(R′mqs

σ || Rmqs
σ ) ≤ RD∞(R′1

σ || R1
σ)mqs

≤ exp
(
2−p(τσ)2 exp
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1

σ2

) (
exp
(

1
2σ2

)
+ 1
))mqs

.

We set the floating point precision p such that

exp
(

mqs2−p(τσ)2 exp
(

1
σ2

)(
exp
(

1
2σ2

)
+ 1
))

≤ exp(1).

This yields a precision argument

p ≥ log
(

mqs(τσ)2 exp
(

1
σ2

)(
exp
(

1
2σ2

)
+ 1
))

. (12)

Recall that we assumed that τσ � 2−p/2, i.e. p > 2 log(τσ). We need to
check if this is true for the result we got. We see that indeed we get

p ≥ log
(
mqs(τσ)2 exp

(
1

σ2

) (
exp
(

1
2σ2

)
+ 1
))

= 2 log (τσ) + log
(
mqs exp

(
1

σ2

) (
exp
(

1
2σ2

)
+ 1
))

> 2 log(τσ),

since all the logarithms give a positive result.
Note that, as in the analysis of the discrete Gaussian in [1], Eq. (12) does not

explicitly depend on ε. However, the dependency on ε is hidden in the security
parameter λ, which is still dependent on ε.

Equation (12) eliminates the term ε from the floating point precision p, which
was needed for the SD-based and the RD1-based analyses. However, m, qs and ε
are dependent on λ, i.e. the resulting floating point precision p is not independent
of ε, since it is not independent of λ.

We summarize the results in Table B.1. Before we can numerically compute
this p, we need to know the value of m and against how many signing queries qs

we want to be protected.
Note that the precision plays different roles per sampler and implementation.

In our sampling approach, each computation step has the potential to decrease
the precision, but all considerations are worst-case considerations. The CDT
sampler that we considered for comparison has a stored table of fixed preci-
sion. To compare the precision bounds as described in TableB.1 to the precision
bounds found in [1] for BLISS-I we use the same values for the variables, that
is, we use ε = 2−128, dimension m = 1024, qs = 264 sign queries, σ = 215 and
tail bound τ =

√
(2 · 128 · log(2)) = 13.32087377852. The results can be found

in Table B.2. Here we can see that rounded Gaussians need more precision than
discrete Gaussians, but rounded Gaussians come with the advantage that they
can easily be implemented in constant time and without table look ups, which
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Table B.1. Comparison of the precision p to handle adversaries with success proba-
bility ≥ε making ≤qs signing queries to BLISS signature generation with Box-Muller
transformation.

Lower bound on the precision p

SD (Eq. (6)) p ≥ log
(
mqsτσ

(√
2πσ2 + 1

))
+ λ − log

(√
2πσ2

)
+ 1

RD1 (Eq. (8)) p ≥ log

⎛
⎝ τσ

√

mqs

(
1+exp

(
9

4σ2

))

√

ε2+mqs

(
1+exp

(
9

4σ2

))
−

√

mqs

(
1+exp

(
9

4σ2

))

⎞
⎠ + 2

RD∞ (Eq. (12)) p ≥ log
(
mqs(τσ)2 exp

(
1

σ2

) (
exp

(
τ
2σ

)
+ 1

))

Table B.2. Comparison of the precision p needed for BLISS-I implemented with
rounded Gaussians and implemented with discrete Gaussians.

Example p for rounded Gaussians Example p for discrete Gaussians

SD p ≥ 215 p ≥ 207

RD1 p ≥ 346 p ≥ 168

RD∞ p ≥ 98 p ≥ 79

makes it suitable to use rounded Gaussians in practice for BLISS. Furthermore,
the estimates are less tight because of the approximation of integrals and errors
by their worst case value.

Note that the values in Table B.2 tell us the resulting precision needed. If we
want to know the implementations precision, i.e. the precision before the imple-
mentation makes any changes, we need to compute how much precision is lost
by the implementation. For our implementation of BLISS-I we have computed
the loss of precision in Sect. 5.2.
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