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Abstract. We consider a setting where users store their encrypted doc-
uments on a remote server and can selectively share documents with
each other. A user should be able to perform keyword searches over all
the documents she has access to, including the ones that others shared
with her. The contents of the documents, and the search queries, should
remain private from the server.

This setting was considered by Popa et al. (NSDI ’14) who developed
a new cryptographic primitive called Multi-Key Searchable Encryption
(MKSE), together with an instantiation and an implementation within
a system called Mylar, to address this goal. Unfortunately, Grubbs et
al. (CCS ’16) showed that the proposed MKSE definition fails to pro-
vide basic security guarantees, and that the Mylar system is susceptible
to simple attacks. Most notably, if a malicious Alice colludes with the
server and shares a document with an honest Bob then the privacy of all
of Bob’s search queries is lost.

In this work we revisit the notion of MKSE and propose a new
strengthened definition that rules out the above attacks. We then con-
struct MKSE schemes meeting our definition. We first give a simple
and efficient construction using only pseudorandom functions. This con-
struction achieves our strong security definition at the cost of increasing
the server storage overhead relative to Mylar, essentially replicating the
document each time it is shared. We also show that high server stor-
age overhead is not inherent, by giving an alternate (albeit impractical)
construction that manages to avoid it using obfuscation.

1 Introduction

Searchable (symmetric) encryption (SSE) [6,9,14,33] allows a user to outsource
her encrypted documents to a remote server. Later, she (or someone she autho-
rizes) can send the server encrypted keyword search queries and receive the set
of (encrypted) documents matching her keyword. Ideally, even a compromised
server would not learn anything about the user’s data or her queries. This func-
tionality can in theory be achieved using techniques such as Oblivious RAM and
Fully Homomorphic Encryption, but the efficiency overhead makes the resultant
schemes largely impractical.
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To allow for more practical schemes, SSE relaxes the ideal security require-
ment and allows the server to learn some leakage—namely the access pattern of
which documents are returned by each query. The initial SSE definitions failed to
capture natural attacks, and were revised by several follow-up works culminating
in the work of Curtmula et al. [9], who gave meaningful definitions that captured
the intuitive security goal. There are now constructions of SSE schemes that meet
this definition and are simple, practically efficient, and updatable [5,21,34]. We
also note that there have been several works [22,28,36] showing that the leakage
provided by SSE can already be too damaging to give meaningful security guar-
antees in some contexts. Despite such attacks, it seems that in many cases SSE
can provide meaningful security for certain data sets, even if it is imperfect.

One benefit of outsourcing data to the cloud is that it allows users to easily
share data with each other. Therefore, it is natural to consider a setting where
a large group of users store their individual documents, encrypted under their
own keys, on a remote cloud server, where each document can be shared with an
arbitrary subset of other users. As with SSE, a user should be able to perform
keyword search queries over all of the documents she has access to, including
both her own documents and the ones shared with her. A trivial solution is to
have each user generate a new SSE key for each set of documents she wishes
to share, and provide this key to the authorized group of users. However, this
solution has two main drawbacks: the user must maintain many keys (one for
each set of documents shared with her), and the query size scales with the
number of documents that have been shared with the user. These limitations are
undesirable in many realistic scenarios, since a user may have tens of thousands
of document sets shared with her.

To avoid these drawbacks, Popa et al. [29,30] introduced the notion of Multi-
Key Searchable Encryption (MKSE) to specifically address the query size prob-
lem. They provided a formal definition of MKSE along with a construction using
bilinear maps, and an implementation of their scheme within a framework called
Mylar for building secure web-applications over encrypted data. As part of the
framework, they provide a number of prototype applications, including a chat
room and a medical application.

The MKSE definition of [29,30] aimed at capturing the following intuitive
security guarantee: the scheme hides the content of both queries and stored doc-
uments, and the only information leaked is whether a given query matched any
of the keywords in a given document. This should hold even when a subset of
corrupted users colludes with the server. However, Grubbs et al. [17] showed
that Mylar does not achieve this goal, and suffers from several serious security
deficiencies, far beyond the limited leakage inherent in SSE. While some of these
issues only apply to the particular design choices of Mylar and its applications,
others are more general problems with the proposed MKSE definition. Recently,
Van Rompay et al. [32] designed a different attack that pointed to another prob-
lem with the proposed MKSE definition. All these deficiencies remain present in
follow up works that build on top of the MKSE definition of [29,30], such as the
work of Kiayias et al. [23]. We outline the three main issues below.
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Separating Data and Query Privacy. The first issue with the MKSE definition is
that it separately defines data privacy and query privacy, although it is intuitively
clear that data and query privacy are inherently intertwined. Indeed, the server
learns which documents are returned in response to a query, so knowing the
contents of these documents leaks information about the contents of the query,
and vice versa. Therefore, the two properties cannot be meaningfully defined in
isolation. This observation has already been made in the context of single-key
SSE by Curtmula et al. [9], who showed that earlier definitions that separated
data and query privacy did not meaningfully rule out trivially insecure schemes.
The work of [17] gives analogous examples in the context of MKSE, showing
that there are trivially insecure schemes which satisfy the proposed definition.

Malicious Users Sharing Data. The second issue with the MKSE definition is
more subtle. If an honest user Alice shares her document with a malicious user
Mallory, then clearly privacy of her document is inherently lost. This limitation
is intuitive, and users know they should not share their data with people they
do not trust. But if Mallory shares her document with an honest Bob, one does
not (and should not) expect Bob’s security to be compromised. Unfortunately,
[17] show that the proposed MKSE notion of [29,30] does not guarantee any
privacy for Bob’s search queries in this scenario. In particular, the security game
designed to capture query privacy in this setting [30, Definition 5.6] explicitly
prevents the adversary from sharing documents with the honest user (whose
queries the adversary is trying to learn). Not only is this issue overlooked in the
definition, but it is actually inherent to the proposed MKSE syntax, so every
construction which realizes this syntax (e.g., the follow-up works of [23,35])
necessarily inherits this flaw. According to the original MKSE definition, when
Mallory shares a document with Bob, a share key Δ is generated. The share key
Δ does not depend on Mallory’s set, and allows any query under Bob’s key to
be transformed into a query under Mallory’s key. Therefore, a malicious server,
colluding with Mallory, can use Δ to transform every query Bob makes into
a query under Mallory’s key, and the transformed query can then be executed
offline against a set of single-word documents containing the full dictionary.
Thus, if Mallory shares a document with Bob, the server can (through this
offline dictionary attack) recover all keywords Bob searched for.

Searching by Comparing Queries and Encrypted Keywords. The third issue is
that the MKSE definition implicitly restricts the algorithmic structure of the
scheme to encrypt each keyword in the document separately, and search in a
document by comparing the given query to each of the encrypted keywords.
Thus, a “hit” reveals not only that the query appears in the document, but
also which (encrypted) keyword it matched. Van Rompay et al. [32] show that
this allows the server to compare queries issued by different users (even if both
users are honest), and encrypted keywords from different documents (when they
match the same keyword token).



98 A. Hamlin et al.

1.1 Our Contribution

In this work, we propose a new MKSE definition that does not suffer from the
above issues. In particular, our definition simultaneously addresses data and
query privacy in a holistic manner, explicitly considers malicious data owners
that may share data with honest users, and prevents the adversary from com-
paring queries issued by different users and keywords from different documents.
We then propose a simple construction which provably satisfies our definition
using only Pseudo-Random Functions (PRFs). Queries in this scheme consist
of a single PRF image, and searching in a document is constant-time, but the
server storage overhead is high. In particular, each time a document is shared
with a user, it is essentially replicated, causing the per-document server storage
overhead to be linear in the number of users the document is shared with.

We initially conjectured that such overhead is inherent to achieving our
stronger MKSE definition. However, we show that proving such a conjecture
will be quite challenging, since it will require ruling out the existence of certain
program obfuscators. Concretely, in Sect. 5, we construct an MKSE scheme that
uses obfuscation (specifically, public-coin differing-input obfuscation [20]) and
requires per-document server storage that is roughly the document size plus the
number of users it is shared with. (The construction has constant query size and
polynomial time search.) We view our construction as providing evidence that
a more efficient construction may possibly achieve the stronger MKSE notion
with optimal server storage overhead.

Overview of Our MKSE Definition. We consider users that can take on two types
of roles: data owners and queriers. Data owners have a document they wish to
share with some subset of the users. Each document has its own associated data
key Kd, where the data owner “encrypts” the document using this key, and
uploads the encrypted document to the server. Each user has a query key Ku

that it uses to issue search queries. When a data owner shares a document d
with a user u they create a share key Δu,d which depends on the keys Ku,Kd,
as well as the encrypted document, and store Δu,d on the server. When a querier
wants to search for some keyword, he “encrypts” the keyword using his query key
Ku, and sends the resulting encrypted query to the server. For each document
d that was shared with the user u, the server uses the share key Δu,d to execute
the encrypted query over the encrypted document, and learns if the keyword
is contained in that document. This allows the server to return all relevant
documents the querier has access to and which contain the keyword.

The main syntactic difference between our notion, and the MKSE notion used
in Mylar, is in how the share key Δu,d is generated. As noted above, the share
key in Mylar depends only on the keys Ku,Kd, whereas in our notion it also
depends on the encrypted document. By tying the share key to the document,
we can ensure that each query can only be executed on the specific documents
that were shared with the querier, rather than on arbitrary documents, even if
the server has the key Kd.
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To define security, we consider a share graph between data owners (docu-
ments) and queriers, representing who shares data with whom, where some sub-
set of data owners are malicious and collude with the server. The desired security
guarantee is that the server learns nothing about the contents of the documents
belonging to the honest data owners, or the keywords being queried, beyond the
access pattern of which documents are returned by each query (i.e., out of the
documents shared with the querier, which ones contain the queried keyword).
We provide an indistinguishability-based definition where the adversary chooses
the documents and data keys belonging to the malicious data owners, and two
potential values (a “left” and a “right” value) for each query and each docu-
ment belonging to an honest data owner. The left and right values must lead to
the same access pattern, and the queries of each querier must be distinct. The
adversary then gets all encrypted documents, share keys, and encrypted queries,
and should not be able to distinguish whether these were created using the left
or right values.

Since the adversary only learns the access pattern of which documents are
returned by each query, the above definition captures the minimal leakage for
schemes that reveal the access pattern, which seems to be the case in all practical
schemes. This is a significant qualitative improvement over the leakage allowed by
the previous definition of [30] and the corresponding schemes. Most importantly,
when a malicious user Mallory is colluding with the sever and shares some data
with Bob, the previous schemes completely leaked the contents of Bob’s query
wheres our definition still only reveals the access pattern. We note that simi-
lar to single-key SSE, leaking the access pattern does reveal some potentially
sensitive information and in some scenarios (e.g., when combined with auxiliary
information about the documents) this may allow a sufficiently powerful attacker
to completely recover the query, as shown in the single-key SSE setting by the
recent works [4,18,22,28,31,36]. In the multi-key setting this might be ampli-
fied since, whenever malicious data owners share documents with honest querier,
the adversary already knows (and even chooses) the contents of these documents
and hence can learn more information by seeing which of these documents match
the query. For example, if the shared documents correspond to every individual
word in a dictionary, then by seeing which document matches a given query the
contents of the query are completely revealed. However, this is not a very natural
scenario, and in many settings it is reasonable to believe that leaking the access
pattern alone may not reveal significant information about the query. Further-
more, users can perform sanity checks on the documents shared with them to
test how much leakage the server will get on their queries, and refuse to accept
shared documents if they lead to too much leakage. Understanding when access
pattern leakage is acceptable and when it is not is a fascinating and important
direction for future study.

One implementation concern in the above notion of MKSE comes from how
the share key Δu,d is generated, since it relies on knowledge of both the data-
owner’s key Kd for the document being shared, the user’s querier key Ku, and
the encrypted document itself. We envision that the data owner simply sends
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the data key Kd to the querier via a secure channel. The querier then downloads
the encrypted document from the server, generates Δu,d, and uploads it to the
server. Note that the querier can also check at this point that the document was
encrypted correctly, and therefore in the security definition we always assume
that documents are encrypted honestly.

Finally, our default definition is selective, meaning the adversary specifies
the entire share graph, the data, and the queries ahead of time. We can also
consider adaptive security for SSE (a notion introduced by [9] in the single-user
setting) in which the adversary generates queries on the fly during the course of
the attack. Furthermore, our definition is indistinguishability based, where one
could also consider a simulation-based version (as introduced in the single-user
setting by [9]) in which the simulator, given the share graph, document sizes, and
access patters, produces the encrypted documents and queries. We discuss these
alternate variants in Sect. 6, and note that our PRF-based construction described
below satisfies the strongest security notion (adaptive, simulation-based) when
the PRF is instantiated in the random-oracle model.

Overview of the PRF-Based Construction. We provide a simple and efficient
MKSE scheme based only on the existence of one-way functions. As noted above,
each share key Δu,d contains a copy of the document, which allows Search to
use only this value (and not the encrypted document).

If Δu,d is “allowed” to encode the entire document, a natural approach is
to assign to each querier a PRF key Ku for a PRF F , and store in Δu,d the
images of F (Ku, ·) on all keywords in the document. However, this construction
is fundamentally insecure, since the share keys themselves leak information, even
if the querier never makes any queries, and even if all data owners are honest.
More specifically, consider the case of two honest data owners that share their
documents with an honest querier. Then the two share keys reveal the number of
keywords that appear in both documents. This is because the token associated
with each keyword depends only on the keyword and the querier key, and not
on the document.

To solve this issue we use another layer of PRF images, where the first layer
generates PRF keys for a second layer that will be applied to a document-specific
random identifier. Concretely, when generating Δu,d, we assign a random value
r to the document. For every keyword w in the document, we generate a (second
layer) PRF key kw = F (Ku, w), and compute a token tw for w as tw = F (kw, r).
Using perfect hashing [11], these tokens are inserted into a hash table to accel-
erate searching. The share key Δu,d consists of r and the hash table containing
the tokens. (Notice that if r is chosen from a sufficiently large domain, then with
overwhelming probability each document is assigned a unique identifier, and so
the share keys associated with two documents reveal no information about their
intersection.)

To search for keyword w in her documents, the querier sends the query kw =
F (Ku, w) to the server. Searching for kw in a document with Δu,d = (r,D′)
(where D′ is a hash table of tokens) is performed by searching the hash table
D′ on the key F (kw, r). This query reveals no information about w. Notice that
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the scheme uses the encrypted document only to generate Δu,d, so the document
can simply be encrypted with its own unique symmetric encryption key.

1.2 Related Work

Single User Schemes. First introduced by Song et al. [33], the notion of (single
user) Searchable Encryption has been extensively studied in the last decade
(see [3,12] for a survey of many of these works). The first works (e.g., [6,14,
33]) constructed schemes under several (simulation-based or indistinguishability-
based) security definitions. These definitions separated the properties of query
and data privacy, and were shown by [9] to be insecure (by a fairly simple
attack). Curtmola et al. [9] also presented a unified definition that combined
both properties.

Multi-User Schemes. In this model multiple users can issue queries to a sin-
gle dataset which is encrypted under a single key that is known to all users.
Consequently, most works in this setting focus on access control, and efficient
revocation of querying privileges. Following the work of [9], who provided the
first definitions and constructions, there have been three main approaches to
enforcing access control across the documents: traditional access control mech-
anisms [10,25,37], broadcast encryption [9,26], and attribute-based encryp-
tion [7,24].

We emphasize that in the multi-user setting, there is a single dataset owned
by a single data owner, so using such schemes in settings with multiple data
owners would require instantiating the scheme separately for each dataset, and
thus the query size would be linear in the number of datasets shared with the
querier. This should be contrasted with the multi-key setting which is the focus
of this work, in which users can search over multiple datasets by issuing a single
query whose size is independent of the number of datasets being searched.

Multi-key Schemes. In this setting multiple users share data encrypted under
their own keys, and search across the data shared with them by issuing a single
query whose size is independent of the number of shared datasets. First intro-
duced by Popa et al. [29], follow-up works that build on [29] focused on optimiz-
ing server storage, and eliminating the trusted party needed to distribute data
and querier keys [23]; mitigating attacks in which a malicious data owner shares
a dictionary dataset with the querier, by having the querier explicitly determine
which data owners are allowed to share data with her [35]1; and constructing
schemes that are secure in restricted security models when honest data owners
only share their documents with honest queriers, or when a single data owner has
not shared his dataset with anyone else [35] (in both models, the server might be
corrupted). We note that since these works use the syntax of [29] (in particular,
share keys are generated independently of the shared set), the aforementioned
attacks of [17] apply to these works as well.
1 This functionality was also discussed in [29], but was not defined as part of the

MKSE syntax.
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Other Related Models. The notion of Key Aggregate Searchable Encryption
(KASE), introduced by [8], considers a data owner who has several documents,
each encrypted under a unique key. This allows data owners to share differ-
ent subsets of their documents with different users. The goal is to grant search
access to a subset of documents by providing one aggregate key whose length
is independent of the number of documents (whereas in a naive solution, the
key size would scale with the number of documents), and the querier issues one
query for every subset of documents shared under the aggregate key (whereas
in the MKSE setting, the user issues a single query, regardless of the number of
documents shared with her). Thus, this model is fundamentally different from
MKSE (as pointed out in [8]). We note that the construction of [8] is vulnerable
to dictionary attacks (as shown by [23]).

2 Preliminaries

In the following, λ denotes a security parameter, and negl (λ) denotes a function
that is negligible in λ. We use ≈ to denote computational indistinguishability,
and S\T to denote the difference between sets S, T . We use Pr [E : E1, · · · , En]
to denote the probability of event E given events E1, · · · , En. For strings
x = x1 · · · xn, y = y1 · · · ym, x ◦ y denotes their concatenation, i.e., x ◦ y =
x1 · · · xny1 · · · ym. We use standard cryptographic definitions of one-way func-
tions (OWFs), one-way permutations (OWPs), collision resistant hash functions
(CRHFs), pseudorandom functions (PRFs), and existentially-unforgeable signa-
ture schemes (see, e.g., [15,16]).

3 Defining Multi-Key Searchable Encryption

In this section we define the notion of Multi-Key Searchable Encryption (MKSE)
schemes. Intuitively, an MKSE scheme allows data owners to share their docu-
ments with queriers who can later query these documents under their own keying
material, while preserving both data and query privacy. In the definition, docu-
ments are represented as sets of keywords, so searching in a document translates
to checking set membership; see the discussion following the definition.

Definition 1 (Multi-Key Searchable Encryption). We say that a tuple
(DataKeyGen,QueryKeyGen,ProcessSet,Share,Query,Search) of PPT algorithms
is a Multi-Key Searchable Encryption (MKSE) scheme for a universe U , if the
following holds.

– Syntax:
• DataKeyGen takes as input the security parameter 1λ, and outputs a data

key K.
• QueryKeyGen takes as input the security parameter 1λ, and outputs a

query key Ku.
• ProcessSet takes as input a data key K and a set S, and outputs a pro-

cessed set T .
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• Share takes as input a data key K, a query key Ku, and a processed set
T , and generates a user-specific share key Δ.

• Query takes as input an element w ∈ U and a query key Ku, and outputs
a query q.

• Search takes as input a user-specific share key Δ, a query q, and a pro-
cessed set T , and outputs b ∈ {0, 1}.

– Correctness: For every security parameter λ ∈ N, data set S ⊆ U , and
element w ∈ U :

Pr

⎡
⎢⎢⎢⎢⎣
Search (Δ, q, T ) = b :

K ← DataKeyGen
(
1λ

)
Ku ← QueryKeyGen

(
1λ

)
T ← ProcessSet (K,S)
Δ ← Share (K,Ku, T )
q ← Query (Ku, w)

⎤
⎥⎥⎥⎥⎦

≥ 1 − negl (λ)

where b = 0 if w /∈ S, otherwise b = 1.
– Security: Every PPT adversary A has only a negl (λ) advantage in the fol-

lowing security game with a challenger C:
1. A sends to C:

• A set Q = {1, . . . , m} of queriers, a set D = {1, . . . , n} of data own-
ers, and a subset Dc ⊆ D of corrupted data owners.

• For every i ∈ Dc, a data key Ki.
• For every i ∈ D, two sets S0

i , S1
i ⊆ U , where

∣∣S0
i

∣∣ =
∣∣S1

i

∣∣ for i /∈ Dc,
and S0

i = S1
i for i ∈ Dc.

• A bipartite share graph G = (Q,D, E).
• For every j ∈ Q, two sequences of distinct keywords

(
w0

j,1, . . . , w
0
j,kj

)

and
(
w1

j,1, . . . , w
1
j,kj

)
(for some kj ∈ N), such that for every i ∈ D, if

(j, i) ∈ E then for every 1 ≤ l ≤ kj, w0
j,l ∈ S0

i if and only if w1
j,l ∈ S1

i .
2. C performs the following:

• Chooses a random bit b ← {0, 1}.
• For each querier j ∈ Q, generates Ku

j ← QueryKeyGen
(
1λ

)
.

• For each data owner i ∈ D \ Dc, generates Ki ← DataKeyGen
(
1λ

)
.

• For each set Sb
i , i ∈ D, generates Ti ← ProcessSet

(
Ki, S

b
i

)
.

• For each edge (j, i) ∈ E, generates Δj,i ← Share
(
Ki,K

u
j , Ti

)
.

• For each querier j and keyword wb
j,l, 1 ≤ l ≤ kj, generates a query

qj,l ← Query
(
Ku

j , wb
j,l

)
.

• Sends {Ti}i∈D, {Δj,i}(j,i)∈E, and
(
qj,1, · · · , qj,kj

)
j∈Q to A.

3. A outputs a guess b′, and its advantage is AdvA
(
1λ

)
= 1

2 − Pr [b = b′].

Discussion. In Definition 1, sets of keywords are shared with queriers, and share
keys are generated by an honest party. Such schemes can be easily adapted to
the setting in which documents are shared between users: each document d is
associated with the set S of keywords it contains; and an encryption of d is stored
alongside the processed set TS . Searching for keywords in d is performed by
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searching for the keyword in S, where if the search outputs 1 then the encryption
of d is returned to the querier. Moreover, a trusted party is not needed to generate
the share keys: we envision that each user will generate her own share keys
whenever a document is shared with her. More specifically, when a data owner i
shares a document di with a querier j, the data owner will send his data key Ki

to the querier via a secure channel. The querier will then download the processed
set Ti and the encryption of di from the server, and generate Δj,i herself. This
use case also clarifies our assumption that sets are honestly processed: j can
verify that Ti was honestly generated by processing Si (which can be extracted
from di) using Ki, and comparing to Ti. (Without loss of generality, ProcessSet
is deterministic since any randomness can be provided in Ki.)

Notice that in our definition, the share key is (syntactically) “tied” to the set
for which it was generated (Share depends not only on the data and query keys,
but also on the processed set). This should be contrasted with the syntax used
in [29,30] in which the algorithm generating the share keys depends only on the
data and query keys. Consequently, resultant schemes inherently guarantee no
query privacy when malicious data owners share their sets with honest queriers
(as discussed in the introduction). Indeed, when Δ is independent of the set
then a malicious server colluding with the data owner can use the data key K
to encrypt any set S of his choosing (in particular, a dictionary), then use Δ to
search for the query in S. Since K was generated independently of the set, the
correctness of the scheme guarantees that the output of search will be correct,
and so the server can recover the queried keyword.

Similar to previous works in the field, our definition allows for some informa-
tion leakage. Specifically, since the adversary is restricted to choosing sets and
queries for which w0

j,l ∈ S0
i ⇔ w1

j,l ∈ S1
i for every (j, i) ∈ E (see the last bullet

in Step 1 of the security game), the scheme leaks the access pattern of which
subset of documents is returned in response to each query. Additionally, since
we require that each querier makes distinct queries, if a querier makes repeated
queries then this might be leaked to the server. Finally, we note that our defini-
tion is selective: the adversary is required to specify in advance the sets, queries,
and share graph. Possible extensions and generalizations include adaptive secu-
rity, where the adversary can adaptively choose sets and queries, add edges to
the share graph, and corrupt data owners; and simulation-based security, which
guarantees that the view of every PPT adversary can be simulated given only
the aforementioned leakage (namely, the access patterns and the sizes of the
sets). We elaborate on these alternative definitions in Sect. 6.

4 MKSE with Fast Search

In this section we describe our MKSE scheme based on PRFs. Concretely, we
will prove the following theorem.

Theorem 1 (MKSE (Sublinear Search)). Assume that OWFs exist. Then
there exists a secure MKSE scheme in which searching for keywords in a set S
takes poly (λ) time, where λ is the security parameter.
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Moreover, data and query keys, as well as queries, have length poly (λ), and
for a set S, its processed version and share keys have size |S| · poly (λ).

We first describe our construction, then analyze its properties.

Construction 1 (MKSE (Sublinear Search)). The construction uses a PRF F ,
and a symmetric-key encryption scheme (KeyGen,Enc,Dec), as building blocks.

– DataKeyGen
(
1λ

)
outputs a symmetric key KSE ← KeyGen

(
1λ

)
.

– QueryKeyGen
(
1λ

)
outputs a uniformly random PRF key KPRF ← {0, 1}λ.

– ProcessSet (KSE,S) outputs EncKSE
(S).

– Share (KSE,KPRF, T = EncKSE
(S)) operates as follows:

• Generates a uniformly random string r ← {0, 1}λ.
• Decrypts S ← DecKSE

(T ).
• Initializes D = ∅. For each keyword wi ∈ S, computes k′

i = FKPRF
(wi)

and di = Fk′
i
(r), and adds di to D.

• Inserts D into a perfect hash table [11] to obtain D′.
• Outputs Δ = (r,D′).

– Query (KPRF, w) outputs FKPRF
(w).

– Search (Δ = (r,D′) , q, T ) operates as follows:
• Computes d′ = Fq (r).
• Performs a hash table query on D′ for d′, and outputs 1 if and only if d′

was found.

The next claim states that Construction 1 is secure, and summarizes its
parameters.

Claim 1. Assume that Construction 1 is instantiated with a PRF F , and a secure
symmetric encryption scheme, then it is a secure MKSE scheme.

Moreover, data and query keys have length poly (λ), and for a set S the
processed set has size |S| · poly (λ). Furthermore, searching in a set S takes time
poly(λ) and queries have size poly(λ).

Proof. The correctness of the scheme follows directly from the correctness of the
underling primitives, and its complexity follows directly from the construction
and from the following theorem due to Fredman et al. [11].

Theorem 2 (Perfect hashing [11]). Given a set D of n keys from a universe
U , there exists a method that runs in expected O (n) time and constructs a lookup
table D′ of size O (n) such that membership queries (i.e., given x ∈ U , determine
if x ∈ S) can be answered in constant time.

We now argue that the scheme is secure.
For every i ∈ D, let S0

i , S1
i be the sets A chose for data owner i, and let

W0
j ,W1

j be the sets of queries A chose for querier j ∈ Q. Let F 1 denote the PRF
called in Query and to compute k′

i in Share, and let F 2 be the PRF invoked to
compute di in Share. Let view0, view1 denote the view of A in the security game
when b = 0, 1 (respectively). We show that view0 ≈ view1 using a sequence of
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hybrid distributions, and conclude that A has only a negl (λ) advantage in the
security game. As the data keys, and encrypted sets, of corrupted data owners
are identically distributed in both views (because S0

i = S1
i for every i ∈ Dc),

we can fix these values into view0, view1, and all hybrid distributions, without
decreasing the computational distance. Moreover, if F is sufficiently expanding
then with overwhelming probability, all images of the form F 1

K (w), and F 2
k′
i
(r)

(for query keys K, keywords w, set identifiers r, and k′
i) are distinct, so it suffices

to bound the computational distance conditioned on this event. We now define
the hybrids.

For b ∈ {0, 1}, let Hb
0 be the distribution obtained from viewb by replacing

F 1 with a random function R. (We think of R as taking two inputs, the first
being a querier index. Thus, R defines a family {Rj}j of functions, as does F 1.)
That is, for all queriers j, and wl ∈ Wb

j , we have q′
j,l = R (wi) (the tag is used to

denote queries in Hb
0; queries in viewb are untagged). Then viewb ≈ Hb

0 follows
from the pseudorandomness of F by a standard hybrid arguments in which we
replace the invocations of F 1 (used to generate the queries and share keys) of
one querier at a time.

We now define Hb
1 to be identical to Hb

0, except that F 2 is replaced with the
random function R (notice that here, the first input of R corresponds to a query
q′), and the keyword tokens in every share key Δj,i are generated as follows.
For every wl ∈ Sb

i ∩ Wb
j , the corresponding token di,j,l is computed as F 2

q′
j,l

(r)

(i.e., identically to how it is generated in Hb
0; this is needed since q′

j,l appears
in Hb

1 and so consistency of these tokens with F 2 can be efficiently checked).
For every wl ∈ Sb

i \ Wb
j , d′

i,j,l is chosen randomly subject to the constraint that

d′
i,j,l /∈

{
F 2

q′
j,l′

(r) : wl′ ∈ Wb
j

}
. (This can be efficiently achieved by re-sampling,

assuming F is sufficiently stretching.) All values in Δj,i are then hashed.
To show that Hb

0 ≈ Hb
1, we first define an intermediate hybrid Hb,� in which

for every querier j, every data owner i, and every keyword wl ∈ Sb
i \Wb

j , the token
d′

i,j,l in Δj,i is replaced with a random value, subject to the constraint that it is

not in
{

F 2
q′
j,l′

(r) : wl′ ∈ Wb
j

}
, where r is the random identifier associated with

Δj,i. Then Hb
0 ≈ Hb,� follows from the pseudorandomness of F by a standard

hybrid argument in which we replace the tokens one at a time (and use the
assumption that all images of F are unique).

To show that Hb
1 ≈ Hb,�, we define a series of sub-hybrids, replacing F 2

with a random function for a single query of a single querier at a time. (Notice
that each query of each querier represents a unique key for F 2 in all share
keys associated with that querier.) Concretely, denote m = |Q|, and for every
j ∈ Q, let lj :=

∣∣Wb
j

∣∣. For every 1 ≤ j ≤ m and 0 ≤ l ≤ lj , define Hb,j,l to
be the distribution obtained from Hb,� by generating the queries of the first
j − 1 queriers, and the first l queries of querier j, with R (instead of F 2), and
generating the keyword tokens in share keys accordingly. Then Hb,1,0 = Hb,�,
and Hb,m,lm = Hb

1. For every 1 ≤ j ≤ m and 1 ≤ l ≤ lj , Hb,j,l ≈ Hb,j,l−1 by the
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pseudorandomness of F 2. Moreover, Hb,j,0 = Hb,j−1,lj−1 for every 1 < j ≤ m,
so Hb,1,0 ≈ Hb,m,lm (since m = poly (λ), and lj = poly (λ) for every j ∈ Q).

Finally, let Hb
2 be identical to Hb

1 except that the encrypted sets of all honest
data owners i /∈ Dc encrypt 0 (instead of Sb

i ). Then Hb
1 ≈ Hb

2 follows from
the security of the encryption scheme by a standard hybrid argument in which
the encrypted sets are replaced one at a time. Notice that H0

2 = H1
2 and so

view0 ≈ view1. �
Remark 1. Notice that Hb

2 depends only on the share graph, the sets of corrupted
data owners, the sizes of sets of honest data owners, and the access patterns;
and can be efficiently generated given these values. This implies that the view
of every PPT adversary can be efficiently simulated given only these values,
namely, Construction 1 is simulation-secure (as defined in Sect. 6).

The proof of Theorem1 now follows as a corollary from Claim 1.

Proof of Theorem 1. We instantiate Construction 1 with any sufficiently stretch-
ing PRF (e.g., F : {0, 1}λ ×{0, 1}n → {0, 1}2(λ+n), whose existence follows from
the existence of OWFs), and a secure symmetric encryption scheme (which can
be constructed from F ). Then the security of the scheme, as well as the length
of data keys, query keys, and processed sets, follow directly from Claim 1. As for
search time, since keywords have length O (λ) then evaluating F takes poly (λ)
time, and the outputs have length poly(λ). Searching in a set S takes 1 hash query
and thus the overall time is poly (λ) time, and queries have length poly (λ). �

5 MKSE with Short Share Keys

In this section we describe an MKSE scheme with short share keys which employs
a program obfuscator as a building block. We first show (Sect. 5.1) a scheme
based on differing-inputs obfuscation (diO), then show (Sect. 5.2) that a slightly
modified construction can be based on public-coin differing-inputs obfuscation
(pc-diO). We note that though there is evidence that diO for general circuits
might not exist [2,13], no such implausibility results are known for pc-diO.

5.1 MKSE from Differing-Inputs Obfuscation

We construct a secure MKSE scheme using a diO obfuscator for Turing Machines
(TMs). Concretely, we prove the following for a universe U of size |U| ≤ poly

(
2λ

)
:

Theorem 3 (MKSE (Short Share Keys)). Assume that CRHFs, and diO
for TMs with polynomial blowup, exist. Then there exists a secure MKSE in
which share keys have size poly (λ), for a security parameter λ. Moreover, data
and query keys, as well as queries, have length poly (λ), and given a set S, its
processed version has size |S| · poly (λ), and searching in it takes poly (λ, |S|)
time.
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The high-level idea of the constructions is to encrypt sets under their data
key, and queries under the query key of the querier, using a standard (symmetric)
encryption scheme. The share key will be an obfuscation of a program that has
both keys hard-wired into it, and thus allows for searching (even though queries
and sets are encrypted under different keys) by decrypting the ciphertexts and
comparing the underlying keywords. However, to make this rough intuition work,
we need to handle a few subtleties.

First, to obtain security, the program should take the entire set as input.
Otherwise (i.e., if it operates on a single set element at a time), its output
would reveal not only whether the queried keyword appears in the set, but also
where it appears. To see why this violates security, consider the case in which
the same set Si is shared with two different queriers j and j′: the additional
information of where in the set a query appears allows the server to check whether
j and j′ queried the same keyword (even when j, j′ and data owner i are all
honest). Notice that since the program takes the entire set as input, it cannot
be represented as a circuit (since then share keys will not have sublinear size).
Therefore, we implement the program as a TM, and use an obfuscator for TMs.

Second, as noted in the introduction, share keys should only allow searching
for keywords in the sets for which they were generated. That is, a share key Δj,i

between querier j and data owner i should be “tied” to the set Si of i. We achieve
this by hard-wiring a hash h (Si) of Si into the program Pj,i obfuscated in Δj,i,
where Pj,i checks that its input set is consistent with the hash. Notice that the
hard-wired hash prevents us from using an indistinguishability obfuscator [1].
Indeed, if i is honest then in the security game (Definition 1), the adversary
chooses a pair S0

i , S1
i of (possibly different) sets for i, and Δj,i has either h

(
S0

i

)
(in the game with b = 0) or h

(
S1

i

)
(in the game with b = 1) hard-wired into

it. In particular, the underlying programs are not functionally equivalent, so
we cannot rely on indistinguishability obfuscation, and need to use a stronger
primitive. Concretely, our constructions rely on the existence of a diO, or a
pc-diO, obfusctor. We proceed to describe the diO-based construction (the pc-
diO-based construction is described in Sect. 5.2).

The last ingredient we need is a signature scheme, which will be used to sign
queries. Specifically, a query for keyword w will consist of an encryption c of w,
and a signature on c; and share keys will have the corresponding verification key
hard-wired into them. Intuitively, signatures are used to guarantee the server can
only search for queries the querier actually issued, similar to the way the hashed
set prevents the server from searching in sets that were not shared with the
querier. Concretely, the signatures guarantee that the share keys in the security
game for b = 0 and b = 1 are differing-inputs even given the entire view of the
adversary, and allows us to rely on diO security. (Roughly, a pair of programs
are differing-inputs if it is infeasible for a PPT algorithm to find an input on
which their outputs differ.)

Remark 2. We note that if one is willing to change the MKSE syntax, allowing
the server to return encrypted answers which the querier then decrypts, then a
scheme with similar complexity could be constructed from Fully Homomorphic
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Encryption (using Oblivious RAM or Private Information Retrieval). However,
following previous works in the field [17,23,29] we focus on the setting in which
the server gets the answers in the clear (and queriers do not need to decrypt).
This may be crucial in some situations, e.g., when huge documents are associated
with small keyword sets. In a solution based on Fully Homomorphic Encryption,
the computation of a search is proportional to the total size of all the huge doc-
uments, while in our obfuscation-based MKSE scheme the work is proportional
to the total number of keywords, and the size of the returned documents.

We now describe our MKSE scheme. As will become evident from the security
proof, due to the technicalities of using diO security we will need a special
type of encryption (which, nonetheless, can be constructed from any standard
encryption scheme) that we call double encryption. It is similar to the encryption
scheme used in the “2-key trick” of Naor and Yung [27] (to convert a CPA-secure
encryption scheme into a CCA-secure one), except it does not use non-interactive
zero-knowledge proofs to prove that ciphertexts encrypt the same value.

Definition 2 (Double encryption). Let λ ∈ N be a security parameter. Given
a symmetric encryption scheme (KeyGen,Enc,Dec), we define a double symmet-
ric encryption scheme E2 =

(
KeyGen2,Enc2,Dec2

)
as follows:

– KeyGen2, on input 1λ, generates KL ← KeyGen
(
1λ

)
and KR ← KeyGen

(
1λ

)
,

and outputs K = (KL,KR).
– Enc2, on input a key K = (KL,KR) and a message m, computes cL ←

Enc (KL,m) and cR ← Enc (KR,m), and outputs c = (cL, cR).
– Dec2, on input a key K = (KL,KR) and a ciphertext c = (cL, cR), outputs

Dec (KL, cL). (Notice that decryption disregards the “right” component of c.)

We are now ready to describe our MKSE scheme.

Construction 2 (MKSE (Short Share Keys)). The MKSE uses the following
building blocks:

– an obfuscator O,
– a hash function h,
– a double symmetric encryption scheme (KeyGen,Enc,Dec), and
– a signature scheme (KeyGens,Sign,Ver),

and is defined as follows:

– DataKeyGen
(
1λ

)
generates a random encryption key K ← KeyGen

(
1λ

)
and

outputs K.
– QueryKeyGen

(
1λ

)
generates a random encryption key Ku ← KeyGen

(
1λ

)
,

and a random signing and verification key pair (sku, vku) ← KeyGens

(
1λ

)
,

and outputs Ku = (Ku, sku, vku).
– ProcessSet (K,S) encrypts each element s ∈ S as c (s) ← Enc (K, s), and

outputs {c (s) : s ∈ S}.
– Share (K,Ku = (Ku, sku, vku) , TS) generates P̃ ← O (

PK,(Ku,vku),h(TS)

)
where PK,(Ku,vku),h(TS) is the TM defined in Fig. 1, and outputs Δ = P̃ .
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– Query (Ku = (Ku, sku, vku) , w) generates c ← Enc (Ku, w) and σ ←
Sign (sku, c), and outputs (c, σ).

– Search (Δ, q, TS) outputs Δ (TS , q).

Fig. 1. Program PK,(Ku,vku),h(TS) used to generate share keys in Construction 2

The following claim states that if the obfuscator O used in Construction 2 is
a secure diO obfuscator, and all building blocks are secure, then Construction 2
is an MKSE scheme (as in Definition 1).

Claim 2 (MKSE (Short Share Keys)). If Construction 2 is instantiated with a
secure diO obfuscator for TMs, and assuming the security of all building blocks,
then Construction 2 is a secure MKSE.

Moreover, if the encryption and signature schemes have poly (λ)-length keys,
and incur a poly (λ) overhead, then data and query keys, as well as queries,
have length poly (λ), and for a set S, its corresponding processed set has
size |S| · poly (λ). Furthermore, if: (1) evaluating h on length-n inputs takes
HT (n) time, and outputs a hash of length H� (n); and (2) there exist functions
s, TO : N → N such that for every TM M , |O (M)| ≤ s (|M |), and running
O (M) on inputs of length n takes TO (TIME (M,n)) time, where TIME (M,n)
is the running time of M on length-n inputs; then running Search on a set
S takes TO (HT (|S| · poly (λ)) + |S| · poly (λ)) time, and share keys have size
s (H� (|S| · poly (λ)) · poly (λ)).

Remark 3. We note that the security of Construction 2 does not require the diO
obfuscator to be secure with relation to arbitrary auxiliary inputs, but rather it
is only required to guarantee security against a specific class of auxiliary inputs,
as specified in the proof of Claim 2.

Proof of Claim 2. The correctness of the scheme follows directly from the cor-
rectness of the underlying primitives. We now argue that the scheme is secure.
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Let A be a PPT adversary in the security game of Definition 1, let Ki be the
data key A chose for data owner i, and let W0,W1 be the sets of queries A chose
(for all other values chosen by A, we use the notation of Definition 1). We proceed
through a sequence of hybrids. Recall that the view of A in the security game
consists of the encrypted sets TSb

i
for every i ∈ D, queries q for every w ∈ Wb,

and for every edge (j, i) ∈ E, the obfuscated program Δj,i. In particular, since
the keys, and encrypted sets, of corrupted data owners are identically distributed
when b = 0, 1 (because S0

i = S1
i for every i ∈ Dc, and they are encrypted using

the same keys), we can fix these values into all hybrid distributions, without
decreasing the computational distance. Moreover, we assume without loss of
generality that all data keys Ki chosen by A are valid. We now define the hybrids.

view0: view0 is the view of A in the security game with b = 0.
H0: In hybrid H0, the keys K = (KL,KR) ,Ku = (Ku

L,Ku
R) in every obfuscated

program PK,(Ku,vku),h(TS0) are replaced with the keys K′ = (KL,0) ,Ku′ =
(Ku

L,0).
H0 ≈ view0 by the diO security of O (and a standard hybrid argument over all
obfuscated programs in view0,H0), because the TMs in each of the share keys
Δj,i in view0,H0 are differing-inputs. Indeed, they are actually functionally
equivalent (given any auxiliary input), since Dec2 completely disregards the
right ciphertext, and so replacing the right secret key with the all-0 string
does not affect functionality.

H1: In hybrid H1, the encrypted set Ti of every honest data owner i /∈ Dc is
generated as the encryption of

(
S0

i , S1
i

)
with EncL (see Definition 3 below)

instead of Enc2. (Notice that this also affects the share keys.)

To prove that H0 ≈ H1, we will use the following lemma.

Lemma 1. Let � ∈ {L,R}. For every pair (mL,mR) of messages, the following
distributions are computationally indistinguishable, when E2,E� use the same
underlying encryption scheme E = (KeyGen,Enc,Dec).

– D1: generate K = (KL,KR) ← KeyGen2
(
1λ

)
and c ← Enc2 (K,m�), and

output (K�, c).
– D2: generate K = (KL,KR) ← KeyGen�

(
1λ

)
and c ← Enc� (K, (mL,mR)),

and output (K�, c).

Proof. We prove the lemma for the case � = L (the case � = R is similar)
by showing that indistinguishability follows from the security of the underly-
ing scheme E. Given a distinguisher D between D1,D2, we construct a dis-
tinguisher D′ (that has mL hard-wired into it) between encryptions accord-
ing to E of mL,mR. Given a ciphertext c, D′ operates as follows: generates
K′ ← KeyGen

(
1λ

)
, computes c′ ← Enc

(
K′,mL

)
, and outputs D

(
K′, (c′, c)

)
.

Notice that if c encrypts mL then the input to D is distributed according to D1,
otherwise it is distributed according to D2, so the distinguishing advantage of
D′ is equal to that of D which (by the security of E) is negligible. �
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By a standard hybrid argument, Lemma1 implies that polynomially many
ciphertexts (generated by E2 or by EL, with the same or different keys), together
with the keys of the “left” component, are computationally indistinguishable.

We prove H0 ≈ H1 by reducing any distinguisher D between H0,H1 to a
distinguisher D′ between encryptions generated according to EL or E2. We hard-
wire into D′ the querier keys and their queries, as well as the keys and encrypted
sets of corrupted data owners, and the share keys associated with them. (This is
possible because the encryption and signing keys of queriers, and their queries,
are identically distributed in H0,H1, and independent of the encrypted sets; and
since the share keys Δj,i for i ∈ Dc depend only on the keys of data owner i,
querier j, and the encrypted set Ti, which are identically distributed in both
hybrids.) D′ operates as follows: given a sequence of ciphertexts (the encrypted
sets of honest data owners), and the keys corresponding to the ciphertexts in the
left components, D′ honestly generates the hashes of encrypted sets of honest
data owners, and uses the hard-wired querier keys, together with the keys for
the left component in the ciphertexts of honest data owners, to generate the
share keys between queriers and honest data owners. (Notice that since we have
removed the key of the right component in ciphertexts of honest data owners,
these are not needed to generate the share keys.) The values obtained in this way
are distributed identically to H0 (if the input ciphertexts were generated with
E2) or H1 (if they were generated with EL), so D′ has the same distinguishing
advantage as D.

We now define the next hybrids.

H2 : In hybrid H2 the queries
(
w0

j,1, · · · , w0
j,kj

)
of every querier j ∈ Q are

generated using EncL with message
(
w0

j,l, w
1
j,l

)
, 1 ≤ l ≤ kj , instead of Enc2.

H1 ≈ H2 by a similar argument to the one used to show H0 ≈ H1.
H3 : In hybrid H3, the generation of share keys Δj,i is modified as follows: (1)

the hard-wired keys are (0,KR,i) ,
(
0,Ku

R,j

)
, where (KL,i,KR,i) ,

(
Ku

L,i,K
u
R,j

)
are the encryption keys of data owner i and querier j, respectively; and (2)
the program P uses DecR (instead of Dec2) to decrypt c and T ′

S .

H3 ≈ H2 by the diO security of O, as we now show. Let d denote the number
of share keys available to the adversary (i.e., d = |E|), and order them in some
arbitrary way: Δ1, · · · ,Δd. We define a sequence of hybrids H0, · · · ,Hd, where
in Hl, the first l share keys are generated as in H3 (we denote these keys by
Δ′

k), and all other share keys are generated as in H2. We show that Hl ≈ Hl−1

for every 1 ≤ l ≤ d, and conclude that H2 = H0 ≈ Hd = H3.
Fix some 1 ≤ l∗ ≤ d, and let (j, i) be the edge for which Δl∗ was gener-

ated. We fix all the keywords W0,W1, and the sets S0
i′ , S1

i′ for i′ ∈ D, into
Hl∗ ,Hl∗−1 (this is possible because these values are identical in both hybrids).
We additionally fix the keys of every querier j′, j′ �= j and data owner i′, i′ �= i,
the queries that querier j′ makes, the processed sets Ti′ , i′ �= i, and share keys
Δj′,i′ ,Δ′

j′,i′ (this is possible because these values are identically distributed in
both hybrids). We now argue that Δ′

j,i,Δj,i sampled in Hl∗ ,Hl∗−1 (respectively)
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form a differing-sinputs family of TMs with respect to the auxiliary information
aux available to A (and so Hl∗ ≈ Hl∗−1 by the diO security of O). This auxil-
iary information consists of the values we have fixed into Hl∗ ,Hl∗−1, the public
verification key vku

j for signatures of querier j, all queries querier j makes, the
encrypted set Ti of data owner i, and all Δj,i′ ,Δj′,i for i′ �= i, j′ �= j such that
(j, i′) , (j′, i) ∈ E. Let P,P ′ denote the distributions over programs obfuscated
in Δj,i,Δ

′
j,i, and let D be a PPT algorithm that obtains (P, P ′) ← P × P ′ and

aux. In particular, notice that D knows the hash h (Ti), and the encryption keys
Ki,K

u
j (but not the secret signing key sku

j ), since these appear in either P or
P ′. We show that D succeeds in finding a differing input only with negligible
probability.

Consider first the inputs (for P, P ′) available to D in aux, i.e., the encrypted
set Ti (which encrypts the elements of S0

i in the left components, and the ele-
ments of S1

i in the right components; this holds even if i ∈ Dc since in that case
S0

i = S1
i ), and the queries of querier j. For every such query q there exists a

pair (wL, wR) of keywords such that q is of the form q = (c = (cL, cR) , σ) where
c� ← Enc

(
Ku

�,j ,m�

)
, � ∈ {L,R}, σ ← Sign

(
sku

j , c
)
, and wL ∈ S0

i ⇔ wR ∈ S1
i .

(Here, (KeyGen,Enc,Dec) is the encryption scheme used as a building block in
the double encryption scheme.) In particular, P (q, Ti) = P ′ (q, Ti) since the
checks in Steps (1)–(2) succeed in both cases, and Steps (4)–(5) return the same
outcome (P searches for wL in S0

i , since it decrypts using Dec2, whereas P ′

searches for wR in S1
i , since it decrypts with DecR and the right component of

Ti encrypts S1
i ; and wL ∈ S0

i ⇔ wR ∈ S1
i ). In particular, both programs have

the same running time in this case.
Next, we claim that for every other possible input (T ′, c′, σ′) that D chooses

(and does not appear in aux), P (T ′, c′, σ′) = P ′ (T ′, c′, σ′) = 0 except with
negligible probability. Indeed, if (c′, σ′) �= q (where q is some query of querier j)
then by the existential unforgeability of the signature scheme, with overwhelming
probability σ′ is not a valid signature for c′, so the check in Step (1) fails in both
P, P ′ (in particular, both programs have the same running time in this case).
Moreover, if T ′ �= Ti then by the collision resistance of h, with overwhelming
probability h (T ′) �= h (Ti), so the check in Step (2) fails (and again, P, P ′ have
the same running time). Therefore, P, P ′ are differing inputs with relation to the
auxiliary information aux.

We now define the final set of hybrids.

H4 : In hybrid H4, the queries
(
w1

j,1, · · · , w1
j,kj

)
of every querier j ∈ Q are

generated using Enc2 with message
(
w1

j,l, w
1
j,l

)
, 1 ≤ l ≤ kj , instead of EncL

with message
(
w0

j,l, w
1
j,l

)
, 1 ≤ l ≤ kj .

H3 ≈ H4 by a similar argument to the one used to prove H1 ≈ H2.
H5 : In hybrid H5, the encrypted set Ti of every honest data owner i /∈ Dc is

generated as the encryption of
(
S1

i , S1
i

)
with Enc2 instead of with EncL.

H4 ≈ H5 by a similar argument to the one used to prove H0 ≈ H1.
H6 : In hybrid H6, the obfuscated program for every edge (j, i) ∈ E is generated

as follows: (1) the hard-wired keys are K = (KL,i,KR,i) ,K =
(
Ku

L,j ,K
u
R,j

)
,
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instead of K′ = (0,KR,i) ,Ku′ =
(
0,Ku

R,j

)
; and (2) Dec2 is used for decryption

(instead of DecR).

H6 ≈ H5 by the diO security of O, using a standard hybrid argument in
which the obfuscated programs are replaced one at a time. When replacing the
program for edge (j, i) from P ′ (in H5) to P (in H6), the PPT D (which should
find a differing input) is given (as part of the auxiliary information aux) the sets
S1

i′ , i′ ∈ D; the keywords in W1 and the corresponding queries; the encryption
keys of all data owners i′, i′ �= i and querier j′, j′ �= j; the signing and verification
keys of all queriers j′, j′ �= j; and all encrypted sets Ti′ , i′ ∈ D. Also, from P, P ′

the distinguisher learns the encryption keys Ki,K
u
j , and the verification key vku

j .
We show that except with negligible probability, D fails to find a differing input
(the argument is similar to that used to prove H3 ≈ H2).

The inputs (for P, P ′) available to D in aux, i.e., the encrypted set Ti, and
queries q = (c, σ) of querier j (where c ← Enc2

(
Ku

j ,m
)

for some m, and σ ←
Sign

(
sku

j , c
)
), are not differing-inputs (even though P ′ decrypts the right com-

ponent of c, whereas P decrypts the left component) because both components
of c encrypt m according to Enc (so both P, P ′ search for m in S1

i ). For every
other possible input (T ′, c′, σ′) that D chooses, P (T ′, c′, σ′) = P ′ (T ′, c′, σ′) = 0
except with negligible probability: if (c′, σ′) �= q (where q is some query of querier
j) then with overwhelming probability σ′ is not a valid signature on c′ (by the
existential unforgeability of the signature scheme); whereas if T ′ �= Ti then with
overwhelming probability h (T ′) �= h (Ti) (by the collision resistance of h). Con-
sequently, H5 ≈ H6. Since H6 is the view of A in the security game with b = 1,
we conclude that A has only negligible advantage in the security game.

Finally, we analyze the complexity of the scheme. Data and query keys,
which are simply encryption and signing keys, have size poly (λ). Queries are
ciphertext for length-O (λ) keywords (since the universe is at most of size
2λ), together with signatures on these ciphertexts. Similarly, a processed set
consists of encryptions of each of its keywords, so its size is |S| · poly (λ).
Regarding share keys, the TM has size H� (|S| · poly (λ)) · poly (λ) (since
|h (TS)| ≤ H� (|S| · poly (λ))), and so by the assumption on the blowup caused by
obfuscation, share keys have size s (H� (|S| · poly (λ)) · poly (λ)). Finally, Search
consists of running the obfuscated TM, which requires computing the hash
(HT (|S| · poly (λ)) time), and performing O (|S|) operations, each taking poly (λ)
time, so TIME (M, |S|) = HT (|S| · poly (λ))+ |S| ·poly (λ), and consequently the
running time is TO (HT (|S| · poly (λ)) + |S| · poly (λ)). �

The following encryption scheme was used to prove Claim 2:

Definition 3. Given a symmetric encryption scheme (KeyGen,Enc,Dec), and
� ∈ {L,R}, define an encryption scheme E� = (KeyGen�,Enc�,Dec�) as follows:

– KeyGen� operates as KeyGen2 from Definition 2. Namely, on input 1λ it gen-
erates KL ← KeyGen

(
1λ

)
, KR ← KeyGen

(
1λ

)
, and outputs K = (KL,KR).

– Enc�, on input a key K = (KL,KR) and a message m = (mL,mR), computes
cL ← Enc (KL,mL) and cR ← Enc (KR,mR), and outputs c = (cL, cR).



Multi-Key Searchable Encryption, Revisited 115

– Dec�, on input a key K = (KL,KR) and a ciphertext c = (cL, cR), outputs
Dec (K�, c�).

The proof of Theorem3 now follows as a corollary from Claim 2.

Proof of Theorem 3. We instantiate Construction 2 with the double encryption
scheme of Definition 2, based on the encryption scheme whose existence follows
from the existence of a CRHF; the hash function with a Merkle Hash Tree (MHT)
hash based on the CRHF; and instantiate O with the diO obfuscator. Then the
security of the scheme, as well as the length of data and query keys, queries, and
processed sets, follow directly from Claim 2. Regarding share keys, the MHT has
poly (λ)-length outputs, and O causes only a polynomial blowup, so by Claim2,
share keys have length poly (λ). Finally, generating the MHT for a set of size s
takes time s · poly (λ), and so the runtime of Search is poly (λ, |S|). �

5.2 MKSE from Public-Coin Differing-Inputs Obfuscation

In this section we show that a slight modification of Construction 2 is secure
assuming the underlying obfuscator is a pc-diO obfuscator for TMs. More specif-
ically, we only need to use a signature scheme with some “special” properties.
Concretely, we prove the following for a universe U of size |U| ≤ poly

(
2λ

)
:

Theorem 4 (MKSE from pc-diO (short share keys)). Assume that
OWPs, CRHFs, and pc-diO for TMs with polynomial blowup, exist. Then there
exists a secure MKSE in which share keys have size poly (λ), where λ is a secu-
rity parameter. Moreover, data and query keys, as well as queries, have length
poly (λ), and given a set S, its processed version has size |S|·poly (λ), and search-
ing in it takes poly (λ, |S|) time.

The reason we need to change the MKSE scheme outlined in Sect. 5.1 is
that it cannot use a pc-diO obfuscator. (Roughly speaking, pc-diO guarantees
indistinguishability of the obfuscated programs only as long as it is infeasible for
a PPT adversary to find an input on which they differ, even given the randomness
used to sample the programs.) Indeed, for every querier j and data owner i, the
randomness used to sample the program Pj,i (i.e., the program obfuscated in
the share key Δj,i) includes the signing key of querier j. This allows one to sign
arbitrary messages, meaning the obfuscated programs in the security game when
b = 0 and b = 1 are not differing-inputs. (The program Pj,i for querier j and
data owner i contains h

(
S0

i

)
when b = 0, and h

(
S1

i

)
when b = 1, so a differing

input would be a query on any keyword contained in one and not the other. The
query can be efficiently generated since the encryption and signing keys appear
in the randomness used to sample Pj,i.)

To overcome this issue, we introduce a new signature primitive which we call
dual-mode signatures. Roughly, a dual-mode signature scheme is an existentially-
unforgeable signature scheme associated with an additional SpecialGen algorithm
that given a list of messages, generates “fake” signatures on these messages, and
a “fake” verification key under which they can be verified. These “fake” sig-
natures and key are computationally indistinguishable from honestly generated
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signatures and verification key, and the “fake” verification key cannot be used
to successfully sign other messages, even given the randomness used to generate
the “special mode” verification key and signatures. (This rules out the trivial
construction in which SpecialGen simply runs the key generation and signing
algorithms.) Due to space limitations, we defer the formal definition to the full
version [19].

One can think of the SpecialGen algorithm as a way of “puncturing” the
signing key from the procedure that generates the verification key and signatures.
We use this viewpoint to prove security based on pc-diO security and dual-
mode signatures: we first replace the actual verification key used in Pj,i, and the
signatures in the queries of j, with ones generated by SpecialGen; and then use
pc-diO security to replace the obfuscated program from one containing h

(
S0

i

)
to one containing h

(
S1

i

)
. (Notice that now the randomness used to sample Pj,i

does not contain the signing key, so one cannot sign queries that j did not issue.)
In the full version [19], we construct dual-mode signatures from OWPs and

CRHFs:

Theorem 5. Assume that OWPs and CRHFs exist. Then there exists a dual-
mode signature scheme. Moreover, there exists a polynomial p (λ) such that sig-
natures on length-n messages have length 5p (λ)·(n + 1), signing keys have length
2p (λ) + λ, and verification keys have length 2p (λ).

We instantiate Construction 2 with a pc-diO obfuscator and the dual-mode
signatures of Theorem 5. The properties of the resultant scheme are summarized
in the following claim (whose proof is similar to that of Claim2).

Claim 3 (MKSE (Short Share Keys) from pc-diO). If Construction 2 is instanti-
ated with a secure pc-diO obfuscator for TMs and a secure dual-mode signature
scheme, and assuming the security of all building blocks, then Construction 2 is
a secure MKSE.

Moreover, if on messages of length n the dual-mode signature scheme out-
puts signing and verification keys of length poly (λ), and signatures of length
n · poly (λ), then the following holds for the MKSE scheme for universe U .
Data and query keys have length poly (λ), queries have length log |U| · poly (λ),
and for a set S, its corresponding processed set has size |S| · poly (λ). Fur-
thermore, if: (1) evaluating h on length-n inputs takes HT (n) time, and out-
puts a hash of length H� (n); and (2) there exist functions s, TO : N →
N such that for every TM M , |O (M)| ≤ s (|M |), and running O (M) on
inputs of length n takes TO (TIME (M,n)) time, where TIME (M,n) is the
running time of M on length-n inputs; then: running Search on a set S
takes TO (HT (|S| · poly (λ)) + |S| · poly (λ) + poly (λ, log |U|)) time, and share
keys have size s (H� (|S| · poly (λ)) · poly (λ)).

Proof. The correctness and complexity of the scheme is proven similarly to
Claim 2. (The only difference is in the length of queries, which contain a sig-
nature on a keyword w ∈ U , and the running time of Search, which needs to
verify the signature. In both cases, the increase in complexity is caused because
signatures on w ∈ U have length log |U| · poly (λ).)
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The security proof proceeds in a sequence of hybrids similar to the proof of
Claim 2, but introduces additional complications due to using a weaker obfusca-
tor primitive. More specifically, let A be a PPT adversary in the security game of
Definition 1, and let viewb, b ∈ {0, 1} denote its view in the security game with bit
b. We define hybrids H0,H1, and H2 as in the proof of Claim 2, and view0 ≈ H0

by the same arguments. Indeed, as discussed there, the obfuscated programs in
view0,H0 are differing inputs in relation to every auxiliary input, and in partic-
ular when this auxiliary input is the randomness used by the sampler to sample
the programs. H0 ≈ H2 because the indistinguiushability argument did not use
diO security.

Next, we define a new hybrid H′
2 in which the signatures on the queries

W0
j of every querier j, and his verification key vkj , are generated using the

SpecialGen algorithm (instead of the KeyGen and Sign algorithms). We show
that H′

2 ≈ H2 by the indistinguishability of standard and special modes of the
dual-mode signature scheme. We condition both hybrids on the values of the
sets S0

i , S1
i of data owners, their data keys, the processed sets, the encryption

keys of the queriers, the keywords they search for, and their encryptions. (This is
possible by an averaging argument, since these values are identically distributed
in both hybrids.) Let m denote the number of queriers, then we define a sequence
of hybrids H0, · · · ,Hm, where in Hj , the signatures and verification key of the
first j queriers are generated using SpecialGen, and the signatures and verification
keys of all other queriers are honestly generated (using KeyGen and Sign). We
prove that Hj ≈ Hj−1 for every 1 ≤ j ≤ m, and conclude that H2 = H0 ≈
Hm = H′

2.
Fix some j. Given a distinguisher D between Hj ,Hj−1, we construct a dis-

tinguisher D′ (with the same distinguishing advantage) between the real and
special-mode verification key and signatures on the ciphertexts encrypting the
keywords in W0

j , and conclude that Hj ≈ Hj−1 by the indistinguishability of
standard and special modes property. We hard-wire into D′ the signing, verifi-
cation keys, and queries of every j′ �= j, as well as all share keys Δj′,i for i ∈ D
(this is possible because these values are identically distributed in Hj ,Hj−1 and
so we can fix them into both hybrids). Given a verification key vk, and a list L of
signatures on the ciphertexts of querier j, D′ generates for every edge (j, i) ∈ E
the program PK,(Ku,vk),h(T ) (where K,Ku, and h (T ) are taken from the hard-
wired values), and uses O to generate the obfuscated program Δj,i. Then, D′

generates the queries of querier j by concatenating the corresponding signature
to each ciphertext of j. Together with the hard-wired values, this gives the entire
hybrid, and D′ runs D on the hybrid, and outputs whatever D outputs. Notice
that if vk and the signatures were honestly generated, then the input to D is
distributed according to Hj−1, otherwise it is distributed according to Hj , so D′

and D have the same distinguishing advantage.
Next, we define H3 as in the proof of Claim 2 (but notice that the verification

keys in every Δj,i were generated using SpecialGen), and claim that H′
2 ≈ H3 by

the pc-diO security of O. We define the hybrids H0, · · · ,Hd as in the argument
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that H2 ≈ H3 in the proof of Claim 2 (except that we use H′
2 instead of H2),

and show that Hl ≈ Hl−1 for every 1 ≤ l ≤ d.
Fix some 1 ≤ l∗ ≤ d, and let (j, i) be the edge for which Δl∗ was generated.

We hard-wire the sets S0
i′ , S1

i′ , i′ ∈ D, and all the keywords that queriers ask
about (in both the 0-experiment and the 1-experiment), into Hl∗ ,Hl∗−1 (this
is possible because these values are identical in both hybrids). We additionally
hard-wire the keys of every querier j′, j′ �= j and data owner i′, i′ �= i, the
encrypted sets Ti′ , i′ �= i, the queries of querier j′, and the share keys Δj′,i′ ,Δ′

j′,i′

(Δj′,i′ denotes a key in H′
2, Δ′

j′,i′ denotes a key in H3). (This is possible because
these values are identically distributed in both hybrids.) We show that Δj,i,Δ

′
j,i

sampled in Hl∗−1,Hl∗ (respectively) form a public-coin differing-inputs family
of TMs (and conclude that Hl∗−1 ≈ Hl∗ by the pc-diO security of O).

Let P,P ′ denote the distributions over programs obfuscated in Δj,i,Δ
′
j,i, and

let D be a PPT algorithm that obtains (P, P ′) ← P × P ′ and r, where r is the
randomness used to sample P, P ′. We assume the “worst-case” scenario in which
all the values we have fixed into Hl∗ ,Hl∗−1 are known to D. Notice that from
the randomness r of the sampler, D learns the encryption keys Ki,K

u
j (the left

component of these keys is needed to generate P , whereas the right component
is needed to generate P ′), as well as the encrypted set Ti, the verification key
vku

j for signatures of querier j, and the queries of j (which consist of encryptions
of keywords, and signatures on these encryptions; the signatures were generated
together with the verification key by SpecialGen). (We note that from these
values D can compute on its own the share keys Δj′,i,Δ

′
j′,i for (j′, i) ∈ E, and

Δj,i′ ,Δ′
j,i′ for (j, i′) ∈ E.) We show that D succeeds in finding a differing input

only with negligible probability.
Consider first the inputs (for P, P ′) which D knows (from the hard-wired

values, or what it can deduce from r), i.e., the encrypted set Ti (which encrypts
the elements of S0

i in the left components, and the elements of S1
i in the right

components; for i ∈ Dc this holds since S0
i = S1

i ), and the queries of querier j.
For every such query q there exists a pair (wL, wR) of keywords such that q is
of the form q = (c = (cL, cR) , σ) where c� ← Enc

(
Ku

�,j ,m�

)
, � ∈ {L,R}, σ is

a valid signature on c (generated by SpecialGen), and wL ∈ S0
i ⇔ wR ∈ S1

i . In
particular, P (q, Ti) = P ′ (q, Ti) except with negligible probability since except
with negligible probability, the checks in Steps (1)–(2) succeed in both cases (by
indistinguishability of the standard and special modes of the signature scheme,
σ is indistinguishable from a valid signature on c, which by the correctness of the
signature scheme, would pass verification), and Steps (4)–(5) return the same
outcome (P searches for wL in S0

i , since it decrypts using Dec2, whereas P ′

searches for wR in S1
i , since it decrypts with DecR and the right component of

Ti encrypts S1
i ; and wL ∈ S0

i ⇔ wR ∈ S1
i ).

Next, we claim that for every other possible input (T ′, c′, σ′) that D chooses,
P (T ′, c′, σ′) = P ′ (T ′, c′, σ′) = 0 except with negligible probability. Indeed, if
(c′, σ′) �= q (where q is some query of querier j) then by the property that special-
mode keys cannot sign additional messages, with overwhelming probability σ′ is
not a valid signature for c′, so the check in Step (1) fails in both P, P ′. Moreover,
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if T ′ �= Ti then by the collision resistance of h, with overwhelming probability
h (T ′) �= h (Ti), so the check in Step (2) fails. Therefore, P, P ′ are public-coin
differing-inputs.

We now define the last set of hybrids. (These hybrids differ from the corre-
sponding hybrids in the proof of Claim2 only in that the verification keys and
signatures are generated in the special mode.)

H4 : In hybrid H4, the queries
(
w1

j,1, · · · , w1
j,kj

)
of every querier j ∈ Q are

generated using Enc2 with message
(
w1

j,l, w
1
j,l

)
, 1 ≤ l ≤ kj , instead of EncL

with message
(
w0

j,l, w
1
j,l

)
, 1 ≤ l ≤ kj .

H3 ≈ H4 by a similar argument to the one used to prove H1 ≈ H2.
H5 : In hybrid H5, the encrypted set Ti of every honest data owner i /∈ Dc is

generated as the encryption of
(
S1

i , S1
i

)
with Enc2 instead of with EncL.

H4 ≈ H5 by a similar argument to the one used to prove H0 ≈ H1.
H6 : In hybrid H6, the obfuscated program for every edge (j, i) ∈ E is generated

as follows: (1) the hard-wired keys are K = (KL,i,KR,i) ,K =
(
Ku

L,j ,K
u
R,j

)
,

instead of K′ = (0,KR,i) ,Ku′ =
(
0,Ku

R,j

)
; and (2) Dec2 is used for decryption

(instead of DecR).

We show that H6 ≈ H5 follows from the pc-diO security of O by a standard
hybrid argument in which the obfuscated programs are replaced one at a time.
When replacing the program for edge (j, i) from P ′ (in H5) to P (in H6), we
hard-wire into the PPT D (which should find a differing input) the sets S1

i′ for
every i′ ∈ D, the keywords searched for (in the 1-experiment) by all queriers, the
encryption keys of all data owners i′, i′ �= i and queriers j′, j′ �= j, the signing,
verification keys, and queries of all queriers j′, j′ �= j, and all encrypted sets
Ti′ , i′ �= i. Also, from the randomness r of the sampler (of P, P ′), D learns the
encryption keys Ki,K

u
j , the (special-mode) verification key vku

s,j , the encryptions
of the keywords which querier j searches for, together with the signatures on
these ciphertexts, and the encrypted set Ti.

We claim that D finds a differing input only with negligible probability. The
argument is similar to that used to prove H3 ≈ H′

2. The inputs (for P, P ′) avail-
able to D (from the hard-wired values, and the randomness of the sampler), i.e.,
the encrypted set Ti, and queries q = (c, σ) of querier j, where c ← Enc2

(
Ku

j ,m
)

for some m, and σ is a signature for c (generated using SpecialGen), are not
differing-inputs (even though P ′ decrypts the right component of c, whereas P
decrypts the left component) because both components of c encrypt m according
to Enc (so both P, P ′ search for m in S1

i ), where Enc is the encryption scheme
underlying Enc2,EncL,EncR. For every other possible input (T ′, c′, σ′) that D
chooses, P (T ′, c′, σ′) = P ′ (T ′, c′, σ′) = 0 except with negligible probability: if
(c′, σ′) �= q (where q is some query of querier j) then with overwhelming probabil-
ity σ′ is not a valid signature on c′ (by the property that special-mode signatures
cannot sign additional messages); whereas if T ′ �= Ti then with overwhelming
probability h (T ′) �= h (Ti) (by the collision resistance of h).
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In our final new hybrid H′
6, the signatures on the queries W0

j of every querier
j, and his verification key vkj , are honestly generated (using the KeyGen and
Sign algorithms). Then view1 = H′

6 ≈ H6 by the same arguments used to show
H′

2 ≈ H2. �
Theorem 4 now follows as a corollary from Claim 3 and Theorem 5, and since

the existence of symmetric encryption follows from the existence of CRHFs.

6 Extensions and Open Problems

In this section we discuss possible extensions of our MKSE definition and con-
structions, and point out a few open problems in the field.

We have focused on a selective, indistinguishability-based MKSE notion (Def-
inition 1). One could also consider several other formulations, as we now discuss.

Simulation-based security. First, one can consider a selective simulation-
based notion, in which the real-world view of any PPT adversary can be efficiently
simulated given only “minimal” information. More specifically, at the onset of the
execution the adversary chooses (as in Definition 1) sets of queriers, data owners,
and corrupted data owners; a share graph; keyword sets for all data owners; data
keys for corrupted data owners; and a (possibly empty) set of distinct keyword
queries for each querier. The simulator is then given the sets and data keys of
corrupted data owners; the sizes of the sets of honest data owners; the share
graph; and for each keyword query w of querier j, and every edge (j, i) in the
graph, whether w ∈ Si or not (where Si is the set of data owner i). The simulator
then generates a complete simulated adversarial view, namely processed sets for
all data owners, share keys for all edges in the share graph, and queries for every
keyword query. Intuitively, we say that an MKSE is simulation-secure if for every
PPT adversary there exists a PPT simulator as above, such that the real and
simulated views are computationally indistinguishable. The PRF-based MKSE
(Construction 1) is simulation-secure (see Remark 1), and we leave it as an open
problem to determine whether the MKSE with short share keys (Construction 2,
based on diO or pc-diO) is simulation-secure.

A natural question that arises in this context is whether indistinguishability-
based security (as in Definition 1) implies simulation-based security (as outlined
above). One approach towards tackling this question is to describe an algorithm
that, given the input of the simulator (as specified above), generates an assign-
ment for the sets of the honest data owners, and for all keyword queries, in a way
that is consistent with the outcome of searching for these keywords. Concretely,
this approach reduces the task of constructing a simulator to the following graph
problem: given a bipartite graph G = (L,R,E); a set {nv : v ∈ R} of natural
numbers; and for every u ∈ L, a set of coloring of the edges touching u in two
colors (blue and red), assign a set Sv ⊆ U to every v ∈ R (recall that U is a
universe of possible keywords), and a value wc

u ∈ U to every u ∈ L and every
coloring c of the edges that touch u, such that the following holds:
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1. For every v ∈ R, |Sv| = nv.
2. For every u ∈ L, and two colorings c1, c2 of the edges touching u, wc1

u �= wc2
u .

3. For every u ∈ L, every coloring c of the edges that touch u, and every edge
(u, v) ∈ E, c (u, v) = blue if and only if wc

u ∈ Sv, where c (u, v) is the color of
the edge (u, v) in the coloring c.

(We note that Item 1 guarantees that sets have the “right” size; Item 2 guarantees
that the queries made by each querier are distinct; and Item 3 guarantees that
the assignments to the sets and keywords searched for are consistent.) At a high
level, the main challenge is in finding an assignment for the set that would be
consistent over the queries of multiple queriers, while simultaneously satisfying
the restriction on the size of the set. Intuitively, this issue does not arise in the
PRF-based construction since each share key Δj,i encodes the entire set, and the
Search algorithm does not use the processed set at all (so issues of consistency
across different queriers do not arise).

Adaptive security. Another possible dimension of generalizing Definition 1 is
to consider an (either indistinguishability-based or simulation-based) adaptive
definition. At a high level, in this setting the adversary may adaptively generate
queriers, data owners (with their sets and data keys), edges in the share graph,
and keyword queries, and immediately receives the resultant values. (For exam-
ple, when an adversary specifies a new data owner and his data key and set,
he receives the corresponding processed set; when he adds an edge to the share
graph, he receives the corresponding share key, etc.) The security requirement
should hold as long as at the end of the execution, the data sets, share graph,
and queries satisfy the restrictions imposed by the (selective) security definition
(in a simulation-based definition, the only restriction is that the queries of each
querier are distinct; in an indistinguishability-based definition there are further
restrictions as specified in Definition 1).

Natural approaches towards proving adaptive security, even for the PRF-
based construction (Construction 1), seem to run into “selective opening type”
issues: in the security proof, we would naturally want to replace the pseudoran-
dom images of the PRF F in share keys with random values, however we do not
a-priori know which values the adversary will ask to be “opened” (by making a
keyword query for a keyword in the set corresponding to the share key; recall that
these queries constitute a key for F ). Consequently, we cannot a-priori determine
which values should remain pseudorandom (so that they can later be opened).
However, we can show that Construction 1 is adaptively simulation-secure in
the Random Oracle model, namely when all evaluations of F are replaced with
calls to the random oracle (replacing FK (x) with a call to RO (K,x)). The ran-
dom oracle circumvents such “selective opening type” issues since any (randomly
assigned) output of the random oracle can later be “explained” by consistently
assigning the random oracle outputs at other (related) points.

Efficiency and security tradeoffs. Finally, an interesting avenue for future
research is exploring the tradeoffs between efficiency of the MKSE scheme, and
the underlying assumptions. Our MKSE with short share keys (Construction 2)
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indicates the hardness of proving an unconditional lower bound on the size of
share keys, since it would require ruling out the existence of diO for a specific
class of samplers. However, it does not rule out the possibility of constructing an
MKSE scheme with short share keys based on weaker assumptions (such as the
existence of iO for TMs, or ideally, on the existence of OWFs). More generally,
one could ask how the search time, and size of share keys, relate to each other;
and if there is a lower bound on “search time plus share key size”.
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