
Committed MPC
Maliciously Secure Multiparty Computation

from Homomorphic Commitments

Tore K. Frederiksen1(B), Benny Pinkas2, and Avishay Yanai2

1 Security Lab, Alexandra Institute, Aarhus, Denmark
tore.frederiksen@alexandra.dk

2 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
benny@pinkas.net, ay.yanay@gmail.com

Abstract. We present a new multiparty computation protocol secure
against a static and malicious dishonest majority. Unlike most previous
protocols that were based on working on MAC-ed secret shares, our app-
roach is based on computations on homomorphic commitments to secret
shares. Specifically we show how to realize MPC using any additively-
homomorphic commitment scheme, even if such a scheme is an interactive
two-party protocol.

Our new approach enables us to do arithmetic computation over arbi-
trary finite fields. In addition, since our protocol computes over commit-
ted values, it can be readily composed within larger protocols, and can
also be used for efficiently implementing committing OT or committed
OT. This is done in two steps, each of independent interest:
1. Black-box extension of any (possibly interactive) two-party addi-

tively homomorphic commitment scheme to an additively homomor-
phic multiparty commitment scheme, only using coin-tossing and a
“weak” equality evaluation functionality.

2. Realizing multiplication of multiparty commitments based on a
lightweight preprocessing approach.

Finally we show how to use the fully homomorphic commitments to com-
pute any functionality securely in the presence of a malicious adversary
corrupting any number of parties.

1 Introduction

Secure computation (MPC) is the area of cryptography concerned with mutually
distrusting parties who wish to compute some function f on private input from
each of the parties, yielding some private output to each of the parties. If we
consider p parties, P1, . . . , Pp where party Pi has input xi the parties then wish to

T. K. Frederiksen—Majority of work done while at Bar-Ilan University, Israel.
All authors were supported by the BIU Center for Research in Applied Cryptography
and Cyber Security in conjunction with the Israel National Cyber Bureau in the
Prime Minsters Office. Tore has also received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 731583.

c© International Association for Cryptologic Research 2018
M. Abdalla and R. Dahab (Eds.): PKC 2018, LNCS 10769, pp. 587–619, 2018.
https://doi.org/10.1007/978-3-319-76578-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76578-5_20&domain=pdf
http://orcid.org/0000-0003-4060-0150

588 T. K. Frederiksen et al.

learn their respective output yi. We can thus describe the function to compute
as f(x1, x2, . . . , xp) = (y1, y2, . . . , yp). It was shown in the 80’s how to realize
this, even against a malicious adversary taking control over a majority of the
parties [24]. With feasibility in place, much research has been carried out trying
to make MPC as efficient as possible. One specific approach to efficient MPC,
which has gained a lot of traction is based on secret sharing [3,5,24]: Each party
secretly shares his or her input with the other parties. The parties then parse
f as an arithmetic circuit, consisting of multiplication and addition gates. In
a collaborative manner, based on the shares, they then compute the circuit, to
achieve shares of the output which they can then open.

Out Contributions. Using the secret sharing approach opens up the possibility
of malicious parties using “inconsistent” shares in the collaborative computation.
To combat this, most protocols add a MAC on the true value shared between
the parties. If someone cheats it is then possible to detect this when verifying
the MAC [14,16,33].

In this paper we take a different approach to ensure correctness: We have
each party commit to its shares towards the other parties using an additively
homomorphic commitment. We then have the collaborative computation take
place on the commitments instead of the pure shares. Thus, if some party tries
to change its share during the protocol then the other parties will notice when
the commitments are opened in the end (as the opening will be invalid).

By taking this path, we can present the following contributions:

1. An efficient and black-box reduction from random multiparty homomorphic
commitments, to two-party additively homomorphic commitments.

2. Using these multiparty commitments we present a new secret-sharing based
MPC protocol with security against a majority of malicious adversaries.
Leveraging the commitments, our approach does not use any MAC scheme
and does not rely on a random oracle or any specific number theoretic assump-
tions.

3. The new protocol has several advantages over previous protocols in the same
model. In particular our protocol works over fields of arbitrary characteristic,
independent of the security parameter. Furthermore, since our protocol com-
putes over committed values it can easily be composed inside larger protocols.
For example, it can be used for computing committed OT in a very natural
and efficient way.

4. We suggest an efficient realization of our protocol, which only relies on a
PRG, coin-tossing and OT1. We give a detailed comparison of our scheme
with other dishonest majority, secret-sharing based MPC schemes, showing
that the efficiency of our scheme is comparable, and in several cases preferable,
over state-of-the-art.

1 OT can be efficiently realized using an OT extension, without the usage of a random
oracle, but rather a type of correlation robustness, as described in [2].

Committed MPC 589

High Level Idea. We depart from any (possibly interactive) two-party addi-
tively homomorphic commitment scheme. To achieve the most efficient result,
without relying on a random oracle or specific number theoretic assumptions,
we consider the scheme of [18], since has been shown to be highly efficient in
practice [35,36]. This scheme, along with others [9–11] works on commitments
to vectors of m elements over some field F. For this reason we also present our
results in this setting. Thus any of these schemes could be used.

The first part of our protocol constructs a large batch of commitments to ran-
dom values. The actual value in such a commitment is unknown to any party,
instead, each party holds an additive share of it. This is done by having each
party pick a random message and commit to it towards every other party, using
the two-party additively homomorphic commitment scheme. The resulted mul-
tiparty commitment is the sum of all the messages the parties committed to,
which is uniformly random if there is at least one honest party. We must ensure
that a party commits to the same message towards all other parties, to this end
the parties agree on a few (random) linear combinations over the commitments,
which are then opened and being checked.

Based on these random additively shared commitments, the parties execute
a preprocessing stage to construct random multiplication triples. This is done
in a manner similar to MASCOT [29], yet a bit different, since our scheme sup-
ports computation over arbitrary small fields and MASCOT requires a field of
size exponential in the security parameter. More specifically the Gilboa protocol
[23] for multiplication of additively shared values is used to compute the prod-
uct of two shares of the commitments between each pair of parties. However,
this is not maliciously secure as the result might be incorrect and a few bits of
information on the honest parties’ shares might be leaked. To ensure correct-
ness cut-and-choose and sacrificing steps are executed. First, a few triples are
opened and checked for correctness. This ensures that not all triples are incor-
rectly constructed. Next, the remaining triples are mapped into buckets, where
some triples are sacrificed to check correctness of another triple. At this point all
the triples are correct except with negligible probability. Finally, since the above
process grants the adversary the ability to leak some bits from the honest par-
ties shares, the parties engage in a combining step, where triples are randomly
“added” together to ensure that the result will contain at least one fully random
triple.

As the underlying two-party commitments are for vectors of messages, our
protocol immediately features single-instruction multiple-data (SIMD), which
allows multiple simultaneously executions of the same computation (over differ-
ent inputs). However, when performing only a single execution we would like to
use only one element out of the vector and save the rest of the elements for a
later use. We do so by preprocessing reorganization pairs, following the same
approach presented in MiniMAC [12,15,16], which allows to perform a linear
transformation over a committed vector.

With the preprocessing done, the online phase of our protocol proceeds like
previous secret-sharing based MPC schemes such as [14,16,29]. That is, the

590 T. K. Frederiksen et al.

parties use their share of the random commitments to give input to the protocol.
Addition is then carried out locally and the random multiplication triples are
used to interactively realize multiplication gates.

Efficiency. In Table 1 we count the amount of OTs, two-party commitments
and coin tossing operations required in the different commands of our protocol
(specifically, in the Rand, Input, ReOrg, Add and Mult commands).

The complexities describe what is needed to construct a vector of m elements
in the underlying field in the amortized sense. When using the commitment
scheme of [18] it must hold that m ≥ s/�log2(|F|)� where s is the statistical
security parameter.

Table 1. Amortized complexity of each instruction of our protocol (Rand, Input,
ReOrg, Add and Mult), when constructing a batch of 220 multiplication triples, each
with m independent components among p parties. The quadratic complexity of the
number of two-party commitments reflects the fact that our protocol is constructed
from any two-party commitment scheme in a black-box manner, and so each party
independently commits to all other party for every share it posses.

Rand, Input ReOrg Add Mult

OTs 0 0 0 27m log(|F|)p(p − 1)

Two-party commitments p(p − 1) 3p(p − 1) 0 81p(p − 1)

Random coins log(|F|) 4 log(|F|) 0 108 log(|F|)

1.1 Related Work

Comparison to SPDZ and TinyOT. In general having the parties commit to
their shares allows us to construct a secret-sharing based MPC protocol ala
SPDZ [14,29], but without the need of shared amd specific information theoretic
MACs. This gives us several advantages over the SPDZ approach:

– We get a light preprocessing stage of multiplication triples as we can base
this on commitments to random values, which are later adjusted to reflect
a multiplication. Since the random values are additively homomorphic and
committed, this limits the adversary’s possible attack vector. In particular
we do not need an authentication step.

– Using the commitment scheme of [18] we get the possibility of committing
to messages in any field F among p parties, using communication of only
O(log(|F|) · p2) bits, amortized. This is also the case when F is the binary
field2 or of different characteristic than 2. In comparison, SPDZ requires the
underlying field to be of size Ω(2s) where s is a statistical security parameter.

– The TinyOT protocol [7,30,33] on the other hand only works over GF(2) and
requires a MAC of Õ(s) bits on each secret bit. Giving larger overhead than
in SPDZ, MiniMAC and our protocol and limiting its use-case to evaluation
of Boolean circuits.

2 This requires a commitment to be to a vector of messages in F.

Committed MPC 591

Comparison to MiniMAC. The MiniMAC protocol [16] uses an error correcting
code over a vector of data elements. It can be used for secure computation
over small fields without adding long MACs to each data element. However,
unfortunately the authors of [16] did not describe how to realize the preprocessing
needed. Neither did the follow up works [12,15]. The only efficient3 preprocessing
protocol for MiniMAC that we know of is the one presented in [19] based on OT
extension. However this protocols has it quirks:

– It only works over fields of characteristic 2.
– The ideal functionality described is different from the ones in [12,15,16].

Furthermore, it is non-standard in the sense that the corruption that an
adversary can apply to the shares of honest parties can be based on the
inputs of the honest parties.

– There is no proof that this ideal functionality works in the online phase of
MiniMAC.

– There seems to be a bug in one of the steps of the preprocessing of multipli-
cation triples. We discuss this in further detail in the full version [20].

OT Extensions. All the recent realizations of the preprocessing phase on secret
shared protocols such as SPDZ, MiniMAC and TinyOT are implemented using
OT. The same goes for our protocol. Not too long ago this would have not been
a practically efficient choice since OT generally requires public key operations.
However, the seminal work of Beaver [4] showed that it was possible to extend a
few OTs, using only symmetric cryptography, to achieve a practically unbounded
amount of OTs. Unfortunately Beaver’s protocol was not practically efficient, but
much research has been carried out since then [1,2,25,28,33], culminating with a
maliciously secure OT extension where a one-out-of-two OT of 128 bit messages
with s = 64 can be done, in the amortized sense, in 0.3µs [28].

Commitment Extensions. Using additive homomorphic commitments for practi-
cal MPC is a path which would also not have been possible even just a few years
ago. However, much study has undergone in the area of “commitment extension”
in the recent years. All such constructions that we know of require a few OTs
in a preprocessing phase and then construction and opening of commitments
can be done using cheap symmetric or information theoretic primitives. The
work on such extensions started in [22] and independently in [11]. A series of
follow-up work [6,9,10,18,35] presented several improvements, both asymptoti-
cally and practically. Of these works [35] is of particular interest since it presents
an implementation (based on the scheme of [18]) and showed that committing
and opening 128 bit messages with s = 40 can be done in less than 0.5µs and
0.2µs respectively, in the amortized sense for a batch of 500,000 commitments4.

3 I.e. one that does not use a generic MPC protocol to do the preprocessing.
4 Note that this specific implementation unfortunately uses a code which does not

have the properties our scheme require. Specifically its product-code has too low
minimum distance.

592 T. K. Frederiksen et al.

It should be noted that Damg̊ard et al. [11] also achieved both additively
and multiplicative homomorphic commitments. They use this to get an MPC
protocol cast in the client/server setting. We take some inspiration from their
work, but note that their setting and protocols are quite different from ours in
that they use verifiable secret sharing to achieve the multiplicative property and
so their scheme is based on threshold security, meaning they get security against
a constant fraction of servers in a client/server protocol.

Relation to [13]. The protocol by Damg̊ard and Orlandi also considers a mali-
ciously secure secret-sharing based MPC in the dishonest majority setting. Like
us, their protocol is based on additively homomorphic commitments where each
party is committed to its share to thwart malicious behavior. However, unlike
ours, their protocol only works over large arithmetic fields and uses a very dif-
ferent approach. Specifically they use the cut-and-choose paradigm along with
packed secret sharing in order to construct multiplication triples. Furthermore,
to get random commitments in the multiparty setting, they require usage of
public-key encryption for each commitment. Thus, the amount of public-key
operations they require is linear in the amount of multiplication gates in the
circuit to compute. In our protocol it is possible to limit the amount of public-
key operations to be asymptotic in the security parameter, as we only require
public-key primitives to bootstrap the OT extension.

Other Approaches to MPC. Other approaches to maliciously secure MPC in the
dishonest majority setting exist. For example Yao’s garbled circuit [31,32,37],
where the parties first construct an encrypted Boolean circuit and then evalu-
ate it locally. Another approach is “MPC-in-the-head” [26,27] which efficiently
combines any protocol in the malicious honest majority settings and any proto-
col in the semi-honest dishonest majority settings into a protocol secure in the
malicious dishonest majority settings.

2 Preliminaries

Parameters and Notation. Throughout the paper we use “negligible proba-
bility in s” to refer to a probability o(1/poly(s)) where poly(s) indicates some
polynomial in s ∈ N. Similarly we use “overwhelming probability in s” to denote
a probability 1 − o(1/poly(s)), where s is the statistical security parameter.

There are p ∈ N parties P1, . . . , Pp participating in the protocol. The notation
[k] refers to the set {1, . . . , k}. We let vector variables be expressed with bold
face. We use square brackets to select a specific element of a vector, that is,
x[�] ∈ F is the �’th element of the vector x ∈ F

m for some m ≥ �. We assume
that vectors are column vectors and use ‖ to denote concatenation of rows, that
is, x‖y with x,y ∈ F

m is a m × 2 matrix. We use ∗ : F
m × F

m → F
m to

denote component-wise multiplication and · : F × F
m → F

m to denote a scalar
multiplication. We will sometimes abuse notation slightly and consider F as a
set of elements and thus use F\{0} to denote the elements of F, excluding the
additive neutral element 0.

Committed MPC 593

If S is a set we assume that there exists an arbitrary, but globally known
deterministic ordering in such a set and let S[i] = Si denote the ith element
under such an ordering. In general we always assume that sets are stored as a
list under such an ordering. When needed we use (a, b, ...) to denote a list of
elements in a specific order. Letting A and B be two sets s.t. |A| = |B| we then
abuse notation by letting {(a, b)} ∈ (A,B) denote {(A[i], B[i])}i∈[|A|]. I.e. a and
b denote the i’th element in A, respectively B.

All proof and descriptions of protocols are done using the Universally Com-
posable framework [8].

Ideal Functionalities. We list the ideal UC-functionalities we need for our
protocol. Note that we use the standard functionalities for Coin Tossing, Secure
Equality Check, Oblivious Transfer and Multiparty Computation.

We need a coin-tossing functionality that allows all parties to agree on uni-
formly random elements in a field. For this purpose we describe a general, mali-
ciously secure coin-tossing functionality in Fig. 1.

Fig. 1. Ideal functionality FCT

Furthermore we need to be able to securely evaluate equality of values.
This functionality is described in Fig. 2. Notice that this functionality allows
the adversary to learn the honest parties’ inputs after it supplies its own. Fur-
thermore, we allow the adversary to learn the result of the equality check before
any honest parties, which gives him the chance to abort the protocol. Thus this
function should only be used on data that is not private. The functionality can
for example be implemented using a commitment scheme where each party com-
mits to its input towards every other party. Once all parties have committed,
the parties open the commitments and each party locally evaluates if everything
is equal.

We also require a standard 1-out-of-2 functionality denoted by FOT as
described in Fig. 3.

Finally, a fully fledged MPC functionality, very similar to the one described
in previous works such as SPDZ and MiniMAC, is described in Fig. 4. Note that
the functionality maintains the dictionary id that maps indices to values stored
by the functionality. The expression id[k] = ⊥ means that no value is stored by
the functionality at index k in that dictionary. Also note that the functionality

594 T. K. Frederiksen et al.

Fig. 2. Ideal functionality FEQ

Fig. 3. Ideal functionality FOT

is described as operating over vectors from F
m rather than over elements from F.

This is because our protocol allows up to m simultaneous secure computations of
the same function (on different inputs) at the price of a single computation, thus,
every operation (such as input, random, add, multiply) are done in a component
wise manner to a vector from F

m. As we describe later, it is indeed possible to
perform a single secure computation when needed.

Dependencies between functionalities and protocols. We illustrate the depen-
dencies between the ideal functionalities just presented and our protocols in
Fig. 5. We see that FCT and FEQ, along with a two-party commitments scheme,
F2HCOM-Fm (presented in the next section) are used to realize our multiparty com-
mitment scheme in protocol ΠHCOM-Fm . Functionalities FCT and FEQ are again
used, along with FHCOM-Fm and FOT to realize the augmented homomorphic
commitment scheme ΠAHCOM-Fm . ΠAHCOM-Fm constructs all the preprocessed
material, in particular multiplication triples, needed in order to realize the fully
fledged MPC protocol ΠMPC-Fm .

Committed MPC 595

Fig. 4. Ideal functionality FMPC-Fm

Fig. 5. Outline of functionali-
ties and protocols.

Arithmetic Oblivious Transfer. Generally
speaking, arithmetic oblivious transfer allows
two parties Pi and Pj to obtain an additive
shares of the multiplication of two elements
x, y ∈ F, where Pi privately holds x and Pj pri-
vately holds y.

A protocol for achieving this in the semi-
honest settings is presented in [23] and used in
MASCOT [29]. Let � = �log F� be the number of
bits required to represent elements from the field
F, then the protocol goes by having the parties
run in � (possibly parallel) rounds, each of which
invokes an instance of the general oblivious transfer functionality (FOT). This is
described by procedure ArithmeticOT in Fig. 6.

The use of arithmetic OT to construct multiplication triples. In our protocol
we use the above procedure to multiply two elements x,y ∈ F

m such that one
party privately holds x and the other party privately holds y. Specifically, we
can do this using m invocations of the ArithmeticOT procedure, thus, to multiply
elements from F

m we make a total of m log(�|F|�) calls to the transfer command
of the FCT functionality.

596 T. K. Frederiksen et al.

Fig. 6. Procedure ArithmeticOT

Even if using a maliciously secure OT functionality to realize this procedure,
it still does not become maliciously secure. We discuss how to handle this in
Sect. 4.2.

3 Homomorphic Commitments

In this section we present the functionalities for two-party and multiparty homo-
morphic commitment schemes, however, we present a realization only to the
multiparty case since it uses a two-party homomorphic commitment scheme in
a black-box manner and so it is not bound to any specific realization.

For completeness and concreteness of the efficiency analysis we do present a
realization to the two-party homomorphic commitment scheme in the full version
[20].

3.1 Two-Party Homomorphic Commitments

Functionality F2HCOM-Fm is held between two parties Pi and Pj , in which Pi

commits to some value x ∈ F
m toward party Pj , who eventually holds the

commitment information, denoted [x]i,j . In addition, by committing to some
value x party Pi holds the opening information, denoted 〈x〉i,j , such that having
Pi send 〈x〉i,j to Pj is equivalent to issuing the command Open on x by which
Pj learns x.

The functionality works in a batch manner, that is, Pi commits to γ (random)
values at once using the Commit command. These γ random values are consid-
ered as “raw-commitments” since they have not been processes yet. The sender
turns the commitment from “raw” to “actual” by issuing either Input or Rand
commands on it: The Input command modifies the committed value to the
sender’s choice and the Rand command keeps the same value of the commitment
(which is random). In both cases the commitment is considered as a “actual”

Committed MPC 597

and is not “raw” anymore. Actual commitments can then be combined using the
Linear Combination command to construct a new actual-commitment.

To keep track of the commitments the functionality uses two dictionaries: raw
and actual. Both map from identifiers to committed values such that the mapping
returns ⊥ if no mapping exists for the identifier. We stress that a commitment is
either raw or actual, but not both. That means that either raw or actual, or both
return ⊥ for every identifier. To issue the Commit command, the committer is
instructed to choose a set I of γ freshly new identifiers, this is simply a set of
identifiers I such that for every k ∈ I raw and actual return ⊥. The functionality
is formally described in Fig. 7.

Fig. 7. Ideal functionality F2HCOM-Fm

To simplify readability of our protocol we may use shorthands to the func-
tionality’s commands invocations as follows: Let [xk]i,j and [xk′]i,j be two actual-
commitments issued by party Pi toward party Pj (i.e. the committed values are
stored in actual[k] and actual[k′] respectively). The Linear Combination
command of Fig. 7 allows to compute the following operations which will be
used in our protocol. The operations are defined over [xk]i,j and [xk′]i,j and
result with the actual-commitment [xk′′]i,j :

– Addition. (Equivalent to the command (linear, {(k,1), (k′,1)},0, k′′).)

[xk]
i,j+[xk′]i,j = [xk+xk′]i,j = [xk′′]i,j and 〈xk〉i,j+〈xk′ 〉i,j = 〈xk + xk′ 〉i,j = 〈xk′′ 〉i,j

598 T. K. Frederiksen et al.

– Constant Addition. (Equivalent to the command (linear, {(k,1)},β, k′′).)

β + [xk]i,j = [β +xk]i,j = [xk′′]i,j and β + 〈xk〉i,j = 〈β + xk〉i,j = 〈xk′′〉i,j

– Constant Multiplication. (Equivalent to the command (linear, {(k,α)},
0, k′′).)

α ∗ [xk]i,j = [α ∗ xk]i,j = [xk′′]i,j and α ∗ 〈xk〉i,j = 〈α ∗ xk〉i,j = 〈xk′′〉i,j

Realization of these operations depends on the underlying two-party commit-
ment scheme. In the full version [20] we describe how addition of commitments
and scalar multiplication are supported with the scheme of [18], where we also
show how to extend this to enable a componentwise multiplication of an actual-
commitment with a public vector from F

m as well. To this end, we show how
to extend their scheme to supports this operation as well, as it follows the same
approach used in MiniMAC [16]. In the following we assume that public vector
componentwise multiplication is supported in the two-party scheme.

3.2 Multiparty Homomorphic Commitments

Functionality FHCOM-Fm , presented in Fig. 8, is a generalization of F2HCOM-Fm

to the multiparty setting where the commands Init, Commit, Input, Rand,
Open and Linear Combination have the same purpose as before. The addi-
tional command Partial Open allows the parties to open a commitment to a
single party only (in contrast to Open that opens a commitment to all parties).
As before, the functionality maintains the dictionaries raw and actual to keep
track on the raw and actual commitments. The major change in the multiparty
setting is that all parties take the role of both the committer and receiver (i.e.
Pi and Pj from the two-party setting). For every commitment stored by the
functionality (either raw or actual), both the commitment information and the
opening information are secret shared between P1, . . . , Pp using a full-threshold
secret sharing scheme.

3.3 Realizing FHCOM-Fm in the (FEQ,FCT,F2HCOM-Fm)-hybrid Model

Let us first fix the notation for the multiparty homomorphic commitments: We
use [[x]] to denote a (multiparty) commitment to the message x. As mentioned
above, both the message x and the commitment to it [[x]] are secret shared
between the parties, that is, party Pi holds xi and [[x]]i such that x =

∑
i∈[p] x

i

and [[x]]i is composed of the information described in the following. By issuing
the Commit command, party Pi sends [xi]i,j for every j �= i (by invoking the
Commit command from F2HCOM-Fm). Thus, party Pi holds the opening infor-
mation for all instances of the commitments to xi toward all other parties, that
is, it holds

{〈xi〉i,j
}

j∈[p]�{i}. In addition, Pi holds the commitment information

received from all other parties, xj (for j �= i), that is, it holds
{
[xj]j,i

}
j∈[p]�{i}.

Committed MPC 599

Fig. 8. Ideal functionality FHCOM-Fm

All that information that Pi holds with regard to the value x is denoted by [[x]]i,
which can be seen as a share to the multiparty commitment [[x]].

In protocol ΠHCOM-Fm (from Fig. 9) each party has a local copy of the raw
and actual dictionaries described above, that is, party Pi maintains rawi and
actuali. In the protocol, Pi may be required to store [[x]]i (i.e. its share of [[x]])
in a dictionary (either rawi or actuali) under some identifier k, in such case Pi

actually assigns rawi[k] =
{
[xj]j,i, 〈xi〉i,j

}
j∈[p]�{i} which may also be written as

rawi[k] = [[x]]i.
In the following we explain the main techniques used to implement the

instructions of functionality FHCOM-Fm (we skip the instructions that are
straightforward):

Linear operations. From the linearity of the underlying two-party homomorphic
commitment functionality it follows that performing linear combinations over a
multiparty commitments can be done locally by every party. We describe the
notation in the natural way as follows: Given multiparty commitments [[x]] and
[[y]] and a constant public vector c ∈ F

m:

600 T. K. Frederiksen et al.

– Addition. For every party Pi:

[[x]]i + [[y]]i =
{
[xj]j,i, 〈xi〉i,j

}
j∈[p]�i

+
{
[yj]j,i, 〈yi〉i,j

}
j∈[p]�i

=
{
[xj]j,i + [yj]j,i, 〈xi〉i,j + 〈yi〉i,j

}
j∈[p]�i

=
{
[xj + yj]j,i, 〈xi + yi〉i,j

}
j∈[p]�i

= [[x + y]]i

– Constant addition. The parties obtain [[β + x]] by having P1 perform xi =
xi + β, then, party P1 computes:

β + [[x]]i = β +
{
[xj]j,i, 〈xi〉i,j

}
j∈[2,p]

=
{
[xj]j,i,β + 〈xi〉i,j

}
j∈[2,p]

= [[β + x]]i

and all other parties Pj compute:

β + [[x]]j = β +
{
[xi]i,j , 〈xj〉j,i}

j∈[p]�j
=

{
[xi]i,j , 〈xj〉j,i}

j∈[2,p]�j
∪ {

[β + x1]1,j , 〈xj〉j,1}

= [[β + x]]j

– Constant multiplication. For every party Pi:

α ∗ [[x]]i = α ∗ {
[xj]j,i, 〈xi〉i,j}

j∈[p]�i
=

{
α ∗ [xj]j,i,α ∗ 〈xi〉i,j}

j∈[p]�i
= [[α ∗ x]]i

Notice that public addition is carried out by only adding the constant β
to one commitment (we arbitrarily chose P1’s commitment). This is so, since
the true value committed to in a multiparty commitment is additively shared
between p parties. Thus, if β was added to each share, then what would actually
be committed to would be p ·β! On the other hand, for public multiplication we
need to multiply the constant α with each commitment, so that the sum of the
shares will all be multiplied with α.

Commit. As the parties produce a batch of commitments rather than a single
one at a time, assume the parties wish to produce γ commitments, each party
picks γ + s uniformly random messages from F

m. Each party commit to each of
these γ + s messages towards each other party using different instances of the
Commit command from F2HCOM-Fm , and thus different randomness.

Note that a malicious party might use the two-party commitment scheme to
commit to different messages toward different parties, which leads to an incor-
rect multiparty commitment. To thwart this, we have the parties execute ran-
dom linear combination checks as done for batch-opening of commitments in
[18]: The parties invoke the coin-tossing protocol to agree on a s × γ matrix,
R with elements in F. In the following we denote the element in the qth row
of the kth column of R by Rq,k. Every party computes s random linear com-
binations of the opening information that it holds toward every other party.
Similarly, every party computes s combinations of the commitments that it
obtained from every other party. The coefficients of the qth combination are
determined by the q’th row R and the qth vector from the s “extra” committed
messages added to the combination. That is, let the γ + s messages committed
by party Pi toward Pj be xi,j

1 , . . . ,xi,j
γ+s and see that the qth combination com-

puted by Pj is
(∑

k∈γ Rq,k·,xi,j
k

)
+,xi,j

γ+q and the combination computed by Pi

Committed MPC 601

is
(∑

k∈γ Rq,k · 〈xi,j
k 〉

)
+ 〈xi,j

γ+q〉. Then Pi open the result to Pj , who checks that
it is correct. If Pi was honest it committed to the same values towards all parties
and so xi

k = xi,j
k = xi,j′

k for all k ∈ [γ + s] and j �= j′ ∈ [p] � {i}. Likewise for
the other parties, so if everyone is honest they all obtain the same result from
the opening of the combination. Thus, a secure equality check would be correct
in this case. However, if Pi cheated, and committed to different values toward
different parties than this is detected with overwhelming probability, since the
parties perform s such combinations.

Input. Each party does a partial opening (see below) of a raw, unused commit-
ment towards the party that is supposed to give input. Based on the opened
message the inputting party computes a correction value. That is, if the raw
commitment, before issuing the input command, is a shared commitment to the
value x and the inputting party wish to input y, then it computes the value
ε = y − x and sends this value to all parties. All parties then add [[x]] + ε to the
dictionary actual and remove it from the dictionary raw. Since the party giving
input is the only one who knows the value x, and it is random, this does not
leak.

We prove the following theorem in the full version [20].

Theorem 3.1. Protocol ΠHCOM-Fm (of Fig. 9) UC-securely realizes functionality
FHCOM-Fm (of Fig. 8) in the F2HCOM-Fm , FCT, and FEQ-hybrid model, against a
static and malicious adversary corrupting any majority of the parties.

4 Committed Multiparty Computation

4.1 Augmented Commitments

In the malicious, dishonest majority setting, our protocol, as other protocols,
works in the offline-online model. The offline phase consists of constructing suf-
ficiently many multiplication triples which are later used in the online phase to
carry out a secure multiplications over committed, secret shared values5. To this
end, we augment functionality FHCOM-Fm with the instruction Mult that uses
the multiparty raw-commitments that were created by the Commit instruction
of Fig. 8 and produces multiplication triples of the form ([[x]], [[y]], [[z]]) such that
x ∗ y = z. Note that a single multiplication triple is actually three multiparty
commitments to values from F

m such that z is the result of a componentwise
multiplication of x and y. That actually means that zq = xq · yq for every
q ∈ [m]. Hence, this features the ability to securely evaluate up to m instances
of the circuit at the same cost of evaluation of a single instance (i.e. in case the
parties want to evaluate some circuit m times but with different inputs each
time) where all m instances are being evaluated simultaneously. If the parties
wish to evaluate only m′ < m instances of the circuit, say m′ = 1, they do so by
using only the values stored in the first component of the vectors, while ignoring
5 Typically a secure addition can be carried out locally by each party.

602 T. K. Frederiksen et al.

Fig. 9. Protocol ΠHCOM-Fm

Committed MPC 603

the rest of the components. However, using a multiplication triple wastes all com-
ponents of x,y and z even if the parties wish to use only their first component.
To avoid such a loss we augment FHCOM-Fm with the instruction ReOrg. The
ReOrg instruction preprocesses reorganization pairs which are used to compute
a linear operator over a multiparty commitment. For example this enable the
parties to “copy” the first component to another, new, multiparty commitment,
such that all components of the new multiparty commitment are equal to the
first component of the old one. For instance, the linear operator φ ∈ F

m×m such
that its first column is all 1 and all other columns are all 0, transforms the vec-
tor x to x′ = x1, . . . ,x1 (m times). Applying φ to y and z as well results in a
new multiplication triple (x′,y′, z′) where only the first component of (x,y, z)
got used (rather than all their m components). We note that the construction
of reorganization pairs are done in a batch for each function φ resulting in the
additive destruction of s extra raw commitments (i.e. an additive overhead). In
the ReOrg command, described in Fig. 10, the linear operator φ is applied to L
raw commitments in a batch manner. The inputs to φ are the messages stored
by the functionality under identifiers from the set X and the outputs override
the messages stored by the functionality under identifiers from the set Y . The
messages stored under identifiers from the set R are being destroyed (this reflects
the additive overhead of that command).

Adding instructions Mult and ReOrg to the FHCOM-Fm functionality, we
get the augmented functionality FAHCOM-Fm formally presented in Fig. 10.

Fig. 10. Ideal functionality FAHCOM-Fm

Realizing FAHCOM-Fm . The protocol ΠAHCOM-Fm is formally presented in
Figs. 12 and 13. In the following we describe the techniques used in ΠAHCOM-Fm

604 T. K. Frederiksen et al.

and show the analysis that implies the number of multiplication triples that
should be constructed in one batch for the protocol to be secure. Specifically, in
Sect. 4.2 we describe how to implement the Mult command and in Sect. 4.3 we
describe how to implement the ReOrg command.

4.2 Generating Multiplication Triples

Secure multiplication in our online phase, similar to previous works in the field,
is performed using multiplication triples (AKA Beaver triples). In our work a
multiplication triple is of the form ([[x]], [[y]], [[z]]) where [[x]], [[y]] and [[z]] are mul-
tiparty commitments of messages x,y and z respectively as defined in Sect. 3.3
and z = x ∗ y. The construction of triples is done in a batch and consists of
four parts briefly described below (and further explained and analyzed soon
afterward):

1. Construction. Using the arithmetic OT procedure formalized in Sect. 2 the
parties first construct multiplication triples that may be “malformed” and
“leaky” in case of a malicious adversary. Here malformed means that they
are incorrect, i.e. x∗y �= z and “leaky” means that the adversary has tried to
guess the value of the share of an honest party (the term is further explained
below).

2. Cut-and-Choose. The parties select τ1 triples at random which they check
for correctness. If any of these triples are malformed then they abort. Oth-
erwise, when mapping the remaining triples into buckets, with overwhelming
probability all buckets will contain at least one correct triple.

3. Sacrificing. The remaining triples (from the cut-and-choose) are mapped
to buckets, τ1 triples in each bucket such that at least one of the triples is
correct. Each bucket is then tested to check its correctness where by this
check only a single multiplication is being output while the other τ1 − 1 are
being discarded. This step guarantees that either the output triple is correct
or a malformed triple is detected, in which case the protocol aborts.

4. Combining. As some of the triples may be “leaky” this allows the adversary
to carry a selective attack, that is, to probe whether its guess was correct or
not. If the guess is affected by the input of an honest party then it means
that the adversary learns that input. Thus, as the name suggests, the goal
of this step is to produce a non-leaky triple by combining τ2 triples, which
are the result of the sacrificing step (and thus are guaranteed to be correct),
where at least one of the τ2 is non-leaky. As we will see later, this condition
is satisfied with overwhelming probability.

Construction. The triples are generated in a batch, that is, sufficiently many
triples are generated at once. However, the construction of each triple is inde-
pendent of the others. Thus, we proceed by describing how to generate a single
triple. The parties select three raw-commitments, denoted [[x]], [[y]], [[z′]], that
were generated by FHCOM-Fm . The goal of this step is to change [[z′]] to [[z]] such
that [[z]] = [[x ∗ y]].

Committed MPC 605

Recall that for a message x that is committed to by all parties, we have that
each party Pi knows xi such that x =

∑
i∈[p] x

i. Thus, the product x ∗ y equals
(∑

i∈[p] x
i
)

∗
(∑

i∈[p] y
j
)

=
∑

i∈[p] x
i ∗ (

∑
j∈[p] y

j). In order to have each party

Pi hold the value zi such that
∑

i∈[p] z
i = x∗y we let party Pi use the arithmetic

OT procedure (as describe in Sect. 2) to have a share of the multiplication xi ∗yj

for every j ∈ [p] where Pi inputs xi and Pj inputs yj . After Pi multiplied its share
xi with all other parties’ shares yj the sum of all the shares is xi ∗ (

∑
j∈[p] y

j)
(assuming honest behavior). If all parties do the same, then every party ends up
holding a share of x∗y as required. Remember that we want Pi to hold a share to
[[x ∗ y]] and not just a share to x∗y (i.e. we want all shares to be committed). To
this end, every party broadcasts the difference t between the new share and the
old share, that is, Pi broadcasts ti = zi−z′i, then, the parties perform a constant
addition to the old commitments, that is, they compute [[z]] = [[z′]] + (

∑
i∈[p] t

i).

Discussion. As described above, party Pi (for i ∈ [p]) participates in p − 1
instantiations of the arithmetic OT functionality with every other party Pj (for
j �= i). The arithmetic OT functionality is of the form (xi, (yj , rj)) → (xi ∗yj +
rj ,⊥), that is, Pi inputs its share xi of x, party Pj inputs its share yj of y and
a random value rj . The functionality outputs xi ∗ yj + rj to Pi and nothing to
Pj . Then, to get a sharing of xi ∗ yj we instruct Pi to store xi ∗ yj + rj and Pj

to store −rj (see Sect. 2). Even if this arithmetic OT subprotocol is maliciously
secure, it will only give semi-honest security in our setting when composed with
the rest of the scheme. Specifically, there are two possible attacks that might be
carried out by a malicious adversary:

1. Party Pj may input ỹj �= yj such that e = ỹj − yj , in the instantiation of
the arithmetic OT with every other Pi, where yj is the value it is committed
to. This results with the parties obtaining a committed share of the triple
([[x]], [[y]], [[x ∗ (y + e)]]). We call such a triple a “malformed” triple.

2. In the arithmetic OT procedure party Pj may impact the output of Pi such
that Pi obtains xi ∗yj + rj only if the k’th value of xi is equal to some value
“guessed” by Pj , otherwise Pi obtains some garbage xi ∗ ỹi ∈ F

m. A similar
attack can be carried out by Pi on yj when computing over a “small” field (see
the description of the malicious behavior in Sect. 2). In both cases, the parties
obtain committed shares of the triple ([[x]], [[y]], [[x ∗ y]]) only if the malicious
party made a correct guess on an honest party’s share, and an incorrect triple
otherwise. Thus, when using this triple later on, the malicious party learns
if it guessed correctly depending on whether the honest parties abort, thus,
it is vulnerable to a “selective attack”. We call such a triple “leaky”, since it
might leak privates bits from the input of an honest party.

We take three countermeasures (described in the next items) to produce
correct and non-leaky triples:

1. In the Cut-and-Choose step we verify that a few (τ1) randomly selected triples
have been constructed correctly. This is done, by having each party open

606 T. K. Frederiksen et al.

his committed shares associated with these triples and all parties verifying
that the triples has been constructed according to the protocol. This step is
required to ensure that not all triples were malformed as a preliminary for
the sacrificing step (below) in which the triples are mapped to buckets. When
working over F = GF(2), this step is strictly needed to eliminate the case that
all triples are malformed. For other fields, this step improves the amount of
triples to be constructed in the batch.

2. In the Sacrificing step we make sure that a triple is correct (i.e. not mal-
formed) by “sacrificing” τ1 − 1 other triples which are being used as a “one-
time-pads” of the correct triple. As we treat a bunch of triples at once, the
probability of an incorrect triple to pass this step without being detected is
negligible in s (analysis is presented below). Having the parties committed
(in the construction step) to τ1 · T triples, by the end of this step there will
be T correct triples.

3. In the Combining step we partition the constructed (correct but possibly
leaky) triples into buckets of τ2 triples each, and show that for a sufficiently
big number of triples that are the outcome of the sacrificing step, the prob-
ability that there exist a bucket in which all triples are leaky in a specific
component is negligible in s. We show how to combine the τ2 triples in a
bucket and produce a new triple which is non-leaky. This is done twice, first
to remove leakage on the x component and second to remove leakage on the
y component.

Cut-and-Choose. The parties use FCT to randomly pick τ1 triples to check.
Note that τ1 is the bucket-size used in Sacrificing below and in practice could
be as low as 3 or 4. It was shown in [21] that when partitioning the triples into
buckets of size τ1 (where many of them may be malformed) then by sampling
and checking only τ1 triples, the probability that there exist a bucket full of
malformed triples is negligible. Formally:

Corollary 4.1 (Corollary 6.4 in [21]). Let N = τ1 +τ1(τ2)2 ·T be the number
of constructed triples where s ≤ log2

(
(N ·τ1+τ1)!

N ·τ1!·(N ·τ1)!
)
, then, by opening τ1 triples

it holds that every bucket contains at least one correct triple with overwhelming
probability.

Hence, it is sufficient to open (and discard) τ1 triples out of the triples from the
Construction step and hand the remaining to the Sacrificing step below.

Sacrificing. In the following we describe how to produce (τ2)2 ·T correct triples
out of τ1 ·(τ2)2 ·T that were remained from the cut-and-choose step, and analyze
what should T and τ1 be in order to have all produced (τ2)2·T triples correct with
overwhelming probability. We have the (τ2)2 · T triples be uniformly assigned to
buckets where each bucket contains τ1 triples, denoted {tk}k∈[τ1]. For simplicity,
in the following we assume that τ1 = 3. For every bucket, the parties apply
the procedure CorrectnessTest (see Fig. 11) to triples t1 and t2. If the procedure

Committed MPC 607

Fig. 11. Procedure CorrectnessTest(t1, t2)

returns successfully (i.e. the parties do not abort) they run the procedure again,
this time with triples t1 and t3. Finally, if the procedure returns successfully
from the second invocation as well then the withs consider t1 as a correct triple,
otherwise they abort the protocol. We note that this procedure is similar to the
one used in [14] and other works.

Security. The correctness and security is explained in [14]. However, for com-
pleteness we prove the following lemma in the full version [20], which states
that after the sacrificing step all produced triples are correct with overwhelming
probability:

Lemma 4.2. When 2−s ≤ (|F|−1)1−τ1 ·(τ2)2·T ·(τ1·(τ2)2·T)!·τ1!
(τ1·(τ2)2·T+τ1)!

all the (τ2)2 ·T triples
that are produced by the sacrificing step are correct except with probability at
most 2−s.

Combining. The goal of this step is to produce T non-leaky triples out of the
(τ2)2 · T triples remained from the sacrificing step above. We do this in two
sub-steps: First to remove the leakage (with regard to the arithmetic OT) of the
sender and then to remove the leakage from the receiver. In each of the sub-steps
we map the triples to buckets of size τ2 and produce a single non-leaky triple
out of it. In the following we first show how to produce one triple from each
bucket with the apriori knowledge that at least one of the triples in the bucket
is non-leaky (but we do not know which one is it) and later we show how to
obtain such buckets. Denote the set of τ2 triples by {([[xk]], [[yk]], [[zk]])}k∈[τ2]. We
produce the triple ([[(x′)]], [[y′]], ([[z)′]]) out of that set in the following way: The
parties compute

[[x′]] = [[
∑

k∈[τ2]
xk]] and [[y′]] = [[y1]] and [[z′]] = [[

(∑
k∈[τ2]

xk

)
∗ y1]]

which constitute the triple ([[x′]], [[y′]], [[z′]]). It is easy to see that [[x′]] can be
computed locally since it requires additions and constant multiplications only.
Furthermore, x′ is completely hidden since at least one of x1, . . . ,xk was not

608 T. K. Frederiksen et al.

leaked (and it is guaranteed from the construction step that it is chosen uniformly
at random from F

m). However, notice that [[z′]] cannot be computed locally, since
it is required to multiply two multiparty commitments [[

(∑
k∈[τ2]

xk

)
]] and [[y1]].

Thus, to obtain [[z′]] the parties first compute [[εk]] = [[y1 − yk]] and open εk for
every k = 2, . . . , τ2. Then compute [[z′]] = [[z1 +

∑τ2
k=2 εk ∗ xk + zk]] by a local

computation only.
We prove the following lemma in the full version [20]:

Lemma 4.3. Having a batch of at least τ2−1

√
(s·e)τ2 ·2s

τ2
triples as input to a com-

bining step, every bucket of τ2 triples contains at least one non-leaky triple with
overwhelming probability in s in the component that has been combined on.

For instance, when F = GF(2) having s = 40, τ1 = 3 τ2 = 4 it is required to
construct T ≈ 8.4 · 105 correct and non-leaky triples in a batch. Instead, having
τ2 = 3 means that ≈ 2.29 · 108 triples are required.

Working over Non-binary Fields. When F is a field with odd characteristic
then there is a gap between the maximal field element and the maximal value
that is possible to choose which can fit in the same number of bits. For instance,
when working over F11 then the maximal element possible is 1010 = 01012 while
the maximal value possible to fit in 4 bits is 1510 = 11112, i.e. there is a gap of
5 elements. That means that an adversary could input a value that is not in the
field and might harm the security.

We observe that the only place where this type of attack matters is in the
ArithmeticOT procedure, since in all other steps the values that the adversary
inputs percolate to the underlying homomorphic commitment scheme. In the
following we analyze this case: To multiply xi and yj with xi, yj ∈ FP and P
prime the parties Pi and Pj participate in a protocol of �log P� steps. In the
q-th step, where q ∈ [�log P�], party Pi inputs xi

q and P2 inputs s0q = rq and
s1q = rq + yj to the FOT functionality. The functionality outputs sxi

q to P1 which
updates the sum of the result. In the end of this process the parties hold shares
to the multiplication z = xi · yj .

We first examine the cases in which either s0q or s1q are not in the prime field,
i.e. they belong to the gap gap = [2�log P�] � FP . We first note that if both of
them are in gap then this is certainly detected by P1 (since P1 receives one of
them as the FOT’s output). If only one of s0q, s

1
q is in gap then one of two cases

occurs:

1. If the value that P1 received from FOT is in gap then it is detected immediately
as before (since P1 clearly sees that the value is not in FP) and can abort.
Since this is the preprocessing phase it is independent of any secret input.

2. If the value that P1 received from FOT is in FP but the other value is not,
then it is guaranteed that the value P1 obtains is a correct share. That the
dishonest P2 obtains a share in the gap is actually the same case as if P2 adds
an incorrect value to the sum s.t. it lands in the gap. This leads to two cases

Committed MPC 609

(a) If the incorrect value is s0q �= rq then this is equivalent to add s0q mod P,
which leads to an incorrect share of z. This case is detected in the sacri-
ficing step.

(b) If the incorrect value is s1q �= rq + yj then this is equivalent to add s1q
mod P. As above, this leads to an incorrect share of z which is being
detected in the sacrificing step.

The last case is when either rq or yj (or both) are not in FP but the sum s1q
does. Then this is equivalent to choosing yj ∈ FP and r′

q = s1q − yj mod P such
that the value that P2 adds to its sum is incorrect (since it is different than r′

q),
and thus, this is being detected in the sacrificing step as before.

Similarly, consider a corrupted receiver who organizes its bits of xj to rep-
resent an element in gap. We observe that this is equivalent to a receiver who
inputs an incorrect value (value that is not committed before) for the following
reason: The adversary knows nothing about the sender’s (honest party) share
yj , let the value that Pi inputs be x̃i, thus the ArithmeticOT procedure outputs
shares to x̃iyj mod P = (x̃i mod P)(yj mod P). Now, if x̃i mod P = 0 (i.e.
x̃i = P) then this is detected by the sacrificing procedure (since 0 ∈ FP is not in
the field). Otherwise, if x̃i mod P �= 0 then the result x̃iyj mod P is a random
element in the field FP and the same analysis from the proof of Lemma 4.2
follows.

Finally we make the observation that the math still work out in case we use
an extension field and not a plain prime-field. Basically using the ArithmeticOT
procedure we can still multiply with one bit at a time. The parties simply mul-
tiply with the appropriate constants in the extension field (and thus do any
necessary polynomial reduction), instead of simply a two-power.

We prove the following theorem in the full version [20].

Theorem 4.4. The method Mult in ΠAHCOM-Fm (Fig. 13) UC-securely imple-
ments the method Mult in functionality FAHCOM-Fm (Fig. 10) in the FOT-, FEQ-
and FCT-hybrid model against a static and malicious adversary corrupting a
majority of the parties.

4.3 Reorganization of Components of a Commitment

The parties might want to move elements of F around or duplicate elements
of F within a message. In general we might want to apply a linear function
φ to a vector in F

m resulting in another vector in F
m. To do so, they need to

preprocess pairs of the form ([[x]], [[φ(x)]]) where x is random. This is done by first
having a pair of random commitments ([[x]], [[y]]) (as the output of the Commit
instruction of FHCOM-Fm), then, party Pi broadcasts εi = φ(xi) − yi (i.e. by
first applying φ on its own share). Note that from linearity of φ it follows that∑

i∈[p] φ(xi) = φ(
∑

i∈[p] x
i) = φ(x), thus

∑
i∈[p] ε

i =
∑

i∈[p] φ(xi) − yi = φ(x) −
y. Then, the parties compute [[y′]] = [[y]]+

∑
i∈[p] ε

i = [[y]]+φ(x)−y = φ(x). For
security reasons this is done simultaneously for a batch of ν+s pairs. Finally, the
parties complete s random linear combination tests over the batch by producing

610 T. K. Frederiksen et al.

Fig. 12. Protocol ΠAHCOM-Fm - Part 1

a uniformly random matrix R ∈ F
s×ν (using FCT). Let Rq,k be the element in

the qth row and kth column of R. To perform the test, divide the ν + s pairs
into two sets A, B of ν and s pairs respectively. For each pair ([[zq]], [[zq′]]) in B
for q ∈ s compute and open

[[sq]] = [[zq]] +
∑

k∈[ν]

Rq,k · [[xk]] and [[s̄q]] = [[zq′]] +
∑

k∈[ν]

Rq,k · [[yk]]

Each party now verifies that φ (sq) = s̄q. If this is so, they accept. Otherwise
they abort.

Based on this we state the following theorem, which we prove in the full
version [20].

Committed MPC 611

Fig. 13. Protocol ΠAHCOM-Fm - Part 2

612 T. K. Frederiksen et al.

Theorem 4.5. The method ReOrg in ΠAHCOM-Fm of Fig. 12 UC-securely imple-
ments the method ReOrg in functionality FAHCOM-Fm of Fig. 10 in the FOT-,
FEQ- and FCT-hybrid model against a static and malicious adversary corrupting
a majority of the parties.

5 Protocol for Multiparty Computation

In Fig. 14 we show how to realize a fully fledged arithmetic MPC protocol secure
against a static and malicious adversary, with the possibility of corrupting a
majority of the parties. This protocol is very similar to the one used in MiniMAC
[16] and thus we will not dwell on its details.

Fig. 14. Protocol UC-realizing FMPC-Fm in the FAHCOM-Fm model.

We prove the following theorem in the full version [20]:

Theorem 5.1. The protocol in Fig. 14 UC-securely implements the functionality
FMPC-Fm of Fig. 10 in the FAHCOM-Fm-hybrid model against a static and malicious
adversary corrupting a majority of the parties.

Committed MPC 613

6 Efficiency

Practical Optimizations. Several significant optimizations can be applied to
our protocol. We chose to describe the optimizations here rather than earlier for
the ease of presentation. In the following we present each of the optimizations
and sketch out its security.

Using less storage. As we mentioned before, the two-party homomorphic com-
mitment scheme of [18] can be used as an implementation of functionality
F2HCOM-Fm . Briefly, in this two party commitment scheme the committer holds
a set of 2m vectors from F

γ , namely the vectors s̄01, s̄
1
1, . . . , s̄

0
m, s̄1m whereas the

receiver choose a set of m bits b1, . . . , bm, denoted as “its choice of watch bits”
and obtains the m vectors s̄b1

1 , . . . , s̄bm
m , denoted as “the watchbits”.

Recall that in our multiparty homomorphic commitment scheme party Pi
participates as a receiver in p − 1 instances of two-party commitment scheme
with all other parties. This means that Pi needs to remember its choice of
watchbits for every other party and this accordingly for every linear opera-
tion that is performed over the commitments. For instance, let [[x]], [[y]] be two
multiparty commitments between three parties, then party P1 stores [[x]]1 ={{

[x2]2,1, [x2]3,1
}

,
{〈x1〉1,2, 〈x1〉1,3

}}
. To perform the operation [[x]] + [[y]] then

P1 end up with

[[x+ y]]1 =
{{

[x2]2,1 + [y2]2,1, [x2]3,1 + [y2]3,1
}

,
{〈x1〉1,2 + 〈y1〉1,2, 〈x1〉1,3 + 〈y1〉1,3}}

To make it more efficient, Pi can choose the bits b1, . . . , bm only once and use
them in all instances of two-party commitments. This makes the process of linear
operations over commitments simpler and does not requires from P1 to store the
commitments for p−1 parties. Applying the optimization to the above example,
we have that P1 stores only a single value for the commitment part, that is, now
P1 needs to store

[[x+ y]]1 =
{
[x2]2,1 + [y2]2,1 + [x2]3,1 + [y2]3,1 ,

{〈x1〉1,2 + 〈y1〉1,2, 〈x1〉1,3 + 〈y1〉1,3}}

Security follows from the underlying commitment scheme, since what we now
do is simply equivalent to storing a sum of commitments in a single instance of
the two-party scheme.

In a bit more detail, we see that since F2HCOM-Fm is UC-secure, it is secure
under composition. Furthermore, considering the worst case where only a single
party is honest and all other parties are malicious and colluding we then notice
that the above optimization is equivalent to executing p − 1 instances of the
F2HCOM-Fm , but where the same watchbits are chosen by the honest party. We
see that this is almost the same as calling Commit p times. The only exception
is that the seeds of the committing party, Pi, of the calls to FOT are different
in our optimized protocol. Thus it is equivalent to the adversary being able to
select p potentially different seeds to the calls to Commit. However, the output
of the PRG calls are indistinguishable from random in both cases and so the
distributions in both cases are indistinguishable assuming p is polynomial in the
security parameter.

614 T. K. Frederiksen et al.

Optimized CorrecnessTest. Recall that in the sacrificing step of protocol
ΠAHCOM-Fm (see Fig. 13) the parties perform two openings of commitments for
every bucket (the opening is described as part of the CorrecnessTest in Fig. 11).
That is, beginning the step with τ1 ·(τ2)2 ·T triples (which are assigned to (τ2)2 ·T
buckets) leads to the opening of (τ1 − 1) · (τ2)2 · T triples.

Since we require that the results of all of these openings be 0, then any linear
combination over these opening would be 0 as well if they are correct. On the
other hand, if one or more of the openings are not zero the result of a linear
combination over the openings might be 0 with probability 1

|F| . Thus, agreeing
on a s random linear combinations over the openings would detect an incorrect
triple with overwhelming probability.

Optimized opening. In the online phase of our protocol, for every multiplication
gate the parties need to open some random commitments using the Open com-
mand. The implementation of the Open command requires interaction between
every pair of parties, thus, the communication complexity is Ω(T · p2) where T
is the number of multiplication gates in the circuit. Following the same idea as
used in SPDZ and MiniMAC, we note that we can reduce the communication
complexity for every gate to O(p) in the following way, to perform a “partial
opening” of a commitment [[x]]: First, every party Pi sends its share xi to P1.
Then P1 computes x =

∑
j∈[p] x

j and sends back x to everyone. This incurs a
communication complexity of O(p) rather than O(p2). In the end of the eval-
uation of the circuit, the parties perform s random linear combinations over
the commitment values that were “partially opened” earlier. Then, they open
the results of the linear combinations using the Open command. If one of the
opened results with a wrong value (i.e. that does not conform with the result of
the linear combination of the values sent from P1 in the partial opening) then
the parties abort.

Using this optimization leads to a communication complexity of Ω(T · p +
s · p2). Security follows by the same arguments as used in SPDZ and MiniMAC.
Particularly before opening the output nothing gets leaked during the execution
of the gates in the protocol and since the adversary does not know the random
linear combinations he cannot send manipulated values that pass this check.

Optimizing for large fields. If the field we compute in contains at least 2s ele-
ments, then the construction of multiplication triples becomes much lighter. First
see that in this case it is sufficient to only have two triples per bucket for sacri-
ficing. This is because the adversary’s success probability of getting an incorrect
triple through the CorrectnessTest in Fig. 11 is less than |F|−1 ≤ 2−s. Next we see
that it is possible to eliminate the combining step on the y components of the
triples. This follows since the party inputting x into the ArithmeticOT procedure
in Fig. 6 can now only succeed in a selective failure attack on the honest party’s
input y if he manages to guess y. To see this notice that if the adversary changes
the q’th bit of his input x then the result of the computation will be different
from the correct result with a factor y · 2q−1. But since y is in a field of at least
2s elements then y · 2i−1 = 0 with probability at most 2−s and thus its cheating

Committed MPC 615

attempt will be caught in the CorrectnessTest with overwhelming probability.
Furthermore the combining on x is now also overly conservative in the bucket
size τ2. To see this notice that the adversary only gets to learn at most s − 1
bits in total over all triples. This means that it cannot fully learn the value of a
component of x for all triples in the bucket (since it is at least s bits long), which
is what our proof, bounding his success probability assumes. Instead we can now
bound its success probability by considering a different attack vectors and using
the Leftover Hash Lemma to compute the maximum amount of leakage it can
learn when combining less than τ2 triples in a bucket as done in [29]. However,
we leave the details of this as future work. To conclude, even when using the very
conservative bound on bucket size, we get that it now takes only 6m log(|F|) OTs,
amortized, when constructing 221 triples instead of 27m log(|F|) when s = 40.

Efficiency Comparison. The computationally heavy parts in our protocol
are the usage of oblivious transfers and the use of the underlying homomorphic
two-party commitments. Both of these are rather efficient in practice having the
state-of-the-art constructions of Keller et al. ([28] for OT) and of Frederiksen et
al. ([18], for two-party homomorphic commitments). It should be noted that if
one wish to use a binary field, or another small field, then it is necessary to use
a code based on algebraic geometry internally if using the commitment scheme
of Frederiksen et al. [18]. These are however not as efficient to compute as, for
example, the BCH code used in the implementation of [18] done in [35].

Table 2. Comparison of the overhead of OTs needed, in the amortized sense. All
values should be multiplied with p(p − 1) to get the true number of needed OTs.
We differentiate between regular OTs and the more efficient correlated random OT
with error (COTe) [29]. We assume that the computational security parameter κ ≥
m log(|F|) some complexities increase. F = GF (2). For [7,29] m = 1 is possible. We
assume at least 221 triples are generated which gives the smallest numbers to the
protocols. *) Using optimization 4. in Sect. 6, requiring |F| ≥ 2s.

Scheme Finite field Rand, Input COTe Schur, ReOrg COTe Mult

COTe OT

[19] F2c for c ≥ 1 m log(|F|) m log(|F|) 24m log(|F|) 12m log(|F|) + 6s

[29] F2c for c ≥ 2s m log(|F|) - 5m log(|F|) 3m log(|F|)
[7] F2 m log(|F|) - 12m log(|F|) 3m log(|F|)
This work Any 0 0 0 27m log(|F|)
This work* F2c for c ≥ s 0 0 0 6m log(|F|)

Notice that the amount of OTs our protocol require is a factor of
O(m log(|F|)) greater than the amount of commitments it require. Therefore,
in Table 2 we try to compare our protocol with [7,19,29] purely based on the
amount of OTs needed. This gives a fair estimation on the efficiency of our pro-
tocol compared to the current state-of-the-art protocols for the same settings
(static, malicious majority in the secret sharing approach).

616 T. K. Frederiksen et al.

Furthermore, we note that both [19,29] (which is used as the underlying pre-
processing phase for MiniMAC) require a factor of between O(m) and O(m2)
more coin tosses than our protocol. The reason for this is that in our proto-
col it is sufficient to perform the random linear combinations using a random
scalar from F (i.e. scalar multiplication) whereas [19,29] requires a component-
wise multiplication using a random vector from F

m. Note that in the comparison
in Table 2 we adjusted the complexity of [19] to fit what is needed to securely
fix the issue regarding the sacrificing, which we present in the full version [20].

7 Applications

Practically all maliciously secure MPC protocols require some form of commit-
ments. Some, e.g. the LEGO family of protocols [17,18,34,35], also require these
commitments to be additively homomorphic. Our MPC protocol works directly
on such commitments, we believe it makes it possible to use our protocol as
a component in a greater scheme with small overhead, as all private values are
already committed to. Below we consider one such specific case; when construct-
ing committed OT from a general MPC protocol.

7.1 Bit Committed OT

The bit-OT two-party functionality (b, x0, x1) → (xb,⊥) can be realized using a
secure evaluation of a circuit containing a single AND gate and two XOR gates:
Let b denote the choice bit and x0, x1 the bit messages, then xb = b∧(x0⊕x1)⊕x0.

We notice that all shares in our protocol are based on two-party commit-
ments. This means that constructing a circuit similar to the description above
will compute OT, based on shares which are committed to. Thus we can effi-
ciently realize an OT functionality working on commitments. Basically we use
F = GF(2) and compute a circuit with one layer of AND gates computing the
functionality above. In the end we only open towards the receiver. At any later
point in time it is possible for the sender to open the commitments to x0 and
x1, no matter what the receiver chose. The sender can also open b towards the
receiver. However we notice that we generally need to open m committed OTs
at a time (since we have m components in a message). However, if this is not
possible in the given application we can use reorganization pairs to open only
specific OTs, by simply branching each output message (consisting of m compo-
nents) into m output messages each of which only opening a single component,
and thus only a single actual OT.

Furthermore, since we are in the two-party setting, and because of the specific
topology of the circuit we do not need to have each multiparty commitment be
the sum of commitments between each pair of parties. Instead the receiving party
simply commits to b towards the sending party using a two-party commitment.
Similarly the sending party commits to x0 and x1 towards the receiving party
using a two-party commitment. Now, when they construct a multiplication triple
they only need to do one OT per committed OT they construct; the receiver

Committed MPC 617

inputting his b and the receiver inputting x0 ⊕ x1. Since the sender should not
learn anything computed by the circuit the parties do no need to complete the
arithmetic OT in other direction.

In this setting we have F =GF(2) (hence m ≥ s), p = 2 and 1 multiplication
gate when constructing a batch of m committed OTs. Plugging these into the
equations in Table 1 we see that the amortized cost for a single committed-
OT is 36 regular string OTs of κ bits and 108/m ≤ 108/s ≤ 3 (for s = 40)
commitments for batches of m committed-OTs.

It is also possible to achieve committed OT using other MPC protocols, in
particular the TinyOT protocols [7,33] have a notion of committed OT as part
of its internal construction. However our construction is quite different.

Acknowledgment. The authors would like to thank Carsten Baum and Yehuda
Lindell for useful discussions along Peter Scholl and Marcel Keller for valuable feedback
and discussions in relation to their SPDZ and MiniMAC preprocessing papers.

References

1. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: ACM CCS, pp. 535–548 (2013)

2. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
extensions with security for malicious adversaries. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 673–701. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 26

3. Beaver, D.: Efficient multiparty protocols using circuit randomization. In:
Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 34

4. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: STOC, pp. 479–488 (1996)

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC, pp. 1–10 (1988)

6. Brandão, L.T.A.N.: Very-efficient simulatable flipping of many coins into a well
(and a new universally-composable commitment scheme). In: Cheng, C.-M.,
Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp.
297–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-
8 12

7. Burra, S.S., Larraia, E., Nielsen, J.B., Nordholt, P.S., Orlandi, C., Orsini, E.,
Scholl, P., Smart, N.P.: High performance multi-party computation for binary
circuits based on oblivious transfer. IACR Cryptology ePrint Archive, 2015:472
(2015)

8. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145 (2001)

9. Cascudo, I., Damg̊ard, I., David, B., Döttling, N., Nielsen, J.B.: Rate-1, linear
time and additively homomorphic UC commitments. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 179–207. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53015-3 7

https://doi.org/10.1007/978-3-662-46800-5_26
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-662-49387-8_12
https://doi.org/10.1007/978-3-662-49387-8_12
https://doi.org/10.1007/978-3-662-53015-3_7

618 T. K. Frederiksen et al.

10. Cascudo, I., Damg̊ard, I., David, B., Giacomelli, I., Nielsen, J.B., Trifiletti, R.:
Additively homomorphic UC commitments with optimal amortized overhead. In:
Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 495–515. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46447-2 22

11. Damg̊ard, I., David, B., Giacomelli, I., Nielsen, J.B.: Compact VSS and efficient
homomorphic UC commitments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014.
LNCS, vol. 8874, pp. 213–232. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45608-8 12

12. Damg̊ard, I., Lauritsen, R., Toft, T.: An empirical study and some improvements
of the MiniMac protocol for secure computation. In: Abdalla, M., De Prisco, R.
(eds.) SCN 2014. LNCS, vol. 8642, pp. 398–415. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10879-7 23

13. Damg̊ard, I., Orlandi, C.: Multiparty computation for dishonest majority: from
passive to active security at low cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 558–576. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 30

14. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

15. Damg̊ard, I., Zakarias, R.: Fast oblivious AES a dedicated application of the Min-
iMac protocol. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT
2016. LNCS, vol. 9646, pp. 245–264. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31517-1 13

16. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of Boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
621–641. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-
2 35

17. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.:
MiniLEGO: efficient secure two-party computation from general assumptions. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–
556. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 32

18. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Trifiletti, R.: On the complexity
of additively homomorphic UC commitments. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016. LNCS, vol. 9562, pp. 542–565. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49096-9 23

19. Frederiksen, T.K., Keller, M., Orsini, E., Scholl, P.: A unified approach to MPC
with preprocessing using OT. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015.
LNCS, vol. 9452, pp. 711–735. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48797-6 29

20. Frederiksen, T.K., Pinkas, B., Yanai, A.: Committed MPC - maliciously secure mul-
tiparty computation from homomorphic commitments. IACR Cryptology ePrint
Archive, 2017:550 (2017)

21. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

22. Garay, J.A., Ishai, Y., Kumaresan, R., Wee, H.: On the complexity of UC com-
mitments. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 677–694. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 37

https://doi.org/10.1007/978-3-662-46447-2_22
https://doi.org/10.1007/978-3-662-45608-8_12
https://doi.org/10.1007/978-3-662-45608-8_12
https://doi.org/10.1007/978-3-319-10879-7_23
https://doi.org/10.1007/978-3-319-10879-7_23
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-319-31517-1_13
https://doi.org/10.1007/978-3-319-31517-1_13
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-642-38348-9_32
https://doi.org/10.1007/978-3-662-49096-9_23
https://doi.org/10.1007/978-3-662-49096-9_23
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-662-48797-6_29
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-642-55220-5_37
https://doi.org/10.1007/978-3-642-55220-5_37

Committed MPC 619

23. Gilboa, N.: Two party RSA key generation. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 116–129. Springer, Heidelberg (1999). https://doi.org/10.
1007/3-540-48405-1 8

24. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

25. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

26. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: STOC, pp. 21–30 (2007)

27. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no
honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 18

28. Keller, M., Orsini, E., Scholl, P.: Actively secure OT extension with optimal over-
head. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp.
724–741. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-
6 35

29. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In: ACM CCS, pp. 830–842 (2016)

30. Larraia, E., Orsini, E., Smart, N.P.: Dishonest majority multi-party computation
for binary circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 495–512. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 28

31. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

32. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 16

33. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

34. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 22

35. Nielsen, J.B., Schneider, T., Trifiletti, R.: Constant round maliciously secure 2PC
with function-independent preprocessing using LEGO. In: NDSS (2017)

36. Rindal, P., Trifiletti, R.: SplitCommit: implementing and analyzing homomorphic
UC commitments. IACR Cryptology ePrint Archive, 2017:407 (2017)

37. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/3-540-48405-1_8
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-00457-5_18
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-47989-6_35
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-662-44381-1_28
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/978-3-642-00457-5_22

	Committed MPC
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Homomorphic Commitments
	3.1 Two-Party Homomorphic Commitments
	3.2 Multiparty Homomorphic Commitments
	3.3 Realizing in the -hybrid Model

	4 Committed Multiparty Computation
	4.1 Augmented Commitments
	4.2 Generating Multiplication Triples
	4.3 Reorganization of Components of a Commitment

	5 Protocol for Multiparty Computation
	6 Efficiency
	7 Applications
	7.1 Bit Committed OT

	References

