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Preface

The 21st IACR International Conference on Practice and Theory of Public-Key
Cryptography (PKC 2018) was held March 25–29, 2018, in Rio de Janeiro, Brazil. The
conference is sponsored by the International Association for Cryptologic Research
(IACR) and focuses on all technical aspects of public-key cryptography.

These proceedings consist of two volumes including 49 papers that were selected by
the Program Committee from 186 submissions. Each submission was assigned to at
least three reviewers while submissions co-authored by Program Committee members
received at least four reviews. Following the initial reviewing phase, the submissions
were discussed over a period of five weeks. During this discussion phase, the Program
Committee used quite intensively a recent feature of the review system, which allows
Program Committee members to anonymously ask questions to the authors.

The reviewing and selection process was a challenging task and I am deeply grateful
to the Program Committee members and external reviewers for their hard and thorough
work. Many thanks also to Shai Halevi for his assistance with the Web submission and
review software and for his constant availability.

The conference program also included invited talks by Elette Boyle (IDC Herzliya,
Israel) and Hugo Krawczyk (IBM Research, USA). I would like to thank both of them
as well as all the other speakers for their contributions to the program.

Finally, I would like to thank Ricardo Dahab, the general chair, for organizing a
great conference and all the conference attendees for making this a truly intellectually
stimulating event through their active participation.

March 2018 Michel Abdalla
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New Constructions of Identity-Based
and Key-Dependent Message Secure

Encryption Schemes

Nico Döttling1(B), Sanjam Garg2, Mohammad Hajiabadi2,
and Daniel Masny2(B)

1 Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
nico.doettling@fau.de

2 University of California, Berkeley, USA
{sanjamg,mdhajiabadi,daniel.masny}@berkeley.edu

Abstract. Recently, Döttling and Garg (CRYPTO 2017) showed how
to build identity-based encryption (IBE) from a novel primitive termed
Chameleon Encryption, which can in turn be realized from simple number
theoretic hardness assumptions such as the computational Diffie-Hellman
assumption (in groups without pairings) or the factoring assumption. In
a follow-up work (TCC 2017), the same authors showed that IBE can
also be constructed from a slightly weaker primitive called One-Time
Signatures with Encryption (OTSE).

In this work, we show that OTSE can be instantiated from hard learn-
ing problems such as the Learning With Errors (LWE) and the Learning
Parity with Noise (LPN) problems. This immediately yields the first
IBE construction from the LPN problem and a construction based on a
weaker LWE assumption compared to previous works.

Finally, we show that the notion of one-time signatures with encryp-
tion is also useful for the construction of key-dependent-message (KDM)
secure public-key encryption. In particular, our results imply that a
KDM-secure public key encryption can be constructed from any KDM-
secure secret-key encryption scheme and any public-key encryption
scheme.

1 Introduction

Identity-based encryption (IBE) is a form of public key encryption that allows
a sender to encrypt messages to a user without knowing a user-specific public
key, but only the user’s name or identity and some global and succinct public

Research supported in part from 2017 AFOSR YIP Award, DARPA/ARL SAFE-
WARE Award W911NF15C0210, AFOSR Award FA9550-15-1-0274, NSF CRII
Award 1464397, and research grants by the Okawa Foundation, Visa Inc., and Cen-
ter for Long-Term Cybersecurity (CLTC, UC Berkeley). The views expressed are
those of the author and do not reflect the official policy or position of the funding
agencies.

c© International Association for Cryptologic Research 2018
M. Abdalla and R. Dahab (Eds.): PKC 2018, LNCS 10769, pp. 3–31, 2018.
https://doi.org/10.1007/978-3-319-76578-5_1
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parameters. The public parameters are issued by a key authority which also
provides identity-specific secret keys to the users.

The notion of IBE was originally proposed by Shamir [Sha84], and in two
seminal results Boneh and Franklin [BF01] and Cocks [Coc01] provided the first
candidate constructions of IBE in the random oracle model from groups with
pairings and the quadratic residue problem respectively. Later works on IBE
provided security proofs without random oracles [CHK04,BB04,Wat05,Wat09,
LW10,BGH07] and realized IBE from hard lattice problems [GPV08,CHKP12,
ABB10].

In a recent result, Döttling and Garg [DG17b] showed how to construct IBE
from (presumably) qualitatively simpler assumptions, namely the computational
Diffie-Hellman assumption in groups without pairings or the factoring assump-
tion. In a follow-up work, the same authors [DG17a] provided a generalization
of the framework proposed in [DG17b]. In particular, the authors show that
identity-based encryption is equivalent to the seemingly simpler notion of One-
Time Signatures with Encryption (OTSE) using a refined version of the tree-
based IBE construction of [DG17b].

An OTSE-scheme is a one-time signature scheme with an additional encryp-
tion and decryption functionality. Informally, the encryption functionality allows
anyone to encrypt a plaintext m to a tuple consisting of a public parameter pp,
a verification key vk, an index i and a bit b, to obtain a ciphertext c. The plain-
text m can be deciphered from c by using a pair of message-signature (x, σ) that
is valid relative to vk and which satisfies xi = b. Security of the OTSE asserts
that an adversary knowing a pair of message-signature (x, σ) and the underlying
public parameter pp and verification key vk cannot distinguish between encryp-
tions of two plaintexts encrypted to (i, 1 − xi) under (pp, vk), for any index i of
the adversary’s choice. (Note that this security property implies the one-time
unforgeability of the signature.) The OTSE also needs to be compact, meaning
the size of the verification key grows only with the security parameter, and does
not depend on the size of messages allowed to be signed.

1.1 PKE and IBE from Learning with Errors

We will briefly review constructions of public-key encryption and identity-based
encryption from the Learning with Errors (LWE) problem.

The hardness of LWE is determined by its dimension n, modulus q, noise mag-
nitude parameter α and the amount of samples m. Regev [Reg05] showed that
among the latter three parameters, in particular the noise magnitude parameter
α is of major importance since it directly impacts the approximation factor of
the underlying lattice problem.

Theorem 1 [Reg05]. Let ε = ε(n) be some negligible function of n. Also, let
α = α(n) ∈ (0, 1) be some real and let p = p(n) be some integer such that
αp > 2

√
n. Assume there exists an efficient (possibly quantum) algorithm that

solves LWEp,α. Then there exists an efficient quantum algorithm for solving the
following worst-case lattice problems:
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1. Find a set of n linearly independent lattice vectors of length at most Õ(λn(L)·
n/α).

2. Approximate λ1(L) within Õ(n/α).

Here, λk is the minimal length of k linearly independent vectors in lattice
L. To find such vectors within a constant or slightly sublinear approximation
is known to be NP-hard under randomized reductions [ABSS93,Ajt98,Mic98,
Kho04,HR07], while for an exponential approximation factor, they can be found
in polynomial time using the LLL algorithm [LLL82]. Regev [Reg05] introduced
the first PKE based on LWE for a choice of α = Õ(1/

√
n), more precisely α =

1/(
√

n log2 n). The first lattice based IBEs, by Gentry et al. [GPV08], Cash et al.
[CHKP10] and by Agrawal et al. [ABB10] require α = Õ(1/n), α = Õ(1/(

√
kn)),

where k is the output length of a hash function, and α = Õ(1/n2).
The reason for this gap between PKE and IBE is that all the known IBE

constructions use an additional trapdoor in order to sample short vectors as
secret keys. This sampling procedure increases the norm of sampled vectors,
such that the initial noise of a ciphertext must be decreased to maintain the
correctness of the schemes. By losing a factor

√
n in the sampling procedure

[MR04,GPV08,MP12,LW15], α needs to be chosen by a factor
√

n smaller.
Therefore, this methodology unavoidably loses at least an additional

√
n factor.

This explains why these techniques cause a gap compared to Regev’s PKE where
α is at least a factor

√
n larger, which decreases the approximation factor by at

least a factor of
√

n. This results in a stronger assumption with respect to the
underlying short vector problem.

1.2 Our Results

As the main contribution of this work, we remove the requirement of the collision-
tractability property of the hash function in the construction of [DG17a]. Specif-
ically, we replace the notion of Chameleon Encryption with the simpler notion
of Hash Encryption, for which no collision tractability property is required. The
notion of Hash Encryption naturally arises from the notion of laconic Oblivi-
ous Transfer [CDG+17]. We provide simple and efficient constructions from the
Learning With Errors (LWE) [Reg05] and (exponentially hard) Learning Parity
with Noise (LPN) problem [YZ16].

Our overall construction of IBE from hash encryption proceeds as follows. We
first show that we can use any CPA PKE to build a non-compact version of One-
Time Signatures with Encryption (OTSE), in which, informally, the size of the
verification key of the OTSE is bigger than the size of the messages allowed to be
signed. We then show how to use hash encryption to boost non-compact OTSE
into compact OTSE, under which arbitrarily large messages could be signed
using a short public parameter and a short verification key, while preserving
the associated encryption-decryption functionalities. Our transformation makes
a non-black-box use of the non-compact OTSE primitive.
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Using a recent result by Döttling and Garg [DG17a], we transform our com-
pact OTSE to an IBE. Hence, we obtain the first constructions of IBE from the
LWE assumption used by Regev’s PKE and the first construction from an LPN
problem.

Further, we show how to use non-compact OTSE to transform key-
dependent-message (KDM) secure private key encryption to KDM-secure pub-
lic key encrpyption. Informally, a private-key encryption scheme is F-KDM
secure, for a function class F , if the scheme remains semantically secure even
if the adversary is allowed to obtain encryptions of f(k), for f ∈ F , under
the secret key k itself. This notion is analogously defined for PKE. A large
body of work, e.g., [BHHO08,ACPS09,BG10,BHHI10,App14,Döt15], shows
how to build KDM-secure schemes from various specific assumptions. Briefly,
in order to construct KDM-secure schemes for a large class of functions, they
first show how to build KDM-secure schemes for a basic class of functions
[BHHO08,BG10,ACPS09] (e.g., projections, affine) and then use KDM amplifi-
cation procedures [BHHI10,App14] to obtain KDM security against richer func-
tions families. We show that for any function family F , an F-KDM secure PKE
can be obtained from a non-compact OTSE (and hence a CPA PKE) together
with a G-KDM secure private-key encryption scheme, where G is a class of
functions related to F . (See Sect. 6 for a formal statement.) Using the result
of [App14] we obtain that F-KDM-secure PKE, for any F , can be based on
projection-secure private-key encryption and CPA PKE. We mention that prior
to our work it was not known whether projection-secure PKE (which is sufficient
for KDM PKE) could be constructed (in a black-box or a non-black-box way)
from the combination of CPA PKE and projection-secure private-key encryption.

An overview of the contributions of this work is given in Fig. 1.

exLPN LWE

HE

PKE LPN

NC-OTSE KDM-SKE

KDM-PKEOTSE

IBE

Sec. 3.3 Sec. 3.2 Sec. 4 [ACPS09]

Sec. 6Sec. 5

[DG17a]

Fig. 1. Overview of the results in this work, bold arrows are contributions of this work.
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1.3 Technical Outline

We will start by providing an outline of our construction of hash encryption from
LWE. The LPN-based construction is similar in spirit, yet needs to account for
additional subtleties that arise in the modulus 2 case. We will then sketch our
construction of IBE from hash encryption.

Hash Encryption from LWE. The hashing key k of our hash function is given
by a randomly chosen matrix A ← Z

m×κ
p . To hash a message, we encoded it as

a vector x ∈ {0, 1}m ⊆ Z
m and compute the hash value h ← x� · A. It can be

shown that under the short integer solution (SIS) problem [Reg05] this function
is collision resistant.

We will now specify the encryption and decryption procedures. Our encryp-
tion scheme is a variant of the dual-Regev [GPV08] encryption scheme. For a
matrix A, let A−i denote the matrix obtained by removing the i-th row of A,
and let ai be the i-th row of A. Likewise, for a vector x let x−i denote the vector
obtained by dropping the i-th component of x. Given the hashing key k = A,
a hash-value h, an index i and a bit b, we encrypt a message m ∈ {0, 1} to a
ciphertext c = (c1, c2) via

c1 ← A−i · s + e−i

c2 ← (h − b · ai)s + ei + �p/2� · m,

where s ← Z
κ
p is chosen uniformly at random and e ∈ Z

m
p is chosen from an

appropriate discrete gaussian distribution.
To decrypt a ciphertext c using a preimage x, compute

μ ← c2 − xT
−ic1,

output 0 if μ is closer to 0 and 1 if μ is closer to p/2. Correctness of this scheme
follows similarly as in the dual Regev scheme [GPV08]. To argue security, we
will show that a successful adversary against this scheme can be used to break
the decisional extended LWE problem [AP12], which is known to be equivalent
to standard LWE.

Compact OTSE from Non-compact OTSE and Hash Encryption. To obtain
a compact OTSE scheme, we hash the verification keys of the non-compact
OTSE-scheme using the hash function of the hash encryption primitive. While
this resolves the compactness issue, it destroys the encryption-decryption func-
tionalities of the non-compact OTSE. We overcome this problem through a
non-blackbox usage of the encryption function of the base non-compact OTSE-
scheme.

KDM Security. We sketch the construction of a KDMCPA-secure PKE from a non-
compact OTSE NC and a KDMCPA-secure secret-key encryption scheme SKE =
(Enc,Dec). We also need a garbling scheme (Garble,Eval), which can be built
from SKE.
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The public key pk = (pp, vk) of the PKE is a public parameter pp and a
verification key vk of NC and the secret key is sk = (k, σ), where k is a key of
the secret-key scheme and σ is a valid signature of k w.r.t. vk.

To encrypt m under pk = (pp, vk) we first form a circuit C which on input
k′ returns Enc(k′,m). We then garble C to obtain a garbled circuit C̃ and input
labels (Xι,0,Xι,1) for every input index ι. For all ι and bit b, we OTSE-encrypt
Xι,b relative to the index ι and bit b (using pp and vk) to get ctι,b. The resulting
ciphertext is then ct = (C̃, {ctι,b}ι,b).

For decryption, using (k, σ) we can OTSE-decrypt the proper ctι,b’s to obtain
a matching garbled input k̃ for k. Then evaluating C̃ on k̃ we obtain ct′ =
Enc(k,m). We can then decrypt ct′ using k to recover m.

Using a series of hybrids we reduce the KDM security of the PKE to the
stated security properties of the base primitives.

1.4 Concurrent Works

In a concurrent and independent work, Brakerski et al. [BLSV17] provided a con-
struction of an IBE scheme from LPN with a very low noise rate of Ω(log(κ)2/κ),
using techniques similar to the construction of OTSE from sub-exponentially
hard LPN in this work. Also in a concurrent and independent work, Kitagawa
and Tanaka [KT17] provided a construction of KDM-secure public key encryp-
tion from KDM-secure secret key encryption and IND-CPA secure public key
encryption using techniques similar to ours.

2 Preliminaries

We use {0, 1}m
k to denote the set of binary vectors of length m with hamming

weight k and [m] to denote the set {1, . . . , m}. We use A−i to denote matrix
A where the ith row is removed. The same holds for a row vector x−i, which
denotes vector x where the ith entry is removed.

Lemma 1. For m ∈ N and 1 ≤ k ≤ m, the cardinality of set {0, 1}m
k is lower

bounded by
(

m
k

)k and upper bounded by
(

em
k

)k.

Definition 1 (Bias). Let x ∈ F2 be a random variable. Then the bias of x is
defined by

bias(x) = Pr[x = 0] − Pr[x = 1].

Remark 1. The bias of x is simply the second Fourier coefficient of the proba-
bility distribution of x, the first Fourier coefficient being 1 for all distributions.
Thus, as Pr[x = 1] = 1 − Pr[x = 0] it holds that Pr[x = 0] = 1

2 + 1
2bias(x).

In the following, we summarize several useful properties of the bias of random
variables.
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– If x ← Bρ, then bias(x) = 1 − 2ρ.
– Let x1, x2 ∈ F2 be independent random variables. Then it holds that bias(x1+

x2) = bias(x1) · bias(x2).
– Assume that the distribution of x is the convex combination of two distribu-

tions via px = αpx1 + (1 − α)px2 . Then bias(x) = αbias(x1) + (1 − α)bias(x2).

Proof. Convolution theorem

Lemma 2. Let v ∈ F
n
2 be a vector of weight t and e ∈ F

n
2 a distribution for which

each component is iid distributed with bias ε. Then it holds that Pr[〈v, e〉 = 0] =
1
2 + 1

2εt.

Proof. As v has weight t, it holds that

bias(〈v, e〉) = bias(
∑

i=1,...,n;vi=1

ei) = εt,

where the second equality follows by the properties of the bias. Consequently, it
holds that Pr[〈v, e〉 = 0] = 1

2 + 1
2εt. ��

2.1 Hard Learning Problems

We consider variants of the learning problems LWE and LPN that are known to
be as hard as the original problems. These variants are called extended LWE or
LPN, since they leak some additional information about the noise term.

Definition 2 (Extended LWE). A ppt algorithm A = (A1,A2) breaks
extended LWE for noise distribution Ψ , m samples, modulus p and dimension
κ if

|Pr[A2(st, A,As + e, x, xT e) = 1] − Pr[A2(st, A,B, x, xT e) = 1]| ≥ ε,

where (x, st) ← A1(1κ) and the randomness is taken over A ← Z
m×κ
p , B ← Z

m
p ,

s ← Z
κ
p , e ← Ψ and a non-negligible ε.

Lemma 3 [AP12, Theorem 3.1]. For dimension κ, modulus q with smallest
prime divisor p, m ≥ κ + ω(log(κ)) samples and noise distribution Ψ , if there is
an algorithm solving extended LWE with probability ε, then there is an algorithm
solving LWE with advantage ε

2p−1 as long as p is an upper bound on the norm
of the hint xT e.

When p = 2 and the noise distribution Ψ = Bρ is the Bernoulli distribution,
we call the problem LPN. The LPN problem was proposed by [BFKL94] for the
private key setting. A series of works [Ale03,DMQN12,KMP14,Döt15] provided
public key encryption schemes from the so-called low-noise LPN problem where
the error term has a noise-rate of O(1/

√
κ). In a recent work, Yu and Zhang

[YZ16] provided public key encryption schemes based on LPN with a constant
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noise-rate but a sub-exponential number of samples m = 2O(
√

κ). We refer to
this variant as (sub-) exponentially hard LPN.

For our LPN based encryption scheme, we need to be able to embed a suf-
ficiently strong binary error correction code such that decryption can recover a
message. Therefore, we define a hybrid version of extended LPN that is able to
hide a sufficiently large generator matrix of such a code.

Definition 3 (Extended Hybrid LPN). A ppt algorithm A = (A1,A2)
breaks extended LPN for noise distribution Bρ, m samples, modulus p, dimension
κ and � hybrids if

|Pr[A2(st, A,AS + E, x, xT E) = 1] − Pr[A2(st, A,B, x, xT E) = 1]| ≥ ε,

where (x, st) ← A1(1n) and the randomness is taken over A ← Z
m×κ
p , B ←

Z
m×�
p , S ← Z

κ×�
p , E ← Bm×�

ρ and non-negligible ε.

A simple hybrid argument yields that if extended hybrid LPN can be bro-
ken with probability ε, then extended LPN can be broken with probability ε/�.
Therefore we consider extended hybrid LPN as hard as extended LPN.

2.2 Weak Commitments

In our LPN-based hash encryption scheme, we will use a list decoding procedure
to receive a list of candidate messages during the decryption of a ciphertext. To
determine which candidate message has been encrypted, we add a weak form
of a commitment of the message to the ciphertext that hides the message. In
order to derrive the correct message from the list of candidates, we require that
the commitment is binding with respect to the list of candidates, i.e. the list
decoding algorithm.

Definition 4 (Weak Commitment for List Decoding). A weak commit-
ment scheme WCD with respect to a list decoding algorithm D consists of three
ppt algorithms Gen, Commit, and Verify, a message space M ⊂ {0, 1}∗ and a
ranomness space R ⊂ {0, 1}∗.

– Gen(1κ): Outputs a key k.
– Commit(k,m, r): Outputs a commitment wC(m, r).
– Verify(k,m, r,wC): Outputs 1 if and only if wC(m, r) = wC.

For hiding, we require that for any ppt algorithm A = (A1,A2)

|Pr[A2(st,wC(m0, r)) = 1] − Pr[A2(st,wC(m1, r)) = 1]| ≤ negl,

where (m0,m1, st) ← A1(k) and the randomness is taken over the random coins
of A, k ← Gen(1κ) and r ← R. For binding with respect to D, we require that
for any m ∈ M

Pr[Verify(k,m, r,wC(m′, r′)) = 1 ∧ m �= m′] ≤ negl,

where the randomness is taken over (m′, r′) ← D(1n,m, r), the random coins of
Verify, D, k ← Gen(1κ) and r ← R.
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Since D does not depend on the key k, a wCD can be easily instantiated with
a universal hash function. The key k corresponds to the hash function h and
wC(m, r) := h(m, r) is the hash of m and r. In the following we define universal
hash functions and show with two lemmata that our construction of a weak
commitment is hiding as well as binding.

Definition 5. For n,m ∈ N, m > n, a family of functions H from {0, 1}m to
{0, 1}n is called a family of universal hash functions if for any x, x′ ∈ {0, 1}m

with x �= x′

Prh←H[h(x) = h(x′)] ≤ 2−n.

Lemma 4. h is weakly binding with respect to D. In particular,

Prh←H[∃i ∈ [�] : h(m, r) = h(mi, ri) ∧ m �= mi] ≤ �2−n,

where {(mi, ri)}i∈[�] ← D(1n,m, r) and � is the output list length of D.

Proof. D outputs a list of at most � tuples of the form (m1, r1), . . . , (m�, r�). For
each of the tuples with mi �= m,

Prh←H[h(m, r) = h(mi, ri)] ≤ 2−n

holds. Using a union bound, we receive the statement of the lemma.

The work of Hastad et al. [HILL99] shows that for an r with sufficient entropy,
for any m, h(r,m) is statistical close to uniform. Therefore it statistically hides
the message m.

Lemma 5 ([HILL99] Lemma 4.5.1). Let h be a universal hash function from
{0, 1}m to {0, 1}n and r ← {0, 1}|r| for |r| ≥ 2κ + n, then for any m, h(r,m) is
statistically close to uniform given h.

2.3 Secret- and Public-Key Encryption

We will briefly review the security notions for secret- and public-key encryption
this work is concerned with.

Definition 6. A secret-key encryption scheme SKE consists of two algorithms
Enc and Dec with the following syntax

– Enc(k,m): Takes as input a key k ∈ {0, 1}κ and a message m ∈ {0, 1}� and
outputs a ciphertext c.

– Dec(k, ct): Takes as input a key k ∈ {0, 1}κ and a ciphertext ct and outputs
a message m.
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For correctness, for all k ∈ {0, 1}κ and m ∈ {0, 1}� we have:

Dec(k,Enc(k,m)) = m.

The standard security notion of secret-key encryption is indistinguishability
under chosen plaintext attacks (IND-CPA). However, the notion of interest in
this work is the stronger notion of key-dependent-message security under chosen-
plaintext attacks. A secret-key encryption scheme SKE = (Enc,Dec) is called
key-dependent-message secure under chosen plaintext attacks (KDMCPA) if for
every PPT-adversary A the advantage

AdvKDMCPA(A) =
∣
∣
∣
∣Pr[KDMCPA(A) = 1] − 1

2

∣
∣
∣
∣

is at most negligible advantage in the following experiment (Fig. 2):

Experiment KDMCPA(A):

1. k
$←− {0, 1}κ

2. b∗ $←− {0, 1}
3. b′ ← AKDMb∗,k(·)(1κ)

where the oracle KDM is defined by KDM0,k(f) = SKE.Enc(k, f(k))
and KDM1,k(f) = SKE.Enc(k, 0�).

4. Output 1 if b′ = b∗ and 0 otherwise.

Fig. 2. The KDMCPA(A) experiment

Definition 7. A public-key encryption scheme PKE consists of three (random-
ized) algorithms KeyGen, Enc and Dec with the following syntax.

– KeyGen(1κ): Takes as input the security parameter 1κ and outputs a pair of
public and secret keys (pk, sk).

– Enc(pk,m): Takes as input a public key pk and a message m ∈ {0, 1}� and
outputs a ciphertext c.

– Dec(sk, c): Takes as input a secret key sk and a ciphertext c and outputs a
message m.

In terms of correctness, we require that for all messages m ∈ {0, 1}� and
(pk, sk) ← KeyGen(1κ) that

Dec(sk,Enc(pk,m)) = m.
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A public-key encryption scheme PKE = (KeyGen,Enc,Dec) is called INDCPA-
secure, if for every PPT-adversary A the advantage

AdvINDCPA(A) =
∣
∣
∣
∣Pr[INDCPA(A) = 1] − 1

2

∣
∣
∣
∣

is at most negligible in the following experiment (Fig. 3):

Experiment INDCPA(A):

1. (pk, sk) ← PKE.KeyGen(1κ)
2. (m0,m1) ← A1(pk)

3. b∗ $←− {0, 1}
4. c∗ ← PKE.Enc(pk,mb∗)
5. b′ ← A2(pk, c∗)
6. Output 1 if b′ = b∗ and 0 otherwise.

Fig. 3. The INDCPA(A) experiment

A public-key encryption scheme PKE = (KeyGen,Enc,Dec) is called key-
dependent-message secure under chosen plaintext attacks (KDMCPA), if for every
PPT-adversary A the advantage

AdvKDMCPA(A) =
∣
∣
∣
∣Pr[KDMCPA(A) = 1] − 1

2

∣
∣
∣
∣

is at most negligible in the following experiment (Fig. 4):

Experiment KDMCPA(A):

1. (pk, sk) ← PKE.KeyGen(1κ)

2. b∗ $←− {0, 1}
3. b′ ← AKDMb∗,sk(·)(pk)

where the oracle KDM is defined by KDM0,sk(f) =
PKE.Enc(pk, f(sk)) and KDM1,sk(f) = PKE.Enc(pk, 0�).

4. Output 1 if b′ = b∗ and 0 otherwise.

Fig. 4. The KDMCPA(A) experiment
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2.4 One-Time Signatures with Encryption [DG17a]

Definition 8. A One-Time Signature Scheme with Encryption consists of five
algorithms (SSetup,SGen,SSign,SEnc,SDec) defined as follows:

– SSetup(1κ, �): Takes as input a unary encoding of the security parameter 1κ

and a message length parameter � and outputs public parameters pp.
– SGen(pp): Takes as input public parameters pp and outputs a pair (vk, sk) of

verification and signing keys.
– SSign(sk, x): Takes as input a signing key sk and a message x ∈ {0, 1}� and

outputs a signature σ.
– SEnc(pp, (vk, i, b),m): Takes as input public parameters pp, a verification key

vk, an index i, a bit b and a plaintext m and outputs a ciphertext c. We will
generally assume that the index i and the bit b are included alongside.

– SDec(pp, (vk, σ, x), c): Takes as input public parameters pp, a verification key
vk, a signature σ, a message x and a ciphertext c and returns a plaintext m.

We require the following properties.

– Compactness: For pp ← SSetup(1κ, �) and (vk, sk) ← SGen(pp) it holds that
|vk| < �, i.e. vk can be described with less than � bits.

– Correctness: For all security parameters κ, message x ∈ {0, 1}�, i ∈ [�] and
plaintext m: If pp ← SSetup(1κ, �), (vk, sk) ← SGen(pp) and σ ← SSign(sk, x)
then

SDec(pp, (vk, σ, x),SEnc(pp, (vk, i, xi),m)) = m.

– Selective Security: For any PPT adversary A = (A1,A2,A3), there exists
a negligible function negl(·) such that the following holds:

Pr[INDOTSIG(A) = 1] ≤ 1
2

+ negl(κ)

where INDIBE(A) is shown in Fig. 5.

Experiment INDOTSIG(A):
1. pp ← SSetup(1κ, �)
2. (vk, sk) ← SGen(pp)
3. x ← A1(pp, vk)
4. σ ← SSign(sk, x)
5. (i,m0,m1) ← A2(pp, vk, σ)

6. b∗ $←− {0, 1}
7. m∗ ← mb∗

8. c∗ ← SEnc(pp, (vk, i, 1 − xi),m∗)
9. b′ ← A3(pp, vk, σ, c∗)

10. Output 1 if b′ = b∗ and 0 otherwise.

Fig. 5. The INDOTSIG(A) experiment
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We remark that multi-challenge security (i.e. security in an experiment in
which the adversary gets to see an arbitrary number of challenge-ciphertexts)
follows via a simple hybrid argument. We also remark that in the definition of
[DG17a], the message x was not allowed to depend on vk. The definition given
here is stronger and readily implies the definition of [DG17a].

If an OTSE scheme does not fulfill the compactness property, then we refer
to such a scheme as a non-compact OTSE-scheme or NC-OTSE.

Döttling and Garg [DG17a] showed that (compact) OTSE implies both fully
secure IBE and selectively secure HIBE.

Theorem 2 (Informal). Assume there exists an OTSE-scheme. Then there
exists a fully secure IBE-scheme and a HIBE-scheme.

2.5 Garbled Circuits

Garbled circuits were first introduced by Yao [Yao82] (see Lindell and
Pinkas [LP09] and Bellare et al. [BHR12] for a detailed proof and further dis-
cussion). A projective circuit garbling scheme is a tuple of PPT algorithms
(Garble,Eval) with the following syntax.

– Garble(1κ,C) takes as input a security parameter κ and a circuit C and outputs
a garbled circuit C̃ and labels eC = {Xι,0,Xι,1}ι∈[n], where n is the number
of input wires of C.

– Projective Encoding: To encode an x ∈ {0, 1}n with the input labels eC =
{Xι,0,Xι,1}ι∈[n], we compute x̃ ← {Xι,xι

}ι∈[n].
– Eval(C̃, x̃): takes as input a garbled circuit C̃ and a garbled input x̃, represented

as a sequence of input labels {Xι,xι
}ι∈[n], and outputs an output y.

We will denote hardwiring of an input s into a circuit C by C[s]. The garbling
algorithm Garble treats the hardwired input as a regular input and additionally
outputs the garbled input corresponding to s (instead of all the labels of the
input wires corresponding to s). If a circuit C uses additional randomness, we
will implicitly assume that appropriate random coins are hardwired in this circuit
during garbling.

Correctness. For correctness, we require that for any circuit C and input x ∈
{0, 1}n we have that

Pr
[
C(x) = Eval(C̃, x̃)

]
= 1

where (C̃, eC = {Xι,0,Xι,1}ι∈[n])
$←− Garble(1κ,C) and x̃ ← {Xι,xι

}.

Security. For security, we require that there is a PPT simulator GCSim such that
for any circuit C and any input x, we have that
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(C̃, x̃) ≈c GCSim(C,C(x))

where (C̃, eC = {Xι,0,Xι,1}ι∈[n]) ← Garble(1κ,C) and x̃ ← {Xι,xι
}.

3 Hash Encryption from Learning Problems

Intuitively, our hash encryption scheme can be seen as a witness encryption
scheme that uses a hash value and a key to encrypt a message. The decryption
procedure requires the knowledge of a preimage of the hash value to recover
an encrypted message. Given key a k, an algorithm Hash allows to compute a
hash value for an input x. This hashing procedure is tied to the hash encryption
scheme. More concretely, the encryption procedure encrypts a message with
respect to a bit c for an index i. Given knowledge of a preimage, where the ith
bit has the value c, one can successfully decrypt the initially encrypted message.
Due to this additional constraint, a hash encryption is more restrictive than a
witness encryption for the knowledge of the preimage of a hash value.

3.1 Hash Encryption

Definition 9 (Hash Encryption). A hash encryption (HE) consists of four
ppt algorithms Gen, Hash, Enc and Dec with the following syntax

– Gen(1κ,m): Takes as input the security parameter κ, an input length m and
outputs a key k.

– Hash(k, x): Takes a key k, an input x ∈ {0, 1}m and outputs a hash value h of
κ bits.

– Enc(k, (h, i, c),m): Takes a key k, a hash value h an index i ∈ [m], c ∈ {0, 1}
and a message m ∈ {0, 1}∗ as input and outputs a ciphertext ct. We will
generally assume that the index i and the bit c are included alongside.

– Dec(k, x, ct): Takes a key k, an input x and a ciphertext ct as input and outputs
a value m ∈ {0, 1}∗ (or ⊥).

Correctness. For correctness, we require that for any input x ∈ {0, 1}m, index
i ∈ [m]

Pr[Dec(k, x,Enc(k, (Hash(k, x), i, xi),m)) = m] ≥ 1 − negl,

where xi denotes the ith bit of x and the randomness is taken over k ←
Gen(1κ,m).

Security. We call a HE secure, i.e. selectively indistinguishable, if for any ppt
algorithm A

Pr[INDHE(1κ,A) = 1] ≤ 1
2

+ negl,

where the game INDHE is defined in Fig. 6.
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Experiment INDHE(A):

1. (x, st1) ← A1(1κ)
2. k ← Gen(1κ, m)
3. (i ∈ [m],m0,m1, st2) ← A2(st1, k)
4. b ← {0, 1}
5. ct ← Enc(k, (Hash(k, x), i, 1 − xi),mb)
6. b′ ← A3(st2, ct)
7. Output 1 if b′ = b and 0 otherwise.

Fig. 6. The INDHE(A) experiment

3.2 Hash Encryption from LWE

We use the same parameters as proposed by the PKE of [Reg05], i.e. Gaussian
noise distribution Ψα(κ) for α(κ) = o

(
1√

κ log(κ)

)
, prime modulus κ2 ≤ p ≤ 2κ2,

m = (1 + ε)(1 + κ) log(κ) for ε > 0. For hash domain {0, 1}m and message space
M = {0, 1}, we define our LWE based HE as follows.

– Gen(1κ,m): Sample A ← Z
m×κ
p .

– Hash(k, x): Output xT A.
– Enc(k, (h, i, c),m): Sample s ← Z

κ
p , e ← Ψm

α(κ) and compute

c1 := A−is + e−i

c2 := (h − c · ai)s + ei + �p/2� · m.

Output ct = (c1, c2).
– Dec(k, x, ct): Output 1 if c2 − xT

−ic1 is closer to p/2 than to 0 and otherwise
output 0.

Depending on the concrete choice of m = (1+ε)(1+κ) log(κ), the compression
factor of the hash function is determined. For our purposes, the construction of
an IBE, any choice of ε > 0 is sufficient.

Lemma 6. For the proposed parameters, the LWE based HE is correct.

Proof. If ct = (c1, c2) is an output of Enc(k, (h, i, c),m), then for any x with
Hash(k, x) = h, c2 has the form

c2 = (xT A − c · ai)s + ei + �p/2� · m.

Therefore, on input x, c = xi, Dec computes

c2 − xT
−ic1 = (xT A − c · ai)s + ei + �p/2� · m − xT

−iA−is − xT
−ie−i

= (xi − c) · ais + ei + �p/2� · m − xT
−ie−i

= �p/2� · m + ei − xT
−ie−i.
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By [Reg05, Claim 5.2], for any x ∈ {0, 1}m, |ei − xT
−ie−i| < p/4 holds with

overwhelming probability. Hence, the noise is sufficiently small such that Dec
outputs m. ��
Theorem 3. The LWE based HE is INDHE secure under the extended LWE
assumption for dimension κ, Gaussian noise parameter α(n) = o

(
1√

n log(n)

)
,

prime modulus κ2 ≤ p ≤ 2κ2, and m = (1 + ε)(1 + κ) log(n) samples.

Proof. For proving the theorem, we will show that if there is an adversary A
that successfully breaks the INDHE security of the proposed HE then there is an
algorithm A′ that breaks the extended LWE assumption with the same proba-
bility.

We construct A′ = (A′
1,A′

2) as follows:

1. A′
1(1

κ): (x, st1) ← A1(1κ), Return x
2. A′

2(x,A,B, xT e): k := A
3. (i ∈ [m],m0,m1, st2) ← A2(st1, k)
4. b ← {0, 1}
5. c1 := B−i, c2 := (−1)xi+1Bi + �p/2� · mb − xT

−ie−i + xT
−ic1

6. b′ ← A3(st2, ct = (c1, c2))
7. Return 1 if b′ = b and 0 otherwise.

In the LWE case, B = As + e. Therefore A′ creates ct with the same distri-
bution as in game INDHE. This is easy to see for c1 = B−i = A−is + e−i. For c2,
we have

c2 = (−1)xi+1Bi + �p/2� · mb − xT
−ie−i + xT

−ic1

= (−1)xi+1ais + (−1)xi+1ei + �p/2� · mb − xT
−ie−i + xT

−iA−is + xT
−ie−i

= (−1)xi+1ais + (−1)xi+1ei + �p/2� · mb + xT
−iA−is

= (h − ((−1)xi + xi)ai)s + (−1)xi+1ei + �p/2� · mb

= (h − (1 − xi)ai)s + (−1)xi+1ei + �p/2� · mb.

Notice since ei is Gaussian with mean 0, −ei and ei have the same distribution.
In the uniform case, B is uniform and therefore A′s guess b′ is independent

of b. Hence, A′
2 outputs 1 with probability 1

2 . A′ breaks extended LWE with
advantage

|Pr[A3(st′, A,As + e, x, xT e) = 1] − Pr[A3(st′, A,B, x, xT e) = 1]|
=

∣
∣
∣
∣Pr[INDHE(A) = 1] − 1

2

∣
∣
∣
∣ .

��
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3.3 Hash Encryption from Exponentially Hard LPN

For LPN, we use a Bernoulli noise distribution Bρ with Bernoulli parameter
ρ = cρ and hash domain x ∈ {0, 1}m

k , where k = ck log(κ) for constants cρ and
ck. G ∈ Z

(|m|+κ)×�
2 is the generator matrix of a binary, list decodeable error

correction code that corrects an error with 1/poly bias, where |m| is the message
length and � the dimension of the codewords. For this task, we can use the error
correction code proposed by Guruswami and Rudra [GR11]. Further, we use a
weak commitment scheme WC with respect to the list decoding algorithm of G.

– Gen(1κ,m): Sample A ← Z
m×log2(κ)
2 , output k := A.

– Hash(k, x): Output xT A.
– Enc(k, (h, i, c),m): Sample S ← Z

log2(κ)×�
2 , E ← Bm×�

ρ , and a random string
r ← RWC and compute

c0 := kWC ← GenWC(1κ)
c1 := A−iS + E−i

c2 := (h − c · ai)S + Ei + (m||r) · G

c3 := wC(m, r) ← Commit(kWC,m, r).

Output ct = (c1, c2, c3).
– Dec(k, x, ct): Use code G to list decode c2 − xT

−ic1. Obtain from the list of
candidates the candidate (m||r) that fits Verify(c0,m, r, c3) = 1. Output this
candidate.

The choice of the constant ck will determine the compression factor of
the hash function Hash. The compression is determined by the ratio between
|{0, 1}m

k | and the space of the LPN secret 2log
2(κ). By Lemma 1, the cardinality

of |{0, 1}m
k | is lower bounded by ( m

ck log(κ) )
ck log(κ). m := cκ yields a compression

factor of at least ck(c − log(ck log(κ))
log κ ), which allows any constant compression

factor for a proper choice of the constants c and ck.
For the correctness, we need to rely on the error correction capacity of code G

and the binding property of the weak commitment scheme. For properly chosen
constants cρ and k, the proposed HE is correct.

Lemma 7. For ρ = cρ ≤ 1
4 , k = ck log(κ), and an error correction code G that

corrects an error with a bias of 2−4cρκ−4cρck and let WC be a weak commitment
that is binding with respect to the list decoding of G, then the LPN based HE is
correct.

Proof. ct = (c0, c1, c2, c3) is an output of Enc(k, (h, i, c),m), then for any x with
Hash(k, x) = h, c2 has the form

c2 = (xT A − c · ai)S + Ei + (m||r) · G.
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Therefore, on input x, c = xi, Dec computes

c2 − xT
−ic1 = (xT A − c · ai)S + Ei + (m||r) · G − xT

−iA−iS − xT
−iE−i

= (xi − c) · aiS + Ei + (m||r) · G − xT
−iE−i

= (m||r) · G + Ei − xT
−iE−i.

By Lemma 2, for each component ej , j ∈ [�] of e := Ei − xT
−iE−i and ρ ≤ 1

4 ,

ρ′ := Pr[ej = 1] =
1
2
(1 − (1 − 2ρ)k+1) ≤ 1

2

(
1 − 2−4cρ(ck log(κ)+1)

)

=
1
2

(
1 − 2−4cρκ−4cρck

)
.

This lower bounds the bias of each component of the noise term Ei − xT
−iE−i by

bound 2−4cρκ−4cρck . This bound is polynomial in κ and therefore correctable by
a suitable error correction code with list decoding. Hence, (m||r) is contained in
the output list of canidates of the list decoding. By the binding of WC, there is
with overwhelming probability only a single candidate of the polynomially many
candidates that fits Verify(c0,m, r, c3) = 1, which corresponds to the initially
encrypted message m. Otherwise, the list decoding of G would break the binding
property of WC. ��

The security analysis is simliar to the one of the LWE based scheme with the
difference that now a ciphertext also contains a commitment which depends on
the encrypted message. In a first step, we use the LPN assumption to argue that
all parts of the ciphertext are computationally independent of the message. In a
second step, we use the hiding property of the commitment scheme to argue that
now the whole ciphertext is independent of the encrypted message and therefore
an adversary cannot break the scheme.

Theorem 4. Let WC be a weak commitment scheme that is hiding, then the
LPN based HE is INDHE secure under the extended hybrid LPN assumption for
dimension log2(κ), m samples, � hybrids and noise level ρ.

Proof. Consider the following hybrid experiments:

Hybrid H1:

1. (x, st1) ← A1(1κ)
2. k := A ← Gen(1κ,m)
3. (i ∈ [m],m0,m1, st2) ← A2(st1, k)
4. b ← {0, 1}
5. S ← Z

log2(κ)×�
2 , E ← Bm×�

ρ , r ← RWC,
c0 := kWC ← GenWC(1κ), c1 := A−iS + E−i, c2 := (h − (1 − xi) · ai)S + Ei +
(mb||r) · G, c3 := wC(mb, r) ← Commit(kWC,mb, r),

6. b′ ← A3(st2, ct = (c0, c1, c2, c3))
7. Return 1 if b′ = b and 0 otherwise.
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Hybrid H2:

1. (x, st1) ← A1(1κ)
2. k := A ← Gen(1κ,m)
3. (i ∈ [m],m0,m1, st2) ← A2(st1, k)
4. b ← {0, 1}
5. B ← Z

m×�
2 , r ← RWC,

c0 := kWC ← GenWC(1κ), c1 := B−i, c2 := Bi, c3 := wC(mb, r) ←
Commit(kWC,mb, r),

6. b′ ← A3(st2, ct = (c0, c1, c2, c3))
7. Return 1 if b′ = b and 0 otherwise.

Lemma 8. Let A be an adversary that distinguishes H1 and H2 with advantage
ε. Then there is an algorithm A’ that breaks the extended hybrid LPN assumption
with advantage ε.

Proof. We construct A′ = (A′
1,A′

2) as follows:

1. A′
1(1

κ): (x, st1) ← A1(1κ) Return x
2. A′

2(st1, x, A,B, xT E): k := A
3. (i ∈ [m],m0,m1, st2) ← A2(st1, k)
4. b ← {0, 1}
5. r ← RWC,

c0 := kWC ← GenWC(1κ), c1 := B−i, c2 := Bi + (mb||r) · G − xT
−iE−i + xT

−ic1,
c3 := wC(mb, r) ← Commit(kWC,mb, r),

6. b′ ← A3(st2, ct = (c0, c1, c2, c3))
7. Return 1 if b′ = b and 0 otherwise.

In the LPN case, B = AS+E. Therefore A’ creates ct with the same distribu-
tion as in game INDHE. This is easy to see for c0, c3 and c1 = B−i = A−iS+E−i.
For c2, we have

c2 = Bi + (mb||r) · G − xT
−iE−i + xT

−ic1

= aiS + Ei + (mb||r) · G − xT
−iE−i + xT

−iA−iS + xT
−iE−i

= aiS + Ei + (mb||r) · G + xT
−iA−iS

= (h + (1 − xi)ai)S + Ei + (mb||r) · G,

which results in the same distribution over Z2.
In the uniform case, B and hence c2 are uniform. Therefore A’ simulates H2.

A′ breaks extended hybrid LPN with advantage

|Pr[A2(st1, x, A,AS + E, x, xT E) = 1] − Pr[A2(st1, x, A,B, x, xT E) = 1]|
= |Pr[H1(1κ,A) = 1] − Pr[H2(1κ,A) = 1]|.

��
Lemma 9. If there is an adversary A with Pr[H2(1κ,A) = 1] = 1

2 + ε, then
there is an algorithm A′ that breaks the hiding property of WC with advantage
2ε.
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Proof. We construct A′ = (A′
1,A′

2) as follows.

1. A′
1(kWC): (x, st1) ← A1(1κ)

2. k := A ← Gen(1κ,m)
3. (i ∈ [m],m0,m1, st2) ← A2(st1, k), Return (m0,m1)
4. A′

2(kWC, st2,wC): b ← {0, 1}
5. B ← Z

m×�
2 ,

c0 := kWC, c1 := B−i, c2 := Bi, c3 := wC
6. b′ ← A3(st2, ct = (c0, c1, c2, c3))
7. Return 1 if b′ = b and 0 otherwise.

It is easy to see that A’ correctly simulates H2. When A guesses b with his
guess b′ correctly, then also A’ does. Therefore

1
2

Pr[A′
2(kWC, st2,wC(m1, r)) = 1] +

1
2

Pr[A′
2(kWC, st2,wC(m0, r)) = 0]

= Pr[H2(1κ,A) = 1] =
1
2

+ ε.

Hence,

Pr[A′
2(kWC, st2,wC(m1, r)) = 1] − Pr[A′

2(kWC, st2,wC(m0, r)) = 1] = 2ε.

��
��

4 Non-compact One-Time Signatures with Encryption

In this Section we will construct a non-compact OTSE scheme NC from any
public-key encryption scheme PKE = (KeyGen,Enc,Dec).

– SSetup(1κ, �): Output pp ← (1κ, �).
– SGen(pp): For j = {1, . . . , �} and b ∈ {0, 1} compute (pkj,b, skj,b) ←

PKE.KeyGen(1κ). Set vk ← {pkj,0, pkj,1}j∈[�] and sgk ← {skj,0, skj,1}j∈[�].
Output (vk, sgk).

– SSign(pp, sgk = {skj,0, skj,1}j∈[�], x): Output σ ← {skj,xj
}j∈[�].

– SEnc(pp, (vk = {pkj,0, skj,1}j∈[�], i, b),m): Output c ← PKE.Enc(pki,b,m).
– SDec(pp, (vk, σ = {skj,xj

}j∈[�], x), c): Output m ← PKE.Dec(ski,xi
, c).

Correctness of this scheme follows immediately from the correctness of PKE.

Security. We will now establish the INDOTSIG-security of NC from the INDCPA-
security of PKE.

Theorem 5. Assume that PKE is INDCPA-secure. Then NC is INDOTSIG-secure.
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Proof. Let A be a PPT-adversary against INDOTSIG with advantage ε. We will
construct an adversary A′ against the INDCPA experiment with advantage ε

2� .
A′ gets as input a public key pk of the PKE and will simulate the INDOTSIG-
experiment to A. A′ first guesses an index i∗ $←− [�] and a bit b∗ $←− {0, 1}, sets
pki∗,b∗ ← pk and generates 2� − 1 pairs of public and secret keys (pkj,b, skj,b) ←
KeyGen(1κ) for j ∈ [�] and b ∈ {0, 1} with the restriction that (j, b) �= (i∗, b∗).
A′ then sets vk ← {pkj,0, pkj,1}j∈[�] and runs A on input vk. If it holds for the
message x output by A that xi∗ = b∗, then A′ aborts the simulation and outputs
a random bit. Once A outputs (m0,m1, i), A′ checks if (i, b) = (i∗, b∗) and if
not aborts and outputs a random bit. Otherwise, A′ sends the message-pair
(m0,m1) to the INDCPA-experiment and receives a challenge-ciphertext c∗. A′

now forwards c∗ to A and outputs whatever A outputs.
First notice that the verification key vk computed by A′ is identically dis-

tributed to the verification key in the INDOTSIG experiment. Thus, vk does not
reveal the index i∗ and the bit b∗, and consequently it holds that (i, b) = (i∗, b∗)
with probability 1

2� . Conditioned on the event that (i, b) = (i∗, b∗), it holds that
the advantage of A′ is identical to the advantage of A. Therefore, it holds that

AdvINDCPA(A′) =
AdvINDOTSIG(A)

2�
,

which concludes the proof. ��

5 Compact One-Time-Signatures with Encryption via
Hash-Encryption

In this Section, we will show how a non-compact OTSE scheme NC can
be bootstrapped to a compact OTSE scheme OTSE using hash-encryption.
Let NC = (SSetup,SGen,SSign,SEnc,SDec) be a non-compact OTSE scheme,
HE = (HE.Gen,HE.Hash,HE.Enc,HE.Dec) be a hash-encryption scheme and
(Garble,Eval) be a garbling scheme. The scheme OTSE is given as follows.

– SSetup(1κ, �): Compute p̄p ← NC.SSetup(1κ, �), k ← HE.Gen(1κ, �′) (where �′

is the size of the verification keys vk generated using p̄p) and output pp ←
(p̄p, k).

– SGen(pp = (p̄p, k)): Compute (v̄k, ¯sgk) ← NC.SGen(p̄p). Compute h ←
HE.Hash(k, v̄k), set vk ← h, sgk ← (v̄k, ¯sgk) and output (vk, sgk).

– SSign(pp = (p̄p, k), sgk = (v̄k, ¯sgk), x): Compute the signature σ′ ←
NC.SSign(p̄p, ¯sgk, x). Output σ ← (v̄k, σ′).

– SEnc(pp = (p̄p, k), (vk = h, i, b),m): Let C be the following circuit.
C[p̄p, i, b,m](v̄k) : Compute and output NC.SEnc(p̄p, (v̄k, i, b),m)1.

1 We also need to hardcode the randomness for NC.SEnc into C, but for ease of notation
we omit this parameter.
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(C̃, eC) ← Garble(1κ,C[p̄p, i, b,m])
Parse eC = {Yj,0, Yj,1}j∈[�′]
fC ← {HE.Enc(k, (h, j, b′), Yj,b′)}j∈[�′],b′∈{0,1}
Output ct ← (C̃, fC).

– SDec(pp = (p̄p, k), (vk = h, σ = (v̄k, σ′), x), ct = (C̃, fC)):

Parse fC = {cj,b′}j∈[�′],b′∈{0,1}
y ← v̄k
ỹ ← {HE.Dec(k, y, cj,yj

)}j∈[�′]

c′ ← Eval(C̃, ỹ)
m ← NC.SDec(p̄p, (v̄k, σ′, x), c′)
Output m

Compactness and Correctness. By construction, the size of the verification key
vk = HE.Hash(k, v̄k) depends on κ, but not on �′ or �. Therefore, OTSE is com-
pact.

To see that the scheme is correct, note first that since it holds that h =
HE.Hash(k, v̄k) and fC = {HE.Enc(k, (h, j, b′), Yj,b′)}j∈[�′],b′∈{0,1}, by correctness
of the hash-encryption scheme HE we have

ỹ = {HE.Dec(k, y, cj,yj
)}j∈[�′] = {Yj,yj

}j∈[�′].

Thus, as (C̃, eC) = Garble(1κ,C[p̄p, i, b,m]) and by the definition of C, it holds
by the correctness of the garbling scheme (Garble,Eval) that

c′ = Eval(C̃, ỹ) = C[p̄p, i, b,m](v̄k) = NC.SEnc(p̄p, (v̄k, i, b),m),

as y = v̄k. Finally, as σ′ = NC.SSign(p̄p, ¯sgk, x) it holds by the correctness of the
non-compact OTSE-scheme NC that

NC.SDec(p̄p, (v̄k, σ′, x), c′) = m,

which concludes the proof of correctness.

Security. We will now establish the INDOTSIG-security of OTSE from the secu-
rity of the hash-encryption scheme HE, the security of the garbling scheme
(Garble,Eval) and the INDOTSIG-security of NC.

Theorem 6. Assume that HE is an INDHE-secure hash-encryption scheme,
(Garble,Eval) is a secure garbling scheme and NC is INDOTSIG-secure. Then OTSE
is an INDOTSIG-secure OTSE-scheme.

Proof. Let A be a PPT-adversary against the INDOTSIG-security of OTSE. Con-
sider the following hybrid experiments.

Hybrid H0. This experiment is identical to INDOTSIG(A).
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Hybrid H1. This experiment is identical to H0, except that fC is computed
by fC ← {HE.Enc(k, (h, j, b′), Yj,yj

)}j∈[�′],b′∈{0,1}, i.e. for all j ∈ [�′] the mes-
sage Yj,yj

is encrypted, regardless of the bit b′. Computational indistinguisha-
bility between H0 and H1 follows from the INDHE-security of HE. The reduc-
tion R first generates the public parameters p̄p ← NC.SSetup(1κ, �), the keys
(v̄k, ¯sgk) ← NC.SGen(p̄p) and sends v̄k as its selectively chosen message to the
INDHE-experiment. It then obtains k, computes h ← HE.Hash(k, v̄k) and sets
pp ← (p̄p, k), vk ← h, sgk ← (v̄k, ¯sgk) and then simulates H0 with these param-
eters with A. Instead of computing the ciphertexts fC by itself, R sends the
labels {Yj,0, Yj,1}j∈[�′] to the multi-challenge INDHE-experiment and obtains the
ciphertexts fC . R continues the simulation and outputs whatever A outputs.
Clearly, if the challenge-bit of R’s INDHE-experiment is 0, then from the view of
A the reduction R simulates H0 perfectly. On the other hand, if the challenge-
bit is 1, then R simulates H1 perfectly. Thus R’s advantage is identical to A’s
distinguishing advantage between H0 and H1. It follows that H0 and H1 are
computationally indistinguishable, given the INDHE-security of NC.

Hybrid H2. This experiment is identical to H1, except that we compute
C̃ by (C̃, ỹ) ← GCSim(C,C[p̄p, i, b,m](v̄k)) and the value and fC by fC ←
{HE.Enc(k, (h, j, b′), ỹj)}j∈[�′],b′∈{0,1}. Computational indistinguishability of H1

and H2 follows by the security of the garbling scheme (Garble,Eval).
Notice that C[p̄p, i, b,m](v̄k) is identical to NC.SEnc(p̄p, (v̄k, i, b),m∗). Thus,

by the security of the non-compact OTSE-scheme NC, we can argue that A’s
advantage in H2 is negligible. ��

6 KDM-Secure Public-Key Encryption

In this section, we will build a KDMCPA-secure public-key encryption scheme
from a KDMCPA-secure secret-key encryption scheme and a non-compact OTSE-
scheme. The latter can be constructed from any public-key encryption scheme
by the results of Sect. 4.

Let NC = (SSetup,SGen,SSign,SEnc,SDec) be a non-compact OTSE scheme,
SKE = (Enc,Dec) be a KDMCPA-secure secret-key encryption scheme and
(Garble,Eval) be a garbling scheme. The public-key encryption scheme PKE is
given as follows.

– KeyGen(1κ): Sample k
$←− {0, 1}κ, compute pp ← NC.SSetup(1κ, κ), compute

(vk, sgk) ← NC.SGen(pp) and σ ← NC.SSign(pp, sgk, k). Output pk ← (pp, vk)
and sk ← (k, σ).

– Enc(pk = (pp, vk),m): Let C be the following circuit: C[m](k): Compute and
output SKE.Enc(k,m).2

2 We also need to hardcode the randomness for SKE.Enc into C, but for ease of notation
we omit this parameter.
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(C̃, eC) ← Garble(1κ,C[m])
Parse eC = {Kj,0,Kj,1}j∈[κ]

fC ← {NC.SEnc(pp, (vk, j, b),Kj,b)}j∈[κ],b∈{0,1}
Output ct ← (C̃, fC).

– Dec(sk = (k, σ), ct = (C̃, fC)):

k̃ ← {NC.SDec(pp, (vk, σ, k), fCj,kj
)}j∈[κ]

c′ ← Eval(C̃, k̃)
m ← SKE.Dec(k, c′)
Output m

Note in particular that the secret key sk does not include the signing key sgk.

6.1 Correctness

We will first show that the scheme PKE is correct. Let therefore (pk, sk) ←
PKE.KeyGen(1κ) and ct ← PKE.Enc(pk,m). By the correctness of the OTSE-
scheme NC it holds that k̃ = {Kj,kj

}. Thus, by the correctness of the garbling
scheme it holds that ct′ = C̃[m](k) = SKE.Enc(k,m). Finally, by the correctness
of SKE it holds that SKE.Dec(k, ct′) = m.

6.2 Security

We will now show that PKE is KDMCPA-secure.

Theorem 7. Assume that NC is an INDOTSIG-secure OTSE-scheme and
(Garble,Eval) is a secure garbling scheme. Let F be a class of KDM-functions and
assume that the function gpp,sgk : x �→ (x,NC.SSign(pp, sgk, x)) is in a class G
(e.g. affine functions). Assume that SKE is a KDMCPA-secure secret-key encryp-
tion scheme for the class F◦G. Then PKE is a KDMCPA-secure public key encryp-
tion scheme for the class F .

Note that if both F and G are the class of affine functions, e.g. over F2, then
F ◦G is again the class of affine functions (over F2). Thus, every function in F ◦G
can also be implemented as an affine function, i.e. by a matrix-vector product
followed by an addition.

Proof. Let A be a PPT-adversary against the KDMCPA-security of PKE. Con-
sider the following hybrids, in which we will change the way the KDM-oracle is
implemented. For sake of readability, we only provide 3 hybrids, where in actual-
ity each hybrid consists of q sub-hybrids, where q is the number of KDM-queries
of A.

Hybrid H1: This hybrid is identical to the KDMCPA-experiment.

Hybrid H2: This hybrid is identical to H1, except that fC is computed by fC ←
{NC.SEnc(pp, (vk, j, b),Kj,kj

)}j∈[κ],b∈{0,1}, i.e. for each j ∈ [κ] we encrypt Kj,kj
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twice, instead of Kj,0 and Kj,1. By the INDOTSIG-security of NC the hybrids H1

and H2 are computationally indistinguishable.

Hybrid H3: This hybrid is identical to H2, except that we compute C̃ and fC
by (C̃, k̃) ← GCSim(C,C[m](k)). Computational indistinguishability between H2

and H3 follows by the security of the garbling scheme (Garble,Eval). Notice that
it holds that C[m∗](k) = SKE.Enc(k,m∗).

We will now show that the advantage of A is negligible in H3, due to the
KDMCPA-security of SKE. We will provide a reduction R such that RA has the
same advantage against the KDMCPA-security of SKE as A’s advantage against
H3.

Before we provide the reduction R, notice that R does not have access to its
own challenge secret key k, which is part of the secret key sk = (k, σ) of the
resulting PKE. Also, since σ is a signature on k, R does not know the value
of σ either. Thus, R cannot on its own simulate encryptions of messages that
depend on (k, σ). We overcome this problem by using the KDM-oracle provided
to R which effectively allows R to obtain encryptions of key-dependent messages
sk = (k, σ). Details follow.

The reduction R first samples pp ← NC.SSetup(1κ, κ) and (vk, sgk) ←
NC.SGen(pp) and invokes A on pk = (pp, vk). Then R simulates H3 for A with
the following differences. Whenever A queries the KDM-oracle with a function
f ∈ F , the reduction R programs a new function f ′ ∈ F ◦ G which is defined by

f ′(k) = f(k,NC.SSign(pp, sgk, k)).

We assume for simplicity that the signing procedure NC.SSign is deterministic,
if not we require that the same randomness r is used for NC.SSign at each KDM-
query3.

We claim that R simulates H3 perfectly from the view of A. If the challenge-
bit in R’s KDMCPA-experiment is 0, then the outputs of A’s KDM-oracle on
input f are encryptions of f ′(k) = f(sk), and therefore, from the view of A
the challenge-bit in H3 is also 0. On the other hand, if the challenge-bit in R’s
KDMCPA-experiment is 1, then the outputs of A’s KDM-oracle on input f are
encryptions of 0�, and therefore, from A’s view the challenge-bit in H3 is 1. We
conclude that the advantage of RA is identical to the advantage of A against H3.
It follows from the KDMCPA-security of SKE that the latter is negligible, which
concludes the proof. ��

3 This does not pose a problem as we always sign the same message k at each KDM-
query.
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[CDG+17] Cho, C., Döttling, N., Garg, S., Gupta, D., Miao, P., Polychroniadou, A.:
Laconic oblivious transfer and its applications. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 33–65. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63715-0 2

[CHK04] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-
based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 13

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13190-5 27

[CHKP12] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to
delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2012)

[Coc01] Cocks, C.: An identity based encryption scheme based on quadratic
residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol.
2260, pp. 360–363. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-45325-3 32
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Abstract. We construct two identity-based encryption (IBE) schemes.
The first one is IBE satisfying key dependent message (KDM) secu-
rity for user secret keys. The second one is IBE satisfying simulation-
based receiver selective opening (RSO) security. Both schemes are secure
against adaptive-ID attacks and do not have any a-priori bound on the
number of challenge identities queried by adversaries in the security
games. They are the first constructions of IBE satisfying such levels of
security.

Our constructions of IBE are very simple. We construct KDM secure
IBE by transforming KDM secure secret-key encryption using IBE sat-
isfying only ordinary indistinguishability against adaptive-ID attacks
(IND-ID-CPA security). Our simulation-based RSO secure IBE is based
only on IND-ID-CPA secure IBE.

We also demonstrate that our construction technique for KDM secure
IBE is used to construct KDM secure public-key encryption. More pre-
cisely, we show how to construct KDM secure public-key encryption from
KDM secure secret-key encryption and public-key encryption satisfying
only ordinary indistinguishability against chosen plaintext attacks.

Keywords: Identity-based encryption
Key dependent message security · Receiver selective opening security

1 Introduction

1.1 Background

Identity-based encryption (IBE) proposed by Shamir [30] is an extension of
public-key encryption (PKE). In IBE, we can use an identity of a recipient as a
public-key. The secret-key corresponding to an identity is generated only by the
trusted authority who has the master secret-key. Users can obtain secret-keys
corresponding to their identities by authenticating themselves to the trusted
authority. By using IBE, we can avoid distributing public-key certificates that
is one of the major issues with public-key cryptography.
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Security notions for IBE capture corruptions and collusions of users. In other
words, we require that IBE guarantee confidentiality of a message encrypted
under an identity id∗ even if an adversary obtains a secret-key corresponding to
any identity other than id∗.

Security notions for IBE are classified into two categories, that is, adap-
tive security and selective security. An IBE scheme is said to be secure against
adaptive-ID attacks [12] if it is secure even when an adversary adaptively chooses
the challenge identity id∗. On the other hand, an IBE scheme is said to be secure
against selective-ID attacks [16] if it is secure when an adversary declares the
challenge identity id∗ before seeing public parameters.

Security against adaptive-ID attacks is a desirable security notion for IBE
when we use it in practical situations. However, since IBE has an advanced func-
tionality compared to PKE, attack scenarios that ordinary indistinguishability
against adaptive-ID attacks does not capture can naturally occur in practical sit-
uations of IBE. As such attack scenarios, in this work, we focus on the situations
of encrypting secret-keys and the selective opening attacks.

Black et al. [11] introduced the notion of key dependent message (KDM)
security which guarantees confidentiality even in situations of encrypting secret-
keys. Informally, an encryption scheme is said to be KDM secure if it is secure
when an adversary can obtain encryptions of f(sk1, . . . , sk�), where sk1, . . . , sk�

are secret-keys that exist in the system and f is a function.
Alperin-Sheriff and Peikert [3] pointed out that KDM security with respect to

user secret-keys is well-motivated by some natural usage scenarios for IBE such as
key distribution in a revocation system. They constructed the first IBE satisfying
KDM security for user secret-keys assuming the hardness of the learning with
errors (LWE) problem. Galindo et al. [22] proposed an IBE scheme that satisfies
KDM security for master secret-keys based on the hardness of a rank problem on
bilinear groups. However, both of these schemes are secure only against selective-
ID attacks. Moreover, both schemes have some a-priori bound on the number of
queries made by an adversary.1

In the selective opening attack, an adversary, given some ciphertexts, adap-
tively corrupts some fraction of users and tries to break confidentiality of cipher-
texts of uncorrupted users.

There are both sender corruption case and receiver corruption case in this
attack scenario. Bellare et al. [8] formalized sender selective opening (SSO) secu-
rity for PKE that captures situations where there are many senders and a single
receiver, and an adversary can obtain messages and random coins of corrupted
senders. Hazay et al. [24] later formalized receiver selective opening (RSO) secu-
rity for PKE that captures situations where there are many receivers and a sin-
gle sender, and an adversary can obtain messages and secret-keys of corrupted
receivers.

1 The scheme by Alperin-Sheriff and Peikert has an a-priori bound on the number
of challenge identities in the security game. The scheme by Galindo et al. has an
a-priori bound on the number of KDM encryption queries made by an adversary.
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Selective opening attacks originally considered in the context of multi-party
computation are natural and motivated in the context of IBE since it also con-
siders situations where there are many users and some fraction are corrupted.
Bellare et al. [9] defined SSO security for IBE and proposed SSO secure IBE
schemes under the decisional linear assumption and a subgroup decision assump-
tion in composite order bilinear groups. Their definition of SSO security for IBE
captures adaptive-ID attacks in addition to sender selective opening attacks.
However, it does not take receiver selective opening attacks into account.

It is known that the standard notions of indistinguishability imply neither
KDM security [1,10,18,28] nor selective opening security [7,25,26]. From this
fact, we know very little about the possibility of IBE satisfying these stronger
security notions than standard indistinguishability though there have been many
works on the study of IBE.

Especially, it is open whether we can construct IBE that is KDM secure
against adaptive-ID attacks and there is no a-priori bound on the number of
queries made by an adversary. For selective opening security, we have no con-
struction of IBE satisfying RSO security even if we require only security against
selective-ID attacks.

As mentioned above, attack scenarios captured by both KDM security and
selective opening security are natural and motivated for IBE. We thus think it
is important to clarify these issues.

1.2 Our Results

Based on the above background, we propose KDM secure IBE and RSO secure
IBE. Both schemes satisfy security against adaptive-ID attacks. They are the
first schemes satisfying such levels of security.

Our constructions of IBE are very simple. We construct KDM secure IBE
by transforming KDM secure secret-key encryption (SKE) using IBE satisfying
ordinary indistinguishability against adaptive-ID attacks (IND-ID-CPA security)
and garbled circuits. Somewhat surprisingly, our RSO secure IBE is based only
on IND-ID-CPA secure IBE.

We show the details of each result below.

Key dependent message secure IBE. In this work, we focus on KDM security for
user secret-keys similarly to Alperin-Sheriff and Peikert [3], and let KDM security
indicate KDM security for user secret-keys. We show the following theorem.2

Theorem 1 (Informal). Assuming there exist IND-ID-CPA secure IBE and
SKE that is KDM secure with respect to projection functions (resp. functions
computable by a-priori bounded size circuits). Then, there exists IBE that is
KDM secure with respect to projection functions (resp. functions computable by
a-priori bounded size circuits) against adaptive-ID attacks.

2 We also use garbled circuits, but it is implied by one-way functions [31]. Thus, it is
not explicitly appeared in the statement of Theorem 1.
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Projection function is a function each of whose output bits depends on at
most one bit of an input. KDM security with respect to projection functions is
a generalization of circular security [15]. We can construct IBE satisfying KDM
security with respect to any function computable by circuits of a-priori bounded
size [6] by requiring the same KDM security for the underlying SKE.

As noted above, KDM secure IBE proposed by Alperin-Sheriff and Peikert is
only secure against selective-ID attacks. Moreover, their scheme has an a-priori
bound on the number of challenge identities in the security game. Our KDM
secure IBE is secure against adaptive-ID attacks and does not have any a-priori
bound on the number of queries made by an adversary in the security game.

To achieve KDM security for an a-priori unbounded number of challenge
identities, in our construction, the size of instances of the underlying KDM secure
SKE needs to be independent of the number of users in the security game.3

We can construct SKE that is KDM secure with respect to projection func-
tions and satisfies this efficiency requirement based on the decisional diffie-
hellman (DDH) assumption [13] and LWE assumption [5].4 In addition, Apple-
baum [4] showed how to transform SKE that is KDM secure with respect to
projection functions into SKE that is KDM secure with respect to functions
computable by a-priori bounded size circuits.

We can construct IND-ID-CPA secure IBE under the LWE assumption [2].
Moreover, Döttling and Garg [21] recently showed how to construct IND-ID-CPA
secure IBE based on the computational diffie-hellman (CDH) assumption.

Thus, from Theorem 1, we obtain the following corollary.

Corollary 1. There exists IBE that is KDM secure with respect to functions
computable by a-priori bounded size circuits against adaptive-ID attacks under
the DDH assumption or LWE assumption.

In addition to these results, based on the construction techniques above, we
also show that we can transform KDM secure SKE into KDM secure PKE by
using PKE satisfies ordinary indistinguishability against chosen plaintext attacks
(IND-CPA security). Specifically, we show the following theorem.

Theorem 2 (Informal). Assuming there exist IND-CPA secure PKE and SKE
that is KDM secure with respect to projection functions (resp. functions com-
putable by a-priori bounded size circuits). Then, there exists PKE that is KDM
secure with respect to projection functions (resp. functions computable by a-priori
bounded size circuits).

It seems that we cannot construct KDM secure PKE from KDM secure SKE
via the straightforward hybrid encryption methodology. It leads to a dead-lock
of secret-keys of the underlying primitives and thus it is difficult to prove the
security of hybrid encryption construction. Thus, this result is of independent
interest.
3 For more details, see Remark 1 in Sect. 2.2.
4 More precisely, these works showed how to construct PKE that is KDM secure with

respect to projection functions and satisfies the efficiency requirement.
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Receiver selective opening secure IBE. Before our work, RSO security for IBE
has never been studied while an IBE scheme that is SSO secure was proposed
by Bellare et al. [9]. Therefore, we first define RSO security for IBE formally.
Our definition is a natural extension of simulation-based RSO security for PKE
proposed by Hazay et al. [24]. We then show the following theorem.

Theorem 3 (Informal). Assuming there exists IND-ID-CPA secure IBE.
Then, there exists IBE that satisfies simulation-based RSO security against
adaptive-ID attacks.

Somewhat surprisingly, the above theorem says that all we need is
IND-ID-CPA secure IBE to achieve simulation-based RSO secure IBE. We can
obtain the result via a simple double encryption paradigm [29].

The reason we can obtain the above result via a simple double encryption
paradigm is that in receiver selective opening attacks for IBE, we have to con-
sider the revelation of secret-keys themselves but not the random coins for key
generation since secret-keys are generated by the trusted authority in IBE.

We also observe that if we allow only revelations of secret-keys and not
the random coins for key generation, we can construct PKE satisfying such
simulation-based RSO security using any PKE satisfying ordinary IND-CPA
security. This fact is somewhat obvious from some previous results [17,24] though
these works did not explicitly state it. For self-containment, we show the follow-
ing theorem.

Theorem 4 (Informal). Assuming there exists IND-CPA secure PKE. Then,
there exists PKE that satisfies simulation-based RSO security with respect to the
revelation of only secret-keys.

To prove simulation-based RSO security against the revelation of random
coins for key generation, it seems that the underlying PKE needs to be key sim-
ulatable [19,24] in some sense. In this case, it is difficult to construct simulation-
based RSO secure PKE without relying on some specific algebraic or lattice
assumptions.

We summarize our results in Fig. 1.

1.3 Overview of Our Techniques

We first give an intuition for our KDM secure IBE.

KDM secure IBE from KDM secure SKE. Our construction methodology for
KDM secure IBE is somewhat based on the recent beautiful construction of IBE
proposed by Döttling and Garg [20,21] using new primitives called chameleon
encryption or one-time signatures with encryption. The essence of their construc-
tions is the mechanism that an encryptor who does not know the exact value of
a public-key ek of PKE can generate an “encoding” of a PKE’s ciphertext under
the public-key ek. Moreover, in their construction, the security of IBE is directly
reduced to that of PKE in the last step of the security proof.
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Fig. 1. Our results.

Based on this idea, by realizing the mechanism that an encryptor who does
not know the value of the key K of SKE can generate an encoding of an SKE’s
ciphertext under the key K of SKE, we try to transform SKE into public-key
primitives such as PKE and IBE shifting the security level of SKE to them. We
then show that we can construct KDM secure IBE (resp. PKE) based on KDM
secure SKE and IND-ID-CPA secure IBE (resp. IND-CPA secure PKE).

We emphasize that we need neither chameleon encryption nor one-time signa-
tures with encryption. IND-ID-CPA secure IBE is sufficient for our KDM secure
IBE.

Our constructions are very simple and use garbled circuits. For simplicity,
we focus on constructing KDM secure PKE to give an intuition. Suppose that
we construct a KDM secure PKE scheme KdmPKE from a KDM secure SKE
scheme SKE and IND-CPA secure PKE scheme PKE.

The encryption algorithm of KdmPKE first garbles an encryption circuit of
SKE that has a message to be encrypted hardwired, that is, Eske(·,m), and
then encrypts labels of the garbled circuit by PKE under different keys. This
process can be done without any secret-key of SKE and thus we achieve the
“encoding” mechanism mentioned above. This construction is similar to that of
“semi-adaptively” secure functional encryption based on selectively secure one
proposed by Goyal et al. [23], but our techniques for the security proof explained
below are different from theirs.

Why IND-CPA security of the underlying PKE is sufficient? One might won-
der why IND-CPA security of the underlying PKE scheme PKE is sufficient to
construct the KDM secure PKE scheme KdmPKE. To see the answer for this
question, we closer look at the construction of KdmPKE.

Let the length of a secret-key K of SKE be lenK. A public-key Kdm.ek of
KdmPKE consists of 2 · lenK PKE’s public-keys {ekj,α}j∈[lenK],α∈{0,1}, where [lenK]
denotes {1, . . . , lenK}. The secret-key Kdm.dk corresponding to Kdm.ek consists
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of a secret-key K of SKE and lenK secret-keys of PKE corresponding to the bit
representation of K = K[1] . . .K[lenK], that is,

{
dkj,K[j]

}
j∈[lenK]

. We note that
secret-keys of PKE that do not correspond to the bit representation of K are not
included in Kdm.dk.

As mentioned above, when encrypting a message m under the public-key
Kdm.ek := {ekj,α}j∈[lenK],α∈{0,1}, the encryption algorithm of KdmPKE first gar-
bles an encryption circuit of SKE in which m is hardwired, that is, Eske(·,m).
This results in a single garbled circuit Ẽ and 2 · lenK labels {labj,α}j∈[lenK],α∈{0,1}.
Then, the encryption algorithm of KdmPKE encrypts labj,α by ekj,α for every
j ∈ [lenK] and α ∈ {0, 1}. The resulting ciphertext of KdmPKE consists of Ẽ and
these 2 · lenK ciphertexts of PKE.

When decrypting this ciphertext with Kdm.dk :=
(
K,

{
dkj,K[j]

}
j∈[lenK]

)
, we

first obtain labels corresponding to K from lenK out of 2 · lenK ciphertexts of PKE
using

{
dkj,K[j]

}
j∈[lenK]

and evaluate Ẽ with those labels. This results in an SKE’s
ciphertext Eske(K,m). Then, by decrypting it with K, we obtain m.

In this construction, secret-keys of PKE corresponding to K, that
is,

{
dkj,K[j]

}
j∈[lenK]

are included in Kdm.dk, but the rest of secret-keys
{
dkj,1−K[j]

}
j∈[lenK]

are not included in Kdm.dk. Thus, even if an adversary
for KdmPKE obtains encryptions of key dependent messages, they cannot get
information of

{
dkj,1−K[j]

}
j∈[lenK]

while they potentially get information of
{
dkj,K[j]

}
j∈[lenK]

from those encryptions. In addition, in the security proof, we

use the security of PKE of instances related to
{
dkj,1−K[j]

}
j∈[lenK]

, but not
{
dkj,K[j]

}
j∈[lenK]

. This is the reason the IND-CPA security of PKE is sufficient
to construct a KDM secure PKE scheme KdmPKE. To see the fact, we show the
outline of the proof below.

In the proof, by using the security of garbled circuits, we change the secu-
rity game without affecting the behavior of an adversary so that we generate a
challenge ciphertext under the key pair (Kdm.ek,Kdm.dk) with simulated gar-
bled circuits computed from an SKE’s ciphertext of the challenge key dependent
message m∗ under the key K, that is, Eske(K,m∗), where K is the secret-key of
SKE contained in Kdm.dk. By this change, we do not need m∗ itself, and the
ciphertext Eske(K,m∗) is sufficient to simulate the security game. Thus, at this
point, we can reduce the KDM security of KdmPKE to that of the underlying
SKE.

More precisely, in the above proof, before using the security of garbled cir-
cuits, we have to eliminate the labels of garbled circuits that do not correspond
to the bit representation of K, that is,

{
labj,1−K[j]

}
j∈[lenK]

from the view of the
adversary. This can be done by using the IND-CPA security of PKE of only
instances related to

{
dkj,1−K[j]

}
j∈[lenK]

. Therefore, we can complete the proof by

using IND-CPA security of PKE of instances related to
{
dkj,1−K[j]

}
j∈[lenK]

, but

not
{
dkj,K[j]

}
j∈[lenK]

.
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Conversions of functions. One additional non-trivial point is the conversion of
functions by reductions.

In the security game of KDM security, an adversary queries a function and
obtain an encryption of the function of secret-keys. Thus, KDM security is
parameterized by function classes indicating functions that an adversary can
query.

In the above construction, a secret-key Kdm.dk of KdmPKE contains some
secret-keys of PKE in addition to a secret-key of SKE. Therefore, a function
queried by an adversary for KdmPKE is a function of secret-keys of PKE and
secret-keys of SKE. On the other hand, a function that a reduction algorithm
can query is a function of only secret-keys of SKE. This means that the reduction
algorithm needs to convert a function queried by an adversary for KdmPKE.

Such conversion is clearly possible if we do not care classes of functions. How-
ever, when considering KDM security, classes of functions are important since
they determine the level of KDM security. It is not clear how such conversions
affect a class of functions. Especially, it is not clear whether we can perform such
conversions for functions without changing the class of functions.

We show that such conversions are possible for projection functions and func-
tions computable by a-priori bounded size circuits. Thus, we can reduce the KDM
security for those function classes of KdmPKE to that of SKE.

These arguments hold if we replace the underlying IND-CPA secure PKE
with IND-ID-CPA secure IBE. The above construction can be seen as a special
case where the size of instances of the underlying IBE linearly depends on the
size of identity space. Thus, we can obtain KDM secure IBE from KDM secure
SKE and IND-ID-CPA secure IBE.

RSO secure IBE from IND-ID-CPA secure IBE. Our starting point of the con-
struction of RSO secure IBE is the above KDM secure IBE based on KDM secure
SKE. It seems that the above construction can be used to carry over strong secu-
rity notions of SKE to IBE that we need to simulate secret-keys in some sense
in the security game. One such example, we focus on RSO security.5 Actually,
in the above construction, if the underlying SKE has non-committing property
(such as one-time pad), the resulting IBE seems to gain simulation-based RSO
security.

However, it turns out that the construction is redundant and a simple double
encryption paradigm [29] is sufficient to achieve RSO security. The reason we
can construct RSO secure IBE via simple constructions is related to whether
we allow the revelation of the random coins for key generation in addition to
secret-keys or not.

Secret key vs random coins for the key generation. Hazay et al. [24] considered
the revelation of both secret-keys and random coins for key generation when
they defined RSO security for PKE. It is better to take the revelation of random
5 We observe that another example is leakage resilience. We do not focus on it in this

paper.
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coins of the key generation into account for many applications of PKE. However,
for IBE, it is sufficient to take the revelation of only secret-keys into account.

In IBE, the trusted authority generates user secret-keys and distributes them
to users. Thus, if an adversary corrupts a user, the adversary cannot obtain the
random coin used to generate the secret-key of the user since the user does not
know it. For this reason, we do not have to take the revelation of random coins
of key generation in IBE into account.6

Construction based on a double encryption paradigm. When we do not take
the revelation of random coins of key generation in IBE into account, we can
construct simulation-based RSO secure IBE via a simple double encryption
paradigm [29] without using garbled circuits.

More precisely, using an IBE scheme IBE whose identity space is ID×{0, 1},
we construct the following new IBE scheme RsoIBE whose message space and
identity space are {0, 1} and ID, respectively.

The setup algorithm of RsoIBE is the same as that of IBE. When generating a
secret-key Rso.skid for identity id ∈ ID, the key generation algorithm of RsoIBE
generates an IBE’s secret-key skid,r for the identity (id, r), where r is a freshly gen-
erated random bit, and outputs Rso.skid := (r, skid,r). When encrypting a message
m ∈ {0, 1} for identity id ∈ ID, the encryption algorithm of RsoIBE generates
a pair of ciphertexts (CT0,CT1), where CTα is an encryption of m under the
identity (id, α) for every α ∈ {0, 1}. The decryption algorithm of RsoIBE, given
a pair of ciphertexts (CT0,CT1) and a secret-key Rso.skid := (r, skid,r), outputs
the decryption result of CTr with skid,r.

This construction achieves a non-committing property. Suppose that we gen-
erate CTr as an encryption of 0 under the identity (id, r) and CT1−r as an
encryption of 1 under the identity (id, 1 − r) when generating a ciphertext
(CT0,CT1) for the identity id, where r is the random bit contained in the secret-
key Rso.skid := (r, skid,r) for id. We can open this ciphertext to any m ∈ {0, 1}
by pretending as if the secret-key Rso.skid for id is (r ⊕ m, skid,r⊕m). Due to
this non-committing property, we prove the simulation-based RSO security of
RsoIBE.

From this result, we observe that if we take the revelation of only secret-
keys into account, we can also construct SIM-RSO secure PKE based on any
IND-CPA secure PKE. Our results on simulation-based RSO secure IBE and
PKE highlight the gap of difficulties between achieving RSO security against
revelation of only secret-keys and that against both secret-keys and random
coins for key generation. To achieve the latter RSO security for PKE, it seems
that the underlying scheme needs to be key simulatable [19,24] in some sense.

1.4 Organization

In Sect. 2, we introduce some notations and review definitions of cryptographic
primitives that we use as building blocks. In Sect. 3, we define IBE, and introduce
6 One additional reason is that we can always make a key generation algorithm of IBE

deterministic by using pseudorandom functions.
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KDM security and RSO security for it. In Sect. 4, we show how to construct
KDM secure IBE from KDM secure SKE and IND-ID-CPA secure IBE. In
Sect. 5, we show the construction of simulation-based RSO secure IBE based
on IND-ID-CPA secure IBE. In Sect. 6, we show how to construct KDM secure
PKE from KDM secure SKE and IND-CPA secure PKE. In Sect. 7, we show
how to construct simulation-based RSO secure PKE based on IND-CPA secure
PKE.

2 Preliminaries

We define some cryptographic primitives after introducing some notations.

Notations. x
r←− X denotes choosing an element from a finite set X uniformly at

random, and y ← A(x; r) denotes assigning y to the output of an algorithm A on
an input x and a randomness r. When there is no need to write the randomness
clearly, we omit it and simply write y ← A(x). For strings x and y, x‖y denotes
the concatenation of x and y. For an integer �, [�] denote the set of integers
{1, . . . , �}. For a string x and positive integer j ≤ |x|, x[j] denotes the j-th bit
of x.

λ denotes a security parameter. PPT stands for probabilistic polynomial
time. A function f(λ) is a negligible function if f(λ) tends to 0 faster than
1
λc for every constant c > 0. We write f(λ) = negl(λ) to denote f(λ) being a
negligible function.

2.1 Garbled Circuits

We define garbled circuits. We can realize garbled circuits for all efficiently com-
putable circuits based on one-way functions [31].

Definition 1 (Garbled circuits). Let {Cn}n∈N be a family of circuits where
each circuit in Cn takes n-bit inputs. A circuit garbling scheme GC is a two tuple
(Garble,Eval) of PPT algorithms.

The garbling algorithm Garble, given a security parameter 1λ and circuit C ∈
Cn, outputs a garbled circuit C̃, together with 2n labels {labj,α}j∈[n],α∈{0,1}. The

evaluation algorithm, given a garbled circuit C̃ and n labels {labj}j∈[n], outputs

y. As correctness, we require Eval
(
C̃,

{
labj,x[j]

}
j∈[n]

)
= C(x) for every n ∈ N,

x ∈ {0, 1}n, where
(
C̃, {labj,α}j∈[n],α∈{0,1}

)
← Garble(1λ, C).

We define its security. Let Sim be a PPT simulator. We define the following
game between a challenger and an adversary A.

1. First, the challenger chooses a bit b
r←− {0, 1} and sends a security

parameter 1λ to A. Then, A sends a circuit C ∈ Cn and an input
x ∈ {0, 1}n for the challenger. Next, if b = 1, the challenger computes



42 F. Kitagawa and K. Tanaka

(
C̃, {labj,α}j∈[n],α∈{0,1}

)
← Garble(1λ, C) and returns

(
C̃,

{
labj,x[j]

}
j∈[n]

)
to

A. Otherwise, the challenger returns
(
C̃, {labj}j∈[n]

)
← Sim(1λ, |C| , C(x))

to A.
2. A outputs b′ ∈ {0, 1}.

We require that there exists a PPT simulator Sim such that for any PPT
adversary A, we have AdvgcGC,A,Sim(λ) = negl(λ).

2.2 Public Key Encryption

A public-key encryption (PKE) scheme PKE is a three tuple (KG,Enc,Dec) of
PPT algorithms. Below, let M be the message space of PKE. The key generation
algorithm KG, given a security parameter 1λ, outputs a public key ek and a secret
key dk. The encryption algorithm Enc, given a public key ek and message m ∈ M,
outputs a ciphertext CT. The decryption algorithm Dec, given a secret key dk
and ciphertext c, outputs a message m̃ ∈ {⊥} ∪ M. As correctness, we require
Dec(dk,Enc(ek,m)) = m for every m ∈ M and (ek, dk) ← KG(1λ).

We introduce indistinguishability against chosen plaintext attacks (IND-CPA
security) for PKE.

Definition 2 (IND-CPA security). Let PKE be a PKE scheme. We define
the IND-CPA game between a challenger and an adversary A as follows. We let
M be the message space of PKE.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates a key pair (ek, dk) ← KG(1λ) and sends ek to A.
2. A sends (m0,m1) ∈ M2 to the challenger. We require that |m0| = |m1|. The

challenger computes CT ← Enc(ek,mb) and returns CT to A.
3. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as AdvindcpaPKE,A(λ) =∣
∣Pr[b = b′] − 1

2

∣
∣. We say that PKE is IND-CPA secure if for any PPT adversary

A, we have AdvindcpaPKE,A(λ) = negl(λ).

Next, we define key dependent message (KDM) security for PKE [11].

Definition 3 (KDM-CPA security). Let PKE be a PKE scheme, F function
family, and � the number of users. We define the F-KDM-CPA game between
a challenger and an adversary A as follows. Let DK and M be the secret key
space and message space of PKE, respectively.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates � key pairs
(
ek(k), dk(k)

)
← KG(1λ) (k ∈ [�]). The challenger sets

dk :=
(
dk(1), . . . , dk(�)

)
and sends

(
ek(1), . . . , ek(�)

)
to A.



KDM Security and RSO Security for IBE 43

2. A may adaptively make polynomially many KDM queries.
KDM queries. A sends (k, f) ∈ [�] × F to the challenger. We require that

f be a function such that f : DK� → M. If b = 1, the challenger returns
CT ← Enc

(
ek(k), f(dk)

)
to A. Otherwise, the challenger returns CT ←

Enc
(
ek(k), 0|f(·)|

)
to A.

3. A outputs b′ ∈ {0, 1}.

We say that PKE is F-KDM-CPA secure if for any PPT adversary A and
polynomial � = �(λ), we have Advkdmcpa

PKE,F,A,�(λ) =
∣
∣Pr[b = b′] − 1

2

∣
∣ = negl(λ).

Remark 1 (Flexibility of the number of users). The above definition implicitly
requires that the size of instances such as public keys, secret keys, and ciphertexts
be independent of the number of users �. We require the same condition for KDM
secure SKE. This requirement is necessary for our constructions of KDM secure
IBE (and PKE) based on KDM secure SKE.

When we reduce the KDM security of our IBE to that of the underlying SKE,
the number of users � in the security game of SKE corresponds to the number
of challenge identities queried by an adversary for IBE. If the size of instances
of SKE depends on �, we can prove the KDM security of the resulting IBE only
when the number of challenge identities is a-priori bounded.

Function families. As we can see, KDM security is defined with respect to func-
tion families. In this paper, we focus on KDM security with respect to the fol-
lowing function families.

Projection functions. A projection function is a function in which each output
bit depends on at most a single bit of an input. Let f be a function and
y = y1 . . . ym be the output of the function f on an input x = x1 . . . xn, that
is f(x) = y. We say that f is a projection function if for any j ∈ [m], there
exists i ∈ [n] such that yj ∈ {0, 1, xi, 1 − xi}.
In this paper, we let P denote the family of projection functions, and we say
that PKE is P-KDM-CPA secure if it is KDM-CPA secure with respect to
projection functions.

Functions computable by a-priori bounded size circuits. In the security
game of KDM-CPA security with respect to this function family, an adversary
can query a function computable by a circuit of a-priori bounded size and
input and output length. We allow the size of instances of a scheme to depend
on these a-priori bounds on functions while we do not allow it to depend on
the number of total users as we noted in Remark 1.
In this paper, we say that PKE is B-KDM-CPA secure if it is KDM-CPA
secure with respect to functions computable by a-priori bounded size circuits.

P-KDM-CPA security is a generalization of circular security [15] and strong
enough for many applications. Boneh et al. [13] and Applebaum et al. [5] showed
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how to construct P-KDM-CPA secure PKE under the decisional diffie-hellman
(DDH) assumption and learning with errors (LWE) assumption, respectively.7

Barak et al. [6] showed how to construct B-KDM-CPA secure PKE under the
DDH assumption or LWE assumption. Applebaum [4] showed how to transform
P-KDM-CPA secure PKE into B-KDM-CPA secure one using garbled circuits.

We next introduce the definition of receiver selective opening (RSO) security
for PKE. We adopt the simulation-based definition proposed by Hazay et al. [24].

Definition 4 (SIM-RSO security). Let PKE be a PKE scheme, and � the
number of users. Let A and S be a PPT adversary and simulator, respectively.
We define the following pair of games.

Real game

1. First, the challenger generates � key pairs
(
ek(k), dk(k)

)
←

KG(1λ) (k ∈ [�]) and sends
(
ek(1), . . . , ek(�)

)
to A.

2. A sends a message distribution Dist to the challenger. The challenger
generates

{
m(k)

}
k∈[�]

← Dist, computes CT(k) ← Enc
(
ek(k),m(k)

)
for

every k ∈ [�], and sends
{
CT(k)

}

k∈[�]
to A.

3. A sends a subset I of [�] to the challenger. The challenger sends{(
dk(k),m(k)

)}

k∈I
to A.

4. A sends a string out to the challenger.
5. The challenger outputs outreal :=

({
m(k)

}
k∈[�]

,Dist, I, out
)
.

Simulated game
1. First, the challenger sends 1λ to S.
2. S sends a message distribution Dist to the challenger. The challenger

generates
{
m(k)

}
k∈[�]

← Dist.
3. S sends a subset I of [�] to the challenger. The challenger sends{

m(k)
}

k∈I to S.
4. S sends a string out to the challenger.
5. The challenger outputs outsim :=

({
m(k)

}
k∈[�]

,Dist, I, out
)
.

We say that PKE is SIM-RSO secure if for any PPT adversary A and poly-
nomial � = �(λ), there exists a PPT simulator S such that for any PPT distin-
guisher D with binary output we have Advsimrso

PKE,A,�,S,D(λ) = |Pr[D(outreal) = 1] −
Pr[D(outsim) = 1]| = negl(λ).

The above definition considers non-adaptive corruptions by an adversary.
Namely, an adversary needs to corrupt users in one go.

7 Brakerski and Goldwasser [14] proposed P-KDM-CPA secure PKE under the
quadratic residuosity (QR) assumption and decisional composite residuosity (DCR)
assumption, but their schemes do not satisfy the flexibility of the number of users
in the sense of Remark 1.
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We note that our construction of RSO secure PKE based on IND-CPA secure
PKE works well even if we consider adaptive corruptions by an adversary. For
simplicity, we define RSO security for PKE against non-adaptive corruptions in
this paper.

Secret key vs key generation randomness. We define SIM-RSO security taking
only the revelation of secret keys into account throughout the paper. Namely,
we assume that an adversary gets only a secret key itself of a corrupted user and
not the random coin used to generate the secret key.

Hazay et al. [24] considered the revelation of both secret keys and random
coins for key generation when they defined RSO security for PKE. It is better
to take the revelation of random coins of key generation into account for some
applications.

We show that by requiring only security against the revelation of secret keys,
we can obtain RSO secure PKE from IND-CPA secure PKE. If we consider
RSO security against the revelation of random coins for key generation, it seems
difficult to construct RSO secure PKE based only on IND-CPA secure PKE
without assuming that secure erasure is possible or the underlying scheme is key
simulatable [19,24] in some sense.

2.3 Secret Key Encryption

A secret-key encryption (SKE) scheme SKE is a three tuple (KG,Enc,Dec) of
PPT algorithms. Below, let M be the message space of SKE. The key genera-
tion algorithm KG, given a security parameter 1λ, outputs a secret key K. The
encryption algorithm Enc, given a secret key K and a message m ∈ M, out-
puts a ciphertext CT. The decryption algorithm Dec, given a secret key K and
a ciphertext CT, outputs a message m̃ ∈ {⊥} ∪ M. As correctness, We require
Dec(K,Enc(K,m)) = m for every m ∈ M and K ← KG(1λ).

Next, we define KDM-CPA security for SKE.

Definition 5 (KDM-CPA security for SKE). Let SKE be an SKE scheme
whose key space and message space are K and M, respectively. Let F be a
function family, and � the number of users. We define the F-KDM-CPA game
between a challenger and an adversary A as follows.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates � secret keys K(k) ← KG(1λ)(k ∈ [�]), sets K :=
(
K(1), . . . ,K(�)

)
,

and sends 1λ to A.
2. A may adaptively make polynomially many KDM queries.

KDM queries. A sends (k, f) ∈ [�] × F to the challenger. We require
that f be a function such that f : K� → M. If b = 1, the chal-
lenger returns CT ← Enc

(
K(k), f(K)

)
. Otherwise, the challenger returns

CT ← Enc
(
K(k), 0|f(·)|).

3. A outputs b′ ∈ {0, 1}.
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We say that SKE is F-KDM-CPA secure if for any PPT adversary A and
polynomial � = �(λ), we have Advkdmcpa

SKE,F,A,�(λ) =
∣
∣Pr[b = b′] − 1

2

∣
∣ = negl(λ).

As we noted at Remark 1 after the definition of KDM security for PKE,
we require that the size of instances of a KDM-CPA secure SKE scheme be
independent of the number of users �. This requirement is necessary for our
construction of KDM secure IBE (and PKE) based on KDM secure SKE.

Similarly to KDM security for PKE, we focus on KDM security for SKE with
respect to projection functions and that with respect to functions computable
by a-priori bounded size circuits. We say that SKE is P-KDM-CPA secure if it
is KDM-CPA secure with respect to projection functions. We say that SKE is
B-KDM-CPA secure if it is KDM-CPA secure with respect to functions com-
putable by a-priori bounded size circuits.

3 Identity-Based Encryption

We define identity-based encryption (IBE). Then, we introduce KDM security
and RSO security for IBE.

An IBE scheme IBE is a four tuple (Setup,KG,Enc,Dec) of PPT algorithms.
Below, let M be the message space of IBE. The setup algorithm Setup, given
a security parameter 1λ, outputs a public parameter PP and a master secret
key MSK. The key generation algorithm KG, given a master secret key MSK
and identity id ∈ ID, outputs a user secret key skid. The encryption algorithm
Enc, given a public parameter PP, identity id ∈ ID, and message m ∈ M,
outputs a ciphertext CT. The decryption algorithm Dec, given a user secret key
skid and ciphertext CT, outputs a message m̃ ∈ {⊥} ∪ M. As correctness, we
require Dec(KG(MSK, id),Enc(PP, id,m)) = m for every m ∈ M, id ∈ ID, and
(PP,MSK) ← Setup(1λ).

We define indistinguishability against adaptive-ID attacks (IND-ID-CPA
security [12]) for IBE.

Definition 6 (IND-ID-CPA security for IBE). Let IBE be an IBE scheme
whose identity space and message space are ID and M, respectively. We define
the IND-ID-CPA game between a challenger and an adversary A as follows.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates (PP,MSK) ← Setup(1λ) and sends PP to A. Finally, the challenger
prepares a list Lext which is initially empty.
At any step of the game, A can make key extraction queries.
Extraction queries. A sends id ∈ ID to the challenger. The challenger

returns skid ← KG(MSK, id) to A and adds id to Lext.
2. A sends (id∗,m0,m1) ∈ ID × M × M to the challenger. We require that

|m0| = |m1| and id∗ /∈ Lext. The challenger computes CT ← Enc(PP, id,mb)
and returns CT to A.
Below, A is not allowed to make an extraction query for id∗.

3. A outputs b′ ∈ {0, 1}.
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We say that IBE is IND-ID-CPA secure if for any PPT adversary A, we have
AdvindidcpaIBE,A (λ) =

∣
∣Pr[b = b′] − 1

2

∣
∣ = negl(λ).

3.1 KDM Security for IBE

Next, we define KDM security for IBE. Alperin-Sheriff and Peikert [3] defined
KDM security for IBE by extending selective security for IBE [16]. The following
definition is an extension of adaptive security for IBE [12]. For the difference
between the definition of Alperin-Sheriff and Peikert and ours, see Remark 2
after Definition 7.

Definition 7 (KDM-CPA security for IBE). Let IBE be an IBE scheme,
and F a function family. We define the F-KDM-CPA game between a challenger
and an adversary A as follows. Let SK, ID, and M be the user secret key space,
identity space, and message space of IBE, respectively.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates (PP,MSK) ← Setup(1λ) and sends PP to A. Finally, the challenger
prepares lists Lext, Lch, and sk all of which are initially empty.

2. A may adaptively make the following three types of queries.
Extraction queries. A sends id ∈ ID \ (Lext ∪ Lch) to the challenger. The

challenger returns skid ← KG(MSK, id) to A and adds id to Lext.
Registration queries. A sends id ∈ ID\ (Lext ∪Lch) to the challenger. The

challenger generates skid ← KG(MSK, id) and adds id and skid to Lch and
sk, respectively.

KDM queries. A sends (id, f) ∈ Lch × F to the challenger. We require
that f be a function such that f : SK|Lch| → M. If b = 1, the challenger
returns CT ← Enc (PP, id, f(sk)) to A. Otherwise, the challenger returns
CT ← Enc

(
PP, id, 0|f(·)|) to A.

3. A outputs b′ ∈ {0, 1}.

We say that IBE is F-KDM-CPA secure if for any PPT adversary A, we
have Advkdmcpa

IBE,F,A(λ) =
∣
∣Pr[b = b′] − 1

2

∣
∣ = negl(λ).

Similarly to KDM security for PKE, we focus on KDM security for IBE with
respect to projection functions and that with respect to functions computable
by a-priori bounded size circuits. We say that IBE is P-KDM-CPA secure if it
is KDM-CPA secure with respect to projection functions. We say that IBE is
B-KDM-CPA secure if it is KDM-CPA secure with respect to functions com-
putable by a-priori bounded size circuits.

Remark 2 (Difference with [3]). Alperin-Sheriff and Peikert [3] defined KDM
security for IBE. Their definition is a natural extension of selective security for
IBE [16]. In their definition, an adversary must declare the set of challenge iden-
tities Lch at the beginning of the security game. On the other hand, our definition
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of KDM security for IBE is an extension of adaptive security for IBE [12]. In
our definition, an adversary can adaptively declare challenge identities through
registration queries.8

One additional difference between our definition and that of Alperin-Sheriff
and Peikert is whether the size of instances of IBE such as a public parameter is
allowed to depend on the number of challenge identities or not. In the definition
of Alperin-Sheriff and Peikert, the setup algorithm of IBE takes the upper bound
on the number of challenge identities as an input, and the size of instances of IBE
depends on the number of challenge identities. In our definition, there is no a-
priori bound on the number of challenge identities, and thus the size of instances
of IBE is required to be independent of the number of challenge identities.

3.2 RSO Security for IBE

We next define RSO security for IBE. We extends the simulation-based definition
for PKE proposed by Hazay et al. [24].

Definition 8 (SIM-RSO security for IBE). Let IBE be an IBE scheme
whose identity space and message space are ID and M, respectively. Let A
and S be a PPT adversary and simulator, respectively. We define the following
pair of games.

Real game
1. The challenger generates public parameter and master secret key

(PP,MSK) ← Setup(1λ) and sends PP to A. The challenger then pre-
pares a list Lext which is initially empty.
At any step of the game, A can make key extraction queries.
Extraction queries. A sends id ∈ ID \ Lext to the challenger. The

challenger returns skid ← KG(MSK, id) to A and adds id to Lext.

2. A sends q identities
{
id(k) ∈ ID \ Lext

}

k∈[q]
and a message distribution

Dist on Mq to the challenger, where q is an a-priori unbounded polynomial
of λ. The challenger generates

{
m(k)

}
k∈[q]

← Dist, computes CT(k) ←
Enc

(
PP, id(k),m(k)

)
for every k ∈ [q], and sends

{
CT(k)

}

k∈[q]
to A.

Below, A is not allowed to make extraction queries for
{
id(k)

}

k∈[q]
.

3. A sends a subset I of [q] to the challenger. The challenger computes
skid(k) ← KG

(
MSK, id(k)

)
for every k ∈ I and sends

{(
skid(k) ,m(k)

)}
k∈I

to A.

8 One might think it is a restriction to force an adversary to register challenge identities
before making KDM queries. This is not the case since the adversary is allowed to
adaptively make registration and KDM queries. Our definition with registration
queries makes the security proof of our IBE simple.
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4. A sends a string out to the challenger.

5. The challenger outputs outreal =
({

id(k)
}

k∈[q]
,
{
m(k)

}
k∈[q]

,Dist, I, out

)
.

Simulated game
1. First, the challenger sends 1λ to S.
2. S sends q identities

{
id(k) ∈ ID

}

k∈[q]
and a message distribution Dist on

Mq to the challenger, where q is an a-priori unbounded polynomial of λ.
The challenger generates

{
m(k)

}
k∈[q]

← Dist.
3. S sends a subset I of [q] to the challenger. The challenger sends{

m(k)
}

k∈I to S.
4. S sends a string out to the challenger.

5. The challenger outputs outsim :=
({

id(k)
}

k∈[q]
,
{
m(k)

}
k∈[q]

,Dist, I, out

)
.

Then, we say that IBE is SIM-RSO secure if for any PPT adversary A, there
exists a PPT simulator S such that for any PPT distinguisher D with binary
output we have Advsimrso

IBE,A,S,D(λ) = |Pr[D(outreal) = 1] − Pr[D(outsim) = 1]| =
negl(λ).

As we noted after defining SIM-RSO security for PKE, for simplicity, we
consider non-adaptive corruptions by an adversary in this paper. We note that
our construction of RSO secure IBE based on IND-ID-CPA secure IBE works
well if we consider adaptive corruptions by an adversary.

Remark 3 (On the syntax of simulators). In the above definition, not only an
adversary but also a simulator is required to output challenge identities with a
message distribution, and these identities are given to a distinguisher of games.
One might think this is somewhat strange since these identities output by a
simulator are never used in the simulated game. This syntax of simulators is
similar to that used by Bellare et al. [9] when they defined simulation-based
sender selective opening security for IBE.

It does not seem to be a big issue whether we require a simulator to output
identities or not. This intuition comes from the fact that we allow an adver-
sary and simulator to output arbitrary length strings, and thus they can always
include challenge identities into the output strings.

However, this subtle issue might divide notions of selective opening security
for IBE. Especially, it looks hard to prove that the definition with simulators
without outputting identities implies that with simulators outputting identities,
while it is easy to prove the opposite implication. This means that the former
definition is possibly weaker than the latter.

From these facts, similarly to Bellare et al. [9], we adopt the definition with
simulators explicitly outputting identities in this work.
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4 KDM Secure IBE from KDM Secure SKE and
IND-ID-CPA Secure IBE

We show how to construct KDM secure IBE based on KDM secure SKE and
IND-ID-CPA secure IBE. The construction also uses a circuit garbling scheme.

Let SKE = (G,E,D) be an SKE scheme whose message space is M. Let
lenK and lenr denote the length of a secret key and encryption randomness of
SKE, respectively. Let IBE = (Setup,KG,Enc,Dec) be an IBE scheme whose
identity space is ID × {0, 1}lenK × {0, 1}. Let GC = (Garble,Eval) be a gar-
bling scheme. Using SKE, IBE, and GC, we construct the following IBE scheme
KdmIBE = (Kdm.Setup,Kdm.KG,Kdm.Enc,Kdm.Dec) whose message space and
identity space are M and ID, respectively.

Kdm.Setup(1λ):
– Return (PP,MSK) ← Setup(1λ).

Kdm.KG(MSK, id):
– Generate Kid ← G(1λ).
– Generate skid,j,Kid[j] ← KG(MSK, (id, j,Kid[j])) for every j ∈ [lenK].

– Return Kdm.skid :=
(
Kid,

{
skid,j,Kid[j]

}
j∈[lenK]

)
.

Kdm.Enc(PP, id,m):
– Generate rE

r←− {0, 1}lenr and compute
(
Ẽ, {labj,α}j∈[lenK],α∈{0,1}

)
←

Garble(1λ,E(·,m; rE)), where E(·,m; rE) is the encryption circuit E of SKE
into which m and rE are hardwired.

– Compute CTj,α ← Enc(PP, (id, j, α), labj,α) for every j ∈ [lenK] and α ∈
{0, 1}.

– Return Kdm.CT :=
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
.

Kdm.Dec(Kdm.skid,Kdm.CT):
– Parse

(
Kid, {skid,j}j∈[lenK]

)
← Kdm.skid.

– Parse
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
← Kdm.CT.

– For every j ∈ [lenK], compute labj ← Dec
(
skid,j ,CTj,Kid[j]

)
.

– Compute CTske ← Eval
(
Ẽ, {labj}j∈[lenK]

)
.

– Return m ← D(Kid,CTske).

Correctness. When decrypting a ciphertext of KdmIBE that encrypts a message
m, we first obtain a ciphertext of SKE that encrypts m from the correctness of
IBE and GC. The correctness of KdmIBE then follows from that of SKE.

We prove the following theorem.

Theorem 5. Let SKE be an SKE scheme that is P-KDM-CPA secure (resp.
B-KDM-CPA secure). Let IBE be an IND-ID-CPA secure IBE scheme and GC a
secure garbling scheme. Then, KdmIBE is an IBE scheme that is P-KDM-CPA
secure (resp. B-KDM-CPA secure).



KDM Security and RSO Security for IBE 51

Proof of Theorem 5. Let A be an adversary that attacks the P-KDM-CPA secu-
rity of KdmIBE and makes at most qch registration queries and qkdm KDM queries.
We proceed the proof via a sequence of games. For every t ∈ {0, . . . , 2}, let SUCt

be the event that A succeeds in guessing the challenge bit b in Game t.

Game 0: This is the original P-KDM-CPA game regarding KdmIBE. Then, we
have Advkdmcpa

KdmIBE,P,A =
∣
∣Pr[SUC0] − 1

2

∣
∣. The detailed description is as follows.

1. The challenger chooses a challenge bit b
r←− {0, 1}, generates (PP,MSK) ←

Setup(1λ), and sends PP to A. The challenger also prepares lists Lext, Lch,
and skkdm all of which are initially empty.

2. A may adaptively make the following three types of queries.
Extraction queries. A sends id ∈ ID \ (Lext ∪ Lch) to the challenger.

The challenger responds as follows.
– The challenger generates Kid ← G(1λ).
– The challenger generates skid,j,Kid[j] ← KG(MSK, (id, j,Kid[j])) for

every j ∈ [lenK].
– The challenger returns Kdm.skid :=

(
Kid,

{
skid,j,Kid[j]

}
j∈[lenK]

)
to

A and adds id to Lext.
Registration queries. A sends id ∈ ID \ (Lext ∪ Lch) to the challenger.

The challenger generates Kdm.skid in the same way as the answer to
an extraction query. The challenger then adds id to Lch and Kdm.skid
to skkdm.

KDM queries. A sends (id, f) ∈ Lch × P to the challenger. The chal-
lenger responds as follows.
(a) The challenger sets m1 := f(skkdm) and m0 := 0|m1|.
(b) The challenger computes

(
Ẽ, {labj,α}j∈[lenK],α∈{0,1}

)
←

Garble(1λ,E(·,mb; rE)), where rE
r←− {0, 1}lenr .

(c) For every j ∈ [lenK] and α ∈ {0, 1}, the challenger computes
CTj,α ← Enc(PP, (id, j, α), labj,α).

(d) The challenger returns Kdm.CT :=
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
.

3. A outputs b′ ∈ {0, 1}.
Game 1: Same as Game 0 except the following. When A makes a KDM query

(id, f) ∈ Lch × P, for every j ∈ [lenK] the challenger computes CTj,1−Kid[j] ←
Enc

(
PP, (id, j, 1 − Kid[j]), labj,Kid[j]

)
, where Kid is the secret key of SKE gen-

erated when id was registered to Lch. Recall that in Game 0, CTj,1−Kid[j] is
generated as CTj,1−Kid[j] ← Enc

(
PP, (id, j, 1 − Kid[j]), labj,1−Kid[j]

)
. Namely,

we eliminate labels of garbled circuits that do not correspond to Kid from the
view of A in this game.
In order to simulate both Game 0 and 1, we do not need user secret keys of
IBE that do not correspond to {Kid}id∈Lch

, that is
{
skid,j,1−Kid[j]

}
id∈Lch,j∈[lenK]

while we need
{
skid,j,Kid[j]

}
id∈Lch,j∈[lenK]

to compute the value of f(skkdm) when
A makes a KDM query. Therefore, we can use the IND-ID-CPA security of
IBE when the challenge identity is (id, j, 1 − Kid[j]) for every id ∈ Lch and
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j ∈ [lenK]. By using IND-ID-CPA security of IBE lenK · qkdm times, we can
prove |Pr[SUC0] − Pr[SUC1]| = negl(λ).

Game 2: Same as Game 1 except that to respond to a KDM query from
A, the challenger generates a garbled circuit using the simulator for GC.
More precisely, when A makes a KDM query (id, f) ∈ Lch × P, the chal-
lenger generates rE

r←− {0, 1}lenr and CTske ← E (Kid,mb; rE), and computes(
Ẽ, {labj}j∈[lenK]

)
← Sim(1λ, |E| ,CTske), where Sim is the simulator for GC

and |E| denotes the size of the encryption circuit E of SKE. Moreover, the
challenger computes CTj,α ← Enc (PP, (id, j, α), labj) for every j ∈ [lenK] and
α ∈ {0, 1}.
In the last step, we eliminate labels of garbled circuits that do not correspond
to {Kid}id∈Lch

. Therefore, by using the security of GC qkdm times, we can show
that |Pr[SUC1] − Pr[SUC2]| = negl(λ).

Below, we show that
∣
∣Pr[SUC2] − 1

2

∣
∣ = negl(λ) holds by the P-KDM-CPA

security of SKE. Using the adversary A, we construct an adversary Aske that
attacks the P-KDM-CPA security of SKE when the number of keys is qch.

Before describing Aske, we note on the conversion of projection functions.
We let K(k) be the secret key of SKE generated to respond to the k-th regis-
tration query id(k) made by A. We let αk,j denote the j-th bit of K(k), that
is, K(k)[j] for every j ∈ [lenK] and k ∈ [qch]. Let f be a projection function
that A queries as a KDM query. f is a projection function of

{
K(k)

}
k∈[qch]

and
{
skid(k),j,αk,j

}

k∈[qch],j∈[lenK]
. To attack the P-KDM-CPA security of SKE, Aske

needs to compute a projection function g such that

g

({
K(k)

}

k∈[qch]

)
= f

({
K(k)

}

k∈[qch]
,
{
skid(k),j,αk,j

}

k∈[qch],j∈[lenK]

)
. (1)

We can compute such a function g from f and
{
skid(k),j,α

}
k∈[qch],j∈[lenK],α∈{0,1}

as follows.
We first observe that for every k ∈ [qch] and j ∈ [lenK], we can write

skid(k),j,αk,j
= (1 − αk,j) · skid(k)j,0 ⊕ αk,j · skid(k)j,1

= αk,j · (
skid(k),j,1 ⊕ skid(k),j,0

) ⊕ skid(k),j,0.

We suppose that skid(k),j,1 and skid(k),j,0 are represented as binary strings and ⊕
is done in the bit-wise manner. We define a function selk,j as selk,j(γ ∈ {0, 1}) =
γ · (

skid(k),j,1 ⊕ skid(k),j,0

) ⊕ skid(k),j,0. Then, we have

f

({
K(k)

}

k∈[qch]
,
{
skid(k),j,αk,j

}

k∈[qch],j∈[lenK]

)

= f

({
K(k)

}

k∈[qch]
, {selk,j (αk,j)}k∈[qch],j∈[lenK]

)
.

We define g
({

K(k)
}

k∈[qch]

)
= f

({
K(k)

}
k∈[qch]

,
{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

)
.

Then, g satisfies Eq. 1.
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We show that if f is a projection function, then so is g. Let γ be an output
bit of g

({
K(k)

}
k∈[qch]

)
= f

({
K(k)

}
k∈[qch]

,
{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

)
. We

say that γ is a projective bit for f (resp. g) if it depends on a single bit of an
input for f (resp. g). We also say that γ is a constant bit for f (resp. g) if it
does not depend on any bit of an input for f (resp. g).

Since f is a projection function, γ is a constant bit or projective bit for
f that depends on either part of

{
K(k)

}
k∈[qch]

or
{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

.
Thus, we consider the following three cases. (i) If γ is a constant bit for f , γ
is clearly a constant bit for g. (ii) If γ is a projective bit for f and depends
on a single bit of

{
K(k)

}
k∈[qch]

, γ is a projective bit for g since
{
K(k)

}
k∈[qch]

is also an input for g. (iii) If γ is a projective bit for f and depends on some
bit of

{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

, γ is a projective bit for g since each bit of
{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

depends on a bit K(k)[j] for some k ∈ [qch] and

j ∈ [lenK], and K(k)[j] is a part of an input to g. Therefore, γ is a projective bit
or constant bit for g in any case, and thus g is a projection function.

We now describe the adversary Aske that uses the above conversion of pro-
jection functions.

1. On input 1λ, Aske first generates (PP,MSK) ← Setup(1λ) and sends PP to A.
Then, Aske prepares Lext and Lch.

2. Aske responds to queries made by A as follows.
Extraction queries. When A sends id ∈ ID \ (Lext ∪ Lch) as an extraction

query, Aske responds exactly in the same way as the challenger in Game 2.
We note that, in this case, Aske computes the answer Kdm.skid using a
freshly generated key Kid of SKE.

Registration queries. When A makes the k-th (k ≤ qch) registration query
id(k) ∈ ID \ (Lext ∪ Lch), Aske relates id(k) to K(k), where K(k) is the k-th
secret key of SKE generated by the challenger. Aske generates skid(k),j,α ←
KG

(
MSK,

(
id(k), j, α

))
for every j ∈ [lenK] and α ∈ {0, 1}. They are used

for the conversion of functions. Aske then adds id(k) to Lch.
KDM queries. When A makes a KDM query (id, f) ∈ Lch×P, Aske responds

as follows.
(a) Aske first computes a projection function g satisfying

g

({
K(k)

}

k∈[qch]

)
= f

({
K(k)

}

k∈[qch]
,
{
skid(k),j,K(k)[j]

}

k∈[qch],j∈[lenK]

)

as we noted above from
{
skid(k),j,α

}
k∈[qch],j∈[lenK],α∈{0,1}.

(b) Let k ∈ [qch] be the number that related to id. Since id was added
to Lch, such k ∈ [qch] exists. Aske queries (k, g) to the challenger as a
KDM query and gets the answer CTske.

(c) Aske computes
(
Ẽ,

{
labj

}
j∈[lenK]

)
← Sim

(
1λ, |E| ,CTske

)
and for every

j ∈ [lenK] and α ∈ {0, 1}, computes CTj,α ← Enc (PP, (id, j, α), labj).
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(d) Aske returns Kdm.CT :=
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
to A.

3. When A terminates with output b′ ∈ {0, 1}, Aske outputs β′ = b′.

Aske perfectly simulates Game 2 for A in which the challenge bit is the same
as that of P-KDM-CPA game of SKE between the challenger and Aske. Moreover,
Aske just outputs A’s output. Thus, Advkdmcpa

SKE,P,Aske,qch
(λ) =

∣
∣Pr[SUC2] − 1

2

∣
∣ holds.

Since SKE is P-KDM-CPA secure,
∣
∣Pr[SUC2] − 1

2

∣
∣ = negl(λ) holds.

From the above arguments, we see that

Advkdmcpa
KdmIBE,P,A(λ) =

∣
∣
∣
∣Pr[SUC0] − 1

2

∣
∣
∣
∣

≤
1∑

t=0

|Pr[SUCt] − Pr[SUCt+1]| +
∣
∣
∣
∣Pr[SUC2] − 1

2

∣
∣
∣
∣ = negl(λ).

Since the choice of A is arbitrary, KdmIBE satisfies P-KDM-CPA security.

On the transformation of B-KDM-CPA secure schemes. We can also construct
B-KDM-CPA secure IBE based on B-KDM-CPA secure SKE via the construc-
tion. The security proof of B-KDM-CPA secure IBE is in fact almost the same
as that of P-KDM-CPA secure IBE. The only issue we need to care is whether
the conversion of functions performed by Aske is successful or not also when we
construct B-KDM-CPA secure IBE.

Let f be a function queried by an adversary A for KdmIBE. As above, consider
a function g such that

g

({
K(k)

}

k∈[qch]

)
= f

({
K(k)

}

k∈[qch]
,
{
selk,j

(
K(k)[j]

)}

k∈[qch],j∈[lenK]

)
,

where the function selk,j is the function we defined earlier. Since selk,j is com-
putable by a circuit of a-priori bounded size, we see that if f is computable by
a circuit of a-priori bounded size, then so is g. Therefore, Aske can successfully
perform the conversion of functions also when constructing B-KDM-CPA secure
IBE. � (Theorem5)

5 SIM-RSO Secure IBE Based on IND-ID-CPA
Secure IBE

We construct SIM-RSO secure IBE based on any IND-ID-CPA secure IBE.
Let IBE = (Setup,KG,Enc,Dec) be an IBE scheme whose message space and

identity space are {0, 1} and ID × {0, 1}, respectively. Using IBE, we construct
the following IBE scheme RsoIBE = (Rso.Setup,Rso.KG,Rso.Enc,Rso.Dec) whose
message space and identity space are {0, 1} and ID.

Rso.Setup(1λ):
– Return (PP,MSK) ← Setup(1λ).
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Rso.KG(MSK, id):
– Generate r

r←− {0, 1}.
– Generate skid,r ← KG(MSK, (id, r)).
– Return Rso.skid := (r, skid,r).

Rso.Enc(PP, id,m ∈ {0, 1}):
– For every α ∈ {0, 1}, compute CTα ← Enc(PP, (id, α),m).
– Return Rso.CT := (CT0,CT1).

Rso.Dec(Rso.skid,Rso.CT):
– Parse (r, skid,r) ← Rso.dk.
– Parse (CT0,CT1) ← Rso.CT.
– Return m ← Dec(skid,r,CTr).

Correctness. The correctness of RsoIBE directly follows from that of IBE.
We prove the following theorem.

Theorem 6. Let IBE be an IND-ID-CPA secure IBE scheme. Then, RsoIBE is
a SIM-RSO secure IBE scheme.

Proof of Theorem 6. Let A be an adversary that attacks the SIM-RSO security
of RsoIBE. We show the proof via the following sequence of games.

Let D be an PPT distinguisher with binary output. For every t ∈ {0, 1, 2}, let
Tt be the event that D outputs 1 given the output of the challenger in Game t.

Game 0: This is the real game of SIM-RSO security regarding RsoIBE. The
detailed description is as follows.
1. First, the challenger generates (PP,MSK) ← Setup(1λ) and sends PP to

A. The challenger prepares a list Lext.
At any step of the game, A can make key extraction queries.
Extraction queries. A sends id ∈ ID \ Lext to the challenger. The

challenger responds as follows.
(a) The challenger generates r

r←− {0, 1}.
(b) The challenger generates skid,r ← KG(MSK, (id, r)).
(c) The challenger returns Rso.skid := (r, skid,r).

2. A sends qch identities
{
id(k) ∈ ID \ Lext

}

k∈[qch]
and a message distribu-

tion Dist on {0, 1}qch to the challenger, where qch is an a-priori unbounded
polynomial of λ. The challenger generates

{
m(k)

}
k∈[qch]

← Dist and com-

putes Rso.CT(k) for every k ∈ [qch] as follows.
(a) The challenger computes CT(k)

α ← Enc
(
PP,

(
id(k), α

)
,m(k)

)
for

every α ∈ {0, 1}.
(b) The challenger sets Rso.CT(k) :=

(
CT

(k)
0 ,CT

(k)
1

)
.

The challenger sends
{
Rso.CT(k)

}

k∈[qch]
to A.

Below, A is not allowed to make extraction queries for
{
id(k)

}

k∈[qch]
.
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3. A sends a subset I of [qch] to the challenger. The challenger generates
Rso.skid(k) for every k ∈ I as follows.
(a) The challenger generates r(k)

r←− {0, 1}.
(b) The challenger generates skid(k),r(k) ← KG

(
MSK,

(
id(k), r(k)

))
.

(c) The challenger sets Rso.skid(k) :=
(
r(k), skid(k),r(k)

)
.

The challenger sends
{(

Rso.skid(k) ,m(k)
)}

k∈I to A.
4. A sends a string out to the challenger.
5. The challenger outputs

outreal :=
({

id(k)
}

k∈[qch]
,
{

m(k)
}

k∈[qch]
,Dist, I, out

)
.

Game 1: Same as Game 0 except that for every k ∈ [qch], the challenger generates

CT
(k)

1−r(k) ← Enc
(
PP,

(
id(k), 1 − r(k)

)
, 1 − m(k)

)
.

We note that the challenger generates CT
(k)

r(k) ← Enc
(
PP, (id(k), r(k)),m(k)

)

for every k ∈ [qch] in both Games 0 and 1.
Secret keys for identities

{(
id(k), 1 − r(k)

)}

k∈[qch]
of IBE are not given to A

regardless of which users A corrupts in both Games 0 and 1. Therefore, by
using the security of IBE qch times, we can prove |Pr[T0] − Pr[T1]| = negl(λ).

Game 2: Same as Game 1 except that for every k ∈ [qch], the challenger uses
r(k) ⊕ m(k) instead of r(k) as the random bit contained in the k-th RsoIBE’s
secret key Rso.skid(k) for id(k). We note that the challenger does not need{
r(k)

}
k∈[qch]

before generating
{
m(k)

}
k∈[qch]

. Thus, the transition from Games

1 to 2 makes sense, and |Pr[T2] − Pr[T3]| = 0 holds since r(k) ⊕ m(k) is dis-
tributed uniformly at random for every k ∈ [qch].

In Game 2, uncorrupted messages
{
m(k)

}
k∈[qch]\I are completely hidden from

the view of A. To verify the fact, we confirm that ciphertexts
{
Rso.CT(k)

}

k∈[qch]

are independent of
{
m(k)

}
k∈[qch]

.

For every k ∈ [qch], the challenger generates Rso.CT(k) =
(
CT

(k)
0 ,CT

(k)
1

)
by

computing

CT
(k)

r(k)⊕m(k) ← Enc
(
PP,

(
id(k), r(k) ⊕ m(k)

)
,m(k)

)
,

CT
(k)

1−r(k)⊕m(k) ← Enc
(
PP,

(
id(k), 1 − r(k) ⊕ m(k)

)
, 1 − m(k)

)
.

We see that, regardless of the value of m(k) ∈ {0, 1}, the challenger computes

CT
(k)

r(k) ← Enc
(
PP,

(
id(k), r(k)

)
, 0

)
,

CT
(k)

1−r(k) ← Enc
(
PP,

(
id(k), 1 − r(k)

)
, 1

)
.
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Therefore, we see that ciphertexts
{
Rso.CT(k)

}

k∈[qch]
are independent of

{
m(k)

}
k∈[qch]

in Game 2.
Then, we construct a simulator S that perfectly simulates Game 2 for A.

The description of S is as follows.

1. On input 1λ, S generates (PP,MSK) ← Setup(1λ) and sends PP to A. S then
prepares a list Lext.
Extraction queries. When A sends id ∈ ID \ Lext, S responds as follows.

(a) S generates r
r←− {0, 1}.

(b) S generates skid,r,← KG(MSK, (id, r)).
(c) S returns Rso.skid := (r, skid,r) to A and adds id to Lext.

2. When A outputs a message distribution Dist with identities
{
id(k)

}

k∈[qch]
, S

sends them to the challenger. Then, S computes Rso.CT(k) for every k ∈ [qch]
as follows.
(a) S computes r(k)

r←− {0, 1}.
(b) S computes

CT
(k)

r(k) ← Enc
(
PP,

(
id(k), r(k)

)
, 0

)
and

CT
(k)

1−r(k) ← Enc
(
PP,

(
id(k), 1 − r(k)

)
, 1

)
.

(c) S sets Rso.CT(k) :=
(
CT

(k)
0 ,CT

(k)
1

)
.

S sends
{
Rso.CT(k)

}

k∈[qch]
to A.

3. When A outputs a subset I of [qch], S sends it to the challenger, and gets
{
m(k)

}
k∈I . S computes skid(k),r(k)⊕m(k) ← KG

(
MSK,

(
id(k), r(k) ⊕ m(k)

))
,

sets Rso.skid(k) :=
(
r(k) ⊕ m(k), skid(k),r(k)⊕m(k)

)
for every k ∈ I, and sends{(

Rso.skid(k) ,m(k)
)}

k∈I to A.
4. When A outputs a string out, S outputs it.

S perfectly simulates Game 2 for A. Therefore, we have

Advsimrso
RsoIBE,A,S,D(λ) = |Pr[T0] − Pr[T2]| ≤

2∑

t=0

|Pr[Tt] − Pr[Tt+1]| . (2)

From the above arguments, we see that each term of the right hand side of
Inequality 2 is negligible in λ. Since the choice of A and D is arbitrary and the
description of S does not depend on that of D, we see that for any A, there
exists S such that for any D we have Advsimrso

RsoIBE,A,S,D(λ) = negl(λ). This means
that RsoIBE is SIM-RSO secure. � (Theorem6)
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6 KDM Secure PKE from KDM Secure SKE and
IND-CPA Secure PKE

We show how to construct KDM secure PKE based on KDM secure SKE and
IND-CPA secure PKE. The construction is similar to that of KDM secure IBE we
show in Sect. 4 except that IND-CPA secure PKE is used instead of IND-ID-CPA
secure IBE as a building block.

Let SKE = (G,E,D) be an SKE scheme whose message space is M. Let lenK
and lenr denote the length of a secret key and encryption randomness of SKE,
respectively. Let PKE = (KG,Enc,Dec) be a PKE scheme and GC = (Garble,Eval)
a garbling scheme. Using SKE,PKE, and GC, we construct the following PKE
scheme KdmPKE = (Kdm.KG,Kdm.Enc,Kdm.Dec) whose message space is M.

Kdm.KG(1λ):
– Generate K ← G(1λ).
– Generate (ekj,α, dkj,α) ← KG(1λ) for every j ∈ [lenK] and α ∈ {0, 1}.
– Return Kdm.ek := {ekj,α}j∈[lenK],α∈{0,1} and Kdm.dk :=

(
K,

{
dkj,K[j]

}
j∈[lenK]

)
.

Kdm.Enc(Kdm.ek,m):
– Parse {ekj,α}j∈[lenK],α∈{0,1} ← Kdm.ek.

– Generate rE
r←− {0, 1}lenr and compute

(
Ẽ, {labj,α}j∈[lenK],α∈{0,1}

)
←

Garble(1λ,E(·,m; rE)), where E(·,m; rE) is the encryption circuit E of SKE
into which m and rE are hardwired.

– For every j ∈ [lenK] and α ∈ {0, 1}, compute CTj,α ← Enc(ekj,α, labj,α).
– Return Kdm.CT :=

(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
.

Kdm.Dec(Kdm.dk,Kdm.CT):
– Parse

(
K, {dkj}j∈[lenK]

)
← Kdm.dk.

– Parse
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
← Kdm.CT.

– For every j ∈ [lenK], compute labj ← Dec
(
dkj ,CTj,K[j]

)
.

– Compute CTske ← Eval
(
Ẽ, {labj}j∈[lenK]

)
.

– Return m ← D(K,CTske).

Correctness. When decrypting a ciphertext of KdmPKE that encrypts a message
m, we first obtain a ciphertext of SKE that encrypts m from the correctness of
PKE and GC. The correctness of KdmPKE then follows from that of SKE.

We have the following theorem.

Theorem 7. Let SKE be an SKE scheme that is P-KDM-CPA secure (resp.
B-KDM-CPA secure). Let PKE be an IND-CPA secure PKE scheme and GC a
secure garbling scheme. Then, KdmPKE is a PKE scheme that is P-KDM-CPA
secure (resp. B-KDM-CPA secure).

The proof for Theorem 7 is almost the same as that for Theorem 5. Thus, we
omit it and provide in the full version of this paper [27].
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7 SIM-RSO Secure PKE Based on IND-CPA Secure PKE

We can construct SIM-RSO secure PKE based on any IND-CPA secure PKE
if we take the revelation of only secret keys into account. The construction is
similar to that of SIM-RSO secure IBE we show in Sect. 5 except that IND-CPA
secure PKE is used instead of IND-ID-CPA secure IBE.

Using a PKE scheme PKE = (KG,Enc,Dec), we construct the following PKE
scheme RsoPKE = (Rso.KG,Rso.Enc,Rso.Dec) whose message space is {0, 1}.

Rso.KG(1λ):
– Generate (ekα, dkα) ← KG(1λ) for every α ∈ {0, 1}.
– Generate r

r←− {0, 1}.
– Return Rso.ek := (ek0, ek1) and Rso.dk := (r, dkr).

Rso.Enc(Rso.ek,m ∈ {0, 1}):
– Parse (ek0, ek1) ← Rso.ek.
– For every α ∈ {0, 1}, compute CTα ← Enc(ekα,m).
– Return Rso.CT := (CT0,CT1).

Rso.Dec(Rso.dk,Rso.CT):
– Parse (r, dkr) ← Rso.dk
– Parse (CT0,CT1) ← Rso.CT.
– Return m ← Dec(dkr,CTr).

Correctness. The correctness of RsoPKE directly follows from that of PKE.
We have the following theorem.

Theorem 8. Let PKE be an IND-CPA secure PKE scheme. Then, RsoPKE is
a SIM-RSO secure PKE scheme.

The proof for Theorem8 is almost the same as that for Theorem 6. Thus, we
omit it and provide in the full version of this paper [27].

Acknowledgement. We would like to thank the anonymous reviewers of PKC 2018
for their insightful comments. A part of this work was supported by Input Output Hong
Kong, Nomura Research Institute, NTT Secure Platform Laboratories, Mitsubishi
Electric, JST CREST JPMJCR14D6, JST OPERA, JSPS KAKENHI JP16H01705,
JP16J10322, JP17H01695.

References

1. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its rela-
tion to circular encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.
6110, pp. 403–422. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 21

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

https://doi.org/10.1007/978-3-642-13190-5_21
https://doi.org/10.1007/978-3-642-13190-5_21
https://doi.org/10.1007/978-3-642-13190-5_28


60 F. Kitagawa and K. Tanaka

3. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 334–352. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 20

4. Applebaum, B.: Key-dependent message security: generic amplification and com-
pleteness. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 527–
546. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 29

5. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

6. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 423–444.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 22

7. Bellare, M., Dowsley, R., Waters, B., Yilek, S.: Standard security does not imply
security against selective-opening. In: Pointcheval, D., Johansson, T. (eds.) EURO-
CRYPT 2012. LNCS, vol. 7237, pp. 645–662. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29011-4 38

8. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-01001-9 1

9. Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selec-
tive opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 15

10. Bishop, A., Hohenberger, S., Waters, B.: New circular security counterexamples
from decision linear and learning with errors. In: Iwata, T., Cheon, J.H. (eds.)
ASIACRYPT 2015, Part II. LNCS, vol. 9453, pp. 776–800. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48800-3 32

11. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7 6

12. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

13. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 7

14. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability - (or: Quadratic residuosity strikes back). In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 1

15. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

16. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

https://doi.org/10.1007/978-3-642-30057-8_20
https://doi.org/10.1007/978-3-642-30057-8_20
https://doi.org/10.1007/978-3-642-20465-4_29
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-13190-5_22
https://doi.org/10.1007/978-3-642-29011-4_38
https://doi.org/10.1007/978-3-642-29011-4_38
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-642-19571-6_15
https://doi.org/10.1007/978-3-662-48800-3_32
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-39200-9_16


KDM Security and RSO Security for IBE 61

17. Canetti, R., Halevi, S., Katz, J.: Adaptively-secure, non-interactive public-key
encryption. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150–168. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 9

18. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular
security. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 540–557. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 32

19. Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44598-6 27
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Abstract. Selective opening security (SO security) is desirable for pub-
lic key encryption (PKE) in a multi-user setting. In a selective opening
attack, an adversary receives a number of ciphertexts for possibly corre-
lated messages, then it opens a subset of them and gets the corresponding
messages together with the randomnesses used in the encryptions. SO
security aims at providing security for the unopened ciphertexts. Among
the existing simulation-based, selective opening, chosen ciphertext secure
(SIM-SO-CCA secure) PKEs, only one (Libert et al. Crypto’17) enjoys
tight security, which is reduced to the Non-Uniform LWE assumption.
However, their public key and ciphertext are not compact.

In this work, we focus on constructing PKE with tight SIM-SO-CCA
security based on standard assumptions. We formalize security notions
needed for key encapsulation mechanism (KEM) and show how to trans-
form these securities into SIM-SO-CCA security of PKE through a tight
security reduction, while the construction of PKE from KEM follows the
general framework proposed by Liu and Paterson (PKC’15). We present
two KEM constructions with tight securities based on the Matrix Deci-
sion Diffie-Hellman assumption. These KEMs in turn lead to two tightly
SIM-SO-CCA secure PKE schemes. One of them enjoys not only tight
security but also compact public key.

1 Introduction

Selective Opening Security. In the context of public key encryption (PKE),
IND-CPA (CCA) security is widely believed to be the right security notion.
However, multi-user settings enable more complicated attacks and the tradi-
tional IND-CPA (CCA) security may not be strong enough. Consider a scenario
of N senders and one receiver. The senders encrypt N (possibly correlated)
messages m1, · · · ,mN under the receiver’s public key pk using fresh random-
nesses r1, · · · , rN to get ciphertexts c1, · · · , cN , respectively, i.e., each sender i
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computes ci = Enc(pk,mi; ri). Upon receiving the ciphertexts c1, · · · , cN , the
adversary might be able to open a subset of them via implementing corruptions.
Namely, by corrupting a subset of users, say I ⊂ [N ], the adversary obtains the
messages {mi}i∈I together with the randomnesses {ri}i∈I . Such an attack is
called selective opening attack (SOA). It is desirable that the unopened cipher-
texts {ci}i∈[N ]\I still protect the privacy of {mi}i∈[N ]\I , which is exactly what
the SO security concerns.

The potential correlation between {mi}i∈I and {mi}i∈[N ]\I hinders the use of
hybrid argument proof technique. Hence, traditional IND-CPA security may not
imply SO security. To date, there exist two types of SO security formalizations:
indistinguishability-based SO security (IND-SO, [1,2]) and simulation-based SO
security (SIM-SO, [1,5]). According to whether the adversary has access to a
decryption oracle, these securities are further classified into IND-SO-CPA, IND-
SO-CCA, SIM-SO-CPA and SIM-SO-CCA.

Intuitively, IND-SO security requires that, given public key pk, ciphertexts
{ci}i∈[N ], the opened messages {mi}i∈I and randomnesses {ri}i∈I (together
with a decryption oracle in the CCA case), the unopened messages {mi}i∈[N ]\I

remain computationally indistinguishable from independently sampled messages
conditioned on the already opened messages {mi}i∈I . Accordingly, the IND-SO
security usually requires the message distributions be efficiently conditionally
re-samplable [1,10,11] (and such security is referred to as weak IND-SO security
in [2]), which limits its application scenarios.

On the other hand, SIM-SO security is conceptually similar to semantic secu-
rity [9]. It requires that the output of the SO adversary can be simulated by a
simulator which only takes the opened messages {mi}i∈I as its input after it
assigns the corruption set I. Since there is no restriction on message distribu-
tion, SIM-SO security has an advantage over IND-SO security from an applica-
tion point of view. SIM-SO security was also shown to be stronger than (weak)
IND-SO security in [2]. However, as shown in [13], SIM-SO security turns out to
be significantly harder to achieve.

Generally speaking, there are two approaches to achieve SIM-SO-CCA secu-
rity. The first approach uses lossy trapdoor functions [22], All-But-N lossy trap-
door functions [10] or All-But-Many lossy trapdoor functions [11] to construct
lossy encryption schemes. If this lossy encryption has an efficient opener, then
the resulting PKE scheme can be proven to be SIM-SO-CCA secure as shown in
[1]. A DCR-based scheme in [11] and a LWE-based scheme in [18] are the only
two schemes known to have such an opener. The second approach uses extended
hash proof system and cross-authentication codes (XACs) [6]. As pointed out
in [14,15], a stronger property of XAC is required to make this proof rigorous.
Following this line of research, Liu and Paterson proposed a general framework
for constructing SIM-SO-CCA PKE from a special kind of key encapsulation
mechanism (KEM) in combination with a strengthened XAC [19].

Tight Security Reductions. Usually, the security of a cryptographic prim-
itive is established on the hardness of some underlying mathematical prob-
lems through a security reduction. It shows that any successful probabilistic
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polynomial-time (PPT) adversary A breaking the cryptographic primitive with
advantage εA can be transformed into a successful PPT problem solver B for the
underlying hard problem with advantage εB. The ideal case is εA = εB. However,
most reductions suffer from a loss in the advantage, for example, εA = L · εB
where L is called security loss factor of the reduction. Smaller L always indi-
cates a better security level for a fixed security parameter. For a PKE scheme,
L usually depends on λ (the security parameter) as well as Qe (the number
of challenge ciphertexts) and Qd (the number of decryption queries). A security
reduction for a PKE scheme is tight and the PKE scheme is called a tightly secure
one [7,12] if L depends only on the security parameter λ1 (and is independent
of both Qe and Qd). Note that for concrete settings, λ is much smaller than Qe

and Qd (for example, λ = 80 and Qe, Qd can be as large as 220 or even 230 in
some settings). Most reductions are not tight and it appears to be a non-trivial
problem to construct tightly IND-CCA secure PKE schemes.

Among the existing SIM-SO-CCA secure PKEs, only one of them has a tight
security reduction [18]. Very recently, Libert et al. [18] provide an all-but-many
lossy trapdoor function with an efficient opener, leading to a tightly SIM-SO-
CCA secure PKE based on the Non-Uniform LWE assumption. Note that, their
construction relies on a specific tightly secure PRF which is computable in NC1.
So far, no construction of such a PRF based on standard LWE assumption is
known, which is why their PKE has to rely on a non-standard assumption.
Meanwhile, there is no PKE scheme enjoying both tight SIM-SO-CCA security
and compact public key & ciphertext up to now.

1.1 Our Contribution

We explore how to construct tightly SIM-SO-CCA secure PKE based on stan-
dard assumptions. Following the KEM+XAC framework proposed in [19],

– we characterize stronger security notions needed for KEM and present a tight-
ness preserving security reduction, which shows the PKE is tightly SIM-SO-
CCA secure as long as the underlying KEM is tightly secure;

– we present two KEM instantiations and prove that their security can be
tightly reduced to the Matrix Decision Diffie-Hellman (MDDH) assumption,
thus leading to two tightly SIM-SO-CCA secure PKE schemes. One of them
enjoys not only tight security but also compact public key.

1.2 Technique Overview

Roughly speaking, to prove the SIM-SO-CCA security of a PKE (see for Def-
inition 1), for any PPT adversary, we need to construct a simulator and show
that the adversary’s outputs are indistinguishable with those of the simulator.
Naturally, such a simulator can be realized simply by simulating the entire real

1 According to [3,8], such a security reduction is called an almost tight one and a
security reduction is tight only if L is a constant.
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SO-CCA environment, invoking the adversary and returning the adversary’s
outputs. However, due to lack of essential information like messages and ran-
domnesses, the simulator is not able to provide a perfect environment directly.
Therefore, both the PKE scheme and the simulator has to be carefully designed,
so that the simulator is able to provide the adversary a computational indistin-
guishable environment. To this end, we have to solve two problems.

– The first problem is how the simulator prepares ciphertexts for the adversary
without knowing the messages.

– The second problem is how the simulator prepares randomnesses for the
adversary according to the opened messages {mi}i∈I that it receives later.

To solve the first problem, the simulator has to provide ciphertexts that
are computational indistinguishable with real ciphertexts in the setting of
selective opening (together with chosen-ciphertext attacks). As to the second
problem, note that the adversary can always check the consistence between
{mi}i∈I , {ci}i∈I and the randomnesses by re-encryption. Therefore, the sim-
ulator should not only provide indistinguishable ciphertexts but also be able to
explain these ciphertexts as encryptions of any designated messages.

Liu and Paterson [19] solved these two problems and proposed a general
framework for constructing SIM-SO-CCA secure PKE with the help of KEM in
combination with XAC. Their PKE construction encrypts message in a bitwise
manner. Suppose the message m has bit length �. If the i-th bit of m is 1
(mi = 1), a pair of encapsulation ψi and key γi is generated from KEM, i.e.,
(ψi, γi) ←$ KEnc(pkkem). If mi = 0, a random pair is generated, i.e., (ψi, γi) ←$

Ψ × Γ . Then a tag T is generated to bind up (γ1, · · · , γ�) and (ψ1, · · · , ψ�) via
XAC. And the final ciphertext is C = (ψ1, · · · , ψ�, T ).

They construct a simulator in the following way.

• Without knowledge of the message, the simulator uses an encryption of 1� as
the ciphertext. Thus the encryption involves � encapsulated pairs (ψi, γi) ←$

KEnc(pkkem). The simulator then saves all the randomnesses used in these
encapsulations.

• When providing the randomnesses for the opened messages, the simulator
checks the opened messages bit by bit. If a specific bit is 1, then the simulator
outputs the original randomnesses and the simulation is perfect. Otherwise,
the simulator views the encapsulated pair as a random pair. Then the simu-
lator resamples randomnesses as if this pair is randomly chosen using these
resampled randomnesses.

Thanks to the bit-wise encryption mode and the resampling property of
spaces Ψ and Γ , an encapsulation pair (encrypting bit 1) can be easily explained
as a random pair (encrypting bit 0). Therefore the second problem is solved.

To solve the first problem, one has to show that the encapsulated pairs and
the random pairs are computationally indistinguishable. In [19], a special security
named IND-tCCCA is formalized for KEM. This security guarantees that one
encapsulated pair is computationally indistinguishable with one random pair
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even when a constrained decryption oracle is provided. With the help of IND-
tCCCA security of KEM, the indistinguishability between the encryption of 1�

and the encryption of real messages are proved with � hybrid arguments, each
hybrid replacing only one encapsulated pair with one random pair.

To pursue tight security reduction, the � hybrid arguments have to be
avoided. To this end, we enhance the IND-tCCCA security and consider the
pseudorandomness for multiple pairs even when a constrained decryption oracle
is provided. This new security for KEM is formalized as mPR-CCCA security
in Definition 5. Armed with this enhanced security, it is possible to replace the �
encapsulated pairs once for all in the security reduction from the SIM-SO-CCA
security of PKE to the mPR-CCCA security of KEM. However, this gives rise to
another problem. The SIM-SO-CCA adversary A may submit a fresh ciphertext
which shares the same encapsulation ψ with some challenge encapsulation. In the
security reduction, the adversary B, who invokes A to attack the mPR-CCCA
security of KEM, cannot ask its own decapsulation oracle to decapsulate ψ since
ψ is already embedded in some challenge ciphertext for A. To solve this problem,
we define another security notion for KEM, namely, the Random Encapsulation
Rejection (RER) security of KEM (cf. Definition 6). Equipped with the RER
security of KEM and a security of XAC, B could simply set 0 as the decryption
bit for ψ.

Although the enhancement from IND-tCCCA to mPR-CCCA is conceptually
simple, finding an mPR-CCCA secure KEM instantiation with tight reduction
to standard assumptions is highly non-trivial. Inspired by the recent work on
constructing tightly IND-CCA secure PKE [7,8], we are able to give two tightly
mPR-CCCA & RER secure KEM instantiations, one of which also enjoys com-
pact public key.

1.3 Instantiation Overview

We provide two KEM instantiations.
The first KEM instantiation is inspired by a recent work in Eurocrypt’16.

In the work [7], Gay et al. proposed the first tightly multi-challenge IND-CCA
secure PKE scheme based on the MDDH assumption. From their PKE con-
struction, we extract a KEM and tightly prove its mPR-CCCA security & RER
security based on the MDDH assumption.2

The second KEM instantiation is contained in a very recent work by Gay et al.
[8] in Crypto’17. In [8], a qualified proof system (QPS) is proposed to construct
multi-challenge IND-CCCA secure KEM, which can be used to obtain a tightly
multi-challenge IND-CCA secure PKE scheme with help of an authenticated
encryption scheme. Note that our mPR-CCCA security is stronger than multi-
challenge IND-CCCA security. To achieve mPR-CCCA security, we formalize a
so-called Pseudorandom Simulated Proof property for QPS. We prove that if

2 In [20], a PKE with tight SIM-SO-CCA security is constructed directly on the MDDH
assumption. Our work unified their work by characterizing the mPR-CCCA security
and RER security for KEM.
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QPS has this property, the KEM from QPS is mPR-CCCA secure. Finally, we
show that the QPS in [8] possesses the pseudorandom simulated proof property.

Compared with the first instantiation, the public key of our second KEM
instantiation has a constant number of group elements. The compactness of
public key is in turn transferred to the PKE, resulting in the first tightly SIM-
SO-CCA secure PKE based on standard assumptions together with a compact
public key.

2 Preliminaries

We use λ to denote the security parameter in this work. Let ε be the empty string.
For n ∈ N, denote by [n] the set {1, · · · , n}. Denote by s1, · · · , sn ←$ S the
process of picking n elements uniformly from set S. For a PPT algorithm A, we
use y ← A(x; r) to denote the process of running A on input x with randomness
r and assigning the deterministic result to y. Let RA be the randomness space
of A, we use y ←$ A(x) to denote y ← A(x; r) where r ←$ RA. We use T(A)
to denote the running time of A, which is a polynomial in λ if A is PPT.

We use boldface letters to denote vectors or matrices. For a vector m of
finite dimension, |m| denotes the dimension of the vector and mi denotes the
i-th component of m. For a set I = {i1, i2, · · · , i|I|} ⊆ [|m|], define mI :=
(mi1 ,mi2 , · · · ,mi|I|). For all matrix A ∈ Z

�×k
q with � > k, A ∈ Z

k×k
q denotes

the upper square matrix of A and A ∈ Z
(�−k)×k
q denotes the lower � − k rows

of A. By span(A) := {Ar | r ∈ Z
k
q}, we denote the span of A. By Ker(A�), we

denote the orthogonal space of span(A). For � = k, we define the trace of A as
the sum of all diagonal elements of A, i.e., trace(A) :=

∑k
i=1 Ai,i.

A function f(λ) is negligible, if for every c > 0 there exists a λc such that
f(λ) < 1/λc for all λ > λc.

We use game-based security proof. The games are illustrated using pseudo-
codes in figures. By a box in a figure, we denote that the codes in the box appears

in a specific game. For example, G4

�

�

�

�
G5 means that G4 contains the codes in

dash box , G5 contains the codes in
�

�

�

	
oval box , and both of them contain codes

in square box . Moreover, we assume that the unboxed codes are contained in
all games. We use the notation Pri[E] to denote the probability that event E
occurs in game Gi, and use the notation G ⇒ 1 to denote the event that game
G returns 1. All variables in games are initialized to ⊥. We use “�” to denote
the end of proof of lemmas and use “�” to denote the end of proof of theorems.

Due to space limitations, we refer to the full version of this paper [21] for
the definitions of collision resistant hash function, universal hash function, public
key encryption, the MDDH assumption and its random self-reducibility property,
together with leftover hash lemma.
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2.1 Prime-Order Groups

Let GGen be a PPT algorithm that on input 1λ returns G = (G, q, P ), a descrip-
tion of an additive cyclic group G with a generator P of order q which is a λ-bit
prime. For a ∈ Zq, define [a] := aP ∈ G as the implicit representation of a in
G. More generally, for a matrix A = (aij) ∈ Z

n×m
q , we define [A] as the implicit

representation of A in G, i.e., [A] := (aijP ) ∈ G
n×m. Note that from [a] ∈ G it

is generally hard to compute the value a (discrete logarithm problem is hard in
G). Obviously, given [a], [b] ∈ G and a scalar x ∈ Z, one can efficiently compute
[ax] ∈ G and [a + b] ∈ G. Similarly, for A ∈ Z

m×n
q ,B ∈ Z

n×t
q , given A,B or

[A],B or A, [B], one can efficiently compute [AB] ∈ G
m×t.

2.2 Simulation-Based, Selective-Opening CCA Security of PKE

Let m and r be two vectors of dimension n := n(λ). Define Enc(pk,m; r) :=
(Enc(pk,m1; r1), · · · ,Enc(pk,mn; rn)) where ri is a fresh randomness used for
the encryption of mi for i ∈ [n]. Then we review the SIM-SO-CCA security
definition in [6]. Let M denote an n-message sampler, which on input a string
α ∈ {0, 1}∗ outputs a message vector m of dimension n, i.e., m = (m1, · · · ,mn).
Let R be any PPT relation.

Expso-cca-realPKE,A,n,M,R(λ):
(pk, sk) ←$ Gen(1λ)
(α, a1) ←$ ADec(·)

1 (pk)
m ←$ M(α), r ←$ (REnc)n

C ← Enc(pk,m; r)

(I, a2) ←$ ADec/∈C(·)
2 (a1,C)

r̂I ← rI

outA ←$ ADec/∈C(·)
3 (a2,mI , r̂I)

Return R(m, I, outA)

Expso-cca-idealS,n,M,R (λ):

(α, s1) ←$ S1(1λ)

m ←$ M(α)

(I, s2) ←$ S2(s1, (1|mi|)i∈[n])

outS ←$ S3(s2,mI)

Return R(m, I, outS)

Fig. 1. Experiments used in the definition of SIM-SO-CCA security of PKE

Definition 1 (SIM-SO-CCA Security). A PKE scheme PKE = (Gen,Enc,
Dec) is simulation-based, selective-opening, chosen-ciphertext secure (SIM-SO-
CCA secure) if for every PPT n-message sampler M, every PPT relation R,
every stateful PPT adversary A = (A1,A2,A3), there is a stateful PPT simula-
tor S = (S1,S2,S3) such that Advso-ccaPKE,A,S,n,M,R(λ) is negligible, where

Advso-ccaPKE,A,S,n,M,R(λ) :=
∣
∣
∣Pr

[
Expso-cca-realPKE,A,n,M,R(λ) = 1

]
− Pr

[
Expso-cca-idealS,n,M,R (λ) = 1

]∣
∣
∣ .

Experiments Expso-cca-realPKE,A,n,M,R(λ) and Expso-cca-idealS,n,M,R (λ) are defined in Fig. 1. Here
the restriction on A is that A2,A3 are not allowed to query the decryption oracle
Dec(·) with any challenge ciphertext Ci ∈ C.
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2.3 Efficiently Samplable and Explainable (ESE) Domain

A domain D is said to be efficiently samplable and explainable (ESE) [6] if there
exist two PPT algorithms (SampleD,Sample−1

D ) where SampleD(1λ) outputs a
uniform element over D and Sample−1

D (x), on input x ∈ D, outputs r that is
uniformly distributed over the set {r ∈ RSampleD | SampleD(1λ; r) = x}.

It was shown by Damg̊ard and Nielsen in [4] that any dense subset of an
efficiently samplable domain is ESE as long as the dense subset admits an efficient
membership test.

2.4 Cross-Authentication Codes

The concept of XAC was first proposed by Fehr et al. in [6] and later adapted
to strong XAC in [15] and strengthened XAC in [17].

Definition 2 (�-Cross-Authentication Code, XAC).
An �-cross-authentication code XAC (for � ∈ N) consists of three PPT algorithms
(XGen,XAuth,XVer) and two associated spaces, the key space XK and the tag
space XT . The key generation algorithm XGen(1λ) outputs a uniformly random
key K ∈ XK, the authentication algorithm XAuth(K1, · · · ,K�) takes � keys
(K1, · · · ,K�) ∈ XK� as input and outputs a tag T ∈ XT , and the verification
algorithm XVer(K,T ) outputs a decision bit.

Correctness. failXAC(λ) := Pr[XVer(Ki,XAuth(K1, · · · ,K�)) �= 1] is negligible
for all i ∈ [�], where the probability is taken over K1, · · · ,K� ←$ XK.

Security against impersonation and substitution attacks. Define
εimp
XAC(λ) := maxT ′ Pr[XVer(K,T ′) = 1 | K ←$ XK] where max is over all T ′ ∈

XT , and εsubXAC(λ) := max
i,K �=i,F

Pr

⎡

⎣ T ′ �= T
XVer(Ki, T

′) = 1

∣
∣
∣
∣
∣
∣

Ki ←$ XK,
T ← XAuth(K1, · · · ,K�),

T ′ ← F (T )

⎤

⎦

where max is over all i ∈ [�], all K �=i := (Kj)j∈[�\i] ∈ XK�−1 and all (possi-
bly randomized) functions F : XT → XT . Then we say XAC is secure against
impersonation and substitution attacks if both εimp

XAC(λ) and εsubXAC(λ) are negligible.

Definition 3 (Strong and semi-unique XACs). An �-cross-authentication
code XAC is strong and semi-unique if it has the following two properties.

Strongness [15]. There exists a PPT algorithm ReSamp, which takes as input
T ∈ XT and i ∈ [�], with K1, · · · ,K� ←$ XGen(1λ), T ← XAuth(K1, · · · ,K�),
and outputs K̂i ∈ XK, denoted by K̂i ←$ ReSamp(T, i). Suppose for each fixed
(k1, · · · , k�−1, t) ∈ (XK)�−1 × XT , the statistical distance between K̂i and Ki,
conditioned on (K�=i, T ) = (k1, · · · , k�−1, t), is bounded by δ(λ), i.e.,

1
2

∑

k∈XK

∣
∣
∣
∣
∣
∣

Pr[K̂i = k | (K �=i, T ) = (k1, · · · , k�−1, t)]
−

Pr[Ki = k | (K �=i, T ) = (k1, · · · , k�−1, t)]

∣
∣
∣
∣
∣
∣
≤ δ(λ).

Then the code XAC is said to be δ(λ)-strong or strong if δ(λ) is negligible.
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Semi-uniqueness [17]. The code XAC is said to be semi-unique if XK = Kx ×
Ky, and given T ∈ XT and Kx ∈ Kx, there exists at most one Ky ∈ Ky such
that XVer((Kx,Ky), T ) = 1.

See the full version [21] for a concrete XAC instantiation by Fehr et al. in [6].

3 Key Encapsulation Mechanism

In this section, we recall the definition of key encapsulation mechanism and
formalize two new security notions for it.

Definition 4 (Key Encapsulation Mechanism). A KEM KEM is a tuple
of PPT algorithms (KGen,KEnc,KDec) such that, KGen(1λ) generates a (pub-
lic, secret) key pair (pkkem, skkem); KEnc(pkkem) returns an encapsulation ψ ∈ Ψ
and a key γ ∈ Γ , where Ψ is the encapsulation space and Γ is the key space;
KDec(skkem, ψ) deterministically decapsulates ψ with skkem to get γ ∈ Γ or ⊥.

We say KEM is perfectly correct if for all λ, Pr[KDec(skkem, ψ) = γ] = 1,
where (pkkem, skkem) ←$ KGen(1λ) and (ψ, γ) ←$ KEnc(pkkem).

3.1 mPR-CCCA Security for KEM

We formalize a new security notion for KEM, namely mPR-CCCA. Roughly
speaking, mPR-CCCA security guarantees pseudorandomness of multiple (ψ, γ)
pairs outputted by KEnc even if a constrained decapsulation oracle is provided.

Definition 5 (mPR-CCCA Security for KEM). Let A be an adversary
and b ∈ {0, 1} be a bit. Let KEM = (KGen,KEnc,KDec) be a KEM with encapsu-
lation space Ψ and key space Γ . Define the experiment Expmpr-ccca-b

KEM,A (λ) in Fig. 2.

Expmpr-ccca-b
KEM,A (λ): //b ∈ {0, 1}

(pkkem, skkem) ←$ KGen(1λ)
b′ ←$ AOenc(),Odec(·,·)(pkkem)
Return b′

Oenc():
(ψ0, γ0) ←$ Ψ × Γ

(ψ1, γ1) ←$ KEnc(pkkem)
ψenc ← ψenc ∪ {ψb}
Return (ψb, γb)

Odec(pred, ψ):
γ ← KDec(skkem, ψ)

Return

⎧⎨
⎩γ If

(
ψ /∈ ψenc∧
pred(γ) = 1

)
⊥ Otherwise

Fig. 2. Experiment used in the definition of mPR-CCCA security of KEM

In Expmpr-ccca-b
KEM,A (λ), pred : Γ ∪ {⊥} → {0, 1} denotes a PPT predicate and

pred(⊥) := 0. Let Qdec be the total number of decapsulation queries made by A,
which is independent of the environment without loss of generality. The uncer-
tainty of A is defined as uncertA(λ) := 1

Qdec

∑Qdec

i=1 Prγ←$Γ [predi(γ) = 1], where
predi is the predicate in the i-th Odec query.
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We say KEM has multi-encapsulation pseudorandom security against con-
strained CCA adversaries (mPR-CCCA security) if for each PPT adversary A
with negligible uncertainty uncertA(λ), the advantage Advmpr-ccca

KEM,A (λ) is negligible,

where Advmpr-ccca
KEM,A (λ) :=

∣
∣
∣Pr

[
Expmpr-ccca-0

KEM,A (λ) = 1
]

− Pr
[
Expmpr-ccca-1

KEM,A (λ) = 1
]∣
∣
∣.

Note that the afore-defined mPR-CCCA security implies multi-challenge
IND-CCCA security defined in [8].

3.2 RER Security of KEM

We define Random Encapsulation Rejection security for KEM which requires
the decapsulation of a random encapsulation is rejected overwhelmingly.

Definition 6 (Random Encapsulation Rejection Security for KEM).
Let KEM = (KGen, KEnc,KDec) be a KEM with encapsulation space Ψ and key
space Γ . Let A be a stateful adversary and b ∈ {0, 1} be a bit. Define the following
experiment Exprer-bKEM,A(λ) in Fig. 3.

Exprer-bKEM,A(λ): //b ∈ {0, 1}
(pkkem, skkem) ←$ KGen(1λ)
ψran ← ∅
(st, 1n) ←$ AOcha(·,·)(pkkem)
ψran = {ψ1, · · · , ψn} ←$ Ψn

b′ ←$ AOcha(·,·)(st, ψran)
Return b′

Ocha(pred, ψ):
If ψ /∈ ψran:

Return pred(KDec(skkem, ψ))
If b = 1:

Return pred(KDec(skkem, ψ))
Else:

Return 0

Fig. 3. Experiment used in the definition of RER property of KEM

In Exprer-bKEM,A(λ), pred : Γ ∪ {⊥} → {0, 1} denotes a PPT predicate and
pred(⊥) := 0. Let Qcha be the total number of Ocha queries made by A, which is
independent of the environment without loss of generality. The uncertainty of A
is defined as uncertA(λ) := 1

Qcha

∑Qcha

i=1 Prγ←$Γ [predi(γ) = 1], where predi is the
predicate in the i-th Ocha query.

We say KEM has Random Encapsulation Rejection security (RER security) if
for each PPT adversary A with negligible uncertainty uncertA(λ), the advantage

AdvrerKEM,A(λ) :=
∣
∣Pr

[
Exprer-0KEM,A(λ) = 1

]
− Pr

[
Exprer-1KEM,A(λ) = 1

]∣
∣ is negligible.

4 SIM-SO-CCA Secure PKE from KEM

4.1 PKE Construction

In Fig. 4, we recall the general framework for constructing SIM-SO-CCA secure
PKE proposed in [19]. A small difference from [19] is that we make use of hash
function H1 to convert the key space of KEM to the key space of XAC.
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Gen(1λ):
(pkkem, skkem) ←$ KGen(1λ)
H1 ←$ H1(1λ)
H2 ←$ H2(1λ)
Kx ←$ Kx

pk ← (pkkem,H1,H2, K
x)

sk ← (pk, skkem)
Return (pk, sk)

Enc(pk,m ∈ {0, 1}�):
For j ← 1 to �:

If mj = 1:
(ψj , γj) ←$ KEnc(pkkem)
Kj ← H1(γj)

Else:
ψj ←$ Ψ

Kj ←$ XK
Ky ← H2(ψ1, · · · , ψ�)
K�+1 ← (Kx, Ky)
T ← XAuth(K1, · · · , K�+1)

Return C ← (ψ1, · · · , ψ�, T )

Dec(sk, C = (ψ1, · · · , ψ�, T )):
m′ ← 0�

Ky′ ← H2(ψ1, · · · , ψ�)
K′

�+1 ← (Kx, Ky′)
If XVer(K′

�+1, T ) = 1:
For j ← 1 to �:

γ′
j ← KDec(skkem, ψj)

K′
j ← H1(γ′

j)
m′

j ← XVer(K′
j , T )

Return m′

Fig. 4. Construction of PKE = (Gen,Enc,Dec).

Ingredients. This construction uses the following ingredients.

• KEM = (KGen,KEnc,KDec) with key space Γ & ESE encapsulation space Ψ .
• (� + 1)-XAC XAC with ESE key space XK = Kx × Ky.
• Hash function H1 : Γ → XK generated by hash function generator H1(1λ).
• Hash function H2 : Ψ � → Ky generated by hash function generator H2(1λ).

4.2 Tight Security Proof of PKE

In this subsection, we prove the SIM-SO-CCA security of PKE with tight reduc-
tion to the security of KEM. We state our main result in the following theorem.

Theorem 1. Suppose the KEM KEM is mPR-CCCA and RER secure, the
(� + 1)-cross-authentication code XAC is δ(λ)-strong, semi-unique, and secure
against impersonation and substitution attacks; H1 is universal; H2 outputs col-
lision resistant function. Then the PKE scheme PKE constructed in Fig. 4 is
SIM-SO-CCA secure. More precisely, for each PPT adversary A = (A1,A2,A3)
against PKE in the SIM-SO-CCA real experiment, for each PPT n-message sam-
pler M, and each PPT relation R, we can construct a stateful PPT simulator
S = (S1,S2,S3) for the SIM-SO-CCA ideal experiment and PPT adversaries
B1,B2,B3 with T(B1) ≈ T(B2) ≈ T(B3) ≤ T(A) + Qdec · poly(λ), such that

Advso-ccaPKE,A,S,n,M,R(λ) ≤ Advmpr-ccca
KEM,B2

(λ) + AdvrerKEM,B3
(λ) + � · Qdec · εsubXAC(λ)

+ 2AdvcrH,B1
(λ) + (n�) · (δ(λ) + Δ), (1)

where Qdec denotes the total number of A’s decryption oracle queries, poly(λ) is
a polynomial independent of T(A) and Δ = 1

2 ·
√

|XK|/|Γ |.

Remark. If we instantiate the construction with the information-theoretically
secure XAC in [6] and choose proper set XK and Γ , then Δ, δ(λ), εimp

XAC(λ) and
εsubXAC(λ) are all exponentially small in λ. Then (1) turns out to be
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S1(1λ):
(pk, sk) ←$ SimKeyGen(1λ)

(α, a1) ←$ ADec(·)
1 (pk)

Return (α, s1 = (pk, sk, a1))

S2(s1, (1|mi|)i∈[n]):
(C,R,K) ←$ SimCtGen(pk)

(I, a2) ←$ ADec/∈C(·)
2 (a1,C)

Return (I, s2 = (s1, a2, I,C,R,K))

S3(s2,mI):

R̂I ←$ SimOpen(I,mI ,C,R,K)

outA ←$ ADec/∈C(·)
3 (a2,mI , R̂I)

Return outA

SimKeyGen(1λ):
(pkkem, skkem) ←$ KGen(1λ),H1 ←$ H1(1λ),H2 ←$ H2(1λ), Kx ←$ Kx

pk ← (pkkem,H1,H2, K
x), sk ← (pk, skkem)

Return (pk, sk)

SimCtGen(pk):
For i ← 1 to n:

For j ← 1 to �:
ri,j ←$ RKEnc

(ψi,j , γi,j) ← KEnc(pkkem; ri,j)
Ki,j ← H1(γi,j)

Ky
i ← H2(ψi,1, · · · , ψi,�)

Ki,�+1 ← (Kx, Ky
i )

Ti ← XAuth(Ki,1, · · · , Ki,�+1)
Ci ← (ψi,1, · · · , ψi,�, Ti)
Ri ← (ri,1, · · · , ri,�)
Ki ← (Ki,1, · · · , Ki,�+1)

Return

⎛
⎝C

R
K

⎞
⎠ =

⎛
⎝C1, · · · ,Cn

R1, · · · ,Rn

K1, · · · ,Kn

⎞
⎠

SimOpen(I,mI ,C,R,K):
For i ∈ I:

For j ← 1 to �:
If mi,j = 1:

r̂i,j ← ri,j

Else:

K̂i,j ←$ ReSamp(Ti, j)

r̂K
i,j ←$ Sample−1

XK(K̂i,j)

r̂ψ
i,j ←$ Sample−1

Ψ (ψi,j)

r̂i,j ← (r̂K
i,j , r̂

ψ
i,j)

R̂i ← (r̂i,1, · · · , r̂i,�)

Return R̂I = (R̂i)i∈I

Fig. 5. Construction of simulator S = (S1, S2, S3) for Expso-cca-idealS,n,M,R (λ).

Advso-ccaPKE,A,S,n,M,R(λ) ≤ Advmpr-ccca
KEM,B2

(λ) + AdvrerKEM,B3
(λ) + 2AdvcrH,B1

(λ) + 2−Ω(λ).

If the underlying KEM has tight mPR-CCCA security and RER security, then
our PKE turns out to be tightly SIM-SO-CCA secure.
Proof of Theorem 1. For each PPT adversary A = (A1,A2,A3), we can construct
a stateful PPT simulator S = (S1,S2,S3) as shown in Fig. 5.

The differences between the real and the ideal experiments lie in two aspects.
The first is how the challenge ciphertext vector is generated and the second is how
the corrupted ciphertexts are opened. In other words, the algorithms SimCtGen
and SimOpen used by the simulator differ from the real experiment. In the proof,
we focus on these two algorithms and gradually change them through a series of
games starting with game G0 and ending with game G9, with adjacent games
being proved to be computationally indistinguishable. The full set of games are
illustrated in Fig. 6.

Game G0. Game G0 is exactly the ideal experiment Expso-cca-idealS,n,M,R (λ). Hence

Pr
[
Expso-cca-idealS,n,M,R (λ) = 1

]
= Pr0[G ⇒ 1]. (2)

Game G0 − G1. The only difference between G1 and G0 is that a collision check
for H2 is added in G1 and G1 aborts if a collision is found. More precisely, we use
a set Q to log all the (input, output) pairs for H2 in algorithm SimCtGen. Then in
the Dec oracle, if there exists a usage of H2 such that its output collides with some
output in Q but with different inputs, then a collision for H2 is found and the
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Expso-cca-idealS,n,M,R (λ):
(pk, sk) ←$ SimKeyGen(1λ)

(α, a1) ←$ ADec(·)
1 (pk)

m ←$ M(α)
(C,R,K) ←$ SimCtGen(pk)

(I, a2) ←$ ADec/∈C(·)
2 (a1,C)

R̂I ←$ SimOpen(I,mI ,C,R,K)

outA ←$ ADec/∈C(·)
3 (a2,mI , R̂I)

Return R(m, I, outA)

SimCtGen(pk):

G0 G1, G2 G3
�
� �G4 − G7

�
�

�
�G8 G9

For i ← 1 to n:
For j ← 1 to �:

If mi,j = 0:

rψ
i,j ←$ RSampleΨ

ψi,j ← SampleΨ (1
λ; rψ

i,j)
γi,j ←$ Γ

Ki,j ← H1(γi,j)	




�

�
rK

i,j ←$ RSampleXK
Ki,j ← SampleXK(1λ; rK

i,j)

ri,j ← (rK
i,j , r

ψ
i,j)

Else:
ri,j ←$ RKEnc

(ψi,j , γi,j) ← KEnc(pkkem; ri,j)
Ki,j ← H1(γi,j)

Ky
i ← H2(ψi,1, · · · , ψi,�)

Q ← Q ∪ {(Ky
i , (ψi,1, · · · , ψi,�))}

Ki,�+1 ← (Kx, Ky
i )

Ti ← XAuth(Ki,1, · · · , Ki,�+1)
Ci ← (ψi,1, · · · , ψi,�, Ti)
Ri ← (ri,1, · · · , ri,�)
Ki ← (Ki,1, · · · , Ki,�+1)

Return

⎛
⎝C

R
K

⎞
⎠ =

⎛
⎝C1, · · · ,Cn

R1, · · · ,Rn

K1, · · · ,Kn

⎞
⎠

SimOpen(I,mI ,C,R,K):
G0 − G6 G7, G8 G9

For i ∈ I:
For j ← 1 to �:

If mi,j = 1:
r̂i,j ← ri,j

Else:

K̂i,j ←$ ReSamp(Ti, j)

r̂K
i,j ←$ Sample−1

XK(K̂i,j)

r̂K
i,j ←$ Sample−1

XK(Ki,j)
r̂ψ

i,j ←$ Sample−1
Ψ (ψi,j)

r̂i,j ← (r̂K
i,j , r̂

ψ
i,j)

R̂i ← (r̂i,1, · · · , r̂i,�)

R̂I ← RI

Return R̂I

Dec/∈C(C = (ψ1, · · · , ψ�, T )):

G0 G1 G2, G3, G4
�
� �G5 G6, G7 G8, G9

If C ∈ C:
Return ⊥

m ← 0�

Ky′ ← H2(ψ1, · · · , ψ�)

If
[ ∃(K̂y, (ψ̂1, · · · , ψ̂�)) ∈ Q s.t.
Ky′ = K̂y ∧ (ψ1, · · · , ψ�) 	= (ψ̂1, · · · , ψ̂�)

]
:

Abort game //Find a collisoin for H2

Q ← Q ∪ {(Ky′, (ψ1, · · · , ψ�))}
K′

�+1 ← (Kx, Ky′)
If XVer(K′

�+1, T ) = 1:
For η ← 1 to �:

γ′
η ← KDec(skkem, ψη)

If
[∃(i, j) ∈ [n] × [�] s.t.
mi,j = 0 ∧ ψη = ψi,j

]
:

m′
η ← XVer(H1(γ′

η), T )

m′
η ← XVer(Ki,j , T )�

� �m′
η ← 0

Else:
m′

η ← XVer(H1(γ′
η), T )

Return m′

SimKeyGen(1λ): G0 G1 − G7 G8, G9

(pkkem, skkem) ←$ KGen(1λ),H1 ←$ H1(1λ),H2 ←$ H2(1λ), Kx ←$ Kx

pk ← (pkkem,H1,H2, K
x), sk ← (pk, skkem) ← ∅

Return (pk, sk)

Fig. 6. Games G0 − G9 in the proof of Theorem 1.

game G1 aborts immediately. It is straightforward to build a PPT adversary B1

with T(B1) ≈ T(A) + Qdec · poly(λ), where poly(λ) is a polynomial independent
of T(A), such that,

|Pr0[G ⇒ 1] − Pr1[G ⇒ 1]| ≤ AdvcrH,B1
(λ). (3)
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Game G1 − G2. G2 is essentially the same as G1 except for one conceptual
change in the Dec oracle. More precisely, for a Dec(C = (ψ1, · · · , ψ�, T )) query
such that ∃(i, j) ∈ [n] × [�], η ∈ [�] s.t. mi,j = 0 ∧ ψη = ψi,j ,

• in G1, we proceed exactly the same as the decryption algorithm, i.e.,

setm′
η ← XVer(H1(γ′

η), T ) where γ′
η = KDec(skkem, ψη);

• in G2, we set m′
η ← XVer(Ki,j , T ).

Since ψη = ψi,j , γ′
η = KDec(skkem, ψη) and (ψi,j , γi,j) is the output of

KEnc(pkkem), we have that γ′
η = γi,j due to the perfect correctness of KEM.

Then Ki,j = H1(γi,j) = H1(γ′
η). Thus the difference between G1 and G2 is only

conceptual, and it follows

Pr1[G ⇒ 1] = Pr2[G ⇒ 1]. (4)

Game G2 − G3. G3 is almost the same as G2 except for one change in the
SimCtGen algorithm.

• In G2, all (ψi,j , γi,j) pairs are the output of KEnc(pkkem).
• In G3, for mi,j = 1, (ψi,j , γi,j) pairs are the output of KEnc(pkkem);

for mi,j = 0, (ψi,j , γi,j) pairs are uniformly selected from Ψ × Γ .

We will reduce the indistinguishability between game G2 and G3 to the mPR-
CCCA security of KEM. Given A = (A1,A2,A3), we can build a PPT adversary
B2 with T(B2) ≈ T(A) and uncertainty uncertB2(λ) ≤ εimp

XAC(λ) + Δ such that

|Pr2[G ⇒ 1] − Pr3[G ⇒ 1]| ≤ Advmpr-ccca
KEM,B2

(λ). (5)

On input pkkem, B2 selects H1,H2 and Kx itself and embeds pkkem in pk =
(pkkem,H1, H2,K

x). In the first phase, B2 calls ADec(·)
1 (pk). To respond the

decryption query Dec(C = (ψ1, · · · , ψ�, T )) submitted by A, B2 simulates Dec
until it needs to call KDec(skkem, ψη) to decapsulate ψη. Since B2 does not pos-
sess skkem relative to pkkem, B2 is not able to invoke KDec itself. Then B2 submits
a Odec(pred, ψη) query to its own oracle Odec where pred(·) := XVer(H1(·), T ).
Clearly, this predicate is a PPT one. If the response of Odec is ⊥, B2 sets m′

η to
0. Otherwise B2 sets m′

η to 1.

Case 1: Odec(XVer(H1(·), T ), ψη) = ⊥. This happens if and only if

ψη ∈ ψenc ∨ XVer(H1(KDec(skkem, ψη)), T ) = 0.

In the first phase, B2 has not submitted any Oenc query yet and ψenc is empty.
So ψη /∈ ψenc. In this case, Odec(XVer(H1(·), T ), ψη) = ⊥ if and only if

XVer(H1(KDec(skkem, ψη)), T ) = 0.

Therefore B2 perfectly simulates the Dec oracle in G2(G3) by setting m′
η ← 0.
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Case 2: Odec(XVer(H1(·), T ), ψη) �= ⊥. This happens if and only if

ψη /∈ ψenc ∧ XVer(H1(KDec(skkem, ψη)), T ) = 1.

For the same reason as case 1, the condition ψη /∈ ψenc always holds. In this case,
Odec(XVer(H1(·), T ), ψη) �= ⊥ if and only if XVer(H1(KDec(skkem, ψη)), T ) = 1.
Therefore B2 perfectly simulates the Dec oracle in G2(G3) by setting m′

η ← 1.
In either case, B2 can perfectly simulate the Dec oracle for A1. At the end of

this phase, B2 gets A1’s output (α, a1). Then B2 calls m ←$ M(α) and simulates
algorithm SimCtGen(pk).

– If mi,j = 1, B2 proceeds just like game G2(G3), i.e., (ψi,j , γi,j) ←$

KEnc(pkkem) and set Ki,j ← H1(γi,j).
– If mi,j = 0, B2 submits an Oenc() query to its own oracle and gets the response

(ψ, γ) (ψ is added into set ψenc). Then B2 sets (ψi,j , γi,j) ← (ψ, γ).
If b = 1, (ψ, γ) is the output of KEnc(pkkem), B2 perfectly simulates
SimCtGen(pk) to generate challenge ciphertexts C in G2.
If b = 0, (ψ, γ) is uniformly over Ψ × Γ , B2 perfectly simulates SimCtGen(pk)
to generate challenge ciphertexts C in G3.

In the second phase, B2 calls ADec/∈C(·)
2 (a1,C) to get (I, a2). Upon an decryption

query Dec/∈C(C = (ψ1, · · · , ψ�, T )) submitted by A2, B2 responds almost in the
same way as in the first phase, except that B2 has to deal with the case of
∃ψη ∈ ψenc. This case does happen: even if C = (ψ1, · · · , ψ�, T ) /∈ C, it is still
possible that ∃ψη ∈ {ψi}i∈[�] with ψη ∈ ψenc. In this case, there is no chance for
B2 to submit an Odec(pred, ψη) query for a useful response because the response
will always be ⊥. However, it does not matter. By the specification of G2(G3),
m′

η should be set to the output of XVer(Ki,j , T ) which B2 can perfectly do.
Note that the execution of algorithm SimOpen in game G2(G3) does not need

all information about R. Only those randomnesses with respect to mi,j = 1 are
needed. Now that B2 does have I,mI ,C,K and part of R (for mi,j = 1), it can
call SimOpen(I,mI ,C,R,K) to get R̂I .

In the third phase, B2 calls ADec/∈C(·)
3 (a2,mI , R̂I) to get outA. The Dec/∈C

query submitted by A in this phase is responded by B2 in the same way as in
the second phase. Finally, B2 outputs R(m, I, outA).

According to the above analysis, B2 perfectly simulates G2 for A if b = 1 and
perfectly simulates G3 for A if b = 0. Moreover, for γ ←$ Γ , H1(γ) is Δ-close to
uniform by leftover hash lemma since H1 is universal. Then

Pr
γ←$Γ

[pred(γ) = 1] = Pr
γ←$Γ

[XVer(H1(γ), T ) = 1] ≤ εimp
XAC(λ) + Δ.

By the definition of uncertainty, we have.

uncertB2(λ) ≤ εimp
XAC(λ) + Δ. (6)

Thus (5) follows.

Game G3 − G4. G4 is almost the same as G3 except for one change in the
SimCtGen algorithm. In the SimCtGen algorithm, if mi,j = 0,
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• in G3, Ki,j ← H1(γi,j) for γi,j ←$ Γ ;
• in G4, Ki,j is uniformly selected from XK.

Since H1 is universal, by leftover hash lemma and a union bound, we have
that

|Pr3[G ⇒ 1] − Pr4[G ⇒ 1]| ≤ (n�) · Δ. (7)

Game G4 − G5. G5 is almost the same as G4 except for one change in the Dec
oracle. More precisely, to reply a Dec/∈C(C = (ψ1, · · · , ψ�, T )) query such that
∃(i, j) ∈ [n] × [�], η ∈ [�] s.t. mi,j = 0 ∧ ψη = ψi,j ,

• in G4, we set m′
η ← XVer(Ki,j , T );

• in G5, we set m′
η ← 0 directly.

Suppose ψη = ψi,j ∈ Ci = (ψi,1, · · · , ψi,�, Ti) where Ti = XAuth(Ki,1, · · · ,
Ki,�+1). There are two cases according to whether T = Ti.

Case 1: T = Ti. In this case, since C /∈ C, we have that (ψ1, · · · , ψ�) �=
(ψi,1, · · · , ψi,�). Note that Ky

i = H2(ψi,1, · · · , ψi,�) and Ky′ = H2(ψ1, · · · , ψ�). If
Ky

i = Ky′, a collision for H2 occurs, both G4 and G5 abort. Otherwise, we must
have Ky′ �= Ky

i , hence K ′
�+1 = (Kx,Ky′) �= (Kx,Ky

i ) = Ki,�+1. Since XAC is
semi-unique and XVer(Ki,�+1, T ) = 1, it holds that XVer(K ′

�+1, T ) �= 1 which
implies that m′

η = 0. In this case, the responses of Dec/∈C make no difference in
G4 and G5.

Case 2: T �= Ti. Note that all the information about Ki,j is leaked to A only
through Ti in game G4. Thus, the probability that XVer(Ki,j , T ) = 1 for T �= Ti

will be no more than εsubXAC(λ).
By a union bound, we have that

|Pr4[G ⇒ 1] − Pr5[G ⇒ 1]| ≤ � · Qdec · εsubXAC(λ). (8)

Game G5 − G6. G6 is almost the same as G5 except for one change in the Dec
oracle. More precisely, for a Dec(C = (ψ1, · · · , ψ�, T )) query such that ∃(i, j) ∈
[n] × [�] s.t. mi,j = 0 ∧ ψη = ψi,j for any η ∈ [�],

• in G5, we set m′
η ← 0 directly;

• in G6, we proceed exactly the same as the decryption algorithm, i.e., setting
m′

η ← XVer(H1(γ′
η), T ), where γ′

η = KDec(skkem, ψη).

We will reduce the indistinguishability between game G5 and G6 to the RER
security of KEM. More precisely, we can build a PPT adversary B3 with T(B3) ≈
T(A) and with uncertainty uncertB3(λ) ≤ εimp

XAC(λ) + Δ such that

|Pr5[G ⇒ 1] − Pr6[G ⇒ 1]| ≤ AdvrerKEM,B3
(λ). (9)

On input pkkem, B3 selects H1,H2 and Kx itself and embeds pkkem in
pk = (pkkem,H1, H2,K

x). In the first phase, B3 calls ADec(·)
1 (pk). To respond the



78 L. Lyu et al.

decryption query Dec(C = (ψ1, · · · , ψ�, T )) submitted by A, B3 simulates Dec
until it needs to call KDec(skkem, ψη) to decapsulate ψη. Since B3 does not hold
skkem relative to pkkem, B3 is not able to invoke KDec itself. Then B3 submits
a Ocha(pred, ψ) query to its own oracle Ocha where pred(·) := XVer(H1(·), T )
and ψ = ψη. Clearly, this predicate is a PPT one. Since ψran is empty set
in this phase, the condition ψ /∈ ψran will always hold and B3 will get a bit
β = pred(KDec(skkem, ψ)) = XVer(H1(KDec(skkem, ψη)), T ) in return. Then B3

sets m′
η ← β and perfectly simulates Dec for A in this phase.

At the end of this phase, B3 gets A’s output (α, a1). Then B3 calls m ←$

M(α) and then simulates algorithm SimCtGen(pk) as follows. B3 first outputs 1n�

and get ψran = {ψran
1 , · · · , ψran

n� } which are n� random encapsulations. During
the generation of the challenge ciphertexts, B3 sets (ψi,j ,Ki,j) according to m.

– If mi,j = 1, B3 sets (ψi,j , γi,j) ←$ KEnc(pkkem) and sets Ki,j ← H1(γi,j).
– If mi,j = 0, B3 sets ψi,j ← ψran

(i−1)�+j and Ki,j ←$ XK. Since (i, j) ∈ [n] × [�],
the subscript (i − 1)� + j ∈ {1, · · · , n�} is well defined.

Then B3 proceeds just like algorithm SimCtGen(pk) in game G5(G6).
In the second phase, B3 calls ADec/∈C(·)

2 (a1,C) to get (I, a2). To respond the
decryption query Dec/∈C(C = (ψ1, · · · , ψ�, T )) submitted by A, B3 proceeds
just like game G5(G6). When a decapsulation of ψη is needed, B3 submits a
Ocha(pred, ψη) query to its own oracle Ocha where pred(·) := XVer(H1(·), T ).
After that, B3 will get a bit β in return and B3 sets m′

η ← β. Note that

– In case of ψη /∈ ψran, m′
η = XVer(H1(KDec(skkem, ψη)), T ), which is exactly

how m′
η is computed in both game G5 and G6.

– In case of ψη ∈ ψran, there must exist (i, j) ∈ [n]×[�] s.t. mi,j = 0 ∧ ψη = ψi,j .
Thus m′

η = XVer(H1(KDec(skkem, ψη)), T ) if b = 1 and m′
η = 0 if b = 0. The

former case is exactly how m′
η is computed in game G6 and the latter case is

exactly how m′
η is computed in game G5.

As a result, B3 perfectly simulates Dec/∈C in the second phase of game G5 for
A if b = 0 and perfectly simulates Dec/∈C in the second phase of game G6 for A
if b = 1. After B3 gets (I, a2), B3 is able to call SimOpen(I,mI ,C,R,K) to get
R̂I for the similar reason as in the proof of G2 − G3.

In the third phase, B3 calls ADec/∈C(·)
3 (a2,mI , R̂I) to get outA. The Dec/∈C

query submitted by A in this phase is responded using the same way as in the
second phase. Finally, B3 outputs R(m, I, outA).

Thus B3 perfectly simulates G6 for A if b = 1 and perfectly simulates G5 for
A if b = 0. Similar to (6), uncertB3(λ) ≤ εimp

XAC(λ) + Δ. Thus (9) follows.

Game G6 − G7. G7 is almost the same as G6 except for one change in the
SimOpen algorithm. More precisely,

• in G6, r̂K
i,j is the output of Sample−1

XK(K̂i,j) where K̂i,j ←$ ReSamp(Ti, j);
• in G7, r̂K

i,j is the output of Sample−1
XK(Ki,j) for the original Ki,j generated in

algorithm SimCtGen.
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In game G6 and G7, before the invocation of algorithm SimOpen, only Ti leaks
information about Ki,j to A when mi,j = 0. Since XAC is δ(λ)-strong, the sta-
tistical distance between the resampled K̂i,j ←$ ReSamp(Ti, j) and the original
Ki,j is at most δ(λ). By a union bound, we have that

|Pr6[G ⇒ 1] − Pr7[G ⇒ 1]| ≤ (n�) · δ(λ). (10)

Game G7 − G8. G8 is almost the same as G7 except for the dropping of the
collision check added in G1. Similar to the proof of G0 − G1, we can show that

|Pr7[G ⇒ 1] − Pr8[G ⇒ 1]| ≤ AdvcrH,B1
(λ). (11)

Game G8 − G9. G9 is almost the same as G8 except for one change in SimOpen.
More precisely,

• in G8, the opened randomness is a “reverse sampled” randomness, i.e., r̂K
i,j ←$

Sample−1
XK(Ki,j) and r̂ψ

i,j ←$ Sample−1
Ψ (ψi,j);

• in G9, the opened randomness (r̂K
i,j , r̂

ψ
i,j) is changed to be the original ran-

domness used to sample Ki,j and ψi,j , i.e., (r̂K
i,j , r̂

ψ
i,j) ← (rK

i,j , r
ψ
i,j).

This change is conceptual since Ψ and XK are ESE domains. Thus

Pr8[G ⇒ 1] = Pr9[G ⇒ 1]. (12)

Game G9. Game G9 is exactly the real experiment Expso-cca-realPKE,A,n,M,R(λ). Thus

Pr9[G ⇒ 1] = Pr
[
Expso-cca-realPKE,A,n,M,R(λ) = 1

]
. (13)

Finally, Theorem 1 follows from (2, 3, 4, 5, 7, 8, 9, 10, 11, 12) and (13). �

5 Instantiations

We give two instantiations of KEM with mPR-CCCA security and RER security.

5.1 KEM from MDDH

We present a KEM which is extracted from the multi-challenge IND-CCA secure
PKE proposed by Gay et al. in [7]. The KEM KEMmddh = (KGen,KEnc,KDec)
is shown in Fig. 7.

Suppose G = (G, q, P ) ←$ GGen(1λ) and H is a hash generator outputting
functions H : Gk → {0, 1}λ. For a vector y ∈ Z

3k
q , we use y ∈ Z

k
q to denote the

upper k components and y ∈ Z
2k
q to denote the lower 2k components.

Perfectly correctness of KEMmddh is straightforward. See the full version [21]
for the proofs of its tight mPR-CCCA security and tight RER security.
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KGen(1λ) :
M ←$ U3k,k,H ←$ H(1λ).
k1,0, · · · ,kλ,1 ←$ Z

3k
q

pkkem ←
( G,H, [M]
([M�kj,β ])0≤β≤1

1≤j≤λ

)
skkem ← (kj,β)1≤j≤λ,0≤β≤1

Return (pkkem, skkem)

KEnc(pkkem) :
r ←$ Z

k
q , [y] ← [M]r

τ ← H([y])

γ ← r� · ∑λ
j=1[M

�kj,τj ]
Return (ψ ← [y], γ)
//Ψ = G

3k, Γ = G

KDec(skkem, ψ) :
ψ = [y]
τ ← H([y])

kτ ← ∑λ
j=1 kj,τj

γ ← [y�] · kτ

Return γ

Fig. 7. The KEM KEMmddh = (KGen,KEnc,KDec) extracted form [7].

5.2 KEM from Qualified Proof System with Compact Public Key

First we recall the definition of a proof system described in [8].

Definition 7 (Proof System). Let L = {Lpars} be a family of languages
indexed by public parameters pars, with Lpars ⊆ Xpars and an efficiently com-
putable witness relation R. A proof system PS = (PGen,PPrv,PVer,PSim) for L
consists of a tuple of PPT algorithms.

– PGen(pars). It outputs a public key ppk and a secret key psk.
– PPrv(ppk, x, w). On input a statement x ∈ L and a witness w with R(x,w) =

1, it deterministically outputs a proof Π ∈ Π and a key K ∈ K.
– PVer(ppk, psk, x,Π). On input ppk, psk, x ∈ X and Π, it deterministically

outputs b ∈ {0, 1} together with a key K ∈ K if b = 1 or ⊥ if b = 0.
– PSim(ppk, psk, x). Given ppk, psk, x ∈ X , it deterministically outputs a proof

Π and a key K ∈ K.

Next we recall the definition of a qualified proof system.

Definition 8 (Qualified Proof System [8]). Let PS = (PGen,PPrv,PVer,
PSim) be a proof system for a family of languages L = Lpars. Let Lsnd = {Lsnd

pars}
be a family of languages, such that Lpars ⊆ Lsnd

pars. We say that PS is Lsnd-qualified
, if the following properties hold.

– Completeness: For all possible public parameters pars, for all statements
x ∈ L and all witnesses w such that R(x,w) = 1, Pr[PVer(ppk, psk, x,Π)] = 1,
where (ppk, psk) ←$ PGen(pars) and (Π,K) ←$ PPrv(ppk, x, w).

– Perfect zero-knowledge: For all possible public parameters pars, all key
pairs (ppk, psk) in the output range of PGen(pars), all statements x ∈ L and all
witnesses w with R(x,w) = 1, we have PPrv(ppk, x, w) = PSim(ppk, psk, x).

– Unique of the proofs: For all possible public parameters pars, all key pairs
(ppk, psk) in the output range of PGen(pars) and all statements x ∈ X , there
exists at most one Π∗ such that PVer(ppk, psk, x,Π∗) = 1.
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Expcsnd
Lsnd,PS,A(λ):

win = 0
(ppk, psk) ←$ PGen(pars)
AOsim(),Over(·,·,·)(ppk)

Osim():
x ←$ Lsnd\L
(Π, K) ← PSim(psk, x)
Return (x, Π, K)

Over(x, Π, pred):
(v, K) ← PVer(psk, x, Π)
If v = 1 ∧ pred(K) = 1:

If x ∈ L:
Return K

Else:

win =

{
0 If x ∈ Lsnd

1 Otherwise
Abort game

Return ⊥

Fig. 8. Experiment used in the definition of constrained Lsnd-soundness of PS.

– Constrained Lsnd-Soundness: For any stateful PPT adversary A, con-
sider the soundness experiment in Fig. 8 (where PSim and PVer are implicitly
assumed to have access to ppk).
Let Qver be the total number of Over queries, which is independent of the
environment without loss of generality. Let predi : K ∪ {⊥} → {0, 1} be the
predicate submitted by A in the i-th query, where predi(⊥) = 0 for all i. The
uncertainty of A is defined as

uncertA(λ) :=
1

Qver

Qver∑

i=1

PrK←$K[predi(K) = 1].

We say constrained Lsnd-soundness holds for PS if for each PPT adversary
A with negligible uncertainty, AdvcsndLsnd,PS,A(λ) is negligible, where

AdvcsndLsnd,PS,A(λ) := Pr[win = 1 in Expcsnd
Lsnd,PS,A(λ)]

We omit the definition for Lsnd-indistinguishability of two proof systems
and the definition for L̃snd-extensibility of a proof system (See [8] and also our
full version [21] for details). Here we define a new property for qualified proof
system, which stresses that the simulated proof Π for a random x ∈ Lsnd\L is
pseudorandom when providing verification oracle for only x ∈ L.

Definition 9 (Pseudorandom Simulated Proof of Qualified Proof Sys-
tem). Let PS = (PGen,PPrv,PVer,PSim) be a Lsnd-qualified proof system for
a family of languages L. Let A be a stateful adversary and b ∈ {0, 1} be a bit.
Define the following experiment Exppr-proof-bPS,A (λ) in Fig. 9. We say PS has pseu-
dorandom simulated proof if for each PPT adversary A, the advantage

Advpr-proofPS,A (λ) :=
∣
∣
∣Pr

[
Exppr-proof-0PS,A (λ) = 1

]
− Pr

[
Exppr-proof-1PS,A (λ) = 1

]∣
∣
∣ is negl.
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Exppr-proof-b
PS,A (λ)://b ∈ {0, 1}

(ppk, psk) ←$ PGen(pars)
b′ ←$ AOsim(),Over(·,·)(ppk)
Return b′

Osim():
x ←$ Lsnd\L
Π0 ←$ Π
(Π1, K) ← PSim(psk, x)
Return (x, Πb)

Over(x, Π):
(v, K) ← PVer(psk, x, Π)
If x /∈ L ∨ v = 0:

Return ⊥
Return K

Fig. 9. Experiment used in the definition of pseudorandom simulated proof of PS.

The Qualified Proof System in [8]. First we explain how the public param-
eters pars are sampled. Fix some k ∈ N, invoke G ←$ GGen(1λ) where
G = (G, q, P ). Let D2k,k be a fixed matrix distribution, we sample A ←$ D2k,k

and A0 ←$ U2k,k where A and A0 are both full rank. Additionally select
A1 ∈ Z

2k×k
q according to U2k,k with the restriction A0 = A1. Let H0 and H1

be universal hash function generators returning functions h0 : Gk2+1 → Z
k×k
q

and h1 : G
k+1 → Z

k
q respectively. Let h0 ←$ H0 and h1 ←$ H1. Let

pars ← (k,G, [A], [A0], [A1], h0, h1) be the public parameters and we assume pars
is an implicit input of all algorithms. The languages are defined as L:= span([A]),
Lsnd := span([A]) ∪ span([A0]) and L̃snd := span([A]) ∪ span([A0]) ∪ span([A1]).

The construction3 of Lsnd-qualified proof system PS = (PGen,PPrv,PVer,
PSim) in [8] is shown in Fig. 10.

According to Theorem 1 of [8], PS is Lsnd-qualified and L̃snd-extensible, both
admitting tight security reductions to the MDDH assumption. More precisely,
AdvcsndLsnd ,PS,A(λ),Advcsnd

˜Lsnd,˜PS,A(λ) ≤ 2k·Advmddh
D2k,k,GGen,B(λ)+2−Ω(λ), AdvPS-ind

Lsnd ≤
2−Ω(λ).

We now prove that PS has pseudorandom simulated proof with Theorem2.

Theorem 2. The Lsnd-qualified proof system PS in Fig. 10 has pseudorandom
simulated proof if Uk-MDDH assumption holds. Specifically, for each PPT adver-
sary A, we can build a PPT adversary B with T(B) ≤ T(A) + (Qsim + Qver) ·
poly(λ) such that the advantage

Advpr-proofPS,A (λ) ≤ 2Advmddh
Uk,GGen,B(λ) + 2−Ω(λ).

where Qsim(Qver) is the total number of Osim(Over) queries made by A and
poly(λ) is a polynomial independent of T(A).

Proof of Theorem 2.
For a fixed PPT adversary A, consider an experiment Exppr-proofPS,A (λ) which

first uniformly selects b ←$ {0, 1}, then calls Exppr-proof-bPS,A (λ) and gets its output
b′. It is straightforward that
3 This construction in Fig. 10 is an updated version of [8] from a personal communi-

cation.
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PGen(pars):

KX ←$ Z
(k2+1)×2k
q

Ky ←$ Z
(k+1)×2k
q

[PX] ← KX[A] ∈ G
(k2+1)×k

[Py] ← Ky[A] ∈ G
(k+1)×k

ppk ← ([PX], [Py])
psk ← (KX,Ky)

Return (ppk, psk)

PSim(ppk, psk, [c]):
X ← h0(KX[c])
y ← h1(Ky[c])
[π] ← [A0] · X + [c] · y�

[K] ← [A0] · X + [c] · y�

[κ] ← trace([K])
Return ([π], [κ])

PPrv(ppk, [c], r):
X ← h0([PX]r) ∈ Z

k×k
q

y ← h1([Py]r) ∈ Z
k
q

[π] ← [A0] · X + [c] · y� ∈ G
k×k

[K] ← [A0] · X + [c] · y� ∈ G
k×k

[κ] ← trace([K]) ∈ G

Return ([π], [κ])

PVer(ppk, psk, [c], [π∗]):
([π], [κ]) ← PSim(ppk, psk, [c])

Return

{
(1, [κ]) If [π] = [π∗]
(0, ⊥) Otherwise

Fig. 10. Construction of the Lsnd-qualified proof system PS = (PGen,PPrv,PVer,
PSim) in [8].

Advpr-proofPS,A (λ) = 2
∣
∣
∣
∣Pr[b′ = b in Exppr-proofPS,A (λ)] − 1

2

∣
∣
∣
∣ .

Now we rewrite Exppr-proofPS,A (λ) in Fig. 11 and make changes to it gradually
through game G0 to G3. Games G0 − G3 are defined as follows.

Game G0. This game is the same as Exppr-proofPS,A (λ). Then

Advpr-proofPS,A (λ) = 2
∣
∣
∣
∣Pr0[b′ = b] − 1

2

∣
∣
∣
∣ . (14)

Game G0 − G1. G1 is almost the same as G0 except for the Osim oracle.

• In G0, X = h0(KX[c]), where [c] = [A0]r and r ←$ Z
k
q for each Osim query.

• In G1, X = h0([Vr]), where (i) a fresh r is uniformly chosen from Z
k
q for each

Osim query; (ii) V is uniformly chosen from Z
(k2+1)×k
q beforehand but will be

fixed for each Osim query.

Define U := KXA0, so (PX|U) = KX(A|A0). Note that, the square matrix
(A|A0) is of full rank with probability 1 − 2−Ω(λ), then the entropy of KX

is transferred to (PX|U) intactly. Recall that KX is uniform over Z
(k2+1)×2k
q .

Therefore, (PX|U) is uniform over Z
(k2+1)×2k
q as well. Consequently, U is uni-

formly distributed over Z
(k2+1)×k
q even conditioned on PX.
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Exppr-proof
PS,A (λ):G0 G1 − G3

b ←$ {0, 1}
V ←$ Z

(k2+1)×k
q

KX ←$ Z
(k2+1)×2k
q

Ky ←$ Z
(k+1)×2k
q

[PX] ← KX[A]
[Py] ← Ky[A]
ppk ← ([PX], [Py])
b′ ←$ AOsim(),Over(·,·)(ppk)
Return b′

Osim(): G0 G1 G2 G3

r ←$ Z
k
q , [c] ← [A0]r

Π0 ←$ G
k×k

X ← h0(KX[c])
X ← h0([Vr])

X ←$ Z
k×k
q

y ← h1(Ky[c])
Π1 ← [A0] · X + [c] · y�

Π1 ←$ G
k×k

Return ([c], Πb)

Over([c], Π∗): G0 − G3

X ← h0(KX[c])
y ← h1(Ky[c])
Π ← [A0] · X + [c] · y�

[K] ← [A0] · X + [c] · y�

[κ] ← trace([K])

If
[
[c] /∈ span([A])

∨Π 	= Π∗

]
:

Return ⊥
Return [κ]

Fig. 11. Games G0 − G3 in the proof of Theorem 2.

In G0, the Over oracle rejects all [c] /∈ [span(A)]. Therefore, the information of
KX leaked through Over is characterized by the public key PX. Together with the
fact that [c] = [A0]r in Osim of G0 and G1, the computation of KX[c] = [KXA0]r
in Osim of G0 can be replaced with [V]r for V ←$ Z

(k2+1)×k
q in G1. Thus we

have

|Pr0[b′ = b] − Pr1[b′ = b]| ≤ 2−Ω(λ). (15)

Game G1 − G2. G2 is the same as G1 except for the Osim oracle.

• In G1, X = h0([Vr]) is computed with the same V but a fresh r ←$ Z
k
q .

• In G2, X is uniformly selected from Z
k×k
q for each Osim oracle.

We will show that

|Pr1[b′ = b] − Pr2[b′ = b]| ≤ Advmddh
Uk,GGen,B(λ) + 2−Ω(λ). (16)

To prove (16), we define two intermediate games G′
1 and G′′

1 .
G′

1 is the same as G1 except for the generation of r in Osim. For each Osim query,

– in G1, r ←$ Z
k
q ;

– in G′
1, r ← Ws with a fresh s ←$ Z

k
q but the same W, which is uniformly

selected from Z
k×k
q beforehand.

Since W is invertible with probability 1 − 2−Ω(λ), we have that

|Pr1[b′ = b] − Pr1′ [b′ = b]| ≤ 2−Ω(λ). (17)

G′′
1 is the same with G′

1 except for the Osim oracle. For each Osim query,

– G′
1 sets [c] ← A0[W]s and X ← h0([VW]s), where s ←$ Z

k
q ;

– G′′
1 sets [c] ← A0[r] and X ← h0([u]), where r ←$ Z

k
q ,u ←$ Z

k2+1
q .
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Note that, with overwhelming probability, [B] = [ W
VW ] distributes uniformly

over G
(k2+k+1)×k. Then we can build an adversary B and show that

|Pr1′ [b′ = b] − Pr1′′ [b′ = b]| ≤ Advmddh
Uk,GGen,B(λ) + 2−Ω(λ). (18)

To prove (18), we construct an adversary B′ and show that

|Pr1′ [b′ = b] − Pr1′′ [b′ = b]| ≤ AdvQsim-mddh
Uk2+k+1,k,GGen,B′(λ). (19)

Upon receiving a challenge (G, [B] ∈ G
(k2+k+1)×k, [H] := ([h1| · · · |hQsim ]) ∈

G
(k2+k+1)×Qsim) for the Qsim-fold Uk2+k+1,k-MDDH problem, B′ simulates game

G′
1(G

′′
1). In the simulation of the i-th Osim oracle query for i ∈ [Qsim], B′ embeds

[hi] in [c] with [c] ← A0[hi]. Then B′ embeds [hi] in X with X ← h0([hi]).
If [hi] is uniformly chosen from span([B]) for all i ∈ [Qsim], then [hi] =

[ W
VW ] si, [hi] = [W]si and [hi] = [VW]si with si ←$ Z

k
q . In this case, B′

perfectly simulates G′
1. If [hi] is uniformly chosen from G

k2+k+1 for all i ∈ [Qsim],
then both [hi] and [hi] are uniform. In this case, B′ perfectly simulates G′′

1 .
From above, (19) follows. Then, (18) follows from (19) and the random self-

reducibility property of the MDDH problem.
In G′′

1 , X ← h0([u]) for a uniform u ←$ Z
k2+1
q . Since h0 is universal, by

leftover hash lemma and a union bound, we have that

|Pr1′′ [b′ = b] − Pr2[b′ = b]| ≤ Qsim

2
√

q
= 2−Ω(λ). (20)

Then (16) follows from (17, 18) and (20).

Game G2 − G3. G3 is the same as G2 except for the Osim oracle.
For each Osim query,

• in G2, Π1 = [A0] · X + [c] · y� for [c] = [A0]r and a fresh X ←$ Z
k×k
q ;

• in G3, Π1 is uniformly selected from G
k×k.

Note that in G2,

Π1 = [A0] · X + [c] · y� = [A0](X + r · y�).

Due to the uniformness of X, Π1 has the same distribution as [A0]X. Since A0

is an invertible matrix, [A0]X is uniformly distributed over Gk×k. Thus we have

Pr2[b′ = b] = Pr3[b′ = b]. (21)

Game G3. In G3, Π0 distributes identically to Π1 and

Pr3[b′ = b] =
1
2
. (22)

Finally, Theorem 2 follows from (14, 15, 16, 21) and (22). �
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(pkkem, skkem) ←$ KGen(1λ):
(ppk, psk) ←$ PGen(pars)
k0,k1 ←$ Z

2k
q , [p�

0 ] ← k�
0 [A] ∈ G

1×k, [p�
1 ] ← k�

1 [A] ∈ G
1×k

Return pkkem ← (ppk, [p�
0 ], [p

�
1 ]), skkem ← (psk,k0,k1)

(ψ, γ) ←$ KEnc(pkkem):
r ←$ Z

k
q , [c] ← [A]r ∈ G

2k

(Π, [κ]) ←$ PPrv(ppk, [c], r)
τ ← H([c]) ∈ {0, 1}λ ⊆ Zq

γ ← ([p�
0 ] + τ [p�

1 ]) · r + [κ] ∈ G

Return (ψ ← ([c], Π), γ)
//Ψ = G

2k × G
k×k, Γ = G

γ/⊥ ← KDec(skkem, ψ):
Parse ψ = ([c], Π)
(v ∈ {0, 1}, [κ]) ← PVer(psk, [c], Π)
τ ← H([c]) ∈ {0, 1}λ ⊆ Zq

γ ← (k�
0 + τk�

1 ) · [c] + [κ] ∈ G

Return

{
γ If v = 1
⊥ Otherwise

Fig. 12. Construction of KEMqps = (KGen,KEnc,KDec) in [8]

KEM from Qualified Proof System. The construction of the qualified PS
based KEM KEMqps = (KGen,KEnc,KDec) from [8] is shown in Fig. 12. Suppose
H is a hash generator outputting functions H : Gk → {0, 1}λ. The parameters
pars used in this construction are specified in Sect. 5.2.

Theorem 2 in [8] has shown that KEMqps is IND-CCCA secure. Now we prove
that KEMqps is mPR-CCCA secure (through Theorem 3) and is RER secure
(through Theorem 4), both admitting tight security reductions.

Theorem 3. The KEM KEMqps in Fig. 12 is mPR-CCCA secure if the D2k,k-
MDDH assumption holds, H outputs collision-resistant hash function, PS is Lsnd-
qualified, L̃snd-extensible and has pseudorandom simulated proof. Specifically, for
each PPT adversary A with negligible uncertainty uncertA(λ), we can build PPT
adversaries B1, · · · ,B7 with T(B1) ≈ · · · ≈ T(B7) ≤ T(A)+(Qenc+Qdec)·poly(λ)
and uncertB4(λ) = uncertB6(λ) = uncertA(λ), such that the advantage

Advmpr-ccca
KEMqps,A(λ) ≤ 2AdvcrH,B1

(λ) + (4λ + 3k)Advmddh
D2k,k,GGen,B2

(λ)

+ 7Advmddh
Uk,GGen,B3

(λ) + AdvcsndLsnd,PS,B4
(λ) + AdvPS-ind

Lsnd,PS,˜PS,B5
(λ)

+ λAdvcsnd
˜Lsnd,˜PS,B6

(λ) + 2Advpr-proofPS,B7
(λ)

+ ((λ + 2) · Qenc + 3) · Qdec · uncertA(λ) + 2−Ω(λ).

where Qenc(Qdec) is the total number of Oenc(Odec) queries made by A and
poly(λ) is a polynomial independent of T(A).

Proof of Theorem 3. For a fixed PPT adversary A with negligible uncertainty
uncertA(λ), consider an experiment Expmpr-ccca

KEMqps,A(λ) which first randomly selects
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b ←$ {0, 1}, then calls Expmpr-ccca-b
KEMqps,A (λ) and gets its output b′. It is straightfor-

ward that Advmpr-ccca
KEMqps,A(λ) = 2

∣
∣
∣Pr[b′ = b in Expmpr-ccca

KEMqps,A(λ)] − 1
2

∣
∣
∣ . Then we rewrite

experiment Expmpr-ccca
KEMqps,A(λ) in Fig. 13 and make changes to it gradually through

game G0 to G9 which are defined as follows.

Expmpr-ccca
KEMqps,A(λ):

G0 G1 − G5 G6 G7 − G9

b ←$ {0, 1} T ← ∅ [v] ←$ Z
k
q

(ppk, psk) ←$ PGen(pars)
k0,k1 ←$ Z

2k
q

[p�
0 ] ← k�

0 [A], [p�
1 ] ← k�

1 [A]
pkkem ← (ppk, [p�

0 ], [p
�
1 ])

b′ ←$ AOenc(),Odec(·,·)(pkkem)
Return b′

Odec(pred, ψ = ([c], Π)):

G0 G1 − G4 G5 − G9

(v, [κ]) ← PVer(psk, [c], Π)
τ ← H([c]) ∈ {0, 1}λ ⊆ Zq

γ ← (k�
0 + τk�

1 ) · [c] + [κ]

If

⎡
⎢⎢⎢⎢⎢⎣

([c], Π) ∈ ψenc

∨ v = 0
∨ pred(γ) = 0

∨[c] /∈ span([A])
∨τ ∈

⎤
⎥⎥⎥⎥⎥⎦:

Return ⊥
Return γ

Oenc(): G0 G1

�
�

�
�G2 G3 G4G5

�

�

�

�G6

�
�

�
�

�
� �G7

�
�

�
�

�
� �G8

�
�

�
�

�
� �G9

(ψ0, γ0) ←$ Ψ × Γ

ψ0 = ([c0], Π0)
τ0 ← H([c0])
r1 ←$ Z

k
q

[c1] ← [A]r1 [c1] ← [A0]r1

[c1] ←$ G
2k

(Π1, [κ1]) ← PPrv(ppk, [c1], r1)�
� �(Π1, [κ1]) ← PSim(psk, [c1])

Π1 ←$ G
k×k

ψ1 ← ([c1], Π1)
ψenc ← ψenc ∪ {ψb}
τ1 ← H([c1]) ∈ {0, 1}λ ⊆ Zq

← ∪ {τb}
γ1 ← ([p�

0 ] + τ1[p�
1 ]) · r1 + [κ1]�

� �γ1 ← (k�
0 + τ1k�

1 ) · [c1] + [κ1]

γ1 ← [v�r1] + τ1k�
1 [c1] + [κ1]

�

�

�

	




�

�
u1 ←$ Zq

γ1 ← [u1] + τ1k�
1 [c1] + [κ1]

Return (ψb, γb)

Fig. 13. Game G0 − G9 in the Proof of Theorem 3.

Game G0. This game is identical to Expmpr-ccca
KEMqps,A(λ). Then

Advmpr-ccca
KEMqps,A(λ) = 2

∣
∣
∣
∣Pr0[b′ = b] − 1

2

∣
∣
∣
∣ . (23)

Game G0 − G1. G1 is the same as G0 except that an additional rejection rule
is added in Odec. More precisely, in G1, we use a set T to log all the tags
τb = H([cb]) used in oracle Oenc, and any Odec(pred, ψ = ([c],Π)) query will be
rejected if τ = H([c]) ∈ T .
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Lemma 1.

|Pr0[b′ = b] − Pr1[b′ = b]| ≤ AdvcrH,B1
(λ) +

k

2
· Advmddh

D2k,k,GGen,B2
(λ)

+
1
2
Advmddh

Uk,GGen,B3
(λ) +

3
2
Qdec · uncertA(λ) + 2−Ω(λ).

We refer to the full version [21] for the proof of this lemma.

Game G1 − G2. G2 is almost the same as G1 except for two changes in Oenc.
The first change is that PPrv is replaced with PSim. The second change is that
skKEM is used to calculate γ1. More precisely, for [c1] = [A]r1 in oracle Oenc,

• in G1, (Π1, [κ1]) ← PPrv(ppk, [c1], r1), γ1 ← ([p�
0 ] + τ1[p�

1 ]) · r1 + [κ1];
• in G2, (Π1, [κ1]) ← PSim(psk, [c1]), γ1 ← (k�

0 + τ1k�
1 ) · [c1] + [κ1].

Due to the perfect zero-knowledge property of PS, we have PPrv(ppk, [c1], r1)
= PSim(psk, [c1]). Meanwhile, [p�

0 ] = k�
0 [A] and [p�

1 ] = k�
1 [A], so we have

([p�
0 ] + τ1[p�

1 ]) · r1 + [κ1] = (k�
0 + τ1k�

1 ) · [c1] + [κ1].
These changes are only conceptual, so G1 is identical to G2 and

Pr1[b′ = b] = Pr2[b′ = b]. (24)

Game G2 − G3. G3 is the same as G2 except for one difference in Oenc.

• In game G2, [c1] is uniform over span([A]) for each Oenc query.
• In game G3, [c1] is uniform over G

2k for each Oenc query.

We can build an adversary B2 and show that

|Pr2[b′ = b] − Pr3[b′ = b]| ≤ k · Advmddh
D2k,k,GGen,B2

(λ) + 2−Ω(λ). (25)

The reduction is straightforward, since B2 can simulate G2(G3) by generating
the secret key itself and embed its own challenge in [c1]. We omit the details.

We refer to the full version [21] for the proof of this lemma.

Game G3 − G4. G4 is the same as G3 except for one difference in Oenc.

• In game G3, [c1] is uniform over G
2k for each Oenc query.

• In game G4, [c1] is uniform over span([A0]) for each Oenc query.

We can build an adversary B3 and show that

|Pr3[b′ = b] − Pr4[b′ = b]| ≤ Advmddh
Uk,GGen,B3

(λ) + 2−Ω(λ). (26)

The reduction is straightforward and the proof of (26) is almost the same as (25).

Game G4 − G5. G5 is almost the same as G4 except that a rejection rule is
added in Odec. More precisely, in G5, an Odec(pred, ψ = ([c],Π)) query is directly
rejected if [c] /∈ span([A]). We have that
∣
∣Pr4[b

′ = b] − Pr5[b
′ = b]

∣
∣ ≤ 1

2
AdvcsndLsnd,PS,B4

(λ) +
1

2
AdvPS-ind

Lsnd,PS,˜PS,B5
(λ) + Qenc · 2−Ω(λ)

+2λ · Advmddh
D2k,k,GGen,B2(λ) +

λ

2
Advcsnd

˜Lsnd,˜PS,B6
(λ) +

λ + 2

2
· Qenc · Qdec · uncertA(λ) (27)
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The proof of (27) is the same as Lemma 9 in [8]. We refer [8] for details.

Game G5 − G6. G6 is almost the same as G5 except for one difference in Oenc.

• In game G5, γ1 = (k�
0 + τ1k

�
1 ) · [c1] + [κ1] for each Oenc query.

• In game G6, γ1 = [v�r1] + τ1k�
1 [c1] + [κ1] where v is uniformly chosen from

Z
k
q beforehand but will be fixed for each Oenc query.

We have that

|Pr5[b′ = b] − Pr6[b′ = b]| ≤ 2−Ω(λ). (28)

The proof of (28) is almost the same as (15), and is put in our full version
[21].

Game G6 − G7. G7 is almost the same as G6 except for one difference in Oenc.

• In game G6, γ1 = [v�r1] + τ1k�
1 [c1] + [κ1] for each Oenc query.

• In game G7, γ1 ← [u1]+ τ1k�
1 [c1]+ [κ1] where u1 ←$ Zq for each Oenc query.

In other words, γ1 is uniform for each Oenc query in G7. We have that

|Pr6[b′ = b] − Pr7[b′ = b]| ≤ Advmddh
Uk,GGen,B3

(λ) + 2−Ω(λ). (29)

The proof of (29) is almost the same as that of (16). We can set r1 = Ws and
[B] =

[
W

v�W

]
∈ G

(k+1)×k which has the distribution Uk+1,k overwhelmingly.
Then we can reduce the indistinguishability between G6 and G7 to the Qenc-fold
Uk+1,k-MDDH assumption. We omit the detailed proof here.

Note that, in game G7, [κ1] is not needed any longer since we can just select
a uniform γ1 for each Oenc query.

Game G7 − G8. G8 is almost the same as G7 except for one difference in Oenc.

• In game G7, Π1 is the output of PSim(psk, [c1]) for each Oenc query.
• In game G8, Π1 is uniform selected for each Oenc query.

We can build an adversary B7 and show that

|Pr7[b′ = b] − Pr8[b′ = b]| ≤ Advpr-proofPS,B7
(λ). (30)

On input ppk, B7 uniformly selects b ←$ {0, 1} and sets T ← ∅. Then B7

uniformly selects k0,k1 ←$ Z
2k
q and sets [p�

0 ] ← k�
0 [A], [p�

1 ] ← k�
1 [A], pkKEM ←

(ppk, [p�
0 ], [p�

1 ]). Then B7 calls AOenc(),Odec(·,·)(pkKEM) by simulating the two
oracles for A in the following way.

– For A’s Oenc() query, B7 uniformly chooses (ψ0, γ0) and calculates τ0 just
like game G7(G8). Then B7 submits an Osim query to its own oracle and
gets ([c],Π) where [c] is uniform over Lsnd\L = span([A0]) and Π is either
an output of PSim(psk, [c]) or uniformly chosen from Π. After that B7 sets
[c1] ← [c] and Π1 ← Π. Then B7 sets ψenc, calculates τ1 from [c1] and
uniformly selects γ1 just like game G7(G8). Finally B7 returns (ψb, γb) to A.
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– For A’s Odec(pred, ψ = ([c],Π)) query, B7 submits Over([c],Π) query to its
own oracle and gets the response K. If K = ⊥, B7 returns ⊥ to A. Since
K = ⊥ means [c] /∈ span([A]) or the verification PVer(psk, [c],Π) does not
pass, B7 acts exactly the same as game G7(G8) in such cases. If [κ] = K �= ⊥,
B7 calculates τ and γ just like game G7(G8). Then B7 tests if ([c],Π) ∈ ψenc

or pred(γ) = 0 or ∨τ ∈ T happens. If so, B7 returns ⊥ to A. Otherwise B7

returns γ to A.

Finally, according to A’s output b′, B7 outputs 1 if and only if b′ = b. It is
clear that if Π is an output of PSim(psk, [c]) for each Osim query, B7 perfectly
simulates game G7 for A. And if Π is uniformly chosen from Π for each Osim

query, B7 perfectly simulates game G8 for A. Thus (30) follows.

Game G8 − G9. G9 is the same as G8 except for one difference in Oenc.

• In game G8, [c1] is uniform selected from span([A0]) for each Oenc query.
• In game G9, [c1] is uniform selected from G

2k for each Oenc query.

We can build an adversary B3 and show that

|Pr8[b′ = b] − Pr9[b′ = b]| ≤ Advmddh
Uk,GGen,B3

(λ) + 2−Ω(λ). (31)

The reduction is straightforward and the proof of (31) is the same as the proof
for (25). We omit the details here.

Game G9. In game G9, (ψ1,Π1) is uniform over Ψ × Γ for each Oenc query,
which distributes exactly the same as (ψ0,Π0). Thus we have

Pr9[b′ = b] =
1
2
. (32)

Finally, Theorem3 follows from (23), Lemma 1, (24)–(32). �
Theorem 4. The KEM KEMqps in Fig. 12 is RER secure. Specifically, for
each PPT adversary A with negligible uncertainty uncertA(λ), the advantage
AdvrerKEMqps,A(λ) ≤ 2−Ω(λ).

Proof of Theorem 4. In Exprer-bKEMqps,A(λ), among all the Ocha(ψ, pred) queries
submitted by A, if ψ /∈ ψran, the oracle Ocha will answer A with
pred(KDec(skKEM, ψ)). Thus no information about b is leaked to A.

Therefore, we only consider those Ocha(ψ, pred) queries such that ψ =
([c],Π) ∈ ψran. In this case, both [c] and Π are uniform.

If b = 0, Ocha(ψ, pred) will always return 0 in Exprer-0KEMqps,A(λ).
If b = 1, Ocha(ψ, pred) will use KDec(skKEM, ψ) to decapsulate ψ. More pre-

cisely, it will invoke PVer(psk, [c],Π) to obtain (v, [κ]) and output ⊥ if v = 0.
By the proof uniqueness of PS and the uniformness of Π, the probability that
v = 1 in this query is at most 1

|Π| . Taking into account all the Qcha queries,
a union bound suggests that Ocha(ψ, pred) always outputs 0 in Exprer-1KEMqps,A(λ)
except with probability at most Qcha

|Π| = 2−Ω(λ). Thus

AdvrerKEMqps,A(λ) =
∣
∣
∣Pr

[
Exprer-0KEMqps,A(λ) = 1

]
− Pr

[
Exprer-1KEMqps,A(λ) = 1

]∣
∣
∣ ≤ 2−Ω(λ).
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Abstract. We consider a setting where users store their encrypted doc-
uments on a remote server and can selectively share documents with
each other. A user should be able to perform keyword searches over all
the documents she has access to, including the ones that others shared
with her. The contents of the documents, and the search queries, should
remain private from the server.

This setting was considered by Popa et al. (NSDI ’14) who developed
a new cryptographic primitive called Multi-Key Searchable Encryption
(MKSE), together with an instantiation and an implementation within
a system called Mylar, to address this goal. Unfortunately, Grubbs et
al. (CCS ’16) showed that the proposed MKSE definition fails to pro-
vide basic security guarantees, and that the Mylar system is susceptible
to simple attacks. Most notably, if a malicious Alice colludes with the
server and shares a document with an honest Bob then the privacy of all
of Bob’s search queries is lost.

In this work we revisit the notion of MKSE and propose a new
strengthened definition that rules out the above attacks. We then con-
struct MKSE schemes meeting our definition. We first give a simple
and efficient construction using only pseudorandom functions. This con-
struction achieves our strong security definition at the cost of increasing
the server storage overhead relative to Mylar, essentially replicating the
document each time it is shared. We also show that high server stor-
age overhead is not inherent, by giving an alternate (albeit impractical)
construction that manages to avoid it using obfuscation.

1 Introduction

Searchable (symmetric) encryption (SSE) [6,9,14,33] allows a user to outsource
her encrypted documents to a remote server. Later, she (or someone she autho-
rizes) can send the server encrypted keyword search queries and receive the set
of (encrypted) documents matching her keyword. Ideally, even a compromised
server would not learn anything about the user’s data or her queries. This func-
tionality can in theory be achieved using techniques such as Oblivious RAM and
Fully Homomorphic Encryption, but the efficiency overhead makes the resultant
schemes largely impractical.

c© International Association for Cryptologic Research 2018
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To allow for more practical schemes, SSE relaxes the ideal security require-
ment and allows the server to learn some leakage—namely the access pattern of
which documents are returned by each query. The initial SSE definitions failed to
capture natural attacks, and were revised by several follow-up works culminating
in the work of Curtmula et al. [9], who gave meaningful definitions that captured
the intuitive security goal. There are now constructions of SSE schemes that meet
this definition and are simple, practically efficient, and updatable [5,21,34]. We
also note that there have been several works [22,28,36] showing that the leakage
provided by SSE can already be too damaging to give meaningful security guar-
antees in some contexts. Despite such attacks, it seems that in many cases SSE
can provide meaningful security for certain data sets, even if it is imperfect.

One benefit of outsourcing data to the cloud is that it allows users to easily
share data with each other. Therefore, it is natural to consider a setting where
a large group of users store their individual documents, encrypted under their
own keys, on a remote cloud server, where each document can be shared with an
arbitrary subset of other users. As with SSE, a user should be able to perform
keyword search queries over all of the documents she has access to, including
both her own documents and the ones shared with her. A trivial solution is to
have each user generate a new SSE key for each set of documents she wishes
to share, and provide this key to the authorized group of users. However, this
solution has two main drawbacks: the user must maintain many keys (one for
each set of documents shared with her), and the query size scales with the
number of documents that have been shared with the user. These limitations are
undesirable in many realistic scenarios, since a user may have tens of thousands
of document sets shared with her.

To avoid these drawbacks, Popa et al. [29,30] introduced the notion of Multi-
Key Searchable Encryption (MKSE) to specifically address the query size prob-
lem. They provided a formal definition of MKSE along with a construction using
bilinear maps, and an implementation of their scheme within a framework called
Mylar for building secure web-applications over encrypted data. As part of the
framework, they provide a number of prototype applications, including a chat
room and a medical application.

The MKSE definition of [29,30] aimed at capturing the following intuitive
security guarantee: the scheme hides the content of both queries and stored doc-
uments, and the only information leaked is whether a given query matched any
of the keywords in a given document. This should hold even when a subset of
corrupted users colludes with the server. However, Grubbs et al. [17] showed
that Mylar does not achieve this goal, and suffers from several serious security
deficiencies, far beyond the limited leakage inherent in SSE. While some of these
issues only apply to the particular design choices of Mylar and its applications,
others are more general problems with the proposed MKSE definition. Recently,
Van Rompay et al. [32] designed a different attack that pointed to another prob-
lem with the proposed MKSE definition. All these deficiencies remain present in
follow up works that build on top of the MKSE definition of [29,30], such as the
work of Kiayias et al. [23]. We outline the three main issues below.
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Separating Data and Query Privacy. The first issue with the MKSE definition is
that it separately defines data privacy and query privacy, although it is intuitively
clear that data and query privacy are inherently intertwined. Indeed, the server
learns which documents are returned in response to a query, so knowing the
contents of these documents leaks information about the contents of the query,
and vice versa. Therefore, the two properties cannot be meaningfully defined in
isolation. This observation has already been made in the context of single-key
SSE by Curtmula et al. [9], who showed that earlier definitions that separated
data and query privacy did not meaningfully rule out trivially insecure schemes.
The work of [17] gives analogous examples in the context of MKSE, showing
that there are trivially insecure schemes which satisfy the proposed definition.

Malicious Users Sharing Data. The second issue with the MKSE definition is
more subtle. If an honest user Alice shares her document with a malicious user
Mallory, then clearly privacy of her document is inherently lost. This limitation
is intuitive, and users know they should not share their data with people they
do not trust. But if Mallory shares her document with an honest Bob, one does
not (and should not) expect Bob’s security to be compromised. Unfortunately,
[17] show that the proposed MKSE notion of [29,30] does not guarantee any
privacy for Bob’s search queries in this scenario. In particular, the security game
designed to capture query privacy in this setting [30, Definition 5.6] explicitly
prevents the adversary from sharing documents with the honest user (whose
queries the adversary is trying to learn). Not only is this issue overlooked in the
definition, but it is actually inherent to the proposed MKSE syntax, so every
construction which realizes this syntax (e.g., the follow-up works of [23,35])
necessarily inherits this flaw. According to the original MKSE definition, when
Mallory shares a document with Bob, a share key Δ is generated. The share key
Δ does not depend on Mallory’s set, and allows any query under Bob’s key to
be transformed into a query under Mallory’s key. Therefore, a malicious server,
colluding with Mallory, can use Δ to transform every query Bob makes into
a query under Mallory’s key, and the transformed query can then be executed
offline against a set of single-word documents containing the full dictionary.
Thus, if Mallory shares a document with Bob, the server can (through this
offline dictionary attack) recover all keywords Bob searched for.

Searching by Comparing Queries and Encrypted Keywords. The third issue is
that the MKSE definition implicitly restricts the algorithmic structure of the
scheme to encrypt each keyword in the document separately, and search in a
document by comparing the given query to each of the encrypted keywords.
Thus, a “hit” reveals not only that the query appears in the document, but
also which (encrypted) keyword it matched. Van Rompay et al. [32] show that
this allows the server to compare queries issued by different users (even if both
users are honest), and encrypted keywords from different documents (when they
match the same keyword token).
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1.1 Our Contribution

In this work, we propose a new MKSE definition that does not suffer from the
above issues. In particular, our definition simultaneously addresses data and
query privacy in a holistic manner, explicitly considers malicious data owners
that may share data with honest users, and prevents the adversary from com-
paring queries issued by different users and keywords from different documents.
We then propose a simple construction which provably satisfies our definition
using only Pseudo-Random Functions (PRFs). Queries in this scheme consist
of a single PRF image, and searching in a document is constant-time, but the
server storage overhead is high. In particular, each time a document is shared
with a user, it is essentially replicated, causing the per-document server storage
overhead to be linear in the number of users the document is shared with.

We initially conjectured that such overhead is inherent to achieving our
stronger MKSE definition. However, we show that proving such a conjecture
will be quite challenging, since it will require ruling out the existence of certain
program obfuscators. Concretely, in Sect. 5, we construct an MKSE scheme that
uses obfuscation (specifically, public-coin differing-input obfuscation [20]) and
requires per-document server storage that is roughly the document size plus the
number of users it is shared with. (The construction has constant query size and
polynomial time search.) We view our construction as providing evidence that
a more efficient construction may possibly achieve the stronger MKSE notion
with optimal server storage overhead.

Overview of Our MKSE Definition. We consider users that can take on two types
of roles: data owners and queriers. Data owners have a document they wish to
share with some subset of the users. Each document has its own associated data
key Kd, where the data owner “encrypts” the document using this key, and
uploads the encrypted document to the server. Each user has a query key Ku

that it uses to issue search queries. When a data owner shares a document d
with a user u they create a share key Δu,d which depends on the keys Ku,Kd,
as well as the encrypted document, and store Δu,d on the server. When a querier
wants to search for some keyword, he “encrypts” the keyword using his query key
Ku, and sends the resulting encrypted query to the server. For each document
d that was shared with the user u, the server uses the share key Δu,d to execute
the encrypted query over the encrypted document, and learns if the keyword
is contained in that document. This allows the server to return all relevant
documents the querier has access to and which contain the keyword.

The main syntactic difference between our notion, and the MKSE notion used
in Mylar, is in how the share key Δu,d is generated. As noted above, the share
key in Mylar depends only on the keys Ku,Kd, whereas in our notion it also
depends on the encrypted document. By tying the share key to the document,
we can ensure that each query can only be executed on the specific documents
that were shared with the querier, rather than on arbitrary documents, even if
the server has the key Kd.
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To define security, we consider a share graph between data owners (docu-
ments) and queriers, representing who shares data with whom, where some sub-
set of data owners are malicious and collude with the server. The desired security
guarantee is that the server learns nothing about the contents of the documents
belonging to the honest data owners, or the keywords being queried, beyond the
access pattern of which documents are returned by each query (i.e., out of the
documents shared with the querier, which ones contain the queried keyword).
We provide an indistinguishability-based definition where the adversary chooses
the documents and data keys belonging to the malicious data owners, and two
potential values (a “left” and a “right” value) for each query and each docu-
ment belonging to an honest data owner. The left and right values must lead to
the same access pattern, and the queries of each querier must be distinct. The
adversary then gets all encrypted documents, share keys, and encrypted queries,
and should not be able to distinguish whether these were created using the left
or right values.

Since the adversary only learns the access pattern of which documents are
returned by each query, the above definition captures the minimal leakage for
schemes that reveal the access pattern, which seems to be the case in all practical
schemes. This is a significant qualitative improvement over the leakage allowed by
the previous definition of [30] and the corresponding schemes. Most importantly,
when a malicious user Mallory is colluding with the sever and shares some data
with Bob, the previous schemes completely leaked the contents of Bob’s query
wheres our definition still only reveals the access pattern. We note that simi-
lar to single-key SSE, leaking the access pattern does reveal some potentially
sensitive information and in some scenarios (e.g., when combined with auxiliary
information about the documents) this may allow a sufficiently powerful attacker
to completely recover the query, as shown in the single-key SSE setting by the
recent works [4,18,22,28,31,36]. In the multi-key setting this might be ampli-
fied since, whenever malicious data owners share documents with honest querier,
the adversary already knows (and even chooses) the contents of these documents
and hence can learn more information by seeing which of these documents match
the query. For example, if the shared documents correspond to every individual
word in a dictionary, then by seeing which document matches a given query the
contents of the query are completely revealed. However, this is not a very natural
scenario, and in many settings it is reasonable to believe that leaking the access
pattern alone may not reveal significant information about the query. Further-
more, users can perform sanity checks on the documents shared with them to
test how much leakage the server will get on their queries, and refuse to accept
shared documents if they lead to too much leakage. Understanding when access
pattern leakage is acceptable and when it is not is a fascinating and important
direction for future study.

One implementation concern in the above notion of MKSE comes from how
the share key Δu,d is generated, since it relies on knowledge of both the data-
owner’s key Kd for the document being shared, the user’s querier key Ku, and
the encrypted document itself. We envision that the data owner simply sends
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the data key Kd to the querier via a secure channel. The querier then downloads
the encrypted document from the server, generates Δu,d, and uploads it to the
server. Note that the querier can also check at this point that the document was
encrypted correctly, and therefore in the security definition we always assume
that documents are encrypted honestly.

Finally, our default definition is selective, meaning the adversary specifies
the entire share graph, the data, and the queries ahead of time. We can also
consider adaptive security for SSE (a notion introduced by [9] in the single-user
setting) in which the adversary generates queries on the fly during the course of
the attack. Furthermore, our definition is indistinguishability based, where one
could also consider a simulation-based version (as introduced in the single-user
setting by [9]) in which the simulator, given the share graph, document sizes, and
access patters, produces the encrypted documents and queries. We discuss these
alternate variants in Sect. 6, and note that our PRF-based construction described
below satisfies the strongest security notion (adaptive, simulation-based) when
the PRF is instantiated in the random-oracle model.

Overview of the PRF-Based Construction. We provide a simple and efficient
MKSE scheme based only on the existence of one-way functions. As noted above,
each share key Δu,d contains a copy of the document, which allows Search to
use only this value (and not the encrypted document).

If Δu,d is “allowed” to encode the entire document, a natural approach is
to assign to each querier a PRF key Ku for a PRF F , and store in Δu,d the
images of F (Ku, ·) on all keywords in the document. However, this construction
is fundamentally insecure, since the share keys themselves leak information, even
if the querier never makes any queries, and even if all data owners are honest.
More specifically, consider the case of two honest data owners that share their
documents with an honest querier. Then the two share keys reveal the number of
keywords that appear in both documents. This is because the token associated
with each keyword depends only on the keyword and the querier key, and not
on the document.

To solve this issue we use another layer of PRF images, where the first layer
generates PRF keys for a second layer that will be applied to a document-specific
random identifier. Concretely, when generating Δu,d, we assign a random value
r to the document. For every keyword w in the document, we generate a (second
layer) PRF key kw = F (Ku, w), and compute a token tw for w as tw = F (kw, r).
Using perfect hashing [11], these tokens are inserted into a hash table to accel-
erate searching. The share key Δu,d consists of r and the hash table containing
the tokens. (Notice that if r is chosen from a sufficiently large domain, then with
overwhelming probability each document is assigned a unique identifier, and so
the share keys associated with two documents reveal no information about their
intersection.)

To search for keyword w in her documents, the querier sends the query kw =
F (Ku, w) to the server. Searching for kw in a document with Δu,d = (r,D′)
(where D′ is a hash table of tokens) is performed by searching the hash table
D′ on the key F (kw, r). This query reveals no information about w. Notice that
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the scheme uses the encrypted document only to generate Δu,d, so the document
can simply be encrypted with its own unique symmetric encryption key.

1.2 Related Work

Single User Schemes. First introduced by Song et al. [33], the notion of (single
user) Searchable Encryption has been extensively studied in the last decade
(see [3,12] for a survey of many of these works). The first works (e.g., [6,14,
33]) constructed schemes under several (simulation-based or indistinguishability-
based) security definitions. These definitions separated the properties of query
and data privacy, and were shown by [9] to be insecure (by a fairly simple
attack). Curtmola et al. [9] also presented a unified definition that combined
both properties.

Multi-User Schemes. In this model multiple users can issue queries to a sin-
gle dataset which is encrypted under a single key that is known to all users.
Consequently, most works in this setting focus on access control, and efficient
revocation of querying privileges. Following the work of [9], who provided the
first definitions and constructions, there have been three main approaches to
enforcing access control across the documents: traditional access control mech-
anisms [10,25,37], broadcast encryption [9,26], and attribute-based encryp-
tion [7,24].

We emphasize that in the multi-user setting, there is a single dataset owned
by a single data owner, so using such schemes in settings with multiple data
owners would require instantiating the scheme separately for each dataset, and
thus the query size would be linear in the number of datasets shared with the
querier. This should be contrasted with the multi-key setting which is the focus
of this work, in which users can search over multiple datasets by issuing a single
query whose size is independent of the number of datasets being searched.

Multi-key Schemes. In this setting multiple users share data encrypted under
their own keys, and search across the data shared with them by issuing a single
query whose size is independent of the number of shared datasets. First intro-
duced by Popa et al. [29], follow-up works that build on [29] focused on optimiz-
ing server storage, and eliminating the trusted party needed to distribute data
and querier keys [23]; mitigating attacks in which a malicious data owner shares
a dictionary dataset with the querier, by having the querier explicitly determine
which data owners are allowed to share data with her [35]1; and constructing
schemes that are secure in restricted security models when honest data owners
only share their documents with honest queriers, or when a single data owner has
not shared his dataset with anyone else [35] (in both models, the server might be
corrupted). We note that since these works use the syntax of [29] (in particular,
share keys are generated independently of the shared set), the aforementioned
attacks of [17] apply to these works as well.
1 This functionality was also discussed in [29], but was not defined as part of the

MKSE syntax.
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Other Related Models. The notion of Key Aggregate Searchable Encryption
(KASE), introduced by [8], considers a data owner who has several documents,
each encrypted under a unique key. This allows data owners to share differ-
ent subsets of their documents with different users. The goal is to grant search
access to a subset of documents by providing one aggregate key whose length
is independent of the number of documents (whereas in a naive solution, the
key size would scale with the number of documents), and the querier issues one
query for every subset of documents shared under the aggregate key (whereas
in the MKSE setting, the user issues a single query, regardless of the number of
documents shared with her). Thus, this model is fundamentally different from
MKSE (as pointed out in [8]). We note that the construction of [8] is vulnerable
to dictionary attacks (as shown by [23]).

2 Preliminaries

In the following, λ denotes a security parameter, and negl (λ) denotes a function
that is negligible in λ. We use ≈ to denote computational indistinguishability,
and S\T to denote the difference between sets S, T . We use Pr [E : E1, · · · , En]
to denote the probability of event E given events E1, · · · , En. For strings
x = x1 · · · xn, y = y1 · · · ym, x ◦ y denotes their concatenation, i.e., x ◦ y =
x1 · · · xny1 · · · ym. We use standard cryptographic definitions of one-way func-
tions (OWFs), one-way permutations (OWPs), collision resistant hash functions
(CRHFs), pseudorandom functions (PRFs), and existentially-unforgeable signa-
ture schemes (see, e.g., [15,16]).

3 Defining Multi-Key Searchable Encryption

In this section we define the notion of Multi-Key Searchable Encryption (MKSE)
schemes. Intuitively, an MKSE scheme allows data owners to share their docu-
ments with queriers who can later query these documents under their own keying
material, while preserving both data and query privacy. In the definition, docu-
ments are represented as sets of keywords, so searching in a document translates
to checking set membership; see the discussion following the definition.

Definition 1 (Multi-Key Searchable Encryption). We say that a tuple
(DataKeyGen,QueryKeyGen,ProcessSet,Share,Query,Search) of PPT algorithms
is a Multi-Key Searchable Encryption (MKSE) scheme for a universe U , if the
following holds.

– Syntax:
• DataKeyGen takes as input the security parameter 1λ, and outputs a data

key K.
• QueryKeyGen takes as input the security parameter 1λ, and outputs a

query key Ku.
• ProcessSet takes as input a data key K and a set S, and outputs a pro-

cessed set T .
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• Share takes as input a data key K, a query key Ku, and a processed set
T , and generates a user-specific share key Δ.

• Query takes as input an element w ∈ U and a query key Ku, and outputs
a query q.

• Search takes as input a user-specific share key Δ, a query q, and a pro-
cessed set T , and outputs b ∈ {0, 1}.

– Correctness: For every security parameter λ ∈ N, data set S ⊆ U , and
element w ∈ U :

Pr

⎡
⎢⎢⎢⎢⎣
Search (Δ, q, T ) = b :

K ← DataKeyGen
(
1λ

)
Ku ← QueryKeyGen

(
1λ

)
T ← ProcessSet (K,S)
Δ ← Share (K,Ku, T )
q ← Query (Ku, w)

⎤
⎥⎥⎥⎥⎦

≥ 1 − negl (λ)

where b = 0 if w /∈ S, otherwise b = 1.
– Security: Every PPT adversary A has only a negl (λ) advantage in the fol-

lowing security game with a challenger C:
1. A sends to C:

• A set Q = {1, . . . , m} of queriers, a set D = {1, . . . , n} of data own-
ers, and a subset Dc ⊆ D of corrupted data owners.

• For every i ∈ Dc, a data key Ki.
• For every i ∈ D, two sets S0

i , S1
i ⊆ U , where

∣∣S0
i

∣∣ =
∣∣S1

i

∣∣ for i /∈ Dc,
and S0

i = S1
i for i ∈ Dc.

• A bipartite share graph G = (Q,D, E).
• For every j ∈ Q, two sequences of distinct keywords

(
w0

j,1, . . . , w
0
j,kj

)

and
(
w1

j,1, . . . , w
1
j,kj

)
(for some kj ∈ N), such that for every i ∈ D, if

(j, i) ∈ E then for every 1 ≤ l ≤ kj, w0
j,l ∈ S0

i if and only if w1
j,l ∈ S1

i .
2. C performs the following:

• Chooses a random bit b ← {0, 1}.
• For each querier j ∈ Q, generates Ku

j ← QueryKeyGen
(
1λ

)
.

• For each data owner i ∈ D \ Dc, generates Ki ← DataKeyGen
(
1λ

)
.

• For each set Sb
i , i ∈ D, generates Ti ← ProcessSet

(
Ki, S

b
i

)
.

• For each edge (j, i) ∈ E, generates Δj,i ← Share
(
Ki,K

u
j , Ti

)
.

• For each querier j and keyword wb
j,l, 1 ≤ l ≤ kj, generates a query

qj,l ← Query
(
Ku

j , wb
j,l

)
.

• Sends {Ti}i∈D, {Δj,i}(j,i)∈E, and
(
qj,1, · · · , qj,kj

)
j∈Q to A.

3. A outputs a guess b′, and its advantage is AdvA
(
1λ

)
= 1

2 − Pr [b = b′].

Discussion. In Definition 1, sets of keywords are shared with queriers, and share
keys are generated by an honest party. Such schemes can be easily adapted to
the setting in which documents are shared between users: each document d is
associated with the set S of keywords it contains; and an encryption of d is stored
alongside the processed set TS . Searching for keywords in d is performed by
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searching for the keyword in S, where if the search outputs 1 then the encryption
of d is returned to the querier. Moreover, a trusted party is not needed to generate
the share keys: we envision that each user will generate her own share keys
whenever a document is shared with her. More specifically, when a data owner i
shares a document di with a querier j, the data owner will send his data key Ki

to the querier via a secure channel. The querier will then download the processed
set Ti and the encryption of di from the server, and generate Δj,i herself. This
use case also clarifies our assumption that sets are honestly processed: j can
verify that Ti was honestly generated by processing Si (which can be extracted
from di) using Ki, and comparing to Ti. (Without loss of generality, ProcessSet
is deterministic since any randomness can be provided in Ki.)

Notice that in our definition, the share key is (syntactically) “tied” to the set
for which it was generated (Share depends not only on the data and query keys,
but also on the processed set). This should be contrasted with the syntax used
in [29,30] in which the algorithm generating the share keys depends only on the
data and query keys. Consequently, resultant schemes inherently guarantee no
query privacy when malicious data owners share their sets with honest queriers
(as discussed in the introduction). Indeed, when Δ is independent of the set
then a malicious server colluding with the data owner can use the data key K
to encrypt any set S of his choosing (in particular, a dictionary), then use Δ to
search for the query in S. Since K was generated independently of the set, the
correctness of the scheme guarantees that the output of search will be correct,
and so the server can recover the queried keyword.

Similar to previous works in the field, our definition allows for some informa-
tion leakage. Specifically, since the adversary is restricted to choosing sets and
queries for which w0

j,l ∈ S0
i ⇔ w1

j,l ∈ S1
i for every (j, i) ∈ E (see the last bullet

in Step 1 of the security game), the scheme leaks the access pattern of which
subset of documents is returned in response to each query. Additionally, since
we require that each querier makes distinct queries, if a querier makes repeated
queries then this might be leaked to the server. Finally, we note that our defini-
tion is selective: the adversary is required to specify in advance the sets, queries,
and share graph. Possible extensions and generalizations include adaptive secu-
rity, where the adversary can adaptively choose sets and queries, add edges to
the share graph, and corrupt data owners; and simulation-based security, which
guarantees that the view of every PPT adversary can be simulated given only
the aforementioned leakage (namely, the access patterns and the sizes of the
sets). We elaborate on these alternative definitions in Sect. 6.

4 MKSE with Fast Search

In this section we describe our MKSE scheme based on PRFs. Concretely, we
will prove the following theorem.

Theorem 1 (MKSE (Sublinear Search)). Assume that OWFs exist. Then
there exists a secure MKSE scheme in which searching for keywords in a set S
takes poly (λ) time, where λ is the security parameter.
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Moreover, data and query keys, as well as queries, have length poly (λ), and
for a set S, its processed version and share keys have size |S| · poly (λ).

We first describe our construction, then analyze its properties.

Construction 1 (MKSE (Sublinear Search)). The construction uses a PRF F ,
and a symmetric-key encryption scheme (KeyGen,Enc,Dec), as building blocks.

– DataKeyGen
(
1λ

)
outputs a symmetric key KSE ← KeyGen

(
1λ

)
.

– QueryKeyGen
(
1λ

)
outputs a uniformly random PRF key KPRF ← {0, 1}λ.

– ProcessSet (KSE,S) outputs EncKSE
(S).

– Share (KSE,KPRF, T = EncKSE
(S)) operates as follows:

• Generates a uniformly random string r ← {0, 1}λ.
• Decrypts S ← DecKSE

(T ).
• Initializes D = ∅. For each keyword wi ∈ S, computes k′

i = FKPRF
(wi)

and di = Fk′
i
(r), and adds di to D.

• Inserts D into a perfect hash table [11] to obtain D′.
• Outputs Δ = (r,D′).

– Query (KPRF, w) outputs FKPRF
(w).

– Search (Δ = (r,D′) , q, T ) operates as follows:
• Computes d′ = Fq (r).
• Performs a hash table query on D′ for d′, and outputs 1 if and only if d′

was found.

The next claim states that Construction 1 is secure, and summarizes its
parameters.

Claim 1. Assume that Construction 1 is instantiated with a PRF F , and a secure
symmetric encryption scheme, then it is a secure MKSE scheme.

Moreover, data and query keys have length poly (λ), and for a set S the
processed set has size |S| · poly (λ). Furthermore, searching in a set S takes time
poly(λ) and queries have size poly(λ).

Proof. The correctness of the scheme follows directly from the correctness of the
underling primitives, and its complexity follows directly from the construction
and from the following theorem due to Fredman et al. [11].

Theorem 2 (Perfect hashing [11]). Given a set D of n keys from a universe
U , there exists a method that runs in expected O (n) time and constructs a lookup
table D′ of size O (n) such that membership queries (i.e., given x ∈ U , determine
if x ∈ S) can be answered in constant time.

We now argue that the scheme is secure.
For every i ∈ D, let S0

i , S1
i be the sets A chose for data owner i, and let

W0
j ,W1

j be the sets of queries A chose for querier j ∈ Q. Let F 1 denote the PRF
called in Query and to compute k′

i in Share, and let F 2 be the PRF invoked to
compute di in Share. Let view0, view1 denote the view of A in the security game
when b = 0, 1 (respectively). We show that view0 ≈ view1 using a sequence of
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hybrid distributions, and conclude that A has only a negl (λ) advantage in the
security game. As the data keys, and encrypted sets, of corrupted data owners
are identically distributed in both views (because S0

i = S1
i for every i ∈ Dc),

we can fix these values into view0, view1, and all hybrid distributions, without
decreasing the computational distance. Moreover, if F is sufficiently expanding
then with overwhelming probability, all images of the form F 1

K (w), and F 2
k′
i
(r)

(for query keys K, keywords w, set identifiers r, and k′
i) are distinct, so it suffices

to bound the computational distance conditioned on this event. We now define
the hybrids.

For b ∈ {0, 1}, let Hb
0 be the distribution obtained from viewb by replacing

F 1 with a random function R. (We think of R as taking two inputs, the first
being a querier index. Thus, R defines a family {Rj}j of functions, as does F 1.)
That is, for all queriers j, and wl ∈ Wb

j , we have q′
j,l = R (wi) (the tag is used to

denote queries in Hb
0; queries in viewb are untagged). Then viewb ≈ Hb

0 follows
from the pseudorandomness of F by a standard hybrid arguments in which we
replace the invocations of F 1 (used to generate the queries and share keys) of
one querier at a time.

We now define Hb
1 to be identical to Hb

0, except that F 2 is replaced with the
random function R (notice that here, the first input of R corresponds to a query
q′), and the keyword tokens in every share key Δj,i are generated as follows.
For every wl ∈ Sb

i ∩ Wb
j , the corresponding token di,j,l is computed as F 2

q′
j,l

(r)

(i.e., identically to how it is generated in Hb
0; this is needed since q′

j,l appears
in Hb

1 and so consistency of these tokens with F 2 can be efficiently checked).
For every wl ∈ Sb

i \ Wb
j , d′

i,j,l is chosen randomly subject to the constraint that

d′
i,j,l /∈

{
F 2

q′
j,l′

(r) : wl′ ∈ Wb
j

}
. (This can be efficiently achieved by re-sampling,

assuming F is sufficiently stretching.) All values in Δj,i are then hashed.
To show that Hb

0 ≈ Hb
1, we first define an intermediate hybrid Hb,� in which

for every querier j, every data owner i, and every keyword wl ∈ Sb
i \Wb

j , the token
d′

i,j,l in Δj,i is replaced with a random value, subject to the constraint that it is

not in
{

F 2
q′
j,l′

(r) : wl′ ∈ Wb
j

}
, where r is the random identifier associated with

Δj,i. Then Hb
0 ≈ Hb,� follows from the pseudorandomness of F by a standard

hybrid argument in which we replace the tokens one at a time (and use the
assumption that all images of F are unique).

To show that Hb
1 ≈ Hb,�, we define a series of sub-hybrids, replacing F 2

with a random function for a single query of a single querier at a time. (Notice
that each query of each querier represents a unique key for F 2 in all share
keys associated with that querier.) Concretely, denote m = |Q|, and for every
j ∈ Q, let lj :=

∣∣Wb
j

∣∣. For every 1 ≤ j ≤ m and 0 ≤ l ≤ lj , define Hb,j,l to
be the distribution obtained from Hb,� by generating the queries of the first
j − 1 queriers, and the first l queries of querier j, with R (instead of F 2), and
generating the keyword tokens in share keys accordingly. Then Hb,1,0 = Hb,�,
and Hb,m,lm = Hb

1. For every 1 ≤ j ≤ m and 1 ≤ l ≤ lj , Hb,j,l ≈ Hb,j,l−1 by the
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pseudorandomness of F 2. Moreover, Hb,j,0 = Hb,j−1,lj−1 for every 1 < j ≤ m,
so Hb,1,0 ≈ Hb,m,lm (since m = poly (λ), and lj = poly (λ) for every j ∈ Q).

Finally, let Hb
2 be identical to Hb

1 except that the encrypted sets of all honest
data owners i /∈ Dc encrypt 0 (instead of Sb

i ). Then Hb
1 ≈ Hb

2 follows from
the security of the encryption scheme by a standard hybrid argument in which
the encrypted sets are replaced one at a time. Notice that H0

2 = H1
2 and so

view0 ≈ view1. �
Remark 1. Notice that Hb

2 depends only on the share graph, the sets of corrupted
data owners, the sizes of sets of honest data owners, and the access patterns;
and can be efficiently generated given these values. This implies that the view
of every PPT adversary can be efficiently simulated given only these values,
namely, Construction 1 is simulation-secure (as defined in Sect. 6).

The proof of Theorem1 now follows as a corollary from Claim 1.

Proof of Theorem 1. We instantiate Construction 1 with any sufficiently stretch-
ing PRF (e.g., F : {0, 1}λ ×{0, 1}n → {0, 1}2(λ+n), whose existence follows from
the existence of OWFs), and a secure symmetric encryption scheme (which can
be constructed from F ). Then the security of the scheme, as well as the length
of data keys, query keys, and processed sets, follow directly from Claim 1. As for
search time, since keywords have length O (λ) then evaluating F takes poly (λ)
time, and the outputs have length poly(λ). Searching in a set S takes 1 hash query
and thus the overall time is poly (λ) time, and queries have length poly (λ). �

5 MKSE with Short Share Keys

In this section we describe an MKSE scheme with short share keys which employs
a program obfuscator as a building block. We first show (Sect. 5.1) a scheme
based on differing-inputs obfuscation (diO), then show (Sect. 5.2) that a slightly
modified construction can be based on public-coin differing-inputs obfuscation
(pc-diO). We note that though there is evidence that diO for general circuits
might not exist [2,13], no such implausibility results are known for pc-diO.

5.1 MKSE from Differing-Inputs Obfuscation

We construct a secure MKSE scheme using a diO obfuscator for Turing Machines
(TMs). Concretely, we prove the following for a universe U of size |U| ≤ poly

(
2λ

)
:

Theorem 3 (MKSE (Short Share Keys)). Assume that CRHFs, and diO
for TMs with polynomial blowup, exist. Then there exists a secure MKSE in
which share keys have size poly (λ), for a security parameter λ. Moreover, data
and query keys, as well as queries, have length poly (λ), and given a set S, its
processed version has size |S| · poly (λ), and searching in it takes poly (λ, |S|)
time.
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The high-level idea of the constructions is to encrypt sets under their data
key, and queries under the query key of the querier, using a standard (symmetric)
encryption scheme. The share key will be an obfuscation of a program that has
both keys hard-wired into it, and thus allows for searching (even though queries
and sets are encrypted under different keys) by decrypting the ciphertexts and
comparing the underlying keywords. However, to make this rough intuition work,
we need to handle a few subtleties.

First, to obtain security, the program should take the entire set as input.
Otherwise (i.e., if it operates on a single set element at a time), its output
would reveal not only whether the queried keyword appears in the set, but also
where it appears. To see why this violates security, consider the case in which
the same set Si is shared with two different queriers j and j′: the additional
information of where in the set a query appears allows the server to check whether
j and j′ queried the same keyword (even when j, j′ and data owner i are all
honest). Notice that since the program takes the entire set as input, it cannot
be represented as a circuit (since then share keys will not have sublinear size).
Therefore, we implement the program as a TM, and use an obfuscator for TMs.

Second, as noted in the introduction, share keys should only allow searching
for keywords in the sets for which they were generated. That is, a share key Δj,i

between querier j and data owner i should be “tied” to the set Si of i. We achieve
this by hard-wiring a hash h (Si) of Si into the program Pj,i obfuscated in Δj,i,
where Pj,i checks that its input set is consistent with the hash. Notice that the
hard-wired hash prevents us from using an indistinguishability obfuscator [1].
Indeed, if i is honest then in the security game (Definition 1), the adversary
chooses a pair S0

i , S1
i of (possibly different) sets for i, and Δj,i has either h

(
S0

i

)
(in the game with b = 0) or h

(
S1

i

)
(in the game with b = 1) hard-wired into

it. In particular, the underlying programs are not functionally equivalent, so
we cannot rely on indistinguishability obfuscation, and need to use a stronger
primitive. Concretely, our constructions rely on the existence of a diO, or a
pc-diO, obfusctor. We proceed to describe the diO-based construction (the pc-
diO-based construction is described in Sect. 5.2).

The last ingredient we need is a signature scheme, which will be used to sign
queries. Specifically, a query for keyword w will consist of an encryption c of w,
and a signature on c; and share keys will have the corresponding verification key
hard-wired into them. Intuitively, signatures are used to guarantee the server can
only search for queries the querier actually issued, similar to the way the hashed
set prevents the server from searching in sets that were not shared with the
querier. Concretely, the signatures guarantee that the share keys in the security
game for b = 0 and b = 1 are differing-inputs even given the entire view of the
adversary, and allows us to rely on diO security. (Roughly, a pair of programs
are differing-inputs if it is infeasible for a PPT algorithm to find an input on
which their outputs differ.)

Remark 2. We note that if one is willing to change the MKSE syntax, allowing
the server to return encrypted answers which the querier then decrypts, then a
scheme with similar complexity could be constructed from Fully Homomorphic



Multi-Key Searchable Encryption, Revisited 109

Encryption (using Oblivious RAM or Private Information Retrieval). However,
following previous works in the field [17,23,29] we focus on the setting in which
the server gets the answers in the clear (and queriers do not need to decrypt).
This may be crucial in some situations, e.g., when huge documents are associated
with small keyword sets. In a solution based on Fully Homomorphic Encryption,
the computation of a search is proportional to the total size of all the huge doc-
uments, while in our obfuscation-based MKSE scheme the work is proportional
to the total number of keywords, and the size of the returned documents.

We now describe our MKSE scheme. As will become evident from the security
proof, due to the technicalities of using diO security we will need a special
type of encryption (which, nonetheless, can be constructed from any standard
encryption scheme) that we call double encryption. It is similar to the encryption
scheme used in the “2-key trick” of Naor and Yung [27] (to convert a CPA-secure
encryption scheme into a CCA-secure one), except it does not use non-interactive
zero-knowledge proofs to prove that ciphertexts encrypt the same value.

Definition 2 (Double encryption). Let λ ∈ N be a security parameter. Given
a symmetric encryption scheme (KeyGen,Enc,Dec), we define a double symmet-
ric encryption scheme E2 =

(
KeyGen2,Enc2,Dec2

)
as follows:

– KeyGen2, on input 1λ, generates KL ← KeyGen
(
1λ

)
and KR ← KeyGen

(
1λ

)
,

and outputs K = (KL,KR).
– Enc2, on input a key K = (KL,KR) and a message m, computes cL ←

Enc (KL,m) and cR ← Enc (KR,m), and outputs c = (cL, cR).
– Dec2, on input a key K = (KL,KR) and a ciphertext c = (cL, cR), outputs

Dec (KL, cL). (Notice that decryption disregards the “right” component of c.)

We are now ready to describe our MKSE scheme.

Construction 2 (MKSE (Short Share Keys)). The MKSE uses the following
building blocks:

– an obfuscator O,
– a hash function h,
– a double symmetric encryption scheme (KeyGen,Enc,Dec), and
– a signature scheme (KeyGens,Sign,Ver),

and is defined as follows:

– DataKeyGen
(
1λ

)
generates a random encryption key K ← KeyGen

(
1λ

)
and

outputs K.
– QueryKeyGen

(
1λ

)
generates a random encryption key Ku ← KeyGen

(
1λ

)
,

and a random signing and verification key pair (sku, vku) ← KeyGens

(
1λ

)
,

and outputs Ku = (Ku, sku, vku).
– ProcessSet (K,S) encrypts each element s ∈ S as c (s) ← Enc (K, s), and

outputs {c (s) : s ∈ S}.
– Share (K,Ku = (Ku, sku, vku) , TS) generates P̃ ← O (

PK,(Ku,vku),h(TS)

)
where PK,(Ku,vku),h(TS) is the TM defined in Fig. 1, and outputs Δ = P̃ .
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– Query (Ku = (Ku, sku, vku) , w) generates c ← Enc (Ku, w) and σ ←
Sign (sku, c), and outputs (c, σ).

– Search (Δ, q, TS) outputs Δ (TS , q).

Fig. 1. Program PK,(Ku,vku),h(TS) used to generate share keys in Construction 2

The following claim states that if the obfuscator O used in Construction 2 is
a secure diO obfuscator, and all building blocks are secure, then Construction 2
is an MKSE scheme (as in Definition 1).

Claim 2 (MKSE (Short Share Keys)). If Construction 2 is instantiated with a
secure diO obfuscator for TMs, and assuming the security of all building blocks,
then Construction 2 is a secure MKSE.

Moreover, if the encryption and signature schemes have poly (λ)-length keys,
and incur a poly (λ) overhead, then data and query keys, as well as queries,
have length poly (λ), and for a set S, its corresponding processed set has
size |S| · poly (λ). Furthermore, if: (1) evaluating h on length-n inputs takes
HT (n) time, and outputs a hash of length H� (n); and (2) there exist functions
s, TO : N → N such that for every TM M , |O (M)| ≤ s (|M |), and running
O (M) on inputs of length n takes TO (TIME (M,n)) time, where TIME (M,n)
is the running time of M on length-n inputs; then running Search on a set
S takes TO (HT (|S| · poly (λ)) + |S| · poly (λ)) time, and share keys have size
s (H� (|S| · poly (λ)) · poly (λ)).

Remark 3. We note that the security of Construction 2 does not require the diO
obfuscator to be secure with relation to arbitrary auxiliary inputs, but rather it
is only required to guarantee security against a specific class of auxiliary inputs,
as specified in the proof of Claim 2.

Proof of Claim 2. The correctness of the scheme follows directly from the cor-
rectness of the underlying primitives. We now argue that the scheme is secure.
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Let A be a PPT adversary in the security game of Definition 1, let Ki be the
data key A chose for data owner i, and let W0,W1 be the sets of queries A chose
(for all other values chosen by A, we use the notation of Definition 1). We proceed
through a sequence of hybrids. Recall that the view of A in the security game
consists of the encrypted sets TSb

i
for every i ∈ D, queries q for every w ∈ Wb,

and for every edge (j, i) ∈ E, the obfuscated program Δj,i. In particular, since
the keys, and encrypted sets, of corrupted data owners are identically distributed
when b = 0, 1 (because S0

i = S1
i for every i ∈ Dc, and they are encrypted using

the same keys), we can fix these values into all hybrid distributions, without
decreasing the computational distance. Moreover, we assume without loss of
generality that all data keys Ki chosen by A are valid. We now define the hybrids.

view0: view0 is the view of A in the security game with b = 0.
H0: In hybrid H0, the keys K = (KL,KR) ,Ku = (Ku

L,Ku
R) in every obfuscated

program PK,(Ku,vku),h(TS0) are replaced with the keys K′ = (KL,0) ,Ku′ =
(Ku

L,0).
H0 ≈ view0 by the diO security of O (and a standard hybrid argument over all
obfuscated programs in view0,H0), because the TMs in each of the share keys
Δj,i in view0,H0 are differing-inputs. Indeed, they are actually functionally
equivalent (given any auxiliary input), since Dec2 completely disregards the
right ciphertext, and so replacing the right secret key with the all-0 string
does not affect functionality.

H1: In hybrid H1, the encrypted set Ti of every honest data owner i /∈ Dc is
generated as the encryption of

(
S0

i , S1
i

)
with EncL (see Definition 3 below)

instead of Enc2. (Notice that this also affects the share keys.)

To prove that H0 ≈ H1, we will use the following lemma.

Lemma 1. Let � ∈ {L,R}. For every pair (mL,mR) of messages, the following
distributions are computationally indistinguishable, when E2,E� use the same
underlying encryption scheme E = (KeyGen,Enc,Dec).

– D1: generate K = (KL,KR) ← KeyGen2
(
1λ

)
and c ← Enc2 (K,m�), and

output (K�, c).
– D2: generate K = (KL,KR) ← KeyGen�

(
1λ

)
and c ← Enc� (K, (mL,mR)),

and output (K�, c).

Proof. We prove the lemma for the case � = L (the case � = R is similar)
by showing that indistinguishability follows from the security of the underly-
ing scheme E. Given a distinguisher D between D1,D2, we construct a dis-
tinguisher D′ (that has mL hard-wired into it) between encryptions accord-
ing to E of mL,mR. Given a ciphertext c, D′ operates as follows: generates
K′ ← KeyGen

(
1λ

)
, computes c′ ← Enc

(
K′,mL

)
, and outputs D

(
K′, (c′, c)

)
.

Notice that if c encrypts mL then the input to D is distributed according to D1,
otherwise it is distributed according to D2, so the distinguishing advantage of
D′ is equal to that of D which (by the security of E) is negligible. �
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By a standard hybrid argument, Lemma1 implies that polynomially many
ciphertexts (generated by E2 or by EL, with the same or different keys), together
with the keys of the “left” component, are computationally indistinguishable.

We prove H0 ≈ H1 by reducing any distinguisher D between H0,H1 to a
distinguisher D′ between encryptions generated according to EL or E2. We hard-
wire into D′ the querier keys and their queries, as well as the keys and encrypted
sets of corrupted data owners, and the share keys associated with them. (This is
possible because the encryption and signing keys of queriers, and their queries,
are identically distributed in H0,H1, and independent of the encrypted sets; and
since the share keys Δj,i for i ∈ Dc depend only on the keys of data owner i,
querier j, and the encrypted set Ti, which are identically distributed in both
hybrids.) D′ operates as follows: given a sequence of ciphertexts (the encrypted
sets of honest data owners), and the keys corresponding to the ciphertexts in the
left components, D′ honestly generates the hashes of encrypted sets of honest
data owners, and uses the hard-wired querier keys, together with the keys for
the left component in the ciphertexts of honest data owners, to generate the
share keys between queriers and honest data owners. (Notice that since we have
removed the key of the right component in ciphertexts of honest data owners,
these are not needed to generate the share keys.) The values obtained in this way
are distributed identically to H0 (if the input ciphertexts were generated with
E2) or H1 (if they were generated with EL), so D′ has the same distinguishing
advantage as D.

We now define the next hybrids.

H2 : In hybrid H2 the queries
(
w0

j,1, · · · , w0
j,kj

)
of every querier j ∈ Q are

generated using EncL with message
(
w0

j,l, w
1
j,l

)
, 1 ≤ l ≤ kj , instead of Enc2.

H1 ≈ H2 by a similar argument to the one used to show H0 ≈ H1.
H3 : In hybrid H3, the generation of share keys Δj,i is modified as follows: (1)

the hard-wired keys are (0,KR,i) ,
(
0,Ku

R,j

)
, where (KL,i,KR,i) ,

(
Ku

L,i,K
u
R,j

)
are the encryption keys of data owner i and querier j, respectively; and (2)
the program P uses DecR (instead of Dec2) to decrypt c and T ′

S .

H3 ≈ H2 by the diO security of O, as we now show. Let d denote the number
of share keys available to the adversary (i.e., d = |E|), and order them in some
arbitrary way: Δ1, · · · ,Δd. We define a sequence of hybrids H0, · · · ,Hd, where
in Hl, the first l share keys are generated as in H3 (we denote these keys by
Δ′

k), and all other share keys are generated as in H2. We show that Hl ≈ Hl−1

for every 1 ≤ l ≤ d, and conclude that H2 = H0 ≈ Hd = H3.
Fix some 1 ≤ l∗ ≤ d, and let (j, i) be the edge for which Δl∗ was gener-

ated. We fix all the keywords W0,W1, and the sets S0
i′ , S1

i′ for i′ ∈ D, into
Hl∗ ,Hl∗−1 (this is possible because these values are identical in both hybrids).
We additionally fix the keys of every querier j′, j′ �= j and data owner i′, i′ �= i,
the queries that querier j′ makes, the processed sets Ti′ , i′ �= i, and share keys
Δj′,i′ ,Δ′

j′,i′ (this is possible because these values are identically distributed in
both hybrids). We now argue that Δ′

j,i,Δj,i sampled in Hl∗ ,Hl∗−1 (respectively)
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form a differing-sinputs family of TMs with respect to the auxiliary information
aux available to A (and so Hl∗ ≈ Hl∗−1 by the diO security of O). This auxil-
iary information consists of the values we have fixed into Hl∗ ,Hl∗−1, the public
verification key vku

j for signatures of querier j, all queries querier j makes, the
encrypted set Ti of data owner i, and all Δj,i′ ,Δj′,i for i′ �= i, j′ �= j such that
(j, i′) , (j′, i) ∈ E. Let P,P ′ denote the distributions over programs obfuscated
in Δj,i,Δ

′
j,i, and let D be a PPT algorithm that obtains (P, P ′) ← P × P ′ and

aux. In particular, notice that D knows the hash h (Ti), and the encryption keys
Ki,K

u
j (but not the secret signing key sku

j ), since these appear in either P or
P ′. We show that D succeeds in finding a differing input only with negligible
probability.

Consider first the inputs (for P, P ′) available to D in aux, i.e., the encrypted
set Ti (which encrypts the elements of S0

i in the left components, and the ele-
ments of S1

i in the right components; this holds even if i ∈ Dc since in that case
S0

i = S1
i ), and the queries of querier j. For every such query q there exists a

pair (wL, wR) of keywords such that q is of the form q = (c = (cL, cR) , σ) where
c� ← Enc

(
Ku

�,j ,m�

)
, � ∈ {L,R}, σ ← Sign

(
sku

j , c
)
, and wL ∈ S0

i ⇔ wR ∈ S1
i .

(Here, (KeyGen,Enc,Dec) is the encryption scheme used as a building block in
the double encryption scheme.) In particular, P (q, Ti) = P ′ (q, Ti) since the
checks in Steps (1)–(2) succeed in both cases, and Steps (4)–(5) return the same
outcome (P searches for wL in S0

i , since it decrypts using Dec2, whereas P ′

searches for wR in S1
i , since it decrypts with DecR and the right component of

Ti encrypts S1
i ; and wL ∈ S0

i ⇔ wR ∈ S1
i ). In particular, both programs have

the same running time in this case.
Next, we claim that for every other possible input (T ′, c′, σ′) that D chooses

(and does not appear in aux), P (T ′, c′, σ′) = P ′ (T ′, c′, σ′) = 0 except with
negligible probability. Indeed, if (c′, σ′) �= q (where q is some query of querier j)
then by the existential unforgeability of the signature scheme, with overwhelming
probability σ′ is not a valid signature for c′, so the check in Step (1) fails in both
P, P ′ (in particular, both programs have the same running time in this case).
Moreover, if T ′ �= Ti then by the collision resistance of h, with overwhelming
probability h (T ′) �= h (Ti), so the check in Step (2) fails (and again, P, P ′ have
the same running time). Therefore, P, P ′ are differing inputs with relation to the
auxiliary information aux.

We now define the final set of hybrids.

H4 : In hybrid H4, the queries
(
w1

j,1, · · · , w1
j,kj

)
of every querier j ∈ Q are

generated using Enc2 with message
(
w1

j,l, w
1
j,l

)
, 1 ≤ l ≤ kj , instead of EncL

with message
(
w0

j,l, w
1
j,l

)
, 1 ≤ l ≤ kj .

H3 ≈ H4 by a similar argument to the one used to prove H1 ≈ H2.
H5 : In hybrid H5, the encrypted set Ti of every honest data owner i /∈ Dc is

generated as the encryption of
(
S1

i , S1
i

)
with Enc2 instead of with EncL.

H4 ≈ H5 by a similar argument to the one used to prove H0 ≈ H1.
H6 : In hybrid H6, the obfuscated program for every edge (j, i) ∈ E is generated

as follows: (1) the hard-wired keys are K = (KL,i,KR,i) ,K =
(
Ku

L,j ,K
u
R,j

)
,
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instead of K′ = (0,KR,i) ,Ku′ =
(
0,Ku

R,j

)
; and (2) Dec2 is used for decryption

(instead of DecR).

H6 ≈ H5 by the diO security of O, using a standard hybrid argument in
which the obfuscated programs are replaced one at a time. When replacing the
program for edge (j, i) from P ′ (in H5) to P (in H6), the PPT D (which should
find a differing input) is given (as part of the auxiliary information aux) the sets
S1

i′ , i′ ∈ D; the keywords in W1 and the corresponding queries; the encryption
keys of all data owners i′, i′ �= i and querier j′, j′ �= j; the signing and verification
keys of all queriers j′, j′ �= j; and all encrypted sets Ti′ , i′ ∈ D. Also, from P, P ′

the distinguisher learns the encryption keys Ki,K
u
j , and the verification key vku

j .
We show that except with negligible probability, D fails to find a differing input
(the argument is similar to that used to prove H3 ≈ H2).

The inputs (for P, P ′) available to D in aux, i.e., the encrypted set Ti, and
queries q = (c, σ) of querier j (where c ← Enc2

(
Ku

j ,m
)

for some m, and σ ←
Sign

(
sku

j , c
)
), are not differing-inputs (even though P ′ decrypts the right com-

ponent of c, whereas P decrypts the left component) because both components
of c encrypt m according to Enc (so both P, P ′ search for m in S1

i ). For every
other possible input (T ′, c′, σ′) that D chooses, P (T ′, c′, σ′) = P ′ (T ′, c′, σ′) = 0
except with negligible probability: if (c′, σ′) �= q (where q is some query of querier
j) then with overwhelming probability σ′ is not a valid signature on c′ (by the
existential unforgeability of the signature scheme); whereas if T ′ �= Ti then with
overwhelming probability h (T ′) �= h (Ti) (by the collision resistance of h). Con-
sequently, H5 ≈ H6. Since H6 is the view of A in the security game with b = 1,
we conclude that A has only negligible advantage in the security game.

Finally, we analyze the complexity of the scheme. Data and query keys,
which are simply encryption and signing keys, have size poly (λ). Queries are
ciphertext for length-O (λ) keywords (since the universe is at most of size
2λ), together with signatures on these ciphertexts. Similarly, a processed set
consists of encryptions of each of its keywords, so its size is |S| · poly (λ).
Regarding share keys, the TM has size H� (|S| · poly (λ)) · poly (λ) (since
|h (TS)| ≤ H� (|S| · poly (λ))), and so by the assumption on the blowup caused by
obfuscation, share keys have size s (H� (|S| · poly (λ)) · poly (λ)). Finally, Search
consists of running the obfuscated TM, which requires computing the hash
(HT (|S| · poly (λ)) time), and performing O (|S|) operations, each taking poly (λ)
time, so TIME (M, |S|) = HT (|S| · poly (λ))+ |S| ·poly (λ), and consequently the
running time is TO (HT (|S| · poly (λ)) + |S| · poly (λ)). �

The following encryption scheme was used to prove Claim 2:

Definition 3. Given a symmetric encryption scheme (KeyGen,Enc,Dec), and
� ∈ {L,R}, define an encryption scheme E� = (KeyGen�,Enc�,Dec�) as follows:

– KeyGen� operates as KeyGen2 from Definition 2. Namely, on input 1λ it gen-
erates KL ← KeyGen

(
1λ

)
, KR ← KeyGen

(
1λ

)
, and outputs K = (KL,KR).

– Enc�, on input a key K = (KL,KR) and a message m = (mL,mR), computes
cL ← Enc (KL,mL) and cR ← Enc (KR,mR), and outputs c = (cL, cR).
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– Dec�, on input a key K = (KL,KR) and a ciphertext c = (cL, cR), outputs
Dec (K�, c�).

The proof of Theorem3 now follows as a corollary from Claim 2.

Proof of Theorem 3. We instantiate Construction 2 with the double encryption
scheme of Definition 2, based on the encryption scheme whose existence follows
from the existence of a CRHF; the hash function with a Merkle Hash Tree (MHT)
hash based on the CRHF; and instantiate O with the diO obfuscator. Then the
security of the scheme, as well as the length of data and query keys, queries, and
processed sets, follow directly from Claim 2. Regarding share keys, the MHT has
poly (λ)-length outputs, and O causes only a polynomial blowup, so by Claim2,
share keys have length poly (λ). Finally, generating the MHT for a set of size s
takes time s · poly (λ), and so the runtime of Search is poly (λ, |S|). �

5.2 MKSE from Public-Coin Differing-Inputs Obfuscation

In this section we show that a slight modification of Construction 2 is secure
assuming the underlying obfuscator is a pc-diO obfuscator for TMs. More specif-
ically, we only need to use a signature scheme with some “special” properties.
Concretely, we prove the following for a universe U of size |U| ≤ poly

(
2λ

)
:

Theorem 4 (MKSE from pc-diO (short share keys)). Assume that
OWPs, CRHFs, and pc-diO for TMs with polynomial blowup, exist. Then there
exists a secure MKSE in which share keys have size poly (λ), where λ is a secu-
rity parameter. Moreover, data and query keys, as well as queries, have length
poly (λ), and given a set S, its processed version has size |S|·poly (λ), and search-
ing in it takes poly (λ, |S|) time.

The reason we need to change the MKSE scheme outlined in Sect. 5.1 is
that it cannot use a pc-diO obfuscator. (Roughly speaking, pc-diO guarantees
indistinguishability of the obfuscated programs only as long as it is infeasible for
a PPT adversary to find an input on which they differ, even given the randomness
used to sample the programs.) Indeed, for every querier j and data owner i, the
randomness used to sample the program Pj,i (i.e., the program obfuscated in
the share key Δj,i) includes the signing key of querier j. This allows one to sign
arbitrary messages, meaning the obfuscated programs in the security game when
b = 0 and b = 1 are not differing-inputs. (The program Pj,i for querier j and
data owner i contains h

(
S0

i

)
when b = 0, and h

(
S1

i

)
when b = 1, so a differing

input would be a query on any keyword contained in one and not the other. The
query can be efficiently generated since the encryption and signing keys appear
in the randomness used to sample Pj,i.)

To overcome this issue, we introduce a new signature primitive which we call
dual-mode signatures. Roughly, a dual-mode signature scheme is an existentially-
unforgeable signature scheme associated with an additional SpecialGen algorithm
that given a list of messages, generates “fake” signatures on these messages, and
a “fake” verification key under which they can be verified. These “fake” sig-
natures and key are computationally indistinguishable from honestly generated
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signatures and verification key, and the “fake” verification key cannot be used
to successfully sign other messages, even given the randomness used to generate
the “special mode” verification key and signatures. (This rules out the trivial
construction in which SpecialGen simply runs the key generation and signing
algorithms.) Due to space limitations, we defer the formal definition to the full
version [19].

One can think of the SpecialGen algorithm as a way of “puncturing” the
signing key from the procedure that generates the verification key and signatures.
We use this viewpoint to prove security based on pc-diO security and dual-
mode signatures: we first replace the actual verification key used in Pj,i, and the
signatures in the queries of j, with ones generated by SpecialGen; and then use
pc-diO security to replace the obfuscated program from one containing h

(
S0

i

)
to one containing h

(
S1

i

)
. (Notice that now the randomness used to sample Pj,i

does not contain the signing key, so one cannot sign queries that j did not issue.)
In the full version [19], we construct dual-mode signatures from OWPs and

CRHFs:

Theorem 5. Assume that OWPs and CRHFs exist. Then there exists a dual-
mode signature scheme. Moreover, there exists a polynomial p (λ) such that sig-
natures on length-n messages have length 5p (λ)·(n + 1), signing keys have length
2p (λ) + λ, and verification keys have length 2p (λ).

We instantiate Construction 2 with a pc-diO obfuscator and the dual-mode
signatures of Theorem 5. The properties of the resultant scheme are summarized
in the following claim (whose proof is similar to that of Claim2).

Claim 3 (MKSE (Short Share Keys) from pc-diO). If Construction 2 is instanti-
ated with a secure pc-diO obfuscator for TMs and a secure dual-mode signature
scheme, and assuming the security of all building blocks, then Construction 2 is
a secure MKSE.

Moreover, if on messages of length n the dual-mode signature scheme out-
puts signing and verification keys of length poly (λ), and signatures of length
n · poly (λ), then the following holds for the MKSE scheme for universe U .
Data and query keys have length poly (λ), queries have length log |U| · poly (λ),
and for a set S, its corresponding processed set has size |S| · poly (λ). Fur-
thermore, if: (1) evaluating h on length-n inputs takes HT (n) time, and out-
puts a hash of length H� (n); and (2) there exist functions s, TO : N →
N such that for every TM M , |O (M)| ≤ s (|M |), and running O (M) on
inputs of length n takes TO (TIME (M,n)) time, where TIME (M,n) is the
running time of M on length-n inputs; then: running Search on a set S
takes TO (HT (|S| · poly (λ)) + |S| · poly (λ) + poly (λ, log |U|)) time, and share
keys have size s (H� (|S| · poly (λ)) · poly (λ)).

Proof. The correctness and complexity of the scheme is proven similarly to
Claim 2. (The only difference is in the length of queries, which contain a sig-
nature on a keyword w ∈ U , and the running time of Search, which needs to
verify the signature. In both cases, the increase in complexity is caused because
signatures on w ∈ U have length log |U| · poly (λ).)
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The security proof proceeds in a sequence of hybrids similar to the proof of
Claim 2, but introduces additional complications due to using a weaker obfusca-
tor primitive. More specifically, let A be a PPT adversary in the security game of
Definition 1, and let viewb, b ∈ {0, 1} denote its view in the security game with bit
b. We define hybrids H0,H1, and H2 as in the proof of Claim 2, and view0 ≈ H0

by the same arguments. Indeed, as discussed there, the obfuscated programs in
view0,H0 are differing inputs in relation to every auxiliary input, and in partic-
ular when this auxiliary input is the randomness used by the sampler to sample
the programs. H0 ≈ H2 because the indistinguiushability argument did not use
diO security.

Next, we define a new hybrid H′
2 in which the signatures on the queries

W0
j of every querier j, and his verification key vkj , are generated using the

SpecialGen algorithm (instead of the KeyGen and Sign algorithms). We show
that H′

2 ≈ H2 by the indistinguishability of standard and special modes of the
dual-mode signature scheme. We condition both hybrids on the values of the
sets S0

i , S1
i of data owners, their data keys, the processed sets, the encryption

keys of the queriers, the keywords they search for, and their encryptions. (This is
possible by an averaging argument, since these values are identically distributed
in both hybrids.) Let m denote the number of queriers, then we define a sequence
of hybrids H0, · · · ,Hm, where in Hj , the signatures and verification key of the
first j queriers are generated using SpecialGen, and the signatures and verification
keys of all other queriers are honestly generated (using KeyGen and Sign). We
prove that Hj ≈ Hj−1 for every 1 ≤ j ≤ m, and conclude that H2 = H0 ≈
Hm = H′

2.
Fix some j. Given a distinguisher D between Hj ,Hj−1, we construct a dis-

tinguisher D′ (with the same distinguishing advantage) between the real and
special-mode verification key and signatures on the ciphertexts encrypting the
keywords in W0

j , and conclude that Hj ≈ Hj−1 by the indistinguishability of
standard and special modes property. We hard-wire into D′ the signing, verifi-
cation keys, and queries of every j′ �= j, as well as all share keys Δj′,i for i ∈ D
(this is possible because these values are identically distributed in Hj ,Hj−1 and
so we can fix them into both hybrids). Given a verification key vk, and a list L of
signatures on the ciphertexts of querier j, D′ generates for every edge (j, i) ∈ E
the program PK,(Ku,vk),h(T ) (where K,Ku, and h (T ) are taken from the hard-
wired values), and uses O to generate the obfuscated program Δj,i. Then, D′

generates the queries of querier j by concatenating the corresponding signature
to each ciphertext of j. Together with the hard-wired values, this gives the entire
hybrid, and D′ runs D on the hybrid, and outputs whatever D outputs. Notice
that if vk and the signatures were honestly generated, then the input to D is
distributed according to Hj−1, otherwise it is distributed according to Hj , so D′

and D have the same distinguishing advantage.
Next, we define H3 as in the proof of Claim 2 (but notice that the verification

keys in every Δj,i were generated using SpecialGen), and claim that H′
2 ≈ H3 by

the pc-diO security of O. We define the hybrids H0, · · · ,Hd as in the argument
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that H2 ≈ H3 in the proof of Claim 2 (except that we use H′
2 instead of H2),

and show that Hl ≈ Hl−1 for every 1 ≤ l ≤ d.
Fix some 1 ≤ l∗ ≤ d, and let (j, i) be the edge for which Δl∗ was generated.

We hard-wire the sets S0
i′ , S1

i′ , i′ ∈ D, and all the keywords that queriers ask
about (in both the 0-experiment and the 1-experiment), into Hl∗ ,Hl∗−1 (this
is possible because these values are identical in both hybrids). We additionally
hard-wire the keys of every querier j′, j′ �= j and data owner i′, i′ �= i, the
encrypted sets Ti′ , i′ �= i, the queries of querier j′, and the share keys Δj′,i′ ,Δ′

j′,i′

(Δj′,i′ denotes a key in H′
2, Δ′

j′,i′ denotes a key in H3). (This is possible because
these values are identically distributed in both hybrids.) We show that Δj,i,Δ

′
j,i

sampled in Hl∗−1,Hl∗ (respectively) form a public-coin differing-inputs family
of TMs (and conclude that Hl∗−1 ≈ Hl∗ by the pc-diO security of O).

Let P,P ′ denote the distributions over programs obfuscated in Δj,i,Δ
′
j,i, and

let D be a PPT algorithm that obtains (P, P ′) ← P × P ′ and r, where r is the
randomness used to sample P, P ′. We assume the “worst-case” scenario in which
all the values we have fixed into Hl∗ ,Hl∗−1 are known to D. Notice that from
the randomness r of the sampler, D learns the encryption keys Ki,K

u
j (the left

component of these keys is needed to generate P , whereas the right component
is needed to generate P ′), as well as the encrypted set Ti, the verification key
vku

j for signatures of querier j, and the queries of j (which consist of encryptions
of keywords, and signatures on these encryptions; the signatures were generated
together with the verification key by SpecialGen). (We note that from these
values D can compute on its own the share keys Δj′,i,Δ

′
j′,i for (j′, i) ∈ E, and

Δj,i′ ,Δ′
j,i′ for (j, i′) ∈ E.) We show that D succeeds in finding a differing input

only with negligible probability.
Consider first the inputs (for P, P ′) which D knows (from the hard-wired

values, or what it can deduce from r), i.e., the encrypted set Ti (which encrypts
the elements of S0

i in the left components, and the elements of S1
i in the right

components; for i ∈ Dc this holds since S0
i = S1

i ), and the queries of querier j.
For every such query q there exists a pair (wL, wR) of keywords such that q is
of the form q = (c = (cL, cR) , σ) where c� ← Enc

(
Ku

�,j ,m�

)
, � ∈ {L,R}, σ is

a valid signature on c (generated by SpecialGen), and wL ∈ S0
i ⇔ wR ∈ S1

i . In
particular, P (q, Ti) = P ′ (q, Ti) except with negligible probability since except
with negligible probability, the checks in Steps (1)–(2) succeed in both cases (by
indistinguishability of the standard and special modes of the signature scheme,
σ is indistinguishable from a valid signature on c, which by the correctness of the
signature scheme, would pass verification), and Steps (4)–(5) return the same
outcome (P searches for wL in S0

i , since it decrypts using Dec2, whereas P ′

searches for wR in S1
i , since it decrypts with DecR and the right component of

Ti encrypts S1
i ; and wL ∈ S0

i ⇔ wR ∈ S1
i ).

Next, we claim that for every other possible input (T ′, c′, σ′) that D chooses,
P (T ′, c′, σ′) = P ′ (T ′, c′, σ′) = 0 except with negligible probability. Indeed, if
(c′, σ′) �= q (where q is some query of querier j) then by the property that special-
mode keys cannot sign additional messages, with overwhelming probability σ′ is
not a valid signature for c′, so the check in Step (1) fails in both P, P ′. Moreover,
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if T ′ �= Ti then by the collision resistance of h, with overwhelming probability
h (T ′) �= h (Ti), so the check in Step (2) fails. Therefore, P, P ′ are public-coin
differing-inputs.

We now define the last set of hybrids. (These hybrids differ from the corre-
sponding hybrids in the proof of Claim2 only in that the verification keys and
signatures are generated in the special mode.)

H4 : In hybrid H4, the queries
(
w1

j,1, · · · , w1
j,kj

)
of every querier j ∈ Q are

generated using Enc2 with message
(
w1

j,l, w
1
j,l

)
, 1 ≤ l ≤ kj , instead of EncL

with message
(
w0

j,l, w
1
j,l

)
, 1 ≤ l ≤ kj .

H3 ≈ H4 by a similar argument to the one used to prove H1 ≈ H2.
H5 : In hybrid H5, the encrypted set Ti of every honest data owner i /∈ Dc is

generated as the encryption of
(
S1

i , S1
i

)
with Enc2 instead of with EncL.

H4 ≈ H5 by a similar argument to the one used to prove H0 ≈ H1.
H6 : In hybrid H6, the obfuscated program for every edge (j, i) ∈ E is generated

as follows: (1) the hard-wired keys are K = (KL,i,KR,i) ,K =
(
Ku

L,j ,K
u
R,j

)
,

instead of K′ = (0,KR,i) ,Ku′ =
(
0,Ku

R,j

)
; and (2) Dec2 is used for decryption

(instead of DecR).

We show that H6 ≈ H5 follows from the pc-diO security of O by a standard
hybrid argument in which the obfuscated programs are replaced one at a time.
When replacing the program for edge (j, i) from P ′ (in H5) to P (in H6), we
hard-wire into the PPT D (which should find a differing input) the sets S1

i′ for
every i′ ∈ D, the keywords searched for (in the 1-experiment) by all queriers, the
encryption keys of all data owners i′, i′ �= i and queriers j′, j′ �= j, the signing,
verification keys, and queries of all queriers j′, j′ �= j, and all encrypted sets
Ti′ , i′ �= i. Also, from the randomness r of the sampler (of P, P ′), D learns the
encryption keys Ki,K

u
j , the (special-mode) verification key vku

s,j , the encryptions
of the keywords which querier j searches for, together with the signatures on
these ciphertexts, and the encrypted set Ti.

We claim that D finds a differing input only with negligible probability. The
argument is similar to that used to prove H3 ≈ H′

2. The inputs (for P, P ′) avail-
able to D (from the hard-wired values, and the randomness of the sampler), i.e.,
the encrypted set Ti, and queries q = (c, σ) of querier j, where c ← Enc2

(
Ku

j ,m
)

for some m, and σ is a signature for c (generated using SpecialGen), are not
differing-inputs (even though P ′ decrypts the right component of c, whereas P
decrypts the left component) because both components of c encrypt m according
to Enc (so both P, P ′ search for m in S1

i ), where Enc is the encryption scheme
underlying Enc2,EncL,EncR. For every other possible input (T ′, c′, σ′) that D
chooses, P (T ′, c′, σ′) = P ′ (T ′, c′, σ′) = 0 except with negligible probability: if
(c′, σ′) �= q (where q is some query of querier j) then with overwhelming probabil-
ity σ′ is not a valid signature on c′ (by the property that special-mode signatures
cannot sign additional messages); whereas if T ′ �= Ti then with overwhelming
probability h (T ′) �= h (Ti) (by the collision resistance of h).
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In our final new hybrid H′
6, the signatures on the queries W0

j of every querier
j, and his verification key vkj , are honestly generated (using the KeyGen and
Sign algorithms). Then view1 = H′

6 ≈ H6 by the same arguments used to show
H′

2 ≈ H2. �
Theorem 4 now follows as a corollary from Claim 3 and Theorem 5, and since

the existence of symmetric encryption follows from the existence of CRHFs.

6 Extensions and Open Problems

In this section we discuss possible extensions of our MKSE definition and con-
structions, and point out a few open problems in the field.

We have focused on a selective, indistinguishability-based MKSE notion (Def-
inition 1). One could also consider several other formulations, as we now discuss.

Simulation-based security. First, one can consider a selective simulation-
based notion, in which the real-world view of any PPT adversary can be efficiently
simulated given only “minimal” information. More specifically, at the onset of the
execution the adversary chooses (as in Definition 1) sets of queriers, data owners,
and corrupted data owners; a share graph; keyword sets for all data owners; data
keys for corrupted data owners; and a (possibly empty) set of distinct keyword
queries for each querier. The simulator is then given the sets and data keys of
corrupted data owners; the sizes of the sets of honest data owners; the share
graph; and for each keyword query w of querier j, and every edge (j, i) in the
graph, whether w ∈ Si or not (where Si is the set of data owner i). The simulator
then generates a complete simulated adversarial view, namely processed sets for
all data owners, share keys for all edges in the share graph, and queries for every
keyword query. Intuitively, we say that an MKSE is simulation-secure if for every
PPT adversary there exists a PPT simulator as above, such that the real and
simulated views are computationally indistinguishable. The PRF-based MKSE
(Construction 1) is simulation-secure (see Remark 1), and we leave it as an open
problem to determine whether the MKSE with short share keys (Construction 2,
based on diO or pc-diO) is simulation-secure.

A natural question that arises in this context is whether indistinguishability-
based security (as in Definition 1) implies simulation-based security (as outlined
above). One approach towards tackling this question is to describe an algorithm
that, given the input of the simulator (as specified above), generates an assign-
ment for the sets of the honest data owners, and for all keyword queries, in a way
that is consistent with the outcome of searching for these keywords. Concretely,
this approach reduces the task of constructing a simulator to the following graph
problem: given a bipartite graph G = (L,R,E); a set {nv : v ∈ R} of natural
numbers; and for every u ∈ L, a set of coloring of the edges touching u in two
colors (blue and red), assign a set Sv ⊆ U to every v ∈ R (recall that U is a
universe of possible keywords), and a value wc

u ∈ U to every u ∈ L and every
coloring c of the edges that touch u, such that the following holds:
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1. For every v ∈ R, |Sv| = nv.
2. For every u ∈ L, and two colorings c1, c2 of the edges touching u, wc1

u �= wc2
u .

3. For every u ∈ L, every coloring c of the edges that touch u, and every edge
(u, v) ∈ E, c (u, v) = blue if and only if wc

u ∈ Sv, where c (u, v) is the color of
the edge (u, v) in the coloring c.

(We note that Item 1 guarantees that sets have the “right” size; Item 2 guarantees
that the queries made by each querier are distinct; and Item 3 guarantees that
the assignments to the sets and keywords searched for are consistent.) At a high
level, the main challenge is in finding an assignment for the set that would be
consistent over the queries of multiple queriers, while simultaneously satisfying
the restriction on the size of the set. Intuitively, this issue does not arise in the
PRF-based construction since each share key Δj,i encodes the entire set, and the
Search algorithm does not use the processed set at all (so issues of consistency
across different queriers do not arise).

Adaptive security. Another possible dimension of generalizing Definition 1 is
to consider an (either indistinguishability-based or simulation-based) adaptive
definition. At a high level, in this setting the adversary may adaptively generate
queriers, data owners (with their sets and data keys), edges in the share graph,
and keyword queries, and immediately receives the resultant values. (For exam-
ple, when an adversary specifies a new data owner and his data key and set,
he receives the corresponding processed set; when he adds an edge to the share
graph, he receives the corresponding share key, etc.) The security requirement
should hold as long as at the end of the execution, the data sets, share graph,
and queries satisfy the restrictions imposed by the (selective) security definition
(in a simulation-based definition, the only restriction is that the queries of each
querier are distinct; in an indistinguishability-based definition there are further
restrictions as specified in Definition 1).

Natural approaches towards proving adaptive security, even for the PRF-
based construction (Construction 1), seem to run into “selective opening type”
issues: in the security proof, we would naturally want to replace the pseudoran-
dom images of the PRF F in share keys with random values, however we do not
a-priori know which values the adversary will ask to be “opened” (by making a
keyword query for a keyword in the set corresponding to the share key; recall that
these queries constitute a key for F ). Consequently, we cannot a-priori determine
which values should remain pseudorandom (so that they can later be opened).
However, we can show that Construction 1 is adaptively simulation-secure in
the Random Oracle model, namely when all evaluations of F are replaced with
calls to the random oracle (replacing FK (x) with a call to RO (K,x)). The ran-
dom oracle circumvents such “selective opening type” issues since any (randomly
assigned) output of the random oracle can later be “explained” by consistently
assigning the random oracle outputs at other (related) points.

Efficiency and security tradeoffs. Finally, an interesting avenue for future
research is exploring the tradeoffs between efficiency of the MKSE scheme, and
the underlying assumptions. Our MKSE with short share keys (Construction 2)
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indicates the hardness of proving an unconditional lower bound on the size of
share keys, since it would require ruling out the existence of diO for a specific
class of samplers. However, it does not rule out the possibility of constructing an
MKSE scheme with short share keys based on weaker assumptions (such as the
existence of iO for TMs, or ideally, on the existence of OWFs). More generally,
one could ask how the search time, and size of share keys, relate to each other;
and if there is a lower bound on “search time plus share key size”.
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Abstract. If q is a prime and n is a positive integer then any two finite
fields of order qn are isomorphic. Elements of these fields can be thought
of as polynomials with coefficients chosen modulo q, and a notion of
length can be associated to these polynomials. A non-trivial isomorphism
between the fields, in general, does not preserve this length, and a short
element in one field will usually have an image in the other field with
coefficients appearing to be randomly and uniformly distributed modulo
q. This key feature allows us to create a new family of cryptographic
constructions based on the difficulty of recovering a secret isomorphism
between two finite fields. In this paper we describe a fully homomorphic
encryption scheme based on this new hard problem.

Keywords: Finite field isomorphism · Fully homomorphic encryption
Lattice-based cryptography

1 Introduction

Let q be a prime, let Fq be the finite field with q elements, and let f(x) ∈ Fq[x]
and F (y) ∈ Fq[y] be irreducible monic polynomials of degree n. Then

X := Fq[x]/(f(x)) and Y := Fq[y]/(F (y)) (1)

are isomorphic fields with qn elements. Given knowledge of f(x) and F (y),
it is easy to write down an explicit isomorphism X → Y and its inverse. We
normalize mod q polynomials by choosing their coefficients between − 1

2q and 1
2q,

and then we define the size of a polynomial to be the magnitude of its largest
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coefficient. It is then an observation that, except in trivial cases, the isomorphism
X → Y does not respect the Archimedian property of size. Indeed, when f and
F are distinct monic irreducible polynomials, we have observed that polynomials
within a sphere of small radius (with respect to the L∞ or L2 norm) in X appear
to be essentially uniformly distributed in Y. We record this observation formally,
and construct arguments for its veracity in Sect. 2.2.1.

Observation 1. Let Mn,q be the set of all degree n monic irreducible polyno-
mials mod q and fix 1 ≤ β < q/2. Sample f ∈ Fq[x] and F ∈ Fq[y] uniformly
from Mn,q, and construct X, Y and the associated isomorphism φ : X → Y as
in (1). Let χβ be a distribution that produces samples with bounded length less
than β. Then the image in Y of a collection of polynomials in X sampled from χβ

is computationally hard to distinguish from a collection of polynomials sampled
uniformly in Y. By a proper choice of parameters, the ability to distinguish such
a collection can be made arbitrarily difficult.

Remark 1. We will refer to elements of X or Y as short if they have infinity norm
less than β, where generally β will be less than q/4.

We will find it essential to choose f from a subset of Mn,q consisting of monic
irreducible polynomials of degree n whose coefficients have absolute value less
than or equal to 1. Observation 1 appears to remain true, even when restricted
to this subset of Mn,q, and the security of our proposed homomorphic scheme
will rest on:

Observation 2. Observation 1 remains true if f ∈ Fq[x] is chosen from the
subset of polynomials in Mn,q whose coefficients have a max absolute value 1.

In this paper we base two distinct, but related, problems on Observation 2.

Definition 1. (FFI). Finite Field Isomorphism Problems: Let k be a
positive integer. Let X,Y, φ, χβ be as above. Let a1(x), . . . ,ak(x), b1(x) be sam-
ples from χβ, and Ai = φ(ai) and B1 = φ(b1) be the corresponding images.
Also sample B2(y) uniformly from Y.
Computational FFI problem: Given Y,A1(y), . . . ,Ak(y), recover f(x) and/or
a1(x), . . . ,ak(x).
Decisional FFI problem: Given Y,A1(y), . . . ,Ak(y), B1 and B2, with one of
B1,B2 an image of a sample from χβ, identify the image with a probability
greater than 1/2.

Clearly, the decisional FFI problem can be solved if the computational FFI prob-
lem can be solved, and if Observation 1 is correct, then the decisional FFI prob-
lem can be made arbitrarily hard. We will demonstrate that if a certain lattice
reduction problem of dimension roughly 2n can be solved, then the decisional
FFI problem can be solved, and this lattice reduction problem can be made arbi-
trarily hard. We do not, however, have a reduction showing that ability to solve
the decisional problem implies the ability to solve a lattice reduction problem.
In other words, the strongest attacks we have found on the decisional problem
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are via lattice reduction arguments, but we cannot rule out the possibility of
other, potentially stronger, attacks.

Our plan is to build a somewhat homomorphic encryption scheme based on
the decisional FFI problem. This will have double exponential noise growth, but
will also have the advantage of being able to handle a reasonable number of mul-
tiplications (and additions) of moderate sized integers. We will then analyze the
noise performance, and introduce a bit-decomposition-based noise management
scheme that allows us to reduce the noise growth to single exponential. This will
yield a bootstrappable, thus a fully homomorphic encryption scheme.

We will encode numbers, i.e. messages, as short elements in X, with noise
added for semantic security, and view their corresponding images in Y as cipher-
texts. This will create a symmetric encryption algorithm, which will be somewhat
homomorphic in the following sense: Polynomials in elements of X can be eval-
uated, and lifted to polynomials over Z[x]/(f(x)) as long as their coefficients
do not exceed q/2 in absolute value. Knowledge of these output polynomials
will allow the user with knowledge of f(x) to recover the value of the polyno-
mial over Z, and the output of the computation. The corresponding ciphertext
polynomials in Y can be evaluated by anyone with knowledge of the public key
F (y), and substantial reduction modulo q will occur. Decryption will occur by
mapping isomorphically back to X, and the correct result will be output as long
as the coefficients do not exceed q/2 in absolute value.

This is where an important point arises. In 1996, (eventually published in
[25]), NTRU introduced the idea that if two short polynomials in Z[x] are mul-
tiplied, and the result is reduced modulo xn − 1, then the reduced product is
also (moderately) short. This observation has been used, in the years since then,
in a variety of cryptographic constructions. In this paper we make use of a vari-
ation on this observation: This property remains true for a considerably larger
class of polynomials than xn ± 1. In particular, if f(x) is chosen to be monic,
of degree n, and have coefficients from the set {−1, 0, 1}, then a short polyno-
mial times a short polynomial remains moderately short when reduced modulo
f(x). If parameters are chosen properly, the search space for f(x) can be made
arbitrarily large, making it impractical to locate f(x) by a brute force search.

The symmetric system sketched above can be converted into a public key
encryption scheme using the standard technique of publishing a list of encryp-
tions of 0 and adding short linear combinations of these encryptions as noise. Its
semantic security can be seen to be based on the decisional FFI problem, not
on the presumably harder computational FFI problem. It is not immediately
obvious that this is the case, as all ciphertexts of messages will be images of
short vectors in X, but in the simple instantiation we will present here, it can
be shown that this is true. (See Theorem1 in Sect. 3.2.4.)

1.1 Subfield Attack

Despite major advances over the past few years the biggest challenge prevent-
ing the deployment of FHE schemes in real life applications is efficiency. To
address the efficiency bottleneck, many optimizations were proposed including
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some that take advantage of specialization of the underlying field/ring struc-
ture. Such specializations enable efficient batched parallel evaluations, make it
possible to choose parameters that support highly efficient number theoretical
transforms, and in some cases even reduce the size of evaluation keys.

However, such customizations may potentially introduce weaknesses in the
security assumptions of the schemes. A recent family of attacks proposed by
Albrecht et al. [29], by Cheon et al. [8], and by Kirchner and Fouque [27] exploit
the special structure, namely subfields, in ring based FHE schemes. Furthermore,
the attack in [27] also works when the underly ring does not admit subfields.
Moving to a subfield with a Norm mapping as in [29], or a Trace mapping as
in [8] or the Gentry-Szydlo mapping [22] as in [27] will reduce the dimension
of the lattice. Then, via a projection, also named zero-forcing in the original
May-Silverman description [30], the Kirchner-Fouque method is able to create
a lattice with an even smaller dimension, at the cost of reducing the number of
unique shortest vectors in the lattice.

This set of attacks demonstrated that several NTRU based FHEs with
medium size parameters are no longer secure. Specifically, if the NTRU scheme
is constructed with the DSPR security assumption, which is the case in some of
the NTRU based FHE schemes [3,28], the assumed security level of the scheme
can be significantly reduced. While the authors suggest more caution on param-
eter selection by avoiding specialized fields in this particular case, there could
be further attacks that exploit specialized parameters. It has become quite clear
that we need more generic constructions that avoid specialized structures as
much as possible. Furthermore, we need diversity in the FHE constructions, i.e.
FHEs that remain secure even if other conjectured hard problems, e.g. DSPR or
Approximate GCD, are shown to be weaker than expected.

These are among the goals of the FHE scheme proposed in this paper: The
proposed construction is based on the DFFI problem; a new problem we propose
and analyze here for the first time. The proposed construction avoids specializa-
tions. The FHE scheme is based on a fixed prime q and a class of short generic
private keys f(x) with the property that f(x) is monic, irreducible mod q, and
the Galois group of the associated finite field Zq[x]/(f(x)) is Cn.

With such choice of parameters it is safe to claim that attacks in [8,29] no
longer apply due to the lack of subfields. In addition, as one shall see in Sect. 2.4,
the unique shortest vectors in this class of lattices are not sparse vectors with
many 0s, and they are not cyclic rotations of each other. Therefore, the projection
method will not work either. Thus we also assert that attack in [27] is not
applicable either.

Remark 2. The security of the finite field homomorphic encryption scheme pre-
sented here is based on the decisional problem (DFFI). It may be possible to
construct a homomorphic encryption scheme that solely depends on the com-
putational problem, (CFFI), but in the interest of simplicity we will not pursue
this here. It is certainly possible to construct a signature scheme, based on the
CFFI, and this will appear elsewhere.
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1.2 A Sketch of the Main Ideas

Messages, which are integers, will be mapped to elements of X by some method.
These elements will be sparse, low weight polynomials, m(x), of degree at most
n−1. For each message encryption, a sparse low weight, e.g. trinary, polynomial
r(x) of degree at most n − 1 will be chosen at random. A polynomial p(x) will
be fixed as a public parameter. This polynomial will have coefficients with small
infinity norm. Two useful possibilities for p(x) are p(x) = 2, and p(x) = x − 2.
We will illustrate below with the example p(x) = x − 2. To encode an integer
1 ≤ m < 2n, write m in base two as m = b0+2b1+ · · ·+2n−1bn−1, and represent
m by m(x) = b0 + b1x + · · · + bn−1x

n−1. Thus m(2) = m. An encoding of m(x)
in X will be done as follows:

– Choose r(x) at random from a given distribution of sparse, binary or trinary,
polynomials of degree less than n.

– The encoded message is em(x) := m(x) + p(x)r(x) mod f(x). As the coeffi-
cients of p(x) and r(x) are very small, and f(x) is chosen as described above,
the reduction of m(x) + p(x)r(x) mod f(x) will have coefficients that remain
small relative to q. In other words, the lift of em(x) from X to an element of
Z[x]/(f(x)) with coefficients in the interval (−q/2, q/2] will have no reduction
modulo q occurring.

Encryption of em(x) is done by mapping em(x) to its isomorphic image Em(y) in
Y, using the isomorphism X → Y that is known to the encryptor. The somewhat
homomorphic property for multiplication is seen as follows: Given em1(x) =
m1(x) + p(x)r1(x) and em2(x) = m2(x) + p(x)r2(x), the product is given by

em1(x)em2(x)

= m1(x)m2(x) + p(x)r1(x)m2(x) + p(x)r2(x)m1(x) + p(x)2r1(x)r2(x)

= m1(x)m2(x) + p(x)[r1(x)m2(x) + r2(x)m1(x) + p(x)r1(x)r2(x)] mod (f(x), q).

(2)

The key observation is that since the coefficients of em1(x) and em2(x) are
small compared to q, the product, even after reduction mod f(x), will still have
coefficients that are small compared to q. As a result, if the reduced product
em1(x)em2(x) is lifted from X to Z[x]/(f(x)) with coefficients chosen from the
interval (−q/2, q/2], then the coefficients will be the same as if the computation
had taken place over Z[x]/(f(x)).

A similar comment applies to em1(x)+em2(x). Because the mapping between
X and Y is a field isomorphism, it follows that

Em1(y)Em2(y) = Em1m2(y) and Em1(y) + Em2(y) = Em1+m2(y).

This means that a polynomial function of elements of X can be computed on
the isomorphic images of these elements in Y and the output mapped back to
X, and, as long as the coefficients in the corresponding X computation remain in
the interval (−q/2, q/2], the image of the output in X can be lifted to Z[x]/(f(x))
without any loss of information.
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The key question then is how to recover m(x) from a polynomial of the form
m(x) + p(x)r(x) in X. After a computation is performed, as seen in (2) above,
the output in X will still have this form, although the coefficients of m(x) and
r(x) may be considerably larger than binary or trinary. As long as they have not
passed q/2 in absolute value, the lift to Z[x]/(f(x)) will not involve any mod q
reduction. The decryption process, then consists of:

– Map the output of the computation in Y back to X. It will have the form
m′(x) + p(x)r′(x), for unknown polynomials m′(x) and r′(x)

– This can be further lifted to Z[x] by viewing of it as m′(x) + p(x)r(′x) +
s(x)f(x) for some also unknown polynomial s(x)

– Compute the resultant of f(x) and p(x). This is the ideal in Z[x] generated
by p(x) and f(x) which, in the case p(x) = x − 2, is simply f(2). Also,
m′(x) + p(x)r′(x) + s(x)f(x) reduced mod f(x) and x − 2 is m(2) mod f(2).
Thus, as long as m is less than f(2), m = m(2) will be recovered exactly.

The process breaks down when the size of any coefficient of the computation
exceeds q/2 in absolute value. Note that the collection of all p(x)r(x) in X is all
possible encodings of 0, and their images in Y are all possible encryptions of 0.
As we are in a field, not a ring, the ideal generated by all such p(x)r(x) is, of
course, all of Y.

1.3 Related Work

The first Fully Homomorphic Encryption (FHE) scheme was constructed by Gen-
try [17,19] in 2009, answering a problem that had remained open for over three
decades. Gentry’s scheme is based on ideal lattices and the security assumptions
are based on hard problems in lattices. A key innovation in Gentry’s construc-
tion is bootstrapping, which allows a party to refresh the noise level in a cipher-
text without having access to a secret key. Despite its success, bootstrapping
has remained the bottleneck in FHE implementations. After Gentry’s original
scheme, many other constructions based on a variety of hardness assumptions
followed that aimed to improve the efficiency of FHE.

One such construction based on the learning-with-errors (LWE) problem was
proposed by Brakerski and Vaikuntanathan [6]. The security of the scheme is
based on the hardness of short vector problems. The LWE-based construction
was later improved by Brakerski, Gentry and Vaikuntanathan (BGV) in [5] using
a modulus switching technique that slows the noise accumulation drastically.
Modulus switching is applied at each multiplicative level, which prevents expo-
nential noise growth. Thereby the noise remains fixed throughout the homomor-
phic evaluation levels. Later, a new noise management technique was introduced
by Brakerski [4], applicable to LWE schemes, that decreases noise growth from
quadratic to linear using tensor products. Gentry et al. [20] demonstrated that
it is possible to perform deep homomorphic evaluations by providing the first
AES evaluation implemented using the BGV scheme embodied in a software
library called HElib [23]. The authors optimize the design using the SIMD tech-
nique introduced in [31] to batch multiple messages and process parallel AES
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operations. Another FHE construction based on the assumed hardness of the
Integer Approximate-GCD problem was proposed by van Dijk et al. [12]. This
work was followed by Coron et al. [10], where the public key size was reduced
from λO(κ10) to O(κ7) where κ is the security parameter. In [11] the pub-
lic key size was further reduced from O(κ7) to O(κ5) and modulus switching
methods were adapted to the integer scheme. Another follow up work by Coron
et al. [9] implements a variant of van Dijk et al.’s scheme using the scale invariant
property introduced earlier by Brakerski [4].

Another leveled FHE scheme was presented by López-Alt, Tromer, Vaikun-
tanathan (LTV) in [28]. It is based on a variant of NTRU [25] constructed earlier
by Stehlé and Steinfeld [32]. The scheme is a multi-party scheme that is capable
of processing homomorphic functions for various users each with their individual
keys. The authors use the relinearization technique introduced in [6] and also
adapt modulus switching to mitigate the noise growth, thus keeping the growth
linear in size over the levels. To compute relinearization, the scheme requires eval-
uation keys, which increases the memory requirement and becomes prohibitive
especially in deep evaluations. The NTRU variant by Stehlé and Steinfeld [32]
was later modified and implemented by Bos et al. in [3]. Their scheme, named
YASHE, adopts the tensor product technique in [4] and achieves a scale-invariant
scheme with limited noise growth on homomorphic operations. Also, with the
use of the tensor product technique, the authors managed to improve the secu-
rity of the LTV scheme [28] by using much higher levels of noise and thereby
removed the Decisional Small Polynomial Ratio (DSPR) assumption. Instead,
the scheme relies only on standard lattice reductions as in [32]. However, as the
authors also note, the YASHE scheme requires a large evaluation key and a com-
plicated key switching procedure. In [3] the authors introduce a modification
(YASHE’) to their scheme to eliminate the problems of expensive tensor product
calculations and large evaluation keys. However, this modification re-introduces
the DSPR assumption. Another modified LTV-FHE implementation, along with
AES evaluation, was presented by Doröz et al. in [13]. The security of their
scheme depends on the DSPR and R-LWE assumptions as in [28]. Their imple-
mentation uses the relinearization and modulus switching methods as in [28] to
cope with noise, and it introduced a specialized ring structure to significantly
reduce the evaluation key size. Since both the YASHE’ and LTV-FHE schemes
rely on the DSPR problem, both are vulnerable to the Subfield Attack [29].

Motivated by the large evaluation key requirements come by complex noise
management techniques such as relinearization, modulus switching, and boot-
strapping employed by earlier FHE schemes Gentry et al. [21] proposed a new
scheme based on the approximate eigenvector problem. The system uses matrix
additions and multiplications, which makes it asymptotically faster. At first,
they constructed the GSW scheme as a somewhat homomorphic scheme, since
for a depth L circuit with B-bounded parameters, the noise grows with a double
exponential B2L

. To convert the scheme into a leveled FHE, they introduced
a Flattening operation that decomposes the ciphertext entries into bits. The
secret key is also kept in a special powers-of-two form. With these modifica-
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tions, the noise performance is improved significantly. For a depth L circuit with
B-bounded secret key entries and 1-bounded (flattened) ciphertexts, the error
magnitude is at most (N + 1)LB for N = log(q)(n + 1). However, ciphertexts
still require a considerable amount space, roughly Θ(n2 log(q)2), and as noted
by GSW [21], in practice their scheme may not be as efficient as existing lev-
eled schemes. More recently, the Flattening technique was adapted by Doröz
and Sunar to NTRU in a new FHE scheme called F-NTRU [14]. Similar to the
GSW scheme, F-NTRU does not require evaluation keys or key switching. More
significantly, the scheme eliminates the DSPR assumption and relies only on
the standard R-LWE assumption which makes it the only NTRU variant FHE
scheme immune to the Subfield Attack.

1.4 Paper Organization

In Sect. 2 we formally introduce the finite field isomorphisms problem, state
hardness assumptions, and study lattice and non-lattice techniques to establish
the difficulty of the problem against known techniques. We then show how to
construct a fully homomorphic public-key encryption scheme in Sect. 3 by first
building a somewhat homomorphic encryption scheme and then by converting
it into a bootstrapable scheme via a new bit decomposition based noise manage-
ment scheme. In Sect. 4, we conclude our paper.

In the appendices, we discuss how to construct field representations X and Y

and the necessary isomorphisms X → Y and Y → X (Sect. A), we give a more
detailed noise analysis (Sect. B), we perform security analysis and give esti-
mates on the parameters (Sect. C), and we give test results for our observation 2
(Sect. D).

2 The Finite Field Isomorphism (FFI) Problem

2.1 Preliminaries

We begin by formally introducing some notation that has already been used
in the previous section. Additional notation will be introduced at the start
of Sect. 3. For given degree n monic irreducible polynomials f(x) ∈ Fq[x]
and F (y) ∈ Fq[y], we create two copies of Fqn , which we denote by X :=
Fq[x]/(f(x)) and Y := Fq[y]/(F (y)). In general, polynomials denoted by lower
case letters will be polynomials in X, and their isomorphic images in Y will be
denoted with the corresponding capital letters. The vector form of a polyno-
mial is simply the vector consisting of its coefficients. We often identify poly-
nomials and vectors when there is no ambiguity. Consider a polynomial a(x) =
a0 + a1x + · · · + an−1x

n−1 ∈ X. We will informally say that a(x) is short if
for all i, the congruence class ai mod q reduced into the interval (−q/2, q/2]
is small relative to q. An important class of such polynomials are those sat-
isfying ai ∈ {−1, 0, 1}; these are called trinary polynomials. We denote by
‖a‖ = ‖a‖∞ := max |ai| and ‖a‖2 := (a2

0 + · · · + a2
n−1)

1/2 the L∞ and L2
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norms of a, respectively, where it is understood that the coefficents of a are
always normalized to lie in the interval (−q/2, q/2]. Denote by Mn,q the set of
all degree n monic irreducible polynomials mod q. When there is no ambiguity,
we will suppress the subscripts.

2.2 Discussions and Proofs

2.2.1 Arguments for the Truth of Observation 1
Lemma 1. For large n, for any fixed f(x) ∈ Fq[x], and any given degree n −
1 polynomial φ(y) ∈ Fq[y], there will exist, with probability approaching 1, a
unique monic irreducible F (y) ∈ Fq[y] such that the map x → φ(y) induces an
isomorphism between Fq[x]/(f(x)) and Fq[y]/(F (y)).

Proof. As Fqn/Fq is Galois, any irreducible polynomial with one root must split
completely, implying that f(x) has n distinct roots in Fq[y]/(F (y)), and simi-
larly, that no two monic irreducible polynomials of degree n in Fq[x] can share
a root. Fix a degree n monic irreducible polynomial f(x) ∈ Fq[x]. By the prime
number theorem for function fields, for fixed q and large n, |Mn,q|, i.e., the num-
ber of distinct irreducible monic polynomials over Fq[x], is asymptotic to qn/n;
see [26, Chap. 7, Sect. 2, Corollary 2]. It follows that for any polynomial f ∈ Mn,q

there are asymptotically qn/n distinct isomorphic images of Fq[x]/(f(x)) and
hence also qn/n potential F . Choose at random a degree n − 1 polynomial
φ(y) ∈ Fq[y]. There are exactly (q − 1)qn−1 such polynomials. There are also,
asymptotically, a total of n×qn/n = qn isomorphisms between Fq[x]/(f(x)) and
all possible Fq[y]/(F (y)), where F (y) varies over all distinct monic irreducible
polynomials. These are given by sending x to each of the n distinct roots of each
F (y). With probability approaching 1 (for large q), these sets have the same
order, and as one is contained in the other, they are asymptotically equal. ��

This provides evidence for the truth of Observations 1 for the following rea-
son. Suppose one chooses, independently, a private monic irreducible f(x), and
a φ(y), with the coefficients of φ(y) chosen randomly and uniformly from Fq.
Then with high probability there will be a corresponding (monic, irreducible)
F 1(y) and a short polynomial a(x) will be mapped to A(y) = a(φ(y)) reduced
modulo F 1(y). As the coefficients of φ(y) are random and uniformly distributed
modulo q it is reasonable to assume that the coefficients of A(y) will be similarly
uniformly distributed modulo q. Unfortunately, because of the highly non-linear
aspect of this mapping, it appears to be hard to construct a proof of this. The
polynomial F 1(y) can be used as the public key. However, it may be conve-
nient to use a polynomial of a simpler form, such as F 2(y) = yn − y − 1 to make
computations easier for the public party. In this case the composite isomorphism

Fq[x]/(f(x)) → Fq[y]/(F 1(y)) → Fq[y]/(F 2(y))

can be used for encryption. It is again reasonable to assume, though hard to
prove, that the composite mapping continues to cause coefficients of images of
short polynomials to be uniformly distributed modulo q.
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Remark 3. Because of Observation 2, that non-trivial isomorphisms send short
polynomials in X to uniformly distributed elements of Y, we believe that there
are no easy cases of CFFI. Hence, similar to hard lattice problems such as those
described in [1], we suspect that there may well be an average-case/worst-case
equivalence for the computational finite field isomorphism problem. However,
research in this direction is beyond the scope of the present paper and clearly
requires considerable further study.

2.2.2 Arguments for the Truth of Observation 2
In order to build a multiplicative homomorphic encryption scheme we require
that products of short elements in X are also short. Hence, we cannot simply
sample f(x) uniformly from Mn,q. Instead, we will sample f(x) uniformly from
Mn,q with the requirement that ‖f(x)‖ is bounded.

In order to estimate the size of the search space for f(x), we will rely on the
following very reasonable assumption:

Assumption 1. Monic irreducible polynomials are uniformly distributed
over Fq[x].

This assumption implies that Observation 2 is true. It also implies (together with
the argument that |Mn,q| is on the order of qn/n) that for 1 ≤ β ≤ 1

2q there are
approximately (2β)n/n distinct irreducible monic polynomials a(x) over Fq[x]
satisfying ‖a(x)‖ ≤ β. This quantifies the size of the set of all possible f and
enables us to verify that with well chosen parameters it is large enough to be
robust against a brute force search.

This shortness of f(x) is exploited via the following useful property:

Property 1. If f(x) is short, and if a(x) and b(x) are short elements of X, then
the product a(x)b(x) mod f(x) is also a reasonably short element of X.

As remarked earlier, Property 1 has been widely exploited in ideal and lattice-
based cryptography, especially with f(x) = xn ± 1, starting with the original
NTRUEncrypt [25].

2.3 An Algorithm to Find an Isomorphism

We explain how to find suitable polynomials f(x) and F (y) and an explicit
isomorphism Fq[x]/(f(x)) �→ Fq[y]/(F (y)). We need to find four polynomials
(f ,F ,φ,ψ) satisfying:

• f(x) ∈ Fq[x] is irreducible monic of degree n with ‖f(x)‖ ≤ β.
• F (y) ∈ Fq[y] is irreducible monic of degree n with random coefficients.
• φ(y) ∈ Fq[y] and ψ(x) ∈ Fq[x] have degree less than n.
• F (y)

∣
∣ f

(

φ(y)
)

.
• φ

(

ψ(x)
) ≡ x (mod f(x)).

The algorithm for finding such an isomorphism is shown in Algorithm1.



Fully Homomorphic Encryption from the FFI Problem 135

Algorithm 1. Finite Field Isomorphism Generation
1: Sample f (x) and F (y) as required.
2: Find a root of f (x) in the finite field Fq[y]/(F (y)) ∼= Fqn and lift this root to a

polynomial φ(y) ∈ Fq[y] of degree less than n.
3: Construct the unique polynomial ψ(x) ∈ Fq[x] of degree less than n satisfying

ψ
(
φ(y)

) ≡ y (mod F (y)).
4: return f (x), F (y), φ(y) and ψ(x).

Remark 4. We note again that the secret polynomial f(x) and the public polyno-
mial F (y) are chosen independently, so in particular, knowledge of F (y) reveals
no information about f(x). In other words, any polynomial satisfying the norm
bound is a potential candidate for f(x). The attacker only begins to acquire infor-
mation about f(x) when she is given isomorphic images in Y of (short) polynomi-
als in X. Further, the fact that there are no security issues in the choice of F (y),
other than the requirement that it be irreducible in Fq[y], means that F (y) may
be chosen to simplify field operations in the quotient field Fq[y]/(F (y)). For
example, one could take F (y) to be a trinomial. The point is that the attacker
can always replace your F (y) with her choice of F ′(y), since she can easily
construct an isomorphism from Fq[y]/(F (y)) to Fq[y]/(F ′(y)).

We now discuss the steps in the generation algorithm in more details. In
Step 2, we are required to find a root of a polynomial f(x) in a finite field Fqn

that is given explicitly as a quotient Fq[y]/(F (y)). There are fast polynomial-
time algorithms for doing this.1 We note that in our set-up, the polynomial f(x)
is irreducible of degree n, so any one of its roots generates the field Fqn , and
since any two fields with qn elements are isomorphic, it follows that f(x) must
have a root in Fq[y]/(F (y)). Further, since Fqn/Fq is Galois, any irreducible
polynomial with one root must split completely, so in fact f(x) has n distinct
roots in Fq[y]/(F (y)). We may take φ(y) mod F (y) to be any one of these roots.

In Step 3, we need to construct ψ(x). We describe three ways to do this. All
are efficient. Method 2 is always faster than method 1. It is not clear which is
the more efficient between methods 2 and 3.

1. One can compute the roots of F (y) in Fq[x]/(f(x)). As above, there will be n
distinct roots, and one of them will be the desired ψ(x).

2. One can compute a root of φ(y) − x in the field Fq[x]/(f(x)).
3. One can use linear algebra as described in AppendixA.

2.4 Known Approaches to Recovering the Secret Isomorphism

In this section, we explore two possible methods to solve the finite field isomor-
phism problem. Such an isomorphism will be described as an n-by-n matrix M .
The first approach is based on lattice reduction. The second approach is a highly
non-linear attack of unknown but, we believe, high difficulty.
1 For example, Pari-GP [33] provides the routine polrootsff.
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2.4.1 Lattice Attack of (dim ≈ 2n)
In this subsection we describe a lattice attack that uses a transcript of cipher-
texts. We formulate this abstractly by saying that there is an unknown n-by-n
matrix M with mod q coefficients, and there are known vectors A1,A2, . . . ,Ak

with the property that the unknown vectors MAi mod q are small for all
i = 1, 2, . . . , k.

For the computational isomorphism problem we would need to recover the
rows of M exactly, and place them in the correct order. However, to solve the
decisional problem it would suffice to search for a single row of M . The dimension
of an attack lattice can be further reduced. To accomplish this, let m be some
(unknown) row of M , say the jth row, and let bi = m · Ai for i = 1, 2, . . . , k, be
the corresponding (unknown) small values of the indicated dot products. Then

A = (A1 | A2 | · · · | Ak), a = (a1 | a2 | . . . | ak), bj = (b1, b2, . . . , bk),

and we set D =
(

A
qI

)

. Thus A and a are two n-by-k matrices, and D is an

(n + k)-by-k matrix. The vector bj is a k dimensonal “slice” consisting of the
jth coordinates of the ai, which are the inverse images in X of the Ai. Let L(D)
denote the row span of D, so dim L(D) = k. Then L(D) contains the short row
vector of bj . If we choose k sufficiently large, then the vectors bj will stand out
as unusually short, relative to the Gaussian heuristic, and a successful lattice
reduction argument would recover them, or short linear combinations of them.
This means that an attacker with sufficient lattice reduction resources could
solve the decisional FFI problem, in the following way. Suppose the attacker is
provided with a list of Ai, images in Y of short vectors in X, and a vector B,
which might or might not be the image in Y of a short vector in X. Considering

(A1 | A2 | · · · | Ak | B),

a successful lattice reduction could produce a slice through the jth coordinates.
If each Ai = (ai,1, ai,2, . . . , ai,n)T then (a1,j , a2,j , . . . , ak,j , bj) will be in L(D). If
B is the image of a short vector in X then (a1,j , a2,j , . . . , ak,j , bj) will have all
short entries, say, around β in absolute value, and a successful lattice reduction
argument should recover it. If B is not the image of a short vector in X then
(a1,j , a2,j , . . . , ak,j , bj) will have k short entries and one entry that is random mod
q. If the vector, with this new final entry were recovered by lattice reduction,
it is highly unlikely that the random length of the final entry would be on the
order of β, and, as q will be considerably larger than k, it is also highly unlikely
that this output would be shorter than the gaussian heuristic expected vector.
This would enable the decision problem to be solved with greater than 50%
probability. The technical estimates are given in the remainder of this section.

Since ‖a‖ ≤ β, the length of the target vector is roughly ‖a‖2 
 β
√

k. The
determinant of L(D) is the gcd of the k-by-k minors of the matrix D. Each such
minor includes at least k − n rows from the bottom part of the matrix, which
gives a factor of qk−n to each k-by-k minor. Since the entries of A are more-or-
less random, it is likely that detL(D) is some small multiple of qk−n. Hence the
Gaussian expected shortest vector in L(D) has length roughly



Fully Homomorphic Encryption from the FFI Problem 137

γ
(L(D)

) 

√

dim L(D)
2πe

(

DetL(D)
)1/ dimL(D) =

√

k

2πe
· (qk−n)1/k.

To analyze the hardness of recovering this vector via lattice reductions, we focus
on the k-th root of the ratio between the Gaussian expected length and the
unique shortest vectors:

(

q
k−n

k

β
√

2πe

) 1
k

.

This attack appears to be optimal when k ≈ 2n. In the meantime, analyses in
[7,16] suggest that recovering this vector is hard for BKZ 2.0 algorithm when
q

1
4n β− 1

2n � 1.005.

Remark 5. This lattice is a little different from those used in instantiating the
unique shortest vector problem, as in our lattice, there are roughly n unique
shortest non-zero vectors of similar length. Previous results in [15,16] show that
the hardness of finding a short vector in q-ary lattices that contain many unique
shortest vectors depends not on the gap, but rather on the ratio between the
Gaussian heuristic and the actual length of the shortest vector. We conjecture a
similar property applies to our lattice.

2.4.2 A Non-Lattice Attack on Small Solutions
There are two pieces of structure lurking within the isomorphism X → Y that
are not used in the lattice attack described in Sect. 2.4.1:

1. The map X → Y is a field isomorphism between two copies of Fqn , not merely
an Fq-vector space isomorphism between two copies of Fn

q ;
2. The secret polynomial f(x) used to define one of the copies of Fqn has small

coefficients. (And the attacker may, in principle, take F (y) to be any irre-
ducible polynomial that she chooses.)

In this section we explain how to exploit these properties to formulate an attack
that requires finding small solutions to systems of higher degree multivariable
polynomial equations. We note that solving such systems appears to be exponen-
tially difficult. The polynomials f(x) and F (y) almost, but not quite, determine
the polynomials φ(y) and ψ(x) used to define the isomorphism

Fq[x]/(f(x)) ∼= Fq[y]/(F (y)).

More precisely, if x → φ′(y) is some other isomorphism, then necessarily

φ′(y) = φ(y)qt

(mod F (y)) for some 0 ≤ t < d.

This follows immediately from the fact that Gal(Fqd/Fq) is cyclic of order d, gen-
erated by the q-power Frobenius map. Alternatively, the possible values for φ(y)
are exactly the roots of f(x) in the field Fq[y]/(F (y)), so in any case there are
exactly d possible φ(y)’s. As stated in Remark 4, an attacker knows no useful
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information about f(x) until she acquires an image, since as already noted, the
public value F (y) is chosen independently of f(x). We assume that the attacker
is given the value of an arbitrary number of images. As per Definition 1, the
attacker is given A1, . . . ,Ak ∈ Y with the promise that ai, . . . ,ak ∈ X are
small, in other words:

Ai(y) = ai

(

φ(y)
)

mod F (y), (3)

where ai has small coefficients. The Eq. (3) contain 2n quantities that are
unknown to the attacker, namely the coefficients of a and φ. Of these, the coef-
ficients of a are small, so she can try to eliminate the coefficients of φ. We note
that (3) really gives n equations for the coefficients, since both sides are polyno-
mials of degree n−1. Unfortunately, this doesn’t quite allow her to eliminate all n
of the coefficients of φ. If she uses both A1(y) and A2(y), then she obtains 2n
equations for the 3n unknowns consisting of the coefficients of a1, a2, and φ. So
using elimination theory (as a practical matter, using Gröbner basis algorithms),
she can eliminate the coefficients of φ and obtain a system of n equations for
the 2n coefficients of a1 and a2. These are highly non-linear equations over the
field Fq, so the attacker is faced with the problem of finding an Fq-point with
small coordinates on a high degree n-dimensional subvariety of F2n

q . As far as
we are aware, there are no algorithms to solve such problems that are faster
than an exhaustive (or possibly collision-based) search. Indeed, there does not
appear to be an efficient algorithm to solve the decision problem of whether a
small solution exists.

We note that the attacker may continue eliminating variables until eventually
arriving at a single equation in F

n+1
q . But this is likely to be counter-productive,

since it greatly increases the degree of the underlying equation while discard-
ing the information that the eliminated variables are small. Alternatively, the
attacker can use one element in Y and the knowledge that there is a polyno-
mial f(x) with small coefficients that satisfies

f
(

φ(y)
)

= 0 mod F (y). (4)

Thus (3) and (4) again provide 2n equations, this time for the 3n coefficients
of a, f , and φ. The first two polynomials have small coefficients, so eliminating
the coefficients of φ again yields an n-dimensional subvariety in F

2n
q on which

the attacker must find a small point.

3 Fully Homomorphic Encryption Based on DFFI

In this section we use the approach of López-Alt et al. [28] to show how to turn
our scheme into a fully homomorphic encryption scheme. First, we present Gen-
try’s definitions and theorems on fully homomorphic encryption [17,18]. Later,
we show that our scheme satisfies the definitions on somewhat homomorphism,
but it does not reach the circuit depth required for evaluating decryption cir-
cuit homomorphically. We resolve the issue by turning our scheme into a leveled
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homomorphic encryption scheme using a technique to reduce the noise growth
from doubly exponential to singly exponential. We then describe our leveled
homomorphic scheme and show that it is fully homomorphic by showing that it
is able to evaluate its decryption circuit homomorphically.

3.1 Fully Homomorphic Encryption Definitions

We give the definitions of fully homomorphic encryption and leveled homomor-
phic encryption.

Definition 31 (C-Homomorphic Encryption [6]). Let C = {Cκ}κ∈N be a class of
functions with security parameter κ. A scheme E is C-homomorphic if for any
sequence of functions fκ ∈ Cκ and respective inputs μ1, . . . , μ� ∈ {0, 1} (where

 = 
(κ)), it is true that

PR[E .Decsk(E .Evalevk(f, c1, . . . , c�)) �= f(μ1, . . . , μ�)] = negl(κ),

where (pk, evk, sk)← E .KeyGen(1κ) and ci ← E .Encpk(μi).

Definition 32 (Fully Homomorphic Encryption [28]). An encryption scheme E
is fully homomorphic if it satisfies the following properties:

Correctness: E is C-homomorphic for the class C of all circuits.
Compactness: The computational complexity of E’s algorithms is polynomial

in the security parameter κ, and in the case of the evaluation algorithm, i.e.
the size of the circuit.

Now as given in [28], we continue with the leveled homomorphic encryption
definition that is taken from [5]. It is a modified definition of fully homomorphic
encryption (Definition 32) into a leveled homomorphic encryption scheme. It
removes the requirement that the scheme is able to evaluate all possible circuits
and instead imposes a circuit depth D. It requires the scheme to be able to
evaluate all circuits (including the decryption circuit) that are depth at most D.

Definition 33 (Leveled Homomorphic Encryption [28]). Let C(D) be the class
of all circuits of depth at most D (that use some specified complete set of gates).
We say that a family of homomorphic encryption schemes {E(D) : D ∈ Z

+} is
leveled fully homomorphic if, for all D ∈ Z

+, it satisfies the following properties:

Correctness: E(D) is C(D)-homomorphic.
Compactness: The computational complexity of E(D)s algorithms is polynomial

in the security parameter κ and D, and in the case of the evaluation algorithm,
the size of the circuit. We emphasize that this polynomial must be the same
for all D.

3.2 Somewhat Homomorphic FF-Encrypt Construction

We present a somewhat homomorphic version of our FF-Encrypt construc-
tion. We first give the details of our construction, and then we prove that our
scheme is able to evaluate homomorphic circuits (multiplications and additions)
of bounded depth.
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3.2.1 Preliminaries
Here we give some preliminary notation and information that we use for the
construction of our homomorphic schemes:

• The error distribution χ is a truncated Gaussian distribution DZn
r

with stan-
dard deviation r.

• The random polynomials r(x) are ephemeral short noise polynomials that are
sampled from χ.

• The message space uses a fixed polynomial p(x), which we take for this instan-
tiation to be the number 2.

• The message m(x) consists of a monomial with a single coefficient that is
chosen from {0, 1}.

Polynomial Multiplication Noise in X. The noise of the product of two
polynomials is significantly affected by the choice of the polynomial f(x). Two
factors that affect noise growth are the choice of the coefficient bound βf for f(x)
and the degree d := deg(f ′(x)), where we write f(x) = xn + f ′(x). The noise
bound for the product of two β-bounded polynomial a(x) and b(x) for d < n/2
satisfies

∥
∥a(x)b(x) mod f(x)

∥
∥

∞ ≤ n[(d + 1)2 + 1]β2. (5)

A detailed noise analysis for general f(x) is given in AppendixB.

3.2.2 Secret-Key Instantiation
The secret key version of our Somewhat Homomorphic Finite Field scheme uses
the following four algorithms:

– SHFF-SK.Keygen(1κ):
• Input a security parameter κ.
• Generate a parameter set Ξ = {n, q, β} as a function of κ.
• Use Algorithm 1 ( from the FF-Encrypt paper) to generate a finite field

homomorphism {f ,F ,ψ,φ}.
• Output {f ,F ,ψ,φ}. Also output p(x) and γ > 0.

– SHFF-SK.Enc(f ,F ,φ,m):
• Encode a plaintext by some method into a short polynomial m(x) ∈ X;
• Sample a polynomial r(x) ∈ X from the distribution χβ .
• Compute C(y) = p(φ(y))r(φ(y)) + m(φ(y)) mod F (y).
• Output C(y) as the ciphertext.

– SHFF-SK.Dec(f ,ψ,C):
• For a ciphertext C(y), compute c′(x) = C(ψ(x)).
• Output m′(x) = c′(x) mod

(

p(x),f(x)
)

.
– SHFF-SK.Eval(C,C1,C2, . . . ,C�):

• The circuit C is represented by two input binary arithmetic circuits with
gates {+,×}. Then, we can evaluate the circuit C homomorphically, since
we can perform homomorphic addition and homomorphic multiplication.
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3.2.3 Public-Key Instantiation
The public key version of our Somewhat Homomorphic Finite Field scheme is
similar to the secret key instantiation in most aspects. We use a subset sum
problem to instatiate the public key version. The scheme uses the following four
algorithms:

– SHFF-PK.Keygen(1κ):
• Perform the key generation as in secret key instantiation SHFF-
SK.Keygen(1κ).

• Choose two integers S, s which
(
S
s

)

> 2κ for security parameter κ.
• Set ci = SHFF-SK.Enc(f ,F ,φ, 0)i, create an array of zero encryptions
pk = S = {C0(y),C1(y), . . . ,CS−1(y)}.

– SHFF-PK.Enc(S,m):
• Choose s random encryptions of zero Ci(y) from S and compute their

summation with message C(y) =
∑

i=rand(S) Ci(y) + M(y) in which M
is the representation of the message m in Y.

• Output C(y) as the ciphertext.
– SHFF-PK.Dec(f ,ψ,C):

• Compute and output SHFF-SK.Dec(f ,ψ,C).
– SHFF-PK.Eval(C,C1,C2, . . . ,C�):

• Compute and output SHFF-SK.Eval(C,C1,C2, . . . ,C�).

The noise and depth performance of this scheme is captured by the following
Lemma.

Lemma 2. The encryption scheme

ESHFF = (SHFF.KeyGen,SHFF.Enc,SHFF.Dec,SHFF.Eval)

described above is somewhat homomorphic for circuits having depth less than
D < log log q − log (3 log n) where q = 2nε

with ε ∈ (0, 1), and χ is a β-bounded
Gaussian distribution for random sampling.

Proof. We denote the encryptions of two messages m1 and m2 by C1(y) and
C2(y). Then we want the noise of the ciphertexts after an addition or a multi-
plication to be smaller than q/2 so that it can be correctly decrypted.

Addition. Set C(y) = C1(y) + C2(y). Dropping y from the notation,
we have C = (

∑
p(φ)r1(φ) + m1(φ)) + (

∑
p(φ)r2(φ) + m2(φ)) . Apply

ψ(x) as the first step of the decryption C(x) = (
∑

p(x)r1(x) + m1(x)) +
(
∑

p(x)r2(x) + m2(x)) . Then the infinity norm of C(x) is ‖C(x)‖∞ = 2sβ′.

Multiplication. We compute

C =
(∑

p(φ)r1(φ) + m1(φ)
)

·
(∑

p(φ)r2(φ) + m2(φ)
)

=
∑

p(φ)2r1(φ)r2(φ) +
∑

p(φ)r1(φ)m2(φ)

+
∑

p(φ)r2(φ)m1(φ) + m1(φ)m2(φ).
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We calculate the infinity norm of C(x) using Eq. 5,

‖C(x)‖∞ = n
(

(d + 1)2 + 1
)

(sβ′)2 + 2sβ′.

Multiplicative Level D. For D-level homomorphic operations, we need to

compute the bound of
∥
∥
(

p(x)r(x) + m(x)
)2D∥

∥
∞. Since p(x)r(x) � m(x), this

is essentialy equal to
∥
∥
(

p(x)r(x)
)2D∥

∥
∞. This gives an error bound equal to

(nd′)2
D−1(sβ′)2

D

with d′ = (d+1)2+1. We want this noise to be smaller than q/2,
so we impose the inequality (nd′)2

D−1(sβ′)2
D

< q/2. Taking the logarithms, we
rewrite this as (2D−1) log(nd′)+(2D) log(sβ′) < log q−1 Taking logarithm again
yields D+log(log (nd′)+log(sβ′)) < log(log q+log (nd′)−1). We can simplify this
inequality by noting that d′ ≈ n2/4, which makes log (nd′) ≈ 3 log (n) > log(sB′)
and log (q) > 3 log (n). Omitting small terms, we obtain

D < log log q − log (3 log n)

Taking q = 2nε

, our upper bound for the multiplicative depth D is O(ε log n). ��

3.2.4 Security
Our construction relies on two security assumptions. The first assumption is the
hardness of the Decisional Finite Field Isomorphism problem, which ensures that
small norm elements in X are mapped to random-looking elements in Y. The
mapping function is secret, and an attacker has to find some way of identifying
images of short objects in X in order to break the scheme. The second assumption
is the difficulty of the subset sum problem that is used to generate encryptions
of 0 to add to encryptions of messages. We will choose s ciphertexts from a list
length S, so the pair of parameters (S, s) should give reasonable combinatorial
security, e.g.,

(
S
s

)

> 2256. Beyond combinatorial security, solving this subset
sum problem and identifying an encryption of 0 can be translated into a lattice
reduction problem in the rows of an S by S + n matrix, which can be made
arbitrarily difficult. In particular S > 2n should suffice. We prove the semantic
security via the following theorem.

Theorem 1. If there is an algorithm A that breaks the semantic security with
parameter Ξ = {n, q, β} and p(x) = p, i.e., if one inputs of any public keys
(C1, . . . ,Ck), a ciphertext D which encrypts a message m of either 0 or 1,
and A outputs the message m with probability 1/2 + ε for some non-negligible
ε > 0, then there exist another algorithm B that solves the decisional FFI with
parameter {n, q, β/p} with probability 1/2 + ε.

Proof. Notice that if the input (C1, . . . ,Ck,D) to algorithm A is invalid (either
D cannot be written as subset sum of Ci, or D does not encrypt 0 or 1), it
will either output an error or output 0 or 1 with equal probability. On the other
hand, if the input is valid, it will output the correct m with probability 1/2 + ε.
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Now we can use A to build an algorithm B as follows. Let A1, . . . ,Ak,B1,B2

be the input to the decisional FFI problem. Upon receiving those inputs, algo-
rithm A calls algorithm B with a “public key” (pB1, pA2, . . . , pAk) and a cipher-
text 0. Therefore, if B1 has short images in X, then (pB1, pA2, . . . , pAk) is a
legit public key, while if B1 is uniformly sampled in Zq[x], then the probability
of (pB1, pA2, . . . , pAk) been a legitimate public key is negligible, roughly ( β

pq )n.
Notice that 0 is a subset sum of the “public key” regardless if the “public

key” is legitimate or not. So from A’s point of view, 0 is a legit ciphertext
that encrypts 0 if B1 has a short image. Upon receiving those public key and
ciphertext, A will return 0 with probability 1/2 + ε if B1 has a short image. It
will return error or random if B1 doesn’t. Thus B solves the decisional FFI with
probability 1/2 + ε. ��

For completeness sake, we also show that if one can solve the Decisional FFI,
one can also break the semantic security. Given a ciphertext C with an image
C = pr + 
m, one can compute p−1C mod q (assuming p is an integer, say 2)
which has a reverse image r + p−1
m. If m = 0, this quantity will be short. If
m = 1, this quantity will be of length ‖p−1
 r mod q‖. This is highly probable
to be large, as if, say, p = 2, then ‖p−1 mod r mod q‖ will probably be of a size
that takes random values mod q as 
 varies.

3.3 From Somewhat to Fully Homomorphic Encryption

We give the definitions of bootstrappable scheme and weak circular security [17,
18]. Later, we use these two definitions to describe the bootstrapping theorem.

Definition 34 (Bootstrappable Scheme [18]). Let E = (Keygen,Enc,Dec,Eval)
be a C-homomorphic encryption scheme, and let fadd and fmult be the augmented
decryption functions of the scheme defined as

fc1,c2
add (sk) = Dec(sk, c1) XOR Dec(sk, c2),

fc1,c2
mult (sk) = Dec(sk, c1) AND Dec(sk, c2).

Then we say that E is bootstrappable if {fc1,c2
add , fc1,c2

mult }c1,c2 ⊆ C, i.e., if E can
homomorphically evaluate fadd and fmult.

Definition 35 (Weak Circular Security [18]). A public-key encryption scheme
E = (Keygen,Enc,Dec) is weakly circular secure if it is IND-CPA secure even
for an adversary with auxiliary information containing encryptions of all secret
key bits: {Enc(pk, sk[i])}i. In other words, no polynomial-time adversary can dis-
tinguish an encryption of 0 from an encryption of 1, even given this additional
information.

Theorem 2. Let E be a bootstrappable scheme that is also weakly circular
secure. Then there exists a fully homomorphic encryption scheme E ′.
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In its current construction, our scheme is not bootstrappable, because it can-
not reach the required multiplicative depth for decryption. For details
on the evaluation of the depth of decryption circuit, see Sect. 3.3.5. The current
scheme is only able to compute circuits with depth ε log(n). In order to con-
vert our scheme into a bootstrappable one, in the next section we introduce a
multiplication method with better noise management. This helps to significantly
improve the depth of the circuits that the scheme can evaluate.

3.3.1 Regular Multiplication
A straightforward multiplication in the SHFF scheme causes the noise to grow
doubly exponentially (nd′)2

D−1(sβ′)2
D

with respect to the level D. To reduce
the growth to singly exponential, we introduce a multiplication technique similar
to the flattening in [21]. In rest of this section for notational simplicity, we drop
x and y and represent elements of X with lowercase letters and elements of Y
with uppercase letters, e.g., r ∈ X and R ∈ Y satisfy r(φ(y)) = R(y). We
first consider the product for two ciphertexts, C1 =

∑
PR1+M1 and C2 =

∑
PR2+M2. To ease notation we write R =

∑
R. Then C1 ·C2 = P 2R1R2+

PR1M2 + PR2M1 + M1M2.

Remark 6. Obviously this method creates a significant noise term P 2R1R2 +
PR1M2 + PR2M1. If we map it back to X, the norm of the noise is bounded
by ‖p2s2r2 + 2psr‖ for m ∈ {0, 1}.

We look at the steps more closely. If we expand the second ciphertext C2(y)
and do not expand C1(y), we obtain C1 · C2 = PR2C1 + C1M2. Here C1M2

gives the desired message product, with the side effect that the PR2C1 term
adds a significant amount of noise. To curb the noise growth, we have to find a
way to evaluate C1M2 while avoiding PR2C1.

3.3.2 Multiplication with Noise Management
In this section we explain the idea behind computing the ciphertext product
while avoiding the noisy PR2C1 term. To achieve this we change the format of
the ciphertexts and define two ciphertext operands: the Left-Hand-Side (LHS)
and the Right-Hand-Side (RHS).
LHS Operand: The LHS-operand format is simply a matrix formed by bit
decomposition of the ciphertext. We write Ĉ

m

BD for the bit decomposition matrix
of the ciphertext C = PR + M with message m(x). We denote the elements of
the matrix by Ci,j = Ĉ

m

BD[i][j] for 0 < i < n and 0 < j < 
. More precisely, in
the matrix, the entry Ci,j denotes the jth bit of the ith coefficient of C. From
this point on, we denote matrices by using a hat on top of the letters, e.g., Ĉ
means that it is a matrix.
RHS Operand: We create an n-by-
 matrix Ĉ, where each entry is a ciphertext
that holds the message m with a specific construction. For simplicity we drop
the indices on R, so each R represents a different sample. Then, the entries
of the matrix are computed as Ĉ

m
[i][j] = PRi,j + 2iψ(φ)jM for 0 ≤ i <
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n and 0 ≤ j < 
. Note that with each new row, we multiply the message by 2,
and for each new column, we increase the power of ψ(φ). Since y = ψ(φ), this
matrix is equal to Ĉ

m
[i][j] = PRi,j + 2iyjM for 0 ≤ i < n and 0 ≤ j < 
.

One-Sided Homomorphic Multiplication: In the first method we use an
LHS operand and an RHS operand to create an LHS operand, i.e., LHS = LHS×
RHS. The homomorphic product is computed by computing a component-wise
product followed by a summation over the products:

〈Ĉm 1

BD , Ĉ
m 2〉 =

∑

i<n

∑

j<�

Ci,j · (

PRi,j + 2jyiM2

)

=
∑∑

PRi,j + PR1M2 + M1M2.

If we look more closely, each column in the component-wise product creates
an encrypted version of the coefficients of the ciphertext C1. The result of the
product is a standard FF-Encrypt ciphertext. To continue using the result, we
apply bit decomposition BD to obtain an LHS ciphertext. An LHS operand can
be computed from a regular ciphertext on the fly via bit-decomposition. An
RHS operand must be constructed before it is given to the cloud/server. This
means that the ciphertext size grows by a factor of n
 for RHS operands only.

Remark 7. Noise growth in multiplications is significantly reduced compared to
the earlier method. Using this one-sided multiplication approach and having
fresh ciphertexts on the right-hand side, with flattening we obtain a new noise
bound of n
‖psr‖. Therefore the noise growth is no longer doubly exponential,
and we can support deep evaluations with reasonably sized parameters as long
as we restrict evaluations to be one sided evaluations. This may be achieved by
expressing the circuit first using NAND gates and then evaluating left to right
similar to GSW.

Remark 8. Another significant contribution is that we eliminate polynomial mul-
tiplications and only perform polynomial additions. This way, the effect of f(x)
is omitted for noise analysis, i.e., it does not have any effect on noise.

Lemma 3. Let n be the polynomial degree, let q = 2nε

be the modulus, let
χ = DZn,r be the β-bounded Gaussian distribution, and let D be the multiplicative
level. Then, the proposed One-Sided Homomorphic Multiplication algorithm has
noise bound (2D − 1)(n
 + 1)‖psr‖ = O(2Dn log q) for fixed s and β.

Generic Homomorphic Multiplication: This second method uses two RHS
operands to do multiplication and achieves an RHS product as the result of
the multiplication, i.e., RHS = RHS × RHS. The multiplication is similar to the
multiplication algorithm for LHS and RHS operands. We represent an element
(ciphertext) in the RHS operand matrix as Cm [k][l] (kth row and lth column).
In order to compute all the elements in the matrix we compute the following:

Cm1·m 2 [k][l] = 〈Ĉm 1

BD [k][l], Ĉ
m2〉 =

∑

i<n

∑

j<�

Ci,j [k][l] · (

PRi,j + 2jyiM2

)

=
∑ ∑

PRi,j + PR1M2 + 2kylM1M2.
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Here we compute an element of the matrix using same approach that we used for
LHS-RHS multiplication. We take an element in the matrix at any location (k, l)
and apply the bit decomposition of that element Cm 1

BD [k][l]. Later, we compute
component-wise products, which gives us the ciphertext result at location (k, l)
in the result matrix. One RHS × RHS multiplication requires n
 multiplications
of LHS×RHS type. Also, multiplication does not require one-sided evaluation as
in the One-Sided Homomorphic Multiplication method. Since we can create an
RHS operand, we can evaluate an arbitrary circuit, which gives an advantage over
One-Sided Homomorphic Multiplication. The noise growth in multiplications is
still low, but it accumulates as we compute depth D multiplication using a binary
tree multiplication. This leads to a worse noise growth compared to LHS-RHS
multiplication. But just as in method 1, we have still eliminated the effect of
f(x) on noise.

Lemma 4. Let n be the polynomial degree, let q = 2nε

be the modulus, let
χ = DZn,r is the β-bounded Gaussian distribution, and let D be the multiplicative
level. Then, the proposed Generic Homomorphic Multiplication algorithm has
noise bound (n
 + 1)D‖psr‖ = O((n log q)D) for fixed s and β.

3.3.3 Leveled Homomorphic Public Key Scheme Instantiation
We construct a leveled homomorphic scheme using the noise management tech-
nique described above and the SHFF-PKscheme. Here we list the primitive func-
tions of the Leveled Homomorphic Public Key scheme:

– LHFF-PK.Keygen(1κ):
• Compute SHFF-PK.Keygen(1κ).

– LHFF-PK.Enc(S,m):
• We form n by 
 ciphertext matrix Ĉ by computing its elements

C(y)[i][j] = SHFF − PK.Enc(S, 2iψjm) for i < 
 and j < n.
• Output Ĉ as the ciphertext.

– LHFF-PK.Dec(f ,ψ, Ĉ):
• Compute SHFF-PK.Dec(f ,ψ,C[0][0]).

– LHFF-PK.Eval(C, Ĉ1, Ĉ2, . . . , Ĉ�):
• We follow a similar approach to that we used in SHFF-SK. We show that

the homomorphic properties are preserved under the binary circuit evalu-
ation with gates {+,×}. This proves that any circuit C can be evaluated
using two gates with two binary inputs.

Homomorphic Addition (+). Homomorphic addition of two ciphertext
matrices Ĉ1 and Ĉ2 is evaluated by performing a matrix addition, Ĉ = Ĉ1+Ĉ2.
Namely, we compute the elements of the ciphertext matrix at each loca-
tion (k, l) by computing C(y)[k][l] = C1(y)[k][l] + C2(y)[k][l] (mod F (y)).
The summation at each location preserves the ciphertext matrix property,
C[k][l] = (PR1 + 2kylM1) + (PR2 + 2kylM2), which simplifies to C[k][l] =
P (R1 + R2) + 2kyl(M1 + M2). This shows that the ciphertext property of the
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matrix holds. Also, the first element C[0][0] is decryptable and gives us the result
of the summation.

Homomorphic Multiplication (×). Homomorphic multiplication is evalu-
ated using the multiplication method that is explained in Sect. 3.3.2. A matrix
ciphertext multiplication preserves its format, which allows it to continue the
homomorphic process. This may be sees by comparing the format of a fresh
ciphertext and a product of ciphertexts. First we recall the format of an element
of a fresh ciphertext: Cm 1 [k][l] = PR1 + 2kylM1. Next we recall the result of
multiplication using multiplication method 2:

Cm1·m 2 [k][l] = 〈Ĉm 1

BD [k][l], Ĉ
m2〉 =

∑ ∑

PRi,j + PR1M2 + 2kylM1M2.

When we compare the ciphertext elements, it is clear that in a multiplication,
we preserve the ciphertext matrix format while computing the multiplication,
i.e., 2kylM1M2. Also, in order to decrypt successfully, we need only decrypt
the first element C[0][0] of the matrix .

Multiplicative Level D. We capture the multiplicative depth of the leveled
homomorphic scheme as follows.

Lemma 5. The encryption scheme

ELH{LHFF − PK.KeyGen, LHFF − PK.Enc, LHFF − PK.Dec, LHFF − PK.Eval}

described above is leveled homomorphic for circuits having depth D =
O(nε/log n) where q = 2nε

with ε ∈ (0, 1), and χ is a β-bounded Gaussian
distribution for random sampling.

Proof. In order to determine an upper bound for depth D, we use the noise bound
that is calculated in Sect. 3.3.2. The noise has a bound (n log q+1)D‖pr‖, which is
equal to (n log q+1)D(sβ′). We require that this be smaller than q/2, which gives
an upper bound for multiplicative level D in the form (n log q + 1)D(sβ′) < q/2.
Taking the logarithm of both sides gives D log (n log q + 1)+log (sβ′) < log q−1.
Since 1 � n log q, using q = 2nε

yields

D <
nε − 1 − log (sβ′)

log n + ε log n
.

In big-O notation, this gives an upper bound of the form O(nε/log n). ��

3.3.4 Security
The construction of the leveled homomorphic encryption is based on the Some-
what Homomorphic Finite Field Encryption scheme. Since there is not any sig-
nificant change that affects the security, the leveled version of our construction
is based on the same security assumptions as SHFF-PK: the hardness of the
Decisional FFI and the subset sum problems.
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Lemma 6. Let n be the polynomial degree, let q = 2nε

be the modulus, and let
χ = DZn,r be a Gaussian distribution. Then, the proposed leveled homomorphic
encryption scheme

ELH{LHFF − PK.KeyGen, LHFF − PK.Enc, LHFF − PK.Dec, LHFF − PK.Eval}
is secure under the assumptions of hardness of the Decisional Finite Field Iso-
morphism problem and the subset sum problem.

3.3.5 Bootstrapping
In order to demonstrate that E is fully homomorphic, we show that the depth
of the decryption circuit can be homomorphically achieved by our scheme. First
we look at the depth of the decryption circuit.

Decryption Circuit Depth. We recall that decryption is given by evaluat-
ing c′(x) = C(ψ(x)) (mod p(x),f(x)). Denoting the coefficients of C(y) by
ζi, this can be expanded as c′(x) = ζ0 + ζ1ψ(x) + ζ2ψ(x)2 + . . . ζn−1ψ(x)n−1

(mod f(x),p(x)). Modular reduction by f(x) can be avoided by pre-computing
ψ′(i)(x) = ψ(x)i (mod f(x)). This turns decryption into summation of polyno-
mials are multiplied by scalars, c′(x) =

∑

i<n ζiψ
′(i)(x). Let c′

j be the coef-
ficients of the result c′(x). Then each coefficient is evaluated by computing
c′

j =
∑

i<n ζiψ
′(i)
j where ψ

′(i)
j denotes the jth coefficient of ψ′(i).

In [6, Lemma 4.5] the authors prove that evaluating the sum of n elements
with log q bits results in circuit depth O(log n + log log q). They also show that
they can do modular reduction mod q with circuit depth O(log n+log log q). Since
p(x) is small, say p(x) = 2, we can perform modular reduction mod p by taking
the first bit, which does not require any circuit. Therefore, the bootstrapping
operation has an upper bound O(log n + log log q).

Theorem 3. Let χ is a β-bounded distribution for β = poly(n), and let q = 2nε

for 0 < ε < 1. Then there exists a fully homomorphic encryption scheme based on
the leveled homomorphic encryption scheme E = LHFF − PK with the assump-
tions that scheme is secure under the Decisional Finite Field Isomorphism Prob-
lem and that it is weakly circular secure.

Proof. The decryption circuit requires O(log n+log log q) depth, and our scheme
can compute O(nε/log n) depth circuits (Lemma 5). Therefore, the following
inequality is sufficient in order to be bootstrappable:

Υ (log n + log log q) < nε/log n

where Υ > 0 is used to capture the constants in the circuit. Since 0 < ε < 1, in
worst case scenario we obtain 2Υ < log q/ log2 n. ��

4 Conclusion

In this work we proposed a new conjectured hard problem: the finite field isomor-
phism problem. Informally, the FFI problem asks one to construct an explicit
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isomorphism between two representations of a finite field, given only access to
long (large norm) representations of field elements and the assurance of the
existence of a representation where each of these elements has a short (low
norm) expression. We formalized the FFI problem and study the effectiveness
of various approaches, including lattice attacks and non-lattice algebraic tech-
niques, for recovering the secret isomorphism. Relying on the assumed hardness
of the decisional-FFI problem, we first presented a secret-key somewhat homo-
morphic encryption scheme. This was extended, using a subset-sum problem
technique, to a public-key scheme. We briefly analyze the noise performance
of both schemes and introduced a bit-decomposition-based noise managements
scheme that allows us to reduce the noise growth to single exponential. This
yielded a bootstrapable, and thus a fully homomorphic encryption scheme.

A Constructing the Inverse Isomorphism

The map defined by x �→ φ(y) is a field isomorphism. It follows that there is an
inverse isomorphism, and that inverse isomorphism is determined by the image
of y. So we write the inverse isomorphism as

y �−→ ψ(x) =
n−1∑

i=0

cix
i, (6)

and our goal is to determine the ci coefficients. We know that the composition
y �−→ ψ(x) �−→ ψ

(

φ(y)
)

gives an automorphism of Fq[y]/(F (y)), so

ψ
(

φ(y)
) ≡ y (mod F (y)). (7)

Hence it suffices to determine the (unique) polynomial ψ(x) of degree less than n
satisfying (7). Using the expression (6) for ψ(x), we want to find ci so that
∑n−1

i=0 ciφ(y)i ≡ y (mod F (y)). We write each power φ(y)i modulo F (y) as a
polyomial of degree less than n. In other words, we use the known values of φ(y)
and F (y) to write φ(y)i =

∑n−1
j=0 aijy

j (mod F (y)) for 0 ≤ i < n. Substitut-
ing this into ψ

(

φ(y)
)

yields ψ
(

φ(y)
)

=
∑n−1

i=0 ciφ(y)i ≡ ∑n−1
i=0 ci

∑n−1
j=0 aijy

j

(mod F (y)) ≡ ∑n−1
j=0

(
∑n−1

i=0 aijci

)

yj (mod F (y)). Hence ψ will satisfy (7) if

we choose c0, . . . , cn−1 to satisfy
∑n−1

i=0 aijci = 1 if j = 1, and
∑n−1

i=0 aijci = 0 if
j = 0. This is a system of n equations for the n variables c0, . . . , cn−1 over the
finite field Fq, hence is easy to solve, which gives the desired polynomial ψ(y).

B Noise Analysis

To estimate the noise, we need to find the effect of modular reduction operation
(with f(x)) on the norm. One way is to use Barrett’s Reduction algorithm.
In Barrett’s algorithm, a precomputed factor M(x) = x2n/f(x) plays a key
role in estimating the quotient of the division with the modulus. Therefore,
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determining M(x) will give us the main contributing factor to the noise level.
Our goal is to bound the norm of the factor M(x) as tightly as possible. We start

by rearranging M(x) =
⌊

x2n/f(x)
⌋

=
⌊

xn

1+
f ′(x)

xn

⌋

Note that deg(f ′(x)) < n and

the floor operator simply truncates the polynomial beyond the constant term.
This allows us to write the Taylor Series expansion (polynomial equivalent for
1/(1 + x)) as follows M(x) =

⌊

xn +
∑i=�

i=1 (−1)i f ′(x)i

x(i−1)n

⌋

Set d = deg(f ′(x)).
Then, each element in the series contributes up to a polynomial degree in the
summation. It is important to notice that since n > d each term in the expansion
of M(x) the degree is bounded by d (except of course the xn term. Therefore
deg(M(x) − xn) ≤ d. In the series expansion a power f ′(x)i contributes to the
series as long as (i−1)n ≤ id. For larger i values the new additive term is simply
truncated away, i.e. has no effect on M(x). Therefore in the summation we only
need to consider up to a degree 
 which is determined as follows 
 = �n/(n−d)�.
In the special case of d < n/2 we have 
 = 1 and M(x) = 1 − f ′(x) and
βM = βf . In the general case, to bound the norm of M(x), we have to find the
largest possible value for each term in the expansion. Assume that we sample
f ′(x) from a β-bounded distribution. We first assume β = 1 and later generalize
the worst and average case bounds to cover arbitrary β values.

B.1 Worst Case Analysis

For clarity we first consider the first few terms in the expansion and then gen-
eralize the contribution to an arbitrary term:

f ’(x): Since this is a fresh polynomial, the coefficients are sampled from a β-
bounded distribution. For β = 1 in the worst case all coefficients are set to 1,
i.e. f ′(x) = xd + xd−1 + xd−2 + · · · + x1 + 1.

f ’(x)2/xn: Assume we compute the square of f ′(x) using as schoolbook multi-
plication. It is easy to see that starting from the middle degree d, the coefficients
of the result decrease as we go to lower and higher degrees. In other words, the
coefficients of f ′(x)2 are symmetric around the middle degree. Since β = 1, we
can write the polynomial as x2d + 2x2d−1 + · · · + (d + 1)xd + · · · + 2x + 1. The
division by xn eliminates the first n terms. This results in following polynomial
x2d−n +2x2d−n−1 +3x2d−n−2 + · · ·+(2d−n+1)x0. Since d < n then 2d−n < d
and thus the largest coefficient is the constant coefficient with value (2d−n+1).

f ’(x)i
/x(i−1)n: We are now ready to generalize the approach to find the largest

coefficient for a degree i. When computing f ′(x)i = f ′(x)i−1 · f ′(x) since it is
divided by x(i−1)n, we only use the last id − (i − 1)n + 1 coefficients of f ′(x)i−1.
We multiply f ′(x)i−1 with each coefficient of f ′(x) and only take the last id −
(i − 1)n + 1 coefficients. If βi−1 = max(f ′(x)i−1), then we add id − (i − 1)n + 1
of Bi−1 ·β which makes the upper bound (id− (i−1)n+1) ·βi−1 ·β. If we apply
this recursively to compute for previous values of i, we achieve an upper bound
(id − (i − 1)n + 1)i−1 for β = 1.
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B.2 Worst Case for Arbitrary β

f ’(x)i
/x(i−1)n. We use the general formula as explained in the section above. For

the current i we have (id− (i− 1)n+1) ·βi−1 ·β as the upper bound. For any β,
recursively we have βi so the upper bound will be (id− (i− 1)n+1)i−1 ·βi. The
overall bound on M(x) is therefore BM = ||M(x)|| ≤ ∑

i=1,..,�(id − (i − 1)n +
1)i−1βi where B0 = β and as established before 
 = �n/(n − d)�. Our goal is
to bound the norm ||a(x)b(x) mod f(x)|| using Barrett Reduction. We assume
both ||a(x)||, ||b(x)|| ≤ β and deg(f(x)) = n. We compute the worst case noise
bound using the following steps:

– Step 1. Compute M(x) =
⌊

x2n/f(x)
⌋

(M(x) is the quotient of the division).
Also assume ||M(x)|| = βM .

– Step 2. Compute regular product c(x) = a(x)b(x). ||c(x)|| = nβ2.
– Step 3. Estimate quotient of c(x)/f(x) (dropping (x) for brevity) q1 =

�c/xn�. Since we take half of c, worst case noise still remains: ||q1|| = nβ2.
q2 = Mq1. This yields ||q2|| = (d + 1) · βM · nβ2 = n(d + 1)βMβ2

q3 = �q2/xn�. Worst case noise remains the same as q2: ||q3|| = n(d+1)βMβ2

– Step 4. Fix the result using the lower half of c(x)
r1 = c mod xn, thus ||r1|| = nβ2,
r2 = q3f mod xn ||r2|| = n ·(d+1)2βMβ2 ·βf , where we choose ||f(x)|| = βf .
r = r1 − r2 = a(x)b(x) mod f(x). This gives us an overall bound of
||a(x)b(x) mod f(x)|| ≤ nβ2 + n(d + 1)2β2βMβf

For d < n/2 and βf = 1, we have βM = 1 and the worst case norm simplifies to
||a(x)b(x) mod f(x)|| ≤ n[(d+1)2+1]β2. In the average case the noise norm can
be approximated by ||a(x)b(x) mod f(x)||avg ≈ n1/2β2 + n1/2(d + 1)β2βMβf .

C Sample Parameters and Their Security Estimates

In Table 1 we present some parameters for the somewhat homomorphic encryp-
tion scheme. The proposed parameter set does not take into account our noise
management technique. We compute the levels (circuit depth) by doing straight-
forward multiplications. In all 5 examples, we choose β = 2 and d = n/2 (recall
that d is the degree of f ′(x) where f(x) = xn + f ′(x)). For each level we give a
noise estimate and also give a maximum selectable q size.

To estimate the cost of BKZ 2.0, we follow the cryptanalysis in [2,24]. We
use Tables 2 and 3 to estimate the block size and the number of nodes for a
given root Hermite factor. Then we use the following formula ([24], which is an
interpolation of data reported in [7] to get the cost of BKZ 2.0).

BKZCost(dim, b, rounds) = LogNodes(b) + log2(dimension · rounds) + 7.

We remark that in [2] the authors proposed to use (quantum) sieving, rather
than enumeration with extreme pruning, to estimate the cost of BKZ 2.0. In this
analysis, we stick to the original estimation model, to show a proof-of-concept
that practical parameters can be derived for our scheme. We leave the parameter
derivation under the more conservative model in [2] to future work.
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Table 1. Sample parameters for somewhat homomorphic encryption

Level n log noise logmax(q) Ciphertext size Root of Ratio BKZ 2.0 cost

1 256 13 15 0.4 KB 1.0060 >2145

2 2048 50 83 12.5 KB 1.0065 >2135

3 4096 127 161 63.5 KB 1.0066 >2136

4 8192 293 317 293 KB 1.0066 >2137

5 32768 698 1250 2.7 MB 1.0066 >2139

Table 2. Requried blocksize for target root Hermite factor [7]

Target root Hermite factor 1.01 1.009 1.008 1.007 1.006

Approximate block size 85 106 133 168 216

Table 3. Upper bounds on log2 number of nodes enumerated in one call to enumeration
subroutine of BKZ 2.0 [7].

Block size b 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

LogNodes(b) 39 44 49 54 60 66 72 78 84 96 99 105 111 120 127 134

D Testing Results for Observation 2

We test the soundness of Observation 2 as follows. We setup toy size isomor-
phisms with n ∈ {20, 30, 40, 80} and q ∈ {1031, 2053, 220 + 7}. For each test we
generate a long transcript of elements in X and Y; We examine the distribution
of the coefficients in Y and compare it with uniform distribution; We show that
the Renyi divergence between our distribution and a uniform distribution scales
properly with log2(q/n). Two example distribution of the coefficients are shown

Fig. 1. Testing results for Observation 2
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in Fig. 1. We compute the Renyi divergence with α = 2. Our results shows that
our distribution is less than 2−14 away from a uniform distribution for out toy
example with n = 20 and q = 1031.

Table 4. Renyi divergence

q n = 20 n = 30 n = 40 n = 80

1031 2−14.3 2−14.8 2−15.3 2−16.2

2053 2−13.3 2−13.9 2−14.3 2−15.3

220+7 2−4.3 2−4.8 2−5.3 2−6.2

We summarize the testing result in Table 4. As one can see the exponent of
the divergence is linear in log2(q/n). We estimate that for moderate n ≈ q the
divergence is around 2−11.
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28. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-fourth Annual ACM Symposium on Theory of Computing, STOC 2012, pp.
1219–1234. ACM (2012). https://doi.org/10.1145/2213977.2214086

29. Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions: Cryptanalysis of some FHE and graded encoding schemes. Cryptol-
ogy ePrint Archive, Report 2016/127 (2016). http://eprint.iacr.org/

30. May, A., Silverman, J.H.: Dimension reduction methods for convolution modu-
lar lattices. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 110–125.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2 10

31. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptogr. 71(1), 57–81 (2014). https://doi.org/10.1007/s10623-012-9720-4
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Abstract. This paper contributes to understanding the interplay of
security notions for PKE, KEMs, and DEMs, in settings with multiple
users, challenges, and instances. We start analytically by first studying
(a) the tightness aspects of the standard hybrid KEM+DEM encryption
paradigm, (b) the inherent weak security properties of all deterministic
DEMs due to generic key-collision attacks in the multi-instance setting,
and (c) the negative effect of deterministic DEMs on the security of
hybrid encryption.

We then switch to the constructive side by (d) introducing the concept
of an augmented data encapsulation mechanism (ADEM) that promises
robustness against multi-instance attacks, (e) proposing a variant of
hybrid encryption that uses an ADEM instead of a DEM to alleviate the
problems of the standard KEM+DEM composition, and (f) constructing
practical ADEMs that are secure in the multi-instance setting.

Keywords: Hybrid encryption · Multi-user security · Tightness

1 Introduction

Hybrid encryption and its security. Public-key encryption (PKE) is typ-
ically implemented following a hybrid paradigm: To encrypt a message, first
a randomized key encapsulation mechanism (KEM) is used to establish—
independently of the message—a fresh session key that the receiver is able to
recover using its secret key; then a deterministic data encapsulation mechanism
(DEM) is used with the session key to encrypt the message. Both KEM and
DEM output individual ciphertexts, and the overall PKE ciphertext is just their
concatenation. Benefits obtained from deconstructing PKE into the two named
components include easier implementation, deployment, and analysis. An inde-
pendent reason that, in many cases, makes separating asymmetric from symmet-
ric techniques actually necessary is that asymmetric cryptographic components

The full version can be found in the IACR eprint archive as article 2017/843 (https://
eprint.iacr.org/2017/843).
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can typically deal only with messages of limited length (e.g., 2048 bit messages
in RSA-based systems) or of specific structure (e.g., points on an elliptic curve).
The paradigm of hybrid encryption, where the message-processing components
are strictly separated from the asymmetric ones, side-steps these disadvantages.

Hybrid encryption was first studied on a formal basis in [11]. (Implicitly the
concept emerged much earlier, for instance in PGP email encryption.) The cen-
tral result on the security of this paradigm is that combining a secure KEM with
a secure DEM yields a secure PKE scheme. Various configurations of sufficient
definitions of ‘secure’ for the three components have been proposed [11,16,18],
with the common property that the corresponding security reductions are tight.

Multi-user security of PKE and KEMs. Classic security definitions for
PKE, like IND-CPA and IND-CCA, formalize notions of confidentiality of a
single message encrypted to a single user. (For public-key primitives, we iden-
tify (receiving) users with public keys.) This does not well-reflect real-world
requirements where, in principle, billions of senders might use the same encryp-
tion algorithm to send, concurrently and independently of each other, related
or unrelated messages to billions of receivers. Correspondingly, for adequately
capturing security aspects of PKE that is deployed at large scale, generalizations
of IND-CPA/CCA have been proposed that formalize indistinguishability in the
face of multiple users and multiple challenge queries [4] (the goal of the adversary
is to break confidentiality of one message, not necessarily of all messages). On
the one hand, fortunately, these generalized notions turn out to be equivalent
to the single-user single-challenge case [4] (thus supporting the relevance of the
latter). On the other hand, and unfortunately, all known proofs of this statement
use reductions that are not tight, losing a factor of n · qe where n is the num-
ber of users and qe the allowed number of challenge queries per user. Of course
this does not mean that PKE schemes with tightly equivalent single- and multi-
user security cannot exist, and indeed [1,4,12,15,17,19,20] expose examples of
schemes with tight reductions between the two worlds.

The situation for KEMs is the same as for PKE: While the standard secu-
rity definitions [11,16] consider exclusively the single-user single-challenge case,
natural multi-user multi-challenge variants have been considered and can be
proven—up to a security loss with factor n · qe—equivalent to the standard
notions.

Multi-instance security of DEMs. Besides scaled versions of security
notions for PKE and KEMs, we also consider similarly generalized variants of
DEM security. More specifically, we formalize a new1 security notion for DEMs
that assumes multiple independently generated instances and allows for one chal-
lenge encapsulation per instance. (For secret key primitives, we identify instances
with secret keys.) The single-challenge restriction is due to the fact that overall
we are interested in KEM+DEM composition and, akin to the single-instance

1 We are not aware of prior work that explicitly develops multi-instance security mod-
els for DEMs; however, [22] (and others) discuss the multi-instance security of sym-
metric encryption, and [7] considers the multi-instance security of (nonce-based) AE.
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case [11], a one-time notion for the DEM is sufficient (and, as we show, necessary)
for proving security of the hybrid. As for PKE and KEMs, the multi-instance
security of a DEM is closely coupled to its single-instance security; however,
generically, if N is the number of instances, the corresponding reduction loses a
factor of N .

A couple of works [8,22] observe that DEMs that possess a specific technical
property2 indeed have a lower security in the multi-instance setting than in the
single-instance case. This is shown via attacks that assume a number of instances
that is so large that, with considerable probability, different instances use the
same encapsulation key; such key collisions can be detected, and message con-
tents can be recovered. Note that, strictly speaking, the mentioned type of attack
does not imply that the reduction of multi-instance to single-instance security is
necessarily untight, as the attacks crucially depend on the DEM key size which
is a parameter that does not appear in above tightness bounds. We finally point
out that the attacks described in [8,22] are not general but target only specific
DEMs. In this paper we show that the security of any (deterministic) DEM
degrades as the number of considered instances increases.

1.1 Our Contributions

This paper contributes to understanding the interplay of security notions for
PKE, KEMs, and DEMs, in settings with multiple users, challenges, and
instances. We start analytically by first studying (a) the tightness aspects of
the standard hybrid KEM+DEM encryption paradigm, (b) the inherent weak
security properties of deterministic DEMs in the multi-instance setting, and
(c) the negative effect of deterministic DEMs on the security of hybrid encryp-
tion. We then switch to the constructive side by (d) introducing the concept
of an augmented data encapsulation mechanism (ADEM) that promises robust-
ness against multi-instance attacks, (e) proposing a variant of hybrid encryption
that uses an ADEM instead of a DEM to alleviate the problems of the stan-
dard KEM+DEM composition, and (f) constructing secure practical ADEMs.
We proceed with discussing some of these results in more detail, in the order in
which they appear in the paper.

Standard KEM+DEM Hybrid Encryption. In Sect. 3 we define syntax and
security properties of PKE, KEMs, and DEMs; we also recall hybrid encryption.
Besides unifying the notation of algorithms and security definitions, the main
contribution of this section is to provide a new multi-instance security notion for
DEMs that matches the requirements of KEM+DEM hybrid encryption in the
multi-user multi-challenge setting. That is, hybrid encryption is secure, tightly,
if KEM and DEM are simultaneously secure (in our sense). We further show that

2 The cited work is not too clear about this property; loosely speaking the condition
seems to be that colliding ciphertexts of the same message under random keys can
be used as evidence that also the keys are colliding. One example for a DEM with
this property is CBC encryption.
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any attack on the multi-instance security of the DEM tightly implies an attack
on the multi-user multi-challenge security of the hybrid scheme. This implication
is particularly relevant in the light of the results of Sect. 4, discussed next.

Generic Key-Collision Attacks on Deterministic DEMs. In Sect. 4 we
study two attacks that target arbitrary (deterministic) DEMs, leveraging on the
multi-instance setting and exploiting the tightness gap between single-instance
and multi-instance security. Concretely, inspired by the key-collision attacks
(also known as birthday-bound attacks) from [7,8,22], in Sects. 4.1 and 4.2 we
describe two attacks against arbitrary DEMs that break indistinguishability or
even recover encryption keys with success probability N2/|K|, where N is the
number of instances and K is the DEM’s key space. (The reason for specify-
ing two attacks instead of just one is that deciding which one is preferable may
depend on the particular DEM.) As mentioned above, in hybrid encryption these
attacks carry over to the overall PKE.

What are the options to thwart the described attacks on DEMs? One way to
avoid key-collision attacks in practice is of course to increase the key length of
the DEM. This requires the extra burden of also changing the KEM (it has to
output longer keys) and hence might not be a viable option. (Observe that leav-
ing the KEM as-is but expanding its key to, say, double length using a PRG is
not going to work as our generic DEM attacks would immediately kick in against
that construction as well.) Another way to go would be to randomize the DEM.
Drawbacks of this approach are that randomness might be a scarce resource
(in particular on embedded systems, but also on desktop computers there is a
price to pay for requesting randomness3), and that randomized schemes neces-
sarily have longer ciphertexts than deterministic ones. In Sects. 5 to 7 we explore
an alternative technique to overcome key-collision attacks in hybrid encryption
without requiring further randomness and without requiring changing the KEM.
We describe our approach in the following.

KEM+ADEM Hybrid Encryption. In Sect. 5 we introduce the concept of an
augmented data encapsulation mechanism (ADEM). It is a variant of a DEM
that takes an additional input: the tag. The intuition is that ADEMs are safer
to use for hybrid encryption than regular DEMs, in particular in the presence
of session-key collisions: Even if two keys collide, security is preserved if the
corresponding tags are different. Importantly, the two generic DEM attacks from
Sect. 4 do not apply to ADEMs. In Sect. 5 we further consider augmented hybrid
encryption, which constructs PKE from a KEM and an ADEM by using the
KEM ciphertext as ADEM tag. The corresponding security reduction is tight.

3 Obtaining entropy from a modern operating system kernel involves either file access
or system calls; both options are considerably more costly than, say, doing an AES
computation. While some modern CPUs have built-in randomness generators, the
quality of the latter is difficult to assess and relying exclusively on them thus dis-
couraged (see https://plus.google.com/+TheodoreTso/posts/SDcoemc9V3J).

https://plus.google.com/+TheodoreTso/posts/SDcoemc9V3J
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Practical ADEM Constructions. Sections 6 and 7 are dedicated to the con-
struction of practical ADEMs. The two constructions in Sect. 6 are based on the
well-known counter mode encryption, instantiated with an ideal random func-
tion and using the tag as initial counter value. We prove tight, beyond-birthday
security bounds of the form N/|K| for the multi-instance security of our ADEMs.
That is, our constructions provably do not fall prey to key collision attacks, in
particular not the ones from [8,22] and Sect. 4. Unfortunately, as they are based
on counter mode, the two schemes per se are not secure against active adver-
saries. This is remedied in Sect. 7 where we show that an augmented message
authentication code4 (AMAC) can be used to generically strengthen a passively-
secure ADEM to become secure against active adversaries. (We define AMACs
and give a tightly secure construction in the same section.)

2 Notation

If S is a finite set, s $← S denotes the operation of picking an element of S
uniformly at random and assigning the result to variable s. For a randomized
algorithm A we write y $← A(x1, x2, . . .) to denote the operation of running A
with inputs x1, x2, . . . and assigning the output to variable y. Further, we write
[A(x1, x2, . . .)] for the set of values that A outputs with positive probability. We
denote the concatenation of strings with ‖ and the XOR of same-length strings
with ⊕. If a ≤ b are natural numbers, we write [a .. b] for the range {a, . . . , b}.

We say a sequence v1, . . . , vn has a (two-)collision if there are indices 1 ≤
i < j ≤ n such that vi = vj . More generally, the sequence has a k-collision if
there exist 1 ≤ i1 < . . . < ik ≤ n such that vi1 = . . . = vik

. We use predicate
Collk[ ] to indicate k-collisions. For instance, Coll2[1, 2, 3, 2] evaluates to true
and Coll3[1, 2, 3, 2] evaluates to false.

Let L be a finite set of cardinality L = |L|. Sometimes we want to refer to
the elements of L in an arbitrary but circular way, i.e., such that indices x and
x + L resolve to the same element. We do this by fixing an arbitrary bijection
�·�L : Z/LZ → L and extending the domain of �·�L to the set Z in the natural
way. This makes expressions like �a + b�L, for a, b ∈ N, well-defined. We use
the shortcut notation �a � l�L to refer to the span {�a + 1�L, . . . , �a + l�L} of
length l. In particular we have �a � 1�L = {�a + 1�L}.

Our security definitions are based on games played between a challenger
and an adversary. These games are expressed using program code and termi-
nate when the main code block executes ‘return’; the argument of the latter is
the output of the game. We write Pr[G ⇒ 1] or Pr[G ⇒ true] or just Pr[G]
for the probability that game G terminates by executing a ‘return’ instruction
with a value interpreted as true. Further, if E is some game-internal event, we
write Pr[E] for the probability this event occurs. (Note the game is implicit in
this notation.)
4 The notion of an augmented MAC appeared recently in an unrelated context:

An AMAC according to [3] is effectively keyed Merkle–Damg̊ard hashing with an
unkeyed output transform applied at the end. Importantly, while the notion of [3]
follows the classic MAC syntax, ours does not (for having a separate tag input).



164 F. Giacon et al.

3 Traditional KEM/DEM Composition and Its Weakness

We define PKE, KEMs, and DEMs, and give security definitions that consider
multi-user, multi-challenge, and multi-instance attacks. Using the techniques
from [4] we show that the multi notions are equivalent to their single counter-
parts, up to a huge tightness loss. We show that hybrid encryption enjoys tight
security also in the multi settings. We finally show how (multi-instance) attacks
on the DEM can be leveraged to attacks on the PKE.

3.1 Syntax and Security of PKE, KEMs, and DEMs

Public-key encryption. A public-key encryption scheme PKE = (P.gen,P.enc,
P.dec) is a triple of algorithms together with a message space M and a ciphertext
space C. The randomized key-generation algorithm P.gen returns a pair (pk , sk)
consisting of a public key and a secret key. The randomized encryption algorithm
P.enc takes a public key pk and a message m ∈ M to produce a ciphertext
c ∈ C. Finally, the deterministic decryption algorithm P.dec takes a secret key sk
and a ciphertext c ∈ C, and outputs either a message m ∈ M or the special
symbol ⊥ /∈ M to indicate rejection. The correctness requirement is that for all
(pk , sk) ∈ [P.gen], m ∈ M, and c ∈ [P.enc(pk ,m)], we have P.dec(sk , c) = m.

We adapt results from [4] to our notation, giving a game-based security defi-
nition for public-key encryption that formalizes multi-user multi-challenge indis-
tinguishability: For a scheme PKE, to any adversary A and any number of users n
we associate the distinguishing advantage Advmuc-ind

PKE,A,n := |Pr[MUC-IND0
A,n] −

Pr[MUC-IND1
A,n]|, where the two games are specified in Fig. 1. Note that if qe

resp. qd specify upper bounds on the number of Oenc and Odec queries per user,
then the single-user configurations (n, qe, qd) = (1, 1, 0) and (n, qe, qd) = (1, 1,∞)
correspond to standard definitions of IND-CPA and IND-CCA security for PKE.

Fig. 1. PKE security games MUC-INDb
A,n, b ∈ {0, 1}, modeling multi-user multi-

challenge indistinguishability for n users.

The following states that the multi-user multi-challenge notion is equivalent
to the traditional single-user single-challenge case—up to a tightness loss linear
in both the number of users and the number of challenges. The proof is in [4].

Lemma 1 [4]. For any public-key encryption scheme PKE, any number of
users n, and any adversary A that poses at most qe-many Oenc and qd-many
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Odec queries per user, there exists an adversary B such that Advmuc-ind
PKE,A,n ≤

n · qe ·Advmuc-ind
PKE,B,1, where B poses at most one Oenc and qd-many Odec queries.

Further, the running time of B is at most that of A plus the time needed to
perform nqe-many P.enc operations and nqd-many P.dec operations.

Key encapsulation. A key-encapsulation mechanism KEM = (K.gen,K.enc,
K.dec) for a finite session-key space K is a triple of algorithms together with
a ciphertext space C. The randomized key-generation algorithm K.gen returns
a pair (pk , sk) consisting of a public key and a secret key. The randomized
encapsulation algorithm K.enc takes a public key pk to produce a session key
K ∈ K and a ciphertext c ∈ C. Finally, the deterministic decapsulation algorithm
K.dec takes a secret key sk and a ciphertext c ∈ C, and outputs either a session
key K ∈ K or the special symbol ⊥ /∈ K to indicate rejection. The correctness
requirement is that for all (pk , sk) ∈ [K.gen] and (K, c) ∈ [K.enc(pk)] we have
K.dec(sk , c) = K.

Like for PKE schemes we give a security definition for KEMs that formal-
izes multi-user multi-challenge indistinguishability: For a scheme KEM, to any
adversary A and any number of users n we associate the distinguishing advan-
tage Advmuc-ind

KEM,A,n := |Pr[MUC-IND0
A,n] − Pr[MUC-IND1

A,n]|, where the two games
are specified in Fig. 2. Note that if qe resp. qd specify upper bounds on the
number of Oenc and Odec queries per user, then the single-user configurations
(n, qe, qd) = (1, 1, 0) and (n, qe, qd) = (1, 1,∞) correspond precisely to standard
definitions of IND-CPA and IND-CCA security for KEMs.

Fig. 2. KEM security games MUC-INDb
A,n, b ∈ {0, 1}, modeling multi-user multi-

challenge indistinguishability for n users.

Akin to the PKE case, our KEM multi-user multi-challenge notion is equiv-
alent to its single-user single-challenge relative—again up to a tightness loss
linear in the number of users and challenges. The proof can be found in the full
version [14].

Lemma 2. For any key-encapsulation mechanism KEM, any number of users n,
and any adversary A that poses at most qe-many Oenc and qd-many Odec queries
per user, there exists an adversary B such that Advmuc-ind

KEM,A,n ≤ n ·qe ·Advmuc-ind
KEM,B,1,

where B poses at most one Oenc and qd-many Odec queries. Further, the running
time of B is at most that of A plus the time needed to perform nqe-many K.enc
operations and nqd-many K.dec operations.
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Data encapsulation. A data-encapsulation mechanism DEM = (D.enc,D.dec)
for a message space M is a pair of deterministic algorithms associated with a
finite key space K and a ciphertext space C. The encapsulation algorithm D.enc
takes a key K ∈ K and a message m ∈ M, and outputs a ciphertext c ∈ C.
The decapsulation algorithm D.dec takes a key K ∈ K and a ciphertext c ∈ C,
and outputs either a message m ∈ M or the special symbol ⊥ /∈ M to indicate
rejection. The correctness requirement is that for all K ∈ K and m ∈ M we
have D.dec(K,D.enc(K,m)) = m.

As a security requirement for DEMs we formalize a multi-instance variant of
the standard one-time indistinguishability notion: In our model the adversary
can request one challenge encapsulation for each of a total of N independent
keys; decapsulation queries are not restricted and can be asked multiple times
for the same key. The corresponding games are in Fig. 3. Note that lines 05
and 09 ensure that the adversary cannot ask for decapsulations with respect to
a key before having a challenge message encapsulated with it. (This matches the
typical situation as it emerges in a KEM/DEM hybrid.) For a scheme DEM, to
any adversary A and any number of instances N we associate the distinguishing
advantage Advmiot-ind

DEM,A,N := |Pr[MIOT-IND0
A,N ] − Pr[MIOT-IND1

A,N ]|. Note that
if Qd specifies a global upper bound on the number of Odec queries, then the
single-instance configurations (N,Qd) = (1, 0) and (N,Qd) = (1,∞) correspond
to standard definitions of OT-IND-CPA and OT-IND-CCA security for DEMs.

Fig. 3. DEM security games MIOT-INDb
A,N , b ∈ {0, 1}, modeling multi-instance one-

time indistinguishability for N instances.

Similarly to the cases of PKE and KEMs, our multi-instance notion for DEMs
is equivalent to its single-instance counterpart, with a tightness loss of N . The
proof can be found in the full version [14].

Lemma 3. For any data-encapsulation mechanism DEM, any number of
instances N , and any adversary A that poses at most Qd-many Odec queries
in total, there exists an adversary B such that Advmiot-ind

DEM,A,N ≤ N · Advmiot-ind
DEM,B,1,

where B poses at most one Oenc and Qd-many Odec queries. Further, the run-
ning time of B is at most that of A plus the time needed to perform N -many
D.enc operations and Qd-many D.dec operations.

3.2 Hybrid Encryption

The main application of KEMs and DEMs is the construction of public key
encryption: To obtain a (hybrid) PKE scheme, a KEM is used to establish a
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session key and a DEM is used with this key to protect the confidentiality of the
message [11]. The details of this construction are in Fig. 4. It requires that the
session key space of the KEM and the key space of the DEM coincide.

Fig. 4. Hybrid construction of scheme PKE from schemes KEM and DEM. We write
〈c1, c2〉 for the encoding of two ciphertext components into one.

The central composability result for hybrid encryption [11] says that if the
KEM and DEM components are strong enough then also their combination is
secure, with tight reduction. In Theorem 1 we give a generalized version of this
claim: it considers multiple users and challenges, and implies the result from [11]
as a corollary. Note that also our generalization allows for a tight reduction. The
proof can be found in the full version [14].

Theorem 1. Let PKE be the hybrid public-key encryption scheme constructed
from a key-encapsulation mechanism KEM and a data-encapsulation mecha-
nism DEM as in Fig. 4. Then for any number of users n and any PKE adver-
sary A that poses at most qe-many Oenc and qd-many Odec queries per user,
there exist a KEM adversary B and a DEM adversary C such that

Advmuc-ind
PKE,A,n ≤ 2Advmuc-ind

KEM,B,n + Advmiot-ind
DEM,C,nqe

.

The running time of B is at most that of A plus the time required to run nqe DEM
encapsulations and nqe DEM decapsulations. The running time of C is similar to
the running time of A plus the time required to run nqe KEM encapsulations, nqe

KEM decapsulations, and nqe DEM decapsulations. B poses at most qe-many
Oenc and qd-many Odec queries per user, and C poses at most nqe-many Oenc
and nqd-many Odec queries in total.

Theorem 1 bounds the distinguishing advantage of adversaries against hybrid
PKE conditioned on its KEM and DEM components being secure. Note that
from this result it cannot be deduced that deploying an insecure DEM (poten-
tially in combination with a secure KEM) necessarily leads to insecure PKE.
We show in Theorem 2 that also the latter implication holds. To ease the analy-
sis, instead of requiring MUC-IND-like properties of the KEM, we rather assume
that it has uniformly distributed session keys. Formally this means that for all
public keys pk the distribution of [(K, c) $← K.enc(pk); output K] is identical
with the uniform distribution on key space K. The proof can be found in the full
version [14].
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Theorem 2. For a key-encapsulation mechanism KEM and a data-encapsulation
mechanism DEM let PKE be the corresponding hybrid encryption scheme. If KEM
has uniform keys in K, any attack on DEM can be converted to an attack on PKE.
More precisely, for any n, qe and any DEM adversary A that poses in total at most
nqe-many Odec queries, there exists an adversary B such that

Advmiot-ind
DEM,A,nqe

≤ Advmuc-ind
PKE,B,n +

nqe
2

2 |K| .

The running time of B is about that of A, and B poses at most qe-many Oenc
queries per user and Qd-many Odec queries in total.

4 Deterministic DEMs and Their Multi-instance Security

We give two generic key-collision attacks on the multi-instance security of (deter-
ministic) DEMs. They have different attack goals (indistinguishability vs. key
recovery) and succeed with slightly different probabilities. More precisely, in
both cases the leading term of the success probability comes from the birthday
bound and evaluates to roughly N2/|K|, and is thus much larger than the N/|K|
that intuition might expect. By Theorem 2 the attacks can directly be lifted to
ones targeting the multi-user multi-challenge security of a corresponding hybrid
encryption scheme, achieving the same advantage.

4.1 A Passive Multi-instance Distinguishing Attack on DEMs

We describe an attack against multi-instance indistinguishability that applies
generically to all DEMs. Notably, the attack is fully passive, i.e., the adversary
does not pose any query to its Odec oracle. As technical requirements we assume
a finite message space and a number of instances such that the inequalities
N2 ≤ 2 |K| and |M| ≥ 3 |K| + N − 1 are fulfilled. We consider these conditions
extremely mild, since in practice M is very large and the value N can be chosen
arbitrarily low by simply discarding some inputs.

For any value N ∈ N the details of our adversary A = AN are in
Fig. 5a. It works as follows: It starts by picking uniformly at random messages
m0,m

1
1, . . . , m

N
1 ∈ M such that m1

1, . . . , m
N
1 are pairwise distinct. (Note the

corresponding requirement N ≤ |M| follows from above condition.) The adver-
sary then asks for encapsulations of these messages in a way such that it obtains
either N encapsulations of m0 (if executed in game MIOT-IND0), or one encap-
sulation of each message mj

1 (if executed in game MIOT-IND1). If any two of
the received ciphertexts collide, the adversary outputs 1; otherwise it outputs 0.
The following theorem makes statements about advantage and running time of
this adversary.
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Theorem 3. For a finite message space M, let DEM be a DEM with key
space K. Suppose that N2 ≤ 2 |K| and |M| ≥ 3 |K| + N − 1. Then adversary A
from Fig. 5a breaks the N -instance indistinguishability of DEM, achieving the
advantage

Advmiot-ind
DEM,A,N ≥ N(N − 1)

12 |K| .

Its running time is O(N log N), and it poses N -many Oenc and no Odec queries.

We remark that, more generally, the bound on |M| can be relaxed to |M| ≥
2 |K| (1 + δ) + N − 1 for some δ ≥ 0 to obtain Advmiot-ind

DEM,A,N ≥ δ
δ+1 · N(N−1)

4|K| .

Fig. 5. Adversaries against: (a) multi-instance indistinguishability and (b) multi-
instance key recovery. Both ask for N encapsulations (resp. lines 03 and line 04) but
do not use their decapsulation oracle.

Proof. The task of collecting N ciphertexts and checking for the occurrence of
a collision can be completed in O(N log N) operations. In the following we first
assess the performance of the adversary when executed in games MIOT-IND0

and MIOT-IND1; then we combine the results.

Case MIOT-IND0. Adversary A receives N encapsulations of the same mes-
sage m0, created with N independent keys K1, . . . , KN . If two of these keys
collide then the corresponding (deterministic) encapsulations collide as well and
A returns 1. Since N(N − 1) < N2 ≤ 2 |K| by the birthday bound we obtain

Pr[MIOT-IND0
A,N ] ≥ N(N − 1)

4 |K| .

Case MIOT-IND1. Adversary A receives encapsulations c1, . . . , cN of uniformly
distributed (but distinct) messages m1

1, . . . , m
N
1 . Denote with Kj the key used to

compute cj , let Mj := M\{m1
1, . . . , m

j−1
1 }, and let further Cj := D.enc(Kj ,Mj)

denote the image of Mj under (injective) function D.enc(Kj , ·). Observe this
setup implies |Cj | = |Mj | and |C1| > . . . > |CN |. If further follows that each
ciphertext cj is uniformly distributed in set Cj .
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We aim at establishing an upper-bound on the collision probability of cipher-
texts c1, . . . , cN . The maximum collision probability is attained in the worst-case
C1 ⊃ . . . ⊃ CN , in which it is bounded by the collision probability of choosing
N values uniformly from a set of cardinality |CN | = |M| − N + 1. Using again
the birthday bound and |M| ≥ 3 |K| + N − 1 we obtain

Pr[MIOT-IND1
A,N ] ≤ 1

2
· N(N − 1)
|M| − N + 1

≤ N(N − 1)
6 |K| .

Combining the two bounds yields the equation in our statement.

4.2 A Passive Multi-instance Key-Recovery Attack on DEMs

We give a generic attack on DEMs that aims at recovering keys rather than
distinguishing encapsulations. Like in Sect. 4.1 the attack is passive. It is inspired
by work of Zaverucha [22] and Chatterjee et al. [8]. However, our results are more
general than theirs for not restricted to one specific DEM.

To formalize the notion of resilience against key recovery we correspondingly
adapt the MIOT-IND game from Fig. 3 and obtain the MIOT-KR game speci-
fied in Fig. 6. The N -instance advantage of an adversary A is then defined as
Advmiot-kr

DEM,A,N := Pr[MIOT-KRA,N ]. The following theorem shows that for virtu-
ally all practical DEMs (including those based on CBC mode, CTR mode, OCB,
etc., and even one-time pad encryption) there exist adversaries achieving a con-
siderable key recovery advantage, conditioned on the DEM key space being small
enough. Concretely, the adversaries we propose encapsulate 2N times the same
message (N times with random but known keys, and N times with random but
unknown keys) and detect collisions of ciphertexts.5 As any ciphertext collision
stems (in practice) from a collision of keys, this method allows for key recovery.6

Theorem 4. Fix a DEM and denote its key space with K and its message space
with M. Let m0 ∈ M be any fixed message. Fixing N ∈ N as a parameter,
consider the adversary A = AN specified in Fig. 5b. We then have

Advmiot-kr
DEM,A,N ≥ p(m0) · min

{
1
2
,

N2

2 |K|

}
,

where p(m0) denotes the collision probability

p(m0) := Pr
K1,K2

$←K
[K1 = K2 | D.enc(K1,m0) = D.enc(K2,m0)].

5 While our setup is formally meaningful, in practice it would correspond to N parties,
for a huge number N , encapsulating the same message m0. This might feel rather
unrealistic. However, we argue that a close variant of the attack might very well have
the potential for practicality: All widely deployed DEMs are online, i.e., compute
ciphertexts ‘left-to-right’. For such DEMs, for our attack to be successful, it suffices
that the N parties encapsulate (different) messages that have a common prefix, for
instance a standard protocol header.

6 The efficiency of this attack can likely be improved, on a heuristic basis, by deploying
dedicated data structures like rainbow tables.
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Fig. 6. DEM security game MIOT-KRA,N modeling resilience against key recovery, for
N instances.

Its running time is O(N log N), and it poses N -many Oenc and no Odec queries.

We further prove that in the case of DEMs based on one-time pad encryption
we have p(m0) = 1 for any m0. Further, in the case of CBC-based encapsulation
there exists a message m0 such that p(m0) = |B| /(|B| + |K| − 1), where B is the
block space of the blockcipher and the latter is modeled as an ideal cipher.

Note that the performance of our attack crucially depends on the choice
of message m0, and that there does not seem to be a general technique for
identifying good candidates. In particular, (artificial) DEMs can be constructed
where p(m0) is small for some m0 but large for others, or where p(m0) is small
even for very long messages m0. However, in many practical schemes the choice
of m0 is not determinant. After the proof we consider two concrete examples.

Proof. The running time of A is upper bounded by the search for collisions in
line 05, since all other operations require at most linear time in N . We esti-
mate the time bound: The list c1, . . . , cN is sorted, requiring time O(N log N).
Searching an element in the ordered list requires O(log N) time. Repeating for
all N searches requires O(N log N). Combining these observations yields our
statement.

We claim that the probability that the adversary does not output ⊥ (in
symbols, AN � ⊥) is lower bounded by:

Pr[AN � ⊥] ≥ 1 −
(

1 − N

|K|

)N

. (1)

Since the DEM is deterministic, the probability to find any collision in line
05 is larger than the probability that any of the distinct N keys generated in
lines 00–02 collides with one of the N keys K̃1, . . . , K̃N used by the MIOT-KR
game to encapsulate. We compute the latter probability. Let K ∈ {K̃1, . . . , K̃N}.
We know that K is uniform in K. Since K1, . . . , KN are distinct and indepen-
dently chosen we can write: Pr[K ∈ {K1, . . . , KN}] = N/|K|. Moreover, since
the keys K̃1, . . . , K̃N are generated independently of each other, Eq. (1) follows.

Let now (i, j) be the indices for which the condition in line 05 is triggered, i.e.,
ci = c′

j and AN outputs Ki. We can write:
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Advmiot-kr
DEM,A,N = Pr[AN � ⊥] · Pr[Ki = K̃j | AN � ⊥]

≥
(

1 −
(

1 − N

|K|

)N )
· p(m0).

Applying known inequalities to the previous formula we obtain:

Advmiot-kr
DEM,A,N ≥ p(m0) ·

(
1 −

(
1 − N

|K|

)N )
≥ p(m0) · min

{
1
2
,

N2

2 |K|

}
.

We compute p(m0) for two specific DEMs (one-time pad and CBC mode)
and choices of m0. We formalize the argument for CBC by considering single-
block messages. We note that one can apply the same argument to other modes
of operation, e.g., CTR. For notational simplicity we omit the description of the
probability space, that is, uniform choice of K1,K2 ∈ K.

One-time pad. The one-time pad DEM encapsulation is given by combining
a key K ∈ K = {0, 1}k with a message m ∈ M = {0, 1}k using the XOR
operation. In this case, if two ciphertexts for the same message collide, the
same key must have been used to encapsulate. Thus p(m0) = 1 for all m0.

CBC with an ideal cipher. CBC-based DEM encapsulation consists of
encrypting the message using a blockcipher in CBC mode with the zero
initialization vector (IV). In the following analysis we assume an idealized
blockcipher (ideal cipher model) represented by E. Note that since the IV is
zero, encapsulating a single-block message m0 under the key K is equivalent
to enciphering m0 with EK . Let B be the block space. First we observe that
for any single-block message m0 we have

Pr[EK1(m0) = EK2(m0)]
= Pr[K1 = K2] + Pr[K1 = K2] Pr[EK1(m0) = EK2(m0) | K1 = K2]

= |K|−1 + (1 − |K|−1) |B|−1
.

We then use the previous equality to compute p(m0) from its definition:

p(m0) =
Pr[K1 = K2]

Pr[EK1(m0) = EK2(m0)]

=
|K|−1

|K|−1 + (1 − |K|−1) |B|−1 =
|B|

|B| + |K| − 1
.

As an example, if |B| ≥ |K| then p(m0) > 1/2 for any single-block message m0.

5 Augmented Data Encapsulation

In the previous sections we showed that all deterministic DEMs, including those
that are widely used in practice, might be less secure than expected in the face of
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multi-instance attacks. We further showed that, in the setting of hybrid encryp-
tion, attacks on DEMs can be leveraged to attacks on the overall PKE. Given
that the KEM+DEM paradigm is so important in practice, we next address the
question of how this situation can be remedied. One option would of course be
to increase the DEM key size (recall that good success probabilities in Theo-
rems 3 and 4 are achieved only for not too large key spaces); however, increasing
key sizes might not be a viable option in practical systems. (Potential reasons
for this include that blockciphers like AES are slower with long keys than with
short keys, and that ciphers like 3DES do not support key lengths that have a
comfortable ‘multi-instance security margin’ in the first place.) A second option
would be to augment the input given to the DEM encapsulation routine by an
additional value. This idea was already considered in [22, p. 16] where, with the
intuition of increasing the ‘entropy’ available to the DEM, it was proposed to
use a KEM ciphertext as an initialization vector (IV) of a symmetric encryption
mode. However, [22] does not contain any formalization or security analysis of
this idea, and so it cannot be taken as granted that this strategy actually works.
(And indeed, we show in Sect. 6.3 that deriving the starting value of blockcipher-
based counter mode encryption from a KEM ciphertext is not ameliorating the
situation for attacks based on indistinguishability.)

We formally explore the additional-input proposal for the DEM in this
section. More precisely, we study two approaches of defining an augmented data
encapsulation mechanism (ADEM), where we call the additional input the tag.
The syntax is the same in both cases, but the security properties differ: either
(a) the DEM encapsulator receives as the tag an auxiliary random (but public)
string, or (b) the encapsulator receives as additional input a nonce (a ‘number
used once’). In both cases the decapsulation oracle operates with respect to the
tag also used for encapsulation. After formalizing this we prove the following
results: First, if the tag space is large enough, ADEMs that expect a nonce can
safely replace ADEMs that expect a uniform tag. Second, ADEMs that expect
a uniform tag can be constructed from ADEMs that expect a nonce by applying
a random oracle to the latter. Our third result is that the augmented variant of
hybrid encryption remains (tightly) secure.

Augmented data encapsulation. An augmented data encapsulation mech-
anism ADEM = (A.enc,A.dec) for a message space M is a pair of deterministic
algorithms associated with a finite key space K, a tag space T , and a ciphertext
space C. The encapsulation algorithm A.enc takes a key K ∈ K, a tag t ∈ T , and
a message m ∈ M, and outputs a ciphertext c ∈ C. The decapsulation algorithm
A.dec takes a key K ∈ K, a tag t ∈ T , and a ciphertext c ∈ C, and outputs
either a message m ∈ M or the special symbol ⊥ /∈ M to indicate rejection.
The correctness requirement is that for all K ∈ K and t ∈ T and m ∈ M we
have A.dec(K, t,A.enc(K, t,m)) = m.

Augmented data encapsulation with uniform tags. The first security
notion we formalize assumes that each encapsulation operation uses a fresh
and uniformly picked tag (note this imposes the technical requirement that
the tag space be finite). More precisely, while the tag may become public
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after the encapsulation operation has completed, it may not be disclosed to
the adversary before fixing the message to be encapsulated. We formalize this
notion of uniform-tag multi-instance one-time indistinguishability for ADEMs
via the games specified in Fig. 7. For a scheme ADEM, to any adversary A
and any number of instances N we associate the distinguishing advantage
Advu-miot-ind

ADEM,A,N := |Pr[U-MIOT-IND0
A,N ] − Pr[U-MIOT-IND1

A,N ]|.

Fig. 7. ADEM security games U-MIOT-INDb
A,N , b ∈ {0, 1}, for N instances. The tags

in line 11 are the same as the ones in line 06.

Augmented data encapsulation with nonces. Our second security notion
for ADEMs requires the tag provided to each encapsulation operation to be
unique (across all instances). The tag can be generated using any possible
method (e.g., using some global type of counter). We formalize the correspond-
ing security notion of nonce-based multi-instance one-time indistinguishability
for ADEMs via the games specified in Fig. 8. For a scheme ADEM, to any adver-
sary A and any number of instances N we associate the distinguishing advantage
Advn-miot-ind

ADEM,A,N := |Pr[N-MIOT-IND0
A,N ] − Pr[N-MIOT-IND1

A,N ]|.

Fig. 8. ADEM security games N-MIOT-INDb
A,N , b ∈ {0, 1}, for N instances. The tags

in line 14 are the same as the ones in line 09.

5.1 Relations Between ADEMs with Uniform and Nonce Tags

The two types of ADEMs we consider here can be constructed from each other.
More concretely, the following lemma shows that if the tag space is large enough,
ADEMs that expect a nonce can safely replace ADEMs that expect a uniform
tag. The proof can be found in the full version [14].



Hybrid Encryption in a Multi-user Setting, Revisited 175

Lemma 4. Let ADEM be an augmented data encapsulation mechanism. If the
cardinality of its tag space T is large enough and ADEM is secure with non-
repeating tags, then it is also secure with random tags. More precisely, for any
number of instances N and any adversary A there exist an adversary B that
makes the same amount of queries such that Advu-miot-ind

ADEM,A,N ≤ Advn-miot-ind
ADEM,B,N +

N2/(2 |T |). The running time of the two adversaries is similar.

The following simple lemma shows that ADEMs that expect a nonce can
be constructed from ADEMs that expect a uniform tag by using each nonce
to obtain a uniform, independent value from a random oracle. The proof is
immediate since all queries to the random oracle have different input, thus the
corresponding output is uniformly random and independently generated.

Lemma 5. Let ADEM = (A.enc,A.dec) be an augmented data encapsula-
tion mechanism with tag space T . Let H : T ′ → T denote a hash function,
where T ′ is another tag space. Define ADEM′ = (A.enc′,A.dec′) such that
A.enc′(K, t,m) := A.enc(K,H(t),m) and A.dec′(K, t, c) := A.dec(K,H(t), c).
Then if H is modeled as a random oracle and if ADEM is secure with ran-
dom tags in T , then ADEM′ is secure with non-repeating tags in T ′. Formally,
for any number of instances N and any adversary A there exists an adversary B
with Advu-miot-ind

ADEM,A,N = Advn-miot-ind
ADEM′,B,N .

5.2 Augmented Hybrid Encryption

A KEM and an ADEM can be combined to obtain a PKE scheme: the KEM
establishes a session key and a first ciphertext component, and the ADEM is used
on input the session key and the first ciphertext component (as tag) to protect the
confidentiality of the message, creating a second ciphertext component. Figure 9
details this augmented hybrid encryption. It requires that the session key space
of the KEM and the key space of the ADEM coincide. Further, the ciphertext
space of the KEM needs to be a subset of the tag space of the ADEM.

Fig. 9. Augmented hybrid construction of scheme PKE from schemes KEM and ADEM.
We write 〈c1, c2〉 for the encoding of two ciphertext components into one.

The claim is that augmented hybrid encryption is more robust against attacks
involving multiple users and challenges than standard hybrid encryption (see
Fig. 4). The security condition posed on the ADEM requires that it be secure
when operated with nonces, and the security property posed on the KEM
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requires that it be both indistinguishable and have non-repeating ciphertexts
(i.e., invoking the encapsulation twice on any public keys does virtually never
result in colliding ciphertexts). Technically, the latter property is implied by
indistinguishability. However, to obtain better bounds, we formalize it as a statis-
tical condition: To any scheme KEM we assign the maximum ciphertext-collision
probability

p := max
pk1,pk2

Pr[(K1, c1) $← K.enc(pk1); (K2, c2) $← K.enc(pk2) : c1 = c2],

where the maximum is over all pairs pk1, pk2 of (potentially coinciding) public
keys. Note that practical KEMs (ElGamal, RSA-based, Cramer–Shoup, . . . )
have much larger ciphertexts than session keys7, so that the ciphertext-collision
probability will always be negligible in practice. We proceed with a security claim
for augmented hybrid encryption. The proof can be found in the full version [14].

Lemma 6. Let PKE be the hybrid public-key encryption scheme constructed
from a key-encapsulation mechanism KEM and an augmented data-encapsulation
mechanism ADEM as in Fig. 9. Let p be the maximum ciphertext-collision proba-
bility of KEM over all possible public keys. Then for any n and any PKE adver-
sary A that poses at most qe-many Oenc and qd-many Odec queries per user,
there exist a KEM adversary B and an ADEM adversary C such that

Advmuc-ind
PKE,A,n ≤ 2Advmuc-ind

KEM,B,n + Advn-miot-ind
ADEM,C,N + 2

(
N

2

)
p,

where N = nqe. The running time of B is at most that of A plus the time
required to run nqe ADEM encapsulations and nqe ADEM decapsulations. The
running time of C is similar to that of A plus the time required to run nqe

KEM encapsulations, nqe KEM decapsulations, and nqe ADEM decapsulations.
B poses at most qe-many Oenc and qd-many Odec queries per user, and C poses
at most nqe-many Oenc and nqd-many Odec queries in total.

6 Constructions of Augmented Data Encapsulation

We construct two augmented data-encapsulation mechanisms and analyze their
security. The schemes are based on operating a function in counter mode. If
the function is instantiated with an ideal random function then the ADEMs
are secure beyond the birthday bound. (We also show that if the function is
instead instantiated with an idealized blockcipher, i.e., a random permutation,
the schemes’ security may degrade.) Practical candidates for instantiating the
ideal random function are for instance the compression functions of standardized
Merkle–Damg̊ard hash functions, e.g., of SHA2.8,9 Another possibility is deriving
the random function from an ideal cipher as in [21].
7 This is no coincidence but caused by generic attacks against cyclic groups, RSA, etc.
8 These compression functions are regularly modeled as having random behavior [2,13].
9 The idea to construct a DEM from a hash function’s compression function already

appeared in the OMD schemes from [9].
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6.1 Counter-Mode Encryption

Many practical DEMs are based on operating a blockcipher E in counter mode
(CTR). Here, in brief, the encapsulation key is used as the blockcipher key,
a sequence of message-independent input blocks is enciphered under that key,
and the output blocks are XOR-ed into the message. More concretely, if under
some key K a message m shall be encapsulated that, without requiring padding,
evenly splits into blocks v1‖ . . . ‖vl, then the DEM ciphertext is the concatenation
w1‖ . . . ‖wl where wi = vi ⊕ EK(i).

In the context of this paper, three properties of this construction are worth
pointing out: (a) the ‘counting’ component of CTR mode serves a single purpose:
preventing that two inputs to the blockcipher coincide; (b) any ‘starting value’
for the counter can be used; (c) security analyses of CTR mode typically model
E as a pseudorandom function (as opposed to a pseudorandom permutation)10.

In Fig. 10 we detail three ways of turning the principles of CTR mode into a
DEM encapsulation routine. In all cases the underlying primitive is, syntactically,
a function F : K × B → D that takes a key K ∈ K and maps some finite
input space B into some finite group (D,⊕). (Intuitively, B serves as a space
of input blocks derived from a counter, and D as a space of pads that can be
XORed into message blocks; note that if F is instantiated with a blockcipher
we have B = D, but we explicitly allow other instantiations.) The most basic
encapsulation routine based on CTR mode that we consider, and the one closest
to our sketch above, is CTR0enc. Note that this DEM further assumes a bijection
�·�L : Z/LZ → L with L = B. (Intuitively, this bijection turns a counter that
is cyclic with period length L into input blocks for F ; see Sect. 2 for notation.)
We finally point out that all three variants of CTR mode that we formalize
exclusively work with fixed-length multi-block messages (i.e., M = Dl). This
choice, that we made for simplicity of exposition, is not really a restriction as
‘any-length’ CTR mode encryption can be simulated from ‘block-wise’ CTR
mode encryption.

Fig. 10. Encapsulation algorithms of the CTR0 DEM, the CTR+ ADEM, and the CTR‖
ADEM, for multi-block messages. In CTR0enc and CTR+enc we assume �·�L : Z/LZ →
L with L = B, and in CTR‖enc we assume �·�L : Z/LZ → L and T such that B = T ×L.
The corresponding decapsulation routines is immediate.

10 Technically, the PRP/PRF switching lemma [5] measures the price one has to pay
for pursuing this modeling approach.
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The two remaining procedures in Fig. 10 are ADEM encapsulation routines.
The first one, CTR+enc, is the natural variant of CTR0enc where the tag space
is T = [1 .. L] and the tag specifies the starting value of the counter. The second,
CTR‖enc, concatenates tag and counter. Here, the tag space T and parameter
space L have to be arranged such that B = T × L.

We analyze the security of CTR+ and CTR‖ in the upcoming sections. Scheme
CTR0 is not an ADEM and falls prey to our earlier attacks.

6.2 Security of Function-Based Counter Mode

We establish upper bounds on the advantage of U-MIOT-IND adversaries against
the CTR+ and CTR‖ ADEMs.

Counter Mode with Tag-Controlled Starting Value. We limit the maxi-
mum amount of blocks in an encapsulation query to a fixed value �. Prerequisites
to our statement on CTR+ are two conditions on the number of instances relative
to K and T = [1 .. L]. The bound is namely N ≤ min

{
|K|1/2

, (|T | /(2�))1/(1+δ)
}
,

for some arbitrary constant δ such that 1/N ≤ δ ≤ 1. Despite this restriction we
consider our statement to be reflecting real-world applications: As an extreme
example we see that the values |K| = |T | = 2128, N = 256, � = 256, q = 264

and δ = 2/7 fit above condition, yielding a maximum advantage of around 2−61.

Theorem 5. Suppose N ≤ min
{

|K|1/2
, (|T | /(2�))1/(1+δ)

}
, for some 1/N ≤

δ ≤ 1, and suppose that F is modeled as a random oracle (using oracle F).
Then for any adversary A against N -instance uniform-tag indistinguishability of
CTR+ that poses at most q queries to F, no decapsulation queries, and encapsu-
lates messages of length at most � blocks we have:

Advu-miot-ind
CTR+,A,N ≤ 1

3
N

|K| +
4� − 2
|T | +

2q

|K|

(
1 +

1
δ

)
.

The core of the proof exploits that the outputs of (random oracle) F that
are used to encapsulate are uniformly distributed in D and independent of each
other. This requires forcing the inputs to be distinct in L. We give further insight
on some non-standard techniques the we use in the analysis in the proof.

Proof (of Theorem 5). The definition of the games G0,b
A,N , G1,b

A,N , G2,b
A,N and G3,b

A,N are
found in Fig. 11. Except for some bookkeeping, game G0,b

A,N is equivalent to game
U-MIOT-INDb

A,N , where b ∈ {0, 1}. For j ∈ [1 .. N ] we define Tj = �tj � ��L.

Game G1. In game G1,b
A,N we implicitly generate pairs of colliding keys. We loop

over all pairs (j1, j2) such that 1 ≤ j1 < j2 ≤ N . If both indices were not
previously paired (matched[j1] = matched[j2] = false) and the corresponding
keys collide (Kj1 = Kj2) then the two indices are marked as paired. Moreover,
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if the corresponding tag ranges collide (Tj1 ∩ Tj2 = ∅) the flag bad1 in line 10
is raised and the game aborts. We claim that

|Pr[G0,b
A,N ] − Pr[G1,b

A,N ]| ≤ Pr[bad1] ≤ 2� − 1
|T | . (2)

To prove (2), we want to compute the probability Pr[bad1]. Let mpairs be
the number of colliding key pairs in game G1,b

A,N , i.e., 2mpairs entries of flag
matched are set to 1 at the end of the game. Then, for every 0 ≤ i ≤ �N/2�,
Pr[bad1 | mpairs = i] ≤ (2� − 1)i/ |T |. This follows from the independent
choices of the values Kj , tj for each instance j ∈ [1 .. N ], and because for
each pair of indices j1, j2 ∈ [1 .. N ], j1 = j2, and for any choice of tj1 there are
exactly 2�−1 possible values of tj2 such that Tj1 ∩Tj2 = ∅. The sets {mpairs =
i}, i ∈ 0, . . . , �N/2�, partition the probability space, thus:

Pr[bad1] =
�N/2�∑
i=0

Pr[bad1 | mpairs = i] Pr[mpairs = i]

≤2� − 1
|T |

�N/2�∑
i=0

iPr[mpairs = i] =
2� − 1
|T |

�N/2�∑
i=1

Pr[mpairs ≥ i]. (3)

The last equality follows since the expected value of any random variable m
with values in N can be written as

∑∞
i=0 iPr[m = i] =

∑∞
i=1 Pr[m ≥ i]. We

show by induction that the terms of the sum are:

pi := Pr[mpairs ≥ i] ≤
(

N2

2 |K|

)i

. (4)

To prove (4), we consider a slightly different event. We say that key Ki is bad if
Kj = Ki for some 1 ≤ i < j. Let mbadkeys be the random variable counting the
number of bad keys. Since every colliding key pair implies at least one bad key,
then it can be shown that Pr[mpairs ≥ i] ≤ Pr[mbadkeys ≥ i] ≤ (N2/2 |K|)i.
For more details we refer to the full version [14].
Finally we prove (2) by combining (3) and (4), and by observing that from
our hypothesis N2/ |K| ≤ 1:

Pr[bad1] ≤ 2� − 1
|T |

�N/2�∑
i=1

(
N2

2 |K|

)i

≤ 2� − 1
|T |

∞∑
i=1

1
2i

=
2� − 1
|T | . (5)

Game G2. Game G2,b
A,N is equivalent to G1,b

A,N , with the exception that it raises
flag bad2 in line 12 and aborts if any three keys collide. By the generalized
birthday bound, and since N2/ |K| ≤ 1, we obtain

|Pr[G1,b
A,N ] − Pr[G2,b

A,N ]| ≤ Pr[bad2] ≤ 1
6

N3

|K|2
≤ 1

6
N

|K| . (6)
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Game G3. Game G3,b
A,N is equivalent to G2,b

A,N , with the exception that the game
raises flag bad3 in line 23 and aborts if A makes a query (K, v) to F for
which there exists an index j ∈ [1 .. N ] such that K = Kj and v ∈ Tj . In the
following we fix minters to be the random variable that counts the maximum
number of sets T1, . . . , TN whose intersection is non-empty.
Fix a query (K, v) to F. For each i ∈ [1 .. N ] we have Pr[∃j ∈ [1 .. N ] : v ∈
Tj ∧ K = Kj | minters = i] ≤ i/ |K|, because in the worst case v belongs to
exactly minters of the sets T1, . . . , TN . This bound yields

Pr[∃j ∈ [1 .. N ] : v ∈ Tj ∧ K = Kj ]

=
N∑

i=1

Pr[∃j ∈ [1 .. N ] : v ∈ Tj ∧ K = Kj | minters = i] · Pr[minters = i]

≤
N∑

i=1

i

|K| · Pr[minters = i] =
1

|K| ·
N∑

i=1

Pr[minters ≥ i]. (7)

Some probabilistic considerations allow us to write Pr[minters ≥ i + 1] ≤
N i+1�i/ |T |i (details in the full version [14]). For all i ≥ 1/δ we can write
Ni+1�i

|T |i ≤
(

N1+δ�
|T |

)i

≤ 1
2i . Thus we can split the sum (7) into

1
|K| ·

N∑
i=1

Pr[minters ≥ i] ≤ 1
|K|

( �1/δ�∑
i=1

Pr[minters ≥ i] +
∞∑

i=�1/δ�+1

1
2i−1

)

≤ 1
|K|

(
1
δ

+ 1
)

.

Since minters is constant for all q queries to F, a union bound gives us

|Pr[G2,b
A,N ] − Pr[G3,b

A,N ]| ≤ Pr[bad3] ≤ q

|K|

(
1
δ

+ 1
)

. (8)

The theorem follows by combining the bounds in (2), (6), (8) for both b = 0
and b = 1 and the fact that game G3,b

A,N is independent of the bit b.

Counter Mode with Tag Prefix. We have the following security statement
on CTR‖. Note it is slightly better than the one for CTR+.

Theorem 6. Suppose N ≤ min
{

|K|1/2
, (|T | /2)1/(1+δ)

}
, for some 1/N ≤ δ ≤

1, and suppose that F is modeled as a random oracle (using oracle F). Then for
any adversary A against N -instance uniform-tag indistinguishability of CTR‖
that poses at most q queries to F and no decapsulation queries we have:

Advu-miot-ind
CTR‖,A,N ≤ 1

3
N

|K| +
1

|T | +
2q

|K|

(
1 +

1
δ

)
.
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Fig. 11. The security game G0,b
A,N for CTR+ in the random oracle model, and games

G1,b
A,N , G2,b

A,N , and G3,b
A,N . Adversary A can query the oracle Oenc at most once for the

same index j.

Proof. We refer to Fig. 12 for the definition of the games G0,b
A,N , G1,b

A,N , G2,b
A,N

and G3,b
A,N . Except for some bookkeeping, game G0,b

A,N is equivalent to the security
game U-MIOT-INDb

A,N , with b ∈ {0, 1}.

Game G1. Game G1,b
A,N is equivalent to G0,b

A,N , except when any three keys collide.
By the generalized birthday bound, and since N2/|K| ≤ 1, we obtain

|Pr[G0,b
A,N ] − Pr[G1,b

A,N ]| ≤ Pr[bad1] ≤ 1
6

N3

|K|2
≤ 1

6
N

|K| . (9)

Game G2. In game G2,b
A,N we abort when two events occur simultaneously: a key

2-collision and collision of the corresponding tags. The probability to abort is
by the generalized birthday bound, the independence of the two events, and
the condition N2/|K| ≤ 1:

|Pr[G1,b
A,N ] − Pr[G2,b

A,N ]| ≤ Pr[bad2] ≤ N2

2 |K|
1

|T | ≤ 1
2

1
|T | . (10)

Game G3. Game G3,b
A,N is equivalent to G2,b

A,N , with the exception that the game
raises flag bad3 in line 16 if some specific condition is met. To get an upper
bound on the probability to distinguish G2,b

A,N and G3,b
A,N we compute the prob-

ability that the adversary explicitly queries F for an input (K, v‖�i�L) such
that for some j ∈ [1 .. N ], K = Kj and v = tj . This leads to the equation:

|Pr[G2,b
A,N ] − Pr[G3,b

A,N ]| ≤ Pr[bad3] ≤ q

|K|

(
1
δ

+ 1
)

. (11)
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Fix a query (K, v‖�i�L) to F. Since the adversary knows all possible values
of v used by Oenc after each call, the adversary must only guess the key.
Assume that there are at most mcoll keys that use the same tag value v.
Then the probability that flag bad3 is triggered during this query is in the
worst case mcoll/ |T |. We compute the probability of this event as follows.

Pr[∃j ∈ [1 .. N ] : v = tj ∧ K = Kj ]

=
N∑

i=1

Pr[∃j ∈ [1 .. N ] : v = tj ∧ K = Kj | mcoll = i] · Pr[mcoll = i]

≤
N∑

i=1

i

|K| · Pr[mcoll = i] =
1

|K| ·
N∑

i=1

Pr[mcoll ≥ i]. (12)

The last equality follows since the expected value of any random variable m
with values in N can be written as

∑∞
i=0 iPr[m = i] =

∑∞
i=1 Pr[m ≥ i].

Now we estimate the probability Pr[mcoll ≤ i]. Assume that i ≥ 1/δ. Then
from the generalized birthday bound and the condition N ≤ (|T | /2)1/(1+δ)

we can write:

Pr[mcoll ≥ i + 1] ≤ N i+1

(i + 1)! |T |i
≤

(
N1+δ

|T |

)i

≤ 1
2i

.

Considering this observation we split the sum in Eq. (12) into

1
|K| ·

N∑
i=1

Pr[mcoll ≥ i] ≤ 1
|K|

( �1/δ�∑
i=1

Pr[mcoll ≥ i] +
∞∑

i=�1/δ�+1

1
2i−1

)

≤ 1
|K|

(
1
δ

+ 1
)

.

Since mcoll is constant for all queries to F, a union bound yields our claim:

Pr[bad3] ≤ q

|K|

(
1
δ

+ 1
)

.

The theorem follows by combining the bounds in (9), (10), (11) for both b = 0
and b = 1 and the fact that game G3,b

A,N is independent of b.

6.3 On the Security of Permutation-Based Counter Mode

In above Theorem 5 we assessed the security of the CTR+ ADEM, defined with
respect to a function F : K × B → D. The analysis modeled F as an ideal
random function and showed that using sets K and B of moderate size (e.g., of
cardinality 2128) is sufficient to let CTR+ achieve security. We next show that if
F is instead instantiated with a blockcipher and modeled as an ideal family of
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Fig. 12. The security game G0,b
A,N for CTR‖ in the random oracle model, and

games G1,b
A,N , G2,b

A,N , and G3,b
A,N . Adversary A can query the oracle Oenc at most once

for the same index j.

Fig. 13. Definition of adversary AN,� against U-MIOT-IND security of CTR+ instanti-
ated with a permutation F (K, ·). In line 01 message m0 is made of � identical blocks.

permutations, then the minimum cardinality of B = D for achieving security is
considerably increased (e.g., to values around 2256).

Our argument involves the analysis of a U-MIOT-IND adversary A that is
specified in Fig. 13. Effectively, the idea of the attack is exploiting the tightness
gap of the PRP/PRF switching lemma [5] via the multi-instance setting. More
concretely, the adversary repeats the following multiple times (once for each
instance): It asks either for the encapsulation of a message comprised of identical
blocks, or for the encapsulation of a message consisting of uniformly-generated
blocks. The adversary outputs 1 if any two blocks that form the ciphertext
collide. If the ciphertext is the encapsulation of the identical-block message then
the adversary does not find a collision, since F (K, ·) is a permutation for each
key K ∈ K and is evaluated on distinct input values. Otherwise the ciphertext
blocks are random, and one can thus find a collision.
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The theorem uses the technical condition that N�(� − 1)/ |T | ≤ 4, where � is
a parameter that determines the length of the encapsulated messages, measured
in blocks. Note that adversaries that could process values N, � that are too
large to fulfill this bound will reach at least the same advantage as adversaries
considered by the theorem, simply by refraining from posing queries. The stated
lower-bound is roughly N�2/ |T | and effectively induced by N applications of
the PRP/PRF switching lemma. Note that if the above condition is met with
equality, the adversary’s advantage is at least 1/2. Further, if |T | = |B| = 2128,
� = 240 (this corresponds to a message length of 16 terabytes) and we have
N = 248 instances, the success probability of A is about 1/8, or larger.

Theorem 7. Consider CTR+ instantiated with a family of permutations F (K, ·)
over B, and let N ≥ 2. Assume moreover that N�(� − 1) ≤ 4 · |T |. Then for the
adversary A in Fig. 13 it holds:

Advu-miot-ind
CTR+,A,N ≥ N�(� − 1)

8 · |T | .

The adversary has a running time of O(N� log �), makes N queries to Oenc for
messages of length at most � and makes no Odec queries.

Proof. We start with the analysis of the running time of A: It is predominantly
determined by the search for collisions among � blocks for each of the N iterations
of the main loop, hence the bound of O(N� log �) on the time. We now compute
the probability that the adversary outputs 1 depending on the game bit b.

Case U-MIOT-IND0. For each instance j ∈ [1 .. N ] the adversary obtains an
encapsulation of a sequence of identical blocks. All blocks composing cj must be
distinct, since for each key K, function F (K, ·) is a permutation over B. Therefore
the output of this game is always 0 and we have Pr[U-MIOT-IND0

A,N ] = 0.

Case U-MIOT-IND1. Let p be the probability that there is a collision between �
random variables that are uniformly distributed in the set B. We show that
for each j ∈ [1 .. N ] the probability of A to output 1 when running the j-th
iteration of the loop is p. From the definition of Oenc we can write wj

i = vj
i ⊕

F (Kj , �tj + i�L) for each i ∈ [1 .. �], where Kj and tj are the key-tag pairs
generated by the game U-MIOT-IND1

A,N . The elements vj
1, . . . , v

j
� are generated

uniformly in B and independently of Kj , tj , their index, and from each other.
Hence the elements wj

1, . . . , w
j
� are also uniformly distributed in B and mutually

independent, even in the presence of colliding keys among K1, . . . , KN . Since
all blocks vj

i with i ∈ [1 .. �] and j ∈ [1 .. N ] are independently random, the
probability that the adversary outputs 1 is:

Pr[U-MIOT-IND1
A,N ] = 1 − (1 − p)N . (13)

Since �(� − 1) ≤ 2 |B| = 2 |T | by our hypotheses we can use the birthday
bound to bound the probability p as p ≥ �(� − 1)/(4 · |B|). With some simple
algebra, and since N�(� − 1) ≤ 4 |T | = 4 |B|, we can bound Eq. 13 as:
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Pr[U-MIOT-IND1
A,N ] ≥ min

{
1
2
,
Np

2

}
≥ N�(� − 1)

8 · |B| =
N�(� − 1)

8 · |T | .

7 ADEMs Secure Against Active Adversaries

In the preceding section we proposed two ADEMs and proved them multi-
instance secure against passive adversaries. However, the constructions are based
on counter mode encryption and obviously vulnerable in settings with active
adversaries that manipulate ciphertexts on the wire. In this section we alleviate
the situation by constructing ADEMs that remain secure in the presence of active
attacks. Concretely, in line with the encrypt-then-MAC approach [6], we show
that an ADEM that is secure against active adversaries can be built from one that
is secure against passive adversaries by tamper-protecting its ciphertexts using
a message authentication code (MAC). More precisely, with the goal of tightly
achieving multi-instance security, we use an augmented message authentication
code (see footnote 4) (AMAC) where the generation and verification algorithms
depend on an auxiliary input: the tag. In the combined construction, the same
tag is used for both ADEM and AMAC. As before, using KEM ciphertexts as
tags is a reasonable choice. We conclude the section by constructing a (tightly)
secure AMAC based on a hash function.

7.1 Augmented Message Authentication

Augmented message authentication. An augmented message authentica-
tion code AMAC = (M.mac,M.vrf) for a message space M is a pair of determin-
istic algorithms associated with a finite key space K, a tag space T , and a code
space C. The algorithm M.mac takes a key K ∈ K, a tag t ∈ T , and a message
m ∈ M, and outputs a code c ∈ C. The verification algorithm M.vrf takes a key
K ∈ K, a tag t ∈ T , a message m ∈ M, and a code c ∈ C, and outputs either
true or false. The correctness requirement is that for all K ∈ K, t ∈ T , m ∈ M
and c ∈ [M.mac(K, t,m)] we have M.vrf(K, t,m, c) = true.

Augmented message authentication with nonces. We give a game-based
authenticity model for AMACs.11 In our model, for each of a total of N inde-
pendent keys the adversary can request one MAC code computation but many
verifications. The restriction is that for each key the MAC query has to pre-
cede all verification queries, and that always the same tag is used. Further, in

11 In principle we could give two security definitions: one using uniform tags and one
using nonce tags. In this paper we formalize only the latter, not the former, for
mainly two reasons: (a) the nonce-based notion is not required for our results; (b) in
the nonce setting it is not clear how to prove a result similar to the one of Theorem
8. The reason for (b) is that to simulate an encapsulation query for a U-MIOT-IND
adversary using an AMAC oracle one must specify the tag that is also used to
generate the DEM ciphertext, but this is only given as an output of the AMAC
oracle.
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line with the definition of nonce-based security for ADEMs, we require the tag
provided in each MAC computation request to be unique (across all instances).
We formalize the corresponding security notion of (strong) nonce-based multi-
instance one-time unforgeability for AMACs via the game specified in Fig. 14.
For a scheme AMAC, to any adversary A and any number of instances N we
associate the advantage Advn-miot-uf

AMAC,A,N := Pr[N-MIOT-UFA,N ].

Fig. 14. AMAC security game N-MIOT-UFA,N , modeling nonce-based multi-instance
one-time unforgeability for N instances. The tags in line 15 are the same as the ones
in line 10.

7.2 The ADEM-Then-AMAC Construction

Let ADEM and AMAC be an ADEM and an AMAC, respectively. Follow-
ing the generic encrypt-then-MAC [6] composition technique, and assuming
ADEM is secure against passive adversaries, we combine the two schemes to
obtain the augmented data-encapsulation mechanism ADEM′, which we prove
secure against active adversaries. More formally, if ADEM = (A.enc,A.dec)
and AMAC = (M.mac,M.vrf) have key spaces Kdem and Kmac, respectively, then
the key space of ADEM′ is Kdem × Kmac, and its algorithms are as in Fig. 15.
Note that the tag space is the same for all three schemes (and that the message
spaces have to be sufficiently compatible to each other).

Fig. 15. Construction of ADEM′ from ADEM and AMAC.

The proof of the following theorem can be found in the full version [14].
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Theorem 8. Let ADEM′ be constructed from ADEM and AMAC as described.
Then for any number of instances N and any ADEM adversary A that poses at
most Qd-many Odec queries, there exist an AMAC adversary B and an ADEM
adversary C such that

Advn-miot-ind
ADEM′,A,N ≤ 2Advn-miot-uf

AMAC,B,N + Advn-miot-ind
ADEM,C,N .

The running time of B is at most that of A plus the time required to run N -
many ADEM encapsulations and Qd-many ADEM decapsulations. The running
time of C is the same as the running time of A. Moreover, B poses at most
Qd-many Ovrf queries, and C poses no Odec query.

7.3 A Multi-instance Secure AMAC

A random oracle directly implies a multi-instance secure AMAC, with a straight-
forward construction: the MAC code of a message is computed by concatenating
key, tag, and message, and hashing the result. We formalize this as follows. Let T
be a tag space and M a message space. Let K and C be arbitrary finite sets. Let
H : K × T × M → C be a hash function. Define function M.mac and a predicate
M.vrf such that for all K, t,m, c we have M.mac(K, t,m) = H(K, t,m), and
M.vrf(K, t,m, c) = true iff H(K, t,m) = c. Let finally AMAC = (M.mac,M.vrf).

Note that hash functions based on the Merkle–Damg̊ard design, like SHA256,
do not serve directly as random oracles due to generic length-extension
attacks [10], and indeed the ADEM′ scheme from Fig. 15 is not secure if its AMAC
is derived from such a function. Fortunately, Merkle–Damg̊ard hashing can be
modified to achieve indifferentiability from a random oracle [10]. Further, more
recent hash functions like SHA3 are naturally resilient against length-extension
attacks.

The proof of the following theorem can be found in the full version [14].

Theorem 9. Let K, T ,M, C and AMAC = (M.mac,M.vrf) be as above. If H
behaves like a (non-programmable) random oracle, for any number of instances N
and any adversary A we obtain

Advn-miot-uf
AMAC,A,N ≤ q

|K| +
(

1
|K| +

1
|C|

)
Qv,

where q is the number of direct calls to the random oracle by the adversary,
and Qv is the number of calls to the oracle Ovrf. Note that the bound does not
depend on the number of Omac queries.
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Abstract. Key-encapsulation mechanisms (KEMs) are a common step-
ping stone for constructing public-key encryption. Secure KEMs can be
built from diverse assumptions, including ones related to integer factor-
ization, discrete logarithms, error correcting codes, or lattices. In light
of the recent NIST call for post-quantum secure PKE, the zoo of KEMs
that are believed to be secure continues to grow. Yet, on the question
of which is the most secure KEM opinions are divided. While using the
best candidate might actually not seem necessary to survive everyday
life situations, placing a wrong bet can actually be devastating, should
the employed KEM eventually turn out to be vulnerable.

We introduce KEM combiners as a way to garner trust from different
KEM constructions, rather than relying on a single one: We present effi-
cient black-box constructions that, given any set of ‘ingredient’ KEMs,
yield a new KEM that is (CCA) secure as long as at least one of the
ingredient KEMs is.

As building blocks our constructions use cryptographic hash functions
and blockciphers. Some corresponding security proofs require idealized
models for these primitives, others get along on standard assumptions.

Keywords: Secure combiners · CCA security · Practical constructions

1 Introduction

Motivation for PKE combiners. Out of the public-key encryption schemes RSA-
OAEP, Cramer–Shoup, ECIES, and a scheme based on the LWE hardness
assumption, which one is, security-wise, the best? This question has no clear
answer, as all schemes have advantages and disadvantages. For instance, RSA-
OAEP is based on the arguably best studied hardness assumption but requires
a random oracle. Cramer–Shoup encryption does not require a random oracle
but its security reduces ‘only’ to a decisional assumption (DDH). While one can
give a security reduction for ECIES to a computational assumption (CDH), this
reduction comes with a tightness gap much bigger than that of RSA-OAEP. On
the other hand, the ‘security-per-bit ratio’ for elliptic curve groups is assumed
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to be much better than for RSA based schemes. Finally, the LWE scheme is the
only quantum-resistant candidate, although the assumption is relatively new and
arguably not yet well understood. All in all, the challenge of picking the most
secure PKE scheme is arguably impossible to solve. Fortunately, the challenge
can be side-stepped by using a ‘PKE combiner’: Instead of using only one scheme
to encrypt a message, one uses all four of them, combining them in a way such
that security of any implies security of their combination. Thus, when using a
combiner, placing wrong bets is impossible. PKE combiners have been studied
in [6,22] and we give some details on encryption combiners below.

Combiners for other cryptographic primitives. In principle, secure combiners can
be studied for any cryptographic primitive. For some primitives they are easily
constructed and known for quite some time. For instance, sequentially compos-
ing multiple independently keyed blockciphers to a single keyed permutation
can be seen as implementing a (S)PRP combiner. PRFs can be combined by
XORing their outputs into a single value. More intriguing is studying hash func-
tion combiners: Parallelly composing hash functions is a good approach if the
goal is collision resistance, but pre-image resistance suffers from this. A sequen-
tial composition would be better with respect to the latter, but this again harms
collision resistance. Hash function combiners that preserve both properties simul-
taneously exist and can be based on Feistel structures [9]. If indifferentiability
from a random oracle is an additional goal, pure Feistel systems become inse-
cure and more involved combiners are required [10,11]. Recently, also combiners
for indistinguishability obfuscation have been proposed [1,8]. For an overview of
combiners in cryptography we refer to [14,15].

Our target: KEM combiners. Following the contemporary KEM/DEM design
principle of public-key encryption [4], in this work we study combiners for key-
encapsulation mechanisms (KEMs). That is, given a set of KEMs, an unknown
subset of which might be arbitrarily insecure, we investigate how they can be
combined to form a single KEM that is secure if at least one ingredient KEM
is. How such a combiner is constructed certainly depends on the specifics of
the security goal. For instance, if CPA security shall be reached then it can
be expected that combining a set of KEMs by running the encapsulation algo-
rithms in parallel and XORing the established session keys together is sufficient.
However, if CCA security is intended this construction is obviously weak.

The focus of this paper is on constructing combiners for CCA security. We
propose several candidates and analyze them.1 We stress that our focus is on
practicality, i.e., the combiners we propose do not introduce much overhead and
are designed such that system engineers can easily adopt them. Besides the
ingredient KEMs, our combiners also mix in further cryptographic primitives
like blockciphers, PRFs, or hash functions. We consider this an acceptable com-
promise, since they make secure constructions very efficient and arguably are not
1 Obviously, showing feasibility is not a concern for KEM combiners as combiners for

PKE have already been studied (see Sect. 1.2) and the step from PKE to KEMs is
minimal.
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exposed to the threats we want to hedge against. For instance, the damage that
quantum computers do on AES and SHA256 are generally assumed to be limited
and controllable, tightness gaps can effectively and cheaply be closed by increas-
ing key lengths and block sizes, and their security is often easier to assume than
that of number-theoretic assumptions. While, admittedly, for some of our com-
biners we do require strong properties of the symmetric building blocks (random
oracle model, ideal cipher model, etc.), we also construct a KEM combiner that
is, at a higher computational cost, secure in the standard model. In the end we
offer a selection of combiners, all with specific security and efficiency features,
so that for every need there is a suitable one.

1.1 Our Results

The KEM combiners treated in this paper have a parallel structure: If the num-
ber of KEMs to be combined is n, a public key of the resulting KEM consists of
a vector of n public keys, one for each ingredient; likewise for secret keys. The
encapsulation procedure performs n independent encapsulations, one for each
combined KEM. The ciphertext of the resulting KEM is simply the concatena-
tion of all generated ciphertexts. The session key is obtained as a function W of
keys and ciphertexts (which is arguably the core function of the KEM combiner).
A first proposal for a KEM combiner would be to use as session key the value

K = H(k1, . . . , kn, c1, . . . , cn),

where H is a hash function modeled as a random oracle and the pair (ki, ci)
is the result of encapsulation under the ith ingredient KEM. A slightly more
efficient combiner would be

K = H(k1 ⊕ . . . ⊕ kn, c1, . . . , cn),

where the input session keys are XOR-combined before being fed into the ran-
dom oracle. On the one hand these constructions are secure, as we prove, but
somewhat unfortunate is that they depend so strongly on H behaving like a
random oracle: Indeed, if the second construction were to be reinterpreted as

K = F (k1 ⊕ . . . ⊕ kn, c1 ‖ . . .‖cn),

where now F is a (standard model) PRF, then the construction would be insecure
(more precisely, we prove that there exists a PRF such that when it is used in the
construction the resulting KEM is insecure). The reason for the last construction
not working is that the linearity of the XOR operation allows for conducting
related-key attacks on the PRF, and PRFs in general are not immune against
such attacks.

Our next proposal towards a KEM combiner that is provably secure in the
standard model involves thus a stronger “key-mixing component”, i.e., one that
is stronger than XOR. Concretely, we study the design that derives the PRF key
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from a chain of blockcipher invocations, each with individual key, on input the
fixed value 0. We obtain

K = F (πkn
◦ . . . ◦ πk1(0), c1 ‖ . . .‖cn),

where πk represents a blockcipher π keyed with key k. Unfortunately, also this
construction is generally not secure in the standard model. Yet it is—overall—our
favorite construction, for the following reason: In practice, one could instantiate
F with a construction based on SHA256 (prepend the key to the message before
hashing it, or use NMAC or HMAC), and π with AES. Arguably, SHA256 and
AES likely behave well as PRFs and PRPs, respectively; further, in principle,
SHA256 is a good candidate for a random oracle and AES is a good candidate for
an ideal cipher. Our results on above combiner are as follows: While the combiner
is not secure if F and π are a standard model PRF and PRP, respectively, two
sufficient conditions for the KEM combiner being secure are that F is a random
oracle and π a PRP or F is a PRF and π an ideal cipher. That is, who uses
the named combiner can afford that one of the two primitives, SHA256 or AES,
fails to behave like an ideal primitive. Observe that this is a clear advantage over
our first two (random oracle based) combiners for which security is likely gone
in the moment hash function H fails to be a random oracle.

The attentive reader might have noticed that, so far, we did not propose
a KEM combiner secure in the standard model. As our final contribution we
remedy this absence. In fact, by following a new approach we propose a standard-
model secure KEM combiner. Concretely, if below we write c = c1 ‖ . . . ‖ cn for
the ciphertext vector, our first standard model KEM combiner is

K = F (k1, c) ⊕ . . . ⊕ F (kn, c).

While being provably secure if F is a (standard model) PRF, the disad-
vantage over the earlier designs that are secure in idealized models is that this
construction is less efficient, requiring n full passes over the ciphertext vector.
Whether this is affordable or not depends on the particular application and the
size of the KEM ciphertexts (which might be large for post-quantum KEMs).

In the full version of this paper (see [13]) we give an optimized variant of above
combiner where the amount of PRF-processed data is slightly smaller. Exploiting
that the ciphertexts of CCA secure KEMs are non-malleable (in the sense of: If a
single ciphertext bit flips the session key to which this ciphertext decapsulates is
independent of the original one) we observe that the PRF invocation associated
with the ith session key actually does not need to process the ith ciphertext
component. More precisely, if for all i we write ci = c1 ‖ . . .‖ci−1 ‖ci+1 ‖ . . .‖cn,
then also

K = F (k1, c1) ⊕ . . . ⊕ F (kn, cn)

is a secure KEM combiner.

Split-key pseudorandom functions. Note that in all our constructions the
session keys output by the KEM combiner are derived via a function of the form

K = W (k1, . . . , kn, c),
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where ki denotes the key output by the encapsulation algorithm of KEM Ki

and c = c1 ‖ . . . ‖ cn. We refer to W as core function. We can pinpoint a suf-
ficient condition of the core function such that the respective KEM combiner
retains CCA security of any of its ingredient KEMs: Intuitively, split-key pseu-
dorandomness captures pseudorandom behavior of W as long as any of the keys
k1, . . . , kn is uniformly distributed (and the other keys known to or controlled
by the adversary).

All KEM combiners studied in this work that retain CCA security may be
found in Fig. 1.

Fig. 1. Overview of our CCA-preserving KEM combiners for n KEMs. F denotes a
PRF, H a random oracle, π a keyed permutation, and E an ideal cipher. Moreover,
we assume c = c1 .. cn, k = k1 .. kn and write ⊕i for ⊕n

i=1. For x ∈ {π, E} we write
xn
k (·) to denote xkn(. . . xk1(·) . . .). The left-most construction, ⊕iF (ki, c), is secure in

the standard model, while the remaining constructions require idealized primitives to
be proven secure.

1.2 Related Work

To the best of our knowledge KEM combiners have not been studied in the lit-
erature before. However, closely related, encryption combiners were considered.
The idea of encrypting multiple times to strengthen security guarantees dates
back to the seminal work of Shannon [21].

An immediate and well-studied solution (e.g. [5,19]) to combine various sym-
metric encryption schemes is to apply them in a cascade fashion where the mes-
sage is encrypted using the first scheme, the resulting ciphertext then being
encrypted with the second scheme, and so on. Even and Goldreich [7] showed
that such a chain is at least as secure as its weakest link.
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Focusing on combining PKE schemes and improving on prior work (see [23])
Dodis and Katz [6] gave means to employ various PKE schemes that retain CCA
security of any ‘ingredient’ scheme.

More recently, the work of [22] gave another way to combine PKE schemes
ensuring that CCA security of any ingredient PKE is passed on to the combined
PKE scheme. As a first step, their approach constructs a combiner achieving
merely detectable CCA (DCCA) security2 if any ingredient PKE scheme is CCA
secure. Secondly, a transformation from DCCA to CCA security (see [17]) is
applied to strengthen the PKE combiner.

Conceptually interesting in the context of this paper is the work of [2] where
the authors propose an LWE-based key exchange and integrate it into the TLS
protocol suite. The goal is to make TLS future proof (against quantum comput-
ers). Thereby, they define not only two LWE-based cipher suites, but also two
hybrid ones that, conservatively with respect to the security assumptions, com-
bine the LWE techniques with better-studied cyclic group based Diffie–Hellman
key exchange.

2 Preliminaries

Notation. We use the following operators for assigning values to variables: The
symbol ‘←’ is used to assign to a variable (on the left-hand side) a constant value
(on the right-hand side), for example the output of a deterministic algorithm.
Similarly, we use ‘←$’ to assign to a variable either a uniformly sampled value
from a set or the output of a randomized algorithm. If f : A → B is a function
or a deterministic algorithm we let [f ] := f(A) ⊆ B denote the image of A
under f ; if f : A → B is a randomized algorithm with randomness space R we
correspondingly let [f ] := f(A×R) ⊆ B denote the set of all its possible outputs.

Let T be an associative array (also called array, or table), and b any element.
Writing ‘T [·] ← b’ we set T [a] to b for all a. We let [T ] denote the space of all
elements the form T [a] for some a, excluding the rejection symbol ⊥. Moreover,
[T [a, ·]] is the set of all the elements assigned to T [a, a′] for any value a′.

Games. Our security definitions are given in terms of games written in pseu-
docode. Within a game a (possibly) stateful adversary is explicitly invoked.
Depending on the game, the adversary may have oracle access to specific pro-
cedures. We write AO, to indicate that algorithm A has oracle access to O.
Within an oracle, command ‘Return X’ returns X to the algorithm that called
the oracle.

A game terminates when a ‘Stop with X’ command is executed; X then
serves as the output of the game. We write ‘Abort’ as an abbreviation for ‘Stop
with 0’. With ‘G ⇒ 1’ we denote the random variable (with randomness space

2 A confidentiality notion that interpolates between CPA and CCA security. Here, an
adversary is given a crippled decryption oracle that refuses to decrypt a specified set
of efficiently recognizable ciphertexts. See [17].
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specified by the specifics of the game G) that returns true if the output of the
game is 1 and false otherwise.

In proofs that employ game hopping, lines of code that end with a comment
of the form ‘|Gi − Gj ’ (resp. ‘|Gi,Gj ’, ‘|Gi’) are only executed when a game in
Gi–Gj (resp. Gi and Gj , Gi) is run.

Key encapsulation. A key-encapsulation mechanism (KEM) K = (K.gen,K.enc,
K.dec) for a finite session-key space K is a triple of algorithms together with
a public-key space PK, a secret-key space SK, and a ciphertext space C. The
randomized key-generation algorithm K.gen returns a public key pk ∈ PK and
a secret key sk ∈ SK. The randomized encapsulation algorithm K.enc takes
a public key pk ∈ PK and produces a session key k ∈ K and a ciphertext
c ∈ C. Finally, the deterministic decapsulation algorithm K.dec takes a secret
key sk ∈ SK and a ciphertext c ∈ C, and outputs either a session key k ∈ K or
the special symbol ⊥ /∈ K to indicate rejection. For correctness we require that
for all (pk , sk) ∈ [K.gen] and (k, c) ∈ [K.enc(pk)] we have K.dec(sk , c) = k.

We now give a security definition for KEMs that formalizes session-key
indistinguishability. For a KEM K, associate with any adversary A = (A1,A2)
its advantage Advkind

K (A) defined as |Pr[KIND0(A) ⇒ 1] − Pr[KIND1(A) ⇒ 1]|,
where the games are in Fig. 2. We sometimes refer to adversaries that refrain
from posing queries to the Dec oracle as passive or CPA, while we refer to
adversaries that pose such queries as active or CCA. Intuitively, a KEM is CPA
secure (respectively, CCA secure) if all practical CPA (resp., CCA) adversaries
achieve a negligible distinguishing advantage.

Fig. 2. Security experiments KINDb, b ∈ {0, 1}, modeling the session-key indistin-
guishability of KEM K. With st we denote internal state information of the adversary.

Pseudorandom functions. Fix a finite key space K, an input space X , a finite
output space Y, and a function F : K × X → Y. Towards defining what it
means for F to behave pseudorandomly, associate with any adversary A its
advantage Advpr

F (A) := |Pr[PR0(A) ⇒ 1] − Pr[PR1(A) ⇒ 1]|, where the games
are in Fig. 3. Intuitively, F is a pseudorandom function (PRF) if all practical
adversaries achieve a negligible advantage.
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Fig. 3. Security experiments PRb, b ∈ {0, 1}, modeling the pseudorandomness of func-
tion F . Line 04 and 05 implement the requirement that Eval not be queried on the
same input twice.

Pseudorandom permutations. Intuitively, a pseudorandom permutation (PRP) is
a bijective PRF. More precisely, if K is a finite key space and D a finite domain,
then function π : K × D → D is a PRP if for all k ∈ K the partial function
π(k, ·) : D → D is bijective and if π(k, ·) behaves like a random permutation
D → D once k ∈ K is assigned uniformly at random. A formalization of this
concept would be in the spirit of Fig. 3. In practice, PRPs are often implemented
with blockciphers.

Random oracle model, ideal cipher model. We consider a cryptographic scheme
defined with respect to a hash function H : X → Y in the random oracle model
for H by replacing the scheme’s internal invocations of H by calls to an oracle H
that implements a uniform mapping X → Y. In security analyses of the scheme,
also the adversary gets access to this oracle. Similarly, a scheme defined with
respect to a keyed permutation π : K × D → D is considered in the ideal cipher
model for π if all computations of π(·, ·) in the scheme algorithms are replaced
by calls to an oracle E(·, ·) that implements a uniform mapping K×D → D such
that E(k, ·) is a bijection for all k, and all computations of π−1(·, ·) are replaced
by calls to an oracle D(·, ·) that implements a uniform mapping K×D → D such
that D(k, ·) is a bijection for all k, and the partial oracles E(k, ·) and D(k, ·)
are inverses of each other (again for all k). In corresponding security analyses
the adversary gets access to both E and D. We write E (resp. D) to denote π
(resp. π−1) every time that we want to remark that π will be considered in the
ideal cipher model.

3 KEM Combiners

A KEM combiner is a template that specifies how a set of existing KEMs can
be joined together, possibly with the aid of further cryptographic primitives, to
obtain a new KEM. In this paper we are exclusively interested in combiners that
are security preserving: The resulting KEM shall be at least as secure as any
of its ingredient KEMs (assuming all further primitives introduced by the com-
biner are secure). While for public-key encryption a serial combination process
is possible and plausible (encrypt the message with the first PKE scheme, the
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resulting ciphertext with the second PKE scheme, and so on, for KEMs a paral-
lel approach, where the ciphertext consists of a set of independently generated
ciphertext components (one component per ingredient KEM), seems more nat-
ural. We formalize a general family of parallel combiners that are parameterized
by a core function that derives a combined session key from a vector of session
keys and a vector of ciphertexts.

Parallel KEM combiner. Let K1, . . . ,Kn be (ingredient) KEMs such that each
Ki = (K.geni,K.enci,K.deci) has session-key space Ki, public-key space PKi,
secret-key space SKi, and ciphertext space Ci. Let K∗ = K1 × . . . × Kn and
PK = PK1 × . . . × PKn and SK = SK1 × . . . × SKn and C = C1 × . . . × Cn.
Let further K be an auxiliary finite session-key space. For any core function
W : K∗×C → K, the parallel combination K := K1 ‖ . . .‖Kn with respect to W is a
KEM with session-key space K that consists of the algorithms K.gen,K.enc,K.dec
specified in Fig. 4. The combined KEM K has public-key space PK, secret-key
space SK, and ciphertext space C. A quick inspection of the algorithms shows
that if all ingredient KEMs Ki are correct, then so is K.

Fig. 4. Parallel KEM combiner, defined with respect to some core function W .

The security properties of the parallel combiner depend crucially on the
choice of the core function W . For instance, if W maps all inputs to one fixed
session key k̄ ∈ K, the obtained KEM does not inherit any security from the
ingredient KEMs. We are thus left with finding good core functions W .

3.1 The XOR Combiner

Assume ingredient KEMs that share a common binary-string session-key space:
K1 = . . . = Kn = {0, 1}k for some k. Consider the XOR core function that,
disregarding its ciphertext inputs, outputs the binary sum of the key inputs.
Formally, after letting K = {0, 1}k this means K∗ = Kn and

W : K∗ × C → K ; (k1, . . . , kn, c1 .. cn) �→ k1 ⊕ . . . ⊕ kn.

On W we prove two statements: If the overall goal is to obtain a CPA-secure
KEM, then W is useful, in the sense that the parallel combination of KEMs with
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respect to W is CPA secure if at least one of the ingredient KEMs is. However,
if the overall goal is CCA security, then one weak ingredient KEM is sufficient
to break any parallel combination with respect to W .

Lemma 1 (XOR combiner retains CPA security). Let K1, . . . ,Kn be
KEMs and let W be the XOR core function. Consider the parallel combina-
tion K = K1 ‖ . . .‖Kn with respect to W . If at least one Ki is CPA secure, then
also K is CPA secure. Formally, for all indices i ∈ [1 .. n] and every adversary A
that poses no queries to the decapsulation oracle there exists an adversary B such
that

Advkind
K (A) = Advkind

Ki
(B),

where also B poses no decapsulation query and its running time is about that
of A.

Proof. From any adversary A = (A1,A2) against K we construct an adver-
sary B = (B1,B2) against Ki as follows. Algorithm B1, on input pk i ∈ PKi,
first generates the n − 1 public keys pk1, . . . , pk i−1, pk i+1, . . . , pkn by means of
(pk j , sk j) ←$ K.genj . Then it sets pk ← (pk1, . . . , pkn), invokes st ←$ A1(pk),
and outputs st ′ ← (st , pk1, . . . , pk i−1, pk i+1, . . . , pkn). Algorithm B2, on input
(st ′, c∗

i , k
∗
i ), first invokes (k∗

j , c∗
j ) ←$ K.encj(pk j) for all j �= i, and then sets

c∗ ← c∗
1 .. c∗

i .. c∗
n and k∗ ← k∗

1 ⊕ . . . ⊕ k∗
i ⊕ . . . ⊕ k∗

n. Finally it then invokes
b′ ←$ A2(st , c∗, k∗) and outputs b′. It is easy to see that the advantages of A
and B coincide. �
Remark. Consider a CCA secure KEM (for instance from the many submissions
to NIST’s recent Post-Quantum initiative [20]) that is constructed by, first, tak-
ing a CPA secure KEM and then applying a Fujisaki–Okamoto-like transforma-
tion [12,16,18] to it in order to obtain a CCA secure KEM.

To combine multiple KEMs that follow the above design principle, Lemma1
already provides a highly efficient solution that retains CCA security: To this
end, one would strip away the FO-like transformation of the KEMs to be com-
bined and apply the XOR-combiner to the various CPA secure KEMs. Eventually
one would apply an FO-like transformation to the XOR-combiner.

However, besides results shedding doubts on the instantiability of FO in the
presence of indistinguishability obfuscation [3], we pursue generic KEM combin-
ers that retain CCA security independently of how the ingredient KEMs achieve
their security.

While it is rather obvious that the XOR-combiner is incapable of retaining
CCA security of an ingredient KEM, we formally state and prove it next.

Lemma 2 (XOR combiner does not retain CCA security). In general,
the result of parallelly combining a CCA-secure KEM with other KEMs using
the XOR core function is not CCA secure.

Formally, if n ∈ N and W is the XOR core function, then for all 1 ≤ i ≤ n
there exists a KEM Ki such that for any set of n − 1 KEMs K1, . . . ,Ki−1,
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Ki+1, . . . ,Kn (e.g., all of them CCA secure) there exists an efficient adver-
sary A that poses a single decapsulation query and achieves an advantage of
Advkind

K (A) = 1 − 1/|K|, where K = K1 ‖ . . . ‖Kn is the parallel combination of
K1, . . . ,Kn with respect to W .

Proof. We construct KEM Ki such that public and secret keys play no role, it
has only two ciphertexts, and it establishes always the same session key: Fix any
k̄ ∈ K, let Ci = {0, 1}, and let K.enci and K.deci always output (k̄, 0) ∈ K×Ci and
k̄ ∈ K, respectively. Define adversary A = (A1,A2) such that A1 does nothing
and A2, on input of c∗ and k∗, parses c∗ as c∗

1 .. c∗
i .. c∗

n (where c∗
i = 0), poses a

decapsulation query k∗∗ ← Dec(c∗∗) on ciphertext c∗∗ = c∗
1 .. c∗

i−11c∗
i+1 .. c∗

n,
and outputs 1 iff k∗ = k∗∗. It is easy to see that A achieves the claimed
advantage. �

3.2 The XOR-Then-PRF Combiner

We saw that the KEM combiner that uses the core function that simply outputs
the XOR sum of the session keys fails miserably to provide security against
active adversaries. The main reason is that it completely ignores the ciphertext
inputs, so that the latter can be altered by an adversary without affecting the
corresponding session key. As an attempt to remedy this, we next consider a
core function that, using a PRF, mixes all ciphertext bits into the session key
that it outputs. The PRF is keyed with the XOR sum of the input session keys
and shall serve as an integrity protection on the ciphertexts.

Formally, under the same constraints on K,K1, . . . ,Kn,K∗ as in Sect. 3.1,
and assuming a (pseudorandom) function F : K × C → K, the XOR-then-PRF
core function WF is defined as per

WF : K∗ × C → K ; (k1, . . . , kn, c1 .. cn) �→ F (k1 ⊕ . . . ⊕ kn, c1 .. cn).

Of course, to leverage on the pseudorandomness of the function F its key has
to be uniform. The hope, based on the intuition that at least one of the ingredient
KEMs is assumed secure and thus the corresponding session key uniform, is that
the XOR sum of all session keys works fine as a PRF key. Unfortunately, as we
prove next, this is not the case in general. The key insight is that the pseudoran-
domness definition does not capture robustness against related-key attacks: We
present a KEM/PRF combination where manipulating KEM ciphertexts allows
to exploit a particular structure of the PRF.3

Lemma 3 (XOR-then-PRF combiner does not retain CCA security).
There exist KEM/PRF configurations such that if the KEM is parallelly com-
bined with other KEMs using the XOR-then-PRF core function, then the result-
ing KEM is weak against active attacks. More precisely, for all n ∈ N and

3 Note that in Lemma 6 we prove that if F behaves like a random oracle and is thus
free of related-key conditions, the XOR-then-PRF core function actually does yield
a secure CCA combiner.
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i ∈ [1 .. n] there exists a KEM Ki and a (pseudorandom) function F such that for
any set of n−1 (arbitrarily secure) KEMs K1, . . . ,Ki−1,Ki+1, . . . ,Kn there exists
an efficient adversary A that poses a single decapsulation query and achieves
advantage Advkind

K (A) = 1 − 1/|K|, where K = K1 ‖ . . .‖Kn is the parallel com-
bination of K1, . . . ,Kn with respect to the XOR-then-PRF core function WF .
Function F is constructed from a function F ′ such that if F ′ is pseudorandom
then so is F .

Proof. In the following we write K = {0, 1} × K′ (where K′ = {0, 1}k−1). We
construct Ki such that public and secret keys play no role, there are only two
ciphertexts, and the two ciphertexts decapsulate to different session keys: Fix
any k̄ ∈ K′, let Ci = {0, 1}, let K.enci always output ((0, k̄), 0) ∈ K × Ci, and let
K.deci, on input ciphertext B ∈ Ci, output session key (B, k̄) ∈ K.

We next construct a specific function F and argue that it is pseudorandom.
Consider the involution π : C → C that flips the bit value of the ith ciphertext
component, i.e.,

π(c1 .. ci−1 B ci+1 .. cn) = c1 .. ci−1 (1 − B) ci+1 .. cn,

and let F ′ : K′ ×C → K be a (pseudorandom) function. Construct F : K×C → K
from π and F ′ as per

F ((D, k′), c) =

{
F ′(k′, c) if D = 0
F ′(k′, π(c)) if D = 1.

(1)

It is not difficult to see that if F ′ is pseudorandom then so is F . For completeness,
we give a formal statement and proof immediately after this proof.

Consider now the following adversary A = (A1,A2): Let algorithm A1 do
nothing, and let algorithm A2, on input of c∗ and k∗, parse the ciphertext as
c∗ = c∗

1 .. c∗
i .. c∗

n (where c∗
i = 0), pose a decapsulation query k∗∗ ← Dec(c∗∗) on

ciphertext c∗∗ = c∗
1 .. c∗

i−11c∗
i+1 .. c∗

n, and output 1 iff k∗ = k∗∗.
Let us analyze the advantage of A. For all 1 ≤ j ≤ n, let (dj , k

′
j) ∈ K be

the session keys to which ciphertext components c∗
j decapsulate. That is, the

session key k to which c∗ decapsulates can be computed as k = F ((d1, k′
1) ⊕

. . . ⊕ (dn, k′
n), c∗), by specification of WF . By setting D = d1 ⊕ . . . ⊕ dn and

expanding F into F ′ and π we obtain

k = F ′(k′
1 ⊕ . . . ⊕ k′

n, c∗
1 .. c∗

i−1Dc∗
i+1 .. c∗

n).

Consider next the key k∗∗ that is returned by the Dec oracle. Internally, the
oracle recovers the same keys (d1, k′

1), . . . , (dn, k′
n) as above, with exception of di

which is inverted. Let D∗∗ = d1 ⊕ . . . ⊕ dn be the corresponding (updated) sum.
We obtain

k∗∗ = F ′(k′
1 ⊕ . . . ⊕ k′

n, c∗
1 .. c∗

i−1(1 − D∗∗)c∗
i+1 .. c∗

n).

Thus, as D∗∗ is the inverse of D, we have k = k∗∗ and adversary A achieves
the claimed advantage. �
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We now give the formal statement that, if F ′ is a PRF then the same holds
for F as defined in (1).

Lemma 4. Let K′,X ,Y be sets such that K′,Y are finite. Let F ′ : K′ × X → Y
be a function, and let π : X → X be any (efficient) bijection.4 Let K = {0, 1}×K′

and define function F : K × X → Y such that

F ((D, k′), x) =

{
F ′(k′, x) if D = 0
F ′(k′, π(x)) if D = 1.

(2)

Then if F ′ is a PRF, the same holds for F . More precisely, for every adversary A
there is an adversary B such that

Advpr
F (A) = Advpr

F ′(B),

the running times of A and B are roughly the same, and if A queries its evalu-
ation oracle qe times then B queries its own evaluation oracle qe times.

Proof. Let A be an adversary against the pseudorandomness of F . We build an
adversary B against the pseudorandomness of F ′ as follows. B generates a bit D
and runs A. For every Eval query of A on input x, adversary B queries its own
evaluation oracle on input x if D = 0, or π(x) if D = 1. The output of this query
is returned to A. At the end of A’s execution its output is returned by B.

We argue that B provides a correct simulation of the pseudorandomness
games to A. First we notice that if the input values to Eval by A are unique, so
are the input values to Eval by B, since π is a bijection and D is constant during
each run of the simulation. Conversely, any input repetition by A leads to an
input repetition by B, thus aborting the pseudorandomness game. If B is play-
ing against the real game PR0 for F ′ then it correctly computes the function F
for A and the distribution of the output to A is the same as that in game PR0

for F . Otherwise B receives uniform independent elements from its oracle Eval,
and hence correctly simulates the game PR1 for F to A. This proves our
statement. �

3.3 KEM Combiners from Split-Key PRFs

The two core functions for the parallel KEM combiner that we studied so far
did not achieve security against active attacks. We next identify a sufficient
condition that guarantees satisfactory results: If the core function is split-key
pseudorandom, and at least one of the ingredient KEMs of the parallel combiner
from Fig. 4 is CCA secure, then the resulting KEM is CCA secure as well.

4 No cryptographic property is required of π, just that it can be efficiently computed.
An easy example is the flip-the-first-bit function.
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Split-key pseudorandom functions. We say a symmetric key primitive (syntacti-
cally) uses split keys if its key space K is the Cartesian product of a finite num-
ber of (sub)key spaces K1, . . . ,Kn. In the following we study the corresponding
notion of split-key pseudorandom function. In principle, such functions are just
a special variant of PRFs, so that the security notion of pseudorandomness (see
Fig. 3) remains meaningful. However, we introduce split-key pseudorandomness
as a dedicated, refined property. In brief, a split-key function has this property
if it behaves like a random function if at least one component of its key is picked
uniformly at random (while the other components may be known or even chosen
by the adversary).

For formalizing this, fix finite key spaces K1, . . . ,Kn, an input space X , and
a finite output space Y. Further, let K = K1 × . . . × Kn and consider a function
F : K × X → Y. For each index i ∈ [1 .. n], associate with an adversary A its
advantage Advpr

F,i(A) := |Pr[PR0
i (A) ⇒ 1] − Pr[PR1

i (A) ⇒ 1]|, where the game
is given in Fig. 5. Observe that, for any index i, in the game PRb

i , b ∈ {0, 1}, the
ith key component of F is assigned at random (in line 01), while the adversary
contributes the remaining n − 1 components on a per-query basis (see line 06).
We say that F is a split-key pseudorandom function (skPRF) if the advantages
Advpr

F,i for all key indices are negligible for all practical adversaries.

Fig. 5. Security game PRb
i , b ∈ {0, 1}, 1 ≤ i ≤ n, modeling the split-key pseudoran-

domness of function F . Lines 04 and 05 implement the requirement that Eval not be
queried on the same input twice.

With lines 04 and 05 we require that the oracle Eval be executed at most
once on an input value x, independently on the input value k′. One could imag-
ine a relaxed version of this requirement, where Eval accepts any non-repeating
input pair (k′, x), thus permitting repeated values of x in distinct queries to Eval.
Most of the following proofs are however not straightforward to be adapted to
the relaxed definition, and in many case this would directly lead to an insecure
construction. Notice, however, that our current definition of split-key pseudo-
randomness for a function F still suffices to prove that F is a standard PRF.

Theorem 1. If the core function used in the parallel composition is split-key
pseudorandom, the parallel combiner yields a CCA-secure KEM if at least one
of the ingredient KEMs is CCA secure.
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More precisely, for all n,K1, . . . ,Kn, if K = K1 ‖ . . . ‖Kn with core function
W then for all indices i and all adversaries A against the key indistinguishability
of K there exist adversaries B against the key indistinguishability of Ki and C
against the split-key pseudorandomness of W such that

Advkind
K (A) ≤ 2 ·

(
Advkind

Ki
(B) + Advpr

W,i(C)
)

.

Moreover, if adversary A calls at most qd times the oracle Dec, then adversary B
makes at most qd calls to the oracle Dec, and adversary C makes at most qd + 1
calls to the oracle Eval. The running times of B and C are roughly the same as
that of A.

Proof sketch. The proof constitutes of a sequence of games interpolating
between games G0 and G4. Noting that the KEMs we consider are perfectly
correct, those two games correspond respectively to games KIND0 and KIND1

for the KEM K = K1 ‖ . . . ‖ Kn. Code detailing the games involved is in Fig. 7
and the main differences between consecutive games are explained in Fig. 6. In
a nutshell, we proceed as follows: In game G1 we replace the key k∗

i output by
(k∗

i , c∗
i ) ←$ K.enci(pk i) by a uniform key. As Ki is CCA secure this modification

is oblivious to A. As a second step, we replace the real challenge session key k∗ as
obtained via k∗ ← W (k∗

1 , . . . , k
∗
n, c∗

1 .. c∗
n) with a uniform session key in game G2.

Since the core function W is split-key pseudorandom and k∗
i is uniform, this step

is oblivious to A as well. However—for technical reasons within the reduction—
replacing the challenge session key will introduce an artifact to the decapsulation
procedure: queries of the form Dec(. . . , c∗

i , . . .) will not be processed using W but
answered with uniform session keys. In the transition to game G3 we employ
the split-key pseudorandomness of W again to remove the artifact from the
decapsulation oracle. Eventually, in game G4 we undo our first modification and
replace the currently uniform key k∗

i with the actual key obtained by running
K.enci(pk i). Still, the challenge session key k∗ remains uniform. Again, the CCA
security of Ki ensures that A will not detect the modification.

We proceed with a detailed proof.

Fig. 6. Overview of the proof of Theorem 1. We have (k∗
i , c∗

i ) ←$ K.enci(pk i). Further-
more, k∗ ← W (k∗

1 , . . . , k∗
n, c∗

1 .. c∗
n) denotes the challenge session key given to A2 along

with c∗
1 .. c∗

n.
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Fig. 7. Games G0–G4 as used in the proof of Therorem 1. Note that i is implicitly a
parameter of all games above.

Proof (Therorem 1). Let A denote an adversary attacking the CCA security of
the KEM K that issues at most qd queries to the decapsulation oracle. We proceed
with detailed descriptions of the games (see Fig. 7) used in our proof.

Game G0. The KIND0 game instantiated with the KEM K as given in Fig. 4.
Beyond that we made merely syntactical changes: In line 00 a set C∗

i and an
array L are initialized as empty. In line 15 we check if the adversary has already
queried the oracle for the same input and we return the same output. Lines 20
and 21 are added such that, instead of using sk i to decapsulate c∗

i , the key k∗
i is

used. Note that if line 21 is executed then key k∗
i is already defined, since C∗

i �= ∅.

Claim 1. Pr[KIND0 ⇒ 1] = Pr[G0 ⇒ 1].

This follows immediately from the correctness of Ki and the fact that the decap-
sulation algorithm is deterministic.

Game G1. Line 07 is added to replace the key k∗
i with a uniform key from Ki.

Claim 2. There is an adversary B = (B1,B2) against session-key indistinguisha-
bility of Ki (see Fig. 8) that issues at most qd decapsulation queries such that

|Pr[G0 ⇒ 1] − Pr[G1 ⇒ 1]| ≤ Advkind
Ki

(B),

and the running time of B is roughly the running time of A.

Proof. We construct B = (B1,B2) as given in Fig. 8: Adversary B1 gets pk i

as input, and runs (pk j , sk j) ←$ K.genj for all j ∈ [1 .. n] \ {i} to instantiate
the other KEMs (see lines 01–03). To answer the decapsulation queries of A1,
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B1 decapsulates all ci for j �= i using sk j (lines 16–18) and queries its own
decapsulation oracle to decapsulate ci (lines 21–23).

Adversary B2, run on the challenge (c∗
i , k

∗
i ), executes (k∗

j , c∗
j ) ←$ K.encj

for j �= i on its own (lines 07, 08). Then it computes the challenge session key
k∗ ← W (k∗

1 , . . . , k
∗
n, c∗

1, . . . , c
∗
n) (line 10) and runs A2 on (c∗

1, . . . , c
∗
n, k∗) (line 12).

Decryption queries are answered as in phase one unless B2 has to decapsulate c∗
i

where it uses k∗
i instead (lines 19, 20). At the end B2 relays A2’s output and

halts (line 13).

Analysis. Games G0 and G1 only differ on the key k∗
i used to compute k∗ for

A2, and, consequently, when answering A2’s decapsulation queries involving c∗
i .

If B is run by the game KIND0, that is, key k∗
i is a real key output of K.enci,

then B perfectly emulates game G0. Otherwise, if B is run by the game KIND1,
and thus the key k∗

i is uniform, then B emulates G1. Hence

Pr[G0 ⇒ 1] = Pr[KIND0 ⇒ 1]

and

Pr[G1 ⇒ 1] = Pr[KIND1 ⇒ 1].

Lastly we observe that B issues at most as many decapsulation queries as A.
Our claim follows. �

Fig. 8. Adversary B = (B1, B2) against session-key indistinguishability of Ki from
adversary (A1, A2) against session-key indistinguishability of K.
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Game G2. We add line 10 and line 26. Thus, whenever W is evaluated on
a ciphertext whose ith component is c∗

i (that is, either when computing the
challenge session key k∗ or when answering decapsulation queries involving c∗

i

as the ith ciphertext component) the output is overwritten with a uniform value
from Y.

Claim 3. There exists an adversary C against the split-key pseudorandomness
security of W that issues at most qd + 1 evaluation queries such that

|Pr[G1 ⇒ 1] − Pr[G2 ⇒ 1]| ≤ Advpr
W,i(C),

and the running time of C is roughly the running time of A.

Proof. We construct an adversary C that breaks the split-key pseudorandomness
of W on the ith key if A distinguishes between games G1 and G2.

Adversary C runs K.genj for all j ∈ [1 .. n] to instantiate all KEMs (see lines
01–03). Then for each KEM Kj it generates a pair key-ciphertext (k∗

j , c∗
j ) (lines

05 and 06). All ciphertexts, and all the keys k∗
j for j �= i, are collected and used

as input for a call to Eval to generate A2’s challenge (lines 07–09). To answer
the decapsulation queries of A on input c1 .. cn, the adversary keeps track of
previous decapsulation queries and returns the same result for two queries with
the same input (line 14).C uses the secret keys it generated to decapsulate all
ciphertext components cj for j �= i (lines 16–18). The same procedure is used
to decapsulate ci if ci �= c∗

i ; otherwise it queries its own decapsulation oracle
(lines 19–25).

Analysis. First we note that by the conditions in lines 13 and 14 in Fig. 9 all
calls to Eval by Cb have different input and thus we can always use Eval to
simulate W .

Fig. 9. Adversary C against multi-key pseudorandomness of F .
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Observe that when C plays against PR0
i we are implicitly setting k∗

i as the
key internally generated by PR0

i . Hence C correctly simulates game G1 to A.
Otherwise when C plays against PR1

i the oracle Eval consistently outputs random
elements in K. Thus C correctly simulates game G2 to A.

Therefore

Pr[G1 ⇒ 1] = Pr[PR0
i ⇒ 1]

and

Pr[G2 ⇒ 1] = Pr[PR1
i ⇒ 1]|.

Thus

|Pr[G1 ⇒ 1] − Pr[G2 ⇒ 1]| ≤ Advpr
W,i(C).

We count the number of Eval queries by C. From the definition of C we see
that the oracle Eval is called once to generate the challenge. Further, for each
Dec query by A, C queries Eval at most once. �

Game G3. We remove lines 26 to undo the modifications of the Dec oracle
introduced in game G2. Thus, during decapsulation, whenever W is evaluated
on a ciphertext whose ith component is c∗

i the output is computed evaluating
the function W on the decapsulated keys instead of returning a uniform input.

Claim 4. There exists an adversary C′ against the split-key pseudorandomness
security of W that issues at most qd evaluation queries such that

|Pr[G2 ⇒ 1] − Pr[G3 ⇒ 1]| ≤ Advpr
W,i(C′),

and the running time of C′ is roughly the running time of A.

Proof. Adversary C′ is essentially the same as adversary C in Fig. 9, with the
exception that we replace line 09 with the generation of a uniform session key
(k∗ ←$ K). The proof analysis is the same as in Claim 3. Notice that since this
time the challenge session key is uniform, C′ calls Eval just qd times instead
of qd + 1. �

Note that, currently, the only difference from game G1 is the addition of
line 10, i.e., the challenge session key k∗ is uniform.

Game G4. Line 07 is removed to undo the modification introduced in game G1.
That is, we replace the uniform key k∗

i with a real key output by K.enci(pk i).

Claim 5. There exists an adversary B′ = (B′
1,B′

2) against the session-key indis-
tinguishability of Ki that issues at most qd decapsulation queries such that

|Pr[G3 ⇒ 1] − Pr[G4 ⇒ 1]| ≤ Advkind
Ki

(B′),

and the running time of B′ is roughly the running time of A.
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Proof. Adversary B′ is the same as adversary B in Fig. 8, with the exception
that we replace line 10 with the generation of a uniform session key (k∗ ←$ K).
The proof analysis is the same as in Claim 2. �
Claim 6. Pr[G4 ⇒ 1] = Pr[KIND1 ⇒ 1].

This follows immediately from the correctness of Ki and the fact that the
decapsulation algorithm is deterministic.

The proof of the main statement follows from collecting the statements from
Claims 1 to 6. �

4 Split-Key PRFs in Idealized Models

In the previous section we have shown that if the core function of the parallel
combiner is split-key pseudorandom, then said combiner preserves CCA security
of any of its ingredient KEMs. It remains to present explicit, practical construc-
tions of skPRFs.

In our first approach we proceed as follows: Given some keys k1, . . . , kn and
some input x, we mingle together the keys to build a new key k for some (single-
key) pseudorandom function F . The output of our candidate skPRF is obtained
evaluating F (k, x). In this section we consider variations on how to compute
the PRF key k, along with formal proofs for the security of the corresponding
candidate skPRFs.

Considering our parallel combiner with such skPRF, evaluating a session
key becomes relatively efficient compared to the unavoidable cost of running n
distinct encapsulations. Alas, the security of the constructions in this section
necessitates some idealized building block, that is, a random oracle or an ideal
cipher.

We attempt to abate this drawback by analyzing the following construction
form different angles:

W (k1, . . . , kn, x) := F (π(kn, π(. . . π(k1, 0) . . .)), x), (3)

where F is a pseudorandom function and π is a pseudorandom permutation.
Specifically, we show that W is an skPRF if π is modeled as an ideal cipher
(Lemma 5) or F is modeled as a random oracle (Lemma 6 in combination with
Example 2).

This statement might be interesting in practice: When implementing such
construction the real world, F could reasonably be fixed to SHA-2 (prepending
the key), while AES could reasonably be chosen as π. Both primitives are believed
to possess good cryptographic properties, arguably so to behave as idealized
primitives. Moreover, there is no indication to assume that if one primitive failed
to behave ‘ideally’, then the other would be confronted with the same problem.

In Sect. 4.1 we prove that the construction above is secure in the ideal cipher
model. In Sect. 4.2 we give some secure constructions in the case that F is mod-
eled as a random oracle.
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4.1 Split-Key PRFs in the Ideal Cipher Model

Here we consider constructions of skPRFs where the key-mixing step is con-
ducted in the ideal cipher model followed by a (standard model) PRF evaluation.

Before stating the main result of this section we introduce two additional
security notions for keyed functions. The first one is a natural extension of pseu-
dorandomness, whereby an adversary is given access to multiple instances of a
keyed function (under uniform keys) or truly random functions.

Multi-instance pseudorandomness. See Fig. 10 for the security game that defines
the multi-instance pseudorandomness of F . For any adversary A and num-
ber of instances n we define its advantage Advmipr

F,n (A) := |Pr[MIPR0(A) ⇒
1] − Pr[MIPR1(A) ⇒ 1]|. Intuitively, F is multi-instance pseudorandom if all
practical adversary achieve a negligible advantage.

Fig. 10. Security experiments MIPRb, b ∈ {0, 1}, modeling multi-instance pseudoran-
domness of F for n instances.

While one usually considers indistinguishability between outputs of a pseu-
dorandom functions and uniform elements, key inextractability requires instead
that the PRF key be hidden from any efficient adversary. We give a formalization
of the latter property in the multi-instance setting next.

Multi-instance key inextractability. Next we introduce multi-instance key inex-
tractability for a keyed function F . To this end, consider the game MIKI given
in Fig. 11. To any adversary A and any number of instances n we associate
its advantage Advmiki

F,n (A) := Pr[MIKI(A) ⇒ 1]. Intuitively, F satisfies multi-
instance key inextractability if all practical adversaries achieve a negligible advan-
tage.

Lemma 5. Let K, H and Y be finite sets, X be a set and n a positive integer.
Let F : H ×X → Y, E : K ×H → H, and D : K ×H → H be functions such that
for all k ∈ K the function E(k, ·) is invertible with inverse D(k, ·). Consider the
function W defined by:

W : Kn × X → Y, W (k1, . . . , kn, x) := F (E(kn, E(. . . E(k1, 0) . . .)), x).

If the function F is pseudorandom then the function W is split-key pseudo-
random in the ideal cipher model.
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Fig. 11. Security experiment MIKI modeling multi-instance key inextractability of F
for n instances.

More precisely, suppose that E is modeled as an ideal cipher with inverse D.
Then for any i ∈ [1 .. n] and for any adversary A against the split-key pseu-
dorandomness of W there exists an adversary B against the multi-instance key
inextractability of F and an adversary C against the multi-instance pseudoran-
domness of F such that:

Advpr
W,i(A) ≤ Q + nqe

|K| − n
+ 6 · (Q + 2nqe)2

|H| − 2Q − 2nqe
+ Advmiki

F,qe(B) + Advmipr
F,qe

(C),

where qe (resp. Q) is the maximum number of calls by A to the oracle Eval (resp.
to the ideal cipher or its inverse). Moreover, B calls at most qe (resp. 2Q + nqe)
times the oracle Eval (resp. Check), and C calls at most qe times the oracle Eval.
The running times of B and C are roughly the same as that of A.

Proof sketch. The proof consists of a sequence of games interpolating between
the games PR0

i and PR1
i for any i ∈ [1 .. n]. Our final goal is to make the PRF keys

used in Eval as input to F uniform, and then employ the PRF security of F . To
achieve this we show that, except with a small probability, the adversary cannot
manipulate the game to use anything but independent, uniformly generated
values as key input to F .

The PRF keys are sequences of the form h = E(kn, E(. . . E(k1, 0) . . .))
for some keys k1 .. kn. We fix an index i: The key ki is uniformly generated
by the pseudorandomness game, and the remaining keys are chosen by the
adversary on each query to Eval. The proof can be conceptually divided into
two parts. Initially (games G0–G3) we work on the first part of the sequence,
namely h′ = E(ki, E(. . . E(k1, 0) . . .)). Here we build towards a game in which all
elements h′ that are generated from different key vectors k1 .. ki−1 are indepen-
dent uniform values. In the next games (games G4–G9) we work on the second
part of the sequence, namely h = E(kn, E(. . . E(ki+1, h

′) . . .)). Again, we show
that all elements h are independent and uniform, assuming independent uniform
values h′.

We describe now each single game hop. We start from game G0, equivalent
to the real game PR0

i , and we proceed as follows. Game G1 aborts if the key ki is
directly used as input by the adversary in one of its oracle queries. In game G2 the
output of E under the uniform key ki is precomputed and stored in a list R, which
is then used by Eval. Game G3 aborts when, in a query to Eval, the adversary
triggers an evaluation of E(ki−1, E(. . . E(k1, 0) . . .)) that gives the same output
as one of a previous evaluations using a different key vector. At this point we want
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to argue that an adversary sequentially evaluating n − i times the ideal cipher
under know keys but uniform initial input still cannot obtain anything but a(n
almost) uniform output. This will be achieved by uniformly pre-generating the
enciphering output used to evaluate the sequences E(kn, E(. . . E(ki+1, h

′) . . .)).
These elements are precomputed in game G4 and stored in a list R, but not yet
used. In game G5 the elements stored in R are removed from the range of the
ideal cipher. In game G6, the oracle Eval uses the values in R to sample the
ideal cipher. Since this might not always be possible, the oracle Eval resumes
standard sampling if any value to be sampled has already been set in E or D.
The next game makes a step forward to guarantee that the previous condition
does not occur: If the two oracles E and D have never been queried with input
any value that is used as key to the PRF F , then the game aborts if any element
stored in R (but not used as a PRF key) is queried to E or D. All previous steps
have only involved information-theoretical arguments. In game G8 we disjoin our
simulated ideal cipher from the PRF keys. This requires many small changes to
the game structure, but eventually the price paid to switch from game G7 is the
advantage in breaking multi-instance key inextractability of the PRF, i.e., to
recover one of the PRF keys from the PRF output. At this point, for any fixed
input k′ = k1 .. ki−1ki+1 .. kn to Eval we are sampling independent, uniformly
generated elements to be used as the PRF keys. Finally endowed with uniform
keys, in G9 the PRF output is replaced with uniform values. If no abort condition
is triggered, then the output distributions of G9 and PR1

i are identical.
The complete proof can be found in the full version of the paper [13].

4.2 Split-Key PRFs in the Random Oracle Model

Next, we consider constructions of skPRFs where the key-mixing step employs
standard model primitives. However, to achieve security we idealize the PRF that
is employed afterwards. Here we identify a sufficient condition on the key-mixing
function such that the overall construction achieves split-key pseudorandomness.
We begin by giving the aforementioned property for the key-mixing function.

Almost uniformity of a key-mixing function. For all i ∈ [1 .. n] let Ki be a finite
key space and K any key space. Consider a function

g : K1 × . . . × Kn → K.

We say that g is ε-almost uniform w.r.t. the ith key if for all k ∈ K and all
kj ∈ Kj for j ∈ [1 .. n] \ {i} we have:

Pr
ki←$Ki

[g(k1 .. kn) = k] ≤ ε.

We say that g is ε-almost uniform if it is ε-almost uniform w.r.t. the ith key for
all i ∈ [1 .. n].

We give three standard model instantiations of key-mixing functions that
enjoy almost uniformity.
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Example 1. Let K1 = . . . = Kn = K = {0, 1}k for some k ∈ N and define

g⊕(k1 .. kn) :=
n⊕

j=1

kj .

Then g⊕ is 1/ |K|-almost uniform.
The proof follows from observing that for any i ∈ [1 .. n] and any fixed

k1 .. ki−1ki+1 .. kn, the function g⊕(k1 .. ki−1 · ki+1 .. kn) is a permutation.

Example 2. Let K,H be finite and π : K × H → H such that for all k ∈ K we
have that π(k, ·) is a permutation on H. Let

g(k1 .. kn) := π(kn, . . . π(k1, 0) . . .),

for some 0 ∈ K.
If for all k ∈ K, π(k, ·) is a pseudorandom permutation (i.e., π is a blockci-

pher) then for all i and all k1 .. ki−1ki+1 .. kn there exists an adversary A against
the pseudorandomness of π such that g is Advprp

π (A) + 1/ |K|-almost uniform.
Here Advprp

π (A) is the advantage of A in distinguishing π under a uniform key
from a uniform permutation.

We sketch a proof of Example 2. First, observe that, since kj for all j �= i is
known by A, all permutations π(kj , ·) can be disregarded. Secondly, we replace
the permutation π(ki, ·) with a uniform permutation, losing the term Advprp

π (A).
The claim follows.

Example 3. Let K1, . . . ,Kn, K be finite. Let

g(k1 .. kn) := k1 ‖ . . .‖kn,

then g is 1/|K|-almost uniform.
The proof uses the same argument as in Example 1.

We now show that we can generically construct a pseudorandom skPRF from
any almost-uniform key-mixing function in the random oracle model.

Lemma 6. Let g : K∗ → K′ be a function. Let H : K′ × X → Y be a (hash)
function. Let

H � g : K∗ × X → Y, (H � g)(k1, . . . , kn, x) := H(g(k1 .. kn), x).

If H is modeled as a random oracle then for any adversary A such that g is
ε-almost uniform and A makes at most qH H queries and qe Eval queries and
all i we have

Advpr
i (A) ≤ qH · ε.

Proof sketch. Note that any adversary against the pseudorandomness of H �g
is given access to Eval and H, the latter implementing a random oracle. Now,
intuitively, A is unlikely to predict the output of the g invocation within an Eval
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Fig. 12. Game PRb
i for i ∈ [1 .. n] instantiated with H � g.

query as g is almost uniform. Hence, A will not query H on the same input as
done within Eval. Thus, even in the real game, the output of Eval is likely to be
uniform.

We give a refined analysis next.

Proof (Lemma 6). We bound the distance between the probabilities of A out-
putting 1 in game PR0

i and PR1
i . The PRb

i game is given in Fig. 12. For game
PRb

i we performed merely syntactical changes: A is given access to H via oracle
H. Two sets SE , SH are initialized as empty and updated in lines 01, 11, 17 and
used to define an event in line 05.

Observe that for all i the PR0
i and PR1

i games are identical if bad does not
happen: As SH ∩ SE remains empty, adversary A did not query H on an input
that H was evaluated on during an Eval query (see line 14). Hence, y ← H(k′′, x)
is uniform and thus, y0 ← y and y1 ← Y are identically distributed.

We bound Pr[bad] in PR1
i . To this end, let (k′′

j , xj) for j ∈ [1 .. qH ] denote
the H queries made by A. We have

Pr[bad] = Pr[SH ∩ SE �= ∅] ≤
qH∑
j=1

Pr[(k′′
j , xj) ∈ SE ].

Recall from line 07 that for every x ∈ X there is at most one query Eval(·, x)
by A. Hence, for each (k′′

j , xj) in SH there is at most one element of the form
(·, xj) in SE . Assume it exists5 and let k′′

xj
be such that (k′′

xj
, xj) ∈ SE denotes

that element. Then
qH∑
j=1

Pr[(k′′
j , xj) ∈ SE ] ≤

qH∑
j=1

Pr[k′′
j = k′′

xj
]

=
qH∑
j=1

Pr
ki,xj

←Ki

[k′′
j = g(k′

1 .. ki−1ki,xj
ki+1 .. k′

n)]

5 If such an element does not exist the following bounds would only become tighter.
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for k′
1, . . . , k

′
i−1, k

′
i+1, . . . , k

′
n chosen by A and uniform ki,xj

such that it sat-
isfies g(k′

1 .. ki−1ki,xj
ki+1 .. k′

n) = k′′
xj

. Eventually, we can employ the ε-almost
uniformity of g to conclude that

qH∑
j=1

Pr
ki,xj

←Ki

[k′′
j = g(k′

1 .. ki−1ki,xj
ki+1 .. k′

n)] ≤
qH∑
j=1

ε ≤ qH · ε.

�
Next, we show that, generally, the construction from Lemma 6 does not yield

a split-key pseudorandom function in the standard model.

Lemma 7. Let g be with syntax as in Lemma 6 and let F be with syntax as
H in Lemma 6. There exists an instantiation of g and F such that g is almost
uniform and F is pseudorandom but

F � g : K∗ × X → Y, (F � g)(k1, . . . , kn, x) := F (g(k1 .. kn), x)

is not a pseudorandom skPRF.

Proof. We saw in Example 1 that g⊕ is almost uniform. Further, we saw in
Lemma 3 that, when using F �g⊕ as a core function, there exists a pseudorandom
function F such that the combined KEM is not CCA secure. If F � g⊕ (with
such F ) were split-key pseudorandom, then this would contradict Theorem1.

5 A KEM Combiner in the Standard Model

Our approach was hitherto to mix the keys k1, . . . , kn to obtain a key for a
PRF, which was then evaluated on the ciphertext vector. The drawback of this
is that to show security we had to turn to idealized primitives. In the following
we embark on a different approach, with the goal to obtain a standard model
construction.

5.1 The PRF-Then-XOR Split-Key PRF

Here we abstain from mixing the keys together, but use each key ki in a PRF
evaluation. The security of the model is offset by its price in terms of efficiency:
When employed in a parallel combiner, the skPRF requires n PRF calls, whereas
for our constructions secure in idealized models in Sect. 4.2 a single call to a PRF
suffices. We give our construction next.

As before we want to allow possibly different session-key spaces of the ingre-
dient KEMs. Thus, as the keys ki in Construction 2 come from an encapsulation
of Ki, we allow the construction to use distinct PRFs. Yet, one may choose
Fi = Fj for all i, j, if supported by the ingredient KEM’s syntax.
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Construction 2. For all i ∈ [1 .. n] let Fi : Ki × X → Y be a function and let
K = K1 × . . . × Kn. We define the PRF-then-XOR composition of F1, . . . , Fn:

[F1 .. Fn] : K × X → Y, [F1 .. Fn](k1, . . . , kn, x) :=
n⊕

i=1

Fi(ki, x).

Lemma 8. For all i ∈ [1 .. n] let Fi be as in Construction 2. If all Fi are pseu-
dorandom then [F1 .. Fn] is split-key pseudorandom.

More precisely, for all n, F1, . . . , Fn, for all indices i and all adversaries A
there exist an adversary B such that

Advpr
[F1 .. Fn],i

(A) ≤ Advpr
Fi

(B).

Suppose that A poses at most q queries to its evaluation oracle. Then adversary B
poses at most q queries to its own encapsulation oracle. The running times of B
is roughly the same as of A.

Proof. We fix an index i ∈ [1 .. n] and we build an adversary B against the
PRF Fi from an adversary A against the skPRF [F1 .. Fn].

Adversary B works as follows. It starts by running adversary A. Each time
that A queries the oracle Eval on input (k′, x) it queries its own evaluation
oracle on input x, obtaining the output y ∈ Y. Then it computes the key k :=
y⊕⊕

j �=i Fj(kj , x), and returns the key to A. Finally, B returns the output of A.
We observe that if B is playing against game PR0 then it receives a real

evaluation of Fi from the oracle Eval. Hence B returns to A a real key and A
is playing against game PR0

i . If B is playing against game PR1 instead, then B
receives independent, uniformly distributed values from the oracle Eval (note
that, by the restrictions of game PR1

i , adversary A queries its oracle on distinct
input each time). If we add any constant value to y ←$ Y the result remains
uniformly distributed. Hence, on each query to Eval adversary B returns to A
independent uniformly distributed keys and A is playing against game PR1

i . �
Note that Lemma 8 gives raise to a standard model KEM combiner that

requires n PRF invocations, each processing the concatenation of n encapsula-
tions c = c1 ‖ . . .‖cn. For a slightly more efficient combiner where each of the n
PRF invocations is evaluated on the concatenation of n − 1 encapsulations see
the full version of this paper [13].
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Abstract. We revisit the notion of proxy re-encryption (PRE), an
enhanced public-key encryption primitive envisioned by Blaze et al.
(Eurocrypt’98) and formalized by Ateniese et al. (NDSS’05) for del-
egating decryption rights from a delegator to a delegatee using a semi-
trusted proxy. PRE notably allows to craft re-encryption keys in order
to equip the proxy with the power of transforming ciphertexts under a
delegator’s public key to ciphertexts under a delegatee’s public key, while
not learning anything about the underlying plaintexts.

We study an attractive cryptographic property for PRE, namely that
of forward secrecy. In our forward-secret PRE (fs-PRE) definition, the
proxy periodically evolves the re-encryption keys and permanently erases
old versions while he delegator’s public key is kept constant. As a conse-
quence, ciphertexts for old periods are no longer re-encryptable and, in
particular, cannot be decrypted anymore at the delegatee’s end. More-
over, delegators evolve their secret keys too, and, thus, not even they
can decrypt old ciphertexts once their key material from past periods
has been deleted. This, as we will discuss, directly has application in
short-term data/message-sharing scenarios.

Technically, we formalize fs-PRE. Thereby, we identify a subtle but
significant gap in the well-established security model for conventional
PRE and close it with our formalization (which we dub fs-PRE+). We
present the first provably secure and efficient constructions of fs-PRE
as well as PRE (implied by the former) satisfying the strong fs-PRE+

and PRE+ notions, respectively. All our constructions are instantiable in
the standard model under standard assumptions and our central build-
ing block are hierarchical identity-based encryption (HIBE) schemes that
only need to be selectively secure.
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1 Introduction

The security of cryptosystems essentially relies on the secrecy of the respective
secret key. For example, if for an encryption scheme a secret key is (accidentally)
leaked, the confidentiality of all the data encrypted with respect to this key so far
is immediately destroyed. One simple mitigation strategy for such a secret-key
leakage is to frequently change secret keys such that leaking a secret key only
affects a small amount of data. Implementing this in a näıve way, for instance
in context of public-key encryption, means that one either has to securely and
interactively distribute copies of new public keys frequently or to have huge pub-
lic keys1, which is rather inconvenient in practice. Consequently, cryptographic
research focused on the design of cryptosystems that inherently provide such a
property, being denoted as forward secrecy (or, forward security) [28]. The goal
hereby is that key leakage at some point in time does not affect the data which
was encrypted before the key leakage, while mitigating the drawbacks of the näıve
solution discussed before. That is, one aims at efficient non-interactive solutions
that have fixed sublinear-size public keys in the number of key switches/time
periods. Those (strong) properties are the minimal requirements in the de-facto
standard notion of forward secrecy in the cryptographic literature.

Within the last two decades, forward secrecy has been identified as an impor-
tant property of various different cryptographic primitives such as digital signa-
tures [6], identification schemes [1], public-key encryption [15], and private-key
cryptography [7]. Only recently, another huge step forward has been made by
Green and Miers [27] as well as Günther et al. [29] to bring forward secrecy to
important practical applications in the context of asynchronous messaging and
zero round-trip time (0-RTT) key exchange. Given revelations and leaks about
large-scale surveillance activities of security agencies within the last years, it is of
utmost importance to further develop and deploy cryptosystems that inherently
provide forward secrecy. We aim at advancing the research on forward secrecy
with respect to other practically important public-key primitives, ideally, to ones
with slightly more functionality.

Proxy re-encryption. Proxy re-encryption (PRE), envisoned by Blaze et al. [9]
and formalized by Ateniese et al. [4,5], is a cryptographic primitive that can
be seen as an extension of public-key encryption. A central feature of PRE is
that senders can craft so-called re-encryption keys, which are usually created
using only public information of the designated delegatee and the delegators’
key material. Those re-encryption keys have the power to transform ciphertexts
under a delegator’s public key to ciphertexts under the delegatees’ public keys.
Within PRE, this transformation is done by a semi-trusted2 proxy. The widely
accepted model for PRE security (i.e., the conventional or plain PRE model) [4]

1 With size O(n) for n key switches/time periods.
2 A semi-trusted proxy honestly follows the protocols, i.e., stores consistent re-

encryption keys and re-encrypts correctly.
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requires that the proxy does not learn anything about the plaintexts which
underlie the ciphertexts to be transformed.3

Proxy re-encryption is considered very useful in applications such as
encrypted e-mail forwarding or access control in secure file systems, which
was already discussed heavily in earlier work, e.g., in [4]. Furthermore, PRE
has been object of significant research for almost two decades now, be it in a
conventional setting [4,5,9], PRE with temporary delegation [4,5,34], identity-
based PRE [26,37], extensions to the chosen-ciphertext setting [16,34], type-
based/conditional PRE [39,41], anonymous (or key-private) PRE [3], traceable
PRE [32], or PRE from lattice-based assumptions [18,36]. Generic constructions
of PRE schemes from fully-homomorphic encryption [24] and from non-standard
building blocks such as resplittable-threshold public key encryption as proposed
in [30] are known, where different constructions of secure obfuscators for the re-
encryption functionality have been given [18,19,31]. Despite PRE being an object
of such significant research, forward-secret constructions remain unknown.4

On modeling forward-secret proxy re-encryption. Forward secrecy in the
context of PRE is more complex than in standard public-key primitives, as PRE
involves multiple different parties (i.e., delegator, proxy, and delegatees), where
delegator and delegatees all have their own secret-key material and the proxy
additionally holds all the re-encryption keys. One may observe that the proxy
needs to be considered as a semi-trusted (central) party being always online,
and, thus, it is reasonable to assume that this party is most valuable to attack.
Consequently, we model forward secrecy in the sense that the re-encryption-
key material can be evolved by the proxy to new periods while past-period
re-encryption keys are securely erased. Hence, ciphertexts under the delegator’s
public key with respect to past-periods can no longer be re-encrypted. In addi-
tion, we model forward secrecy for the delegator’s key material in a way that it
is consistent with the evolution of the re-encryption material at the proxy.

For now, we do not consider forward secrecy at the delegatee, who can be
seen as a passive party and does not need to take any further interaction with
the delegator during the life-time of the system, except providing her public key
once after set-up (e.g., via e-mail or public key server). It also does not have to
be online when ciphertexts are re-encrypted for her by the proxy. Nevertheless,
we leave it as a path for future research to cover the third dimension, i.e., model
forward secrecy for the delegator and proxy as well as forward secrecy for the
delegatee with efficient non-trivial constructions. However, it seems highly non-
trivial to achieve efficient constructions that support forward secrecy for the
delegatee additionally. In particular, we believe that the difficulty of achieving
such strong type of forward secrecy is due to the circumstance that one has to

3 The well-established security notions for PRE leave a potentially critical gap open.
To look ahead, our proposed security model for forward-secret PRE closes this gap
(implicitly also for plain PRE) and goes even beyond.

4 We stress that we only aim at efficient non-trivial (non-interactive) forward-secret
PRE constructions that have sublinear-size public and re-encryption keys in the
number of time periods.
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carefully integrate three dimension of evolving key-material, one at the delegator,
one at the proxy, and one at the delegatee. All dimensions seem to interfere
with each other.5 As it will be confirmed by our application, covering the two
dimensions already yields an interesting tool.

Moreover, to achieve forward secrecy for delegator and proxy key material,
we face the following obstacles. First, it has to be guaranteed that the hon-
est proxy must not be able to gain any information from the ciphertexts while
at the same time being able to transform such ciphertexts and to update re-
encryption key material consistently to newer time periods without any interac-
tion with the delegator. Secondly, any delegatee must not be able to decrypt past-
period ciphertexts. In this work, we give an affirmative answer to overcome those
obstacles.

A practical application of forward-secret PRE. We believe that forward
secrecy is an essential topic nowadays for any application. Also PRE is increas-
ingly popular, be it in applied cryptographic literature [10,14,35,36,42], work-
ing groups such as the CFRG of the IRTF6, large-scale EU-funded projects7,
and meanwhile also companies8 that foster transition of such technologies into
applications.

A practical application for forward-secret PRE is disappearing 1-to-n mes-
saging. Here, a user encrypts a message under his public key and sends it to
the proxy server that is responsible for distributing the encrypted messages to
all pre-determined n receivers (note that receivers do not have to be online at
the time the encrypted message is sent and an initial public-key exchange has
to be done only in the beginning, but no more interactivity is needed). During
setup time, the user has equipped the server with re-encryption keys (one for
each receiver) while new keys can be added any time once a new receiver is
present. Furthermore, the user does not need to manage a potentially huge list
of public keys for each message to be sent. After a period, the data gets deleted
by the proxy server, the re-encryption keys get evolved to a new period (without
any interactions), and old-period re-encryption keys get deleted. The security
of forward-secret PRE then guarantees that the proxy server does not learn the
sensitive messages, neither can the two types of parties access disappeared mes-
sages later on. Once period-i re-encryption keys leak from the proxy server, only
present and future encrypted messages (from period i onward) are compromised,
while period-(i − 1) messages stay confidential. More generally, we believe that
forward-secret PRE can be beneficially used in all kinds of settings that require
access revocation, e.g., in outsourced encrypted data storage.

We also stress that within our forward-secret PRE instantiations, each user is
only required to manage her own public and secret keys on her device and not a

5 It is currently unknown to us how to solve the problem with efficient cryptographic
tools, e.g., in the bilinear-maps setting. For efficiency reasons, multilinear maps and
obfuscation are out of focus.

6 https://www.ietf.org/id/draft-hallambaker-mesh-recrypt-00.txt.
7 https://credential.eu/.
8 e.g., http://www.nucypher.com, https://besafe.io/.

https://www.ietf.org/id/draft-hallambaker-mesh-recrypt-00.txt
https://credential.eu/
http://www.nucypher.com
https://besafe.io/
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list of recipient public keys (or, identities). This deviates significantly from other
primitives such as broadcast encryption (BE) [12,22,38], which could also be
suitable in such scenarios. However, practical BE schemes, e.g., [13], need large
public keys and are computationally expensive.

1.1 Contribution

In this paper, we investigate forward secrecy in the field of proxy re-encryption
(PRE) and term it fs-PRE. More precisely, our contributions are as follows:

– We first port the security model of PRE to the forward-secret setting (fs-
PRE−). Thereby, we observe a subtle but significant gap in existing (plain)
security models for conventional PRE with regard to the granularity of delega-
tions of decryption rights. In particular, existing models allow that a recipient,
who has once decrypted a re-encrypted ciphertext, can potentially decrypt all
re-encryptable ciphertexts of the same sender without further involvement of
the proxy. In the forward-secret setting, it would essentially require to trust
the delegatees to delete their re-encrypted ciphertexts whenever the period is
switched, which is a problematic trust assumption.9

– We close this gap by introducing an additional security notion which inher-
ently requires the involvement of a proxy in every re-encryption and in par-
ticular consider this notion in the forward-secret setting (fs-PRE+). We also
note that, when considering only a single time interval, this implicitly closes
the aforementioned gap in the conventional PRE setting.10 We also provide
an explicit separation of the weaker fs-PRE− notion (resembling existing PRE
models) and our stronger notion fs-PRE+.

– We then continue by constructing the first forward-secret PRE schemes (in
the weaker as well as our stronger model) that are secure in the stan-
dard model under standard assumptions. On a technical side, only few
approaches to forward secrecy are known. Exemplary, in the public-key-
encryption (PKE) setting, we essentially have two ways to construct for-
ward secrecy, i.e., the Canetti-Halevi-Katz (CHK) framework [15] from selec-
tively secure hierarchical identity-based encryption (HIBE) [25] schemes and
the more abstract puncturable-encryption (PE) approaches by [27,29] (where
both works either explicitly or implicitly use the CHK techniques). Partic-
ularly, we are not aware of any framework to achieve forward secrecy for
PKE schemes based on “less-complex” primitives in comparison to selectively
secure HIBE schemes. Consequently, we also base our constructions on selec-
tively secure HIBE schemes [25], which we combine with linearly homomorphic
encryption schemes, e.g., (linear) ElGamal.

– As a side result, we generalize the recent work of PE [17,21,27,29] to what
we call fully puncturable encryption (FuPE) in the full version of this paper
and show how we can use FuPE to construct fs-PRE.

9 Clearly, we still have to trust that the proxy deletes past-period re-encryption key
material.

10 In the conventional PRE setting, this gap was very recently independently addressed
by Cohen [20].
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1.2 Intuition and Construction Overview

To obtain more general results and potentially also more efficient instantiations,
we use a relaxation of HIBEs denoted as binary-tree encryption (BTE) which
was introduced by Canetti, Halevi, and Katz (CHK) in [15]. As an interme-
diate step, we introduce the notion of a forward-secret delegatable public-key
encryption (fs-DPKE) scheme and present one instantiation which we obtain by
combining the results of CHK with a suitable homomorphic public-key encryp-
tion (HPKE) scheme. Loosely speaking, a fs-DPKE scheme allows to delegate
the decryption functionality of ciphertexts computed with respect to the pub-
lic key of some user A to the public key of some other user B. Therefore, A
provides a public delegation key to B. B then uses the delegation key together
with the secret key corresponding to B’s public key to decrypt any ciphertext
that has been produced for A. A fs-DPKE scheme moreover incorporates forward
secrecy in a sense that the originator A can evolve it’s secret key and the scheme
additionally allows to publicly evolve delegation keys accordingly. Interestingly,
such a scheme is already sufficient to construct a fs-PRE−-secure PRE scheme.
Finally, we demonstrate how to strengthen this construction to a fs-PRE+-secure
PRE scheme, by solely relying on a certain type of key-homomorphism of the
underlying fs-DPKE scheme. The intermediate step of introducing fs-DPKE is
straightforward yet interesting, since we believe fs-DPKE is the “next natural
step” to lift PKE to a setting which allows for controlled delegation of decryp-
tion rights.

Instantiation. In Table 1, we present an instantiation including the resulting
key and ciphertext sizes. Thereby, we only look at fs-PRE instantiations that are
fs-PRE+-secure and note that the asymptotic sizes for fs-PRE−-secure fs-PRE
schemes are identical. For our instantiation, we use the BTE (or any selectively
secure HIBE) from [15] and the linear encryption scheme from [11] as HPKE
scheme under the Bilinear Decisional Diffie-Hellman (BDDH) and decision linear
(DLIN) assumption respectively.

Table 1. Our fs-PRE+-secure instantiation. All parameters additionally scale asymp-
totically in a security parameter k which is, hence, omitted. Legend: n . . . number
of periods, |pk| . . . public key size, |rk(i)| . . . size of re-encryption key for period i,
|sk(i)| . . . size of secret key for period i, |C| . . . ciphertext size.

Building blocks |pk| |rk(i)| |sk(i)| |C| Assumption

BTE [15], HPKE [11] O(log n) O((log n)2) O((log n)2) O(log n) BDDH, DLIN

A note on a side result. Additionally, in the full version, we include the defini-
tion and a construction of a so called fully puncturable encryption (FuPE) scheme
which is inspired by techniques known from HIBEs and the recent PE schemes
in [27,29]. We then show that FuPE schemes closely capture the essence which
is required to construct fs-PRE+-secure schemes by presenting a construction of
a fs-PRE+-secure PRE scheme from FuPE and HPKE.
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1.3 Related Work and Outline

Work related to forward-secret PRE. Tang et al. [39,41] introduced type-
based/conditional PRE, which allows re-encryption of ciphertexts at the proxy
only if a specific condition (e.g., a time period) is satisfied by the ciphertext. Fur-
thermore, PRE with temporary delegations was proposed by Ateniese et al. [4,5]
and improved by Libert and Vernaud (LV) [34]. All those approaches yield a weak
form of forward secrecy. Notably, the LV schemes provide fixed public parame-
ters and non-interactivity with the delegatee as well. However, in contrast to our
approach, LV and Tang et al. require at least to update the re-encryption keys
for each time period with the help of the delegator (i.e., one message per time
period from the delegator to the proxy) and also do not allow for exponentially
many time periods, which do not suit our (stronger) forward-secret scenario.

Concurrent work on PRE. There is a considerable amount of very recent
independent and concurrent work on different aspects of PRE and its applica-
tions [8,20,23,35]. The works in [8,23,35] are only related in that they also deal
with various aspects of PRE, but not fs-PRE. Those aspects are however unre-
lated to the work presented in this paper. In contrast, the work presented in [20]
is related to one aspect of our work. It formalizes a security property for conven-
tional PRE, which can be seen as a special case of our fs-PRE+ notion which we
introduce in context of fs-PRE. More precisely, our notion generalizes the notion
of [20] and implies it if we fix the numbers of time periods to n = 1.

Outline. After discussing preliminaries in Section 2, we define fs-PRE
in Section 3, discuss the gap in previous models and also briefly discuss its con-
sequences to conventional PRE. We then give the first construction of a fs-PRE
scheme from binary tree encryption in Section 4. We also show a separation result
for the weaker fs-PRE− (resembling existing PRE models) and our stronger notion
fs-PRE+.

2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n} and let k ∈ N be the security parameter.
For an algorithm A, let y ← A(1k, x) be the process of running A, on input
1k and x, with access to uniformly random coins and assigning the result to
y. We assume that all algorithms take 1k as input and we will sometimes not
make this explicit in the following. To make the random coins r explicit, we write
A(1k, x; r). An algorithm A is probabilistic polynomial time (PPT) if its running
time is polynomially bounded in k. A function f is negligible if ∀c∃k0∀k ≥ k0 :
|f(k)| ≤ 1/kc. For binary trees, we denote the root node with ε and all other
nodes are encoded as binary strings, i.e., for a node w we denote child nodes as
w0 and w1.

Homomorphic public-key encryption. A F-homomorphic public key
encryption (HPKE) scheme is a public-key encryption (PKE) scheme that is
homomorphic with respect to a class of functions F , i.e., given a sequence of
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ciphertexts to messages (Mi)i∈[n] one can evaluate a function f : Mn → M ∈ F
on the ciphertexts such that the resulting ciphertext decrypts to f(M1, . . . ,Mn).

Definition 1 ((F-)HPKE). A F-homomorphic public key encryption (F-HPKE
or HPKE for short) scheme with message space M, ciphertext space C and a
function family F consists of the PPT algorithms (Gen,Enc,Dec,Eval):

Gen(1k) : On input security parameter k, outputs public and secret keys (pk, sk).
Enc(pk,M) : On input a public key pk, and a message M ∈ M, outputs a cipher-

text C ∈ C.
Dec(sk, C) : On input a secret key sk, and ciphertext C, outputs M ∈ M ∪ {⊥}.
Eval(f, (Ci)i∈[n]) : On input a function f : Mn → M ∈ F , a sequence of cipher-

texts (Ci)i∈[n] encrypted under the same public key, outputs C.

In addition to the standard and folklore correctness definition for public-key
encryption (PKE), we further require for HPKE that for all security parameters
k ∈ N, all key pairs (pk, sk) ← Gen(1k), all functions f : Mn → M ∈ F , all
message sequences (Mi)i∈[n] it holds that Dec(sk,Eval(f, (Enc(pk,Mi))i∈[n])) =
f(M1, . . . ,Mn). We are particularly interested in the case where M is a group
and F is the set of all linear functions on products of M. In that case, we call
the HPKE scheme linearly homomorphic. For a HPKE, we require conventional
IND-CPA security as with PKE schemes and recall an efficient instantiation of
a linearly homomorphic scheme, i.e., linear ElGamal [11], in the full version.

Proxy re-encryption. Subsequently, we define proxy re-encryption and defer
a formal treatment of security to Sect. 3.

Definition 2 (PRE). A proxy re-encryption (PRE) scheme with message space
M consists of the PPT algorithms (Setup,Gen,Enc,Dec,ReGen,ReEnc) where
Enc = (Enc(j))j∈[2] and Dec = (Dec(j))j∈[2]. For j ∈ [2], they are defined as
follows.

Setup(1k) : On input security parameter k, outputs public parameters pp.
Gen(pp) : On input public parameters pp, outputs public and secret keys (pk, sk).
Enc(j)(pk,M) : On input a public key pk, and a message M ∈ M outputs a level

j ciphertext C.
Dec(j)(sk, C) : On input a secret key sk, and level j ciphertext C, outputs M ∈

M ∪ {⊥}.
ReGen(skA, pkB) : On input a secret key skA and a public key pkB for B, outputs

a re-encryption rkA→B.
ReEnc(rkA→B , CA) : On input a re-encryption key rkA→B, and a ciphertext CA

for user A, outputs a ciphertext CB for user B.

Binary tree encryption. Binary tree encryption (BTE) [15] is a relaxed version
of hierarchical identity-based encryption (HIBE) [25]. Similar to a HIBE scheme,
a BTE scheme has a (master) public key associated to a binary tree where each
node in the tree has a corresponding secret key. To encrypt a message for some
node, one uses both the public key and the name of the target node. Using the
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node’s secret key, the resulting ciphertext can then be decrypted. Additionally,
the secret key of a node can be used to derive the secret keys of its child nodes.

In contrast to BTE defined in [15], we make the part of the secret key used
to perform the key derivation explicit, i.e., we will have secret keys for the
decryption and derivation keys to derive secret keys. In case, an instantiation
does not support a clear distinction, it is always possible to assume that the
derivation key is empty and everything is contained in the secret key.

Definition 3. A binary tree encryption (BTE) scheme with message space M
consists of the PPT algorithms (Gen,Evo,Enc,Dec) as follows:

Gen(1k, �) : On input security parameter k and depth of the tree �, outputs public,
secret, and derivation keys (pk, sk(ε), dk(ε)).

Der(sk(w), dk(w)) : On input secret key sk(w) and derivation key dk(w), for node
w ∈ {0, 1}<�, outputs secret keys sk(w0), sk(w1) and derivation keys dk(w0),

dk(w1) for the two children of w.
Enc(pk,M,w) : On input a public key pk, a message M ∈ M, and node w ∈

{0, 1}≤�, outputs a ciphertext C.
Dec(sk(w), C) : On input a secret key sk(w), for node w ∈ {0, 1}≤�, and ciphertext

C, outputs M ∈ M ∪ {⊥}.
For correctness, we require that for all security parameters k ∈ N, all depths
� ∈ N, all key pairs (pk, (sk(ε), ek(ε))) generated by Gen(1k, �), any node w ∈
{0, 1}≤�, any derived key sk(w) derived using Der from (sk(ε), dk(ε)), and all
messages M ∈ M, it holds that Dec(sk(w),Enc(pk,M,w)) = M.

The indistinguishability against selective node, chosen plaintext attacks
(IND-SN-CPA) is a generalization of the standard IND-CPA security notion
of PKE schemes. Essentially, the security notion requires the adversary to com-
mit to the node to be attacked in advance. The adversary gets access to all secret
keys except the secret keys for all nodes that are on the path from the root node
to the targeted node.

Experiment Expind−sn−cpa
BTE,A (1k, �)

(pk, sk(ε), dk(ε)) ← Gen(1k, �)
b ←R {0, 1}
(w∗, st) ← A(1k, �)
Let W be the set of all nodes that are siblings to the path from the root node to w∗

and (if possible) w∗0 and w∗1.
Compute (sk(w), dk(w)) for all w ∈ W from (sk(ε), dk(ε)) using Der.
(M0, M1, st) ← A(st, pk, (sk(w), dk(w))w∈W )
b∗ ← A(st,Enc(pk, Mb, w

∗))
if b = b∗ return 1, else return 0

Experiment 1. The IND-SN-CPA security experiment for a BTE scheme.
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Definition 4 (IND-SN-CPA). For a polynomially bounded function �, a PPT
adversary A, we define the advantage function in the sense of IND-SN-CPA as

Advind−sn−cpa
BTE,A (1k, �(k)) =

∣
∣
∣
∣
Pr

[

Expind−sn−cpa
BTE,A (1k, �(k)) = 1

]

− 1
2

∣
∣
∣
∣
.

If for all �, and any A there exists a negligible function ε such that Advind−sn−cpa
BTE,A

(1k, �(k)) < ε(k), then a BTE scheme is IND-SN-CPA secure.

The CHK Compiler. The technique of Canetti et al. [15] can be summarized
as follows. To build a forward-secret PKE scheme with n periods, one uses a BTE
of depth � such that n < 2�+1. Associate each period with a node of the tree and
write wi to denote the node for period i. The node for period 0 is the root node,
i.e. w0 = ε. If wi is an internal node, then set wi+1 = wi0. Otherwise, if wi is
a leaf node and i < N − 1, then set wi+1 = w′1 where w′ is the longest string
such that w′0 is a prefix of wi. The public key is simply the public key of the
BTE scheme. The secret key for period i consists of the secret key for node wi.

3 Security of (Forward-Secret) Proxy Re-encryption

Proxy re-encryption (PRE) schemes can exhibit several important properties. In
the following, we focus on the most common PRE properties in the cryptographic
literature, i.e., uni-directionality (Alice is able to delegate decryption rights to
Bob but not from Bob to Alice), non-interactivity (Alice can generate delegation
key material without interacting with Bob), and collusion-safeness (even if Bob
and other delegatees are colluding with the proxy, they cannot extract Alice’ full
secret key). Moreover, we consider PRE schemes that only allow a single hop, i.e.,
a ciphertext can be re-encrypted only a single time in contrast to multiple times
in a row (multi-hop). Latter can be problematic due to unwanted transitivity.

In this work, we examine a further property of PRE schemes, namely the
property of forward secrecy and propose the first uni-directional, non-interactive,
collusion-safe, single hop, and forward-secret PRE scheme (dubbed fs-PRE) in
the standard model from generic assumptions. Subsequently, in Sect. 3.1, we
present the formal model for fs-PRE, while in Sect. 3.3 we discuss the relation and
application of our stronger model to the conventional (i.e., plain) PRE security
model.

3.1 Syntax of Forward-Secret Proxy Re-encryption

To realize forward-secure PRE (fs-PRE), we lift the definitions and security mod-
els of uni-directional, single-hop, non-interactive, and collusion-safe PRE to a
setting where we can have several periods. Thereby, we allow re-encryptions in
every period such that re-encryption keys—in the same way as secret keys—are
bound to a period. Furthermore, we align our PRE definitions with Ateniese et
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al. as well as Libert and Vergnaud [4,5,33] such that if we only have a single
period, then they are equivalent to the definitions for plain PRE in [5,33].11

Definition 5 (fs-PRE). A forward-secure proxy re-encryption (fs-PRE) scheme
with message space M consists of the PPT algorithms (Setup,Gen,Evo,Enc,
Dec,ReGen,ReEvo,ReEnc) where Enc = (Enc(j))j∈[2] and Dec = (Dec(j))j∈[2]

for levels j ∈ [2]. We denote level-2 ciphertext as re-encryptable ciphertexts,
whereas level-1 ciphertexts are not re-encryptable.

Setup(1k) : On input security parameter k, outputs public parameters pp.
Gen(pp, n) : On input public parameters pp, and number of periods n ∈ N, out-

puts public and secret keys (pk, (sk(0), ek(0))).
Evo(sk(i), ek(i)) : On input secret key sk(i) and evolution key ek(i) for period i ∈

{0, . . . , n−2}, outputs a secret key sk(i+1) and evolution key ek(i+1) for period
i + 1.

Enc(j)(pk,M, i) : On input a public key pk, a message M ∈ M, and period i ∈
{0, . . . , n − 1}, outputs a level-j ciphertext C.

Dec(j)(sk(i), C) : On input a secret key sk(i), for period i ∈ {0, . . . , n − 1}, and
level-j ciphertext C, outputs M ∈ M ∪ {⊥}.

ReGen(sk(i)A , ek
(i)
A , pkB) : On input a secret key sk

(i)
A and a evolution key ek

(i)
A (or

⊥) for A and period i ∈ {0, . . . , n − 1}, and a public key pkB for B, outputs
a re-encryption rk

(i)
A→B and re-encryption-evolution key rek

(i)
A→B (or ⊥).

ReEvo(rk(i)A→B , rek
(i)
A→B) : On input a re-encryption key rk

(i)
A→B, and a re-

encryption-evolution key rek
(i)
A→B for period i ∈ {0, . . . , n − 2}, outputs a re-

encryption key rk
(i+1)
A→B and re-encryption evolution key rek

(i+1)
A→B for the period

i + 1.
ReEnc(rk(i)A→B , CA) : On input a re-encryption key rk

(i)
A→B, and a (level-2) cipher-

text CA for user A, outputs a (level-1) ciphertext CB for user B.

Correctness. For correctness, we basically require on the one hand that every
ciphertext encrypted for some period i can be decrypted with the respec-
tive secret key from period i. On the other hand—when also considering re-
encryptable and re-encrypted ciphertexts—we require that level-2 ciphertexts
encrypted for period i can be re-encrypted with a suitable re-encryption key
for the same period and then decrypted using the (delegatee’s) respective secret
key for period i. More formally, for all security parameters k ∈ N, all pub-
lic parameters pp ← Setup(1k), any number of periods n ∈ N and users
U ∈ N, all key tuples (pku, sk(0)u , ek(0)u )u∈[U ] generated by Gen(1k, n), any period
i ∈ {0, . . . , n − 1}, for any u ∈ [U ], any evolved key sk(i+1)

u generated by
Evo(sk(i)u ), for all u′ ∈ [U ], u �= u′, any (potentially evolved) re-encryption and

11 Observe that for a single period, i.e., n = 1, Evo and ReEvo in Definition 5 are not
defined. Dropping these algorithms and the corresponding evolution keys ek and rek
yields a plain PRE scheme.
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re-encryption-evolution keys rk
(i)
u→u′ and rek

(i)
u→u′ , respectively, for period i gen-

erated using ReGen from (potentially evolved) secret and evolution keys as well
as the target public key, and all messages M ∈ M, it holds that

∀j ∈ [2] ∃j′ ∈ [2] : Dec(j
′)(sk(i)u ,Enc(j)(pku,M, i)) = M,

Dec(1)(sk(i)u′ ,ReEnc(rk(i)u→u′ ,Enc
(2)(pku,M, i))) = M.

3.2 Security of Forward-Secret Proxy Re-encryption

The security notions for fs-PRE are heavily inspired by the security notions
of (plain) PRE [4,5,33] and forward-secret PKE [15]. We will discuss multi-
ple notions, combine them carefully, and introduce forward-secret indistinguish-
ably under chosen-plaintext attacks for level-1 and level-2 ciphertexts (termed
fs-IND-CPA-1 and fs-IND-CPA-2, respectively) which we argue to be reason-
able notions in our setting. Additionally, we define a new (stronger) variant of
indistinguishably-under-chosen-plaintext-attacks security for fs-PRE (dubbed fs-
RIND-CPA) that focuses on malicious users in the face of honest proxies. In
particular, the latter strengthen the folklore PRE security notion.

For all experiments defined in this section, the environment keeps initially
empty lists of dishonest (DU) and honest users (HU). The oracles are defined as
follows:

Gen(h)(pp, n) : Run (pk, sk, ek) ← Gen(pp, n), set HU ← HU ∪ {(pk, sk, ek)}, and
return pk.

Gen(d)(pp, n) : Run (pk, sk, ek) ← Gen(pp, n), set DU ← DU ∪ {(pk, sk, ek)}, and
return (pk, sk, ek).

ReGen(h)(j, pku, pk) : On input a period j, a public key pku and a public key
pk, abort if (pku, ·, ·) �∈ HU. Otherwise, look up sk(0)u and ek(0)u corresponding
to pku from HU. If j > 0 set (sk(i)u , ek(i)u ) ← Evo(sk(i−1)

u , ek(i−1)
u ) for i ∈ [j].

Return ReGen(sk(j)u , ek(j)u , pk).
ReGen(h

′)(j, sk(0), ek(0), pku) : On input a period j, secret key sk(0), evolution key
ek(0), and a public key pku, abort if (pku, ·, ·) �∈ HU. Otherwise, if j > 0 set
(sk(i), ek(i)) ← Evo(sk(i−1), ek(i−1)) for i ∈ [j]. Return ReGen(sk(j), ek(j), pku).

ReGen(d)(j, sk(0), ek(0), pkd) : On input a period j, secret key sk(0), evolution key
ek(0), and a public key pkd, abort if (pkd, ·, ·) �∈ DU. Otherwise, if j > 0 set
(sk(i), ek(i)) ← Evo(sk(i−1), ek(i−1)) for i ∈ [j]. Return ReGen(sk(j), ek(j), pkd).

fs-IND-CPA-i security. We start with the definition of fs-IND-CPA-1 and fs-
IND-CPA-2 security for fs-PRE. Inspired by the work on forward secrecy due to
Canetti et al. [15], our experiments lift standard PRE security notions as defined
in Ateniese et al. [4] (AFGH) to the forward-secrecy setting. More concretely,
after the selection of a target period j∗ by the adversary A, A gets access to
the secret and the evolution key (sk(j

∗), ek(j
∗)) of the target period j∗, while the

challenge ciphertext for A-chosen message Mb is generated for period j∗ − 1, for
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uniform b ← {0, 1}. Eventually, A outputs a guess on b. We say A is valid if A
only outputs equal-length messages |M0| = |M1| and 1 ≤ j∗ ≤ n.

Furthermore, we adapted the AFGH security experiment such that A has
access to re-encryption and re-encryption-evolution keys for period j∗ −1. Anal-
ogously to previous work on PRE, we present two separate notions for level-1 and
level-2 ciphertexts. The corresponding security experiments are given in Experi-
ment 2 and Experiment 3. The only difference in Experiment 2 is that for level-1
ciphertexts, i.e., the ones which can no longer be re-encrypted, the adversary
gets access to more re-encryption and re-encryption-evolution keys (obviously,
the challenge ciphertext in that experiment is a level-1 ciphertext).

Experiment Expfs−ind−cpa−1
fs-PRE,A (1k, n)

pp ← Setup(1k), (pk, sk(0), ek(0)) ← Gen(pp, n), b ←R {0, 1}
(j∗, st) ← A(pp, n, pk)
(sk(j), ek(j)) ← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗].
O ← {Gen(h),ReGen(h)(j∗ − 1, ·, pk),ReGen(h′)(j∗ − 1, sk(0), ek(0), ·),Gen(d),
ReGen(d)(j∗ − 1, sk(0), ek(0), ·)}
(M0, M1, st) ← AO(st, sk(j

∗), ek(j
∗))

b∗ ← A(st,Enc(1)(pk, Mb, j
∗ − 1))

if b = b∗ return 1, else return 0

Experiment 2. The fs-IND-CPA-1 security experiment for level-1 ciphertexts
of fs-PRE schemes.

Experiment Expfs−ind−cpa−2
fs-PRE,A (1k, n)

pp ← Setup(1k), (pk, sk(0), ek(0)) ← Gen(pp, n), b ←R {0, 1}
(j∗, st) ← A(pp, n, pk)
(sk(j), ek(j)) ← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗].
O ← {Gen(h),ReGen(h)(j∗ − 1, ·, pk),ReGen(h′)(j∗ − 1, sk(0), ek(0), ·)}
(M0, M1, st) ← AO(st, sk(j

∗), ek(j
∗))

b∗ ← A(st,Enc(2)(pk, Mb, j
∗ − 1))

if b = b∗ return 1, else return 0

Experiment 3. The fs-IND-CPA-2 security experiment for level-2 ciphertexts
of fs-PRE schemes.

Definition 6 (fs-IND-CPA-i). For a polynomially bounded function n(·) > 1,
a PPT adversary A, we define the advantage function for A in the sense of
fs-IND-CPA-i for level-i ciphertexts as

Advfs−ind−cpa−i
fs−PRE,A (1k, n(k)) :=

∣
∣
∣
∣
Pr

[

Expfs−ind−cpa−i
fs−PRE,A (1k, n(k)) = 1

]

− 1
2

∣
∣
∣
∣
.

A fs-PRE scheme is fs-IND-CPA-i secure if for all polynomially bounded n(·) > 1
and any valid PPT A there exists a negligible function ε such that Advfs−ind−cpa−i

fs−PRE,A

(1k, n(k)) < ε(k), where Expfs−ind−cpa−i
fs−PRE,A , for all i ∈ [2], are defined in Experiment

2 and Experiment 3, respectively.
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Master-secret security. As discussed in [33], the security notion for level-1
(i.e., non re-encryptable) ciphertexts already implies classical master-secret secu-
rity notion for PRE [4].12 However, this must not be the case in the forward-secret
setting. To formally close this gap, we give a trivial lemma (cf. Lemma1) which
states that fs-IND-CPA-1 implies master-secret security in the sense of Experi-
ment 4 in the forward-secrecy setting. Essentially, master-secret security ensures
collusion safeness such that re-encryption keys in period j do not leak the secret
key corresponding to level-1 ciphertexts which can not be re-encrypted in period
j−1. In Experiment 4, we lift master-secret security in the classical PRE sense to
the forward-secret setting. In the experiment, the adversary A selects an target
period j∗ and receives the secret and evolution keys (sk(j

∗), ek(j
∗)) for the target

period in return. Within the experiment, A has access to several oracles, e.g.,
to obtain re-encryption and re-encryption-evolution keys for period j∗. Eventu-
ally, A outputs secret and evolutions keys (sk∗, ek∗) and the experiment returns
1 (i.e., A wins) if (sk∗, ek∗) = (sk(j

∗−1), ek(j
∗−1)). We say A is valid if A only

outputs 1 ≤ j∗ ≤ n.

Experiment Expfs−msk
fs−PRE,A(1k, n)

pp ← Setup(1k), (pk, sk(0), ek(0)) ← Gen(pp, n)
(j∗, st) ← A(pp, n, pk)
(sk(j), ek(j)) ← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗].
O ← {Gen(h),ReGen(h)(j∗, ·, pk),ReGen(h′)(j∗, sk(0), ek(0), ·),Gen(d),ReGen(d)(j∗,
sk(0), ek(0), ·)}
(sk∗, ek∗) ← AO(st, sk(j

∗), ek(j
∗))

if (sk∗, ek∗) = (sk(j
∗−1), ek(j

∗−1)) return 1, else return 0

Experiment 4. The forward secure master secret security experiment for fs-PRE
schemes.

Definition 7 (fs-master-secret security). For a polynomially bounded func-
tion n(·) > 1 and a PPT adversary A, we define the advantage function for A
in the sense of fs-master-secret security as

Advfs−msk
fs−PRE,A(1k, n(k)) := Pr

[

Expfs−msk
fs−PRE,A(1k, n(k)) = 1

]

.

A fs-PRE scheme is fs-master-secret secure if for all polynomially bounded n(·) >
1 and any valid PPT A there exists a negligible function ε such that Advfs−msk

fs−PRE,A

(1k, n(k)) < ε(k), where Expfs−msk
fs−PRE,A is defined in Experiment 4.

We now show that this notion in the sense of Definition 7 is trivially implied by
fs-IND-CPA-1 security for fs-PRE in the sense of Definition 6.

12 As we will discuss below, this notion seems to suggest false guarantees and leaves a
critical gap in the security model open.
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Lemma 1. If a fs-PRE scheme is fs-IND-CPA-1 secure in the sense of Defi-
nition 6, then the same fs-PRE scheme is fs-master-secret secure in the sense
of Definition 7.

Proof sketch. It is trivial to see that any successful PPT adversary on the fs-
master-secret security of a fs-PRE scheme can be transformed into a PPT adver-
sary on the fs-IND-CPA-1 security of that fs-PRE scheme. (Essentially, any PPT
adversary that is able to gain access to the secret key of the prior period can
trivially distinguish ciphertexts for the same period.)

The problem with (fs-)PRE security. A problem with the notion of standard
(i.e., IND-CPA and master secret) security for (plain) PRE and also our fs-PRE
notions so far is that the secret keys used for level-1 (i.e., non re-encryptable)
and level-2 (i.e., re-encryptable) ciphertexts can be independent. Consequently,
although ciphertexts on both levels can be shown to be indistinguishable, this
does not rule out the possibility that ciphertexts on level-2 reveal the respective
level-2 secret key of the sender to an legitimate receiver. This is exactly the reason
for the gap in the plain PRE model which allows to leak a “level-2 secret key”
once a re-encryption has been performed while all security properties are still
satisfied (we provide an example for such a scheme in Sect. 4.4). In particular,
this allows the receiver to potentially decrypt any level-2 ciphertext. We provide
a solution in form of a stronger security notion which we term fs-RIND-CPA
security in the following.

fs-RIND-CPA security. We observe that existing PRE notions only consider
that (1) as long as the users are honest, the proxy learns nothing about any
plaintext, and (2) if proxies and users collude they do not learn anything about
the ciphertexts which are not intended to be re-encrypted. We go a step further
and consider malicious users in the face of an honest proxy in the forward-
secret and, hence, also in the plain PRE sense. That is, we want to enforce that a
malicious user can only read the ciphertexts which were actually re-encrypted by
the proxy and can not tell anything about the ciphertexts which can potentially
be re-encrypted. We capture this via the notion of fs-RIND-CPA security. In this
scenario, an adversary receives re-encrypted ciphertexts generated by an honest
proxy, that it is able to decrypt. Nevertheless, for all other level-2 ciphertexts,
the adversary should still be unable to recover the plaintext. In Experiment 5,
we model this notion where the adversary gets access to a ReEnc-oracle which
is in possession of the re-encryption key from the target user to the adversary.
We say A is valid if A only outputs 1 ≤ j∗ ≤ n and equal length messages
|M0| = |M1|.
Definition 8 (fs-RIND-CPA). For a polynomially bounded function n(·) and
a PPT adversary A, we define the advantage function for A in the sense of
fs-RIND-CPA as

Advfs−rind−cpa
fs−PRE,A (1k, n(k)) :=

∣
∣
∣
∣
Pr

[

Expfs−rind−cpa
fs−PRE,A (1k, n(k)) = 1

]

− 1
2

∣
∣
∣
∣
.
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Experiment Expfs−rind−cpa
fs−PRE,A (1k, n)

pp ← Setup(1k), (pk, sk(0), ek(0)) ← Gen(pp, n), b ←R {0, 1}
(j∗, pk∗, st) ← A(pp, n, pk)
(sk(j), ek(j)) ← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗]
rk ← ReGen(sk(j

∗), ⊥, pk∗)
(M0, M1, st) ← A{ReEnc(rk,·)}(st)
b∗ ← A(st,Enc(2)(pk, Mb, j

∗))
if b = b∗ return 1, else return 0

Experiment 5. The fs-RIND-CPA security experiment for fs-PRE schemes.

A fs-PRE scheme is fs-RIND-CPA if for all polynomially bounded n(·) and
any valid PPT A there exists a negligible function ε such that Advfs−rind−cpa

fs−PRE,A

(1k, n(k)) < ε(k), where Expfs−rind−cpa
fs−PRE,A is defined in Experiment 5.

We distinguish fs-PRE schemes based on this last notion:

Definition 9 (fs-PRE−-security). If a fs-PRE scheme is fs-IND-CPA-1 and
fs-IND-CPA-2 secure, then we say this fs-PRE scheme is fs-PRE−-secure.

Definition 10 (fs-PRE+-security). If a fs-PRE scheme is fs-IND-CPA-1, fs-
IND-CPA-2, and fs-RIND-CPA secure, then we say this fs-PRE scheme is fs-
PRE+-secure.

3.3 Stronger Security for Proxy Re-encryption

To conclude the discussion of the security model of fs-PRE schemes, we first
observe that it is interesting to consider the notion of fs-RIND-CPA security
in the classical setting for PRE, i.e., Experiment 5 with fixed n = 1 and no
call to the Evo algorithm. The notion again ensures involvement of the proxy
for the re-encryption of every ciphertext, and can, thus, enforce that malicious
users cannot learn anything beyond the explicitly re-encrypted ciphertexts. This
immediately leads to a stronger security model for classical PRE (given in the
full version), which we denote as PRE+. In particular, it extends the classical
model [4], dubbed PRE−, which covers standard (IND-CPA) and master-secret
security definitions, by our fs-RIND-CPA security notion ported to the PRE
setting. As our fs-IND-CPA-i notions for fs-PRE are generalizations of the estab-
lished standard security notions of PRE as defined in [4], we consequently obtain
a PRE+-secure PRE scheme from any fs-PRE+-secure fs-PRE scheme. We formal-
ize this observation via Lemma 2.

Lemma 2. Any fs-PRE+-secure fs-PRE scheme yields a PRE+-secure PRE
scheme.

In the full version, we formally prove this lemma. This immediately gives us
a construction for a PRE+-secure PRE scheme.

Corollary 1. Scheme 3 when limited to a single time period, i.e., setting n = 1,
represents a PRE+-secure PRE scheme.
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4 Constructing Fs-PRE from Binary Tree Encryption

In this section we present our construction of fs-PRE which is based on BTEs.
Along the way, we introduce the notion of forward-secret delegatable PKE (fs-
DPKE) as intermediate step. Such a fs-DPKE scheme then directly gives us a
first fs-PRE satisfying fs-PRE− security. To extend our construction to satisfy the
stronger fs-PRE+ notion generically, we require a relatively mild homomorphic
property of the fs-DPKE. This property is in particular satisfied by our fs-DPKE
instantiation, which yields the first fs-PRE scheme with strong security.

4.1 Forward-Secret Delegatable Public-Key Encryption

We now formalize fs-DPKE. In such a scheme decryption rights within a public-
key encryption scheme can be delegated from a delegator to a delegatee and
secret keys of delegators can be evolved so that a secret key for some period ei

is no longer useful to decrypt ciphertexts of prior periods ej with j < i.

Definition 11 (fs-DPKE). A forward-secret delegatable PKE (fs-DPKE) scheme
with message space M consists of the PPT algorithms (Setup,Gen,Evo,Del,Enc,
Dec,DelEvo,DelDec) as follows:

Setup(1k) : On input security parameter k, outputs public parameters pp.
Gen(pp, n) : On input public parameters pp, and maximum number of periods n,

outputs public, secret and evolution keys (pk, sk(0), ek(0)).
Evo(sk(i), ek(i)) : On input secret key sk(i), and evolution key ek(i) for period

i ∈ {0, . . . , n − 2}, outputs secret key sk(i+1) and evolution key ek(i+1) for
period i + 1.

Del(sk(i)A , ek
(i)
A , pkB) : On input secret key sk

(i)
A and evolution key ek

(i)
A (or ⊥) for

A and period i ∈ {0, . . . , n − 1}, and public key pkB for B, outputs delegated
key dk(i) and delegated evolution key dek(i) (or ⊥) for period i.

Enc(pk,M, i) : On input a public key pk, a message M ∈ M, and period i ∈
{0, . . . , n − 1}, outputs a ciphertext C.

Dec(sk(i), C) : On input a secret key sk(i), for period i ∈ {0, . . . , n − 1}, and
ciphertext C, outputs M ∈ M ∪ {⊥}.

DelEvo(dk(i), dek(i)) : On input a delegation key dk(i) and delegated evolution key
dek(i) for period i ∈ {0, . . . , n−2}, output delegation key dk(i+1) and delegated
evolution key dek(i+1) for period i + 1.

DelDec(sk(i)B , dk
(i)
A→B , CA) : On input secret key sk

(i)
B for B and period i ∈ {0, . . . ,

n − 1}, delegation key dk
(i)
A→B from A for B and period i, and ciphertext CA

for A, outputs M ∈ M ∪ {⊥}.
We note that the existence of the DelEvo algorithm is entirely optional. If pro-
vided, it allows the user in possession of a delegation key to evolve it for later
periods without additional interaction with the delegator.

Correctness. For correctness we require that period i ciphertexts encrypted
for user u can be decrypted if one is in possession of the secret key of u evolved
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to that period or one possess a delegation key of u to another user u′ and the
secret key for u′ for that period. More formally, we require that for all security
parameters k ∈ N, all public parameters pp generated by Setup(1k), all number
of periods n ∈ N, all users U ∈ N, all key tuples (pku, sk(0)u , ek(0)u )u∈[U ] generated
by Gen(pp, n), any period i ∈ {0, . . . , n − 1}, for any u ∈ [U ], any evolved
keys (sk(i)u , ek(i)u ) generated by Evo from (sk(0)u , ek(0)u ), for all u′ ∈ [U ], u �= u′,
any (potentially evolved) delegation key dk

(i)
u→u′ for period i generated using

Del from a (potentially evolved) secret key and the target public key, and all
messages M ∈ M it holds that

Dec(sk(i)u ,Enc(pku,M, i)) = DelDec(sk(i)u′ , dk
(i)
u→u′ ,Enc(pku,M, i)) = M.

Security notions. The forward-secret IND-CPA notion is a straight-forward
extension of the typical IND-CPA notion: the adversary selects a target period
and gets access to secret and evolution keys of the targeted user for the selected
period and is able to request delegation keys with honest and dishonest users
for that period. The adversary then engages with an IND-CPA style challenge
for the previous period. For the experiment, which is depicted in Experiment 6,
the environment keeps a list of an initial empty list of honest users HU.

Gen(h)(pp, n) : Run (pk, sk, ek) ← Gen(pp, n), set HU ← HU ∪ {(pk, sk, ek)}, and
return pk.

Del(h)(j, pku, pk) : On input a period j, a public key pku and a public key pk,
abort if (pku, ·) �∈ HU. Otherwise, look up sk(0)u , ek(0)u corresponding to pku

from HU, set (sk(i)u , ek(i)u ) ← Evo(sk(i−1)
u , ek(i−1)

u ) for i ∈ [j] if j > 0, and
return Del(sk(j)u , ek(j)u , pk).

Del(h
′)(j, sk(0), ek(0), pku) : On input a period j, a secret key sk(0), a evolu-

tion key ek(0), and a public key pku, abort if (pku, ·) �∈ HU. Otherwise,
set (sk(i), ek(i)) ← Evo(sk(i−1), ek(i−1)) for i ∈ [j] if j > 0, and return
Del(sk(j), ek(j), pku).

Experiment Expfs−ind−cpa
fs−DPKE,A(1k, n)

pp ← Setup(1k), (pk, sk(0), ek(0)) ← Gen(pp, n), b ←R {0, 1}
(j∗, st) ← A(pp, n, pk)
sk(j), ek(j) ← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗].
O ← {Gen(h),Del(h)(j∗ − 1, ·, pk),Del(h′)(j∗ − 1, sk(0), ek(0), ·)}
(M0, M1, st) ← AO(st, sk(j

∗), ek(j
∗)))

b∗ ← A(st,Enc(pk, Mb, j
∗ − 1))

if b = b∗ return 1, else return 0

Experiment 6. The fs-IND-CPA security experiment for a fs-DPKE scheme.
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Definition 12 (fs-IND-CPA). For a polynomially bounded function n(·) > 1,
a PPT adversary A, we define the advantage function in the sense of fs-IND-
CPA as

Advfs−ind−cpa
fs−DPKE,A(1k, n(k)) :=

∣
∣
∣
∣
Pr

[

Expfs−ind−cpa
fs−DPKE,A(1k, n(k)) = 1

]

− 1
2

∣
∣
∣
∣
.

If for all n(·) > 1, and any A there exists a negligible function ε such that
fs − DPKE, A(1k, n(k)) < ε(k), then a fs-DPKE scheme is fs-IND-CPA secure.

4.2 Constructing fs-DPKE from BTE

Now we construct a fs-DPKE scheme from a BTE scheme by applying the CHK
compiler to a BTE and combining it with an F-HPKE scheme for handling the
delegation keys, i.e., the fs-DPKE key contains a BTE and an F-HPKE key. The
evolution key contains the secret and derivation keys for all right siblings on the
path from the root node to wi as well as the evolution key for wi. The evolution
algorithms traverse the tree in a depth-first manner, hence the evolution keys
are viewed as stack and when visiting a node, the derived secret and derivation
keys are pushed onto the stack. To simplify the presentation of the scheme, we
define an algorithm DFEval that performs the stack manipulation on a stack of
pairs:

DFEval(s(w
i)

1 , s,Eval) : On input the stack s and first element s
(wi)
1 of the pair

for node wi, an algorithm Eval, perform the following steps:
– Pop the topmost element, (⊥, s

(wi)
2 ), from the stack s.

– If wi is an internal node, set s(w
i0), s(w

i1) ← Eval(s(w
i)

1 , s
(wi)
2 ) and push

s(w
i1), s(w

i0) onto s.
– Replace the topmost element, (s(w

i+1)
1 , s

(wi+1)
2 ), with (⊥, s

(wi+1)
2 ).

– Return s
(wi+1)
1 and the new stack s.

The overall idea is now to encrypt the BTE secret key of the current period
using the F-HPKE scheme’s public key of the target user. Using the homomor-
phic property of the encryption scheme, we are able to evolve the delegation keys
in the same way as the secret keys of the nodes. In particular, we will require that
the key derivation algorithm of the BTE can be represented by functions in F ,
i.e., DerBTE = (fi)i∈[m]. For notional simplicity, we will write EvalHPKE(DerBTE, ·)
instead of repeating it for each fi that represents DerBTE.

For our fs-DPKE scheme we need keys of different users to live in compatible
key spaces. To that end, we introduce Setup algorithms for both schemes that
fix the key spaces and we change the key generation algorithms to take the
public parameters instead of the security parameter as argument. Note that
when using the BTE from [15], linear ElGamal [11] as F-HPKE to encrypt the
BTE keys suffices for our needs.

Our construction. The fs-DPKE scheme is detailed in Scheme 1. We note that
only the definition of DelEvo relies on the homomorphic properties of the HPKE
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Let (SetupBTE,GenBTE,DerBTE,EncBTE,DecBTE) be a BTE scheme and (SetupHPKE,
GenHPKE,EncHPKE,DecHPKE,EvalHPKE) a compatible F-HPKE scheme with DerBTE ∈ F .

Setup(1k) : Set ppBTE ← SetupBTE(1
k), ppHPKE ← SetupHPKE(1

k), and return (ppBTE,
ppHPKE).

Gen(pp, n) : Parse pp as (ppBTE, ppHPKE). Choose � such that n < 2�+1, set (pkBTE,

sk(ε)BTE, dk
(ε)
BTE) ← GenBTE(ppBTE, �) and (pkHPKE, skHPKE) ← GenHPKE(ppHPKE), and

return ((pkBTE, pkHPKE), (sk
(ε)
BTE, skHPKE), (⊥, dk(ε)BTE)).

Evo(sk(i), ek(i)) : Parse sk(i) as (sk(w
i)

BTE , skHPKE) and view ek(i) organized as a stack of

secret key and evolution keys pairs. Set sk(w
i+1)

BTE , ek(i+1) ← DFEval(sk(w
i)

BTE , ek(i),

DerBTE), and sk(i+1) ← (sk(w
i+1)

BTE , skHPKE). Return sk(i+1), ek(i+1).
Enc(pk, M, i) : Parse pk as (pkBTE, ·), and return EncBTE(pkBTE, M, wi).

Dec(sk(i), C) : Parse sk(i) as (sk(w
i)

BTE , ·), and return DecBTE(sk
(wi)
BTE , C).

Del(sk(i)A , ek(i)A , pkB) : Parse sk(i)A as (sk(w
i)

BTE , ·) and pkB as (·, pkHPKE). If ek
(i)
A = ⊥, return

EncHPKE(pkHPKE, sk
(wi)
BTE ). Otherwise parse ek(i)A as (sk(w)

BTE, dk
(w)
BTE)w∈W , (·, dk(wi)

BTE ), and
set dk(w) ← EncHPKE(pkHPKE, sk

(w)
BTE) and dek(w) ← EncHPKE(pkHPKE, dk

(w)
BTE) for w ∈

W ∪ {wi}. Set dk(i) ← dk(w
i) and dek(i) ← (dk(w), dek(w))w∈W , (⊥, (dek(w

i))) and
return dk(i), dek(i).

DelEvo(dk(i)A→B , dek(i)A→B) : Parse dk(i)A→B as dk(w
i)

A→B and view dek(i)A→B organized as

a stack of encrypted evolution keys. Set dk(w
i+1)

A→B , dek(i+1)
A→B ← DFEval(dk(w

i)
A→B ,

dek(i)A→B ,EvalHPKE(DerBTE, ·)), and dk(i+1) ← dk(w
i+1)

BTE . Return dk(i+1), dek(i+1).

DelDec(sk(i)B , dk(i)A→B , CA) : Parse sk(i)B as (·, skHPKE), set sk(w
i)

BTE ← DecHPKE(skHPKE,

dk(i)A→B), and return DecBTE(sk
(wi)
BTE , CA).

Scheme 1. fs-DPKE scheme from BTE scheme and a compatible HPKE scheme.

scheme. So to obtain a fs-DPKE scheme without DelEvo algorithm, a compatible
PKE scheme is sufficient. Yet, we will require the homomorphic properties later to
achieve a suitable notion of adaptability regardless of the availability of DelEvo.

Similar to Canetti et al.’s construction, our fs-DPKE scheme inherits the
fs-IND-CPA security from the BTE’s IND-SN-CPA security.

Theorem 1. If instantiated with an IND-SN-CPA secure BTE scheme and a
IND-CPA secure HPKE scheme, then Scheme 1 is a fs-IND-CPA secure fs-DPKE.

Proof. We prove the theorem using a sequence of games. We denote by W all
the relevant nodes in the binary tree for period j. We note that the size of W is
bounded by log2(n). We index W as wi for i ∈ [|W |].
Game 0: The original game.
Game 1i,j (1 ≤ i ≤ qDelh , 1 ≤ j ≤ 2|W |): As the previous game, but we replace
all HPKE ciphertexts up to the j-th one in the i-th query with ciphertexts
encrypting random plaintexts. That is, we modify the Delh

′
in the i-th query as

follows:
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Delh
′
(j, sk(0), ek(0), pki): Up to the j-th call to EncHPKE, encrypt a uni-

formly random value.
Transition0→11,1 , Transition1i,j→1i,j+1 , Transition1i,2W |→1i+1,1 : A distin-
guisher D0→11,1 (respectively D1i,j→1i,j+1 or D1i,2|W |→1i+1,1) is an IND-CPA
adversary against the HPKE scheme. We construct a reduction where we let
C be a IND-CPA challenger. We modify Delh

′
in the i-th query in the following

way:
Delh

′
(j, sk(0), ek(0), pki′): Simulate everything honestly, but on the j-th

query choose r uniformly at random and run

c ← C(sk(w(j/2)−1)

BTE , r) if j is odd and c ← C(ek(wj/2)

BTE , r) if j is even,

where c ← C(m0,mb) denotes a challenge ciphertext with respect to m0

and m1.
Now, the bit b chosen by C switches between the distributions of the Games.

In Game 1q
Delh

,2|W | all ciphertexts obtainable from Delh
′
are with respect to ran-

dom values. Now, an adversary B winning Game 1q
Delh

,2|W | can be transformed
into a IND-SN-CPA adversary A against the underlying BTE scheme:

1. When A is first started on 1k, �, choose i∗ ←R [n] and output w(i∗−1).
2. When A is started on pkBTE, (sk

(w), dk(w))w∈W , compute (pkHPKE, skHPKE) ←
GenHPKE(1k). The secret key skHPKE is stored in the state st and we extend
the public key to pk ← (pkBTE, pkHPKE). Now start B on the extended public
key, i.e. (j∗, st) ← B(1k, n, pk). If i∗ �= j∗, output a random bit and halt.
Otherwise we have the secret-derivation key pairs of all nodes that are right
siblings on the path from the root node to w(j∗−1) and (if they exist) all child
nodes of w(j∗−1), hence we are able to simulate all oracle queries from B
honestly. Similarly, we can compute (sk(j

∗), dk(j
∗)) from the given keys. Thus

we run BO(st, sk(j
∗), dk(j

∗)) and forward its result.
3. When A is finally started on the challenge ciphertext, the ciphertext is simply

forwarded to B and when B outputs the bit b, A returns b and halts.

When B is running within A and j∗ = i∗, B has exactly the same view as in
Game 1q

Genh
,2|W |. In this case the probability of A to win is exactly the same as

the winning probability of B, and Game 1q
Genh

,2|W | is computationally indistin-
guishable from the initial game. The random guess of i∗ so that i∗ = j∗ induces a
loss of 1

n , which is however bounded by a polynomial in the security parameter.
�

4.3 Constructing fs-PRE from fs-DPKE

Now we present a construction of a fs-PRE+-secure fs-PRE scheme from a fs-
DPKE scheme. Therefore, we define additional properties of fs-DPKE and show
that a fs-PRE can be directly obtained from a fs-DPKE. For our transformation to
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work, we need to define an additional algorithm that allows us to homomorphi-
cally shift ciphertexts and delegation keys. That is, ciphertexts and delegation
keys are modified in such a way that the delegation keys look like randomly
distributed fresh keys, which are only useful to decrypt ciphertexts adapted to
this key. Formally, we introduce an algorithm Adapt that enables this adaption:

Adapt(dk, C) : On input a delegation key dk, a ciphertext C, outputs an adapted
delegation key dk′ and ciphertext C ′.

Since the delegation keys in our construction are encrypted BTE secret keys, we
essentially adapt secret keys and ciphertexts from a BTE. We will see that this
adaption is possible as long as the HPKE scheme used to encrypt the BTE keys
provides a suitable homomorphism on the message space.

To adapt ciphertexts and delegation keys we extend correctness to addi-
tionally require that for any message M encrypted under the public key of A,
any delegation key dk

(i)
A→B , and any adapted delegation key-ciphertext pairs

(dk′, C ′) ← Adapt(dk(i)A→B , CA), it holds that M = DelDecDPKE(sk
(i)
B , dk′, C ′).

As security notion we introduce the fs-ADAP-IND-CPA notion, where the
adversary may see multiple adapted delegation keys and ciphertexts, but the
adversary should be unable to win an IND-CPA game for non-adapted cipher-
texts. We give the formal definition of the security experiment in Experiment
7. This notion gives the delegator more control over the ciphertexts that should
be readable for the delegatee. If given the delegation key, the delegatee can
always decrypt all ciphertexts, but if just given an adapted delegation key, only
a selected subset of ciphertexts is decryptable.

Experiment Expfs−adap−ind−cpa
fs−DPKE,A (1k, n)

pp ← Setup(1k), (pk, sk(0), ek(0)) ← Gen(pp, n), b ←R {0, 1}
(j∗, pk∗, st) ← A(pp, n, pk)
sk(j), ek(j) ← Evo(sk(j−1), ek(j−1)) for j ∈ [j∗], dk ← Del(sk(j

∗), ⊥, pk∗)
(M0, M1, st) ← A{Adapt(dk,·)}(st)
b∗ ← A(st,Enc(pk, Mb, j

∗))
if b = b∗ return 1, else return 0

Experiment 7. The fs-ADAP-IND-CPA security experiment for a fs-DPKE
scheme.

Definition 13 (fs-ADAP-IND-CPA). For a polynomially bounded function
n(·) > 1, a PPT adversary A, we define the advantage function in the sense of
fs-IND-CPA as

Advfs−adap−ind−cpa
fs−DPKE,A (1k, n(k)) :=

∣
∣
∣
∣
Pr

[

Expfs−adap−ind−cpa
DPKE,A (1k, n(k)) = 1

]

− 1
2

∣
∣
∣
∣
.

If for all n(·) > 1, and any A there exists a negligible function ε such that
Advfs−adap−ind−cpa

fs−DPKE,A (1k, n(k)) < ε(k), then a fs-DPKE scheme is fs-ADAP-IND-
CPA secure.
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For Scheme 1, this adaption can be achieved solely from key-homomorphic prop-
erties of the BTE and homomorphic properties of the HPKE, respectively. Sub-
sequently, we define the required homomorphisms. Our definitions are inspired
by [2,40]. We focus on schemes where the secret/derived key pairs, and public
keys live in groups (G,+), and (H, ·), respectively. We will require two different
properties: first, the public key is the image of the secret key under a group
homomorphism, and second, given two secret keys with a known difference, we
can map the binary tree of derived keys from one key to the other key. In other
words, the difference in the keys propagates to the derived keys.

Definition 14. Let Ω be a BTE scheme with secret/derived key space (G,+)
and public key space (H, ·).
1. The scheme Ω provides a secret-key-to-public-key homomorphism, if there

exists an efficiently computable group homomorphism μ : G → H such that
for all (pk, sk) ← Gen, it holds that pk = μ(sk).

2. The scheme Ω provides a derived-key homomorphism, if there exists a family
of efficiently computable group homomorphisms ν(w) : G → G

2 such that for
all (pk, sk(ε)) ← Gen, all nodes w it holds that (sk(w0), sk(w1)) = ν(w)(sk(w))
and for all messages M it holds that Dec(sk(w),Enc(pk,M,w)) = M .

We denote by Φ+ the set of all possible secret key differences in G. Alternatively,
it is possible to view Φ+ as set of functions representing all linear shifts in G

and we simply identify each shift by an element Δ ∈ G.

Definition 15. A BTE scheme Ω is called Φ+-key-homomorphic, if it provides
both a secret-key-to-public-key homomorphism and a derived key homomorphism
and an additional PPT algorithm Adapt, defined as:

Adapt(pk, C,Δ) : On input a delegation key dk, a ciphertext C and a secret key
difference Δ, outputs a public key pk′ and a ciphertext C ′.

such that for all Δ ∈ Φ+, and all (pk, sk) ← Gen(. . .), all message M , and all
C ← Enc(pk,M), and (pk′, C ′) ← Adapt(pk, C,Δ) it holds that pk′ = pk · μ(Δ)
and Dec(sk(w) + ν(w)(Δ), C ′) = M .

Definition 16 (Adaptability of ciphertexts). A Φ+-key-homomorphic BTE
scheme provides adaptability of ciphertexts, if for every security parameter k ∈
N, any public parameters pp ← Setup(1k), every message M and every period
j, it holds that Adapt(pk,Enc(pk,M, j),Δ) and (pk · μ(Δ),Enc(pk · μ(Δ),M, j))
as well as (sk, pk) and (sk′, μ(sk′)) are identically distributed, where (pk, sk) ←
Gen(pp, n), sk′ ←R G and Δ ← Φ+.

Next, we discuss the BTE from [15] with respect to our notion of ciphertext
adaptability. We first recall the BTE scheme in Scheme 2 where BGGen is a
bilinear group generator. By [15, Proposition 1] this scheme is IND-SN-CPA
secure if the decisional BDH assumption holds relative to BGGen.

Now we show that Scheme 2 also provides adaptability of ciphertexts:
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Setup(1k) : Run to BGGenp(1k) to generate groups G1,G2 of prime order q and a
bilinear map e and select a random generator P ∈ G1. Set pp ← (G1,G2, e, q, P )
and return pp.

Gen(pp, �) : Choose α ← Zq and set Q ← α · P . Set sk(ε) ← αH(ε) and pk ← (Q, H).
Return (pk, sk(ε)).

Der(sk(i)) : Parse sk(w) as (Rw|1, . . . , Rw, Sw). Choose r0, r1 ←R Zq and set
Rwi ← riP and Swi ← Sw + ri · H(wi) for i ∈ [2] and return
((Rw|1, . . . , Rw, Rw0, Sw0), (Rw|1, . . . , Rw, Rw1, Sw1))).

Enc(pk, M, i) : Choose γ ← Zq and set C ← (γ · P, γ · H(w|1), . . . , γ · H(w), M · e(Q, γ ·
H(ε))). Return C.

Dec(sk(w), C) : Parse sk(w) as (Rw|1, . . . , Rw, Sw) and C as (U0, . . . , Ut, V ). Return M =
V/d where

d =
e(U0, Sw)

∏t
i=1 e(Rw|i, Ui)

.

Scheme 2. BTE scheme from [15]

Lemma 3. Scheme 2 provides adaptability of ciphertexts under shared H.

Proof. We show the existence of the homomorphisms and give the Adapt algo-
rithm. Note that the master secret key can easily be viewed as containing α,
hence, the secret-to-public-key homomorphism is simply μ : α �→ αP . As the
Der algorithm simply computes sums, the existence of the homomorphism is
clear.

We now show the existence of Adapt:

Adapt(pk, C,Δ) : Parse pk as (Q, �,H) and C as (U0, . . . , Ut, V ). Let Q′ ← Q +
Δ · P and set pk′ ← (Q′, �,H). Let V ′ ← V e(U0,Δ · H(ε)) and set C ′ ←
(U0, . . . , Ut, V

′) and return (pk′, C ′).

The adapted C ′ ciphertext is an encryption of the original message under the
public key Q′ = Q + Δ · P . �
Now, given any Φ+-key-homomorphic BTE scheme, it can be turned into an
adaptable fs-DPKE by defining Adapt in a publicly computable way as follows:

Adapt(dk(i)A→B , C) : Sample Δ ←R Φ+ and compute dkΔ ← EncHPKE(pkB , ν(wi)

(Δ)), and then dk′ ← EvalHPKE(+, dk
(i)
A→B , dkΔ). Set (·, C ′) ← AdaptBTE(pkA,

C,Δ). Return (dk′, C ′).

Theorem 2. If in addition to the premise in Theorem1 the BTE scheme also
provides adaptability of ciphertexts, then Scheme 1 is a fs-ADAP-IND-CPA
secure fs-DPKE scheme.

Proof. We prove this theorem with a sequence of games.

Game 0: The original game.
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Game 1: We modify the simulation of the Adapt oracle as follows, where we
denote the modified oracle by Adapt′:
Adapt′( sk(i), pk, pk∗ , C) : Parse sk(i) as (sk(w

i)
BTE , ·), pk as (pkBTE, ·), and pk∗ as

(·, pk∗
HPKE). Choose Δ ← Φ+, run

dk′ ← EncHPKE(pk∗
HPKE, sk

(wi)
BTE + ν(wi)(Δ)) and

C ′ ← EncBTE(pk · μ(Δ),DecBTE(sk(i), C), i) . Return (dk′, C ′).

Transition0→1: The distributions of Game 0 and Game 1 are indistinguishable
under the BTE’s adaptability of ciphertexts.

Game 2: We further modify the simulation of Adapt′ as follows:
Adapt′( sk(i), pk∗ , C) : Parse sk(i) as (sk(w

i)
BTE , ·), pk as (pkBTE, ·), and pk∗ as

(·, pk∗
HPKE). Choose pk′

BTE, sk
′,(ε)
BTE , ek

′,(ε)
BTE ← GenBTE and evolve the secret

key to period i, run

dk′ ← EncHPKE(pk∗
HPKE, sk

′,(wi)
BTE ) and

C ′ ← EncBTE(pk′
BTE,DecBTE(sk

(i), C), i) . Return (dk′, C ′).

Transition1→2: The change is conceptual.

In Game 2 all the secret BTE keys the adversary gets are chosen independently
from the challenge key. Hence, Game 2 is a standard IND-CPA game and thus
the success probability of Game 2 is negligible by Theorem 1. �
Now, given an adaptable fs-DPKE scheme, we use the Adapt algorithm to obtain
a fs-PRE+ secure fs-PRE scheme. While the algorithms Setup, Gen, Evo, Enc(i),
and Dec(i) can simply be lifted from the fs-DPKE scheme, we note that for
each period j in the fs-PRE scheme, we use two periods, i.e., 2j − 1 and 2j, of
the fs-DPKE scheme. The period 2j − 1 is used for level 1 ciphertexts whereas
the period 2j is used for level 2 ciphertexts13. We use DelDPKE and DelEvoDPKE

for ReGen and ReEvo, respectively. For the re-encryption algorithm ReEnc, we
apply Adapt. Dec(1) for re-encrypted ciphertexts then decrypts the ciphertext
by running DelDecDPKE on the adapted delegation key and ciphertext. The full
scheme is presented in Scheme 3.

We prove that our scheme is both fs-IND-CPA-1 and fs-IND-CPA-2 secure.
Both security notions follow from the fs-IND-CPA security of the underlying
fs-DPKE scheme. In contrast, to achieve fs-RIND-CPA, we require an fs-ADAP-
IND-CPA fs-DPKE scheme.

Theorem 3. If instantiated with a fs-IND-CPA and fs-ADAP-IND-CPA secure
fs-DPKE scheme, Scheme 3 is a fs-PRE+-secure fs-PRE scheme.

13 One can see the keys for period 2j as weak keys in the sense of [4, Third Attempt]
whereas the keys for period 2j − 1 constitute the master secret keys.
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Let (SetupDPKE,GenDPKE,EvoDPKE,DelDPKE,EncDPKE,DecDPKE,AdaptDPKE) be fs-DPKE
scheme with adaption of ciphertexts and delegation keys.

Setup(1k) : Return SetupDPKE(1
k).

Gen(pp, n) : Set (pkDPKE, sk
(0)
DPKE, ek

(0)
DPKE) ← GenDPKE(pp, 2n+1), obtain (sk(1)DPKE, ek

(1)
DPKE)

← EvoDPKE(sk
(0)
DPKE, ek

(0)
DPKE), and return (pkDPKE, sk

(0), ek(0)), where

sk(0) ← (sk(0)DPKE, sk
(1)
DPKE), ek(0) ← (ek(0)DPKE, ek

(1)
DPKE).

Evo(sk(i), ek(i)) : Parse (sk(i), ek(i)) as ((sk(2i)
DPKE, sk

(2i+1)
DPKE ), (ek(2i)

DPKE, ek
(2i+1)
DPKE )) and return

(sk(i+1), ek(i+1)) = (sk(2i+2)
DPKE , sk(2i+3)

DPKE ), (ek(2i+2)
DPKE , ek(2i+3)

DPKE )), where

(sk(2i+1+j)
DPKE , ek(2i+1+j)

DPKE ) ← EvoDPKE(sk
(2i+j)
DPKE , ek(2i+j)

DPKE ) for j ∈ [2].

Enc(1)(pk, M, i) : Return EncDPKE(pk, M, 2i).
Enc(2)(pk, M, i) : Return EncDPKE(pk, M, 2i + 1).

Dec(1)(sk(i), C) : Parse sk(i) as (sk(2i)
DPKE, sk

(2i+1)
DPKE ) and return DecDPKE(sk(2i), C) if C

was not re-encrypted. Otherwise parse C as (C1, rk) and return DelDecDPKE(
sk(2i+1), rk, C1).

Dec(2)(sk(i), C) : Parse sk(i) as (sk(2i)
DPKE, sk

(2i+1)
DPKE ) and return DecDPKE(sk(2i+1), C).

ReGen(sk(i)A , ek(i)A , pkB) : Parse (sk(i), ek(i)) as ((sk(2i)
DPKE, sk

(2i+1)
DPKE ), (ek(2i)

DPKE, ek
(2i+1)
DPKE )),

and DelDPKE(sk
(2i+1)
A , ek(2i+1)

A , pkB).
ReEvo(rk(i)A→B , rek(i)A→B) : Return DelEvoDPKE(DelEvoDPKE(rk

(i)
A→B , rek(i)A→B)).

ReEnc(rk(i)A→B , CA) : Choose τ ←R G and return AdaptDPKE(rk
(i)
A→B , CA, τ).

Scheme 3. fs-PRE scheme from an adaptable fs-DPKE scheme.

Proof. Informally speaking, the security experiment for fs-IND-CPA-2 with a
fixed period j∗ corresponds to the fs-IND-CPA experiment for fs-DPKE for period
2j∗. We can build a straightforward reduction from an adversary against fs-IND-
CPA-2, A2 to fs-IND-CPA for fs-DPKE:

– When started on pp, n and pk, run (j∗, st) ← A2(pp, �n
2 +1�, pk). Set j′ ← 2j∗

and return (j′, st).
– When started on st, sk

(j′)
DPKE, ek

(j′)
DPKE, we simulate the ReGen(h) and ReGen(h

′)

oracles using Del(h) and Del(h
′). Indeed, Del(h) and Del(h

′) return delegation
keys for period j′−1 = 2j∗ −1, which are re-encryption keys for period j∗ −1.
Using Evo we evolve sk

(j′)
DPKE, ek

(j′)
DPKE to period j′ + 1. Set (sk(j

∗), ek(j
∗)) ←

((sk(j
′)

DPKE, sk
(j′+1)
DPKE ), (ek(j

′)
DPKE, ek

(j′+1)
DPKE )) and start A2 on st, (sk(j

∗), ek(j
∗)) and

simply forward the result.
– Finally, when started on st and Cj′−1, Cj′−1 is a level 2 ciphertext for j∗ − 1.

Hence we start A2 on the ciphertext and return its’ result.

To show fs-IND-CPA-1 security, we perform a similar reduction:

– When started on pp, n and pk, run (j∗, st) ← A1(pp, �n
2 + 1�, pk). Set j′ ←

2j∗ − 1 and return (j′, st).
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– When started on st, sk
(j′)
DPKE, ek

(j′)
DPKE, we simulate the ReGen(h) and ReGen(h

′)

oracles using Del(h) and Del(h
′) and by running DelEvo on the result. Indeed,

Del(h) and Del(h
′) return delegation keys for period j′ − 1 = 2j∗ − 2,

hence after applying DelEvo we obtain re-encryption keys for period j∗ − 1.
ReGen(d) is simulated honestly by delegating sk

(j′)
DPKE, ek

(j′)
DPKE to a dishonest

user. Using Evo we evolve sk(j
′)

DPKE, ek
(j′)
DPKE to period j′+2. Set (sk(j

∗), ek(j
∗)) ←

((sk(j
′+1)

DPKE , sk
(j′+2)
DPKE ), (ek(j

′+1)
DPKE , ek

(j′+2)
DPKE )) and start A1 on st, (sk(j

∗), ek(j
∗)) and

simply forward the result.
– Finally, when started on st and Cj′−1, Cj′−1 is a level 1 ciphertext for j∗ − 1.

Hence we start A1 on the ciphertext and return its’ result.

To show receiver-IND-CPA security we build an fs-ADAP-IND-CPA adversary
against the fs-DPKE scheme. The fs-RIND-CPA adversary is denoted as Ar.

– When started on pp, n and pk, run (j∗, st) ← Ar(pp, �n
2 + 1�, pk). Set j′ ←

2j∗ + 1 and return (j′, st).
– When started on st, we can simulate ReEnc honestly using Adapt.
– Wen started on st and C, the ciphertext is a level 2 ciphertext for period j∗,

hence we return Ar(st, C).

Note that all values are consistently distributed in all three reductions. �

4.4 Separating fs-PRE− from fs-PRE+

To expand on the gap between fs-PRE+ and fs-PRE− schemes and to provide an
explicit separation, we construct a counterexample. In particular, it is clear that
every scheme that satisfies fs-PRE+ also satisfies fs-PRE−. For our separation we
now present a scheme that is fs-PRE− but trivially violates fs-PRE+. The scheme
is also built from a fs-DPKE scheme and presented in Scheme 4. In this scheme
however, ReEnc simply embeds the delegation key in the re-encrypted ciphertext.
The shortcomings of this construction compared to Scheme 3 are obvious: once
the receiver is presented with one valid re-encrypted ciphertext, it can recover
the delegation key from that ciphertext and can decrypt all level 2 ciphertexts
for this period.

In the following Theorem, we first show that Scheme 4 is indeed fs-PRE−

secure, i.e., satisfies fs-IND-CPA-1 and fs-IND-CPA-2 security, but trivially does
not satisfy fs-RIND-CPA security and thus is not fs-PRE+ secure.

Theorem 4. Scheme 4 when instantiated with a fs-IND-CPA secure fs-DPKE
scheme satisfies fs-IND-CPA-1 and fs-IND-CPA-2 security, but not fs-RIND-
CPA security.

Proof. We follow the same strategy as for Theorem 3 to show fs-IND-CPA-2.

– When started on pp, n and pk, run (j∗, st) ← A2(pp, �n
2 +1�, pk). Set j′ ← 2j∗

and return (j′, st).
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Let (SetupDPKE,GenDPKE,EvoDPKE,DelDPKE,EncDPKE,DecDPKE) be fs-DPKE scheme.

Setup(1k) : Return SetupDPKE(1
k).

Gen(pp, n) : Set (pkDPKE, sk
(0)
DPKE, ek

(0)
DPKE) ← GenDPKE(pp, 2n+1), obtain (sk(1)DPKE, ek

(1)
DPKE)

← EvoDPKE(sk
(0)
DPKE, ek

(0)
DPKE), and return (pkDPKE, sk

(0), ek(0)), where

sk(0) ← (sk(0)DPKE, sk
(1)
DPKE), ek(0) ← (ek(0)DPKE, ek

(1)
DPKE).

Evo(sk(i), ek(i)) : Parse (sk(i), ek(i)) as ((sk(2i)
DPKE, sk

(2i+1)
DPKE ), (ek(2i)

DPKE, ek
(2i+1)
DPKE )) and return

(sk(i+1), ek(i+1)) = (sk(2i+2)
DPKE , sk(2i+3)

DPKE ), (ek(2i+2)
DPKE , ek(2i+3)

DPKE )), where

(sk(2i+1+j)
DPKE , ek(2i+1+j)

DPKE ) ← EvoDPKE(sk
(2i+j)
DPKE , ek(2i+j)

DPKE ) for j ∈ [2].

Enc(1)(pk, M, i) : Return EncDPKE(pk, M, 2i).
Enc(2)(pk, M, i) : Return EncDPKE(pk, M, 2i + 1).

Dec(1)(sk(i), C) : Parse sk(i) as (sk(2i)
DPKE, sk

(2i+1)
DPKE ) and return DecDPKE(sk(2i), C) if C

was not re-encrypted. Otherwise parse C as (C1, rk) and return DelDecDPKE(
sk(2i+1), rk, C1).

Dec(2)(sk(i), C) : Parse sk(i) as (sk(2i)
DPKE, sk

(2i+1)
DPKE ) and return DecDPKE(sk(2i+1), C).

ReGen(sk(i)A , ek(i)A , pkB) : Parse (sk(i), ek(i)) as ((sk(2i)
DPKE, sk

(2i+1)
DPKE ), (ek(2i)

DPKE, ek
(2i+1)
DPKE )),

and return (rk(i)A→B , rek(i)A→B), where

(rk(i)A→B , rek(i)A→B) ← DelDPKE(sk
(2i+1)
A , ek(2i+1)

A , pkB).

ReEvo(rk(i)A→B , rek(i)A→B) : Return DelEvoDPKE(DelEvoDPKE(rk
(i)
A→B , rek(i)A→B)).

ReEnc(rk(i)A→B , CA) : Return (CA, rk(i)A→B).

Scheme 4. fs-PRE scheme from a fs-DPKE scheme without adaption.

– When started on st, sk
(j′)
DPKE, ek

(j′)
DPKE, we simulate the ReGenh and ReGenh′

oracles using Delh and Delh
′
. Indeed, Delh and Delh

′
return delegation keys

for period j′ − 1 = 2j∗ − 1, which are re-encryption keys for period j∗ − 1.
Using Evo we evolve sk

(j′)
DPKE, ek

(j′)
DPKE to period j′ + 1. Set (sk(j

∗), ek(j
∗)) ←

((sk(j
′)

DPKE, sk
(j′+1)
DPKE ), (ek(j

′)
DPKE, ek

(j′+1)
DPKE )) and start A2 on st, (sk(j

∗), ek(j
∗)) and

simply forward the result.
– Finally, when started on st and Cj′−1, Cj′−1 is a level 2 ciphertext for j∗ − 1.

Hence we start A2 on the ciphertext and return its’ result.

To show fs-IND-CPA-1 security, we perform a similar reduction:

– When started on pp, n and pk, run (j∗, st) ← A1(pp, �n
2 + 1�, pk). Set j′ ←

2j∗ − 1 and return (j′, st).
– When started on st, sk

(j′)
DPKE, ek

(j′)
DPKE, we simulate the ReGenh and ReGenh′

oracles using Delh and Delh
′

and by running DelEvo on the result. Indeed,
Delh and Delh

′
return delegation keys for period j′ − 1 = 2j∗ − 2, hence

after applying DelEvo we obtain re-encryption keys for period j∗ − 1. ReGend
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is simulated honestly by delegating sk
(j′)
DPKE, ek

(j′)
DPKE to a dishonest user.

Using Evo we evolve sk
(j′)
DPKE, ek

(j′)
DPKE to period j′ + 2. Set (sk(j

∗), ek(j
∗)) ←

((sk(j
′+1)

DPKE , sk
(j′+2)
DPKE ), (ek(j

′+1)
DPKE , ek

(j′+2)
DPKE )) and start A1 on st, (sk(j

∗), ek(j
∗)) and

simply forward the result.
– Finally, when started on st and Cj′−1, Cj′−1 is a level 1 ciphertext for j∗ − 1.

Hence we start A1 on the ciphertext and return its’ result.

Following the initial observation on the recoverability of delegation keys, an
receiver-IND-CPA adversary is straightforward to define:

– When started on pp, n and pk, honestly generate a key (pk∗, sk(0), ek(0)) ←
Gen(pp, n) and store it in st. Choose j∗ ←R [n] and store it together with pk in
st, and return (j∗, pk∗, st).

– When started on st to output the challenge messages, choose
M0,M1,M2 ←R M. Invoke the ReEnc oracle as (·, dk) ← ReEnc(rk,Enc(2)

(pk,M2, j
∗)) and store M0,M1, dk in st. Return M0,M1, st.

– Now when started on st and the challenge ciphertext C, use dk stored in st
and obtain M ← DelDecDPKE(sk(2j∗+1), dk, C). Check for which i ∈ {0, 1}
M = Mi and return i.

Regardless of the chosen period the adversary always wins, rendering the scheme
insecure with respect to the fs-RIND-CPA notion. �
From this theorem we obtain the following corollary:

Corollary 2. fs-PRE+ is a strictly stronger notion than fs-PRE−.

Note that this also shows that for conventional PRE scheme there is a separa-
tion between the classical security notion of PRE (PRE−) as defined by Ateniese
et al. and the PRE+ notion.
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Abstract. Nowadays it is well known that randomness may fail due
to bugs or deliberate randomness subversion. As a result, the security of
traditional public-key encryption (PKE) cannot be guaranteed any more.
Currently there are mainly three approaches dealing with the problem of
randomness failures: deterministic PKE, hedged PKE, and nonce-based
PKE. However, these three approaches only apply to different application
scenarios respectively. Since the situations in practice are dynamic and
very complex, it’s almost impossible to predict the situation in which
a scheme is deployed, and determine which approach should be used
beforehand.

In this paper, we initiate the study of hedged security for nonce-based
PKE, which adaptively applies to the situations whenever randomness
fails, and achieves the best-possible security. Specifically, we lift the
hedged security to the setting of nonce-based PKE, and formalize the
notion of chosen-ciphertext security against chosen-distribution attacks
(IND-CDA2) for nonce-based PKE. By presenting two counterexamples,
we show a separation between our IND-CDA2 security for nonce-based
PKE and the original NBP1/NBP2 security defined by Bellare and Tack-
mann (EUROCRYPT 2016). We show two nonce-based PKE construc-
tions meeting IND-CDA2, NBP1 and NBP2 security simultaneously. The
first one is a concrete construction in the random oracle model, and the
second one is a generic construction based on a nonce-based PKE scheme
and a deterministic PKE scheme.
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1 Introduction

Background. It is well known that randomness plays a key role in cryptogra-
phy. For most cryptographic constructions, their security is guaranteed on con-
dition that the random coins employed are uniformly and independently chosen.
For example, IND-CCA security [19], one universally accepted security notion
for PKE, requires that the randomness employed during the encryption is uni-
formly chosen and independent of any other elements. However, randomness
may fail because of bugs or randomness subversion. Recently, it is well-known
that the randomness failures are actual threats, and bring new challenges to
cryptographic constructions and information security products.

As far as we know, there are mainly three kinds of PKE which have been
proposed to provide good privacy under randomness failures. The first one is
deterministic PKE (D-PKE) [1,4,9], where the encryption algorithm does not
need to use any randomness for encryption, and its security is guaranteed on
condition that the messages have high min-entropy. D-PKE was proposed to
provide fast search on encrypted data at first. Since the encryption does not use
randomness, D-PKE is an important class of PKE dealing with the subsequently
revealed problem of randomness subversion. The second one is hedged PKE (H-
PKE) [2,5], which can be seen as an extension of D-PKE. For hedged PKE, the
encryption algorithm is randomized, and its security is guaranteed only if the
messages and the randomness jointly have high min-entropy. The third one is
nonce-based PKE (N-PKE) [8], the encryption algorithm of which is randomized,
and the messages can be arbitrarily chosen. For each encryption, instead of taking
fresh randomness, the encryption algorithm takes a uniform seed, which can be
used repeatedly, and a nonce as input. A significant benefit brought by N-PKE is
that it’s not necessary for the senders to generate fresh, uniform and independent
randomness at every encryption. The security of N-PKE is guaranteed as long
as either the seed is confidential and the message-nonce pairs do not repeat, or
the seed is exposed but the nonces are unpredictable.

The above three approaches focus on different scenarios. D-PKE is only suit-
able for the situations that the messages have sufficient min-entropy. H-PKE
applies to the situations that the messages and the randomness have jointly suf-
ficient min-entropy. Generally speaking, both of these two approaches require
that the messages are independent of the public keys. N-PKE just applies to
the case that either the seed or the nonces can provide sufficient randomness.
Besides these three kinds of PKE schemes, currently the most commonly used
ones in practice are the traditional PKE schemes (i.e., the security is guaran-
teed assuming that the randomness is good, and the messages can be arbitrarily
chosen), such as RSA [18,22].

However, unfortunately none of the aforementioned approaches is able to pro-
vide good privacy in all application scenarios. The messages we want to encrypt
regularly do not have sufficient min-entropy [12] and sometimes may depend
on the public key, and the randomness may fail because of bugs or deliberate
randomness subversion [13,15]. These facts limit the application of D-PKE and
H-PKE. On the other hand, N-PKE can provide good privacy only if either



Hedged N-PKE: Adaptive Security Under Randomness Failures 255

the seed or the nonces have sufficient min-entropy from the adversaries’ point
of view. If one uses N-PKE, when both the seed and the nonces do not have
sufficient min-entropy, the security of the scheme cannot be guaranteed. These
facts limit the application of N-PKE. More importantly, it’s almost unrealistic to
determine beforehand which kinds of PKE should be used because the situations
in which the scheme is deployed are dynamic.

Hedged security for nonce-based PKE. In this paper, we formalize the
notions of hedged security for nonce-based PKE, and provide some construc-
tions. N-PKE schemes achieving our hedged security are able to adaptively apply
to the situations whenever randomness fails, and achieve the best-possible secu-
rity. Specifically, we formalize the notion of chosen-ciphertext security against
chosen-distribution attacks (IND-CDA2) for N-PKE, which can be seen as the
CCA-and-N-PKE version of the original IND-CDA security for PKE formalized
in [2]1. This security is guaranteed on condition that the seeds, the messages and
the nonces have jointly sufficient min-entropy.

We separate our IND-CDA2 security notion and the security notion proposed
in [8] for N-PKE (i.e., NBP1 and NBP2 security), by presenting two counterex-
amples. Our counterexamples actually show that even extending the original
IND-CDA security (for H-PKE) to the nonce-based setting, IND-CDA security
is still separated from NBP1/NBP2 security.

Since the original NBP1/NBP2 security and IND-CDA2 security do not
imply each other, when we consider the security of N-PKE, we have to require
that the N-PKE schemes achieve NBP1, NBP2 and IND-CDA2 security simul-
taneously. For simplicity, we call it HN-IND security.

In order to handle the potential problem of randomness failures, we recom-
mend that one use HN-IND secure N-PKE if possible, and, especially, employ
a combination of a variety of things which do not repeat (e.g., the current
time), and fresh, uniform and independent chosen randomness as nonce at every
encryption (and the seed can be reused). The reasons are as follows. If there are
no randomness failures, the N-PKE schemes meet the universally accepted IND-
CCA security. If some randomness failures present, the security which is as good
as possible can be guaranteed. More specifically, if the randomness of the nonces
is compromised, as long as the seed is uniformly chosen and confidential and
the message-nonce pairs do not repeat, then NBP1 security guarantees that the
schemes still achieve IND-CCA security. If the seed is exposed, but if the nonces
are still unpredictable, then NBP2 security guarantees IND-CCA security. For
the case that neither the seeds nor the nonces have sufficient min-entropy, as long
as the seed-message-nonce tuples have sufficient min-entropy, and the messages
are independent of the public key, then the N-PKE schemes achieve IND-CDA2
security, which is defined under chosen-ciphertext attacks and strictly stronger
than IND-CDA security. We also note that for an extreme situation that both
the seed and the nonces are arbitrarily determined by the adversaries, but the

1 Very recently, Boldyreva, Patton and Shrimpton [10] formalized one CCA version
of IND-CDA security for traditional PKE. There are some differences between their
formalizations and ours. See Remark 2 for details.
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messages still have sufficient min-entropy, then the schemes are actually D-PKE
schemes achieving adaptive IND security (i.e., the adversary is allowed to access
to the encryption oracle adaptively multiple times) in the CCA setting.

We note that the HN-IND secure N-PKE is able to adaptively handle the
above cases, and achieves IND-CCA security even if there are some random-
ness failures. It’s not necessary to decide which kind of PKE (i.e., traditional
PKE, H-PKE, N-PKE or D-PKE) should be used according to the specific cases
beforehand.

Besides, in the setting of D-PKE, there is another kind of adaptive security
notion proposed by Raghunathan, Segev and Vadhan (RSV) in [20], where the
messages are allowed to depend on the public key, but an upper bound on the
number of the message distributions is required. For completeness, we also for-
malize a similar version of IND-CDA2 security for N-PKE, and call it the RSV
version of HN-IND security.

HN-IND secure constructions. In this paper we provide an N-PKE scheme
achieving HN-IND security in the random oracle model (ROM). Our approach
is from the ROM construction of N-PKE in [8]. We notice that in [8], the nonce-
based PKE schemes were constructed with a building block called hedged extrac-
tor. There are two constructions of hedged extractor proposed in [8], where the
first one is in the ROM, and the second one is in the standard model. We empha-
size that under the security of hedged extractor, both of the N-PKE schemes
based on these two hedged extractors respectively are not HN-IND secure. The
reason is that the security of hedged extractor is guaranteed only if either the seed
or the nonce has enough min-entropy. Therefore, it seems that all the generic
constructions of N-PKE based on hedged extractors do not achieve HN-IND
security.

We also provide a generic construction of HN-IND secure N-PKE. The main
idea of our scheme is from [16], which is a combination of an N-PKE scheme and
a D-PKE scheme. Our conclusion shows that if the underlying N-PKE scheme
is NBP1 and NBP2 secure, and the D-PKE scheme is adaptively IND secure in
the CCA setting and unique-ciphertext secure, then the construction is HN-IND
secure. If both the underlying constructions are built in the standard model,
then our construction achieves HN-IND security in the standard model.

Moreover, we show that both of the constructions achieve the RSV version
of HN-IND security.

Related work. Deterministic PKE was formally introduced by Bellare et al.
[1] in CRYPTO 2007. A security notion called PRIV for D-PKE was defined,
and some PRIV secure ROM constructions were proposed in [1]. Later, several
equivalent security notions were formalized in [4], including the IND security
used in this paper. Some variants of PRIV/IND security or D-PKE also appeared
[5,9,11,17,20], and more D-PKE constructions were proposed [5,6,14]. Wichs
[23] pointed out that the fully IND security of D-PKE in the standard model
can not be achieved under any single-stage assumption. Later with the help of
UCE [6], Bellare and Hoang [5] gave the first fully IND secure D-PKE scheme in
the standard model. Selective opening security for D-PKE was also formalized
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and achieved in the ROM [3,16]. We note that the most commonly used security
for D-PKE (i.e., PRIV or IND security) is a non-adaptive security notion. In
other words, in the game defining the security, the adversary is allowed to make
the challenge query only once.

Hedged PKE was introduced by Bellare et al. [2]. In [2], an adaptive secu-
rity notion called IND-CDA, which is an extension of IND, is formalized, and
a PKE scheme is called H-IND secure if it achieves IND-CPA and IND-CDA
security simultaneously. Very recently, Boldyreva et al. [10] formalized the CCA
version of IND-CDA security (which they named MMR-CCA security) for PKE
with associated data. Both ROM constructions and standard-model construc-
tions achieving fully H-IND security (i.e., the message-randomness pairs may
be arbitrarily correlated) have been proposed [2,5,10]. The use of H-PKE in
practice was explored in [10,21].

Nonce-based PKE was introduced by Bellare and Tackmann in [8]. They
formalized two security notions called NBP1 and NBP2, and showed ROM and
standard-model constructions achieving both of the two security. Their construc-
tions are based on a new primitive called hedged extractor. Nonce-based signa-
tures was also defined and built in [8]. Recently, Hoang et al. [16] formalized SOA
security for N-PKE, and lifted the security notion to H-PKE. To the best of our
knowledge, it’s the first security notion for hedged N-PKE. But their security is
defined in the SOA setting, and more importantly, it is a non-adaptive security
notion. Furthermore, we note that their security notion is a comparison-based
security (see [4]), and our IND-CDA2 security is an indistinguishability-based
one. Informally, denote by COM-CDA2 security the HN-SO-CCA security for-
malized in [16] with the restriction that I is empty (i.e., the adversaries do
not perform corruptions. We refer the readers to [16] for the details). Exploring
the relations among COM-CDA2 security and the non-adaptive version of our
IND-CDA2 security is an interesting topic for future research.

2 Preliminaries

Notations and conventions. Vectors are written in boldface, e.g., x. For a
vector x, let |x| denote its length and x[i] denote its ith component for i ∈ [|x|].
For a finite set X (resp. a string x), let |X| (resp. |x|) denote its size (resp.
length). We extend the set membership notations to vectors. For any game G
presented in this paper, denote by Pr[G] the probability that the final output of
G is 1.

Public-key encryption. A (general) public-key encryption (PKE) scheme is
a tuple of PPT algorithms PKE = (Kg,Enc,Dec). The key generation algo-
rithm Kg, taking 1k as input, generates a public/secret key pair (pk, sk). The
encryption algorithm Enc, taking pk and message m ∈ {0, 1}∗ as input, out-
puts a ciphertext c. The deterministic decryption algorithm Dec, taking sk
and c as input, returns a value in {0, 1}∗ ∪ {⊥}. Standard correctness is
required, which means that for any valid message m ∈ {0, 1}∗, (pk, sk) ←
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Game Gind-cca
PKE,A (k) ENC(m0, m1) DEC(c)

(pk, sk) ← Kg(1k) c ← Enc(pk, mb) If c ∈ C, then
b ← {0, 1}; C ← ∅ C ← C ∪ c Return ⊥
b′ ← AENC,DEC(pk) Return c m ← Dec(sk, c)
Return (b′ = b) Return m

Game Gde-ind
DE,A (k) Game Gde-cca

DE,A (k) ENC(M) DEC(c)

(pk, sk) ← DKg(1k); b ← {0, 1} (pk, sk) ← DKg(1k) (m0, m1) ← M If c ∈ C, then

M ← A1(1
k) b ← {0, 1}; C ← ∅ c ← DEnc(pk, mb) Return ⊥

(m0, m1) ← M; c ← DEnc(pk, mb) St ← AENC
1 (1k) C ← C ∪ c m ← DDec(sk, c)

b′ ← A2(pk, c) b′ ← ADEC
2 (pk, St) Return c Return m

Return (b′ = b) Return (b′ = b)

Fig. 1. Games for defining IND-CCA security of a standard PKE scheme PKE, IND
security and adaptively CCA security of a D-PKE scheme DE.

Kg(1k) and c ← Enc(pk,m), Dec(sk, c) = m with overwhelming proba-
bility. For vectors m, r with |m| = |r|, we denote by Enc(pk,m; r) :=
(Enc(pk,m[1]; r[1]),Enc(pk,m[2]; r[2]), · · · , Enc(pk,m[|m|]; r[|m|])).

IND-CCA security for PKE is defined by game Gind-cca
PKE,A in Fig. 1. For any

(m0,m1) submitted to the encryption oracle ENC(·) in Gind-cca
PKE,A , we require

that |m0| = |m1|, and for every i ∈ [|m0|], |m0[i]| = |m1[i]|. PKE is called IND-
CCA secure if Advind-cca

PKE,A (k) = 2Pr[Gind-cca
PKE,A (k)] − 1 is negligible for any PPT

adversary A, and called IND-CPA secure if A is not allowed to access to the
decryption oracle DEC(·).

Following [1], the maximum public-key collision probability of PKE is defined
by maxpkPKE(k) = max

ω∈{0,1}∗
Pr[pk = ω : (pk, sk) ← Kg(1k)].

PKE secure under randomness failures. Currently, there are mainly three
approaches to deal with the problems of randomness failures for PKE: determin-
istic PKE, hedged PKE, and nonce-based PKE. We recall their definitions and
security notions as follows.

Deterministic PKE. A PKE scheme is called deterministic if the encryption
algorithm is deterministic. This notion was formally introduced by Bellare et al.
[1]. For a D-PKE scheme DE = (DKg, DEnc,DDec), IND security [4] is defined by
game Gde-ind

DE,A in Fig. 1. An IND adversary A = (A1, A2) in game Gde-ind
DE,A is called

legitimate, if for any (m0,m1) sampled by M, associated with some polynomial
p(·), the following two conditions hold: (i) |m0| = |m1| = p(k), and for every
i ∈ [p(k)], |m0[i]| = |m1[i]|; (ii) for any b ∈ {0, 1}, mb[1], · · · , mb[p(k)] are
distinct. The guessing probability of A is denoted by GuessA(k), which returns
the maximum of Pr[mb[i] = m] over all b ∈ {0, 1}, all i ∈ [p(k)], all m ∈ {0, 1}∗,
and all M submitted by A1, where the probability is taken over (m0,m1) ←
M(1k). The block-source guessing probability of A is denoted by Guessb-sA (k),
which returns the maximum of Pr[mb[i] = mi | mb[j] = mj , ∀j ∈ [i − 1]] over
all b ∈ {0, 1}, all i ∈ [p(k)], all m1, · · · ,mi ∈ {0, 1}∗, and all M submitted by
A1, where the probability is taken over (m0,m1) ← M(1k). We say that A has
high min-entropy (resp. high block-source min-entropy [9]) if GuessA(k) (resp.
Guessb-sA (k)) is negligible. Scheme DE is fully IND secure (resp. block-source IND
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secure) if Advde-ind
DE,A (k) = 2Pr[Gde-ind

DE,A (k)]−1 is negligible for any legitimate PPT
adversary A of high min-entropy (resp. high block-source min-entropy).

We say that a PPT adversary is adaptive if it is allowed to query the
challenge oracle multiple times, and each query may depend on the replies to
the previous queries. IND is a non-adaptive security notion. A stronger adap-
tive security notion for D-PKE, adaptively CCA security, is defined by game
Gde-cca

DE,A in Fig. 1. We similarly define adaptively CCA adversary that is legiti-
mate and has high min-entropy. Scheme DE is fully adaptively CCA secure if
Advde-cca

DE,A (k) = 2Pr[Gde-cca
DE,A (k)] − 1 is negligible for any legitimate PPT adver-

sary A of high min-entropy. Block-source adaptively CCA security for D-PKE
is similarly defined.

DE is called unique-ciphertext [5], if for any k, any (pk, sk) generated by
DKg, and any message m ∈ {0, 1}∗, there is at most one c ∈ {0, 1}∗ such
that DDec(sk, c) = m. Each D-PKE scheme can be efficiently transformed to
a unique-ciphertext one [5].

Hedged PKE. In ASIACRYPT 2009, Bellare, et al. [2] introduced the notion
of IND-CDA security, which formalized the security for PKE when the messages
and the randomness jointly have high entropy. A PKE scheme is called hedged if
it achieves both IND-CPA security and IND-CDA security, which means that it
achieves IND-CPA security when the random coins employed during the encryp-
tion are truly random, and achieves IND-CDA security when bad random coins
are employed but the messages and the random coins jointly have high min-
entropy.

For a hedged PKE (H-PKE) scheme HE = (HKg,HEnc,HDec), IND-CDA
security is defined by game Gind-cda

HE,A in Fig. 2. An IND-CDA adversary A =
(A1, A2) in game Gind-cda

HE,A is called legitimate, if for any (m0,m1, r) sampled
by M, associated with some polynomial p(·), which is the message sampler
submitted to oracle LR(·) by A1, the following two conditions hold: (i) |m0| =
|m1| = |r| = p(k), and for every i ∈ [p(k)], |m0[i]| = |m1[i]|; (ii) for any b ∈
{0, 1}, (mb[1], r[1]), · · · , (mb[p(k)], r[p(k)]) are distinct. The guessing probability
of A is denoted by GuessA(k), which returns the maximum of Pr[(mb[i], r[i]) =
(m, r)] over all b ∈ {0, 1}, all i ∈ [p(k)], all m ∈ {0, 1}∗, all r ∈ {0, 1}∗, and all
M submitted by A1, where the probability is taken over (m0,m1, r) ← M(1k).
We say that A has high min-entropy if GuessA(k) is negligible. Scheme HE is
IND-CDA secure if Advind-cda

HE,A (k) = 2Pr[Gind-cda
HE,A (k)] − 1 is negligible for any

legitimate PPT adversary A of high min-entropy. The notion of block-source
IND-CDA security is similarly defined [2].

Nonce-based PKE. A nonce-based public-key encryption (N-PKE) scheme
with nonce space NE.NS is a tuple of PPT algorithms NE = (NKg,NSKg,
NEnc,NDec). The key generation algorithm NKg, taking 1k as input, generates
a public/secret key pair (pk, sk). The seed generation algorithm NSKg taking
1k returns a sender seed xk. Let NE.SD denote the seed space. We say that
NSKg is trivial, if it returns a uniformly chosen xk from NE.SD = {0, 1}k. The
deterministic encryption algorithm NEnc, taking pk, xk, message m ∈ {0, 1}∗,
and nonce n ∈ NE.NS as input, outputs a ciphertext c. The deterministic
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Game Gnbp1
NE,NG,A

(k) Game Gnbp2
NE,NG,A

(k) Game Gind-cda
HE,A (k)

(pk, sk) ← NKg(1k) (pk, sk) ← NKg(1k) (pk, sk) ← HKg(1k)

xk ← NSKg(1k) xk ← NSKg(1k) b ← {0, 1}
b ← {0, 1}; St ← ε b ← {0, 1}; St ← ε St ← ALR

1 (1k)
C, Q0, Q1 ← ∅ C ← ∅ b′ ← A2(pk, St)

b′ ← AENC,DEC(pk) b′ ← AENC,DEC(pk, xk) Return (b′ = b)
Return (b′ = b) Return (b′ = b)

ENC(m0, m1, η) ENC(m0, m1, η) LR(M)

If (|m0| �= |m1|), then return ⊥ If (|m0| �= |m1|), then (m0, m1, r) ← M(1k)
If ((m0, n) ∈ Q0) or ((m1, n) ∈ Q1), then return ⊥ return ⊥ c ← HEnc(pk, mb; r)
(n, St) ← NG(1k, η, St); c ← NEnc(pk, xk, mb, n) (n, St) ← NG(1k, η, St) Return c
Q0 ← Q0 ∪ {(m0, n)}; Q1 ← Q1 ∪ {(m1, n)} c ← NEnc(pk, xk, mb, n)
C ← C ∪ {c} C ← C ∪ {c}
Return c Return c

DEC(c) DEC(c)

If c ∈ C, then return ⊥ If c ∈ C, then return ⊥
m ← NDec(sk, c) m ← NDec(sk, c)
Return m Return m

Fig. 2. Games for defining NBP1, NBP2 security of a N-PKE scheme NE, and IND-
CDA security for a H-PKE scheme HE.

decryption algorithm NDec is the same as that of the traditional PKE schemes,
on input sk and c, returns a value in {0, 1}∗ ∪ {⊥}. The nonce is not necessary
for decryption. Standard correctness is required, which means that for any valid
message m ∈ {0, 1}∗, (pk, sk) ← NKg(1k), xk ← NSKg(1k), n ∈ NE.NS and
c ← NEnc(pk, xk,m, n), Dec(sk, c) = m with overwhelming probability.

The notion of N-PKE was introduced by Bellare and Tackmann [8]. In their
N-PKE constructions, the nonces are generated by a building block called nonce
generator NG with nonce space NE.NS. A nonce generator NG is a PPT algorithm
taking 1k, a current state St, and a nonce selector η as input, returns a nonce
n ∈ NE.NS and a new state St, i.e., (n, St) ← NG(1k, η, St). Standard security
of NG requires that the generated nonces should be unpredictable and never
repeat. We refer the readers to [8,16] for the formal definition.

Two kinds of security notions for N-PKE were introduced in [8], which we
recall in Fig. 2. An N-PKE scheme NE, with respect to NG, is NBP1 (resp.
NBP2) secure if Advnbp1

NE,NG,A(k) = 2Pr[Gnbp1
NE,NG,A(k)]−1 (resp. Advnbp2

NE,NG,A(k) =
2Pr[Gnbp2

NE,NG,A(k)] − 1) is negligible for any PPT adversary A, where game
Gnbp1

NE,NG,A (resp. Gnbp2
NE,NG,A) is defined in Fig. 2. According to [8], NBP1 secu-

rity is achieved for any nonce generator (even for predictable nonce generator),
as long as the message-nonce pairs do not repeat; NBP2 security is achieved for
any unpredictable nonce generators.

3 Hedged Security for Nonce-Based Public-Key
Encryption

In this section, we introduce hedged security for nonce-based public-key encryp-
tion. We first formalize chosen-ciphertext security against chosen-distribution
attacks (IND-CDA2 security) for N-PKE. Then, we explore the relations among
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the security notions of N-PKE. Lastly, we formalize a special version (the Raghu-
nathan et al. [20] version) of IND-CDA2 security for N-PKE.

3.1 Chosen-Ciphertext Security Against Chosen-Distribution
Attacks

Notice that the original message samplers were defined for the general PKE
schemes, which do not sample the seeds and the nonces. Therefore, we firstly
formalize the notion of message samplers for N-PKE as follows.

Definition 1 (Message sampler for N-PKE). A message sampler M for N-
PKE is a PPT algorithm taking 1k as input, and returning (m0,m1,xk,n) ←
M(1k).

For any N-PKE scheme NE = (NKg,NSKg,NEnc, NDec) w.r.t. nonce gener-
ator NG, consider game Gind-cda2

NE,A as shown in Fig. 3.
We say that the adversary A = (A1, A2) in game Gind-cda2

NE,A is legitimate, if
for any (m0,m1,xk, n) sampled by M which is associated with some poly-
nomial p(·), the following two conditions hold: (i) |m0| = |m1| = |xk| =
|n| = p(k), and for every i ∈ [p(k)], |m0[i]| = |m1[i]|; (ii) for any b ∈ {0, 1},
(xk[1],mb[1],n[1]), · · · , (xk[p(k)],mb[p(k)], n[p(k)]) are distinct.

Similarly, the guessing probability of A is denoted by GuessA(k), which
returns the maximum of Pr[(xk[i],mb[i],n[i]) = (xk,m, n)] over all b ∈ {0, 1},
all i ∈ [p(k)], all xk ∈ {0, 1}∗, all m ∈ {0, 1}∗, all n ∈ {0, 1}∗, and all M submit-
ted by A1, where the probability is taken over (m0,m1,xk,n) ← M(1k). The
block-source guessing probability of A is denoted by Guessb-sA (k), which returns
the maximum of Pr[(xk[i],mb[i],n[i]) = (xk,m, n) | (xk[j],mb[j],n[j]) =
(xkj ,mj , nj), ∀j ∈ [i − 1]] over all b ∈ {0, 1}, all i ∈ [p(k)], all xk1, · · · , xki ∈
{0, 1}∗, all m1, · · · ,mi ∈ {0, 1}∗, all n1, · · · , ni ∈ {0, 1}∗, and all M submitted
by A1, where the probability is taken over (m0,m1,xk,n) ← M(1k). We say
that the IND-CDA2 adversary A has high min-entropy (resp. high block-source
min-entropy) if GuessA(k) (resp. Guessb-sA (k)) is negligible.

Game Gind-cda2
NE,A (k) LR(M) DEC(c)

(pk, sk) ← NKg(1k) (m0, m1, xk, n) ← M(1k) If c ∈ C, then return ⊥
b ← {0, 1}; C ← ∅ c ← NEnc(pk, xk, mb, n) m ← NDec(sk, c)

St ← ALR
1 (1k) C ← C ∪ c Return m

b′ ← ADEC
2 (pk, St) Return c

Return (b′ = b)

Fig. 3. Game for defining IND-CDA2 security of a N-PKE scheme NE

Definition 2 (IND-CDA2). An N-PKE scheme NE = (NKg,NSKg,
NEnc,NDec), with respect to nonce generator NG, is IND-CDA2 secure (resp.
block-source IND-CDA2 secure), if for any legitimate PPT adversary A =
(A1, A2) having high min-entropy (resp. high block-source min-entropy), its
advantage Advind-cda2

NE,A (k) = 2Pr[Gind-cda2
NE,A (k)] − 1 is negligible, where game

Gind-cda2
NE,A is defined in Fig. 3.
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Remark 1. Note that if the adversary A is not allowed to access to the decryp-
tion oralce DEC(·), then we call the defining security notion “IND-CDA security
in the nonce-based setting”. Note that in [2] the notion of “IND-CDA security”
was defined for the general PKE schemes, not for N-PKE. For simplicity, in this
paper we abuse the notation, still using “IND-CDA security” when we refer to
“IND-CDA security in the nonce-based setting”.

Remark 2. Recently, Boldyreva et al. [10] formalized the CCA version of IND-
CDA security for PKE, and called it MMR-CCA security. The notion of MMR-
CCA security is defined for PKE with associated data, and in the experiment
defining MMR-CCA security, the adversary is allowed to access to the decryption
oracle before seeing the public key. Our IND-CDA2 security is formalized for N-
PKE (without associated data), and the adversary is not allowed to access to
the decryption oracle until it receives the public key. If the lengths of the seed
and the nonce are both restricted to be 0, our security will naturally become
adaptive CCA security for D-PKE.

3.2 Separations Between NBP1/NBP2 Security and IND-CDA2
Security

We now show that NBP1/NBP2 security and IND-CDA2 security do not imply
each other. Our separation results are based on the following observations. In
the game defining IND-CDA2 security, (i) the sender seed xk is specified by the
adversary through the generated message sampler M, instead of being generated
by NSKg in the game defining NBP1/NBP2 security; (ii) the challenge messages
are independent of the public key, instead of being chosen by the adversary after
seeing the public key in the game defining NBP1/NBP2 security.

NBP1/NBP2 � IND-CDA2. Actually, we provide a stronger conclusion here
“NBP1/NBP2 � IND-CDA”. For an NBP1/NBP2 secure N-PKE scheme NE =
(NKg,NSKg,NEnc,NDec) w.r.t. a nonce generator NG, where NSKg is trivial, we
construct a new N-PKE scheme NE′ = (NKg′,NSKg′,NEnc′,NDec′), w.r.t. the
same NG, as shown in Fig. 4.

Since NSKg is trivial, we have that xk ← {0, 1}k. As a result, the probability
that xk = 0k is negligible. Therefore, NBP1/NBP2 security of NE′ is guaranteed
by NBP1/NBP2 security of NE.

Now we show an adversary A = (A1, A2) attacking NE′ in the sense of IND-
CDA. For simplicity, we assume that the message space is {0, 1}k. A1 makes
an LR(·) query by submitting a message sampler M (with p(k) = 1), which is
defined as follows:

1. Set xk = 0k.
2. For any b ∈ {0, 1}, choose mb uniformly random from {0, 1}k, conditioned on

that the last bit of mb is b.
3. Choose n uniformly random from nonce space NE.NS.

Note that n is uniformly chosen from NE.NS, and m0,m1 are both uniformly
chosen from {0, 1}k−1. So adversary A is legitimate and has high min-entropy.
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NKg′(1k) NSKg′(1k) NEnc′(pk, xk, m, n) NDec′(sk, c′)
(pk, sk) ← NKg(1k) xk ← NSKg(1k) If xk = 0k, then Parse c′ = (c||b)
Return (pk, sk) Return xk c ← m, c′ ← (c||0) If b = 0, then m ← c

Else, Else, m ← NDec(sk, c)

c ← NEnc(pk, xk, m, n) Return m

c′ ← (c||1)
Return c′

NKg′′(1k) NSKg′′(1k) NEnc′′(pk, xk, m, n) NDec′′(sk, c′′)
(pk, sk) ← NKg(1k) xk ← NSKg(1k) If m = pk, then Parse c′′ = (c||b)
Return (pk, sk) Return xk c ← m, c′′ ← (c||0) If b = 0, then m ← c

Else, Else, m ← NDec(sk, c)

c ← NEnc(pk, xk, m, n) Return m

c′′ ← (c||1)
Return c′′

Fig. 4. Counterexamples NE′ = (NKg′,NSKg′,NEnc′,NDec′) and NE′′ =
(NKg′′,NSKg′′,NEnc′′,NDec′′).

After receiving the ciphertext c′ = (c||0) from LR(·), A returns the last bit of c
as its final output. The advantage of A is obviously 1.

IND-CDA2 � NBP1/NBP2. Assuming that there is an N-PKE scheme
NE = (NKg,NSKg, NEnc,NDec), w.r.t. a nonce generator NG, achieving IND-
CDA2 security and having negligible maximum public-key collision probability
maxpkNE. Note that the requirement that maxpkNE is negligible is very mild,
since any IND-CPA secure PKE has negligible maxpkNE [1]. Based on NE, we
present a new N-PKE scheme NE′′ = (NKg′′,NSKg′′,NEnc′′,NDec′′), w.r.t. the
same NG, as shown in Fig. 4.

For any IND-CDA2 adversary A = (A1, A2), A does not receive pk until it
finishes the process of LR(·) query. The negligible maxpkNE guarantees that

max
i∈[|m0|]

Pr[(m0[i] = pk) ∨ (m1[i] = pk) : M is generated byALR
1 ,

(m0,m1,xk,n) ← M(1k)]

is negligible, where the probability is taken over ALR
1 and (m0,m1,xk,n) ←

M(1k). Therefore, NE′′ is IND-CDA2 secure.
Note that in the game defining NBP1/NBP2 security, the adversary generates

the challenge messages (m0,m1) after seeing the public key. So we construct
a NBP1/NBP2 adversary A as follows. Upon receiving pk, A sets m0 = pk,
and chooses an arbitrary distinct m1 from the message space such that |m1| =
|m0|, and an arbitrary valid nonce selector η. Then A submits the generated
(m0,m1, η) to the encryption oracle ENC(·). After receiving the ciphertext c′′ =
(c||b), A returns b as its final output. The advantage of A is obviously 1.

Formally, we have the following theorem.

Theorem 1. NBP1/NBP2 security and IND-CDA2 security do not imply each
other.

Remark 3. The aforementioned NBP1/NBP2 adversary attacking NE′′ does
not make any decryption query. So we actually proved that IND-CDA2 security
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does not imply the CPA version of NBP1/NBP2 security. Therefore, our results
also show the separations between NBP1/NBP2 security and IND-CDA security.

3.3 The RSV Version of IND-CDA2 Security

In EUROCRYPT 2013, Raghunathan et al. [20] formalized another security
notion for D-PKE, ACD-CPA/CCA security, which allows the adversaries to
adaptively choose message distributions after seeing the public key, with the
following two restrictions: (1) the adversaries have high min-entropy; (2) for each
adversary, there is an upper bound on the number of the message distributions
from which the adversary is allowed to adaptively choose. The upper bound is
2p(k) where p(·) is any a-priori fixed polynomial. Raghunathan et al. [20] proposed
a D-PKE scheme achieving ACD-CCA security in the standard model, based on
a primitive called R-lossy trapdoor function.

Considering that this is an important optional security notion for D-PKE,
and as far as we know, ACD-CCA is neither weaker nor stronger than adaptive
CCA security, we formalize a similar version of IND-CDA2 security here, which
we call the RSV version of IND-CDA2 security (RIND-CDA2).

Definition 3 (RSV message sampler for N-PKE). An RSV message sam-
pler M for N-PKE is a PPT algorithm taking 1k as input, and returning
(m,xk,n) ← M(1k).

Definition 4 (Uniform message sampler with respect to M). For an
RSV message sampler M for N-PKE, a PPT algorithm U is a uniform mes-
sage sampler with respect to M if for any message vector sampled by M (i.e.,
(m,xk,n) ← M(1k)), mu ← U(M,m) is uniformly distributed over the same
message space specified by M, such that |mu| = |m| and |mu[i]| = |m[i]| for any
i ∈ [|m|].

For any N-PKE scheme NE = (NKg,NSKg,NEnc, NDec) w.r.t. nonce gener-
ator NG, consider game Grind-cda2

NE,A as shown in Fig. 5.
The adversary A in game Grind-cda2

NE,A is legitimate, if for any (m,xk,n)
sampled by M which is associated with some polynomial p(·), the follow-
ing two conditions hold: (i) |m| = |xk| = |n| = p(k); (ii) (m[1],xk[1],
n[1]), · · · , (m[p(k)],xk[p(k)],n[p(k)]) are distinct.

Similar to that of Sect. 3.1, we have the guessing probabilities GuessA(k) and
Guessb-sA (k). We say that the RIND-CDA2 adversary A has high min-entropy
(resp. high block-source min-entropy) if GuessA(k) (resp. Guessb-sA (k)) is negligi-
ble.

For any given polynomial p(·), we have the following definition.

Definition 5 (2p(k)-bounded adversary). For any PPT legitimate adver-
sary A having high min-entropy (resp. high block-source min-entropy) in game
Grind-cda2

NE,A , let Smg be the set of message samplers which A may submit to the
RoR oracle as a query with non-zero probability. A is a 2p(k)-bounded (resp.
2p(k)-bounded block-source) adversary if for every k ∈ N, |Smg| ≤ 2p(k).
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Fig. 5. Game for defining RIND-CDA2 security of a N-PKE scheme NE, where U is
defined in Definition 4.

Definition 6 (RIND-CDA2). An N-PKE scheme NE, w.r.t. nonce genera-
tor NG, is RIND-CDA2 secure (resp. block-source RIND-CDA2 secure), if for
any 2p(k)-bounded (resp. 2p(k)-bounded block-source) adversary A, its advantage
Advrind-cda2

NE,A (k) = 2Pr[Grind-cda2
NE,A (k)] − 1 is negligible, where game Grind-cda2

NE,A is
defined in Fig. 5.

4 Construction of H-PKE in the Random Oracle Model

In EUROCRYPT 2016, Bellare and Tackmann [8] proposed an NBP1/ NBP2
secure N-PKE scheme in the random oracle model. Their construction is based
on a building block which they introduced and called hedged extractor.

In this section, we show that the Bellare-Tackmann ROM construction actu-
ally achieves HN-IND security. But we note that this construction cannot be
generalized to the schemes based on hedged extractors like [8, Fig. 6].

Firstly, we recall the N-PKE scheme RtP [8], w.r.t. a nonce generator NG,
as follows. Let PKE = (Kg,Enc,Dec) be a traditional probabilistic PKE scheme
with message space MSP and randomness space REnc, and RO : {0, 1}∗ → REnc

be a random oracle. The N-PKE scheme RtP is presented in Fig. 6.
Now we turn to the security. It has been proved in [8] that RtP is NBP1/NBP2

secure. So what remains is to prove its IND-CDA2 security. Formally, we have
the following theorem.

Theorem 2. If PKE is a traditional IND-CCA secure PKE scheme, then N-
PKE scheme RtP, w.r.t. a nonce generator NG, is IND-CDA2 secure in the
random oracle model.

Fig. 6. N-PKE scheme RtP = (RKg,RSKg,REnc,RDec).

Proof. For any legitimate PPT IND-CDA2 adversary A having high min-
entropy, let qr(k) (resp. ql(k)) denote the number of random-oracle queries (resp.
LR queries) of A.
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Consider a sequence of games G0−G6 in Figs. 7 and 8. In each game, there is
a random oracle RO which maintains a local array H as shown in Fig. 7. Denote
by ROA the random-oracle interface of A. Note that in games G4 and G5, the
oracle answers of ROA and the answers given to the LR oracle in reply to its
RO queries are independent, so we introduce another local array HA for ROA.
In game G6, the LR oracle does not access to RO, so we omit the procedure
“On query RO” in Fig. 8. For convenience, the RO queries made by A through
ROA is called ROA queries in this proof. Without loss of generality, we assume
that in each game, A does not repeat any ROA queries.

Now we explain the sequence of games.
Game G0 implements game Gind-cda2

RtP,A . So we have

Advind-cda2
RtP,A (k) = 2Pr[G0(k)] − 1. (1)

In game G1, we introduces two sets T1 and T2. T1 denotes the set of RO
queries made by A (i.e., ROA queries), and T2 denotes the set of RO queries
made by the LR oracle. The changes made in G1 does not affect the final output.
Therefore,

Pr[G1(k)] = Pr[G0(k)]. (2)

Games G2 and G1 are identical-until-bad1. Denote by Pr[bad1] the proba-
bility that G2 sets bad1. According to the fundamental lemma of game-playing
[7], we have that |Pr[G2(k)] − Pr[G1(k)]| ≤ Pr[bad1].

Let M′, associated with some polynomial p(·), denote the message sam-
pler leading to bad1. Game G2 sets bad1 only if A has made some ROA query
(xk′,m′, n′) beforehand, such that for the M′ and (m0,m1,xk,n) ← M′, there
are some b ∈ {0, 1} and some i ∈ [|n|] satisfying (xk[i],mb[i],n[i]) = (xk′,m′, n′).
Since A has high min-entropy, for any ROA query (xk′,m′, n′), we have that for
any M′, any b ∈ {0, 1}, and any i ∈ [|p(k)|],

Pr[(xk[i],mb[i],n[i]) = (xk′,m′, n′) : (m0,m1,xk,n) ← M′] ≤ GuessA(k).

In other words, for any ROA query (xk′,m′, n′),

max
M′,b,i

Pr[(xk[i],mb[i],n[i]) = (xk′,m′, n′) : (m0,m1,xk,n) ← M′]

≤ GuessA(k).

Notice that A makes totally qr(k) random-oracle queries and ql(k) LR queries.
So we have Pr[bad1] ≤ 2qr(k)ql(k)p(k)GuessA(k). Therefore,

|Pr[G2(k)] − Pr[G1(k)]| ≤ Pr[bad1] ≤ 2qr(k)ql(k)p(k)GuessA(k). (3)

Games G3 and G2 are identical-until-bad2. G3 sets bad2 only if the current
ROA query (xk′,m′, n′) has been queried by the LR oracle previously. In game
G3, if bad2 is set, then the H[xk′,m′, n′] is overwritten with a random element
from REnc. Denote by Pr[bad2] the probability that G3 sets bad2. Then, we have
that |Pr[G3(k)]−Pr[G2(k)]| ≤ Pr[bad2]. In order to bound Pr[bad2], we present
the following lemma and postpone its proof.
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Fig. 7. Games G0 −G5 in the proof of Theorem 2. Boxed code is only executed in the
games specified by the game names in the same box style.

Lemma 1. There is an IND-CCA adversary Bupr attacking PKE with advan-
tage Advind-cca

PKE,Bupr
(k), such that

Pr[bad2] ≤ 2Advind-cca
PKE,Bupr

(k) + (qr(k) +
ql(k)p(k) − 1

2
)ql(k)p(k)GuessA(k).

It follows that

|Pr[G3(k)] − Pr[G2(k)]|
≤ 2Advind-cca

PKE,Bupr
(k) + (qr(k) +

ql(k)p(k) − 1
2

)ql(k)p(k)GuessA(k). (4)

Note that in game G3, the oracle answers of ROA and the answers given to
the LR oracle in reply to its RO queries are independent. Therefore, game G4

is a simplified version of G3, which implies that

Pr[G4(k)] = Pr[G3(k)]. (5)

Games G5 and G4 are identical-until-bad3. Similarly, denote by Pr[bad3]
the probability that G5 sets bad3. We have that |Pr[G5(k)] − Pr[G4(k)]| ≤



268 Z. Huang et al.

Fig. 8. Game G6 (left) and adversary B (right) in the proof of Theorem 2. Note that
in this paper we extend the set membership notations to vectors, writing X ∪ x to
mean X ∪ {x[i]|i ∈ [|x|]}.

Pr[bad3]. G5 sets bad3 only if there is some tuple (xk′,m′, n′) which has been
queried by the LR oracle at least twice. Since A has high min-entropy, for any
(xk′,m′, n′) ∈ T2, any M queried by A, any b ∈ {0, 1}, and any i ∈ [p(k)],
Pr[(xk[i],mb[i],n[i]) = (xk′,m′, n′) : (m0,m1,xk,n) ← M] ≤ GuessA(k)
is negligible. Notice that A makes totally ql(k) LR queries, and for each LR
query M, the LR oracle makes p(k) RO queries, so we derive that Pr[bad3] ≤
ql(k)p(k)(ql(k)p(k)−1)

2 GuessA(k). Therefore,

|Pr[G5(k)] − Pr[G4(k)]| ≤ ql(k)p(k)(ql(k)p(k) − 1)
2

GuessA(k). (6)

Note that in game G5, both T1 and T2 are useless, and the vector r generated
by the LR oracle is truly random from A’s point of view. Therefore, game G6 is
a simplified version of G5, which implies that

Pr[G6(k)] = Pr[G5(k)]. (7)

Next, we construct an IND-CCA adversary B attacking PKE as shown in
Fig. 8. In order to distinguish B’s own decryption oracle (in the sense of IND-
CCA) and A’s decryption oracle (in the sense of IND-CDA2), we denote by
DECB (resp. ENCB) B’s decryption (resp. encryption) oracle. B uses ENCB

to answer A’s LR queries, and uses DECB to answer A’s decryption queries. B
perfectly simulates game G6 for A, and that B wins game Gind-cca

PKE,B if and only
if A wins game G6. Hence,

Pr[Gind-cca
PKE,B (k)] = Pr[G6(k)]. (8)
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Combining Eqs. (1)-(8), we derive that

Advind-cda2
RtP,A (k) ≤ Advind-cca

PKE,B (k) + 4Advind-cca
PKE,Bupr

(k)
+ (6qr(k) + 2ql(k)p(k) − 2)ql(k)p(k)GuessA(k).

Now, we catch up with the proof of Lemma 1.

Proof (of Lemma 1). We say that “G4 sets bad2” (resp. “G5 sets bad2”) if A
submits an ROA query (xk′,m′, n′), such that (xk′,m′, n′) ∈ T2, in G4 (resp.
G5).

Since G4 is a simplified version of G3, and G5 and G4 are identical-until-
bad3,

Pr[bad2] = Pr[G4 sets bad2] ≤ Pr[G5 sets bad2] + Pr[bad3]

≤ Pr[G5 sets bad2] +
ql(k)p(k)(ql(k)p(k) − 1)

2
GuessA(k). (9)

To bound Pr[G5 sets bad2], we consider an IND-CCA adversary Bupr as
shown in Fig. 9. Similarly, denote by ENCBupr

(resp. DECBupr
) Bupr’s encryp-

tion (resp. decryption) oracle in the sense of IND-CCA. Let ˜b be the challenge
bit in game Gind-cca

PKE,Bupr
. Denote by Gsim

Bupr,A the game simulated by Bupr for A
(as shown in Fig. 9). Bupr’s advantage is as follows.

Advind-cca
PKE,Bupr

(k) = 2Pr[Gind-cca
PKE,Bupr

(k)] − 1 = 2Pr[b∗ = ˜b] − 1 (10)

= 2(Pr[b∗ = ˜b | ˜b = a]Pr[˜b = a] + Pr[b∗ = ˜b | ˜b 
= a]Pr[˜b 
= a]) − 1 (11)

= Pr[b∗ = ˜b | ˜b = a] + Pr[b∗ = ˜b | ˜b 
= a] − 1 (12)

Equations (10)-(11) are trivial. Since a is uniformly random chosen from {0, 1},
Pr[˜b = a] = Pr[˜b 
= a] = 1

2 . This justifies Eq. (12).
For Pr[b∗ = ˜b | ˜b = a], we have the following equations.

Pr[b∗ = ˜b | ˜b = a]

= Pr[b∗ = ˜b | (˜b = a) ∧ (Gsim
Bupr,A sets bad2)]Pr[Gsim

Bupr,A sets bad2 | ˜b = a]

+ Pr[b∗ = ˜b | (˜b = a) ∧ ¬(Gsim
Bupr,A sets bad2)]

· Pr[¬(Gsim
Bupr,A sets bad2) | ˜b = a] (13)

= Pr[G5 sets bad2] +
1
2
Pr[¬(G5 sets bad2)] (14)

=
1
2
Pr[G5 sets bad2] +

1
2
. (15)

Equation (13) is trivial. We notice that when ˜b = a, the simulated game Gsim
Bupr,A

is the same as G5 from A’s point of view, so we have Pr[Gsim
Bupr,A sets bad2 |

˜b = a] = Pr[G5 sets bad2]. We also note that if Gsim
Bupr,A sets bad2, then Bupr
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outputs b∗ = a, otherwise Bupr outputs b∗ ← {0, 1}. Therefore, Pr[b∗ = ˜b | (˜b =
a) ∧ (Gsim

Bupr,A sets bad2)] = 1 and Pr[b∗ = ˜b | (˜b = a) ∧ ¬(Gsim
Bupr,A sets bad2)] =

1
2 . This justifies Eq. (14). Equation (15) is because Pr[¬(G5 sets bad2)] = 1 −
Pr[G5 sets bad2].

With similar analysis, for Pr[b∗ = ˜b | ˜b 
= a], we have the following equations.

Pr[b∗ = ˜b | ˜b 
= a]

= Pr[b∗ = ˜b | (˜b 
= a) ∧ (Gsim
Bupr,A sets bad2)]Pr[Gsim

Bupr,A sets bad2 | ˜b 
= a]

+Pr[b∗ = ˜b | (˜b 
= a) ∧ ¬(Gsim
Bupr,A sets bad2)]

·Pr[¬(Gsim
Bupr,A sets bad2) | ˜b 
= a] (16)

= 0 +
1
2
Pr[¬(Gsim

Bupr,A sets bad2) | ˜b 
= a] (17)

=
1
2
(1 − Pr[Gsim

Bupr,A sets bad2 | ˜b 
= a]) (18)

≥ 1
2
(1 − ql(k)qr(k)p(k)GuessA(k)). (19)

Equation (16) is trivial. Bupr outputs b∗ = a when Gsim
Bupr,A sets bad2, so we

have that Pr[b∗ = ˜b | (˜b 
= a) ∧ (Gsim
Bupr,A sets bad2)] = 0. Considering that Bupr

outputs b∗ ← {0, 1} when Gsim
Bupr,A does not set bad2, so we have Pr[b∗ = ˜b |

(˜b 
= a) ∧ ¬(Gsim
Bupr,A sets bad2)] = 1

2 . We have justified Eq. (17). Equation (18)

is because Pr[¬(Gsim
Bupr,A sets bad2) | ˜b 
= a] = 1 − Pr[Gsim

Bupr,A sets bad2 | ˜b 
= a].

Notice that ˜b 
= a implies ˜b = 1 − a, i.e., the challenge ciphertext vectors A
received are the encryption of some uniformly random chosen message vectors.
Thus the challenge ciphertext vectors do not contain any information about
any ma. Besides, in the simulated game Gsim

Bupr,A, the answers (of ROA, the
LR oracle, and the decryption oracle) given to A do not contain any informa-
tion about the xk and n sampled by the LR oracle. Therefore, for any tuple
(m0,m1,xk,n) ← M sampled by the LR oracle in game Gsim

Bupr,A, A has no
additional information about any element of {(xk[i],mb[i],n[i]) | i ∈ [p(k)], b ∈
{0, 1}}. Recall that Gsim

Bupr,A sets bad2 only if A succeeds in guessing some ele-
ment in {(xk[i],ma[i],n[i]) | i ∈ [p(k)]} for some (m0,m1,xk,n) ← M sampled
by the LR oracle and the a sampled by Bupr. Notice that the total number of
random-oracle (resp. LR-oracle) queries of A is qr(k) (resp. ql(k)). So we derive
that Pr[Gsim

Bupr,A sets bad2 | ˜b 
= a] ≤ ql(k)qr(k)p(k)GuessA(k). We have justified
Eq. (19).

Combining Eqs. (12), (15) and (19), we derive that

Advind-cca
PKE,Bupr

(k) ≥ 1
2
(Pr[G5 sets bad2] − ql(k)qr(k)p(k)GuessA(k)). (20)

Hence,

Pr[G5 sets bad2] ≤ 2Advind-cca
PKE,Bupr

(k) + ql(k)qr(k)p(k)GuessA(k). (21)
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Combining Eqs. (9) and (21), we obtain that

Pr[bad2] ≤ 2Advind-cca
PKE,Bupr

(k) + (qr(k) +
ql(k)p(k) − 1

2
)ql(k)p(k)GuessA(k).

�
Remark 4. The N-PKE scheme RtP is a special case of the ROM scheme NPE
in [8, Fig. 6], but it seems that the original, generic ROM scheme NPE proposed
in [8, Fig. 6] does not achieve IND-CDA2 security. The reason is as follows. In [8],
the security of NPE is guaranteed by the IND-CCA security of the traditional
PKE scheme, and the prf security and the ror security (defined in [8]) of their
proposed building block, hedged extractor. The prf security focuses on the case
that the seeds are random and confidential, and the ror security focuses on the
case that the nonces are unpredictable. In other words, the security of hedged
extractor just considers the case that either the seeds or the nonces have high
entropy. And the IND-CDA2 security of N-PKE should be guaranteed as long
as the seeds, messages and nonces jointly have high min-entropy.

With respect to RIND-CDA2 security, with similar technique we have the
following corollary.

Corollary 1. If PKE is a traditional IND-CCA secure PKE scheme, then N-
PKE scheme RtP, w.r.t. a nonce generator NG, is RIND-CDA2 secure in the
random oracle model.

5 Construction of H-PKE in the Standard Model

Generic construction. Let NE = (NKg,NSKg,NEnc,NDec) be an N-PKE
scheme, w.r.t. a nonce generator NG. Let DE = (DKg,DEnc,DDec) be
a D-PKE scheme. Recall the transform Nonce-then-Deterministic NtD =
(NDKg,NDSKg,NDEnc,NDDec) proposed in [16] as shown in Fig. 10.

In [16], Hoang et al. consider SOA security of NtD, showing that if NE is N-
SO-CPA (resp. N-SO-CCA) secure, and DE is D-SO-CPA (resp. D-SO-CCA and
unique-ciphertext) secure, then NtD is HN-SO-CPA (resp. HN-SO-CCA) secure.
The HN-SOA security notions formalized in [16] are non-adaptive. Therefore, the
HN-SO-CCA security formalized in [16] does not imply our HN-IND security.

In this section, we point out that NtD also applies to the HN-IND setting.
Specifically, we assume NE is NBP1 and NBP2 secure, and DE is adaptively
CCA secure and unique-ciphertext. Additionally, we require that NE is entropy-
preserving, which is a property of N-PKE formalized by Hoang et al. [16].

Denote by EntrpNE(θ(k)) the conditional min-entropy of NEnc(pkn, xk, m, n)
given X, where X is a random variable such that the conditional min-entropy
of (xk,m, n) is at least θ(k), and (pkn, skn) ← NKg(1k) is independent of
(xk,m, n,X). NE is called entropy-preserving, if for any θ(k) satisfying that
2−θ(k) is negligible, then 2−EntrpNE(θ(k)) is also negligible.

Formally, we have the following theorem.
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Fig. 9. Adversary Bupr (left) and game Gsim
Bupr,A (right) in the proof of Lemma 1.

Fig. 10. N-PKE scheme NtD = (NDKg,NDSKg,NDEnc,NDDec).

Theorem 3. For an NBP1, NBP2 secure and entropy-preserving N-PKE
scheme NE and a D-PKE scheme DE, let NtD be an N-PKE scheme defined
in Fig. 10.

(i) If DE is adaptively CCA secure and unique-ciphertext, then NtD is HN-IND
secure.

(ii) If DE is ACD-CCA secure and unique-ciphertext, then NtD is RSV-version
HN-IND secure.

Proof. Firstly, we prove that NtD is NBP1 secure. The proof of NBP2 security
is similar, which we will omit here.

For any NBP1 adversary A attacking NtD, we present an NBP1 adver-
sary Bnbp1 attacking NE as shown in Fig. 11. Denote by ENCB (resp. DECB)
Bnbp1’s encryption (resp. decryption) oracle in the sense of NBP1. Note that
DE is unique-ciphertext. As a result, for any decryption query c′ of A, if
y′ ← DDec(skd, c

′) is one of the challenge ciphertext Bnbp1 received, then
c′ is also one of the challenge ciphertext A received. Thus the DEC oracle
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simulated by Bnbp1 is identical to the real DEC oracle in game Gnbp1
NtD,A. It’s

easy to see that the ENC oracle simulated by Bnbp1 is identical to the real
ENC oracle of A. Therefore, Bnbp1 perfectly simulates game Gnbp1

NtD,A for A, and
Bnbp1 wins game Gnbp1

NE,Bnbp1
if and only if A wins Gnbp1

NtD,A. So we derive that

Advnbp1
NtD,A(k) = Advnbp1

NE,Bnbp1
(k).

Fig. 11. Adversary Bnbp1 (up) and adversary B (down) in the proof of Theorem 3.

Next, we show that NtD is IND-CDA2 secure. We call a PPT algorithm
MSTn-d a message sampler transformer from N-PKE to D-PKE, if it takes a
message sampler for N-PKE (and some state information) as input, and acts as
a message sampler for D-PKE (see Fig. 11). For any legitimate PPT IND-CDA2
adversary A having high min-entropy, we construct a MSTn-d and an adaptively
CCA adversary B = (B1, B2) attacking DE as shown in Fig. 11. Similarly, denote
by ENCB (resp. DECB) B’s encryption (resp. decryption) oracle in the sense of
adaptive CCA. B perfectly simulates game Gind-cda2

NtD,A for A. Since NE is entropy-
preserving, the construction of MSTn-d guarantees that B is legitimate and has
high min-entropy. Note that B wins game Gcca

DE,B if and only if A wins Gind-cda2
NtD,A .

So we derive that Advind-cda2
NtD,A (k) = Advcca

DE,B(k).
With similar techniques, we can prove the RIND-CDA2 security of NtD. �

Remark 5. Theorem 3 applies to both the ROM constructions and the
standard-model constructions.

Concrete constructions. According to Theorem3, let NE be the NBP1 and
NBP2 secure standard-model construction proposed in [8], and DE be the ACD-
CCA secure standard-model construction proposed in [20], then we obtain an
RSV-version HN-IND secure N-PKE scheme NtD in the standard model.

Now we turn to HN-IND security of NtD. According to Theorem 3, what
remains is to construct a (unique-ciphertext) standard-model D-PKE scheme
achieving adaptively CCA security. Considering IND-CDA2 security in the set-
ting of H-PKE, instead of N-PKE, if the length of the randomness is zero (i.e.,
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|r[i]| = 0 for all i ∈ [|p(k)|]), then IND-CDA2 security actually becomes adaptive
CCA security for D-PKE. Therefore, the problem that construct an IND-CDA2
secure N-PKE scheme in the standard model is at least as hard as the one
that construct a fully adaptively CCA secure D-PKE scheme in the standard
model. To the best of our knowledge, the latter is still an open problem. On the
other hand, Theorem3 shows that if an adaptively CCA secure (and unique-
ciphertext) standard-model D-PKE scheme is constructed, then we will have an
N-PKE scheme achieving HN-IND security in the standard model.

Some notes on adaptively CCA secure D-PKE. Recall that Bellare et al.
[2] presented an adaptively IND secure D-PKE scheme, by showing any PKE
scheme, achieving a special anonymity (i.e., the ANON security in [2]) and non-
adaptive IND-CDA security simultaneously, achieves (adaptively) IND-CDA
security. Although the conclusion cannot be employed to show an adaptively
CCA secure D-PKE scheme directly, we note that it can be transformed to the
setting of N-PKE under CCA attacks. For completeness, we present the trans-
form in AppendixA.

More specifically, in AppendixA, we formalize the notion of ANON-CCA
security for N-PKE, and show that if an N-PKE scheme achieves non-adaptive
IND-CDA (not IND-CDA2) and ANON-CCA security, then it achieves IND-
CDA2 security. We stress that very recently, Boldyreva et al. [10] showed a
similar conclusion (for general PKE). But their formalized ANON-CCA secu-
rity is stronger than ours (i.e., informally, the adversary can make decryp-
tion queries under two secret keys). More importantly, their conclusion, infor-
mally with our notations in this paper, is that “non-adaptive IND-CDA2 +
stronger ANON-CCA ⇒ IND-CDA2”. Our conclusion shows that the same
result can be obtained under some weaker assumptions.
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A From Non-adaptive IND-CDA to Adaptive
IND-CDA2

Firstly, we formalize the notion of anonymity for IND-CDA2 for N-PKE. Then
we will present our theorem. Consider game Ganon-cca

NE,A as shown in Fig. 12. For
the adversary A in game Ganon-cca

NE,A , we can similarly define legitimate adversary,
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and the adversary having high min-entropy (resp. high block-source min-entropy).
We do not repeat the details here.

Definition 7 (ANON-CCA). An N-PKE scheme NE is ANON-CCA secure
(resp. block-source ANON-CCA secure), if for any legitimate PPT adversary
A having high min-entropy (resp. high block-source min-entropy), its advantage
Advanon-cca

NE,A (k) = 2Pr[Ganon-cca
NE,A (k)] − 1 is negligible, where game Ganon-cca

NE,A is
defined in Fig. 12.

Fig. 12. Game for defining ANON-CCA security of an N-PKE scheme NE.

Theorem 4. Let NE be an N-PKE scheme. If NE achieves non-adaptive IND-
CDA security and ANON-CCA security simultaneously, then it also achieves
adaptive IND-CDA2 security.

Proof. The proof is based on the approach proposed in [2]. For any PPT legit-
imate IND-CDA2 adversary A having high min-entropy and making q(k) LR
queries, denote by Gind-cda2-b

NE,A (b ∈ {0, 1}) the game as follows: Gind-cda2-b
NE,A is the

same as Gind-cda2
NE,A , except that b is a fixed value in {0, 1}, and the final output

of this game is b′. A standard argument shows that the advantage of A can
be written as Advind-cda2

NE,A (k) = |Pr[Gind-cda2-1
NE,A (k) − Pr[Gind-cda2-0

NE,A (k)]|. Games
Gind-cda-b

NE,A , Ganon-cca-b
NE,A (b ∈ {0, 1}) (resp. the corresponding advantages) can be

defined (resp. written) similarly.

Consider the sequence of games in Fig. 13. Game G−1 is the same as game
Gind-cda2-0

NE,A , i.e., Pr[G−1] = Pr[Gind-cda2-0
NE,A ]. Game G0 introduces (pk1, sk1),

which is useless in G0. So we have Pr[G0] = Pr[G−1]. For 0 ≤ i ≤ q(k),
game Gi is the same as G0, except that for the jth LR query of A, if j ≤ i,
the challenge ciphertext vector c is an encryption of m1 (under the public key
pk0), instead of an encryption of m0. Therefore, Gq(k) is identical to Gind-cda2-1

NE,A .
Hence, what remains is to show the indistinguishability between Gi and Gi+1

for any 0 ≤ i ≤ q(k) − 1.
As shown in Fig. 13, for 0 ≤ i ≤ q(k) − 1, game Hi is the same as Gi, except

that for the ith LR query of A, the challenge ciphertext vector c is an encryption
of m0 under pk1, instead of an encryption of m1 under pk0. Game H′

i is the same
as Hi, except that for the ith LR query of A, the challenge ciphertext vector c
is an encryption of m1 under pk1, instead of an encryption of m0 under pk1.
Formally, we have three claims below.
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Fig. 13. Games G−1 − Gq and H0 − Hq−1 in the proof of Theorem 4. Boxed code is
only executed in the games specified by the game names in the same box style.

Claim 1. For any 1 ≤ i ≤ q(k), there is an ANON-CCA adversary Ban1 such
that Advanon-cca

NE,Ban1
(k) = |Pr[Gi−1] − Pr[Hi]|.

Claim 2. For any 1 ≤ i ≤ q(k), there is a non-adaptively IND-CDA adversary
B such that Advind-cda

NE,B (k) = |Pr[Hi] − Pr[H′
i]|.

Claim 3. For any 1 ≤ i ≤ q(k), there is an ANON-CCA adversary Ban2 such
that Advanon-cca

NE,Ban2
(k) = |Pr[H′

i] − Pr[Gi]|.
Combining these three claims, we derive that

Advind-cda2
NE,A (k) = |Pr[Gq(k)] − Pr[G0]|

= q(k)(Advind-cda
NE,B (k) + Advanon-cca

NE,Ban1
(k) + Advanon-cca

NE,Ban2
(k)).

Therefore, what remains is to prove the above three claims. The proof of
Claim 3 is similar to that of Claim 1. So we omit it here.

Proof (of Claim 1). Note that in game Gi−1 (1 ≤ i ≤ q(k)), for the jth LR
query of A, if j ≤ i − 1, the challenge ciphertext vector c is an encryption of
m1 under pk0, and if j ≥ i, c is an encryption of m0 under pk0. Therefore, Hi

is identical to Gi−1, except that the answer A received to its ith LR query is an
encryption of m0 under pk1, instead of the encryption of m0 under pk0. For any
message sampler M output by A, and any b ∈ {0, 1}, we define a new message
sampler Mb as follows: run (m0,m1,xk,n) ← M(1k), and return (mb,xk,n).
We construct a PPT legitimate ANON-CCA adversary Ban1 in Fig. 14. Denote
by LRB the LR oracle of Ban1, and b the challenge bit of Ganon-cca

NE,Ban1
. When b = 1

(resp. b = 0), Ban1 perfectly simulates game Hi (resp. game Gi−1) for A. So we
conclude this proof.
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Fig. 14. Adversary Ban1 (up) in the proof of Claim 1, and adversary B (down) in the
proof of Claim 2.

Proof (of Claim 2). Since H′
i is identical to Hi, except that the answer A received

to its ith LR query is an encryption of m1 under pk1, instead of the encryption
of m0 under the same public key. We note that without loss of generality, for any
IND-CDA2 adversary A = (A1, A2) making q(k) LR queries, and any i ∈ [q(k)],
the procedure of A1 can be trivially divided into two parts (A1.(I), A1.(II)) as
follows, where A1.(I) makes i−1 queries to LR1 oracle, and A1.(II) makes q(k)−i
queries to LR2 oracle. LR1, LR2 denote the LR-oracle interfaces of A1.(I), A1.(II),
respectively.

Adversary ALR
1 (1k):

(St′, M) ← A
LR1
1.(I)(1

k); c ← LR(M); St ← A
LR2
1.(II)(St′, c)

Return St

We construct a PPT legitimate non-adaptively IND-CDA adversary B as
shown in Fig. 14. Let b be the challenge bit of Gind-cda

NE,B . When b = 1 (resp.
b = 0), B perfectly simulates game H′

i (resp. game Hi) for A. Therefore, we
conclude this proof. �
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Abstract. Motivated by the history of randomness failures in practi-
cal systems, Paterson, Schuldt, and Sibborn (PKC 2014) introduced the
notion of related randomness security for public key encryption. In this
paper, we firstly show an inherent limitation of this notion: if the family
of related randomness functions is sufficiently rich to express the encryp-
tion function of the considered scheme, then security cannot be achieved.
This suggests that achieving security for function families capable of
expressing more complex operations, such as those used in random num-
ber generation, might be difficult. The current constructions of related
randomness secure encryption in the standard model furthermore reflect
this; full security is only achieved for function families with a conve-
nient algebraic structure. We additionally revisit the seemingly optimal
random oracle model construction by Paterson et al. and highlight its
limitations.

To overcome this difficulty, we propose a new notion which we denote
related refreshable randomness security. This notion captures a scenario
in which an adversary has limited time to attack a system before new
entropy is added. More specifically, the number of encryption queries
with related randomness the adversary can make before the random-
ness is refreshed, is bounded, but the adversary is allowed to make
an unbounded total number of queries. Furthermore, the adversary is
allowed to influence how entropy is added to the system. In this setting,
we construct an encryption scheme which remains secure in the stan-
dard model for arbitrary function families of size 2p (where p is poly-
nomial in the security parameter) that satisfy certain collision-resistant
and output-unpredictability properties. This captures a rich class of func-
tions, which includes, as a special case, circuits of polynomial size. Our
scheme makes use of a new construction of a (bounded) related-key
attack secure pseudorandom function, which in turn is based on a new
flavor of the leftover hash lemma. These technical results might be of
independent interest.

1 Introduction

Most cryptographic primitives are designed under the assumption that perfect
uniform randomness is available. However, in practice, this is often not the case.
c© International Association for Cryptologic Research 2018
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The design of random number generators (RNGs), which are used to generate
the required randomness, is a complex and difficult task, and several examples of
RNGs failing in practice are known [20,23,24,26,27]. The consequences of this
might be fatal, and the examples of attacks made possible by randomness failures
are many (e.g. see [12,13,29,32,39]). To make matters worse, some cryptographic
designs are particularly fragile with respect to randomness failures. An example
of this, is the DSA signature scheme [33], which allows the signing key to be
recovered from two signatures on different messages constructed using the same
randomness. This property enabled the compromise of the security mechanisms
in the Sony Playstation 3 [12], the theft of Bitcoins from wallets managed on
Android devices [16], and the recovery of TLS server signing keys from virtualized
servers [39]. The latter example highlights an important aspect: even if the used
RNG is not flawed by itself, randomness failures might still occur when the RNG
is used in virtualized environments which enable virtual machines (including the
state of the RNG) to be cloned or reset. Given the risk of randomness failures
occurring in practical systems, it is prudent to design cryptographic primitives
that provide resilience against these to the extent that this is possible. While it is
possible to address this via generic derandomization for primitives like signature
schemes1, this is not the case for other primitives like public key encryption,
which inherently relies on randomness for security.

1.1 The Related Randomness Setting

Motivated by the challenge of designing public key encryption secure under ran-
domness failure, Paterson et al. [34] introduced the notion of related randomness
attack (RRA) security. This notion allows the adversary to control the random-
ness used in the encryption scheme, but still requires that messages encrypted
under an honestly generated public key remain hidden, given that certain restric-
tions are placed on the adversary’s queries. More specifically, the RRA security
game defines a set of initially well-distributed random values which are hidden
to the adversary. Via an encryption oracle, the adversary will be able to request
encryptions under public keys and on messages of his choice, using functions φ of
these random values. The adversary will furthermore have access to a challenge
oracle, which, given two messages, consistently returns the encryption of the
first or the second message under an honestly generated public key; the task of
the adversary is to guess which of the messages is encrypted. However, even for
the challenge encryptions, the adversary can specify functions φ of the random
values defined in the game, which will be used as randomness in the encryptions.
The RRA model is inspired by the practical attacks illustrated by Ristenpart
and Yilek [39], which exploits weaknesses of randomness generation in virtual
machines, and furthermore captures as a special case the reset attacks by Yilek
[43] in which encryptions using repeated random values are considered.

1 Specifically, the folklore approach of generating any required randomness via a keyed
PRF evaluated on the message to be signed, will work for any signature scheme. See
also discussion of deterministic DSA in [36].
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In [34], Paterson et al. showed several constructions of schemes secure in
the RRA setting. Specifically, assuming the functions φ are drawn from a func-
tion family Φ of output-unpredictable and collision-resistant functions (which are
also necessary conditions for achieving RRA security), the simple randomized-
encrypt-with-hash (REwH) scheme by Bellare et al. [6] is shown to achieve RRA
security in the random oracle model (however, as will be explained below, this
construction still suffers from limitations inherent to the RRA model). Further-
more, in the standard model, a generic construction based on a Φ-related key
attack secure pseudo-random function (RKA-PRF) [7] and any standard encryp-
tion scheme, is shown to yield a RRA-secure encryption for functions Φ. Using
recent constructions of RKA-PRFs, e.g. [3], an encryption scheme RRA-secure
for polynomial functions Φ can be obtained. Likewise, a generic construction
based on a Φ-correlated input-secure (CIS) hash function [25], a standard PRF,
and an encryption scheme, is shown to yield a RRA-secure encryption scheme for
functions Φ, albeit in a weaker honest-key model. Furthermore, the only known
standard model construction of a CIS hash function only provides selective secu-
rity for polynomial functions Φ. In more recent work, Paterson et al. [35] showed
a generic construction based on a reconstructive extractor and an encryption
scheme, which yields security for hard-to-invert function families, but only in a
selective security model in which the adversary is forced to commit to the func-
tions used in the security game before seeing the public key. Furthermore, the
concrete construction obtained in [35] only allows the adversary to maliciously
modify the randomness used by his encryption oracle; the challenge oracle is
required to use uniformly distributed randomness.

Hence, the best known construction achieving a reasonable level of security
in the standard model, only obtains RRA-security for polynomial function fam-
ilies Φ. However, it seems unlikely that the randomness relations encountered in
practice can be expressed with a function class with such convenient algebraic
structure. While obtaining security for more complex function classes is clearly
desirable, it is challenging to construct provably secure schemes for function
families without an algebraic structure that can be exploited in the proof. This
challenge is additionally reflected by the current state-of-the-art RKA-secure
PRFs [1,3] which can only handle polynomial function families.

1.2 Our Results

First of all, we observe that if the function family Φ becomes sufficiently complex,
RRA-security cannot be achieved for Φ. More precisely, if Φ is sufficiently rich
to be able to express the encryption function of the scheme we are considering,
a direct attack against the scheme in the RRA setting becomes possible. The
attack is relatively simple, and is based on the ability of the adversary to derive
the randomness used in his challenge encryption with the help of his encryption
oracle. Assuming the encryption scheme satisfies ordinary IND-CPA security, the
attack does not violate the properties required to make the RRA-security notion
meaningful, which are the equality-respecting property, output unpredictability,
and collision resistance. The details of this are given in Sect. 4. At first, this
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might appear to contradict the results by Paterson et al. [34] regarding the REwH
construction in the random oracle model. However, closer inspection reveals that
the results from [34] implicitly assume that the functions Φ are independent of
the random oracle, and hence, Φ will not be able to capture the encryption
function of the REwH construction.

Considering the above, we revisit the security of the REwH construction in
the random oracle model, and show that if additional restrictions are placed
on the adversary, security can be obtained. More specifically, if the adversary
respects indirect H-query uniqueness, which is a property requiring that the
random oracle queries caused by the adversary’s encryption and challenge queries
are all distinct, then RRA-security is obtained, even for function families Φ which
are dependent on the random oracle, as long as the functions in Φ are output-
unpredictable. The details of this are in Sect. 5. Our results are reminiscent of
the results by Albrecht et al. [5] regarding cipher-dependent related-key attacks
in the ideal cipher model.

However, the indirect H-query uniqueness property is an artificial restriction
to place on the adversary, and the above result seems unsatisfactory. Further-
more, the above negative result suggests that, achieving security for function
families that reflect more complex operations, which might be used in random
number generators, could be difficult.

Hence, to overcome this difficulty, we propose a new notion which we denote
related refreshable randomness security. In this notion, we bound the number of
queries an adversary can make before new entropy is added to the system, but
allow an unbounded total number of queries. We refer to the periods between
refreshes as epochs. Furthermore, we allow the adversary to maliciously influ-
ence how entropy is added between epochs. This is implemented by giving the
adversary access to a refresh oracle through which the adversary can submit
update functions ψ. These functions take as input the current random values
and a update seed chosen uniformly at random, and output new random val-
ues which will be used in the security game. For this update mechanism to be
meaningful, we restrict the functions ψ to come from a function family Ψ in
which all functions have the property, that their output has a certain level of
min-entropy conditioned on the random values being updated (i.e. it is required
that a certain amount of the entropy contained in the update seed, will be car-
ried over to the output of the update function). With this requirement in place,
we consider adversaries who makes at most n queries to their encryption and
challenge oracles, before querying the refresh oracle. The details of the security
model are given in Sect. 3.

The related refreshable randomness setting models the arguably realistic sce-
nario in which an attacker only has limited time to interact with a system that
is in a state where no new entropy is being added to the system, and highly
correlated randomness values are used for encryption. This furthermore resem-
bles the observations made in [39] regarding virtual machine reset attacks; the
attacks were only possible in a relatively short window after the virtual machine
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was reset, before sufficient entropy was gathered from the network, clock syn-
chronization, and similar sources.

The related refreshable randomness setting furthermore allows us to obtain
positive results in the standard model. Specifically, we construct a scheme which
is secure in the related refreshable randomness setting for arbitrary function
families Φ and Ψ satisfying certain output unpredictability and collision resis-
tance properties. We do, however, require the size of the function families to be
bounded by an a priori known bound of the form 2p, where p is a polynomial in
the security parameter. This allows us to capture a rich class of functions which
include, for example, the set of all functions that can be described by circuits of
polynomial size. Our construction is based on the same high-level approach as
taken in [34,43], and combines a standard encryption scheme with a PRF (see
below for the details). However, by relying on a new construction of a (bounded)
RKA-secure PRF, we are able to prove security in the related refreshable ran-
domness setting for much more interesting function classes than considered in
[34,43]. Notably, in contrast to our scheme, the scheme from [43] is only reset
secure (Φ = {id}), and the scheme from [34] only achieves selective security for
polynomial functions Φ, and hence cannot capture non-algebraic functions such
as bit-flipping and bit-fixing, which are highly relevant to randomness failures
in practice. The full details can be found in Sect. 7.

1.3 Technique

As highlighted above, the main tool we use to obtain our standard model encryp-
tion scheme secure in the related refreshable randomness setting, is a new con-
struction of a RKA-secure PRF. We consider this construction to be our main
technical contribution. As an intermediate step, we construct (a variant of) a
CIS hash function. This type of hash function was originally introduced by Goyal
et al. [25]. While different security notions for CIS hash functions were introduced
in [25], the one we will be concerned with here, is pseudo-randomness. This
notion requires that, for a hash function H : D → R and a randomly chosen
value x ∈ D, an adversary cannot distinguish an oracle which returns H(φ(x))
for adversarially chosen functions φ, from an oracle that returns a random value
from R. In [25], a construction obtaining selective security for a polynomial func-
tion family Φ was shown. However, we show that by bounding the number of
queries to the adversary’s oracle, we can obtain a construction achieving security
for a class Φ of arbitrary functions that are output-unpredictable and collision-
resistant, where the size of Φ is bounded a priori. This construction is in turn
based on a new flavor of the leftover hash lemma [28] for correlated inputs that
might depend on the description of the hash function. Then, by applying this
CIS hash function H to the key of a standard PRF prf, we obtain a new PRF
prf′(k, x) := prf(H(k), x) that provides RKA security, as long as the adversary
will only query a bounded number of different key derivation functions. However,
the adversary is allowed to obtain an unbounded number of evaluation results
under the derived keys. The detailed proofs of security can be found in Sect. 6.
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Finally, we obtain a standard model encryption scheme in the related refresh-
able randomness setting via the same transformation used in [34,43]: to encrypt
a message m under public key pk using randomness r, we compute Enc(pk,m; r′),
where r′ = prf′(r, pk‖m). The security properties of the constructed PRF prf′

allows us to prove security via a hybrid argument with respect to the epochs.
Note, however, that the parameters of the scheme will grow linearly in the in the
number of queries an adversary is allowed to make in each epoch, as a description
of H must be included. See Sect. 7 for the details.

Our construction of a RKA-secure PRF, CIS hash function, and our new
flavor of the leftover hash lemma, might find applications outside of related ran-
domness security, and hence, might be of independent interest. For example,
by directly applying our RKA-secure PRF in combination with the framework
of Bellare et al. [8], we can obtain RKA-secure signatures, public key encryp-
tion, and identity-based encryption for function families of size bounded by 2p

and with the appropriate collision-resistant and output-unpredictability proper-
ties. Security is only guaranteed for a bounded number of related key derivation
queries, but the total number of allowed signatures, decryption queries, and key
queries for identities, respectively, is unbounded. Furthermore, it is not hard
to see that our PRF construction only requires the PRF keys to have high
min-entropy (as opposed to being uniformly distributed), as long as the consid-
ered function family remains collision-resistant and output-unpredictable. This
indicates that the construction can additionally tolerate leakage, and we conjec-
ture that bounded leakage and tampering security as defined by Damg̊ard et al.
[18,19], can be achieved.

1.4 Related Work

A number of works in the literature have considered security of various cryp-
tographic primitives in the event of randomness failures. In the symmetric key
setting, Rogaway and Shrimpton [40] considered the security of authenticated
encryption in the case nonces are repeated, and Katz and Kamara [31] considered
chosen randomness attacks which allows the adversary to freely choose the ran-
domness, except for the challenge encryption. In the public key setting, Bellare
et al. [6] considered hedged encryption, which remains secure as long as the joint
distribution of messages and randomness contains sufficient entropy. Note that
the security notion formalized for hedged encryption in [6], security against cho-
sen distribution attacks (CDA), is incomparable to RRA-security which does not
rely on message entropy. Furthermore, whereas RRA-security allows the adver-
sary to obtain encryptions under maliciously chosen public keys using random-
ness related to the randomness of the challenge encryptions, there is no equivalent
in CDA-security, and CDA-security does not allow messages and randomness to
depend on the public key. Additionally, the known standard model construc-
tions of CDA-secure schemes are only shown secure for block sources which
require each message/randomness pair to have high min-entropy conditioned on
all previous pairs, whereas the standard model RRA-secure schemes from [34,35]
and the schemes in this paper do not have similar restrictions. Vergnaud and
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Xaio [42] slightly strengthened the CDA-security considered in [6] by allowing
the message/randomness pair to partly depend on the public key. Yilek [43]
considered reset attacks in which encryptions with repeated randomness values
might occur, and gave a construction based on a standard encryption scheme
and a PRF. This is a special case of the RRA-setting. Bellare and Tackmann
[11] introduced the notion of nonce-based public key encryption, and achieved a
number of strong results. However, the constructions assume a stateful scheme,
and is hence not applicable to a number of scenarios in which we are interested
in related randomness security, e.g. virtual machine resets. Extending [6] and
[11], Hoang et al. [30] considered security of hedged encryption and nonce-based
public key encryption under selective opening attack.

Appelbaum and Widder [4] constructed a (bounded) RKA-secure PRF for
additions, while Abdalla et al. [2] constructed a RKA-secure PRF for XORs from
multilinear maps. In contrast, our PRF construction achieves security for arbi-
trary functions satisfying collision resistance and unpredictability, for a bounded
number of related keys. We stress, however, that the bound is only on the num-
ber of keys, and that our construction remains secure for an unbounded number
of PRF evaluations.

2 Preliminaries

2.1 Notation and Basic Notions

Throughout the paper we will use λ ∈ N to denote the security parameter,
which will sometimes be written in its unary representation, 1λ. Furthermore, we
sometimes suppress the dependency on λ, when λ is clear from the context. We
denote by y ← x the assignment of y to x, and by s ←$ S we denote the selection
of an element s uniformly at random from the set S. The notation [n] represents
the set {1, 2, . . . , n}. For an algorithm A, we denote by y ← A(x; r) that A is
run with input x and random coins r, and that the output is assigned to y. For
a vector x = (x1, x2, . . .), we denote by A(x) the vector (A(x1), A(x2), . . .). For
a random variable X defined over a set S, we denote by H∞(X) the min-entropy
of X (i.e. H∞(X) = − log2 maxx∈S Pr[X = x]), and for two random variables X
and Y defined over the same set S, we denote the statistical distance between
X and Y as Δ[X,Y ] (i.e. Δ[X,Y ] = 1

2

∑
s∈S |Pr[X = s] − Pr[Y = s]|).

2.2 t-wise Independent Hash Functions

One of the basic building blocks of our construction is t-wise independent hash
functions, which we define here. We furthermore recall a tail inequality for t-wise
independent variables due to Bellare and Rompel [10], which we will make use
of in our proofs of security.

Definition 1 (t-wise independent hash function family). Let H =
{H |H : D → R} be a family of hash functions. H is said to be a t-wise inde-
pendent hash function family, if for all mutually distinct x1, . . . , xt ∈ D and all
y1, . . . , yt ∈ R, it holds that PrH←$H[H(x1) = y1 ∧ · · · ∧ H(xt) = yt] = 1

|R|t .
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Theorem 1 (Tail inequality[10]). Let t be an even integer larger than 8, and
let X1, . . . , Xn be t-wise independent variables2 assuming values in the interval
[0, 1]. Furthermore, let X = X1 + . . . + Xn, μ = E[X], and ε < 1. Then

Pr[|X − μ| ≥ εμ] ≤
(

t

ε2μ

)t/2

.

2.3 Output Unpredictability and Collision Resistance

We will consider function families which are output-unpredictable and collision-
resistant. These properties were originally defined by Bellare and Kohno [9] in
the context of RKA security, and used by Paterson et al. [34] in the context
of RRA security. The following definitions are slightly simplified compared to
[9,34].

Definition 2 (Output unpredictability). Let Φ = {φ : D → R} be a family
of functions with domain D = Dλ and range R = Rλ. The output unpredictabil-
ity of Φ is defined as UPΦ(λ) = maxφ∈Φ,y∈R Pr[x ←$ D : φ(x) = y]. When
UPΦ(λ) < ε for a negligible function ε = ε(λ), we simply say that Φ is output-
unpredictable.

Definition 3 (Collision resistance). Let Φ = {φ : D → R} be a family of
functions with domain D = Dλ and range R = Rλ. The collision resistance of
Φ is defined as CRΦ(λ) = maxφ1,φ2∈Φ,φ1 �=φ2 Pr[x ←$ D : φ1(x) = φ2(x)].When
CRΦ(λ) < ε for a negligible function ε = ε(λ), we simply say that Φ is collision-
resistant.

2.4 Pseudorandom Function

A pseudorandom function F is given by the following three algorithms:
F.Setup(1λ) which on input the security parameter, returns public parameters
par (required to describe a domain D and a range R); F.KeyGen(par) which, on
input par, returns a key k; and F.Eval(par, k, x) which, on input par, key k, and
input x ∈ D, returns an output value y ∈ R. For notational convenience, we will
sometimes suppress par from the input.

We will consider the security of a pseudorandom function in a multi-key
setting. This is for convenience only; by a standard hybrid argument, it is easily
seen that this definition is equivalent to a definition considering a single key, as
also shown by Bellare et al. [15]. We define security via the security game shown
in Fig. 1.

Definition 4. Let the advantage of an adversary A playing the security game
in Fig. 1 with respect to a pseudorandom function F = (Setup, KeyGen, Eval) be
defined as AdvPRFF,A(λ) = 2

∣
∣Pr[PRFF

A(λ) ⇒ 1] − 1
2

∣
∣. F is said to be secure if for all

PPT adversaries A, AdvPRFF,A(λ) is negligible in the security parameter λ.

2 Random variables X1, . . . , Xn are t-wise independent if for all distinct indices
i1, . . . , it ∈ [n] and all x1, . . . , xt, Pr[

∧
j∈[t](Xij = xj)] =

∏
j∈[t] Pr[Xij = xj ] holds.
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PRFF
A(λ):

par ← F.Setup(1λ)
b ←$ {0, 1}
F ← ∅
ctr ← 0
b ← AEval,New(par)
return (b = b )

proc. Eval(i, x):
if i > ctr, return ⊥
if b = 1

y ← F.Eval(ki, x)
else

if F [i, x] = ⊥, F [i, x] ←$ R
y ← F [i, x]

return y

proc. New:
ctr ← ctr + 1
kctr ← F.KeyGen(par)
return ctr

Fig. 1. Game defining security of a pseudorandom function.

2.5 Public Key Encryption

A public key encryption (PKE) scheme PKE is defined by the following four
algorithms: PKE.Setup(1λ) which on input the security parameter, returns public
parameters par; PKE.KeyGen(par) which on input par, returns a public/private
key pair (pk, sk); PKE.Enc(par, pk,m) which on input par, public key pk, and
message m, returns an encryption c of m under pk; and PKE.Dec(par, sk, c) which
on input par, private key sk, and ciphertext c, returns either a message m or
the error symbol ⊥. For convenience, we often suppress par from the input.

We require that a PKE scheme satisfies perfect correctness, that is, for all λ,
all par ← PKE.Setup(1λ), all (pk, sk) ← PKE.KeyGen(par), and all m ∈ M(pk), it
holds that PKE.Dec(sk, PKE.Enc(pk,m)) = m.Security of a PKE scheme is defined
via the game shown in Fig. 2.

IND-CCAPKE
A (λ):

par ← PKE.Setup(1λ)
(pk∗, sk∗) ← PKE.KeyGen(par)
b ←$ {0, 1}
C ← ∅
b ← ALR,Dec(par, pk∗)
return (b = b )

proc. LR(m0, m1):
c ← PKE.Enc(pk∗, mb)
C ← C ∪ {c}
return c

proc. Dec(c):
if c ∈ C,

return ⊥
return PKE.Dec(sk∗, c)

Fig. 2. Game defining IND-CCA security for a PKE scheme.

Definition 5 (IND-CCA security). Let the advantage of an adversary A playing
the IND-CCA game with respect to a PKE scheme PKE = (Setup, KeyGen, Enc,
Dec), be defined as: AdvIND-CCAPKE,A (λ) = 2

∣
∣Pr[IND-CCAPKE

A (λ) ⇒ 1] − 1
2

∣
∣ . A scheme

PKE is said to be IND-CCA secure, if for all PPT adversaries A, AdvIND-CCAPKE,A (λ) is
negligible in the security parameter λ.

3 Related Refreshable Randomness Security

We will firstly define our new notion of related refreshable randomness security.
This builds upon the RRA-security notion defined by Paterson et al. [34], but
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IND-RRR-CCAPKE
A (λ):

par ← PKE.Setup(1λ)
(pk∗, sk∗) ← PKE.KeyGen(par)
b ←$ {0, 1}; r ←$ R
C ← ∅
b ← ARefresh,LR,Enc,Dec(par, pk∗)
return (b = b )

proc. Refresh(ψ):
s ←$ S
r ← ψ(r, s)

proc. LR(m0, m1, φ):
c ← PKE.Enc(pk∗, mb;φ(r))
C ← C ∪ {c}
return c

proc. Enc(pk, m, φ):
return PKE.Enc(pk, m;φ(r))

proc. Dec(c):
if c ∈ C, return ⊥
else return PKE.Dec(sk∗, c)

Fig. 3. Game defining indistinguishability under related refreshable randomness and
chosen ciphertext attacks (IND-RRR-CCA).

models a setting in which the adversary has limited time to attack a system
before new entropy is added to the system. As in the original RRA security game,
we consider a polynomial number of randomness values ri, and give the adversary
access to an encryption oracle Enc which returns encryptions under public keys
and messages of the adversary’s choice, and a challenge left-or-right oracle LR,
which consistently returns the encryption of either the first or the second message
of two submitted messages m0, m1, under an honestly generated challenge public
key pk∗. However, for both oracles, the adversary can not only specify which
random value ri to be used, but also a function φ which will be applied to
ri before it is used (i.e. the used randomness will be φ(ri)). We furthermore
introduce an additional oracle, Refresh, which allows the adversary to submit
a function ψ that will be used to refresh the random values ri. The function
ψ takes two inputs: the randomness ri which is to be refreshed, and a seed s.
Here, the seed s will be drawn uniformly at random from a seed space S, and
ψ : R×S → R, where R is the randomness space of the encryption scheme. The
full security game is defined in Fig. 3. Note that while the security game shown
in Fig. 3 is only defined for a single random value r, this is equivalent to a model
defined for a polynomial number of randomness values ri (see the full version of
the paper).

Note that, by itself, introducing the Refresh oracle does not achieve the
intended goal, as the adversary is not forced to query Refresh. However, we
will consider a class of adversaries which make at most n Enc and LR queries
between each call to Refresh (but is allowed to make an unrestricted number
of queries to Dec). We will furthermore parameterize this class of adversaries by
function families Φ and Ψ from which an adversary is allowed to choose related
randomness functions φ and refresh functions ψ, respectively, and will refer
to adversaries in this class as (n,Φ, Ψ)-restricted adversaries3. In the following

3 Note that since the functions φ and ψ will depend on the security parameter λ,
Φ and Ψ are technically ensembles of function families indexed by λ. However, for
notational convenience, we suppress λ.
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definitions and proofs, we need to refer to the execution of an adversary in
between two calls to Refresh, which we will denote an epoch4.

As in the case of RRA-security, since the defined oracles let the adversary
control the randomness in the challenge encryptions, a few natural restrictions
must be placed on the adversary’s queries to obtain a meaningful definition of
security. Specifically, we require that an adversary is equality respecting. This is
reminiscent of the restriction defined for deterministic encryption schemes [38].

Definition 6 (Equality-respecting adversary). Consider a (n,Φ, Ψ)-re-
stricted adversary A playing the IND-RRR-CCA security game for security param-
eter λ. Let Mφ,δ

Enc denote the set of messages A submits to the Enc oracle for
challenge public key pk∗ and related randomness function φ ∈ Φ in refresh epoch
δ. Furthermore, let (mφ,δ,1

0 ,mφ,δ,1
1 ), . . . , (mφ,δ,qφ

0 ,m
φ,δ,qφ

1 ) denote the messages A
submits to the LR oracle for function φ in refresh epoch δ. Then A is said to be
equality-respecting if, for all φ ∈ Φ, for all refresh epochs δ, and for all i, j ∈ [qφ]
s.t. i �= j,

mφ,δ,i
0 = mφ,δ,j

0 ⇔ mφ,δ,i
1 = mφ,δ,j

1 and mφ,δ,i
0 ,mφ,δ,j

1 �∈ Mφ,δ
Enc.

With this definition in place, we are ready to define our notion of security.

Definition 7 (IND-RRR-CCA Security). Let the advantage of an adversary A
playing the IND-RRR-CCA game with respect to a public key encryption scheme
PKE = (PKE.Setup, PKE.KeyGen, PKE.Enc, PKE.Dec), be defined as:

AdvIND-RRR-CCAPKE,A (λ) = 2
∣
∣
∣
∣Pr[IND-RRR-CCAA

PKE(λ) ⇒ 1] − 1
2

∣
∣
∣
∣ .

A scheme PKE is said to be (n, Ψ, Φ)-IND-RRR-CCA secure, if for all PPT (n,Φ, Ψ)-
restricted and equality-respecting adversaries A, AdvIND-RRR-CCAPKE,A (λ) is negligible in
the security parameter λ.

The original RRA-security notion defined in [34] can be obtained from the
above definition by not allowing the adversary access to the Refresh oracle (i.e.
considering only the first refresh epoch) and considering an unbounded value n.
In this case, Ψ is irrelevant, and we simply write Φ-IND-RR-CCA security to denote
this security notion5. Lastly, note that ordinary IND-CCA security can be obtained
from the above definition by setting n = 1, Φ = {id}, and Ψ = {id2 : (r, s) → s}
(assuming S = R).

3.1 Basic Function Family Restrictions

Unsurprisingly, related randomness security for all function families Φ and Ψ is
not achievable. This is similar to the security notions for related key attacks (e.g.
4 Hence, if an adversary A submits q queries to Refresh in total, then the execution

of A has q + 1 epochs.
5 Note that in [34], the notation Φ-RRA-CCA was used for this security notion.
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see [7]), which must restrict the class of related-key deriving functions that can be
applied to the private key, in order to become achievable. We will now establish
basic restriction which must be placed on Φ and Ψ to make the IND-RRR-CCA
notion defined above achievable.

The two basic properties we consider are output-unpredictability and
collision-resistance of the functions in Φ. However, as the IND-RRR-CCA secu-
rity game allows the adversary to update the challenge randomness using the
functions Ψ , we will consider output-unpredictability and collision-resistance
of Φ with respect to Ψ i.e. the functions in Φ must be output-unpredictable
and collision-resistant, even when the input is modified using functions from
Ψ . In the following definitions we will use the notation Ψ

q
to denote the q-

closure of the functions in Ψ . More specifically, each function ψ ∈ Ψ
q

corre-
sponds to q updates of a randomness value r using q functions ψ1, . . . , ψq ∈ Ψ ,
and will take as input r and q seeds s = (s1, . . . , sq) and return ψ(r, s) =
ψq(ψq−1(· · · ψ1(r, s1) · · · , sq−1), sq). As the seeds si are elements of S, we have
that ψ : R × Sq → R.

Definition 8 (Output-unpredictability of Φ w.r.t. Ψ). Let Φ = {φ : R →
R} and Ψ = {ψ : R×S → R} be function families, where R = Rλ and S = Sλ.
For a positive integer q, the q-output-unpredictability of Φ with respect to Ψ is
defined as UPΦ,Ψ

q (λ) = maxφ∈Φ,ψ∈Ψ
q
,y∈R Pr

[
r ←$ R, s ←$ Sq : φ(ψ(r, s)) = y

]
.

Definition 9 (Collision-resistance of Φ w.r.t. Ψ). Let Φ = {φ : R → R}
and Ψ = {ψ : R × S → R} be function families, where R = Rλ and S = Sλ.
The collision-resistance of Φ with respect to Ψ is defined as

CRΦ,Ψ
q (λ) = max

φ1,φ2∈Φ,ψ∈Ψ
q

φ1 �=φ2

Pr
[
r ←$ R, s ←$ Sq : φ1(ψ(r, s)) = φ2(ψ(r, s))

]
.

In [34], Paterson et al. showed that to achieve Φ-IND-RR-CCA security, Φ
is required to satisfy standard output-unpredictability and collision-resistance.
Likewise, in the IND-RRR-CCA setting, we can show that Φ must be output-
unpredictability and collision-resistance w.r.t. Ψ for security to be achievable.

Theorem 2 (Necessity of Φ output-unpredictability w.r.t. Ψ). Let Ψ =
{ψ : R×S → R} be a function family, where R = Rλ and S = Sλ, and suppose
that there exist a positive integer q = poly(λ) and a non-negligible function ε =
ε(λ) such that UPΦ,Ψ

q (λ) > ε. Then no PKE scheme can be (n, Ψ, Φ)-IND-RRR-CCA
secure for n ≥ 1.

Proof (Sketch). The proof is straightforward. Let φ ∈ Φ, ψ ∈ Ψ
q
, and y ∈ R

such that Pr[r ←$ R, s ←$ Sq : φ(ψ(r, s)) = y] > ε. These are guaranteed
to exist since UPΦ,Ψ

q (λ) > ε. Consider an adversary A submitting functions
corresponding to ψ as Refresh queries, and (φ,m0,m1) in a following LR
query. Let c be the challenge ciphertext A receives. Now, let A check whether
c = Enc(pk∗,mb; y) for b = 0 and b = 1, and if so, return b. Otherwise, let A
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return a random bit. It easily follows that such A has advantage at least ε which
is assumed to be non-negligible, and hence the considered PKE scheme cannot be
secure. �(Theorem 2)

Theorem 3 (Necessity of Φ collision-resistance w.r.t. Ψ). Let Φ = {φ :
R → R} and Ψ = {ψ : R × S → R} be function families, where R = Rλ

and S = Sλ. Suppose that there exist a positive integer q = poly(λ) and a non-
negligible function ε = ε(λ) such that CRΦ,Ψ

q (λ) > ε. Then no PKE scheme can
be (n, Ψ, Φ)-IND-RRR-CCA secure for n ≥ 2.

The proof of this theorem is similar to the proof of Theorem2 and is omitted.
Note that, without further assumptions on Ψ , queries to the Refresh oracle

is not guaranteed to change the random value r used to respond to Enc and
LR queries. In particular, if Ψ = {id1 : (r, s) → r}, the original value of r
will be used in every refresh epoch, which essentially corresponds to removing
the bound n on the number of Enc and LR queries. However, it is relatively
easy to see that security cannot be achieved in this case6. Furthermore, the
very idea behind introducing the IND-RRR-CCA security notion is to show that a
guarantee of new entropy is being added to the system with certain intervals, can
be leveraged to provide stronger security properties. Hence, we will consider a
function class Ψ for which the output r′ ← ψ(r, s) of all update functions ψ ∈ Ψ
is required to depend on the seed s, or more specifically, that ψ(r, s) will have a
certain level of conditional min-entropy given r. We introduce this requirement
implicitly via the following slightly stronger notions of output-unpredictability
and collision-resistance of Φ w.r.t. Ψ . These notions require that the functions in
Φ remain output-unpredictable and collision-resistant on input ψ(r′, s), ψ ∈ Ψ ,
for a randomly chosen seed s and any value r′, as opposed to a value of r′

obtained by choosing the initial r at random and then modifying this using a
chain of update functions ψ ∈ Ψ

q
and corresponding seeds s ∈ Sq. We refer to

these notions as seed-induced output-unpredictability and collision-resistance.

Definition 10 (Seed-induced output-unpredictability of Φ w.r.t. Ψ). Let
Φ = {φ : R → R} and Ψ = {ψ : R×S → R} be function families, where R = Rλ

and S = Sλ. The seed-induced output-unpredictability of Φ with respect to Ψ is
defined as

sUPΦ,Ψ (λ) = max
φ∈Φ,ψ∈Ψ,r,y∈R

Pr [s ←$ S : φ(ψ(r, s)) = y] .

Definition 11 (Seed-induced collision-resistance of Φ w.r.t. Ψ). Let Φ =
{φ : R → R} and Ψ = {ψ : R×S → R} be function families, where R = Rλ and
S = Sλ. The seed-induced collision-resistance of Φ with respect to Ψ is defined
as

6 In particular, the above definition of an equality-respecting adversary will allow the
messages m0, m1 and the function φ from a LR query in one refresh epoch, to be
submitted to the Enc oracle in combination with pk∗ in a different refresh epoch,
which trivially allows the adversary to break security.
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sCRΦ,Ψ (λ) = max
φ1,φ2∈Φ,ψ∈Ψ,r∈R

φ1 �=φ2

Pr [s ←$ S : φ1(ψ(r, s)) = φ2(ψ(r, s))] .

4 Restrictions on the Complexity of Function Families

We will now turn our attention to function families which satisfy the basic
output-unpredictability and collision-resistant properties, but for which security
nevertheless cannot be achieved.

More specifically, when Φ and Ψ become rich enough to express the encryption
function itself of a scheme, a direct attack against the scheme becomes possible.
This is reminiscent of the results by Albrecht et al. [5] regarding cipher-dependent
related-key attacks in the ideal cipher model. The attack is based on the ability
of an adversary to force the challenge encryption to be constructed using a value
which can be obtain through the Enc and LR oracles available to the adversary.
This is captured by the following theorem.

Theorem 4. Let PKE = (Setup, KeyGen, Enc, Dec) be a public key encryp-
tion scheme, and let Φ be a family of functions such that id ∈ Φ and
f(Enc(pk,m, ·)) ∈ Φ for some public key pk, message m, and a mapping func-
tion f : C → R, where C and R are the ciphertext space and randomness space
of PKE, respectively. Then PKE cannot be (n, Ψ, Φ)-IND-RRR-CCA secure for any
n ≥ 2 and any function family Ψ .

Proof. The proof is straightforward. Since it is assumed that f(Enc(pk,m; ·)) ∈
Φλ, an adversary would be able to submit φ(·) = f(Enc(pk,m; ·)) and two dis-
tinct messages, m0 and m1, in a LR query to obtain the challenge encryption
c∗ = Enc(pk∗,mb; f(Enc(pk,m; r)), where pk∗ is the challenge public key, b is
the challenge bit, and r is the random value chosen in the IND-RRR-CCA game.
Then, by submitting (pk,m, id) to his encryption oracle Enc, the adversary will
obtain cr = Enc(pk,m; r) and can compute r̃ = f(cr). Finally, the adversary can
compute c0 = Enc(pk∗,m0; r̃) and c1 = Enc(pk∗,m1; r̃), and by testing whether
c0 = c∗ or c1 = c∗, he will learn the challenge bit b. �(Theorem 4)

Note that the only functions required in the above attack, are f(Enc(pk,m, ·))
and id(·). These functions are easily seen to be output-unpredictable assuming
the underlying encryption scheme in the construction is IND-CPA secure, and that
an appropriate mapping function f is chosen. They can likewise be seen to be
collision-resistant under the same assumptions. Furthermore, it should be noted
that the above theorem does not require the Refresh oracle to be queried, and
hence is also true for the IND-RR-CCA notion defined in [34].

While the above theorem holds for all encryption schemes in general, stronger
results might hold for concrete schemes. In particular, even if f(Enc(pk,m; ·)) �∈
Φ, the structure of a concrete scheme might still allow an adversary to mount a
similar attack to the above based on multiple queries to his LR and Enc oracles,
for carefully selected functions. However, the IND-RRR-CCA security notion bounds
the information an adversary can extract before the randomness is refreshed,



294 T. Matsuda and J. C. N. Schuldt

which will allow us to construct a generic conversion of a PKE scheme achieving
IND-RRR-CCA security for relatively large and complex function classes Φ and
Ψ .Interestingly, the above theorem furthermore illustrates some of the limitations
of the building blocks used in [34] to achieve related randomness security; see
the full version of the paper for a brief discussion of this.

5 On the IND-RR-CCA Security of REwH in the Random
Oracle Model

In this section, we will revisit the IND-RR-CCA security of the REwH (Randomized-
Encrypt-with-Hash) scheme in the random oracle model.

The REwH scheme was introduced by Bellare et al. [6] to hedge against ran-
domness failures, and was furthermore studied by Ristenpart and Yilek [39] in
the context of virtual machine reset attacks. The basic idea of the scheme is to
modify the encryption function of an existing encryption scheme to use random-
ness derived by hashing all the inputs to the encryption algorithm: the public
key, the message, and the randomness. Assuming the hash function is a random
oracle, the scheme will remain secure (in the sense of the security of the under-
lying encryption scheme), as long as this triple of inputs remains unpredictable
to the adversary. The scheme is shown in Fig. 4.

Alg. REwH.KeyGen(1λ):
H ←$ H
(pk, sk) ← PKE.KeyGen(1λ)
pk ← (pk, H)
return (pk , sk)

Alg. REwH.Enc(pk , m):
r ←$ R
r̃ ← H(pk m r)
c ← PKE.Enc(pk, m; r̃)
return c

Alg. REwH.Dec(sk, c):
m ← PKE.Dec(sk, m)
return m

Fig. 4. Scheme REwH constructed from a PKE scheme PKE and a hash family H.

In [34], Paterson et al. showed that this scheme is additionally Φ-IND-RR-ATK
secure assuming the underlying encryption scheme is IND-ATK secure, where
ATK is either CPA or CCA, and Φ is both output-unpredictable and collision-
resistant. Considering the impossibility result in the previous section, this might
initially appear somewhat surprising. However, as already mentioned, the results
in [34] implicitly assume that the functions in Φ are independent of the used
random oracle i.e. the functions in Φ cannot capture the encryption function
Enc(pk,m; r) = Enc′(pk,m;H(pk,m, r)) of the REwH construction, where Enc′ is
the encryption function of the underlying encryption scheme.

In this section, we will consider Φ which might depend on the random oracle,
i.e. we will assume that functions in Φ might access the random oracle. This is
reminiscent of Albrecht et al. [5], who considered RKA-security of symmetric
encryption in the ideal cipher model with RKA-functions that depend on the
ideal cipher. To show security in this stronger setting, we need to place additional
restrictions on the adversary (as shown by the direct attack in the previous
section). Here, we will consider the following limitation of the adversary’s queries.
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Definition 12 (Indirect H-query uniqueness). Consider an adversary A
interacting in the Φ-IND-RR-CCA security game in the random oracle model. A is
said to respect indirect H-query uniqueness if, all random oracle queries caused
by A’s queries to his Enc and LR oracles, are unique.

Note that, in the above definition, A is not restricted in terms of his queries
directly to the random oracle; only the indirect queries caused by A’s Enc and
LR queries are restricted. With this definition in place, we can now show the
following result for the REwH construction.

Theorem 5. Let PKE be an IND-CCA secure PKE scheme, and let Φ = {φ : R →
R}, be an output-unpredictable function family, where R = Rλ is the randomness
space of PKE.Enc. Then the REwH scheme based on PKE is Φ-IND-RR-CCA secure
against adversaries respecting indirect H-query uniqueness, assuming the hash
function in the REwH construction is modeled as a random oracle. More precisely,
for all equality and indirect H-query uniqueness respecting adversaries A making
qlr = qlr(λ) LR queries, qenc = qenc(λ) Enc queries, and qRO = qRO(λ) random
oracle queries, there exists an algorithm B such that

AdvIND-RR-CCAREwH,A (λ) ≤ AdvIND-CCAPKE,B (λ) + 2qRO(qlr + qenc) · UPΦ(λ).

The proof of the above theorem can be found in the full version of the paper.
Note that in the above theorem, collision resistance of Φ is not required. This

is because the indirect H-query uniqueness property will prevent an adversary
from submitting functions φ1, φ2 to his Enc and LR oracles, for which a collision
φ1(r) = φ2(r) occurs, assuming the queried public keys and messages are the
same. (If the submitted public keys and messages are different, indirect H-query
uniqueness will not imply that a collision cannot occur, but this will not affect
the proof, since the inputs to the random oracle will remain distinct).

The requirement that the adversary is indirect H-query uniqueness respecting
might be considered to be somewhat artificial, in that there seems to be no
reasonable argument for this assumption to hold for adversaries in the practical
settings in which related randomness attacks might be a concern. In the following
sections, we will explore the possibilities of achieving security in the standard
model, under the arguably realistic assumption that the adversary can only
mount a limited number of queries before new entropy is added to the system
on which encryption is being done.

6 Bounded RKA and Correlated-Input Security
from t-wise Independent Hash Functions

In this section, we show how to construct the building blocks needed for our
standard-model IND-RRR-CCA-secure PKE scheme. More concretely, we will start
out by showing a key-dependent variant of the leftover hash lemma for corre-
lated inputs. This, in turn, allows us to show that a family of t-wise independent
hash functions leads to a bounded correlated-input secure function family, in the
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sense that a bound for the number q of correlated inputs must be known a priori.
Finally, we will then show how a PRF (with public parameters) that provides
RKA-security as long as an adversary makes at most q related key derivation
queries, can be constructed from an ordinary PRF and a q bounded correlated-
input secure function family. This type of PRF will be used to construct our
IND-RRR-CCA-secure PKE scheme in Sect. 7. We believe that each of the inter-
mediate results might find other applications than the construction of related
randomness secure PKE scheme, and hence, might be of independent interest.

6.1 Key-Dependent Leftover Hash Lemma for Correlated Inputs

The ordinary leftover hash lemma [28] requires that the input to the hash func-
tion is chosen independently of the description of the hash function (i.e. the hash
key). The first key-dependent versions of the leftover hash lemma were shown
in [21,41], and was extended to consider leakage in [14]. A “crooked” version for
block sources was shown in [38].

The version of the leftover hash lemma that we will show in the following,
differs from the previous work in that we consider unrestricted inputs which can
both be arbitrarily correlated and key-dependent. Our lemma is as follows.

Lemma 1. Let H : D → R be a family of t-wise independent hash functions
where t > 8 is an even number, and let X be a family of collections of q (corre-
lated) random variables X = (X1, . . . , Xq) over D, such that H∞(Xi) ≥ γ for all
1 ≤ i ≤ q, and Pr[Xi = Xj ] = 0 for all 1 ≤ i �= j ≤ q. Furthermore, let ε, δ > 0
be such that

t ≥ log |X | + q log |R| + log
1
δ
, and γ ≥ q log |R| + 2 log

1
ε

+ log t + 2. (1)

Then, with probability 1 − δ over the choice of H ←$ H,

Δ[H(X), (UR, . . . , UR︸ ︷︷ ︸
q

)] ≤ ε

holds for all X ∈ X , where UR denotes the uniform distribution on R.

Proof (of Lemma 1). We start by considering a fixed collection of random vari-
ables X = (X1, . . . , Xq) such that H∞(Xi) ≥ γ for all 1 ≤ i ≤ q and
Pr[Xi = Xj ] = 0 for all 1 ≤ i �= j ≤ q, and a fixed value y ∈ Rq. Note
that the condition of X implies that every coordinate of (an outcome of) X is
always distinct. Therefore, due to the t-wise independence of H, and that q < t,
we must have that, for any x in the support of X (which is a subset of Dq),

Pr
H←$H

[H(x) = y] =
1

|R|q . (2)

Now let IH(x)=y be the indicator variable that takes on the value 1 if H(x) = y
(and 0 otherwise), and let px = Pr[X = x] · IH(x)=y and p =

∑
x∈Dq px . The

expected value of p (over the choice H ←$ H) is then



Related Randomness Security for Public Key Encryption, Revisited 297

E[p] = E[
∑

x∈Dq

px ] =
∑

x∈Dq

Pr[X = x] · E[IH(x)=y ] =
1

|R|q ,

where the last equality follows from E[IH(x)=y ] = PrH←$H[H(x) = y] = |R|−q,
which in turn follows from Eq. (2). Finally let Px = 2γ · px and

P =
∑

x∈Dq

Px = 2γp.

The expected value of P must then be E[P ] = 2γ · E[p] = 2γ · |R|−q.
We will now apply the tail bound from Theorem1 to P and E[P ] (note that

the Px values are t-wise independent due to H (and thereby also IH(x)=y ) being
t-wise independent over the choice of H). Doing so yields

Pr
H←$H

[|P − E[P ]| ≥ ε · E[P ]] ≤
(

t · |R|q
ε2 · 2γ

) t
2

=
(

1
2γ−2 log 1

ε −log t−q log |R|

) t
2

≤ 2−t,

where the last inequality follows from the bound on log |R| given in the theorem.
Note that, due to the definition of P and p, we now have that, for any ε > 0,

Pr
H←$H

[∣
∣
∣
∣ Pr
x←X

[H(x) = y] − 1
|R|q

∣
∣
∣
∣ ≥ ε

|R|q
]

= Pr
H←$H

[∣
∣
∣
∣p − 1

|R|q
∣
∣
∣
∣ ≥ ε · 1

|R|q
]

= Pr
H←$H

[|P − E[P ]| ≥ ε · E[P ]]

≤ 2−t.

The above inequality holds for any value y ∈ Rq and any set X = (X1, . . . , Xq)
of random variables over Dq, satisfying the criteria given in the theorem. Taking
the union bound over all possible y ∈ Rq values and all collections X ∈ X ,
yields that with probability 1 − |X | · |R|q · 2−t over the choice of H, we have
that |Pr[H(x) = y] − |R|−q| ≤ ε|R|−q for all choices of y ∈ Rq and X ∈ X .
This immediately implies that the statistical distance between H(X) and the
uniform distribution over Rq, is at most ε.

Finally, setting t ≥ log |X |+q log |R|+log 1/δ ensures that δ ≥ |X |· |R|q ·2−t,
as required. �(Lemma 1)

6.2 Correlated-Input Secure Functions

Firstly, we will formalize the security notion correlated-input pseudorandomness
(CIPR).

Definition 13. Let H = {H : D → R} be a family of (hash) functions with
domain D = Dλ and range R = Rλ, Φ = {φ : D → D} be a function family,
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and q = q(λ) be a positive polynomial. Then, for an adversary A, consider the
security game shown in Fig. 5. In the game, it is required that all queries φ
submitted by A belong to Φ, and must be distinct with each other. The advantage
of the adversary A interacting with the security game with respect to H, is defined
to be

AdvCIPRH,q,A,Φ(λ) = 2
∣
∣
∣
∣Pr[CIPRA,Φ

H,q (λ) ⇒ 1] − 1
2

∣
∣
∣
∣ .

H is said to be (q, Φ)-CIPR secure, if for all PPT adversaries A, AdvCIPRH,q,A,Φ(λ)
is negligible in the security parameter λ.

CIPRA,Φ
H,q (λ):

H ←$ H
x ←$ D
b ←$ {0, 1}
queries ← 0
b ← AHash(1λ, H)
return (b = b )

proc. Hash(φ):
if queries > q

return ⊥
if b = 0

h ← H(φ(x))
else

h ←$ R
queries ← queries + 1
return h

Fig. 5. Game defining correlated-input pseudorandomness (CIPR) of a hash family H.

The following theorem shows that a t-wise independent hash function family
satisfies the above defined CIPR notion.

Theorem 6 (Correlated-Input Pseudorandomness of t-wise Indepen-
dent Hash Functions). Let t = t(λ), p = p(λ), and q = q(λ) be integer-
valued positive polynomials such that t is always even and larger than 8. Let
H = {H : D → R} be a family of t-wise independent hash functions with domain
D = Dλ and range R = Rλ, let Φ = {φ : D → D} be a function family such that
|Φ| ≤ 2p, and let CRΦ(λ) ≤ 1/(2

(
q
2

)
). Furthermore, let ε = ε(λ) and δ = δ(λ) be

any functions such that their range is [0, 1] and satisfy:

t ≥ q ·(p+log |R|)+log
1
δ

and log
1

UPΦ(λ)
≥ q log |R|+2 log

1
ε
+log t+3. (3)

Then, for all computationally unbounded adversaries A that make at most q
queries, we have

AdvCIPRH,q,A,Φ(λ) ≤ 2 · |R|q−1 · (ε + δ +
(
q
2

) · CRΦ(λ)).

The above theorem immediately gives us the following corollary:
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Corollary 1. Let t = t(λ), p = p(λ), and q = q(λ) be integer-valued positive
polynomials such that t is always even and larger than 8. Let H = {H : D → R}
be a family of t-wise independent hash functions with domain D = Dλ and range
R = Rλ such that |D| ≥ |R| = O(2λ). Let Φ = {φ : D → D} be a function family
such that |Φ| ≤ 2p. Assume that

t ≥ pq + (2q − 1) log |R| + λ,

UPΦ(λ) ≤ |R|−(3q−2) · 2−(2λ+O(log λ)), (4)

CRΦ(λ) ≤ (
q
2

)−1 · |R|−(q−1) · 2−λ.

Then, for all computationally unbounded adversaries A that make at most q
queries, and for sufficiently large λ, we have

AdvCIPRH,q,A,Φ(λ) ≤ 6 · 2−λ.

Proof (of Corollary 1). We set ε = δ = |R|−(q−1) · 2−λ in Theorem 6. Then, the
assumption on t in Eq. (4) implies the condition required for t in Eq. (3). Further-
more, since p, q, and log |R| are all polynomials of λ, we have log t = O(log λ).
This fact, combined with the assumption on UPΦ(λ) in Eq. (4), implies that
UPΦ(λ) satisfies the condition required for it in Eq. (3) for all sufficiently large
λ. Therefore, we can now invoke Theorem 6: for all computationally unbounded
adversaries A that make at most q queries, and for all sufficiently large λ, we
have

AdvCIPRH,q,A,Φ(λ) ≤ 2 · |R|q−1 · (ε + δ +
(
q
2

) · CRΦ(λ))

≤ 2 · |R|q−1 · (|R|−(q−1) · 2−λ + |R|−(q−1) · 2−λ + |R|−(q−1) · 2−λ)

= 6 · 2−λ,

as required. �(Corollary 1)

Now, we proceed to the proof of Theorem 6. The proof consists of two
steps. Firstly, we will make use of our variant of the leftover hash lemma
(Lemma 1) to show that a t-wise independent hash functions H satisfies a weaker
“non-adaptive” version of correlated-input pseudorandomness, which we denote
naCIPR, in which an adversary has to submit all of his hash queries at once par-
allelly. Then we make use of complexity leveraging to move from naCIPR security
to the full CIPR security (this step causes the loss factor |R|q−1 appearing in the
upperbound of an adversary’s advantage shown in the theorem).

Proof (of Theorem 6). We firstly consider the “non-adaptive” version of the CIPR
game shown in Fig. 5, in which an adversary A has to submit its hash queries
non-adaptively (i.e. parallelly). That is, an adversary A, on input 1λ and H,
submits a set of functions (φi)i∈[q] all at once to the hash oracle Hash, and
receives the set of answers (hi)i∈[q] where each hi is either the real hash value
H(φi(x)) or a random value chosen uniformly from the range R of H. Let us
denote by AdvnaCIPRH,q,A,Φ the advantage of an adversary A in this game.
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By using Lemma 1, we show that the advantage of any computationally
unbounded non-adaptive adversary, is bounded as stated in the following lemma:

Lemma 2. Under the same setting as in Theorem6, for all computationally
unbounded adversaries A that make at most q = q(λ) queries, we have

AdvnaCIPRH,q,A,Φ(λ) ≤ 2
(
ε + δ +

(
q
2

) · CRΦ(λ)
)

. (5)

Proof (of Lemma 2). We first introduce several necessary definitions: for a secu-
rity parameter λ, a hash function H ∈ H, and a deterministic non-adaptive
adversary A that runs in the naCIPR game and makes q queries, let (φ1, . . . , φq)
be the functions submitted by A(1λ,H) in A’s non-adaptive parallel query.7

Note that since we are considering a deterministic adversary A, once we fix A
and H ∈ H, the functions (φ1, . . . , φq) are determined without any ambiguity.

Let NoCollA,H ⊆ D be the subset of D that consists of “collision-free” ele-
ments with respect to A and H, in the following sense:

NoCollA,H :=
{

x ∈ D
∣
∣
∣ ∀i, j ∈ [q] s.t. i �= j : φi(x) �= φj(x)

}
,

where each φi is the i-th function that appears in A’s parallel query on input
(1λ,H). Note that if we pick x ∈ D uniformly at random, the probability that
φi(x) = φj(x) occurs for some (i, j) with 1 ≤ i �= j ≤ q is upperbounded by
(
q
2

)·CRΦ(λ). This implies Prx←$D[x ∈ NoCollA,H ] ≥ 1−(
q
2

)·CRΦ(λ). Equivalently,
we have

|NoCollA,H | ≥ (1 − (
q
2

) · CRΦ(λ)) · |D| ≥ 1
2

· |D|, (6)

where in the last inequality we use CRΦ(λ) ≤ 1/(2
(
q
2

)
).

Then, we define the random variable XA,H = (X1, . . . , Xq), defined over Dq,
as follows:

XA,H =(X1, . . . , Xq) :=
{

x ←$ NoCollA,H ; ∀i ∈ [q] : xi ← φi(x) : (x1, . . . , xq)
}

.

(7)

We then define X to be the set consisting of the random variables XA,H for all
possible deterministic non-adaptive adversaries A and all hash functions H ∈ H.
Namely, we define

X :=
⋃

A

{
XA,H

∣
∣
∣H ∈ H

}
, (8)

where the union is taken over all possible non-adaptive adversaries A.

7 We will later show an upperbound of the advantage for all computationally unbounded
non-adaptive adversaries A in the naCIPR game, in which case considering whether
A is deterministic or probabilistic does not matter because a computationally
unbounded adversary can find its best randomness and use this. Hence, considering
only deterministic adversaries here is sufficient for our purpose.
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We note that each φi in an adversary A’s parallel query belongs to the set Φ
(no matter what the adversary A is and no matter what hash function H ∈ H
A receives), and note also that |Φ| ≤ 2q holds. Therefore, the number of distinct
random variables XA,H is at most 2pq, namely, we have |X | ≤ 2pq. Furthermore,
note also that by definition, we have Pr[Xi = Xj ] = 0 for all i �= j ∈ [q] and
all XA,H = (X1, . . . , Xq) ∈ X (no matter what A is and no matter what hash
function H ∈ H A receives).

We now consider the min-entropy of each coordinate Xi of the random vari-
ables XA,H ∈ X .By applying the lemma by Dodis and Yu [22, Lemma 1] and
Eq. (6), for every φ ∈ Φ and y ∈ D, we have

Pr
x←$NoCollA,H

[φ(x)=y]≤ |D|
|NoCollA,H | · Pr

x←$D
[φ(x)=y] ≤ 2· Pr

x←$D
[φ(x) = y]. (9)

Furthermore, by definition maxy∈D{Prx←$D[φ(x) = y]} ≤ UPΦ(λ) holds for
every φ ∈ Φ. By combining this with Eq. (9), for every i ∈ [q], we have

H∞(Xi) = − log
(
max
y∈D

{
Pr

x←$NoCollA,H

[φi(x) = y]
})

≥ − log
(

max
y∈D

{
2 · Pr

x←$D
[φi(x) = y]

})

≥ log
1

2UPΦ(λ)
. (10)

In words, we have seen that for all random variables X = (X1, . . . , Xq) ∈ X , the
min-entropy of each Xi is lowerbounded by log(1/2UPΦ(λ)).

For a number ε′ > 0, define the set GoodHashε′ ⊆ H by

GoodHashε′ :=
{

H ∈ H
∣
∣
∣ ∀X ∈ X : Δ[H(X), (UR, . . . , UR︸ ︷︷ ︸

q

)] ≤ ε′
}

.

Recall that |X | ≤ 2pq. Hence, by Eq. (10), if δ′ > 0 is a number such that

t ≥ q · (log |R|+p)+log
1
δ′ and log

1
2 · UPΦ(λ)

≥ q log |R|+2 log
1
ε′ +log t+2,

then the condition on t in Eq. (1) in Lemma 1 is satisfied. Furthermore, due to
Eq. (10) and the assumption on log(1/UPΦ(λ)) in Lemma 2, all random variables
X = (X1, . . . , Xq) ∈ X satisfy the second condition (i.e. the lowerbound on the
min-entropy in each entry Xi) in Eq. (1). Hence, by applying Lemma 1 to the set
of variables X (which we have seen satisfies all the requirements for Lemma 1),
we have |GoodHashε′ | ≥ (1 − δ′) · |H|.

Having defined the things we need, we are now ready to show an upperbound
on the advantage of all non-adaptive adversaries A in the naCIPR game. Fix
arbitrarily a computationally unbounded adversary A that makes at most q
queries in the naCIPR game. Fix also arbitrarily functions ε = ε(λ) and δ = δ(λ)
satisfying Eq. (3). Our goal is to show that Eq. (5) is satisfied for the above A,
and numbers ε′ = ε, and δ′ = δ.
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Let S be the event that A succeeds in guessing its challenge bit (i.e. b′ = b
occurs), and let GH (which stands for “Good Hash”) be the event that the hash
function H that A receives satisfies H ∈ GoodHashε, and let NC (which stands
for “No Collision”) be the event that there exist no indices i, j ∈ [q] such that
φi(x) = φj(x), where x ∈ D is the value chosen randomly at the non-adaptive
game, and φi (resp. φj) be the i-th (resp. j-th) function in the parallel query
(φ1, . . . , φq) submitted by A on input (1λ,H).

We proceed to estimating lower and upperbounds for Pr[S]. On the one hand,
we have

Pr[S] ≥ Pr[S ∧ GH ∧ NC]
= Pr[S|GH ∧ NC] · Pr[GH ∧ NC]

= Pr[S|GH ∧ NC] · (1 − Pr[GH ∨ NC])

≥ Pr[S|GH ∧ NC] − Pr[GH] − Pr[NC]. (11)

On the other hand, we have

Pr[S] = Pr[S ∧ GH ∧ NC] + Pr[S ∧ (GH ∨ NC)]

≤ Pr[S|GH ∧ NC] + Pr[GH ∨ NC]

≤ Pr[S|GH ∧ NC] + Pr[GH] + Pr[NC]. (12)

Here, by definition, we have Pr[GH] ≥ 1 − δ and Pr[NC] ≥ 1 − (
q
2

) · CRΦ(λ),
where the probabilities in the left hand side of both of the inequalities are over the
naCIPR game. Furthermore, the event S conditioned on GH and NC, corresponds
to the situation where A, on input 1λ and H ∈ GoodHashε, receives (h1, . . . , hq)
that is sampled from either the distribution H(XA,H) where XA,H ∈ X or the
uniform distribution (UR)q over Rq, and succeeds in guessing which is the case.
Here, due to the definitions of GoodHashε and XA,H , the statistical distance
between H(XA,H) and the uniform distribution (UR)q is at most ε. Hence, we
have

1
2

− ε ≤ Pr[S|GH ∧ NC] ≤ 1
2

+ ε.

Combining these inequalities with Eqs. (11) and (12), we obtain

−(ε + δ +
(
q
2

) · CRΦ(λ)) ≤ Pr[S] − 1
2

≤ ε + δ +
(
q
2

) · CRΦ(λ),

which implies

AdvnaCIPRH,q,A,Φ(λ) = 2
∣
∣
∣
∣Pr[S] − 1

2

∣
∣
∣
∣ ≤ 2

(
ε + δ +

(
q
2

) · CRΦ(λ)
)

,

as required. �(Lemma 2)

Finally, as the last step of the proof of Theorem6, we show that by a complex-
ity leveraging argument, ordinary (adaptive) correlated-input pseudorandomness
is implied by its non-adaptive version. More precisely, we show the following
lemma:
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Lemma 3. Let q = q(λ) be a positive polynomial. Let H = {H : D → R}
and Φ = {φ : D → D} be families of functions with domain D = Dλ and
ranges R = Rλ and D, respectively. Then, for all computationally unbounded
adversaries A that make q queries, there exists a computationally unbounded
non-adaptive adversary B that makes q queries, such that

AdvnaCIPRH,q,B,Φ(λ) =
1

|R|q−1
· AdvCIPRH,q,A,Φ(λ). (13)

Proof (of Lemma 3). Fix arbitrarily a positive polynomial q and a computation-
ally unbounded adversary A that runs in the CIPR game and makes q queries.
Using A as a building block, we show how to construct another computationally
unbounded adversary B that runs in the naCIPR game, makes in exactly the
same number of queries as A, and has the advantage as stated in Eq. (13). The
description of B is as follows:

B(1λ,H): B first chooses q − 1 values h′
1, . . . , h

′
q−1 ←$ R uniformly at random,

and runs A(1λ,H), where B answers to A’s i-th query φi by h′
i (no matter

what φi is). When A makes the q-th query φq, B submits q functions (φi)i∈[q]

as its “parallel” query to B’s hash oracle, and receives the results (h∗
i )i∈[q].

Then, B proceeds as follows:
– If h∗

i = h′
i holds for all i ∈ [q − 1], then B finds that its simulation for

A was “good”, and returns h∗
q as the answer to A’s q-th query. When A

terminates with output b′, B sets σ′ ← b′.
– Otherwise (i.e. h∗

i �= h′
i holds for some i ∈ [q − 1]), B decides that it does

not use A’s output, and sets σ′ ←$ {0, 1} uniformly at random.

Finally, B terminates with output σ′.
The above completes the description of B. Let σ be B’s challenge bit in its

non-adaptive game. Furthermore, let S be the event that σ′ = σ occurs, and G
be the event that h∗

i = h′
i holds for all i ∈ [q − 1] (where both of the events are

defined in B’s naCIPR game). By definition, B’s advantage in the naCIPR game
can be estimated as follows:

AdvnaCIPRH,q,B,Φ(λ) = 2
∣
∣
∣
∣Pr[S] − 1

2

∣
∣
∣
∣

= 2
∣
∣
∣
∣Pr[S|G] · Pr[G] + Pr[S|G] · Pr[G] − 1

2
(Pr[G] + Pr[G])

∣
∣
∣
∣

= 2
∣
∣
∣
∣Pr[G] · (Pr[S|G] − 1

2
) + Pr[G] · (Pr[S|G] − 1

2
)
∣
∣
∣
∣ . (14)

Now, since all {h′
i}i∈[q−1] are chosen uniformly at random, independently of

A’s behavior and B’s challenge bit, we have Pr[G] = 1/|R|q−1. Moreover, once G
occurs, B simulates the CIPR game perfectly for A so that A’s challenge bit is that
of B’s, and thus Pr[S|G] is equal to the probability that A succeeds in guessing the
challenge bit in the CIPR game. This implies 2|Pr[S|G] − 1/2| = AdvCIPRH,q,A,Φ(λ).
On the other hand, if G does not occur, B uses a uniformly chosen random bit as
its final output bit σ′, which implies Pr[S|G] = 1/2. Using the above in Eq. (14),
we obtain Eq. (13), as required. �(Lemma 3)
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Theorem 6 follows from the combination of Lemmas 2 and 3.�(Theorem 6)

6.3 Bounded RKA-Secure PRF

Finally, we show that by combining a (q, Φ)-CIPR-secure function family with a
standard PRF, we obtain a PRF that provides Φ-RKA security, as long as an
adversary uses at most q functions for deriving related keys in the security game.
We stress that although the number of functions is a-priori bounded by q, the
number of evaluations that an adversary may observe (through Eval queries)
is unbounded. We refer to this slightly weaker variant of Φ-RKA security of a
PRF as (q, Φ)-RKA security.

We formally define (q, Φ)-RKA security of a PRF via the security game shown
in Fig. 6. This game is a simple modification of the PRF game in Sect. 2.4.
Specifically, in the (q, Φ)-RKA security game, an initial key k∗ is picked, and
the game maintains a counter ctr (initialized to 0) that tracks the number of
related keys the adversary has requested. The oracle RKD (which stands for
Related-Key Derivation) takes a function φ ∈ Φ as input, increments the counter
ctr ← ctr + 1, computes a related key kctr ← φ(k∗), and returns the handle ctr
that can be used in an Eval query to specify the index of the key under which
an adversary wish to see an evaluation result. Furthermore, like the Hash oracle
in the CIPR game, the oracle RKD can be used at most q times, and all functions
used in RKD queries are required to be distinct. However, we again stress that
there is no restriction on the number of queries on the Eval oracle.

Definition 14. Let Φ be a function family, and let the advantage of an adver-
sary A playing the security game in Fig. 6 with respect to a PRF F = (Setup,
KeyGen, Eval) be defined as

AdvRKAPRFF,q,A,Φ(λ) = 2
∣
∣
∣
∣Pr[RKAPRFF

q,A,Φ(λ) ⇒ 1] − 1
2

∣
∣
∣
∣ .

F is said to be a (q, Φ)-RKA secure if for all PPT adversaries A, AdvRKAPRFF,q,A,Φ(λ) is
negligible in the security parameter λ.

RKAPRFF
q,A,Φ(λ):

par ← F.Setup(1λ)
b ←$ {0, 1}
F ← ∅
k∗ ← F.KeyGen(par)
ctr ← 0
b ← AFunc,RKD(par)
return (b = b )

proc. Eval(i, x):
if i > ctr, return ⊥
if b = 1

y ← F.Eval(ki, x)
else

if F [i, x] = ⊥, F [i, x] ←$ R
y ← F [i, x]

return y

proc. RKD(φ ∈ Φλ):
If ctr > q,

return ⊥
ctr ← ctr + 1
kctr ← φ(k∗)
return ctr

Fig. 6. Game defining (q, Φ)-RKA security of a PRF.

We will now show how we construct a (q, Φ)-RKA secure PRF. Let H = {H :
D → R} be a family of functions with domain D = Dλ and range R = Rλ, and



Related Randomness Security for Public Key Encryption, Revisited 305

let F be a PRF. We assume that the key space of F is R, and furthermore that
F.KeyGen(par) just samples a uniformly random element from R, and outputs
this as a key, for any par output from F.Setup(1λ).Using these components, we
construct another pseudorandom function F̂ as in Fig. 7. Note that the key space
of F̂ (when set up with the security parameter λ) is D (which is equal to the
domain of the hash function H ∈ H).

Alg. F.Setup(1λ):
par ← F.Setup(1λ)
H ←$ Hλ

par ← (par , H)
return par

Alg. F.KeyGen(par):
k ←$ Dλ

return k

Alg. F.Eval(par, k, x):
(par , H) ← par

k ← H(k)
y ← F.Eval(par , k, x)
return y

Fig. 7. (q, Φ)-RKA-secure PRF F̂ constructed from a standard PRF F and a (q, Φ)-CIPR-
secure function family H.

Theorem 7. Let q = q(λ) be any positive polynomial, let Φ = {φ : D → D} be a
family of functions with domain and range D = Dλ, and let H = {H : D → R}
be a (q, Φ)-CIPR secure family of (hash) functions with domain D and range
R = Rλ.8 Let F be a secure PRF with key space R (when set up with the security
parameter λ), and with a key generation algorithm that outputs a uniformly
random element from R. Then, the construction F̂ shown in Fig. 7 is (q, Φ)-RKA
secure. More precisely, for all PPT adversaries A, there exist PPT adversaries
B1 and B2, such that

AdvRKAPRF
̂F,q,A,Φ

(λ) ≤ AdvCIPRH,q,B1,Φ(λ) + AdvPRFF,B2
(λ). (15)

The intuition behind the proof of this theorem is fairly simple. Recall that
(q, Φ)-CIPR security of the underlying hash family H essentially ensures the
property that, for a randomly chosen function H ←$ H, and for any func-
tions φ1, . . . , φq ∈ Φ, having access to the functions {F.Eval(H(φi(k∗), ·)}i∈[q] is
indistinguishable from having access to the functions {F.Eval(k̃i, ·)}i∈[q], where
k∗ ∈ D and each k̃i ∈ R are chosen uniformly at random. Then, the security
of the PRF F ensures that the latter is indistinguishable from having access to
q independently chosen random functions. The full proof of Theorem7 can be
found in the full version of the paper.

7 IND-RRR-CCA Security in the Standard Model

We will now show that, for any predetermined polynomial n, we can trans-
form a PKE scheme PKE which is secure in the standard sense (without related-
randomness security) into a scheme PRF-PKE that is (n,Φ, Ψ)-IND-RRR-CCA secure
8 In this statement, the requirements regarding output-unpredictability and collision

resistance on Φ are implicitly posed by the requirement that H is (q, Φ)-CIPR secure
(c.f. Theorem 6 and Corollary 1).
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Alg. PRF-PKE.Setup(1λ):
par ← PKE.Setup(1λ)
par ← F.Setup
par ← (par , par )
return par

Alg. PRF-PKE.KeyGen(par):
(par , par ) ← par
(pk, sk) ← PKE.KeyGen(par )
return (pk, sk)

Alg. PRF-PKE.Enc(pk, m):
r ←$ R
r ← F.Eval(par, r, pk||m)
c ← PKE.Enc(pk, m; r)
return c

Alg. PRF-PKE.Dec(sk, c):
m ← PKE.Dec(sk, c)
return m

Fig. 8. Scheme PRF-PKE constructed from a PKE scheme PKE and a PRF F̂.

in the standard model, by using a (n,Θ)-RKA secure PRF for an appropriate
function class Θ. This approach is similar to that of [34,43], but we obtain
security for a much richer class of function families that captures non-algebraic
functions, such as bit-flipping and bit-fixing functions.

More formally, the construction of PRF-PKE is as follows: let PKE be a PKE
scheme for which the randomness space of PKE.Enc is {0, 1}λ, let F̂ be a PRF
with key space R and a key generation algorithm F̂.KeyGen(par) returning a
uniformly random element from R as a key, for any par output by F̂.Setup(1λ).
Using these components, we construct a PKE scheme PRF-PKE as in Fig. 8. Note
that the randomness space of PRF-PKE.Enc is R. The related-randomness security
of PRF-PKE is guaranteed by the following theorem:

Theorem 8. Let n = n(λ) be an integer-valued positive polynomial. Let Φ =
{φ : R → R} and Ψ = {ψ : R × R → R} be function families, where R = Rλ.
Let Θ be the function family defined by using Φ and Ψ as follows:

Θ :=
{

f(·) := φ(ψ(r, ·))
∣
∣
∣φ ∈ Φ,ψ ∈ Ψ, r ∈ R

}
∪ Φ.

Let F̂ be a (n,Θ)-RKA secure PRF9, and let PKE be an IND-CCA secure PKE
scheme. Then, the construction PRF-PKE shown in Fig. 8 is (n,Φ, Ψ)-IND-RRR-CCA
secure. More precisely, for all PPT (n,Φ, Ψ)-restricted adversaries A that make
at most qr = qr(λ) Refresh queries, there exist PPT adversaries B1 and B2

such that

AdvIND-RRR-CCAPRF-PKE,A (λ) ≤ 2(qr + 1)AdvRKAPRF
̂F,n,B1,Θ

(λ) + AdvIND-CCAPKE,B2
(λ). (16)

The proof of Theorem 8 is based on a hybrid argument over the refresh
epochs. More specifically, in each epoch, we use the (n,Θ)-RKA security of F̂
to replace the output r̃ with uniformly random values. This is possible since the

9 In this statement, the requirements regarding output unpredictability and collision
resistance of Φ and Ψ are implicitly implied as F̂ is a (n, Θ)-RKA secure PRF (c.f.
Theorem 7). This will be made explicit in Corollary 2.
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randomness r′ used in the response to LR and Enc oracle queries will corre-
spond to related keys of F̂ computed by f ∈ Θ. More precisely, it will be either
of the form r′ = φ(r1) (in the first epoch) or r′ = φ(ψj−1(rj−1, sj−1)) (in the
j(≥ 2)-th epoch), where r1 and sj−1 are chosen uniformly at random, and thus
can be viewed as related keys of the initial key k∗ in the RKA game by viewing r1
or sj−1 as k∗. Note that the adversary is assumed to make in total at most n LR
and Enc queries in each epoch, and thus (n,Θ)-RKA security will suffice. Then,
in the last hybrid, the values r̃ are all uniformly chosen, and we can rely on the
IND-CCA security of the underlying PKE scheme PKE to conclude the proof. The
full proof can be found in the full version of the paper.

Combining Theorem 8 with Corollary 1, we obtain the following corollary:

Corollary 2. Let t = t(λ), p = p(λ), and n = n(λ) be integer-valued positive
polynomials such that t is always even and larger than 8. Let PKE be an IND-CCA
secure PKE scheme, let F be a PRF, and let H be a t-wise independent hash
family. Assume that the key space of F and the output space of H are {0, 1}λ

when F is set up with a security parameter λ. Let F̂ be the PRF constructed from
F and H as shown in Fig. 6, and let PKE′ be the PKE scheme obtained from PKE
and F̂ as shown in Fig. 8. Let Φ and Ψ be function families such that |Φ| ≤ 2p

and |Ψ | ≤ 2p′
, respectively. Assume that

t ≥ n(p + p′ + log |R| + 2λ + 2), (17)

max{UPΦ(λ), sUPΦ,Ψ (λ)} ≤ 2−(3nλ+O(log λ)), (18)

max{CRΦ(λ), sCRΦ,Ψ (λ)} ≤ (
n
2

)−1 · 2−nλ. (19)

Then, PKE′ is (n,Φ, Ψ)-IND-RRR-CCA secure. More precisely, for all PPT (n,Φ, Ψ)-
restricted adversaries A that make at most qr = qr(λ) Refresh queries, there
exist PPT adversaries B and B′ such that

AdvIND-RRR-CCAPKE′,A (λ) ≤ 12(qr + 1) · 2−λ + 2(qr + 1)AdvPRFF,B(λ) + AdvIND-CCAPKE,B′ (λ).

Proof (of Corollary 2). Note that each function f ∈ Θ can be specified by (1) a
bit indicating whether f is in the set {φ(ψ(r, ·))|φ ∈ Φ,ψ ∈ Ψ, r ∈ R or in the
set Φ, (2-1) a tuple (φ, ψ, r) ∈ Φ × Ψ × R in case f belongs to the former set,
and (2-2) a function φ ∈ Φ in case f belongs to the latter set. This implies that
|Θ| ≤ 2 · (|Φ| · |Ψ | · |R| + |Φ|) ≤ 2p+p′+2 · |R| = 2p′′

. where p′′ = p + p′ + 2 +
log |R|. Furthermore, by definition, the output unpredictability of Θ is at most
the maximum of the output unpredictability of Φ and that of the seed-induced
output-unpredictability of Φ with respect to Ψ , i.e. max{UPΦ(λ), sUPΦ,Ψ (λ)},
and exactly the same relation holds for collision resistance. Recall also that the
output space of H is {0, 1}λ.

Now, by using the definition of the function class Θ with the parameters
described above in Corollary 1, we obtain the requirements in Eqs. (17), (18), and
(19), and the upperbound 6 ·2−λ for the advantage of any (even computationally
unbounded) adversary that attacks the (n,Θ)-CIPR security of H. Then, using
it in turn in Theorem8, we obtain this corollary. �(Corollary 2)
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The reason the impossibility result from Sect. 4 is not applicable to the above
construction, is that for each security parameter λ, with high probability over
the choice of the t-wise independent hash function H, the function families Φ
and Ψ are not capable of expressing H and thereby the encryption function of
the scheme, due to requirement on t in Eq. (17). Note also that, as the size of
the description of H must be linear in t, and this description is part of the
parameters par′′ in Fig. 8, the size of the parameters of the construction will
grow linearly in the right hand side of Eq. (17) i.e. linearly in number of queries
an adversary is allowed to make in an epoch, and logarithmically in the size of
the function families Φ and Ψ .
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Abstract. Subversion zero knowledge for non-interactive proof systems
demands that zero knowledge (ZK) be maintained even when the com-
mon reference string (CRS) is chosen maliciously. SNARKs are proof
systems with succinct proofs, which are at the core of the cryptocur-
rency Zcash, whose anonymity relies on ZK-SNARKs; they are also used
for ZK contingent payments in Bitcoin.

We show that under a plausible hardness assumption, the most effi-
cient SNARK schemes proposed in the literature, including the one
underlying Zcash and contingent payments, satisfy subversion ZK or can
be made to at very little cost. In particular, we prove subversion ZK
of the original SNARKs by Gennaro et al. and the almost optimal con-
struction by Groth; for the Pinocchio scheme implemented in libsnark
we show that it suffices to add 4 group elements to the CRS. We also
argue informally that Zcash is anonymous even if its parameters were
set up maliciously.

Keywords: Zero knowledge · SNARKs · Parameter subversion
Zcash · Bitcoin contingent payments

1 Introduction

One of the primary motivations for succinct non-interactive arguments (SNARG)
was verifiable computation. Consider a client that outsources resource-intensive
computation to a powerful server, which attaches a proof to the result, so the
client is convinced that it was computed correctly. For this to be meaningful,
verification of such a proof must be considerably more efficient than performing
the computation in the first place. SNARG systems provide such proofs and an
impressive line of research has led to more and more efficient systems with proofs
of size less than a kilobyte that can be verified in milliseconds. The reason why
SNARGs are not used in outsourcing of computation is that computing a proof
for complex computations is still not practical. (For example, a proof in Zcash,
which is for a very simple statement, takes minutes to compute on a PC.)

Zero-knowledge (ZK) SNARGs are used when some inputs to the computa-
tion come from the prover (the server in our example), who wants to keep its
inputs private. ZK systems guarantee that a proof does not reveal more about
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private inputs than what can be inferred from the result of the computation.
If the proofs prove knowledge of the private inputs, they are called SNARKs.
ZK-SNARKs are already deployed, for example in Zcash [Zca], which is a cryp-
tocurrency like Bitcoin [Nak09], based on the Zerocash protocol [BCG+14a]. As
opposed to Bitcoin, where all transactions are public, Zcash payments are fully
anonymous and protect the users’ privacy. Zcash achieves this by using SNARK
proofs that are zero-knowledge.

Zero-knowledge contingent payments use SNARKs for fair exchange of infor-
mation against payments over the Bitcoin network, assuming that the informa-
tion can be verified (in the sense that it can be formalized as the witness of an
NP statement), e.g. solutions to a Sudoku puzzle. Bitcoin’s scripting language
defines Pay-to-PubkeyHash transactions, which are bound to a hash value y and
can be redeemed by exhibiting a preimage, i.e., some x s.t. H(x) = y. In a con-
tingent payment Alice, the seller, chooses a key k, encrypts the information she
is offering as c under k and sends c together with y := H(k) to Bob, the buyer.
Bob makes a transaction to y. To redeem it, Alice must publish the preimage k,
which then allows Bob to decrypt c and obtain the purchased information. To
prevent Alice from cheating, she must prove that c encrypts the desired infor-
mation under a preimage of y, for which she can use SNARKs. Zero-knowledge
guarantees that no information is leaked before being paid.

The main drawback of SNARKs is that they require system parameters that
must be generated in a trusted way. In particular, whoever knows the random-
ness used when setting them up can convince verifiers of false statements (vio-
lating soundness of the system), which for Zerocash translates to counterfeiting
money. The authors of Zerocash write: “[D]ue to the zk-SNARK, our construc-
tion requires a one-time trusted setup of public parameters. The trust affects
soundness of the proofs, though anonymity continues to hold even if the setup
is corrupted by a malicious party.” [BCG+14a]. The last statement is then not
elaborated any further.

For ZK contingent payments (ZKCP) the parameters are generated by the
buyer, which prevents the seller from cheating. However, Campanelli et al.
[CGGN17] recently showed that the buyer can cheat in the reference imple-
mentation of ZKCP, which allows for selling the solution to a Sudoku puzzle. By
maliciously setting up the parameters, the buyer can learn information about
the solution from the SNARK proof sent by the seller before paying. This shows
that not only soundness but also zero knowledge of SNARKs breaks down in the
face of parameter subversion.

In this work we look at whether zero knowledge can be salvaged when the
parameters are set up in a malicious way and analyze the most efficient SNARK
constructions in the literature, including the one [BCTV14] that underlies Zcash
and ZKCP. We base our analyses on the theoretical framework introduced by
Bellare et al. [BFS16], who formalized the notion of subversion zero knowledge.

Zero-knowledge proofs. A zero-knowledge proof [GMR89] is a protocol
between a prover and a verifier that allows the former to convince the latter
of the validity of a statement without revealing anything else. The three main
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properties of a ZK proof system are that an honestly computed proof for a valid
statement should convince a verifier (completeness); but there is no way that
a malicious prover can convince a verifier of false statements (soundness); and
nothing but the truth of the statement is revealed (zero knowledge).

In non-interactive ZK proofs [BFM88], the prover only sends one message
(the proof) to the verifier. NIZK systems rely on a common reference string
(CRS) to which both prover and verifier have access and which must be set up
in a trusted way (for SNARKs the CRS is often called parameters). Without
such a CRS, NIZK systems are not possible [GO94].

NIZK proof systems exist for every NP language [BFM88,BDMP91]. A lan-
guage L is an NP language if it can be defined via a polynomial-time computable
relation R: a statement x is in L iff there exists a witness w of length polynomial
in the length of x such that R(x,w) = true. In verifiable computation a server’s
private input would be a witness. For ZK contingent payments, the ciphertext c,
the hash value y and the Sudoku challenge are the statement. The witness is the
plaintext of c (the Sudoku solution) and the encryption key k.

Zero knowledge is formalized via a simulator that generates a CRS in which it
can embed a trapdoor. The trapdoor must allow the simulator to produce proofs
without a witness for the proven statement. ZK requires that there exists a sim-
ulator whose simulated CRSs and proofs are computationally indistinguishable
from real ones. If both types are distributed equivalently then we have perfect
ZK. Groth et al. [GOS06b,GOS06a,Gro06,GS08] constructed NIZK proof sys-
tems based on groups equipped with a pairing, i.e., an efficiently computable
bilinear map. They gave the first perfect ZK system for all NP languages and
very efficient schemes for specific languages based on standard cryptographic
hardness assumptions.

SNARKs. Another line of work considered the size of proofs from a theoretical
point of view, leading to schemes with a proof size that is sublinear in the length
of the proved statement [Mic00]. SNARGs are succinct non-interactive argu-
ments, where succinct means that the proof length only depends (polynomially)
on the security parameter. They are arguments (as opposed to proofs) because
soundness only holds against efficient provers. This is the best achievable notion,
since SNARGs are perfect-ZK, which implies that every CRS has a trapdoor.
SNARKs are succinct non-interactive arguments of knowledge, for which a valid
proofs implies that the prover knows the witness.

The first NIZK system with proofs whose size is independent of the proven
statement (and its witness) was given by Groth [Gro10] using bilinear groups; it
was later improved by Lipmaa [Lip12]. Gennaro et al. [GGPR13] introduced the
notion of a quadratic span program (QSP), showed how to efficiently convert
any boolean circuit into a QSP and then constructed a SNARK system for
QSPs whose proofs consist of 8 elements of a bilinear group. They gave another
construction based on quadratic arithmetic programs (QAP), which represent
arithmetic circuits, whose inputs are elements from a finite field F and whose
gates add or multiply F elements. QAPs are preferred in practice due to their
greater efficiency. As circuit satisfiability is NP-complete, SNARKs exist for all
NP languages.
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Parno et al. [PHGR13] improved on [GGPR13], making the conversion from
circuits to QAPs more efficient and reducing the proof size. They implemented
their scheme and named it “Pinocchio”. Ben-Sasson et al. [BCG+13,BCTV14]
improve the conversion of actual program code to QAPs, reduce the size of
SNARK parameters and implement their results as libsnark [BCG+14b]. The
size of SNARK proofs for boolean circuits was then further reduced by Danezis
et al. [DFGK14], who modified QSP to square span programs and built a system
for them whose proofs consist of only 4 group elements.

Recently, Groth [Gro16] presented the most efficient SNARK construction
to date, which is for arithmetic circuits and whose proofs consist of only 3
group elements (and require 3 pairings to verify). All previous bilinear-group-
based SNARKs are proven under strong cryptographic assumptions (knowl-
edge assumptions), for which there is evidence that they might be unavoid-
able [GW11,BCCT12]. Starting from Bitansky et al.’s [BCI+13] linear inter-
active proof framework, Groth [Gro16] achieves his result by proving security
directly in the generic-group model [Sho97] (which implies all previously consid-
ered assumptions). He also shows that SNARKs over asymmetric bilinear groups
must contain elements from both source groups, meaning that the proof size of
his construction is only one element short of the optimal size. Recently, Fuchs-
bauer et al. [FKL17] proved Groth’s scheme secure under a “q-type” variant of
the discrete log assumption in the algebraic group model, in which adversaries
are restricted adversaries can only output group elements if they were obtained
by applying the group operation to previously received group elements.

Subversion-resistance. The Snowden revelations documented the NSA’s
efforts to subvert standards, for which an illustrative example is the NSA-
designed and ISO-standardized Dual EC random number generator. Its param-
eters include two elliptic-curve points, whose respective discrete logarithms can
act as a backdoor that can be exploited to break TLS [CNE+14]. NIZK sys-
tems are particularly prone to parameter subversion, since their CRS must be
subvertible by design: zero knowledge requires that an honest CRS is indistin-
guishable from a backdoored CRS, where the backdoor is the trapdoor used to
simulate proofs. For SNARKs the parameters always contain a backdoor and
anyone knowing it can simulate proofs for false statements, which means break-
ing soundness.

Motivated by this, Bellare et al. [BFS16] ask what security can be maintained
for NIZKs when its trusted parameters are subverted. They formalize different
notions of resistance to CRS subversion and investigate their achievability. They
define subversion soundness (S-SND), meaning that no adversary can generate
a (malicious) CRS together with a valid proof π for a false statement x.

They also give a subversion-resistant analogue for zero knowledge. Recall
that ZK assumes that there exists a CRS simulator Sim.crs, which returns a
simulated CRS crs′ and an associated simulation trapdoor td, and a proof sim-
ulator Sim.pf that outputs proofs on input a valid instance x and td, such that
no efficient adversary can distinguish the following: either being given crs′ and
an oracle implementing Sim.pf, or an honest crs and an oracle returning hon-
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estly computed proofs. Subversion ZK (S-ZK) requires that for any adversary X
creating a malicious CRS crs in any way it likes using randomness (coins) r,
there exists a simulator SimX.crs returning a simulated CRS crs′ with trapdoor
td together with simulated coins r′, as well as a proof simulator SimX.pf, such
that no adversary can distinguish the following: being given crs′ and r′ and a
SimX.pf oracle, or a crs output by X, together with the used coins r and an hon-
est proof oracle. The authors also define a subversion-resistant notion (S-WI) of
witness-indistinguishability [FLS90] (see Sects. 2.3 and 2.4).

Following [GO94], Bellare et al. [BFS16] first show that S-SND cannot be
achieved together with (standard) ZK for non-trivial languages (for trivial ones
the verifier needs no proof to check validity of statements). This is because ZK
allows breaking soundness by subverting the CRS. They then show that S-SND
can be achieved together with S-WI. Their main result is a construction that
achieves both S-ZK (and thus S-WI) and SND.

BFS’s S-ZK scheme. To achieve S-ZK, a simulator must be able to simulate
proofs under a CRS output by a subvertor, so it cannot simply embed a trapdoor
as in standard ZK. Bellare et al. [BFS16] base S-ZK on a knowledge assump-
tion, which is the type of assumption on which security (in particular, knowledge
soundness) of SNARKs relies. It states that an algorithm can only produce an
output of a certain form if it knows some underlying information. This is for-
malized by requiring the existence of an extractor that extracts this information
from the algorithm. In their scheme this information acts as the simulation trap-
door, which under their knowledge assumption can be obtained from a subvertor
outputting a CRS.

Concretely, they assume that for a bilinear group (G,+) with a generator
P any algorithm that outputs a Diffie-Hellman tuple (P, s1P, s2P, s1s2P ) for
some s1, s2, must know either s1 or s2. They call their assumption Diffie-
Hellman knowledge-of-exponent assumption (DH-KEA) and note that a tuple
(P, S1, S2, S3) of this form can be verified via a (symmetric) bilinear map e by
checking e(S3, P ) = e(S1, S2). A question that arises is: who chooses the group G

in their scheme? Bellare et al. address this by making the group G part of the
scheme specification. This begs the question whether the subversion risk has not
simply been shifted from the CRS to the choice of the group. They argue that
the group generation algorithm is deterministic and public, so users can create
the group themselves, and it is thus reproducible, whereas the CRS is inherently
not.

Parameter setup in practice. A way to avoid the problem of generating a
trusted CRS for NIZK systems is by proving its security in the random-oracle
model (ROM) [BR93]. Instead of a CRS, all parties are assumed to have access to
a truly random function (which is modeled as an oracle returning random values).
In practice the random oracle is replaced by a cryptographic hash function and a
proof in the ROM can be viewed as a security heuristic for the resulting scheme.

For NIZK systems whose CRS is a uniform random string, e.g. PCP-based
constructions like [BSBC+17] recently, one can in practice set the CRS to a
common random-looking public value such as the digits of π or the output of a
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standardized hash function on a fixed input. This intuitively guarantees that no
one has embedded a trapdoor. For the Groth-Sahai proof system [GS08] the CRS
consists of random elements of an elliptic-curve group; they can be set up by
hashing a common random string directly into the elliptic curve [BF01,BCI+10].

For practical SNARKs the situation is different: there are no CRS-less con-
structions in the random-oracle model and the CRS is highly structured. The
parameters typically contain elements of the form (P, τP, τ2P ), where P is a
generator of a group G and τ is a random value. Soundness completely breaks
down if the value τ is known to anyone. Unfortunately, there is no known way
of creating such a triple obliviously, that is, without knowing the value τ .

Our techniques. In order to show subversion zero knowledge of SNARK
schemes, we assume that computing elements (P, τP, τ2P ) cannot be done with-
out knowing τ . (Looking ahead, we actually make a weaker assumption in asym-
metric bilinear groups by requiring the adversary to return (P1, τP1, τ

2P1) ∈ G
3
1

as well as (P2, τP2) ∈ G
2
2, which makes the structure of the triple verifiable

using the bilinear map.) Under this assumption, which we call square knowledge
of exponent (SKE) assumption (Definition 14), we then prove subversion ZK of
five relevant SNARK constructions from the literature or slight variants of them.

As an additional sanity check, we prove that SKE holds in the generic group
model (Theorem 16). Following Groth [Gro16], we assume that the bilinear group
description is part of the specification of the language for which the proof sys-
tem is defined (and not part of the CRS as in [BFS16]). Following his previous
work [DFGK14], we let the CRS generation algorithm sample random group gen-
erators (in contrast to [BFS16], which assumes a fixed group generator). This
intuitively leads to weaker assumptions required to prove soundness.

To show subversion zero knowledge of existing SNARK schemes, we pro-
ceed as follows. Standard zero knowledge holds because the randomness used to
compute the CRS allows the simulator to produce proofs that are distributed
equivalently to honestly generated proofs under the (honestly computed) CRS.
However, for S-ZK this must hold even for a CRS that was computed in any
arbitrary way. While we cannot guarantee that the CRS subvertor used random
values when computing the CRS, we first show how to verify that the structure
of the CRS is as prescribed. (For the asymmetric Pinocchio scheme [BCTV14]
this requires us to extend the CRS slightly.)

Another difference between standard and subversion ZK is that in the former
the simulator creates the CRS and thus knows the simulation trapdoor, whereas
for S-ZK the CRS is produced by the subvertor, so it might not be clear how
proofs can be simulated at all. Now if the CRS contains elements (P, τP, τ2P ),
whose correct structure can be verified via the pairing, then under our SKE
assumption we can extract the value τ . SKE thus allows the simulator to obtain
parts of the randomness even from a maliciously generated CRS. Unfortunately,
the simulation trapdoor typically contains other values that the S-ZK simulator
cannot extract.

Our next step is then to demonstrate that proofs can be simulated using τ
only, or to show how under our assumption more values can be extracted that
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then enable simulation. Our final step is to show that if a CRS passes the ver-
ification procedure we define, then proofs that were simulated using the partial
trapdoor are distributed like real proofs. This shows that the analyzed scheme
is S-ZK under our SKE assumption. While knowledge assumptions are strong
assumptions, they seem unavoidable since S-ZK implies 2-move interactive ZK
by letting the verifier create the CRS. And such schemes require extractability
assumptions [BCPR14].

Since simulated proofs are by definition independent of a witness, our results
imply that under a verified, but possibly malicious, CRS, proofs for different wit-
nesses are equally distributed. As a corollary we thereby obtain that all SNARKs
we consider satisfy subversion witness indistinguishability unconditionally (i.e.,
no assumptions required).

We note that Ben-Sasson et al. [BCG+15] also consider making a CRS ver-
ifiable. Their goal is to protect soundness against subversion by sampling the
secret values underlying a CRS in a distributed way. Only if all participants in
the CRS-creation protocol collude can they break soundness. To guarantee a cor-
rectly distributed CRS, the participant(s) must prove adherence to the protocol
via NIZK proofs [Sch91,FS87] secure in the random-oracle model. The protocol
thus returns verifiable SNARK parameters. The parameters used for Zcash were
set up using this multiparty protocol, which was recently detailed by Bowe et
al. [BGG17].

Our Results

As already discussed, SNARKs are not subversion-sound because their CRS
contains the simulation trapdoor. In this work we look at subversion resistance
of their zero-knowledge property and investigate several SNARK constructions
from the literature that are based on bilinear groups. In particular,

1. the first QSP-based and 2. QAP-based constructions [GGPR13];
3. optimized Pinocchio [BCTV14] as implemented in libsnark [BCG+14b]; and
4. and 5. the two most efficient constructions by Groth et al. [DFGK14,Gro16].

We make the (reasonable) assumption that a privacy-conscious prover (whose
protection is the goal of zero knowledge) first checks whether the CRS looks
plausible (to whatever extent this is possible) before publishing a proof with
respect to it. All of our results implicitly make this assumption.

We start with the first SNARK construction for QAPs by Gennaro et al.
[GGPR13] and show how to verify that the CRS is correctly formed. We then
show that under the square knowledge of exponent (SKE) assumption their
construction satisfies subversion zero knowledge as defined in [BFS16]. The same
holds for their QSP-based SNARK. (Due to space constraints, and since these
results follow in much the same way as the next one, we defer our results on
GGPR to the full version [Fuc17].)

We next turn to the optimized version of Pinocchio over asymmetric bilinear
groups due to Ben-Sasson et al. [BCTV14]. For this construction we show that
adding 4 group elements to the CRS makes it efficiently checkable. We then
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prove that the scheme with this slightly extended CRS satisfies subversion zero
knowledge under SKE, whereas the original scheme, which is implemented in
libsnark [BCG+14b], succumbs to a parameter-subversion attack [CGGN17].
For the SNARK by Danezis, Fournet, Groth and Kohlweiss [DFGK14], we show
that CRS well-formedness can be efficiently verified without modifying the CRS
and that S-ZK holds analogously to Pinocchio.

Finally, we consider the most efficient SNARK scheme by Groth [Gro16] and
again show that the scheme is already subversion-zero-knowledge under SKE.
Proving this is more involved than for the previous schemes, since the value τ ,
for which P, τP, τ2P, . . . are contained in the CRS does not suffice to simulate
proofs, as for the previous schemes. We show that, using SKE twice, another
value can be extracted, which together with τ then enables proof simulation. As
corollaries, we get that S-WI holds unconditionally for all considered schemes.

Concurrent work. Campanelli et al. [CGGN17] show that Pinocchio as
implemented in libsnark [BCG+14b] is not subversion-zero-knowledge by
exhibiting an attack. As countermeasures they propose to instead use one of
the older SNARKs by Gennaro et al. [GGPR13], as they allow verification of
CRS well-formedness, which yields witness indistinguishability. They admit that
for applications for which there is only one witness, like selling a Sudoku solution,
WI is vacuous (as any protocol satisfies WI).

They refer to Bellare et al.’s [BFS16] S-ZK system and conjecture that “the
techniques extend to the original QSP/QAP protocol in [GGPR13]” (which we
proved rigorously). Moreover, “[i]t is however not clear if those techniques extend
to Pinocchio” and “it would require major changes in the current implementation
of ZKCP protocols”. (We show that it suffices to add 4 group elements to the
CRS and perform the checks of well-formedness.) They recommend following the
Zcash approach [BCG+15,BGG17] and using an interactive protocol that lets
the prover and verifier compute the CRS together.

In other concurrent work Abdolmaleki et al. [ABLZ17] present a S-ZK variant
of Groth’s SNARK [Gro16]. They need to modify the scheme, thereby reducing
efficiency, and they prove their result under a stronger assumption. In partic-
ular, they extend the CRS by 2d group elements (where d is the number of
multiplication gates in the circuit representing the relation). Their assumption
states that any adversary that for generators P1 ∈ G

∗
1 and P2 ∈ G

∗
2 outputs a

pair of the form (sP1, sP2) must know s. As they note, their assumption is false
in groups with a symmetric (“Type-1”) bilinear map as well as in asymmetric
groups of Type 2, whereas our SKE assumption holds generically in all bilinear
group settings. They claim security of their scheme under their own definition of
S-ZK, which is a statistical notion, in contrast to original computational S-ZK
notion [BFS16], which we consider1.

1 It is not clear how their scheme can achieve statistical S-ZK, considering that the
success of the simulator relies on a computational assumption. They also claim that
their notion is stronger because they let the subvertor X pass “extra information” to
the adversary A, whereas A “only” receives X’s coins r in [BFS16]. But A can itself
compute any such information from r.
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Practical implications of our results. We show that for all analyzed
schemes except asymmetric Pinocchio, it suffices to verify the parameters once in
order to guarantee subversion zero knowledge. Any already deployed parameters
can thus be continued to be used after verification. Subversion-ZK of Pinocchio
can be obtained by adding 4 group elements to the CRS.

For Pinocchio-based ZK contingent payments this means that the scheme
can be made secure by slightly augmenting the size of the parameters and hav-
ing the seller verify them. No additional interaction between seller and buyer
(as recommended by Campanelli et al. [CGGN17]) is thus required. Of course,
admitting additional interaction could lead to more efficient schemes than using
the (costly) CRS verification.

The SNARK parameters used in Zcash have been computed by running the
multi-party protocol from [BCG+15,BGG17] and verifiability of this process is
achieved via random-oracle NIZK proofs. Let us define a CRS subvertor that
runs this protocol, playing the roles of all parties, and outputs the resulting
CRS, including the ROM proofs. Since the latter guarantee CRS well-formedness,
under SKE there exists an efficient extractor that can extract the simulation
trapdoor from the subvertor. Using the trapdoor, proofs can be simulated (as
specified in Sect. 4). We thus conclude that, assuming that users verify the CRS
and that the SKE assumption holds in the used bilinear group, Zcash provides a
subversion-resistant form of anonymity in the random oracle model. Thus, even
if all parties involved in creating the parameters were malicious, Zcash is still
anonymous.

We content ourselves with the above argument, as a formal proof would be
beyond the scope of this paper. Bowe et al. [BGG17] subsequently proved that
their protocol is S-ZK with a polynomially small (not negligible) simulation error
in the random-oracle model without making knowledge assumptions.

2 Definitions

2.1 Notation

If x is a (binary) string then |x| is its length. If S is a finite set then |S| denotes its
size and s ←$ S denotes picking an element uniformly from S and assigning it to
s. We denote by λ ∈ N the security parameter and by 1λ its unary representation.

Algorithms are randomized unless otherwise indicated. “PT” stands for
“polynomial time”, whether for randomized or deterministic algorithms. By
y ← A(x1, . . . ; r) we denote the operation of running algorithm A on inputs
x1, . . . and coins r and letting y denote the output. By y ←$ A(x1, . . .), we denote
letting y ← A(x1, . . . ; r) for random r. We denote by [A(x1, . . .)] the set of points
that have positive probability of being output by A on inputs x1, . . ..

For our security definitions we use the code-based game framework [BR06].
A game G (e.g. Fig. 1) usually depends on a scheme and executes one or more
adversaries. It defines oracles for the adversaries as procedures. The game even-
tually returns a boolean. We let Pr[G] denote the probability that G returns true.
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We recall the standard notions of soundness, knowledge-soundness, witness-
indistinguishability and zero knowledge for NIZKs, which assume the CRS is
trusted and then give their subversion-resistant counterparts that were intro-
duced in [BFS16]. We mainly follow their exposition and start with the syntax.

2.2 NP Relations and NI Systems

NP relations. Consider R: {0, 1}∗ × {0, 1}∗ → {true, false}. For x ∈ {0, 1}∗

we let R(x) = {w |R(x,w) = true } be the witness set of x. R is an NP relation
if it is PT and there is a polynomial PR such that every w in R(x) has length at
most PR(|x|) for all x. We let L(R) = {x |R(x) �= ∅ } be the language associated
to R. We will consider relations output by a PT relation generator Rg (which
may also output some auxiliary information z that is given to the adversary).
We assume λ can be deduced from R ∈ [Rg(1λ)] and note that definitions from
[BFS16], which are for one fixed relation R, are easily recovered by defining
Rg(1λ) := (1λ, R).

NI systems. A non-interactive (NI) system Π for relation generator Rg speci-
fies the following PT algorithms. Via crs ←$ Π.Pg(R) one generates a common
reference string crs. Via π ←$ Π.P(R, crs, x, w) the honest prover, given x and
w ∈ R(x), generates a proof π that x ∈ L(R). Via d ← Π.V(R, crs, x, π) a
verifier can produce a decision d ∈ {true, false} indicating whether π is a valid
proof that x ∈ L(R). We require (perfect) completeness, that is, for all λ ∈ N,
all R ∈ [Rg(1λ)], all crs ∈ [Π.Pg(R)], all x ∈ L(R), all w ∈ R(x) and all
π ∈ [Π.P(R, crs, x, w)] we have Π.V(R, crs, x, π) = true. We also assume that
Π.V returns false if any of its arguments is ⊥.

2.3 Standard Notions: SND, KSND, WI and ZK

Soundness. Soundness means that it is hard to create a valid proof for any
x �∈ L(R). We consider computational soundness as opposed to a statistical one,
which is the notion achieved by SNARGs.

Definition 1 (SND). An NI system Π for relation generator Rg is sound
if Advsnd

Π,Rg,A(·) is negligible for all PT adversaries A, where Advsnd
Π,Rg,A(λ) =

Pr[SNDΠ,Rg,A(λ)] and game SND is specified in Fig. 1.

Knowledge soundness. This strengthening of soundness [BG93] means that
a prover that outputs a valid proof must know the witness. Formally, there exists
an extractor that can extract the witness from the prover. The notion implies
soundness, since for a proof of a wrong statement there exists no witness.

Definition 2 (KSND). An NI system Π for relation generator Rg is
knowledge-sound if for all PT adversaries A there exists a PT extractor E such
that Advksnd

Π,Rg,A,E(·) is negligible, where Advksnd
Π,Rg,A,E(λ) = Pr[KSNDΠ,Rg,A,E(λ)]

and game KSND is specified in Fig. 1.
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Note that (as for the following two notions) the output of game KSND is effi-
ciently computable, which is not the case for SND, since membership in L(R)
may not be efficiently decidable. This can be an issue when proving security of
more complex systems that use a system Π as a building block.

WI. Witness-indistinguishability [FLS90] requires that proofs for the same state-
ment using different witnesses are indistinguishable. The adversary can adap-
tively request multiple proofs for statements x under one of two witnesses w0, w1;
it receives proofs under wb for a challenge bit b which it must guess.

Definition 3 (WI). An NI system Π for relation generator Rg is witness-
indistinguishable if Advwi

Π,Rg,A(·) is negligible for all PT adversaries A, where
Advwi

Π,Rg,A(λ) = 2Pr[WIΠ,Rg,A(λ)] − 1 and game WI is specified in Fig. 1.

ZK. Zero knowledge [GMR89] means that no information apart from the fact
that x ∈ L(R) is leaked by the proof. It is formalized by requiring that a simula-
tor, who can create the CRS, can compute proofs without being given a witness,
so that CRS and proofs are indistinguishable from real ones. In particular, the
distinguisher A can adaptively request proofs by supplying an instance and a
valid witness for it. The proof is produced either by the honest prover using the
witness, or by the simulator. The adversary outputs a guess b′.

Definition 4 (ZK). An NI system Π for Rg is zero-knowledge if Π specifies
additional PT algorithms Π.Sim.crs and Π.Sim.pf such that Advzk

Π,Rg,A(·) is neg-
ligible for all PT adversaries A, where Advzk

Π,Rg,A(λ) = 2Pr[ZKΠ,Rg,A(λ)]−1 and
game ZK is specified in Fig. 1.

An NI system Π is statistical zero-knowledge if the above holds for all (not
necessarily PT) adversaries A. It is perfect zero-knowledge if Advzk

Π,Rg,A(·) ≡ 0.

2.4 Notions for Subverted CRS: S-SND, S-KSND, S-WI and S-ZK

For all notions considered in the previous section the CRS is assumed to be
honestly generated. Bellare et al. [BFS16] ask what happens when the CRS
is maliciously generated and define subversion-resistant analogues S-SND, S-
WI and S-ZK, in which the adversary chooses the CRS. The following three
definitions are from [BFS16].

Subversion soundness. This asks that if the adversary creates a CRS in any
way it likes, it is still unable to prove false statements under it. We accordingly
modify the soundness game SND by letting the adversary choose crs in addition
to x and π.

Definition 5 (S-SND). An NI system Π for generator Rg is subversion-sound
if Advs−snd

Π,Rg,A(·) is negligible for all PT adversaries A, where Advs−snd
Π,Rg,A(λ) =

Pr[S − SNDΠ,Rg,A(λ)] and game S − SND is specified in Fig. 1.
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Fig. 1. Games defining soundness, knowledge-soundness, witness-indistinguishability
and zero knowledge (left) and their subversion-resistant counterparts (right) for an NI
system Π.
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Subversion WI. This notion demands that even when the subvertor creates a
CRS in any way it likes, it can still not decide which of two witnesses of its choice
were used to create a proof. The adversary is modeled as a two-stage algorithm:
it first outputs a CRS crs along with state information (which could e.g. contain
a trapdoor associated to crs) passed to the second stage. The second stage is
then defined like for the honest-CRS game WI, where via its Prove oracle, the
adversary can adaptively query proofs for instances under one of two witnesses.

Definition 6 (S-WI). An NI system Π for generator Rg is subversion-witness-
indistinguishable if Advs−wi

Π,Rg,A(·) is negligible for all PT adversaries A, where
Advs−wi

Π,Rg,A(λ) = 2Pr[S − WIΠ,Rg,A(λ)]−1 and game S − WI is specified in Fig. 1.
An NI system Π is perfect S-WI if Advs−wi

Π,Rg,A(·) ≡ 0.

Subversion ZK. This notion considers a CRS subvertor X that returns an arbi-
trarily formed CRS. Subversion ZK now asks that for any such X there exists a
simulator that is able to simulate (1) the full view of the CRS subvertor, includ-
ing its coins, and (2) proofs for adaptively chosen instances without knowing the
witnesses. The simulator consists of S.crs, which returns a CRS, coins for X and
a trapdoor which is then used by its second stage S.pf to simulate proofs. The
adversary’s task is to decide whether it is given a real CRS and the coins used
to produce it, and real proofs (case b = 1); or whether it is given a simulated
CRS and coins, and simulated proofs (case b = 0).

Definition 7 (S-ZK). An NI system Π for Rg is subversion-zero-knowledge if
for all PT CRS subvertors X there exists a PT simulator S = (S.crs,S.pf) such
that for all PT adversaries A the function Advs−zk

Π,Rg,X,S,A(·) is negligible, where
Advs−zk

Π,Rg,X,S,A(λ) = 2Pr[S − ZKΠ,Rg,X,S,A(λ)]−1 and game S − ZK is specified in
Fig. 1.

The definition is akin to ZK for interactive proof systems [GMR89], when
interpreting the CRS as the verifier’s first message. The simulator must produce
a full view of the verifier (including coins and a transcript of its interaction
with the Prove oracle). On the other hand, to imply ZK of NI systems, the
simulator needs to produce the CRS before learning the statements for which it
must simulate proofs. Moreover, the simulator can depend on X but not on A.

Subversion KSND. For completeness we give a subversion-resistant analogue
for knowledge soundness (not considered in [BFS16]), as this is the relevant
notion for SNARKs. We modify game KSND and let the adversary choose crs in
addition to x and π. We are not aware of any construction that achieves S-KSND
and some form of WI.

Definition 8 (S-KSND). An NI system Π for generator Rg is subversion-
knowledge-sound if for all PT adversaries A there exists a PT extrac-
tor E such that Advs−ksnd

Π,Rg,A,E(·) is negligible, where Advs−ksnd
Π,Rg,A,E(λ) =

Pr[S − KSNDΠ,Rg,A,E(λ)] and game S − KSND is specified in Fig. 1.
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2.5 Bilinear Groups and Assumptions

Bilinear groups. The SNARK constructions we consider are based on bilinear
groups, for which we introduce a new type of knowledge-of-exponent assumption.
We distinguish between asymmetric and symmetric groups.

Definition 9. An asymmetric-bilinear-group generator aGen is a PT algorithm
that takes input a security parameter 1λ and outputs a description of a bilinear
group (p,G1,G2,GT , e) with the following properties:

– p is a prime of length λ;
– (G1,+), (G2,+) and (GT , ·) are groups of order p;
– e : G1 × G2 → GT is a bilinear map, that is, for all a, b ∈ Zp and S ∈ G1,

T ∈ G2 we have: e(aS, bT ) = e(S, T )ab;
– e is non-degenerate, that is, for P1 ∈ G

∗
1 and P2 ∈ G

∗
2 (i.e., P1 and P2 are

generators) e(P1, P2) generates GT .

Moreover, we assume that group operations and the bilinear map can be com-
puted efficiently, membership of the groups and equality of group elements can
be decided efficiently, and group generators can be sampled efficiently.

A symmetric-bilinear-group generator sGen returns a bilinear group with
G1 = G2, which we denote by G, and with a symmetric non-degenerate bilinear
map e : G × G → GT .

Assumptions. We recall the assumptions under which SNARKs in the literature
were proven sound. The following assumptions are from [DFGK14], who adapted
PDH from [Gro10] to asymmetric groups, and TSDH from [BB04,Gen04].

Definition 10 (q-PDH). The q(λ)-power Diffie-Hellman assumption holds for
an asymmetric group generator aGen if Advpdh

q,aGen,A(·) is negligible for all PT A,
where Advpdh

q,aGen,A(λ) = Pr[PDHq,aGen,A(λ)] and PDH is defined in Fig. 2.

The q-PDH assumption for symmetric group generators sGen is defined analo-
gously by letting G1 = G2 and P1 = P2 (A thus only receives 2q group elements).

Definition 11 (q-TSDH). The q(λ)-target-group strong Diffie-Hellman
assumption holds for an asymmetric group generator aGen if Advtsdh

q,aGen,A(·) is
negligible for all PT adversaries A, where Advtsdh

q,aGen,A(λ) = Pr[TSDHq,aGen,A(λ)]
and TSDH is defined in Fig. 2.

The q-TSDH assumption for symmetric group generators sGen is defined anal-
ogously by letting G1 = G2 and P1 = P2 (A thus only receives q + 1 group
elements).

KEA. The knowledge-of-exponent assumption [Dam92,HT98,BP04] in a group
G states that an algorithm A that is given two random generators P,Q ∈ G

∗ and
outputs (cP, cQ) must know c. This is formalized by requiring that there exists
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Fig. 2. Games defining assumptions q-PDH, q-TSDH and q-PKE

an extractor for A which given A’s coins outputs c. This has been considered in
the bilinear-group setting [AF07] where A’s output (cP, cQ) can be verified by
using the bilinear map. Generalizations of KEA were made by Groth [Gro10],
who assumes that for every A that on input (P,Q, sP, sQ, s2P, s2Q, . . . , sqP, sqQ)
returns (cP, cQ) an extractor can extract (a0, . . . , aq) such that c =

∑q
i=0 ais

i.
Danezis et al. [DFGK14] port Groth’s assumption to asymmetric groups as fol-
lows.

Definition 12 (q-PKE). The q(λ)-power knowledge of exponent assumption
holds for aGen w.r.t. the class Aux of auxiliary input generators if for every PT
Z ∈ Aux and PT adversary A there exists a PT extractor E s.t. Advpke

q,aGen,Z,A,E(·)
is negligible, where Advpke

q,aGen,Z,A,E(λ) = Pr[PKEq,aGen,Z,A,E(λ)] and PKE is
defined in Fig. 2.

The q-PKE assumption for symmetric generators sGen is defined by letting
G1 = G2 but again choosing P1, P2 ←$ G

∗ (A thus again receives 2q + 2 group
elements).

Bellare et al. [BFS16] consider deterministically generated groups (whereas
for SNARK systems the group will be part of the relation R output by a relation
generator Rg). They therefore need to define all other assumptions, such as DLin
[BBS04], with respect to this fixed group. BFS introduce a new type of KEA,
called DH-KEA, which assumes that if A outputs a Diffie-Hellman (DH) tuple
(sP, tP, stP ) w.r.t. the fixed P , then A must know either s or t. The auxiliary
input given to A are two additional random generators H0,H1. The intuition is
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that while an adversary may produce one group element without knowing its
discrete logarithm by hashing into the elliptic curve [BF01,SvdW06,BCI+10], it
seems hard to produce a DH tuple without knowing at least one of the logarithms.

Fig. 3. Games defining knowledge-of-exponent assumptions

Definition 13 (DH-KEA). Let detSGen be a deterministic group generator;
let Advdhke

detSGen,A,E(λ) = Pr[DHKEdetSGen,A,E(λ)], with game DHKE defined in
Fig. 3. The Diffie-Hellman knowledge of exponent assumption holds for detSGen
if for every PT A there exists a PT E s.t. Advdhke

detSGen,A,E(·) is negligible.

SKE. We now consider a weakening of DH-KEA where we prescribe s = t; that
is, if A on input P outputs a pair (sP, s2P ) then E extracts s. This assumption is
weaker than (i.e., implied by) DH-KEA. As we consider groups with randomly
sampled generators, we let A choose the generator P itself and assume that
there exists an extractor that extracts s when A outputs a tuple (P, sP, s2P ).
This allows us to choose a random generator when setting up parameters of a
scheme. The security of such schemes then follows from assumptions such as
PDH, as defined above, where the generators are chosen randomly.

Definition 14 (SKE). Let sGen be a symmetric-group generator and define
Advske

sGen,A,E(λ) = Pr[SKEsGen,A,E(λ)], where game SKE is defined in Fig. 3. The
square knowledge of exponent assumption holds for sGen if for every PT A there
exists a PT E s.t. Advske

sGen,A,E(·) is negligible.

SKE for asymmetric groups. For asymmetric bilinear-group generators, we
make assumption SKE in the first source group G1. Unlike for symmetric groups,
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a tuple (S0, sS0, s
2S0) ∈ G

3
1 is not verifiable via an asymmetric pairing. To make

it verifiable, we weaken the assumption and require A to additionally output a
G2-element T0 as well as T1 = sT0, which enables verification (as done in game
SKEaGen).

Definition 15 (SKE). Let aGen be an asymmetric-group generator and define
Advske

aGen,A,E(λ) = Pr[SKEaGen,A,E(λ)], where game SKE is defined in Fig. 3. The
SKE assumption holds for aGen in the first source group if for every PT A there
exists a PT E s.t. Advske

aGen,A,E(·) is negligible.

We note that in addition to verifiability these additional elements T0 and T1

actually add to the plausibility of the assumption for asymmetric groups. Even
if outputting S2 was not required, one could argue that the following stronger
assumption holds in Type-3 bilinear groups, in which DDH holds in G1 and
in G2: it is hard to compute (S0, S1, T0, T1) ∈ G

2
1×G

2
2 with e(S1, T0) = e(S0, T1)

without knowing the logarithms of S1 to base S0 (or equivalently T1 to base T0):2

an adversary might choose S0 and S1 obliviously by hashing into the group; but if
it was able to compute from them the respective T0 and T1 then this would break
DDH in G1. (Given a DDH challenge (S0, S1 = s1S0, S2 = s2S0, R), compute T0

and T1 as above; then we have R = s1s2S0 iff e(R, T0) = e(S2, T1).) Of course,
this argument breaks down if there is an efficiently computable homomorphism
from G1 to G2 or vice versa.

Finally, we note that q-PKE with q = 0 does not imply SKE, since a PKE
adversary must return (V,W ) which is a multiple of the received (P1, P2), while
an SKE adversary can choose the “basis” (S0, T0) itself. The converse does not
hold either (SKE�⇒PKE), since an SKE adversary must return S2 = s2S0.

2.6 SKE in the Generic-Group Model

We show that SKE holds in the generic-group model. We show it for symmetric
generic groups, which implies the result for asymmetric groups (where the adver-
sary has less power). As [BFS16] did for DH-KEA, we reflect hashing into elliptic
curves by providing the adversary with an additional generic operation: it can
create new group elements without knowing their discrete logarithms (which are
not known to the extractor either).

Theorem 16. SKE, as defined in Definition 14, holds in the generic-group
model with hashing into the group.

In the proof we will use the following lemma, which we prove first.

Lemma 17. Let F be a field and let A,B,C ∈ F[X1, . . . , Xk], with degree of A,
B and C at most 1. If A · C = B2 then for some s ∈ F: B = s · A.

2 When fixing the generators S0 and T0, this corresponds to the assumption made by
Abdolmaleki et al. [ABLZ17] to show S-ZK of their SNARK.
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Proof. Let αi, βi, γi, for 0 ≤ i ≤ k, denote the coefficients of Xi (where X0 := 1)
in A,B,C, respectively. If A = 0 then B = 0 and the theorem follows. Assume
thus A �= 0; Define j := min{i ∈ [0, k] : αj �= 0} and s := βj · α−1

j .
To prove the lemma, we will now show that for all i ∈ [0, k]:

βi = s · αi. (1)

From A · C = B2 we have

L( �X) :=
(
β0 +

∑k
i=1 βiXi

)2 − (
α0 +

∑k
i=1 αiXi

)(
γ0 +

∑k
i=1 γiXi

)
= 0. (2)

From L(0, . . . , 0) = 0, we get: (I) β2
0 = α0γ0, which implies that Eq. (1) holds

for i = 0: either α0 = 0, then from (I): β0 = 0; or α0 �= 0, then j = 0 and Eq. (1)
holds as well.

Let now i ∈ [1, k] be arbitrarily fixed and let ei denote the vector
(0, . . . , 0, 1, 0, . . . , 0) with 1 at position i. Consider L(ei) = 0, which together
with (I) yields

2β0βi + β2
i − α0γi − αiγ0 − αiγi = 0. (3)

Similarly, from L(2ei) = 0, we have 4β0βi + 4β2
i − 2α0γi − 2αiγ0 − 4αiγi = 0,

which after subtracting Eq. (3) twice yields: (II) β2
i = αiγi. If αi = 0 then βi = 0,

which shows Eq. (1). For the remainder let us assume αi �= 0.
Plugging (II) into Eq. (3) yields: (III) 2β0βi = α0γi − αiγ0.
If α0 �= 0 then j = 0 and plugging (I) and (II) into (III) yields

2β0βi − α0α
−1
i β2

i − αiα
−1
0 β2

0 = 0.

Solving for βi yields the unique solution βi = β0α
−1
0 αi, which shows Eq. (1) for

the case α0 �= 0.
Let us now assume α0 = 0. By (I) we have β0 = 0. If i = j then Eq. (1) holds

by definition of s. Assume i �= j. From L(ei + ej) we have (since α0 = β0 = 0):

0 = β2
i + β2

j + 2βiβj − αiγ0 − αiγi − αiγj − αjγ0 − αjγi − αjγj = 2βiβj − αiγj − αjγi,

where we used (II) and αiγ0 = αjγ0 = 0 (which follows from (III) and α0 =
β0 = 0). Together with (II) the latter yields

2βiβj − αiα
−1
j β2

j − αjα
−1
i β2

i = 0.

Solving for βi yields the unique solution βi = βjα
−1
j αi, which concludes the

proof. ��
Proof (of Theorem 16). In the “traditional” generic-group model, group elements
are represented by random strings and an adversary A only has access to opera-
tions on them (addition of elements in G, multiplication of elements in GT and
pairing of elements in G) via oracles. In particular, A can only produce new G

elements by adding received elements.
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We also need to reflect the fact that by “hashing into the group”, A can cre-
ate a new group element without knowing its discrete logarithm w.r.t. one of the
received elements. We extend the generic-group model and provide the adversary
with an additional operation, namely to request a new group element “indepen-
dently of the received ones”. (And neither the adversary nor the extractor we
construct knows its discrete logarithm.)

For SKE the adversary A receives the group element P and needs to output
(S0, S1, S2) where for some s, t: S0 = tP , S1 = sS0 = stP and S2 = s2S0 = s2tP .
The adversary can produce these group elements by combining the received gen-
erator P with newly generated (“hashed”) group elements that it has requested.
We represent the latter as xiP , for i = 1, . . . k, for some k. The extractor keeps
track of the group operations performed by A and thus knows

α0, . . . , αk, β0, . . . , βk, γ0, . . . , γk ∈ Zp (4)

such that A’s output (S0, S1, S2) is of the form

S0 = α0P +
∑k

i=1 αi(xiP ) S1 = β0P +
∑k

i=1 βi(xiP )

S2 = γ0P +
∑k

i=1 γi(xiP )

Note that the extractor does however not know x := (x1, . . . , xk).
Assume the adversary wins and e(S1, S1) = e(S0, S2). Taking the logarithms

of the latter yields
(
β0 +

∑k
i=1 βixi

)2 − (
α0 +

∑k
i=1 αixi

)(
γ0 +

∑k
i=1 γixi

)
= 0. (5)

Since the adversary has no information about x1, . . . , xk (except for a negligible
information leak by comparing group elements, which we ignore), the values
in Eq. (4) are generated independently of x1, . . . , xk. By the Schwartz-Zippel
lemma the probability that Eq. (5) holds when x1, . . . , xk are randomly chosen
is negligible, except if the left-hand side corresponds to the zero polynomial.
With overwhelming probability we thus have

B( �X)2 − A( �X) · C( �X) = 0 with

A( �X) = α0 +
∑k

i=1
αiXi B( �X) = β0 +

∑k

i=1
βiXi C( �X) = γ0 +

∑k

i=1
γiXi

By Lemma 17 we have that B = sA for some s ∈ F. The extractor computes
and returns s, which is correct since S1 = B(�x)P = sA(�x)P = s S0. ��

3 SNARKs

We start with a formal definition of SNARGs and SNARKs.

Definition 18 (SNARG). An NI system Π = (Π.Pg,Π.P,Π.V) is a suc-
cinct non-interactive argument for relation generator Rg if it is complete and
sound, as in Definition 1, and moreover succinct, meaning that for all λ ∈ N,
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all R ∈ [Rg(1λ)], all crs ∈ [Π.Pg(R)], all x ∈ L(R), all w ∈ R(x) and all
π ∈ [Π.P(1λ, crs, x, w)] we have |π| = poly(λ) and Π.V(1λ, crs, x, π) runs in time
poly(λ + |x|).
Definition 19 (SNARK). A SNARG Π is a succinct non-interactive argu-
ment of knowledge if it satisfies knowledge soundness, as in Definition 2.

Gennaro et al. [GGPR13] base their SNARK constructions on quadratic
programs. In particular, they show how to convert any boolean circuit into a
quadratic span program and any arithmetic circuit into a quadratic arithmetic
program (QAP).

Definition 20 (QAP). A quadratic arithmetic program over a field F is a
tuple

(
F, n, {Ai(X), Bi(X), Ci(X)}m

i=0, Z(X)
)
,

where Ai(X), Bi(X), Ci(X), Z(X) ∈ F[X], which define a language of statements
(s1, . . . , sn) ∈ F

n and witnesses (sn+1, . . . , sm) ∈ F
m−n such that

(
A0(X) +

∑m

i=1
siAi(X)

)
·
(
B0(X) +

∑m

i=1
siBi(X)

)

= C0(X) +
∑m

i=1
siCi(X) + H(X) · Z(X), (6)

for some degree-(d−2) quotient polynomial H(X), where d is the degree of Z(X)
(we assume the degrees of all Ai(X), Bi(X), Ci(X) are at most d − 1).

All of the discussed SNARK constructions are for QAPs defined over a bilin-
ear group. We will thus consider relation generators Rg of the following form:

Definition 21 (QAP relation). A QAP relation generator Rg is a PT algo-
rithm that on input 1λ returns a relation description of the following form:

R =
(
Gr, n, �A, �B, �C,Z

)
whereGr is a bilinear group whose order p

defines F := Zp and

�A, �B, �C ∈ (
F
(d−1)[X]

)(m+1)
, Z ∈ F

(d)[X], n ≤ m.
(7)

For x ∈ F
n and w ∈ F

m−n we define R(x,w) = true iff there exists H(X) ∈ F[X]
so that Eq. (6) holds for s := x ‖w (where “ ‖” denotes concatenation).

4 Asymmetric Pinocchio

The CRS of SNARKs systems is usually split into a (long) part pk, used to
compute proofs, and a (short) part vk, used to verify them. Pinocchio [PHGR13]
is one of the central SNARK systems. Ben-Sasson et al. [BCTV14] proposed a
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variant in asymmetric groups for which they also shorten the verification key.
Their system is implemented in libsnark [BCG+14b] and underlies Zcash.

Campanelli et al. [CGGN17] show that the protocol is not subversion-zero-
knowledge and expect major changes to make it secure. In the following we show
that by adding merely 4 group elements to the CRS (which we denote by ck for
“checking key”), we can enable verification of well-formedness of (vk,pk) by
using the pairing available in the bilinear group. We then show that under SKE
(Definition 15), our modification of the scheme from [BCTV14] achieves subver-
sion zero knowledge. The protocol is given in Fig. 4, where we underlined our
modifications. Below we define procedure CRS verification, which a prover
runs on a CRS before using it the first time.

Theorem 22 ([PHGR13,BCTV14]). Let Rg be a relation generator that on
input 1λ returns a QAP of degree at most d(λ) over Gr. Define aGen that returns
the first output Gr of Rg and let q := 4d + 4. If the q-PDH, the q-PKE and the
2q-SDH assumptions hold for aGen then the scheme in Fig. 4 without including
ck in the CRS is knowledge-sound. Moreover, it is statistical zero-knowledge.

Inspecting the proof of the theorem in [PHGR13], it is easily seen that the
additional elements contained in ck can be produced by the reduction. Moreover,
knowledge soundness is independent of the prove algorithm Π.P, and a correctly
generated CRS passes CRS verification. This yields the following.

Corollary 23 (to Theorem 22). Let Rg and aGen be as in Theorem22. If the
q-PDH, the q-PKE and the 2q-SDH assumptions hold for aGen for q := 4d + 4
then the scheme in Fig. 4 is knowledge-sound statistical zero-knowledge.

CRS verification. On input (R, vk,pk, ck), let {ai,j}, {bi,j}, {ci,j}, {zk}
denote the coefficients of polynomials Ai(X), Bi(X), Ci(X) and Z(X), respec-
tively, for 0 ≤ i ≤ m and 0 ≤ j ≤ d − 1 and 0 ≤ k ≤ d.

1. Check P1 �= 0G1 and P2 �= 0G2 .
2. Check correct choice of secret values: ckA �= 0G2 , ckB �= 0G2 , vkγ �= 0G2 ,

vkβγ �= 0G1 and vkZ �= 0G2 .
3. Check consistency of pkH : Check pkH,0 = P1; and for i = 1, . . . , d:

e(pkH,i, P2) = e(pkH,i−1, ckH)

4. Check consistency of pkA,pk′
A,pkB ,pk′

B : for i = 0, . . . ,m + 3:

e(pkA,i, P2) = e(
∑d−1

j=0
ai,jpkH,j , ckA) e(pk′

A,i, P2) = e(pkA,i, vkA)

e(P1,pkB,i) = e(
∑d−1

j=0
bi,jpkH,j , ckB) e(pk′

B,i, P2) = e(vkB ,pkB,i)

5. Check consistency of ckC : e
(
pkA,m+1, ckB) = e

(∑d
j=0zjpkH,j , ckC

)
(Note

that for an honest CRS we have pkA,m+1 = Z(τ)ρAP1 �= 0.)
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Fig. 4. S-ZK Asymmetric Pinocchio, adapted from [BCTV14].
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6. Check consistency of vk: for i = 0, . . . , n: vkIC,i = pkA,i and

e(vkβγ , P2) = e(P1, v̂kβγ) e(P1, vkZ) = e
(∑d

j=0
zjpkH,j , ckC

)

7. Check consistency of pkC ,pk′
C ,pkK : for i = 0, . . . ,m + 3:

e(pkC,i, P2) = e(
∑d−1

j=0
ci,jpkH,j , ckC) e(pk′

C,i, P2) = e(pkC,i, vkC)

e(pkK,i, vkγ) = e(pkA,i + pkC,i, v̂kβγ) · e(vkβγ ,pkB,i)

8. If all checks in 1.–7. succeeded then return true and otherwise false.

Remark 24. The condition that in Key generation ρA, ρB , β, γ and Z(τ)
must be non-zero is not made explicit in [BCTV14]. However if γ = 0 then any
πK satisfies the verification equation in 3; and if β = 0 and γ �= 0 then no πK

satisfies it. If Z(τ) = 0 or ρA = 0 or ρB = 0 then vkZ = 0G2 and setting πB and
πC to zero always satisfies the equation in 4 in verification.

CRS Verifiability. We show that a CRS (vk,pk, ck) that passes verification is
constructed as in Key generation; in particular, there exist τ, αA, αB , αC ∈ F

and ρA, ρB , β, γ,∈ F
∗ such that (vk,pk, ck) is computed as in Key generation.

Let τ, αA, αB , αC , ρA, ρB , γ, ξ ∈ F be the values defined by the logarithms of the
elements ckH , vkA, vkB , vkC , ckA, ckB , vkγ and vkβγ , respectively. Check 2.
ensures that ρA, ρB , γ, ξ and Z(τ) are all non-zero. Set β := ξγ−1 �= 0.

Check 3. ensures that pkH is correctly computed w.r.t. τ . Check 4. ensures
that pkA,pk′

A,pkB and pk′
B are correctly computed w.r.t. τ , ρA, ρB , αA and αB .

Check 5. ensures that pkC is correctly computed: since by 4., pkA,m+1 =
Z(τ)ρA P1 and Z(τ) �= 0, we have ckC = ρAρBP2. Check 6. ensures that
v̂kβγ and vkZ are correctly computed and Check 7. does the same for pkC ,pk′

C

and pkK .
This shows that with respect to ckH , vkA, vkB , vkC , ckA, ckB, vkγ and vkβγ

(which implicitly define the randomness used in a CRS), all remaining elements
pkA,pk′

A,pkB ,pk′
B ,pkC ,pk′

C ,pkK ,pkH , as well as v̂kβγ , vkZ , vkIC and ckC are
defined as prescribed by Key generation.

Trapdoor Extraction. In order to prove subversion zero knowledge, we now
show how to construct a simulator (Π.Sim.crs,Π.Sim.pf) for a CRS subver-
tor X. Let X be a CRS subvertor that outputs (vk,pk, ck). Define X′(1λ; r)
that runs (vk,pk, ck) ← X(1λ; r), parses the output as above and returns
(pkH,0,pkH,1,pkH,2, P2, ckH). By SKE for aGen (Definition 15) there exists a
PT algorithm EX′ such that if for some τ ∈ F: pkH,1 = τ pkH,0,pkH,2 = τ2pkH,0

and ckH = τP2 then with overwhelming probability EX′ extracts τ . Using EX′

we define the CRS simulator S.crs which computes (crs, r, td) as follows: On
input 1λ:
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1. Sample randomness for X: r ←$ {0, 1}X.rl(λ).
2. Run (vk,pk, ck) ← X(1λ; r).
3. If (R, vk,pk, ck) passes CRS verification then τ ←$ EX′(1λ, r); else τ ← ⊥.
4. Return ((vk,pk, ck), r, τ).

Proof Simulation. Given (vk,pk, ck), trapdoor τ and a statement x ∈ F
n, the

proof simulator S.pf is defined as follows:

1. If τ = ⊥ then return ⊥.
2. Use τ to compute Z(τ) (which in a verified CRS is non-zero). Compute the

following “simulation keys”:

skA := Z(τ)−1pkA,m+1 = ρAP1 sk′
A := Z(τ)−1pk′

A,m+1 = αAρAP1

skB := Z(τ)−1pkB,m+2 = ρBP2 sk′
B := Z(τ)−1pk′

B,m+2 = αBρBP1

skC := Z(τ)−1pkC,m+3 = ρAρBP1 sk′
C := Z(τ)−1pk′

C,m+3 = αCρAρBP1

sk′′
A = Z(τ)−1pkK,m+1 = βρAP1

sk′′
B = Z(τ)−1pkK,m+2 = βρBP1 sk′′

C = Z(τ)−1pkK,m+3 = βρAρBP1

3. Compute vkx := pkA,0 +
∑n

i=1 xipkA,i and vk′
x := pk′

A,0 +
∑n

i=1 xipk
′
A,i

4. Choose a, b, c ←$ F and define π := (πA, π′
A, πB , π′

B , πC , π′
C , πK , πH) with:

πA := a skA − vkx = aρAP1 − vkx π′
A := a sk′

A − vk′
x = aαAρAP1 − αAvkx

πB := b skB = b ρBP2 π′
B := b sk′

B = b αBρBP1

πC := c skC = c ρAρBP1 π′
C := c sk′

C = c αCρAρBP1

πK := a sk′′
A + b sk′′

B + c sk′′
C πH := Z(τ)−1(ab − c)P1

Theorem 25. Let Rg be a QAP generator defining a bilinear-group generator
aGen for which SKE holds. Then the scheme in Fig. 4 for Rg satisfies subversion
zero knowledge.

Proof. Consider (vk,pk, ck) ← X(1λ; r) and let E denote the event that
(R, vk,pk, ck) passes CRS verification but EX′ fails to extract τ . From
Check 3 in CRS verification, we have e(pkH,1, P2) = e(pkH,0, ckH) and
e(pkH,2, P2) = e(pkH,1, ckH); thus (pkH,0,pkH,1,pkH,2, P2, ckH) is a valid SKE
tuple. By the SKE assumption the probability of E is thus negligible. It now
suffices to show that, conditioned on E not happening, the probability that A
outputs 1 in game S-ZK when b = 0 is the same as when b = 1.

If (vk,pk, ck) fails CRS verification then τ = ⊥ and both prover and proof
simulator return ⊥. If (vk,pk, ck) verifies then (because of ¬E) EX′ extracts τ .

We show that the outputs of the prover and the proof simulator are dis-
tributed equivalently. Above we showed that for a valid CRS there exist
τ, ρA, ρB , β, γ, αA, αB , αC ∈ F with ρA �= 0, ρB �= 0, β �= 0, γ �= 0 and Z(τ) �= 0
such that vk and pk are defined as in Items 4. and 5. in Key generation.
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Because of this, δAZ(τ)ρAP1, the (m + 2)-th summand in πA is uniformly
random. And so are the (m+3)-th summand δBZ(τ)ρBP1 of πB and the (m+4)-
th summand δCZ(τ)ρAρBP1 in πC . But this means that πA, πB and πC are
uniformly random group elements. For fixed vk, πA, πB and πC the Eq. (2). of
Verify uniquely determine π′

A, π′
B and π′

C , while the Eqs. 3. and 4. uniquely
determine πK and πH (since vkγ �= 0G2 and vkZ �= 0G2).

Since for a valid CRS the values ρA and ρB are non-zero, the simulated proof
elements πA, πB and πC are also uniformly random. Thus, it suffices to show
that the remaining proof elements satisfy the verification equations:

e(π′
A, P2) = e

(
a αAρAP1 − αAvkx, P2

)
= e(πA, vkA)

e
(
π′

B , P2

)
= e

(
b αBρBP1, P2

)
= e(vkB , πB)

e
(
π′

C , P2

)
= e

(
c αCρAρBP1, P2

)
= e(πC , vkC)

e(πK , vkγ) = e
(
β(aρAP1 + bρBP1 + c ρAρBP1), γP2

)

= e(vkx + πA + πC , v̂kβγ) · e(vkβγ , πB)

e(πH , vkZ) = e
(
Z(τ)−1(ab − c)P1, Z(τ)ρAρBP2

)

= e
(
aρAP1, bρBP2

) · e(cρAρBP1, P2

)−1
= e(vkx + πA, πB) · e(πC , P2)

−1

This concludes the proof. ��
Corollary 26. The scheme in Fig. 4 for a QAP generator Rg satisfies perfect
subversion witness indistinguishability.

Proof. In Theorem 25 we showed that proofs under a (possibly maliciously
generated but) valid CRS are uniform group elements subject to satisfying
the verification equation. Proofs using different witnesses are thus equally
distributed. ��

DFGK’s SNARK. Danezis et al. [DFGK14] define square span programs, which
are described by only one set {Ai(X)}i of polynomials (cf. Definition 20). They
show how to convert any boolean circuit into an SSP. They construct a zk-
SNARK for SSPs with proofs only consisting of 4 elements of an asymmetric
bilinear group.

Analogously to the SNARK from [BCTV14], their scheme is shown to satisfy
subversion ZK by observing that (1) the structure of a CRS can be verified
via the bilinear map; (2) the trapdoor τ (s in their notation) can be extracted
analogously to the SNARK analyzed above; and (3) proofs can be simulated
using s by simply following the simulation procedure described in [DFGK14].
(When s is known, the element Gβ (in their multiplicative notation) can be
obtained from the CRS element Gβt(s) since t(s) �= 0.)
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5 Groth’s Near-Optimal SNARK

Groth [Gro16] proposed the most efficient zk-SNARK system to date. He dras-
tically reduced the proof size for QAP-based SNARKs to 3 group elements and
verification to one equation using 3 pairings. He achieves this by proving sound-
ness directly in the generic-group model. His system is given in Fig. 5, to which
we added a procedure CRS verification defined below.

Theorem 27. ([Gro16]). The scheme in Fig. 5 is knowledge-sound against
adversaries that only use a polynomial number of generic bilinear group opera-
tions. Moreover, it has perfect zero knowledge.

Fig. 5. Groth’s SNARK [Gro16] with CRS verification (in bold)
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CRS verification. On input (R, vk,pk), let {ai,j}, {bi,j}, {ci,j}, {zk} denote
the coefficients of Ai(X), Bi(X), Ci(X) and Z(X), respectively.

1. Check P1 �= 0G1 and P2 �= 0G2 .
2. Check α, β, γ, δ and Z(τ) are non-zero: pkα �= 0G1 ,pkβ �= 0G1 , vk

′
γ �=

0G2 ,pkδ �= 0G1 ,pkZ,0 �= 0G1

3. Check consistency of pkH and pk′
H : check pkH,0 = P1 and pk′

H,0 = P2.
For i = 1, . . . , d:

e(pkH,i, P ) = e(pkH,i−1,pk
′
H,1) e(P1,pk

′
H,i) = e(pkH,i, P2)

4. Check consistency of the remaining pk elements:

e(P1,pk
′
β) = e(pkβ , P2) e(P1,pk

′
δ) = e(pkδ, P2)

for i = n + 1, . . . ,m : e(pkK,i,pk
′
δ) =

e
(∑d−1

j=0
ai,jpkH,j , pk

′
β

) · e(pkα,
∑d−1

j=0
bi,jpk

′
H,j

) · e(
∑d−1

j=0
ci,jpkH,j , P2

)

for i = 0, . . . , d − 2 : e(pkZ,i,pk
′
δ) = e

(∑d−1

j=0
zj pkH,j ,pk

′
H,i

)

5. Check consistency of the remaining vk elements: check vkT = e(pkα,pk′
β)

and vk′
δ = pk′

δ. For i = 0, . . . , n:

e(pkL,i,pk
′
γ)

= e
(∑d−1

j=0
ai,jpkH,j , pk

′
β

) · e(pkα,
∑d−1

j=0
bi,jpk

′
H,j

) · e(
∑d−1

j=0
ci,jpkH,j , P2

)

6. If all checks in 1.–5. succeeded then return true and otherwise false.

CRS Verifiability. Let τ, α, β, γ, δ denote the logarithms of
pkH,1,pkα,pkβ , vk′

γ ,pkδ. By Check 2. in CRS verification, α, β, γ, δ, Z(τ)
are non-zero. It follows by inspection that if all checks in 3.–5. pass then the
remaining elements of pk and vk are correctly computed.

Trapdoor Extraction. Let X be a CRS subvertor that outputs (vk,pk).
Define X′(1λ; r) that runs (vk,pk) ← X(1λ; r), parses the output as above
and returns (P1,pkH,1,pkH,2, P2,pk

′
H,1). For a valid CRS this corresponds to

(P1, τP1, τ
2P1, P2, τP2) for some P1 ∈ G1, P2 ∈ G2 and τ ∈ F. By SKE there

exists a PT algorithm EX′ which from a valid tuple extracts τ with overwhelming
probability.

Define another algorithm X′′(1λ; (r, r′)) that runs (vk,pk) ← X(1λ; r) and
extracts τ ← EX′(1λ, r; r′), computes Z(τ) (which is non-zero in a valid CRS)
and sets P ′

1 := Z(τ)−1 pkZ,0 (which for a valid CRS yields P ′
1 = δ−1P1).

Finally, X′′ returns (P ′
1, P1,pkδ, P2,pk

′
δ). For a valid CRS this corresponds to(

P ′
1, δP

′
1, δ

2P ′
1, P2, δP2

)
. By SKE there exist a PT algorithm EX′′ that on input

r′′ = (r, r′) returns δ with overwhelming probability.
Using EX′ and EX′′ , we define the CRS simulator S.crs as follows: On input 1λ

do the following:
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– Sample randomness for X and EX′ : r ←$ {0, 1}X.rl(λ); r′ ←$ {0, 1}EX′ .rl(λ)

– Run (vk,pk) ← X(1λ; r)
– If (R, vk,pk) verifies then τ ← EX′(1λ, r; r′) and δ ←$ EX′′(1λ, (r, r′)),

else (τ, δ) ← (⊥,⊥)
– Return ((vk,pk), r, (τ, δ))

Remark 28. Proof simulation is defined in [Gro16] using the full randomness
of the CRS and does not work with the trapdoor (τ, δ), as the simulator requires
α and β, which SKE does not allow to extract. Note that it is impossible to
extract α, since a valid CRS can be computed without knowing α: obliviously
sample a random generator pkα ←$ G

∗
1 and then compute vkT and, for all i,

vkL,i and pkK,i from pkα. In the following we show how to simulate a proof
without knowledge of α and β.

Proof Simulation. Given (vk,pk), trapdoor (τ, δ) and a statement x ∈ F
n,

the proof simulator S.pf does the following:

1. If (τ, δ) = (⊥,⊥) then return ⊥.
2. Choose a, b ←$ F and define the proof π := (πA, π′

B , πC) as follows

πA := aP1 + pkα π′
B := bP2 + pk′

β

πC := δ−1
(
ab−C0(τ)−

∑n

i=1
xiCi(τ)

)
P1 + δ−1

(
b−B0(τ)−

∑n

i=1
xiBi(τ)

)
pkα

+ δ−1
(
a−A0(τ)−

∑n

i=1
xiAi(τ)

)
pkβ

Theorem 29. Let Rg be a QAP generator defining a bilinear-group generator
aGen for which SKE holds. Then Groth’s SNARK [Gro16] with CRS verification
(Fig. 5) for Rg satisfies subversion zero knowledge.

Proof. Let E denote the event that (R, vk,pk) passes CRS verification but either
EX′ or EX′′ fails to extract τ and δ. Since a correct (vk,pk) satisfies e(pkH,1, P2) =
e(P1,pk

′
H,1) as well as e(pkH,2, P2) = e(pkH,1,pk

′
H,1), by SKE (Definition 15),

the probability that EX′ fails when X′ outputs (P1,pkH,1,pkH,2, P2,pk
′
H,1) is

negligible. A correct CRS also satisfies both e(P1, P2) = e(Z(τ)−1pkZ,0,pk
′
δ)

and e(pkδ, P2) = e(P1,pk
′
δ), thus again by SKE, the probability that EX′′ fails

when X′′ outputs
(
Z(τ)−1 pkZ,0, P1,pkδ, P2,pk

′
δ

)
is also negligible. By a union

bound, the probability of E is thus negligible.
It now suffices to show that, conditioned on E not happening, game S-ZK

when b = 0 is distributed as game S-ZK when b = 1. If (vk,pk) fails verification
then (τ, δ) = (⊥,⊥) and both the prover and the proof simulator return ⊥.

If (vk,pk) verifies then we show that the outputs of the prover and the proof
simulator are distributed equivalently. Above we argued that for some non-zero
α, β, γ, δ and τ with Z(τ) �= 0 we have that vk and pk are defined as in 3. and
4. in Key generation.
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Since for a valid CRS both pkδ and pk′
δ are non-zero, for honestly generated

proofs the elements rpkδ in πA, and spk′
δ in π′

B , make πA and π′
B uniformly ran-

dom. For fixed vk, πA and π′
B , the verification equation uniquely determines πC ,

since vk′
δ �= 0.

In a simulated proof πA and π′
B are also uniformly random, so it suffices to

show that the simulated πC satisfies the verification equation:

e(πC , vk′
δ) = e

((
ab − C0(τ) −

∑
xiCi(τ) + α

(
b − B0(τ) −

∑
xiBi(τ)

)
+

β
(
a − A0(τ) −

∑
xiAi(τ)

))
P1, P2

)

= e(abP1, P2) + e(aβP1, P2) + e(αbP1, P2) + e(αβP1, P2) − e(αβP1, P2)

− e
((

βA0(τ)+
∑

xiβAi(τ)+αB0(τ)+
∑

xiαBi(τ)+C0(τ)+
∑

xiCi(τ)
)
P1, P2

)

= e(πA, π′
B) − vkT − e(vkx, vk′

γ)

This concludes the proof. ��
Corollary 30. Groth’s SNARK [Gro16] with CRS verification for a QAP gen-
erator Rg (Fig. 5) satisfies perfect subversion witness indistinguishability.

Proof. The corollary follows analogously to Corollary 26. ��
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Abstract. We initiate the study of public-key encryption (PKE)
schemes and key-encapsulation mechanisms (KEMs) that retain security
even when public parameters (primes, curves) they use may be untrusted
and subverted. We define a strong security goal that we call ciphertext
pseudo-randomness under parameter subversion attack (CPR-PSA). We
also define indistinguishability (of ciphertexts for PKE, and of encap-
sulated keys from random ones for KEMs) and public-key hiding (also
called anonymity) under parameter subversion attack, and show they are
implied by CPR-PSA, for both PKE and KEMs. We show that hybrid
encryption continues to work in the parameter subversion setting to
reduce the design of CPR-PSA PKE to CPR-PSA KEMs and an appro-
priate form of symmetric encryption. To obtain efficient, elliptic-curve-
based KEMs achieving CPR-PSA, we introduce efficiently-embeddable
group families and give several constructions from elliptic-curves.

1 Introduction

This paper initiates a study of public-key encryption (PKE) schemes, and key-
encapsulation mechanisms (KEMs), resistant to subversion of public parameters.
We give definitions, and efficient, elliptic-curve-based schemes. As a tool of inde-
pendent interest, we define efficiently-embeddable group families and construct
them from elliptic curves.

Parameter subversion. Many cryptographic schemes rely on some trusted,
public parameters common to all users and implementations. Sometimes these
are specified in standards. The Oakley primes [39], for example, are a small num-
ber of fixed prime numbers widely used for discrete-log-based systems. For ECC
(Elliptic Curve Cryptography), the parameters are particular curves. Exam-
ples include the P-192, P-224, ... curves from the FIPS-186-4 [38] standard and
Ed25519 [16].
c© International Association for Cryptologic Research 2018
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There are many advantages to such broad use of public parameters. For
example, it saves implementations from picking their own parameters, a task
that can be error-prone and difficult to do securely. It also makes key-generation
faster and allows concrete-security improvements in the multi-user setting [7].
Recent events indicate, however, that public parameters also bring a risk, namely
that they can be subverted. The representative example is Dual-EC. We refer
to [19] for a comprehensive telling of the story. Briefly, Dual EC was a PRG
whose parameters consisted of a description of a cyclic group and two generators
of the group. If the discrete logarithm of one generator to base the other were
known, security would be compromised. The Snowden revelations indicate that
NIST had adopted parameters provided by the NSA and many now believe these
parameters had been subverted, allowing the NSA to compromise the security
of Dual EC. Juniper’s use of Dual EC further underscores the dangers [21].

Security in the face of parameter subversion. DGGJR [26] and BFS [9]
initiated the study of cryptography that retains security in the face of subverted
parameters, the former treating PRGs and the latter treating NIZKs, where the
parameter is the common reference string. In this paper we treat encryption.
We define what it means for parameter-using PKE schemes and KEMs to retain
security in the face of subversion of their parameters. With regard to schemes,
ECC relies heavily on trusted parameters. Accordingly we focus here, providing
various efficient elliptic-curve-based schemes that retain security in the face of
parameter subversion.

Current mitigations. In practice, parameters are sometimes specified in a
verifiable way, for example derived deterministically (via a public algorithm)
from publicly-verifiable coins. The coins could be obtained by applying a hash
function like SHA1 to some specified constants (as is in fact done for the FIPS-
186-4 curves [38] and in the ECC brainpool project), via the first digits of the
irrational number π, or via lottery outcomes [5]. This appears to reduce the
possibility of subversion, but BCCHLN [15] indicate that the potential of sub-
verting elliptic curves still remains, so there is cause for caution even in this
regard. Also, even if such mechanisms might “work” in some sense, we need def-
initions to understand what “work” means, and proofs to ensure definitions are
met. Our work gives such definitions.

Background. A PKE scheme specifies a parameter generation algorithm that
returns parameters π, a key-generation algorithm that takes π and returns a
public key pk and matching secret key sk , an encryption algorithm that given
π, pk and message m returns a ciphertext c, and a decryption algorithm that
given π, sk , c recovers m. We denote the classical notions of security by IND—
indistinguishability of ciphertexts under chosen-ciphertext attack [8,22]—and
PKH—public-key hiding, also called anonymity, this asks that ciphertexts not
reveal the public key under which they were created [6]. For KEMs, parameter
and key generation are the same, encryption is replaced by encapsulation—it
takes π, pk to return an encapsulated key K and a ciphertext c that encapsu-
lates K—and decryption is replaced by decapsulation—given π, sk , c it recov-
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Fig. 1. Relations between notions of security. The notions are defined, and the relations
hold, for both PKE schemes and KEMs. An arrow A → B is an implication: if a scheme
meets A then it also meets B.

ers K. We continue to denote the classical goals by IND—this now asks for
indistinguishability of encapsulated keys from random under chosen-ciphertext
attack [23]—and PKH. We stress that these classical notions assume honest
parameter generation, meaning the parameters are trusted.

We know that, in this setting, IND PKE is reduced, via hybrid encryption, to
IND KEMs and ind-cpa symmetric encryption [23]. To the best of our knowledge,
no analogous result exists for PKH.

Mass surveillance activities have made apparent the extent to which privacy
can be violated purely by access to meta-data, including who is communicating
with whom. PKE and KEMs providing PKH are tools towards systems that do
more to hide identities of communicants. We will thus target this goal in the
parameter subversion setting as well.

Definitions and relations. For both PKE and KEMs, we formulate a goal
called ciphertext pseudorandomness under parameter subversion attack, denoted
CPR-PSA. It asks that ciphertexts be indistinguishable from strings drawn ran-
domly from the ciphertext space, even under a chosen-ciphertext attack (CCA).
We also extend the above-discussed classical goals to the parameter subver-
sion setting, defining IND-PSA and PKH-PSA. For both PKE (Proposition 1)
and KEMs (Proposition 2) we show that CPR-PSA implies both IND-PSA and
PKH-PSA. We thus get the relations between the new and classical notions sum-
marized in Fig. 1. (Here CPR is obtained by dropping the PSA in CPR-PSA,
meaning it is our definition with honest parameter generation. This extends the
notions of [26,37] to allow a CCA.)

We ask whether we can reduce the design of CPR-PSA PKE to the design of
CPR-PSA KEMs via hybrid encryption. Proposition 3 says the answer is yes, but,
interestingly, requires that the KEM has an extra property of well-distributed
ciphertexts that we denote WDC-PSA. (The symmetric encryption scheme is
required to have pseudo-random ciphertexts. Such symmetric schemes are eas-
ily obtained.) We now have a single, strong target for constructions, namely
CPR-PSA+WDC-PSA KEMs. (By the above they imply CPR-PSA PKE, which
in turn implies IND-PSA PKE and PKH-PSA PKE.) Our goal thus becomes to
build efficient KEMs that are CPR-PSA+WDC-PSA.
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Parameter-free schemes. We say that a scheme (PKE or KEM) is param-
eter free if there are no parameters. (Formally, the parameters are the empty
string ε.) Note that a parameter-free scheme that is XXX secure is trivially also
XXX-PSA secure. (XXX ∈ {CPR, IND,PKH}.) This is an important observa-
tion, and some of our schemes will indeed be parameter-free, but, as we discuss
next, this observation does not trivialize the problem.

Issues and challenges. In an attempt to achieve PSA security through the
above observation, we could consider the following simple way to eliminate
parameters. Given a XXX-secure parameter-using scheme, build a parameter-
free version of it as follows: the new scheme sets its parameters to the empty
string; key generation runs the old parameter generation algorithm to get π, then
the old key generation algorithm to get pk and sk , setting the new public and
secret keys to (π, pk) and (π, sk), respectively; encryption and decryption can
then follow the old scheme. This trivial construction, however, has drawbacks
along two dimensions that we expand on below: (1) security and (2) efficiency.

With regard to security, the question is, if the old scheme is XXX, is the new
one too? (If so, it is also XXX-PSA, since it is parameter free, so we only need to
consider the classical notions.) The answer to the question is yes if XXX = IND,
but no if XXX ∈ {PKH,CPR}. Imagine, as typical, that the parameters describe
a group. Then in the new scheme, different users use different, independent
groups. This will typically allow violation of PKH [6]. For example, in the El
Gamal KEM, a ciphertext is a group element, so if two users have groups G0

and G1, respectively, one can determine which user generated a ciphertext by
seeing to which of the two groups it belongs. The same is true for RSA where
the group Gi = ZNi

is determined by the modulus Ni in the key of user i. Even
when the moduli have the same bit length, attacks in [6] show how to violate
PKH-security of the simple RSA KEM.

With regard to efficiency, the drawback is that we lose the benefits of
parameter-using schemes noted above. In particular, key-generation is less effi-
cient (because it involves parameter generation for the old scheme, which can
be costly), and public keys are longer (because they contain the parameters of
the old scheme). We aim to retain, as much as possible, the efficiency benefits
of parameters while adding resistance to PSA.

BBDP [6] give (1) parameter-free IND+PKH RSA-based PKE schemes and
(2) parameter-using discrete-log based IND+PKH PKE schemes. The former,
since parameter-free, are IND-PSA+PKH-PSA, but they are not CPR-PSA and
they are not as efficient as ECC-based schemes. The latter, while ECC-based
and fast, are not secure against PSA.

The open question that emerges is thus to design efficient, ECC-based KEMs
that are CPR-PSA+WDC-PSA. The technical challenge is to achieve CPR-PSA
(and thus PKH-PSA) even though the groups of different users may be different.

Overview of the approach. We introduce and formalize efficiently-
embeddable group (eeg) families and identify desirable security properties for
them. We give a transform constructing CPR-PSA+WDC-PSA KEMs from
secure eeg families. This reduces our task to finding secure eeg families. We
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Table 1. Our elliptic curve based CPR-PSA+WDC-PSA KEMs. p denotes the mod-
ulus of the field. Efficiency of KE.G is dominated by the sampling time of the curves.
Efficiency of KE.E (average, worst case) and KE.D (worst case) is given as the number
of exponentiations on the curves. The key size is measured in bits, k = �|Fp|� being
the bit length of the used modulus. For the rejection sampling based constructions, �
denotes the cut-off bound. For transform eegToKE2 and the constructions based on
Elligator curves (last two rows) see [4].

Eeg family Transform Parameter Assumption Efficiency Key size

KE.G KE.E KE.D

EGtwist eegToKE1 p sCDH-PSA tTGen 2, 2 2 10k

EGtwist eegToKE2 p CDH-PSA tTGen 3, 3 3 12k

EG�
twist-rs eegToKE1 — sCDH-PSA tTGen 3, �+1 1 9k

EG�
twist-rs eegToKE2 — CDH-PSA tTGen 4, �+2 2 11k

EGtwist-re eegToKE1 — sCDH-PSA tTGen 3, 3 1 9k

EGtwist-re eegToKE2 — CDH-PSA tTGen 4, 4 2 11k

EG�
ell1, EG

�
ell2 eegToKE1 p sCDH-PSA tEllGen 3, � + 1 1 6k

EG�
ell1-rs, EG

�
ell2-rs eegToKE1 — sCDH-PSA tEllGen 5, �+1 1 5k

propose several instantiations of eeg families from elliptic curves with security
based on different assumptions. An overview of the resulting KEMs is given in
Table 1. We discuss our results in greater detail below.

Efficiently-embeddable group families. As described above, having users
utilize different groups typically enables linking ciphertexts to the intended
receiver and hence violating CPR-PSA. However, certain families of groups allow
to efficiently map group elements to a space, which is independent of the partic-
ular group of the family. Building on these types of group families it is possible
to achieve CPR-PSA secure encryption while still allowing each user to choose
his own group.

We formalize the required properties via efficiently embeddable group fami-
lies, a novel abstraction that we believe is of independent interest. An eeg family
EG specifies a parameter generation algorithm EG.P sampling parameters to be
used by the other algorithms, and a group generation algorithm EG.G sampling a
group from the family. Embedding algorithm EG.E embeds elements of the group
into some embedding space EG.ES. The group element can be recovered using
inversion algorithm EG.I. An important property is that the embedding space
only depends on the parameters and in particular not on the used group. Looking
ahead, the KEM’s public key will contain a group sampled with EG.S and cipher-
texts will be embeddings. We require two security properties for EG in order
to achieve CPR-PSA+WDC-PSA KEMs. Both assume parameter subversion
attacks and are defined with respect to a sampling algorithm EG.S, which sam-
ples (not necessarily uniformly distributed) group elements. The first, embedding
pseudorandomness (EPR-PSA), is that embeddings of group elements sampled
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with EG.S are indistinguishable from uniform. Further we give a definition the
strong computational Diffie-Hellman assumption (sCDH-PSA) with respect to
EG—an adaption of the interactive assumption introduced in [2] to our setting.
It differs from the usual strong computational Diffie-Hellman assumption in two
points. The group used for the challenge is sampled using EG.G on a parame-
ter of the adversary’s choice and additionally one of the exponents used in the
challenge is sampled with sampling algorithm EG.S.

Key ecapsulation mechanisms from eeg families. We provide a transform
eegToKE1 of eeg families to secure KEMs. If the eeg family is both EPR-PSA
and sCDH-PSA the resulting KEM is CPR-PSA and WDC-PSA.

Key encapsulation from weaker assumptions. In the full version of this
paper [4] we give a second transform eegToKE2 from eeg families to secure
KEMs. It is applicable to eeg families consisting of groups, which order has no
small prime factors. Its security is based on the weaker computational Diffie-
Hellman assumption (CDH-PSA), i.e. it achieves a CPR-PSA and WDC-PSA
KEM under the weaker assumption that EG is both EPR-PSA and CDH-PSA.
However, this comes at the cost of larger key size and slower encryption and
decryption.

Instantiations from elliptic curves. We propose several instantiations of
eeg families from elliptic curves. It is well known that elliptic curves are not all
equal in security. We target elliptic-curve groups over the field Fp for a large
odd prime p since they are less vulnerable to discrete-log-finding attacks than
groups over fields of characteristic two [28,40]. While the usage of standardized
primes allows for more efficient implementations, several cryptanalysts further
suggest that p should be as random as possible for maximal security, see for
example Brainpool’s RFC on ECC [36]. These constraints make building eeg
families more challenging. We offer solutions for both cases. We first identify an
eeg family implicitly given in prior work [34,37]. The family consists of curve-
twist pairs of elliptic curves. Its embedding space depends on the modulus p of
the underlying field, which serves as parameter of the construction.

Building on eeg family EGtwist we also provide alternatives, which no longer
rely on a fixed modulus. The constructions have empty parameters and p is
sampled at random in the group generation algorithm. The technical challenge
is to still achieve pseudorandom embeddings in an embedding space independent
of the group. Our solution EG�

twist-rs achieves this by using rejection sampling
with cut-off parameter �. Its embedding space consists of bit strings of length
only dependent on the security parameter. The sampling algorithm has a worst-
case running time of � exponentiations, but the average cost is two exponentia-
tions independently of �. Eeg family EGtwist-re uses a range expansion technique
from [33] and improves on EG�

twist-rs both in terms of efficiency and security. As
in the other construction embeddings are bit strings, but sampling only requires
a single exponentiation.

Security of the instantiations. We now discuss the security properties
of our instantiations in greater detail. An overview is given in Table 2. All of



354 B. Auerbach et al.

Table 2. Security of our eeg families. The modulus of the used field is denoted by p.
ΔEPR-PSA denotes the maximal advantage of an (unbounded) adversary in breaking
EPR-PSA. � denotes the cut-off bound used in the construction based on rejection
sampling.

Eeg family Curve type Parameter ΔEPR-PSA See

EGtwist Twist p 0 Sect. 5.2

EG�
twist-rs Twist — (1/2)� Sect. 5.3

EGtwist-re Twist — 0 Sect. 5.4

EG�
ell1, EG

�
ell2 Elligator p (2/3)� [4]

EG�
ell1-rs, EG

�
ell2-rs Elligator — (4/5)� [4]

our constructions achieve EPR-PSA statistically. Embeddings in eeg families
EGtwist, and EGtwist-re are perfectly random, i.e. any (unbounded) adversary has
advantage 0 in breaking EPR-PSA. For family EG�

twist-rs the advantage decays
exponentially in the cut-off bound �.

Diffie-Hellman problem sCDH-PSA is non standard. It is defined with respect
to the eeg family’s sampling algorithm and assumes parameter subversion
attacks. However, for all of our proposed instantiations we are able to show
that sCDH-PSA can be reduced to assumptions, which no longer depend on
the sampling algorithms, but use uniformly sampled exponents instead. Con-
sidering the parameters of our constructions, they belong to one of two classes.
Eeg familiy EGtwist uses the modulus p as parameter, which might be subject
to subversion. Accordingly sCDH-PSA in this case corresponds to the assump-
tion that the adversary’s possibility to choose p does not improve its capacities
in solving Diffie-Hellman instances on either the curve or its twist for a curve-
twist pair sampled from the family. Eeg families EG�

twist-rs and EGtwist-re serve
as more conservative alternatives. They are parameter-free and each user choses
his own modulus at random, resulting in the weaker assumption that solving
Diffie-Hellman instances over curves sampled with respect to a randomly chosen
modulus is hard.

Instantiations from Elligator curves. In the full version of this paper [4]
we provide alternatives to our curve-twist pair based constructions. Eeg families
EG�

ell1, EG
�
ell2, EG

�
ell1-rs and EG�

ell2-rs make use of the Elligator1 and Elligator2
curves of [17]. EG�

ell1 and EG�
ell2 were implicitly given in [17] and use the modulus

of the underlying field as parameter. Constructions EG�
ell1-rs and EG�

ell2-rs serve
as parameter-free alternatives.

Related work. One might consider generating parameters via a multi-party
computation protocol so that no particular party controls the outcome. It is
unclear however what parties would perform this task and why one might trust
any of them. PKE resistant to parameter subversion provides greater security.

Parameter subversion as we consider it allows the adversary full control of the
parameters. This was first considered for NIZKs [9] and (under the term back-
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doored) for PRGs [25,26]. Various prior works, in various contexts, considered
relaxing the assumptions on parameters in some way [20,30,32,35], but these do
not allow the adversary full control of the parameters and thus do not provide
security against what we call parameter subversion.

Algorithm-substitution attacks, studied in [3,10–12,24], are another form of
subversion, going back to the broader framework of kleptography [43,44]. The
cliptography framework of RTYZ [41] aims to capture many forms of subver-
sion. In [42] the same authors consider PKE that retains security in the face of
substitution of any of its algorithms, but do not consider parameter subversion.

2 Preliminaries

Notation. We let ε denote the empty string. If X is a finite set, we let x ←$ X
denote picking an element of X uniformly at random and assigning it to x. All our
algorithms are randomized and polynomial time (PT) unless stated otherwise.
An adversary is an algorithm. Running time is worst case. If A is an algorithm,
we let y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . .
and assigning the output to y. We let y ←$ A(x1, . . .) be the result of picking
r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set
of all possible outputs of A when invoked with inputs x1, . . .. We use the code
based game playing framework of [14]. (See Fig. 3 for an example.) By Pr[G] we
denote the probability that the execution of game G results in the game returning
true. We also adopt the convention that the running time of an adversary refers
to the worst case execution time of the game with the adversary. This means
that the time taken for oracles to compute replies to queries is included. The
random oracle model [13] is captured by a game procedure RO that implements
a variable output length random oracle. It takes a string x and an integer m and
returns a random m-bit string. We denote by Pk the set of primes of bit length
k and by [d] the set {0, . . . , d − 1}. Furthermore, the uniform distribution on M
is denoted by UM . If two random variables X and Y are equal in distribution we
write X ∼ Y . The statistical distance between X and Y is denoted by Δ(X;Y ).
If Δ(X;Y ) ≤ δ we say X is δ-close to Y .

3 Public-Key Encryption Resistant to Parameter
Subversion

In this section we recall public-key encryption schemes and key encapsulation
mechanisms. For both primitives we define the strong security notion of pseu-
dorandomness of ciphertexts in the setting of parameter subversion and show
that it implies both indistinguishability of encryptions and public-key hiding.
We further define the security notion of well-distributedness of ciphertexts for
key encapsulation mechanisms. Finally, we recall symmetric encryption schemes
and revisit the hybrid encryption paradigm in the setting of ciphertext pseudo-
randomness under parameter subversion attacks.
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3.1 Public-Key Encryption Schemes

Below we give a syntax for public-key encryption schemes. It follows [23], but
uses slightly different notation and includes an additional algorithm setting up
global parameters to be utilized by all users. We then formalize a novel security
requirement of pseudorandomness of ciphertexts under parameter subversion
attacks (CPR-PSA), which says that even if the parameters of the scheme are
controlled by the adversary, ciphertexts obtained under any public key are indis-
tinguishable from random elements of the ciphertext space, which depends only
on the security parameter, the message length and the global parameters. We
then recall two existing requirements of public-key encryption schemes adapt-
ing them to the setting of parameter subversion attacks. The first is the well-
known notion of indistinguishability of encryptions [31], the second, from [1,6],
is that ciphertexts under different public keys are indistinguishable, which they
called anonymity or key hiding and we call public-key hiding. In Proposition 1
we show that the first requirement implies the other two, allowing us to focus
on it subsequently. We model the possibility of subverted parameters by having
the adversary provide the parameters, which are used in the security games.

Public-Key Encryption. A public-key encryption scheme (PKE) PE speci-
fies the following. Parameter generation algorithm PE.P takes input 1k, where
k ∈ N is the security parameter, and returns global parameters π. Key-generation
algorithm PE.G takes input 1k, π and returns a tuple (pk , sk) consisting of the
public (encryption) key pk and matching secret (decryption) key sk . PE.CS asso-
ciates to k, π and message length m ∈ N a finite set PE.CS(k, π,m) that is the
ciphertext space of PE. Encryption algorithm PE.E takes 1k, π, pk and a message
M ∈ {0, 1}∗ and returns a ciphertext c ∈ PE.CS(k, π, |M |). Deterministic decryp-
tion algorithm PE.D takes 1k, π, sk and a ciphertext c and returns either a mes-
sage M ∈ {0, 1}∗ or the special symbol ⊥ indicating failure. The correctness con-
dition requires that for all k ∈ N, all π ∈ [PE.P(1k)], all (pk , sk) ∈ [PE.G(1k, π)]
and all M ∈ {0, 1}∗ we have Pr

[
PE.D(1k, π, sk , c) = M

] ≥ 1 − PE.de(k), where
the probability is over c ←$ PE.E(1k, π, pk ,M) and PE.de : N → R≥0 is the
decryption error of PE. Our PKEs will be in the ROM [13], which means the
encryption and decryption algorithms have access to a random oracle specified
in the security games. Correctness must then hold for all choices of the random
oracle. We say a PKE is parameter-free if PE.P returns ε on every input 1k.

Ciphertext pseudorandomness. Consider game Gcpr-psa
PE,A (k) of Fig. 2 associ-

ated to PKE PE, adversary A and security parameter k, and let

Advcpr-psa
PE,A (k) = 2Pr[Gcpr-psa

PE,A (k)] − 1.

We say that PE has pseudorandom ciphertexts under parameter subversion
attacks (also called CPR-PSA) if the function Advcpr-psa

PE,A (·) is negligible for
every A. In the game, b is a challenge bit. When b = 1, the challenge cipher-
text c∗ is an encryption of a message of the adversary’s choice, but if b = 0 it is
chosen at random from the ciphertext space. Given the public key and challenge
ciphertext, the adversary outputs a guess b′ and wins if b′ equals b, the game
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Fig. 2. Games defining security of PKEs. In each game the adversary is given access to
oracles. The game, to which an oracle belongs, is indicated behind the oracle’s name.
In each game oracles Init and Enc may be queried only once. Further Init has to be
queried before using any of the other oracles.

returning true in this case and false otherwise. The adversary has access to an
oracle Init, which sets up the public key using parameters of the adversary’s
choice, and an oracle Enc to generate the challenge ciphertext. Furthermore it
has access to the random oracle and a decryption oracle crippled to not work on
the challenge ciphertext. We require that the adversary queries the oracles Init
and Enc only once. Furthermore Init has to be queried before using any of the
other oracles.

Indistinguishability of encryptions. Consider game Gind-psa
PE,A (k) of Fig. 2

associated to PKE PE, adversary A and security parameter k, and let

Advind-psa
PE,A (k) = 2Pr[Gind-psa

PE,A (k)] − 1.

We say that PE has indistinguishable encryptions under parameter subversion
attacks (also called IND-PSA) if the function Advind-psa

PE,A (·) is negligible for every
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A. In the game, b is a challenge bit. The adversary has access to an oracle Init,
which sets up the public key using parameters of the adversary’s choice, and an
oracle Enc, which receives as input two messages M0, M1 of the same length
and outputs the challenge ciphertext c∗. When b = 0, the challenge ciphertext
is an encryption of M0, if b = 1 an encryption of M1. Given the public key and
challenge ciphertext, the adversary outputs a guess b′ and wins if b′ equals b,
the game returning true in this case and false otherwise. Again, the adversary
has access to the random oracle and a decryption oracle crippled to not work on
the challenge ciphertext. We require that the adversary queries the oracles Init
and Enc only once. Furthermore Init has to be queried before using any of the
other oracles.

Public-key hiding. Consider game Gpkh-psa
PE,A (k) of Fig. 2 associated to PKE

PE, adversary A and security parameter k, and let

Advpkh-psa
PE,A (k) = 2Pr[Gpkh-psa

PE,A (k)] − 1.

We say that PE is public-key hiding under parameter subversion attacks (also
called PKH-PSA) if the function Advpkh-psa

PE,A (·) is negligible for every A. In the
game, b is a challenge bit. Unlike the prior games, two key pairs are generated,
not one. The challenge ciphertext c∗ is an encryption of a message of the adver-
sary’s choice under pk b. Given the public keys and the challenge ciphertext,
the adversary outputs a guess b′ and wins if b′ equals b. This time the crippled
decryption oracle returns decryptions under both secret keys. The adversary sets
up the public keys with its call to oracle Init, and an uses oracle Enc to generate
the challenge ciphertext. Again we require that the adversary queries the oracles
Init and Enc only once. Furthermore Init has to be queried before using any
of the other oracles.

Relations. The following says that pseudorandomness of ciphertexts implies
both indistinguishable encryptions and anonymity. We give both asymptotic
and concrete statements of the results.

Proposition 1. Let PE be a PKE that has pseudorandom ciphertexts under
parameter subversion attacks. Then:

1. PE is IND-PSA. Concretely, given an adversary A the proof specifies an
adversary B0 such that Advind-psa

PE,A (k) ≤ 2 · Advcpr-psa
PE,B0

(k) for every k ∈ N,
and B0 has the same running time and query counts as A.

2. PE is PKH-PSA. Concretely, given an adversary A the proof specifies an
adversary B1 such that Advpkh-psa

PE,A (k) ≤ 2 · Advcpr-psa
PE,B1

(k) for every k ∈ N,
and B0 has the same running time and query counts as A.

The proof of the proposition can be found in the full version of this paper [4].

3.2 Key Encapsulation Mechanisms

Below we first give a syntax for key encapsulation mechanisms. It follows [23]
but with notation a bit different and including an additional algorithm setting
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Fig. 3. Games defining security of key encapsulation mechanism KE. In each game the
adversary is given access to oracles. The game, to which an oracle belongs, is indicated
behind the oracle’s name. In each game oracle Init must be queried only once, which
has to be done before using any of the other oracles.

up global parameters to be utilized by all users. As for public-key encryption
schemes we formalize the security requirement of pseudorandomness of cipher-
texts under parameter subversion attacks (CPR-PSA). We then adapt the two
existing KEM requirements of indistinguishability of encryptions [23] and public-
key hiding [1,6] to the setting of parameter subversion attacks. In Proposition 2
we show that—as in the case of public-key encryption—the first requirement
implies the other two. We furthermore define a new security requirement called
well-distributedness of ciphertexts, which is necessary to achieve CPR-PSA in
the hybrid PKE construction. It states that key-ciphertext pairs generated using
the KEM’s encapsulation algorithm are indistinguishable from choosing a cipher-
text at random and then computing its decapsulation.

KEMs. A key encapsulation mechanism (KEM) KE specifies the following.
Parameter generation algorithm KE.P takes input 1k, where k ∈ N is the secu-
rity parameter, and returns global parameters π. Key-generation algorithm KE.G
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takes input 1k, π and returns a tuple (pk , sk) consisting of the public (encryp-
tion) key pk and matching secret (decryption) key sk . KE.KS associates to k
a finite set KE.KS(k) only depending on the security parameter that is the key
space of KE. KE.CS associates to k and parameters π a finite set KE.CS(k, π) that
is the ciphertext space of KE. Encapsulation algorithm KE.E takes 1k, π, pk and
returns (K, c) where K ∈ KE.KS(k) is the encapsulated key and c ∈ KE.CS(k, π)
is a ciphertext encapsulating K. Deterministic decapsulation algorithm KE.D
takes 1k, π, sk and a ciphertext c and returns either a key K ∈ KE.KS(k)
or the special symbol ⊥ indicating failure. The correctness condition requires
that for all k ∈ N, all π ∈ [KE.P(1k)] and all (pk , sk) ∈ [KE.G(1k, π)] we
have Pr

[
KE.D(1k, π, sk , c) = K

] ≥ 1 − KE.de(k), where the probability is over
(K, c) ←$ KE.E(1k, π, pk) and KE.de : N → R≥0 is the decryption error of KE.
Our KEMs will be in the ROM [13], which means the encapsulation and decapsu-
lation algorithms have access to a random oracle specified in the security games.
Correctness must then hold for all choices of the random oracle. We say a KEM
is parameter-free if KE.P returns ε on every input 1k.

Ciphertext pseudorandomness. Consider game Gcpr-psa
KE,A (k) of Fig. 3 associ-

ated to KEM KE, adversary A and security parameter k, and let

Advcpr-psa
KE,A (k) = 2Pr[Gcpr-psa

KE,A (k)] − 1.

We say that KE has pseudorandom ciphertexts under parameter subversion
attacks (also called CPR-PSA) if the function Advcpr-psa

KE,A (·) is negligible for
every A. In the game, b is a challenge bit. When b = 1, the challenge key K∗ and
ciphertext c∗ are generated via the encapsulation algorithm, but if b = 0 they are
chosen at random, from the key space and ciphertext space, respectively. Given
the public key, challenge key and challenge ciphertext, the adversary outputs a
guess b′ and wins if b′ equals b, the game returning true in this case and false oth-
erwise. The adversary has access to an oracle Init, which sets up the challenge.
We require that the adversary queries Init before using any of the other oracles
and that it queries Init only once. Further the adversary has access to an oracle
for decapsulation under sk , crippled to not work when invoked on the challenge
ciphertext. It, and the encapsulation and decapsulation algorithms, have access
to the random oracle RO. The parameters used in the game are provided by the
adversary via its call to Init.

Indistinguishability of encapsulated keys from random. Consider
game Gind-psa

KE,A (k) of Fig. 3 associated to KEM KE, adversary A and security
parameter k, and let

Advind-psa
KE,A (k) = 2Pr[Gind-psa

KE,A (k)] − 1.

We say that KE has encapsulated keys indistinguishable from random under
parameter subversion attacks (also called IND-PSA) if the function Advind-psa

KE,A (·)
is negligible for every A. In the game, b is a challenge bit. When b = 1, the chal-
lenge key K∗ and ciphertext c∗ are generated via the encapsulation algorithm,
while if b = 0 the key is switched to one drawn randomly from the key space,
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the ciphertext remaining real. Given the public key, challenge key and challenge
ciphertext, the adversary outputs a guess b′ and wins if b′ equals b. Again the
adversary has access to a crippled decapsulation oracle and the random oracle
and provides the parameters used in the game via his call to the oracle Init,
which has to be queried before using any of the other oracles.

Public-key hiding. Consider game Gpkh-psa
KE,A (k) of Fig. 3 associated to KEM

KE, adversary A and security parameter k, and let

Advpkh-psa
KE,A (k) = 2Pr[Gpkh-psa

KE,A (k)] − 1.

We say that KE is public-key hiding under parameter subversion attacks (also
called PKH-PSA) if the function Advpkh-psa

KE,A (·) is negligible for every A. In the
game, b is a challenge bit. Unlike the prior games, two key pairs are generated,
not one. The challenge key K∗ and ciphertext c∗ are generated via the encapsu-
lation algorithm under pk b. Given the public keys, challenge key and challenge
ciphertext, the adversary outputs a guess b′ and wins if b′ equals b. This time
the crippled decapsulation oracle returns decapsulations under both secret keys.
Again the adversary provides the parameters to be used in the game via his
single call to the oracle Init, which has to be queried before using any of the
other oracles.

Relations. The following says that in the parameter subversion setting
CPR-PSA implies both IND-PSA and PKH-PSA. We give both the asymptotic
and concrete statements of the results.

Proposition 2. Let KE be a KEM that has pseudorandom ciphertexts under
parameter subversion attacks. Then:

1. KE is IND-PSA. Concretely, given an adversary A the proof specifies an
adversary B such that Advind-psa

KE,A (k) ≤ 2 · Advcpr-psa
KE,B (k) for every k ∈ N,

and B has the same running time and query counts as A.
2. KE is PKH-PSA. Concretely, given an adversary A the proof specifies an

adversary B such that Advpkh-psa
KE,A (k) ≤ 2 · Advcpr-psa

KE,B (k) for every k ∈ N,
and B has the same running time and query counts as A.

The proof of the proposition can be found in the full version of this paper [4].

Well-distributed ciphertexts. Consider game Gwdc-psa
KE,A (k) of Fig. 4 associ-

ated to KEM KE, adversary A and security parameter k, and let

Advwdc-psa
KE,A (k) = 2Pr[Gwdc-psa

KE,A (k)] − 1.

We say KE has well distributed ciphertexts under parameter subversion attacks
(also called WDC-PSA), if the function Advwdc-psa

KE,A (·) is negligible for every
adversary A. In the game b is a challenge bit. If b equals 1 the adversary as
response to querying the initialization procedure, which may be done at most
once, receives a key-ciphertext pair generated using KE.E. If b equals 0 it receives
a pair (c∗,K∗) generated by choosing c∗ at random and then setting K∗ to be
the decapsulation of c∗. The adversary has access to a decryption oracle. We
require that the adversary queries Init before querying any of the other oracles.
Looking ahead, all of our instantiations achieve this notion statistically.
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Fig. 4. Game defining well-distributedness of ciphertexts of KEs.

3.3 Symmetric Encryption

Below, we recall symmetric encryption. Our definition follows [23] but uses dif-
ferent notation. We further define the security notion of ciphertext pseudoran-
domness for symmetric key encryption.

One-Time symmetric-Key Encryption. A symmetric-key encryption scheme
(SKE) specifies the following. SE.KS associates to security parameter k key space
SE.KS(k). SE.CS associates to security parameter k and message length m ∈ N

the ciphertext space SE.CS(k,m). Deterministic encryption algorithm SE.E takes
as input 1k, key K ∈ SE.KS(k) and a message M ∈ {0, 1}∗ and returns ciphertext
c ∈ SE.CS(k, |M |). Deterministic decryption algorithm SE.D on input 1k,K ∈
SE.KS(k), c ∈ SE.CS(k,m) returns either a message M ∈ {0, 1}m or the special
symbol ⊥ indicating failure. For correctness we require that M = SE.D(1k,K, c)
for all k, all K ∈ SE.KS(k) and all M ∈ {0, 1}∗, where c ← SE.E(1k,K,M).

One-time security. Consider game Gcpr
SE,A(k) of Fig. 5 associated to SKE SE,

adversary A and security parameter k, and let

Advcpr
SE,A(k) = 2Pr[Gcpr

SE,A(k)] − 1.

We say that SE has pseudorandom ciphertexts (also called CPR) if the function
Advcpr

SE,A(·) is negligible for every A. We require that Enc is queried at most
once.

3.4 PKE from Key Encapsulation and Symmetric-Key Encryption

Below, we analyze hybrid encryption in the setting of parameter subversion.
Formally we give a transform KEMToPE that associates to KEM KE and
symmetric-key encryption scheme SE a public-key encryption scheme PE. The
construction essentially is the hybrid encryption scheme of [23] including an addi-
tional parameter generation algorithm. The scheme’s parameter generation, key
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Fig. 5. Game defining one-time security notions of SKEs.

Fig. 6. PKE KEMToPE[KE, SE] associated to KEM KE and SE SE.

generation encryption and decryption algorithms are in Fig. 6. PE’s ciphertext
space is given by PE.CS(k, π,m) = KE.CS(k, π) × SE.CS(k,m). It is easy to ver-
ify that PE has decryption error PE.de(k) = KE.de(k). The following essentially
states that hybrid encryption also works in setting of ciphertext pseudorandom-
ness under parameter subversion attacks, i.e., combining a KEM that is both
CPR-PSA and WDC-PSA with a SKE that is CPR yields a CPR-PSA PKE,
where the well-distributedness of the KEM’s ciphertext is necessary to correctly
simulate the decryption oracle in the CPR-PSA game with respect to PE.

Proposition 3. Let KE a KEM and SE a SE such that KE.KS(k) = SE.KS(k)
for all k ∈ N. Let PE = KEMToPE[KE,SE] be the PKE associated to KE
and SE. If KE is CPR-PSA and WDC-PSA and if SE is CPR then PE is
CPR-PSA Concretely, given adversary A against Gcpr-psa

PE,A (k), there exist adver-
saries B1,B2,B3 having the same running time and query count as A, which
satisfy

Advcpr-psa
PE,A (k) ≤ 2 Advcpr-psa

KE,B1
(k) + Advwdc-psa

KE,B2
(k) + Advcpr

SE,B3
(k) + KE.de(k).

The proof of the proposition can be found in the full version of this paper [4].
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Fig. 7. Game defining embedding pseudorandomness of eeg family EG.

4 KEMs from Efficiently Embeddable Group Families

In this section we define efficiently embeddable group families (eeg). We define
the security notion of pseudorandom embeddings under parameter subversion
attacks (EPR-PSA) and adapt the strong computational Diffie-Hellman prob-
lem (sCDH-PSA) to the setting of efficiently embeddable group families and
parameter subversion. Further we give a generic constructions of key encapsula-
tion mechanisms from eeg families. It achieves security assuming the eeg family
is sCDH-PSA and EPR-PSA.

4.1 Efficiently Embeddable Group Families

Efficiently embeddable group families. An embeddable group family EG
specifies the following. Parameter generation algorithm EG.P takes as input 1k,
where k ∈ N is the security parameter, and returns parameters π. Group gen-
eration algorithm EG.G on input 1k, π returns a tuple G = (〈G〉, n, g), where
〈G〉 is a description of a cyclic group G of order n, and g is a generator of
G. EG.ES associates to k a finite set EG.ES(k, π) called the embedding space
that is only dependent on k and π. Sampling algorithm EG.S on input of 1k, π
and G ∈ [EG.G(1k, π)] outputs y ∈ Zn. (Not necessarily uniformly distributed.)
Embedding algorithm EG.E receives as input 1k, π, G ∈ [EG.G(1k, π)] and h ∈ G

and returns an element c ∈ EG.ES(k, π). Deterministic inversion algorithm EG.I
on input of 1k, π, G ∈ [EG.G(1k, π)] and c ∈ EG.ES(k, π) returns an element
of G. The correctness condition requires that for all k ∈ N, all π ∈ EG.P(1k)
and all G ∈ [EG.G(1k, π)] we have Pr

[
EG.I(1k, π,G, h) = gy

] ≥ 1 − EG.ie(k),
where the probability is over y ←$ EG.S(1k, π,G) and h ←$ EG.E(1k, π,G, gy),
and EG.ie : N → R≥0 is the inversion error of EG. If EG.P returns ε on every
input 1k, i.e. if no parameters are used, we say that EG is parameter-free.

Embedding Pseudorandomness. Consider game Gepr-psa
EG,A (k) of Fig. 7 associ-

ated to eeg family EG, adversary A and security parameter k. Let

Advepr-psa
EG,A (k) = 2Pr[Gepr-psa

EG,A (k)] − 1.
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Fig. 8. Experiment for the strong computational Diffie-Hellman problem with respect
to eeg family EG. Oracle Init may be queried only once and has to be queried before
using oracle ddh.

We say that EG has pseudorandom embeddings under parameter subversion
attacks (also called EPR-PSA) if the function Advepr-psa

EG,A,· is negligible for every
A. In the game, b is a challenge bit. When b = 1, the challenge embedding
c∗ is generated by sampling an exponent using EG.S and embedding the group
generator raised to the exponent with EG.E. If b = 0 the adversary is given an
embedding sampled uniformly from the embedding space. Given the group and
the embedding, the adversary outputs a guess b′ and wins if b′ equals b. The
parameters used in the game are provided by the adversary making a single
call to the oracle Init. All of our instantiations sample exponents such that the
resulting embeddings are statistically close to uniform on EG.ES(k, π), and hence
achieve this notion statistically.

Diffie-Hellman problem with respect to EG. The computational Diffie-
Hellman problem for a cyclic group G of order n, which is generated by g, asks
to compute gxy given gx and gy, where x, y ←$ Zn. In the strong computational
Diffie-Hellman problem introduced by Abdalla et al. in [2] the adversary addi-
tionally has access to an oracle, which may be used to check whether Y x = Z for
group elements Y,Z ∈ G. We provide a definition for the strong computational
Diffie-Hellman problem with respect to eeg families EG, which allows parameter
subversion. An additional difference is that y is not chosen uniformly from Zn

but instead sampled using EG.S.
Thus, consider game Gscdh-psa

EG,A (k) of Fig. 8. The game is associated to eeg
family EG, adversary A and security parameter k. The adversary has access to
an oracle Init setting up a problem instance according to the parameters it is
provided. Let

Advscdh-psa
EG,A (k) := Pr

[
Gscdh-psa

EG,A (k)
]
.

We say that the strong computational Diffie-Hellman problem under parameter
subversion (also called sCDH-PSA) is hard with respect to EG if Advscdh-psa

EG,A (·)
is negligible for every adversary A.
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Fig. 9. KEM KE1 = eegToKE1[EG, m] built from eeg family EG and polynomial m
via our transform. The KE has key space KE.KS(k) = {0, 1}m(k) and ciphertext space
KE.CS(k, π) = EG.ES(k, π).

4.2 Key Encapsulation from Efficiently Embeddable Group Families

In this section we give a generic construction of a key encapsulation mecha-
nism from an eeg family EG. Its security is based on the strong Diffie-Hellman
problem, i.e. if sCDH-PSA is hard with respect to EG, the KEM is IND-PSA.
If additionally EG has pseudorandom embeddings, the KEM has pseudorandom
and well-distributed ciphertexts. The construction is similar to the standard El
Gamal based key encapsulation mechanism as for example used in [2,23]. As an
intermediate step in the proof that the construction is CPR-PSA we obtain that
it is IND-PSA. The proof of this property follows the outlines of the proofs given
in [2,23]. Afterwards we use the pseudorandomness of the eeg family’s embed-
dings to show, that our construction achieves pseudorandom and well-distributed
ciphertexts.

Formally, we define a transform eegToKE1 that associates to an eeg family
EG and a polynomial m : N → N a KEM KE = eegToKE1[EG,m]. The param-
eter generation, key generation, encryption and decryption algorithms of KE are
in Fig. 9. The construction is in the ROM, so that encryption and decryption
invoke the RO oracle. The key space is KE.KS(k) = {0, 1}m(k). The ciphertext
space KE.CS(k, π) = EG.ES(k, π) is the embedding space of EG. It is easy to
verify that KE.de = EG.ie, meaning the decryption error of the KEM equals the
inversion error of the eeg family.

Security of the construction. The following says that if sCDH-PSA is hard
with respect to eeg family EG then eegToKE1[EG,m] has desirable security
properties.

Theorem 4. Let KE = eegToKE1[EG,m] be the KEM associated to eeg family
EG and polynomial m : N → N as defined in Fig. 9. Assume that EG is EPR-PSA
and that sCDH-PSA is hard with respect to EG. Then

(i) KE has pseudorandom ciphertexts under parameter subversion attacks.
(ii) KE has well-distributed ciphertexts under parameter subversion attacks.
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Moreover, if EG is parameter-free so is KE. Concretely, given an adversary A
making at most q(k) queries to RO the proof specifies adversaries B1 and B2

having the same running time as A satisfying

Advcpr-psa
KE (A)(k) ≤ Advscdh-psa

EG,B1
(k) + Advepr-psa

EG,B2
(k),

where B2 makes at most q(k) queries to ddh. Furthermore given an adversary
A′ the proof specifies an adversary B′ having the same running time as A′ such
that,

Advwdc-psa
KE,A′ (k) ≤ Advepr-psa

EG,B′ (k) + EG.ie(k).

The proof of the theorem can be found in the full version of this paper [4]. In
the full version of this paper [4] we also provide a transform eegToKE2, which
achieves security under the weaker CDH-PSA assumption with respect to EG.

5 Efficiently Embeddable Group Families from
Curve-Twist Pairs

In this section we give instantiations of eeg families based on elliptic curves.
The main tool of the constructions is a bijection of [34] mapping points of an
elliptic curve and its quadratic twist to an interval of integers. We first give a
construction using parameters, the parameter being a prime p of length k serving
as the modulus of the prime field the curves are defined over. The construction
has embedding space [2p+1]. Since we assume, that the parameter shared by all
users might be subject to subversion, security of this construction corresponds
to the assumption that there exist no inherently bad choices for p, i.e. that for
any sufficiently large prime p it is possible to find elliptic curves defined over Fp

on which the strong computational Diffie-Hellman assumption holds.
As an alternative we also give parameter-free eeg-families whose security is

based on the weaker assumption that for random k-bit prime p it is possible to
find elliptic curves defined over Fp, such that the strong computational Diffie-
Hellman assumption holds. Since in this construction the modulus p is sampled
along with the curve, it is no longer possible to use [2p + 1] as the embedding
space of the eeg family. We propose two solutions to overcome this, one using
rejection sampling to restrict the embedding space to the set [2k], the other one
is based on a technique from [33] and expands the embedding space to [2k+1].

5.1 Elliptic Curves

Let p ≥ 5 be prime and Fp a field of order p. An elliptic curve over Fp can be
expressed in short Weierstrass form, that is as the set of projective solutions of
an equation of the form

Y Z2 = X3 + aXZ2 + bZ3,

where a, b ∈ Fp with 4a3 + 27b2 �= 0. We denote the elliptic curve generated by
p, a, b by E(p, a, b). E(p, a, b) possesses exactly one point with Z-coordinate 0,
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the so called point at infinity O = (0 : 1 : 0). After normalizing by Z = 1 the
curve’s other points can be interpreted as the solutions (x, y) ∈ F

2
p of the affine

equation y2 = x3 + ax + b. It is possible to establish an efficiently computable
group law on E(p, a, b) with O serving as the neutral element of the group. We
use multiplicative notation for the group law to be consistent with the rest of
the paper.

Twists of Elliptic Curves. In [34, Sect. 4] Kaliski establishes the following
one-to-one correspondence between two elliptic curves defined over Fp which are
related by twisting and a set of integers.

Lemma 5. Let p ∈ N≥5 be prime. Let u ∈ Zp be a quadratic nonresidue modulo
p and a, b ∈ Zp such that 4a3 + 27b2 �= 0. Consider the elliptic curves E0 :=
E(p, a, b) and E1 := E(p, au2, bu3). Then |E0| + |E1| = 2p + 2. Furthermore, the
functions l0 : E0 −→ [2p + 2] and l1 : E1 −→ [2p + 2] defined as

l0 (P ) =

⎧
⎪⎨

⎪⎩

p if P = O0

(ux mod p) if (P = (x, y)) ∧ (0 ≤ y ≤ (p − 1)/2),
(ux mod p) + p + 1 if (P = (x, y)) ∧ ((p − 1)/2 < y)

l1(P ) =

⎧
⎪⎨

⎪⎩

2p + 1 if P = O1

x if (P = (x, y)) ∧ (0 < y ≤ (p − 1)/2)
x + p + 1 if (P = (x, y)) ∧ ((y = 0) ∨ ((p − 1)/2 < y))

are injective with nonintersecting ranges, where O0 and O1 denote the neutral
elements of E0 and E1 respectively.

Lemma 6. The functions l0 and l1 can be efficiently inverted. That is, given
z ∈ [2p + 1], one can efficiently compute the unique (P, δ) ∈ E0 ∪ E1 × {0, 1}
such that lδ(P ) = z.

The proof of the lemma can be found in the full version of this paper [4].

Definition 7. A curve-twist generator TGen on input of security parameter 1k

and a k-bit prime p returns (G0, G1), where G0 = (〈E0〉, n0, g0) and G1 =
(〈E1〉, n1, g1) are secure cyclic elliptic curves defined over the field Fp. More
precisely we require E0 := E(p, a, b) and E1 := E(p, au2, bu3) for a, b ∈ Fp

such that (4a3 + 27b2) �= 0 and quadratic nonresidue u. Furthermore we require
that g0 generates E0 and g1 generates E1 as well as |E0| = n0, |E1| = n1 and
gcd(n0, n1) = 1.

Generation of secure Twisted Elliptic Curves. There exist several pro-
posals for properties an elliptic curve over a prime field Fp should have to be
considered secure (e.g., [18,27]). Firstly, the elliptic curve’s order is required
to be either the product of a big prime and a small cofactor—or preferably
prime. Secondly, several conditions preventing the transfer of discrete logarithm
problems on the curve to groups, where faster algorithms to compute discrete
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logarithms may be applied, should be fulfilled. Finally, for our applications we
need both the elliptic curve and its quadratic twist to be secure, a property usu-
ally called twist security. For concreteness, we suggest to implement TGen(1k, p)
by sampling the necessary parameters a, b, u with rejection sampling such that
the resulting curve E(p, a, b) fulfills the three security requirement mentioned
above. This way, TGen can be implemented quite efficiently1 and furthermore,
with overwhelming probability, the resulting curve fulfills all relevant security
requirements from [18,27] that are not covered by the three security properties
explicitly mentioned above.

Computational problems associated to TGen. Let TGen a curve-twist gen-
erator. We give two versions of the strong computational Diffie-Hellman assump-
tion with respect to TGen. In the first version the prime p on which TGen
is invoked is chosen by the adversary, while in the second version p is sam-
pled uniformly at random from all k-bit primes. For d ∈ {0, 1} consider games
Gtwistd-cp-scdh

TGen,A (·) and Gtwistd-up-scdh
TGen,A (·) of Fig. 10. We define advantage functions

Advtwistd-cp-scdh
TGen,A (k) = Pr

[
Gtwistd-cp-scdh

TGen,A (k)
]
,

Advtwistd-up-scdh
TGen,A (k) = Pr

[
Gtwistd-up-scdh

TGen,A (k)
]
.

Definition 8. Let TGen be a curve-twist generator. We say the strong
computational Diffie-Hellman assumption for chosen (uniform) primes holds
with respect to curve-twist generator TGen, if both Advtwist0-cp-scdh

TGen,A (·) and
Advtwist1-cp-scdh

TGen,A (·) (or Advtwist0-up-scdh
TGen,(Pk)k,A (·) and Advtwist1-up-scdh

TGen,(Pk)k,A (·) respec-
tively) are negligible for all adversaries A.

5.2 An Eeg Family from Elliptic Curves

In [34] Kaliski implicitly gives an eeg family based on elliptic curves. The family
is parameter-using, the parameter being a prime p serving as the modulus of
the field the elliptic curves are defined over. The definition of eeg family EGtwist

may be found in Fig. 11. Parameter generation algorithm EGtwist.P on input
of security parameter 1k returns a randomly sampled k-bit prime2 p. Group
generation algorithm EGtwist.G on input of parameter π = p checks, whether p is
1 In [29] Galbraith and McKee consider elliptic curves E chosen uniformly from the

set of elliptic curves over a fixed prime field Fp. They give a conjecture (together
with some experimental evidence) for a lower bound on the probability of |E| being
prime. Using a similar technique [27] argue, that the probability of a uniformly
chosen elliptic curve over a fixed prime field Fp to be both secure and twist secure
is bounded from below by 0.5/log2(p). Since their definition of security of an elliptic
curve includes primality of the curve order and since due to Lemma 5 the orders of
curve and twist sum up to 2p + 2, this in particular implies that the curve and its
twist are cyclic and have coprime group order.

2 In practice one would preferably instantiate EGtwist with a standardized prime.
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Fig. 10. Experiments for the sCDH problem for chosen (uniform) primes with respect
to d ∈ {0, 1}, adversary A and curve-twist generator TGen.

indeed a prime of appropriate length, and—if so—runs a curve-twist generator
TGen(1k, π) to obtain the description of two cyclic secure cyclic elliptic curves
G0 = (〈E0〉, n0, g0) and G1 = (〈E1〉, n1, g1). Its output is (〈G〉, n, g), where
G ← E0 × E1 is the direct product of the two elliptic curves, n ← n0 · n1 and
g ← (g0, g1). Here we assume that the description 〈G〉 of G includes the values
n0 and n1, which are used by EGtwist’s other algorithms. Note that |G| = n and
since n0 and n1 are coprime, g generates G. Furthermore, if we regard E0 and
E1 as subgroups of G = E0 × E1 in the natural way, we may rewrite the set
E0 ∪ E1 ⊆ G as

E0 ∪ E1 = {(h0,O1) | h0 ∈ E0} ∪ {(O0, h1) | h1 ∈ E1}
= {(g0, g1)y | y ∈ Zn : y ≡ 0 mod n0 or y ≡ 0 mod n1}

Algorithm EGtwist.S uses this property to efficiently sample y ∈ Zn such that
gy ∼ UE0∪E1 . It first samples z ←$ Z2p+1. If z < n0 it returns ϕcrt(z, 0). Else it
returns ϕcrt(0, z − n0 − 1). Here ϕcrt denotes the canonical isomorphism ϕcrt :
Zn0 × Zn1 → Zn. As a result y ←$ EGtwist.S(1k, G) satisfies y ∼ UM , where
M := {y ∈ Zn | y ≡ 0 mod n0 or y ≡ 0 mod n1}. Embedding algorithm
EGtwist.E receives as input 1k, π, G and h = (h0, h1) ∈ G. It first checks, whether
h lies outside of the support [EGtwist.S(1k, π,G)] of the sampling algorithm, i.e.
whether both h0 �= O0 and h1 �= O1. In this case the element is mapped to 0.
If h is an element of [EGtwist.S(1k, π,G)], algorithm EGtwist.E returns l0(h0) if
h1 = O1, and l1(h1) if h1 �= O1. Here l0 : E0 → [2p + 2] and l1 : E1 → [2p + 2]
denote the maps of Lemma 5. By Lemma 5 the map EGtwist.E(1k, G, ·)|E0∪E1 is
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Fig. 11. Definition of eeg family EGtwist with embedding space EGtwist.ES(k, π) =
[2p + 1]. l0 and l1 denote the maps from Lemma 5, ϕcrt the canonical isomorphism
Zn0 × Zn1 → Zn.

a bijection between E0 ∪ E1 and [2p + 1] and we obtain EGtwist.E(1k, G, gy) ∼
U[2p+1] for y sampled with EGtwist.S(1k, G). We obtain the following.

Lemma 9. EGtwist as defined in Fig. 11 is an eeg family with embedding space
EGtwist.ES(k,G) = [2p + 1] and inversion error EGtwist.ie(k) = 0. Furthermore
EGtwist has pseudorandom embeddings. More precisely, for every (potentially
unbounded) adversary A we have

Advepr-psa
EGtwist,A(k) = 0.

A proof of the lemma can be found in the full version of the paper [4]. Concerning
the hardness of sCDH-PSA with respect to EGtwist we obtain the following.

Lemma 10. Let EGtwist be the embeddable group generator constructed with
respect to twisted elliptic curve generator TGen as described above. If the strong
Diffie-Hellman assumption for chosen primes holds with respect to TGen, then
the strong Diffie-Hellman assumption holds with respect to EGtwist.

Concretely for every adversary A against game Gscdh-psa
EGtwist,A(·), which makes at

most Q queries to its DDH-oracle, there exist adversaries B0, B1 against games
Gtwist0-cp-scdh

TGen,B0
(·) or Gtwist1-cp-scdh

TGen,B1
(·) respectively making at most Q queries to

their DDH-oracles, satisfying

Advscdh-psa
EGtwist,A(k) ≤ Advtwist0-cp-scdh

TGen,B0
(k) + Advtwist1-cp-scdh

TGen,B1
(k).

The proof of the lemma can be found in the full version of this paper [4].

5.3 A Parameter-Free Eeg Family Using Rejection Sampling

Eeg family EGtwist of Sect. 5.2 is parameter-using, the parameter being the size p
of the field Fp. Correspondingly, hardness of sCDH-PSA with respect to EGtwist
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Fig. 12. Parameter-free eeg family EG�
twist-rs.

follows from the assumption, that the elliptic curves output by curve-twist gen-
erator TGen are secure, independently of the prime p the curve-twist generator
TGen is instantiated with. In this section we show how EGtwist can be used to
construct an eeg family EG�

twist-rs for which hardness of sCDH-PSA follows from
the weaker assumption that TGen instantiated with a randomly chosen prime is
able to sample secure elliptic curves. The construction is parameter-free and has
embedding space [2k]. The size p of the field over which the elliptic curves are
defined is now sampled as part of the group generation. The embedding algo-
rithm uses rejection sampling to ensure that embeddings of group elements gy for
y sampled with EG�

twist-rs.S are elements of [2k]. The specification of EG�
twist-rs’s

algorithms may be found in Fig. 12.

Theorem 11. Let � : N → N be a polynomial. EG�
twist-rs as described above is

an eeg family with embedding space EG�
twist-rs.ES(k, π) = [2k] and inversion error

EG�
twist-rs.ie(k) ≤ 2−�(k). Furthermore EG�

twist-rs has pseudorandom embeddings.
More precisely, for every (potentially unbounded) adversary A we have

Advepr-psa
EG�

twist-rs,A
(k) ≤ 2−�(k).

The proof of the theorem can be found in the full version of this paper [4].
As discussed above, we obtain that—assuming that TGen invoked on randomly
sampled prime p returns a secure curve-twist pair—the sCDH-PSA-problem with
respect to eeg family EG�

twist-rs is hard.

Lemma 12. Let � : N → N be a polynomial and EG�
twist-rs the eeg family

with underlying curve-twist generator TGen as described above. If the sCDH
assumption for uniform primes holds with respect to TGen, then sCDH-PSA is
hard with respect to EG�

twist-rs. Concretely, for every adversary A against game
Gscdh-psa

EG�
twist-rs,A

(·) making at most Q queries to its DDH-oracle there exist adver-

saries B0, B1 against Gtwist0-up-scdh
TGen,B0

(·) or Gtwist1-up-scdh
TGen,B1

(·) respectively, making
at most Q queries to their DDH-oracles and running in the same time as A,
which satisfy

Advscdh-psa
EG�

twist-rs,A
(k) ≤ 3

(
Advtwist0-up-scdh

TGen,B0
(k) + Advtwist1-up-scdh

TGen,B1
(k)

)
+ 2−�(k)

for all k ∈ N≥6.
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Fig. 13. Definition of eeg family EGtwist-re with embedding space EGtwist-re.ES(k, π) :=
[2k+1]. ψG denotes the bijection [2p + 1] → [EGtwist.S(1k, p, G′)] defined in Sect. 5.4.

The proof of the lemma can be found in the full version of this paper [4].

5.4 A Parameter-Free Family Using Range Expansion

In this section we modify the algorithms of EGtwist to obtain an embeddable
group family EGtwist-re with embedding space EGtwist-re.ES(k, π) = [2k+1]. The
eeg family has inversion error EGtwist-re.ie(k) = 0 and achieves uniformly dis-
tributed embeddings. The construction is building on a technique introduced
by Hayashi et al. [33], where it is used to expand the range of one way permu-
tations. As in Sect. 5.3, the hardness sCDH-PSA with respect to EGtwist-re is
based on the hardness of the sCDH problem for uniform primes with respect to
TGen. The sampling algorithm—in contrast to the construction based on rejec-
tion sampling—needs access to only one uniformly random sampled integer,
performs at most one exponentiation in the group and uses at most one evalu-
ation of EGtwist.E to output y with the correct distribution. Furthermore, expo-
nents sampled by EGtwist-re.S are distributed such that the eeg family achieves
EGtwist-re.ie(k) = 0 and for every (potentially unbounded) adversary A we addi-
tionally have Advepr-psa

EGtwist-re,A(k) = 0.
The description of EGtwist-re may be found in Fig. 13. We now discuss the

construction in greater detail. Let (G′, p) = G ∈ [EGtwist-re.G(k, π)], where G′ =
(〈G〉, n, g). The idea of the construction is to partition [EGtwist.S(1k, p,G′)] into
two sets M1, M2 with M1 ∪M2 = [EGtwist.S(1k, p,G′)], {EGtwist.E(1k, p,G′, gy) |
y ∈ M1} = {2k+1 − (2p + 1), · · · , 2p} and {EGtwist.E(1k, p,G′, gy) | y ∈ M2} =
{0, · · · , 2k+1−(2p+2)}. The sampling algorithm EGtwist-re.S is constructed such
that for y sampled by EGtwist-re.S(1k, π,G), the probability Pr[y = y′] equals 2−k

for all y′ ∈ M2 and 2−(k+1) for all y′ ∈ M1. Embedding algorithm EGtwist-re.E
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on input (1k, π,G, h) first computes c ← EGtwist.E(1k, p,G′, h). If c ∈ {2k+1 −
(2p + 1), · · · , 2p} its output remains unchanged. Otherwise it is shifted to {2p +
1, · · · , 2k+1 −1} with probability 1/2. In this way we achieve embeddings, which
are uniformly distributed on EGtwist-re.ES(k, π) = [2k+1].

Our construction relies on the existence of a bijection ψG : [2p + 1] →
[EGtwist.S(1k, p,G′)] for all (G′, p) = G ∈ [EGtwist-re.G(1k, π)]. We use the bijec-
tion, which was implicitly given in the definition of EGtwist.S. That is, for
z ∈ [2p + 1] we define

ψG(z) :=

{
ϕcrt(z, 0) if z < n0

ϕcrt(0, z − n0 − 1) else,

where ϕcrt denotes the canonical isomorphism Zn0 × Zn1 → Zn.

Theorem 13. EGtwist-re as specified in Fig. 13 is an embeddable group fam-
ily with embedding space EGtwist-re.ES(k, π) = [2k+1] and inverson error
EGtwist-re.ie(k) = 0. Furthermore EGtwist-re has pseudorandom embeddings. More
precisely, for every (potentially unbounded) adversary A we have

Advepr-psa
EGtwist-re,A(k) = 0.

The proof of the theorem can be found in the full version of this paper [4].
As in the case of EG�

twist-rs, we obtain that—assuming that TGen invoked on
randomly sampled prime p returns a secure curve-twist pair—sCDH-PSA with
respect to eeg family EGtwist-re is hard.

Lemma 14. Let EGtwist-re be the eeg family defined above with underlying curve-
twist generator TGen. If the sCDH assumption holds with respect to TGen, then
sCDH-PSA is hard with respect to EGtwist-re. Concretely, for every adversary
A against Gscdh-psa

EGtwist-re,A(·) making at most Q queries to its DDH-oracle there
exist adversaries B0, B1 against Gtwist0-up-scdh

TGen,B0
(·) or Gtwist1-up-scdh

TGen,B1
(·) respec-

tively running in the same time as A and making at most Q queries to their
DDH-oracles, which satisfy

Advscdh-psa
EGtwist-re,A(k) ≤ 2

(
Advtwist0-up-scdh

TGen,B0
(k) + Advtwist1-up-scdh

TGen,B1
(k)

)
.

The proof of the lemma can be found in the full version of this paper [4].
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Abstract. We present a practical cryptanalysis of WalnutDSA, a digital
signature algorithm trademarked by SecureRF. WalnutDSA uses tech-
niques from permutation groups, matrix groups and braid groups, and is
designed to provide post-quantum security in lightweight IoT device con-
texts. The attack given in this paper bypasses the E-MultiplicationTM

and cloaked conjugacy search problems at the heart of the algorithm and
forges signatures for arbitrary messages in approximately two minutes.
We also discuss potential countermeasures to the attack.

1 Introduction

Most of the cryptosystems in use today are based on two difficult problems: the
integer factorization problem and the Discrete Logarithm Problem (DLP). Both
of these problems can be solved efficiently by running Shor’s algorithm [1] on a
sufficiently large quantum computer. As of now, such quantum computers do not
exist, but organisations such as NIST and the NSA are striving for cryptosystems
resilient to quantum attacks to prepare for the time when they become a reality
[2–4].

The problem at the heart of Shor’s algorithms, the so-called hidden subgroup
problem, can be solved in polynomial time on a quantum computer for any finite
abelian group, but has so far appeared much harder in the case for non-abelian
groups. Cryptography based on non-abelian groups is therefore considered an
appealing direction for post-quantum cryptography. Braid groups have tradi-
tionally been used in non-abelian group based cryptography: for example, the
Anshel-Anshel-Goldfeld (AAG) key-exchange protocol and the Diffie-Hellman-
type key-exchange protocol are both based on the conjugacy search problem (or
at least one of its variants) in a braid group [5, Sect. 1.6]. Today, more advanced
protocols have evolved from these schemes.

SecureRF [6] is a corporation founded in 2004 specializing in security for
the Internet of Things (IoT), i.e. devices with low processing power that require
ultra-low energy consumption, whose partners include the US Air Force. Wal-
nutDSA [7] is a digital signature algorithm developed by SecureRF that was
presented at the NIST Lightweight Cryptography Workshop in 2016. SecureRF
has collaborated with Intel [8] to develop an implementation of WalnutDSA
c© International Association for Cryptologic Research 2018
M. Abdalla and R. Dahab (Eds.): PKC 2018, LNCS 10769, pp. 381–406, 2018.
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on secure field-programmable gate arrays (FPGAs). Thus, WalnutDSA’s impor-
tance as a cryptosystem today is established, as corporations and government
agencies push for security in a post-quantum world.

1.1 Our Contribution

We provide a universal forgery attack on WalnutDSA. Our attack does not
require a signing oracle: in fact, having access to a small set of random message-
signature pairs suffice. In principle, the security of WalnutDSA is based on the
difficulty of reversing E-Multiplication and the cloaked conjugacy search prob-
lem [7, Problems 1, 2], but we go around this by reducing the problem of forging
a WalnutDSA signature to an instance of the factorization problem in a non-
abelian group (given a group element g ∈ G and a generating set Γ for G, find a
word w over Γ such that w = g). While this problem is plausibly hard in general,
we give an efficient algorithm for solving the particular instance occurring in this
context. Given a couple of valid signatures on random messages, our attack can
produce a new signature on an arbitrary message in approximately two minutes.
We also discuss countermeasures to prevent this attack.

Responsible Disclosure Process. Since WalnutDSA is advertised as a security
product by SecureRF, we notified its authors of our findings before making them
available to the public. We informed them by email on October 17th 2017 with
full details of our attack. They acknowledged the effectiveness of our attack on
October 19th 2017, and we agreed to postpone our publication until November
26th 2017.

Two countermeasures are discussed here, namely checking the signature
length and increasing the parameters. SecureRF have communicated to us that
they have always had a limit on signature lengths in their product offerings, and
that the increase in parameter sizes we suggest may still allow for many appli-
cations in devices with limited computing power. These two countermeasures
can prevent our attack for now. As we briefly argue in Sect. 5 below, improved
versions of the attack might be able to defeat them, but we leave these to further
work.

In reaction to our attack, SecureRF have also developed a new version of Wal-
nutDSA using two private keys (instead of conjugation), such that Proposition 4
of this paper fails to apply.

1.2 Related Work

Ben-Zvi et al. [9] provide a complete attack on a version of SecureRF’s Algebraic
Eraser scheme, a public key encryption protocol also based on E-Multiplication.
Other attacks on the Algebraic Eraser include those by Myasnikov and Ushakov
[10], which is a length-based attack on SecureRF’s specific realisation of the
general scheme, and by Kalka et al. [11], which is a cryptanalysis for arbitrary
parameter sizes.
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Other important work includes Garside’s and Birman et al. [12,13] on solving
the conjugacy search problem in braid groups using Summit Sets, the Garside
normal form [12] and Dehornoy Handle Reduction [14].

Other instances of factorization problems in non-abelian groups have been
solved previously, in both cryptographic contexts [15–17] and in mathemati-
cal literature [18]. The algorithms we develop in this paper for factorization in
GL N (Fq) belongs to the family of subgroup attacks [19].

1.3 Outline

In Sect. 2, we provide the definition of security for signature schemes, and intro-
duce the factorization problem as well as some preliminary results about braid
groups. In Sect. 3, we introduce the WalnutDSA protocol. In Sect. 4, we provide
a cryptanalysis of WalnutDSA by first reducing the problem to a factorization
problem in GL N (Fq) (Sect. 4.1) and then solving it (Sect. 4.2). In Sect. 5, we
describe possible countermeasures to prevent the attack. We conclude the paper
in Sect. 6.

2 Preliminaries

2.1 Security Definition

The standard security definition for signatures is existential unforgeability under
chosen message attacks [20, Introduction]. An adversary can ask for polynomially
many signatures of messages of its choice to a signing oracle. The attack is then
considered successful if the attacker is able to produce a valid pair of message
and signature for a message different from those queried to the oracle. We will
show that the version of WalnutDSA proposed in [7] is not resistant to this kind
of attack and propose a modification to the scheme that fixes this weakness.

Definition 1. A signature scheme Π = (Gen ,Sign ,Verify ) is said to be existen-
tially unforgeable under adaptive chosen-message attacks (or secure, for short)
if for all probabilistic polynomial time adversaries A with access to Sign sk(·),

∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎣

(pk, sk) ← Gen (1λ); si ← Sign sk(mi) for 1 ≤ i ≤ k;

(m, s) ← A(pk, (mi)k
i=1, (si)k

i=1

)

:
Verify pk(m, s) = 1 and m �∈ M

⎤

⎥
⎦

∣
∣
∣
∣
∣
∣
∣

≤ negl (λ).

where M = {m1, . . . ,mk} is the set of messages queried by A to the oracle, and
k = #M is polynomial in the security parameter λ.

For our cryptanalysis, the mi can actually be random messages, leading to a
stronger attack.
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2.2 Braid Groups

For N ≥ 2, the braid group [5] on N strands, denoted BN , is a group with
presentation

BN =
〈

b1, . . . , bN−1

∣
∣
∣
∣

bibi+1bi = bi+1bibi+1

bibj = bjbi for |i − j| ≥ 2

〉

, (1)

where the bi are called Artin generators. There are other presentations for the
braid group, but unless otherwise stated, we will use the definition provided in (1)
and “generators” will refer to the Artin generators. Geometrically, the elements
of a braid group are the equivalence classes of N strands under ambient isotopy,
and the group operation is concatenation of the N strands. More precisely, the
generator bi corresponds to the (i + 1)-th strand crossing over the i-th strand.
Note that there is a natural homomorphism from BN onto the symmetric group
SN : if β = bi1 · · · bik , then the permutation induced by β is precisely

k∏

j=1

(ij , ij + 1),

where (ij , ij + 1) is the standard transposition in SN .

Notation. Let p : BN → SN be the above map, which sends a braid to its
induced permutation.

Braids that induce trivial permutations are called pure braids. The set of pure
braids is exactly the kernel of the homomorphism p, hence it forms a normal
subgroup of BN . We will denote this subgroup by PBN .

Garside Normal Form. A normal form of an element in a group is a canonical
way to represent the element. One known normal form for braid groups is Garside
normal form. The details can be found in Appendix A. We can compute the
Garside normal form of a braid with complexity O(|W |2N log N) where |W | is
the length of the word in Artin generators [21]. Such a normal form is important
for WalnutDSA, but the cryptanalysis we provide in Sect. 4 is independent of
the choice of it.

The Colored Burau Representation. Let q be an arbitrary prime power,
and let Fq be the finite field with q elements. Let Fq[t±1

1 , . . . , t±1
N ] be the ring

of Laurent polynomials with coefficients in Fq. Note that there is a natural
action of SN on GL N

(

Fq[t±1
1 , . . . , t±1

N ]
)

, where a permutation acts on a Laurent
polynomial by permuting its variables. In other words, we have an action f �→ σf
where f(t1, . . . , tN ) is mapped to f(tσ(1), . . . , tσ(N)). Similarly, a permutation
may act on a matrix M in GL N

(

Fq[t±1
1 , . . . , t±1

N ]
)

entrywise, and we will denote
the image of M under this action as σM.
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Proposition 1. There exists a group homomorphism, called the colored Burau
representation [7],

Φ: BN → GL N

(

Fq[t±1
1 , . . . , t±1

N ]
)

� SN ,

where � denotes the semidirect product.
Let m be the projection of Φ on GL N

(

Fq[t±1
1 , . . . , t±1

N ]
)

. Then Φ is defined
as follows:

– For the generator b1 ∈ BN , define

m(b1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−t1 1
. . .

1
. . .

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

m(b−1
1 ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 1
t2

1
t2
. . .

1
. . .

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

– For 2 ≤ i < N, define

m(bi) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
. . .
ti −ti 1

. . .
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the −ti occurs in the i-th row. Also define

m(b−1
i ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
. . .
1 − 1

ti+1

1
ti+1

. . .
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

– Define
Φ(bi) :=

(

m(bi), p(bi)
)

.
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– Given generators b±1
i , b±1

j , we define Φ(b±1
i b±1

j ) to be

(

m(b±1
i ), p(bi)

) · (m(b±1
j ), p(bj)

)

=
(

m(b±1
i ) · (p(bi)m(b±1

j )
)

, p(bi)p(bj)
)

.

For a general braid β, we extend this definition inductively to define Φ(β).

Note that Φ and p are homomorphisms, but m is not a homomorphism in
general. However, the following lemma shows that its restriction to pure braids
is a homomorphism.

Lemma 1. Let φ : PBN → GL N

(

Fq[t±1
1 , . . . , t±1

N ]
)

be the restriction map of m
to PBN . This map is a group homomorphism.

Proof. Let β1, β2 be pure braids. Then, if IdSN
is the identity permutation,

φ(β1β2) = m(β1β2)

= m(β1) · (IdSNm(β2)
)

= m(β1)m(β2) = φ(β1)φ(β2),

and so φ is indeed a homomorphism. 	


Previous Cryptosystems Based on Braid Groups. A problem that is
generally difficult to solve in non-abelian groups is the conjugacy search problem
(CSP), i.e. given conjugate elements u,w ∈ BN , find v ∈ BN such that w =
v−1uv. This motivated the development of several cryptosystems based on the
CSP in braid groups, some of which are given in [5]. Techniques such as summit
sets [13,22,23], length-based attacks [24–26], and linear representations [27–29],
have been developed to attack the CSP in braid groups however, and so those
cryptosystems have been rendered impractical. The design of WalnutDSA uses a
variant of the CSP, the cloaked conjugacy search problem, to avoid these attacks.

2.3 Factorization Problem in Non-Abelian Groups

Factorization Problem in Groups. Let G be a group, let Γ = {g1, . . . , gγ}
be a generating set for G, and let h ∈ G. Find a “small” integer L and sequences
(m1, . . . ,mL) ∈ {1, . . . , γ}L and (ε1, . . . , εL) ∈ {±1}L such that

h =
L∏

i=1

gεi
mi

.

Depending on the context, “small” may refer to a concrete practical size, or
it may mean polynomial in log |G|. The existence of products of size polyno-
mial in log |G| for any finite simple non-abelian group, any generating set, and
any element h was conjectured by Babai and Seress [30]. This conjecture has
attracted considerable attention from the mathematics community in the last
fifteen years, and has now been proven for many important groups [31,32].
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The potential hardness of the factorization problem for non-abelian groups
underlies the security of Cayley hash functions [33]. The problem was solved in
the particular cases of the Zémor [34,35], Tillich-Zémor [15,17,36], and Charles-
Goren-Lauter [16,37,38] hash functions, and to a large extent in the case of
symmetric and alternating groups [18], but it is still considered a potentially hard
problem in general. Over cyclic groups, this problem is known to be equivalent
to the discrete logarithm problem when removing the constraint on L [39]. We
refer to [19] for a more extensive discussion of the factorization problem and its
connection with Babai’s conjecture.

The instance of the factorization problem that appears in our attack is over
GLN (Fq), the general linear group of rank N over the finite field Fq. Our solution
for it exploits the particular subgroup structure of this group.

3 WalnutDSA

WalnutDSATM is a digital signature scheme proposed by Anshel et al. in [7],
based on braid groups, E-MultiplicationTM and cloaked conjugacy.

3.1 E-Multiplication

Let BN be the braid group on N braids, let q be a prime power and let F
×
q denote

the non-zero elements of the finite field Fq. Define a sequence of “T-values”:

τ = (τ1, τ2, . . . , τN ) ∈ (F×
q )N .

Given the T-values, we can evaluate any Laurent polynomial f ∈ Fq[t±1
1 , . . . , t±1

N ]
to produce an element of Fq:

f
⏐
�

τ
:= f(τ1, . . . , τN ).

We can similarly evaluate any matrix M in GL N

(

Fq[t±1
1 , . . . , t±1

N ]
)

entrywise to
produce a matrix M

⏐
�

τ
in GL N (Fq).

E-Multiplication [40] is a right action, denoted by �, of the colored Burau
group GL N

(

Fq[t±1
1 , . . . , t±1

N ]
)

� SN on GL N (Fq) × SN . In other words, it takes
two ordered pairs

(M,σ0) ∈ GL N (Fq) × SN ,
(

m(β), p(β)
) ∈ GL N

(

Fq[t±1
1 , . . . , t±1

N ]
)

� SN ,

and produces another ordered pair

(M ′, σ′) = (M,σ0) �
(

m(β), p(β)
)

in GL N (Fq) × SN .
E-Multiplication is defined inductively. For a single generator bi,

(M,σ0) �
(

m(bi), p(bi)
)

:=
(

M · σ0
(

m(bi)
)⏐
�

τ
, σ0 · p(bi)

)

.
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For a general braid β = bε1
i1

· · · bεk
ik

,

(M,σ0) �
(

m(β), p(β)
)

= (M,σ0) �
(

m(bε1
i1

), p(bε1
i1

)
)

� · · · �
(

m(bεk
ik

), p(bεk
ik

)
)

,

where the successive E-Multiplications are performed left to right. This is well-
defined, as it is independent of how we write β in terms of the generators [7,
Sect. 3].

Lemma 2. For any pure braid β, any permutation σ, and any τ ∈ (F×
q )N ,

((σ
m(si)

)⏐
�

τ

)−1

=
(
σm(s−1

i )
)⏐
�

τ
.

Proof. Let M ∈ GL N (Fq) and let σ ∈ SN . Then,

(M,σ) = (M,σ) � (si · s−1
i ) =

(

M ·σm(si)
⏐
�

τ
·σm(s−1

i )
⏐
�

τ
, σ
)

,

which implies
((σ

m(si)
)⏐
�

τ

)−1

=
(
σm(s−1

i )
)⏐
�

τ
.

	

Notation. We will follow the notation in [7] and write

(M,σ0) � β

instead of (M,σ0) �
(

m(β), p(β)
)

for a braid β ∈ BN .

Notation. For ξ = (M,σ) in GL N (Fq) × Sn, let m(ξ) denote the matrix part
of ξ, i.e. m(ξ) = M.

3.2 Key Generation

Before the signer generates the private-/public-key pair, some public parameters
are fixed:

– An integer N and the associated braid group BN ;
– A rewriting algorithm R : BN → BN , such as the Garside normal form;
– A prime power q defining a finite field Fq of q elements;
– Two integers 1 < a < b < N ;
– T-values τ = (τ1, τ2, . . . , τN ) ∈ (F×

q )N with τa = τb = 1;
– An encoding function E : {0, 1}∗ → BN taking messages to braids.

The signer then chooses a random freely-reduced braid sk ∈ BN (of the desired
length to prevent brute force attacks from being effective) to be the private-key,
and calculates the public-key as

pk = (IdN , IdSN
) � sk.

Notation. We follow the notation in [7] and write Pub (β) := (IdN , IdSN
) � β

for a braid β ∈ BN .

In [7], it is recommended to use N ≥ 8 and q ≥ 32 for the public parameters.
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3.3 Message Encoding

To sign a message m ∈ {0, 1}∗ using WalnutDSA, it must first be encoded as
a braid E(m) ∈ BN . WalnutDSA achieves this by encoding messages as pure
braids: given a message m, it is first hashed using a cryptographically secure
hash function H : {0, 1}∗ → {0, 1}4κ, where κ ≥ 1. The paper [7] does not
provide a formal definition of “cryptographically secure”, but we believe that
the intended meaning is that of a “random oracle” [41], and in this paper we
will treat the hash function as such. The bitstring H(m) is then encoded as a
pure braid by noting that the N − 1 braids

g(N−1),N = b2N−1,

g(N−2),N = bN−1 · b2N−2 · b−1
N−1,

...

g1,N = bN−1bN−2 · · · b2 · b21b
−1
2 b−1

3 · · · b−1
N−1

are pure braids that freely generate a subgroup of BN [42]. Fix four of these
generators, say gk1,N , gk2,N , gk3,N , gk4,N for 1 ≤ ki ≤ N − 1, and define

C = 〈gk1,N , gk2,N , gk3,N , gk4,N 〉 ⊂ PBN .

Each 4-bit block of H(m) can then be mapped to a unique power of one of these
generators: the first two bits determine the generator gki,N to use, while the last
two bits determine the power 1 ≤ i ≤ 4 to raise the generator to. The encoded
message E(m) ∈ C is then defined to be the freely reduced product of the κ
powers of the gki,N obtained via the above process.

3.4 Cloaking Elements

WalnutDSA defines and uses “cloaking elements” to avoid being reduced to
the conjugacy search problem, reducing instead to the cloaked conjugacy search
problem. A braid β ∈ BN is said to be a cloaking element of (M,σ) ∈ GL N (Fq)×
SN if (M,σ) � β = (M,σ). The set of cloaking elements of (M,σ) is then the
stabilizer of (M,σ) under the E-Multiplication action, and so forms a subgroup
of BN .

Lemma 3. Any cloaking element is a pure braid.

Proof. Let β ∈ BN be a cloaking element of (M,σ) ∈ GL N (Fq) × SN . Then

(M,σ) = (M,σ) � β =
(

M · σ
(

m(β)
)⏐
�

τ
, σ · p(β)

)

,

which implies that p(β) = IdSN
. 	


The authors of WalnutDSA provide a method of generating cloaking elements
[7, Proposition 4.2], which we recap here for the reader’s convenience.
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Proposition 2. Fix integers N ≥ 2 and 1 < a < b < N . Assume that τa =
τb = 1. Let M ∈ GL N (Fq) and σ ∈ SN . Then a cloaking element β of (M,σ) is
given by β = wb2i w

−1 where bi is any Artin generator and w ∈ Bn is any braid
such that the associated permutation p(w) satisfies

p(w)(i) = σ−1(a) , p(w)(i + 1) = σ−1(b).

Remark 1. A detailed algorithm for constructing cloaking elements is not pro-
vided. In particular, no algorithm to generate w is given. Hence, in our imple-
mentation, we generate it in the following way:

Algorithm 1. Generating w
repeat

Pick a random integer l such that 30 ≤ l ≤ 80.
Pick a random freely-reduced word w in the generators {b1, . . . , b7} of length l.

until p(w) satisfies the condition in Proposition 2.

We stress that our attack works independently of the way cloaking elements
β are generated.

3.5 Signing

Signing. To sign a message m, the signer does as follows:

1. Compute E(m) as in Sect. 3.3;
2. Generate cloaking elements v for (IdN , IdSN

) and v1, v2 for (IdN , IdSN
) � sk;

3. Compute s = R(v2 · sk−1 · v · E(m) · sk · v1);
4. Output (m, s), the final signature for the message.

The cloaking elements are necessary to preclude the possiblity of recovering for
sk by solving the CSP (any solution to the CSP is sufficient), since both s and
E(m) are publicly available (the latter after some computation).

Proposition 3. For any message m, its signature

s = R (v2 · sk−1 · v · E(m) · sk · v1
)

is a pure braid.

Proof. Recall that E(m) is a product of pure braids and is, therefore, a pure
braid. Moreover, by Lemma 3, v, v1 and v2 are pure braids. Hence, the induced
permutation p(s) of s is:

p(s) = p
(

v2 · sk−1 · v · E(m) · sk · v1
)

= IdSN
· p(sk−1) · IdSN

· IdSN
· p(sk) · IdSN

= IdSN
.
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3.6 Verifying

Verifying. To verify a signature (m, s), the verifier does as follows:

1. Compute E(m);
2. Compute Pub

(E(m)
)

= (IdN , IdSN
) � E(m).

The signature is then valid if and only if the verification equation

m(pk � s) = m
(

Pub
(E(m)

)) · m(pk)

holds.

Lemma 4. A message-signature pair (m, s), generated as in Sect. 3.5 satisfies
the verification process.

Proof. We have that

pk � s = (IdN , IdSN
) � sk � s

= (IdN , IdSN
) � sk �

(

v2 · sk−1 · v · E(m) · sk · v1
)

(1)
= (IdN , IdSN

) � sk �
(

sk−1 · v · E(m) · sk · v1
)

= (IdN , IdSN
) �
(

v · E(m) · sk · v1
)

(2)
= (IdN , IdSN

) �
(E(m) · sk · v1

)

,

where

– (1) holds since v2 cloaks pk = (IdN , IdSN
) � sk;

– (2) holds since v cloaks (IdN , IdSN
).

Looking at the matrix parts of the above equality, we see that

m(pk � s) = m
(

(IdN , IdSN
) �
(E(m) · sk · v1

))

(3)
= m

(

(IdN , IdSN
) � E(m)

) · m((IdN , IdSN
) � (sk · v1)

)

(4)
= m

(

(IdN , IdSN
) � E(m)

) · m((IdN , IdSN
) � sk

)

= m
(

Pub
(E(m)

)) · m(pk),

where

– (3) holds since E(m) is a pure braid
– (4) holds since v1 cloaks pk = (IdN , IdSN

) � sk.
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4 Practical Cryptanalysis of WalnutDSA

In this section we present a universal forgery attack on WalnutDSA. The struc-
ture of the section is as follows: in Sect. 4.1, we show that an attacker can produce
a signature for a new message if they are able to solve a factorization problem
over GL N (Fq). In Sect. 4.2, we present an algorithm solving this factorization
problem by exploiting the subgroup structure of GL N (Fq), and in Sect. 4.3, we
describe a meet-in-the-middle approach which reduces the complexity of this
attack. In Sect. 4.4, we analyze the complexity of our attack and provide some
experimental results. Finally, we discuss further improvements to our attack in
Sect. 4.5.

4.1 Reduction to the Factorization Problem

Let I be a finite indexing set. For each i ∈ I, let mi be a message and si be its
signature generated as in Sect. 3.5. Define the set M = {(mi, si) : i ∈ I}. Recall
that for a braid β, we define

Pub (β) = (IdN , IdSN
) � β,

where IdN is the identity matrix and IdSN
is the identity permutation.

Proposition 4. Let m be an arbitrary message. Let gi = m
(

Pub (E(mi))
)

for
each i ∈ I and let h = m

(

Pub (E(m))
)

. Suppose

h =
L∏

j=1

g
εij
ij

where ij ∈ I, εij ∈ {±1} and L ∈ N.

Then s =
∏L

j=1 s
εij
ij

, the concatenation of the corresponding braids s
εij
ij

, is a valid
signature for m.

Proof. Each pair in M satisfies the verification equation:

m(pk � si) = m
(

Pub
(E(mi)

)) · m(pk).

Writing σ as p(pk) and M as m(pk), the above equation is equivalent to
(σ
m(si)

)⏐
�

τ
= M−1 · gi · M, (2)

where τ = (τ1, . . . , τN ) is the sequence of T-values. Also, by Proposition 3, each
sεi

i is a pure braid, and so Lemma 2 applies. Hence, by taking the inverse of (2),
we obtain

(
σm(s−1

i )
)⏐
�

τ
=
((σ

m(si)
)⏐
�

τ

)−1

= M−1 · g−1
i · M.

and so
(σ
m(sεi

i )
)⏐
�

τ
= M−1 · gεi

i · M (3)
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By Lemma 1,

m(s) = m

( L∏

j=1

s
εij
ij

)

=
L∏

j=1

m(s
εij
ij

),

and hence,

(σ
m(s)

)⏐
�

τ
=
(

σ
( L∏

j=1

m(s
εij
ij

)
))⏐
⏐
�

τ
=
( L∏

j=1

σm
(

s
εij
ij

))
⏐
⏐
�

τ

=
L∏

j=1

(σ
m(s

εij
ij

)
)⏐
�

τ
=

L∏

j=1

(

M−1 · g
εij
ij

· M
)

= M−1 ·
( L∏

j=1

g
εij
ij

)

· M = M−1 · h · M.

Therefore s is a valid signature for m, as the above equation is equivalent to

m(pk � s) = m
(

Pub
(E(m)

)) · m(pk),

the verification equation for (m, s). 	


4.2 Solution to the Factorization Problem

Let Γ = {gi | i ∈ I}. Following our discussion in Sect. 4.1, we want to express h
as a short word over Γ. We first define the following chain of subgroups:

Definition 2. For k ∈ {1, . . . , 2N − 2}, let

Gk =
{

M ∈ GL N (Fq)
∣
∣MN,N = 1 and Mi,j = 0 for (i, j) ∈ Ak1 ∪ Ak2

}

,

where

Ak1 =
{

(i, j) |
(

N −
⌈k

2

⌉)

≤ i ≤ N , i �= j

}

,

Ak2 =
{

(i, j) |
(

N −
⌊k

2

⌋)

≤ j ≤ N , i �= j

}

.

That is, for even k,

Gk =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A 0 · · · 0
0
...

0

λ k
2 −1 0 · · · 0

0
. . .

...
... λ1 0
0 · · · 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

A ∈ MatN− k
2 ,N− k

2
(Fq)

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

∩ GLN (Fq),
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and for odd k,

Gk =

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A ∗ 0 · · · 0
0
...

0

λ k−1
2

0 · · · 0

0
. . .

...
... λ1 0
0 · · · 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

A ∈ MatN− k+1
2 ,N− k+1

2
(Fq)

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

∩ GLN (Fq),

where ∗ is a column of length N − k+1
2 and λi ∈ F

×
q for i ∈ {1, . . . , �k−1

2 �}.

Remark 2. Checking whether g ∈ GL N (Fq) is in Gk for any k is straightforward
given the characteristic shape of the matrices in each group.

Lemma 5. For any braid β ∈ BN , m
(

Pub (β)
) ∈ G1.

Proof. Let G′
1 be the subgroup of GL N

(

Fq[t±1
1 , . . . , t±1

N ]
)

consisting of matrices
with their last row all zeroes except for the last entry, which is equal to 1.
For each i ∈ {1, . . . , N − 1}, m(bi) ∈ G′

1. Therefore, m(β) ∈ G′
1 and hence,

m
(

Pub (β)
)

= m(β)
⏐
�

τ
∈ G1. 	


We also make use of the following assumption:

Assumption 1. For any k, a small set of random elements of Gk generates Gk

with high probability.

This assumption is supported by [43] and our experiments.
Our algorithm aims to solve an instance of a factorization problem over G1.

This is done in 2N −2 stages. The first 2N −3 stages are inductive: in stage k, we
reduce the problem in Gk to an instance of the problem over the next subgroup
Gk+1. At the end of stage 2N − 3, we have reduced the original problem to
factorization problem over G2N−2, the diagonal subgroup. In the last stage of
the algorithm, we reduce the factorization problem in G2N−2 to an easy case of
the discrete logarithm problem over Fq and a system of linear equations.

Let γ1 := |M|, let Γ1 := Γ =
{

g
(1)
i : 1 ≤ i ≤ γ1

}

, and let h1 := h. Further,

for 2 ≤ k ≤ 2N − 2, let γk be a positive integer and Lk :=
⌈

logγk

γk+1|Gk|
|Gk+1|

⌉

.
We will aim to produce γk+1 elements of Gk+1 in stage k, and we hope that
these elements will generate Gk+1, which we will need to reduce the factorization
problem into the next subgroup. The integer Lk captures some information about
the number of elements we need to consider from Gk before we find γk+1 elements
of Gk+1: in our algorithm, the elements from Gk that we will consider will be
words of some fixed length Lk over some generating set of size γk; by considering
the relative sizes of Gk and Gk+1, it then follows that Lk should be Lk.
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Inductive Stages. In stage k
(

for k ∈ {1, . . . , 2N −3}), we will find a set Γk+1 :=
{

g
(k+1)
i : 1 ≤ i ≤ γk+1

} ⊂ Gk+1 and an element hk+1 ∈ Gk+1, where g
(k+1)
i are

words over Γk and hk+1 is a product of hk with a word over Γk.

Algorithm 2. From Γk and hk, we find Γk+1 and hk+1

repeat
Generate products of the form:

p =

Lk∏

j=1

g
(k)
ij

where 1 ≤ ij ≤ γk

if p ∈ Gk+1 then
Add p to Γk+1

else if hk+1 has not yet been defined then
if p ∈ hkGk+1 then

Define hk+1 = p−1 · hk

end if
end if

until |Γk+1| = γk+1 and hk+1 is defined

Following Assumption 1, we expect that for large enough γk, Γk will be a
generating set for Gk. We therefore expect to be able to find γk+1 elements in
Gk+1 ⊂ Gk given enough iterations of the loop. Moreover, hkGk+1 ⊂ Gk, and
so we expect to be able to find hk+1 as well.

Remark 3. We see from the above algorithm that for all k ∈ {1, . . . , 2N −3}, we
can write hk+1 as

hk+1 =
∏

j

(

g
(k)
ij

)−1 · hk for 1 ≤ ij ≤ γk.

Moreover, we can write any element in Γk+1 as a product of elements in Γk.
Hence, we can recursively write hk+1 as a product of a word over Γ1 = Γ with
h1 = h, i.e. we can express hk+1 as

hk+1 =
(∏

j

g
εij
ij

)

· h for 1 ≤ ij ≤ γ1. (4)

In particular, we can express each element g
(2N−2)
i ∈ Γ2N−2 as a word over Γ

g
(2N−2)
i =

(∏

j

g
εij
ij

)

for 1 ≤ ij ≤ γ1. (5)



396 D. Hart et al.

Final Stage. At the end of stage 2N − 3, we will have a set

Γ2N−2 =
{

g
(2N−2)
i : 1 ≤ i ≤ γ2N−2

}

⊂ G2N−2

and an element h2N−2 ∈ G2N−2. Note that G2N−2 is the subgroup of diagonal
matrices, and so all of the above elements are diagonal matrices as well.

We want to express h2N−2 as a word over Γ2N−2. Since G2N−2 is abelian,
this is equivalent to finding exponents v1, . . . , vγ2N−2 ∈ Z such that

h2N−2 =
γ2N−2∏

i=1

(

g
(2N−2)
i

)vi

. (6)

Equally, (4) and (5) then allow us to rewrite the above equation as

h =
∏

j

g
εij
ij

,

an expression for h as a word over Γ, given that we can find the exponents vi.
We describe how to find these exponents next.

Note that all the matrices on both sides of (6) are diagonal matrices. For
each i ∈ {0, . . . , γ2N−2}, let ci = (λi1 , . . . , λiN−1 , 1) be the sequence of diagonal
entries in g

(2N−2)
i , and let c := (μ1, . . . , μN−1, 1) be the diagonal entries in h2N−2.

Further, let δ be a generator of F
×
q . By solving the discrete logarithm problem

over F
×
q (which is straightforward for small q), for each i ∈ {1, . . . , γ2N−2}, and

each j ∈ {1, . . . , N − 1}, we can find eij and uj such that:

δeij = λij ,

δuj = μj ,

i.e., we are able to write all non-zero entries of the matrices in (6) as powers
of δ. Finding the exponents vi is then reduced to solving a system of linear
equations over Zq−1. More explicitly, for each i ∈ {1, . . . , γ2N−2}, define c′

i =
(ei1 , . . . , eiN−1 , 1). Also, let c′ = (u1, . . . , uN−1, 1) and let D = (c′

1, . . . , c
′
γ2N−2

),
i.e., the matrix with ith column equal to c′

i. So (6) above is equivalent to the
system of linear equations

D · v = c′ (7)

which can be solved with standard linear algebra techniques.

4.3 Meet-in-the-Middle Approach

We can improve the recursive step of our attack as follows: instead of computing
products of length Lk until we hit an element of Gk+1, we compute pairs of prod-
ucts each of length

⌊
Lk

2

⌋

and then check for pairs which lie in the same coset of
Gk+1. This meet-in-the-middle approach will lead to a square root improvement
on the complexity. In order to use this approach, we need an efficient method to
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check whether two elements are in the same coset of Gk+1. The following lemma
provides such a method.

Lemma 6. Let Gk for k ∈ {1, . . . , 2N − 2} be the subgroups in Definition 2,
and let p, p′ ∈ Gk. Then

– For odd k, p′ ∈ pGk+1 if and only if the (N − k+1
2 + 1)th columns of p and p′

are multiples of each other.
– For even k, p′ ∈ Gk+1p

′ if and only if the (N − k
2 )th rows of p and p′ are

multiples of each other.

Proof. Let k be odd, let h be any matrix in Gk+1, and let r = N − k+1
2 + 1.

Note that the rth column of h is zero except for the entry hr,r ∈ F
×
q . Finally, let

p, p′ ∈ Gk.
Assume that p′ ∈ pGk+1, and so there exists g ∈ Gk+1 for which p′ = pg.

Let pi,j be the (i, j)th entry of p and let λr := gr,r. Then the entries of the rth

column of p′ are:

p′
i,r =

N∑

j=1

pi,jgj,r = pi,r · λr for 1 ≤ i ≤ N

and hence the rth columns of p and p′ are multiples of each other.
Conversely, let cr be the rth column of p and c′

r be the rth column of p′, and
assume c′

r = λ · cr for some λ ∈ F
×
q . Let π = p−1 · p′. Then the entries of the rth

column of π are

πi,r =
N∑

j=1

(p−1)i,j · p′
j,r =

N∑

j=1

(p−1)i,j · λpj,r

= λ

N∑

j=1

(p−1)i,j · pj,r = λ · (IdN )i,r

= λ · δir

where δir is the Kronecker delta. This implies that the rth column of π is zero
everywhere except at the (r, r)th entry. Since π ∈ Gk, this implies π ∈ Gk+1 and
hence p′ ∈ pGk+1.

The case for even k is similar. 	

Using the above lemma, we are able to construct an improved version of

Algorithm 2:
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Algorithm 3. From Γk and hk, we find Γk+1 and hk+1

Generate all products of the form:

p1 =

Lk/2∏

j=1

g
(k)
ij

where 1 ≤ ij ≤ γk

repeat
Pick a product p2 of the form above
Case 1 : k is odd
if for some p1, we have p2 ∈ p−1

1 Gk+1 then
Add p = p1p2 to Γk+1

else if hk+1 has not been defined yet then
if for some p1, we have p2 ∈ p−1

1 hkGk+1 then
Define hk+1 = p−1

2 p−1
1 · hk = p−1 · hk

end if
end if
Case 2 : k is even
if for some p1, we have p1 ∈ Gk+1p

−1
2 then

Add p = p1p2 to Γk+1

else if hk+1 has not been defined yet then
if for some p1, we have h−1

k p1 ∈ Gk+1p
−1
2 then

Define hk+1 = p−1
2 p−1

1 · hk = p−1 · hk

end if
end if

until |Γk+1| = γk+1 and hk+1 is defined

4.4 Complexity Analysis and Experiments

Time Complexity. We observe that the complexity of the algorithm is dom-
inated by the complexity of finding each Γk+1: the last step involves solving a
discrete logarithm problem over a small field and a small linear system modulo
q − 1. Moreover, the cost of finding an element hk+1 is essentially the same as
the cost of finding one element of Γk+1.

Lemma 7. The size of Gk is as follows:

– For k even, |Gk| = (q − 1)(
k
2 −1) · |GL N− k

2
(Fq)|.

– For k odd, |Gk| = (q − 1)� k
2 � · qN−� k

2 �−1 · |GL N−� k
2 �−1(Fq)|.

Proof. For k even, the block diagonal structure of Gk consists of an invertible
matrix of size N − k

2 and k
2 entries on the diagonal. The bottommost such entry

is 1, and the other diagonal entries can be any of the nonzero elements in Fq, and
so we obtain the formula above. For k odd, the block diagonal structure of Gk

consists of an invertible matrix of size N − ⌊k
2

⌋

with a zero bottom row except
for the last entry, and

⌊
k
2

⌋

other entries on the diagonal. Note that
⌊

k
2

⌋ − 1 of
the diagonal entries can be any nonzero element in Fq while the bottommost
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entry is 1. The invertible matrix of size N − ⌊
k
2

⌋

consists of any element in
GL N−� k

2 �−1(Fq) on the upper diagonal, any nonzero entry from Fq for the bot-
tom right entry, and a value in Fq for the rest of the entries in the last column.
From this we obtain the formula above. 	

Lemma 8. |Gk|

|Gk+1| ≈ qN−1−� k
2 �

Proof. This follows immediately from the previous lemma. 	

If we pick a random element of Gk, the probability that it will also be in

Gk+1 is therefore approximately 1/qN−1−� k
2 �. In our algorithm, we make the

assumption that random products of elements in Γk produces random elements
in Gk+1, and so we expect that we will be able to obtain one element of Γk+1

after considering qN−1−� k
2 � random products. By using the meet-in-the-middle

approach described earlier, we reduce the expected number of products we need
to consider by q(N−1−� k

2 �)/2. Since we need to generate |Γk+1 ∪ {hk+1}| = γk+1

new elements, the expected number of products we need to consider is bounded
by γk+1 · q(N−1−� k

2 �)/2. The total number of products our algorithm needs to
consider is therefore

2N−3∑

k=1

γk+1 · q(N−1−� k
2 �)/2.

If we further assume that γk = γ is constant, the above simplifies to

γ ·
2N−3∑

k=1

q(N−1−� k
2 �)/2 = 2 · γ ·

N−2∑

l=0

q
N−1−l

2 ≈ 2 · γ · q
N−1

2 .

Thus, the complexity of the attack is exponential in N and log q.

Memory Complexity. The final stage of the algorithm requires a negligible
amount of memory. For the inductive stages, in stage k of the algorithm, we need
to store up to q

1
2 (N−1−� k

2 �) square matrices of size N×N , each entry being in Fq,
so we will need log2(q) ·N2q

1
2 (N−1−� k

2 �) bits of memory for each stage. However,
we do not need to keep the matrices from stage k when proceeding to stage k+1
(except to store the relatively small number of matrices of Γk+1 and hk+1), and
so the total amount of memory required for the entire algorithm is the maximum
amount of memory required by each stage, which is log2(q) · N2q

N−1
2 . Memory

costs can be removed entirely using standard cycle-finding and distinguished
point techniques [44,45].

Length Complexity. We now analyze the length of the forged signature that
we obtain.

Note that the length of any element in Γk+1, as a word over elements of Γk,
is given by Lk. Also, our algorithm expresses hk+1 as the product of hk with LK
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elements of Γk. Unfolding this recurrence, we see that h2N−2 is the product of
h with α elements of Γ, where

α =
2N−3∑

k=1

k∏

j=1

Lj =
2N−3∑

k=1

k∏

j=1

logγj

( |Gj |
|Gj+1|γj+1

)

=
2N−3∑

k=1

k∏

j=1

logγj

(

qN−1−� j
2� · γj+1

)

≈
2N−3∏

j=1

logγj

(

qN−1−� j
2� · γj+1

)

,

since the last summand dominates the sum. Similarly, we see that each g
(2N−2)
i

is a product of ≈ α elements of Γ.
If we further assume that γk = γ is constant, the above formula simplifies to

α ≈
2N−3∏

j=1

(

1 +
(

N − 1 −
⌊ j

2

⌋)

logγ q

)

≈ (

logγ q
)2N−3

(

(N − 1)!
)(

(N − 2)!
)

.

In the final step of the algorithm, we find a relation (6)

h2N−2 =
γ2N−2∏

i=1

(

g
(2N−2)
i

)vi

.

Since the vi come from the solution to a system of linear equations over Zq−1,
we know that vi < q−1. Also, since the space we are working over in our system
of linear Eq. 7 has dimension N −1, it follows that we need at most N −1 terms
in the product above. Putting this all together, we see that h is then the product
of
(

1 + (N − 1)(q − 1)
)

α ≈ Nqα elements of Γ, and so our forged signature is of
length ≈ lNqα, where l is the length of the WalnutDSA signatures in M.

Experimental Results. We have implemented our factorization algorithm in
Magma [46] and tested it experimentally (the code is available from Christophe
Petit’s webpage). The only parameters of our algorithm are the values of Lk,
which we can control via γk. Note that increasing γk decreases the length of
our forged signature but increases the running time of our algorithm. In our
experiments, we first assumed that we are able to obtain ten legitimate message-
signature pairs. We then chose γk such that Lk is large enough for us to find
the relations for all hk. This allowed us to obtain a signature of length 235 times
the length of a legitimate signature in approximately two minutes. To reduce
the length of the forged signature, we increased γk such that γk ≈ 200000 for
k > 3. This allowed us to obtain signatures of length 225 times the length of a
legitimate signature in five minutes.
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4.5 Practical Improvements

In this section we present two improvements on our attack.

Shorter Subgroup Chain. The subgroup chain we used above was chosen to
have small subgroup indices [Gk : Gk+1] in order to minimize computation time
at each step. However, the first few stages of the algorithm contribute to the
majority of the running time, whereas all stages contribute significantly to the
total length of the signatures we produce.

To reduce signature lengths without affecting the computation time signifi-
cantly, one can replace the above subgroup chain by another chain. An example
of such a chain could have the same first five subgroups (at a cost of roughly q3.5,
q3, q3, q2.5 and q2.5 respectively), but then instead of considering a subgroup
where the lower diagonal entries in the last four rows are zeroes (at a cost q2),
consider a subgroup where the lower diagonal entries in the last five rows are
zeroes (at a cost of q3.5), then a subgroup where the upper diagonal entries in
the last five rows are also zeroes (at a cost of q3.5), and finally considering the
diagonal subgroup (at a cost of q3). In that case, the factorization length can be
approximated by

Nq
∏

k

ck logγk
q

where (c1, c2, . . . , c8) = (7, 6, 6, 5, 5, 7, 7, 6), which for γk = 256 gives a signature
size approximately 211 times that of a normal signature size, while retaining the
time complexity of roughly q3.5.

Dealing with Non-Generating Sets. We have not been able to prove that
the elements we construct in our recursive step are indeed generators for the next
subgroup. We expect that this is the case with a high probability on the initial
matrix choices when choosing product lengths as above, and this was verified for
all recursive steps in our experimental tests.

The diagonal matrices generated for the last stage, however, may not generate
the whole diagonal group when the number of generators constructed at each
step is very small. We observed this experimentally when using γk = 2 in all
but the last inductive stage, and can explain it intuitively as follows. Let Γk :=
{A(k), B(k)}. At each stage, the diagonal entries in the diagonal part (in block
diagonal form) of A(k) and B(k) can be approximated as random elements in F

×
q .

Consider any pair of indices
(

(i1, i1), (i2, i2)
)

in the diagonal part of the matrix,
and consider the 2-dimensional vectors

(

A
(k)
i1,i1

, A
(k)
i2,i2

)

and
(

B
(k)
i1,i1

, B
(k)
i2,i2

)

. It is
a necessary condition for these two matrices to generate the whole subgroup,
that there is no linear dependence between the two vectors obtained by taking
entrywise logarithms of the above vectors. For a fixed pair of indices (i1, i1)
and (i2, i2), this happens with probability q−2

q−1 . In the later inductive stages, the
diagonal part of the matrices are larger, and hence the probability that all pairs
of the logarithm vectors are linearly independent decreases. Moreover, any linear
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dependence occurring in one stage will be preserved in subsequent stages. It is
therefore intuitively plausible that Γ2N−2 may not generate G2N−2 when γk is
very small. We leave a more complete analysis of this to further work.

In our experiments, it was easy to choose γk large enough such that all stages
would produce a sufficient number of generators for the following subgroup,
including that of diagonal subgroup G2N−2. We note also that in the event that
Γ2N−2 does not generate G2N−2, one can simply set h1 = Idn and relaunch the
whole factorization algorithm: this will produce a new set of diagonal matrices
Γ′
2N−2 that, together with Γ2N−2, is likely to generate the G2N−2. This therefore

allows our attack to succeed with high probability even when we only have access
to two WalnutDSA message-signature pairs.

5 Discussion and Further Work

Due to its algebraic structure, WalnutDSA is inherently vulnerable to malleabil-
ity attacks. The use of a cryptographic hash function in the message encoding
process is intended to remove this inherent malleability, in the same way as
Full Domain Hash removes the inherent malleability in the RSA signature algo-
rithm. Our attack, however, goes around this protection mechanism by reducing
the cryptanalysis of WalnutDSA to an instance of a factorization problem in the
group GL N (Fq).

We briefly discuss two countermeasures against this attack, namely increasing
the parameter sizes and checking the signature lengths.

5.1 Increasing the Parameters

In order to defeat our attack, one can choose to increase the parameters of
WalnutDSA such that the complexity of our attack is increased to ∼ 2100. As
shown in Sect. 4.4, the complexity of our attack can be estimated by γ · q

N−1
2 .

One can therefore choose to increase the value of q and N such that q
N−1

2 ≈ 2100,
by choosing q = 216 and N = 14 for example.

5.2 Checking Signature Length

Recall that our forged signature s is obtained from concatenating existing sig-
natures. The length of s depends primarily on the length of the products Lk

considered in Algorithm 3. As discussed in Sects. 4.4 and 4.5, larger values for
γk = |Γk| and a different choice of subgroup chain can achieve shorter forged
signature lengths at the cost of higher time and memory complexity. Our best
attempt produced a forged signature 225 times larger than the original Wal-
nutDSA signatures.

Observe that the length of a legitimate signature (one produced according
to WalnutDSA) depends on the length of sk, E(m), and the cloaking elements.
Even though these lengths are not fixed, we expect them to be within certain
bounds, which will depend on the implementation of the protocol. However, in
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principle, the length of s should greatly exceed these bounds. Therefore, we
suggest that the length of both cloaking elements and private keys be bounded
above, so that the length of a WalnutDSA signature is always less than some
constant L. Any signature of length greater than L should then be rejected.

5.3 Limitations of the Countermeasures

We do not know, however, whether s could be shortened to fit the new imposed
bounds. Methods such as Dehornoy’s handle reduction [14] could potentially
reduce the length of our forged signatures sufficiently in a non-negligible fraction
of instances.

We stress that more efficient algorithms for solving the factorization prob-
lem in GL N (Fq) may also exist. One may expect factorizations as small as
log|M | |GL N (Fq)| = log|M | q

N2−N−1 to exist, where M is the set of WalnutDSA
message-signature pairs one has access to. If an efficient algorithm to compute
short factorizations exists, the increase in parameters q and N needed to achieve
a sufficient level of security would then make WalnutDSA unsuitable for embed-
ded devices. Moreover, with |M| large enough, the forged signatures will only be
a small constant factor larger than legitimate signatures, and hence determining
a suitable bound L to apply our second countermeasure may be challenging.

Finally, we observe that our work has not considered the hard problems
underlying the WalnutDSA protocol, that of reversing E-Multiplication and the
cloaked conjugacy search problem. The study of these problems, along with the
effectiveness of the above countermeasures, will be of interest for further work.

6 Conclusion

In this paper we provided a practical cryptanalysis of WalnutDSA. Given a
couple of random valid message-signature pairs, our attack is able to produce
new signatures on arbitrary messages in approximately two minutes. We also
discuss countermeasures to our attack, including a simple modification of the
verification algorithm.
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A The Garside Normal Form

We follow the presentation in [5]. Define a positive braid, which is an element
of BN that can be written as a product of positive powers of the generators.
Let B+

N denote the set of positive braids. One example of a positive braid is the
fundamental braid ΔN ∈ BN :

ΔN = (b1 · · · bN−1)(b1 · · · bN−2) · · · (b1b2)(b1).
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Geometrically, ΔN is the braid in which any two strands cross positively exactly
once.

We now define a partial order on BN : for A,B ∈ BN , write A � B if there
exists C ∈ B+

N such that B = AC. With this definition, we say that P ∈ BN is
a permutation braid if ε � P � ΔN , where ε is the empty braid. Geometrically,
a permutation braid is a braid in which any two strands cross positively at most
once.

Let P be a permutation braid. Then the starting set of P is

S(P ) = {i | P = biP
′ for some P ′ ∈ B+

N}

and the finishing set of P is

F (P ) = {j | P = P ′bj for some P ′ ∈ B+
N}.

Furthermore, if A is any positive braid, its left-weighted decomposition into per-
mutation braids is

A = P1 · · · Pm

where S(Pi+1) ⊂ F (Pi) for any i.
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Abstract. In this work we study speed-ups and time–space trade-offs
for solving the shortest vector problem (SVP) on Euclidean lattices based
on tuple lattice sieving.

Our results extend and improve upon previous work of Bai–
Laarhoven–Stehlé [ANTS’16] and Herold–Kirshanova [PKC’17], with
better complexities for arbitrary tuple sizes and offering tunable time–
memory trade-offs. The trade-offs we obtain stem from the generaliza-
tion and combination of two algorithmic techniques: the configuration
framework introduced by Herold–Kirshanova, and the spherical locality-
sensitive filters of Becker–Ducas–Gama–Laarhoven [SODA’16].

When the available memory scales quasi-linearly with the list size,
we show that with triple sieving we can solve SVP in dimension n in
time 20.3588n+o(n) and space 20.1887n+o(n), improving upon the previous
best triple sieve time complexity of 20.3717n+o(n) of Herold–Kirshanova.
Using more memory we obtain better asymptotic time complexities. For
instance, we obtain a triple sieve requiring only 20.3300n+o(n) time and
20.2075n+o(n) memory to solve SVP in dimension n. This improves upon
the best double Gauss sieve of Becker–Ducas–Gama–Laarhoven, which
runs in 20.3685n+o(n) time when using the same amount of space.

Keywords: Lattice-based cryptography
Shortest vector problem (SVP) · Nearest neighbor algorithms
Lattice sieving

1 Introduction

Lattice-based cryptography. Over the past few decades, lattice-based cryptog-
raphy has emerged as a prime candidate for developing efficient, versatile, and
(potentially) quantum-resistant cryptographic primitives; e.g. [Reg05,ADPS16].
The security of these primitives relies on the hardness of certain lattice prob-
lems, such as finding short lattice vectors. The fastest known method for solving
many hard lattice problems is to use (a variant of) the BKZ lattice basis reduc-
tion algorithm [Sch87,SE94], which internally uses an algorithm for solving the
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so-called Shortest Vector Problem (SVP) in lower-dimensional lattices: given a
description of a lattice, the Shortest Vector Problem asks to find a shortest non-
zero vector in this lattice. These SVP calls determine the complexity of BKZ,
and hence an accurate assessment of the SVP hardness directly leads to sharper
security estimates and tighter parameter choices for lattice-based primitives.

Algorithms for solving SVP. Currently, state-of-the-art algorithms for solving
exact SVP can be classified into two groups, based on their asymptotic time
and memory complexities in terms of the lattice dimension n: (1) algorithms
requiring super-exponential time (2ω(n)) and poly(n) space; and (2) algorithms
requiring both exponential time and space (2Θ(n)). The former includes a fam-
ily of so-called lattice enumeration algorithms [Kan83,FP85,GNR10], which cur-
rently perform best in practice and are used inside BKZ [Sch87,CN11]. The latter
class of algorithms includes lattice sieving [AKS01,NV08,MV10], Voronoi-based
approaches [AEVZ02,MV10,Laa16] and other techniques [BGJ14,ADRS15]. Due
to the superior asymptotic scaling, these latter techniques will inevitably outper-
form enumeration in sufficiently high dimensions, but the large memory require-
ment remains a major obstacle in making these algorithms practical.

Heuristic SVP algorithms. In practice, only enumeration and sieving are cur-
rently competitive for solving SVP in high dimensions, and the fastest variants
of both algorithms are based on heuristic analyses: by making certain natural
(but unproven) assumptions about average-case behavior of these algorithms,
one can (1) improve considerably upon worst-case complexity bounds, thus nar-
rowing the gap between experimental and theoretical results; and (2) apply new
techniques, supported by heuristics, to make these algorithms even more viable
in practice. For enumeration, heuristic analyses of pruning [GNR10,AN17] have
contributed immensely to finding the best pruning techniques, and making these
algorithms as practical as they are today [LRBN]. Similarly, heuristic assump-
tions for sieving [NV08,MV10,Laa15a,BDGL16] have made these algorithms
much more practical than their best provable counterparts [PS09,ADRS15].

Heuristic sieving methods. In 2008, Nguyen and Vidick [NV08] were the first to
show that lattice sieving may be practical, proving that under certain heuristic
assumptions, SVP can be solved in time 20.415n+o(n) and space 20.208n+o(n).
Micciancio and Voulgaris [MV10] later described the so-called GaussSieve, which
is expected to have similar asymptotic complexities as the Nguyen–Vidick sieve,
but is several orders of magnitude faster in practice. Afterwards, a long line of
work focused on locality-sensitive techniques succeeded in further decreasing the
runtime exponent [WLTB11,ZPH13,BGJ14,Laa15a,LdW15,BL16].

Asymptotically the fastest known method for solving SVP is due to Becker
et al. [BDGL16]. Using locality sensitive filters, they give a time–memory trade-
off for SVP in time and space 20.292n+o(n), or in time 20.368n+o(n) when using only
20.208n+o(n) memory. A variant can even solve SVP in time 20.292n+o(n) retaining
a memory complexity of 20.208n+o(n), but that variant is not compatible with
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the Gauss Sieve (as opposed to the Nguyen–Vidick sieve) and behaves worse in
practice.

Tuple lattice sieving. In 2016, Bai et al. [BLS16] showed that one can also obtain
trade-offs for heuristic sieving methods in the other direction: reducing the mem-
ory requirement at the cost of more time. For instance, with a triple sieve they
showed that one can solve SVP in time 20.481n+o(n), using 20.189n+o(n) space.
Various open questions from [BLS16] were later answered by Herold and Kir-
shanova [HK17], who proved some of the conjectures from [BLS16], and greatly
reduced the time complexity of the triple sieve to 20.372n+o(n). An open question
remained whether these complexities were optimal, and whether it would be pos-
sible to obtain efficient time–memory trade-offs to interpolate between classical
‘double’ sieving methods and tuple lattice sieving.

1.1 Contributions

Results. In this work, we study both how to further speed up tuple lattice
sieving, and how to obtain the best time–memory trade-offs for solving SVP
with sieving1. Our contributions include the following main results:

1. For triple sieving, we obtain a time complexity of 20.3588n+o(n) with a memory
complexity of 20.1887n+o(n). This improves upon the previous best asymptotic
time complexity of 20.3717n+o(n) of Herold and Kirshanova [HK17], and both
the time and memory are better than the Gauss sieve algorithm of Becker
et al. [BDGL16], which runs in time 20.3685n+o(n) and memory 20.2075n+o(n).

2. For triple sieving with arbitrary time–memory trade-offs, we obtain the
trade-off curve depicted in Fig. 1, showing that our triple sieve theoreti-
cally outperforms the best double Gauss sieve up to a memory complexity of
20.2437n+o(n) (the intersection point of yellow and blue curves). For instance,
with equal memory 20.2075n+o(n) as a double sieve, we can solve SVP in time
20.3300n+o(n), compared to the previous best 20.3685n+o(n) [BDGL16].

3. For larger tuple sizes (i.e., k ≥ 3), in the regime when the space complexity
is restricted to the input-sizes as considered by Bai et al. [BLS16] and Herold
and Kirshanova [HK17], we improve upon all previous results. These new
asymptotics are given in Table 3 on page 25.

4. Our experiments on lattices of dimensions 60 to 80 demonstrate the practica-
bility of these algorithms, and highlight possible future directions for further
optimizations of tuple lattice sieving.

Techniques. To obtain these improved time–memory trade-offs for tuple lattice
sieving, this paper presents the following technical contributions:

1 All our results are also applicable when we solve the closest vector problem (CVP)
via sieving as was done in [Laa16]. Asymptotic complexities for CVP are the same
as for SVP.
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Fig. 1. Trade-offs for k = 2, 3, 4. Memory-exponents are on the X-axis, time-exponents
are on the Y -axis. That means that for x = m, y = t, an algorithm will be of time-
complexity 2t·n+o(n) and of memory-complexity 2m·n+o(n). Left-most points represent
time and memory complexities for k-tuple sieving optimized for memory, right-most
points represent complexities optimized for time.

Fig. 2. Our runtime improvements for k-tuple lattice sieving over previous works for
3 ≤ k ≤ 8 when we optimize for memory. For the k = 2 case, note that the results
from [HK17] that use ConfExt with T = 20.292n+o(n) cannot be applied to the Gauss-
Sieve, but only to the NV-Sieve, which performs much worse in practice. Our results
work for the Gauss-Sieve. See Sect. 4.2 for details.
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1. We generalize the configuration search approach, first initiated by Herold and
Kirshanova [HK17], to obtain optimized time–space trade-offs for tuple lattice
sieving (Sect. 3).

2. We generalize the Locality-Sensitive Filters (LSF) framework of Becker
et al. [BDGL16], and apply the results to tuple lattice sieving (Sect. 4). As
an independent side result, we obtain explicit asymptotics for LSF for the
approximate near neighbor problem on the sphere.2

3. We combine both techniques to obtain further improved asymptotic results
compared to only using either technique (Sect. 5).

The remainder of the introduction is devoted to a high-level explanation of
these techniques, and how they relate to previous work. We first introduce the
approximate k-list problem. It serves as a useful abstraction of the tuple lattice
sieving problem for which our results are provable – the results only become
heuristic when applying them to tuple lattice sieving.

1.2 Approximate k-list Problem

The approximate k-list problem is the central computational problem studied in
this paper. We denote by Sn−1 ⊂ R

n the (n − 1)-dimensional unit sphere. We
use soft- ˜O notation, e.g. ˜O(2n) means that we suppress sub-exponential factors.

Definition 1 (Approximate k-list problem). Given k lists of i.i.d. uni-
formly random vectors L1, . . . , Lk ⊂ Sn−1 and a target norm t ∈ R, we are asked
to find k-tuples (x1, . . . ,xk) ∈ L1 × · · · × Lk such that ‖x1 + · · · + xn‖ ≤ t.

We do not necessarily require to output all the solutions.
This problem captures the main subroutine of lattice sieving algorithms and

allows us to describe precise, provable statements without any heuristic assump-
tions: all our results for the approximate k-list problem in the remainder of this
paper are unconditional. In these application to lattice sieving, the lists will be
identical (i.e., |L1| = . . . = |Lk|) and the number of such k-tuples required to be
output will be ˜O(|L1|).

To translate our results about the approximate k-list problem to lattice siev-
ing, one needs to make additional heuristic assumptions, such as that the lists of
lattice points appearing in sieving algorithms can be thought of as i.i.d. uniform
vectors on a sphere (or a thin spherical shell). This essentially means that we
do not ‘see’ the discrete structure of the lattice when we zoom out far enough,
i.e. when the list contains very long lattice vectors. When the vectors in the
list become short, we inevitably start noticing this discrete structure, and this
heuristic assumption becomes invalid. Although experimental evidence suggests
that these heuristic assumptions quite accurately capture the behavior of lattice

2 The main difference with the works [ALRW17,Chr17], published after a preliminary
version of some of these results [Laa15b], is that those papers focused on the case of
list sizes scaling subexponentially in the dimension. Due to the application to lattice
sieving, here we exclusively focus on exponential list sizes.
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sieving algorithms on random lattices, the results in the context of lattice sieving
can only be proven under these additional (unproven) assumptions.

Under these heuristic assumptions, any algorithm for the approximate k-list
problem with t < 1 and |L1| = . . . = |Lk| = |Lout| will give an algorithm for
SVP with the same complexity (up to polynomial factors). We dedicate Sect. 6
to such a SVP algorithm.

1.3 Generalized Configuration Search

By a concentration result on the distribution of scalar products of x 1, . . . ,xk ∈
Sn−1 previously shown in [HK17], the approximate k-list problem (Definition 1)
can be reduced to the following configuration problem:

Definition 2 (Configuration problem). Given k lists of i.i.d. uniform vec-
tors L1, . . . , Lk ⊂ Sn−1 and a target configuration given by Ci,j’s, find a 1−o(1)-
fraction of k-tuples (x1, . . . ,xk) ∈ L1 × · · · × Lk s.t. all pairs (xi,xj) in a tuple
satisfy given inner-product constraints: 〈xi , xj〉 ≈ Ci,j.

We consider this problem only for k and Ci,j ’s fixed. The approximation sign ≈ in
Definition 2 above is shorthand for |〈x i , x j〉 − Ci,j | ≤ ε for some small ε > 0, as
we deal with real values. This approximation will affect our asymptotical results
as ˜O(2cn+ν(ε)n) for some ν(ε) that tends to 0 as we let ε → 0. Eventually, ν(ε)
will be hidden in the ˜O-notation and we usually omit it.

We arrange these constraints into a k × k real matrix C – the Gram matrix
of the x i’s – which we call a configuration. The connection to the k-list problem
becomes immediate once we notice that a k-tuple (x 1, . . . ,xk) with 〈x i , x j〉 ≈
Ci,j ,∀i, j, produces a sum vector whose norm satisfies ‖∑i x i‖2 =

∑

i,j Ci,j .
Consequently, solving the configuration problem for an appropriate configu-

ration C with
∑

i,j Ci,j ≤ t2 will output a list of solutions to the Approximate
k-list problem. The result [HK17, Theorem 1] shows that this will in fact return
almost all solutions for a certain choice of Ci,j , i.e., k-tuples that form short
sums are concentrated around one specific set of inner product constraints Ci,j .

The main advantage of the configuration problem is that it puts pair-wise
constraints on solutions, which significantly speeds up the search. Moreover, C
determines the expected number of solutions via a simple but very useful fact:
the probability that a uniform i.i.d. tuple (x 1, . . . ,xk) satisfies C is for fixed C, k
given by (up to poly(n) factors) det(C)n/2 [HK17, Theorem 2]. Hence, if our goal
is to output |L| tuples, given |L|k possible k-tuples from the input, we must have
|L|k · det(C)n/2 = |L|. Now there are two ways to manipulate this equation. We
can either fix the configuration C and obtain a bound on |L| (this is precisely
what [HK17] does), or vary C and deduce the required list-sizes for a given C.
The latter option has the advantage that certain choices of C may result in a
faster search for tuples. In this work, we investigate the second approach and
present the trade-offs obtained by varying C.

Let us first detail on trade-offs obtained by varying the target configura-
tion C. In [HK17], lattice sieving was optimized for memory with the optimum
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attained at to the so-called balanced configuration C (a configuration is called
balanced if Ci,j = −1/k,∀i �= j). Such a configuration maximizes det(C), which
in turn maximizes the number of k tuples that satisfy C. Hence, the balanced
configuration minimizes the size of input lists (remember, in lattice-sieving we
require the number of returned tuples be asymptotically equal to the input list
size) and, hence, gives one of two extreme points of the trade-off.

Now assume we change the target configuration C. As the result, the number
of returned tuples will be exponentially smaller than in the balanced case (as
the value for det(C) decreases, the probability that a random k-tuple satisfies C
decays by a factor exponential in n). To maintain the requirement on the size of
the output, we need to increase the input lists. However, the search for tuples
that satisfy C becomes faster for some choices of C. A choice for C with the
fastest search gives another extreme point of the trade-off. In Sect. 3, we analyze
the algorithm for the configuration problem and explain why certain C’s result
in faster algorithms. For small k, we give explicit time–memory trade-off curves.

1.4 Generalized Locality-Sensitive Filters

Our second contribution improves the running time for the configuration search
using a near neighbor method called spherical locality-sensitive filtering (LSF),
first introduced in the context of lattice sieving in [BDGL16]. This method was
later shown to be optimal for other applications in [ALRW17,Chr17].

LSF is an algorithm which receives on input a (typically large) set of points,
a so-called query point usually not from the set, and a target distance d. It
returns all points from the set that are within target distance d from the query
point (the metric can be any, in our case, it will be angular). The aim of LSF is
to answer many such queries fast by cleverly preprocessing this set so that the
time of preprocessing is amortized among many query points. Depending on the
choice of preprocessing, LSF may actually require more memory than the size
of the input set. This expensive preprocessing results in faster query complexity,
and the whole algorithm can be optimized (either for time or for memory) when
we know how many query points we have.

In the application to tuple lattice sieving, we make use of the locality-sensitive
filtering technique of [BDGL16] to speed up the configuration search routine.
Time–memory trade-offs offered by LSF naturally translate to time–memory
trade-offs for configuration search and, hence, for sieving.

There are several ways we can make use of LSF. First, we can apply LSF
to the balanced configuration search and remain in the minimal memory regime
(i.e., the memory bound for the LSF data structure is upper-bounded by the
input list sizes). Interestingly, even in such a restricted regime we can speed up
the configuration search and, in turn, asymptotically improve lattice sieving. Sec-
ondly, we allow LSF to use more memory while keeping the target configuration
balanced. This has the potential to speed up the query cost leading to a faster
configuration search. We can indeed improve k-tuple sieving in this regime for
k = 2, 3, 4. In Sect. 4 we give exact figures in both aforementioned LSF scenarios.
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1.5 Combining Both Techniques

Finally, we can combine LSF with changing the target configuration C. We search
for an optimal C taking into account that we exploit LSF as a subroutine in the
search for tuples satisfying C. Essentially, if we write out all the requirements on
input/output list sizes and running time formulas, the search for such optimal C
becomes a high-dimensional optimization problem (the number of variables to
optimize for is of order k2). Here, ‘optimal’ C may either mean the configuration
that minimizes time, or memory, or time given a bound on memory. When we
optimize C for time, we obtain exponents given in Table 1. Interestingly, for
k = 2, 3, k-tuple sieve achieves the ‘time=memory’ regime.

Table 1. Asymptotic complexities when using LSF and arbitrary configurations,
when optimizing for time. I.e., we put no restriction on memory, but using more
memory than stated in the table does not lead to a faster algorithm.

Tuple size (k) 2 3 4 5 6

Time 0.2925 0.3041 0.3395 0.3459 0.4064

Space 0.2925 0.3041 0.2181 0.2553 0.2435

To obtain trade-off curves for k = 2, 3, 4, we set-up an optimization problem
for several memory bounds and find the corresponding solutions for time. The
curves presented in Fig. 1 are the best curve-fit for the obtained (memory, time)
points. The right-most diamond-shaped points on the curves represent k-tuple
algorithms when optimized for time (Table 1). The left-most are the points when
we use the smallest possible amount of memory for this tuple size (see Table 3
in Sect. 4 for exact numbers). The curves do not extend further to the left since
the k-tuple search will not succeed in finding tuples if the starting lists will be
below a certain bound.

Already for k = 4, the optimization problem contains 27 variables and non-
linear inequalities, so we did not attempt to give full trade-off curves for higher
k’s. We explain the constraints for such an optimization problem later in Sect. 5
and provide access to the Maple program we used. Extreme points for larger k’s
are given in Tables 1 and 3 in Sect. 4.

1.6 Open Problems

Although this work combines and optimizes two of the most prominent tech-
niques for tuple lattice sieving, some open questions for future work remain,
which we state below:

– As explained in [Laa16], sieving (with LSF) can also be used to solve CVPP
(the closest vector problem with preprocessing) with time–memory trade-offs
depending on the size of the preprocessed list and the LSF parameters. Tuple
sieving would provide additional trade-off parameters in terms of the tuple
size and the configuration to search for, potentially leading to better asymp-
totic time–memory trade-offs for CVPP.
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– Similar to [LMvdP15], it should be possible to obtain asymptotic quantum
speed-ups for sieving using Grover’s algorithm. Working out these quantum
trade-offs (and potentially finding other non-trivial applications of quantum
algorithms to tuple sieving) is left for future work.

– An important open problem remains to study what happens when k is super-
constant in n. Unfortunately, our analysis cruicially relies on k being fixed,
as various subexponential terms depend on k.

2 Preliminaries

We denote vectors by bold letters, e.g., x . In this paper we consider the �2-norm
and denote the length of a vector x by ‖x‖. We denote by Sn−1 ⊂ R

n the (n−1)-
dimensional unit sphere. For any square matrix C ∈ R

k×k and I ⊂ {1, . . . , k},
we denote by C[I] the |I| × |I| submatrix of C obtained by restricting to the
rows and columns indexed by I.

Lattices. Given a basis B = {b1, . . . , bd} ⊂ R
n of linearly independent vectors,

the lattice generated by B, denoted L(B), is given by L(B) := {∑d
i=1 λibi : λi ∈

Z}. For simplicity of exposition, we assume d = n, i.e. the lattices considered are
full rank. One of the central computational problems in the theory of lattices
is the shortest vector problem (SVP): given a basis B, find a shortest non-zero
vector in L(B). The length of this vector, known as the first successive minimum,
is denoted λ1(L(B)).

The fastest (heuristic) algorithms for solving SVP in high dimensions are
based on lattice sieving, originally described in [AKS01] and later improved in
e.g. [NV08,PS09,MV10,Laa15a,LdW15,BL16,BDGL16]. These algorithms start
by sampling an exponentially large list L of 2�n (long) lattice vectors. The points
from L are then iteratively combined to form shorter and shorter lattice points
as xnew = x 1 ± x 2 ± · · · ± xk for some k.3 The complexity is determined by the
cost to find k-tuples whose combination produces shorter vectors.

In order to improve and analyze the cost of sieving algorithms, we consider
the following problem, adapted from [HK17], generalizing Definition 1.

Definition 3 (Approximate k-list problem [HK17]). Given k lists L1, . . . ,
Lk of respective exponential sizes 2�1n, . . . , 2�kn whose elements are i.i.d. uni-
formly random vectors from Sn−1, the approximate k-list problem consists of
finding 2�outn k-tuples (x1, . . . ,xk) ∈ L1×· · ·×Lk that satisfy ‖x1+ · · ·+xk‖ ≤ t,
using at most M = ˜O(2mn) memory.

We are interested in the asymptotic complexity for n → ∞ with all other
parameters fixed. Note that the number of solutions to the problem is concen-
trated around its expected number and since we only want to solve the problem
with high probability, we will work with expected list sizes throughout. See
Appendix A in the full version [HKL] for a justification. We only consider cases

3 For the approximate k-list problem, we stick to all + signs. This limitation is for
analysis only, does not affect asymptotics and is easy to solve in practice.
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where m ≥ �out and where the expected number of solutions is at least ˜Ω(2�outn).
Part of our improvements over [HK17] comes from the fact that we consider the
case where the total number of solutions to the approximate k-list problem is
exponentially larger than 2�outn. By only requiring to find an exponentially small
fraction of solutions, we can focus on solutions that are easier to find.

In the applications to sieving, we care about the case where �1 = . . . = �k =
�out and t = 1. Allowing different �i is mostly done for notational consistency
with Definition 5 below, where different �i’s naturally appear as subproblem in
a recursive analysis of our algorithm.

2.1 Configurations and Concentration Results

One of the main technical tools introduced by [HK17] is so-called configurations.
We repeat their definitions and results here, adapted to our case.

Definition 4 (Configuration [HK17, Definition 2]). The configuration C =
Conf(x1, . . . ,xk) of k points x1, . . . ,xk from the n-sphere is defined to be the
Gram matrix of the xi, i.e. Ci,j := 〈xi , xj〉.
The connection between the approximate k-list problem and configurations
is as follows: the configuration of a k-tuple x 1, . . . ,xk determines the length
‖∑

i x i‖:

∥

∥

∑

i

x i

∥

∥

2 =
∑

i,j

Ci,j = 1tC1, (1)

where 1 is a column vector of 1’s. So a k-tuple is a solution to the approximate
k-list problem if and only if their configuration satisfies 1tC1 ≤ t2. Let

C = {C ∈ R
k×k | Csymmetric positive semi-definite, Ci,i = 1}

Cgood = {C ∈ C | 1tC1 ≤ t2}

be the set of all possible configuration resp. of the configurations of solutions.
We call the latter good configurations.

Following [HK17], rather than only looking for k-tuples that satisfy
‖∑

i x i‖ ≤ t, we look for k-tuples that additionally satisfy a constraint on their
configuration as in the following problem (generalizing Definition 2).

Definition 5 (Configuration problem [HK17]). Let k ∈ N, let m > 0, let
ε > 0, and suppose we are given a target configuration C ∈ C . Given k lists
L1, . . . , Lk of respective exponential sizes 2�1n, . . . , 2�kn whose elements are i.i.d.
uniform from Sn−1, the k-list configuration problem asks to find a 1−o(1) fraction
of all solutions using at most M = ˜O(2mn) memory, where a solution is a k-tuple
x1, . . . ,xk with xi ∈ Li such that |〈xi , xj〉 − Ci,j | ≤ ε for all i, j.

Clearly, solving the configuration problem for any good configuration C yields
solutions to the approximate k-list problem. If the number of solutions to the
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configuration problem is large enough, this is then sufficient to solve the approx-
imate k-list problem. The number of expected solutions for a given configuration
C can be easily determined from the distribution of Conf(x 1, . . . ,xk) for i.i.d.
uniform x i ∈ Sn−1. For this we have

Theorem 1 (Distribution of configurations [HK17]). Let x1, . . . ,xk be
independent uniformly distributed from Sn−1 with n > k. Then their configu-
ration C = Conf(x1, . . . ,xk) follows a distribution with density function

μ = Wn,k · det(C)
1
2 (n−k)dC1,2 . . . dCn−1,n, (2)

where Wn,k = Ok(n
1
4 (k

2−k)) is an (explicitly known) normalization constant that
only depends on n and k.

This implies that we need to solve the configuration problem for any good
configuration such that

∏

i |Li| · (det C)n/2 = ˜Ω(2�outn).
In [HK17], the authors ask to find essentially all solutions to the approximate

k-list problem. For this, they solve the configuration problem for a particular
target configuration C, such that the solutions to the configuration problem for
C comprise a 1−o(1)-fraction of the solutions to the approximate k-list problem.
C has the property that all non-diagonal entries are equal; such configurations
are called balanced. In the case t = 1, we have Ci,j = − 1

k for i �= j.
By contrast, we are fine with only finding enough solutions to the approxi-

mate k-list problem. This relaxation allows us to consider other, non-balanced,
configurations.

2.2 Transformation

In our application, we will have to deal with lists L whose elements are not
uniform from Sn−1. Instead, the elements x ∈ L have prescribed scalar products
〈v i , x 〉 with some points v1, . . . , v r.

Fig. 3. Taking a vector x 1 ∈ L1 and applying filtering to L2, . . . , Lk ⊂ Sn−1 w.r.t.
x 1 fixes the distances between x 1 and all the vectors from L2, . . . , Lk that ‘survive’
the filtering. All filtered vectors (i.e., vectors from L

(1)
2 , . . . , L

(1)
k ) can be considered as

vectors from Sn−2 – a scaled sphere of one dimension less.
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The effect of these restriction is that the elements x ∈ L are from some
(shifted, scaled) sphere of reduced dimension Sn−1−r, cf. Fig. 3. We can apply
a transformation (Transform in Algorithm 1 below), eliminating the shift and
rescaling. This reduces the situation back to the uniform case, allowing us to
use recursion. Note that we have to adjust the target scalar products to account
for the shift and scalings. A formal statement with formulas how to adjust the
scalar products is given by Lemma 3 in Appendix B in the full version [HKL].

Algorithm 1. Recursive algorithm for the configuration problem
Input: L1, . . . , Lk− lists of vectors from Sn−1, Ci,j = 〈x i ,x j〉 ∈ R

k×k− Gram matrix,
ε > 0 - fudge-factor.
Output: Lout− list of k-tuples (x 1, . . . , xk) ∈ L1 × · · · × Lk, s.t. |〈x i , x j〉 − Cij | ≤ ε
for all i, j.

1: function SolveConfigurationProblem(L1, . . . , Lk, ε, Ci,j ∈ R
k×k)

2: Lout ← ∅
3: if k = 1 then
4: Lout ← L1

5: else
6: for all x 1 ∈ L1 do
7: for all j = 2 . . . k do
8: Lf

j ← Filter(x 1, Lj , C1,j , ε) � Create all filtered lists

9: L′
j , C

′ ← Transform(x 1, L
f
j , C, i) � Remove the dependency on x1

10: L̂ ← SolveConfigurationProblem(L′
2, . . . L

′
k, ε, C[2..k],[2..k])

11: for all x ∈ L̂ do
12: Lout ← Lout ∪ {(x 1, x )} � Append x to all tuples that contain x1

13: return Lout

1: function Filter(v , L, c, ε)
2: L′ ← ∅
3: for all x ∈ L do
4: if |〈x , v〉 − c| ≤ ε then
5: L′ ← L′ ∪ {x}
6: return L′

1: function Transform(v , L, C, i) � Changes the ith row of C

2: L′ ← ∅
3: Transform all Ci,j to C′

j,k for j, k > i as follows:

C′
j,k =

1√
(1 − C2

i−1,j)(1 − C2
i−1,k)

(Cj,k − Ci−1,j · Ci−1,k)

(see Lemma 3 in Appendix B of the full version for justification).
4: for all x ∈ L do
5: x⊥ ← x − 〈x , v〉v
6: L′ ← L′ ∪

{
x⊥

‖x⊥‖

}

7: return L′, C′
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3 Generalized Configuration Search

Now we present our algorithm for the Configuration problem (Definition 5). We
depict the algorithm in Fig. 4. Its recursive version is given in Algorithm 1.

L1 L2 L3
. . . Lk

x1

Filter1,2 Filter1,3 Filter1,k

L
(1)
2 L

(1)
3 . . . L

(1)
k

x2

Filter2,3 Filter2,k

L
(2)
3 L

(2)
k

Fig. 4. Our algorithm for the Configuration problem. Procedures Filteri,j receive on
input a vector (e.g. x 1), a list of vectors (e.g. L2), and a real number Ci,j - the target

inner product. It creates another shorter list (e.g. L
(1)
2 ) that contains all vectors from

the input list whose inner product with the input vector is within some small ε from the
target inner product. Time–memory trade-offs are achieved by taking different values
Ci,j ’s for different i, j. In particular, an asymptotically faster k-list algorithm can be
obtained by more ‘aggressive’ filtering to the left-most lists on each level. In other
words, for fixed i, the value Ci,j is the largest (in absolute value) for j = i + 1.

The algorithm receives on input k lists L1, . . . , Lk of exponential (and poten-
tially different) sizes and the target configuration C ∈ R

k×k. It outputs a list
Lout of tuples x 1, . . . ,xk ∈ L1 × · · · × Lk s.t. |〈x i , x j〉 − Ci,j | ≤ ε for all i, j.

The algorithm processes the lists from left to right (see Fig. 4). Namely, for
each x 1 ∈ L1, it creates lists L

(1)
2 , . . . , L

(1)
k by applying a filtering procedure

w.r.t. x 1 to these k − 1 lists L2, . . . , Lk. This filtering takes as input a vector, a
list Lj , and target inner-product C1,j for all j ≥ 2. Its output L

(1)
j contains all

the vectors x j from Lj that satisfy |〈x 1 , x j〉 − C1,j | ≤ ε for some small fixed
ε > 0. Note the upper index of L

(1)
j : it denotes the number of filterings applied

to the original list Lj .
Applying filtering to all k − 1 lists, we obtain k − 1 new lists that contain

vectors with a fixed angular distance to x 1 (see Fig. 3). Now our task is to find
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all the k−1 tuples (x 2, . . . ,xk) ∈ L
(1)
2 , . . . , L

(1)
k that satisfy C[2 . . . k]. Note that

this is almost an instance of the (k − 1) configuration problem, except for the
distribution of the filtered elements. To circumvent this issue we apply to all
elements of filtered lists the transformation described in Lemma 2 (Appendix B,
full version [HKL]), where our fixed x 1 plays the role of v .

It is easy to see that the time needed for the transformation is equal to the
size of filtered lists and thus, asymptotically irrelevant. Finally, we can apply the
algorithm recursively to the k − 1 transformed lists.

Note that the transformation is merely a tool for analysis and the algorithm
can easily be implemented without it. We only need it for the analysis of the
LSF variant in Sect. 4.

3.1 Analysis

In this section we analyse the complexity of Algorithm 1. Speed-ups obtained
with Nearest Neighbor techniques are discussed in the next section. In this ‘plain’
regime, the memory complexity is completely determined by the input list sizes.
Applying filtering can only decrease the list sizes. Recall that k is assumed to
be a fixed constant. Further, as our algorithm is exponential in n and we are
only interested in asymptotics, in our analysis we ignore polynomial factors, i.e.
computations of inner-products, summations, etc.

Our main objective is to compute the (expected) size of lists on each level
(by the term ‘level’ we mean the number of filterings applied to a certain list or,
equivalently, the depth of the recursion). We are interested in |L(j)

i | - the size of
list Li after application of j filterings. For the input lists, we set L

(0)
i := Li.

Once we know how the list-sizes depend on the chosen configuration C, it
is almost straightforward to conclude on the running time. Consider the jth

recursion-level. On this level, we have j points (x 1, . . . ,x j) fixed during the
previous recursive calls and the lists L

(j−1)
j+1 , . . . , L

(j−1)
k of (possibly) different

sizes which we want to filter wrt. x j . Asymptotically, all filterings are done in
time maxj+1≤i≤k

∣

∣L
(j−1)
i

∣

∣. This process will be recursively called as many times
as many fixed tuples (x 1, . . . ,x j) we have, namely,

∏j
r=1

∣

∣L
(r−1)
r

∣

∣ times (i.e., the
product of all left-most list-sizes). Hence, the cost to create all lists on level j
can be expressed as

Tj =
j

∏

r=1

∣

∣L(r−1)
r

∣

∣ · max
j+1≤i≤k

{

∣

∣L
(j−1)
i

∣

∣, 1
}

. (3)

In the above formula, considering the maximum between a filtered list and 1
takes care about the lists of size 0 or 1 (i.e., the exponent for the list-sizes might
be negative). Assume on a certain level all filtered lists contain only one or no
elements in expectation. Technically, to create the next level, we still need to
check if theses lists are indeed empty or not. This also means that the level
above – the one that created these extremely short lists – takes more time than
the subsequent level.
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Finally, the total running time of the algorithm is determined by the level j
for which Tj is maximal (we refer to such a level as dominant):

T = max
1≤j≤k

[ j
∏

r=1

∣

∣L(r−1)
r

∣

∣ · max
j+1≤i≤k

∣

∣L
(j−1)
i

∣

∣

]

. (4)

Note that we do not need to take into account using lists of expected sizes ≤ 1.
As mentioned above, creating these lists takes more time than using them.

In the following lemma, we use the results of Theorem 1 to determine |L(j)
i |

for 0 ≤ j ≤ i − 1, 1 ≤ i ≤ k. We denote by C[1 . . . j, i] the (j + 1) × (j + 1) the
submatrix of C formed by restricting its columns and rows to the set of indices
{1, . . . , j, i}.

Lemma 1. During a run of Algorithm1 that receives on input a configuration
C ∈ R

k×k and lists L1, . . . , Lk, the intermediate lists L
(j)
i for 1 ≤ i ≤ k, i − 1 ≤

j ≤ k are of expected sizes

E

[

∣

∣L
(j)
i

∣

∣

]

= |Li| ·
(

det(C[1 . . . j, i])
det(C[1 . . . j])

)n/2

. (5)

Proof. The list L
(j)
i is created when we have the tuple (x 1, . . . ,x j) fixed. The

probability for such a tuple to appear is det(C[1 . . . j])n/2. Moreover, the prob-
ability that we ever consider a tuple (x 1, . . . ,x j ,x i) for any x i ∈ Li is given
by (det(C[1 . . . j, i]))n/2. The result follows when we take the latter probability
conditioned on the event that (x 1, . . . ,x j) is fixed.

Using the result of Theorem 1 once again, we obtain the expected number of
the returned tuples, i.e. the size of Lout.

Corollary 1. Algorithm1 receiving on input a configuration C ∈ R
k×k and the

lists L1, . . . , Lk of respective sizes 2�1n, . . . , 2�kn, outputs |Lout| solutions to the
configuration problem, where

E [|Lout|] = 2(
∑k

i �i)·n · (det C)n/2. (6)

In particular, if all k input lists are of the same size |L| and the output list size
is required to be of size |L| as well (the case of sieving), we must have

|L| = (det C)− n
2(k−1) . (7)

Proof. The statement follows immediately from the total number of k-tuples and
the fact that the probability that a random k-tuple has the desired configuration
is (up to polynomial factors) (detC)n/2 (see Theorem 1).

We remark that our Algorithm 1 outputs all k-tuples that satisfy a given
configuration C. This is helpful if one wants to solve the k-list problem using the
output of Algorithm1. All one needs to do is to provide the algorithm with the
lists L1, . . . , Lk and a configuration C, such that according to Eq. (6), we expect
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to obtain 2�out k-tuples. Furthermore, we require 1tC1 ≤ t2, so C ∈ Cgood and
every solution to the configuration problem is a solution to the k-list problem.

Note also that the k-list problem puts a bound M on the memory used by
the algorithm. This directly translates to the bound on the input lists for the
configuration problem (recall that filtering only shrinks the lists).

The above discussion combined with Lemma 1 yields the next theorem, which
states the complexity of our algorithm for the k-list problem.

Theorem 2. Algorithm1 is expected to output |Lout| = 2�out solutions to the k-
list problem in time T provided that the input L1, . . . , Lk and C ∈ Cgood satisfy
Eq. (6) and maxi |Li| ≤ M , where T is (up to polynomial factors) equal to

max
1≤j≤k

[

j
∏

r=1

|Lr|
(

det C[1 . . . r]
det C[1 . . . r − 1]

)

n
2· max
j+1≤i≤k

|Li|
(

det(C[1 . . . j − 1, i])
det(C[1 . . . j − 1])

)

n
2
]

(8)

Note that we miss exponentially many solutions to the k-list problem, yet
for the configuration search, we expect to obtain all the tuples that satisfy the
given target configuration C. This loss can be compensated by increased sizes
of input lists. Since the running time T (see Eq. (8)) depends on C and on the
input list-sizes in a rather intricate manner, we do no simplify the formula for
T , but rather discuss an interesting choice for input parameters in case k = 3.

3.2 Case of Interest: k = 3

The case k = 3 is the most relevant one if we want to apply our 3-list algorithm
to SVP sieving algorithms (see Sect. 6 for a discussion on the k-Gauss sieve
algorithm for SVP). In [HK17], the k-sieve algorithm was proved to be the most
time-efficient when k = 3 among all the non-LSF based algorithms. In particular,
a 3-sieve was shown to be faster than non-LSF 2-sieve.

To be more concrete, the 3-list problem (the main subroutine of the 3-Gauss
sieve) can be solved using the balanced configuration search (i.e., Ci,j = −1/3
for i �= j) in time Tbal = 20.396n requiring memory M = 20.1887n. Up to poly(n)
factors these numbers are also the complexities of the 3-Gauss sieve algorithm.
The main question we ask is whether we can reduce the time T at the expense
of the memory M?

If we take a closer look at the time complexity of the 3-Configuration search
for the balanced C, we notice that among the two levels – on the first level we
filter wrt. x 1 ∈ L1, on the second wrt. x 2 ∈ L

(1)
2 – the second one dominates.

In other words, if we expand Eq. (8), we obtain T = max{T1 = 20.377n, T2 =
20.396n} = T2. We denote by Ti the time needed to create all lists on the ith level
(see Eq. (3)). Hence, there is potential to improve T by putting more work on
the first level hoping to reduce the second one.

This is precisely what our optimization for T,M , and configuration C sug-
gests: (1) increase the input list sizes from 20.1887n to 20.1895n, and (2) use more
‘aggressive’ filtering on the first level to balance out the two levels. We spend
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more time creating L
(1)
2 and L

(1)
3 as the input lists became larger, but the filtered

L
(1)
2 , L

(1)
3 are shorter and contain more ‘promising’ pairs. With the configura-

tion C given below, the time complexity of the 3-Configuration search becomes
T = max{T1 = T2} = 20.3789n with input and output list sizes equal to 20.1895n.
We remark that in our optimization we put the constraint that |Lout| = |L1|.

C =

⎛

⎝

1 −0.3508 −0.3508
−0.3508 1 −0.2984
−0.3508 −0.2984 1

⎞

⎠ .

In fact, for k = 3, . . . , 8, when we optimize for time (cf. Table 2), the same
phenomenon occurs: the time spent on each level is the same. We conjecture
that such a feature of the optimum continues for larger values of k, but we did
not attempt to prove it.

3.3 Trade–off Curves

Now we demonstrate time-memory trade-offs for larger values of k. In Fig. 5 we
plot the trade-off curves obtained by changing of the target configuration C. For
each 3 ≤ k ≤ 7, there are two extreme cases on each curve: the left-most points
describe the algorithm that uses balanced configuration. Here, the memory is
as low as possible. The other endpoint gives the best possible time complexity
achievable by a change of the target configuration (the right-most points on the
plot). Adding more memory will not improve the running time. Table 2 gives
explicit values for the time-optimized points.

Table 2. Asymptotic complexities for arbitrary configurations when optimizing
for time. These are the right-most points for each k on the time–memory trade-off
curve from Fig. 5.

Tuple size (k) 2 3 4 5 6 7 8

Time 0.4150 0.3789 0.3702 0.3707 0.3716 0.3722 0.3725

Space 0.2075 0.1895 0.1851 0.1853 0.1858 0.1861 0.1862

4 Generalized Locality-Sensitive Filters

In our Algorithm 1, a central sub-problem that arises is that of efficient filtering:
given c, x 1 and a list Lj , find all x j ∈ Lj such that 〈x j ,x 1〉 ≈ c, where c is deter-
mined by the target configuration. Note that, by using Lemma 3 (Appendix B,
full version), we may assume that the points in Lj are uniform from some sphere
of dimension n − o(n). To simplify notation, we ignore the o(n)-term, since it
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Fig. 5. Time–memory trade-offs for k = 3, . . . , 7 and for arbitrary configurations.
Similar to Fig. 1, the complexities are on a logarithmic scale. The left-most points give
complexities for the configuration search in case of balanced configurations. The right-
most point indicates the lowest time. Increasing memory even further will not result
in improved running times.

will not affect the asymptotics. For notational reasons4, we shall assume c ≥ 0;
the case c ≤ 0 is equivalent by changing x 1 to −x 1.

So far, we solved the problem of finding all such x j in time |Lj |. However,
better algorithms exist if we preprocess Lj . This leads to the following problem:

Definition 6 (Near neighbor on the sphere). Let L consist of N points
drawn uniformly at random from Sn−1, and let c ≥ 0. The c-near neighbor
problem is to preprocess L such that, given a query vector q ∈ Sn−1, one can
quickly find points p ∈ L with 〈p , q〉 ≥ c.

Depending on the magnitude of N there is a distinction between the near
neighbor problem for sparse data sets (N = 2o(n)) and for dense data sets
(N = 2Θ(n)). In many applications of near neighbor searching one is interested
in sparse data sets, and various lower bounds matching upper bounds have been
derived for this regime [OWZ14,AIL+15,ALRW17,Chr17]. For our purposes, we
are only interested in dense data sets.

The target scalar product c corresponds to a target angular distance φ =
arccos c and we want to find points in a spherical cap centered around q with
angular distance φ. With c ≥ 0, we have φ < 1

2π, so we are really concerned with
near neighbors. In order to simplify incorporating our results for LSF into the
configurations framework, we analyze and express everything in terms of scalar
products rather than angular distances. This allows us to use Eq. (2) to express
the involved complexities.
4 The literature is concerned with finding points that are close to each other (corre-

sponding to c > 0) rather than points that are far apart (corresponding to c < 0).
Note that in our applications, we typically would obtain c < 0.
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Let us denote the data structure resulting from the preprocessing phase by
D. In algorithms for the near neighbor problem, we are interested in time and
memory complexities of both preprocessing and of querying and also in the
size of D. Spending more resources on preprocessing and using more space will
generally reduce the time complexity of querying.

In our applications, we may want to modify the list L by adding/removing
vectors in between queries, without having to completely rebuild all of D. So we
assume that D is built up by processing the x ∈ L one element at a time and
updating D. We therefore analyze the preprocessing cost in terms of the cost to
update D when L changes by one element.

Spherical locality-sensitive filters. To solve the near neighbor problem on the
sphere, [BDGL16] introduced spherical locality-sensitive filters, inspired by e.g.
the spherical cap LSH of [AINR14]. The idea is to create a data structure D
of many filter buckets, where each bucket Bu contains all vectors from L which
are α-close to a filter vector u , where u is typically not from L, but drawn
uniformly at random from Sn−1. Here, two vectors u ,p are considered α-close
iff 〈u , p〉 ≥ α. Let F be the set of all such chosen u ’s. Ideally, one generates
|F | � 1 of these buckets, each with u ∈ F chosen independently and uniformly
at random from Sn−1. We build up the data structure by processing the elements
x ∈ L one by one and updating D each time, as mentioned above. This means
that for each update, we need to find all u ∈ F that are α-close to a given x .

If we then want to find points x ∈ L that are c-close to a given query point
q , we first find all u ∈ F that are β-close to x for some β. Then we search
among those buckets Bu for points x ∈ Bu that are c-close to x . The idea here
is that points in Bu for u close to q have a higher chance to be close to q than
a random point from L. The algorithm is detailed in Algorithm2.

Structured filters. In the above idea, one has to find all u ∈ F that are close
to a given point x . A naive implementation of this would incur a cost of |F |,
which would lead to an impractically large overhead. To surmount this prob-
lem, a small amount of structure is added to the filter vectors u , making them
dependent: small enough so that their joint distribution is sufficiently close to
|F | independent random vectors, but large enough to ensure that finding the
filter vectors that are close to x can be done in time (up to lower-order terms)
proportional to the number of such close filters vectors. This is the best one can
hope for. This technique was later called “tensoring” in [Chr17], and replaced
with a tree-based data structure in [ALRW17]. For further details regarding this
technique we refer the reader to [BDGL16]; below, we will simply assume that
filter vectors are essentially independent, and that we can solve the problem
of finding all u ∈ F close to given point with a time complexity given by the
number of solutions.

Complexity. Let us now analyze the complexity of our spherical locality-sensitive
filters and set the parameters α and β. For this we have the following theorem:
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Algorithm 2. Algorithm for spherical locality-sensitive filtering
Parameters: α, β, c, F
D and L are kept as global state, modified by functions below. D = {Bu | u ∈ F}.
Insert and Remove modify L and D. We assume that D and L are constructed
by calling Insert repeatedly. Initially, all Bu and L are empty.
Query(q) outputs x ∈ L that are c-close to q .

1: function Insert(x ) � Add x to L and update D
2: L ← L ∪ {x}
3: for all u ∈ F s.t. 〈u , x 〉 ≥ α do
4: Bu ← Bu ∪ {x}
1: function Remove(x ) � Remove x from L and update D
2: L ← L \ {x}
3: for all u ∈ F s.t. 〈u , x 〉 ≥ α do
4: Bu ← Bu \ {x}
1: function Query(q) � Find x ∈ L with 〈x , q〉 ≥ c
2: PointsFound ← ∅
3: for all u ∈ F s.t. 〈u , q〉 ≥ β do
4: for all x ∈ Bu do
5: if 〈x , q〉 ≥ c then
6: PointsFound ← PointsFound ∪ {x}
7: return PointsFound

Theorem 3 (Near neighbor trade-offs). Consider Algorithm2 for fixed tar-
get scalar product 0 ≤ c ≤ 1, fixed 0 ≤ α, β ≤ 1 and let L be a list of i.i.d.
uniform points from Sn−1, with |L| exponential in n. Then any pareto-optimal5

parameters satisfy the following restrictions:

|L| (1 − α2)n/2 = 1

αc ≤ β ≤ min
{α

c
,

c

α

} (9)

Assume these restrictions hold and that |F | is chosen as small as possible while
still being large enough to guarantee that on a given query, we find all c-close
points except with superexponentially small error probability. Then the complexity
of spherical locality-sensitive filtering is, up to subexponential factors, given by:

• Bucket size: The expected size of each bucket is 1.
• Number of buckets: The number of filter buckets is

|F | =
(1 − c2)n/2

(1 + 2cαβ − c2 − α2 − β2)n/2
.

• Update time: For each x ∈ L, updating the data structure D costs time
TUpdate = |F | · (1 − α2)n/2

5 This means that we cannot modify the parameters α, β in a way that would reduce
either the preprocessing or the query cost without making the other cost larger.
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• Preprocessing time: The total time to build D is TPreprocess = |F |.
• Memory used: The total memory required is |F |, used to store D.
• Query time: After D has been constructed, each query takes time

TQuery = |F | · (1 − β2)n/2.

Note that the formulas for the complexity in the theorem rely on Eqs. (9) to hold.
As the proof of this theorem (mainly the conditions for pareto-optimality) is very
technical, we defer it to Appendix D (see full version [HKL]). In the following
Remerk 1, we only discuss the meaning of the restrictions that are satisfied in
the pareto-optimal case and sketch how to derive the formulas. After that, we
discuss what the extreme cases for β mean in terms of time/memory trade-offs.

Remark 1. Using Theorem 1, for a given point u and uniformly random x ∈
Sn−1, the probability that 〈u , x 〉 ≈ α is given by (1 − α2)n/2, ignoring subex-
ponential factors throughout the discussion. So the expected size of the filter
buckets is |L| (1 − α2)n/2 and the first condition ensures that this size is 1.

If the expected bucket size was exponentially small, we would get a lot of
empty buckets. Since F needs to have a structure that allows to find all u ∈ F
close to a given point quickly, we cannot easily remove those empty buckets.
Consequently, the per-query cost would be dominated by looking at (useless)
empty buckets. It is strictly better (in both time and memory) to use fewer, but
more full buckets in that case. Conversely, if the buckets are exponentially large,
we should rather use more, but smaller buckets, making D more fine-grained.

Now consider a “solution triple” (x , q ,u), where q is a query point, x ∈ L is
a solution for this query and u ∈ F is the center of the filter bucket used to find
the solution. By definition, this means 〈x , q〉 ≥ c, 〈x , u〉 ≥ α and 〈q , u〉 ≥ β.
The second set of conditions from Eq. (9) imply that these 3 inequalities are
actually satisified with (near-)equality whp. Geometrically, it means that the
angular triangle formed by a triple q ,x ,u in a 2-dimensional S2 with these
pairwise inner products has no obtuse angles.

The required size of |F | is determined by the conditional probability P = 1
|F |

that a triple (x ,u , q) has these pairwise scalar products, conditioned on 〈x ,q〉 ≈
c. Using Theorem 1, this evaluates to

P = Pr
u∈Sn−1

[〈x , u〉 ≈ α, 〈q , u〉 ≈ β | 〈x , q〉 ≈ c] =

(

det
( 1 α β

α 1 c
β c 1

))n/2

(det( 1 c
c 1 ))n/2

.

Taking the inverse gives |F |. The other formulas are obtained even more easily
by applying Theorem1: the probability that a point x ∈ L is to be included
in a bucket Bu is (1 − α2)n/2, giving the update cost (using the structure of
F ). Similarly for the per-query cost, we look at |F | (1 − β2)n/2 buckets with
|L| (1 − α2)n/2 elements each. Using |L| (1 − α2) = 1 then gives all the formulas.
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Note that Theorem 3 offers some trade-off. With |L| and c given, the param-
eter α is determined by the condition (1 − α2)n/2 |L| = 1. The complexities can
then be expressed via β, which we can chose between c ·α and either α/c or c/α.

For β = c ·α, we have (up to subexponential terms) |F | = 1
(1−α2)n/2 = |L|, so

the update cost is subexponential. The memory complexity is only ˜O(|L|), which
is clearly minimal. The query complexity is at ˜O(|L| (1 − c2α2)n/2). Increasing
β increases both the time complexity for updates and the memory complexity
for D, whereas the query complexity decreases. If α ≤ c, we can increase β up to
β = α

c . At that point, we have subexponential expected query complexity. The
total complexity of preprocessing is given by 1

(1−α2/c2)n/2 .
If α ≥ c, we may increase β up to c

α . At that point, we obtain a query
complexity of |L| (1 − c2)n/2. This is equal to the number of expected solutions
to a query, hence the query complexity is optimal. The preprocessing cost is equal
to |L| (1 − c2)n/2(1 − α2/c2)−n/2. Increasing β further will only make both the
query and preprocessing costs worse. Note that, if the total number of queries is
less than 1

(1−β2
max)

n/2 with βmax = min{α
c , c

α}, it does not make sense to increase
β up to βmax even if we have arbitrary memory, as the total time of preprocessing
will exceed the total time of all queries. In the special case where the number of
queries |Q| is equal to the list size |L|, preprocessing and total query costs are
equal for α = β. This latter choice corresponds to the case used in [BDGL16].

In the LSH literature, the quality of a locality sensitive hash function is usu-
ally measured in terms of update and query exponents ρu resp. ρq. Re-phrasing
our results in these quantities, we obtain the following corollary:

Corollary 2. Let c > 0, corresponding to an angular distance φ = arccos c,
0 < φ < 1

2π and consider the c-near neighbor problem on the n-dimensional
unit sphere for dense data sets of size N = 2Θ(n). Then, for any value of γ
with c ≤ γ ≤ min{ 1

c , c
1−N−2/n }, spherical locality sensitive filtering solves this

problem with update and query exponents given by:

ρu = log
( sin2 φ

sin2 φ − (1 − N−2/n)(1 − 2γ cos φ + γ2)

)

/ log(N2/n) − 1

ρq = log
( (1 − γ2 + γ2N−2/n) sin2 φ

sin2 φ − (1 − N−2/n)(1 − 2γ cos φ + γ2)

)

/ log(N2/n)

The data structure requires N1+ρu+o(1) memory, can be initialized in time
N1+ρu+o(1) and allows for updates in time Nρu+o(1). Queries can be answered
in time Nρq+o(1).

Proof. This is just a restatement of Theorem 3 with γ := β/α, plugging in α2 =
1 − N−2/n and cos φ = c.

4.1 Application to the Configuration Problem

We now use spherical locality-sensitive filtering as a subroutine of Algorithm1,
separately replacing each naive Filteri,j subroutine of Algorithm1 resp. Fig. 4
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by spherical locality-sensitive filtering. In this application, in each near neighbor
problem the number of queries is equal to the list size. We caution that in
Algorithm 1, the lists for which we have to solve a c-near neighbor problem
were obtained from the initial lists by restricting scalar products with known
points. This changes the distribution, which renders our results from Theorem3
not directly applicable. In order to obtain a uniform distribution on a sphere,
we use Transform in Algorithm 1, justified by Lemma 3 (Appendix B in the
full version [HKL]), to perform an affine transformation on all our point. This
transformation affects scalar products and, as a consequence, the parameter c in
each near neighbor problem is not directly given by ±Ci,j .

For the case of the k-sieve with the balanced configuration Ci,j = − 1
k for

i �= j, the parameter c used in the replacement of Filteri,j is given by 1
k+1−i ,

as a simple induction using Lemma 3 (full version) shows.
Using LSF changes the time complexities as follows: recall the time complex-

ity is determined by the cost to create various sublists L
(i)
j as in Sect. 3.1, where

L
(i)
j is obtained from the input list Lj by applying i filterings. These filterings

and L
(i)
j depend on the partial solution x 1, . . . ,x i. The cost Ti,j to create all

instances (over all choices of x 1, . . . ,x i) of L
(i)
j is then given by (cf. Eq. (3))

Ti,j =
i−1
∏

r=1

∣

∣L(r−1)
r

∣

∣ ·
(

TPreprocess,i,j +
∣

∣L
(i−1)
i

∣

∣ · TQuery,i,j

)

,

where TPreprocess,i,j and TQuery,i,j denote the time complexities for LSF when
replacing Filteri,j . Here, x i ∈ L

(i−1)
i takes the role of the query point.

Applying LSF to this configuration gives time/memory trade-offs depicted in
Fig. 6. Optimizing for time yields Table 4 and for memory yields Table 3. Note
that for k ≥ 5, there is no real trade-off. The reason for this is as follows:
for large k and balanced configuration, the running time is dominated by the
creation of sublists L

(i)
j with large i. At these levels, the list sizes L

(i)
j have already

shrunk considerably compared to the input list sizes. The memory required even
for time-optimal LSF at these levels will be below the size of the input lists.
Consequently, increasing the memory complexity will not help. We emphasize
that for any k > 2, the memory-optimized algorithm has the same memory
complexity as [HK17], but strictly better time complexity.

4.2 Comparison with Configuration Extension

There exists a more memory-efficient variant [BGJ14] of the LSF techniques
than described above, which can reach optimal time without increasing the mem-
ory complexity. Roughly speaking, the idea is to immediately process the filter
buckets after creating them and never storing them all. However, even ignoring
subexponential overhead, this variant has two limitations: Firstly, we need to
know all query points q ∈ Q in advance. This makes it unsuitable for the top
level (which is the only level for k = 2) in the Gauss Sieve, because we build
up the list L vector by vector. Secondly, in this variant we obtain the solutions
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Fig. 6. Trade-offs for k = 2, 3, 4. Analogous to Figure 1, the axes are on a logarithmic
scale. The exact values for the left-most points for each curve (optimized for memory)
are given in Table 3. The right-most points (optimized for time) are given in Table 4.

Table 3. Asymptotic complexities when using LSF with the balanced/any config-
uration, when optimizing for memory: we keep the memory equal to the input list
sizes. The running time for k = 2 with LSF is equal to the one obtained in [BDGL16].
Without LSF, the runtime exponent 0.4150 for k = 2 was first shown in [NV08]. Note
that, when optimizing for memory, we implicitly restrict to the balanced configuration,
because this minimizes the input list size.

Tuple size (k) 2 3 4 5 6 7 8

Time [HK17] 0.415 0.3962 0.4240 0.4534 0.4738 0.5088 0.5398

Time (with LSF) 0.3685 0.3588 0.3766 0.4159 0.4497 0.4834 0.5205

Space 0.2075 0.1887 0.1723 0.1587 0.1473 0.1376 0.1293

Table 4. Asymptotic complexities when using LSF with the balanced configura-
tion, when optimizing for time (i.e. using the largest amount of memory that still
leads to better time complexities). With this we can obtain improved time complexities
for our k-list algorithm for k = 2, 3, 4. Starting from k = 5, giving more memory to
LSF without changing the target configuration does not result in an asymptotically
faster algorithm.

Tuple size (k) 2 3 4 5 6 7 8

Time (with LSF) 0.3685 0.3307 0.3707 0.4159 0.4497 0.4834 0.5205

Space 0.2075 0.2092 0.1980 0.1587 0.1473 0.1376 0.1293
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(q ,x ) with q ∈ Q, 〈q ,x 〉 ≈ c in essentially random order. In particular, to obtain
all solutions x for one given query point q , there is some overhead6. Note that,
due to the structure of Algorithm1, we really need the solutions for one query
point after another (except possibly at the last level). So the memory-less variant
does not seem well-suited for our algorithm for k > 2.

A generalization of memory-efficient LSF to k > 2 was described in [HK17]
under the name configuration extension and applied to sieving. However, due to
the second limitation described above, they achieve smaller speed-ups than we
do for k > 2.

5 Combining both Techniques

In the previous sections we showed how to obtain time–memory trade-offs by
either (1) changing the target configuration C (Sect. 3), or (2) using locality-
sensitive filters for the balanced configuration (Sect. 4). An obvious next step
would be to try to combine both techniques to obtain even better results, i.e. by
solving the configuration problem for an arbitrary target configuration C using
LSF as a subroutine. The memory complexity will be either dominated by the
input list sizes (which are determined by C from the condition that the output
list size equals the input list sizes) or by the filter buckets used for LSF.

To obtain time–space trade-offs for sieving, we optimize over all possible
configurations C with

∑

i,j Ci,j ≤ 1 and parameters βi,j used in each application
of LSF. We used MAPLE [M] for the optimization. To obtain the complete
trade-off curve, we optimized for time while prescribing a bound on memory,
and varying this memory bound to obtain points on the curve. Note that the
memory-optimized points are the same as in Sect. 4.1, since we have to keep C
balanced – in a memory-restricted regime, LSF only gives the same improvement
as combining LSF with arbitrary target configurations. However, as soon as the
memory bound is slightly larger, we already observe that this combination of
both techniques leads to results strictly better than ones produced by using
neither or only one of the two techniques.

The resulting trade-off curves are depicted in Fig. 1 for k = 2, 3, 4. The same
curves for k = 3, 4 are also depicted in Fig. 7, where the trade-offs are compared
to using either a modified configuration (without LSF) or LSF (with a balanced
configuration). The time-optimal points for fixed k are given in Table 1.

In general, for small k we can gain a lot by using LSF, whereas for large k,
most of the improvement comes from changing the target configuration. Note also
that the trade-offs obtained by combining both techniques are strictly superior
to using only either improvement.

6 E.g. we could first output the solutions for all query points and sort these solutions
wrt. the query point, but that requires storing the set of all solutions for all queries
and increases the memory complexity.
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(a) k = 3

(b) k = 4

Fig. 7. Trade-offs for k = 3, 4 with different improvements: changing the target config-
uration, LSF, or both.

6 Tuple Gauss Sieve

So far we have been concerned with the algorithm for the configuration problem
and how it can be used to solve the approximate k-list problem. Here we explain
how our algorithm for the k-list problem can be used as a subroutine within
k-tuple lattice sieving. We only give a high-level overview here. A more detailed
description, including pseudo-code can be found in Appendix C in [HKL].

Lattice sieving algorithms have two flavors: the Nguyen-Vidick sieve [NV08]
and the Gauss sieve [MV10]. Since in practice the latter outperforms the former,
we concentrate on Gauss sieve. However, our approach can be used for both.

The algorithm receives on input a lattice represented by a basis B ∈ R
n×n

and outputs a vector v ∈ L(B) s.t. ‖v‖ = λ1(L(B)). During its run, the Gauss
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Sieve needs to efficiently sample (typically long) points v ∈ L(B), whose direc-
tion is nearly uniformly distributed.

After preprocessing the basis by an L3 reduction, we can use Klein’s sampling
procedure [Kle00], which outputs vectors of length 2n ·λ1(L(B)) in poly(n) time.

In the Gauss Sieve, we keep a set S of vectors and try to perform as many
k-reductions on S as possible. By this, we mean that we look for k-tuples
(x 1, . . . ,xk) ∈ S with 0 < ‖x 1 ± · · · ± xk‖ < max{x 1, . . . ,xk} and we replace
the vector of maximal length by the (shorter) sum. To find such k-tuples, we
use Algorithm 1 for the configuration problem for an appropriately chosen con-
figuration C. If no k-tuples from S satisfy C, we enlarge S by sampling a new
vector.

To avoid checking whether the same k-tuples satisfies C multiple times, we
separate S = L ∪ Q into a list L and a queue Q. The list L contains the lattice
vectors that we already checked: we maintain that no k-tuples from L satisfy C.
The queue Q contains vectors that might still be part of a k-tuple satisfying C.

Due to our splitting of S, we may assume that one of the vectors in the
k-tuples is from Q. In fact, we can just repeatedly call Algorithm 1 on lists
L1 = {p}, L2 = . . . = Lk = L for p ∈ Q and perform k-reductions on the
solutions.

Whenever we sample or modify a vector, we have to move it into Q; if no
more reduction is possible with L1 = {p}, L2 = . . . = Lk, we move p from Q
into L. If Q is empty, this signals that we have to sample a new vector.

Since the length of the vectors in S keeps decreasing, we hope to eventually
find the shortest vector. We stop the search when the length of the shortest
element of the list (i.e., the shortest lattice vector found) is equal to the first
successive minimum, λ1(B). Since we usually do not know the value of λ1(B)
exactly, we use some heuristics: in practice [MLB15], we stop once we found a
lot of k-tuples where the k-reduction would give a zero vector.

6.1 Gauss Sieve with k = 3 in Practice

We ran experiments with the 3-Gauss sieve algorithm with the aim to com-
pare balanced and non-balanced configuration search. We used a Gauss-sieve
implementation developed by Bai et al. in [BLS16] and by Herold and Kirshanova
in [HK17].

As an example, we generated 5 random (in the sense of Goldstein-Mayer
[GM06]) 70-dimensional lattices and preprocessed them with β-BKZreduction
for β = 10. Our conclusions are the following:

– The unbalanced configuration C given above indeed puts more work to the
(asymptotically) non-dominant first level than the balanced configuration
does. We counted the number of inner products (applications of filterings)
on the first and on the seconds levels for each of the 5 lattices. As the algo-
rithm spends most of its time computing inner-products, we think this model
reasonably reflects the running time.
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Table 5. Running times of triple lattice sieve for 3 different target configurations Ci,j .
All the figures are average values over 5 different Goldstein-Mayer lattices of dimension
n. Columns ‘level 1’ show the number of inner-products computed on the first level of
the algorithm (it corresponds to the quantity |L|2), columns ‘level 2’ count the number
of inner-product computed in the second level (in corresponds to |L|·|L(1)|2). The third
columns T shows actual running times in seconds.

n |Ci,j | = 0.32 |Ci,j | = 0.333 |Ci,j | = 0.3508

level 1 level 2 T/sec level 1 level 2 T/sec level 1 level 2 T/sec

60 4.8 ·108 1.7 ·108 5.6 ·102 5.8 ·108 1.2 ·108 6.0 ·102 7.2 ·108 2.1 ·108 7.3 ·102

62 9.4 ·108 3.5 ·108 1.3 ·103 1.1 ·109 6.7 ·108 2.7 ·103 1.4 ·109 1.4 ·108 3.4 ·103

64 1.7 ·109 6.8 ·108 3.4 ·103 2.1 ·109 4.6 ·108 5.0 ·103 2.7 ·109 2.7 ·108 5.6 ·103

66 3.0 ·109 1.5 ·109 5.2 ·103 3.9 ·109 8.7 ·108 2.1 ·104 5.1 ·109 5.1 ·108 1.5 ·104

68 6.0 ·109 2.5 ·109 1.4 ·104 7.3 ·109 1.6 ·109 1.1 ·104 9.6 ·109 9.5 ·108 2.7 ·104

70 1.1 ·1010 4.9 ·109 3.0 ·104 1.4 ·1010 3.2 ·109 3.6 ·104 1.8 ·1010 1.8 ·109 4.9 ·104

72 2.1 ·1010 9.4 ·109 4.8 ·104 2.6 ·1010 6.1 ·109 7.2 ·104 – – –

74 3.9 ·1010 1.8 ·1010 1.3 ·105 4.7 ·1010 1.1 ·1010 1.4 ·105 6.4 ·1010 6.2 ·109 1.9 ·105

76 7.0 ·1010 3.4 ·1010 2.7 ·105 8.6 ·1010 2.1 ·1010 3.1 ·105 – – –

The average number of inner-product computations performed on the upper-
level increases from 1.39 ·1010 (balanced case) to 1.84 ·1010 (unbalanced case),
while on the lower (asymptotically dominant) level this number drops down
from 3.23 · 109 to 1.82 · 109.

– As for the actual running times (when measured in seconds), 3-Gauss sieve
instantiated with balanced configuration search outperforms the sieve with
the unbalanced C given above on the dimensions up to 74. We explain this
by the fact that the asymptotical behavior is simply not visible on such small
dimensions. In fact, in our experiments the dominant level turns out to be
the upper one (just compare the number of the inner-products computations
in Table 5). So in practice one might want to reverse the balancing: put more
more work on the lower level than on the upper by again, changing the target
configuration. Indeed, if we relax the inner-product constraint to 0.32 (in
absolute value), we gain a significant speed-up compared with balanced 1/3
and asymptotically optimal 0.3508.
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Abstract. The hardness of the shortest vector problem for lattices is
a fundamental assumption underpinning the security of many lattice-
based cryptosystems, and therefore, it is important to evaluate its dif-
ficulty. Here, recent advances in studying the hardness of problems in
large-scale lattice computing have pointed to need to study the design
and methodology for exploiting the performance of massive parallel com-
puting environments. In this paper, we propose a lattice basis reduction
algorithm suitable for massive parallelization. Our parallelization strat-
egy is an extension of the Fukase–Kashiwabara algorithm (J. Information
Processing, Vol. 23, No. 1, 2015). In our algorithm, given a lattice basis
as input, variants of the lattice basis are generated, and then each pro-
cess reduces its lattice basis; at this time, the processes cooperate and
share auxiliary information with each other to accelerate lattice basis
reduction. In addition, we propose a new strategy based on our evalua-
tion function of a lattice basis in order to decrease the sum of squared
lengths of orthogonal basis vectors. We applied our algorithm to problem
instances from the SVP Challenge. We solved a 150-dimension problem
instance in about 394 days by using large clusters, and we also solved
problem instances of dimensions 134, 138, 140, 142, 144, 146, and 148.
Since the previous world record is the problem of dimension 132, these
results demonstrate the effectiveness of our proposal.

Keywords: Lattice basis reduction · Parallelization
Shortest vector problem · SVP Challenge

1 Introduction

1.1 Background

Lattice-based cryptography is an attractive field of research, because it has
produced useful cryptographic schemes, for example, public-key cryptosystems,
c© International Association for Cryptologic Research 2018
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functional encryption schemes, and fully homomorphic encryption schemes,
etc. [1,2,4,7–12,24,26–29,31,44], and these systems are believed to resist quan-
tum cryptanalysis. Their security has been proven under the computational
hardness assumption, and this assumption is related to the difficulty in solv-
ing the shortest vector problem (SVP) on a lattice. Therefore, it is important to
show evidence of and to estimate the hardness not only theoretically, but also
practically.

There have been many studies reporting on algorithms to solve the SVP,
and the typical approaches are lattice basis reduction and enumerating lattice
vectors. Lattice basis reduction algorithms take a lattice basis as input and out-
put another lattice basis for the same lattice whose basis vectors are relatively
shorter than the input. Enumeration algorithms take a lattice basis as input and
search for relatively shorter lattice vectors than the basis vectors of the input.
To evaluate the computational hardness of SVP, it is important to improve
the efficiency of algorithms and implement high-performance solvers; here too,
there have been many studies [6,13–17,20,21,23,30,33,34,36–39,46–49]. How-
ever, thanks to recent advances in computing technologies, exploiting the per-
formance of massively parallel computing environment, for example, a cluster
consists of many large computers, has become the most important strategy with
which to evaluate the security of lattice cryptosystems, and a methodology to
solve the SVP is needed for it.

1.2 Our Contribution

In this paper, we propose a new lattice basis reduction algorithm suitable for
parallelization. Our proposal consists of a parallelization strategy and a reduction
strategy.

Our parallelization strategy enables many parallel processes to reduce the
lattice basis cooperatively, so it can exploit the performance of parallel com-
puting environments in practice. This strategy is based on an idea proposed
by Fukase and Kashiwabara in [20]; however, the parallel scalability of their
algorithm is unclear with regard to massive parallelization. To achieve parallel
scalability, our strategy consists of two methods. The first method is a procedure
of generating different lattice bases for many processes. Our experiments show
that this method enables the processes to generate a huge number of lattice
vectors and that it works well even if the processes take the same lattice basis.
The second method is to use global shared storage to keep information on the
cooperative lattice basis reduction; this method enables many processes to share
auxiliary information for accelerating the lattice basis reduction with a small
synchronization overhead.

Our lattice basis reduction strategy enables us to efficiently obtain lattice
bases with a small sum of squared lengths of orthogonal basis vectors, which is
related to finding relatively short lattice vectors. Experiments and analyses are
given by Fukase and Kashiwabara in [20], as explained in Sect. 3.2, and Aono
and Nguyen in [5]. Fukase and Kashiwabara in [20] proposed a strategy to reduce
this sum, but it is complicated. To efficiently obtain a lattice basis that has a
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small sum of squared lengths, we propose a new strategy based on an evaluation
function of lattice bases.

We applied our algorithm to problem instances in the SVP Challenge,
which is hosted by Technische Universität Darmstadt [45]. We solved a prob-
lem instance of dimension 150 in about 394 days with four clusters, a world
record. In addition, we solved problem instances of dimensions 134, 138, 140,
142, 144, 146, and 148.

1.3 Related Work

Kannan’s enumeration (ENUM) algorithm [33] is an exponential-time algorithm
that outputs the shortest or nearly shortest lattice vector of given lattice. ENUM
and its variants are used as the main routine or subroutine to solve the short-
est lattice vector problem (SVP), as explained in Sect. 2.3. Thus, studying the
ENUM algorithm is an important research field, and several improvements have
been proposed [16,17,23,30,38].

The Lenstra–Lenstra–Lovász (LLL) algorithm [36] is a lattice basis reduc-
tion algorithm which takes a lattice basis and a parameter δ and produces a
δ-LLL reduced basis of the same lattice. The LLL algorithm is the starting point
of many lattice basis reduction algorithms and is a polynomial-time algorithm.
Since the first basis vector of the output basis is a relatively short lattice vector in
the lattice in practice, the LLL algorithm is also used as the main routine or sub-
routine of SVP algorithms. The Block Korkin–Zolotarev (BKZ) algorithm [49]
is a block-wise generalization of the LLL algorithm, and it uses the ENUM algo-
rithm as a subroutine. The BKZ algorithm generates relatively shorter basis
vectors than the LLL algorithm does. Studying LLL, BKZ, and their variants is
a popular topic of research and several improvements and extensions have been
reported [6,15,21,39].

Schnorr’s random sampling reduction (RSR) algorithm [47,48] is a proba-
bilistic lattice basis reduction algorithm. The RSR algorithm randomly generates
lattice vectors. The simple sampling reduction (SSR) algorithm [13,14,37] is an
extension of the RSR algorithm that analyzes the expected length of the lattice
vectors to be generated. The authors of SSR also presented several theoretical
analyses of the RSR and their algorithm.

Our algorithm is based on the Fukase–Kashiwabara (FK) algorithm [20].
The FK algorithm is an extension of the SSR algorithm. The authors of the FK
algorithm refined the calculation for the expected length of lattice vectors to be
generated and showed that the probability of finding short lattice vectors can be
increased by reducing the sum of squared lengths of orthogonal basis vectors. A
brief introduction to the FK algorithm is given in Sect. 3.2. Aono and Nguyen [5]
presented a theoretical analysis of the RSR algorithm and its extensions. They
also gave a probabilistic perspective and a comparison with [23].

With the aim of using parallel computation to solve the SVP, several
researchers proposed parallelized algorithms [16,17,30,34,46]. In particular, par-
allelized ENUM algorithms on CPUs, GPUs, and FPGAs were investigated
by [16,17,30]. A parallelized SSR algorithm for GPUs was proposed in [46]. A
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design for an SVP solver that exploits large-scale computing environments was
proposed by [34]. In [34], the authors integrated, tuned up, and parallel pruned
the ENUM algorithm [23] into a multicore-CPU and GPU implementation [30],
and they extended this implementation by using multiple CPUs and GPUs in
the single program multiple data (SPMD) style [41].

Organization. Preliminaries are described in Sect. 2. We then give a brief intro-
duction to sampling reduction and the previous studies [20,37,47,48] in Sect. 3.
An overview of our parallelization strategy is presented in Sect. 4, and our pro-
posal is explained in detail in Sect. 5. Section 6 presents the results of applying
our proposal to the SVP Challenge and we conclude in Sect. 7.

2 Preliminaries

2.1 Lattice

In this section, we introduce notations and definitions of the lattice.
The set of natural numbers {0, 1, . . .} is denoted by N, and the sets of integers

and real numbers are denoted by Z and R, respectively. We denote an n-element
vector (or sequence) as x = (x1, . . . , xn) = (xi)n

i=1. Let v = (v1, . . . , vn) ∈ R
n

and u = (u1, . . . , un) ∈ R
n be two n-dimensional vectors on R; we define the

inner product of v and u by 〈v,u〉 :=
∑n

i=1 viui. The length (Euclidean norm)
of v, denoted by ‖v‖, is

√〈v,v〉.
Let b1, . . . , bn ∈ Z

n be n-dimensional linearly independent column (integral)
vectors. The (full rank) lattice L spanned by a matrix B = (b1, . . . , bn) is defined
as the set L = L(B) = {Bx | x ∈ Z

n}. Such a B is called a lattice basis of L, and
each v ∈ L is called a lattice vector of L. Every lattice has infinitely many lattice
bases except n = 1; i.e., let U be an n-dimensional unimodular matrix over Z;
then L(B) = L(BU), so that BU is another basis of L if U is not the identity
matrix. For a lattice basis B = (b1, . . . , bn), the corresponding (Gram–Schmidt)
orthogonal basis vectors b∗

1, . . . , b
∗
n ∈ R

n are defined by b∗
i = bi −∑i−1

j=1 μB ,i,jb
∗
j ,

where μB ,i,j = 〈bi, b
∗
j 〉/‖b∗

j‖2. The determinant of L is denoted by det(L), and
note that det(L) =

∏n
i=1‖b∗

i ‖ for any basis B = (b1, . . . , bn) of L.
Given a lattice basis B = (b1, . . . , bn) of a lattice L, the i-th orthogonal

projection by B, denoted by πB ,i : R
n → span(b1, . . . , bi−1)⊥, is defined as

πB ,i(v) = v − ∑i−1
j=1 v∗

j b
∗
j , where v∗

j = 〈v, b∗
j 〉/‖b∗

j‖2 ∈ R (for i = 1, πB ,1 is the

same as the identity map). Note that ‖πB ,i(v)‖2 =
∑n

j=i+1

(〈v, b∗
j 〉/‖b∗

j‖
)2. We

define the i-th orthogonal complement by B as LB ,i := πB ,i(L) = {πB ,i(v) | v ∈
L}. We call ‖πB ,i(v)‖ the orthogonal length of v on LB ,i; this is an important
measurement in the context of lattice basis reduction.

2.2 Natural Number Representation

In this section, we explain the natural number representation (NNR) of a lat-
tice vector. In Schnorr’s algorithm [47], a lattice vector is represented by an
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n-dimensional sequence consisting of 0 s and 1s, where n is the dimension of the
given lattice basis. The numbers 0 and 1 express the amount of aberration from
the orthogonal point at each index, and one can calculate a lattice vector from
the lattice basis and this sequence. Moreover, Buchmann and Ludwig [13,14,37]
indicate that one can generalize 0, 1 to the natural numbers 0, 1, 2, . . ., and
calculate the expected value of squared lengths of the lattice vectors generated
from a sequence of natural numbers. Fukase and Kashiwabara [20] call such a
sequence of natural numbers a natural number representation (NNR), and Aono
and Nguyen [5] call it a tag (defined on the natural numbers). One can determine
a set of NNRs that has a small expected value of squared lengths for a given
basis. The following definitions and statements are basically reprinted from [20],
but similar descriptions are given in other papers [5,13,14,37].

Definition 1 (Natural Number Representation). Let B = (b1, . . . , bn)
be a lattice basis of the lattice L. Given a lattice vector v =

∑n
i=1 νib

∗
i ∈ L,

the natural number representation (NNR) of v on B is a vector of n non-
negative integers (n1, . . . , nn) ∈ N

n such that −(ni + 1)/2 < νi ≤ −ni/2 or
ni/2 < νi ≤ (ni + 1)/2 for all i = 1, . . . , n.

Theorem 1 [20]. Let B = (b1, . . . , bn) be a lattice basis of the lattice L, and
let v =

∑n
i=1 νib

∗
i ∈ L. For any lattice vector v ∈ L, the NNR of v is uniquely

determined, and the map nB : L → N
n, which is given by nB (v) := (n1, . . . , nn),

is a bijection.

Assumption 1 (Randomness Assumption [5,20,47]). Let v =
∑n

j=1 νjb
∗
j

be a lattice vector, and v has the NNR n = (n1, . . . , nn). The coefficients νj of
v are uniformly distributed in (−(nj + 1)/2,−nj/2] and (nj/2, (nj + 1)/2] and
statistically independent with respect to j.

The difference from the original randomness assumption [47,48] is that the NNRs
are generated by a procedure called the sampling algorithm and these NNRs
belong to a subset of {0, 1}n defined as

{(0, . . . , 0, nn−u, . . . , nn−1, 1) | nn−u, . . . , nn−1 ∈ {0, 1}},

where u is a positive integer parameter of the sampling algorithm.

Theorem 2 [20]. Let B = (b1, . . . , bn) be a lattice basis of the lattice L, and
let n = (n1, . . . , nn) be an NNR. The expectation of the squared length of the
corresponding lattice vector v of n (namely, nB (v) = (n1, . . . , nn)) is:

E
[‖v‖2] =

1
12

n∑

i=1

(3n2i + 3ni + 1)‖b∗
i ‖2. (1)

Theorem 2 states that one can calculate the expected value of the squared
length of a generated lattice vector with given NNR in a given basis without
calculating the coordinates of the lattice vector. For a relatively reduced basis
(the output of the LLL algorithm, the BKZ algorithm, or other variants), the
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sequence (‖b∗
1‖2, ‖b∗

2‖2, . . . , ‖b∗
n‖2) tends to decrease with respect to the indices.

Therefore, a short lattice vector tends to have natural number 0 in first consecu-
tive indices of the NNR, and natural numbers 1 and 2 appear in last consecutive
indices in the NNR for any relatively reduced basis.

2.3 Shortest Vector Problem and SVP Challenge

Given a lattice basis B of a lattice L of dimension n, the shortest vector problem
(SVP) consists in finding the shortest non-zero vector v ∈ L. The SVP is NP-
hard under randomized reduction [3]. It is hard to find the shortest lattice vector
in the lattice when n is large. However, thanks to the Gaussian heuristic GH(L),
the length of the shortest lattice vector in L can be estimated as GH(L) :=
(
Γ(n/2 + 1) · det(L)

)1/n
/
√

π, where Γ is the gamma function [32,40]. The root

Hermite factor of v and L is defined by
(‖v‖/det(L)1/n

)1/n. Given a lattice
vector v, the corresponding root Hermite factor is used to make comparative
measurements among different lattices, because it is independent of the lattice
basis [22,42].

The security of lattice-based cryptosystems depends on the hardness of the
lattice problem. Therefore, it is important to study efficient algorithms for solv-
ing the SVP. Here, a competition, called the SVP Challenge [45], was maintained
by Technische Universität Darmstadt since 2010. The SVP Challenge gives a
problem instance generator that produces SVP instances and hosts a ranking of
registered lattice vectors as follows. A submitted lattice vector v ∈ L is regis-
tered if one of the following conditions is satisfied: no lattice vector is registered
at the dimension of v and ‖v‖ < 1.05 · GH(L), or v is shorter than any other
lattice vector of the same dimension. In this paper, for a lattice L, we call a
lattice vector v ∈ L a solution of L if ‖v‖ < 1.05 · GH(L).

3 Brief Introduction to Sampling Reduction

Before explaining our algorithm, we briefly introduce the RSR algorithm and its
extensions [20,37,47,48].

3.1 Overview of Sampling Reduction

Here, we briefly introduce the RSR algorithm and its extensions [20,37,47,48]
and describe the parts that our algorithm shares with them.

First of all, we define the following notions and terminology.

Definition 2 (lexicographical order). Let B = (b1, . . . , bn) and C =
(c1, . . . , cn) be two lattice bases of the same lattice. We say that B is smaller
than C in the lexicographical order if and only if ‖b∗

j‖ < ‖c∗
j‖, where j is the

smallest index for which ‖b∗
j‖ and ‖c∗

j‖ are different.
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Definition 3 (insertion index). Given a lattice vector v and a real number δ
with 0 < δ ≤ 1, the δ-insertion index of v for B is defined by

hδ(v) = min
({i | ‖πB ,i(v)‖2 < δ‖b∗

i ‖2} ∪ {∞}).

Note that the δ-insertion index is a parameterized notion of Schnorr [47,48].
The RSR algorithm and its extensions need a lattice reduction algorithm

to reduce a given lattice basis in lexicographical order, and the LLL and BKZ
algorithms can be used for this purpose. In this paper, we define this operation
as follows.

Definition 4. Let v ∈ L be a lattice vector with ‖πB ,i(v)‖ < δ‖b∗
i ‖. We call

the following operation δ-LLL reduction of B at index i by v: generate an (n +
1) × n matrix M = (b1, . . . , bi−1,v, bi, . . . , bn), compute the δ-LLL reduced (full
rank) lattice basis B′ by using the LLL algorithm with input M , and output the
resulting lattice basis.

As mentioned above, one can use another lattice reduction algorithm. In fact,
the RSR algorithm [47,48] uses the BKZ algorithm.

The RSR algorithm and its extensions consist of two major parts. The first
part takes a lattice basis B and a set of NNRs as input and generates a lattice
vector that corresponds to an NNR and B. It outputs a set of generated lattice
vectors. In this paper, we call this operation lattice vector generation. The second
part performs lattice basis reduction. If the result of the lattice vector generation
is a lattice vector v whose orthogonal length is shorter than a orthogonal basis
vector of B, in other words, whose δ-insertion index is finite, B is reduced by
using δ-LLL reduction of B at index hδ(v) by v. Note that the lexicographical
order of the resulting lattice basis of this part is smaller than the input. To
summarize the RSR algorithm and its extensions, alternately repeat the lattice
vector generation and the lattice basis reduction to reduce a given lattice basis.
To solve the SVP, these calculations are repeated until the length of the first
basis vector of the obtained lattice basis is less than 1.05 ·GH

(
L(B)

)
, where B

is the given lattice basis.
To reduce the lattice basis or solve the SVP efficiently, it is important to

choose a lattice vector as input for the lattice basis reduction from the result of
the lattice vector generation. Each previous study has its own selection rule. In
the RSR algorithm, a lattice vector v with hδ(v) ≤ 10 is chosen from the result
of the lattice vector generation. In the SSR algorithm, a lattice vector v with
hδ(v) = 1 is chosen. Fukase and Kashiwabara [20] introduce a rule to choose a
lattice vector, called restricting reduction, as explained in Sect. 3.2.

Ludwig [37] and Fukase and Kashiwabara [20] computed the expectation of
the squared length of the generated lattice vectors in the lattice vector gen-
eration. According to the expectation value of squared length, their algorithm
prepared lists of NNRs with 0, 1, and 2, and generated the corresponding lattice
vectors from the lattice basis. Aono and Nguyen [5] presented an algorithm to
produce a set of better NNRs (in their terms, tags).
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3.2 Fukase–Kashiwabara Algorithm

As our algorithm is an extension of a parallelization strategy and uses the global
shared storage proposed by Fukase and Kashiwabara [20], we will briefly intro-
duce their proposal before explaining ours. Note that our algorithm does not use
the restricting reduction of their algorithm. We refer the reader to [20] for the
details of the FK algorithm.

Restricting Reduction. Ludwig [37] and Fukase and Kashiwabara [20] showed
that one can calculate the expected value of the squared lengths of the gener-
ated lattice vectors for a lattice basis and a set of NNRs, and this expectation
is proportional to the sum of the squared lengths of the orthogonal basis vec-
tors. Therefore, a nice reduction strategy seems to reduce the lattice basis so as
to decrease the sum of squared lengths, and hence, such a strategy is consider-
able. Fukase and Kashiwabara [20] proposed a method for decreasing the sum
of squared lengths by introducing the restricting reduction index; this strategy
is briefly explained below.

To decrease the sum of squared lengths quickly, some application of a lattice
vector to the lattice basis is not good. Moreover, some application of a lattice
vector which decreases the sum of squared lengths is not the fast way to reach
a very small sum of squared lengths. To decrease the sum of squared lengths
quickly, Fukase and Kashiwabara [20] used a restricting index. For an index �,
called the restricting reduction index, the lattice basis is reduced at an index �′

only after �. In other words, the basis vectors before � are fixed. Let � be 0 at the
beginning of the program. As the main loops are executed, the restricting index
is gradually increased according to some rule. When the restricting index reaches
a certain value, it is set to 0 again. By using the restricting index, the sum of
squared lengths of orthogonal basis vectors is decreased from first consecutive
indices.

Stock Vectors. Some lattice vectors may be useful even if they are not short
enough for reducing the lattice basis. For example, after reduction of the lattice
basis at index i by another lattice vector, a lattice vector v may be applied
at index i + 1 or greater. In addition, after changing the restricting index to
0, a lattice vector v may be applied to the lattice basis if it was not used for
reducing the lattice basis because of a previous high restriction index. There-
fore, lattice vectors that are relatively shorter than the i-th orthogonal basis
vector are stored in global shared storage, and each stored lattice vector is asso-
ciated with an orthogonal complement LB ,i (namely, the place of the stored
vector is determined by the basis vectors b1, . . . , bi−1) in order to load and use
it for reducing the lattice basis by all the parallel running processes. Fukase and
Kashiwabara [20] call these stored vectors stock vectors.

Parallelization. A set of generated lattice vectors is determined from the lat-
tice basis and set of NNRs. Therefore, even if the sets of NNRs are the same,
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two different lattice bases generate different sets of lattice vectors that have few
vectors in common. Fukase and Kashiwabara [20] utilized this heuristic app-
roach with stock vectors to generate a lot of lattice vectors and cooperate with
each parallel running process. Given a lattice basis, their algorithm generates
different lattice bases except for first consecutive indices from 1 and distributes
each generated basis to each process. In other words, the processes have lattice
bases that have different basis vectors at last consecutive indices. Since these
lattice bases have a common orthogonal complement at first consecutive indices,
processes can share stock vectors associated with common basis vectors of first
consecutive indices, and since they have different basis vectors at last consecutive
indices, the generated lattice vectors could be different from each other.

Note that basis reduction is done by each process, and keeping first consec-
utive basis vectors the same is difficult. Thus, some mechanism is required to
keep first consecutive basis vectors the same among all the processes. Fukase
and Kashiwabara [20] proposed a method by storing basis vectors as the stock
vectors.

4 Overview of Our Parallelization Strategy

First, we briefly explain parallelization and the problems that make it hard to
exploit the performance of parallel computation. Then, we briefly describe our
strategy.

4.1 Technical Hurdles and Brief Review of Parallelization
Methodology

Several researchers have used parallel computation to solve the SVP. In partic-
ular, there are three types of parallel algorithm for solving it.

The first type is the divide-and-conquer approach for parallelizing the ENUM,
pruned ENUM, and sampling algorithms of lattice vectors [16,17,23,30,34,46].
Several researchers [16,17,30,34] studied parallel ENUM algorithms based on
this methodology. This type of parallelization can be used to speed up the search
for the shortest or a relatively short lattice vector. However, it is hard to solve
high-dimensional SVPs by using this type of parallelization, which take an expo-
nentially long time in practice. Hence, this type of parallelization is out of the
scope of this paper.

The second type is randomization of lattice bases to exploit the power of
massively parallel computing environments. The authors of reference [34] pro-
posed an implementation to solve high-dimensional SVPs by exploiting massively
parallel running processes. Their implementation works as follows. For a given
lattice basis, the method generates a lot of lattice bases by multiplications with
random unimodular matrices. The generated lattice bases are distributed to the
processes, and each process runs the BKZ and pruned parallel ENUM algorithms.
This method reduces a lot of lattice bases simultaneously, so the probability of
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finding a short lattice vector becomes higher. However, each process works inde-
pendently; therefore, the information for accelerating lattice basis reduction is
not shared among processes.

The third type of parallelization, proposed by Fukase and Kashiwabara [20],
involves alteration of last consecutive basis vectors, which is briefly explained in
Sect. 3.2. For a given lattice basis, their method generates a lot of lattice vectors
from the given basis and a set of NNRs in order to find lattice vectors with a
shorter length than the given orthogonal basis vectors. Their key idea consists of
two heuristic approaches. Firstly, each process executes lattice vector generation,
which takes the same set of NNRs and a different lattice basis as input in order
to generate a different set of lattice vectors. To generate many different lattice
bases, each process computes the δ-LLL reduction of a lattice basis of dimension
n at last consecutive indices �, �+1, . . . , n by using a different lattice vector. Note
that different lattice bases might be outputted for different input lattice vectors.
Secondly, if the processes have different lattice bases but same first consecutive
basis vectors with indices 1, 2, . . . , �′, then useful lattice vectors, which are con-
tained in the same orthogonal complements (called stock vectors by Fukase and
Kashiwabara), could be shared among the processes in order to accelerate the
lattice basis reduction. Fukase and Kashiwabara proposed a parallelization strat-
egy based on these heuristics. However, they reported experimental results with
only 12 or fewer parallel processes. In fact, in our preliminary experiments of the
parallelization strategy of Fukase and Kashiwabara [20], we observed that many
parallel running processes to solve higher dimensional problems did not keep the
same first consecutive basis vectors. Since current massively parallel computing
environments have many more physical processing units (often, more than 100),
we conclude that there is still room for scalable massive parallelization.

The parallelization strategy in our algorithm is an extension of [20]. The key
idea of our method is explained next.

4.2 Key Idea of Our Parallelization Strategy

To reduce a lattice basis by utilizing the performance of a parallel computing
environment effectively, one needs a scalable parallelization strategy that keeps
first consecutive indices’ basis vectors common but last consecutive indices’ basis
vectors different on the many lattice bases of the individual processes with a
small synchronization penalty in practice. To accomplish this, we extend the
parallelization strategy of Fukase and Kashiwabara [20]. Our strategy consists
of two methodologies. The first enables each process to generate a lattice basis
variant which has different last consecutive indices’ basis vectors from those of
other processes, and the second enables each process to share first consecutive
indices’ basis vectors. The rest of this section briefly explains our idea, and
Sect. 5.2 explains it in detail.

Our lattice basis reduction with process-unique information (e.g., process
ID, MPI rank, etc.) generates many lattice basis variants that have different last
consecutive indices’ basis vectors. In addition, each process generates a lot of
lattice vectors to reduce the lattice basis by using a given lattice basis and a
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set of NNRs. If there is a lattice vector whose orthogonal length is relatively
shorter than the orthogonal basis vectors in first consecutive indices, the process
stores it in the global shared storage of stock vectors, by using the method
proposed by Fukase and Kashiwabara [20], as explained in Sect. 3.2. Thanks to
the process-unique information, each process can use this information as a seed
for generating different lattice bases even if each process takes the same lattice
basis as input. During the reduction execution, the processes work independently
except for the access to the global shared storage and do not communicate with
each other. The most computationally expensive operation is generating a lot of
lattice vectors, and this operation is calculated in each process independently.
Hence, there is only a negligible synchronization penalty in practice.

As mentioned above regarding the second method, Fukase and Kashi-
wabara [20] suggested that cooperation among parallel running processes can
be enabled by sharing first consecutive indices’ basis vectors. However, main-
taining this situation without incurring a painfully large synchronization cost
is a difficult task when there are many processes. Fukase and Kashiwabara [20]
proposed to use global shared storage for stock vectors, as explained in Sect. 3.2.
However, it is unclear how their method can be used to keep common basis vec-
tors in first consecutive indices among many processes. We propose a method
to share the basis vectors in first consecutive indices by using additional global
shared storage. In our algorithm, each process has its own lattice basis. In every
loop, each process stores basis vectors in first consecutive indices of its own lat-
tice basis in this extra global shared storage; then it loads lattice vectors from
the storage and computes the smallest lattice basis in lexicographical order by
using the stored lattice vectors and their own lattice bases. Note that only first
consecutive indices’ basis vectors are stored in the global storage. In this method,
many processes cause accesses to the global shared storage, and synchronization
is required. However, the synchronization penalty is practically smaller than
that of communication among many processes, and as mentioned above, the
most computationally expensive operation is generating lattice vectors.

5 Our Algorithm

The most important part of our proposal is the methodology of parallelization.
We designed and implemented our parallelization methodology in the single pro-
gram multiple data (SPMD) style [41]. Namely, each process executes the same
program, but each process has a different internal state from each other. Our
parallelization is an extension of the parallelization strategy and uses the global
shared storage and stock vectors proposed by Fukase and Kashiwabara [20], as
explained in Sect. 3.2. In addition, it contains a lattice basis reduction strategy
based on our new evaluation function.

Our algorithm, listed in Algorithms 1 and 2, is based on the Fukase–
Kashiwabara (FK) algorithm [20]; in particular, its lattice basis reduction is
similar to that method, namely, by generating a lot of lattice vectors by using a
lattice basis B and a set of natural number representations (NNRs), as defined



448 T. Teruya et al.

Input: A lattice basis B, process-unique information pui (regarded as an
integer), two sets S and S′ of natural number representations, integers
�fc, �lc, and �link, and real values δstock, δ, δ′, δ′′, and Θ.

Output: A lattice basis B.
1 begin
2 loop begin
3 B′ ← B;
4 Reduce B by using Algorithm 2 with input parameters B, pui, S′, �fc,

�lc, δstock, δ, δ′ and δ′′ (explained in Sect. 5.2);
5 Generate a set of lattice vectors V from B and a set S of natural

number representations;
6 foreach v ∈ V do
7 if there exists an index i = hδstock(v) such that 1 ≤ i ≤ �fc then

store v in the global shared storage of stock vectors (explained in
Sect. 3.2);

8 end
9 Reduce B by using our strategy with inputs lattice vectors from the

global shared storage of stock vectors and the parameter Θ (explained
in Sect. 5.1) ;

10 Store the basis vectors of indices from 1 to �link of B in the global
shared storage of link vectors (explained in Sect. 5.2);

11 Load the lattice vectors from the global shared storage of link vectors;
then generate the smallest lattice basis B′′ in lexicographical order by
using loaded link vectors and B; then replace B by B′′ (explained in
Sect. 5.2);

12 if there exists a lattice vector v in the global shared storage of stock
vectors and B with ‖v‖ < 1.05 · GH

(
L(B)

)
then output v and halt

this process;
13 if B′ = B then halt this process and output B;

14 end

15 end

Algorithm 1. Main routine of our algorithm

by Definition 1 in Sect. 2.2, and reducing B to significantly decrease the sum of
squared lengths of orthogonal basis vectors of B by using the generated vectors.

Our method to generate a lot of lattice vectors from a lattice basis is similar
to the FK algorithm. Note that Aono and Nguyen [5] presented an algorithm to
produce a set of better NNRs (in their terms, tags), but we did not use it.

The major differences from the FK algorithm are as follows: a parallelization
strategy, and a lattice basis reduction strategy based on our evaluation function
in order to decrease the sum of squared lengths significantly for each process. In
Sect. 5.1, we show our new lattice basis reduction strategy for each process. In
Sect. 5.2, we describe our new parallelization strategy. We explain how to choose
parameters of our proposed algorithm in Sect. 5.3.
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Input: A lattice basis B = (b1, . . . , bn), the process-unique information pui

(regarded as an integer), a set S′ of natural number representations,
integers �fc, �lc, and real values δstock, δ, δ′, and δ′′.

Output: A lattice basis B.
1 begin
2 δ′

i ← δ′ for i = �lc + 1, . . . , n where n is the dimension of given lattice;
3 loop begin
4 Generate a set of lattice vectors V from B and a set S′ of natural

number representations;
5 foreach v ∈ V do
6 if there exists an index i = hδstock(v) such that 1 ≤ i ≤ �fc then

store v in the global shared storage of the stock vectors (explained
in Sect. 3.2);

7 end
8 Collect the lattice vectors V ′ = {v1, . . . , vN} that have a δ-insertion

index at an index i with �lc < i from V ;
9 B′ ← B;

10 loop begin
11 Find the lattice vector vi ∈ V ′ with j = hδ′

j
(v) such that

�lc < j ≤ n and ‖b∗
j ‖2 − ‖πB ,j(vi)‖2 is maximum;

12 if vi is not found in line 11 then go to line 18;
13 Reduce B by δ-LLL reduction at the index j by vi;
14 foreach k = �lc + 1, . . . , j − 1 do δ′

k ← δ′
k − δ′′;

15 foreach k = j, . . . , n do δ′
k ← δ′;

16 if (i + pui) mod N = 0 then go to line 18;

17 end
18 if B = B′ then terminate this subroutine and output B;

19 end

20 end

Algorithm 2. Subroutine of our algorithm to generate lattice basis variants

5.1 Basis Reduction Strategy Using Evaluation Function

As mentioned above, our algorithm is based on the FK algorithm [20]. FK algo-
rithm adopted restricting index as its lattice basis reduction method. But our
algorithm uses a following evaluation function of bases on lattice basis reduc-
tion. Our algorithm generates a lot of lattice vectors by using a lattice basis
B and a set of NNRs. Discovered relatively shorter lattice vectors, called stock
vectors, are stored in global shared storage [20], as explained in Sect. 3.2. After
generating these stock vectors, our algorithm uses them to reduce B. Several
stock vectors have the δ-insertion index at an index i for B, which is defined
in Sect. 2.1, so that there are several choices of stock vector that can reduce B.
Now we face the problem of deciding which stock vector is the best to reduce
B. An answer to this question is important for finding a solution efficiently.

However, based on our preliminary experiments with reducing higher dimen-
sional lattice bases, this is quite difficult problem. In order to manage to resolve
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this difficulty, we introduce the following evaluation function Eval and a positive
real number parameter Θ less than 1 for the lattice basis B = (b1, . . . , bn):

Eval(B,Θ) =
n∑

i=1

Θi‖b∗
i ‖2. (2)

It uses the following strategy at line 9. Replace B by a lattice basis B which
has the minimum Eval(B,Θ), where B is computed by the δ-LLL reduction of
B at index i by v, which is a lattice vector from the global shared storage of
stock vectors with hδstock(v) = i ≤ �fc.

Now let us precisely describe what is difficulty and why we introduced Eval
and Θ. According to [13,14,20,37], the average squared lengths of lattice vectors
generated by B and the set of NNRs are proportional to the sum of squared
lengths of orthogonal basis vectors of B, explained in Sect. 2.2. In this way, the
SVP can be solved by searching for shorter lattice vectors and using the found
lattice vector to reduce the lattice basis. At this time, lattice basis reduction
with a shorter lattice vector yields a reduced lattice basis in the context of
the lexicographical order, which is defined in Sect. 2.1; however, the sum of the
squared lengths of orthogonal basis vectors of the resulting lattice basis becomes
much larger in practice. Namely, there is a trade-off between two reduction
strategies (decreasing the lexicographical order and the sum of squared lengths
of orthogonal basis vectors). To resolve this dilemma, a method for optimally
choosing between these strategies is needed. However, as mentioned above, it
seems to be quite difficult because, to the best of our knowledge, basic theories
allowing this have not been developed in this research area. In order to manage
this issue, we decide to combine both strategies and this is the reason why we
introduced Eval and Θ.

The evaluation function Eval attempts to combine the lexicographical order
and the order defined by the sum of squared lengths with an adjustable param-
eter Θ. For a lattice basis B, if Θ is close to 1, then Eval(B,Θ) considers that
decreasing the sum of squared lengths of the orthogonal basis vectors is more
important, otherwise decreasing the lexicographical order is more important.
Eval balances the two orders and yields a flexible and efficient basis reduction
strategy for solving the SVP.

5.2 Parallelization Strategy

Now, we will explain parallelizing the computations method of our lattice reduc-
tion algorithm. If the parallel processes have the same lattice basis and generate
the same set of lattice vectors, these parallel computations would be useless. As
stated in Sect. 4, we generate different lattice bases for each process. However, if
parallel processes have completely different lattice bases, the parallel computa-
tion cannot be cooperative.

Fukase and Kashiwabara [20] proposed a parallel computation method such
that the basis vectors in first consecutive indices are the same among the pro-
cesses and the basis vectors in last consecutive indices are different among the
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processes. Since the basis vectors at last consecutive indices are different, the
same set of natural number representations generates a different set of lattice
vectors. However, they did not describe an effective parallel computation for
more than 100 processes. We propose an effective method for parallel computa-
tions, in which each process has same first consecutive basis vectors but different
last consecutive basis vectors. In our method, the computational cost of synchro-
nization is practically small. Our method consists of two parts: a part in which
each process has different last consecutive basis vectors, and method part in
which each process has common first consecutive basis vectors.

Lattice Basis Variants Generation. Here, we explain our new lattice reduc-
tion procedure with process-unique information in order to generate many lattice
basis variants that have different basis vectors in last consecutive indices. Each
process executes this procedure independently with process-unique information
pui. The procedure is shown in Algorithm 2.

The discontinue rule at line 16 in Algorithm 2 is important. This rule depends
on the process-unique information pui such that each process executes different
lattice basis reduction operations for last consecutive indices of the lattice basis.
Thanks to this procedure, a huge number of processes can generate many lattice
basis variants even if they have the same lattice basis without communicating
with each other.

Cooperation Between Many Processes. As mentioned above, one can make
a large amount of processes whose lattice bases have different basis vectors in
last consecutive indices. Since these processes have the same basis vectors in first
consecutive indices from 1, they utilize the stock vectors they have in common.
Fukase and Kashiwabara [20] proposed a method to keep this situation by using
stock vectors, as explained in Sect. 3.2; however, it is difficult to maintain for a
large number of processes solving higher dimensional problems without imposing
a heavy synchronization penalty.

We propose a method to solve the above problem. In it, all the processes share
additional global storage, and the basis vectors of the lattice basis possessed by
each process are stored in it in the same manner as stock vectors but with
a different strategy as explained next. We call the stored lattice vectors link
vectors. When each process has a new lattice basis, its basis vectors are stored
as link vectors. After each process loads link vectors from their storage, it uses
them to reduce the lattice basis to the smallest one in the lexicographical order.
In this method, the synchronization penalty (computational cost) consists of
storing and loading link vectors from storage, but this penalty is practically
small.

Note that we can adjust the parameter δstock in such a way that quite a few
stock vectors are found in one process and one main loop evaluation, and we
run around thousand processes in parallel, each of which stores stock vectors
independently. However, the number of stored stock vectors at any given time
is not that large, as we do not keep all stock vectors. This is because old stock
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vectors are relatively longer than orthogonal basis vectors possessed by running
processes, and it is therefore not necessary to store these, and we throw them
away. This parameter adjustment is also explained in next subsection. The same
strategy was used for the link vectors.

5.3 Parameter Choice

Our algorithm takes a basis B and process-unique information pui with param-
eters �fc, �lc, δ, δ′, δ′′, δstock, �link, Θ, and two sets S and S′ of NNRs used in
line 5 in Algorithm 1 and line 4 in Algorithm 2 as input. B is given by a user,
and pui is given by a user or a facility, e.g., MPI libraries and a job scheduler,
but choosing the remaining parameters is not trivial. We did not find an opti-
mal choice of parameters because, to the best of our knowledge, basic theories
allowing this have not been developed. In this section, we explain a method of
parameter choice for our algorithm. Note that the concrete chosen values of the
parameters when we solved a 150-dimensional problem instance appear in the
next section.

More precisely, we observed intermediate values in the main loop of our
algorithm (lines 2–14 in Algorithm1) with input a basis (e.g., 150-dimensional
problem instance in the SVP Challenge). The intermediate values which we
observed are as follows: (1) The number of found stock vectors. (2) The sum
of squared lengths of the orthogonal basis vectors. (3) The calculation times of
the two lattice vector generations in the main loop called at lines 4 and 5 in
Algorithm 1.

We want that (1) is quite small because we are only interested in relatively
short lattice vectors, and adjusting this can be immediately done by decreasing
δstock.

We adjust parameters �fc, �lc, �link, and Θ to appropriate values such that
the processes running in parallel can keep a small value of (2) when reducing
the basis. As mentioned in Sect. 5.1, it is quite hard to determine the value of
Θ, so that we choose and adjust the parameters by observations regarding the
performance and the intermediate values of the main loop of our algorithm.

Regarding (3), we adjust �lc, δ, δ′, δ′′, the set S of NNRs at line 5 in Algo-
rithm1, and the set S′ of NNRs at line 4 in Algorithm2. Our algorithm has two
subroutines to generate lattice vectors by using S and S′ (in line 5 in Algorithm 1
and line 4 in Algorithm 2), and they have different purposes. Since these lattice
vector generations are the most costly parts of our algorithm, it is important to
optimize the choices of S and S′; however, these sets differ only in their size.
Note that NNRs in S and S′ are chosen by ascending order of expectation of
squared lengths (shown in Theorem 2) of generated lattice vectors with several
bases.

The purpose of the lattice vector generation with S (at line 5 in Algorithm 1)
is finding relatively short lattice vectors, so the size of S should be large. The
purpose of the other lattice vector generation with S′ (at line 4 in Algorithm 2) is
decreasing the sum of squared length of orthogonal basis vectors and generating
many lattice bases variants as mentioned in Sect. 5.2 by repeatedly applying
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lattice reduction (e.g., the LLL algorithm), so it is not necessary to choose the
size of S′ as large.

Actually, we adjust the parameters �lc, δ, δ′, δ′′, and sizes of sets S and S′ in
such a way that the calculation times of two lattice vector generations with S and
S′ are around several minutes. More concretely, we chose the parameters such
that the calculation times are 5 min and 10 min, respectively, and the lattice
vector generation with S′ is repeatedly evaluated around 500 times per one
Algorithm 2 evaluation on average when we found a solution of a 150-dimensional
problem instance of the SVP Challenge.

6 Application to SVP Challenge

The shortest vector problem (SVP) is an important problem because of its rela-
tion to the security strength of lattice-based cryptosystems, and studying algo-
rithms for solving it is an important research topic. The SVP Challenge was
started in 2010 [45] as a way of advancing this research. The challenge provides
a problem instance generator and accepts submissions of discovered short lattice
vectors. As mentioned in Sect. 2.3, a submitted lattice vector of a lattice L is
inducted into the hall-of-fame if its length is less than 1.05 · GH(L) and less
than the lengths of other registered lattice vectors if they exist for the same
dimension.

6.1 Equipment

We applied our algorithm to the problems in the SVP Challenge. In this section,
we explain our equipment and results.

First, let us describe our equipment. We used four clusters, called Oakleaf-
FX (FX10), Chimera, ASGC, and Reedbush-U. The hardware specifications of
these clusters are summarized in Tables 1, 2, 3, and 4. The FX10 cluster included
a customized compiler, MPI library, and job scheduler. The Chimera, ASGC,
and Reedbush-U clusters included compilers, MPI libraries, and job schedulers.
In particular, we used GCC version 4.8.4, OpenMPI version 1.8.1, and Univa
Grid Engine version 8.1.7 in the Chimera, Intel C++ Compiler version 14.0.2,
Intel MPI Library version 4.1, and TORQUE version 4.2.8 in the ASGC, and
Intel C++ Compiler version 16.0.3, Intel MPI Library version 5.1, and PBS
Professional 13.1 in the Reedbush-U. Note that Hyper-Threading was enabled
and Turbo Boost was disabled in all nodes of Chimera, while Hyper-Threading

Table 1. Specifications of cluster system Oakleaf-FX to solve the 134-dimension SVP
Challenge; note that the units of “CPU frequency” and “Total RAM” are GHz and
GB, respectively

CPU CPU frequency # of nodes Total # of cores Total RAM

SPARC64 IXfx 1.848 6 96 192
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Table 2. Specifications of cluster system Chimera to solve SVP Challenge instances
of 138, 140, 142, 144, 146, 148, and 150 dimensions; note that the units of “CPU
frequency” and “Total RAM” are GHz and GB, respectively

CPU CPU frequency # of nodes Total # of cores Total RAM

Xeon E5540 2.53 80 640 6240

Xeon X5650 2.66 11 132 765

Xeon E5-2670 2.6 4 64 762

Xeon E5-2695 v3 2.3 2 56 256

Xeon E7-4870 2.4 1 80 4096

Grand total 98 972 12119

Table 3. Specifications of cluster system ASGC to solve 148 and 150-dimensions
instances of SVP Challenge; note that the units of “CPU frequency” and “Total RAM”
are GHz and GB, respectively

CPU CPU frequency # of nodes Total # of cores Total RAM

Xeon E5-2680 v2 2.8 5 100 640

Table 4. Specifications of cluster system Reedbush-U to solve the 150-dimensional
instance of the SVP Challenge; note that the units of “CPU frequency” and “Total
RAM” are GHz and GB, respectively

CPU CPU frequency # of nodes Total # of cores Total RAM

Xeon E5-2695 v4 2.1 24 864 5856

was disabled and Turbo Boost was disabled in all nodes of ASGC and Reedbush-
U. Note also that these clusters were shared systems, so all the processes were
controlled by the job schedulers. Now, let us briefly explain the pre-processing.
Before executing processes for our algorithm, the lattice basis of the input was
pre-processed. We used the BKZ algorithm implemented by fplll [50] to reduce
components of the lattice basis to small integers.

For each process when we solve the problem instances, the process-unique
information pui was given as the rank by the MPI libraries and job schedulers,
namely, the pui value ranged from 0 to m−1, where m is the number of requested
processes sent to the MPI libraries and job schedulers.

6.2 Experimental Results

We used our algorithm to solve SVP Challenge problem instances of 134, 138,
140, 142, 144, 146, 148, and 150 dimensions with seed 0. We used FX10 to
solve the 134-dimensional instance, Chimera to solve the instances with 138–
146 dimensions, and the two clusters Chimera and ASGC to solve the 148-
dimensional instance.
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To solve the 150-dimensional instance, we used the following numbers of cores
and CPUs of the four clusters: (1) 28 cores of Xeon E5-2695 v3 and (2) 80 cores
of Xeon E7-4870 in the parts of Chimera, (3) 100 cores of Xeon E5-2680 v2 in
ASGC, (4) 192 cores of SPARC64 IXfx per job in FX10, and (5) 864 cores of
Xeon E5-2695 v4 per job in Reedbush-U, for (1) 49 days, (2) 81 days, (3) 39
days, (4) 37 days, and (5) 188 days, respectively. We did not use these computing
nodes simultaneously. Therefore, the total wall-clock time was about 394 days.
Note that when we used the computing node (1), we requested 24 processes
for job schedulers and the other cases (2), (3), (4), and (5), and the number of
requested processes was the same as the number of cores.

When we found a solution of the 150-dimensional instance, tuned parameters
of our algorithm were as follows: �fc = 50, �lc = 50, δ = 0.9999, δ′ = 0.985,
δ′′ = 0.0002, δstock = 1.08, �link = 50, and Θ = 0.93. The method we used to
choose these parameters is explained in Sect. 5.3.

We clarify the numbers of lattice vectors generated by the two subroutines in
line 5 in Algorithm 1 with a set S of NNRs and in line 4 in Algorithm 2 with a set
S′ of NNRs, and the costs per generation when we solved the 150-dimensional
problem and problems with a smaller dimensions less than 150. The sizes of S
and S′ are around 30 millions NNRs and 50 thousands NNRs, respectively. Note
that lines 3–19 in Algorithm 2 are repeated until the termination condition in
line 18 is satisfied, and the number of loops is 500 on average. The calculation
times of the lattice vector generations with S and S′ are around 5 min and 10 min,
respectively. That is, the calculation time of these generations per lattice vector
is around 12–20µs.

As mentioned in Sect. 5.2, it is not necessary to store all the stock vectors and
link vectors, because old stock vectors and link vectors are relatively longer, so
that we threw away old stock vectors and link vectors, and we cannot show the
total size. The size of the remaining stock vectors and link vectors is around 60
gigabytes. We estimate that the total size of all the found stock vectors and link
vectors is several hundred gigabytes for solving the 150-dimensional problem.

Table 5 lists the details of our solutions. The solution of the 150-dimensional
problem is the current world record.

We show a comparison of solved dimension and single thread calculation time
in seconds of our results and the results from the SVP Challenge in Fig. 1. In this
figure, plotted boxes are our 8 results, and plotted circles are other 17 results
for problems with dimensions greater than or equal to 100 and specified overall
calculation times. It is clear that our algorithm outperforms others. This is exper-
imental evidence that our proposal is effective at reducing higher-dimensional
lattice bases and solving higher-dimensional SVPs.

Additionally, we show fittings of our and the SVP Challenge results in Fig. 1
obtained by fit function of GNU Plot version 5.2. As a result, we obtained the
straight solid line for our results and the dotted line for the other SVP Challenge
results. Note that these lines are expressed as f(x) = cax+b+d with four variables
a, b, c, d. Obtained values and asymptotic standard errors of a, b, c, d, and values
of the root mean square (RMS) of residuals by using fit are as follows: a =
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Table 5. Our experimental results for the SVP Challenge instances of dimensions 134,
138, 140, 142, 144, 146, 148, and 150, where “GH(L)” is the Gaussian heuristic of a
given lattice L, “v” in the column header indicates a solution of the corresponding row,
the “Max. # of requested processes” column shows the maximum number of requested
processes sent to the job schedulers, and the “Days to solve” column lists the wall-clock
times to obtain each solution

Dimension �GH(L)� �‖v‖� ‖v‖
GH(L)

Max. # of
requested
processes

Days to solve Root Hermite factor

150 3090 3220 1.04192 864 394 1.00768

148 3070 3178 1.03512 1000 256 1.00769

146 3056 3195 1.04534 1000 64 1.00783

144 3025 3154 1.04284 700 50 1.00787

142 3003 3141 1.04609 700 50 1.00796

140 2991 3025 1.01139 500 50 1.00778

138 2972 3077 1.03516 500 140 1.00801

134 2927 2976 1.01695 92 72 1.00801
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Fig. 1. Comparison of solved dimension and single thread calculation time in seconds of
our results and results in the SVP Challenge, where plotted boxes are our 8 results, the
straight solid line is fitted to our results, plotted circles are other 17 results of problems
with dimensions greater than or equal to 100 and specified overall calculation times,
and the dotted line is fitted to these results

1.00287 ± 933.3, b = 0.999973 ± 7822, c = 1.16833 ± 148.9, and d = 1.00093 ±
2.948e + 10, and the value of RMS is 4.85206e+09 for the straight solid line,
and a = 0.957735 ± 843.9, b = 0.988369 ± 5095, c = 1.14625 ± 123.6, and
d = 1.0004 ± 5.792e + 07, and the value of RMS is 1.66635e+07 for the dotted
line.
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7 Conclusion

We proposed an algorithm suitable for parallel computing environments to
reduce the lattice basis and presented its results in the SVP Challenge.

Regarding the results in the SVP Challenge, we discovered solutions to prob-
lem instances of dimensions 134, 138, 140, 142, 144, 146, 148, and 150, a world
record for the highest dimension. This is clear experimental evidence that our
proposal is effective at reducing the lattice basis and solving the SVP by using
a parallel computing environment.
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che Universität Darmstadt Universitäts (2005). http://elib.tu-darmstadt.de/diss/
000640

38. Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead.
In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, 4–6 January 2015,
pp. 276–294. SIAM (2015). https://doi.org/10.1137/1.9781611973730.21

39. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Fis-
chlin, M., Coron, J. (eds.), [19], pp. 820–849. https://doi.org/10.1007/978-3-662-
49890-3 31

40. Nguyen, P.Q., Vallée, B. (eds.): The LLL Algorithm - Survey and Applications.
Information Security and Cryptography. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-02295-1

41. Pieterse, V., Black, P.E.: Single program multiple data. In: Dictionary of Algo-
rithms and Data Structures, December 2004. http://www.nist.gov/dads/HTML/
singleprogrm.html

https://doi.org/10.1145/2488608.2488677
http://doi.acm.org/10.1145/2824233
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-642-12678-9_4
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1145/800061.808749
https://doi.org/10.1145/800061.808749
https://doi.org/10.1007/978-3-642-23951-9_12
https://doi.org/10.1007/978-3-642-25385-0
http://dx.doi.org/10.1007/BF01457454
http://elib.tu-darmstadt.de/diss/000640
http://elib.tu-darmstadt.de/diss/000640
https://doi.org/10.1137/1.9781611973730.21
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/978-3-642-02295-1
https://doi.org/10.1007/978-3-642-02295-1
http://www.nist.gov/dads/HTML/singleprogrm.html
http://www.nist.gov/dads/HTML/singleprogrm.html


460 T. Teruya et al.

42. Plantard, T., Schneider, M.: Creating a challenge for ideal lattices. Cryptology
ePrint Archive, Report 2013/039 (2013). https://eprint.iacr.org/2013/039

43. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23951-9

44. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005, pp.
84–93. ACM (2005). https://doi.org/10.1145/1060590.1060603

45. Schneider, M., Gama, N.: SVP Challenge. http://www.latticechallenge.org/svp-
challenge/

46. Schneider, M., Göttert, N.: Random sampling for short lattice vectors on graphics
cards. In: Preneel, B., Takagi, T. (eds.), [43], pp. 160–175. https://doi.org/10.1007/
978-3-642-23951-9 11

47. Schnorr, C.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 14

48. Schnorr, C.: Correction to lattice reduction by random sampling and birthday
methods (2012). http://www.math.uni-frankfurt.de/∼dmst/research/papers.html

49. Schnorr, C., Euchner, M.: Lattice basis reduction: improved prac-
tical algorithms and solving. Math. Program. 66, 181–199 (1994).
http://dx.doi.org/10.1007/BF01581144

50. The FPLLL Development Team: FPLLL, a lattice reduction library (2016).
https://github.com/fplll/fplll

https://eprint.iacr.org/2013/039
https://doi.org/10.1007/978-3-642-23951-9
https://doi.org/10.1145/1060590.1060603
http://www.latticechallenge.org/svp-challenge/
http://www.latticechallenge.org/svp-challenge/
https://doi.org/10.1007/978-3-642-23951-9_11
https://doi.org/10.1007/978-3-642-23951-9_11
https://doi.org/10.1007/3-540-36494-3_14
http://www.math.uni-frankfurt.de/~dmst/research/papers.html
http://dx.doi.org/10.1007/BF01581144
https://github.com/fplll/fplll


Composable Security



Reusing Tamper-Proof Hardware
in UC-Secure Protocols

Jeremias Mechler1(B), Jörn Müller-Quade1, and Tobias Nilges2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
jeremias.mechler@kit.edu

2 Aarhus University, Aarhus, Denmark

Abstract. Universally composable protocols provide security even in
highly complex environments like the Internet. Without setup assump-
tions, however, UC-secure realizations of cryptographic tasks are impos-
sible. Tamper-proof hardware tokens, e.g. smart cards and USB tokens,
can be used for this purpose. Apart from the fact that they are widely
available, they are also cheap to manufacture and well understood.

Currently considered protocols, however, suffer from two major draw-
backs that impede their practical realization:

– The functionality of the tokens is protocol-specific, i.e. each protocol
requires a token functionality tailored to its need.

– Different protocols cannot reuse the same token even if they require
the same functionality from the token, because this would render the
protocols insecure in current models of tamper-proof hardware.

In this paper we address these problems. First and foremost, we propose
formalizations of tamper-proof hardware as an untrusted and global setup
assumption. Modeling the token as a global setup naturally allows to
reuse the tokens for arbitrary protocols. Concerning a versatile token
functionality we choose a simple signature functionality, i.e. the tokens
can be instantiated with currently available signature cards. Based on
this we present solutions for a large class of cryptographic tasks.

Keywords: Universal Composability · Tamper-proof hardware
Unique signatures · Global setup

1 Introduction

In 2001, Canetti [5] proposed the Universal Composability (UC) framework.
Protocols proven secure in this framework have strong security guarantees for
protocol composition, i.e. the parallel or interleaved execution of protocols. Sub-
sequently, it was shown that it is not possible to construct protocols in this strict
framework without additional assumptions [7]. Typical setup assumptions like a
common reference string or a public key infrastructure assume a trusted setup.
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Katz [33] on the other hand put forward the idea that protocol parties create
and exchange untrusted tamper-proof hardware tokens, i.e. the tokens may be
programmed maliciously by the sending party.

Katz’ proposal spawned a line of research that focuses mainly on the feasibil-
ity of UC-secure two-party computation. First, stateful tamper-proof hardware
was considered [14,17,24,26,33,38], then weaker models of tamper-proof hard-
ware, where the hardware token cannot reliably keep a state, i.e. the receiver
can reset the token [11,12,15,18–20,25–28,34].

Common to all of the aforementioned results is the fact that each protocol
requires a token functionality that is tailored to the protocol. From a practi-
cal point of view it seems unlikely that these tokens will ever be produced by
hardware vendors, and software implementations on standard smart cards are
far too inefficient. Another negative side effect of protocol-specific tokens is that
users need to keep at least one token for each application, which is prohibitive
in practice.

We would therefore like to be able to use widely available standard hardware
for our protocols. Examples are signature cards, where the token functionality
is a simple signature functionality. The signing key is securely stored inside the
tamper-proof hardware, while the verification key can be requested from the
card. These cards are not required to keep an internal state (the keys can be
hardwired). As an alternative several works in the literature discuss bit-oblivious
transfer (OT) tokens as a very simple and cheap functionality [2,26,31]. However,
there are no standardized implementations of such tokens, while signature tokens
are standardized and already deployed.

As it turns out, even if there were protocols that use a signature card as a
setup assumption, it would not be possible to use the same token in a different
protocol. This is due to the current definitions of tamper-proof hardware in the
UC model. To the best of our knowledge, reusing tamper-proof hardware was
only considered by Hofheinz et al. [29], who introduce the concept of catalysts.
In their model, they show that the setup can be used for multiple protocols,
unlike a normal UC setup, but they assume a trusted setup.

A recent line of research, e.g. [4,8,10], has focused on efficient protocols
based on a globally available setup. This stronger notion of UC security, called
Generalized UC (GUC), was introduced by Canetti et al. [6] and captures the
fact that protocols are often more efficient if they can use the same setup. Indeed,
a globally available token in the sense of GUC would naturally allow different
protocols to use the same token. We note that the work of Chandran et al. [11]
and subsequent works following the approach of requiring only black-box access
to the token during simulation (e.g. [12,26]) might in principle be suitable for
reuse, however none of these works consider this scenario and the problem of
highly protocol-specific token functionalities is prevalent in all of these works.

1.1 Our Contribution

We apply the GUC methodology to resettable tamper-proof hardware and define
the first global setup that is untrusted, in contrast to trusted and incorruptible



Reusing Tamper-Proof Hardware in UC-Secure Protocols 465

setups like a global random oracle [8], key registration with knowledge [6] or
trusted processors [40].

We present two models for reusable tamper-proof hardware:

– The first model is inspired by the work of [29] and generalizes their approach
from trusted signature cards to generic and untrusted resettable tokens. It
is also designed to model real world restrictions regarding concurrent access
to e.g. a smart card. A real world analogy is an ATM that seizes the card
for the duration of the cash withdrawal. During that time, the card cannot
be used to sign a document. We want to highlight that this only limits the
access to the tokens for a short time, it is still possible to run several protocols
requiring the same token in an interleaved manner.

– The second model is a GUC definition of a resettable tamper-proof hardware
token following the approach of [8], which is meant to give a GUC definition
of reusable tamper-proof hardware. In particular, this means that there are
no restrictions at all regarding access to the token.

We also consider a peculiarity of real world signature cards that is typically
ignored in idealized descriptions. Most signature cards outsource some of the
hashing of the message, which is usually needed in order to generate a signature,
to the client. This is done to make the signature generation more efficient. We
formally capture this in a new definition of signatures where the signing process
is partitioned into a preprocessing and the actual signing. As we will show, cards
that do outsource the hashing—even if only in part—cannot be used in all sce-
narios. Nevertheless, we show that a wide range of cryptographic functionalities
can be realized, even if the card enforces preprocessing.

– UC-secure commitments in both models, even with outsourced hashing by
the signature card. This means that all currently available signature cards
can in principle be used with our protocols.

– UC-secure non-interactive secure computation (NISC) in the GUC model.
Here it is essential that the hashing is performed on the card, i.e. not all
signature cards are suitable for these protocols. This result establishes the
minimal interaction required for (one-sided) two-party computation.

We show that the number of tokens sent is optimal, and that stateful tokens
do not yield any advantage in the setting of globally available or reusable tokens.

1.2 Our Techniques

Modelling reusable hardware tokens. In the definition of the “realistic”
model, a protocol is allowed to send a seize command to the token function-
ality, which will block all requests by other protocols to the token until it is
released again via release. We have to make sure that messages cannot be
exchanged between different protocols, thus the receiving party (of the signa-
ture, i.e. the sender of the signature card) has to choose a nonce. This nonce
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has to be included in the signature, thereby binding the message to a proto-
col instance. This obviously requires interaction, so non-interactive primitives
cannot be realized in this model.

In order to explore the full feasibility of functionalities with reusable tokens
and obtain more round-efficient protocols, we therefore propose a more idealized
model following [8]. The simulator is given access to all “illegitimate” queries that
are made to the token, so that all queries concerning a protocol (identified by
a process ID PID), even from other protocols, can be observed. Essentially, this
turns the token into a full-blown GUC functionality and removes the additional
interaction from the protocols.

Commitments from signature cards. Concerning our protocols in the above
described models, one of the main difficulties when trying to achieve UC security
with hardware tokens is to make sure that the tokens cannot behave maliciously.
In our case, this would mean that we have to verify that the signature was
created correctly. Usually, e.g. in [20,29], this is done via zero-knowledge proofs of
knowledge, but the generic constructions that are available are highly inefficient.
Instead, similar to Choi et al. [12], we use unique signatures. Unique signatures
allow verification of the signature, but they also guarantee that the signature
is subliminal-free, i.e. a malicious token cannot tunnel messages through the
signatures.

Based on tokens with this unique signature functionality, we construct a
straight-line extractable commitment. The main idea is to send the message to
the token and obtain a signature on it. The simulator can observe this message
and extract it. Due to the aforementioned partitioning of the signature algorithm
on current smart cards, however, the simulator might only learn a hash value,
which makes extraction impossible. We thus modify this approach and make it
work in our setting. Basically, we keep the intermediate values sent to the token
in the execution and use them as a seed for a PRG, which can in turn be used to
mask the actual message. Since the simulator observes this seed, it can extract
the message. However, the token can still abort depending on the input, so we
also have to use randomness extraction on the seed, otherwise the sender of the
token might learn some bits of the seed.

Using the straight-line-extractable commitment as a building block, we mod-
ify the UC commitment of [8] so that it works with signature cards.

Non-interactive witness-extractable arguments. A witness-extractable
argument is basically a witness-indistinguishable argument of knowledge
(WIAoK) with a straight-line extraction procedure. We construct such a non-
interactive witness-extractable argument for later use in non-interactive secure
computation (NISC). Our approach follows roughly the construction of Pass [39],
albeit not in the random oracle model. [39] modify a traditional WIAoK by
replacing the commitments with straight-line extractable ones. Further, they
replace the application of a hash function to the transcript (i.e. the Fiat-Shamir
heuristic) with queries to a random oracle. For our construction, we can basi-
cally use our previously constructed straight-line extractable commitments, but
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we also replace the queries to the random oracle by calls to the signature token,
i.e. we can use the EUF-CMA security of the signature to ensure the soundness
of the proof.

As hinted at above, this protocol requires the ideal model, since using a nonce
would already require interaction. Also, there is a subtle technical issue when
one tries to use signatures with preprocessing instead of the random oracle. In
the reduction to the EUF-CMA security (where the reduction uses the signing
oracle to simulate the token), it is essential that the commitments contain an
(encoded) valid signature before they are sent to the token. However, if we use
preprocessing, the preprocessed value does not provide the reduction with the
commitments, which could in turn be extracted to reveal the valid signature and
break the EUF-CMA security. Instead, it only obtains a useless preprocessed
value, and once the reduction obtains the complete commitments via the non-
interactive proof from the adversary, a valid call to the signature card on these
commitments means that the adversary has a valid way to obtain a signature
and the reduction does not go through. If the protocol were interactive, this
would not be an issue, because we could force the adversary to first send the
commitments and then provide a signature in a next step. But since the protocol
is non-interactive, this does not work and we cannot use signature cards with
preprocessing for this protocol. We believe this to be an interesting insight, since
it highlights one of the differences in feasibility between idealized and practically
available hardware.

1.3 Related Work

In an independent and concurrent work, using an analogous approach based
on [8], Hazay et al. [27] recently introduced a GUC-variant of tamper-proof
hardware to deal with the problem of adversarial token transfers in the multi-
party case. This problem is equivalent to the problem of allowing the parties
to reuse the token in different protocols without compromising security. Apart
from using completely different techniques, however, [27] are only interested in
the general feasibility of round-efficient protocols. In contrast, we would like to
minimize the number of tokens that are sent. Additionally, [27] only consider
the somewhat idealized GUC token functionality, and do not investigate a more
realistic approach (cf. Sect. 3). This is an important aspect, in particular since
our results indicate that some of the protocols in the idealized model cannot
be realized in our more natural token model that is compatible with existing
signature cards. Thus, from a more practical point of view, even the feasibility
of generic 2PC is not conclusively resolved from existing results.

Table 1 gives a concise overview of our result compared with previous solu-
tions based on resettable hardware that make black-box use of the token program
in the UC security proof. Other approaches as shown in e.g. [17,18,20] are more
efficient, but require the token code and therefore cannot be reused.

Generally, physically uncloneable functions (PUFs) also provide a fixed func-
tionality, which has (assumed) statistical security. One could thus imagine using
PUFs to realize reusable tokens. However, in the context of transferable setups
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Table 1. Comparison of our result with existing solutions based on resettable hardware
that technically allow reusing the tokens. All results mentioned above allow UC-secure
2PC, either directly or via generic completeness results.

# Tokens Rounds Assumption Token func.

[11] 2 (bidir.) Θ(κ) eTDP Specific for com.

[26] Θ(κ) (bidir.) Θ(1) CRHFa Specific for OT

[12] 2 (bidir.) Θ(1) VRFb Specific for OT

[27] Θ(κ2) (bidir.) Θ(1) OWF Specific for OT

Ours (Sect. 3) 2 (bidir.) Θ(1) Unique Sign.c Generic

Ours (Sect. 4) 2 (bidir.) Θ(1) Unique Sign./DDHd Generic
a A protocol based on OWF is also shown, but the round complexity increases to
Θ(κ/ log(κ)). Additionally, it was shown by Hazay et al. [27] that there is a subtle
error in the proof of the protocol.
b Verifiable random functions (VRFs) are only known from specific number-
theoretic assumptions [32,35,37]. They also present a protocol with similar prop-
erties based on a CRHF, but the number of OTs is bounded in this case.
cUnique signatures are only known from specific number-theoretic assumptions
and closely related to VRFs. These are required for our protocols.
dDDH is necessary for the NISC protocol.

(i.e. setups that do not disclose whether they have been passed on), Boureanu et
al. [4] show that neither OT nor key exchange can be realized, and PUFs fall into
the category of transferable setups. Tamper-proof hardware as defined in this
paper on the other hand is not a transferable setup according to their definitions,
so their impossibilities do not apply.

2 Preliminaries

2.1 UC Framework

We show our results in the generalized UC framework (GUC) of Canetti et al. [6].
Let us first briefly describe the basic UC framework [5], and then highlight the
changes required for GUC. In UC, the security of a real protocol π is shown by
comparing it to an ideal functionality F . The ideal functionality is incorruptible
and secure by definition. The protocol π is said to realize F , if for any adversary
A in the real protocol, there exists a simulator S in the ideal model that mimics
the behavior of A in such a way that any environment Z, which is plugged either
to the ideal or the real model, cannot distinguish both.

In UC, the environment Z cannot run several protocols that share a state,
e.g. via the same setup. In GUC, this restriction is removed. In particular, Z
can query the setup independently of the current protocol execution, i.e. the
simulator will not observe this query.

We will realize a UC-secure commitment. The ideal functionality FCOM is
defined in Fig. 1.
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Functionality FCOM

Implicitly parametrized by a domain of secrets S.

Commit phase:
1. Await an input (commit, s) with s ∈ S from the sender. Store s, send (committed)

to the adversary and ignore any further commit-messages.
2. Await a message (notify) from the adversary. Then send (committed) to the

receiver.

Unveil phase:
3. Await an input (unveil, ŝ) with ŝ ∈ S from the sender. Then, store ŝ and send

(opened) to the adversary.
4. Await a message (output) from the adversary. Then, if ŝ = s, send (opened, ŝ) to

the receiver; otherwise, send a special reject message ⊥.

Fig. 1. Ideal functionality for commitments.

2.2 Commitments

We need several types of commitment schemes. A commitment is a (possibly
interactive) protocol between two parties and consists of two phases. In the
commit phase, the sender commits to a value and sends the commitment to
the receiver. The receiver must not learn the underlying value before the unveil
phase, where the sender sends the unveil information to the receiver. The receiver
can check the correctness of the commitment. A commitment must thus pro-
vide two security properties: a hiding property that prevents the receiver from
extracting the input of the sender out of the commitment value, and a binding
property that ensures that the sender cannot unveil a value other than the one
he committed to.

Definition 1. A commitment scheme COM between a sender S and a receiver
R consists of two PPT algorithms Commit and Open with the following
functionality.

– Commit takes as input a message s and computes a commitment c and unveil
information d.

– Open takes as input a commitment c, unveil information d and a message s
and outputs a bit b ∈ {0, 1}.

We require the commitment scheme to be correct, i.e. for all s:

Open(Commit(s), d, s) = 1

We assume the standard notions of statistical binding and computational
hiding.
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Further, we need extractable commitments. Extractabilty is a stronger form
of the binding property which states that the sender is not only bound to one
input, but that there also exists an (efficient) extraction algorithm that extracts
this value. Our definition of extractable commitments is derived from Pass and
Wee [41].

Definition 2. We say that COM = (Commit,Open) is extractable, if there
exists an (expected) PPT algorithm Ext that, given black-box access to any mali-
cious PPT algorithm AS, outputs a pair (ŝ, τ) such that

– (simulation) τ is identically distributed to the view of AS at the end of inter-
acting with an honest receiver R in the commit phase,

– (extraction) the probability that τ is accepting and ŝ = ⊥ is negligible, and
– (binding) if ŝ �= ⊥, then it is infeasible to open τ to any value other than ŝ.

Extractable commitments can be constructed from any commitment scheme
via additional interaction, see e.g. [23,41]. The definition of extractable com-
mitments implicitly allows the extractor to rewind the adversarial sender to
extract the input. In some scenarios, especially in the context of concurrently
secure protocols, it is necessary that the extractor can extract the input with-
out rewinding. This is obviously impossible in the plain model, as a malicious
receiver could employ the same strategy to extract the sender’s input. Thus, some
form of setup (e.g. tamper-proof hardware) is necessary to obtain straight-line
extractable commitments.

Definition 3. We say that COM = (Commit,Open) is straight-line extractable
if in addition to Definition 2, the extractor does not use rewinding.

Another tool that we need is a trapdoor commitment scheme, where the
sender can equivocate a commitment if he knows a trapdoor. We adapt a defi-
nition from Canetti et al. [8].

Definition 4. A trapdoor commitment scheme TCOM between a sender S and
a receiver R consists of five PPT algorithms KeyGen, TVer, Commit, Equiv and
Open with the following functionality.

– KeyGen takes as input the security parameter and creates a key pair (pk, sk),
where sk serves as the trapdoor.

– TVer takes as input pk and sk and outputs 1 iff sk is a valid trapdoor for pk.
– Commit takes as input a message s and computes a commitment c and unveil

information d.
– Equiv takes as input the trapdoor sk, message s′, commitment c, unveil infor-

mation d and outputs an unveil information d′ for s′.
– Open takes as input a commitment c, unveil information d and a message s

and outputs a bit b ∈ {0, 1}.

The algorithm Equiv has to satisfy the following condition. For every PPT
algorithm AR, the following distributions are computationally indistinguishable.
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– (pk, c, d, s), where (pk, sk) ← AR(1κ) such that TVer(pk, sk) = 1 and (c, d) ←
Commit(pk, s)

– (pk, c′, d′, s), where (pk, sk) ← AR(1κ) such that TVer(pk, sk) = 1, (c′, z) ←
Commit(pk, ·) and d′ ← Equiv(sk, s, c′, z)

For example, the commitment scheme by Pedersen [42] satisfies the above
definition.

2.3 Witness-Indistinguishability

We construct a witness-indistiguishable argument of knowledge in this paper.

Definition 5. A witness-indistinguishable argument of knowledge system for a
language L ∈ NP with witness relation RL consists of a pair of PPT algorithms
(P,V) such that the following conditions hold.

– Completeness: For every (x,w) ∈ RL,

Pr[〈P(w),V〉(x) = 1] = 1.

– Soundness: For every x /∈ L and every malicious PPT prover P∗,

Pr[〈P∗,V〉(x) = 1] ≤ negl(|x|).

– Witness-indistinguishability: For every w1 �= w2 such that (x,w1) ∈ RL,
(x,w2) ∈ RL and every PPT verifier V∗, the distributions {〈P(w1),V∗〉(x)}
and {〈P(w2),V∗〉(x)} are computationally indistinguishable.

– Proof of Knowledge: There exists an (expected) PPT algorithm Ext such that
for every x ∈ L and every PPT algorithm P∗, there exists a negligible function
ν(κ) such that Pr[Ext(x,P∗) ∈ wL(x)] > Pr[〈P∗,V〉(x) = 1] − ν(κ).

Witness-indistinguishable arguments/proofs of knowledge are also sometimes
referred to as witness-extractable. Similar to the case of extractable commit-
ments, one can also require the extractor to be straight-line, i.e. the extractor
may not rewind the prover. Again, this requires an additional setup assumption
and is not possible in the plain model.

Definition 6. We say that a witness-indistinguishable argument/proof system
is straight-line witness-extractable if in addition to Definition 5, the extractor
does not use rewinding.

2.4 Digital Signatures

A property of some digital signature schemes is the uniqueness of the signatures.
Our definition is taken from Lysyanskaya [35]. Such schemes are known only from
specific number theoretic assumptions.

Definition 7. A digital signature scheme SIG consists of three PPT algorithms
KeyGen, Sign and Verify.
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– KeyGen(1κ) takes as input the security parameter κ and generates a key pair
consisting of a verification key vk and a signature key sgk.

– Sign(sgk,m) takes as input a signature key sgk and a message m, and outputs
a signature σ on m.

– Verify(vk,m, σ) takes as input a verification key vk, a message m and a pre-
sumed signature σ on this message. It outputs 1 if the signature is correct and
0 otherwise.

We require correctness, i.e. for all m and (vk, sgk) ← KeyGen(1κ):

Verify(vk,m,Sign(sgk,m)) = 1.

A signature scheme is called unique if the following property holds:
There exists no tuple (vk,m, σ1, σ2) such that SIG.Verify(vk,m, σ1) = 1 and
SIG.Verify(vk,m, σ2) = 1 with σ1 �= σ2.

We point out that in the above definition, vk, σ1, and σ2 need not be created
honestly by the respective algorithms, but may be arbitrary strings.

3 Real Signature Tokens

It is our objective to instantiate the token functionality with a signature scheme.
In order to allow currently available signature tokens to be used with our proto-
col, our formalization of a generalized signature scheme must take the peculiar-
ities of real tokens into account.

One of the most important aspects regarding signature tokens is the fact
that most tokens split the actual signing process into two parts: the first step is
a (deterministic) preprocessing that usually computes a digest of the message.
To improve efficiency, some tokens require this step to be done on the host
system, at least in part. In a second step, this digest is signed on the token
using the encapsulated signing key. In our case, this means that the adversary
contributes to computing the signature. This has severe implications regarding
the extraction in UC-secure protocols, because it is usually assumed that the
simulator can extract the input from observing the query to the token.

To illustrate the problem, imagine a signature token that executes textbook
RSA, and requires the host to compute the hash. A malicious host can blind
his real input due to the homomorphic properties of RSA. Let (e,N) be the
verification key and d the signature key for the RSA function. The adversary
chooses a message m and computes the hash value h(m) under the hash function
h. Instead of sending h(m) directly to the signature token, he chooses a random
r, computes h(m)′ = h(m) · re mod N and sends h(m)′ to the token. The
signature token computes σ′ = (h(m) · re)d = h(m)d · r mod N and sends it
to the adversary, who can multiply σ′ by r−1 and obtain a valid signature σ on
m. Obviously, demanding EUF-CMA for the signature scheme is not enough,
because the signature is valid and the simulator is not able to extract m.

The protocols of [29] will be rendered insecure if the tokens perform any
kind of preprocessing outside of the token, so the protocols cannot be realized
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with most of the currently available signature tokens (even if they are trusted).
We aim to find an exact definition of the requirements, so that tokens which
outsource part of the preprocessing can still be used in protocols. The following
definition of a signature scheme with preprocessing thus covers a large class of
currently available signature tokens and corresponding standards.

Definition 8. (Digital signatures with preprocessing). A signature scheme SIG
with preprocessing consists of five PPT algorithms KeyGen, PreSg, Sign, Vfy and
Verify.

– KeyGen(1κ) takes as input the security parameter κ and generates a key pair
consisting of a verification key vk and a signature key sgk.

– PreSg(vk,m) takes as input the verification key vk, the message m and outputs
a deterministically preprocessed message p with |p| = n.

– Sign(sgk, p) takes as input a signing key sgk and a preprocessed message p of
fixed length n. It outputs a signature σ on the preprocessed message p.

– Vfy(vk, p, σ) takes as input a verification key vk, a preprocessed message p
and a presumed signature σ on this message. It outputs 1 if the signature is
correct and 0 otherwise.

– Verify(vk,m, σ) takes as input a verification key vk, a message m and a pre-
sumed signature σ on this message. It computes p ← PreSg(vk,m) and then
checks if Vfy(vk, p, σ) = 1. It outputs 1 if the check is passed and 0 otherwise.

We assume that the scheme is correct, i.e. it must hold for all messages m that

∀κ ∈ N ∀(vk, sgk) ← KeyGen(1κ) : Verify(vk,m,Sign(sgk,PreSg(vk,m))) = 1.

Additionally, we require uniqueness according to Definition 7.

Existential unforgeability can be defined analogously to the definition for
normal signature schemes. However, the EUF-CMA property has to hold for
both KeyGen,Sign and Vfy and KeyGen,Sign and Verify. The PreSg algorithm is
typically realized as a collision-resistant hash function.

All protocols in the following sections can be instantiated with currently avail-
able signature tokens that adhere the definition above. Tokens that completely
outsource the computation of the message digest to the host do not satisfy this
definition (because KeyGen, Sign and Vfy are not EUF-CMA secure).

The full version of this paper [36] contains an analysis for generic prepro-
cessings, in the following we assume for simplicity that PreSg is the identity
function.

3.1 Model

Our definition of reusable resettable tamper-proof hardware is defined analo-
gously to normal resettable tamper-proof hardware tokens as in [20,26], but we
add a mechanism that allows a protocol party to seize the hardware token. This
approach is inspired by the work of Hofheinz et al. [29], with the difference that
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we consider untrusted tokens instead of a trusted signature token. While the
token is seized, no other (sub-)protocol can use it. An adversarial sender can
still store a malicious functionality in the wrapper, and an adversarial receiver
is allowed to reset the program. The formal description of the wrapper F ru-strict

wrap

is given in Fig. 2.
We assume that the token receiver can verify that it obtained the correct

token, e.g. by requesting some token identifier from the sender.
For completeness, we add the definition of a catalyst introduced by

Hofheinz et al. [29].

Definition 9. Let Π be a protocol realising the functionalities F and C in the
C-hybrid model. We say that C is used as a catalyst if Π realises C by simply
relaying all requests and the respective answers directly to the ideal functional-
ity C.

Functionality F ru-strict
wrap

Implicitly parametrized by a security parameter κ.

Creation:
1. Await an input (create,M, t) from the token issuer, where M is a deterministic

Turing machine and t ∈ N. Store (M, t) and send (created) to the adversary.
Ignore all further create-messages.

2. Await a message (delivery) from the adversary. Then, send (ready) to the token
receiver.

Execution:
3. Await an input (run, w, sid) from the receiver. If no create-message has been

sent, return a special symbol ⊥. Otherwise, if seized = sid, run M on w from
its most recent state. When M halts without generating output or t steps have
passed, send ⊥ to the receiver; otherwise store the current state of M and send
the output of M to the receiver.

4. Await an input (seize, sid) from the receiver. If seized = ⊥, set seized = sid.
5. Await an input (release) from the receiver. Set seized = ⊥.

Reset (adversarial receiver only):
6. Upon receiving a message (reset) from a corrupted token receiver, reset M to its

initial state.

Fig. 2. The wrapper functionality by which we model reusable resettable tamper-proof
hardware. The runtime bound t is merely needed to prevent malicious token senders
from providing a perpetually running program code M; it will be omitted throughout
the rest of the paper.

In other words, the environment (and therefore other protocols) have access
to the catalyst C while it is used in the protocol Π. In particular, this implies
that the catalyst C cannot be simulated for a protocol. All in all, this notion is
very similar to Definition 10.
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3.2 UC-Secure Commitments

Straight-Line Extractable Commitment
We need a straight-line extractable commitment scheme in the F ru-strict

wrap -
hybrid model to achieve two-party computation. We enhance a protocol due
to Hofheinz et al. [29] which assumes trusted signature tokens as a setup such
that it remains secure even with maliciously created signature tokens. Towards
this goal, we adapt the idea of Choi et al. [12] to use unique signatures to our
scenario. This is necessary, because verifying the functionality of an untrusted
token is difficult. A unique signature scheme allows this verification very effi-
ciently (compared to other measures such as typically inefficient ZK proofs).
Additionally, it prevents the token from channeling information to the receiver
of the signatures via subliminal channels.

Our protocol proceeds as follows. As a global setup, we assume that the
commitment receiver has created a token containing a digital signature func-
tionality, i.e. basically serving as a signature oracle. In a first step, the commit-
ment receiver sends a nonce N to the sender such that the sender cannot use
messages from other protocols involving the hardware token. The sender then
draws a random value x. It ignores the precomputation step and sets the result
px of this step to be x concatenated with the nonce N . The value px is sent to
the token, which returns a signature. From the value px the sender derives the
randomness for a one-time pad otp and randomness r for a commitment. Using
r the sender commits to x, which will allow the extractor to verify if he correctly
extracted the commitment. The sender also commits to the signature, x and N
in a separate extractable commitment. To commit to the actual input s, the
sender uses otp. Care has to be taken because a maliciously programmed signa-
ture card might leak some information about px to the receiver. Thus, the sender
applies a 2-universal hash function before using it and sends all commitments
and the blinded message to the receiver. To unveil, the sender has to send its
inputs and random coins to the receiver, who can then validate the correctness
of the commitments. A formal description of the protocol is shown in Fig. 3. We
abuse the notation in that we define (c, d) ← COM.Commit(x) to denote that
the commitment c was created with randomness d.

Theorem 1. The protocol Πse
COM in Fig. 3 is a straight-line extractable commit-

ment scheme as per Definition 3 in the F ru-strict
wrap -hybrid model, given that unique

signatures exist, using F ru-strict
wrap as a catalyst.

Very briefly, extractability follows from the fact that the extractor can see all
messages that were sent to the token, including the seed for the PRG that allows
to extract the commitments cs and cx. Therefore, the extractor can just search
through all messages that were sent until it finds the input that matches the
commitment values. Hiding follows from the hiding property of the commitments
and the pseudorandomness of the PRG. The randomness extraction with the
2-universal hash function prevents the token from leaking any information that
might allow a receiver to learn some parts of the randomness of the commitments.
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We split the proof into two lemmata, showing the computational hiding prop-
erty of Πse

COM in Lemma 1 and the straight-line extraction in Lemma2.

Lemma 1. The protocol Πse
COM in Fig. 3 is computationally hiding, given that

COM is an extractable computationally hiding commitment scheme, f is a linear
2-universal hash function, PRG is a pseudorandom generator and SIG is an EUF-
CMA-secure unique signature scheme.

Proof. Let us consider a modified commit phase of the protocol Πse
COM: instead

of committing to the values s, x,N, σx, the sender S inputs random values in the

Protocol Π
se
COM

Let T be an instance of F ru-strict
wrap and PRG be a pseudorandom generator. Further let

COM be a computationally hiding and extractable commitment scheme. Let SIG be a
unique signature scheme according to Definition 8.

Global setup phase:
– Receiver: Compute (vk, sgk) ← SIG.KeyGen(1κ). Program a stateless token T with

the following functionality.
• Upon receiving a message (vk), return vk.
• Upon receiving a message (sign, m), compute σm ← SIG.Sign(sgk, m) and

output σm.
Send (create,T) to T .

– Sender: Query T with (vk) to obtain the verification key vk and check if it is a
valid verification key for SIG.

Commit phase:
1. Receiver: Choose a nonce N ← {0, 1}κ uniformly at random and send it to the

sender.
2. Sender: Let s be the sender’s input.

– Draw x ← {0, 1}3κ uniformly at random and choose a linear 2-universal
hash function f from the family of linear 2-universal hash functions {fh :
{0, 1}4κ → {0, 1}κ}h←H.

– Send (seize) to T . Set px = x||N and send (sign, px) to T to obtain σx.
Abort if SIG.Vfy(vk, px, σx) �= 1.

– Derive (otp, r) ← PRG(f(px)) with |otp| = |s| and compute cs = s ⊕ otp,
(cx, r) ← COM.Commit(px) and (cσ, dσ) ← COM.Commit(σx, x, N).

– Send (cs, cx, cσ, f) to the receiver. Release T by sending (release).

Unveil phase:
3. Sender: Send (s, x, σx, dσ) to the receiver.
4. Receiver: Set px = x||N and compute (otp, r) ← PRG(f(px)). Check if

SIG.Vfy(vk, px, σx) = 1, COM.Open(cx, r, x) = 1, COM.Open(cσ, dσ, (σx, x, N)) =
1 and cs = s ⊕ otp. If not, abort; otherwise accept.

Fig. 3. Computationally secure straight-line extractable commitment scheme in the
F ru-strict

wrap -hybrid model.
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commitments and replaces the generated pseudorandom string by a completely
random string. Thus no information about the actual input remains. In the fol-
lowing, we will show that from the receiver’s point of view, the real protocol and
the modified protocol as described above are computationally indistinguishable.
This implies that the commit phase of the protocol Πse

COM is computationally
hiding. Consider the following series of hybrid experiments.

Experiment 0: The real protocol Πse
COM.

Experiment 1: Identical to Experiment 0, except that instead of computing
(otp, r) ← PRG(f(px)), draw a uniformly at random and compute (otp, r) ←
PRG(a).

Experiment 2: Identical to Experiment 1, except that instead of using PRG(a)
to obtain otp and r, S draws otp and r uniformly at random.

Experiment 3: Identical to Experiment 2, except that instead of using COM
to commit to (σx, x,N), S commits to a random string of the same length.

Experiment 4: Identical to Experiment 3, except that instead of using COM to
commit to px with randomness r, S commits to a random string of the same
length. This is the ideal protocol.

Experiments 0 and 1 are statistically close, given that f is a linear 2-universal
hash function and SIG is unique. A malicious receiver AR provides a maliciously
programmed token T ∗ which might help distinguish the two experiments. In
particular, the token might hold a state and it could try to communicate with
AR via two communication channels:

1. T ∗ can try to hide messages in the signatures.
2. T ∗ can abort depending on the input of S.

The first case is prevented by using a unique signature scheme. The sender S asks
T ∗ for a verification key vk∗ and can verify that this key has the correct form for
the assumed signature scheme. Then the uniqueness property of the signature
scheme states that each message has a unique signature. Furthermore, there exist
no other verification keys such that a message has two different signatures. It
was shown in [3] that unique signatures imply subliminal-free signatures. Sum-
marized, given an adversary AR that can hide messages in the signatures, we can
use this adversary to construct another adversary that can break the uniqueness
property of the signature scheme.

The second case is a bit more involved. The main idea is to show that applying
a 2-universal hash function to px generates a uniformly distributed value, even
if R has some information about px. Since x is drawn uniformly at random
from {0, 1}3κ, T ∗ can only abort depending on a logarithmic part of the input.
Otherwise, the probability for the event that T ∗ aborts becomes negligible in
κ (because the leakage function is fixed once the token is sent). Let X be the
random variable describing inputs into the signature token and let Y describe
the random variable representing the leakage. In the protocol, we apply f ∈ {fh :
{0, 1}4κ → {0, 1}κ}h←H to X, which has at least min-entropy 3κ, ignoring the
nonce N . Y has at most 2 possible outcomes, abort or proceed. Thus, [16] gives
a lower bound for the average min-entropy of X given Y , namely
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H̃∞(X|Y ) ≥ H∞(X) − H∞(Y ) = 3κ − 1.

Note that f is chosen after R∗ sent the token. This means that we can apply
the Generalized Leftover Hash Lemma (cf. [16]):

Δ((fH(X),H, Y ); (Uk,H, Y )) ≤ 1
2

√
2H̃∞(X|Y )2κ ≤ 1

2

√
2−(3κ−1)+κ ≤ 2−κ

We conclude that from AR’s view, f(x) is distributed uniformly over {0, 1}κ

and thus Experiment 0 and Experiment 1 are statistically indistinguishable. We
will only sketch the rest of the proof.

Computational indistinguishability of Experiments 1 and 2 follows directly
from the pseudorandomness of PRG, i.e. given a receiver R∗ that distinguishes
both experiments, we can use this receiver to construct an adversary that distin-
guishes random from pseudorandom values. Experiment 2 and Experiment 3 are
computationally indistinguishable given that COM is computationally hiding.
From a distinguishing receiver R∗ we can directly construct an adversary that
breaks the hiding property of the commitment scheme. And by the exact same
argumentation, Experiments 3 and 4 are computationally indistinguishable. �

We now show the straight-line extractability of Πse
COM.

Lemma 2. The protocol Πse
COM in Fig. 3 is straight-line extractable, given that

COM is an extractable computationally hiding commitment scheme and SIG is
an EUF-CMA-secure unique signature scheme.

Proof. Consider the extraction algorithm in Fig. 4. It searches the inputs of AS

into the hybrid functionality F ru-strict
wrap for the combination of input and random-

ness for the commitment that is to be extracted.

Fig. 4. The extraction algorithm for the straight-line extractable commitment protocol
Πse

COM.

Let Q denote the set of inputs that AS sent to F ru-strict
wrap . Extraction will fail

only in the event that a value x∗ is unveiled that has never been sent to T , i.e.
p∗

x /∈ Q. We have to show that ExtSEC extracts c∗
s with overwhelming probability,

i.e. if the receiver accepts the commitment, an abort in Step 1 happens only with
negligible probability.
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Assume for the sake of contradiction that AS causes this event with non-
negligible probability ε(κ). We will use AS to construct an adversary B that
breaks the EUF-CMA security of the signature scheme SIG with non-negligible
probability. Let vk be the verification key that B receives from the EUF-CMA
experiment. B simulates F ru-strict

wrap for AS by returning vk upon receiving a query
(vk); further let Q be the set of queries that AS sends to F ru-strict

wrap . For each
query (sign,m), B forwards the message to the signature oracle of the EUF-
CMA game and returns the resulting signature σ to AS.

B now simulates the interaction between AS and R up to the point when
AS sends the message c∗

σ. The next messages between AS and R represent the
interaction between an honest receiver and a malicious commitment sender A′

S

for the extractable commitment scheme COM. Thus, B constructs a malicious
A′

S from the state of AS, which interacts with an external commitment receiver.
Due to the extractability of COM, there exists an extractor Ext that on input

(c∗
σ,A′

S) outputs a message (σ̂x, x̂, N̂) except with negligible probability ν(κ). B
runs Ext, sets p̂x = x̂||N̂ and outputs (σ̂x, p̂x) to the EUF-CMA experiment and
terminates.

From AS’s view, the above simulation is distributed identically to the real
protocol conditioned on the event that the unveil of the commitment cσ succeeds.
By assumption, AS succeeds in committing to a signature with non-negligible
probability ε(κ) in this case. It follows that the extractor Ext of COM will output
a message (σ̂x, x̂, N̂) with non-negligible probability ε(κ)−ν(κ). Thus B will out-
put a valid signature σ̂x for a value p̂x with non-negligible probability. However,
it did not query the signature oracle on this value, which implies breaking the
EUF-CMA security of the signature scheme SIG.

Thus, the extractor ExtSEC will correctly output the value s with overwhelm-
ing probability. �
Obtaining UC-Secure Commitments
In order to achieve computationally secure two-party computation, we want to
transform the straight-line extractable commitment from Sect. 3.2 into a UC-
secure commitment. A UC-secure commitment can be used to create a UC-
secure CRS via a coin-toss (e.g. [20]). General feasibility results, e.g. [9], then
imply two-party computation from this CRS.

One possibility to obtain a UC-secure commitment from our straight-line
extractable commitment is to use the compiler of Damg̊ard and Scafuro [15],
which transforms any straight-line extractable commitment into a UC-secure
commitment. The compiler provides an information-theoretic transformation,
but this comes at the cost of requiring O(κ) straight-line extractable commit-
ments to commit to one bit only. If we use a signature token, this translates to
many calls to the signature token and makes the protocol rather inefficient.

Instead, we adapt the UC commitment protocol of [8] to our model. The
key insight in their protocol is that trapdoor extraction is sufficient to realize
a UC-secure commitment. They propose to use a trapdoor commitment in con-
junction with straight-line extractable commitments via a global random oracle
to realize a UC-secure commitment. If we wanted to replace their commitments
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with our construction, we would encounter a subtle problem that we want to
discuss here. In their compiler, the commitment sender first commits to his
input via the trapdoor commitment scheme. Then, he queries the random oracle
with his input (which is more or less equivalent to a straight-line extractable
commitment) and the unveil information for the trapdoor commitment. In the
security proof against a corrupted sender, the simulator has to extract the trap-
door commitment. Thus, in their case, the simulator just searches all queries to
the random oracle for the correct unveil information. In our very strict model, if
we replace the oracle call with our straight-line extractable commitments, this
approach fails. At first sight, it seems possible to just use the extractor for the
straight-line extractable commitment to learn the value. However, it is crucial
for the proof of security against a corrupted receiver that the commitment value
is never published. Without this value, however, the extraction procedure will
not work. Further, while we can still see all queries that are made to the hard-
ware token, the simulator does not (necessarily) learn the complete input, but
rather a precomputed value for the signature. Therefore, a little more work is
necessary in order to realize a UC-secure commitment in our model.

In essence, we can use the techniques of the straight-line extractable commit-
ment from the previous section, although we have to enhance it at several points.
First, we need to query the signature token twice, for both x and r, instead of
deriving r from x via a PRG. This is necessary because all protocol steps have
to be invertible in order to equivocate the commitment, and finding a preimage
for a PRG is not efficiently possible. Second, we have to replace the extractable
commitments by extractable trapdoor commitments1.

The protocol proceeds as follows: First, the receiver chooses a trapdoor for the
trapdoor commitment TCOMext and commits to it via a straight-line extractable
commitment. This ensures that the simulator against a corrupted receiver can
extract the trapdoor and then equivocate the commitments of TCOMext. The
sender then commits with TCOMext to his input (in a similar fashion as in the
straight-line extractable commitment) and uses the token to sign the unveil
information. Against a corrupted sender, the simulator can thus extract the
unveil information and thereby extract the commitment. The commitment is
sent to the receiver, which concludes the commit phase. To unveil, the sender
first commits to the unveil information of TCOMext such that he cannot change
his commitment when the receiver unveils the trapdoor in the next step. From
there, the commitments are checked for validity and if everything checks out,
the commitment is accepted. The formal description of our protocol is given in
Fig. 5.

Theorem 2. The protocol ΠCOM in Fig. 5 computationally UC-realizes FCOM

(cf. Sect. 2.1) in the F ru-strict
wrap -hybrid model, using F ru-strict

wrap as a catalyst, given
that TCOMext is an extractable trapdoor commitment, SECOM is a straight-
line extractable commitment and SIG is an EUF-CMA-secure unique signature
scheme.
1 Note that any commitment scheme can be made extractable (with rewinding) via

an interactive protocol, e.g. [23,41].
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Fig. 5. Computationally UC-secure protocol realizing FCOM in the F ru-strict
wrap -hybrid

model.

Proof. Corrupted sender. Consider the simulator in Fig. 6. It is basically a
modified version of the extraction algorithm for the straight-line extractable
commitment. Against a corrupted sender, we only have to extract the input of
the sender and input it into the ideal functionality.
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Fig. 6. Simulator against a corrupted sender in the protocol ΠCOM

The only possibility for an environment Z to distinguish Real
ΠCOM
AS

and
Ideal

FCOM
SS

is the case of an abort by the simulator. However, we can adapt
Lemma 2 to this scenario.

It follows that the extraction is successful with overwhelming probability and
the simulation is thus indistinguishable from a real protocol run.

Corrupted receiver. The case of a corrupted receiver is more complicated.
The simulator proceeds as follows. In the commit phase, he just commits to the
all zero string and sends the rest of the messages according to the protocol. To
equivocate the commitment, the simulator first extracts the trapdoor ŝk from
the commitment that the receiver sent in the commit phase. He computes the
image t under the 2-universal hash function f that equivocates cs to the value
ŝ obtained from the ideal functionality. Then, he samples a preimage p̂x of t,
and uses the trapdoor ŝk to equivocate the commitment cx to p̂x. Let p̂r be the
new unveil information. The simulator sends both p̂x and p̂r to the token TR

to obtain σx and σr. Now, the second commitment cσ has to be equivocated to
the new signatures and inputs. From there, the simulator just executes a normal
protocol run with the newly generated values.

Let AR be the dummy adversary. The formal description of the simulator is
given in Fig. 7.

Experiment 0: This is the real model.
Experiment 1: Identical to Experiment 0, except that S1 aborts if the extrac-

tion of ŝk from c∗
sk fails, although SECOM.Open(c∗

sk, d
∗
sk, sk

∗) = 1.
Experiment 2: Identical to Experiment 1, except that S2 uses a uniformly

random value tx instead of applying f to px, and computes a preimage p̂x of
tx under the linear 2-universal hash function f .

Experiment 3: Identical to Experiment 2, except that S3 computes (cσ, dσ) ←
TCOMext.Commit(0) in the commit phase. In the unveil phase, he sends
(sign, p̂x), (sign, p̂r) to TR. As an unveil information, he computes d̂σ ←
TCOMext.Equiv(ŝk, (σ̂x, σ̂r, p̂x, p̂r, N), cσ, dσ).
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Experiment 4: Identical to Experiment 3, except that S4 computes (cx, dx) ←
TCOMext.Commit(0) in the commit phase and then computes the unveil infor-
mation p̂r ← TCOMext.Equiv(ŝk, p̂x, cx, dx). This is the ideal model.

Fig. 7. Simulator against a corrupted receiver in the protocol ΠCOM

Experiment 0 and Experiment 1 are computationally indistinguishable given
that SECOM is a straight-line extractable commitment. A distinguishing envi-
ronment can directly be transformed into an adversary that breaks the straight-
line extraction property. Experiments 1 and 2 are statistically indistinguish-
able, given that f is a 2-universal hash function (the same argumentation as
in Lemma 1 applies). Additionally, it is obvious that a preimage is efficiently
sampleable due to the linearity of f . Experiment 2 and Experiment 3 are com-
putationally indistinguishable, given that TCOMext is a trapdoor commitment
scheme. A distinguishing environment Z can straightforwardly be used to break
the equivocation property of the commitment scheme. The same argumentation
holds for Experiment 3 and Experiment 4. �

4 Ideal Signature Tokens

The model considered in the previous section allows a broad class of signature
algorithms that can be placed on the token. This comes with the drawback that
some UC functionalities cannot be realized. In particular, non-interactive proto-
cols are directly ruled out by the model. In this section, we want to explore what
is theoretically feasible with reusable hardware tokens, at the cost of limiting the
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types of signature tokens that are suitable for our scenario. Therefore, we require
that the complete message that is to be signed is given to the signature token.
Nevertheless, there are currently available signature cards that can be used for
the protocols that are presented in this section.

4.1 Model

In contrast to F ru-strict
wrap , we now adapt the simulation trapdoor of Canetti et

al. [8] from a global random oracle to the scenario of reusable tamper-proof
hardware. To overcome the problem that the simulator cannot read queries to
the setup functionality outside of the current protocol, the authors require parties
that query the setup to include the current session id SID of the protocol. If a
malicious party queries the setup in another protocol, using the SID of the first
protocol, the setup will store this query in a list and give the simulator access
to this list (via the ideal functionality with which the simulator communicates).
This mechanism ensures that the simulator only learns illegitimate queries, since
honest parties will always use the correct SID.

We thus enhance the standard resettable wrapper functionality F resettable
wrap

by the query list, and parse inputs as a concatenation of actual input and the
session id (cf. Fig. 8).

Compared to our previous reusable token specification F ru-strict
wrap , it is no

longer necessary to use a nonce to bind the messages to one specific protocol
instance. Thus, the inherent interaction of the F ru-strict

wrap -hybrid model is removed
in the F ru

wrap-hybrid model. This will allow a much broader class of functionali-
ties to be realized. For our purposes, however, we have to assume that the token
learns the complete input, in contrast to the strict model. This is similar to the
model assumed in [29], but in contrast to their work, we focus on untrusted
tokens.

Let us briefly state why we believe that this model is still useful. On the one
hand, there are signature tokens that support that the user inputs the complete
message without any preprocessing. On the other hand, the messages that we
input are typically rather short (linear in the security parameter), implying that
the efficiency of the token is not reduced by much. Even to the contrary, this
allows us to construct more round- and communication-efficient protocols, such
that the overall efficiency increases.

Our security notion is as follows.

Definition 10. Let F be an ideal functionality and let Π be a protocol. We say
that Π UC-realizes F in the global tamper-proof hardware model if for any real
PPT adversary A, there exists an ideal PPT adversary S such that for every
PPT enviroment Z, it holds that

Ideal
Fru

wrap
F,S (Z) ≈ Real

Fru
wrap

Π,A (Z)

Compared to the standard UC security, the setup is now available both in the
real and the ideal settings.
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Fig. 8. The wrapper functionality by which we model reusable resettable tamper-proof
hardware. The runtime bound t is merely needed to prevent malicious token senders
from providing a perpetually running program code M; it will be omitted throughout
the rest of the chapter.

4.2 UC-Secure Non-Interactive Two-Party Computation

In this section, we show how to realize UC-secure non-interactive computation
and the required tools. In the full version [36] we show a small modification
to the straight-line extractable commitment from Sect. 3.2 such that it is non-
interactive by simply removing the nonce. This is used for the construction in
the next section.

Non-Interactive Straight-Line Witness-Extractable Arguments
Our protocol is based on the construction of Pass [39], who presented a protocol
for a non-interactive straight-line witness-extractable proof (NIWIAoK) in the
random oracle model. Let Π = (α, β, γ) be a Σ-protocol, i.e. a three message
zero-knowledge proof system. We also assume that Π has special soundness, i.e.
from answers γ1, γ2 to two distinct challenges β1, β2, it is possible to reconstruct
the witness that the prover used.

The main idea of his construction is as follows. Instead of performing a
Σ-protocol interactively, a Fiat-Shamir transformation [22] is used to make
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the protocol non-interactive. The prover computes the first message α of the
Σ-protocol, selects two possible challenges β1 and β2, computes the resulting
answers γ1 and γ2 based on the witness w according to the Σ-protocol for
both challenges and computes commitments ci to the challenge/response pairs.
Instead of having the verifier choose one challenge, in [22], a hash function is
applied to the commitment to determine which challenge is to be used. The
prover then sends (α, c) and the unveil information of the ci to the verifier. The
verifier only has to check if the unveil is correct under the hash function and if
the resulting Σ-protocol transcript (α, βi, γi) is correct. The resulting protocol
only has soundness 1

2 and thus has to be executed several times in parallel. [39]
replaces the hash function by a random oracle and thus obtains a proof system.
Further, if the commitments to (βi, γi) are straight-line extractable, the resulting
argument system will be witness-extractable, i.e. an argument of knowledge.

The straight-line extractable commitment Πse
COM from Sect. 3.2 requires

interaction, so we cannot directly plug this into the protocol without losing
the non-interactive nature of the argument system. But note that the first mes-
sage of Πse

COM is simply sending a nonce, which is no longer necessary in the
F ru

wrap-hybrid model. Thus, by omitting this message, Πse
COM becomes a valid

non-interactive straight-line extractable commitment.
A formal description of the protocol complete NIWIAoK is given in Fig. 9.

Theorem 3. The protocol ΠNIWI in Fig. 9 is a straight-line witness-extractable
argument as per Definition 6 in the F ru

wrap-hybrid model, given that NICOM is
a straight-line extractable commitment scheme and SIG is an EUF-CMA-secure
unique signature scheme.

Proof. Let Π be a public-coin special-sound honest-verifier zero-knowledge
(SHVZK) protocol.

Completeness: Completeness of ΠNIWI follows directly from the completeness
of the Σ-protocol Π.

Witness-Indistinguishability: Cramer et al. [13,39] show that a SHVZK pro-
tocol directly implies a public-coin witness-indistinguishable protocol. Since
witness-indistinguishable protocols are closed under parallel composition as
shown be Feige and Shamir [21], ΠNIWI is witness-indistinguishable.

Extractablility: Let ExtNIC be the straight-line extractor of NICOM. We will
construct a straight-line extractor for ΠNIWI (cf. Fig. 10).
It remains to show that if the verifier accepts, ExtNIWI outputs a correct wit-
ness with overwhelming probability. First, note that ExtNIC extracts the inputs
of c∗ with overwhelming probability, and by the special soundness of Π, we
know that if both challenges in the commitment are extracted, ExtNIWI will
obtain a witness. Thus, the only possibility for ExtNIWI to fail with the extrac-
tion is if a malicious PPT prover AP manages to convince the verifier with a
witness w∗ such that (x,w∗) /∈ RL.
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Fig. 9. Computationally secure non-interactive straight-line witness-extractable argu-
ment in the F ru

wrap-hybrid model.

Each of the l instances of Π has soundness 1
2 , since a malicious AP can only

answer at most one challenge correctly, and otherwise a witness is obtained.
Thus, AP has to make sure that in all l instances, the correctly answered
challenge is selected. Assume for the sake of contradiction that AP manages
to convince the verifier with some non-negligible probability ε(κ) of a witness
w∗ such that (x,w∗) /∈ RL. We will construct an adversary B from AP that
breaks the EUF-CMA property of SIG with probability ε(κ).
Let B be the adversary for the EUF-CMA game. Let vk be the verification
key that B receives from the EUF-CMA game. B simulates F ru

wrap to AP by
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Fig. 10. The extraction algorithm for the non-interactive straight-line witness-
extractable argument ΠNIWI.

returning vk upon receiving a query (vk); further let Q be the set of queries
that AP sends to F ru

wrap. For each query (sign,m), B forwards the message
to the signature oracle of the EUF-CMA game and returns the resulting
signature σ to AP.
If B receives a signature query of the form (sign,m∗) with m∗ = (α∗, c∗),
start the extractor ExtNIC with input (c∗, Q) to extract the commitments
c∗ using Q. Create a signature σ∗ by selecting σ∗

i as the index of the cor-
rectly evaluating challenge. The verifier will only accept if that is the case. If
SIG.Verify(vk, (α∗, c∗), σ∗) = 1, send (m∗, σ∗) to the EUF-CMA game, other-
wise abort. We thus have that AP wins the EUF-CMA game with probability
ε(κ), which contradicts the EUF-CMA security of SIG. �

UC-secure NISC
Non-interactive secure computation (NISC) [30] is typically a two-party protocol.
The main idea is to execute a constant round two-party computation, but reduce
the number of rounds to two. In the OT-hybrid model, garbled circuits realize a
non-interactive evaluation of any functionality (if the sender requires no output):
the sender garbles the circuit and sends it to the receiver, who learns some labels
via the OTs to evaluate the garbled circuit. It remains to realize the OT protocol
with minimal interaction, and such a protocol was provided by Peikert et al. [43],
taking 2 rounds of interaction given a CRS. Combining the two building blocks,
a NISC protocol proceeds as follows: the receiver first encodes his input using
the first message of the OT protocol and sends it to the sender. The sender in
turn garbles the circuit and his inputs depending on the received message and
sends the resulting garbled values to the receiver. Now the receiver can obtain
some of the labels and evaluate the garbled circuit.

In order to obtain NISC, [8] build such a one-sided simulatable OT using
a NIWIAoK as constructed in the previous section. The construction is black-
box, i.e. we can directly replace their NIWIAoK with ours and obtain the same
result. The actual NISC protocol of [8] is based on the protocol of Ashfar et
al. [1]. Our modifications to the protocol are only marginal. In order for the
simulation against the sender to work, the simulator must extract the seeds
that the sender used to create the circuits. That is the main technical difference
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between [8] and our solution. [8] have the sender send a random value to their
global random oracle and use the answer as the seed. Thus, the simulator learns
the seed and can extract the sender’s inputs. In our case, we let the sender
choose a random value and have him send it to F ru

wrap to obtain a signature,
which allows us to extract this value. Due to possible leakage the sender has
to apply a 2-universal hash function to the random value and use the result as
the seed, but the technique (and the proof) is essentially the same as for our
straight-line extractable commitment scheme. We provide a detailed protocol
description in the full version [36].

5 Limitations

It is known that there exist limitations regarding the feasibility of UC-secure pro-
tocols based on resettable tamper-proof hardware, both with computational and
with statistical security. Concerning statistical security, Goyal et al. [25] show
that non-interactive commitments and OT cannot be realized from resettable
tamper-proof hardware tokens, even with standalone security. In the computa-
tional setting, Döttling et al. [20] and Choi et al. [12] show that if (any number
of) tokens are sent only in one direction, i.e. are not exchanged by both par-
ties, it is impossible to realize UC-secure protocols without using non-black-box
techniques. Intuitively, this follows from the fact that the simulator does not
have any additional leverage over a malicious receiver of such a token. Thus, a
successful simulator strategy could be applied by a malicious receiver as well.
The above mentioned results apply to our scenario as well.

Jumping ahead, the impossibilities stated next hold for both specifications of
reusable tamper-proof hardware that we present in the following. In particular,
GUC and GUC-like frameworks usually impose the restriction that the simulator
only has black-box access to the reusable setup. Thus, compared to the standard
definition of resettable tamper-proof hardware, the model of resettable reusable
tamper-proof hardware has some limitations concerning non-interactive two-
party computation. The degree of non-interactivity that can be achieved with
resettable hardware, i.e. just sending tokens (and possibly an additional mes-
sage) to the receiver, is impossible to obtain in the model of resettable reusable
hardware.

Corollary 1. There exists no protocol ΠPF using any number of reusable and
resettable hardware tokens T1, . . . , Tn issued from the sender to the receiver that
computationally UC-realizes the ideal point function FPF.

Proof (Sketch). This follows directly from the observation that the simulator for
protocols based on reusable hardware is only allowed to have black-box access
to the token, i.e. the simulator does not have access to the code of the token(s).
Applying [12,20] yields the claim.

The best we can hope for is a protocol for non-interactive two-party com-
putation where the parties exchange two messages (including hardware tokens)
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to obtain a (somewhat) non-interactive protocol. Maybe even more interesting,
even stateful reusable hardware tokens will not yield any advantage compared
to resettable tokens, if the tokens are only sent in one direction.

Corollary 2. There exists no protocol ΠOT using any number of reusable and
stateful hardware tokens T1, . . . , Tn issued from the sender to the receiver that
statistically UC-realizes FOT.

Proof (Sketch). First note, as above, that the simulator of a protocol against a
token sender will not get the token code because he only has black-box access
to the token. Thus the simulator cannot use rewinding during the simulation,
which is the one advantage that he has over the adversary. The simulator falls
back to observing the input/output behavior of the token, exactly as in the case
of standard resettable hardware. Due to the impossibility of statistically secure
OT based on resettable hardware [25], the claim follows.
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Abstract. A digital signature scheme (DSS), which consists of a key-
generation, a signing, and a verification algorithm, is an invaluable tool
in cryptography. The first and still most widely used security definition
for a DSS, existential unforgeability under chosen-message attack, was
introduced by Goldwasser, Micali, and Rivest in 1988.

As DSSs serve as a building block in numerous complex cryptographic
protocols, a security definition that specifies the guarantees of a DSS
under composition is needed. Canetti (FOCS 2001, CSFW 2004) as
well as Backes, Pfitzmann, and Waidner (CCS 2003) have described
ideal functionalities for signatures in their respective composable-security
frameworks. While several variants of these functionalities exist, they all
share that the verification key and signature values appear explicitly.

In this paper, we describe digital signature schemes from a different,
more abstract perspective. Instead of modeling all aspects of a DSS in
a monolithic ideal functionality, our approach characterizes a DSS as
a construction of a repository for authentically reading values written
by a certain party from certain assumed repositories, e.g., for transmit-
ting verification key and signature values. This approach resolves several
technical complications of previous simulation-based approaches, cap-
tures the security of signature schemes in an abstract way, and allows
for modular proofs.

We show that our definition is equivalent to existential unforgeabil-
ity. We then model two example applications: (1) the certification of
values via a signature from a specific entity, which with public keys as
values is the core functionality of public-key infrastructures, and (2) the
authentication of a session between a client and a server with the help
of a digitally signed assertion from an identity provider. Single-sign-on
mechanisms such as SAML rely on the soundness of the latter approach.

1 Introduction

A digital signature scheme (DSS) allows a signer to authenticate a message such
that everyone can verify the authenticity. The signer initially generates an asym-
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metric key pair consisting of a signing key and a verification key. The signing
key, which is kept secret by the signer, allows to generate signatures for mes-
sages. The verification key is made public and allows to verify that a message
was indeed signed using the corresponding signing key. DSSs are a crucial com-
ponent in many of today’s widely-used cryptographic protocols. They underlie
the public-key infrastructure (PKI) that is used to provide authentication in
most Internet protocols, and they are used to authenticate e-mails as well as
to provide non-repudiation for electronic documents. They are also used as a
building block in numerous cryptographic protocols.

1.1 Formalizing Message Authentication

The core idea of our approach is that digitally signing a message can be under-
stood as the signer’s declaration that the message belongs to a certain context,
which is described by the verification key. This context may be the signer’s com-
mitment to be legally liable for the content of the message (e.g., a contract), or
simply that the message is meant to originate from the signer. Abstractly, this
can be understood as writing the message to a certain type of repository that
allows other parties to verify for given messages whether they have been written
to the repository, i.e., assigned to the context.

The real-world/ideal-world paradigm. Many security definitions, and in
particular most composable security frameworks [6,22,25], are based on the
real-world/ideal-world paradigm. The real world models the use of a protocol,
whereas the ideal world formalizes the security guarantees that the protocol is
supposed to achieve. The structure of the real-world model is depicted for a
simple setting in Fig. 1 on the left, where R describes the assumed resources
[20,22] or hybrid functionalities [6] used by the protocol π. The “open lines” on
the left and right indicate the interfaces that the honest parties use to access
the protocol π, whereas the line on the bottom indicates a potential attacker’s
access to R.

In the ideal world, as depicted in Fig. 1 on the right, the box S formalizes
the intended security guarantees and is referred to as constructed resource [22]

Rπ π S

σ

Fig. 1. Left: Execution of protocol π in the real-world model. Right: Ideal-world
model described by S with simulator σ. In both figures, the dotted lines are “free”
interfaces explained below.
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or ideal functionality [6]. The access of the honest parties to S is via direct
interfaces, whereas a potential attacker accesses S via the so-called simulator σ.
To define security, one considers random experiments in which a distinguisher
(sometimes called environment) is connected to all open interfaces of either of
the two settings in Fig. 1. The intuition behind the simulator is that, if the two
settings are indistinguishable, then any attack on π (and working with assumed
resource R) can be translated via σ into an attack on S, but S is secure by defi-
nition. Therefore, using the protocol π with the assumed resource R provides at
least the same security guarantees as using the constructed resource S.

Signature schemes as constructions. We formalize the security of a DSS in
the real-world/ideal-world paradigm and based on different types of repositories
to which messages can be written and from which messages can be read, by dif-
ferent parties with potentially different access permissions. As described above,
the goal of using the signature scheme in the described way can be seen as con-
structing an authenticated repository, where only the signer can write messages
and all verifiers can check the validity. This repository takes the role of S in
Fig. 1.

Using a signature scheme for this purpose requires an authenticated reposi-
tory that can hold one message. This repository is used to transmit the signature
verification key. We also assume one repository that can hold multiple messages,
but this repository can be insecure, meaning that write access to the repository
is not exclusive to the signer. This repository is used to transmit the signature
strings. We also make the storage of the signing key explicit as a secure repos-
itory where both write and read access is exclusive to the signer. These three
assumed repositories correspond to R in Fig. 1.

A signature scheme then uses the described repositories in the obvious way:
the signer begins by generating a key pair, writes the signing key to the secure
repository and the verification key to the authenticated one. Upon a request to
sign a message m, the signer retrieves the signing key from the secure repository,
computes the signature, and stores it in the insecure repository. For checking the
validity of a message m, a verifier reads the verification key from the authenti-
cated repository and the signature from the insecure one, and runs the signa-
ture verification algorithm. Our security statement is, then, that this use of the
signature scheme constructs the desired authenticated repository for multiple
messages from the three described assumed repositories.

The advantage of such a composable security statement is that applications
and higher-level protocols can be designed and analyzed using the abstraction
of such a repository; in particular, no reduction proof is required since the com-
position theorem immediately guarantees the soundness of this approach. More
technically, if a protocol π constructs S from R and protocol π′ constructs T
from S, then composing the two protocols leads to a construction of T from R.

Abstract communication semantics. The purpose of a repository is to model
the fact that a certain message written by one party can be made accessible to a
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different party in an abstract manner. Indeed, a DSS is a generic security mech-
anism and can be used by various applications; the definition of a DSS should
abstract from the particular way in which the verification key and the signature
are delivered to the verifier. For instance, a communication network used for
transmission may guarantee messages to be delivered within a certain time, or
an attacker may be able to eavesdrop on messages. Using a DSS—intuitively—
preserves such properties of the communication network. The repositories used
in this work are general enough to model various different such concrete types
of transferring the values.

This generality is, more technically, achieved through a free interface that
appears in both the real-world and the ideal-world model and that is indicated
by the dotted lines in Fig. 1. In the random experiment, this interface is accessed
directly by the distinguisher. The free interface is reminiscent of the environment
access to the global setup functionality in the GUC model [10], but in our model
each resource/functionality can have such a free interface.1

A free interface allows the distinguisher to interact with both resources R
and S directly. This results in a stronger and more general condition compared
to considering the capabilities at that interface as part of the attacker’s interface
and, therefore, in the ideal-world model providing them to the simulator. More
intuitively, the free interface can be seen as a way for the distinguisher to enforce
that certain aspects in the real and the ideal world are the same. We will use
the free interface to let the distinguisher control the transmission semantics; this
leaves our statements general and independent of any concrete such semantics.

In more detail, the write and read interfaces of the repository are defined
to write to or read from buffers associated to the interface. The repository also
has free interfaces that control the transfer of messages from write buffers to
read buffers. In other words, capabilities such as writing messages to a buffer
in the repository or reading messages from one are separated from the mecha-
nisms for making messages written to the repository visible at a specific reader
interface. Control over the operations governing the visibility is granted to the
environment—this makes the security statements independent of specific net-
work models. In particular, the statements imply those in which these capabili-
ties are granted to an attacker controlling the network.

Interfaces and partitioning of capabilities. The interfaces of a resource
group capabilities. Often, each interface can be seen as corresponding to one
particular party in a given application scenario, which can then attach a protocol
machine (or converter [22]) to this interface, as in Fig. 1. Yet, for a general
security definition such as that of a DSS, we do not want to fix the number
of possible verifiers in advance, or even prohibit that the signing key may be
transmitted securely between and used by different parties. As one can always
merge several interfaces and provide them to the same party, it is beneficial to

1 The direct communication between the environment and the functionality requires
a modification of the control function in UC, but does not affect the composition
theorem. In most formal frameworks [17,22,25], no modification is necessary.
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target a fine-grained partitioning of capabilities into interfaces, and therefore a
fine-grained partitioning of the protocol into individual protocol machines.

For our repositories, this means that if each interface gives access to one
basic operation (such as writing or reading one value), one can always subsume
a certain subset of these capabilities into one interface and assign it to a single
party. We achieve the most fine-grained partitioning by modeling each invocation
of an algorithm of the signature scheme as a single protocol machine, and capture
passing values between the machines explicitly via repositories.

Specifications. For generality or conciseness of description, it is often desirable
to not fully specify a resource or functionality. For instance, a complete descrip-
tion of the construction would entail the behavior of the signature scheme in the
case where a signature shall be verified before the verification key is delivered to
the verifier. The approach generally used in the literature on UC in such cases is
to delegate such details to the adversary, to model the worst possible behavior.
In this work, we follow a more direct approach, and explicitly leave the behavior
undefined in such cases.

Our formalization follows the concept of specifications by Maurer and Renner
[23], which are sets of resources that, for example, fulfill a certain property. As
such they are suitable to express an incomplete description of a resource, namely
by considering the set of all resources that adhere to such a (partially defined)
description. Maurer and Renner describe concrete types of specifications such as
all resources that can be distinguished from a specific one by at most a certain
advantage, or all resources that are obtained from a specific one by applying
certain transformations.

We use specifications in this work to describe the behavior of a resource in
environments that use the resource in a restricted way, in the sense that the
inputs given to the resource satisfy certain conditions, such as that the verifica-
tion key must have been delivered before messages can be verified. This alleviates
the requirement of specifying the behavior of the resource for input patterns that
do not occur in applications, and simplifies the description. Needless to say, this
also means that for each application one has to show that the use of the resource
indeed adheres to the specified conditions.

The repositories in this work. In summary, we consider specifications of
repositories as described above. Repositories provide multiple interfaces, each of
which allows exactly one write or read operation. A repository that allows for k
write operations has k writer interfaces, and for n read operations it has n reader
interfaces, and each operation can be understood as writing to or reading from
one specific buffer. A write interface may allow the writer to input an arbitrary
value from the message space, or, in a weaker form, it may allow the writer
to only copy values from buffers at some read interfaces. A read interface may
either allow to retrieve the contents of the corresponding buffer, or to input a
value and check for equality with the one in the buffer.

The resource additionally provides free interfaces for transferring the contents
of write buffers to read buffers. As discussed above, the access to these interfaces
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for managing the visibility of messages is given to the distinguisher, not the
attacker, to abstract from specific communication semantics.

All repositories in this work can be viewed as specific instances of the one
described above, where different types of capabilities are provided at different
parties’ interfaces. For instance, a repository in which an attacker has only read-
interfaces, but cannot write chosen messages, can be considered as authenticated,
since all messages must originate from the intended writers. A repository where
the attacker can also write can be considered as insecure, since messages obtained
by honest readers could originate either from honest writers or the attacker.

1.2 Background and Previous Work

The concept of a DSS was first envisioned by Diffie and Hellman and referred to
as one-way authentication [14]. Early instantiations of this concept were given
by Rivest et al. [26] and by Lamport [18]. The provable-security treatment of
DSS was initiated by Goldwasser et al. [15], who also introduced the first and
still widely-used security definition called existential unforgeability under chosen-
message attack. In this definition, a hypothetical attacker that has access to
honestly computed signatures on messages of his own choice aims at creating
a signature for some new message. A scheme is deemed secure if no efficient
attacker can provide such a forgery with non-negligible probability.

Canetti [7] and independently Pfitzmann and Waidner [25] developed secu-
rity frameworks that allow for security-preserving composition of cryptographic
schemes. In these frameworks, the security of a cryptographic scheme, such as
a DSS, is modeled by idealizing the algorithms and their security properties,
and a concrete scheme is then proved to satisfy the idealization under certain
computational assumptions. Higher-level schemes and protocols that make use
of a DSS can be analyzed using the idealized version of the scheme. One main
advantage of composable frameworks is that they guarantee the soundness of
this approach; a higher-level protocol proven secure with respect to an idealized
signature scheme will retain its security even if the idealized scheme is replaced
by any concrete scheme that is proven secure. In contrast to standard reduc-
tionist proofs, this method does not require to prove an explicit reduction from
breaking the signature scheme to breaking the higher-level protocol; this follows
generically from the composition theorem. Still, even in protocol analyses within
composable frameworks, existential unforgeability remains widely used, despite
the existence of composable models within these formal frameworks.

The first composable notion for digital signatures has been proposed by
Canetti [6,8] via an ideal signing functionality Fsig. The functionality ideal-
izes the process of binding a message m to a public key vk via an ideal signature
string s. In a nutshell, when the honest sender signs a message, he receives an
idealized signature string. This signature string allows any party to verify that
the message has indeed been signed by the signer. Fsig enforces consistency and
unforgeability in an ideal manner: if the honest signer has never signed a mes-
sage m, no signature string leads to successful verification. Likewise, verification
with a legitimately generated signature string for a message m always succeeds.
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Special care has to be taken in case the signer is dishonest, in which case the
above guarantees for unforgeability are generally lost. The formalization given
by Backes et al. [2] in their framework follows a by and large similar approach.

Several versions of the signature functionality have been suggested in previ-
ous work [1,6,8,9,11,12]. All these versions, however, require interaction with
the ideal-model adversary for operations that correspond to local computations
in any real-world scheme, such as the initial creation of the key pair or the gener-
ation of a signature. Camenisch et al. [5] point out that this unnatural weakness,
allowing the adversary to delay operations in the idealized security guarantee,
has often gone unnoticed and even lead to flaws in proofs of higher-level schemes
based on signatures. As a further example, consider a signer S that has never
signed a message m. If an honest party P verifies m with respect to some signa-
ture string s, the verification should fail. Yet, the adversary gets activated during
any local verification request and can corrupt the signer just before providing
the response. The adversary thus has complete freedom on whether to let P
accept or reject the signature string s on message m. This behavior is arguably
counter-intuitive and it is a property that signature schemes do not possess. The
solution of Camenisch et al. [5] requires to modify the universal composability
framework by introducing the concept of responsive environments and adver-
saries that are mandated to answer specific requests immediately to model local
tasks. While Camenisch et al. do re-prove the composition theorem for their
modified framework, such a modification of the framework has the downside
of further increasing its complexity and, at least in principle, making security
analyses in the original and modified frameworks incompatible.

Besides the technical difficulties in defining the signature functionality Fsig

consistently, it is less abstract than what one would expect, since the signa-
ture string and the verification key are an explicit part of the interface. Indeed,
Canetti [8, p. 5] writes:

The present formalization of Fsig and Fcert is attractive in that it allows a
very modular approach where each instance of the ideal functionality handles
only a single instance of a signature scheme (i.e., a single pair of signature
and verification keys). This has several advantages as described in this work.
However, the interface of the signature scheme is somewhat less abstract than
we may have wanted. Specifically, the interface contains an idealized “signature
string” that is passed around among parties [. . . ].

Indeed, Canetti [8, p. 7] starts by describing a “first attempt” functionality F1

that is a “depository of signed messages,” where the signer can input a message
and the verifiers can check. This functionality can be seen as a simplified version
of the authenticated repository we described above. He then argues, however,
that including the technical details in the functionality’s interface is inevitable,
see [8, p. 7]:

The lack of explicit signature strings also causes some other modeling problems.
For instance, modeling natural operations such as sending an “encrypted signa-
ture” that is usable only by the holders of the decryption key cannot be done in
a modular way [. . . ] We conclude that in order to capture our intuitive notion of
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signature schemes, an ideal signature functionality should make the “signature
string” part of its interface. [. . . ]

We want to argue here that, despite the similarity, the arguments given in [8] do
not apply to our definition. The first argument is that the formulation binds the
messages to the signer’s identity instead of the verification key, which requires
prior communication to transmit the verification key. While this argument is
correct, and our definition makes the repository for transmitting the verification
key explicit, we stress that the repositories abstract from concrete types of com-
munication and merely specify that the correct verification key generated by the
signer is accessible, in some way, to the verifier. The means of how it became
accessible do not have to be specified.

The second argument is that (beyond requiring the communication of the sig-
nature string, which is analogous to the verification key), protocols that commu-
nicate a signature over a different connection than specified, such as an encrypted
one, is a modeling challenge. One such protocol is SAML [16], where a signed
assertion on the identity of a party is sent through a TLS connection. Despite the
fact that this assertion is indeed encrypted, and SAML would therefore appear to
be in the class of protocols referred to by Canetti, we show that our model, which
does not explicitly expose the signature string, indeed allows to analyze the secu-
rity of protocols like SAML. The reason is again that our model abstracts from
the concrete communication semantics and in particular also allows to model
the case where a signature is transferred securely.

There are protocols that make explicit use of the verification key or signature
as a bit string and for which our model in its current form does not support a
modular analysis. One example is the transformation from CPA-secure public-
key encryption (PKE) to non-malleable PKE by Choi et al. [13], where each
ciphertext is protected via an instance of a one-time signature scheme, and the
bits of the verification key are used to select a certain subset of instances of the
CPA-secure PKE. For the security reduction to succeed, however, it is necessary
that the verification key be not only a bit string, but that it also be different
for each instance, with high probability. While this property is clearly satisfied
by every secure DSS, and therefore also each DSS that realizes Fsig, it is not
captured in the functionality alone, where the adversary can freely choose the
verification key. Hence, a composable analysis of the Choi et al. scheme in the
Fsig-hybrid model is inherently impossible. In summary, this shows that the
property of outputting some string as the verification key is not sufficient at
least for the application of [13]. Another example are protocols that require
parties to provide proofs (e.g., of knowledge) over inputs and outputs of the
DSS algorithms. Yet, also here, the same issues appear with the formalization
Fsig that is independent of any concrete scheme. In summary, it remains open
whether there is a natural scheme that can be modularly proved based on Fsig,
but not using the more abstract definition we put forth in this paper.

Finally, our work can be seen as orthogonal to the work of Canetti et al. [12],
which extends the model of Canetti [6,8] to the case where verification keys are
available globally. While our model does not restrict the use of the constructed
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resource, the central aspect of our work is the different paradigm underlying the
specification of the functionalities.

1.3 Contributions

The first main contribution of our work is the formal model sketched in Sect. 1.1
above, which we formally specify in Sect. 3. We additionally prove several state-
ments about DSSs using this model; in particular, we exemplify the use of the
construction by two applications.

Capturing the security of a DSS. We define, in Sect. 4.1, the security of a
DSS as constructing an authenticated repository, shown on the right-hand side
of Fig. 2, from an insecure repository, called “insecure Rep” on the left-hand side
of Fig. 2, an “authenticated Rep” to which one message can be written, and a
“secure Rep” that allows to write a single message, but to which the adversary
has neither read- nor write-interfaces. As shown in Fig. 2, using the signature
scheme, which consists of the converters labeled setup, write, and check, requires
the two single-message repositories for distributing the signing and verification
keys. In more detail, in write each message is signed and the signature input into
the insecure repository. Checking whether a given message m has been written
to the repository is done by verifying the received signature for m within check.

Fig. 2. Illustration of the main construction that characterizes a digital signature
scheme. The assumed resources with the protocol (left) and the constructed resource
(right). The adversarial interfaces are denoted by E.w (write) and E.r (read) and the
free interface is denoted by W. The protocol is applied at the honest users’ interfaces
of the assumed resources.

We then prove that this construction statement is equivalent to the existential
unforgeability of secure digital signature schemes in the sense of [15]:

Theorem (informal). A DSS constructs an authenticated multi-message repos-
itory from an insecure multi-message repository, an authenticated single-message
repository and a secure single-message repository if and only if it is existentially
unforgeable.
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Following the discussion in [8], we have to argue that our abstract formaliza-
tion of a signature scheme indeed models the intuitively expected properties of
such a scheme. In particular, in Sect. 5, we show that the formalization directly
models the transferability property of signature schemes in the sense that a
receiver of a signature can forward it to another party, who can also verify it.
We then proceed to discuss two concrete applications.

Message registration resource. We show that the security of a DSS in our
model immediately implies that it can be used to construct a (authenticated)
message registration resource. This resource allows multiple parties to input
messages, which are then authenticated by one party referred to as the issuer.
Letting the messages be public keys corresponds to the use of signatures in a
public-key infrastructure.

Assertions and SAML. Finally, we show how our constructive definition can
be used to prove the soundness of an important step in single-sign-on (SSO)
mechanisms, which is to authenticate a session between a client and a server
(often denoted service provider in this context) with the help of a digitally signed
assertion from an identity provider.

2 Preliminaries

2.1 Discrete Systems and Notation

We model all components as discrete reactive systems and describe them in
pseudo-code using the following conventions: We write x ← y for assigning the
value y to the variable x. For a distribution X over some set, x � X denotes
sampling x according to X . For a finite set X, x � X denotes assigning to x a
uniformly random value in X. For a table T of key-value pairs, with values in
a set V and keys in a set S, we denote by the assignment T [s] ← v the binding
of a key s ∈ S to a value v ∈ V. This assignment overwrites any prior binding
of s to some value. Analogously, v ← T [s] denotes the look-up of the value that
is currently bound to key s. If no value is bound to s, this look-up is defined to
return ⊥. The empty table is defined as the table where any look-up returns ⊥.

More formally, discrete reactive systems are modeled by random systems
[19]. An important similarity measure on those is given by the distinguishing
advantage. More formally, the advantage of a distinguisher D in distinguishing
two discrete systems, say R and S, is defined as

ΔD(R,S) = Pr [DR = 1] − Pr [DS = 1] ,

where Pr [DR = 1] denotes the probability that D outputs 1 when connected to
the system R. More concretely, DR is a random experiment, where the distin-
guisher repeatedly provides an input to one of the interfaces and observes the
output generated in reaction to that input before it decides on its output bit.

A further important concept for discrete systems is a monotone binary output
(MBO) [21] or bad event [4]. This concept is used to define a similarity between
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two systems, the game equivalence [19] or equivalence until bad [4], which means
that two systems behave equivalently until the MBO is set (i.e., as long as the
bad event does not occur), but may deviate arbitrarily thereafter. A widely-used
result is the so-called Fundamental Lemma of Game Playing [4,19], which states
that the distinguishing advantage between two such systems is bounded by the
probability of provoking the MBO (i.e., bad event).

We stress that while especially the notion of bad event carries the connota-
tion that such an event is supposed to occur only with small probability, this
need not be the case. In particular, we will define specifications by means of
the equivalence of two systems until an MBO is set, irrespective of how likely
or unlikely this event is for a particular adversary. Such a specification is still
interesting if, for each particular setting of interest, this probability turns out to
be small.

2.2 Definition of Security

We use a term algebra to concisely write security statements. The resources,
such as repositories, are written in bold-face font and provide interfaces, which
are labeled by identifiers from a set I, which can be accessed by parties. Protocol
machines used by parties are also referred to as converters and are attached to
some interface of a resource. This composition, which for a converter π, inter-
face I, and resource R is denoted by πIR, again yields a resource. For a vec-
tor of converters π = (πI1 , . . . , πIn

) with Ii ∈ I, and a subset of interfaces
P ⊆ {I1, . . . , In}, πPR denotes the resource where πI is connected to interface
I of R for every I ∈ P. For I-resources R1, . . .Rm the parallel composition
[R1, . . . ,Rm] is again an I-resource that provides at each interface access to the
corresponding interfaces of all subsystems.

In this paper, we make statements about resources with interface sets of the
form I = P ∪ {E,W} where P is the set of (honest) interfaces. A protocol is a
vector π = (πI1 , . . . , πI|P|) that specifies one converter for each interface I ∈ P.
Intuitively, P can be thought of as the interfaces that honestly apply the spec-
ified protocol π. On the other hand, interface E corresponds to the interface
with potentially dishonest behavior and no protocol is applied at this interface.
Intuitively, this interface models the attacker’s capabilities to interfere with the
honest protocol execution. Interface W is the free interface that models the influ-
ence of the environment on the resource. A constructive security definition then
specifies the goal of a protocol in terms of assumed and constructed resources.
We state the definition of a construction of [22].

Definition 1. Let R and S be resources with interface set I. Let ε be a function
that maps distinguishers to a value in [−1, 1] and let the interface label set be
I = P ∪{E,W} with P ∩{E,W} = ∅. A protocol, i.e., a vector of converters π =
(πI1 , . . . , πI|P|), constructs S from R within ε and with respect to the simulator
sim, if

∀D : ΔD(πPR, simE S) ≤ ε(D). (1)
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This condition ensures that whatever an attacker can do with the assumed
resource, she could do as well with the constructed resource by using the simula-
tor sim. Turned around, if the constructed resource is secure by definition, there
is no successful attack on the protocol.

The notion of construction is composable, which intuitively means that the
constructed resource can be replaced in any context by the assumed resource with
the protocol attached without affecting the security. This is proven in [22,23].

Specifications and relaxed specifications. As discussed in the introduction,
we consider specifications [23] of reactive discrete systems, meaning systems
that are not fully specified. The specifications can be understood in the sense of
game equivalence: we define an event on the inputs (and outputs) of the discrete
system, and the specification states that a system must show a certain specified
behavior until the condition is fulfilled, but may deviate arbitrarily afterward.

The security statements according to Definition 1 can then be understood as
follows. A protocol constructs from a specification S another specification T if
for each system S that satisfies S there exists a system T that satisfies T such
that the protocol constructs T from S [23].

While game equivalence in general is defined based on an arbitrary MBO of
the system, the MBOs considered in this paper will be of a specific and simple
form: they only depend on the order in which specific inputs are given to the
systems. This formalizes the guarantee that the resource behaves according to
the specification if the inputs have been given in that order. A stronger condi-
tion therefore corresponds to a weaker specification, and it is easy to see that if
a protocol constructs T from S, and the same additional condition is specified
to obtain weakened specifications S− from S and T − from T , then the same
protocol also constructs T − from S−. (This assumes that S− and T − are weak-
ened in the same way. The statement can equivalently be seen as requiring the
distinguishing advantage to be small only for a subset of distinguishers).

As the specifications in this work, as described above, can be seen as par-
tially defined discrete systems, we use the same notation, i.e., boldface fonts.
In particular, we can understand Eq. (1) as extending to such partially defined
discrete systems, by changing the system to respond with a constant output to
the distinguisher once the MBO has been provoked. Due to the specific property
of the MBO, a distinguisher cannot gain advantage by provoking the MBO.

2.3 Digital Signature Schemes

We recall the standard definition of a DSS from the literature.

Definition 2. A digital signature scheme Σ = (K,S, V ) for a message space M
and signature space Ω consists of a (probabilistic) key generation algorithm K
that returns a key pair (sk , vk), a (possibly probabilistic) signing algorithm S, that
given a message m ∈ M and the signing key sk returns a signature s ← Ssk (m),
and a (possibly probabilistic, but usually deterministic) verification algorithm V ,
that given a message m ∈ M, a candidate signature s′ ∈ Ω, and the verification
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key vk returns a bit Vvk (m, s′). The bit 1 is interpreted as a successful verification
and 0 as a failed verification. It is required that Vvk (m,Ssk (m)) = 1 for all m
and all (vk , sk) in the support of K. We generally assume M = Ω = {0, 1}∗.

The standard security definition for DSS is existential unforgeability under
chosen message attack [15], as described in the introduction. Since we target
concrete security, we directly define the advantage of an adversary.

Definition 3 (EU–CMA). For a digital signature scheme Σ = (K,S, V ),
the EU–CMA advantage of an adversary A is defined using the security game
GEU−CMA

Σ in Fig. 3, in more detail,

ΓA(GEU−CMA
Σ ) := PrAGEU−CMA

Σ [won = 1].

Fig. 3. The security game EU-CMA.

Signature schemes may or may not allow to recover the message from the
signature. Each signature scheme can easily be turned into one with message
recovery by viewing (m, s) as the signature instead of s.

Definition 4. A digital signature scheme with message recovery Σrec =
(K,S,R) is a digital signature scheme where the verification algorithm V is
replaced by a recovery algorithm R, that takes a candidate signature s′ and out-
puts a value Rvk (s′) ∈ M ∪ {⊥}, where ⊥ is used to indicate that the signature
s′ is invalid. The correctness condition demands that Rvk (Ssk (m)) = m for all
m and all (vk , sk) in the support of K. The security notion is as in Definition 3,
except for the winning condition: a successful adversary provides a signature s′

such that m′ := Rvk (s′) �= ⊥ and m′ was not a query to the signing oracle.

3 Message Repositories

We formalize the message repositories described in the introduction, and show
how they can be instantiated to model specific communication networks.
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3.1 Description of Message Repositories

We consider general message repositories that export a certain capability, such
as reading or writing a single message, at each of its interfaces. There are four
types of ways in which one can access the repository to read or write its content:
each interface A ∈ W allows to insert one message into the repository. Interface
B ∈ R allows to read a message that has been written to the repository and made
visible for B. Each interface C ∈ C allows to write values into the repository by
specifying from which (reader) interfaces the values should be copied; no new
values can be inserted at interface C. For each copy-interface, there is a set of
associated read-interfaces from which they can copy. Each interface V ∈ V allows
to verify whether a certain value m is visible at the interface; this can be seen as
a restricted type of read access. Finally, the free interface W allows to manage
the visibility of messages. On a call transfer(A,B), the message written at A
becomes visible at reader interface B. We often call the receiving interfaces the
receivers. A precise specification of the repository appears in Fig. 4. As indicated
by the keyword Assume, the behavior of the repository may be undefined if this
assumption is not fulfilled, this is according to the discussion of specifications
in Sects. 1 and 2. In contrast, “	 m ∈ M” is to be understood as a reminder or
comment for the reader; the input m given to the system is necessarily in the
alphabet M by definition of the system. (More technically, while the condition
in Assume may be violated by an input, which may provoke an MBO, m ∈ M
will always be satisfied).

Note that one can easily generalize this basic specification to other types
of read- or write-interfaces, for example to model output of partial information
about a message, such as the length, but which we do not consider here and con-
sider it as part of future work. Following the motivation of Sect. 1, for generality,
we consider each described operation as associated with a separate interface.2

Definition 5. For finite and pairwise disjoint sets W,R, C,V, and a family
{RC}C∈C of sets RC ⊂ R for all C ∈ C, we define the repository RepC,W

R,V,{RC}C∈C
as in Fig. 4. For later reference, we define for n,m, 
, k ∈ N, the standard sets
W = {Ai}i∈[n], R = {Bi}i∈[�], C = {Ci}i∈[m] and V = {Vi}i∈[k]. If nothing else
is specified, these standard interface names are used. We define the shorthand
notation Repm,n

�,k := RepC,W
R,V,{RC}C∈C

for these standard sets and RC = R for

all C ∈ C. For C = ∅ we use the simplified notation RepW
R,V .

Different security guarantees can be expressed using this repository by con-
sidering different allocations of read-, write-, or transfer-interfaces to different
parties as discussed in the introduction. For instance, an attacker could have
access to both read- and write-interfaces, to model traditional insecure commu-
nication. If the attacker only has access to read-interfaces (but not to write-
interfaces beyond potentially copy-interfaces to forward received messages), the

2 Recall that it is always possible to merge several existing interfaces into one interface
to model that a party or the attacker, in a certain application scenario, has the
capability to write and read many messages.
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Fig. 4. Specification of a repository resource. For ease of notation, we treat values
m ∈ M and singular sets {m} for m ∈ M interchangeably.

repository corresponds to authenticated message transmission from a honest
write-interface.

3.2 Modeling Security Guarantees by Access to the Repository

For security statements we need to associate each (non-free) interface to either
an honest party or a possible attacker. As additional notation, we define the
adversarial interfaces sets Er := {E1.r, . . . ,Ek.r} (for some k > 0), Ew :=
{E1.w, . . .Ek.w}, and Ec := {E1.c, . . . ,Ek.c} where the size k of this set is typ-
ically defined by the context. We can then specify repositories with different
security guarantees.

– Insecure repositories allow adversarial write and read access. They can be
described by Rep∅,W∪Ew

R∪Er,∅ , which means that all interfaces are either read- or
write-interfaces.

– An authenticated repository disallows adversarial write-operations of arbi-
trary messages. Only (the honest) interface W can input content into the
repository. This situation is described by the resource RepEc,W

R∪Er,∅,{Er}C∈Ec
,

which indicates that the attacker may still be able to copy values from inter-
faces Er at each interface Ec.

– A repository without adversarial read-access, but with write access, models
perfect confidentiality, and is described by Rep∅,W∪Ew

R,∅ .
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While the (natural) variants described above will be the only ones used in
this work, the formalism allows to flexibly define various further combinations
of honest-user and adversarial capabilities.

3.3 Example: Modeling Networks Through Repositories

For considering concrete applications, such as a specific type of network trans-
fer, the repository can be instantiated appropriately. In this section, we briefly
describe in which sense statements about repositories imply statements about a
network in which senders can send a message to a set of desired recipients, but
which is under complete control of an attacker. We describe such a network in
more detail in the full version of this work [3]. In a nutshell, such a network can
be described as a repository where for each write-interface of the honest senders,
the attacker interface has a read-interface, and for each read-interface of the
honest receivers, the attacker interface has a write-interface. Additionally, the
attacker interface has the capabilities of the free interface that allow to transfer
the values between the write- and the read-interfaces. This enables the attacker
to eavesdrop on all values from the writer and to determine all values sent to
the receiver; the traditional worst-case assumption.

4 A Constructive Perspective on Digital Signatures

4.1 The Basic Definitions

Our security definition for DSSs is based on the repositories introduced in Sect. 3.
Intuitively, the honest parties execute a protocol to construct from an insecure
repository, in which the attacker has full write access, one repository that allows
the writer to authenticate a single message (this will be used for the verification
key), and one repository that allows to store a single message securely (this
will be used for the signing key), an authenticated repository that can be used
for multiple messages. We generally use the notation introduced in Sect. 3. We
first introduce the specifications that capture authenticated repositories since
they are of primary interest in this section. The first type considers repositories
where the role of the receiver interfaces is to verify values in the repository:

Definition 6. Let W,R, Ew, Er denote the standard interface names. A spec-
ification aRepEw,W

Er,R , in the sense of a partially defined discrete system, is an
authenticated repository for verification if the following conditions are fulfilled.
(1) It has at least the interfaces I = W ∪ R ∪ Ew ∪ Er, where all inputs at
I /∈ I are ignored (i.e., the resource has the default behavior of directly returning
back to the caller). (2) For all inputs at some interface I ∈ I, the behavior is
identical to the one specified in RepEw,W

Er,R,{Er}C∈Ew
for I, wherever the behavior

of aRepEw,W
Er,R is defined. More formally, this means that for a given sequence of

inputs, the conditional distribution of aRepEw,W
Er,R , where the outputs for inputs at

interfaces not in I are marginalized, is the same as the conditional distribution
of RepEw,W

Er,R,{Er}C∈Ew
without those inputs.
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The second definition is analogous and considers repositories where the role
of the receiver interfaces is to authentically receive values:

Definition 7. Let W,R, Ew, Er denote the standard interface names. The spec-
ification āRepEw,W

Er∪R, in the sense of a partially defined discrete system, is an
authenticated repository for receiving if it has at least the interfaces I =
W ∪R∪Ew ∪Er, all inputs at I /∈ I are ignored, and for all inputs at some inter-
face I ∈ I the behavior is identical to the one specified in RepEw,W

Er∪R,∅,{Er}C∈Ew
for

I, wherever the behavior of āRepEw,W
Er∪R is defined. We omit Ew in the notation

if it is equal to ∅.

In the following, whenever referring to the sets W,R, Ew, and Er, we implicitly
refer to the standard names introduced in the previous section.

Fig. 5. The real-world setting of the signature construction.

Assumed resources. As outlined in Sect. 1, to construct an authenticated
repository, we require (beyond an insecure repository to transmit the signa-
tures) an additional resource that allows to distribute one value authentically
to all verifiers and one value securely to all signers (Fig. 5). This assumed com-
munication is described by the specification āRepS

W , which specifies resources
with one writer interface S and no active adversarial interface. Information can
only be transferred from S to the interfaces of W. To model the authenticated
(but not confidential) transmission of a value, we assume another resource as
specified by āRepEc,S

Er∪R where information can only be transferred from S to the
interfaces in R, but is not limited to those as also adversarial interfaces may
read this value or copy it via the interfaces in Ec. We define the assumed system
as consisting of the two above-described resources and an insecure repository
Rep∅,W∪Ew

R∪Er,∅ , i.e., as
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Rn,� :=
[
āRepS

W , āRepEc,S
Er∪R,Rep∅,W∪Ew

R∪Er,∅
]

. (2)

For clarity, whenever we explicitly refer to the assumed mechanism to dis-
tribute the keys, we use the shorthand notation

Dist :=
[
āRepS

W , āRepEc,S
Er∪R

]
.

Protocol converters. We assign one converter to each of the three roles: a con-
verter write for the (honest) writer interfaces, a converter check for the (honest)
reader interfaces and a setup-converter setup at interface C. We define the vec-
tor of converters DSS := (setup,write, . . . ,write, check, . . . , check) with n copies
of write, 
 copies of converter check and one converter setup. The set of honest
interfaces in this section is defined as P := {S} ∪ W ∪ R.

Goal of construction: an authenticated repository. Intuitively, the use of
a DSS should allow us to construct from a repository RepW∪Ew

R∪Er
that allows both

the honest users and the attacker to write multiple messages, and a repository
that exclusively allows one honest user to write the verification key authentically,
a repository in which the attacker has no write access. The reason is that writing
a message that will be accepted by honest readers requires to present a valid
signature relative to the verification key, thus the attacker would be required to
forge signatures. This intuition does, however, not quite hold.

Indeed, when using the insecure repository, the attacker can still copy valid
signatures generated by the honest writer to which he has read access via any
of his write interfaces. Since honest readers may later gain read access to those
copied signatures, the attacker can indeed control which of the messages origi-
nating from the honest writer will be visible at those interfaces. The repository
that is actually constructed is a specification aRepEw,W

Er,R as in Definition 6. The
goal of a digital signature scheme can thus be understood as amplifying the capa-
bilities of authenticated repositories as defined using the specifications above.

To give a more concrete intuition, a particular constructed resource still has
an interface S and accepts queries transfer(S,Ai) and transfer(S,Bj), in
addition to those provided by aRepEw,W

Er,R . Providing input at these interfaces,
as indicated by the dead ends drawn in Fig. 6, has no effect, but may influence
whether further outputs of the system are still defined (because, e.g., inputs to
the system may have been provided in an order such that the behavior of the
DSS is not defined).

In the remainder of the section, we prove an equivalence between the validity
of the described construction and the definition of existential unforgeability. As
the protocol converters described above do not exactly match the algorithms in
the traditional definition of a DSS, we also explain how to convert between the
two representations of a signature scheme.
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Fig. 6. The ideal-world setting of the signature construction. Inputs at the interfaces
whose corresponding lines stop before the box (interfaces W and S in this example)
have no effect on the behavior, therefore they are ignored in the specification.

4.2 Unforgeability of Signatures Implies Validity of Construction

The constructed specification aRepEw,W
Er,R has further (inactive) interfaces beyond

those in I = W ∪ R ∪ Ew ∪ Er, and behaves equivalently to RepEw,W
Er,R,{Er}C∈Ew

,
as long as the assumed order of inputs is respected. The following theorem
states that any existentially unforgeable digital signature scheme can be used
to construct such an authentic repository from the assumed resources (see also
Fig. 2 for a depiction of this statement).

Constructing a specification aRepEw,W
Er,R according to Definition 6 can be a

vacuous statement: the specification can be undefined for all possible orders
of inputs. The statement we prove in this section, therefore, explicitly speci-
fies for which orders aRepEw,W

Er,R is defined. In particular, the specification is
defined for all orders of inputs for which the underlying specifications āRepS

W
and āRepEc,S

Er∪R are defined, plus the following natural conditions of a DSS: the
keys are generated first and are distributed before anything is signed or veri-
fied at a writer or reader interface. As long as these conditions are satisfied, the
specification defines the output of the resource.

We now state the formal theorem whose proof appears in the full version [3].

Theorem 1. Let n, 
 ∈ N. For any given digital signature scheme Σ =
(K,S, V ), let the converters write, check, and setup be defined as in Fig. 8.
Then, for the simulator sim defined in Fig. 7, there is an (efficient) reduction C
described in the proof, that transforms any distinguisher D for systems DSSPRn,�

and simEaRepn,�, with aRepn,� = aRepEw,W
Er,R as described above, into an adver-

sary A := DC against the game GEU−CMA
Σ such that

ΔD(DSSPRn,�, simE aRepn,�) ≤ ΓA(GEU−CMA
Σ ),

and where aRepn,� is defined as long as the assumed specification is defined and
the following conditions hold:
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– Command setup is issued at the S-interface before any other command;
– Command transfer(S,Ai) is issued at the W-interface corresponding to the

first setup repository before write is issued at the Ai-interface;
– Command transfer(S,Bi) is issued at the W-interface corresponding to the

second setup repository before read is issued at the Bi-interface.
– There are no transfer(X,Y) queries with X ∈ Ew and Y ∈ Er, that is,

we exclude communication from the adversarial writer to adversarial reader-
interfaces.

Fig. 7. Simulator for the proof of Theorem 1.

Fig. 8. The three protocol converters derived from a signature scheme Σ = (K, S, V ).
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4.3 Chaining Multiple Construction Steps

The construction proved in Theorem 1 assumes (amongst others) an authen-
ticated repository āRepEc,S

Er∪R and constructs an authenticated repository
aRepEw,W

Er,R . A natural question is in which sense multiple such construction steps
can be chained, corresponding to signing the verification key of one instance with
a different instance of the scheme. For this to work out, we have to “upgrade”
the resource aRepEw,W

Er,R to a resource āRepEw,W
Er∪R as needed by Theorem 1, where

we can then use any interface X ∈ W as the interface S to transmit the secret
key. Of course, we additionally require resources āRep{X}

W′ for distributing the
secret keys and Rep∅,W′∪E′

w

R∪Er,∅ for transmitting the signatures.
The chaining is then achieved by the protocol that consists of converters

send and receive, sends the messages over an (additional) insecure repository
Rep∅,W∪Ew

R∪Er,∅ and authenticates them via aRepEw,W
Er,R . Protocol converter send

simply inputs the same message to both resources, whereas receive verifies the
messages obtained through the insecure repository at the authenticated reposi-
tory. This protocol perfectly constructs an authenticated repository with delivery
from the two assumed resources.

Theorem 2. Let n, 
 ∈ N, and consider a protocol SND with converters send
for all interfaces in W and converters receive for all interfaces in R, defined as
described above. Then, for the simulator sim described below,

SNDP
[
Rep∅,W∪Ew

R∪Er,∅ ,aRepEw,W
Er,R

]
≡ simEāRepEw,W

Er∪R ,

wherever both resources are defined. The constructed resource āRepEw,W
Er∪R accepts

transfer commands at sub-interfaces corresponding to both assumed resources,
and requires, for a given message to be transferred, both those commands to be
issued.

The simulator sim responds to read queries at the Er-interfaces correspond-
ing to Rep∅,W∪Ew

R∪Er,∅ or aRepEw,W
Er,R by obtaining the transmitted messages from

āRepEw,W
Er∪R. Once copy has been called at an Ew-interface at aRepEw,W

Er,R and the

corresponding message has been input at the same Ew-interface of Rep∅,W∪Ew

R∪Er,∅ ,

sim issues the same copy command at āRepEw,W
Er∪R. Together with Theorem 1,

this means that sending a message along with a signature constructs an authen-
ticated repository from which the authenticated messages can be read. Several
such constructions can then be chained in the expected way.

4.4 Validity of Construction Implies Unforgeability of Signatures

In this section, we show that any converters achieving the construction of aRep
from Rep and Dist contain a digital signature scheme that is existentially
unforgeable under chosen-message attacks. More precisely, we state the following
theorem proven in the full version [3].
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Theorem 3. Let n, 
 ∈ N. Consider arbitrary converters setup, write, and check
and define the protocol as DSS := (setup,write, . . . ,write, check, . . . , check) (for
the honest interfaces) with n copies of write, 
 copies of converter check and
one converter setup. We derive a digital signature scheme Σ = (K,S, V ) below
in Fig. 9 with the following property: given any adversary against the signature
scheme that asks at most n queries to Sign and 
 queries to Forge, we construct
(efficient) distinguishers Di, i = 1 . . . 5, such that for the systems DSSPRn,� and
simEaRepn,�, with aRepn,� = aRepEw,W

Er,R , for all simulators sim,

ΓA(GEU−CMA
Σ ) ≤

5∑
i=1

ΔDi(DSSPRn,�, simE aRepn,�),

and where aRepn,� is defined as long as the assumed specification is defined and
under the same additional conditions as in Theorem 1.

As a corollary, one can specifically deduce that if there exists a simulator
sim such that systems DSSPRn,� and simEaRepn,� are indistinguishable, then
the constructed signature scheme Σ is existentially unforgeable under chosen
message attacks.

Obtaining the signature scheme from the converters. The key generation,
signing, and verification functions are derived from the converters setup, write,
and check that construct aRep from [Dist,Rep] as follows: The key genera-
tion K consists of evaluating the function setup.setup, the two values written
to the resource Dist are considered as the corresponding key pair. The secret
key is the value that is written to the first sub-system of Dist. The signing
algorithm Ssk (m) consists of evaluating the function write.write(m). The sig-
nature for message m is defined as the value that is written to the repository.
Any request to obtain a value from resource Dist is answered by providing
the signing key sk . The verification algorithm Vvk (m, s) consists of evaluating
the function check.verify(m) and the candidate signature s is provided as the
actual value in the repository and the verification key vk is given as the value in
Dist. The formal description of the algorithms appear in Fig. 9.

4.5 Digital Signatures with Message Recovery

So far we have focused on repositories that offer the capability to check whether
a given value has been written to the buffer and denoted them by aRep. Now, we
consider repositories that offer the capability to retrieve the value that has been
transferred to an interface. In other words, the goal of this section is to show how
to construct the specification āRepEw,W

Er∪R. While the construction of aRep from
Rep and Dist is achieved by traditional signature schemes, the construction
of āRep from the same assumed resources is achieved by signature schemes
with message recovery. Intuitively, converter check is replaced by a converter
read whose task is to recover and output the message (and not simply check
the authenticity of a given message). It is easy to see that any signature scheme
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Fig. 9. Signature scheme (K, S, V ) extracted from converters setup,write, and check.

Σrec = (K,Σ,R) can be used to derive converters that achieve the construction
(similar to the previous section). For the other direction, we have:

Theorem 4. Let n, 
 ∈ N. Consider arbitrary converters setup, write, and read
and define the protocol as DSS := (setup,write, . . . ,write, read, . . . , read) (for the
honest interfaces) with n copies of write, 
 copies of converter read and one
converter setup. One can derive a digital signature scheme Σrec = (K,S,R)
with message recovery with the following property: given any adversary against
the signature scheme that asks at most n queries to Sign and 
 queries to forge,
we derive (efficient) distinguishers Di, i = 1 . . . 5, such that for the systems
DSSPRn,� and simEāRepn,�, with āRepn,� = āRepEw,W

Er∪R, for all simulators
sim,

ΓA(GEU−CMA
Σrec

) ≤
5∑

i=1

ΔDi(DSSPRn,�, simE āRepn,�),

and where āRepn,� is defined as long as the assumed specification is defined and
under the same additional conditions as in Theorem 1.

Proof. We omit the proof and simply mention that it follows the same line of
argumentation as the proof of Theorem 3. Algorithms K and S are derived in
the same way as in Sect. 4.4 and the recovery algorithm Rvk (s) is derived from
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converter read by evaluating the function read (and appropriately providing s
and vk) and to return whatever this function returns. ��

5 On the Transferability of Verification Rights

Universal verification is arguably an important property of signatures. Anybody
possessing the public key and a valid signature string s for some message m
can verify the signature. This implies furthermore that signatures are naturally
transferable, which is essential for their key role in public-key infrastructures or
signing electronic documents. In this section, we demonstrate that our definition
directly implies transferability by constructing a message repository in which
information can be forwarded among readers. The high-level idea is to apply a
converter to the free interface that instead copies the desired message from the
sender buffer, where it was input originally, to the targeted reader buffer.

The role of the free interface. Recall that the role of the free interface in
the repository resources is to transfer the contents from certain write-buffers to
certain read-buffers. The transferability of signatures then simply means that
values can also be transferred from read-buffers to other read-buffers; this can
easily be achieved by translating the transfer-requests appropriately.

The core idea, then, is to observe that the new repository and the old repos-
itory only differ by attaching a converter at interface W. We assign a new
name to this resource and define aTRep = relayWaRep (and analogously
āTRep := relayWāRep) with a converter relay that always remembers the
existing assignments of reader to writer interfaces and on a transfer-query for
two reader interfaces, it simply connects the corresponding writer-interface. The
resource aTRep is additionally formally described in Fig. 10.

The converter. Converter relay distinguishes two types of inputs: transfer com-
mands from a writer to a reader transfer(X,Y) are forwarded to the con-
nected repository. Transfer commands between two readers, transfer(R1,R2)
are translated to transfer commands transfer(X,R2), where X denotes the
writer interface where the value readable at R1 was first input.

Fig. 10. Specification of a repository resource with transferable rights. Only the mod-
ifications with respect to Fig. 4 are shown; the other functions are as described there.



518 C. Badertscher et al.

A simple black-box construction. Any protocol that constructs aRep from
Rep (and Dist) also constructs relayWaRep from relayWRep (and Dist), where
the assumed resource relayWRep is an insecure repository that also allows infor-
mation transfer between two receivers, i.e., sending a signature from one receiver
to another. This is easy to see: assume there was a distinguisher D for systems
simErelayWaRep and [relayWRep,Dist], and we are going to construct a distin-
guisher D′ for the underlying two resources without the converter relay attached.
(Note that sim is the same simulator as in Theorem 1). Distinguisher D′ simply
behaves as D but additionally emulates relay for queries at the free interface.

6 Application 1: Implementing a Registration Service

The goal of this section is to construct a resource that allows several parties
to send messages authentically to a population of receivers, via one issuer that
authenticates the messages. This happens in public-key infrastructures, where
the issuer, which is also denoted by certification authority in that context and can
authenticate messages, acts as a relay. This is the setup of a (simple) public-key
infrastructure and its use in Internet protocols, where the senders correspond to
the submitters of public keys to the CA (registration), and the receivers are the
consumers those public keys to authenticate messages. For the remainder of the
section, we will therefore refer to the senders as submitters and the receivers as
consumers (although the resource can of course also be used in other protocols).

The registration resource Reg. We denote the set of interfaces for the sub-
mitters by S := {S1, . . . ,S�}, the consumers by C := {C1, . . . ,C�}, and the inter-
faces for the issuer by I. The adversarial interface is denoted by E. The registra-
tion resource Reg offers the capability to input a value x at any submitter inter-
face. Once this value has been transferred to the issuer, he can acknowledge the
value by calling issue at its interface. Once this happened, the value x, together
with the information which submitter has input the value, can be made available
at any consumer interface and, in addition, it can be transferred between any
two consumer interfaces (or submitter interfaces). The formal description of the
behavior of Reg appears in Fig. 11.

Assumed resources and the protocol. We assume a network resource Net
which allows any party interface to send (by calling send) and receive messages
(by calling receive), and allows the attacker to read all messages and send any
message (note that the honest parties in a network have no means to verify who
sent the message). In addition, we assume authentic communication as a setup.
More formally, let ChI← be a system that has interface set {I}∪S ∪{E1, . . . ,E�}.
Each interface except the issuer offers the capability to send one message, i.e.,
to call send(m), which can be fetched at the issuer interface (they are authentic
in the sense that the message cannot be modified and the resource indicates to
the receiver who is the sender of the message). The issuer interface I can be
thought of as being divided into 2
 sub-interfaces, and each sub-interface offers
the capability to obtain the message from the corresponding sender (and hence
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Fig. 11. The registration service resource.

identifies the sender reliably). Also, let the system ChI→ be defined similarly,
but which allows the issuer to send two messages in an authenticated manner to
each submitter and one to each consumer.3

We can now describe the protocol that implements a registration service
based on the above setup. The issuer’s converter, upon issue, takes all values
x received on the incoming authenticated channel and acknowledges them by
signing value (x, λ), where λ is a unique identifier that the issuer assigns to
its sub-interface from which x was received.4 The issuer sends the signed value
back via the outgoing authentic channel. The protocol for the submitters, upon
register(x) simply send x to the issuer over the authentic channel. Finally, the
consumer converter reads inputs from the insecure network. When reading a new
input, they verify the received value-signature pair and output the associated
value only if the signature can be verified.

Theorem 5. Let S, C be the above sets and I an interface name (different from
all remaining interfaces). The protocol described above (and formally specified as
pseudo-code in the full version) constructs resource Reg from the described set
of authenticated channels. More specifically, for converters issue and reg, there
is a simulator ˜sim (formally specified as pseudo-code in the full version of this
work), such that for all distinguishers D there is an attacker against the signature
scheme (with essentially the same efficiency), i.e.,

3 This setup reflects that we need to distribute the issuer’s verification key to each
participant and in addition one signature to each submitter.

4 In an application, this identifier could be the name of a server or a company. For
concreteness we assume the identifier of the ith sub-interface to be the number i.
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ΔD(issueI regS1 . . . regS�relC1 . . . relC� [ChI→,ChI←,Net] , ˜sim
E
RegI

S,C)

≤ ΓA(GEU−CMA
Σ ).

Proof. Due to the abstract nature of repositories, we can easily represent the real
world by a wrapped repository, and the ideal world as a wrapped authenticated
repository and conclude the statement by invoking the results from the previous
section. The proof is given in the full version [3]. ��

7 Application 2: Authenticating Sessions Using
Assertions

Unilaterally secure channels. Establishing secure sessions in the internet
is a crucial task. The most widely known solution to establish secure session
is TLS, that, in a first handshake phase, establishes a shared key between
client and server. Subsequently, this key is used to authenticate and encrypt
the communication. In TLS, the server is usually authenticated, whereas the
client is not. This results in an only unilateral authenticity guarantee [24]:
while the client is guaranteed that its messages are received by the intended
server, the server does not know whether he is communicating with a legiti-
mate client or with an attacker. This guarantee for unilaterally secure chan-
nels is captured by the resource NETn

uni and the guarantee provided by the
mutually authenticated secure channel is captured by the resource NETn,IdP

mut

as described in Figs. 12 and 13.

Fig. 12. The unilaterally secure network resource: the adversarial interface E can choose
whether the network runs in secure (mode = hon) or adversarial mode (mode = adv).
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Fig. 13. In a mutually secure network between a client and a service provider, the
adversary can only deliver messages between the client and the service provider.

Modeling session authentication of SSO schemes. In a typical single-sign-
on use case, the clients have a unilaterally authenticated session with the service
provider. Aside of that they have establish a mutually authenticated and secure
session with the identity provider. In practice, such a session is authenticated
using a secure channel protocol involving an authentication based on passwords,
hardware tokens, or one-time codes. In short, there is a secure channel between
the identity provider and the client denoted by SECIdP,C1 . Aside of this assumed
channel, we again need a mechanism to distribute the verification key of the iden-
tity provider using an authenticated channel between the identity provider and
the service provider. which we denote by ChIdP→SP. The client realizes a mutu-
ally authenticated secure channel NETn,IdP

mut by relaying a signed message (and
its signature string), i.e., the assertion, from the identity provider to the service
provider (this is usually denoted as IdP-initiated scenario in SSO terms) and
have the signature verified by the service provider. In more detail, the proto-
col converter assert for the identity provider distributes its verification key and
signs a specific token and sends it to the client via the assumed secure channel.
The client converter fwd forwards this token to the service provider. Finally, the
converter of the service provider, denoted filter, only starts outputting messages
once the token is received and verified as the first message from NETn

uni. Note
that we treat all interfaces SPi as sub-interfaces of one service provider interface
SP. We establish the following theorem:

Theorem 6. The protocol described above (and formally specified as pseudo-
code in the full version), consisting of the service provider protocol filter, the
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identity provider protocol assert, and the client protocol fwd, constructs the mutu-
ally secure network NETn,IdP

mut , from the assumed, unilaterally secure, setting
[ChIdP→SP,SECIdP,C1 ,NETn

uni]. More specifically, there is a simulator ˜sim (for-
mally specified as pseudo-code in the full version of this work) such that for any
distinguisher D, there is an attacker A against the underlying signature scheme
(with essentially the same efficiency), i.e.,

ΔD(fwdC1assertIdPfilterSP [ChIdP→SP,SECIdP,C1 ,NETn
uni] , ˜simNETn,IdP

mut )

≤ ΓA(GEU−CMA
Σ ).

Proof. The proof is given in the full version [3] and follows a similar idea to the
one of the previous section. ��

The approach of sending assertions to upgrade a unilaterally authenticated
channel to full authentication is used, for instance, in the widely used SAML
protocol [16]. This section can be seen as a proof of an abstract version of SAML.
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Abstract. We exemplify and evaluate the use of the equational frame-
work of Micciancio and Tessaro (ITCS 2013) by analyzing a number
of concrete Oblivious Transfer protocols: a classic OT transformation
to increase the message size, and the recent (so called “simplest”) OT
protocol in the random oracle model of Chou and Orlandi (Latincrypt
2015), together with some simple variants. Our analysis uncovers sub-
tle timing bugs or shortcomings in both protocols, or the OT definition
typically employed when using them. In the case of the OT length exten-
sion transformation, we show that the protocol can be formally proved
secure using a revised OT definition and a simple protocol modification.
In the case of the “simplest” OT protocol, we show that it cannot be
proved secure according to either the original or revised OT definition, in
the sense that for any candidate simulator (expressible in the equational
framework) there is an environment that distinguishes the real from the
ideal system.

1 Introduction

Cryptographic design and analysis is a notoriously hard problem, arguably even
harder than standard software design because it requires to build systems that
behave robustly in the presence of a malicious adversary that actively tries to
subvert their execution. The desirability of precise formalisms to describe and
analyze cryptographic constructions is well exemplified by the code-based game-
playing framework of [4] to present security definitions and proofs of standard
cryptographic functions. But even the detailed framework of [4] offers little help
when formalizing more complex cryptographic protocols, due to their interac-
tive nature and underlying distributed execution model. At the semantic level,
the gold standard in secure computation protocol design and analysis is the
universally composable (UC) security model of [5] (or one of its many techni-
cal variants [1,2,7,9,16,17,21],) which offers strong compositionality guarantees
in fully asynchronous execution environments like the Internet. Unfortunately,
the relative lack of structure/abstraction in the traditional formulation of this
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model1 makes it rather hard to use in practice, when specifying and analyzing
concrete protocols.2 These limitations are widely recognized, and have prompted
researchers to explore several variants, simplifications and specialization of the
general UC security model [6,19,22,30]. In this perspective, a very interesting
line of work is represented by the “abstract cryptography” framework of [25],
which calls for an axiomatic approach to the description and analysis of cryp-
tographic primitives/protocols, and the “constructive cryptography” [24] and
“equational security” [26] frameworks, which can be thought of as logical mod-
els of the axioms put forward in [25].

In this work we examine the equational security framework of [26], which
provides both a concrete mathematical model of computation/communication,
and a concise syntax to formally describe distributed systems by means of a set
of mathematical equations. We believe that progress in our ability to describe
and analyze cryptographic protocols cannot be achieved simply by formulating
frameworks and proving theorems in definitional papers, but it requires putting
the frameworks to work on actual example protocols. To this end, we present
a detailed case-study where we evaluate the expressiveness and usability of this
framework by analyzing a number of concrete oblivious transfer protocols, a
simple but representative type of security protocols of interest to cryptographers.

Oblivious transfer (OT), in its most commonly used 1-out-of-2 formulation
[12], is a two party protocol involving a sender transmitting two messages m0,m1

and a receiver obtaining only one of them mb, in such a way that the sender
does not learn which message b ∈ {0, 1} was delivered and the receiver does not
learn anything about the other message m1−b. OT is a classic example of secure
computation [12,27], and an important (in fact, complete) building block for the
construction of arbitrary security protocols [11,14,18,20,23,32]. In Sects. 3 and
4 we investigate a well known transformation often used to increase the message
length of OT protocols with the help of a pseudorandom generator. In Sect. 5,
we investigate a very efficient OT protocol in the random oracle model recently
proposed in [10].

We remark that the primary goal of our work is to exemplify and evaluate
the usability of the equational security framework of [26], rather than finding
and fixing bugs in specific protocol instances. Still, our findings about the OT
protocols under study may be of independent interest, and well illustrate how
equational security modeling can offer a convenient and valuable tool for cryp-
tographic protocol specification and analysis. The main findings about the OT
protocols are the following:

– The security of the OT protocol transformation, often considered a folklore
result in cryptography, does not hold with respect to the naive OT definition

1 Rooted in computational complexity, the model is usually described as an arbitrary
network of (dynamically generated) Turing machines that communicate by means of
shared tapes, possibly under the direction of some scheduling process, also modeled
as an interactive Turing machine.

2 This is analogous to the Turing machine, an excellent model to study computation in
general but a rather inconvenient one when it comes to specifying actual algorithms.
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typically used (often implicitly) in the cryptographic literature. However, if
the OT ideal functionality definition is suitably modified, then the transfor-
mation becomes provably secure, and can be readily analyzed using simple
equational reasoning.

– The protocol of [10] can be proved secure according to neither the classic nor
the revised OT definitions considered above.

Technical details about our findings, and general comments/conclusions are pro-
vided in the next paragraphs.

1.1 Oblivious Transfer Extension

The standard definition of OT is given by a functionality OT((m0,m1), b) = mb

that takes a pair of messages (m0,m1) from the sender, a selection bit b from
the receiver, gives mb to the receiver, and gives nothing to the sender. The two
messages are assumed to have the same length |m0| = |m1| = κ, which is usually
tied to the security parameter of the scheme and the mathematical structures
used to implement it. (E.g., κ = log |H| where H is the domain/range of some
group-theoretic cryptographic function). A natural and well known method to
adapt such OT protocol to one allowing the transmission of longer messages is
the following:

1. Use an underlying OT protocol to send two random seeds (s0, s1) of length κ,
2. Use these seeds as keys to encrypt the two messages using a private-key

encryption scheme,3 and send both ciphertexts to the receiver over a standard
(authenticated, but insecure to eavesdropping) communication channel.

The intuition is that since the receiver gets only one of the two keys, the other
message is protected by the encryption scheme. Indeed, the intuition is correct,
in the sense that encryption does its job and protects the other message, but the
protocol is nevertheless not secure (at least, according to the simulation-based
fully asynchronous security definition implied by the OT functionality described
above). Our formal analysis shows that, while the protocol is correct, and secure
against corrupted senders, it is not secure against corrupted receivers, and for
a very simple reason: it contains a subtle timing bug! In a real execution, the
sender transmits the encryption of its two messages as soon as the two messages
are made available by the environment. However, the simulator can produce the
corresponding simulated ciphertexts only after the receiver has chosen her selec-
tion bit b. In order to prove security, the sender should delay the transmission
of the ciphertexts until after the receiver has provided b to the underlying OT
protocol. The problem is that the above OT ideal functionality does not disclose
any information to the sender, not even if and when the receiver has selected
the bit b.

3 Since each seed si is used only once, the secret key encryption scheme can be as
simple as stretching si using a pseudorandom generator G, and use the resulting
string G(si) as a one-time pad to mask the message mi.
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We also consider a revised OT definition OT((m0,m1), b) = (f(b),mb), that
includes an additional output f(b) ∈ {⊥,�} disclosing to the sender if b has
been chosen yet, without providing the actual value of b ∈ {0, 1}. We modify
the protocol accordingly (by letting the sender delay the transmission of the
ciphertexts until b > ⊥), and show that the modified protocol can be formally
proved secure according to the revised OT definition.

1.2 Oblivious Transfer in the Random Oracle Model

In [10], Chou and Orlandi propose a new OT protocol achieving UC security in
the random oracle model [3]. The protocol is very elegant and can be efficiently
implemented based on elliptic curve groups. We provide a formal analysis of the
protocol using the equational framework. We show that if the naive OT defini-
tion is used, then the protocol is insecure against both corrupted senders and
corrupted receivers. For the case of corrupted senders, the failure of simulation
is due to the fact that in a real protocol execution the sender learns if and when
the receiver provides her selection bit b, which is not available to the simulator.
For the case of corrupted receivers, the problem is that in a real protocol execu-
tion the receiver can delay its random oracle query until after seeing the sender’s
ciphertexts, but in the ideal protocol execution, if the simulator has to output
the ciphertexts before seeing the receiver’s random oracle query, then it must be
able to guess an external random bit correctly before seeing any inputs, which
is impossible to achieve with high probability. However, unlike the case of the
OT length extension transformation, these problems are not the only weakness
of the protocol, and security cannot be proved by switching to the revised OT
definition given above.

1.3 Discussion/Conclusions

Before jumping to conclusions, some remarks about the significance of our results
are in order. As already noted, it should be understood that the aim of our work
was to illustrate the use of the equational framework, rather than criticizing any
specific protocol or definition. In particular, we are not arguing that the revised
OT definition given in Sect. 4 is the “correct” one, and everybody should use
it. In fact, other alternative definitions are possible. Our main point is that the
equational model is a convenient framework to precisely formulate and investi-
gate alternative definitions.

The OT message length transformation studied in Sect. 3 is folklore. We are
not aware of any work analyzing its security, and our study is, to the best of our
knowledge, the first work even making a formal security claim about it. This is
perhaps because doing this using the traditional framework based on the informal
use of interactive Turing machines already seemed cumbersome and error prone
enough not be worth the effort. In fact, the transformation is simple enough
that at first it is natural to wonder if a formal proof of security is required at all.
Our analysis shows that a formal security proof is indeed useful, at very least
to unambiguously identify the security property (ideal functionality) for which
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the transformation is (proved or claimed to be) correct. We remark that when
we set to analyze the OT protocol transformation, we were giving for granted
that the transformation was secure, and the analysis was meant primarily as a
simple example to illustrate the use of the equational framework. Finding that
the protocol does not emulate the traditional OT definition came to us as a
surprise, even if in hindsight the timing bug is rather obvious. In this respect,
the equational framework proved to be a very convenient tool to carry out a
precise formal analysis with relatively modest effort.

As for the protocol of [10], our primary aim is to illustrate the use of the
equational framework to analyze a protocol in the random oracle model. We
are certainly not concerned about whether the protocol is making a “morally
correct” use of the random oracle, or if a “global” random oracle definition [8]
should be used instead. We simply use the equational framework to model and
analyze the protocol as described in the original paper [10]. Our analysis shows
that the protocol is not secure according to the original OT definition (seemingly
used in [10]), but even using a revised OT definition still does not allow to
prove security in the equational framework, in the technical sense that for any
simulator (expressible in the equational framework) there is an environment that
distinguishes between the real and the ideal systems.

We believe our analysis highlights the importance of a more rigorous proof
style when analyzing secure computation protocols than currently feasible using
traditional formulations of the UC framework and its variants. This is especially
important when it comes to formally specifying the security properties satisfied
(or claimed) by a protocol. Without an unambiguous formal security specifi-
cation/claim, even the most detailed proof is of little value, as it is not clear
what is being proved or claimed. Within the context of our work, the equa-
tional framework of [26] proved to be a very convenient and useful formalism
to express security definitions (in the form of ideal functionalities) and crypto-
graphic protocols in a concise, yet mathematically precise way. It allowed us to
easily explore different definitional variants and put them to good use to spot
potential bugs in cryptographic protocols. Exploring the applicability of abstract
frameworks along the lines of [24–26] to the specification and analysis of a wider
range of cryptographic protocols is likely to be mutually beneficial, both to fur-
ther develop and refine the models, and to gain useful insight on the security of
concrete cryptographic protocols.

2 Background and Notation

In this section we review the equational framework of [26], and define the nota-
tion used in this paper. For completeness, we will first recall some background
on the (standard) theory that gives a precise meaning to systems of equations as
used in [26] and in this paper. This material is important to give a solid math-
ematical foundation to the equational framework, but is not essential to follow
the rest of the paper, and the reader may want to skip directly to the following
paragraph describing our computational models and notational conventions.
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2.1 Domain Theoretical Background

The mathematical foundation of the equational framework is provided by domain
theory. Here we give just enough background to describe the systems studied in
this paper, and refer the reader to [15,28,29] for a detailed treatment. Recall that
a partially ordered set (or poset) is a set X equipped with a reflexive, transitive
and antisymmetric relation ≤. All posets in this paper are complete partial orders
(CPOs), i.e., any (possibly empty) chain x1 < x2 < . . . has a least upper bound
supi xi in X. The Cartesian product X ×Y of two CPOs is also a CPO with the
component-wise partial order (x1, y1) ≤ (x2, y2) ⇐⇒ x1 ≤ x2 ∧ y1 ≤ y2. These
posets are endowed with the Scott topology, where a subset C ⊆ X is closed
if for all x ∈ C, y ≤ x implies y ∈ C, and any chain in C has a least upper
bound in C. A set is open if its complement is closed. The standard topological
definition of continuous function still applies here, and continuous functions
(with respect to the Scott topology) are exactly the functions that preserve
limits f(supi xi) = supi f(xi). The set of all continuous functions from CPOs
X to Y is denoted by [X → Y ]. Any (Scott) continuous function is necessarily
monotone, i.e., for all x, y ∈ X, if x ≤ y then f(x) ≤ f(y). All CPOs X have
a minimal element ⊥ = sup ∅, called the bottom, which satisfies ⊥ ≤ x for all
x ∈ X.

For any set A, we can always construct a flat CPO A⊥ = A∪{⊥} by including
a unique bottom element ⊥. The partial order in A⊥ consists of ⊥ ≤ x for all
x ∈ A. It should be easy to see that all nonempty closed sets in A⊥ contain ⊥,
and open sets in A⊥ are exactly the subsets of A and the whole A⊥. Functions
f : A → B between sets can be lifted to strict functions f : A⊥ → B⊥ between
the corresponding flat CPOs by setting f(⊥) = ⊥. The bottom element usually
designates the situation where no (real) input or output is given yet.

For any CPO X, every continuous functions f : X → X admits a least fixed
point, denoted as fix(f), which is the minimal x ∈ X such that f(x) = x.
The least fixed point can be obtained by taking the limit of the sequence
⊥, f(⊥), f2(⊥), . . .. A system of mutually recursive equations can be solved via
least fixed point computation. Such a solution describes the final outputs of
interactive computations between nodes in a network. By Bekič’s theorem [31],
the least fixed point of such a system can be computed one component at a time:
For example, the system (x, y) = (f(x, y), g(x, y)) can be solved by computing
first x̂ = fix(λx.f(x,fix(λy.g(x, y)))) and then ŷ = fix(λy.g(x̂, y)), and the least
fixed point of the system is (x̂, ŷ).

We can also model probabilistic behaviors in equational framework. A prob-
ability distribution on a CPO X is a function p : X → [0, 1] such that4

p(A) + p(B) = p(A ∪ B) for all disjoint A,B ⊆ X and p(X) = 1. As usual,
we say that a probability p is negligible if for all x ∈ X, p(x) < n−c for any

4 In general we should consider the Borel algebra on X when defining probability
distributions on X. Here we simply use X instead since we work on finite sets and
discrete probabilities.
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constant c > 1, where n is a security parameter.5 Similarly, p is overwhelming if
1 − p is negligible. If X is a CPO, then the set of probability distributions over
X, denoted by D(X), is also a CPO, where for any two distributions p ≤ q (in
D(X)) if and only if p(A) ≤ q(A) for any open subset A ⊆ X. Probabilistic func-
tions are just (continuous) functions between sets of distributions with respect
to this ordering relation.

2.2 Computational Model

We recall that the execution model of [26] consists of a network, with nodes rep-
resenting computational units, and (directed) edges modeling communication
channels. (See below for details.) Each channel is associated with a partially
ordered set of channel “histories” or “behaviors”, representing all possible mes-
sages or sequences of messages that may be transmitted on the channel over
time. The partial order represents temporal evolution, so for any two histories
h1 ≤ h2 means that h2 is a possible extension (or future) of h1. The standard
example is that of finite sequences M∗ = {(m1, . . . , mk) : k ≥ 0,∀i.mi ∈ M}
of messages from a ground set M , ordered according to the prefix partial order.
By combining the set M∞ of infinite sequences of messages from M , we get a
CPO Mω. Another common example, modeling a channel capable of delivering
only a single message, is the flat partial order M⊥, consisting of all messages
in M and a special bottom element ⊥ denoting the fact that no message has
been transmitted yet. Different incoming and outgoing channels (incident to a
single node) are combined taking Cartesian products, so that each node can
be thought as having just one input and one output. The computational units
at the nodes are modeled as functions F : X → Y from the incoming channels
to the outgoing channels, satisfying the natural monotonicity requirement that
for any h1 ≤ h2 in X, we have F(h1) ≤ F(h2) in Y . Informally, monotonicity
captures the intuition that once a party transmits a message, it cannot go back
in time and take it back. A probabilistic computational unit can be modeled
as a function of type X → D(Y ), where D is the probability monad. We may
also consider units with limited computational power in the monadic approach,
which is an important extension to the equational framework. However, as all
the protocols considered in this paper run in constant time, for simplicity we do
not formalize computational cost (e.g. running time, space, etc.) in our analysis.

Computation units can be connected to a communication network N to form
a system, where N is also a monotone function. Such a system is again a mono-
tone function mapping external input channels to external output channels of
all the units, and it is modeled as a composition of functions describing all the
units and the network. Syntactically, function compositions can be simplified by
substitution and variable elimination, and, when recursive definition is involved,
by using fixed point operations. In general, we use the notation (F|G) to denote

5 In the asymptotic setting, cryptographic protocols are parameterized by a security
parameter n. For notational simplicity, we consider this security parameter n as fixed
throughout the paper.
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the system composed by functions F and G, where the composition operator “|”
is associative. The main advantage of the equational framework is that it has a
mathematically clean and well defined semantics, where functions can be com-
pletely described by mathematical equations (specifying the relation between
the input and the output of the units), and composition simply combines equa-
tions together. The equational approach also provides a simple and precise way
to reason about relations between systems. For example, equivalent components
(in the sense of having equivalent equations) can be replaced by each other, and
when considering probabilistic behaviors, if a component is indistinguishable
from another component, then they can be used interchangeably with negligible
impact on the behavior of the entire system.

2.3 Security

The definition of security in the equational framework follows the well-accepted
simulation-based security paradigm. In this paper we consider only OT protocols,
which are two-party protocols between a sender program and a receiver program.
An ideal functionality F is a function from X = X0 × X1 to Y = Y0 × Y1, where
Xi (Yi) is the external input (output) of party Pi. An environment is a function
Env : Y ω → Xω × {�}⊥ such that it takes as input the output history (as
a sequence of evolving messages) of a system, and it produces a sequence of
evolving inputs to the system and a decision bit t. Here a sequence of messages
x0x1 . . . over X is evolving if xi ≤X xi+1 for all i, where xi ∈ X and ≤X is the
partial order of X. An experiment between an environment Env and a system S,
is executed as follows: Env generates an evolving sequence of input x0x1 . . . to
S such that S outputs yi = S(xi) for each xi, Env takes as input the sequence
y0y1 . . ., and it eventually produces an external decision bit t. We write Env[S]
for the output (distribution) t of this experiment. When all parties are honest,
the real system is a composition of the network N and two parties P0 and P1,
denoted as (P0|P1|N), and it must be equivalent to the ideal functionality F.
When a party Pi is corrupted, the real system is composed by the remaining
honest party and the network, and the ideal system is composed by F and a
monotone simulator Sim. We say that a protocol is secure against the corruption
of Pi if there exists a simulator Sim as a computation unit such that the systems
(N|P(1−i)) and (Sim|F) are indistinguishable by any environment that produces
a decision bit in polynomial time in the output length of the system and the
security parameter.

A distinctive feature of the equational framework is the ability to specify fully
asynchronous systems. An environment might not provide a complete input to
a system at once, that is, the input to certain channels might be ⊥. So we
must consider such asynchronous environments when analyzing the security of
a protocol.

It is an very interesting and important open question to compare the equa-
tional framework (with the full extension of computational security) with the
UC model and its variants (for example, the simplified models of [6,30]). Due to
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space limitation, we do not address such a problem in the current paper and we
will study it in future work.

2.4 Notation

Now we briefly mention our notational conventions. In this paper we mainly use
flat CPOs, i.e., partially ordered sets X with a bottom element ⊥ ∈ X such that
x1 ≤ x2 iff x1 = ⊥ or x1 = x2. These are used to model simple communication
channels that can transmit a single message from X \ {⊥}, with ⊥ representing
the state of the channel before the transmission of the message. For any CPO
X, we write X

×2 = {(x, y) : x, y ∈ X, x �= ⊥, y �= ⊥}⊥ for the CPO of strict pairs
over X and ⊥. The elements of a pair z ∈ X

×2 are denoted z[0] and z[1], with
z[i] = ⊥ when z = ⊥ or i = ⊥. The operation of combining two elements into
a strict pair is written 〈x, y〉. Notice that 〈x,⊥〉 = 〈⊥, y〉 = ⊥, and therefore
〈x,⊥〉[0] = 〈⊥, y〉[1] = ⊥ even when x, y �= ⊥. For any set A, we write x ← A⊥
for the operation of selecting an element x �= ⊥ uniformly at random from A.

It is easily verified that for any pairs z, 〈x0, x1〉, 〈y0, y1〉, strict function f and
strict binary operation �,

z = 〈z[0], z[1]〉 (1)
f(〈x0, x1〉[i]) = 〈f(x0), f(x1)〉[i] (2)

〈x0, x1〉[i] � 〈y0, y1〉[i] = 〈x0 � y0, x1 � y1〉[i] (3)

The followings are common CPOs and operations:

– The CPO T = {�}⊥, representing signals, i.e., messages with no information
content.

– The CPO B = {0, 1}⊥ of single bit messages, often used to select an element
from a pair.

– The CPO Mn = {0, 1}n
⊥ of bit-strings of length n.

– x!y = 〈x, y〉[1], the operation of guarding an expression y by some other
expression x. Notice that x!y = y, except when x = ⊥, and can be used to
“delay” the transmission of y until after x is received.

– x! = x!�, testing that x > ⊥.

As an example, using the notation introduced so far, we can describe the
ideal (1-out-of-2) OT functionality by the equations in Fig. 1. (Notice that this
functionality is parameterized by a message space M). The first line specifies the
names of the functionality (OT), input channels (m2, b) and output channel(s)
m. This is followed by a specification of the type of each channel: the input
interface includes a message pair m2 = 〈m0,m1〉 ∈ M

×2 from a sender and a
selection bit b ∈ B from a receiver. The output interface is a single message
m ∈ M sent to the receiver while the sender does not get any information from
the functionality. The last line m = m2[b] is an equation specifying the value of
the output channel(s) as a function of the input channels. The functionality is
illustrated by a diagram showing the names of the function and the input/output
channels.



536 B. Li and D. Micciancio

OTM(m2, b) = m
m2 : M

×2

b : B

m : M

m = m2[b]

m2

m

b

OTM

Fig. 1. A naive OT functionality: the receiver gets the selected message m = m2[b],
and the sender does not get anything at all.

In the rest of this paper, equational variables usually belong to unique
domains (e.g., m2 : M

×2
n ). So from now on, we will omit such type specifica-

tions when defining functions using equations, and we will follow the convention
listed in Table 1 for naming variables.

Table 1. Frequently used variables and their domains.

Variable name Domain Variable name Domain

m Mn m′
M�

m2 M
×2
n m′

2 M
×2
�

c0,c1 M� c2 M
×2
n

a,a′
T b,b′

B

i,o Mn i2,o2 M
×2
�

k Kn k2 K
×2
n

q (G2 ×G)⊥ q2 (G2 ×G)×2
⊥

X,Y G⊥

3 Oblivious Transfer Length Extension: A First Attempt

As an abbreviation, when the message space M = {0, 1}n
⊥ is the set of all bit-

strings of length n, we write OTn instead of OTM . Consider the following OT
length extension problem: given an OTn channel for messages of some (suffi-
ciently large) length n, build an OT functionality OT� for messages of length
� > n. The goal is to implement OT� making a single use of the basic OTn

functionality, possibly with the help of an auxiliary (unidirectional, one-time)
communication channel for the transmission of messages from the sender to the
receiver. For simplicity,6 we model the communication channel as a functionality
Net� that copies its input of length � to the output of the same length:

6 This corresponds to a perfectly secure communication channel. More complex/
realistic communication channels are discussed at the end of this section.
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The OT length extension protocol is specified by a pair of Sender and Receiver
programs, which are interconnected (using the OTn and Net2� functionalities)
as shown in Fig. 2. Notice how the external input/output interface of the system
corresponding to a real execution of the protocol in Fig. 2 is the same as that of
the ideal functionality OT�(m′

2, b
′) = m′ the protocol is trying to implement.

o2

m′
2

m2

m′

m

i2

b′b

Sender Receiver

Real(m′
2, b

′) = m′

OTn

Net2�

Fig. 2. A real execution of a candidate OT length extension protocol. The protocol
consists of a Sender and a Receiver programs that communicate using OTn and Net2�

functionalities.

A natural approach to design an OT length extension protocol is to make use
of a pseudorandom generator G : Mn → M� that stretches a short random seed of
length n into a long pseudorandom string of length �. Using such pseudorandom
generator, one may define candidate Sender and Receiver programs as follows:

In words, these programs work as follows:

– The sender picks a pair m2 of two random seeds, and passes (one of) them
to the receiver using the OTn functionality. It then stretches the two seeds
using the pseudorandom generator G, and uses the generator’s output as a
one-time pad to “mask” the actual messages before they are transmitted to
the receiver over the communication channel Net2�.
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– The receiver selects one of the two seeds from the OTn functionality, expands
it using the pseudorandom generator, and uses the result to “unmask” the
corresponding message from Net2�.

It is easy to show that the protocol is correct, in the sense that combining
the equations of OTn, Net2�, Sender and Receiver as shown in Fig. 2 results in
a system Real(m′

2, b
′) = m′ that is perfectly equivalent to the defining equation

m′ = m′
2[b

′] of the ideal functionality OT�. Intuitively, the protocol also seems
secure because only one of the two seeds can be recovered by the receiver, and
the unselected message is protected by an unpredictable pseudorandom pad. But
security of cryptographic protocols is a notoriously tricky business, and deserves
a closer look.

We first consider the security of the protocol when the sender is corrupted.
The attack scenario corresponds to the real system obtained by removing the
Sender program from the protocol execution in Fig. 2. Following the simulation
paradigm, security requires exhibiting an efficient simulator program SimS (inter-
acting, as a sender, with the ideal functionality OT�) such that the following real
and ideal systems are computationally indistinguishable:

Security is easily proved by defining the following simulator:

We observe that RealS and IdealS are perfectly equivalent because they both
simplify to m′ = i2[b′] ⊕ G(m2[b′]). So, the protocol is perfectly secure against
corrupted senders.

We now turn to analyzing security against a corrupted receiver. This time
we need to come up with a simulator SimR such that the following real and ideal
executions are equivalent:
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Of course, this time we can only aim at proving computational security, i.e.,
coming up with a simulator such that RealR and IdealR are computationally
indistinguishable. We begin by writing down explicitly the equations that define
the real system execution. Combining the equations for Sender, OTn and Net2�,
we obtain the following system:

RealR(m′
2, b) = (m, o2)

m2 ← M
×2
n

o2[0] = m′
2[0] ⊕ G(m2[0])

o2[1] = m′
2[1] ⊕ G(m2[1])

m = m2[b]

So, the simulator may proceed by picking m0,m1 at random on its own, and set
m = m2[b] just as in the real execution. However, the simulator cannot compute
o2 as in RealR because it does not know m′

2. This is addressed by using the same
message m′ twice, counting on the pseudorandom masking to hide this deviation
from a real protocol execution. Formally, the simulator SimR is defined as follows:

Combining SimR with OT� results in the ideal system:

IdealR(m′
2, b) = (m, o2)

m2 ← M
×2
n

o2[0] = m′
2[b] ⊕ G(m2[0])

o2[1] = m′
2[b] ⊕ G(m2[1])

m = m2[b]

As expected, the two systems IdealR, RealR are indistinguishable for both b = 0
and b = 1. For example, RealR(m′

2, 0) and IdealR(m′
2, 0) are equivalent because

they are both computationally indistinguishable from the process that chooses
m ← Mn and c ← M� at random and sets o2 = 〈m′

2[0] ⊕ G(m), c〉. The case when
b = 1 is similar. At this point it would be very tempting to conclude that RealR
and IdealR are equivalent, but they are not: they can be easily distinguished by an
environment that sets m′

2 �= ⊥ and b = ⊥. In fact, IdealR(m′
2,⊥) = (⊥,⊥), but

RealR(m′
2,⊥) = (⊥, o2), where o2 �= ⊥. So, IdealR and RealR are not equivalent,

and the simulator SimR is not valid.

Insecurity in general. By generalizing the above idea, we can show that, for any
simulator SimR there is an environment Env that can distinguish the two systems
RealR and IdealR with nonnegligible probability. We build Env that works in two
stages:
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Env0(m, o2) = (b,m′
2, t) where

b = ⊥, m′
2 ← M

×2
n , t = (o2 > ⊥)

Env1(m, o2) = (b,m′
2, t) where

b ← {0, 1}, m′
2 ← M

×2
n , t = (G(m) + o2[b] = m′

2[b])

Notice that the output of the ideal system IdealR(m′
2, b) = (m, o2) is defined

by (b′,m, o2) ← SimR(m′
2[b

′], b), where b′ is an internal channel. Since b′ ranges
over a flat CPO, and m′

2[⊥] = ⊥, the value of b′ resulting from a least fixed point
computation is given by (b′, , ) = SimR(⊥, b). In particular, b′ may depend
only on the external input b. We denote using SimR(b)b′

the random variable b′

computed on input b.
Let p = Pr{SimR(⊥)b′

= ⊥} and q = Pr{SimR(⊥,⊥)o2 = ⊥}. It is clear that
Pr{Envi[RealR] = �} = 1 for all i ∈ {1, 2}. For the ideal system, we have

Pr{Env0[IdealR] = �} = Pr{SimR(⊥,⊥)o2 > ⊥} · p

+ Pr{SimR(⊥,m′
2[b

′])o2 > ⊥} · (1 − p)
= (1 − q)p + Pr{SimR(⊥,m′

2[b
′])o2 > ⊥} · (1 − p).

Since Pr{Env0[RealR] = �} = 1, Pr{Env0[IdealR] = �} must be overwhelming;
and since Pr{SimR(⊥,⊥)o2 > ⊥} ≤ Pr{SimR(⊥,m′

2[b
′])o2 > ⊥}, p must be

negligible. Finally, notice that

Pr{Env1[IdealR] = �} = Pr{G(m) + o2[b] = m′
2[b] | SimR(⊥)b′

= ⊥} · p

+ Pr{G(m) + o2[b] = m′
2[b] | SimR(⊥)b′

> ⊥} · (1 − p).

If SimR(⊥)b′
> ⊥, then Pr{b′ = b} = 1

2 and so

Pr{G(m) + o2[b] = m′
2[b] | SimR(⊥)b′

> ⊥} =
1
2
(1 +

1
2�

).

This implies that Pr{Env2[IdealR] = �} = 1
2 + ε for some negligible ε > 0, and

so Env can distinguish the two systems.
The discrepancy between the two systems as shown above highlights a subtle

timing bug in the protocol: in order to carry out the simulation, the transmission
of i2 should be delayed until after the receiver has selected her bit b. However,
this information is not available to the sender, and fixing the protocol requires
revising the definition of OT, as we will do in the next section.

Other communication channels. We conclude this section with a discussion
of other possible communication channels and weaker OT variants that leak
some information to the environment. For example, one may replace the
perfectly secure communication channel NetM with an authenticated channel
AuthNetM(i, ei) = (o, eo) that also takes an input ei : T and provides an output
eo : M to the environment. The environment output eo = i is used to leak the
transmitted message as well as the timing information about when the message
is transmitted. The environment input ei is used to allow the environment to
delay the transmission of the message o = ei!i to the receiver.
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Similarly, one may consider the OT variants that leak the input timing infor-
mation eo = (m2!�, b!�) to the environment, and allow the environment to delay
the OT output m = ei!m2[b]. This idea is similar to the “message header” in the
UC models proposed in [6,30].

We remark that none of these modifications affect the analysis presented in
this section. In particular, considering a perfectly secure communication channel
Net only makes our insecurity result stronger. Also, leaking the signal b!� to the
environment does not solve the timing bug in the protocol: in order to fix the
bug, the sender needs to delay the transmission of i2 until b > ⊥. So, it is not
enough to provide this information to the environment. The timing signal b!�
needs to be provided as an input to the honest sender.

4 OT Length Extension

We have seen that the “standard” OT definition is inadequate even to model and
analyze a simple OT length-extension protocol. In Fig. 3 we provide a revised
definition of oblivious transfer that includes an acknowledgment informing the
sender of when the receiver has provided her selection bit.

OT′
M(m2, b) = (a,m)
m = m2[b]
a = (b > ⊥)

m2

m

b

a OT′
M

Fig. 3. A revised OT functionality.

We use this revised definition to build and analyze a secure OT length-
extension protocol, similar to the one described in the previous section. The
OT length extension uses the same Receiver program as defined in Sect. 3, but
modifies Sender by using the signal a to delay the transmission of the message
i2. The new Sender′ also forwards the signal a to the environment to match the
new OT′ definition:

The Sender and Receiver programs are interconnected using OT′
n and Net2�

as shown in Fig. 4. As in the previous section, it is easy to check that the protocol
is correct, i.e., combining and simplifying all the equations from the real system
in Fig. 4 produces a set of equations identical to the revised definition of the
ideal functionality OT′(m′

2, b
′) = (a′,m′). Security when the sender is corrupted

is also similar to before. The real and ideal systems in this case are given by
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o2

m′
2

m2

m′

m

i2

b′b

a′

a

ReceiverSender′

Real(m′
2, b

′) = (a′,m′)

OTn

Net2�

Fig. 4. A normal execution of the OT length extension protocol.

We see that this time SimS′ has an additional input a′ and output a. We adapt
the simulator from the previous section simply by adding an equation that for-
wards the a′ signal from OT′ to the external environment:

RealS(m2, i2, b
′) and Ideal(m2, i2, b

′) are equivalent because they both output
m′ = o2[b′]⊕G(m2[b′]) and a = (b′ > ⊥). So, the protocol is still perfectly secure
against corrupted senders according to the revised OT′ definition.

We now go back to the analysis of security against corrupted receivers. The
real and ideal systems are:

No change to the simulator are required: we use exactly the same “candidate”
simulator SimR as defined in Sect. 3. Combining and simplifying the equations,
gives the following real and ideal systems:
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RealR(m′
2, b) = (a′,m, o2)

m2 ← M
×2
n

c0 = m′
2[0] ⊕ G(m2[0])

c1 = m′
2[1] ⊕ G(m2[1])

o2 = b!〈c0, c1〉
m = m2[b]
a′ = (b > ⊥)

IdealR(m′
2, b) = (a′,m, o2)

m2n← M
×2
n

c0 = m′
2[b] ⊕ G(m2[0])

c1 = m′
2[b] ⊕ G(m2[1])

o2 = 〈c0, c1〉
m = m2[b]
a′ = (b > ⊥)

Now, when b = ⊥, we have RealR(m′
2,⊥) = IdealR(m′

2,⊥) = (⊥,⊥,⊥). So, no
adversary can distinguish the two systems by not setting b. On the other hand,
when b �= ⊥, RealR and IdealR are identical to the real and ideal systems from
the previous section, augmented with the auxiliary output a′ = (b > ⊥) = �.
As we already observed in Sect. 3, these two distributions are computationally
indistinguishable, proving that the length extension protocol is secure against
corrupted receivers.

5 The OT Protocol of Chou and Orlandi

In this section we consider the OT protocol proposed by Chou and Orlandi in
[10]. In the original paper, this is described as a protocol to execute l instances
of 1-out-of-m OT, in parallel, i.e., the sender provides an l-dimensional vector of
m-tuples of messages, and the receiver (non-adaptively) selects one message from
each tuple. For simplicity, we consider the most basic case where l = 1 and m = 2,
i.e., a single OT execution of a basic OT protocol as defined in the previous
sections. This is without loss of generality because our results are ultimately
negative. So, fixing l = 1 and m = 2 only makes our results stronger. Our goal
is to show that this protocol is not provably secure in the equational framework
according to a fully asynchronous simulation-based security definition. In order
to formally analyze security, we begin by giving a mathematical description of
the protocol and model of [10] using the equational framework.

The Random Oracle model. The protocol of [10] is designed and analyzed in the
random oracle model [3]. So, both parties have access to an ideal functionality
RO implementing a random function with appropriately chosen domain Q and
range K. Queries from the sender and receiver are answered consistently, and, in
general, RO can receive multiple (adaptively chosen) queries from both parties.
Formally, the random oracle is modeled by the following functionality, where
f∗(x1, x2, . . . , ) = (f(x1), f(x2), . . .) is the standard extension of f to sequences:
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The random oracle starts by picking a function f : Q → K uniformly at
random, and then it uses f to answer any sequence of queries qs, qr ∈ Q∗

from each party. We give separate channels to access RO to the sender (qs)
and receiver (qr) to model the fact that random oracle queries are implemented
as local computations, and each party is not aware of if/when other players
access the oracle. The Sender and Receiver programs from the protocol of [10]
only make a small number of queries (two and one respectively.) Moreover, the
two sender queries are chosen simultaneously, non-adaptively. So, for simplicity,
we restrict RO(q2, q) = (k2, k) to an oracle that receives just a pair of queries
q2 = 〈q0, q1〉 ∈ Q×2

⊥ from the sender and one query q ∈ Q⊥ from the receiver.
We remark that in order to prove security, one should consider an arbitrary
(still polynomial) number of (sequential, adaptively chosen) queries to model the
adversary/environment ability to compute the RO function locally an arbitrary
number of times.7 However, since our results are negative, fixing the number of
queries only makes our result stronger: we show that the protocol is not provably
secure even against the restricted class of adversaries that make only this very
limited number of random oracle queries.

It has been observed, for example in [8], that a protocol analyzed stand-alone
in the traditional random oracle model might lose its security when composed
with other instances of protocols in the same random oracle model: either each
instance uses an independent random oracle such that the real composed system
cannot assume a single hash function, or the composed system suffers from trans-
ferability attack. A modified notion called global random oracle was proposed
in [8] to allow a composed system achieving UC security when all protocols can
access a single global random oracle. With respect to this issue, the OT protocol
of [10] cannot be claimed UC secure and it should be re-defined in the global
random oracle model or an equivalent notion. However, such issue is indepen-
dent of the negative result we are going to present. Since our motivation is to
illustrate the use of equational framework, for simplicity, we still consider the
traditional random oracle model as used in [10].

The protocol. In order to facilitate a comparison with the original paper, we use
as far as possible the same notation as [10]. Let G = 〈B〉 be a group generated by
an element B of prime order p. Following [10], we use additive group notation,
so that the group elements are written as xB for x = 0, . . . , p − 1.8 In [10] it
is assumed that group elements have unique, canonical representations (which
allows for equality testing), and group membership can be efficiently checked.
Here, for simplicity, we assume that all messages representing group elements are
syntactically valid, i.e., whenever a program expects a group element from G as

7 This can be modeled by letting qs and qr range over the set of sequences of queries
Q∗, partially ordered according to the prefix ordering relation.

8 Chou and Orlandi use additive notation to match their efficient implementation
based on elliptical curve groups. Here we are not concerned with any specific imple-
mentation, but retain the additive notation to match [10] and facilitate the compar-
ison with the original protocol description.
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input, it will always receive the valid representation of a such a group element
(or ⊥ if the no message has been sent), even when this value is adversarially
chosen. This is easily enforced by testing for group membership, and mapping
invalid strings to some standard element, e.g., the group generator B.

The protocol uses a random oracle RO(q2, q) = (k2, k) for functions with
domain Q = G2 × G and range K = {0, 1}n, which receives two (parallel)
queries q2 = 〈q0, q1〉 ∈ Q×2

⊥ from the sender and one query q ∈ Q⊥ from the
receiver.

The protocol also uses a symmetric encryption scheme (E,D), with the same
message space Mn as the OT functionality, and key and ciphertext space Kn =
{0, 1}n

⊥ equal to the range of the random oracle. In addition, the scheme is
assumed to satisfy the following properties:

1. Non-committing: There exist PPT S1,S2 such that, for all m ∈ Mn, the
following distributions are identical:9

{(e, k) : k ← K, e ← E(k,m)}
{(e, k) : e ← S1, k ← S2(e,m)}

2. Robustness: Let S be a set of keys chosen independently and uniformly at
random from Kn. For any PPT algorithms A, if e ← A(S), then the set
VS,e = {k ∈ S | D(k, e) �= ⊥} of keys under which e can be successfully
decrypted has size at most 1 with overwhelming probability (over the choice
of S and the randomness of A.)

A simple encryption scheme satisfying these property is given by E(m, k) =
(m, 0n)⊕ k, i.e., padding the message with a string of zeros for redundancy, and
masking the result with a one-time pad.

The protocol of [10] can be described by the equations in Fig. 5, and its
execution is depicted in Fig. 6. We briefly explain the normal protocol execution:
Sender first samples a random group element X and sends it to Receiver; once
it receives Y from Receiver, it submits a pair of queries q2 to RO; and once
it receives random keys k2 from RO, it encrypts messages m2 under the keys
k2, and it sends the ciphertext pair c2 to Receiver. On the other hand, Receiver
first samples a random group element yB, and upon receiving X from Sender it
computes Y = bX +yB and sends it to Sender; it then submits a query q to RO,
and once the random key k and the ciphertexts c2 are all received, it decrypts
c2[b] using k to get the desired message m.

In the following subsections, we show that this protocol is insecure, both
according to the classic OT definition given in Fig. 1, and according to our
revised OT′ definition of Fig. 3 that includes the signal a = (b > ⊥) to the
sender. Specifically, first, in Subsects. 5.1 and 5.2 we show that if the defini-
tion from Fig. 1 is used, then the protocol is insecure against corrupted senders
and corrupted receivers. The sender insecurity is for reasons very similar to
9 In fact, computational indistinguishability is enough, but it is easy to achieve perfect

security.
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Fig. 5. The OT protocol of Chau and Orlandi.

q2 q

m2

m

k2 k

c2

b

Y

XSender Receiver

RO

Fig. 6. A normal execution of the OT protocol of Chou and Orlandi.

those leading to the failure simulation in Sect. 3. Unlike the case of OT length
extension, when considering the revised OT′ definition and modifying the sender
program accordingly, we show in Subsect. 5.3 that the modified protocol is still
insecure against corrupted senders and corrupted receivers.

5.1 Corrupted Sender

We begin our analysis of the OT protocol with respect to the standard OT
functionality, and we first consider the case when the sender is corrupted. The
corresponding real and ideal systems are shown in the following diagrams:

For the protocol to be secure, the two systems should be computationally
indistinguishable (for some simulator program SimS.) Just like the case of OT
length extension, there exists an environment that can distinguish the two sys-
tems. We now describe an environment Env that works in two stages Env0
and Env1, and show that for any SimS, at least one of Env0 and Env1 distin-
guishes the real and ideal systems with nonnegligible advantage. We recall that
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a distinguishing environment connects to all input and output channels of the
system, and produces one external output t ∈ {⊥,�}. The distinguishing advan-
tage of Envi is given by

Adv[Envi] = |Pr{Envi[RealS] = �} − Pr{Envi[IdealS] = �}| .
The two stages of the distinguisher work as follows:

– Env0(k2, Y,m) = (q2,X, c2, b, t) sets q2 = ⊥, X = B, c2 = ⊥ and b = ⊥, and
outputs t = (Y > ⊥).

– Env1(k2, Y,m) = (q2,X, c2, b, t) sets q2 = ⊥, X = B, c2 = ⊥ and b = 0, and
outputs t = (Y > ⊥).

Notice that the only difference between these two stages is in the value of b.
Using the equations for the Receiver, we see that in the real system Y > ⊥
if and only if b > ⊥. In particular, we have Pr{Env0[RealS] = �} = 0 and
Pr{Env1[RealS] = �} = 1. On the other hand, we have

Pr{Env0[IdealS] = �} = Pr{Env1[IdealS] = �} (4)

because when interacting with IdealS, the output value t is independent of b.
So, if we let p be the probability in (4), the two stages of Env have advantage
Adv[Env0] = p and Adv[Env1] = 1 − p. It follows that either Env0 or Env1 has
distinguishing advantage at least 1/2.

Intuitively, this environment can distinguish the real and the ideal systems
because a corrupted sender (interacting with the real system RealS), learns when
the receiver sets b > ⊥ by observing the incoming message Y > ⊥, but in the
ideal system this timing information is not passed to the simulator.

5.2 Corrupted Receiver

We have seen that when using the standard OT definition, the protocol is not
secure against corrupted senders. Now we turn to analyzing the protocol against
corrupted receivers with respect to the standard OT definition. The real and
ideal system in this case are shown in Fig. 7.

q2 q q

m2 m2

m

k2 k k

c2 c2

b

Y Y

X X
SimR

RO

Sender

RealR(m2, q, Y ) = (a, k,X, c2)

OT

IdealR(m2, q, Y ) = (a, k,X, c2)

Fig. 7. The real and ideal systems when receiver is corrupted.
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Security requires that the real and the ideal systems are indistinguishable for
some simulator program SimR. Unfortunately, as we are about to show, no such
simulator exists.

Proposition 1. For the OT protocol in Fig. 5, when the receiver is corrupted,
for any receiver simulator SimR, there is an environment that distinguishes the
two systems with nonnegligible probability.

Proof. We build an environment that works in three stages, denoted by Envi for
i ∈ {0, 1, 2}:

Env0(k,X, c2) = (m2, q, Y, t) where
d ← {0, 1}, y ← Z

∗
p, m2 = ⊥, Y = dX + yB, q = ⊥, t = (c2 = ⊥)

Env1(k,X, c2) = (m2, q, Y, t) where
d ← {0, 1}, y ← Z

∗
p, m2 ← M

×2
n , Y = dX + yB, q = ⊥, t = (c2 > ⊥)

Env2(k,X, c2) = (m2, q, Y, t) where
d ← {0, 1}, y ← Z

∗
p, m2 ← M

×2
n , Y = dX + yB, q = ((X,Y ), yX),

t = (D(k, c2[d]) = m2[d])

Assume there exists a receiver simulator SimR. With the real system, Envi

outputs t = � with probability 1 for all i ∈ {0, 1, 2}. So Pr{Envi[(OT|SimR)] =
�} must be overwhelming for all i ∈ {0, 1, 2}.

Notice that in the ideal system both b and m are internal channels such that
m = m2[b], and we can simplify the output of the ideal system as (k,X, c2) ←
SimR(m2[b], q, Y ). For i = 0, 1, 2, let ui denote the (random variable of) the input
to SimR when working with Envi, and let SimR(ui)b denote the (random variable
of) the value of b given input ui. The external input channels to SimR are q and
Y , and their values are ⊥ in both Env0 and Env1. If SimR sets b = ⊥ when q = ⊥
and Y = ⊥, then it cannot tell the difference between Env0 and Env1, and thus
at least one of Env0 and Env1 has a nonnegligible distinguishing advantage. So
Pr{SimR(u0)b > ⊥} must be overwhelming. Since SimR is a monotone function,
Pr{SimR(ui)b > ⊥} is also overwhelming for i ∈ {1, 2}. In particular, let ε =
1
2 Pr{SimR(u1)b = ⊥}, then ε is negligible.

Now consider Env1, which sets q = ⊥ and samples Y from the distribution
{dX + yB | y ← Z

∗
p} ≡ {yB | y ← Z

∗
p}. So q and Y are independent of d, and

thus Pr{SimR(u1)b = d} = Pr{SimR(u1)b = 1 − d} = 1
2 − ε.

Finally, when working with Env2 we have

Pr{Env2[(OT|SimR)] = �} = Pr{D(k, c2[d]) = m2[d]}
= Pr{D(k, c2[d]) = m2[d] | SimR(u2)b = d}Pr{SimR(u2)b = d}

+ Pr{D(k, c2[d]) = m2[d] | SimR(u2)b = 1 − d}Pr{SimR(u2)b = 1 − d}
+ Pr{D(k, c2[d]) = m2[d] | SimR(u2)b = ⊥}Pr{SimR(u2)b = ⊥}

Since SimR is monotone, 1
2−ε = Pr{SimR(u1)b = 1−d} ≤ Pr{SimR(u2)b = 1−d},

and thus Pr{SimR(u2)b = d} ≤ 1
2+ε. On the other hand, when SimR(u2)b = 1−d,

it holds that SimR(ui)b ∈ {1− d}⊥ for i ∈ {0, 1} and thus SimR has no access to
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m2[d], and since m2[d] is independently sampled from Mn, SimR cannot guess it
correctly with probability more than 1

2n . So we can bound the probability

Pr{Env2[(OT|SimR)] = �} ≤ 1
2

+ ε +
1
2n

+ 2ε,

which is close to 1
2 . Therefore the environment can distinguish the real and the

ideal systems with nonnegligible probability. ��

5.3 Revised OT Definition

The timing issue with a corrupted sender is similar to the one for OT length
extension that is fixed by adding an acknowledgment signal. So it is natural to ask
if the insecurity problems can be resolved by modifying the protocol according
to the revised functionality OT′. Clearly, changing the definition requires also
modifying the sender program to output a signal a in order to match OT′. Since
the sender receives only one message (Y ) from the receiver, there is only one
sensible way to modify the protocol to produce this additional output: setting
a = (Y > ⊥). Formally, we consider the following modified sender program:

Sender′(m2, k2, Y ) = (a, q2,X, c2)
(q2,X, c2) ← Sender(m2, k2, Y )
a = (Y > ⊥)

We leave it to the reader to verify that a real protocol execution (Sender′ |
RO | Receiver) : (m2, b) �→ (a,m) is equivalent to the ideal functionality
OT′ : (m2, b) �→ (a,m).

For security, we start with the case when the receiver is corrupted. The real
and ideal systems are depicted in Fig. 8. Notice that the additional bit a is not
provided to the simulator but is instead given to the environment. So any receiver
simulator SimR that connects to OT′ to form the ideal system in the revised OT
definition has the same interface as a receiver simulator in the standard OT
definition. Thus we obtain the same result as in Proposition 1 that the modified
protocol is insecure against corrupted receivers.

q2 q q

m2 m2

m

k2 k k

c2 c2

b

a aY Y

X X
SimR

RO

Sender′

RealR(m2, q, Y ) = (a, k,X, c2)

OT′

IdealR(m2, q, Y ) = (a, k,X, c2)

Fig. 8. The real and ideal systems when receiver is corrupted, under revised OT
definition.
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When the sender is corrupted, the sender simulator is now provided with an
additional bit a = (b > ⊥), as shown in Fig. 9. This small modification is the key
to prove security for the OT length extension protocol, so one might speculate,
as we did in the previous version of this paper, that security could also hold
for the current protocol in the case of sender corruption. On the contrary, this
modification is not enough. As we are exploring the useability of the equational
framework, we show in the following why the natural simulation strategy that
takes advantage of the signal a fails at proving security.

q2 q2q

m2

m m

k2 k2k

c2 c2

b b

aY Y

X X
SimS

RO

Receiver′

RealS(q2, X, c2, b) = (k2, Y,m)

OT′

IdealS(q2, X, c2, b) = (k2, Y,m)

Fig. 9. The real and ideal systems when sender is corrupted, under revised OT defini-
tion.

The speculated simulator is shown below. As we are presenting negative
results, we limit the power of a corrupted sender such that it can send at most
one pair of RO queries q2 and it obtains at most one pair of keys k2.

SimS(q2,X, a, c2) = (k2, Y,m2)
f ← [(G2 × G) → K]
k2 = f∗(q2)
y ← Z

∗
p

Y = X!a!yB
m2[0] = if (∃i.q2[i] = ((X,Y ), . . .)) then D(k2[i], c2[0])
m2[1] = if (∃i.q2[i] = ((X,Y ), . . .)) then D(k2[i], c2[1])

Let us derive an equation for m. In the real system RealS, the message m
satisfies the equation

m = D(f((X, bX + yB), yX), c2[b]), (5)

where y is sampled uniformly at random from Z
∗
p by the honest receiver. In the

ideal system IdealS = (SimS|OT′), notice that a = (b > ⊥), and so

m = D(f((X,X!b!yB),W ), c2[b]), (6)

where y is sampled uniformly at random from Z
∗
p by the simulator and W is

some element of G chosen by the environment. In both Eqs. (5) and (6), c2[b]
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is an input to the system given by the environment. By a careful examination,
we can see that the value of m as computed in these two equations could be
different if the environment sets W to be distinct from yX. We follow this idea
to construct the following environment:

Env(k2, Y,m) = (q2,X, c2, b, t) where
x ← Z

∗
p, X = xB, w ← Z

∗
p, W = wB, b ← {0, 1},

For i ∈ {0, 1}:
q2[i] = ((X,Y ),W ), c2[i] ← E(k2[i], 0),

t = (m > ⊥)

In the real system, Env outputs t = � only in two cases: either the key k =
f((X,Y ), yX) obtained by the receiver is same as the key k2[b] = f((X,Y ),W )
used by Env to encrypt m2[b] in the ciphertext c2[b], where f is a random function
sampled by RO, or the decryption succeeds when k �= k2[b]. For a sufficiently
large key space Kn, since yX = yxB and W = wB are independently sampled
and uniformly distributed, the probability ε that k = k2[b] is negligible. Since
(E, D) is a robust encryption scheme, when k �= k2[b] the decryption can succeed
with only a negligible probability δ. So Env outputs t = � with a negligible
probability ε + (1 − ε)δ. But in the ideal system, the decryption always succeeds
and thus we get m = 0 > ⊥, which implies that Env outputs t = � with
probability 1. Therefore Env has a nonnegligible distinguishing advantage.

We remark that, if the above simulator SimS has access to a DDH oracle O
that answers on input (X,Y,W ) whether W = yxB for X = xB and Y = yB,
then we can modify the equations for m2 in SimS to prove sender security with
respect to the revised OT definition:

m2[0] = if (∃i.q2[i] = ((X,Y ),W ) and O(X,Y,W ) = �) then D(k2[i], c2[0])
m2[1] = if (∃i.q2[i] = ((X,Y ),W ) and O(X,Y,W ) = �) then D(k2[i], c2[1])

That is, if a RO query contains a triple of group elements satisfying the DDH
condition, then SimS uses the corresponding key to decrypt both c2[0] and c2[1]
and assigns the resulting plaintext to m2[0] and m2[1], respectively. As already
noted by Genç et al. [13], sender security holds with certain gap-DH groups in
which the CDH problem is hard but the DDH problem is easy to solve.

6 Conclusion

We considered two OT protocols within the equational framework in this paper:
The OT length extension protocol and the “simplest” OT protocol by Chou and
Orlandi [10]. Both examples demonstrated the simplicity and expressive power
of the equational framework in analyzing MPC protocols. We found that the
traditional formulation of the OT problem does not fit into a fully asynchronous
simulation-based security model, and we revised it accordingly to fix it for the
OT length extension protocol. Still, the revised formulation does not allow to
salvage the OT protocol of Chou and Orlandi. Overall, the equational framework
proved to be a convenient formalism to carry out rigorous, yet concise, security
analysis of cryptographically interesting protocols.
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13. Genç, Z.A., Iovino, V., Rial, A.: “The simplest protocol for oblivious transfer”
revisited. IACR Cryptology ePrint Archive 2017, 370 (2017). http://eprint.iacr.
org/2017/370

14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC 1987, pp. 218–229. ACM, New York (1987)

15. Gunter, C.A., Scott, D.S.: Semantic domains. In: Handbook of theoretical computer
science, vol. b, pp. 633–674. MIT Press, Cambridge (1990)

https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-662-48000-7_1
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-319-22174-8_3
https://doi.org/10.1007/3-540-44750-4_9
https://doi.org/10.1007/3-540-44750-4_9
http://eprint.iacr.org/2017/370
http://eprint.iacr.org/2017/370


Equational Security Proofs of Oblivious Transfer Protocols 553

16. Hofheinz, D., Shoup, V.: GNUC: a new universal composability framework. J.
Cryptol. 28(3), 423–508 (2015)

17. Hofheinz, D., Unruh, D., Müller-Quade, J.: Polynomial runtime and composability.
J. Cryptol. 26(3), 375–441 (2013)

18. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

19. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

20. Kilian, J.: Founding crytpography on oblivious transfer. In: Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp.
20–31. ACM, New York (1988)
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Abstract. We present a new approach to extending oblivious trans-
fer with communication complexity that is logarithmic in the security
parameter. Our method only makes black-box use of the underlying cryp-
tographic primitives, and can achieve security against an active adversary
with almost no overhead on top of passive security. This results in the
first oblivious transfer protocol with sublinear communication and active
security, which does not require any non-black-box use of cryptographic
primitives.

Our main technique is a novel twist on the classic OT extension of
Ishai et al. (Crypto 2003), using an additively key-homomorphic PRF to
reduce interaction. We first use this to construct a protocol for a large
batch of 1-out-of-n OTs on random inputs, with amortized o(1) commu-
nication. Converting these to 1-out-of-2 OTs on chosen strings requires
logarithmic communication. The key-homomorphic PRF used in the pro-
tocol can be instantiated under the learning with errors assumption with
exponential modulus-to-noise ratio.

1 Introduction

In an oblivious transfer protocol, a receiver wishes to learn a subset of some
messages held by a sender, whilst hiding exactly which messages are received.
A common type of oblivious transfer is 1-out-of-2 OT, where the sender holds
messages x0, x1, while the receiver holds a bit b and wishes to learn xb. The pro-
tocol should guarantee that the receiver learns no information on x1−b, whilst
the sender learns nothing about b. 1-out-of-2 OT is a key tool in building secure
two-party and multi-party computation protocols, and most efficient protocols
need to use a very large number of oblivious transfers that scales with the input
size [Yao86], or the size of the circuit description of the function being com-
puted [GMW87].

All known protocols for oblivious transfer are much more expensive than
standard symmetric-key primitives, as they rely on public-key cryptography.
This property seems to be inherent, since it is known that constructing OT from
symmetric cryptographic primitives in a black-box manner is impossible [IR89].
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An essential technique for reducing the cost of oblivious transfer is OT exten-
sion, which reduces the cost of carrying out many OTs with amortization. OT
extension protocols proceed in two stages: in a setup phase, a small number of
‘seed’ OTs are created using standard public-key techniques; secondly, these are
extended to create many more, independent OTs, with a lower cost than the
seed OT protocols. Typically the second phase is based only on cheap, symmet-
ric cryptography, so using OT extension allows many OTs to be created with
only O(k) public-key operations for security parameter k, greatly reducing the
computational costs.

OT Extension: A Brief History. Classically, OT extension refers to evaluat-
ing OT using mainly symmetric key cryptography. In this paper we broaden the
term to cover any protocol that generates m = poly(k) OTs in a way which is
more efficient than executing m instances of an OT protocol. Reducing commu-
nication for the case of (1-out-of-2) bit-OT, where the sender’s messages are bits,
is of particular importance. This is exactly what is needed in the GMW proto-
col for secure multi-party computation [GMW87,Gol04], and a bit-OT protocol
with O(1) communication complexity implies secure computation with constant
overhead using GMW, and even with active security [IPS08].

Beaver [Bea96] first showed how to convert O(k) seed OTs into any poly-
nomial number of OTs, using only one-way functions, for security parameter k.
In this technique, the parties use a secure two-party computation protocol to
evaluate the circuit that takes as input a random seed from each party, then
applies a PRG and computes the OT functionality on the expanded, random
inputs. With Yao’s protocol [Yao86] this only needs O(k) OTs, since the inputs
are of size O(k).

The ‘IKNP’ protocol, by Ishai et al. [IKNP03], lies at the core of all recent,
practical OT extension protocols. IKNP was the first protocol to efficiently
extend OT in a black-box manner, using only a hash function which satis-
fies a correlation robustness assumption (or a random oracle). The commu-
nication complexity of this protocol is O(k + �) bits per extended OT with
passive security, where � is the bit length of the sender’s strings. Harnik et
al. [HIKN08] later showed how to obtain active security with the same asymp-
totic efficiency. The TinyOT protocol [NNOB12] introduced the first practical,
actively secure OT extension, and more recently the overhead of active security
has been reduced to almost nothing for both the 1-out-of-2 [ALSZ15,KOS15]
and 1-out-of-n cases [OOS17,PSS17].

These protocols are essentially optimal for transferring messages of length
� = Ω(k), but when � is short (as in bit-OT where � = 1) there is still an
overhead in O(k). Kolesnikov and Kumaresan [KK13] presented a variant of the
IKNP protocol based on 1-out-of-n OT, which can be used to perform 1-out-
of-2 bit-OT with O(k/ log k) communication. It is not known how to make this
bit-OT protocol actively secure, because it relies on a passively secure reduction
from 1-out-of-n to 1-out-of-2 OT [NP99].

Unfortunately, all known methods for achieving constant-communication
bit-OT use very complex techniques, and often require non-black-box use of
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cryptographic primitives. Ishai et al. [IKOS08] combined Beaver’s non-black-box
technique [Bea96] for OT extension with a polynomial-stretch PRG in NC0 and
randomized encodings, to obtain a passively secure protocol with amortized O(1)
computational overhead (implying O(1) communication). As well as needing a
strong assumption on the PRG, a major drawback is the use of non-black-box
techniques, which lead to a very high constant. The same authors later gave an
alternative, black-box approach with constant communication [IKOS09]. How-
ever, this still requires heavy machinery such as algebraic geometry codes, ran-
domized encodings and low-communication PIR. Additionally, achieving active
security would require generic use of zero-knowledge proofs [GMW86,IKOS07],
again with non-black-box use of the underlying primitives. Recently, Boyle et
al. [BGI17] showed how to obtain an amortized communication cost of just 4
bits per bit-OT using homomorphic secret-sharing, which can be realised from
either DDH [BGI16] or LWE [DHRW16]. As with the previous works, however,
this construction makes non-black-box use of PRGs and would be extremely
inefficient in practice.

Finally, we remark that using indistinguishability obfuscation and fully homo-
morphic encryption, it is possible to produce poly(k) OTs on random inputs
with a communication complexity that is independent of the number of OTs,
with a general method for reusable correlated randomness in secure computa-
tion [HW15,HIJ+16].

1.1 Contributions of This Work

We present a new approach to extending oblivious transfer with low communi-
cation. Our protocol, in the random oracle model, makes black-box use of the
underlying cryptographic primitives and can achieve security against an active
adversary with almost no overhead on top of passive security. This results in the
first bit-OT protocol with sublinear communication and active security, making
only black-box use of cryptographic primitives. Table 1 compares the character-
istics of our protocol with some of the other OT extension protocols discussed
earlier.

Our main technique is a novel twist on the classic IKNP OT extension, using
an additively key-homomorphic PRF to reduce interaction. The main challenge
here is to handle the homomorphism error present in known key-homomorphic
PRF constructions, without compromising on correctness or security. We first
present a protocol for a large batch of 1-out-of-pi OTs on random inputs, for
multiple, distinct primes pi. The communication complexity of this protocol is
sublinear in the total number of random OTs, with an amortized cost of o(1)
bits per OT. It was not known previously how to achieve this without using
obfuscation,1 and this primitive may be useful in wider applications. If we want

1 Even with obfuscation, secure computation with complexity sublinear in the output
size and active security is known to be impossible [HW15]. The obfuscation-based
protocol of [HIJ+16] circumvents this using a CRS, whilst we use the random oracle
model.
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Table 1. Various protocols for extending 1-out-of-2 bit-OT (unless otherwise specified)
with different assumptions. All passively secure protocols can be transformed to be
actively secure using non-black-box zero-knowledge techniques. CRH is a correlation-
robust hash function, RO is a random oracle;

(
n
1

)
-ROT is 1-out-of-n OT on random

inputs.

Protocol Communication
per OT (bits)

Security Based on Black-box

[Bea96] poly(k) passive OWF ✗

[IKNP03] O(k) passive CRH/RO ✓

[KK13] O(k/ log k) passive CRH/RO ✓

[ALSZ15,KOS15] O(k) active CRH/RO ✓

[IKOS08] O(1) passive poly-stretch
local PRG

✗

[IKOS09] O(1) passive Φ-hiding ✓

[BGI17] 4 + o(1) passive DDH ✗

[HIJ+16] (
(

n
1

)
-ROT) o(1) active iO + FHE ✗

This work (
(

pi
1

)
-ROTa) o(1) active LWE + RO ✓

This work (
(
2
1

)
-OT) O(log k) active LWE + RO ✓

api are small distinct primes

to obtain 1-out-of-2 OT on chosen strings, each 1-out-of-pi random OT can
be converted to a 1-out-of-2 OT with O(log pi) bits of communication using
standard techniques, giving logarithmic communication overhead.

The additively key-homomorphic PRF needed in our protocol can be instanti-
ated based on the learning with errors assumption with an exponential modulus-
to-noise ratio. This assumption has previously been used to construct attribute-
based encryption [GVW13] and fully key-homomorphic encryption [BGG+14],
and is believed to be hard if the LWE dimension is chosen large enough to
thwart known attacks. The downside of our approach is that this spectrum of
LWE parameters results in fairly heavy computational costs for the parties, so
it seems that the main uses of our protocol would be in low bandwidth environ-
ments where communication is much more expensive than computation.

As a contribution of independent interest, to implement the base OTs in our
protocol we generalise the consistency check used for OT extension by Asharov et
al. [ALSZ15], and adapt it for producing correlated OTs over any abelian group
G, instead of just XOR correlations over bit strings. These are 1-out-of-2 OTs
where the sender’s messages are all guaranteed to be of the form (xi, xi + Δ),
for some fixed correlation Δ ∈ G. We also identify a crucial security flaw in the
original protocol of Asharov et al. [ALSZ15,ALSZ17a], which leaks information
on the receiver’s inputs to a passively corrupted sender. After reporting this to
the authors, their protocol has been modified to fix this [ALSZ17b], and we use
the same fix for our protocol.
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1.2 Overview of Techniques

IKNP OT Extension. We first recall the IKNP OT extension proto-
col [IKNP03] (with optimizations from [ALSZ13,KK13]), which uses k instances
of oblivious transfer to construct m = poly(k) oblivious transfers with only a
cryptographic hash function and a pseudorandom generator. The parties begin
by performing k 1-out-of-2 OTs on random k-bit strings with their roles reversed.
The receiver acts as sender in the base OTs, with input pairs of strings (k0

i , k1
i ).

The sender, acting as receiver, inputs a random choice bit si to the i-th OT and
learns ksi

i , for i = 1, . . . , k. The receiver then sends over the values

ui = G(k0
i ) ⊕ G(k1

i ) ⊕ x

where G : {0, 1}k → {0, 1}m is a pseudorandom generator (PRG) and x =
(x1, . . . , xm) are the receiver’s m choice bits. After this step, the parties can
obtain k correlated OTs on pairs of m-bit strings of the form (ti, ti ⊕ x), where
ti = G(k0

i ): the receiver knows both ti and ti ⊕ x, while the sender can define

qi = G(ksi
i ) ⊕ si · ui

= ti ⊕ si · x

=

{
ti if si = 0
ti ⊕ x if si = 1

This is a 1-out-of-2 OT on m-bit strings because the other message, ti ⊕ si · x,
is computationally hidden to the sender due to the use of a PRG.

Both parties then place these values into matrices Q,T ∈ {0, 1}k×m contain-
ing qi and ti (respectively) as rows, where the sender holds Q and the receiver
holds T . If qj , tj ∈ {0, 1}k are the columns of Q and T , and s = (s1, . . . , sk),
then notice that we have

tj = qj ⊕ (xj · s)

So, by transposing the matrix of OTs we obtain m sets of correlated OTs on k-bit
strings, with xj as the receiver’s choice bits. Finally, the two parties can convert
these correlated OTs into OTs on random strings using a hash function H that
satisfies a notion of correlation robustness (or, modeled as a random oracle):
the sender computes the two strings H(qj) and H(qj ⊕ s), whilst the receiver
can only compute one of these with H(tj); the other string remains unknown
to the receiver since it does not know s. This means the parties have converted
k initial OTs into m = poly(k) OTs on random strings, and these random OTs
can be used to transfer the sender’s chosen messages by encrypting them with a
one-time pad.

Apart from the initial base OTs, the only interaction in this process is sending
the ui values at the beginning, which costs O(mk) bits of communication. This
gives an overhead of O(k) when the sender’s inputs are bit strings of constant
size.
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Using a Key-Homomorphic PRF. We observe that if the PRG, G, in the
above protocol satisfies G(x ⊕ y) = G(x)⊕G(y), and the base OTs are correlated
so that k1

i = k0
i ⊕ r for some fixed string r, then the main step of interaction

in IKNP can be removed. The homomorphic property of the PRG preserves the
correlation, so the parties can obtain the OTs (ti, ti ⊕x) (for random choice bits
x) without any message from the receiver: the sender simply defines qi = G(ksi

i )
while the receiver defines ti = G(k0

i ) and x = G(r). We then have

qi = G(ksi
i ) = G(k0

i ⊕ (si · r)) = G(k0
i ) ⊕ (si · G(r)) = ti ⊕ si · x,

as previously.
Unfortunately, such XOR-homomorphic PRGs are not known to exist.

Instead, we do know how to build almost-seed-homomorphic PRGs (and almost-
key-homomorphic PRFs) G : Zn

q → Zp, which satisfy

G(x + y) = G(x) + G(y) + e (mod p),

where q > p and |e| ≤ 1 is an error term, based on the learning with rounding
(LWR) or learning with errors (LWE) assumption [BLMR13,BP14]. We remark
that it is possible to build an error-free key-homomorphic PRF in the random
oracle model based on the decisional Diffie-Hellman assumption, with the simple
construction F (k, x) = H(x)k [BLMR13]. However, here the output homomor-
phism is multiplicative instead of additive, which is more difficult to exploit in
constructing OT extension.

Trying to apply these additively homomorphic PRGs (or PRFs) to the IKNP
protocol brings about two main challenges. Firstly, since the homomorphism
maps into Zp and not F

k
2 , we obtain matrices Q and T containing Zp elements

instead of bits, which means there is no natural way of ‘transposing’ the OT
matrix whilst preserving the correlated OT property. Secondly, the homomor-
phism error means that all of the OTs will be incorrect with high probability.

To handle the first problem, we choose p to be a primorial modulus which is
the product of � primes, and then decompose the correlated OTs via the Chinese
Remainder Theorem.2 This gives us an alternative to transposing the bit-matrix
in IKNP; however, it means that instead of constructing 1-out-of-2 OT, we end
up with 1-out-of-pi random OTs, for each prime factor pi in the modulus. The
second problem of eliminating the error is more difficult. We observe that the
receiver can always compute a homomorphism error e, such that the resulting
error in the OT is given by e′ = e · si, where si is one of the sender’s choice
bits in the base OTs. It seems tempting to let the receiver just send over e so
that the sender can correct the error, but this may not be secure: each error
leaks information about the unknown PRG key, and a large number of errors
could leak information on the secret PRG outputs. To securely correct the error,
the receiver instead samples some uniform noise u, which is used to mask e.
To ensure that both parties still obtain the correct result, we must obliviously

2 Ball et al. used a primorial modulus for a different application of constructing arith-
metic garbled circuits [BMR16].
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transfer the masked error u + si · e′ to the sender. Since si is a choice bit in the
original base OTs, this can be done by without any additional OTs, by extending
the base OTs once more with a (standard) PRG.

This last error-correction step introduces some interaction into the basic OT
extension protocol, which is otherwise non-interactive. Importantly, the amount
of data that needs sending only depends on the security parameter, and not the
modulus. Since each distinct prime factor in the modulus produces one additional
OT in the OT extension phase, choosing a sufficiently large modulus allows us to
obtain an amortized communication cost of o(1) bits per random OT. If we wish
to construct 1-out-of-2 OTs, each random 1-out-of pi OTs can be converted
to a single 1-out-of-2 OT with log pi = O(log k) bits of communication (see
Appendix A).

Active security. To obtain active security, the above protocol needs to be
modified in two ways. Firstly, we need to ensure that the correlation in the
base OTs is created correctly, and secondly, we need to ensure that a malicious
receiver does not cheat in the error-correction stage, which would cause incorrect
outputs.

We first consider the error-correction step. A common technique for dealing
with this is to compute random linear combinations of all the correlated OTs,
then open the result [KOS15] and check correctness. However, this only achieves
negligible cheating probability when the correlation is over a large field. In our
case we use a ring with many zero divisors, and this method cannot be applied
in general. Nevertheless, our situation is slightly different because the size of the
adversarial deviations can be bounded by some value B that is much smaller than
the modulus. This means that for some error d < B introduced by a cheating
receiver, and random challenge r ← Zp, the product dr mod p is statistically
close to uniform in Zp (for arbitrary p), which suffices to prove security when
taking random linear combinations.

For the base OTs, the receiver can cheat in an arbitrary way when creating
the correlations, which means the above check is not enough to prevent deviations
here. It might be tempting to work around this problem by choosing a prime
modulus q for the base OTs (before applying the PRG/PRF to convert mod
p). The problem here is that we then wouldn’t be able to transpose the base
OTs, which is necessary for checking consistency via random linear combinations.
Instead, we adopt a different approach used for OT extension in [ALSZ15], where
the receiver sends hashes of every pair of base OTs, which are then checked for
consistency by the sender. We show that this approach still works to prove that
the OTs are correlated over an arbitrary abelian group, instead of just XOR
correlations over bit strings. If the receiver cheats, they may guess a few bits
of the sender’s secret choice bits. This does not cause a problem for the OT
extension phase, and we model this possibility in our setup functionality.

Instantiation based on DDH. It is possible to modify the above protocol to
use a key-homomorphic PRF in the random oracle model based on the decisional
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Diffie-Hellman assumption, instead of using LWE or LWR. This has the advan-
tage of avoiding the problems with homomorphism error, since the DDH-based
PRF F (k, x) = H(x)k is noiseless. However, the drawback is that this protocol
produces random 1-out-of-p OTs, where p is the order of a group in which DDH
is hard. Since DDH is not hard if p has small factors, these cannot be decom-
posed into smaller random OTs using the CRT, so this does not lead to any
improvements to 1-out-of-2 OT extension. Nevertheless, random 1-out-of-p OT
for exponentially large p (sometimes referred to as batch related-key oblivious
PRF evaluation) can be used to construct private equality test and private set
intersection protocols [PSZ18,KKRT16,OOS17], so this variation could be useful
in these applications to reduce interaction at the cost of requiring exponentia-
tions instead of only symmetric-key operations. More details on this protocol are
given in the full version of this work.

2 Preliminaries

2.1 Universally Composable Security

We present ideal functionalities and security proofs in the universal composabil-
ity framework [Can01], and assume some familiarity with this.

Informally speaking, for a protocol Π which implements a functionality F
in the G-hybrid model, we let HYBRIDG

Π,A,Z denote the view of an environment
Z in an execution of the real protocol with the adversary A controlling the
corrupted parties, in a hybrid model where all parties have access to the ideal
functionality G. We let IDEALF,S,Z denote the view of Z in the ideal execution,
where the simulator S plays the role of the corrupted parties in Π and interacts
with the functionality F . When the context is clear, we sometimes abbreviate
the two executions by HYBRID and IDEAL.

We say that the protocol Π securely realises the functionality F in the G-
hybrid model, if for every adversary A there exists a simulator S, such that for
every environment Z,

HYBRIDG
Π,A,Z

c≈ IDEALF,S,Z

where
c≈ is the standard notion of computational indistinguishability.

As well as the standard, computational security parameter k, we often use a
statistical security parameter λ. This means that the advantage of any proba-
bilistic poly(k)-time environment in distinguishing the two executions is at most
negl(k) + O(2−λ).

2.2 Key-Homomorphic Pseudorandom Functions

We now recall the definitions of additively key-homomorphic pseudorandom
functions [BLMR13,BP14], and discuss the distribution of the homomorphism
error in LWE-based constructions. Let n, p and q > p be integers.
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Definition 1 (Key-homomorphic PRF). A function F : Zn
q × {0, 1}� → Zp

is a key-homomorphic PRF if it is a PRF, and for all k1, k2 ∈ Zq and x ∈ {0, 1}�

it holds that:

F (k1 + k2, x) = F (k1, x) + F (k2, x) ∈ Zp

We do not know of any PRFs satisfying the above property, where the homo-
morphism is additive over both the inputs and the outputs, so instead use the
following, weaker definition.

Definition 2 (Almost key-homomorphic PRF). A function F : Z
n
q ×

{0, 1}� → Zp is an almost key-homomorphic PRF if it is a PRF, and for all
k1, k2 ∈ Zq and x ∈ {0, 1}� it holds that:

F (k1 + k2, x) = F (k1, x) + F (k2, x) + e ∈ Zp

where |e| ≤ 1.

To realise this, we use the rounding function

�x	p = �x · (p/q)	

which scales x ∈ Zq to lie in the interval [0, p) and then rounds to the nearest
integer. We now define the learning with rounding assumption [BPR12].

Definition 3 (Learning with Rounding). Let n ≥ 1 and q ≥ p ≥ 2 be
integers. For a vector s ∈ Z

n
q , define the distribution LWRs to be the distribution

over Z
n
q ,Zp obtained by sampling a ← Z

n
q uniformly at random, and outputting

(a, b = �〈a, s〉	p).
The decisional-LWRn,q,p problem is to distinguish any desired number of sam-

ples (ai, bi) ← LWRs from the same number of samples taken from the uniform
distribution on (Zn

q ,Zp), where the secret s is uniform in Z
n
q .

With this we can easily construct a key-homomorphic PRF in the random
oracle model, with the function F : Zn

q × {0, 1}� → Zp defined by

F (k, x) = �〈k,H(x)〉	p

where H : {0, 1}� → Z
n
q is a random oracle. This is an almost-key-homomorphic

PRF under the LWRn,q,p assumption [BPR12].
There are also constructions in the standard model based on learning with

rounding or learning with errors [BLMR13,BP14]. All these constructions inherit
the same error term, which comes from first computing a function that is linear
in the key k, and then rounding the result.
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Can we Remove the Homomorphism Error? Applications such as dis-
tributed PRFs can work around the error term by suitably rounding the out-
put [BLMR13]. However, in some applications, particularly those in this work,
it would be very useful to have a noise-free PRF satisfying Definition 1. Two
previous works [BV15,BFP+15] claimed that their LWE-based constructions
can achieve a slightly weaker notion, where it is computationally hard for an
adversary to come up with a query x that violates key-homomorphism. Unfor-
tunately, these claims are not correct,3 and it seems difficult to modify these
PRFs to satisfy this.

To see why the error seems to be inherent in these PRFs, consider an exper-
iment where we sample random values r1, r2 ← Zq, and then test whether
�r1 +r2	p = �r1	p +�r2	p. This gives us the same result as testing for homomor-
phism error in F , since H is a random oracle and the two keys are random.4 Let
x1 = �r1	p, x2 = �r2	p and define the relevant fractional components e1 = r1 ·p/q
(mod 1), e2 = r2 · p/q (mod 1), where the reduction modulo 1 is mapped to the
interval [−1/2, 1/2). If p divides q then it holds that e1, e2 are uniformly random
in the set [−1/2, 1/2) ∩ (p/q)Z.

If there is no homomorphism error then we have

�e1 + e2	 = �e1	 + �e2	

Clearly when e1 ≥ 0 there will be no error as long as e2 ≤ 0. Similarly, when
e2 ≥ 0 and e1 ≤ 0 there is no error. These two error-free possibilities cover
approximately half of the space of possible choices of (e1, e2) ∈ [−1/2, 1/2)2. For
the remaining cases, if we condition on e1 ≥ 0 and e2 > 0 then there will be
an error whenever e1 + e2 ≥ 1/2, which happens with probability around 1/2.
Symmetrically, in the remaining case of e2 ≥ 0 and e1 > 0 the error probability
is around 1/2, and combining these cases we get an overall error probability of
approximately 1/4. The exact error rate depends on whether p divides q and if
q/p is even or not, but is nevertheless always close to 1/4.

3 OT Extension Protocol

We now describe our main protocol for extending oblivious transfer.

3.1 Setup Functionality

We use the setup functionality FΔ-ROT, shown in Fig. 1, to implement the base
OTs in our main protocol. This functionality creates k random, correlated OTs
over an abelian group G (in our protocol we instantiate this with G = Zq) where

3 We have confirmed this through personal communication with an author
of [BFP+15]. This does not affect the main results of that work or [BV15].

4 This method also applies to known standard model KH-PRFs based on LWE, as
these constructions all have the form F (k, x) = �Lx(k)�p for some linear function
Lx : Zn

q → Zq.
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the sender inputs Δ ∈ G
n and obtains messages of the form (bi, bi + Δ) for

randomly sampled bi ∈ G
n. The receiver inputs the choice bits si ∈ {0, 1} in a

setup phase, and during the correlated OT phase it learns ai, which is either bi

or bi + Δ, depending on si. This Δ-OT stage of the functionality also allows a
corrupt sender to attempt to guess (a subset of) the bits si, but if the guess fails
then the functionality aborts. This leakage is necessary so that we can efficiently
implement FΔ-ROT, using the protocol we give in Sect. 4.

FΔ-ROT also includes a Chosen OTs command, which further extends the
base OTs on chosen (but not necessarily correlated) inputs from the sender,
using the same choice bits from the receiver.

Fig. 1. Extended correlated random oblivious transfer functionality over a group G

3.2 Random OT Protocol

The functionality we implement is shown in Fig. 2. This produces a batch of m ·�
random OTs at once, consisting of m sets of random 1-out-of-pi OTs, for each
i = 1, . . . , �, where pi is the i-th prime and � is a parameter of the protocol. Let
P� = 2 · 3 · 5 · · · p� be the product of the first � primes.

The protocol, shown in Fig. 3, starts with a setup phase where the parties
perform k correlated OTs using FΔ-ROT over Z

n
q , where n is the key length of

the almost-key-homomorphic PRF F : Zn
q × {0, 1}k → ZP�

. After this phase,
PR holds random values r, bi ∈ Z

n
q , whilst PS holds random si ∈ {0, 1} and

ai = bi + si · r, for i = 1, . . . , k.
In the OT extension phase, the parties expand the base OTs using F , such

that the key-homomorphic property of F preserves the correlation between a
and b, except for a small additive error. We have:
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Fig. 2. Functionality for m sets of random {1-out-of-pi}�
i=1 OTs on k-bit strings

F (ai, j) = F (bi + si · r, j) = F (bi, j) + si · (F (r, j) + ei)

where |ei| ≤ 1 (note that ei depends on j, but we often omit the subscript-j to
simplify notation).

Since PR knows both bi and r, it can compute ei, and then use the base OTs
to obliviously transfer either ui + ei (if si = 1) or ui (if si = 1) to PS , where ui

is a uniformly random value in {0, . . . , B − 1}, and B is superpolynomial in the
security parameter so that ui statistically masks ei.

After step 2f, if ui + ei /∈ {−1, B} then we have:

qi = q′
i − vi = t′i + si · (xj + ei) − ui − si · ei

= t′i − ui + si · xj

= ti + si · xj (mod P�)

For each j ∈ [m + 1], these k sets of correlated OTs are then placed into vectors
qj and tj , which satisfy qj = tj +xj ·s. To convert these into random 1-out-of-pi

OTs, for i = 1, . . . , �, each tj is reduced modulo pi and then hashed with the
random oracle to produce the receiver’s output string. The c-th output of the
sender, for c ∈ {0, . . . , pi − 1}, in the (i, j)-th OT is defined as:

H(qj − c · s mod pi) = H(tj + (xj − c) · s mod pi)

which for c = xj is equal to the receiver’s output, as required. The sender’s other
outputs are computationally hidden to the receiver, since to compute them it
would have to query qj − x′ · s mod pi to the random oracle for some x′ �= xj ,
but this requires guessing s.

The only opportunity for a malicious receiver to misbehave in the protocol is
when sending the (ui, ui + ei) values to the base OT functionality, to correct the
errors. The consistency check phase prevents this, by opening a random linear
combination of the correlated OTs and checking that the linear relation still
holds. We must then discard the (m+1)-th set of OTs so that the opened values
do not reveal anything about the receiver’s outputs. This check allows a corrupt
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Fig. 3. Random 1-out-of-pi OT extension protocol
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receiver to attempt to guess a few of the si bits by cheating in only a few OT
instances. However, this is exactly the same behaviour that is already allowed
by the FΔ-ROT functionality for the base OTs. It does not pose a problem for
security because in the output phase s is put through a random oracle, and the
whole of s must be guessed to break security.

3.3 Security

Theorem 1. Let B = Θ(2λ), � = Ω(kλ), F be an almost key-homomorphic
PRF and H be a random oracle. Then protocol Πm,�,k

pi-ROT securely realises the

functionality Fm,�,k
pi-ROT with static security in the Fn,k,Zq

Δ-ROT-hybrid model.

We prove this by considering separately the cases of a corrupt sender and
a corrupt receiver. Security when both parties are honest, or both corrupt, is
straightforward.

Corrupt sender. This is the simpler of the two cases. We construct an ideal-
world simulator, SS , shown in Fig. 4. The simulator uses random values to sim-
ulate the vi messages sent to PS during the OT extension phase, then samples x̃
at random to respond to the consistency check, computing t̃ such that the check
will always pass. The random oracle queries are responded to using knowledge of
the sender’s bits s from the setup phase, so as to be consistent with the random
sender messages obtained from Fpi-ROT. All other queries are responded hon-
estly, at random. The security of the protocol against a corrupt sender rests on
two key points: (1) B = Θ(2λ), so that ui +ei statistically masks the errors ei in
the protocol, and (2) The security of the key-homomorphic PRF, which implies
the xj outputs of the honest receiver are pseudorandom, and also the simulated
x̃ is indistinguishable from the real value in the protocol.

Lemma 1. For every adversary A who corrupts PS, and for every environment
Z, it holds that

IDEALFpi-ROT,SS ,Z
c≈ HYBRIDFΔ-ROT

Πpi-ROT,A,Z

Proof. Recall that as well as seeing the view of A during the protocol execution,
the environment Z learns the outputs of both parties. We prove security by
defining a sequence of hybrid executions, where H0 is defined to be the ideal
process and each successive hybrid modifies the previous execution in some way.

Hybrid H1: Instead of sampling vi at random, SS sends vi = ui + si · ei mod B,
where ui ← [0, B − 1] and ei is computed as in the protocol, using randomly
sampled r ∈ Z

n
q and bi := ai − si · r.

Hybrid H2: Instead of sampling x̃ at random, let x1, . . . , xm be the outputs
of the honest receiver (from Fpi-ROT), and sample xm+1 ← ZP�

. SS then sends
x̃ = x�α.
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Fig. 4. Simulator for a corrupted sender

Hybrid H3: This is defined the same as H2, except the random choices
x1, . . . , xm+1 are replaced with values computed from the key-homomorphic PRF
as xj = F (r, j), using the previously sampled r.

Note that all of the simulated messages in the final hybrid, H3, are identically
distributed to messages sent in the real execution, and the outputs of the sender
and receiver are computed exactly as in the protocol as outputs of the random
oracle H and PRF F , respectively. Therefore, H3 ≡ HYBRID.

Hybrids H0 and H1 are identically distributed as long as ui+si ·ei /∈ {−1, B},
since ei ∈ {0,±1}. If the reduction modulo B overflows then Z could distinguish
because the outputs in H1 will be incorrect. This occurs with probability at most
2/B for each i, so when B = Ω(2λ) we have H0

s≈ H1.
In hybrid H2, the value x̃ is masked by xm+1 so is uniformly random in the

view of Z. Therefore, H1 ≡ H2.
Hybrids H2 and H3 are computationally indistinguishable, by a standard

reduction to the key-homomorphic PRF, since r is uniformly random and not
seen by the environment, so the xj values are pseudorandom. This completes
the claim that IDEAL

c≈ HYBRID. ��

Corrupt receiver. The simulator SR, given in Fig. 5, essentially runs an inter-
nal copy of the sender and honestly generates messages as PS would. The main
challenge is to extract the inputs of the corrupt PR, and also show that Z can-
not query the random oracle H on a value corresponding to one of the sender’s
random outputs that was not chosen by the receiver.



Extending Oblivious Transfer with Low Communication 569

Fig. 5. Simulator for a corrupted receiver

We use the following technical lemma to analyse the soundness of the con-
sistency check when taking random linear combinations over the ring ZP�

.

Lemma 2. Let E ∈ Z
k×(m+1)
P�

. Suppose that every column ei of E satisfies
‖ei‖∞ ≤ B, and further that there is at least one column not in span(1). Then,

Pr
α←Zm

P�
×{1}

[Eα ∈ span(1)] ≤ 2B/P�

Proof. From the assumption that at least one column of E not in span(1), there
exist two rows a, b of E with a �= b. If Eα ∈ span(1) then 〈a,α〉 = 〈b,α〉 and so
〈a − b,α〉 = 0. Let d = a − b, and j be an index where dj �= 0. Then 〈d,α〉 = 0
if and only if djαj = −

∑
i�=j diαi.

First consider the case that j �= m + 1, so αj is uniform in ZP�
. For any

fixed choice of dj , the number of distinct possibilities for djαj mod P� is given
by the order of dj in the additive group ZP�

, which equals P�/ gcd(dj , P�). Since
|aj |, |bj | ≤ B, we have dj ∈ [0, 2B] ∪ [P� − 2B,P� − 1], from which it follows that
gcd(dj , P�) ≤ 2B. Therefore, since αj is random and independent of

∑
i�=j αidi,

we have that Pr[〈d,α〉 = 0] ≤ 2B/P�.
On the other hand, if j = m + 1 then αj = 1. But this means dj =

−
∑

i�=j diαi, and because dj �= 0 there must be another index j′ with dj′ �= 0.
We then apply the previous argument on j′ to obtain the same probability. ��

If α is sampled using a PRG with a public seed, instead of uniformly at
random, the previous statement still holds except with negligible probability.
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Lemma 3. Let E be as in Lemma 2 and let G : {0, 1}k → Z
m
P�

× {1} be a PRG.
Then,

Pr
σ←{0,1}k

[Eα ∈ span(1) : α = G(σ)] ≤ 2B/P� + negl(k)

Proof. Define a distinguisher, D, for the PRG G, which on input a challenge
α, outputs 1 if Eα ∈ span(1) and 0 otherwise. From Lemma 2 we know that
Pr[D = 1] given that α is uniformly random is ≤ 2B/P�. On the other hand,
the advantage of D is negl(k), so if α is an output of G then it must be that D
outputs 1 with probability at most 2B/P� + negl(k). ��

We now show indistinguishability of the simulation.

Lemma 4. For every adversary A who corrupts PR, and for every environment
Z, it holds that

IDEALFpi-ROT,SR,Z
c≈ HYBRIDFΔ-ROT

Πpi-ROT,A,Z

Proof. We first show how SR (Fig. 5) extracts the corrupt receiver’s inputs in
step 3c. SR received the values ui, u

′
i = ui +e′

i which A used as input to FΔ-ROT.
SR can also compute the actual errors ei (which would equal e′

i if PR was honest),
since it knows r and bi. For each j ∈ [m + 1] and i ∈ [k], SR defines a value
(omitting j subscripts) qi = q′

i − (ui + sie
′
i), and then puts all these values into

the vector qj . We also compute the values xj and tj as an honest PR would do
according to the protocol.

Now, if PR was honest we would have qj = tj + xj · s, but it actually holds
that

qj = tj + xj · s + ej ∗ s

where ej contains the values (e1 − e′
1, . . . , ek − e′

k) from iteration j of this phase,
and ∗ denotes component-wise product. Note that since ei ∈ {0,±1} and e′

i ∈
{0, . . . , B − 1} we have ‖ej‖∞ ≤ B for all j.

At this point, although we have computed values xj which could be used to
define the inputs of PR, these may not be the correct inputs SR should send
to Fpi-ROT. This is because A could choose, for instance, ej = 1, and then the
actual inputs would correspond to xj +1 and not xj . Proposition 1 shows how we
obtain the correct inputs. Let view(A) denote the view of the corrupt receiver
at this point in the execution.

Proposition 1. Suppose the consistency check passes, and A makes no (guess)
queries to FΔ-ROT. Then with overwhelming probability there exists a set S ⊂ [k]
and values x′

j ,e
′
j, for j ∈ [m] such that:

1. qj = tj + x′
j · s + e′

j ∗ s.
2. For all i ∈ [k] \ S, e′

j [i] = 0
3. H∞((si)i∈S |view(A)) = 0
4. H∞((si)i∈[k]\S |view(A)) = k − |S|.
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Proof. Recall that t̃, x̃ are the values received by SR from PR during the con-
sistency check, and we have qj = tj + xj · s + ej ∗ s.

This means we can write

Q = T + (x1 · 1 + e1‖ · · · ‖xm · 1 + em)︸ ︷︷ ︸
=Y

∗s

where we extend the ∗ operator to apply to every column of Y in turn.
Define the vectors, in Z

k
P�

,

δx = 1x̃ − Yα, δt = Tα − t̃

We can think of these as representing the deviation between what PR sent, and
the values PR should have sent, given Y,T. If the check succeeds, then we know
that

Qα = t̃ + (1x̃) ∗ s

and so

(T + Y ∗ s)α = t̃ + (1x̃) ∗ s

⇔ δt = (1x̃) ∗ s − (Y ∗ s)α
= δx ∗ s

For each index i ∈ [k], if the check passes then it must hold that either
δt[i] = δx[i] = 0—which essentially means there was no deviation at position
i—or δx[i] �= 0. In the latter case, because si ∈ {0, 1}, the cheating receiver must
guess si in order to pass the check.

Define S ⊂ [k] to be the set of all indices i for which δx[i] �= 0. From the
above, we have that the probability of passing the check (over the random choice
of s) is at most 2−|S|. If the check passes, this also implies the last two claims of
the proposition, that H∞((si)i∈S |view(A)) = 0, and H∞((si)i∈[k]\S |view(A)) =
k − |S|.

Let Y−S denote the matrix Y with its rows corresponding to indices in the
set S removed. Note that for any i /∈ S, we have δx[i] = 0 and so (Yα)−S =
(Y−S)α = 1x̃, which lies in span(1). Since column j of Y is equal to 1xj + ej ,
it must also hold that (E−S)α ∈ span(1), where E = (e1‖ · · · ‖em+1).

Applying Lemma 3 with E−S , it then holds that every column of E−S is in
span(1) with overwhelming probability, provided 2B/P� is negligible. Therefore,
for every j ∈ [m], we can compute x′

j and e′
j such that the j-th column of Y

satisfies yj = x′
j · 1 + e′

j , where (e′
j)−S = 0. These are values needed to satisfy

points 1 and 2. ��

The set S in the proposition represents the indices where PR cheated, cor-
responding to the set of bits of s which PR must guess to pass the consistency
check. Passing the check also guarantees that the error vectors e′

j can only be
non-zero in the positions corresponding to S, which is crucial for the next stage.
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After extracting the corrupt receiver’s inputs, we need to show that the
random oracle calls made by Z cannot allow it to distinguish. In particular, if
Z queries

(i, ρ, (qj − yjs) mod pi))

for some yj �= x′
j mod pi then Z will be able to distinguish, since the simulator’s

response will be random, whereas the response in the real world will be one of
the sender’s OT outputs.

From Proposition 1, we know that if no (guess) queries were made to FΔ-ROT

then there are exactly k − |S| bits of the secret s that are unknown in the view
of A, and these correspond to the index set [k] \ S.

Now, from the first part of the proposition, we can rewrite a ‘bad’ query of
the form given above as

(i, ρ, (tj + e′
j ∗ s + (x′

j − yj)s) mod pi)

Since tj and e′
j ∗ s are fixed in the view of Z, it must be the case that coming

up with such a query requires knowing all of s. This happens with probability
at most (pi − 1) · 2|S|−k per query with index i. Taking into account the prob-
ability of passing the consistency check, we get an overall success probability
bounded by Q · (p� − 1) · 2−k, where Q is the number of random oracle queries,
which is negligible. Making key queries to FΔ-ROT cannot help guess s because
any incorrect guess causes an abort, so this does not affect the distinguishing
probability. ��

3.4 Choosing the Parameters

We first show how to securely choose parameters to optimize communication, and
then discuss instantiating the key-homomorphic PRF. After the setup phase, and
ignoring the short seeds sent in the consistency check, the only communication
is to the (chosen) command of FΔ-ROT, which can be implemented with λ bits
of communication when B = 2λ (see Sect. 4). This gives an overall complexity of
λkm bits to generate m� random OTs. If � = ω(λk) then we obtain an amortized
cost per random OT of o(1), which gets smaller as � increases.

To realise 1-out-of-2 bit-OT on chosen strings, each random 1-out-of-pi OT
must be converted to a 1-out-of-2 OT, at a cost of sending log pi bits from
the receiver and 2 bits from the sender (see Appendix A). This adds a cost
of Tm,� = m

∑�
i=1(log2 pi + 2) bits, and from the prime number theorem we

have pi = O(i log i), so Tm,� = m
∑�

i=1 O(log i) = O(m� log �), giving an overall,
amortized cost of O(log �) = O(log k) bits per OT when � = Ω(λk).

Instantiating the Key-Homomorphic PRF. We can instantiate F using the
random oracle-based construction from Sect. 2 based on learning with rounding,
or standard model constructions from LWE [BLMR13,BP14]. With LWR, the
parameters affecting security are the dimension n and moduli p, q. In our case we
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fix p = P� and can choose n, q to ensure security. With an exponential modulus,
we know that LWR is at least as hard as LWE with the same dimension n and
modulus q, where the LWE error distribution is bounded by β = q/(2λP�), and
λ is a statistical security parameter [BPR12,AKPW13]. This gives a modulus-
to-noise ratio of q/β = O(2λP�). LWE with an exponential modulus-to-noise
ratio has previously been used to construct attribute-based encryption [GVW13]
and fully key-homomorphic encryption [BGG+14], and is believed to be hard
if q/β ≤ 2nε

, for some constant 0 < ε < 1/2 chosen to resist known attacks
based on lattice reduction and BKW. To achieve optimal communication in our
protocol, we need � = ω(λk), which from the prime number theorem implies
that log P� = ω(λk log k). This gives log(q/β) = ω(λ2k log k), so we can have a
dimension of n = ω((λ2k log k)1/ε) and ensure security.

4 Actively Secure Base OTs

We now show how to implement the functionality Fn,k,G
Δ-ROT (Fig. 1), which creates

k correlated base OTs over G
n, for an additive abelian group G. We achieve

active security using a modification of the consistency check from the OT exten-
sion protocol by Asharov et al. [ALSZ15,ALSZ17a]. Additionally, in Sect. 4.1 we
identify a crucial security flaw in their protocol, whereby a passively corrupted
sender can obtain an ‘oracle’ that allows brute-force guessing of the receiver’s
choice bits by computing hash values. This bug has since been fixed in a revised
version [ALSZ17b], and we apply the same fix to our protocol.

We let Fk,k
OT denote the standard functionality for k sets of 1-out-of-2 OTs

on k-bit strings. In the correlated OT phase of our protocol, shown in Fig. 6, the
parties first extend the base OTs from FOT using a PRF, and the sender PS (who
would be receiver when running the main OT extension protocol) then sends the
ui values which create the correlation over the group G. The consistency check
is based on the check in the OT extension protocol by Asharov et al. [ALSZ15],
which is used to verify the sender’s inputs are bit strings of the form (bi, bi ⊕Δ).
We adapt this to ensure they have the form (bi, bi +Δ), where Δ and each bi are
vectors of length n over any finite abelian group G. In our protocol the parties
then output the correlated base OTs, instead of transposing and hashing them
to perform OT extension as in [ALSZ15]. This means we need to account for
some leakage on the si choice bits of PR, caused by the consistency check, which
is modeled by the key query feature of FΔ-ROT.

We also have an additional (non-correlated) Chosen OTs phase, which
extends the base OTs further with arbitrary inputs from the sender, PS , and the
same choice bits from PR, in a standard manner using the PRF. Both of these
phases can be called repeatedly after the setup phase has run.

4.1 Security

We prove the following theorem by considering separately the two cases of a
corrupted PR and corrupted PS .
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Fig. 6. Base OT protocol for correlated OTs over an additive abelian group G
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Theorem 2. If F is a secure PRF, H is a random oracle and λ ≤ k/2 then
protocol Πn,k,G

Δ-ROT securely realises the functionality Fn,k,G
Δ-ROT in the Fk,k

OT -hybrid
model with static security.

Corrupt PR. To be secure against a corrupted PR, it is vital that PS appends
the additional randomness ρ to the input Δ in step 1a, before creating the
correlated OTs. Without this, PR can obtain an ‘oracle’ that allows guessing
whether a candidate value Δ̃ equals the input of PS or not by just computing
one hash value. For example, let α, β be indices where sα = sβ = 0. Given
t0α, t0β , uα and the hash values sent by PS , PR can compute t̃1α := uα − t0α − Δ̃,
and then test whether h1,0

α,β = H(t̃1α − t0β). This only holds if Δ = Δ̃, so allows
testing any candidate input Δ̃. Including the extra randomness ρ prevents this
attack by ensuring that Δ′ = (Δ‖ρ) always has at least k bits of min-entropy
(as long as |G|k′ ≥ k), so PR can only guess Δ′ with negligible probability5.

Note that this step was missing in the published versions of [ALSZ15,
ALSZ17a], which leads to an attack on their actively secure OT extension pro-
tocol. This has now been fixed in a revised version [ALSZ17b].

To formally prove security against a corrupted PR, we construct a simulator
SR, who interacts with FΔ-ROT whilst simulating the communication from the
honest PS and the FOT functionality to the adversary, A. SR is described below.

1. In the Initialize phase, SR receives the inputs {si}i∈[k] from A to Fk,k
OT , then

samples random strings ksi
i ← {0, 1}k and sends these to A.

2. Whenever the Δ-OTs phase is called, SR starts by sampling ui ← G
n+k′

, for
i ∈ [k], and sends these to A.

3. In the consistency check, SR computes and sends the hash values h
sα,sβ

α,β =

H(tsα
α − t

sβ

β ) and h
sα,sβ

α,β = H(uα − uβ − tsα
α + t

sβ

β ). The other two values

h
sα,sβ

α,β , h
sα,sβ

α,β are sampled uniformly at random.
4. SR then sends {si}i to FΔ-ROT, and computes the values {ai}i as an honest

PR would in the protocol. SR then sends {ai}i to FΔ-ROT and increments the
counter c.

5. Whenever the Chosen OTs phase is called, SR calls FΔ-ROT with input
(chosen, B), and receives {vi}k

i=1. SR computes dsi
i = F (ksi

i , c) ⊕ vi, samples
a random string dsi

i , then sends d0i , d
1
i to A and increments c.

Lemma 5. If H is a (non-programmable, non-observable) random oracle and
F is a secure PRF, then for every adversary A who corrupts PR, and for every
environment Z, it holds that

IDEALFΔ-ROT,SR,Z
c≈ HYBRIDFOT

ΠΔ-ROT,A,Z

5 This modification is not strictly needed for our application to the protocol in Sect. 3,
because PS ’s input to FΔ-ROT is always uniformly random and cannot be guessed.
However, making this change allows for a simpler, more modular exposition and the
functionality may be useful in other applications.
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Proof. We consider a sequence of hybrid distributions, going from the ideal
execution to the real execution, defined as follows. The first hybrid H0 is identical
to the ideal execution with SR and FΔ-ROT.

Hybrid H1: This is identical to H0, except that both sets of keys k0
i , k1

i are
sampled by SR, instead of just ksi

i . We also modify the Chosen OTs phase so
that both values d0i , d

1
i are computed according to the protocol, using the PRF

keys and the real inputs of the honest PS .

Hybrid H2: Here we modify H1 further, so that the ui values in the Δ-OTs
stage are also computed according to the real protocol, using PS ’s real input Δ
and a random value ρ. These ui values are then used by SR to compute the ai’s
which are sent to FΔ-ROT.

Hybrid H3: This is the same as H2, except the two hash values h
sα,sβ

α,β , h
sα,sβ

α,β

are computed as in the protocol, instead of with random strings.
It is easy to see the view of Z in H3 is identical to the real execution, since

all messages are computed as an honest PS would using the real inputs, and the
outputs computed by FΔ-ROT are the same as in the protocol.

Hybrids H0 and H1 are computationally indistinguishable because the keys
ksi

i are unknown to Z, which means the values dsi
i are indistinguishable from

the previously uniform values, by a standard reduction to the PRF security.
Similarly, H1 and H2 are computationally indistinguishable because tsi

i is pseu-
dorandom based on the PRF, so masks PS ’s input in ui.

Regarding H2, and H3, notice that the two relevant hash values in H3 are
equal to

h
sα,sβ

α,β = H(tsα
α − t

sβ

β ) = H(tsα
α − uβ + t

sβ

β + Δ′)

h
sα,sβ

α,β = H(tsα
α − t

sβ

β ) = H(uα − tsα
α − Δ′ − t

sβ

β )

Looking at the values on the right-hand side, PR knows everything in both sets
of inputs to H except for Δ′ = (Δ‖ρ).

The only way Z can distinguish between H2 and H3 is by querying H on one
of the two inputs above, which occurs with probability at most q ·|G|−k′ ≤ q ·2−k,
where q is the number of random oracle queries, since ρ is uniformly random in
G

k′
and unknown to Z. This completes the proof. ��

Corrupt PS . When PS is corrupt, the main challenge is to analyse soundness
of the consistency check, similarly to [ALSZ15] (with a corrupt receiver in that
protocol). Most of the analysis turns out to be identical, so we focus on the
differences and state the main properties that we need from that work to show
that our protocol securely realises FΔ-ROT. For the proof to go through here we
need to assume that the statistical security parameter λ is no more than k/2,
but can always increase k to ensure this holds.
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Note that the main way a corrupt PS may cheat in the protocol is by using
different Δ′ values when sending the ui values. To account for this, for each
i ∈ [k] we define Δi = ui − t0i − t1i ; if PS behaves honestly then we have Δ1 =
· · · = Δk = Δ′, otherwise they may be different.

The following lemma is analogous to [ALSZ15, Lemma 3.1], except we work
over G instead of bit strings, and implies that the rest of the analysis of the
consistency check from that work also applies in our case. Using the terminology
of Asharov et al., if the consistency check passes for some set of messages T =
{{k0

i , k1
i , ui}i, {Hα,β}α,β} and some secret s, we say that T is consistent with s.

If the check fails then it is inconsistent.

Lemma 6. Let Tα,β = {k0
α, k1

α, k0
β , k1

β , uα, uβ ,Hα,β} and suppose that H is a
collision-resistant hash function. Then, except with negligible probability:

1. If Δα �= Δβ and Tα,β is consistent with (sα, sβ) then Tα,β is inconsistent with
(sα, sβ).

2. If Δα = Δβ and Tα,β is consistent with (sα, sβ) then Tα,β is also consistent
with (sα, sβ).

Proof. For the first claim, suppose that Δα �= Δβ , and Tα,β is consistent with
both (sα, sβ) and (sα, sβ). Then from the consistency with (sα, sβ) we have

h
sα,sβ

α,β = H(tsα
α − t

sβ

β ), h
sα,sβ

α,β = H(uα − uβ − tsα
α + t

sβ

β )

On the other hand, consistency with (sα, sβ) implies

h
sα,sβ

α,β = H(tsα
α − t

sβ

β ), h
sα,sβ

α,β = H(uα − uβ − tsα
α + t

sβ

β )

By the collision resistance of H, except with negligible probability it must
then hold that

tsα
α − t

sβ

β = uα − uβ − tsα
α + t

sβ

β

= tsα
α − t

sβ

β + (Δα − Δβ)

This means Δα = Δβ , which is a contradiction.
For the second claim, if Δα = Δβ then uα − uβ = t0α + t1α − t0β − t1β , and it

can be seen from the above equations that the checks for (sα, sβ) and (sα, sβ)
are equivalent. ��

For the case of a corrupted PS , we construct a simulator S, who interacts
with A and plays the role of the honest PR and the FOT functionality. SS is
described below.

1. SS receives all the keys k0
i , k1

i as inputs to FOT, and then the messages ui.
2. Using these it computes t0i , t

1
i as in the protocol, and Δi = ui − t0i − t1i . If PS

is honest then Δ1 = · · · = Δk.
3. SS defines Δ′ to be the most common of the Δi’s, and sends the first n

components of this as PS ’s input to FΔ-ROT.
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4. SS then receives the sets of 4 hash values Hα,β = {h0,0
α,β , h0,1

α,β , h1,0
α,β , h1,1

α,β}, for
each α, β ∈ [k], as part of the consistency check.

5. SS then uses the transcript of A to define a set of constraints on the secret s
that must be satisfied for the consistency check to pass, by running Algorithm
1 from [ALSZ15]. Note that each of the constraints produced by this algorithm
either fixes individual bits of s, or the XOR of two bits of s, so from this we
can efficiently define a set S(T ) ⊂ {0, 1}k which describes the set of all s that
are consistent with the messages from A.

6. SS queries FΔ-ROT with (guess, S(T )). If the query is successful, SS continues
as if the consistency check passed, otherwise, S aborts.

7. If the check passed, SS defines values b′
i, for i ∈ [k] as specified below. These

are sent to FΔ-ROT.
8. Whenever the Chosen OTs phase is run, SS uses its knowledge of the keys

to extract PS ’s inputs (u0
i , u

1
i ), and sends these to FΔ-ROT.

The key part of the simulation is step 5, which uses the hash values sent in
the consistency check to define the exact bits (or XOR of bits) of the honest PR’s
secret s which the corrupt PS tried to guess from cheating. Note that SS does not
define its own secret s, as this is already sampled internally in the functionality
FΔ-ROT. Therefore, SS sends a description of all the possible consistent values
of s to the (guess) command of FΔ-ROT to see if the cheating attempt was
successful or not.

Lemma 7. If λ ≤ k/2 and H is collision-resistant then for every adversary A
who corrupts PS, and for every environment Z, it holds that

IDEALFΔ-ROT,SS ,Z
c≈ HYBRIDFOT

ΠΔ-ROT,A,Z

Proof (sketch): Define the transcript of the simulation up until the consistency
check by T = {{k0

i , k1
i , ui}i, {Hα,β}α,β}, and define consistent(T , s) to be 1 if

the consistency check would pass if s is the secret of PR, and 0 otherwise. From
Algorithm 1 in step 5, recall that the we defined set of all possible secrets s ∈
{0, 1}k of an honest PR for which the check would pass to be S(T ) = {s ∈
{0, 1}k : consistent(T , s) = 1}, where T is the transcript produced by A. Note
that from the definition of S(T ), the probability that the consistency check
passes is |S(T )|/2k in both the real and ideal executions. To complete the proof
we just need to show how to extract the correct values b′

i defining PS ’s output.
Below we give the key results from [ALSZ15] needed to analyse the consis-

tency check.

Lemma 8. For a given transcript T , let U be the largest set of indices such that
for all i, j ∈ U , Δi = Δj, and let B = [k] \ U be the complementary set. We
have:

1. If B > λ then the probability of passing the consistency check is ≤ 2−λ.
2. If the consistency check passes, then for all s′ ∈ S(T ), it holds that either the

bits {s′
i}i∈B are fixed, or the bits {s′

i}i∈U are fixed.
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Proof. The first claim follows from Claim B.3 of [ALSZ15] and Lemma 6. The
second can be seen from inspection of the proof of Claim B.4 in the same
work. ��

From the first item, we conclude that |B| ≤ λ, except with negligible prob-
ability. We claim that this means we first be in the first case of item 2 in the
lemma. If the bits {s′}i∈U were fixed then the adversary must have guessed |U |
bits of the secret to pass the check, but since |U | ≥ k − λ ≥ λ, this can only
happen with probability ≤ 2−λ.

This implies that (except with negligible probability) the bits of s sampled
by FΔ-ROT are fixed at the positions i ∈ B, so S can define a value b′

i = t0i + si ·
(Δi−Δ′) from the fact that si is fixed, for all i ∈ B. We then have b′

i = ai−si ·Δ,
so this defines the correct output that S sends to FΔ-ROT in step 7. Note that
for all i ∈ U we have Δi = Δ′, so we can just let b′

i = t0i . These outputs are then
identically distributed to the outputs of PS in the real protocol, so (accounting
for the negligible failure events) the simulation is statistically close. ��
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A Conversion to 1-out-of-2 OTs

The main protocol in Sect. 3 produces a batch of random 1-out-of-pi OTs, for
multiple small primes pi. If an application requires 1-out-of-2 OTs (as is common)
then we can convert each of the 1-out-of-pi OTs to a 1-out-of-2 OT at a cost of
O(log pi) bits of communication using standard techniques, with active security6.

Fig. 7. Conversion from random 1-out-of-N OT to chosen 1-out-of-2 OT

6 It is possible to convert a 1-out-of-N OT into log2 N 1-out-of-2 OTs [NP99,KK13],
but this technique would not improve the asymptotic communication cost in our
case, and is only passively secure.
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In the protocol, shown in Fig. 7, the receiver first converts the random choice
c from the 1-out-of-N OT into its chosen input bit b by sending the difference
d = c − b mod N . The sender, who initially has random strings r0, . . . , rN−1,
then uses rd and rd+1 mod N to one-time-pad encrypt its two input messages.
The receiver can recover exactly one of these, corresponding to rc = rd+b.

Security of the protocol is straightforward. The only concern is that if the
receiver is corrupt, PR might choose an inconsistent value b ∈ {2, ..., p − 1}
instead of a bit, so learns a random string instead of one of the sender’s two
inputs. However, the fact that a corrupt PR may not learn a valid output does
not pose a problem, since in this case, in the security proof the simulator can
just send an arbitrary choice bit to the FOT functionality and simulate the e0, e1
messages from the sender with random strings.
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Abstract. We present a new multiparty computation protocol secure
against a static and malicious dishonest majority. Unlike most previous
protocols that were based on working on MAC-ed secret shares, our app-
roach is based on computations on homomorphic commitments to secret
shares. Specifically we show how to realize MPC using any additively-
homomorphic commitment scheme, even if such a scheme is an interactive
two-party protocol.

Our new approach enables us to do arithmetic computation over arbi-
trary finite fields. In addition, since our protocol computes over commit-
ted values, it can be readily composed within larger protocols, and can
also be used for efficiently implementing committing OT or committed
OT. This is done in two steps, each of independent interest:
1. Black-box extension of any (possibly interactive) two-party addi-

tively homomorphic commitment scheme to an additively homomor-
phic multiparty commitment scheme, only using coin-tossing and a
“weak” equality evaluation functionality.

2. Realizing multiplication of multiparty commitments based on a
lightweight preprocessing approach.

Finally we show how to use the fully homomorphic commitments to com-
pute any functionality securely in the presence of a malicious adversary
corrupting any number of parties.

1 Introduction

Secure computation (MPC) is the area of cryptography concerned with mutually
distrusting parties who wish to compute some function f on private input from
each of the parties, yielding some private output to each of the parties. If we
consider p parties, P1, . . . , Pp where party Pi has input xi the parties then wish to
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learn their respective output yi. We can thus describe the function to compute
as f(x1, x2, . . . , xp) = (y1, y2, . . . , yp). It was shown in the 80’s how to realize
this, even against a malicious adversary taking control over a majority of the
parties [24]. With feasibility in place, much research has been carried out trying
to make MPC as efficient as possible. One specific approach to efficient MPC,
which has gained a lot of traction is based on secret sharing [3,5,24]: Each party
secretly shares his or her input with the other parties. The parties then parse
f as an arithmetic circuit, consisting of multiplication and addition gates. In
a collaborative manner, based on the shares, they then compute the circuit, to
achieve shares of the output which they can then open.

Out Contributions. Using the secret sharing approach opens up the possibility
of malicious parties using “inconsistent” shares in the collaborative computation.
To combat this, most protocols add a MAC on the true value shared between
the parties. If someone cheats it is then possible to detect this when verifying
the MAC [14,16,33].

In this paper we take a different approach to ensure correctness: We have
each party commit to its shares towards the other parties using an additively
homomorphic commitment. We then have the collaborative computation take
place on the commitments instead of the pure shares. Thus, if some party tries
to change its share during the protocol then the other parties will notice when
the commitments are opened in the end (as the opening will be invalid).

By taking this path, we can present the following contributions:

1. An efficient and black-box reduction from random multiparty homomorphic
commitments, to two-party additively homomorphic commitments.

2. Using these multiparty commitments we present a new secret-sharing based
MPC protocol with security against a majority of malicious adversaries.
Leveraging the commitments, our approach does not use any MAC scheme
and does not rely on a random oracle or any specific number theoretic assump-
tions.

3. The new protocol has several advantages over previous protocols in the same
model. In particular our protocol works over fields of arbitrary characteristic,
independent of the security parameter. Furthermore, since our protocol com-
putes over committed values it can easily be composed inside larger protocols.
For example, it can be used for computing committed OT in a very natural
and efficient way.

4. We suggest an efficient realization of our protocol, which only relies on a
PRG, coin-tossing and OT1. We give a detailed comparison of our scheme
with other dishonest majority, secret-sharing based MPC schemes, showing
that the efficiency of our scheme is comparable, and in several cases preferable,
over state-of-the-art.

1 OT can be efficiently realized using an OT extension, without the usage of a random
oracle, but rather a type of correlation robustness, as described in [2].
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High Level Idea. We depart from any (possibly interactive) two-party addi-
tively homomorphic commitment scheme. To achieve the most efficient result,
without relying on a random oracle or specific number theoretic assumptions,
we consider the scheme of [18], since has been shown to be highly efficient in
practice [35,36]. This scheme, along with others [9–11] works on commitments
to vectors of m elements over some field F. For this reason we also present our
results in this setting. Thus any of these schemes could be used.

The first part of our protocol constructs a large batch of commitments to ran-
dom values. The actual value in such a commitment is unknown to any party,
instead, each party holds an additive share of it. This is done by having each
party pick a random message and commit to it towards every other party, using
the two-party additively homomorphic commitment scheme. The resulted mul-
tiparty commitment is the sum of all the messages the parties committed to,
which is uniformly random if there is at least one honest party. We must ensure
that a party commits to the same message towards all other parties, to this end
the parties agree on a few (random) linear combinations over the commitments,
which are then opened and being checked.

Based on these random additively shared commitments, the parties execute
a preprocessing stage to construct random multiplication triples. This is done
in a manner similar to MASCOT [29], yet a bit different, since our scheme sup-
ports computation over arbitrary small fields and MASCOT requires a field of
size exponential in the security parameter. More specifically the Gilboa protocol
[23] for multiplication of additively shared values is used to compute the prod-
uct of two shares of the commitments between each pair of parties. However,
this is not maliciously secure as the result might be incorrect and a few bits of
information on the honest parties’ shares might be leaked. To ensure correct-
ness cut-and-choose and sacrificing steps are executed. First, a few triples are
opened and checked for correctness. This ensures that not all triples are incor-
rectly constructed. Next, the remaining triples are mapped into buckets, where
some triples are sacrificed to check correctness of another triple. At this point all
the triples are correct except with negligible probability. Finally, since the above
process grants the adversary the ability to leak some bits from the honest par-
ties shares, the parties engage in a combining step, where triples are randomly
“added” together to ensure that the result will contain at least one fully random
triple.

As the underlying two-party commitments are for vectors of messages, our
protocol immediately features single-instruction multiple-data (SIMD), which
allows multiple simultaneously executions of the same computation (over differ-
ent inputs). However, when performing only a single execution we would like to
use only one element out of the vector and save the rest of the elements for a
later use. We do so by preprocessing reorganization pairs, following the same
approach presented in MiniMAC [12,15,16], which allows to perform a linear
transformation over a committed vector.

With the preprocessing done, the online phase of our protocol proceeds like
previous secret-sharing based MPC schemes such as [14,16,29]. That is, the
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parties use their share of the random commitments to give input to the protocol.
Addition is then carried out locally and the random multiplication triples are
used to interactively realize multiplication gates.

Efficiency. In Table 1 we count the amount of OTs, two-party commitments
and coin tossing operations required in the different commands of our protocol
(specifically, in the Rand, Input, ReOrg, Add and Mult commands).

The complexities describe what is needed to construct a vector of m elements
in the underlying field in the amortized sense. When using the commitment
scheme of [18] it must hold that m ≥ s/�log2(|F|)� where s is the statistical
security parameter.

Table 1. Amortized complexity of each instruction of our protocol (Rand, Input,
ReOrg, Add and Mult), when constructing a batch of 220 multiplication triples, each
with m independent components among p parties. The quadratic complexity of the
number of two-party commitments reflects the fact that our protocol is constructed
from any two-party commitment scheme in a black-box manner, and so each party
independently commits to all other party for every share it posses.

Rand, Input ReOrg Add Mult

OTs 0 0 0 27m log(|F|)p(p − 1)

Two-party commitments p(p − 1) 3p(p − 1) 0 81p(p − 1)

Random coins log(|F|) 4 log(|F|) 0 108 log(|F|)

1.1 Related Work

Comparison to SPDZ and TinyOT. In general having the parties commit to
their shares allows us to construct a secret-sharing based MPC protocol ala
SPDZ [14,29], but without the need of shared amd specific information theoretic
MACs. This gives us several advantages over the SPDZ approach:

– We get a light preprocessing stage of multiplication triples as we can base
this on commitments to random values, which are later adjusted to reflect
a multiplication. Since the random values are additively homomorphic and
committed, this limits the adversary’s possible attack vector. In particular
we do not need an authentication step.

– Using the commitment scheme of [18] we get the possibility of committing
to messages in any field F among p parties, using communication of only
O(log(|F|) · p2) bits, amortized. This is also the case when F is the binary
field2 or of different characteristic than 2. In comparison, SPDZ requires the
underlying field to be of size Ω(2s) where s is a statistical security parameter.

– The TinyOT protocol [7,30,33] on the other hand only works over GF(2) and
requires a MAC of Õ(s) bits on each secret bit. Giving larger overhead than
in SPDZ, MiniMAC and our protocol and limiting its use-case to evaluation
of Boolean circuits.

2 This requires a commitment to be to a vector of messages in F.



Committed MPC 591

Comparison to MiniMAC. The MiniMAC protocol [16] uses an error correcting
code over a vector of data elements. It can be used for secure computation
over small fields without adding long MACs to each data element. However,
unfortunately the authors of [16] did not describe how to realize the preprocessing
needed. Neither did the follow up works [12,15]. The only efficient3 preprocessing
protocol for MiniMAC that we know of is the one presented in [19] based on OT
extension. However this protocols has it quirks:

– It only works over fields of characteristic 2.
– The ideal functionality described is different from the ones in [12,15,16].

Furthermore, it is non-standard in the sense that the corruption that an
adversary can apply to the shares of honest parties can be based on the
inputs of the honest parties.

– There is no proof that this ideal functionality works in the online phase of
MiniMAC.

– There seems to be a bug in one of the steps of the preprocessing of multipli-
cation triples. We discuss this in further detail in the full version [20].

OT Extensions. All the recent realizations of the preprocessing phase on secret
shared protocols such as SPDZ, MiniMAC and TinyOT are implemented using
OT. The same goes for our protocol. Not too long ago this would have not been
a practically efficient choice since OT generally requires public key operations.
However, the seminal work of Beaver [4] showed that it was possible to extend a
few OTs, using only symmetric cryptography, to achieve a practically unbounded
amount of OTs. Unfortunately Beaver’s protocol was not practically efficient, but
much research has been carried out since then [1,2,25,28,33], culminating with a
maliciously secure OT extension where a one-out-of-two OT of 128 bit messages
with s = 64 can be done, in the amortized sense, in 0.3µs [28].

Commitment Extensions. Using additive homomorphic commitments for practi-
cal MPC is a path which would also not have been possible even just a few years
ago. However, much study has undergone in the area of “commitment extension”
in the recent years. All such constructions that we know of require a few OTs
in a preprocessing phase and then construction and opening of commitments
can be done using cheap symmetric or information theoretic primitives. The
work on such extensions started in [22] and independently in [11]. A series of
follow-up work [6,9,10,18,35] presented several improvements, both asymptoti-
cally and practically. Of these works [35] is of particular interest since it presents
an implementation (based on the scheme of [18]) and showed that committing
and opening 128 bit messages with s = 40 can be done in less than 0.5µs and
0.2µs respectively, in the amortized sense for a batch of 500,000 commitments4.

3 I.e. one that does not use a generic MPC protocol to do the preprocessing.
4 Note that this specific implementation unfortunately uses a code which does not

have the properties our scheme require. Specifically its product-code has too low
minimum distance.
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It should be noted that Damg̊ard et al. [11] also achieved both additively
and multiplicative homomorphic commitments. They use this to get an MPC
protocol cast in the client/server setting. We take some inspiration from their
work, but note that their setting and protocols are quite different from ours in
that they use verifiable secret sharing to achieve the multiplicative property and
so their scheme is based on threshold security, meaning they get security against
a constant fraction of servers in a client/server protocol.

Relation to [13]. The protocol by Damg̊ard and Orlandi also considers a mali-
ciously secure secret-sharing based MPC in the dishonest majority setting. Like
us, their protocol is based on additively homomorphic commitments where each
party is committed to its share to thwart malicious behavior. However, unlike
ours, their protocol only works over large arithmetic fields and uses a very dif-
ferent approach. Specifically they use the cut-and-choose paradigm along with
packed secret sharing in order to construct multiplication triples. Furthermore,
to get random commitments in the multiparty setting, they require usage of
public-key encryption for each commitment. Thus, the amount of public-key
operations they require is linear in the amount of multiplication gates in the
circuit to compute. In our protocol it is possible to limit the amount of public-
key operations to be asymptotic in the security parameter, as we only require
public-key primitives to bootstrap the OT extension.

Other Approaches to MPC. Other approaches to maliciously secure MPC in the
dishonest majority setting exist. For example Yao’s garbled circuit [31,32,37],
where the parties first construct an encrypted Boolean circuit and then evalu-
ate it locally. Another approach is “MPC-in-the-head” [26,27] which efficiently
combines any protocol in the malicious honest majority settings and any proto-
col in the semi-honest dishonest majority settings into a protocol secure in the
malicious dishonest majority settings.

2 Preliminaries

Parameters and Notation. Throughout the paper we use “negligible proba-
bility in s” to refer to a probability o(1/poly(s)) where poly(s) indicates some
polynomial in s ∈ N. Similarly we use “overwhelming probability in s” to denote
a probability 1 − o(1/poly(s)), where s is the statistical security parameter.

There are p ∈ N parties P1, . . . , Pp participating in the protocol. The notation
[k] refers to the set {1, . . . , k}. We let vector variables be expressed with bold
face. We use square brackets to select a specific element of a vector, that is,
x[�] ∈ F is the �’th element of the vector x ∈ F

m for some m ≥ �. We assume
that vectors are column vectors and use ‖ to denote concatenation of rows, that
is, x‖y with x,y ∈ F

m is a m × 2 matrix. We use ∗ : F
m × F

m → F
m to

denote component-wise multiplication and · : F × F
m → F

m to denote a scalar
multiplication. We will sometimes abuse notation slightly and consider F as a
set of elements and thus use F\{0} to denote the elements of F, excluding the
additive neutral element 0.
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If S is a set we assume that there exists an arbitrary, but globally known
deterministic ordering in such a set and let S[i] = Si denote the ith element
under such an ordering. In general we always assume that sets are stored as a
list under such an ordering. When needed we use (a, b, ...) to denote a list of
elements in a specific order. Letting A and B be two sets s.t. |A| = |B| we then
abuse notation by letting {(a, b)} ∈ (A,B) denote {(A[i], B[i])}i∈[|A|]. I.e. a and
b denote the i’th element in A, respectively B.

All proof and descriptions of protocols are done using the Universally Com-
posable framework [8].

Ideal Functionalities. We list the ideal UC-functionalities we need for our
protocol. Note that we use the standard functionalities for Coin Tossing, Secure
Equality Check, Oblivious Transfer and Multiparty Computation.

We need a coin-tossing functionality that allows all parties to agree on uni-
formly random elements in a field. For this purpose we describe a general, mali-
ciously secure coin-tossing functionality in Fig. 1.

Fig. 1. Ideal functionality FCT

Furthermore we need to be able to securely evaluate equality of values.
This functionality is described in Fig. 2. Notice that this functionality allows
the adversary to learn the honest parties’ inputs after it supplies its own. Fur-
thermore, we allow the adversary to learn the result of the equality check before
any honest parties, which gives him the chance to abort the protocol. Thus this
function should only be used on data that is not private. The functionality can
for example be implemented using a commitment scheme where each party com-
mits to its input towards every other party. Once all parties have committed,
the parties open the commitments and each party locally evaluates if everything
is equal.

We also require a standard 1-out-of-2 functionality denoted by FOT as
described in Fig. 3.

Finally, a fully fledged MPC functionality, very similar to the one described
in previous works such as SPDZ and MiniMAC, is described in Fig. 4. Note that
the functionality maintains the dictionary id that maps indices to values stored
by the functionality. The expression id[k] = ⊥ means that no value is stored by
the functionality at index k in that dictionary. Also note that the functionality
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Fig. 2. Ideal functionality FEQ

Fig. 3. Ideal functionality FOT

is described as operating over vectors from F
m rather than over elements from F.

This is because our protocol allows up to m simultaneous secure computations of
the same function (on different inputs) at the price of a single computation, thus,
every operation (such as input, random, add, multiply) are done in a component
wise manner to a vector from F

m. As we describe later, it is indeed possible to
perform a single secure computation when needed.

Dependencies between functionalities and protocols. We illustrate the depen-
dencies between the ideal functionalities just presented and our protocols in
Fig. 5. We see that FCT and FEQ, along with a two-party commitments scheme,
F2HCOM-Fm (presented in the next section) are used to realize our multiparty com-
mitment scheme in protocol ΠHCOM-Fm . Functionalities FCT and FEQ are again
used, along with FHCOM-Fm and FOT to realize the augmented homomorphic
commitment scheme ΠAHCOM-Fm . ΠAHCOM-Fm constructs all the preprocessed
material, in particular multiplication triples, needed in order to realize the fully
fledged MPC protocol ΠMPC-Fm .
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Fig. 4. Ideal functionality FMPC-Fm

Fig. 5. Outline of functionali-
ties and protocols.

Arithmetic Oblivious Transfer. Generally
speaking, arithmetic oblivious transfer allows
two parties Pi and Pj to obtain an additive
shares of the multiplication of two elements
x, y ∈ F, where Pi privately holds x and Pj pri-
vately holds y.

A protocol for achieving this in the semi-
honest settings is presented in [23] and used in
MASCOT [29]. Let � = �log F� be the number of
bits required to represent elements from the field
F, then the protocol goes by having the parties
run in � (possibly parallel) rounds, each of which
invokes an instance of the general oblivious transfer functionality (FOT). This is
described by procedure ArithmeticOT in Fig. 6.

The use of arithmetic OT to construct multiplication triples. In our protocol
we use the above procedure to multiply two elements x,y ∈ F

m such that one
party privately holds x and the other party privately holds y. Specifically, we
can do this using m invocations of the ArithmeticOT procedure, thus, to multiply
elements from F

m we make a total of m log(�|F|�) calls to the transfer command
of the FCT functionality.
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Fig. 6. Procedure ArithmeticOT

Even if using a maliciously secure OT functionality to realize this procedure,
it still does not become maliciously secure. We discuss how to handle this in
Sect. 4.2.

3 Homomorphic Commitments

In this section we present the functionalities for two-party and multiparty homo-
morphic commitment schemes, however, we present a realization only to the
multiparty case since it uses a two-party homomorphic commitment scheme in
a black-box manner and so it is not bound to any specific realization.

For completeness and concreteness of the efficiency analysis we do present a
realization to the two-party homomorphic commitment scheme in the full version
[20].

3.1 Two-Party Homomorphic Commitments

Functionality F2HCOM-Fm is held between two parties Pi and Pj , in which Pi

commits to some value x ∈ F
m toward party Pj , who eventually holds the

commitment information, denoted [x]i,j . In addition, by committing to some
value x party Pi holds the opening information, denoted 〈x〉i,j , such that having
Pi send 〈x〉i,j to Pj is equivalent to issuing the command Open on x by which
Pj learns x.

The functionality works in a batch manner, that is, Pi commits to γ (random)
values at once using the Commit command. These γ random values are consid-
ered as “raw-commitments” since they have not been processes yet. The sender
turns the commitment from “raw” to “actual” by issuing either Input or Rand
commands on it: The Input command modifies the committed value to the
sender’s choice and the Rand command keeps the same value of the commitment
(which is random). In both cases the commitment is considered as a “actual”
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and is not “raw” anymore. Actual commitments can then be combined using the
Linear Combination command to construct a new actual-commitment.

To keep track of the commitments the functionality uses two dictionaries: raw
and actual. Both map from identifiers to committed values such that the mapping
returns ⊥ if no mapping exists for the identifier. We stress that a commitment is
either raw or actual, but not both. That means that either raw or actual, or both
return ⊥ for every identifier. To issue the Commit command, the committer is
instructed to choose a set I of γ freshly new identifiers, this is simply a set of
identifiers I such that for every k ∈ I raw and actual return ⊥. The functionality
is formally described in Fig. 7.

Fig. 7. Ideal functionality F2HCOM-Fm

To simplify readability of our protocol we may use shorthands to the func-
tionality’s commands invocations as follows: Let [xk]i,j and [xk′ ]i,j be two actual-
commitments issued by party Pi toward party Pj (i.e. the committed values are
stored in actual[k] and actual[k′] respectively). The Linear Combination
command of Fig. 7 allows to compute the following operations which will be
used in our protocol. The operations are defined over [xk]i,j and [xk′ ]i,j and
result with the actual-commitment [xk′′ ]i,j :

– Addition. (Equivalent to the command (linear, {(k,1), (k′,1)},0, k′′).)

[xk]i,j+[xk′ ]i,j = [xk+xk′ ]i,j = [xk′′ ]i,j and 〈xk〉i,j+〈xk′ 〉i,j = 〈xk + xk′ 〉i,j = 〈xk′′ 〉i,j
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– Constant Addition. (Equivalent to the command (linear, {(k,1)},β, k′′).)

β + [xk]i,j = [β +xk]i,j = [xk′′ ]i,j and β + 〈xk〉i,j = 〈β + xk〉i,j = 〈xk′′〉i,j

– Constant Multiplication. (Equivalent to the command (linear, {(k,α)},
0, k′′).)

α ∗ [xk]i,j = [α ∗ xk]i,j = [xk′′ ]i,j and α ∗ 〈xk〉i,j = 〈α ∗ xk〉i,j = 〈xk′′〉i,j

Realization of these operations depends on the underlying two-party commit-
ment scheme. In the full version [20] we describe how addition of commitments
and scalar multiplication are supported with the scheme of [18], where we also
show how to extend this to enable a componentwise multiplication of an actual-
commitment with a public vector from F

m as well. To this end, we show how
to extend their scheme to supports this operation as well, as it follows the same
approach used in MiniMAC [16]. In the following we assume that public vector
componentwise multiplication is supported in the two-party scheme.

3.2 Multiparty Homomorphic Commitments

Functionality FHCOM-Fm , presented in Fig. 8, is a generalization of F2HCOM-Fm

to the multiparty setting where the commands Init, Commit, Input, Rand,
Open and Linear Combination have the same purpose as before. The addi-
tional command Partial Open allows the parties to open a commitment to a
single party only (in contrast to Open that opens a commitment to all parties).
As before, the functionality maintains the dictionaries raw and actual to keep
track on the raw and actual commitments. The major change in the multiparty
setting is that all parties take the role of both the committer and receiver (i.e.
Pi and Pj from the two-party setting). For every commitment stored by the
functionality (either raw or actual), both the commitment information and the
opening information are secret shared between P1, . . . , Pp using a full-threshold
secret sharing scheme.

3.3 Realizing FHCOM-Fm in the (FEQ,FCT,F2HCOM-Fm )-hybrid Model

Let us first fix the notation for the multiparty homomorphic commitments: We
use [[x]] to denote a (multiparty) commitment to the message x. As mentioned
above, both the message x and the commitment to it [[x]] are secret shared
between the parties, that is, party Pi holds xi and [[x]]i such that x =

∑
i∈[p] x

i

and [[x]]i is composed of the information described in the following. By issuing
the Commit command, party Pi sends [xi]i,j for every j �= i (by invoking the
Commit command from F2HCOM-Fm). Thus, party Pi holds the opening infor-
mation for all instances of the commitments to xi toward all other parties, that
is, it holds

{〈xi〉i,j
}

j∈[p]�{i}. In addition, Pi holds the commitment information

received from all other parties, xj (for j �= i), that is, it holds
{
[xj ]j,i

}
j∈[p]�{i}.
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Fig. 8. Ideal functionality FHCOM-Fm

All that information that Pi holds with regard to the value x is denoted by [[x]]i,
which can be seen as a share to the multiparty commitment [[x]].

In protocol ΠHCOM-Fm (from Fig. 9) each party has a local copy of the raw
and actual dictionaries described above, that is, party Pi maintains rawi and
actuali. In the protocol, Pi may be required to store [[x]]i (i.e. its share of [[x]])
in a dictionary (either rawi or actuali) under some identifier k, in such case Pi

actually assigns rawi[k] =
{
[xj ]j,i, 〈xi〉i,j

}
j∈[p]�{i} which may also be written as

rawi[k] = [[x]]i.
In the following we explain the main techniques used to implement the

instructions of functionality FHCOM-Fm (we skip the instructions that are
straightforward):

Linear operations. From the linearity of the underlying two-party homomorphic
commitment functionality it follows that performing linear combinations over a
multiparty commitments can be done locally by every party. We describe the
notation in the natural way as follows: Given multiparty commitments [[x]] and
[[y]] and a constant public vector c ∈ F

m:
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– Addition. For every party Pi:

[[x]]i + [[y]]i =
{
[xj ]j,i, 〈xi〉i,j

}
j∈[p]�i

+
{
[yj ]j,i, 〈yi〉i,j

}
j∈[p]�i

=
{
[xj ]j,i + [yj ]j,i, 〈xi〉i,j + 〈yi〉i,j

}
j∈[p]�i

=
{
[xj + yj ]j,i, 〈xi + yi〉i,j

}
j∈[p]�i

= [[x + y]]i

– Constant addition. The parties obtain [[β + x]] by having P1 perform xi =
xi + β, then, party P1 computes:

β + [[x]]i = β +
{
[xj ]j,i, 〈xi〉i,j

}
j∈[2,p]

=
{
[xj ]j,i,β + 〈xi〉i,j

}
j∈[2,p]

= [[β + x]]i

and all other parties Pj compute:

β + [[x]]j = β +
{
[xi]i,j , 〈xj〉j,i}

j∈[p]�j
=

{
[xi]i,j , 〈xj〉j,i}

j∈[2,p]�j
∪ {

[β + x1]1,j , 〈xj〉j,1}

= [[β + x]]j

– Constant multiplication. For every party Pi:

α ∗ [[x]]i = α ∗ {
[xj ]j,i, 〈xi〉i,j}

j∈[p]�i
=

{
α ∗ [xj ]j,i,α ∗ 〈xi〉i,j}

j∈[p]�i
= [[α ∗ x]]i

Notice that public addition is carried out by only adding the constant β
to one commitment (we arbitrarily chose P1’s commitment). This is so, since
the true value committed to in a multiparty commitment is additively shared
between p parties. Thus, if β was added to each share, then what would actually
be committed to would be p ·β! On the other hand, for public multiplication we
need to multiply the constant α with each commitment, so that the sum of the
shares will all be multiplied with α.

Commit. As the parties produce a batch of commitments rather than a single
one at a time, assume the parties wish to produce γ commitments, each party
picks γ + s uniformly random messages from F

m. Each party commit to each of
these γ + s messages towards each other party using different instances of the
Commit command from F2HCOM-Fm , and thus different randomness.

Note that a malicious party might use the two-party commitment scheme to
commit to different messages toward different parties, which leads to an incor-
rect multiparty commitment. To thwart this, we have the parties execute ran-
dom linear combination checks as done for batch-opening of commitments in
[18]: The parties invoke the coin-tossing protocol to agree on a s × γ matrix,
R with elements in F. In the following we denote the element in the qth row
of the kth column of R by Rq,k. Every party computes s random linear com-
binations of the opening information that it holds toward every other party.
Similarly, every party computes s combinations of the commitments that it
obtained from every other party. The coefficients of the qth combination are
determined by the q’th row R and the qth vector from the s “extra” committed
messages added to the combination. That is, let the γ + s messages committed
by party Pi toward Pj be xi,j

1 , . . . ,xi,j
γ+s and see that the qth combination com-

puted by Pj is
(∑

k∈γ Rq,k·,xi,j
k

)
+,xi,j

γ+q and the combination computed by Pi
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is
(∑

k∈γ Rq,k · 〈xi,j
k 〉

)
+ 〈xi,j

γ+q〉. Then Pi open the result to Pj , who checks that
it is correct. If Pi was honest it committed to the same values towards all parties
and so xi

k = xi,j
k = xi,j′

k for all k ∈ [γ + s] and j �= j′ ∈ [p] � {i}. Likewise for
the other parties, so if everyone is honest they all obtain the same result from
the opening of the combination. Thus, a secure equality check would be correct
in this case. However, if Pi cheated, and committed to different values toward
different parties than this is detected with overwhelming probability, since the
parties perform s such combinations.

Input. Each party does a partial opening (see below) of a raw, unused commit-
ment towards the party that is supposed to give input. Based on the opened
message the inputting party computes a correction value. That is, if the raw
commitment, before issuing the input command, is a shared commitment to the
value x and the inputting party wish to input y, then it computes the value
ε = y − x and sends this value to all parties. All parties then add [[x]] + ε to the
dictionary actual and remove it from the dictionary raw. Since the party giving
input is the only one who knows the value x, and it is random, this does not
leak.

We prove the following theorem in the full version [20].

Theorem 3.1. Protocol ΠHCOM-Fm (of Fig. 9) UC-securely realizes functionality
FHCOM-Fm (of Fig. 8) in the F2HCOM-Fm , FCT, and FEQ-hybrid model, against a
static and malicious adversary corrupting any majority of the parties.

4 Committed Multiparty Computation

4.1 Augmented Commitments

In the malicious, dishonest majority setting, our protocol, as other protocols,
works in the offline-online model. The offline phase consists of constructing suf-
ficiently many multiplication triples which are later used in the online phase to
carry out a secure multiplications over committed, secret shared values5. To this
end, we augment functionality FHCOM-Fm with the instruction Mult that uses
the multiparty raw-commitments that were created by the Commit instruction
of Fig. 8 and produces multiplication triples of the form ([[x]], [[y]], [[z]]) such that
x ∗ y = z. Note that a single multiplication triple is actually three multiparty
commitments to values from F

m such that z is the result of a componentwise
multiplication of x and y. That actually means that zq = xq · yq for every
q ∈ [m]. Hence, this features the ability to securely evaluate up to m instances
of the circuit at the same cost of evaluation of a single instance (i.e. in case the
parties want to evaluate some circuit m times but with different inputs each
time) where all m instances are being evaluated simultaneously. If the parties
wish to evaluate only m′ < m instances of the circuit, say m′ = 1, they do so by
using only the values stored in the first component of the vectors, while ignoring
5 Typically a secure addition can be carried out locally by each party.
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Fig. 9. Protocol ΠHCOM-Fm
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the rest of the components. However, using a multiplication triple wastes all com-
ponents of x,y and z even if the parties wish to use only their first component.
To avoid such a loss we augment FHCOM-Fm with the instruction ReOrg. The
ReOrg instruction preprocesses reorganization pairs which are used to compute
a linear operator over a multiparty commitment. For example this enable the
parties to “copy” the first component to another, new, multiparty commitment,
such that all components of the new multiparty commitment are equal to the
first component of the old one. For instance, the linear operator φ ∈ F

m×m such
that its first column is all 1 and all other columns are all 0, transforms the vec-
tor x to x′ = x1, . . . ,x1 (m times). Applying φ to y and z as well results in a
new multiplication triple (x′,y′, z′) where only the first component of (x,y, z)
got used (rather than all their m components). We note that the construction
of reorganization pairs are done in a batch for each function φ resulting in the
additive destruction of s extra raw commitments (i.e. an additive overhead). In
the ReOrg command, described in Fig. 10, the linear operator φ is applied to L
raw commitments in a batch manner. The inputs to φ are the messages stored
by the functionality under identifiers from the set X and the outputs override
the messages stored by the functionality under identifiers from the set Y . The
messages stored under identifiers from the set R are being destroyed (this reflects
the additive overhead of that command).

Adding instructions Mult and ReOrg to the FHCOM-Fm functionality, we
get the augmented functionality FAHCOM-Fm formally presented in Fig. 10.

Fig. 10. Ideal functionality FAHCOM-Fm

Realizing FAHCOM-Fm . The protocol ΠAHCOM-Fm is formally presented in
Figs. 12 and 13. In the following we describe the techniques used in ΠAHCOM-Fm
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and show the analysis that implies the number of multiplication triples that
should be constructed in one batch for the protocol to be secure. Specifically, in
Sect. 4.2 we describe how to implement the Mult command and in Sect. 4.3 we
describe how to implement the ReOrg command.

4.2 Generating Multiplication Triples

Secure multiplication in our online phase, similar to previous works in the field,
is performed using multiplication triples (AKA Beaver triples). In our work a
multiplication triple is of the form ([[x]], [[y]], [[z]]) where [[x]], [[y]] and [[z]] are mul-
tiparty commitments of messages x,y and z respectively as defined in Sect. 3.3
and z = x ∗ y. The construction of triples is done in a batch and consists of
four parts briefly described below (and further explained and analyzed soon
afterward):

1. Construction. Using the arithmetic OT procedure formalized in Sect. 2 the
parties first construct multiplication triples that may be “malformed” and
“leaky” in case of a malicious adversary. Here malformed means that they
are incorrect, i.e. x∗y �= z and “leaky” means that the adversary has tried to
guess the value of the share of an honest party (the term is further explained
below).

2. Cut-and-Choose. The parties select τ1 triples at random which they check
for correctness. If any of these triples are malformed then they abort. Oth-
erwise, when mapping the remaining triples into buckets, with overwhelming
probability all buckets will contain at least one correct triple.

3. Sacrificing. The remaining triples (from the cut-and-choose) are mapped
to buckets, τ1 triples in each bucket such that at least one of the triples is
correct. Each bucket is then tested to check its correctness where by this
check only a single multiplication is being output while the other τ1 − 1 are
being discarded. This step guarantees that either the output triple is correct
or a malformed triple is detected, in which case the protocol aborts.

4. Combining. As some of the triples may be “leaky” this allows the adversary
to carry a selective attack, that is, to probe whether its guess was correct or
not. If the guess is affected by the input of an honest party then it means
that the adversary learns that input. Thus, as the name suggests, the goal
of this step is to produce a non-leaky triple by combining τ2 triples, which
are the result of the sacrificing step (and thus are guaranteed to be correct),
where at least one of the τ2 is non-leaky. As we will see later, this condition
is satisfied with overwhelming probability.

Construction. The triples are generated in a batch, that is, sufficiently many
triples are generated at once. However, the construction of each triple is inde-
pendent of the others. Thus, we proceed by describing how to generate a single
triple. The parties select three raw-commitments, denoted [[x]], [[y]], [[z′]], that
were generated by FHCOM-Fm . The goal of this step is to change [[z′]] to [[z]] such
that [[z]] = [[x ∗ y]].
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Recall that for a message x that is committed to by all parties, we have that
each party Pi knows xi such that x =

∑
i∈[p] x

i. Thus, the product x ∗ y equals
(∑

i∈[p] x
i
)

∗
(∑

i∈[p] y
j
)

=
∑

i∈[p] x
i ∗ (

∑
j∈[p] y

j). In order to have each party

Pi hold the value zi such that
∑

i∈[p] z
i = x∗y we let party Pi use the arithmetic

OT procedure (as describe in Sect. 2) to have a share of the multiplication xi ∗yj

for every j ∈ [p] where Pi inputs xi and Pj inputs yj . After Pi multiplied its share
xi with all other parties’ shares yj the sum of all the shares is xi ∗ (

∑
j∈[p] y

j)
(assuming honest behavior). If all parties do the same, then every party ends up
holding a share of x∗y as required. Remember that we want Pi to hold a share to
[[x ∗ y]] and not just a share to x∗y (i.e. we want all shares to be committed). To
this end, every party broadcasts the difference t between the new share and the
old share, that is, Pi broadcasts ti = zi−z′i, then, the parties perform a constant
addition to the old commitments, that is, they compute [[z]] = [[z′]] + (

∑
i∈[p] t

i).

Discussion. As described above, party Pi (for i ∈ [p]) participates in p − 1
instantiations of the arithmetic OT functionality with every other party Pj (for
j �= i). The arithmetic OT functionality is of the form (xi, (yj , rj)) → (xi ∗yj +
rj ,⊥), that is, Pi inputs its share xi of x, party Pj inputs its share yj of y and
a random value rj . The functionality outputs xi ∗ yj + rj to Pi and nothing to
Pj . Then, to get a sharing of xi ∗ yj we instruct Pi to store xi ∗ yj + rj and Pj

to store −rj (see Sect. 2). Even if this arithmetic OT subprotocol is maliciously
secure, it will only give semi-honest security in our setting when composed with
the rest of the scheme. Specifically, there are two possible attacks that might be
carried out by a malicious adversary:

1. Party Pj may input ỹj �= yj such that e = ỹj − yj , in the instantiation of
the arithmetic OT with every other Pi, where yj is the value it is committed
to. This results with the parties obtaining a committed share of the triple
([[x]], [[y]], [[x ∗ (y + e)]]). We call such a triple a “malformed” triple.

2. In the arithmetic OT procedure party Pj may impact the output of Pi such
that Pi obtains xi ∗yj + rj only if the k’th value of xi is equal to some value
“guessed” by Pj , otherwise Pi obtains some garbage xi ∗ ỹi ∈ F

m. A similar
attack can be carried out by Pi on yj when computing over a “small” field (see
the description of the malicious behavior in Sect. 2). In both cases, the parties
obtain committed shares of the triple ([[x]], [[y]], [[x ∗ y]]) only if the malicious
party made a correct guess on an honest party’s share, and an incorrect triple
otherwise. Thus, when using this triple later on, the malicious party learns
if it guessed correctly depending on whether the honest parties abort, thus,
it is vulnerable to a “selective attack”. We call such a triple “leaky”, since it
might leak privates bits from the input of an honest party.

We take three countermeasures (described in the next items) to produce
correct and non-leaky triples:

1. In the Cut-and-Choose step we verify that a few (τ1) randomly selected triples
have been constructed correctly. This is done, by having each party open
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his committed shares associated with these triples and all parties verifying
that the triples has been constructed according to the protocol. This step is
required to ensure that not all triples were malformed as a preliminary for
the sacrificing step (below) in which the triples are mapped to buckets. When
working over F = GF(2), this step is strictly needed to eliminate the case that
all triples are malformed. For other fields, this step improves the amount of
triples to be constructed in the batch.

2. In the Sacrificing step we make sure that a triple is correct (i.e. not mal-
formed) by “sacrificing” τ1 − 1 other triples which are being used as a “one-
time-pads” of the correct triple. As we treat a bunch of triples at once, the
probability of an incorrect triple to pass this step without being detected is
negligible in s (analysis is presented below). Having the parties committed
(in the construction step) to τ1 · T triples, by the end of this step there will
be T correct triples.

3. In the Combining step we partition the constructed (correct but possibly
leaky) triples into buckets of τ2 triples each, and show that for a sufficiently
big number of triples that are the outcome of the sacrificing step, the prob-
ability that there exist a bucket in which all triples are leaky in a specific
component is negligible in s. We show how to combine the τ2 triples in a
bucket and produce a new triple which is non-leaky. This is done twice, first
to remove leakage on the x component and second to remove leakage on the
y component.

Cut-and-Choose. The parties use FCT to randomly pick τ1 triples to check.
Note that τ1 is the bucket-size used in Sacrificing below and in practice could
be as low as 3 or 4. It was shown in [21] that when partitioning the triples into
buckets of size τ1 (where many of them may be malformed) then by sampling
and checking only τ1 triples, the probability that there exist a bucket full of
malformed triples is negligible. Formally:

Corollary 4.1 (Corollary 6.4 in [21]). Let N = τ1 +τ1(τ2)2 ·T be the number
of constructed triples where s ≤ log2

(
(N ·τ1+τ1)!

N ·τ1!·(N ·τ1)!
)
, then, by opening τ1 triples

it holds that every bucket contains at least one correct triple with overwhelming
probability.

Hence, it is sufficient to open (and discard) τ1 triples out of the triples from the
Construction step and hand the remaining to the Sacrificing step below.

Sacrificing. In the following we describe how to produce (τ2)2 ·T correct triples
out of τ1 ·(τ2)2 ·T that were remained from the cut-and-choose step, and analyze
what should T and τ1 be in order to have all produced (τ2)2·T triples correct with
overwhelming probability. We have the (τ2)2 · T triples be uniformly assigned to
buckets where each bucket contains τ1 triples, denoted {tk}k∈[τ1]. For simplicity,
in the following we assume that τ1 = 3. For every bucket, the parties apply
the procedure CorrectnessTest (see Fig. 11) to triples t1 and t2. If the procedure
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Fig. 11. Procedure CorrectnessTest(t1, t2)

returns successfully (i.e. the parties do not abort) they run the procedure again,
this time with triples t1 and t3. Finally, if the procedure returns successfully
from the second invocation as well then the withs consider t1 as a correct triple,
otherwise they abort the protocol. We note that this procedure is similar to the
one used in [14] and other works.

Security. The correctness and security is explained in [14]. However, for com-
pleteness we prove the following lemma in the full version [20], which states
that after the sacrificing step all produced triples are correct with overwhelming
probability:

Lemma 4.2. When 2−s ≤ (|F|−1)1−τ1 ·(τ2)2·T ·(τ1·(τ2)2·T )!·τ1!
(τ1·(τ2)2·T+τ1)!

all the (τ2)2 ·T triples
that are produced by the sacrificing step are correct except with probability at
most 2−s.

Combining. The goal of this step is to produce T non-leaky triples out of the
(τ2)2 · T triples remained from the sacrificing step above. We do this in two
sub-steps: First to remove the leakage (with regard to the arithmetic OT) of the
sender and then to remove the leakage from the receiver. In each of the sub-steps
we map the triples to buckets of size τ2 and produce a single non-leaky triple
out of it. In the following we first show how to produce one triple from each
bucket with the apriori knowledge that at least one of the triples in the bucket
is non-leaky (but we do not know which one is it) and later we show how to
obtain such buckets. Denote the set of τ2 triples by {([[xk]], [[yk]], [[zk]])}k∈[τ2]. We
produce the triple ([[(x′)]], [[y′]], ([[z)′]]) out of that set in the following way: The
parties compute

[[x′]] = [[
∑

k∈[τ2]
xk]] and [[y′]] = [[y1]] and [[z′]] = [[

(∑
k∈[τ2]

xk

)
∗ y1]]

which constitute the triple ([[x′]], [[y′]], [[z′]]). It is easy to see that [[x′]] can be
computed locally since it requires additions and constant multiplications only.
Furthermore, x′ is completely hidden since at least one of x1, . . . ,xk was not
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leaked (and it is guaranteed from the construction step that it is chosen uniformly
at random from F

m). However, notice that [[z′]] cannot be computed locally, since
it is required to multiply two multiparty commitments [[

(∑
k∈[τ2]

xk

)
]] and [[y1]].

Thus, to obtain [[z′]] the parties first compute [[εk]] = [[y1 − yk]] and open εk for
every k = 2, . . . , τ2. Then compute [[z′]] = [[z1 +

∑τ2
k=2 εk ∗ xk + zk]] by a local

computation only.
We prove the following lemma in the full version [20]:

Lemma 4.3. Having a batch of at least τ2−1

√
(s·e)τ2 ·2s

τ2
triples as input to a com-

bining step, every bucket of τ2 triples contains at least one non-leaky triple with
overwhelming probability in s in the component that has been combined on.

For instance, when F = GF(2) having s = 40, τ1 = 3 τ2 = 4 it is required to
construct T ≈ 8.4 · 105 correct and non-leaky triples in a batch. Instead, having
τ2 = 3 means that ≈ 2.29 · 108 triples are required.

Working over Non-binary Fields. When F is a field with odd characteristic
then there is a gap between the maximal field element and the maximal value
that is possible to choose which can fit in the same number of bits. For instance,
when working over F11 then the maximal element possible is 1010 = 01012 while
the maximal value possible to fit in 4 bits is 1510 = 11112, i.e. there is a gap of
5 elements. That means that an adversary could input a value that is not in the
field and might harm the security.

We observe that the only place where this type of attack matters is in the
ArithmeticOT procedure, since in all other steps the values that the adversary
inputs percolate to the underlying homomorphic commitment scheme. In the
following we analyze this case: To multiply xi and yj with xi, yj ∈ FP and P
prime the parties Pi and Pj participate in a protocol of �log P� steps. In the
q-th step, where q ∈ [�log P�], party Pi inputs xi

q and P2 inputs s0q = rq and
s1q = rq + yj to the FOT functionality. The functionality outputs sxi

q to P1 which
updates the sum of the result. In the end of this process the parties hold shares
to the multiplication z = xi · yj .

We first examine the cases in which either s0q or s1q are not in the prime field,
i.e. they belong to the gap gap = [2�log P�] � FP . We first note that if both of
them are in gap then this is certainly detected by P1 (since P1 receives one of
them as the FOT’s output). If only one of s0q, s

1
q is in gap then one of two cases

occurs:

1. If the value that P1 received from FOT is in gap then it is detected immediately
as before (since P1 clearly sees that the value is not in FP) and can abort.
Since this is the preprocessing phase it is independent of any secret input.

2. If the value that P1 received from FOT is in FP but the other value is not,
then it is guaranteed that the value P1 obtains is a correct share. That the
dishonest P2 obtains a share in the gap is actually the same case as if P2 adds
an incorrect value to the sum s.t. it lands in the gap. This leads to two cases
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(a) If the incorrect value is s0q �= rq then this is equivalent to add s0q mod P,
which leads to an incorrect share of z. This case is detected in the sacri-
ficing step.

(b) If the incorrect value is s1q �= rq + yj then this is equivalent to add s1q
mod P. As above, this leads to an incorrect share of z which is being
detected in the sacrificing step.

The last case is when either rq or yj (or both) are not in FP but the sum s1q
does. Then this is equivalent to choosing yj ∈ FP and r′

q = s1q − yj mod P such
that the value that P2 adds to its sum is incorrect (since it is different than r′

q),
and thus, this is being detected in the sacrificing step as before.

Similarly, consider a corrupted receiver who organizes its bits of xj to rep-
resent an element in gap. We observe that this is equivalent to a receiver who
inputs an incorrect value (value that is not committed before) for the following
reason: The adversary knows nothing about the sender’s (honest party) share
yj , let the value that Pi inputs be x̃i, thus the ArithmeticOT procedure outputs
shares to x̃iyj mod P = (x̃i mod P)(yj mod P). Now, if x̃i mod P = 0 (i.e.
x̃i = P) then this is detected by the sacrificing procedure (since 0 ∈ FP is not in
the field). Otherwise, if x̃i mod P �= 0 then the result x̃iyj mod P is a random
element in the field FP and the same analysis from the proof of Lemma 4.2
follows.

Finally we make the observation that the math still work out in case we use
an extension field and not a plain prime-field. Basically using the ArithmeticOT
procedure we can still multiply with one bit at a time. The parties simply mul-
tiply with the appropriate constants in the extension field (and thus do any
necessary polynomial reduction), instead of simply a two-power.

We prove the following theorem in the full version [20].

Theorem 4.4. The method Mult in ΠAHCOM-Fm (Fig. 13) UC-securely imple-
ments the method Mult in functionality FAHCOM-Fm (Fig. 10) in the FOT-, FEQ-
and FCT-hybrid model against a static and malicious adversary corrupting a
majority of the parties.

4.3 Reorganization of Components of a Commitment

The parties might want to move elements of F around or duplicate elements
of F within a message. In general we might want to apply a linear function
φ to a vector in F

m resulting in another vector in F
m. To do so, they need to

preprocess pairs of the form ([[x]], [[φ(x)]]) where x is random. This is done by first
having a pair of random commitments ([[x]], [[y]]) (as the output of the Commit
instruction of FHCOM-Fm), then, party Pi broadcasts εi = φ(xi) − yi (i.e. by
first applying φ on its own share). Note that from linearity of φ it follows that∑

i∈[p] φ(xi) = φ(
∑

i∈[p] x
i) = φ(x), thus

∑
i∈[p] ε

i =
∑

i∈[p] φ(xi) − yi = φ(x) −
y. Then, the parties compute [[y′]] = [[y]]+

∑
i∈[p] ε

i = [[y]]+φ(x)−y = φ(x). For
security reasons this is done simultaneously for a batch of ν+s pairs. Finally, the
parties complete s random linear combination tests over the batch by producing
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Fig. 12. Protocol ΠAHCOM-Fm - Part 1

a uniformly random matrix R ∈ F
s×ν (using FCT). Let Rq,k be the element in

the qth row and kth column of R. To perform the test, divide the ν + s pairs
into two sets A, B of ν and s pairs respectively. For each pair ([[zq]], [[zq′ ]]) in B
for q ∈ s compute and open

[[sq]] = [[zq]] +
∑

k∈[ν]

Rq,k · [[xk]] and [[s̄q]] = [[zq′ ]] +
∑

k∈[ν]

Rq,k · [[yk]]

Each party now verifies that φ (sq) = s̄q. If this is so, they accept. Otherwise
they abort.

Based on this we state the following theorem, which we prove in the full
version [20].
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Fig. 13. Protocol ΠAHCOM-Fm - Part 2
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Theorem 4.5. The method ReOrg in ΠAHCOM-Fm of Fig. 12 UC-securely imple-
ments the method ReOrg in functionality FAHCOM-Fm of Fig. 10 in the FOT-,
FEQ- and FCT-hybrid model against a static and malicious adversary corrupting
a majority of the parties.

5 Protocol for Multiparty Computation

In Fig. 14 we show how to realize a fully fledged arithmetic MPC protocol secure
against a static and malicious adversary, with the possibility of corrupting a
majority of the parties. This protocol is very similar to the one used in MiniMAC
[16] and thus we will not dwell on its details.

Fig. 14. Protocol UC-realizing FMPC-Fm in the FAHCOM-Fm model.

We prove the following theorem in the full version [20]:

Theorem 5.1. The protocol in Fig. 14 UC-securely implements the functionality
FMPC-Fm of Fig. 10 in the FAHCOM-Fm-hybrid model against a static and malicious
adversary corrupting a majority of the parties.
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6 Efficiency

Practical Optimizations. Several significant optimizations can be applied to
our protocol. We chose to describe the optimizations here rather than earlier for
the ease of presentation. In the following we present each of the optimizations
and sketch out its security.

Using less storage. As we mentioned before, the two-party homomorphic com-
mitment scheme of [18] can be used as an implementation of functionality
F2HCOM-Fm . Briefly, in this two party commitment scheme the committer holds
a set of 2m vectors from F

γ , namely the vectors s̄01, s̄
1
1, . . . , s̄

0
m, s̄1m whereas the

receiver choose a set of m bits b1, . . . , bm, denoted as “its choice of watch bits”
and obtains the m vectors s̄b1

1 , . . . , s̄bm
m , denoted as “the watchbits”.

Recall that in our multiparty homomorphic commitment scheme party Pi
participates as a receiver in p − 1 instances of two-party commitment scheme
with all other parties. This means that Pi needs to remember its choice of
watchbits for every other party and this accordingly for every linear opera-
tion that is performed over the commitments. For instance, let [[x]], [[y]] be two
multiparty commitments between three parties, then party P1 stores [[x]]1 ={{

[x2]2,1, [x2]3,1
}

,
{〈x1〉1,2, 〈x1〉1,3

}}
. To perform the operation [[x]] + [[y]] then

P1 end up with

[[x+ y]]1 =
{{

[x2]2,1 + [y2]2,1, [x2]3,1 + [y2]3,1
}

,
{〈x1〉1,2 + 〈y1〉1,2, 〈x1〉1,3 + 〈y1〉1,3}}

To make it more efficient, Pi can choose the bits b1, . . . , bm only once and use
them in all instances of two-party commitments. This makes the process of linear
operations over commitments simpler and does not requires from P1 to store the
commitments for p−1 parties. Applying the optimization to the above example,
we have that P1 stores only a single value for the commitment part, that is, now
P1 needs to store

[[x+ y]]1 =
{
[x2]2,1 + [y2]2,1 + [x2]3,1 + [y2]3,1 ,

{〈x1〉1,2 + 〈y1〉1,2, 〈x1〉1,3 + 〈y1〉1,3}}

Security follows from the underlying commitment scheme, since what we now
do is simply equivalent to storing a sum of commitments in a single instance of
the two-party scheme.

In a bit more detail, we see that since F2HCOM-Fm is UC-secure, it is secure
under composition. Furthermore, considering the worst case where only a single
party is honest and all other parties are malicious and colluding we then notice
that the above optimization is equivalent to executing p − 1 instances of the
F2HCOM-Fm , but where the same watchbits are chosen by the honest party. We
see that this is almost the same as calling Commit p times. The only exception
is that the seeds of the committing party, Pi, of the calls to FOT are different
in our optimized protocol. Thus it is equivalent to the adversary being able to
select p potentially different seeds to the calls to Commit. However, the output
of the PRG calls are indistinguishable from random in both cases and so the
distributions in both cases are indistinguishable assuming p is polynomial in the
security parameter.
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Optimized CorrecnessTest. Recall that in the sacrificing step of protocol
ΠAHCOM-Fm (see Fig. 13) the parties perform two openings of commitments for
every bucket (the opening is described as part of the CorrecnessTest in Fig. 11).
That is, beginning the step with τ1 ·(τ2)2 ·T triples (which are assigned to (τ2)2 ·T
buckets) leads to the opening of (τ1 − 1) · (τ2)2 · T triples.

Since we require that the results of all of these openings be 0, then any linear
combination over these opening would be 0 as well if they are correct. On the
other hand, if one or more of the openings are not zero the result of a linear
combination over the openings might be 0 with probability 1

|F| . Thus, agreeing
on a s random linear combinations over the openings would detect an incorrect
triple with overwhelming probability.

Optimized opening. In the online phase of our protocol, for every multiplication
gate the parties need to open some random commitments using the Open com-
mand. The implementation of the Open command requires interaction between
every pair of parties, thus, the communication complexity is Ω(T · p2) where T
is the number of multiplication gates in the circuit. Following the same idea as
used in SPDZ and MiniMAC, we note that we can reduce the communication
complexity for every gate to O(p) in the following way, to perform a “partial
opening” of a commitment [[x]]: First, every party Pi sends its share xi to P1.
Then P1 computes x =

∑
j∈[p] x

j and sends back x to everyone. This incurs a
communication complexity of O(p) rather than O(p2). In the end of the eval-
uation of the circuit, the parties perform s random linear combinations over
the commitment values that were “partially opened” earlier. Then, they open
the results of the linear combinations using the Open command. If one of the
opened results with a wrong value (i.e. that does not conform with the result of
the linear combination of the values sent from P1 in the partial opening) then
the parties abort.

Using this optimization leads to a communication complexity of Ω(T · p +
s · p2). Security follows by the same arguments as used in SPDZ and MiniMAC.
Particularly before opening the output nothing gets leaked during the execution
of the gates in the protocol and since the adversary does not know the random
linear combinations he cannot send manipulated values that pass this check.

Optimizing for large fields. If the field we compute in contains at least 2s ele-
ments, then the construction of multiplication triples becomes much lighter. First
see that in this case it is sufficient to only have two triples per bucket for sacri-
ficing. This is because the adversary’s success probability of getting an incorrect
triple through the CorrectnessTest in Fig. 11 is less than |F|−1 ≤ 2−s. Next we see
that it is possible to eliminate the combining step on the y components of the
triples. This follows since the party inputting x into the ArithmeticOT procedure
in Fig. 6 can now only succeed in a selective failure attack on the honest party’s
input y if he manages to guess y. To see this notice that if the adversary changes
the q’th bit of his input x then the result of the computation will be different
from the correct result with a factor y · 2q−1. But since y is in a field of at least
2s elements then y · 2i−1 = 0 with probability at most 2−s and thus its cheating
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attempt will be caught in the CorrectnessTest with overwhelming probability.
Furthermore the combining on x is now also overly conservative in the bucket
size τ2. To see this notice that the adversary only gets to learn at most s − 1
bits in total over all triples. This means that it cannot fully learn the value of a
component of x for all triples in the bucket (since it is at least s bits long), which
is what our proof, bounding his success probability assumes. Instead we can now
bound its success probability by considering a different attack vectors and using
the Leftover Hash Lemma to compute the maximum amount of leakage it can
learn when combining less than τ2 triples in a bucket as done in [29]. However,
we leave the details of this as future work. To conclude, even when using the very
conservative bound on bucket size, we get that it now takes only 6m log(|F|) OTs,
amortized, when constructing 221 triples instead of 27m log(|F|) when s = 40.

Efficiency Comparison. The computationally heavy parts in our protocol
are the usage of oblivious transfers and the use of the underlying homomorphic
two-party commitments. Both of these are rather efficient in practice having the
state-of-the-art constructions of Keller et al. ([28] for OT) and of Frederiksen et
al. ([18], for two-party homomorphic commitments). It should be noted that if
one wish to use a binary field, or another small field, then it is necessary to use
a code based on algebraic geometry internally if using the commitment scheme
of Frederiksen et al. [18]. These are however not as efficient to compute as, for
example, the BCH code used in the implementation of [18] done in [35].

Table 2. Comparison of the overhead of OTs needed, in the amortized sense. All
values should be multiplied with p(p − 1) to get the true number of needed OTs.
We differentiate between regular OTs and the more efficient correlated random OT
with error (COTe) [29]. We assume that the computational security parameter κ ≥
m log(|F|) some complexities increase. F = GF (2). For [7,29] m = 1 is possible. We
assume at least 221 triples are generated which gives the smallest numbers to the
protocols. *) Using optimization 4. in Sect. 6, requiring |F| ≥ 2s.

Scheme Finite field Rand, Input COTe Schur, ReOrg COTe Mult

COTe OT

[19] F2c for c ≥ 1 m log(|F|) m log(|F|) 24m log(|F|) 12m log(|F|) + 6s

[29] F2c for c ≥ 2s m log(|F|) - 5m log(|F|) 3m log(|F|)
[7] F2 m log(|F|) - 12m log(|F|) 3m log(|F|)
This work Any 0 0 0 27m log(|F|)
This work* F2c for c ≥ s 0 0 0 6m log(|F|)

Notice that the amount of OTs our protocol require is a factor of
O(m log(|F|)) greater than the amount of commitments it require. Therefore,
in Table 2 we try to compare our protocol with [7,19,29] purely based on the
amount of OTs needed. This gives a fair estimation on the efficiency of our pro-
tocol compared to the current state-of-the-art protocols for the same settings
(static, malicious majority in the secret sharing approach).
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Furthermore, we note that both [19,29] (which is used as the underlying pre-
processing phase for MiniMAC) require a factor of between O(m) and O(m2)
more coin tosses than our protocol. The reason for this is that in our proto-
col it is sufficient to perform the random linear combinations using a random
scalar from F (i.e. scalar multiplication) whereas [19,29] requires a component-
wise multiplication using a random vector from F

m. Note that in the comparison
in Table 2 we adjusted the complexity of [19] to fit what is needed to securely
fix the issue regarding the sacrificing, which we present in the full version [20].

7 Applications

Practically all maliciously secure MPC protocols require some form of commit-
ments. Some, e.g. the LEGO family of protocols [17,18,34,35], also require these
commitments to be additively homomorphic. Our MPC protocol works directly
on such commitments, we believe it makes it possible to use our protocol as
a component in a greater scheme with small overhead, as all private values are
already committed to. Below we consider one such specific case; when construct-
ing committed OT from a general MPC protocol.

7.1 Bit Committed OT

The bit-OT two-party functionality (b, x0, x1) → (xb,⊥) can be realized using a
secure evaluation of a circuit containing a single AND gate and two XOR gates:
Let b denote the choice bit and x0, x1 the bit messages, then xb = b∧(x0⊕x1)⊕x0.

We notice that all shares in our protocol are based on two-party commit-
ments. This means that constructing a circuit similar to the description above
will compute OT, based on shares which are committed to. Thus we can effi-
ciently realize an OT functionality working on commitments. Basically we use
F = GF(2) and compute a circuit with one layer of AND gates computing the
functionality above. In the end we only open towards the receiver. At any later
point in time it is possible for the sender to open the commitments to x0 and
x1, no matter what the receiver chose. The sender can also open b towards the
receiver. However we notice that we generally need to open m committed OTs
at a time (since we have m components in a message). However, if this is not
possible in the given application we can use reorganization pairs to open only
specific OTs, by simply branching each output message (consisting of m compo-
nents) into m output messages each of which only opening a single component,
and thus only a single actual OT.

Furthermore, since we are in the two-party setting, and because of the specific
topology of the circuit we do not need to have each multiparty commitment be
the sum of commitments between each pair of parties. Instead the receiving party
simply commits to b towards the sending party using a two-party commitment.
Similarly the sending party commits to x0 and x1 towards the receiving party
using a two-party commitment. Now, when they construct a multiplication triple
they only need to do one OT per committed OT they construct; the receiver



Committed MPC 617

inputting his b and the receiver inputting x0 ⊕ x1. Since the sender should not
learn anything computed by the circuit the parties do no need to complete the
arithmetic OT in other direction.

In this setting we have F =GF(2) (hence m ≥ s), p = 2 and 1 multiplication
gate when constructing a batch of m committed OTs. Plugging these into the
equations in Table 1 we see that the amortized cost for a single committed-
OT is 36 regular string OTs of κ bits and 108/m ≤ 108/s ≤ 3 (for s = 40)
commitments for batches of m committed-OTs.

It is also possible to achieve committed OT using other MPC protocols, in
particular the TinyOT protocols [7,33] have a notion of committed OT as part
of its internal construction. However our construction is quite different.

Acknowledgment. The authors would like to thank Carsten Baum and Yehuda
Lindell for useful discussions along Peter Scholl and Marcel Keller for valuable feedback
and discussions in relation to their SPDZ and MiniMAC preprocessing papers.
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Abstract. In the setting of secure computation, a set of parties wish to
compute a joint function of their private inputs without revealing any-
thing but the output. Garbled circuits, first introduced by Yao, are a
central tool in the construction of protocols for secure two-party com-
putation (and other tasks like secure outsourced computation), and are
the fastest known method for constant-round protocols. In this paper,
we initiate a study of garbling multivalent-logic circuits, which are cir-
cuits whose wires may carry values from some finite/infinite set of values
(rather than only True and False). In particular, we focus on the three-
valued logic system of Kleene, in which the admissible values are True,
False, and Unknown. This logic system is used in practice in SQL where
some of the values may be missing. Thus, efficient constant-round secure
computation of SQL over a distributed database requires the ability to
efficiently garble circuits over 3-valued logic. However, as we show, the
two natural (naive) methods of garbling 3-valued logic are very expensive.

In this paper, we present a general approach for garbling three-valued
logic, which is based on first encoding the 3-value logic into Boolean
logic, then using standard garbling techniques, and final decoding back
into 3-value logic. Interestingly, we find that the specific encoding chosen
can have a significant impact on efficiency. Accordingly, the aim is to find
Boolean encodings of 3-value logic that enable efficient Boolean garbling
(i.e., minimize the number of AND gates). We also show that Boolean
AND gates can be garbled at the same cost of garbling XOR gates in the
3-value logic setting. Thus, it is unlikely that an analogue of free-XOR
exists for 3-value logic garbling (since this would imply free-AND in the
Boolean setting).

1 Introduction

1.1 Background – Three-Valued Logic

In classical (Boolean) propositional logic, statements are assigned a “truth-
value” that can be either True or False, but not both. Logical operators are
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used to make up a complex statement out of other, one or more, simpler state-
ments such that the truth value of the complex statement is derived from the
simpler ones and the logical operators that connects them. For instance, given
that the statement A is True and the statement B is True we infer that the
statement C =“A and B” (denoted by C = A ∧ B) is True as well.

Another branch of propositional logic is the multivalent logic system. Mul-
tivalent logic systems consider more than two truth-values, that is, they may
admit anything from three to an infinite number of possible truth-values. Among
those, the simplest and most studied sort is the three-valued logic (or ternary
logic), which is a system that admits three truth-values, e.g., “truth”, “falsity”
and “indeterminancy”. Such a system seems to suit many real life situations,
for instance, statements about the future or paradoxical statements like “this
statement is not correct”, which must have an indeterminate truth-value. Note
that in different applications, the third truth-value could be interpreted differ-
ently, hence, different inference rules are derived1. The most common three-
valued logic system is Kleene’s Logic [6], in which statements are assigned with
either True, False or Unknown. For clarity, whenever we use the term three-
valued logic or 3VL we actually refer to Kleene’s Logic. We remark that although
other three-valued logic system exist, in this paper we focus only on Kleene’s
logic since its use in real life is the most prevalent; see the application example
in Sect. 1.2.

The admission of Unknown requires one to expand the set of inference rules, to
enable the computation of the truth-value of a complex statement from simpler
statements, even if one or more of them are Unknown. In Kleene’s logic, the
inference process complies with the way we usually make conclusions: It yields
Unknown whenever at least one statement that is necessary for deciding True or
False is assigned with Unknown. For example, the AND of True and Unknown is
Unknown since if the Unknown were False then the result would be false. However,
the OR of True and Unknown is True since it equals True irrespective of the
Unknown variable’s value.

The 3VL inference rules are presented in Table 1 in the form of truth tables.
In the rest of the paper whenever we refer to the Boolean version of AND, OR,

Table 1. Definition of the functions ∧3 (AND), ∨3 (OR), ⊕3 (XOR) and ¬3 (NOT)
using truth tables. Note these functions are symmetric, that is, the order of the inputs
makes no difference.

∧3 T U F

T T U F

U U U F

F F F F

∨3 T U F

T T T T

U T U U

F T U F

⊕3 T U F

T F U T

U U U U

F T U F

¬3

T F

U U

F T

1 In fact, even the two traditional truth-values True and False could have other meaning
in different three-valued logic systems.
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XOR and NOT we use the usual notation ∧,∨,⊕,¬ and when we use their 3VL
version we subscript it with the number 3, e.g. ∧3,∨3,⊕3,¬3. We denote by T, F
and U , the 3VL values True, False and Unknown, respectively.

1.2 Applications in SQL

In SQL specifications [5] the NULL marker indicates the absence of a value, or
alternatively, that the value is neither True nor False, but Unknown. Because of
this, comparisons with NULL never result in either True or False, but always in the
third logical value: Unknown. For example, the statement “SELECT 10 = NULL”
results in Unknown. However, certain operations on Unknown can return values
if the absent value is not relevant to the outcome of the operation. Consider the
following example:

SELECT ∗ FROM T1 WHERE (age > 30 OR height < 140) AND weight > 110

Now, consider an entry where the person’s age is missing. In this case, if the
person’s height is 150 then the OR subexpression evaluates to Unknown and so
the entire result is Unknown, hence, this entry is not retrieved. In contrast, if the
person’s height is 120, then the OR subexpression evaluates to True, and so the
result is True if weight > 110, and False if weight ≤ 110.

We remark that the main SQL implementations [2,9,10] (Oracle, Microsoft
and MySQL) conform to the Kleene’s three-valued logic described above. As
such, if secure computation is to be used to carry out secure SQL on distributed
(or shared) databases, then efficient solutions for dealing with three-valued logic
need to be developed.

1.3 Naively Garbling a 3VL Gate

We begin by describing the straightforward (naive) approach to garbling a 3VL
gate. Let g3 be a 3VL gate with input wires x, y and output wire z, where each
wire takes one of 3 values, denoted T , F and U . The basic garbling scheme of
Yao [8,13] works by associating a random key with each possible value on each
wire, and then encrypting each possible output value under all combinations
of input values that map to that output value. Specifically, for each wire α ∈
{x, y, z}, choose random keys kT

α , kF
α , kU

α . Then, for every combination of βx, βy ∈
{T, F, U}, encrypt k

g(βx,βy)
z using keys kβx

x , k
βy
y and define the garbled table to

be a random permutation of the ciphertexts. See Fig. 1 for a definition of such a
garbled gate.2

2 Note that in a two-party protocol like Yao’s, the parties then run 1-out-of-3 oblivious
transfers in order for the evaluator to learn the keys that are associated with its input.
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Fig. 1. Garbling a 3VL gate
directly using 9 rows.

This approach yields a garbled gate of 9
entries. Using the standard garbled row reduc-
tion technique [11], it is possible to reduce the
size of the gate to 8 entries. This means that
8 ciphertexts need to be communicated for each
gate in the circuit. However, this garbling scheme
requires four times more bandwidth for three-
valued logic gates than the state-of-the-art for
their Boolean ∧ counterparts [12]. Furthermore,
using the free-XOR paradigm [7] (as is also
utilized in [12]), XOR gates are free in the
Boolean case but require significant bandwidth
and computation in the three-valued logic case.
(We remark that [7,12] do require non-standard
assumptions; however, these techniques do not
translate to the 3VL case and so cannot be used,
even under these assumptions.)

Before proceeding, we note that another nat-
ural way of working is to translate each variable in the 3VL circuit into two
Boolean variables: the first variable takes values T, F (true/false), and the sec-
ond variable takes values K,U (known/unknown). This method fits into our
general paradigm for solving the problem and so will be described later; as we
will show, this specific method is not very efficient.

1.4 Our Results

The aim of this paper is to find ways of garbling three-valued logic functions
that are significantly more efficient than the naive method described in Sect. 1.3.
Our methods all involve first encoding a 3VL function as a Boolean function and
then utilizing the state-of-the-art garbling schemes for Boolean functions. These
schemes have the property that AND gates are garbled using two ciphertexts,
and XOR gates are garbled for free [7,12]. Thus, our aim is to find Boolean
encodings of 3VL functions that can be computed using few AND gates (and
potentially many XOR gates).

In order to achieve our aim, we begin by formalizing the notion of a 3VL-
Boolean encoding which includes a way of encoding 3VL-input into Boolean
values, and a way of computing the 3VL function using a Boolean circuit applied
to the encoded input. Such an encoding reduces the problem of evaluating 3VL
functions to the problem of evaluating Boolean functions. Our formalization is
general, and can be used to model other multivalent logic systems, like that used
in fuzzy logic.

Next, we construct efficient 3VL-Boolean encodings, where by efficient, we
mean encodings that can be computed using few Boolean AND gates. Interest-
ingly, we show that the way that 3VL-variables are encoded as Boolean variables
has a great influence on the efficiency of the Boolean computation. We describe
three different encodings: The first encoding is the natural one, and it works by
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defining two Boolean variables xT and xU for every 3VL-variable x such that
xU = 1 if and only if x = U , and xT = 1 if x = T and xT = 0 if x = F . This is
“natural” in the sense that one Boolean variable is used to indicate whether the
3VL-value is known or not, and the other variable is used to indicate whether the
3VL-value is true or false in the case that it is known. We show that under this
encoding, 3VL-AND gates can be computed at the cost of 6 Boolean AND gates,
and 3VL-XOR gates can be computed at the cost of 1 Boolean AND gate. We
then proceed to present two alternative encodings; the first achieves a cost of 4
Boolean AND gates for every 3VL-AND gate and 1 Boolean AND gate for every
3VL-XOR gate, whereas the second achieves a cost of 2 Boolean AND gates
both for every 3VL-AND gate and every 3VL-XOR gate. These encodings differ
in their cost tradeoff, and the choice of which to use depends on the number of
AND gates and XOR gates in the 3VL-circuit.

Given these encodings, we show how any protocol for securely computing
Boolean circuits, for semi-honest or malicious adversaries, can be used to securely
compute 3VL circuits, at almost the same cost. Our construction is black-box
in the underlying protocol, and is very simple.

Finally, observe that all our encodings have the property that 3VL-XOR gates
are computed using at least 1 Boolean AND-gate. This means that none of our
encodings enjoy the free-XOR optimization [7] which is extremely important in
practice. We show that this is actually somewhat inherent. In particular, we show
that it is possible to garble a Boolean AND gate at the same cost of garbling
a 3VL XOR gate. Thus, free-3VL-XOR would imply free-Boolean-AND, which
would be a breakthrough for Boolean garbling. Formally, we show that free-3VL-
XOR is impossible in the linear garbling model of [12].

Brute-force search for encodings. It is theoretically possible to search for effi-
cient 3VL-Boolean encodings by simply trying all functions with a small number
of AND gates, for every possible encoding. Indeed, for up to one AND gate it
is possible since the search space is approximately 220 possibilites. However, if
up to two AND gates are allowed, then the search space already exceeds 250

possibilities. We ran a brute-force search for up to one AND gate, and rediscov-
ered our 3VL-XOR computation that uses a single AND gate (in fact, we found
multiple ways of doing this). However, our search showed that there does not
exist a way of computing 3VL-AND using a single AND gate, for any encoding.
See AppendixA for more details on the brute-force search algorithm that we
used.

2 Encoding 3VL Functions as Boolean Functions

2.1 Notation

We denote by T, V, U the 3VL values True,False and Unknown, respectively, and
by 1, 0 the Boolean values True and False. We denote by F3 the set of all 3VL
functions (i.e. all functions of the form {T, F, U}∗ → {T, F, U}∗) and by F2 be
the set of all Boolean functions (i.e. all functions of the form {0, 1}∗ → {0, 1}∗).
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In addition, we denote by F3(�,m) and F2(�,m) the set of all 3VL and Boolean
functions, respectively, that are given � inputs and produce m outputs. We denote
by xi the ith element in x both for x ∈ {T, F, U}∗ and x ∈ {0, 1}∗.

2.2 3VL-Boolean Encoding

As we have mentioned, in order to utilize the efficiency of modern garbling
techniques, we reduce the problem of garbling 3VL circuits to the problem of
garbling Boolean circuits, by encoding 3VL functions as Boolean functions. Infor-
mally speaking, a 3VL-Boolean encoding is a way of mapping 3VL inputs into
Boolean inputs, computing a Boolean function on the mapped inputs, and map-
ping the Boolean outputs back to a 3VL output. This method is depicted in
Fig. 2. The naive approach appears on the left and involves directly garbling a
3VL circuit, as described in Sect. 1.3. Our approach appears on the right and
works by applying a transformation Tr3→2 to map the 3VL input to a Boolean
input, then computing an appropriately defined Boolean function, and finally
applying a transformation Tr2→3 to map the output back. The Boolean function
is also defined by a transformation, so that a 3VL function f3 is transformed to
a Boolean function f2 via the transformation TrF , that is, f2 = TrF (f3), and
this is what is computed. As such, as we will see, it suffices to garble the Boolean
function f2, and if this function has few AND gates then it will be efficient for
this purpose.

Fig. 2. Naive approach on the left side and our new approach on the right side.

Observe that since we map inputs from three-valued logic to Boolean logic,
the set sizes of all possible inputs are different. Thus, we define encodings via
relations and not via bijective mappings. Of course, the actual transformations
Tr3→2 and Tr2→3 are functions. However, the mapping between inputs and out-
puts may be expressed as relations; e.g., when mapping a single 3VL variable to
two Boolean variables, it may be the case that one of the 3VL variables can be
expressed as two possible Boolean pairs. This enables more generality, and can
help in computation, as we will see below.

Although one could define a very general encoding from 3VL to Boolean
values, we will specifically consider encodings that map every single 3VL variable
to exactly two Boolean variables. We consider this specific case since it simplifies
our definitions, and all our encodings have this property.
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The formal definition. Let f : {T, F, U}m → {T, F, U}n be a 3VL function. We
begin by defining the appropriate relations and transformations.

1. A value encoding is a relation R3→2 ⊆ {T, F, U}×{0, 1}2 that is left-total and
injective.3 For � ∈ N, let R�

3→2 ⊆ {T, F, U}� × {0, 1}2� be the relation defined
by extending R3→2 per coordinate.4

2. A valid input transformation is an injective function Trm3→2 : {T, F, U}m →
{0, 1}2m such that Trm3→2 ⊆ Rm

3→2. Note that since R3→2 is a relation, there
may be multiple different input transformations.

3. A function transformation Trm,n
F : F3(m,n) → F2(2m, 2n) is a function that

converts 3VL functions to Boolean functions with appropriate input-output
lengths.

4. The output transformation Trn2→3 : {0, 1}2n → {T, F, U}n is the inverse of
R3→2. That is, Tr12→3((b1, b2)) = x for every (x, (b1, b2)) ∈ R3→2. Note that
since R3→2 is injective, this transformation is unique.

Observe that R3→2 is required to be injective since otherwise a Boolean value
y could represent two possible 3VL values x, z, and so the output cannot be
uniquely mapped back from a Boolean value to a 3VL value. Furthermore, note
that by requiring Trm3→2 ⊆ Rm

3→2, we have that the transformation constitutes a
valid encoding according to the relation.

Informally, a 3VL-Boolean encoding is such that the process of transforming
the inputs, computing the transformed Boolean function, and transforming the
outputs back, correctly computes the 3VL function. Our definition of an encoding
includes the value encoding and function transformation only, and we require
that it works correctly for all input transformations; we discuss why this is the
case below.

Definition 2.1. Let m,n ∈ N; let R3→2 be a value encoding, and let Trm,n
F

be a function transformation. Then, the pair (Rm
3→2,Tr

m,n
F ) is a 3VL-Boolean

Encoding of F3(m,n) if for every f3 ∈ F3(m,n), every valid input transformation
Trm3→2, and every x ∈ {T, F, U}m:

Trn2→3

(
f2

(
Trm3→2(x)

))
= f3(x) (1)

where f2 = Trm,n
F (f3).

The above definition simply states that computing via the transformations
yields correct output. However, as we have mentioned, we require that this works
for all input transformations and not just for a specific one. It may seem more
natural to define a 3VL-Boolean encoding in which the input transformation
Trm3→2 is fixed, rather than requiring that Eq. (1) holds for every valid input

3 A relation R from X to Y is left-total if for all x ∈ X there exists y ∈ Y such that
(x, y) ∈ R. R is injective if for every x, z ∈ X and y ∈ Y , if (x, y) ∈ R and (z, y) ∈ R
then x = z.

4 That is,
(
(A1, . . . , A�), ((b1, b2), . . . , (b2�−1, b2�))

) ∈ R�
3→2 if and only if for every

1 ≤ i ≤� it holds that (Ai, (b2i−1, b2i)) ∈ R3→2.



Fast Garbling of Circuits over 3-Valued Logic 627

transformation. However, in actuality, it is quite natural to require that the
transformed function work for every input transformation since this means that
it works for every possible mapping of three-valued inputs to their Boolean coun-
terparts. More significantly, this property is essential for proving the composi-
tion theorem of Sect. 2.3 that enables us to compose different function encodings
together. As we will see, this is important since it enables us to define indepen-
dent encodings for different types of gates, and then compose them together to
compute any function.

2.3 Composition of 3VL Functions

In this section, we prove that encodings can be composed together. Specifically,
we prove that for any two 3VL functions g3 and f3 and any 3VL input x, com-
puting g ◦ f(x) yields the same value as when g, f, x are separately transformed
into g′, f ′, x′ using any valid 3VL-Boolean encoding, and then the output of
g′ ◦ f ′(x′) is transformed back to its 3VL representation. As we will see, this
is very important since it enables us to define independent encodings on differ-
ent types of gates, and then compose them together to compute any function.
Formally:

Theorem 2.2. Let m, �, n be natural numbers, and let R3→2 be a value encod-
ing. Let E1 =

(
R3→2,Tr

m,�
F

)
and E2 =

(
R3→2,Tr

�,n
F

)
be two 3VL-Boolean

encodings (with the same relation R3→2). Then, for every f3 ∈ F3(m, �), every
g3 ∈ F3(�, n), every input transformation Trm3→2, and every x ∈ {T, F, U}m:

Trn2→3

(
g2

(
f2

(
Trm3→2(x)

))
)

= g3(f3(x)),

where f2 = Trm,�
F (f3) and g2 = Tr�,nF (g3). Equivalently,

(
R3→2,Tr

�,n
F ◦ Trm,�

F

)
is

a 3VL-Boolean encoding of F3(m,n).

Before proving the theorem, we present the following claim which simply
express that if the output transformation of an encoding maps a Boolean value
Ỹ to some 3VL value y then there must exist a input transformation that maps
y to Ỹ . Formally:

Claim 2.1. Let R3→2 be a valid value encoding and let Tr3→2,Tr2→3 be a valid
input and output transformations respectively such that for Ỹ ∈ {0, 1}2 it holds
that Tr2→3(Ỹ ) = y and Tr3→2(y) = Y . Then there exists a valid input transfor-
mation T̃r3→2 (with respect to R3→2) such that T̃r3→2(y) = Ỹ .

Proof: If Y = Ỹ then there is nothing to prove, i.e. T̃r3→2 = Tr3→2. Consider
the case of Y �= Ỹ : This means that R3→2 maps the 3VL value y to both Boolean
pairs Y and Ỹ . Denote the other two 3VL values by y′ and y′′ and similarly the
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remaining Boolean pairs by Y ′ and Y ′′ such that R3→2(y′) = Y ′. It is immediate
that the two valid transformations (with respect to R3→2) are

Tr3→2 = {y′ �→ Y ′, y′′ �→ Y ′′, y �→ Y } and

T̃r3→2 =
{

y′ �→ Y ′, y′′ �→ Y ′′, y �→ Ỹ
}

�

Proof: [of Theorem 2.2]. By the validity of encodings E1,E2 (Definition 2.1)
it follows that for value encoding R3→2 and every valid input transformations
Tr�3→2,Tr

m
3→2, every f3 ∈ F3(m, �), g3 ∈ F3(�, n) and every x ∈ {T, F, U}m:

g3 (f3 (x)) = Trn2→3

(
g2

(
Tr�3→2

(
Tr�2→3 (f2 (Trm3→2 (x)))

)))
(2)

where f2 = Trm,�
F (f3) and g2 = Tr�,nF (g3). This is true due to the following: Let

yf = Tr�2→3 (f2 (Trm3→2 (x))). By Definition 2.1 yf is guaranteed to be equal to

f3(x) and yg = Trn2→3

(
g2

(
Tr�3→2 (yf )

))
is guaranteed to be equal to g3(yf ).

Concluding that the right hand-side of Eq. 2 equals g3(f3(x)). In the following
we show that we can remove the two intermediate transformations Tr�3→2,Tr

�
2→3

from the Eq. (2) and obtain the same result: Let

Y = f2(Trm3→2(x)) and
ŷ = Tr�2→3(Y )

Let T̂r
�

3→2 be a valid input transformation (with respect to R3→2) such that

T̂r
�

3→2(ŷ) = Y (there must exist such a transformation from Claim2.1). We get:

g3(f3(x)) = Trn2→3

(
g2

(
Tr�3→2

(
Tr�2→3 (f2 (Trm3→2 (x)))

)))

= Trn2→3

(
g2

(
Tr�3→2

(
Tr�2→3(Y )

)))

= Trn2→3

(
g2

(
Tr�3→2 (ŷ)

))

= Trn2→3

(
g2

(
T̂r

�

3→2 (ŷ)
))

= Trn2→3 (g2 (Y ))
= Trn2→3 (g2 (f2(Trm3→2(x))))

as required. The 2nd equation follows from the definition of Y ; the 3rd follows
from definition of ŷ; the 4th follows from the fact that E2 is a valid encoding
and must work for every valid input transformation, in particular it must work
with T̂r

�

3→2; the 5th follows from the way we chose T̂r
�

3→2, i.e. T̂r
�

3→2(ŷ) = Y and
the 6th equation follows from the definition of Y . Concluding the correctness of
the theorem. �
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We remark that it is crucial that the two encodings in Theorem2.2 be over
the same relation and that the encodings be such that they work for all input
transformations (as required in Definition 2.1). In order to see why, consider for a
moment what could happen if the definition of an encoding considered a specific
input transformation and was only guaranteed to work for this transformation.
Next, assume that f2 outputs a Boolean pair that is not in the range of the
input transformation specified for E2. In this case, g2 may not work correctly
and so the composition may fail. We remark that this exact case occurred in
natural constructions that we considered in the process of this research. This
explains why correctness is required for all possible input transformations in
Definition 2.1.

Using Theorem 2.2. This composition theorem is important since it means that
we can construct separate encodings for each gate type and then these can be
combined in the natural way. That is, it suffices to separately find (efficient)
function transformations for the functions ∧3,¬3 and ⊕3 and then every 3VL
function can be computed by combining the Boolean transformations of these
gates. Note that since ¬3 is typically free and De Morgan’s law holds for this
three-valued logic as well, we do not need to separately transform ∨3.

2.4 More Generalized Encodings

In order to simplify notation, we have defined encodings to be of the form that
every 3VL value x ∈ {T, F, U} is mapped to a pair of Boolean bits; indeed,
all of our encodings in this paper are of this form. However, we stress that our
formalization is general enough to allow other approaches as well. In particular,
it is possible to generalize our definition to allow more general encodings from
x ∈ {T, F, U}m to y ∈ {0, 1}� that could result in � < 2m. In addition, it is
conceivable that mapping x ∈ {T, F, U} to more than 2 bits may yield more
efficient function transformations with respect to the number of Boolean gates
required to compute them. These and other possible encodings can easily be
captured by a straightforward generalization of our definition.

3 A Natural 3VL-Boolean Encoding

In this section we present our first 3VL-Boolean encoding which we call the
“natural” encoding. This encoding is natural in the sense that a 3VL value x is
simply transformed to a pair of 2 Boolean values (xU , xT ), such that xU signals
whether the value is known or unknown, and xT signals whether the value is
true or false (assuming that it is known). Formally, we define

R3→2 =
{(

T, (0, 1)
)
,

(
F, (0, 0)

)
,

(
U, (1, 0)

)
,

(
U, (1, 1)

)}
,

and so U is associated with two possible values (1, 0), (1, 1), and T and F are
each associated with a single value. Note that R3→2 is left-total and injective
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as required by the definition. We now define the input transformation function
Tr3→2 which is defined by mapping T and F to their unique images, and maps
U to one of (1, 0) or (0, 1). For concreteness, we define:

(xU , xT ) = Tr3→2(x) =

⎧
⎪⎨

⎪⎩

(0, 1) x = T

(0, 0) x = F

(1, 0) x = U

.

We proceed to define the function transformation TrF . As we have discussed,
it is possible to define many such transformations, and our aim is to find an
“efficient one” with as few AND gates as possible. Below, we present the most
efficient transformations of ∧3,⊕3,¬3 that we have found for this encoding. As
mentioned in Sect. 2.3, these suffice for computing any function (and ∨3 can be
computed using ∧3 and ¬3 by De Morgan’s law).

Let x, y ∈ {T, F, U} be the input values, and let z be the output value.
We denote Tr3→2(x) = (xU , xT ) meaning that (xU , xT ) is the Boolean encoding
of x; likewise for y and z. We define the transformations below. All of these
transformations work by computing zT as the standard logical operation over
the xT , yT variables (since these indicate T/F ), and compute the zU based on
the reasoning as to when the output is unknown. We have:

1. TrF (∧3) outputs the function ∧2(xU , xT , yU , yT ) = (zU , zT ), defined by

zU = (xU ∧ yU ) ∨ (xU ∧ yT ) ∨ (xT ∧ yU ) and zT = xT ∧ yT .

As mentioned above, zT = xT ∧ yT which gives the correct result and will
determine the value if it is known. Regarding zU , observe that zU = 1 if both
x and y equal U or if one of them is U and the other is T (which are the exact
cases that the result is unknown). Furthermore, if either of x or y equals F
(and so the result should be known), then zU = 0, as required.

2. TrF (⊕3) outputs the function ⊕2(xU , xT , yU , yT ) = (zU , zT ), defined by

zU = xU ∨ yU and zT = xT ⊕ yT .

Once again, zT = xT ⊕ yT which is correct if the value is known. Regarding
zU , recall that for XOR, if either input is unknown then the result is unknown.
Thus, zU = xU ∨ yU .

3. TrF (¬3) outputs the function ¬2(xU , xT ) = (zU , zT ), defined by

zU = xU and zT = ¬xT ,

which is correct since zT is computed as above, and zU = xU since the output
of a negation gate is unknown if and only if the input is unknown.

Correctness. The formal proof that this is a valid encoding is demonstrated
simply via the truth tables of each encoding. This can be found in AppendixC.1.
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Efficiency. The transformations above have the following cost: ∧3 can be com-
puted at the cost of 6 Boolean ∧ and ∨ gates (5 for computing zU and one for
computing zT ), ⊕3 can be computed at the cost of a single Boolean ∨ and a
single Boolean ⊕ gate, and ¬3 can be computed at the cost of a single Boolean
¬ gate. (We ignore ¬ gates from here on since they are free in all known garbling
schemes.)

Concretely, when using the garbling scheme of [12] that incorporates free-
XOR and requires two ciphertexts for ∨ and ∧, we have that the cost of garbling
∨3 is 12 ciphertexts, and the cost of garbling ⊕3 is 2 ciphertexts. In comparison,
recall that the naive garbling scheme of Sect. 1.3 required 8 ciphertexts for both
∨3 and ⊕3. In order to see which is better, let C be a 3VL circuit and denote
by C∧ and C⊕ the number of ∧3 and ⊕3 gates in C, respectively. Then, the
natural 3VL-Boolean encoding is better than the naive approach of Sect. 1.3 if
and only if

12 · C∧ + 2 · C⊕ < 8 · C∧ + 8 · C⊕,

which holds if and only if C∧ < 1.5 · C⊕. This provides a clear tradeoff between
the methods. We now proceed to present encodings that are strictly more efficient
than both the natural 3VL Boolean encoding and the naive garbling of Sect. 1.3.

4 A More Efficient Encoding Using a Functional Relation

In this section we present a 3VL-Boolean encoding, in which the relation R3→2 is
functional.5 Since R3→2 is already left-total and injective, this implies that R3→2

is in fact a 1-1 function. We define R3→2 =
{(

T, (1, 1)
)
,

(
F, (0, 0)

)
,

(
U, (1, 0)

)}
.

Since R3→2 is a 1-1 function, there is only one possible input transformation
(xT , xF ) = Tr3→2 = R−1

3→2. The intuition behind this encoding is as follows: The
value x ∈ {T, F, U} is mapped to a pair (xT , xF ) so that if x is true or false
then xT = xF , appropriately (i.e., if x = T then xT = xF = 1, and if x = F
then xT = xF = 0). In contrast, if x is unknown, then xT and xF take different
values of 1 and 0, respectively, representing an “unknown” state (both 1 and 0).
We denote the Boolean values xT and xF because in case that x = U then xT

is assigned with True and xF is assigned with False.
As we will see, it is possible to compute ∧3, ⊕3 and ¬3 gates under this

encoding at a cost that is strictly more efficient than the natural encoding of
Sect. 3. In order to show this, in Sect. 4.1, we begin by presenting a simple trans-
formation TrF for ∧3 and ¬3 gates. These are clearly complete, and furthermore
are the most common connectives used in the context of SQL (as above, ¬3

is “free” and so ∨3 can be transformed at the same cost as ∧3). However, for
the general case, an efficient transformation for ⊕3 gates is also desired since
the naive method of computing ⊕ from ∧,∨,¬ is quite expensive. We therefore
show how to also deal with ⊕3 gates in Sect. 4.2.

5 Relation R from X to Y is functional if for all x ∈ X and y, z ∈ Y it holds that if
(x, y) ∈ R and (x, z) ∈ R then y = z. Stated differently, R is a function.
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4.1 An Efficient Function Transformation for ∧3,¬3 Gates

We now show how to transform ∧3 and ¬3 gates into Boolean forms at a very
low cost: ∧3 gates can be transformed at the cost of just two Boolean ∧ gates,
and ¬3 gates can be transformed at the cost of two Boolean ¬ gates (which are
free in all garbling schemes).

1. TrF (∧3) outputs the function ∧2(xT , xF , yT , yF ) = (zT , zF ), defined by

zT = xT ∧ yT and zF = xF ∧ yF .

2. TrF (¬3) outputs the function ¬2(xT , xF ) = (zT , zF ), defined by

zT = ¬xF and zF = ¬xT .

We now prove that these transformations are correct. We begin with TrF (∧3):

1. If x ∧ y = T then x = y = T and so xT = xF = yT = yF = 1. Thus,
zT = zF = 1 which means that z = Tr2→3(zT , zF ) = Tr2→3(1, 1) = T , as
required.

2. If x ∧ y = F , then either x = F which means that xT = xF = 0, or y = F
which means that yT = yF = 0, or both. This implies that zT = zF = 0 and
so z = Tr2→3(zT , zF ) = Tr2→3(0, 0) = F , as required.

3. Finally, if x ∧ y = U , then we have three possible cases:
(a) Case 1: x = y = U : In this case, xT = yT = 1 and xF = yF = 0, and thus

zT = 1, zF = 0 and z = Tr2→3(zT , zF ) = Tr2→3(1, 0) = U , as required.
(b) Case 2: x = T and y = U : In this case, xT = xF = yT = 1 and yF = 0,

and thus zT = 1 and zF = 0, implying that z = U , as required.
(c) Case 3: x = U and y = T : This case is symmetric to the previous case

and so also results in U , as required.

It remains to prove that TrF (¬3) is correct:

1. If x = T , then xT = xF = 1 and so zT = zF = 0. Thus, z = Tr2→3(0, 0) = F ,
as required.

2. If x = F , then xT = xF = 0 and so zT = zF = 1. Thus, z = Tr2→3(1, 1) = T ,
as required.

3. If x = U , then xT = 1 and xF = 0 and so zT = ¬xF = 1 and zF = ¬xT = 0.
Thus, z = Tr2→3(1, 0) = U , as required.

Efficiency. The transformations above are very efficient and require 2 Boolean
AND gates for every 3VL-AND (or 3VL-OR) gate, and 2 Boolean NOT gates for
each 3VL-NOT gate. Using the garbling scheme of [12], this means 4 ciphertext
for each ∧3,∨3 gate, and 0 ciphertexts for ¬3 gates. This is far more efficient
than any of the previous encodings. However, as we have mentioned above, we
still need to show how to compute ⊕3 gates.

4.2 An Efficient Function Transformation for ⊕3 Gates

We now present the transformation for ⊕3 gates for the above functional relation.
We begin by remarking that the method above for ∧3 gates does not work for
⊕3 gates.
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Fig. 3. The result of the transformation of ⊕3 by (zT , zF ) =
(xT ⊕ yT , xF ⊕ yF )

For example, if we
define zT = xT ⊕ yT

and zF = xF ⊕ yF ,
then the result is cor-
rect as long as neither
of x or y are unknown:
If both are unknown
then x = y, and thus
zT = zF = 0. The
result of transforming
(zT , zF ) = (0, 0) back
to a 3VL is F rather
than U . If only one is
unknown then x �= y,
and thus zT = 0 and zF = 1). The result of transforming (zT , zF ) = (0, 1) is
undefined since the pair (0, 1) is not in the range of R3→2. In general, the truth
table for the transformation zT = xT ⊕ yT and zF = xF ⊕ yF appears in Fig. 3;
the blue lines are where this transformation is incorrect.

Our transformation must therefore “fix” the incorrect rows in Fig. 3.
We define TrF (⊕3) that outputs the function ⊕2(xT , xF , yT , yF ) = (zT , zF )
defined by

z′
T = (xT ⊕ yT ) ⊕ (

(xT ⊕ xF ) ∧ (yT ⊕ yF )
)

and z′
F = xF ⊕ yF

aux = ¬z′
T ∧ z′

F

zT = z′
T ⊕ aux and zF = z′

F ⊕ aux

Observe that the value (z′
T , z′

F ) is just the transformation in Fig. 3, with the
addition that z′

T is adjusted so that it is flipped in the case that both x = y = U
(since in that case xT �= xF and yT �= yF ). This therefore fixes the 5th row in
Fig. 3 (i.e., the input case of x = y = U). Note that it doesn’t affect any other
input cases since (xT ⊕ xF ) ∧ (yT ⊕ yF ) equals 0 in all other cases.

In order to fix the 6th and 8th rows in Fig. 3, it is necessary to adjust the
output in the case that (0, 1) is received, and only in this case (note that this is
only received in rows 6 and 8). Note that the aux variable is assigned value 1 if
and only if z′

T = 0 and z′
F = 1. Thus, defining zT = z′

T ⊕ aux and zF = z′
F ⊕ aux

adjusts (z′
T , z′

F ) = (0, 1) to (zT , zF ) = (1, 0) which represents U as required.
Furthermore, no other input cases are modified and so the resulting function is
correct.

Correctness. The formal proof that this is a valid encoding is demonstrated
simply via the truth tables of each encoding. This can be found in AppendixC.2.

Efficiency. The transformation of ⊕3 incurs a cost of two Boolean ∧ gates and
6 Boolean ⊕ gates. Utilizing free-XOR and the garbling scheme of [12], we have
that 4 ciphertexts are required for garbling ⊕3 gates.
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Combining this with Sect. 4.1, we have a cost of 4 ciphertexts for ∧3 and ⊕3

gates, and 0 ciphertexts for ¬3 gates. This is far more efficient than the naive
garbling of Sect. 1.3 for all gate types. Next, recall that the natural encoding of
Sect. 3 required 12 ciphertexts for ∧3 gates and 2 ciphertexts for ⊕3 gates. Thus,
denoting by C∧ and C⊕ the number of ∧3 and ⊕3 gates, respectively, in a 3VL
circuit C, we have that the scheme in this section is more efficient if and only if
4 · C∧ + 4 · C⊕ < 12 · C∧ + 2 · C⊕, which holds if and only if C⊕ < 4 · C∧. Thus,
the natural encoding is only better if the number of ⊕3 gates is over four times
the number of ∧3 gates in the circuit. In Sect. 5, we present transformations that
perform better in some of these cases.

5 Encoding Using a Non-functional Relation

In this section, we present an alternative encoding that is more expensive for
∧3 gates but cheaper for ⊕3 gates, in comparison to the encoding of Sect. 4.
The value encoding that we use in this section is the same as in Sect. 4, except
that we also include (0, 1) in the range; thus the relation is no longer functional.
Since the motivation regarding the relation is the same as in Sect. 4, we proceed
directly to define the relation:

R3→2 =
{(

T, (1, 1)
)
,

(
F, (0, 0)

)
,

(
U, (0, 1)

)
,

(
U, (1, 0)

)}
.

Thus, R3→2 maps the 3VL value U to both Boolean pairs (0, 1) and (1, 0). As
such, there are two admissible input transformation functions Tr3→2. Both of
them map T to (1, 1) and map (0, 0) to F ; one of them maps U to (1, 0) the
other maps U to (0, 1). Recall that our function transformation needs to work
for both, in order for the composition theorem to hold.

We use the same notation of (xT , xF ) as in Sect. 4 for the Boolean pairs in
the range of R3→2. The motivation is the same as before; if x = T or x = F
then both values are the same; if x = U then the “true” bit xT is different from
the “false” bit xF .

The transformation TrF for each gate type is given below.

1. TrF (∧3) outputs the function ∧2(xT , xF , yT , yF ) = (zT , zF ), defined by:

zT = xT ∧ yT

zF = (xF ∧ yF ) ⊕
(

(xT ⊕ xF ) ∧ (yT ⊕ yF ) ∧ (¬(xF ⊕ yT )
)
)

Recall that in Sect. 4, it sufficed to define zT = xT ∧ yT and zF = xF ∧ yF .
However, this does not yield a correct result in this encoding in the case that
x and y are both unknown, and x is encoded as (0, 1) and y is encoded as
(1, 0). Specifically, in this case, z is computed as F instead of as U . We fix
this case by changing the second bit of z (i.e., zF ) when the encodings are of
this form. Observe that the expression (xT ⊕ xF ) ∧ (yT ⊕ yF ) ∧ (¬(xF ⊕ yT ))
evaluates to 1 if and only if xT �= xF and yT �= yF and xF = yT , which is
exactly the case that one of the value is encoded as (1, 0) and the other is
encoded as (0, 1).
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2. TrF (⊕3) outputs the function ⊕2(xT , xF , yT , yF ) = (zT , zF ), defined by:

zT = (xT ⊕ yT ) ⊕ (
(xT ⊕ xF ) ∧ (yT ⊕ yF )

)

zF = xF ⊕ yF

This is the same transformation of ⊕3 described in Sect. 4.2 for the functional
encoding of Sect. 4, except that here there is no need to switch the left and
right bits of the result in the case that they are (0, 1). This is due to the fact
that (0, 1) is a valid encoding of U under R3→2 used here.

3. TrF (¬3) outputs the function ∨2(xT , xF ) = (zT , zF ), defined by:

zT = ¬xT and zF = ¬xF

This is almost the same as the transformation of ¬3 in Sect. 4.1, excepts that
we do not exchange the order of the bits. Again, this is due to the fact that
both (1, 0) and (0, 1) are valid encodings of 0 and so the negation of U by
just complementing both bits results in U and is correct.

Correctness. The formal proof that this is a valid encoding is demonstrated
simply via the truth tables of each encoding. This can be found in AppendixC.3.

Efficiency. The Boolean function TrF (∧3) requires 4 AND gates, which trans-
lates to 8 ciphertexts using the garbling of [12]. The Boolean function TrF (⊕3)
requires only one AND gate, which translates to two ciphertexts using the gar-
bling of [12]. Denote by C∧ and C⊕ the number of ∧3 and ⊕3 gates in the 3VL
circuit, then the encoding of this section is better than that of Sect. 4 if and only
if 8 ·C∧ +2 ·C⊕ < 4 ·C∧ +4 ·C⊕ which holds if and only if C⊕ > 2 ·C∧. Observe
also that the encoding in this section is always at least as good as the natural
encoding of Sect. 3; in particular, it has the same cost for ⊕3 gates and is strictly
cheaper for ∧3 gates.

6 Efficiency Summary of the Different Methods

We have presented a naive garbling method and three different encodings. We
summarize the efficiency of these different methods, as a function of the number
of ciphertexts needed when garbling, in Table 2.

Table 2. A summary of the garbling efficiency of the different methods

Encoding Ciphertexts for ∧3 Ciphertexts for ⊕3 Best in range

Section 1.3 – Naive 8 8 None

Section 3 – Natural 12 2 None

Section 4 – Functional 4 4 C⊕ < 2 · C∧
Section 5 – Non-functional 8 2 C⊕ > 2 · C∧
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7 A Black-Box Protocol for Computing 3VL Circuits

In this section, we show how to securely compute 3VL circuits. Of course, one
could design a protocol from scratch using a garbled 3VL circuit. However, our
goal is to be able to use any protocol that can be used to securely evaluate a
Boolean circuit, and to directly inherit its security properties. This approach is
simpler, and allows us to leverage existing protocol optimizations for the Boolean
case.

Before proceeding, we explain why there is an issue here. Seemingly, one
could compile any 3VL-circuit into a Boolean circuit using our method above,
and then run the secure computation protocol on the Boolean circuit to obtain
the output. As we will see, this is actually not secure. Fortunately, however, it
is very easy to fix. We now explain why this is not secure:

1. Output leakage: The first problem that arises is due to the fact that Defi-
nition 2.1 allows R3→2 to be a non-functional relation. This implies that a
value x ∈ {T, F, U} might be mapped to two or more Boolean representa-
tions. Now, if a secure protocol is run on the Boolean circuit, this implies
that a single 3VL output could be represented in more than one way. This
could potentially leak information that is not revealed by the function itself.
In AppendixB, we show a concrete scenario where this does actually reveal
more information than allowed. We stress that this leakage can occur even if
the parties are semi-honest.
This leakage can be avoided by simply transforming y to a unique, prede-
termined Boolean value y∗ at the end of the circuit computation and before
outputs are revealed. This is done by incorporating an “output translation”
gadget into the circuit for every output wire.

2. Insecurity due to malicious inputs. Recall that the relation R3→2 does not
have to be defined over the entire range of {0, 1} × {0, 1}, and this is indeed
the case for the relation that we use in Sect. 4. In such a case, if the malicious
party inputs a Boolean input that is not legal (i.e., is not in the range of
R3→2), then this can result in an incorrect result (or worse).
This cheating can be prevented by incorporating an “input translation” gad-
get for every input wire of the circuit that deterministically translates all
possible Boolean inputs (even invalid ones) into valid inputs that appear in
the range of R3→2. This prevents a malicious adversary from inputting incor-
rect values (to be more exact, it can input incorrect values but they will
anyway be translated into valid ones).

The key observation from above is that the solutions to both problems involve
modifications to the circuit only. Thus, any protocols that is secure for arbitrary
Boolean circuits can be used to securely compute 3VL circuits. Furthermore,
these input and output gadgets are very small (at least for all of our encodings)
and thus do not add any significant overhead.
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We have the following theorem6:

Theorem 7.1. Let π be a protocol for securely computing any Boolean circuit,
let f3 be a 3VL function with an associated 3VL circuit C, and let C ′ be a
Boolean circuit that is derived from C via a valid 3VL-Boolean encoding. Then,
Denote by C ′

1 the circuit obtained by adding output-translation gadgets to C ′,
and denote by C ′

2 the circuit obtained by adding input-translation and output-
translation gadget to C ′.

1. If π is secure in the presence of semi-honest adversaries, then protocol π with
circuit C ′

1 securely computes the 3VL function f3 in the presence of semi-
honest adversaries.

2. If π is secure in the presence of malicious (resp., covert) adversaries, then
protocol π with circuit C ′

2 securely computes the 3VL function f3 in the pres-
ence of malicious (resp., covert) adversaries.

Secure computation. The above theorem holds for any protocol for secure com-
putation. This includes protocols based on Yao and garbled circuits [8,13], as
well as other protocols like that of [4].

8 Lower Bounds

One of the most important optimizations of the past decade for garbled circuits
is that of free-XOR [7]. Observe that none of the 3VL-Boolean encodings that we
have presented have free-XOR, and the cheapest transformation of ⊕3 requires
2 ciphertexts. In this section, we ask the following question:

Can free-XOR garbling be achieved for 3VL functions?

We prove a negative answer for a linear garbling scheme, which is defined in
the Linicrypt model of [1]. Our proof is based on a reduction from any garbling
scheme for 3VL circuit to a garbling scheme for Boolean circuits. Specifically, we
show that any garbling scheme for 3VL-XOR can be used to garble Boolean-AND
gates at the exact same cost. Now, [12] proved that at least 2 ciphertexts are
required for garbling AND gates using any linear garbling method. By reducing
to this result, we will show that 3VL-XOR cannot be garbled with less than two
ciphertexts using any linear garbling method. Thus, a significant breakthrough
in garbling would be required to achieve free-XOR in the 3VL setting, or even
to reduce the cost of 3VL-XOR to below two ciphertexts.

Reducing Boolean AND to 3VL XOR. It is actually very easy to compute a
Boolean AND gate given a 3VL XOR gate. This is due to the fact that 3VL
XOR actually contains an embedded AND ; this is demonstrated in Fig. 4.

6 The proof of the theorem is straightforward and is thus omitted.
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Fig. 4. Shows that
⊕3 embeds the truth
table of both ∧, ∨
and ⊕.

This can be utilized in the following way. Let g̃ be a
garbled 3VL-XOR gate with input wires x, y and output
wire z. By definition, given keys kα

x and kβ
y on the input

wires with α, β ∈ {T, F, U}, the garbled gate can be used
to compute the key kγ

z on the output wire where γ =
α ⊕3 β. Thus, in order to compute a Boolean AND gate,
the following can be carried out. First, associate the 3VL-
value F with the Boolean value 1 (True), and associate the
3VL-value U with the Boolean value 0 (False). Then, given
any two of kU

x , kF
x and kU

y , kF
y the output of the garbled

gate will be kF
z if and only if x = y = F , which is exactly

a Boolean AND gate. (This is depicted in the shaded square in Fig. 4.) Observe
that the 3VL-value T is not used in this computation and so is ignored. The fact
that this method is a secure garbling of an AND gate follows directly from the
security of the 3VL garbling scheme.

It follows that a (single) Boolean AND gate can be garbled at the same cost
of a 3VL XOR gate. Thus, free-3VL-XOR would imply free-Boolean-AND, and
even 3VL XOR with just a single ciphertext would imply a construction for
garbling a Boolean AND gate at the cost of just one ciphertext. Both of these
would be surprising results. We now formalize this more rigorously using the
framework of linear garbling.

Impossibility for linear garbling. The notion of linear garbling was introduced
by [12], who also showed that all known garbling schemes are linear. In their
model, the garbling and evaluation algorithms use only linear operations, apart
from queries to a random oracle (which may be instantiated by the garbling
scheme) and choosing which linear operation to apply based on some select bits
for a given wire. They prove that for every ideally secure linear garbling scheme
(as defined in [12]), at least two ciphertexts must be communicated for every
Boolean AND gate in the circuit. Combining [12, Theorem 3] with what we have
shown above, we obtain the following theorem with regards to garbling schemes
for 3VL circuits in the same model.

Theorem 8.1. Every ideally secure garbling scheme for 3VL-XOR gates, that is
linear in the sense defined in [12], has the property that the garbled gate consists
of at least 2n bits, where n is the security parameter.

This explains why we do not achieve free-XOR in our constructions in the
three-valued logic setting.

A Exhaustive Search for Expressions with One Boolean
AND

We present a simplified version of the technique that we used in order to search
for a Boolean expression with only one AND gate (and an unlimited number of
XOR gates) that implements the functionality of a 3VL AND and 3VL XOR.
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We actually used several simple optimizations to this technique to make it run
faster, but these are not of significance to the discussion and so are omitted.

In this paper we focus on a specific set of possible 3VL-to-Boolean encodings,
specifically, we focus on encodings that map each 3VL value x (i.e. T, F, U)
to a pair of Boolean values (xL, xR) (L,R for left and right). Note that this
means that either the encoding is functional, which means that each 3VL value
is mapped to exactly one Boolean pair and hence there remains one invalid
Boolean pair, or the encoding is non-functional which means that one 3VL value
is mapped to two Boolean pairs while the other two 3VL values are mapped to
a single Boolean pair. The total number of possible encodings (functional and
non-functional) is 60, as can be seen by a simple combinatorical computation.

Let Enc be some 3VL-to-Boolean encoding. A Boolean implementation of
3VL-AND (resp. 3VL-XOR) using Enc is given two pairs of Boolean values,
(xL, xR) and (yL, yR), and outputs a single pair of Boolean values (zL, zR), such
that when given encodings of the 3VL values x and y it outputs an encoding of
x∧3y (resp. x⊕3y) where ∧3 is a 3VL-AND (resp. ⊕3 is a 3VL-XOR). When Enc
is non-functional, this should hold for every possible encoding of x and y. This
means that for a functional encoding we test the correctness of 9 possibilities,
and for a non-functional encoding we test the correctness of 16 possibilities of
(xL, xR) and (yL, yR).

Since we are interested in an implementation with a single Boolean AND
gate, the values of zL and zR are basically a Boolean expression over the four
literals xL, xR, yL, yR and the constant 1 (the constant 0 can be obtained by
simply XORing the literal with itself) with a single Boolean AND and unlimited
number of Boolean XOR gates. Our goal is to find a way to enumerate over all
these expressions and test if they form a correct implementation of the 3VL-AND
and 3VL-XOR.

Fig. 5. The exhaustive search
process.

The exhaustive search process is depicted in
Fig. 5. We set E0 = {xL, xR, yL, yR, 1}. This is
the set of initial values, from which the expres-
sions for zL, zR are formed. Before we apply
a Boolean AND to the above values we first
want to obtain a set of all possible expres-
sions using Boolean XOR gates only, we denote
this set by E+

0 . Note that E+
0 can be obtained

by taking the XOR of each non-empty subset
of values from E0, which means that |E+

0 | =
|E0| +

∑5
i=1

(
5
i

)
= 36. Then, we can choose 2

expressions e1, e2 ∈ E+
0 and apply e3 = e1 ∧ e2.

We denote the set of possible expressions of
this form by E1 and by counting we get that
E1 =

(|E+
0 |
2

)
=

(
36
2

)
= 630. Notice that E1 does

not contain all possible expressions with exactly
one Boolean AND, since XOR operations are
only computed before the AND. Thus, for exam-
ple, xL ⊕ (xR ∧ yL) /∈ E1. In order to obtain the
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set of all possible expressions, denoted E+
1 , we need to add another layer of

Boolean XORs after the AND. However, since we want to test pairs of Boolean
expressions for zL, zR using up to one Boolean AND gate, we may use the same
expression from E1 and apply XOR after it with two different expressions from
E+

0 . Therefore, we have that E+
1 = E1 × (E+

0 × E+
0 ). Note that E+

1 also con-
tains expressions with no Boolean AND at all. For example, for any expression
e without Boolean AND gates, E+

1 also contains e = (1∧1)⊕ (¬e). We therefore
conclude that |E+

1 | = |E1| · |E+
0 |2 = 630 · 362 = 816480.

Putting it all together, we have 60 possible encodings. For each encoding, we
have 816,480 possible pairs of expressions for zl, zR with up to one AND gate and
for each possible pair we need to test its correctness over 9 or 16 possible inputs.
The total number of tests is therefore 60 · 816480 · 9 = 440, 899, 200 ≈ 228.7 or
60 · 816480 · 16 = 783, 820, 800 ≈ 229.5.

B Insecurity of the Naive Protocol for Evaluating
3VL Functions

In this section we provide a concrete attack on a protocol that uses a valid
Boolean encoding, without adding the input/output gadgets described in Sect. 7.
Consider the 3VL function f3 : {T, F, U}2 → {T, F, U}2 defined by f3(a, b) =
a ⊕3 b; denote the output by c. Now, consider a 2-party protocol for evaluating
this function, where P1 inputs both a and b, and P2 does not input anything.
(Needless to say, this is a silly example since such a function can be singlehand-
edly computed by P1 and the result can be sent to P2. However, this illustrates
the problem, and of course applies to more “interesting” cases as well.)

Now, assume that the output of the function is U . In this case, a secure
evaluation of f does not reveal anything to P2 except the fact that (a, b) is
either (U,U), (T,U), (U, T ), (F,U) or (U,F ). Furthermore, consider the case
that P1’s inputs are random. In this case, each of these possible inputs occurs
with probability 1

5 (assuming P2 has no auxiliary information). Consider now
what happens if a secure two-party protocol is run to compute this function on
the encoding, without applying an output transformation gadget as described in
Sect. 7. For the sake of concreteness, consider the non-functional relation encod-
ing of Sect. 5. For this encoding U can be mapped to (1, 0) or to (0, 1). Assume
that Tr3→2(U) = (0, 1). Then, the possible outputs of the function (since it is
just a single XOR) are given in Table 3; the shaded rows are associated with
output U :

Observe that if P2 receives (zT , zF ) = (0, 1) for output, then it knows that
P1’s input was either (F,U) or (U,F ). In contrast, if P2 receives (zT , zF ) = (1, 0)
for output, then it knows that P1’s input was either (U,U) or (U, T ) or (T,U).
This is clearly information that P2 should not learn (observe also that if P2

receives (0, 1) then it know with full certainty that either a = F or b = F ). This
is therefore not a secure protocol.
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Table 3. TrF (⊕3)

x y z xT xF yT yF (zT , zF ) z

F F F 0 0 0 0 (0, 0) F

F U U 0 0 0 1 (0, 1) U

F T T 0 0 1 1 (1, 1) T

U F U 0 1 0 0 (0, 1) U

U U U 0 1 0 1 (1, 0) U

U T U 0 1 1 1 (1, 0) U

T F T 1 1 0 0 (1, 1) T

T U U 1 1 0 1 (1, 0) U

T T F 1 1 1 1 (0, 0) F

C Formal Proofs of Encodings via Truth Tables

In this appendix, we provide the truth tables for each of our encoding methods.
These truth tables constitute a formal proof of correctness, since they show that
the mapping from input to output is correct for all possible inputs.

C.1 Correctness of the Natural Encoding

See Tables 4, 5 and 6.

Table 4. The Boolean
encoding of 3VL-AND in
Sect. 3

x y z xT xU yT yU (zT , zU ) z

F F F 0 0 0 0 (0, 0) F

F U F 0 0 0 1 (0, 0) F

F T F 0 0 1 0 (0, 0) F

F U F 0 0 1 1 (0, 0) F

U F F 0 1 0 0 (0, 0) F

U U U 0 1 0 1 (0, 1) U

U T U 0 1 1 0 (0, 1) U

U U U 0 1 1 1 (0, 1) U

T F F 1 0 0 0 (0, 0) F

T U U 1 0 0 1 (0, 1) U

T T T 1 0 1 0 (1, 0) T

T U U 1 0 1 1 (1, 1) U

U F F 1 1 0 0 (0, 0) F

U U U 1 1 0 1 (0, 1) U

U T U 1 1 1 0 (1, 1) U

U U U 1 1 1 1 (1, 1) U

Table 5. The Boolean
encoding of 3VL-XOR in
Sect. 3

x y z xT xU yT yU (zT , zU ) z

F F F 0 0 0 0 (0, 0) F

F U U 0 0 0 1 (0, 1) U

F T T 0 0 1 0 (1, 0) T

F U U 0 0 1 1 (1, 1) U

U F U 0 1 0 0 (0, 1) U

U U U 0 1 0 1 (0, 1) U

U T U 0 1 1 0 (1, 1) U

U U U 0 1 1 1 (1, 1) U

T F T 1 0 0 0 (1, 0) T

T U U 1 0 0 1 (1, 1) U

T T F 1 0 1 0 (0, 0) F

T U U 1 0 1 1 (0, 1) U

U F U 1 1 0 0 (1, 1) U

U U U 1 1 0 1 (1, 1) U

U T U 1 1 1 0 (0, 1) U

U U U 1 1 1 1 (0, 1) U

Table 6. The Boolean
encoding of 3VL-NOT
in Sect. 3

x ¬3(x) xT xU (zT , zU ) z

F T 0 0 (1, 0) T

U U 0 1 (1, 1) U

T F 1 0 (0, 0) F

U U 1 1 (0, 1) U
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C.2 Correctness of the Encoding Using a Functional Relation

See Tables 7, 8 and 9.

Table 7. The Boolean
encoding of 3VL-AND in
Sect. 4

x y z xT xU yT yU (zT , zU ) z

F F F 0 0 0 0 (0, 0) F

F U F 0 0 1 0 (0, 0) F

F T F 0 0 1 1 (0, 0) F

U F F 1 0 0 0 (0, 0) F

U U U 1 0 1 0 (1, 0) U

U T U 1 0 1 1 (1, 0) U

T F F 1 1 0 0 (0, 0) F

T U U 1 1 1 0 (1, 0) U

T T T 1 1 1 1 (1, 1) T

Table 8. The Boolean
encoding of 3VL-XOR in
Sect. 4

x y z xT xU yT yU (zT , zU ) z

F F F 0 0 0 0 (0, 0) F

F U U 0 0 1 0 (1, 0) U

F T T 0 0 1 1 (1, 1) T

U F U 1 0 0 0 (1, 0) U

U U U 1 0 1 0 (1, 0) U

U T U 1 0 1 1 (1, 0) U

T F T 1 1 0 0 (1, 1) T

T U U 1 1 1 0 (1, 0) U

T T F 1 1 1 1 (0, 0) F

Table 9. The Boolean
encoding of 3VL-NOT
in Sect. 4

x ¬3(x) xT xU (zT , zU ) z

F T 0 0 (1, 1) T

U U 1 0 (1, 0) U

T F 1 1 (0, 0) F

C.3 Correctness of the Encoding Using a Non-functional Relation

See Tables 10, 11 and 12.

Table 10. The Boolean
encoding of 3VL-AND in
Sect. 5

x y z xT xU yT yU (zT , zU ) z

F F F 0 0 0 0 (0, 0) F

F U F 0 0 0 1 (0, 0) F

F U F 0 0 1 0 (0, 0) F

F T F 0 0 1 1 (0, 0) F

U F F 0 1 0 0 (0, 0) F

U U U 0 1 0 1 (0, 1) U

U U U 0 1 1 0 (0, 1) U

U T U 0 1 1 1 (0, 1) U

U F F 1 0 0 0 (0, 0) F

U U U 1 0 0 1 (0, 1) U

U U U 1 0 1 0 (1, 0) U

U T U 1 0 1 1 (1, 0) U

T F F 1 1 0 0 (0, 0) F

T U U 1 1 0 1 (0, 1) U

T U U 1 1 1 0 (1, 0) U

T T T 1 1 1 1 (1, 1) T

Table 11. The Boolean
encoding of 3VL-XOR in
Sect. 5

x y z xT xU yT yU (zT , zU ) z

F F F 0 0 0 0 (0, 0) F

F U U 0 0 0 1 (0, 1) U

F U U 0 0 1 0 (1, 0) U

F T T 0 0 1 1 (1, 1) T

U F U 0 1 0 0 (0, 1) U

U U U 0 1 0 1 (1, 0) U

U U U 0 1 1 0 (0, 1) U

U T U 0 1 1 1 (1, 0) U

U F U 1 0 0 0 (1, 0) U

U U U 1 0 0 1 (0, 1) U

U U U 1 0 1 0 (1, 0) U

U T U 1 0 1 1 (0, 1) U

T F T 1 1 0 0 (1, 1) T

T U U 1 1 0 1 (1, 0) U

T U U 1 1 1 0 (0, 1) U

T T F 1 1 1 1 (0, 0) F

Table 12. The Boolean
encoding of 3VL-NOT in
Sect. 5

x ¬3(x) xT xU (zT , zU ) z

F T 0 0 (1, 1) T

U U 0 1 (0, 1) U

U U 1 0 (1, 0) U

T F 1 1 (0, 0) F
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Abstract. Covert computation strengthens secure computation by hid-
ing not only participants’ inputs (up to what the protocol outputs
reveal), but also the fact of computation taking place (up to the same
constraint). Existing maliciously-secure covert computation protocols are
orders of magnitude more costly than non-covert secure computation,
and they are either non-constant round [5] or they use non-black-box sim-
ulation [10]. Moreover, constant-round covert computation with black-
box simulation is impossible in the plain model [10].

We show that constant-round Covert Two-Party Computation (2PC)
of general functions secure against malicious adversaries is possible with
black-box simulation under DDH in the Common Reference String (CRS)
model, where the impossibility result of [10] does not apply. Moreover,
our protocol, a covert variant of a “cut-and-choose over garbled circuits”
approach to constant-round 2PC, is in the same efficiency ballpark as
standard, i.e. non-covert, 2PC protocols of this type. In addition, the
proposed protocol is covert under concurrent self-composition.

An essential tool we use is a covert simulation-sound Conditional KEM
(CKEM) for arithmetic languages in prime-order groups, which we real-
ize in CRS or ROM at costs which are either the same (in ROM) or very
close (in CRS) to known HVZK’s for such languages.

1 Introduction

Covert computation addresses a security concern which is unusual for cryptog-
raphy, namely how to hide the very fact of (secure) protocol execution. Such
hiding of a protocol instance is possible if the communicating parties are con-
nected by steganographic channels, which are implied by any channels with suf-
ficient entropy [11]. Consider the simplest example of a steganographic channel,
the random channel, a.k.a. a random beacon. In practice such channel can be
implemented e.g. using protocol nonces, padding bits, time stamps, and various
other communication (and cryptographic!) mechanisms which exhibit inherent
(pseudo)entropy. (Works on steganographic communication, e.g. [11], show that
random messages can be embedded into any channel with sufficient entropy.)
Two parties sharing a random channel can use it to send protocol messages,
and their presence cannot be distinguished from an a priori channel behavior
if protocol messages are indistinguishable from random bitstrings. The partici-
pants must agree on which bits to interpret as protocol messages, but this can
be public information since the decoding is indistinguishable from random.
c© International Association for Cryptologic Research 2018
M. Abdalla and R. Dahab (Eds.): PKC 2018, LNCS 10769, pp. 644–674, 2018.
https://doi.org/10.1007/978-3-319-76578-5_22
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Covert computation was formalized for the two-party honest-but-curious set-
ting by Von Ahn et al. [28], and then generalized (and re-formulated) to the
multi-party and malicious adversary setting by Chandran et al. [5], as a pro-
tocol that lets the participants securely compute the desired functionality on
their joint inputs, with the additional property that each participant cannot
distinguish the others from random beacons, i.e. entities that send out random
bitstrings of fixed length instead of prescribed protocol messages, unless the
function output implies participants’ presence. Technically, in covert computa-
tion the computed function outputs an additional reveal bit: If this bit is 0 then
each participant remains indistinguishable from a random beacon to the others,
and if the reveal bit is 1 then the participants learn the function output, and in
particular learn that a computation took place, i.e. that they were interacting
not with random beacons but with counterparties executing the same protocol.

Q & A on Covert Computation. Motivation: Who wants to compute a
function while hiding this very fact from (some) potential protocol participants?
A generic example is authentication whose participants want to remain unde-
tectable except to counter-parties whose inputs (certificates, secrets, passwords,
gathered observations) match their authentication policy: If two spies search for
one another in a foreign country, they want to do so while preventing anyone
from detecting their authentication attempts. If the spies authenticated each
other using covert computation, the only way their presence can be detected is
by an active attacker whose inputs are those which the spies search for.

Random Channels: If protocol parties were not communicating by default, it
would always be possible to detect a protocol party by just observing that it
sends out messages, and observing their number and size should normally suffice
to conclude what protocol this party follows. This is why covert protocol partici-
pants must have access to channels with some inherent entropy. A network entity
cannot hide the fact that it sends out messages, but if the normal communica-
tion they emit exhibits some entropy (e.g. in protocol nonces, timing, padding,
audio/video signals) then this entropy can be used to create a steganographic
channel, and such channel can carry covert MPC protocol messages.

Covert MPC vs. Steganography: Covert MPC does not trivially follow by using
steganography [11] to establish covert communication channels between poten-
tial protocol participants and running standard MPC over them. First, covert
channels require prior key distribution which is not always possible, e.g. in the
general authentication application above. Second, even if potential participants
did have pre-shared keys, they might still want to hide whether or not they
engage in a given protocol instance based on their on-line inputs.

Covert MPC vs. Secure MPC: Secure computation is believed to conceptual-
ize every security task: Whatever security property we want to achieve, we can
abstract it as a secure computation of an idealized functionality, and we can
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achieve it by MPC for this functionality. However, secure computation does leak
extra bit of information, because it does not hide whether some entity engages in
the protocol, and in some applications, this is essential information. Covert com-
putation strengthens secure computation to hide this remaining bit, and ensures
undetectability of protocol participation even to active participants except (and
this “escape clause” seems unavoidable) if the computation determines that its
outputs, and hence also the fact of protocol participation, should be revealed. We
show that, assuming CRS, this strengthening of secure computation to covertness
can be achieved in the two-party case in constant rounds with black-box simula-
tion under standard assumptions. Moreover, we achieve it at the cost which is in
the same ballpark as the cost of known standard, i.e. non-covert, constant-round
2PC based on Yao’s garbled circuits [29], so covertness in a sense comes “for
free”. As a side-benefit, the tools we use for covert enforcement of honest proto-
col behavior can be re-used in other covert protocols, e.g. for specific functions
of interest.

Covert Computation as a Tool: Covert computation can also be a protocol tool
with surprising applications, although we are aware of only one such case so far.
Cho et al. [6] generalized a construction of Manulis et al. [20] to compile secure
computation protocol for so-called “single instance” functionality, e.g. a pair-wise
authentication by parties holding certificates issued by the same authority, into
its “multiple instance” version, e.g. where each party holds a set of certificates
from multiple authorities. The compiler has only linear cost, and it works by
encoding messages of n instances of the single-instance protocol as points on an
n-degree polynomial. Crucially, no one should distinguish which points encode
valid messages until the single-instance functionality reveals its output, and [6]
show that the compiler works for general functionalities if the single-instance
protocol is covert.

Prior Work on Covert Computation. Von Ahn et al. [28] proposed the first
covert two-party computation (2PC) protocol. Their protocol performed O(τ)
repetitions, for τ a security parameter, of Yao’s garbled circuit evaluation (with
the circuit extended to compute an additional hash function), but this protocol
guaranteed only secrecy against malicious participants, and not output correct-
ness. Chandran et al. [5] reformulated covert computation to guarantee output
correctness and generalized it to multi-party computation, but their protocol was
also non-constant-round, and its efficiency was several orders of magnitude over
known non-covert MPC protocols: Each party was covertly proving that it fol-
lowed a GMW MPC by casting it as an instance of a Hamiltonian Cycle problem,
and that proof internally used Yao’s garbled circuits for checking correctness of
committed values. Goyal and Jain [10] showed that non-constant-round protocols
are necessary to achieve covert computation with black-box simulation against
malicious adversaries, at least in the plain MPC model, i.e., without access to
some trusted parameters. [10] also showed a constant-round covert MPC with
non-black-box simulation (and bounded concurrency), but their protocol re-uses
the above-mentioned components of [5], and is therefore just as costly.
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Whereas the covert MPC protocols of [5,10] assumed the plain computation
model, recently Cho et al. [6] exhibited practical constant-round covert com-
putation protocols secure against active adversaries, for two specific two-party
functionalities, namely string equality and set intersection, in the Random Oracle
Model (ROM). (Moreover, [6] strengthened the definition of covert computation
of [5] to unbounded concurrent self-composition, which we adopt here.) How-
ever, their constructions are custom-made and it is not clear how they can be
extended to computation of general functions. In other related work, Jarecki [13]
showed a constant-round covert Authenticated Key Exchange (AKE) with O(1)
public key operations, but this protocol satisfied a game-based AKE definition,
and it was not a covert secure computation of any function.

Main Contribution: Efficient Constant-Round Covert 2PC in CRS.
This leaves a natural open question whether assuming some relaxation in the
trust model (necessary in view of the negative result of [10]) general two-party
functions can be computed covertly by a constant-round protocol with black-
box simulation, or even, better, by a protocol whose assumptions, the security
guarantees, and efficiency, are all comparable to those of the currently known
constant-round standard, i.e. non-covert, secure 2PC protocols. We answer these
questions affirmatively assuming the Common Reference String (CRS) model
and the Decisional Diffie-Hellman (DDH) assumption.1 In this setting we show
a covert 2PC protocol which follows the well-known paradigm for standard,
i.e. non-covert, constant-round secure 2PC, initiated by [18,21] and followed
in numerous works. Namely, we use the cut-and-choose technique over O(τ)
copies of Yao’s garbled circuit, but we do so using efficient covert equivalents of
standard protocol tools for enforcing honest protocol behavior, like extractable
commitments and simulation-sound arguments. Moreover, the protocol is secure
under concurrent composition. Remarkably, our covert 2PC protocol is roughly
in the same efficiency ballpark as the non-covert secure 2PC protocols of this
type. For example, for a one-sided output function with n-bit inputs with a
Boolean circuit with c gates, our protocol requires 5 rounds, O(nτ) exponentia-
tions, and a transfer of O(nτ) group elements and O(cτ) symmetric ciphertexts.

Challenge of Malicious Security for Covert Computation. Assuming
random channels, covert communication is essentially as easy as secure commu-
nication: Under standard assumptions symmetric encryption modes have cipher-
texts which are indistinguishable from random bitstrings. Several known public-
key encryption schemes, e.g. Cramer-Shoup encryption [8], also have ciphertexts
that are indistinguishable from a tuple of random group elements (under DDH),
and random group elements in a prime-order subgroup of modular residues are
easy to encode as random bitstrings. Von Ahn et al. [28] show that General
covert computation in the honest-but-curious setting is also not more difficult

1 We note that a work in progress by Couteau [7] aims to show a corresponding result
for covert MPC protocols built using the non-constant-round GMW paradigm.
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than standard secure computation, because (1) Yao’s garbled circuit construc-
tion can be adjusted so that a garbled circuit for c-gates looks like 4c random
ciphertexts even to the evaluator (except for whatever is revealed by the output,
but that can be set to a random string if the “reveal bit” in the output evaluates
to 0), and (2) because a DDH-based OT of Naor-Pinkas Oblivious Transfer (OT)
[22] is covert under the same DDH assumption.

However, it is harder to achieve covert 2PC/MPC protocols secure against
malicious adversaries because of the lack of efficient covert counterparts to stan-
dard mechanisms for enforcing honest protocol behavior. For example, the tools
often used to enforce honest behavior in Yao’s garbled circuit protocol are (1)
Zero-Knowledge (ZK) proofs, e.g. to show that consistent inputs are input into
multiple garbled circuit instances and into the OT, and (2) opening a com-
mitment to show that the committed value is correctly formed. Either tool is
publicly verifiable and thus violates covertness.

Second Contribution: Efficient Covert Simulation-Sound CKEM’s.
Our tool for enforcing honest protocol behavior is an efficient covert Conditional
Key Encapsulation Mechanism (CKEM) for a wide class of discrete-log-based
languages, including statements that a Cramer-Shoup ciphertext [8] computed
correctly, that an encrypted value is a bit, or that a commitment decommits to
a given plaintext. A CKEM is a variant of Conditional OT [9], and an inter-
active counterpart of Smooth Projective Hash Functions (SPHF): A CKEM for
language L is a protocol which allows a sender S with input x to transmit a
random key K to receiver R with input (x,w) if and only if w is a witness for
x in L. A covert CKEM [5,10,13] assures that an interaction with either S or R
is indistinguishable from a random beacon. In particular, even given the witness
w for x the receiver cannot distinguish S(x) from random: It can compute key
K of this CKEM instance, but this key is random and should not the sender
distinguishable from a randomness source. Hence, covert CKEMs can provide a
covert counterpart to Zero-Knowledge Proofs: Instead of A proving to B that its
protocol messages are correct, B and A run a covert CKEM for the same lan-
guage as resp. S and R, and use key K to (covertly) encrypt subsequent protocol
messages: If A’s messages were malformed, covert CKEM assures that key K is
pseudorandom to A and all subsequent messages of B are pseudorandom.

To be most useful as a protocol tool, a covert CKEM should be concurrent,
simulatable, and simulation sound (a proof of knowledge property can help too,
but our covert 2PC protocol does not utilize it). We exhibit constructions of such
covert CKEM’s for two classes of languages. The first class are so-called Linear
Map Image (LMI) languages, i.e. languages whose statements can be represented
as pair (C,M) of a vector C and a matrix M of group elements s.t. C belongs to
a range of a linear map fM (w) = w · M defined by M (where scalar multiplica-
tion stands for a homomorphic one-way function, e.g. exponentiation). The sec-
ond class are languages with so-called Σ-protocols, i.e. three-round public-coin
HVZK proofs with special soundness and zero-knowledge properties which are
typically satisfied by e.g. proofs of arithmetic statements in prime-order groups.
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We overview our covert CKEM constructions below, but in the nutshell we show
(1) a 2-round CKEM in CRS for LMI languages defined by a full row rank matrix
M , whose cost is about 2–4 times that of the underlying HVZK, (2) a 2-round
CKEM in ROM for Σ-protocol languages whose cost almost matches the under-
lying HVZK, and (3) a 4-round CKEM in CRS for Σ-protocol languages with a
larger but still additive overhead over the underlying HVZK.

Prior Work on Covert CKEM’s. Covert CKEM was introduced as Zero-
Knowledge Send (ZKSend) by Chandran et al. [5], and strengthened to proof of
knowledge, simulation-soundness, and bounded concurrency in [10], but it is not
clear how these constructions can yield practical covert CKEM’s for Σ-protocol
or LMI languages. The ZKSend of [5] reduces L to a Hamiltonian Cycle (HC)
instance, replaces the verification step in Blum’s binary-challenge ZK proof for
HC with covert garbled circuit evaluation of this step, and repeats this O(τ)
times for negligible soundness error. The ZKSend of [10] follows this paradigm
using the ZK argument for NP by Pass [23]. Both constructions aimed at feasibil-
ity of covert CKEM for NP, while we want covert CKEM’s at costs comparable to
the underying HVZK’s, for LMI or Σ-protocol languages. Moreover, much of the
complexity in the constant-round covert CKEM of [10] was to assure covertness
(and bounded concurrency) with careful usage of rewinding in the simulation.
Indeed, the negative result in [10] for constant-round covertness with black-box
simulation was due to rewinding necessary in simulation in the plain model. By
contrast, if we assume CRS, an assumption without which we do not know how
to achieve even secure constant-round protocols with unbounded concurrency
and/or practical efficiency, we can get concurrency with straight-line simulation
using a CRS trapdoor, and the negative result of [10] no longer applies.

Efficient Covert Simulation-Sound CKEM’s: A Closer Look. One start-
ing point for a practical straight-line simulatable covert CKEM for an LMI lan-
guage can be an efficient SPHF, because an SPHF for an LMI language defined
by a full row rank matrix is covert. However, SPHF by itself is not simulatable:
Note that a simulator who plays the role of an honest party typically does not
form its messages as the honest party would, which would make the statement in
the SPHF instance (that the honest party’s protocol messages are well-formed)
incorrect in the simulation. Hence, by SPHF security (a.k.a. smoothness), the
simulator could not recover key K, and would fail in simulation of subsequent
protocol rounds. To amend precisely this shortcoming of SPHF’s, Benhamouda
et al. [3] upgraded SPHF’s for LMI languages to CKEM’s in CRS with (1)
(concurrent) simulatability, i.e. the ability for the simulator in possession of the
CRS trapdoor to derive key K even on the wrong statement x �∈ L; and (2)
simulation-soundness, i.e. that a cheating receiver cannot recover S’s key K for
an instance executing on a wrong statement x �∈ L even if the adversary concur-
rently engages with the simulator who recovers keys corresponding to multiple
protocol instances running on any other wrong statements x′ �∈ L. Both are
needed of ZK proofs in a compiler from (concurrent) honest-but-curious MPC
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to (concurrent) maliciously-secure MPC, and [3] showed that this compiler works
if ZKP’s are replaced by CKEM’s. However, their goal was to reduce rounds in
MPC by replacing ZKP’s with CKEM’s, and not, as in our case, to assure MPC
covertness. In particular, their CKEM’s are not covert: To assure straight-line
extraction [3] modify LMI statement M,C s.t. C = w · M for both the original
witness wR and the simulator’s CRS trapdoor wtd. This way the receiver and
the simulator can both compute hash value C · hk from projection hp = M · hk,
respectively as wR · hp and wtd · hp. However, this holds only if hp is formed
correctly, i.e. if hpT ∈ span(MT ), hence [3] run add a secondary SPHF where
R sends tp = MT · tk for random tk to S, who can compute hash value hpT · tk
as hkT · tp if and only if hpT = hkT · MT . Consequently, the CKEM of [3] pub-
licly sends hp = M · hk and tp = MT · tk. Matrix M is typically full row-rank,
assuring that M · hk is a random vector in the column space, but it is not full
column-rank, which makes MT · tk not uniformly random. However, we show
how to modify matrix M s.t. the secondary projection MT · tk is pseudo-random
during simulation.

A different route towards Covert CKEM’s is to take as a starting point an
efficient compiler from Σ-protocol to covert CKEM of [13]. The CKEM notion of
[13] is covert and proof-of-knowledge, but not simulatable and simulation-sound.
The covert CKEM of [13] bears some similarity to the ZKSend of [5]: Both start
from an HVZK proof (resp. Σ-protocol and Blum’s HVZK for HC), identify
some proof messages which are already pseudorandom, replace the offending
non-covert message with its commitment, and replace the verification equa-
tion with some covert gadget: [5] commit to the final response in Blum’s proof
and use garbled circuit for the verification step on the committed plaintext,
and [13] commit to the prover’s first message, and uses the “special simula-
tion” property of a Σ-protocol, i.e. that the first message can be computed
from the other two, to replace the verification step with a covert SPHF that
checks that the committed first message equals to this single verification-passing
value. The benefit of the compiler of [13], in contrast to the above approach, is
that it adds only a (small) additive overhead to the underlying Σ-protocol.
We show that the 2-round instantiation of this compiler is simulatable and
simulation-sound assuming ROM, and that the 4-round version of this compiler
can be modified so that the result is covert simulatable and simulation-sound
in CRS.

Organization. In Sect. 2 we introduce covertness-related notation. In Sect. 3 we
define concurrent covert 2PC for arbitrary functions. In Sect. 4 we define covert
counterparts to standard protocol building blocks, including covert CCA PKE,
commitment, OT, HbC-secure circuit garbling, and SPHF’s. In Sect. 5 we define
covert CKEM’s. In Sect. 6 we discuss our covert CKEM’s constructions. Finally,
in Sect. 7 we present our concurrent covert 2PC protocol.
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2 Preliminaries

Notation. If a, b are bitstrings then |a| is the length of a, a|b is the concatenation
of stings a and b, and a[i] is the i-th bit of a. If n is an integer then [n] =
{1, . . . , n}. We write y ← P(x) when y is an output of a (randomized) procedure
P on input x, and y ← S when y is sampled from uniform distribution over
set S. We write y ∈ P(x) if there is randomness r s.t. P(x; r) outputs y. We
say (a, b) ← [A(x), B(y)] if a, b are the local outputs of algorithms resp. A,B
interacting on local inputs resp. x, y. If L is a language in NP then R[L] is a
relation s.t. (x,w) ∈ R[L] if w is an efficiently verifiable witness for x ∈ L. If ks =
{(ki,0, ki,1)}i∈[n], i.e. ks is a sequence of n pairs of bitstrings, and x ∈ {0, 1}n,
then ks[: x] denotes a selection of bitstrings from the n pairs in ks according to
the n bits of x, namely ks[: x] = {ki,x[i]}i∈[n].

We call two-party protocol (A,B) regular if the number of rounds and length
of all messages is a function of the security parameter, and not the parties’
inputs. If P is an interactive algorithm in a regular two-party protocol then
P$(τ) denotes a random beacon corresponding to P, which sends random bit-
strings of the same length as P’s messages in every protocol round. If P is
an interactive algorithm then P&Out(x) is a wrapper which runs P (x) and
includes P ’s final local output in its last message. For any algorithm Setup
and oracles P0, P1 we say that {AP0(x0)(z)} ≈ {AP1(x1)(z)} for (x0, x1, z) ←
Setup(1τ ) if for every efficient A quantity |p0A − p1A| is negligible where pb

A =
Pr[1←APb(xb)(z) | (x0, x1, z)←Setup(1τ )], where the probability goes over the
coins of Setup, A, and Pb.

Covert Encodings. In our protocols all communicated values are either ran-
dom fixed-size bitstrings, or random integers from some range Zn, or random
elements of a prime-order group G. In the latter two cases what is sent on the
wire are not the values themselves but their covert encodings. A covert encoding
of domain D is a randomized function EC : D → {0, 1}p(τ) defined for some
polynomial p, s.t. a random variable {EC(a; r)}, induced by random a in D and
random r, is statistically close to a random bitstring of length p(τ). Moreover,
there must exist a decoding procedure DC s.t. DC(EC(a; r)) = a for all a ∈ D
and all r. For example, if domain D is an integer range Zn then EC(a) can pick
r ← ZR for R = �2|n|+τ/n� and output a + n·r (over integers), while DC(v)
outputs v mod n. If the domain D is a subgroup G of order p in a multiplicative
group Z

∗
q of residues modulo q for q = p · t + 1 s.t. gcd(p, t) = 1, then EC(a)

can pick b ← Zq, compute v = (a · (b)p) mod q, and then apply the encoding
for integer range Zq to v. The corresponding decoding first decodes v and then
outputs ws mod q for w = vt mod q and s = t−1 mod p.

3 Defining Concurrent Covert Two-Party Computation

We provide the definition of concurrent covert computation of two-party func-
tions, which is a close variant of the definition which appeared recently in [6].
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Intuitively, the differences between the covert computation of a two-party func-
tionality F and the secure computation for F is that (1) F’s inputs and outputs
are extended to include a special sign ⊥ designating non-participation; (2) F is
restricted to output a non-participation symbol ⊥ to each party if the input of
either party is ⊥; and (3) the real-world protocol of either party on the non-
participation input ⊥ is fixed as a “random beacon”, i.e. a protocol which sends
out random bitstrings of fixed length independently of the messages it receives.

The definition of concurrent covert computation of [6], which we recall (and
refine) below, follows the definition of stand-alone (i.e. “single-shot”) covert com-
putation given by Chandran et al. [5], here restricted to the two-party case. The
definition casts this notion in the framework of universal composability (UC) by
Canetti [4], but the composability guarantee it implies is restricted to concurrent
self-composition because it guarantees only self-composability of covert compu-
tation for functions, and not for general reactive functionalities as in the case
of UC definition [4]. The reason for this restriction is two-fold: First, concurrent
covert computation for arbitrary efficiently computable functions already pro-
vides a significant upgrade over the “single-shot” covert computation notion of
[5], and achieving it efficiently presents sufficient technical challenges that jus-
tify focusing on this restricted notion. Secondly, composing functionally distinct
covert protocols poses conceptual challenges: Consider a protocol Π implemented
by a protocol Π1 which runs Π2 as a subroutine, and note that the outputs of
subroutine Π2 can reveal the participation of an honest party in Π before Π
completes. Here we focus on concurrent composition of covert computation of
two-party function, and leave development of a framework for fully composable
covert computation for future work.

Ideal and Real Models. The definition of the ideal model is the UC analogue
of the ideal model of Chandran et al. [5], except that composability guarantees
are restricted to self-composition. Covert computation is defined by functionality
FC(f,g) shown in Fig. 1, where f, g are functions defined on pairs of bitstrings. As
in [5] function g is an admission function, i.e. if g(x, y) = 0 then functionality
FC(f,g) returns return ⊥ to both parties, and f is the “real function” i.e. if
g(x, y) �= 0 then functionality FC(f,g) prepares A’s output as z and B’s output
as v where (z, v) = f(x, y). We note that f and g can be randomized functions,
in which case functionality FC(f,g) picks the randomness which is appended to
input (x, y) before computing g and f . The ideal process involves functionality
FC(f,g), an ideal process adversary A∗, an environment Z with some auxiliary
input z, and a set of dummy parties, any number of which can be (statically)
corrupted. Each party can specify its input to some instance of FC(f,g), which is
either a bitstring or a special symbol ⊥ indicating that there is no party which
will participate in a given role, e.g. a requester or responder in this protocol
instance. The real model is exactly as in the standard UC security model, except
that the protocol of each real-world uncorrupted party which runs on input ⊥ is
a-priori specified as a random beacon protocol, i.e. such party sends out random
bitstrings of lengths appropriate for a given protocol round.
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Fig. 1. Covert 2-party function computation functionality FC(f,g)

Let IdealF,A∗,Z(τ, aux, r) denote the output of environment Z after interacting
in the ideal world with adversary A∗ and functionality F = FC(f,g), on security
parameter τ , auxiliary input aux, and random input r = (rZ , rA∗ , rF), as described
above. Let IdealF,A∗,Z (τ, aux) be the random variable IdealF,A∗,Z(τ, aux; r) when
r is uniformly chosen. We denote the random variable IdealF,A∗,Z(τ, aux) as
{IdealF,A∗,Z(τ, aux)}τ∈N;aux∈{0,1}∗ . Correspondingly we let RealΠ,Adv,Z(τ, aux; r)
be the output of Z after interacting with a real-world adversary Adv and par-
ties running protocol Π on security parameter τ , input aux, and random tapes
r = (rZ , rAdv, rA, rB). In parallel to the ideal model, we define the corresponding
random variable {RealΠ,Adv,F(τ, aux)}τ∈N;aux∈{0,1}∗ .

Definition 1. Protocol Π realizes the concurrent two-party covert computation
functionality F = FC(f,g) if for any efficient adversary Adv there exists an effi-
cient ideal-world adversary A∗ such that for any efficient environment Z,

{IdealF,A∗,Z(τ, aux)}τ∈N;aux∈{0,1}∗
c≈ {RealΠ,Adv,F(τ, aux)}τ∈N;aux∈{0,1}∗

Notes on Functionality FC(f,g). Functionality FC(f,g) in Fig. 1 is realizable
only assuming secure channels. Without secure channels the adversary could
hijack a protocol session an honest player wants to execute with some intended
counterparty. However, the secure channel assumption does not substantially
change the complexity of the protocol problem because the intended counter-
party can itself be corrupted and follow an adversarial protocol. The second
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point we want to make is that functionality FC(f,g) always delivers the output
first to a corrupted party, whether it is party A or B, and if this output is not
a non-participation symbol ⊥ then in both cases the corrupted party can decide
if the correct computation output should also be delivered to its (honest) coun-
terparty or the honest counterparty’s output will be modified to ⊥. (Note that
if an output of a corrupt party, say A, is ⊥ then B’s output is also ⊥, hence
it does not matter in this case whether the adversary sends (Output,T, sid) or
(Output,F, sid).) Any constant-round protocol without a trusted party must be
unfair in the sense that the party which speaks last gets its output but can
prevent the delivery of an output to its counterparty. However, functionality
FC(f,g) affords this unfair advantage to both the corrupt requester and the cor-
rupt responder. Indeed, a concrete protocol ΠCOMP presented in Sect. 7 which
realizes this functionality allows the corrupt party A to learn its output z and
stop B from learning anything about its output v (simply by aborting before
sending its last message to B). However, this protocol also allows the corrupt
party B to prevent party A from being able to decide if its output z (learned
in step A2 in Fig. 3) is an output of f(x, y) or a random value induced from an
interaction with a random beacon: Only B’s final message can confirm which
is the case for A, but a corrupt B can send this message incorrectly, in which
case an honest A will dismiss the tentative value z it computed and output ⊥
instead. We leave achieving O(1)-round covert protocols with one-sided fairness,
or two-side fairness, e.g. using an off-line escrow authority, to future work.

4 Covert Protocol Building Blocks

CCA-Covert Public Key Encryption. Covertness of a public key encryption
scheme in a Chosen-Ciphertext Attack, or CCA covertness for short, is a gener-
alization of CCA security: Instead of requiring that ciphertexts of two challenge
messages are indistinguishable from each other, we require that a ciphertext on
any (single) challenge message is indistinguishable from a random bitstring, even
in the presence of a decryption oracle. For technical reasons it suffices if inter-
action with the real PKE scheme is indistinguishable from an interaction with
a simulator who not only replaces a challenge ciphertext with a random string
but also might follow an alternative key generation and decryption strategy.

Formally, we call a (labeled) PKE scheme (Kg,E,D) CCA covert if there exist
polynomial n s.t. for any efficient algorithm A, quantity AdvA(τ) = |p0A(τ) −
p1A(τ)| is negligible, where pb

A(τ) is the probability that b′ = 1 in the following
game: Generate (pk, sk) ← Kg(1τ ), and let AD(sk,·,·)(pk) output an encryption
challenge (m∗, �∗). If b = 1 then set ct∗ ← E(pk,m∗, �∗), and if b = 0 then pick ct∗

as a random string of length n(τ). In either case set b′ ← AD(sk,·,·), where oracle
D(sk, ·, ·) returns D(sk, ct, �) on any ciphertext, label pair s.t. (ct, �) �= (ct∗, �∗).

Notice that by transitivity of indistinguishability if PKE is CCA-covert then
it is also CCA-secure. The other direction does not hold in general, but many
known CCA-secure PKE’s are nevertheless also CCA-covert, including RSA
OAEP and Cramer-Shoup PKE [8]. We will use here the latter scheme because
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its arithmetic structure can be utilized for efficient covert OT (see below) and
efficient covert CKEM’s on associated languages (e.g. that a ciphertext encrypts
a given plaintext). In the full version [14] we show that the proof of CCA security
of Cramer-Shoup PKE under the DDH assumption [8] can be extended to imply
its CCA covertness. For notational convenience we assume that the key genera-
tion Kg picks the group setting (g,G, p) as a deterministic function of security
parameter τ , and we restrict the message space to group G, since this is how
we use this PKE in our covert 2PC protocol, but it can be extended to general
message space using covert symmetric encryption.

Cramer-Shoup PKE (for message space G) works as follows: Kg(1τ )
chooses generator g of group G of prime order p of appropriate length,
sets a collision-resistant hash function H, picks (x1, x2, y1, y2, z) ← (Z∗

p)
5,

(g1, g2) ← (G\1)2, sets (c, d, h) ← (gx1
1 gx2

2 , gy1
1 gy2

2 , gz
1), and outputs sk =

((g,G, p,H), x1, x2, y1, y2, z) and pk = ((g,G, p,H), g1, g2, c, d, h). Encryption
Epk(m, �), for m ∈ G, picks r ← Zp, sets (u1, u2, e) ← (gr

1, g
r
2,m · hr),

ξ ← H(�, u1, u2, e), v ← (cdξ)r, and outputs ct = (u1, u2, e, v). Decryption
Dsk((u1, u2, e, v), �) re-computes ξ, and outputs m = e ·uz

1 if v = ux1+ξ·y1
1 ux2+ξ·y2

2

and ⊥ otherwise.

Covert Non-malleable Commitments. It is well-known that CCA-secure
PKE implements non-malleable commitment. However, to stress that some-
times no one (including the simulator) needs to decrypt, we define commitment
Compk(m) as a syntactic sugar for Epk(H(m)) where H is a collision-resistant
hash onto G, but we will pass on defining a notion of covert commitment, relying
instead directly on the fact that Compk(m) stands for Epk(H(m)).

Covert Oblivious Transfer. Von Ahn et al. [28] used a covert version of
Naor-Pinkas OT [22] for their covert 2PC secure against honest-but-curious
adversaries. Here we will use a covert version of the OT of Aiello et al. [2]
instead because it is compatible with CCA-covert Cramer-Shoup encryption
and covert CKEM’s of Sect. 6. Let E be the Cramer-Shoup encryption and let
pk = ((g,G, p,H), g1, g2, c, d, h). Define a 2-message OT scheme (E,OTrsp,OTfin)
on Rec’s input b, Snd’s input m0,m1 ∈ G, and a public label � as follows:

(1) Rec’s first message to Snd is ct = (u1, u2, e, v) = Epk(gb, �; r) for r ← Zp.
(2) Snd’s response computation, denoted OTrsppk(ct,m0,m1; r′), outputs otr =

{si, ti}i=0,1 for (si, ti) = (gαi
1 hβi , uαi

1 (e/gi)βimi) and r′ = {αi, βi}i=0,1 ← Z
4
p.

(3) Rec’s output computation, denoted OTfinpk(b, r, otr), outputs m = tb · (sb)−r.

The above OT is covert for random payloads in the following sense: First, the
Rec’s message is indistinguishable from random even on access to the decryption
oracle Dsk(·, ·); Secondly, Snd’s message is indistinguishable from random for
payloads (m0,m1) random in G2. (Note that if (m0,m1) were non-random then
the Rec’s output would suffice to distinguish OTrsp and OTrsp$(τ).)
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Covert Garbled Circuits. Von Ahn et al. [28] shows a covert version of Yao’s
garbling GCgen(f) for any f : {0, 1}n → {0, 1}m. Procedure GCgen(f) outputs
(1) a vector of input wire keys ks = {kw,b}w∈[n],b∈{0,1} where n is the bitlength
of arguments to f , and (2) a vector gc of 4|C| covert symmetric encryption
ciphertexts, where |C| is the number of gates in a Boolean circuit for f . The
corresponding evaluation procedure Evalf outputs f(x) given gc and ks[:x]) =
{ki,x[i]}i∈[n], for (gc, ks) output by GCgen(f) and x ∈ {0, 1}n. Let m′ = 4|C|τ +
nτ . The notion of a covert garbling defined by [28] and satisfied by their variant
of Yao’s garbling scheme, is that for any function f , any distribution D over
f ’s inputs, and any efficient algorithm A, there is an efficient algorithm A∗ s.t.
|AdvA − AdvA∗ | is negligible, where:

AdvA = |Pr[1←A({gc, ks[:x]})]x←D,(gc,ks)←GCgen(f) − Pr[1←A(r)]r←{0,1}m′ |
AdvA∗ = |Pr[1←A∗(f(x))]x←D − Pr[1←A∗(r)]r←{0,1}m |

In other words, for any function f and distribution D over its inputs, the garbled
circuit for f together with the set of wire keys ks[:x] defined for input x sampled
from D, are (in)distinguishable from a random string to the same degree as func-
tion outputs f(x) for x←D. In particular, if f and D are such that {f(x)}x←D

is indistinguishable from random, then so is {gc, ks[: x]}(gc,ks)←GCgen(f),x←D.

SPHF’s. We define a Smooth Projective Hash Function (SPHF) for language
family L parametrized by π as a tuple (PG,KG,Hash,PHash) s.t. PG(1τ ) gener-
ates parameters π and a trapdoor td which allows for efficient testing of member-
ship in L(π), KG(π, x) generates key hk together with a key projection hp (here
we use the SPHF notion of [25], for alternative formulation see e.g. [15]) and
Hash(π, x, hk) and PHash(π, x, w, hp) generate hash values denoted H and projH,
respectively. SPHF correctness requires that Hash(π, x, hk) = PHash(π, x, w, hp)
for all τ , all (π, td) output by PG(1τ ), all (x,w) ∈ R[L(π)], and all (hk, hp) output
by KG(π, x). In the context of our protocols SPHF values are elements of group G
uniquely defined by security parameter τ via the Cramer-Shoup key generation
procedure, hence we can define SPHF smoothness as that (hp,Hash(π, x, hk)) is
distributed identically to (hp, r) for r ← G and (hk, hp) ← KG(π, x), for all π
and x �∈ L(π). However, in our applications we need a stronger notion we call
covert smoothness, namely that for some constant c, for all π and x �∈ L(π), pair
(hp,Hash(π, x, hk)) for (hk, hp) ← KG(π, x) is uniform in Gc × G.

5 Covert Simulation-Sound Conditional KEM (CKEM)

Conditional Key Encapsulation Mechanism (CKEM). A Conditional
KEM (CKEM) [13] is a KEM version of Conditional Oblivious Transfer (COT)
[9]: A CKEM for language L is a protocol between two parties, a sender S and a
receiver R, on S’s input a statement xS and R’s input a (statement,witness) pair
(xR, wR). The outputs of S and R are respectively KS and KR s.t. KS is a random
string of τ bits, and KR = KS if and only if xS = xR and (xR, wR) ∈ R[L]. CKEM
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is an encryption counterpart of a zero-knowledge proof, where rather than having
R use its witness wR to prove to S that xS ∈ L, here R establishes a session key
K with S if and only if wR is a witness for xS in L. Because of this relation
to zero-knowledge proofs we can use proof-system terminology to define CKEM
security properties. In particular, we will refer to the CKEM security property
that if x �∈ L then no efficient algorithm can compute K output by S(x) as the
soundness property.

Benhamouda et al. [3] considered a stronger notion of Trapdoor CKEM, which
they called Implicit Zero-Knowledge. Namely, they extended the CKEM notion
by a CRS generation procedure which together with public parameters generates
a trapdoor td that allows an efficient simulator algorithm to compute the session
key KS output by a sender S(x) for any x, including x �∈ L. The existence of
such simulator makes CKEM into a more versatile protocol building block. For
example, trapdoor CKEM implies a zero-knowledge proof for the same language,
if R simply returns the key KR to S who accepts iff KR = KS . Indeed, following
[3], we refer to the property that the simulator computes the same key as the
honest receiver in the case x ∈ L as the zero-knowledge property of a CKEM.

As in the case of zero-knowledge proofs, if multiple parties perform CKEM
instances then it is useful to strengthen CKEM security properties to simulation-
soundness, which requires that all instances executed by the corrupt players
remain sound even in the presence of a simulator S who uses its trapdoor to
simulate the instances performed on behalf of the honest players. Simulation-
soundness is closely related to non-malleability: If S simulates a CKEM instance
Π on x �∈ L then an efficient adversary must be unable to use protocol instance Π
executed by S to successfully complete another instance Π ′ of CKEM executed
by a corrupt party for any x′ �∈ L.

To distinguish between different CKEM sessions the CKEM syntax must
also be amended by labels, denoted �, which play similar role as labels in CCA
encryption. Formally, a CKEM scheme for language family L is a tuple of algo-
rithms (PG,TPG,Snd,Rec,TRec) s.t. parameter generation PG(1τ ) generates
CRS parameter π, trapdoor parameter generation TPG(1τ ) generates π together
with the simulation trapdoor td, and sender Snd, receiver Rec, and trapdoor
receiver TRec are interactive algorithms which run on local inputs respectively
(π, x, �), (π, x, �, w), and (π, x, �, td), and each of them outputs a session key K
as its local output. CKEM correctness requires that for all labels �:

∀(x,w) ∈ R[L], [KS ,KR] ← [Snd(π, x, �),Rec(π, x, �, w)] ⇒ KS = KR (1)
∀x, [KS ,KR] ← [Snd(π, x, �),TRec(π, x, �, td)] ⇒ KS = KR (2)

where (1) holds for all π generated by PG(1τ ) and (2) holds for all (π, td) gener-
ated by TPG(1τ ). Crucially, property (2) holds for all x, and not just for x ∈ L.

Covert CKEM. A covert CKEM was introduced as Zero-Knowledge Send
(ZKSend) by Chandran et al. [5], who strengthened simulatable CKEM by
adding covertness, i.e. that an interaction with either S or R (but not the keys
they compute locally) is indistinguishable from a random beacon. Goyal and Jain
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[10] strengthened the covert CKEM of [5] to proof-of-knowledge and simulation-
soundness under (bounded) concurrent composition. Our covert CKEM notion is
essentially the same as the covert ZKSend of [10] (minus the proof-of-knowledge
property), but we adopt it to the CRS setting of a straight-line simulation using
a global CRS trapdoor as in [3].

Covert CKEM Zero-Knowledge. We say that a CKEM for language L is
covert zero-knowledge if the following properties hold:

1. Setup Indistinguishability: Parameters π generated by PG(1τ ) and TPG(1τ )
are computationally indistinguishable.

2. Zero Knowledge: For every efficient A = (A1,A2) we have

{ARec&Out(π,x,�,w)
2 (st)} ≈ {ATRec&Out(π,x,�,td)

2 (st)}

for (π, td) ← TPG(1τ ) and (st, x, w, �) ← A1(π, td) s.t. (x,w) ∈ R[L].2

3. Trapdoor-Receiver Covertness: For every efficient A = (A1,A2) we have

{ATRec(π,x,�,td)
2 (st)} ≈ {ATRec$(τ)

2 (st)}

for (π, td) ← TPG(1τ ) and (st, x, �) ← A1(π, td).
4. Sender Simulation-Covertness: For every efficient A = (A1,A2) we have

{ASnd(π,x,�),TRecBlock(x,�)(td,·)
2 (st)} ≈ {ASnd$(τ),TRecBlock(x,�)(td,·)

2 (st)}

for (π, td) ← TPG(1τ ) and (st, x, �) ← ATRec(td,·)
1 (π) s.t. TRec(td, ·) was not

queried on (x, �).

Note that Zero-Knowledge and Trapdoor-Receiver Covertness imply a
Receiver Covertness property, which asks that Rec(π, x, �, w) instances are indis-
tinguishable from Rec$(τ) for any (x,w) ∈ R[L]. This holds because an interaction
with Rec(π, x, �, w) for (x,w) ∈ R[L] is, by Zero-Knowledge, indistinguishable
from an interaction with TRec(π, x, �, td), which by Trapdoor-Receiver Covert-
ness is indistinguishable from an interaction with TRec$(τ), which is in turn
identical to an interaction with Rec$(τ), because Zero-Knowledge implies that
Rec and TRec output equal-sized messages.

Discussion. CKEM zero-knowledge [3] says that an interaction with Rec on
any x ∈ L followed by Rec’s local output KR, can be simulated by TRec without
knowledge of the witness for x. Receiver and Trapdoor-Receiver covertness mean
that, in addition, the adversary A who interacts with resp. Rec and TRec, but
does not see their local outputs, cannot tell them from random beacons. In the
case of TRec we ask for this to hold for any x and not only for x ∈ L because
a simulator of a higher-level protocol will typically create incorrect statements
2 If A1 outputs (x,w) �∈ R[L] we override A2’s output by an arbitrary constant.
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and then it will simulate the Receiver algorithm on them. Note that we cannot
include the output KR of either Rec or TRec in A’s view in the (trapdoor)
receiver covertness game because A can compute it by running Snd(x). Sender
covertness means that an interaction with the Snd is indistinguishable from an
interaction with a random beacon for any x. Here too we cannot include Snd’s
local output KS in A’s view because if (x,w) ∈ R[L] then A who holds w
can compute it running Rec(x,w). Note that A’s view in the zero-knowledge
and trapdoor-receiver covertness properties includes the simulator’s trapdoor
td, which implies that both properties will hold in the presence of multiple
CKEM instances simulated by TRec using td. This is not the case for in sender
simulation-covertness, but there the adversary has oracle access to simulator
TRec who uses td on other CKEM instances, which suffices for the same goal of
preserving the CKEM covertness property under concurrent composition.

Covert Soundness and Simulation-Soundness. A CKEM is covert sound
if interaction with Snd on x �∈ L followed by Snd’s local output KS is indistin-
guishable from interaction with a random beacon. Recall that CKEM soundness
[3] requires pseudorandomness of only Snd’s output KS on x �∈ L, while here we
require it also of the transcript produced by Snd. Covert simulation-soundness
requires that this holds even if the adversary has access to the Trapdoor-Receiver
for any (x′, �′) which differs from the pair (x, �) that defines the soundness chal-
lenge. To that end we use notation PBlock(x) for a wrapper over (interactive)
algorithm P which outputs ⊥ on input x′ = x and runs P (x′) for x′ �= x:
CKEM is Covert Sound if for every efficient algorithm A = (A1,A2) we have:

{ASnd&Out(π,x,�)
2 (st)} ≈ {ASnd

$(τ)
&Out

2 (st)}
for (π, td) ← TPG(1τ ) and (st, x, �) ← A1(π) s.t. x �∈ L.
CKEM is Covert Simulation-Sound if for every efficient algorithm A = (A1,A2)
we have:

{ASnd&Out(π,x,�),TRecBlock(x,�)(td,·)
2 (st)} ≈ {ASnd

$(τ)
&Out,TRecBlock(x,�)(td,·)

2 (st)}

for (π, td) ← TPG(1τ ) and (st, x, �) ← ATRec(td,·)
1 (π) s.t. x �∈ L and TRec(td, ·)

was not queried on (x, �).
Note that sender simulation-covertness together with standard, i.e. non-

covert, simulation-soundness, imply covert simulation-soundness of a CKEM:

Lemma 1. If a CKEM scheme is simulation-sound [3] and sender simulation-
covert, then it is also covert simulation-sound.

Proof. Consider the simulation-soundness game where adversary A on input π
for (π, td) ← TPG(1τ ) interacts with TRec(td, ·), generates (x, �) s.t. x �∈ L,
and interacts with oracles Snd&Out(π, x, �) and TRecBlock(x,�)(td, ·). The standard
(i.e. non-covert) simulation soundness of this CKEM [3] implies that this game is
indistinguishable from a modification in which key KS output by Snd&Out(π, x, �)
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is chosen at random. Once KS is independently random, sender simulation-
covertness, which holds for all x, implies that this game is indistinguishable
from a modification where the messages sent by Snd are replaced by uniformly
random strings. Since these two moves together replace oracle Snd&Out(π, x, �)
with Snd

$(τ)
&Out, it follows that the CKEM is covert simulation-sound.

6 Covert CKEM’s for LMI and Σ-Protocol Languages

Linear Map Image (LMI) Languages. The Covert 2PC protocol of Sect. 7
relies on covert zero-knowledge and simulation-sound (covert-zk-and-ss) CKEM’s
for what we call Linear Map Image languages. A linear map image language
LMIn,m for group G of prime order p contains pairs (C,M) ∈ Gn × Gn×m s.t.
there exists a vector w ∈ Z

m
p s.t. C = w·M , where the vector dot product denotes

component-wise exponentiation, i.e. [w1, . . . , wm] · [gi1, . . . , gim] =
∏m

j=1(gij)wj ,
In other words, (C,M) ∈ LMIn,m if C is in the image of a linear map fM : Zm

p →
Gn defined as fM (w) = w ·M . Using an additive notation for operations in group
G we can equivalently say that (C,M) ∈ LMIn,m if C is in the subspace of Gn

spanned by the rows of M , which we denote span(M).
We extend the notion of a Linear Map Image language to a class of languages,

denoted LMI, which includes all languages L for which there exist two efficiently
computable functions φ : Ux → (G × Gn×m) and γ : Uw → Z

m
p for some n,m,

where Ux, Uw are the implicit universes of respectively statements in L and their
witnesses, s.t. for all (x,w) ∈ Ux×Uw, w is a witness for x ∈ L if and only if γ(w)
is a witness for φ(x) ∈ LMIn,m. We will sometimes abuse notation by treating
set {φ(x)}x∈L, i.e. L mapped onto (some subset of) LMIn,m, replaceably with L
itself. Observe that LMI is closed under conjunction, i.e.

[(C1,M1) ∈ LMIn1,m1 ∧ (C2,M2) ∈ LMIn2,m2 ] ⇔ (C,M) ∈ LMIn1+n2,m1+m2

for C = (C1, C2) and M formed by placing M1 in the upper-left corner, M2 in
the lower-right corner, and all-one matrices in the remaining quadrants.

Covert CKEM’s for LMI Languages. We show three types of covert CKEM’s
for LMI languages: (1) a 2-round CKEM in CRS for LMI languages defined by
a full row rank matrix M , whose cost is about 2–4 times that of the underly-
ing HVZK, (2) a 2-round CKEM in ROM for Σ-protocol languages whose cost
matches the underlying HVZK, and (3) a 4-round CKEM in CRS for Σ-protocol
languages with a small additive overhead over the underlying HVZK. Note that
every LMI languages in prime-order groups has a Σ-protocol, so constructions
(2) and (3) apply to LMI languages. For lack of space we include below only the
last construction and we refer to the full version [14] for the other two.

6.1 2-Round Covert CKEM for Σ-Protocol Languages in ROM

The covert mutual authentication scheme of Jarecki [13] uses a compiler which
converts a Σ-protocol into a 2-round CKEM for the same language, assuming
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ROM. The resulting CKEM was shown to satisfy the CKEM covertness notion
of [13], which included receiver covertness and strong sender covertness, a covert
counterpart of strong soundness (a.k.a. proof of knowledge), but did not include
simulatability or simulation soundness. However, it is not hard to see that this
2-round CKEM does achieve both zero-knowledge and simulation soundness.

We recall this construction in Fig. 2, and we briefly explain how it works.
Assume that the instance, witness pairs of language L are mapped into instances
x = (C,M) ∈ Gn ×Gn×m and witnesses w ∈ Z

m
p of LMIn,m. Recall a Σ-protocol

for LMIn,m: The prover picks random w′ ← Z
m
p , sends a = w′ ·M to the verifier,

and on verifier’s challenge e chosen uniformly in Zp, it outputs z = w′ + ew
(multiplication by a scalar a vector addition in Z

m
p ). The verifier accepts if

a = z · M − eC, which holds if C = w · M . As is well known, this Σ-protocol
becomes a NIZK in ROM if the verifier’s e is computed via a random oracle.

Consider an ElGmal-based covert commitment: Let g1, g2 be two random
group elements in the CRS. Let Comg1,g2(m) for m ∈ Zp pick r ← Zp and
output cmt = (cmt1, cmt2) = ((g1)r, (g2)r(g1)m). This is perfectly binding and
covert under the DDH assumption. Define language Lc = {(cmt,m) | cmt =
Comg1,g2(m)}, and note that Lc has a well-known covert SPHF: KG(g1, g2) gen-
erates hk ← Z

2
p and hp = hk · (g1, g2) = (g1)hk1(g2)hk2 , Hash((cmt,m), hk) =

hk · (cmt/(1, gm1 )) = (cmt1)hk1(cmt2/(g1)m)hk2 , and PHash((cmt,m), r, hp) =
r · hp = (hp)r.

Let H be a hash onto Zp. The 2-round ROM-based covert CKEM of [13]
works just like a ROM-based NIZK except that the prover replaces message
a with its commitment cmt = Com(H(a)), and the non-interactive verification
check whether a = z · M − eC, the verifier computes a = z · M − eC locally
and uses the covert SPHF for Lc to verify if cmt is a commitment to H(a). This
protocol is shown in Fig. 2, where Hi(x) stands for H(i, x).

Fig. 2. 2-round covert-zk-and-ss CKEM in ROM for LMI (adopted from [13])

Figure 2 is written specifically for LMI languages but it is easy to see that
the same works for any Σ-protocol language. Note that its cost is that of the
Σ-protocol for language L plus 2 exponentiations for S and 1 exponentiation for
R. We refer to the full version of the paper [14] for the proof of Theorem1:

Theorem 1. For any LMI language L, the CKEM scheme for L shown in Fig. 2
is covert zero-knowledge and covert simulation-sound in ROM, assuming DDH.
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7 Covert Computation of General 2-Party Functions

We describe protocol ΠCOMP, Fig. 3, which realizes the concurrent 2-party covert
computation functionality FC(f,g) in the CRS model. Protocol ΠCOMP is a covert
variant of the cut-and-choose method over O(τ) copies of Yao’s garbled circuit
[29], which has been the common paradigm for standard 2PC protocols, initiated
by [18,21], followed by many subsequent works, e.g. [12,19,26], including several
implementation efforts, e.g. [1,16,24,26,27].

A standard way of implementing a cut-and-choose involves tools which are
inherently non-covert: First, the garbling party B sends commitments to n copies
of the garbled circuit and then decommits a randomly chosen half of them, so
that party A can verify that the opened circuits are formed correctly and that
they were committed in B’s first message. Clearly, if B sends a commitment fol-
lowed by a decommitment, this can be verified publicly, at which point A would
distinguish a protocol-participating party B from a random beacon regardless
of the inputs which A or B enter into the computation. Secondly, a cut-and-
choose protocol can also use secondary zero-knowledge proofs, e.g. to prove that
the OT’s are performed correctly, or that the keys opened for different circuit
copies correspond to the same inputs, and zero-knowledge proofs are similarly
inherently non-covert.

Here we show that (concurrent and simulation-sound) covert CKEM’s can
be effectively used in both of the above cases:

First, we use CKEM’s in place of all zero-knowledge proofs, i.e. instead of
party P1 proving statement x to party P2, we will have P2 encrypt its future
messages under a key derived by CKEM on statement x. By covert concurrent
zero-knowledge, the simulator can derive the CKEM keys and simulate subse-
quent interaction of each protocol instance even if the statements it makes on
behalf of honest players are incorrect (e.g. because the simulator does not know
these players’ real inputs). By covert simulation-soundness, the CKEM’s made
by corrupted players are still sound, i.e. the CKEM keys created by the simu-
lator on behalf of honest parties are indistinguishable from random unless the
statement made by a corrupted player is correct. Moreover, CKEM messages
sent by either party are indistinguishable from random strings.

Secondly, we replace a commit/decommit sequence with a covert commit-
ment c, release of the committed plaintext m (which must be pseudorandom),
and a covert CKEM performed on a statement that there exists decommitment
d (the CKEM receiver’s witness) s.t. d decommits c to m. We use a perfectly
binding commitment so that the notion of language membership suffices to define
this problem. Specifically, we implement the commitment scheme using covert
Cramer-Shoup encryption, which plays two additional roles in the protocol con-
struction: First, it assures non-malleability of each commitment/ciphertext. Sec-
ondly, it allows for straight-line extraction of player’s inputs using the decryption
keys as a trapdoor for the CRS which contains a Cramer-Shoup encryption pub-
lic key, which allows for security across concurrently executed protocol instances.
Finally, the arithmetic structure of Cramer-Shoup encryption enables an efficient
covert OT and efficient CKEM’s on statements on committed/encrypted values.
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These are the basic guidelines we follow, but assuring (concurrent) simu-
latability of each party in a secure two-party computation, doing so efficiently,
and doing so in the covert setting where the protocol view of each party must
look like a random beacon except when the admission function evaluates to true
and the functionality reveals computation outputs, requires several adjustments,
which we attempt to explain in the technical protocol overview below.

Defining the Garbled Circuit. We first explain how we use the covert gar-
bling procedure GCgen of [28], see Sect. 4, to enable covert computation of func-
tionality FC(f,g) assuming the simplified case where the party that garbles the
circuit is Honest but Curious. Our basic design follows the standard Yao’s two-
party computation protocol but instantiates it using covert building blocks, i.e.
party B will use covert garbling on a circuit that corresponds to functionality
FC(f,g) (more on this below), it will send the garbled circuit together with the
input wire keys to A, either directly, for wires corresponding to B’s inputs, or
via a covert OT, for wires corresponding to A’s inputs, and A will evaluate the
garbled circuit to compute the output. This will work if the circuit garbled by
B is appropriately chosen, as we explain here.

Step 1: Encoding B’s Output. Note that functionality FC(f,g) has two-sided
output, so we must include an encoding of B’s output in the outputs of the
garbled circuit in such a way that (1) this encoding looks random to A, and (2)
A cannot modify this encoding to cause B to output any other value (except
⊥). Let h be the two-sided output function at the heart of functionality FC(f,g),
namely h(x, y) = (z, v) s.t. (z, v) = f(x, y) if g(x, y) = 1 and (z, v) = (⊥,⊥)
if g(x, y) = 0. Let nx, ny, nz, nv define resp. the length of input x of party
A, input y of party B, output z of A, and output v of B. Let fz, fv satisfy
f(x, y) = (fz(x, y), fv(x, y)). We will encode B’s output in the outputs of
the garbled circuit evaluated by A using the standard way for converting the
garbled circuit technique into secure computation of a two-sided function: If
ts = {t0i , t

1
i }i∈[nv ] is the set of garbled circuit keys on the wires encoding B’s

output v in the garbled circuit for h, then the garbled circuit evaluator A
computes (z, ts[: v]) where (z, v) = f(x, y) (if g(x, y) = 1). Note that ts[: v] is
an encoding of v which satisfies the above two conditions, and if A sends it to
B, B can decode it to v using set ts. Even though this encoding of B’s output
is implicit in the garbled circuit technique, we will add ts to the inputs and
ts[: v] to the outputs of the function f |g we will garble, because this simplifies
our notation and lets us use the covert garbling procedure GCgen of [28] as
a black-box. In other words, we modify h to h′ which on input (x, (y, ts))
outputs (z, ts[: v]) for (z, v) = f(x, y) if g(x, y) = 1 and (⊥,⊥) if g(x, y) = 0.
Step 2: Making ⊥ Output Random. Next, note that if B garbles the circuit
for h′ then for any x, y s.t. g(x, y) = 0, party A on input x will distinguish
between a random beacon and an honest party B which executes the protocol
on input y. (This would not be a covert computation of FC(f,g) because FC(f,g)

assures that A(x) cannot distinguish B(y) for y s.t. (y �=⊥ ∧g(x, y) = 0), from
a random beacon B(⊥).) This is because in the 2nd case the garbled circuit
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evaluates to h′(x, y, ts) = (⊥,⊥), and in the 1st case A will interpret random
strings as a garbled circuit and the input wire keys, and those will evaluate
to random outputs. To make the circuit evaluate to random outputs in the
case g(x, y) = 0, we add (nz + nvτ)-bit strings c and d to respectively A’s
and B’s input, we define h′′((x, c), (y, d, ts)) as (z, ts[: v]) for (z, v) = f(x, y)
if g(x, y) = 1, and as c ⊕ d if g(x, y) = 0, and we specify that both A and
B set input random c and d strings into the computation. Note that if B is
honest then setting the output to d instead of c ⊕ d in the g(x, y) = 0 case
would suffice, but a malicious B would be then able to set A’s output in the
g(x, y) = 0 case, because A treats the first nz bits of the circuit output as its
local output z.
Step 3: Adding Simulation Trapdoor. Finally, we add a “simulator escape”
input bit u to B’s inputs, and the final circuit we garble, function f |g defined
below, is like h′′ but with condition (g(x, y)∧u), in place of condition g(x, y),
for deciding between output (z, ts[: v]) for (z, v) = f(x, y) and output c ⊕ d:

f |g((x, c), (y, d, ts, u)) =

⎧
⎨

⎩

(fz(x, y) , ts[: v]) if g(x, y) = 1 ∧ u = 1
where v = fv(x, y) and ts[: v] = [tv[1]1 , . . . , t

v[nv ]
nv ]

c ⊕ d otherwise,

Here is how we will use this “escape bit” in the g(x, y) = 1 clause in the
simulation: An honest real-world party B will set u = 1, in which case circuit
f |g is identical to h′′. However, a simulator A∗ for the case of corrupt party
A, will use the u = 0 escape clause to aid in its simulation as follows: A∗ will
send to A a garbled circuit for f |g as B would, but before it sends the wire
input keys corresponding to its inputs, it needs to extract inputs (x, c) which
A contributes to the covert OT. (This is why we base the covert OT of Sect. 4
on CCA(-covert) PKE of Cramer-Shoup: The receiver’s first message will be
a vector of Cramer-Shoup encryptions of the bits in string x|c, which the
simulator will straight-line extract using the decryption key as a trapdoor.)
Having extracted (x, c) from the covert OT, the simulator A∗, playing the
role of an ideal-world adversary FC(f,g)’s instance identified by sid, sends x
to FC(f,g) and receives FC(f,g)’s reply z. Note that if A∗ sets u = 0 then the
only part of its input that matters is d, because f |g will outputs c ⊕ d to A.
Simulator A∗ will then prepare d as follows: If z �=⊥, i.e. the input y to the
ideal-world party B must be such that g(x, y) = 1, simulator A∗ picks t′ as a
random nvτ string and sets d = c⊕ (z|t′). In this way the garbled circuit will
output c ⊕ d = z|t′. Since t′ is a sequence of nv random bitstrings of length
τ , string z|t′ is distributed identically to the circuit output z|ts[: v] which A
would see in an interaction with the real-world party B(y). Moreover, A∗

can detect if A tries to cheat the real-world party B by sending a modified
encoding of B’s output: If A sends back the same t′ which A∗ embedded
in the circuit output, then A∗ sends (Output, sid, B,T) to FC(f,g), and if A
sends any other value, in which case the real-world B would reject, A∗ sends
(Output, sid, B,F) to FC(f,g).
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Notation for Garbled Circuit Wires. We will find it useful to fix a notation
for groups of wires in the garbled circuit f |g depending on the part of the input
they encode. Note that f |g takes input ((x, c), (y, d, ts, u)). We will use W to
denote all the input wires, and we will use X,C, Y,D, T, U to denote the sets
of wires encoding the bits of respectively x, c, y, d, ts, u, where |X| = nx, |Y | =
ny, |T | = 2nvτ, |C| = |D| = nz + nvτ, |U | = 1. We denote the set of wires for A’s
inputs as X = X ∪ C and the set of wires for B’s inputs as Y = Y ∪ D ∪ T ∪ U .
If bitstring s is formed as concatenation of any of the circuit inputs x, c, y, d, t, u
and w ∈ W then s[w] denotes the bit of s corresponding to input wire w.

Fully Malicious Case. In a simple usage of the cut-and-choose technique for
garbled circuits, party B would use GCgen(f |g) to prepare n = O(τ) garbled
circuit instances (gc1, ks1), . . . , (gcn, ksn), would send (gc1, . . . , gcn) to A, who
would choose a random subset S ∈ [n] of n/2 elements, send it to B, who would
then open the coins it used in preparing gci’s for i ∈ S, and proceed with the
OT’s and sending its input wire keys for all gci’s for i �∈ S. Party A would then
check that each gci for i ∈ S is formed correctly, and it would evaluate each gci

for i �∈ S. If at least n/4 of these returned the same value w, A would interpret
this as the correct output w = (z, ts[: v]) of f |g, output z locally and send ts[: v]
to B, who would decode it to its output v. In order to enforce consistency of the
inputs which both parties provide to circuit instances {gci}i�∈S , we would have
each party to commit to their inputs to f |g, and then use efficient ZK proofs
that the keys B sends and the bits A chooses in the OT’s for the evaluated
gci instances correspond to these committed inputs. Further, B would need to
commit to each key in the wire key sets {ksi}i∈[n], and show in a ZK proof that
the keys it sends and enters into the OT’s for i �∈ S are the committed keys. Our
protocol uses each of the elements of this sketch, but with several modifications.

Step 1: ZK →CKEM, Com/Decom →CKEM. First, we follow the above
method using covert commitments, covert circuit garbling, and covert OT.
Second, we replace all the ZK proofs with covert simulation-sound CKEM’s.
Next, note that circuits {gci}i∈[n] in themselves are indistinguishable from
random by covertness of the garbling procedure, but if gci’s were sent in the
clear then B could not then open the coins used in the preparation of gci’s
for i ∈ S, because coin rgci together with gci s.t. (gci, ksi) = GCgen(f |g; rgci )
forms a publicly verifiable (commitment, decommitment) pair. We deal with
it roughly the way we deal with general (commitment, decommitment)
sequence. In this specific case, we replace gci’s in B’s first message with covert
commitments to both the circuits, cgci ← Compk(gci; r

cgc
i ), and to all the input

wire keys, ckw,b
i ← Epk(k

w,b
i ; rcki,w,b). When B sends rgci for i ∈ S, A can derive

(gci, {kw,b
i }w,b) ← GCgen(f |g; rgci ), and now A has a (commitment, message)

pair (c,m) = (cgci, gci) and (encryption, message) pairs (c,m) = (ckw,b
i , kw,b

i ),
while B has the randomness r s.t. c = Compk(m; r) or c = Epk(m; r). Since we
implement Com(m) as E(H(m)), both instances can be dealt with a covert
CKEM, with sender A and receiver B, for the statement that (c,m) is in the
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language of correct (ciphertext, plaintext) pairs for Cramer-Shoup encryp-
tion, i.e. Le�(pk). Finally, to covertly encode the random n/2-element subset
S chosen by A, we have A send to B not the set S but the coins rSG which A
uses in the subset-generation procedure SG which generates a random n/2-
element subset on n-element set.

Let us list the CKEM’s which the above procedure includes so far. A has
to prove that it inputs into the OT’s for all i �∈ S the same bits which A
(covertly) committed in its first message. Recall that in the covert OT based
on the Cramer-Shoup encryption (see Sect. 4) the receiver’s first message is
the encryption of its bit. We will have A then commit to its bits by encrypt-
ing them, and so the proof we need is that the corresponding plaintexts are
bits, and for that purpose we will use a CKEM for language Lbit�(pk) (see
language LA below). Party B has more to prove: First, it needs to prove all
the Le�(pk) statements as explained above (these correspond to items #1,
#2, and #3 in the specification of LB below). Second, B proves that its com-
mitted inputs on wires Y \D are bits, using CKEM for Lbit�(pk), and that for
i �∈ S it reveals keys consistent with these committed inputs. Both statements
will be handled by CKEM for language Ldis, see below, which subsumes lan-
guage Lbit�(pk) (see item #4 in the specification of LB). Third, for reasons
we explain below, B will not prove the consistency of inputs d it enters into
n instances of garbled circuit f |g, hence for i �∈ S and w ∈ D it needs only to
prove that the revealed key kw,b

i is committed either in ckw,0
i or ckw,1

i , which
is done via CKEM for Ldis′ (see below, and item #5 in the specification of
LB). Finally, B proves that it computes the OT responses otrwi correctly, for
i �∈ S and w ∈ X, on A’s first OT message ctwi using the keys committed in
ckw,0

i , ckw,1
i , which is done via CKEM for Lotr (see below, and item #6 in the

specification of LB).
Step 2: Input Consistency Across Garbled Circuit Copies. We must ensure
that A and B input the same x and y into each instance of the garbled
circuit f |g. However, the decision process in our cut-and-choose approach
is that A decides whether the outputs wi of n/2 garbled circuits i �∈ S it
evaluates correspond to (z, ts[: v]) for (z, v) = f(x, y) or to random bits, is
that it decides on the former if n/4 of the wi’s are the same. Hence, to prevent
B from getting honest A into that case if g(x, y) = 0 (or u = 0), A chooses
each ci at random, so in that case the (correctly formed) circuits in [n] \ S
output wi = ci ⊕ di values which B cannot control. Consequently, B must
also choose each di independently at random, which is why B does not have
to commit to the inputs on wires in D.
Step 3: Straight-Line Extraction of Inputs. As we sketched before, we get
concurrent security by using CCA-covert encryption as, effectively, a non-
malleable and straight-line extractable covert commitment. Each player com-
mits to its input bits by encrypting them (except B does not encrypt its inputs
on D wires), and the simulator decrypts the bits effectively contributed by a
malicious party. However, for the sake of efficient CKEM’s we need these bit
encryptions to use a “shifted” form, i.e. an encryption of bit b will be Epk(gb)
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and not Epk(b). This is because the Cramer-Shoup encryption E has group G
as a message space. Also, if bit b is encrypted in this way then we can cast
the language Lbit (and languages Ldis and Ldis′) as an LMI language with an
efficient covert CKEM.
Step 4: Encoding and Encrypting Wire Keys. To enable efficient covert
CKEM’s for the languages we need we also modify the garbling procedure
GCgen of [28] so it chooses wire keys kw,b corresponding to A’s input wires,
i.e. for w ∈ X, as random elements in G, but keys kw,b corresponding to
B’s input wires, i.e. for w ∈ Y , as random elements in Zp. Note that either
value can be used to derive a standard symmetric key, e.g. using a strong
extractor with a seed in the CRS. We use the same encryption E to com-
mit to these wire keys, but we commit them differently depending on whose
wires they correspond to, namely as ckw,b = Epk(kw,b) for w ∈ X, because
kw,b ∈ G for w ∈ X, and as ckw,b = Epk(gkw,b

) for w ∈ Y , because kw,b ∈ Zp

for w ∈ Y . The reason we do this is that values ckw,b for w ∈ X take part
in the CKEM for correct OT response language Lotr, and since in OT the
encrypted messages (which are the two wires keys kw,0 and kw,1) will be in
the base group, hence we need the same keys to be in the base group in com-
mitments ckw,0, ckw,1. By contrast, values ckw,b for w ∈ Y take part in the
CKEM of language Ldis, for proving consistency of key kw opened by B with
B’s commitment ctw to bit b on wire w. Bit b is in the exponent in ctw, and
using homomorphism of exponentiation, this allows us to cast language Ldis
as an LMI language provided that kw is also in the exponent in ckw,0 and
ckw,1.
Step 5: Using CKEM Keys to Encrypt and/or Authenticate. We will run two
CKEM’s: After A’s first message, containing A’s input commitments, we run
a covert CKEM for language LA for correctness of A’s messages, with sender
B and receiver A, denoting the keys this CKEM establishes as KB for B and
K′

B for A. Subsequently, B will encrypt its messages under key KB, using
covert encryption (SE,SD) implemented as SE0

K(m) = G|m|(F(K, 0)) ⊕ m and
SD0

K(ct) = G|ct|(F(K, 0)) ⊕ ct, where F is a PRF with τ -bit keys, arguments,
and outputs, G� is a PRG with τ -bit inputs and �-bit outputs. Similarly when
B responds as described above given A’s chosen set S ⊂ [n], we run a covert
CKEM for language LB for correctness of B’s messages, with sender A and
receiver B, establishing keys KA for A and K′

A for B, and A will encrypt
its subsequent messages using the same covert encryption. In the last two
messages we will use values F(KB , 1), F(KB , 2), and F(KA, 1) derived from
the same CKEM keys as, resp. a one-time authenticator for A’s message m2

A,
an encryption key for B’s final message m3

B , and a one-time authenticator for
that same message.

Covert CKEM’s for Linear Map Image Languages. Protocol ΠCOMP uses
CKEM’s for two languages: Language LA which contains correctly formed wire-
bit ciphertexts sent by A, and language LB which contains correctly formed
messages sent by B. Both are formed as conjunctions of LMI languages, hence
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both are LMI languages as well. Let (Kg,E,D) be the CCA-covert Cramer-Shoup
PKE. All languages below are implicitly parametrized by the public key pk
output by Kg(1τ ) and some label �. (Formally key pk and label � are a part of
each statement in the given language.) Recall that the public key pk specifies
the prime-order group setting (g,G, p).

We first list all the component languages we need to define LA and LB.
We defer to full version [14] for the specification of the mapping between the
instances of each language to instance (C,M) of LMIn,m for some n,m.
Language Le of correct (ciphertext,label,plaintext) tuples for plaintext m ∈ G:

Le�(pk) = {(ct,m) s.t. ct ∈ E�
pk(m)}

Language Lbit of “shifted” encryptions of a bit:

Lbit�(pk) = {ct s.t. ∃b ∈ {0, 1} (ct, gb) ∈ Le�(pk)}
Language Ldis is used for proving that a key corresponding to some sender’s
wire in Yao’s garbled circuit is consistent with the two key values the sender
committed in ck0, ck1 and with the bit the sender committed in ct. To cast this
language as a (simple) LMI language we use the “shifted” version of Cramer-
Shoup encryption in these statements, i.e. we encrypt gm ∈ G instead of m ∈ Zp.
In other words, Ldis consists of tuples (m, ct, ck0, ck1) s.t. either (ct encrypts g0

and ck0 encrypts gm) or (ct encrypts g1 and ck1 encrypts gm):

Ldis�,i(pk) = {(ct,m, ck0, ck1) s.t. ∃b ∈ {0, 1} (ct, gb) ∈ Le�(pk)∧(ckb, g
m) ∈ Le[�|i|b](pk)}

Language Ldis′ is a simplification of Ldis which omits checking the constraint
imposed by ciphertext ct.
Language Lotr is used for proving correctness of a response in an Oblivious
Transfer of Aiello et al. [2], formed using procedure OTrsp (see Sect. 4), which
the sender uses in Yao’s protocol to send keys corresponding to receiver’s wires:

Lotr�(pk) = {(otr, ct, ck0, ck1) s.t. ∃k0, k1, r

(ck0, k0) ∈ Le[�|0](pk) ∧ (ck1, k1) ∈ Le[�|1](pk) ∧ otr = OTrsppk(ct, k0, k1; r)}
We use the above component languages to define languages LA and LB as follows:

LA�A(pk) = {({ctw}w∈X , {ctwi }i∈[n],w∈C

)

s.t. ctw ∈ Lbit[�A|w](pk) for all w ∈ X

and ctwi ∈ Lbit[�A|w|i](pk) for all i ∈ [n], w ∈ X}

LB�B (pk) = {({(cgci,H(gci))}i∈[n]

{(kw,b
i , ckw,b

i )}i∈S,w∈X,b∈{0,1}

{(gkw,b
i , ckw,b

i )}i∈S,w∈Y ,b∈{0,1}
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{(kw
i , ctw, ckw,0

i , ckw,1
i )}i�∈S, w∈Y \D

{(kw
i , ckw,0

i , ckw,1
i )}i�∈S, w∈D

{(otrwi , ctwi , ckw,0
i , ckw,1

i )}i�∈S,w∈X

)

s.t.
(1) (cgci,H(gci)) ∈ Le[�B |i](pk) for i ∈ [n]

(2) (ckw,b
i , kw,b

i ) ∈ Le[�B |w|i|b](pk) for i ∈ S, w ∈ X, b ∈ {0, 1}
(3) (ckw,b

i , gkw,b
i ) ∈ Le[�B |w|i|b](pk) for i ∈ S, w ∈ Y , b ∈ {0, 1}

(4) (ctw, kw
i , ckw,0

i , ckw,1
i ) ∈ Ldis[�B |w],i(pk) for i �∈ S, w ∈ Y \D

(5) (kw
i , ckw,0

i , ckw,1
i ) ∈ Ldis′[�B |w],i(pk) for i �∈ S, w ∈ D

(6) (otrwi , ctwi , ckw,0
i , ckw,1

i ) ∈ Lotr[�B |w](pk) for i �∈ S, w ∈ X}

Notation in Fig. 3. Procedures (Kg,E,D), (GCgen,GCev), Com, SG, (OTrsp,
OTfin), CKEM, (F, G,SE,SD) are as explained above. If P is a randomized algo-
rithm we sometimes explicitly denote its randomness as rP, with the implicit
assumption that it is a random string. Expression {xi ← P}i∈R denotes either a
loop “perform xi ← P for each i in R”, or a set of values {xi}i∈R resulting from
executing such a loop. Letter b always stands for a bit, and expressions {. . .}b

stand for {. . .}b∈{0,1}.

Cost Discussions. Since the Covert CKEM’s of Sect. 6 have the same asymp-
totic computation and bandwidth costs as the HVZK proofs for the same lan-
guages, protocol ΠCOMP realizes the concurrent covert 2PC functionality FC(f,g)

with O(1) rounds, O(τ |C|) bandwidth, O(τ |C|) symmetric cipher operations,
and O(τ |W |) exponentiations, where |C| is the number of gates and |W | is the
size of the input in the circuit for function f |g, and τ is the security parame-
ter. This places covert computation in the same efficiency ballpark as existing
O(1)-round secure (but not covert) “cut-and-choose over garbled circuits” 2PC
protocols. Of course there remains plenty of room for further improvements: Pro-
tocol ΠCOMP uses 2.4 · τ garbled circuit copies instead of τ as the 2PC protocols
of [12,17], it does not use an OT extension, and it does not use many other
bandwidth and cost-saving techniques that were developed over the last decade
to increase the efficiency of standard, i.e. non-covert, 2PC protocols. However,
we see no inherent reasons why, using the techniques we employed here, many
of the same cost-saving techniques cannot be adopted to covert computation.

Here we single out two particular sources of an “efficiency gap” between our
covert 2PC and current secure 2PC protocols that perhaps stand out. First,
protocol ΠCOMP exchanges O(τ) garbled circuits instead of O(κ) where κ is the
statistical security parameter. We could do the latter as well, but the result
would realize a weaker functionality than FC(f,g) defined in Sect. 3. Namely, with
probability 2−κ the functionality would allow the adversary to specify any func-
tion on the joint inputs, and this function would be computed by the honest
party. Secondly, circuit f |g which is garbled in protocol ΠCOMP increases the
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Fig. 3. Protocol ΠCOMP for concurrent 2-party covert function computation FC(f,g)

number of input wires of the underlying circuit for FC(f,g) by O(nOτ) where nO

is the bitsize of the output of function f . However, since this extension in the
input wire count was done for conceptual simplicity (see a note on Encoding B’s
Output on page 19), we hope that it might be avoidable with a more careful
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analysis. Moreover, since our covert 2PC is self-composable and both sides com-
mit to their input bits in the same way, two instances of this protocol can be
run in parallel for one-sided output versions of f , one for A’s output and one for
B’s output, on same committed inputs. This multiplies all the other costs by 2
but drops the O(nOτ) growth in the circuit size.

Theorem 2. Protocol ΠCOMP in Fig. 3 realizes the concurrent 2-party covert
computation functionality FC(f,g) in the CRS model, assuming (Kg,E,D) is a
covert CCA public key encryption, F is a PRF, G is a PRG, (GCgen,GCev) is a
covert garbling scheme, (OTreq,OTrsp,OTfin) is a covert OT, and CKEMLA(pk)

and CKEMLB(pk) are covert zero-knowledge and simulation-sound CKEM’s for
languages resp. LA and LB.

Fig. 4. Part 1 of simulator A∗, for ΠCOMP sessions with honest party B.

For lack of space we only show the algorithm of an ideal adversary A∗, i.e.
the simulator, divided into two parts depending on whether the ideal adversary
simulates an instance of an honest party B, shown in Fig. 4, or an honest party
A, shown in Fig. 5. The proof, included in the full version of the paper [14],
shows that no efficient environment can distinguish an interaction with A∗ and
ideal honest players interacting via functionality FC(f,g) (where A∗ additionally
interacts with a local copy of the real-world adversary Adv), from an interaction
with Adv and real-world honest players who interact via our protocol ΠCOMP.
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Fig. 5. Part 2 of simulator A∗, for ΠCOMP sessions with honest party A.
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Abstract. A basic question of cryptographic complexity is to combina-
torially characterize all randomized functions which have information-
theoretic semi-honest secure 2-party computation protocols. The corre-
sponding question for deterministic functions was answered almost three
decades back, by Kushilevitz [Kus89]. In this work, we make progress
towards understanding securely computable randomized functions. We
bring tools developed in the study of completeness to bear on this prob-
lem. In particular, our characterizations are obtained by considering
only symmetric functions with a combinatorial property called simplicity
[MPR12].

Our main result is a complete combinatorial characterization of ran-
domized functions with ternary output kernels, that have information-
theoretic semi-honest secure 2-party computation protocols. In particu-
lar, we show that there exist simple randomized functions with ternary
output that do not have secure computation protocols. (For determinis-
tic functions, the smallest output alphabet size of such a function is 5,
due to an example given by Beaver [Bea89].)

Also, we give a complete combinatorial characterization of randomized
functions that have 2-round information-theoretic semi-honest secure 2-
party computation protocols.

We also give a counter-example to a natural conjecture for the full
characterization, namely, that all securely computable simple functions
have secure protocols with a unique transcript for each output value.
This conjecture is in fact true for deterministic functions, and – as our
results above show – for ternary functions and for functions with 2-round
secure protocols.

1 Introduction

Understanding the nature of secure multiparty computation has been a key
problem in modern cryptography, ever since the notion was introduced. While
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this has been a heavily researched area, some basic problems have remained
open. In this work we explore the following fundamental question:

Which randomized functions have information-theoretic semi-honest
secure 2-party computation protocols?

The corresponding question for deterministic functions was answered almost
three decades back, by Kushilevitz [Kus89] (originally, restricted to symmetric
functions, in which both parties get the same output). The dual question of which
functions are complete, initiated by Kilian [Kil88], has also been fully resolved,
for semi-honest [MPR12] and even active security [KMPS14]. However, the above
question itself has seen little progress since 1989.

In this work, we make progress towards understanding securely computable
randomized functions. (Throughout this paper, security will refer to information-
theoretic semi-honest security.) We bring tools developed in the study of com-
pleteness to bear on this problem. In particular, our characterizations are
obtained by considering only symmetric functions with a combinatorial prop-
erty called simplicity [MPR12]. (As shown in [MPR12], a function is semi-honest
securely computable if and only if it is simple, and a related function called its
“kernel” – which is always a simple function – is securely computable.)

One may start off by attempting to generalize the result of Kushilevitz
[Kus89] so that it applies to randomized functions as well. This characterization
showed that any securely computable deterministic function has a secure proto-
col in which the two parties take turns to progressively reveal more and more
information about their respective inputs – by restricting each input to smaller
and smaller subsets – until there is exactly enough information to evaluate the
function. However, a näıve generalization of this result fails for randomized func-
tions, as it is possible for a securely computable function to have every output
value in the support of every input combination; thus the input spaces cannot
be shrunk at all during a secure protocol.

A more fruitful approach would be to consider the protocol for deterministic
functions as partitioning the output space at each step, and choosing one of the
parts. This is indeed true when considering deterministic functions which are
simple. Such a protocol results in a unique transcript for each output value. An
a priori promising conjecture would be that every securely computable simple
function – deterministic or randomized – has such a unique-transcript protocol.
Unfortunately, this conjecture turns out to be false.

However, for small output alphabets, we can prove that this conjecture holds.
Indeed, we show that the exact threshold on the alphabet size where this con-
jecture breaks down is 4. When the output alphabet size of a simple function is
at most 3, we give a combinatorial characterization of secure computability; our
characterization implies that such functions do have unique-transcript secure
protocols. We also characterize simple functions which have two-round secure
protocols, which again turn out to all have unique-transcript protocols.

We leave the full characterization as an important open problem.
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Our Results

– Our main result is a complete combinatorial characterization of randomized
functions with ternary output kernels, that have information-theoretic semi-
honest secure 2-party computation protocols. In particular, we show that
there exist simple randomized functions with ternary output that do not
have secure computation protocols. (For deterministic functions, the smallest
output alphabet size of such a function is 5, due to an example given by
Beaver [Bea89].)

– We also give a complete combinatorial characterization of randomized func-
tions that have 2-round information-theoretic semi-honest secure 2-party com-
putation protocols.

– We also give a counter-example to a natural conjecture for the full charac-
terization, namely, that all securely computable simple functions have secure
protocols with a unique transcript for each output value. This conjecture is
in fact true for deterministic functions, and – as our results above show – for
ternary functions and for functions with 2-round secure protocols.

1.1 Technical Overview

Prior work [MPR12,MPR13] lets us focus on symmetric functions: A randomized
function F is securely realizable if and only if it is “isomorphic” – i.e., essentially
equivalent, up to sampling additional local outputs – to a symmetric function
G called its kernel, and G itself has a secure protocol; see Theorem 3. Further
the kernel of F is easy to find and explicitly defined in Definition 2. Hence the
problem of characterizing secure computability of general randomized functions
reduces to the problem of characterizing secure computability of randomized
functions which are kernels. Such functions are symmetric and simple (a sym-
metric function G is simple, if Pr[G(x, y) = z] = ρ(x, z) · σ(y, z) for some fixed
functions ρ : X × Z → R+ and σ : Y × Z → R+, where X and Y are Alice’s and
Bob’s input domains and Z is their common output domain). As such, we work
with symmetric and simple functions.

Characterizing Ternary-Kernel Functions. Our main result could be stated as
follows:

Theorem 1. If a randomized function F has a kernel G with an output alphabet
of size at most 3, then F is securely computable if and only if F is simple and
there is some ordering of G’s output alphabet Z as (z1, z2, z3) and two functions
q : X → [0, 1] and r : Y → [0, 1], such that one of the following holds:

Pr[G(x, y) = z1] = q(x)

Pr[G(x, y) = z2] = (1 − q(x)) · r(y)

Pr[G(x, y) = z3] = (1 − q(x)) · (1 − r(y))

or

Pr[G(x, y) = z1] = r(y)

Pr[G(x, y) = z2] = (1 − r(y)) · q(x)

Pr[G(x, y) = z3] = (1 − r(y)) · (1 − q(x))
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Note that if the first set of conditions holds, there is a secure protocol in
which Alice either sends z1 as the output to Bob (with probability q(x)) or asks
Bob to pick the output; if Bob is asked to pick the output he sends back either
z2 as the output (with probability r(y)) or z3 otherwise. If the second condition
holds there is a symmetric protocol with Bob making the first move.

Surprisingly, these are the only two possibilities for G to have a secure proto-
col. To prove this, however, takes a careful analysis of the linear-algebraic con-
straints put on a protocol by the security definition and the fact that the function
is simple. We start by observing that a secure protocol for a symmetric simple
function must have a simulator that can simulate the transcript of an execution
merely from the output (rather than the corrupt party’s input and the output).
1 Then, supposing that the first message in the protocol is a single bit sent by
Alice, we identify that there is a quantity independent of either party’s input,
denoted by φ(z), that gives the probability of the first message being 0, condi-
tioned on the output being z. Specifying these quantities, φ(z) at each round
fully specifies the protocol. We show that

∑
z∈Z Pr[G(x, y) = z] · φ(z) = q(x),

a quantity independent of y. By carefully analyzing the constraints arising from
these equations, we prove Theorem 1.

Characterizing Functions Having 2-Round Protocols. Our second result is as
follows:

Theorem 2. A function F has a 2-round secure protocol iff its kernel has a
2-round unique-transcript protocol.

Observe that F has a 2-round secure protocol iff its kernel has one too, as F is
isomorphic to its kernel and a secure protocol for a function can be transformed
to one for an isomorphic function without changing the communication involved.
What needs to be proven is that if the kernel (or any symmetric simple function)
has a 2-round secure protocol, then it has a 2-round unique-transcript protocol.
We do this by identifying an equivalence relation among the outputs, such that
any 2-round protocol with (say) Alice making the first move will have Alice’s
input only influencing which equivalence class of the output is chosen, and then
Bob’s input influences which output is chosen, given its equivalence class.

1.2 Related Work

There has been a large body of work regarding the complexity of secure multi-
party and 2-party computation. [MPR13] surveys many of the important results
in the area. Kushilevitz [Kus89] gave a combinatorial characterization of securely
computable two-party deterministic functions (with perfect security), along with

1 This is not true for every symmetric function. For instance, in a semi-honest secure
protocol for XOR, the transcript must necessarily reveal both parties’ inputs, but
this cannot be simulated from the output without knowing one party’s input. A
function like XOR is not simple, though it is isomorphic to one.
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a generic round-optimal secure protocol for functions that satisfy the character-
ization condition. This was later extended to statistical security and also to
security against active corruption [MPR09,KMQR09].

Among randomized functions in which only Bob gets any output, simple
functions have a deterministic kernel corresponding to a function of Alice’s input
alone, and hence are always securely computable. This observation was already
made by Kilian [Kil00]. Recently, Data [Dat16] considered the same problem
with a probability distribution on the inputs, and gave communication-optimal
protocols in different security settings.

2 Preliminaries

A general randomized function is denoted by a conditional probability distribu-
tion pZAZB |XY , where X,Y,ZA, ZB take values in finite alphabets X ,Y,ZA,ZB ,
respectively. In a protocol for computing this function, when Alice and Bob
are given inputs x ∈ X and y ∈ Y, respectively, they should output zA ∈
ZA and zB ∈ ZB respectively, such that (zA, zB) is distribute according to
pZAZB |X=x,Y =y.

Notation. We shall consider various discrete random variables (inputs, outputs,
protocol messages). We denote the probability mass function of a random vari-
able U by pU . For random variables (U, V ), we denote the conditional probability
mass function of U conditioned on V by pU |V . [n] denotes the set {1, · · · , n}.

Protocols. We consider computationally unbounded two-party protocols, with-
out any setup. Such a protocol Π is fully defined by the input and output
domains, the next message functions and the output functions for Alice and Bob.
Let (X ,ZA,nextA

Π , outA
Π) and (Y,ZB ,nextB

Π , outB
Π) denote the input domain,

output domain, the next message function and the output function, for Alice
and Bob, respectively. The functions are all potentially randomized. nextA

Π and
nextB

Π output the next message given the transcript so far and the local input.
(Note that in the information-theoretic setting, protocols need not maintain local
state.) Similarly, outA

Π and outB
Π map the transcript and local input to a local

output in ZA and ZB , respectively.
In running a protocol, Alice and Bob are first given inputs x ∈ X and y ∈ Y,

respectively. Then they take turns sending messages to each other according to
their next message functions, and in the end (recognizable by both parties) each
party produces an output according to its output function. We assume that the
protocol terminates with probability one after a finite number rounds.

Running a protocol induces a distribution over the set of all possible (com-
plete) transcripts, M. The protocol Π induces a conditional probability distri-
bution PrΠ [m|x, y], for every input x ∈ X , y ∈ Y and every m ∈ M. Suppose
that m = (m1,m2, . . . , ) is the transcript generated by Π when parties have
inputs x and y, where mi’s, for odd i, are sent by Alice, and mi’s, for even i,
are sent by Bob. Note that during the execution of a protocol, a message sent
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by any party is determined by its input and all the messages it has exchanged
so far; and conditioned on these two, the message is independent of the other
party’s input. Using this we can write PrΠ [m|x, y] = α(m,x)β(m, y), where
α(m,x) = Πi:i is oddPrΠ [mi|m<i, x], and β(m, y) = Πi:i is evenPrΠ [mi|m<i, y].

Secure Protocols. Throughout this paper security refers to information-theoretic
semi-honest security. We restrict ourselves to finite functions and perfect secu-
rity. We remark that all our results can be extended to statistical security, as we
shall show in the full version.

Definition 1. A protocol Π for computing a function pZAZB |XY , with tran-
script space M, is said to be (perfectly semi-honest) secure iff there exist func-
tions S1 : M × X × ZA → [0, 1] and S2 : M × Y × ZB → [0, 1] such that
PrΠ [m|x, y, zA, zB ] = S1(m,x, zA) = S2(m, y, zB) for all m ∈ M and x, y, zA, zB

such that pZAZB |XY (zA, zB |x, y) > 0.

Kernel and Simple Functions. Maji et al. [MPR12] simplified the secure compu-
tation of a general randomized function pZAZB |XY to secure computation of a
symmetric randomized function pZ|XY . For that they defined weighted charac-
teristic bipartite graph of a randomized function pZAZB |XY as G(pZAZB |XY ) =
(V,E,wt), where

– V = (X × ZA) ∪ (Y × ZB),
– E = {((x, zA), (y, zB)) : pZAZB |XY (zA, zB |x, y) > 0}, and
– the weight function wt:(X × ZA) × (Y × ZB) → [0, 1] is defined as

wt((x, zA), (y, zB)) :=
pZAZB |XY (zA, zB |x, y)

|X | × |Y| .

Note that if ((x, zA), (y, zB)) /∈ E, then wt((x, zA), (y, zB)) = 0.

Let k be the number of connected components in the above-defined graph. We
say that G(pZAZB |XY ) = (V,E,wt) is a product distribution graph, if there exist
probability distributions p over X ×ZA, q over Y ×ZB , and c over [k], such that
for all (x, zA) ∈ X × ZA and (y, zB) × Y × ZB , if ((x, zA), (y, zB)) lies in the jth

connected component of G(pZAZB |XY ) = (V,E,wt), then wt((x, zA), (y, zB)) =
p(x, zA) · q(y, zB)/cj , otherwise wt((x, zA), (y, zB)) = 0.

Definition 2 (Kernel – Common-information in a randomized function
[MPR12]). The kernel of a randomized function pZAZB |XY is a symmetric ran-
domized function, which takes x and y from the parties and samples (zA, zB)
according to pZAZB |X=x,Y =y. Then it outputs to both parties the connected com-
ponent of G(pZAZB |XY ) which contains the edge ((x, zA), (y, zB)).

Note that the kernel of pZAZB |XY is a symmetric randomized function.
We denote it by pZ|XY , where the alphabet of Z is Z = {z1, z2, . . . , zk},
where k is the number of connected components in G(pZAZB |XY ). The ker-
nel pZ|XY is defined as follows: for every j ∈ [k], pZ|XY (zj |x, y) :=
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∑
(zA,zB) pZAZB |XY (zA, zB |x, y), where summation is taken over all (zA, zB)’s

such that ((x, zA), (y, zB)) lies in the jth connected component in G(pZAZB |XY ).
The following theorem was proved in [MPR12].

Theorem 3 [MPR12, Theorem 3]. A randomized function pZAZB |XY is securely
computable if and only if G(pZAZB |XY ) is a product distribution graph and the
kernel of pZAZB |XY is securely computable.

Theorem 3 reduces secure computablity of pZAZB |XY to secure computability
of the kernel of pZAZB |XY and a simple combinatorial check on pZAZB |XY (which
is to check whether the weighted characteristic bipartite graph of pZAZB |XY is
a product distribution graph or not).2

Definition 3. A symmetric randomized function pZ|XY is said to be simple if
there exist two functions ρ : X × Z → R+ and σ : Y × Z → R+ such that for all
x ∈ X , y ∈ Y, and z ∈ Z, pZ|XY (z|x, y) = ρ(x, z) · σ(y, z).

Here R+ denotes the set of non-negative real numbers. For deterministic
functions, instead of R+, one can take {0, 1} in the above definition.

Remark 1. The original definition of a simple function given in [MPR12] seems
to be different from our definition. There it was defined for a general randomized
function pZAZB |XY , which defined simplicity in terms of isomorphism between
a function and its kernel, whereas we defined simplicity for symmetric func-
tions only. Since isomorphic functions are essentially equivalent – up to sampling
additional local outputs – and the kernel of a general randomized function is a
symmetric function, our definition of simplicity is equivalent to the one given in
[MPR12].

Note that the Kernel of a securely computable randomized function
pZAZB |XY is a simple function. As shown in [MPR12], a secure protocol for the
kernel can be transformed to one for the original function itself, and vice versa,
without changing the communication involved. Thus we shall focus on character-
izing secure computability for kernel functions, which are all symmetric, simple
functions.

The combinatorial definition of simplicity above will be crucially used in our
analysis. Indeed, the factorization property clarifies otherwise obscure connec-
tions and elusive constraints.

For protocols for simple and symmetric functions, the output can be written
as a function merely of the transcript and we can simulate the transcript just
based on the (common) output, without needing either party’s input. We prove
the following lemma in AppendixA.

Lemma 1. If Π is a perfectly semi-honest secure protocol for a simple symmet-
ric function pZ|XY , then there are (deterministic) functions outΠ : M → Z and
S : M → [0, 1] such that for all x ∈ X , y ∈ Y, z ∈ Z and m ∈ M,

outA
Π(m,x) = outB

Π(m, y) = outΠ(m) if PrΠ [m|x, y] > 0,

PrΠ [m|x, y, z] = S(m, z) if pZ|XY (z|x, y) > 0.

2 There are other easier checks; see [MPR12, Lemma 1] for details.
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Note that above, if z �= outΠ(m), S(m, z) = PrΠ [m|x, y, z] = 0. By writing
μ(m) = S(m, outΠ(m)) we have the following: for all x ∈ X , y ∈ Y, z ∈ Z s.t.
pZ|XY (z|x, y) > 0, and all m ∈ M, we have

PrΠ [m|x, y, z] =

{
μ(m) if outΠ(m) = z

0 otherwise.
(1)

Thus, for each z ∈ Z (such that for some (x, y), pZ|XY (z|x, y) > 0), μ
defines a probability distribution over {m ∈ M : outΠ(m) = z}. Also,
since PrΠ [m|x, y] = PrΠ [m, z|x, y], for z = outΠ(m), and PrΠ [m, z|x, y] =
PrΠ [m|x, y, z] · PrΠ [z|x, y] = μ(m) · pZ|XY (z|x, y) we have, for all x ∈ X , y ∈
Y,m ∈ M,

PrΠ [m|x, y] = μ(m) · pZ|XY (outΠ(m)|x, y). (2)

A Normal Form for pZ|XY . For a symmetric randomized functionality pZ|XY ,
we define the relation x ≡ x′ for x, x′ ∈ X to hold, if ∀y ∈ Y, z ∈ Z, p(z|x, y) =
p(z|x′, y); similarly we define y ≡ y′ for y, y′ ∈ Y. We define z ≡ z′ for z, z′ ∈ Z,
if there exists a constant c > 0 such that ∀x ∈ X , y ∈ Y, p(z|x, y) = c · p(z′|x, y).
We say that pZ|XY is in normal form if x ≡ x′ ⇒ x = x′, y ≡ y′ ⇒ y = y′, and
z ≡ z′ ⇒ z = z′.

It is easy to see that any pZ|XY can be transformed into one in normal form
pZ∗|X∗Y ∗ with possibly smaller alphabets, so that pZ|XY is securely computable
if and only if pZ∗|X∗Y ∗ is securely computable. We will assume in this paper that
pZ|XY is in normal form.

For the ease of notation, in this paper we often denote a randomized function
pZ|XY by an equivalent function f , such that f(x, y, z) = pZ|XY (z|x, y), for every
x ∈ X , y ∈ Y, z ∈ Z. We may use f and pZ|XY interchangeably.

Unique-Transcript Protocols. A unique transcript protocol Π for a symmetric
function is one in which each output z ∈ Z has a unique transcript that can result
in it: i.e., for every z ∈ Z, there is at most one m ∈ M such that outΠ(m) = z.
Such a protocol is always a secure protocol for the function it computes (and
has a deterministic simulator, which when given an output z assigns probability
1 to the unique transcript m such that outΠ(m) = z).

It follows from [Kus89] that every securely computable simple determin-
istic function has a unique-transcript secure protocol. The subset of securely
computable simple randomized functions that we characterize also have unique-
transcript protocols. However, we shall show an example of a securely com-
putable function (just outside the sets we characterize) which does not have any
unique-transcript protocol. Understanding such functions remains the next step
in fully characterizing securely computable randomized functions.

3 Characterization of Functions up to Ternary Output
Alphabet

As mentioned earlier, we shall represent a randomized function pZ|XY by an
equivalent function f : X × Y × Z → [0, 1], such that f(x, y, z) = pZ|XY (z|x, y).
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For a simple function f , we shall write f = (ρ, σ) where f(x, y, z) = ρ(x, z) ·
σ(y, z). Note that for every x ∈ X , y ∈ Y we have

∑
z∈Z f(x, y, z) = 1.

3.1 Compact Representation of Secure Protocols

We assume, w.l.o.g., that both Alice and Bob send only binary messages to each
other in every round, and only one party sends a message in one round. Suppose
Π is a protocol that securely computes a simple function f = (ρ, σ). In this
section we consider protocols of an arbitrary number of rounds, and so, w.l.o.g.,
we assume that in Π Alice and Bob take turns exchanging single bits and that
Alice sends the first message in Π.

Let q : X → [0, 1] be such that, Alice, given an input x chooses 0 as her
first message with probability q(x) (and 1 with probability 1 − q(x)). We define
Π(0) to be the protocol, with input spaces X (0) = {x ∈ X : q(x) > 0} and Y, in
which Alice’s first message is redefined to be 0 with probability 1 for every input
x ∈ X (0); otherwise Π(0) has identical next message and output functions as Π.
Let f (0) be the function computed by Π(0): i.e., f (0)(x, y, z) = PrΠ(0) [z|x, y] for
all x ∈ X (0), y ∈ Y, z ∈ Z. f (1) is defined symmetrically.

Claim 1. There exists a function φ : Z → [0, 1] such that for all x ∈ X , y ∈ Y,

q(x) =
∑

z∈Z
φ(z)f(x, y, z). (3)

Further, f (0)(x, y, z) = φ(z)
q(x) · f(x, y, z), for all x ∈ X (0), y ∈ Y, z ∈ Z.

Proof. We define
φ(z) :=

∑

m:m1=0,
outΠ(m)=z

μ(m), (4)

where μ(m) is as defined in (1). Here m1 denotes the first bit in the transcript
m. Note that we have φ(z) ∈ [0, 1] because for each z, μ defines a probability
distribution over Mz := {m : outΠ(m) = z} and φ(z) sums up the probabilities
for a subset of Mz.

To see that φ satisfies the claim, note that
∑

z∈Z φ(z)f(x, y, z) =∑
m:m1=0 μ(m) · f(x, y, outΠ(m)). Now, from (2), μ(m) · f(x, y, outΠ(m)) =

PrΠ [m|x, y]. Hence,
∑

z∈Z
φ(z)f(x, y, z) =

∑

m:m1=0

PrΠ [m|x, y] = q(x).

Also, for all x ∈ X (0), y ∈ Y, z ∈ Z,

f (0)(x, y, z) =
∑

m:
outΠ (m)=z

PrΠ(0) [m|x, y]=
∑

m:m1=0,
outΠ (m)=z

PrΠ [m|x, y]
q(x)

=
∑

m:m1=0,
outΠ (m)=z

μ(m)
f(x, y, z)

q(x)

=
f(x, y, z)

q(x)
φ(z).
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Note that since μ(m) is the probability of the transcript being m given
that the output is outΠ(m), (4) gives that for every z ∈ Z, φ(z) = Pr[m1 =
0|outΠ(m) = z], i.e., the probability of the first message being 0, conditioned on
the output being z. It follows from Claim 1 that a secure protocol is completely
and compactly described by the values of (φ(z))z∈Z similarly defined in every
round.

Remark 2. If φ(z) = c for all z ∈ Z, then q(x) = c for all x ∈ X (because∑
z∈Z f(x, y, z) = 1 for all (x, y)). Further, if c > 0, f (0) = f , and if c < 1,

f (1) = f . This corresponds to a protocol in which Alice sends an inconsequential
first message, which neither depends on her input, nor influences the output.
Hence, if Π is round-optimal, it cannot be the case that φ(z) = c for all z ∈ Z.

Note that (3) holds for every y ∈ Y. Hence, we obtain
∑

z∈Z

(
f(x, y, z) − f(x, y′, z)

)
φ(z) = 0 ∀x ∈ X , y, y′ ∈ Y. (5)

For each x ∈ X , this gives a system of |Y| − 1 equations, by choosing a fixed
y ∈ Y and all y′ ∈ Y \ {y} (one may write the equations resulting from other
choices of y, y′ as linear combinations of these |Y| − 1 equations).

3.2 Binary Output Alphabet

Theorem 4. If f : X × Y × Z → [0, 1] is a simple function with |Z| = 2, then
f is securely computable.

Proof. In fact, we can prove a stronger statement: if f is as above, then f(x, y, z)
is either independent of x or independent of y (or both). In that case, clearly f
is securely computable by a protocol in which one party computes the output
and sends it to the other party.

Since f is simple, we have f(x, y, z) = ρ(x, z) · σ(y, z), for all x ∈ X , y ∈
Y, z ∈ Z. Since |Z| = 2, we let Z = {0, 1}, and abbreviate ρ(x, z) as ρz(x)
and σ(y, z) as σz(y) (for z ∈ {0, 1}). Note that we have the following system of
equations:

ρ0(x)σ0(y) + ρ1(x)σ1(y) = 1 ∀(x, y) ∈ X × Y (6)

We consider 3 cases:

Case 1: ∃x, x′ ∈ X , x �= x′, ρ0(x)ρ1(x′) �= ρ0(x′)ρ1(x). In this case, one can solve
the system in (6) to get two values s0, s1 such that σ0(y) = s0 and σ1(y) = s1

for all y ∈ Y. (Concretely, s0 = ρ1(x
′)−ρ1(x)
Δ and s1 = ρ0(x)−ρ0(x

′)
Δ , where Δ =

ρ0(x)ρ1(x′)−ρ0(x′)ρ1(x) �= 0.) Hence f(x, y, z) = ρ(x, z) ·sz, depends only on x.

Case 2: ∀x, x′ ∈ X , ρ0(x)ρ1(x′) = ρ0(x′)ρ1(x), and∃x ∈ X , ρ0(x) = 0. In this
case we shall show that, ∀x′ ∈ X , ρ0(x′) = 0. Hence the function is the constant,
deterministic function, with f(x, y, 0) = 0 for all (x, y).

Let x be such that ρ0(x) = 0. Since ρ0(x)σ0(y) + ρ1(x)σ1(y) = 1 (for any
y ∈ Y), we have ρ1(x) �= 0. Then, since ∀x′ ∈ X , ρ0(x)ρ1(x′) = ρ0(x′)ρ1(x), we
have 0 = ρ0(x′)ρ1(x) which implies ρ0(x′) = 0, as claimed.
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Case 3: ∀x, x′ ∈ X , ρ0(x)ρ1(x′) = ρ0(x′)ρ1(x), and∀x ∈ X , ρ0(x) �= 0. In this

case, ∀x, x′ ∈ X , ρ1(x)
ρ0(x)

= ρ1(x
′)

ρ0(x′) = θ, say. Then, from (6), we have that
∀x ∈ X , y ∈ Y, ρ0(x) = 1

σ0(y)+θσ1(y)
and ρ1(x) = θ

σ0(y)+θσ1(y)
. Since the RHS in

these two expressions do not depend on x, there are constants r0, r1 such that
for all x ∈ X , ρ0(x) = r0 and ρ1(x) = r1. Hence f(x, y, z) = rz · σ(y, z), depends
only on y. 	


3.3 Ternary Output Alphabet

To prove Theorem 1, we can focus on kernel functions, or simple symmetric
functions. Let Z = {z1, z2, z3}. For a given symmetric function f with Z as its
output alphabet, we define two binary functions f̂i and fi, for any i ∈ [3], as
follows:

1. Output alphabet of f̂i is {zi, z∗}. For every x ∈ X , y ∈ Y, we define
f̂i(x, y, zi) := f(x, y, zi) and f̂i(x, y, z∗) :=

∑
j �=i f(x, y, zj).

2. Output alphabet of fi is Z \ {zi}. For every x ∈ X , y ∈ Y for which
f(x, y, zi) < 1, we define, fi(x, y, zj) := f(x, y, zj)/(1 − f(x, y, zi)), for
j ∈ [3] \ {i}. If f(x, y, zi) = 1 for some x ∈ X , y ∈ Y, we leave fi(x, y, zi)
undefined.

Note that if for some x̃ ∈ X , f(x̃, y, zi) = 1,∀y ∈ Y, then we need not define fi

for this particular x̃, because f(x̃, y, zj) = 0,∀j �= i and for all y ∈ Y. Similarly,
if for some ỹ ∈ Y, f(x, ỹ, zi) = 1,∀x ∈ X , then we need not define fi for this
particular ỹ, because f(x, ỹ, zj) = 0,∀j �= i and for all x ∈ X . In the following,
when we say that fi is securely computable, it must be defined for all inputs.

Theorem 5. Suppose f is simple and in normal form. Then, f is securely com-
putable if and only if there exists an i ∈ [3] such that both f̂i and fi are simple.

Remark 3. Since f̂i and fi are binary functions, being simple implies that they
are functions of only one party’s input (see proof of Theorem4). Theorem 1
follows by considering the different possibilities of which party’s input they can
each depend on.

Remark 4. In the case of functions with a binary output alphabet, we proved
in Subsect. 3.2 that if a function is simple, it is securely computable. However,
Theorem 5 lets us show that this is not true in general (see in Sect. 5.1).

Proof of Theorem 5. If |X | = 1 or |Y| = 1, then the theorem is trivially true.
So, in the following we assume that |X |, |Y| ≥ 2. First we show the only if (⇒)
part, and then the if (⇐) part.

⇒: Suppose f is securely computable. Since f is simple, we can write
f(x, y, z) = ρ(x, z)σ(y, z). Fix a round-optimal secure protocol Π for f . Below,
we assume that Alice sends the first message in Π (the case when Bob sends the
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first message being symmetric). Let φ be as in Claim 1. Since Π is round-optimal,
as discussed in Remark 2,

∃i, j ∈ [3] s.t. φ(zi) �= φ(zj). (7)

For i ∈ [3] and x ∈ X , y, y′ ∈ Y, we define

∇fx,y,y′
i := f(x, y, zi) − f(x, y′, zi). (8)

It follows from (5) and (8) that, ∀x ∈ X , y, y′ ∈ Y:

∇fx,y,y′
1 φ(z1) + ∇fx,y,y′

2 φ(z2) + ∇fx,y,y′
3 φ(z3) = 0. (9)

Since
∑

z∈Z f(x, y, z) = 1 holds for every x ∈ X , y ∈ Y, we have that
∑3

i=1 ∇fx,y,y′
i = 0, for every x ∈ X and y, y′ ∈ Y. Using this to replace ∇fx,y,y′

3

in (9), we can write, ∀x ∈ X , y, y′ ∈ Y:

∇fx,y,y′
1 (φ(z1) − φ(z3)) + ∇fx,y,y′

2 (φ(z2) − φ(z3)) = 0 (10)

(and two similar equations, replacing ∇fx,y,y′
1 and ∇fx,y,y′

2 , respectively).
We define a function typef : X × Y × Y → T, which classifies (x, y, y′) into

one of 5 possible types in the set T = {T1,T2:1,T2:2,T2:3,T3}, depending on for
which i, ∇fx,y,y′

i = 0:

1. typef (x, y, y′) = T1 if ∇fx,y,y′
1 = ∇fx,y,y′

2 = ∇fx,y,y′
3 = 0.

2. typef (x, y, y′) = T2:i if ∇fx,y,y′
i = 0 and ∀j ∈ [3] \ {i}, ∇fx,y,y′

j �= 0.

3. typef (x, y, y′) = T3 if ∀i ∈ [3], ∇fx,y,y′
i �= 0.

Note that since
∑3

i=1 ∇fx,y,y′
i = 0, it cannot be the case that exactly one of

∇fx,y,y′
i �= 0.

We define the type of f itself as the set:

T (f) := {τ ∈ T : ∃(x, y, y′) s.t. typef (x, y, y′) = τ}. (11)

We prove several claims regarding T (f) before showing that f̂i and fi are simple.
In proving these claims, we shall use the fact that f is simple, is in normal-form,
and |X |, |Y| > 1.

Claim 2. T3 /∈ T (f).

Proof. For the sake of contradiction, suppose there exists (x, y, y′) such that
typef (x, y, y′) = T3. Consider any x′ ∈ X \ {x}. From (10), we have

∇fx,y,y′
1 (φ(z1) − φ(z3)) + ∇fx,y,y′

2 (φ(z2) − φ(z3)) = 0

∇fx′,y,y′
1 (φ(z1) − φ(z3)) + ∇fx′,y,y′

2 (φ(z2) − φ(z3)) = 0
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We shall show that ∇fx,y,y′
1 ∇fx′,y,y′

2 �= ∇fx,y,y′
2 ∇fx′,y,y′

1 . Then, the above system
can be uniquely solved for φ(z1) − φ(z3) and φ(z2) − φ(z3), to yield 0 as the
solution in each case. That is, φ(z1) = φ(z2) = φ(z3), contradicting (7).

To complete the proof, we argue that ∇fx,y,y′
1 ∇fx′,y,y′

2 �= ∇fx,y,y′
2 ∇fx′,y,y′

1 .

Suppose not. Then, ∇fx′,y,y′
1

∇fx,y,y′
1

= ∇fx′,y,y′
2

∇fx,y,y′
2

= θ, say (the denominators being non-

zero, since typef (x, y, y′) = T3). Then, ∇fx′,y,y′
3

∇fx,y,y′
3

= −∇fx′,y,y′
1 −∇fx′,y,y′

2

−∇fx,y,y′
1 −∇fx,y,y′

2

= θ. Invok-

ing the simplicity of f , we get that ∀j ∈ [3], ρ(x,zj)
ρ(x′,zj)

= θ. However, since for any
y we have

∑
j ρ(x, zj)σ(y, zj) =

∑
j ρ(x′, zj)σ(y, zj), we get θ = 1. Then, x ≡ x′,

contradicting the normal form of f . This completes the proof. 	

Claim 3. There can be at most one i ∈ [3] such that T2:i ∈ T (f).

Proof. For the sake of contradiction, suppose typef (x, y, y′) = T2:j , and
typef (x̃, ỹ, ỹ′) = T2:k, for j �= k. We consider the case j = 1, k = 2, as the

other cases are symmetric. Now, typef (x, y, y′) = T2:1, implies that ∇fx,y,y′
i = 0

only for i = 1 and hence, by (10), we have ∇fx,y,y′
2 (φ(z2) − φ(z3)) = 0, and so

φ(z2) = φ(z3). Similarly, typef (x̃, ỹ, ỹ′) = T2:2 implies that φ(z1) = φ(z3). Thus
we have φ(z1) = φ(z2) = φ(z3), contradicting (7). 	

Claim 4. If from some x ∈ X and distinct y, y′ ∈ Y, typef (x, y, y′) = T1, then
there exists x′ ∈ X such that typef (x′, y, y′) �= T1.

Proof. Since typef (x, y, y′) = T1, we have that for all j ∈ [3], f(x, y, zj) =
f(x, y′, zj). Since f is in normal form, y �≡ y′, and hence there exists x′ ∈ X such
that for some j ∈ [3], f(x′, y, zj) �= f(x′, y′, zj). Hence typef (x′, y, y′) �= T1. 	

Claim 5. Suppose T (f) = {T1,T2:i} for some i ∈ [3]. Then, if for some x ∈ X ,
and distinct y, y′ ∈ Y, typef (x, y, y′) = T1, then for all ỹ ∈ Y, f(x, ỹ, zi) = 1.

Proof. By Claim 4, we have x′ such that typef (x′, y, y′) �= T1; since T (f) =
{T1,T2:i}, we have typef (x′, y, y′) = T2:i. Then, for both values of j �= i in [3],
we have f(x′, y, zj) �= f(x′, y′, zj).

Invoking the simplicity of f , we have that for j �= i, ρ(x′, zj)(σ(y, zj) −
σ(y′, zj)) �= 0, but ρ(x, zj)(σ(y, zj) − σ(y′, zj)) = 0. Hence ρ(x, zj) = 0 for j �= i.
That is, for all ỹ ∈ Y, f(x, ỹ, zj) = 0 for j �= i and hence f(x, ỹ, zi) = 1. 	


From the above claims, we have two possibilities for T (f): either {T2:i} or
{T1,T2:i} for some i ∈ [3]. Then we shall prove that f̂i and fi are simple.
Note that both these functions are binary functions. For our case where f has a
minimal-round protocol with Alice sending the first bit, and with |X |, |Y| > 1,
we show that this means that f̂i is a function of only Alice’s input, and fi is a
function of only Bob’s input.

Claim 6. If T (f) ⊆ {T1,T2:i}, then f̂i is simple.



688 D. Data and M. Prabhakaran

Proof. We have that for all (x, y, y′), ∇fx,y,y′
i = 0, i.e., ρ(x, zi)(σ(y, zi) −

σ(y′, zi)) = 0. Now, if ρ(x, zi) = 0 for all x, then f̂i is a constant function
with f̂i(x, y, zi) = 0 and f̂i(x, y, z∗) = 1. Otherwise, there is some x ∈ X such
that ρ(x, zi) �= 0. Hence for all y, y′ we have σ(y, zi) = σ(y′, zi) = s, say. Then
f̂i(x, y, zi) = ρ(x, zi) · s, which is independent of y. Thus, in either case, f̂i is
simple. 	

Claim 7. If T (f) ⊆ {T1,T2:i}, then fi(x, y, z) is simple.

Proof. Recall that fi has input spaces Xi and Y, where Xi = {x ∈ X : ∃y ∈
Y s.t. f(x, y, zi) < 1}. We shall prove that for all x, x′ ∈ Xi and y ∈ Y,
fi(x, y, zj) = fi(x′, y, zj) for j �= i.

By Claim 5, for all x ∈ Xi and distinct y, y′ ∈ Y, typef (x, y, y′) �= T1, and
hence typef (x, y, y′) = T2:i. Therefore, for all x ∈ Xi and j �= i, ρ(x, zj) �= 0.

Let {j, j̄} = [3] \ {i}. Now,

fi(x, y, zj) =
f(x, y, zj)

1− f(x, y, zi)
=

ρ(x, zj)σ(y, zj)
ρ(x, zj)σ(y, zj) + ρ(x, zj̄)σ(y, zj̄)

=
σ(y, zj)

σ(y, zj) + γ(x)σ(y, zj̄)
,

where γ(x) := ρ(x,zj̄)
ρ(x,zj)

. Here we have used the fact that ρ(x, zj) �= 0 for all x ∈ Xi.
Thus to prove the claim, it is enough to show that γ(x) = γ(x′) for all x, x′ ∈ Xi.

For any x ∈ Xi, as mentioned above, for any distinct y, y′ ∈ Y, we have
typef (x, y, y′) = T2:i, which implies that ∇fx,y,y′

j + ∇fx,y,y′
j̄ = −∇fx,y,y′

i = 0.
That is,

ρ(x, zj)(σ(y, zj) − σ(y′, zj)) + ρ(x, zj̄)(σ(y, zj̄) − σ(y′, zj̄)) = 0.

Writing the above equation for any x, x′ ∈ Xi, if ρ(x, zj)ρ(x′, zj̄) �=
ρ(x, zj̄)ρ(x′, zj), we will be able to solve that (σ(y, zj) − σ(y′, zj)) = (σ(y, zj̄) −
σ(y′, zj̄)) = 0. But this implies that ∇fx,y,y′

j = ∇fx,y,y′
j̄ = 0 (for any x ∈ Xi),

contradicting the fact that typef (x, y, y′) �= T1 for all x ∈ Xi and distinct
y, y′ ∈ Y. Thus we should have ρ(x, zj)ρ(x′, zj̄) = ρ(x, zj̄)ρ(x′, zj), or (divid-
ing by ρ(x, zj) · ρ(x′, zj) �= 0), γ(x) = γ(x′). 	


Taken together, the above claims prove the only if (⇒) part of Theorem5.

⇐: Let i ∈ [3] be such that f̂i and fi are simple, and therefore, securely
computable. A 2-round secure protocol for f is as follows. If both f̂i and fi

are independent of x or y (or both), then clearly f is securely computable by a
protocol in which one party computes the output and sends it to the other party.
The only interesting case is when f̂i is independent of y and fi is independent
of x (the other case when f̂i is independent of x and fi is independent of y

being symmetric): Alice picks j ∈ {i, ∗} with probability f̂i(x, y1, zj) and sends
j to Bob. If j = i, both Alice and Bob output zi with probability 1; otherwise,
Bob picks k ∈ [3] \ {i} with probability fi(x1, y, zk) and sends k to Alice. Now
both Alice and Bob output zk with probability 1. It is clear from the definitions
of f̂i and fi that the output from this protocol is correctly distributed. It is
easy to see that this is a unique-transcript protocol, and therefore, is perfectly
private. 	




Towards Characterizing Securely Computable 689

4 Functions with 2-Round Secure Protocols

We prove the following theorem which, when applied to the kernel of a given
function, implies Theorem 2.

Theorem 6. A simple symmetric function pZ|XY with X,Y,Z over alphabets
X ,Y,Z, has a two-round protocol with Alice making the first move iff there exists
a surjective map g : Z → W to some set W and probability distributions pW |X
and pZ|WY where W is over the alphabet W, such that pZ|WY (z|w, y) = 0 if
w �= g(z), and for all x ∈ X , y ∈ Y, z ∈ Z,

pZ|XY (z|x, y) = pW |X(g(z)|x) · pZ|WY (z|g(z), y).

In that case, pZ|XY has a unique-transcript secure protocol in which Alice sends
w sampled according to pW |X=x and Bob sends back z according to pZ|W=w,Y =y.

Proof. It is easy to see that if g, pW |X , pZ|WY as in the statement exist, then the
protocol described is indeed a unique-transcript protocol for pZ|XY : its output
is distributed correctly, and since pZ|WY (z|w, y) = 0 if w �= g(z), the only
transcript resulting in the output z is of the form (g(z), z). A unique-transcript
protocol is always a secure protocol since the transcript can be simulated from
the output by a (deterministic) simulator.

We prove the other direction below. Suppose we are given a two-round pro-
tocol Π0 for pZ|XY , with the two messages denoted by a and b. Then, we can
construct a secure protocol Π in which Bob computes the second message b as
before, but sends out z = outΠ0(a, b), and both Alice and Bob output z: clearly
Π has the same output as Π0 and is also secure since the transcript of Π can
be simulated from a (simulated) transcript of Π0 by applying a deterministic
function to it.

Π is defined by probability distributions PrΠ [a|x] and PrΠ [z|a, y]. For con-
venience, we define α(a, x) := PrΠ [a|x] and β(a, z, y) := PrΠ [z|a, y]. Also, since
pZ|XY is simple, let us write pZ|XY (z|x, y) = ρ(x, z) · σ(y, z).

Before proceeding further, note that for a transcript m = (a, z), from (2), we
have

PrΠ [m|x, y] = μ(m)ρ(x, z)σ(y, z) = α(a, x)β(a, z, y).

If PrΠ [m|x, y] > 0 for some x, y, then by considering the above equality for (x, y)
as well as (x′, y), and dividing the latter by the former (which is non-zero), we
get that for all x′ ∈ X ,

ρ(x′, z)
ρ(x, z)

=
α(a, x′)
α(a, x)

. (12)

We define an equivalence relation ≡ over Z as follows:

z1 ≡ z2 if ∃c > 0,∀x ∈ X , ρ(x, z1) = cρ(x, z2).

We let W be the set of equivalence classes of ≡, and define g : Z → W which
maps z to its equivalence class. Thus, z1 ≡ z2 iff g(z1) = g(z2). We also define a
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function h that maps the first message a in a transcript to an element in W, as
follows:

h(a) = g(z) if ∃x, y s.t. PrΠ [a, z|x, y] > 0.

For h to be well-defined, we need that each a has a unique value h(a) that satisfies
the above condition. Suppose z1, z2 ∈ Z are such that PrΠ [a, z1|x1, y1] > 0 and
PrΠ [a, z2|x2, y2] > 0 (from some (x1, y1), (x2, y2) ∈ X × Y). By applying (12) to
these, we get that for all x′ ∈ X

ρ(x′, z1)
ρ(x1, z1)

=
α(a, x′)
α(a, x1)

and
ρ(x′, z2)
ρ(x2, z2)

=
α(a, x′)
α(a, x2)

.

Hence ∀x′ ∈ X , ρ(x′, z2) = cρ(x′, z1), where c := ρ(x2,z2)α(a,x1)
α(a,x2)ρ(x1,z1)

. All the factors in
c are positive (as they appear in PrΠ [a, z1|x1, y1] ·PrΠ [a, z2|x2, y2] > 0), and also
independent of x′. Thus z1 ≡ z2 and g(z1) = g(z2), making h(a) well defined.

pW |X is defined as follows: given x, sample a as in Π, and output w = h(a).
That is, pW |X(w|x) =

∑
a:h(a)=w α(a, x). Finally, we define pZ|WY as follows:

given w, we argue that we can reverse sample a without access to x (so that
w = h(a)), and then use the protocol Π to sample z from (a, y). That is, we
define a distribution over a given w, by the probability

η(a,w) :=

{
α(a,x)∑

a′:h(a′)=w α(a′,x) if h(a) = w

0 otherwise,

where any x ∈ X such that
∑

a′:h(a′)=w α(a′, x) > 0 is used. This is well defined
because, by (12), switching from x to x′ amounts to multiplying both the numera-
tor and the denominator by the same factor (namely, ρ(x′,z)

ρ(x,z) for any z ∈ g−1(w)).
Then, pZ|WY (z|w, y) =

∑
a η(a,w)β(a, z, y). We verify that, when w = g(z),

pW |X(w|x) · pZ|WY (z|w, y) =

⎛

⎝
∑

a:h(a)=w

α(a, x)

⎞

⎠

(
∑

a

η(a,w)β(a, z, y)

)

=
∑

a

α(a, x)β(a, z, y) = PrΠ [z|x, y] = pZ|XY (z|x, y).

	


5 Complexity of Randomized Functions

We point out a couple of complexity aspects in which randomized functions differ
from deterministic functions. This also points to the difficulty in characterization
of securely computable functions in the case of randomized functions.
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5.1 Smaller Simple Functions Which Are Not Securely Computable

It is well-known that simple functions are not all securely computable, even for
deterministic functions, with a first example given by Beaver [Bea89], with an
output alphabet of size 5. This turns out to be the smallest output alphabet for
a simple deterministic function that is not securely realizable.

But for randomized functions, we see a higher level of complexity arising even
with an output size of 3. In Fig. 1 we show an example of a simple function with
ternary output alphabet that is not securely computable, i.e., it does not satisfy
the characterization given in Theorem 5.

Fig. 1. This function is not securely computable as it does not satisfy the condition from

Theorem 5. However, it is simple, with the functions ρ and σ given by

z1 z2 z3
x1 1/3 2/3 1
x2 1/2 5/8 3/4

and
z1 z2 z3

y1 2/3 2/3 1/3
y2 5/6 1/3 1/2

.

5.2 Limits of Unique-Transcript Protocols

It follows from Sect. 3 that all securely computable randomized functions with a
ternary output kernel can be computed using unique-transcript protocols. Also,
it follows from Sect. 4 that all randomized functions securely computable by
two-round protocols are in fact securely computable using two-round unique-
transcript protocols. Also, the characterization by Kushilevitz [Kus89] showed
that all securely computable deterministic functions have unique-transcript
secure protocols. Thus one may reasonably suspect that all securely computable
functions have unique-transcript secure protocols.

However, we show that in some sense, the above results give the limits of
unique-transcript protocols: If we go just beyond the above conditions – namely,
ternary output, 2-round computable, deterministic – then we can indeed find
securely computable functions that do not have any unique-transcript secure
protocol. In AppendixB, we demonstrate a simple randomized function with an
output alphabet of size 4, securely computable by a 3-round protocol, such that
it has no unique-transcript secure protocols.
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A Security for Simple Symmetric Functions

In this section we prove Lemma 1.

Proof of Lemma 1. Firstly, by perfect correctness, for any x, y, we require that
with probability one, outA

Π(m,x) = outB
Π(m, y), where m is produced by Π on

input (x, y). Suppose there is an x0 ∈ X , y0 ∈ Y such that PrΠ [m|x0, y0] > 0.
Since we can write PrΠ [m|x, y] = α(m,x)β(m, y), we have α(m,x0)

β(m, y0) > 0. Also, for all x such that α(m,x) > 0, we have a positive proba-
bility of Π producing m on input (x, y0) and hence we must have outA

Π(m,x) =
outB

Π(m, y0) with probability 1 (which requires them to be deterministic). Sim-
ilarly, for all y such that β(m, y) > 0, we have outB

Π(m, y) = outA
Π(m,x0)

with probability 1. Letting outΠ(m) := outA
Π(m,x0) = outB

Π(m, y0) (which
must be deterministic), we have that outA

Π(m,x) = outB
Π(m, y) = outΠ(m)

if PrΠ [m|x, y] > 0.
Now we prove the second part. Note that since Π computes pZ|XY , we have

that for all x, y, z, PrΠ [z|x, y] = pZ|XY (z|x, y). Consider any x, y, z such that
pZ|XY (z|x, y) > 0. For all m such that outΠ(m) �= z, we can set S(m, z) = 0.
So, suppose outΠ(m) = z. Then

PrΠ [m|x, y, z] =
PrΠ [m, z|x, y]
PrΠ [z|x, y]

=
PrΠ [m|x, y]

pZ|XY (z|x, y)
=

α(m,x)β(m, y)
ρ(z, x)σ(z, y)

,

where we wrote PrΠ [m, z|x, y] = PrΠ [m|x, y] (since z = outΠ(m)),
PrΠ [m|x, y] = α(m,x)β(m, y) (since Π is a protocol) and pZ|XY (z|x, y) =
ρ(z, x)σ(z, y) (since pZ|XY is a simple function). Using the security guarantee
for a symmetric function (Definition 1, with zA = zB = z), we get

S1(m,x, z) = S2(m, y, z) =
α(m,x)
ρ(z, x)

· β(m, y)
σ(z, y)

.

Now, fixing (m, z) as above, consider all (x, y) such that pZ|XY (z|x, y) > 0. If the
above expression is 0 for all choices of (x, y), then we can simply set S(m, z) = 0.
Otherwise, there is some x such that S1(m,x, z) �= 0. Then, considering the above
expression for that x, we get that β(m,y)

σ(z,y) equals a quantity that is independent of
y (and hence is a function of (m, z) alone). Similarly, by considering S2(m, y, z),
we get that α(m,x)

ρ(z,x) is a function of (m, z) alone. Hence we have

S1(m,x, z) = S2(m, y, z) = S(m, z).
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B Example for Sect. 5.2

Theorem 7. There exists a randomized function that can be securely com-
puted using a 3-round protocol, but cannot be securely computed using a unique-
transcript protocol with any number of rounds.

Fig. 2. This simple randomized function pZ|XY is securely computable by a 3 round
protocol (given in Fig. 3) that is not unique-transcript, but cannot be securely computed
using any unique-transcript protocol (with any number of rounds).

Proof. Consider the simple randomized function pZ|XY given in Fig. 2. This can
be securely computed, and a 3-round protocol for that is given in Fig. 3. Note that
this protocol is not unique-transcript. First we show that the protocol given in
Fig. 3 is secure, i.e., it is correct and perfectly private; and later we show that no
unique-transcript protocol can securely compute this function with any number
of rounds.

Correctness: It follows from the fact that for every x, y, z, pZ|XY (z|x, y) is
equal to the sum of the probabilities on different paths leading to leaves labelled
as z, where probability of a path is equal to the product of the probabilities
(corresponding to the particular x and y) appearing on the edges along that
path.

Privacy: Consider an arbitrary k ∈ [4]. We need to show that for any transcript
m, p(m|xi, yj , zk) must be the same for every i, j ∈ [2], k ∈ [4]. This trivially
holds for every z ∈ Z \ {z2, z3}, because there is a unique path from root to
the leaf corresponding to z, which means that output being z itself determines
the whole transcript. But for z2 and z3 there are two possible transcripts. Fix
any z ∈ {z2, z3}, say, z2; a similar argument holds for z = z3 as well. There
are two transcripts (m11,m22,m31) and (m12,m23,m33) for z2, implying two
distinct paths. In order to show that the protocol is perfectly private, we need to
show that p(m11,m22,m31|xi, yj , z2) is the same for all i, j ∈ [2]. It can be easily
verified that this is indeed the case, which implies that the protocol described
in Fig. 3 is perfectly private.
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Fig. 3. This describes a 3-round protocol for securely computing pZ|XY , denoted by
matrix A, where the first message is sent by Alice. This protocol is not unique-
transcript: both A11 and A12 have z2, z3 in common, and that is highlighted in red
color. The meaning of the probabilities on the edges is as follows: If Alice’s input is
x1, then she sends m11 as the first message with probability 1/3 and m12 as the first
message with probability 2/3. If Alice’s input is x2, then she sends m11 as the first mes-
sage with probability 1/2 and m12 as the first message with probability 1/2. If Alice
sends m11, then the problem reduces to securely computing A11, and if Alice sends
m12, then the problem reduces to securely computing A12. Suppose Alice reduces the
problem to A11. Now it is Bob’s turn to send a message. If Bob’s input is y1, he sends
m21 with probability 2/3 and m22 with probability 1/3, and so on ... In the end, at the
leaf nodes there is only one possible zi to output, and they output that element with
probability 1. (Color figure online)
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Now we show that no unique-transcript protocol (with any number of rounds)
can securely compute A := pZ|XY . Note that in a unique-transcript protocol,
during any round, the party who is sending a message makes a partition of the
output alphabet, and sends the other party the part (i.e., the reduced output
alphabet) in which the output should lie. We show below that neither Alice nor
Bob can make a partition in the first round itself. This implies that no unique-
transcript protocol exists for securely computing A with any number of rounds.

– Alice cannot partition Z: Suppose, to the contrary, that Alice can partition
Z in the first round; and, assume, w.l.o.g., that Alice makes two parts Z =
Z1 � Z2.
Let mi, i = 1, 2 denote the message that Alice sends to Bob in order to restrict
the output to Zi, i = 1, 2. This implies that pM1|XY Z(m1|xi, yj , z ∈ Z1) = 1
and pM1|XY Z(m2|xi, yj , z ∈ Z2) = 1, for every i, j ∈ {1, 2}. We show below
that if Alice partitions Z = Z1 � Z2, then the following must hold for every
i ∈ {1, 2}:

∑

z∈Z1

pZ|XY (z|xi, y1) =
∑

z∈Z1

pZ|XY (z|xi, y2), (13)

∑

z∈Z2

pZ|XY (z|xi, y1) =
∑

z∈Z2

pZ|XY (z|xi, y2). (14)

It can be easily verified that the matrix A does not satisfy the above two
conditions for any non-trivial and disjoint Z1, Z2, which is a contradiction:
since Z = Z1 �Z2 and |Z| = 4, one of the following must hold: (i) either |Z1|
= 1 or |Z2| = 1, or (ii) either |Z1| = 2 or |Z2| = 2. This verification can be
done easily even exhaustively. We show (13) and (14) below. In the following,
i belongs to {1, 2}.

pM1|XY (m1|xi, y1) =
∑

z∈Z1

pM1Z|XY (m1, z|xi, y1) +
∑

z∈Z2

pM1Z|XY (m1, z|xi, y1)

=
∑

z∈Z1

pZ|XY (z|xi, y1) pM1|XY Z(m1|xi, y1, z)
︸ ︷︷ ︸

= 1

+
∑

z∈Z2

pZ|XY (z|xi, y1) pM1|XY Z(m1|xi, y1, z)
︸ ︷︷ ︸

= 0

=
∑

z∈Z1

pZ|XY (z|xi, y1) (15)

Similarly we can show the following:

pM1|XY (m1|xi, y2) =
∑

z∈Z1

pZ|XY (z|xi, y2), (16)

pM1|XY (m2|xi, y1) =
∑

z∈Z2

pZ|XY (z|xi, y1), (17)
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pM1|XY (m2|xi, y2) =
∑

z∈Z2

pZ|XY (z|xi, y2). (18)

Since Alice sends the first message, which means that the Markov chain
M1 − X − Y holds. This implies that pM1|XY (mj |xi) = pM1|XY (mj |xi, y1) =
pM1|XY (mj |xi, y2) for every j ∈ {1, 2}. Now comparing (15) and (16) gives
(13), and (17) and (18) gives (14).

– Bob cannot partition Z: Switching the roles of Alice and Bob with each-
other in the above argument and using the fact that for every partition Z =
Z1 � Z2, the matrix A does not satisfy the following two conditions, we can
prove that Bob also cannot partition Z. In the following, i belongs to {1, 2}.

∑

z∈Z1

pZ|XY (z|x1, yi) =
∑

z∈Z1

pZ|XY (z|x2, yi),

∑

z∈Z2

pZ|XY (z|x1, yi) =
∑

z∈Z2

pZ|XY (z|x2, yi).

This completes the proof of Theorem 7. 	
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Abstract. We study the minimal number of point-to-point messages
required for general secure multiparty computation (MPC) in the set-
ting of computational security against semi-honest, static adversaries
who may corrupt an arbitrary number of parties.

We show that for functionalities that take inputs from n parties and
deliver outputs to k parties, 2n + k − 3 messages are necessary and suf-
ficient. The negative result holds even when given access to an arbitrary
correlated randomness setup. The positive result can be based on any
2-round MPC protocol (which can in turn can be based on 2-message
oblivious transfer), or on a one-way function given a correlated random-
ness setup.

1 Introduction

Since the seminal works from the 1980s that established the feasibility of secure
multiparty computation (MPC) [3,9,19,24], there has been a large body of work
on different efficiency measures of MPC protocols. In particular, a lot of research
efforts were aimed at characterizing the minimal communication complexity,
round complexity, computational complexity, and randomness complexity of
MPC protocols.

In the present work we study the message complexity of MPC protocols,
namely the number of messages that the parties need to communicate to each
other over point-to-point channels. While there have been a few prior works
studying the message complexity of MPC in different settings (see Sect. 1.2
below), this complexity measure received relatively little attention. The goal
of minimizing the message complexity of protocols is motivated by scenarios in
which sending or receiving a message has a high cost, which is not very sensitive
to the size of the message. For instance, this is the case when using a traditional
postal system for message delivery (say, shipping optical media from one party
to another), or when establishing a communication channel between pairs of
parties is expensive due to limited connectivity.
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The main focus of our work is on the standard model of computationally
secure MPC in the presence of a static (non-adaptive), semi-honest (passive)
adversary, who may corrupt an arbitrary subset of the parties. In this model, we
ask the following question:

How many messages are needed for securely computing functions that take
inputs from n parties and deliver outputs to k of these parties?

For simplicity, we consider the above question in the setting of fixed, or
“oblivious,” interaction patterns, a commonly used assumption in the MPC lit-
erature (see, e.g., [11,20]). In this setting, it is assumed that the protocol specifies
a-priori the sender-receiver pairs of the messages sent in each round.1

1.1 Our Contribution

Our main result is a sharp answer to the above question: we show that in the
setting discussed above, 2n + k − 3 messages are necessary and sufficient.

The negative result holds even when the parties can communicate over
secure point-to-point channels or, more generally, even when allowing an arbi-
trary input-independent correlated randomness setup. This result builds (non-
trivially) on the general characterization of the power MPC with general inter-
action patterns from the recent work of Halevi et al. [20].

The positive result can be based on any 2-round MPC protocol, applying a
natural greedy message forwarding strategy to emulate the quadratic number of
messages of such protocols with an optimal number of messages. Using recent
constructions of 2-round MPC protocols, this approach can be instantiated in
the plain model, public point-to-point channels, under the (minimal) assumption
that a 2-message semi-honest oblivious transfer protocol exists [4,17]. (Alterna-
tive constructions with incomparable efficiency features can be based on the LWE
assumption [23] or even the DDH assumption given a PKI setup [6]). Given a
general correlated randomness setup, the positive result can be based on any
one-way function, or even provide unconditional information theoretic security
when considering low-complexity functions such as NC1 functions.

1.2 Related Work

As mentioned above, Halevi et al. [20] consider the question of MPC with general
interaction patterns, giving a full characterization for the “best possible secu-
rity” of an MPC protocol that uses a given interaction pattern with a general

1 Message complexity is more subtle when allowing dynamic interaction patterns, since
not receiving a message also conveys information; see e.g. [13] for discussion. Our
positive results do not require this relaxation. Moreover, our negative result can be
extended to capture dynamic interactions, by exploiting the fact that the adversary
can “guess” the identity of a party that sends a constant number of messages with
high success probability and corrupt all of the other parties.
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correlated randomness setup. Our negative result builds on their general char-
acterization, focusing on the case where the “best possible security” coincides
with the standard notion of security. The positive results in [20] consider a more
general setting that (inevitably) requires the use of indistinguishability obfusca-
tion and a correlated randomness setup. In contrast, our positive results rely on
weaker assumptions and apply also to the plain model.

The message complexity of MPC protocols has been explicitly considered in
several previous works, but the model of MPC considered in these works is quite
different from ours. In particular, the message complexity in the information-
theoretic setting with a bounded fraction of corrupted parties has been studied
in [5,7,11,13,14]. Our focus on computational security (or alternatively, allowing
a correlated randomness setup) allows us to circumvent previous lower bounds
that apply to the information-theoretic setting. In particular, our positive results
circumvent the quadratic message lower bound from [11]. On the other hand,
considering an adversary that can corrupt an arbitrary number of parties rules
out MPC protocols that achieve sublinear message complexity in the number of
parties by assigning the computation to a small random subset of parties (see,
e.g., [7,12,16]).

Organization. Following some preliminaries (Sect. 2), we present our negative
result in Sect. 3 and our positive results in Sect. 4. In AppendixA we include a
standard definition of MPC for self-containment.

2 Preliminaries

By default, we consider an MPC protocol Π for an n-party functionality f to
provide computational security against a semi-honest adversary that may stati-
cally (non-adaptively) corrupt an arbitrary subset of the parties and eavesdrop
on all communication channels. That is, the communication takes place over
public point-to-point channels.

We also consider MPC with correlated randomness setup, where the parties
are given access to a trusted source of (input-independent) correlated random-
ness. Note that correlated randomness setup trivially allows secure point-to-point
communication over public communication channels. Thus, since our negative
result applies also to this model, it applies in particular for protocols over secure
point-to-point channels.

As is typically the case for security against semi-honest adversaries, our
results are quite insensitive to the details of the model beyond those mentioned
above. We refer to reader to AppendixA or to [18] for a standard formal treat-
ment of MPC in this model.

3 The Lower Bound

In this section, we prove our main lower bound: in any n-party MPC protocol for
computing a function with k ≥ 1 outputs, the number of point-to-point messages
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is at least 2n + k − 3. This lower bound holds even in the setting of security
against semi-honest adversaries and even when the parties are given access to
an arbitrary trusted source of (input-independent) correlated randomness.

The work of Halevi et al. [20] gives a general characterization for the “best
possible security” of an MPC protocol with general correlated randomness setup
and a given interaction pattern. The characterization in [20] is mainly intended
for the case of limited interactions that warrant a relaxed notion of MPC security,
and is only formulated for the case of protocols that deliver output to a single
party. Here we give a simple self-contained treatment for the case of standard
MPC security with an arbitrary number of outputs.

We start by defining a simplified notion of an interaction pattern, which
specifies an ordered sequence of pairs of parties that represent the sender and
receiver of each message. Note that we implicitly assume here that the protocol
sends only a single message in each round. However, any protocol can be triv-
ially converted into this form by splitting the messages sent in each round into
multiple rounds in an arbitrary order.

Definition 3.1 (Interaction pattern). An n-party interaction pattern is spec-
ified a sequence of pairs M ∈ ([n]× [n])∗. The length of M is the number of pairs
in the sequence. We say that an n-party MPC protocol Π complies with an n-
party interaction pattern M = ((a1, b1), . . . , (am, bm)) if for every 1 ≤ i ≤ m,
the communication in Round i of Π involves only a single message, sent from
party Pai

to party Pbi
.

It is convenient to represent an interaction pattern M by a directed (multi-)
graph, whose nodes represent parties and whose edges represent messages sent
over point-to-point channels. Each edge is labeled by its index in M . A trail in
the graph is a (non-simple, directed) path that respects the order of edges and
can visit the same node more than once. We formalize this below.

Definition 3.2 (Interaction graph). Let M = ((a1, b1), . . . , (am, bm)) be an
n-party interaction pattern. We let GM denote the labeled directed multi-graph
whose node set is [n] and whose edges form the sequence (e1, . . . , em) where
ei = (ai, bi). (Each edge ei in GM is labeled by its index i.) A trail from node
u to node v in GM is a sequence of edges (ei1 , . . . , ei�

) such that ei1 starts at u,
ei�

ends at v, the end node of each eij
is the start node of eij+1 , and the index

sequence i1, . . . , i� is strictly increasing.

We now identify a combinatorial condition that the interaction graph should
satisfy in order to accommodate MPC with a given set O of parties who receive
an output.

Definition 3.3 (O-connected graph). Let GM be an n-party interaction
graph and let O ⊆ [n]. We say that GM is O-connected if for any (not neces-
sarily distinct) pair of nodes s, o ∈ [n] with o ∈ O, and any node h ∈ [n] \ {s, o},
there is a trail from s to o passing through h.
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Note, in particular, that the above connectivity requirement implies the existence
of a trail from every node to every output node.

We now show that the above connectivity requirement is indeed necessary to
realize the standard notion of security against semi-honest adversaries. We prove
this for an explicit functionality that can be thought of as a natural multi-party
variant of oblivious transfer. Intuitively, this functionality has the property that
the adversary only learns partial information about honest parties’ inputs by
invoking it once, but can learn full information by invoking it twice, on any pair
of input-tuples that differ in only one entry.

Definition 3.4 (MOT functionality). For n ≥ 2 and nonempty O ⊆ [n], let
MOTO : Xn → Y n be the n-party functionality defined as follows:

– The input domain of each party is X = {0, 1}3 and the output domain is
Y = {0, 1}n+1.

– Given input (ci, x
0
i , x

1
i ) from each party Pi, the functionality lets c = c1⊕· · ·⊕

cn and outputs (c, xc
1, . . . , x

c
n) to all parties Pj, j ∈ O (the output of party Pj

for j �∈ O is the fixed string 0n+1).

The proof of the following lemma formalizes an argument made in [20].

Lemma 3.5. Let n ≥ 2 and O ⊆ [n] where |O| ≥ 1. Suppose Π securely realizes
MOTO in the presence of a semi-honest, static adversary who may corrupt any
number of parties, where Π may use an arbitrary correlated randomness setup.
If Π complies with an interaction pattern M , then the interaction graph GM

must be O-connected. Moreover, this holds even in the augmented semi-honest
model, where the simulator can change the inputs of corrupted parties.

Proof. The high level idea is that in the ideal model, even if the simulator can
arbitrarily choose the inputs of n − 1 corrupted parties, it can only learn one
out of the last two input bits of the remaining party. We show that in the
protocol, a semi-honest adversary can learn both input bits of an uncorrupted
party, contradicting security. We formalize this below.

Since GM is not O-connected, there exist nodes s, o ∈ [n] with o ∈ O and
h ∈ [n] \ {s, o} such that all trails from s to o avoid h. We argue that the latter
implies that if all parties except h are corrupted, then by running Π once on
inputs xi = 000 for all corrupted parties Pi, i �= h, and an unknown input
xh = (ch, x0

h, x1
h) for party Ph, the adversary can efficiently compute the entire

input xh from its view. Indeed, the adversary can recover xh from (1) the output
MOTO delivers to party Po on inputs (x1, . . . , xn), obtained directly from the
honest execution; and (2) the output of MOTO on a slightly modified input,
where xs is replaced by x′

s = 100. The latter output can be obtained by running
a mental experiment in which the view of party Po on the modified input is
simulated given the messages sent out by party Ph in the original execution.

The simulation will simply compute the exact set of messages received by
party Po on the same local inputs and random inputs, with the only difference
that xs = 000 is replaced by x′

s = 100. To see that this is possible given the
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information available to the adversary, note that every message sent in the pro-
tocol can be viewed as a deterministic function of the local inputs and random
inputs of the n parties. If some message received by party Ph can depend on
the input of party Ps, then this message cannot influence the view of party
Po; otherwise this would imply a trail from s to o passing through h. The
adversary can therefore sequentially compute whatever modified messages are
implied by the information it has (namely, inputs and random inputs of cor-
rupted parties and messages sent out by party Ph), which includes all messages
received by Po. 	


Given Lemma 3.5, it suffices to prove a lower bound on the number of edges
in an O-connected interaction graph GM . We start with the case of a single
output node O = {o} and later extend it to the general case. The proof relies
on the following lemma.

Lemma 3.6. Let n ≥ 2 and O = {o} where o ∈ [n]. Suppose GM is O-connected
and v ∈ [n]\O has indegree d ≥ 2 and outdegree 1. Then there is an O-connected
GM ′ with the same number of edges in which v has indegree 1 and outdegree 1.

Proof. Let ei1 , . . . , eid
be the edges entering v, where i1 < · · · < id. We obtain

GM ′ from GM by replacing every edge eij
= (uj , v), 1 ≤ j ≤ d − 1, by the edge

e′
ij

= (uj , ud), where ud is the source of eid
. An example of this transformation is

given in Fig. 1 below. The transformation does not change the number of edges.
It leaves eid

as the only edge entering v and does not add outgoing edges from v,
thus making both the indegree and outdegree of v equal to 1 as required. Finally,
since id is larger than the indices of all edges e′

ij
whose new endpoint is ud, any

trail in GM can be replaced by a valid trail in GM ′ with the same source and
destination and with a superset of the nodes of the original trail (the new trail
may replace a direct edge to v by a 2-edge sub-trail passing through ud). This
implies that GM ′ is also O-connected, as required. 	


We are now ready to prove a lower bound on the number of edges for the
case |O| = 1.

Proposition 3.7. Let n ≥ 2 and O = {o} where o ∈ [n]. Suppose GM is an
O-connected n-party interaction graph. Then GM has at least 2n − 2 edges.

Proof. We prove the proposition by induction on n. For the base case of n = 2,
note that (without loss of generality) letting s = o = 1 and h = 2 imposes the
existence of a trail from 1 to 1 passing through 2, which requires m ≥ 2 = 2 ·2−2
edges as required.

For the induction step, suppose that the proposition holds for all k < n,
and let GM be an O-connected n-party interaction graph with m edges. Assume
towards contradiction that m ≤ 2n − 3. We show that under this assumption,
GM can be converted into an O-connected (n−1)-party GM ′ that has m′ = m−2
edges. By the induction’s hypothesis, this implies that m′ ≥ 2(n − 1) − 2, and
so m = m′ + 2 ≥ 2n − 2, leading to the desired contradiction.
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Fig. 1. Illustrating the graph transformation in the proof of Lemma 3.6. Here o = u6

is the output node and v = u5 is the non-output node with outdegree 1 and indegree
d = 3 ≥ 2.

The transformation from GM to GM ′ proceeds as follows. Since O-
connectivity requires each node to have at least one outgoing edge, and since
m < 2n − 2, there must be a non-output node v whose outdegree is exactly 1.
(If all outdegrees are bigger than 1, then the non-output nodes alone contribute
at least 2n − 2 edges.) Moreover, the O-connectivity of GM also requires the
indegree of v to be at least 1 (e.g., letting v = h and s = o). By Lemma 3.6, we
may assume without loss of generality that the indegree of v is also 1.

Let ei1 = (u1, v) be the single edge entering v and ei2 = (v, u2) be the single
edge existing v. Since v should be reachable, we have i1 < i2. If u1 = u2, we
can obtain GM ′ by just removing v and the two incident edges from GM . The
resulting graph GM ′ has n − 1 nodes and m − 2 edges as required, and it is O-
connected because every trail in GM that passes through v has a corresponding
trail in GM ′ with the same source and destination that traverses the same set
of nodes excluding v.

It remains to deal with the case where u1 �= u2. The O-connectivity of GM

implies the existence of a trail τu2,v,o from u2 to the output node passing through
v. We obtain GM ′ from GM by removing the node v, replacing the two edges
ei1 , ei2 by the single edge e′

i1
= (u1, u2) (with index i1), and removing the first

edge ei0 = (u2, u3) of τu2,v,1. Again, GM ′ has n − 1 nodes and m − 2 edges
as required. Replacing ei1 , ei2 by e′

i1
clearly does not hurt O-connectivity, since
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(as before) any trail passing through v can be replaced by a similar trail that
only excludes v. We need to show that removing the edge ei0 also does not hurt
O-connectivity. Note that, since τu2,v,o should pass through ei1 and then ei2 , we
have i0 ≤ i1 < i2. We show that for any h �= u2, o, a trail τu2,h,o from u2 to o
via h can be replaced by a trail τ ′

u2,h,o in GM ′ . Indeed, by the O-connectivity
of GM , there is a trail τv,h,o in GM from v to o via h. This trail starts with
ei1 , and thus all of its other edges have indices bigger than i1. Removing the
first edge ei1 , we get a trail τ ′

u2,h,o that does not use ei0 (since i0 ≤ i1), as
required. 	


Finally, we extend the lower bound of Proposition 3.7 to the case of more
than one output. This relies on the following lemma.

Lemma 3.8. Let n ≥ 2 and O ⊆ [n] be a set of k = |O| ≥ 2 output nodes. Let
M be a minimal interaction pattern such that GM is O-connected. Then:

1. The last edge in M enters an output node in O;
2. Removing this last edge results in an interaction pattern M ′ such that GM ′

is O′-connected for some O′ ⊂ O with |O′| = |O| − 1.

Proof. If the last edge in M does not enter an output node from O, then it can
be removed from M without hurting the O-connectivity of GM , contradicting
minimality. Now suppose that the last edge in M enters o ∈ O. Removing this
last edge from GM results in an O′ interaction graph for O′ = O \ {o}. Indeed,
since the removed edge has a maximal index, it cannot be used as an intermediate
edge in any trail ending in o′ ∈ O′. 	

Combining Proposition 3.7 and Lemma 3.8 we get the main theorem of this
section.

Theorem 3.9. Let n ≥ 2 and O ⊆ [n] be a set of k = |O| ≥ 1 output nodes.
Suppose GM is an O-connected n-party interaction graph. Then GM has at least
2n + k − 3 edges.

Proof. The theorem follows by induction on k, using Proposition 3.7 as the base
case (k = 1) and Lemma 3.8 for the induction step. 	


Together with Lemma 3.5, we get the following corollary:

Corollary 3.10. Let n ≥ 2 and O ⊆ [n] where |O| = k ≥ 1. Suppose Π
securely realizes MOTO in the presence of a semi-honest, static adversary who
may corrupt any number of parties, where Π may use an arbitrary correlated ran-
domness setup. If Π complies with an interaction pattern M , then M involves
at least 2n + k − 3 messages. Moreover, this holds even in the augmented
semi-honest model, where the simulator can change the inputs of corrupted
parties.
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4 Upper Bounds

In this section we complement the lower bound from Sect. 3 by presenting match-
ing upper bounds in several different models. We note that our focus here is on
the computational model of security, which allows us to bypass strong lower
bounds for the information-theoretic model from the recent work of Damg̊ard
et al. [13].

Using standard general transformations (cf. [18]), the secure computation of
any (non-reactive) randomized multi-output functionality f can be reduced to
the secure computation of a related deterministic, functionality f ′ that delivers
the same output to all parties. This reduction does not incur additional messages.
We thus restrict our attention to the latter type of functionalities.

As a final simplification, it suffices to prove an upper bound of 2n−2 messages
for the case only one party has an output. Indeed, in the case of k > 1 parties
should receive the output, we can first deliver the output to one of these parties
using 2n − 2 messages, and then use k − 1 additional messages to communicate
the output to the other parties. This yields a total of 2n + k − 3 messages, as
required.

Theorem 4.1. Let f be an n-party functionality delivering output to party P1.
Suppose there is a 2-round n-party MPC protocol Π for f in the common random
string (CRS) model. Then there is a similar protocol Π ′ for f in the plain model
in which the parties send a total of 2n−2 point-to-point messages. Furthermore,
if Π relies on a trusted source of correlated random inputs, then Π ′ can be
implemented using the same correlated randomness.

Proof. We assume for simplicity that Π does not rely on correlated randomness
other than (possibly) a CRS. The “furthermore” part of the theorem is obtained
by a straightforward extension of the following proof.

Let αi,j denote the message sent from Pi to Pj in Round 1, and βi the message
sent from Pi to P1 in Round 2. The high level idea is to use a “two-way chain”
interaction pattern moving from P1 to Pn and back to P1, where at each point
each party computes whatever messages it can given the information received so
far and forwards these messages along with previous information it received to
the next party. Concretely, protocol Π ′ emulates the messages of Π as follows:

1. P1 picks the CRS σ, and based on σ, its local input, and its local randomness
computes the messages α1,j for all 2 ≤ j ≤ n. It sends a single message
consisting of σ and the n − 1 messages α1,j to P2.

2. For i = 2, . . . , n − 1, party Pi uses the Π ′-message α′
i−1 received from Pi−1

to compute the Π-messages αi,j , for all j �= i, and sends these messages to
Pi+1 together with the information received from Pi−1.

3. Party Pn uses the CRS σ, its local input, and its local randomness to compute
the messages αn,j , 1 ≤ j ≤ n − 1. It additionally uses the messages αi,n

received from Pn−1 to compute the message βn. It sends the messages αn,j

and βn to Pn−1 along with the message of Pn−1.
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4. For i = n − 1, . . . , 2, party Pi uses its local input, local randomness, and the
information received from Pi+1 to compute the message βi. It sends βi along
with the message it received from Pi+1 to Pi−1.

5. Party P1 uses its local input, local randomness, and the information received
from P2 to compute the output of Π.

Overall, the protocol involves 2n − 2 messages (n − 1 in each direction), as
required. Correctness follows from the fact that Π ′ perfectly emulates the mes-
sages sent in Π. Security follows from the fact that the view of any (static,
semi-honest) adversary corrupting a subset of the parties in Π ′ is identically
distributed (up to message ordering) to the view of a similar adversary corrupt-
ing the same subset of parties in Π. 	


Using recent 2-round MPC protocols from [4,17], we get the following corol-
lary for message-optimal MPC in the plain model.

Corollary 4.2. Suppose a 2-message (semi-honest) oblivious transfer protocol
exists. Then, any polynomial-time n-party functionality delivering output to k
parties can be securely computed in the plain model with 2n + k − 3 messages.

We note that the assumption that a 2-message oblivious transfer protocol
exists is necessary, since such a protocol is a special case of Corollary 4.2 with
n = 2 and k = 1.

We are able to further reduce the computational assumptions in the offline-
online model, where a trusted source of (input-independent) correlated random-
ness is available. The latter can be generated by the parties themselves using an
interactive MPC protocol that is carried out in an offline, input-independent pre-
processing phase. Given a correlated randomness setup, 2-round MPC becomes
considerably easier [10,21]. In particular, such protocols can be achieved uno-
conditionally for functionalities in low complexity classes such as NC1, or can
be based on any one-way function for general polynomial-time computable func-
tionalities. The following theorem is informally mentioned in [21], we provide a
proof sketch for self-containment.

Theorem 4.3. Suppose a one-way function exists. Then, any polynomial time
n-party functionality f can be realized by a 2-round protocol with a correlated
randomness setup. Furthermore, the same result holds unconditionally (and with
information-theoretic security) for functionalities f in the complexity class NC1

or even (uniform) NL/poly.

Proof (sketch). Assume for simplicity that each input of f is a single bit and
the output is only revealed to P1; the general case can be reduced to this case.
Consider any decomposable randomized encoding [1,15,22] (or projective gar-
bling [2]) for f . Such an encoding can be expressed as an efficiently samplable
joint distribution Rf = ((r01, r

1
1), . . . , (r

0
n, r1n)) such that given (r1x1

, . . . , rn
xn

) one
can recover f(x) but cannot learn anything else about x. The existence of such
Rf for polynomial-time computable functionalities f (with computational hiding
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of x) can be based on any one-way function [24]. For functions f in NC1 or even
(uniform) NL/poly, it exists unconditionally with perfect hiding of x [1,15].

Given Rf as above, a protocol for f in the correlated randomness
model proceeds as follows. To generate the correlated randomness, sample
((r01, r

1
1), . . . , (r

0
n, r1n)) from Rf , pick a secret mask ρi ∈ {0, 1} for each input

bit xi, and use n-out-of-n (e.g., additive) secret sharing to share each (r0i , r1i )
between the parties, where the pair entries are permuted according to ρi. That
is, each party gets a “left share” of rρi

i and a “right share” of r1−ρi

i . Moreover,
the permutation bit ρi is revealed to party Pi.

In the online phase, on input xi, party Pi sends its masked input x′
i =

xi ⊕ ρi to all other parties. In the second round, each party sends to P1 the
n shares corresponding to the bits x′

i, namely if x′
i = 0 then the left share

(of rρi

i ) is sent and otherwise the right share (of r1−ρi

i ) is sent. Given the shares
received from all parties, P1 reconstructs (r1x1

, . . . , rn
xn

), from which it can decode
f(x1, . . . , xn). Security follows from the security of the randomized encoding and
the fact that the unrevealed values ri

1−xi
are not revealed to the adversary even

when corrupting an arbitrary strict subset of the parties. 	

Combining Theorems 4.1 and 4.3, we get the following corollary for message-

optimal MPC with correlated randomness setup.

Corollary 4.4. Suppose a one-way function exists. Then, any polynomial time
n-party functionality f delivering output to k parties can be securely computed
with a correlated randomness setup and 2n+k−3 online messages. Furthermore,
the same result holds unconditionally (and with information-theoretic security)
for functionalities f in the complexity class NC1 or even (uniform) NL/poly.

5 Conclusions and Future Research

In this work we provide a tight characterization of the message complexity of
computationally secure MPC in the presence of semi-honest adversaries that
can corrupt any number of parties. Our work leaves several natural directions
for future research.

One direction is understanding the type of achievable security and necessary
setup for extending the positive results to accommodate malicious adversaries.
While such an extension is fairly simple in some settings (e.g., for NC1 functions
with a correlated randomness setup and settling for “security with selective
abort” [21]), characterizing the minimal message complexity in the plain model
or with stronger forms of security seems like a challenging problem.

Another direction is to better understand the message complexity of MPC
in the case where at most t parties can be corrupted. This relaxed setting is
more sensitive to the distinction between static vs. adaptive corruption (with
or without erasures) and between fixed vs. dynamic interaction pattern. Partial
results are given in [5,7,8,11,13,16].
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A Secure Multiparty Computation

For completeness, we provide here an overview of the standard definition of MPC
we use. We refer the reader to [18] for a more complete treatment.

We consider by default an n-party functionality f to be a deterministic map-
ping of n inputs to n outputs.

An n-party protocol Π prescribes a randomized interaction between parties
P1, . . . , Pn on their local inputs xi. This interaction may proceed in rounds,
where in each round each party can send a message to each other party. Since
our current focus on message complexity rather than round complexity, we may
assume without loss of generality that only a single message is sent in each round.
Formally, Π is a polynomial-time computable next message function that on
input i (party identity), 1k (global security parameter), xi (local input of Pi), ri

(local random input of Pi) and (mij
) (sequence of messages received so far by

Pi) specifies the next message Pi should send and its destination, or alternatively
the local output yi of Pi. In the plain model, the ri are independently random
bit-strings, whereas in the correlated randomness model they can be picked by
a PPT sampling algorithm D(1k).

We make the following correctness requirement: if parties P1, . . . , Pn interact
according to Π on inputs 1k and (x1, . . . , xn), then they end up with local
outputs (y1, . . . , yn) = f(x1, . . . , xn) except with negligible probability in k.

The security of a protocol (with respect to the functionality f) is defined
by comparing the real-world execution of the protocol with an ideal-world eval-
uation of f by a trusted party. More concretely, it is required that for every
adversary Adv, which attacks the real execution of the protocol, there exist an
adversary Sim, also referred to as a simulator, which can learn essentially the
same information in the ideal-world. Since we consider security against semi-
honest adversaries and deterministic functionalities, we are only concerned with
simulating the view of Adv and not its effect on the outputs of uncorrupted
parties.

The real execution. In the real execution of Π, the adversary Adv, given an
auxiliary input z, corrupts a set I ⊂ [n] of the parties and outputs their entire
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view. This view consists (without loss of generality) of their inputs xi, random
inputs ri, and messages received from other parties. (The outgoing messages
are determined by the above information.) The output of Adv on a protocol Π
defines a random variable REALπ,Adv(z),I(k,x ).

The ideal execution. In the ideal world, there is a trusted party who computes f
on behalf of the parties. The simulator Sim, given an auxiliary input z, corrupts
a set I ⊂ [n], receives the inputs and outputs of parties in I, and computes
some (randomized) function of this information. The interaction of Sim with f
defines a random variable IDEALf,Sim(z),I(k,x ) whose value is determined by the
random coins of Sim.

Having defined the real and the ideal executions, we now proceed to define our
notion of security. We say that Π securely computes f in the presence of semi-
honest adversaries if for every I ⊂ [n] and PPT adversary Adv (whose running
time is polynomial in k) there exists a PPT simulator Sim, such that for every
sequence of polynomial-size auxiliary inputs zk and inputs x = (x1, . . . , xn), the
following quantity is negligible in k:

|Pr[REALΠ,Adv(z),I(k,x ) = 1] − Pr[IDEALf,Sim(z),I(k,x ) = 1]|.
We also consider the case of information-theoretic security, in which both

Adv and Sim are computationally unbounded.
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9. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: STOC, pp. 11–19 (1988)

10. Choi, S.G., Elbaz, A., Malkin, T., Yung, M.: Secure multi-party computation mini-
mizing online rounds. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
268–286. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 16

11. Chor, B., Kushilevitz, E.: A communication-privacy tradeoff for modular addition.
Inf. Process. Lett. 45(4), 205–210 (1993)

12. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

13. Damg̊ard, I., Nielsen, J.B., Ostrovsky, R., Rosén, A.: Unconditionally secure com-
putation with reduced interaction. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 420–447. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49896-5 15

14. Damg̊ard, I., Nielsen, J.B., Polychroniadou, A., Raskin, M.: On the communication
required for unconditionally secure multiplication. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 459–488. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53008-5 16

15. Feige, U., Killian, J., Naor, M.: A minimal model for secure computation (extended
abstract). In: Proceedings of the Twenty-Sixth Annual ACM Symposium on The-
ory of Computing, STOC 1994, pp. 554–563. ACM, New York (1994)

16. Garay, J., Ishai, Y., Ostrovsky, R., Zikas, V.: The price of low communication in
secure multi-party computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017,
Part I. LNCS, vol. 10401, pp. 420–446. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63688-7 14

17. Garg, S., Srinivasan, A.: Two-round multiparty secure computation from minimal
assumptions. Cryptology ePrint Archive, Report 2017/1156 (2017). https://eprint.
iacr.org/2017/1156

18. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, Cambridge (2004)

19. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

20. Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty compu-
tation with general interaction patterns. In: Proceedings of ITCS 2016, pp. 157–168
(2016). https://eprint.iacr.org/2015/1173.pdf

21. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On
the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC
2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36594-2 34

22. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: STOC, pp. 433–442 (2008)

23. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol.
9666, pp. 735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49896-5 26

24. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

https://doi.org/10.1007/978-3-642-10366-7_16
https://doi.org/10.1007/978-3-642-10366-7_16
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/978-3-662-49896-5_15
https://doi.org/10.1007/978-3-662-53008-5_16
https://doi.org/10.1007/978-3-319-63688-7_14
https://doi.org/10.1007/978-3-319-63688-7_14
https://eprint.iacr.org/2017/1156
https://eprint.iacr.org/2017/1156
https://eprint.iacr.org/2015/1173.pdf
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-642-36594-2_34
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26


Author Index

Agrikola, Thomas II-341
Alamati, Navid II-619
Au, Man Ho I-253
Auerbach, Benedikt I-348, II-403

Badertscher, Christian I-494
Bellare, Mihir I-348
Benhamouda, Fabrice II-644
Blazy, Olivier II-644
Bootle, Jonathan II-561
Brakerski, Zvika II-702
Broadnax, Brandon II-312

Chen, Ming-Shing II-3
Chen, Wenbin I-253
Chen, Yu II-589

Dachman-Soled, Dana II-281
Damgård, Ivan II-530
Data, Deepesh I-675
Datta, Pratish II-245
Deng, Yi II-589
Derler, David I-219
Doröz, Yarkın I-125
Döttling, Nico I-3
Ducas, Léo II-644

El Kaafarani, Ali II-89

Fan, Xiong II-218
Farshim, Pooya II-371
Fetzer, Valerie II-312
Frederiksen, Tore K. I-587
Fuchsbauer, Georg I-315, II-153

Ganesh, Chaya II-499
Garay, Juan A. II-465
Garg, Sanjam I-3
Gay, Romain II-153
Gentry, Craig II-34
Giacon, Federico I-159, I-190

Groth, Jens II-561
Gu, Dawu I-62

Hajiabadi, Mohammad I-3
Hamlin, Ariel I-95
Han, Shuai I-62
Hanaoka, Goichiro I-437
Hart, Daniel I-381
Herold, Gottfried I-407
Hesse, Julia II-371
Heuer, Felix I-190
Hoffstein, Jeffrey I-125
Hofheinz, Dennis II-341, II-371
Huang, Zhengan I-253
Hülsing, Andreas II-3, II-728

Ishai, Yuval I-698

Jarecki, Stanislaw I-644, II-431
Jutla, Charanjit S. II-123

Kashiwabara, Kenji I-437
Katsumata, Shuichi II-89
Kiayias, Aggelos II-465
Kiltz, Eike I-159, I-348
Kim, DoHoon I-381
Kirshanova, Elena I-407, II-702
Kitagawa, Fuyuki I-32, II-187
Kondi, Yashvanth II-499
Krawczyk, Hugo II-431
Krenn, Stephan I-219
Kulkarni, Mukul II-281

Laarhoven, Thijs I-407
Lai, Junzuo I-253
Lange, Tanja II-728
Larraia, Enrique II-371
Leonardos, Nikos II-465
Li, Baiyu I-527
Li, Jin I-253
Lindell, Yehuda I-620
Ling, San II-58



Liu, Shengli I-62
Lorünser, Thomas I-219
Luo, Ji II-530
Lyu, Lin I-62

Masny, Daniel I-3
Matsuda, Takahiro I-280
Maurer, Ueli I-494
Mechler, Jeremias I-463
Micciancio, Daniele I-527
Micheli, Giacomo I-381
Mittal, Manika I-698
Müller-Quade, Jörn I-463, II-312

Nguyen, Khoa II-58
Nilges, Tobias I-463
Nishimaki, Ryo II-187

O’Neill, Adam II-34
Oechsner, Sabine II-530
Ohkubo, Miyako II-123
Okamoto, Tatsuaki II-245
Ostrovsky, Rafail I-698

Panagiotakos, Giorgos II-465
Pascual-Perez, Guillermo I-381
Patra, Arpita II-499
Peikert, Chris II-619, II-675
Peng, Zhen I-253
Petit, Christophe I-381
Pinkas, Benny I-587
Pipher, Jill I-125
Poettering, Bertram I-159, I-190, II-403
Prabhakaran, Manoj I-675

Quach, Willy II-644
Quek, Yuxuan I-381

Ramacher, Sebastian I-219
Reyzin, Leonid II-34

Rijneveld, Joost II-3
Roy, Arnab II-123
Rupp, Andy II-312

Samardjiska, Simona II-3
Sarkar, Pratik II-499
Saxena, Nitesh II-431
Scholl, Peter I-554, II-530
Schuldt, Jacob C. N. I-280
Schwabe, Peter II-3
Shahverdi, Aria II-281
Shelat, Abhi I-95
Shiehian, Sina II-675
Shirvanian, Maliheh II-431
Silverman, Joseph H. I-125
Simkin, Mark II-530
Slamanig, Daniel I-219
Smeets, Kit II-728
Song, Xuyang II-589
Stehlé, Damien II-702
Stephens-Davidowitz, Noah II-619
Striecks, Christoph I-219
Sunar, Berk I-125

Tackmann, Björn I-494
Tanaka, Keisuke I-32, II-187
Tang, Qiang II-218
Teruya, Tadanori I-437
Tomida, Junichi II-245

Wang, Huaxiong II-58
Weiss, Mor I-95
Wen, Weiqiang II-702
Whyte, William I-125
Wichs, Daniel I-95

Xu, Yanhong II-58

Yanai, Avishay I-587, I-620
Yu, Jingyue II-589

Zhang, Zhenfei I-125

714 Author Index


	Preface
	PKC 2018 
	Contents – Part I
	Contents – Part II
	Key-Dependent-Message and Selective-Opening Security
	New Constructions of Identity-Based and Key-Dependent Message Secure Encryption Schemes
	1 Introduction
	1.1 PKE and IBE from Learning with Errors
	1.2 Our Results
	1.3 Technical Outline
	1.4 Concurrent Works

	2 Preliminaries
	2.1 Hard Learning Problems
	2.2 Weak Commitments
	2.3 Secret- and Public-Key Encryption
	2.4 One-Time Signatures with Encryption DG17b
	2.5 Garbled Circuits

	3 Hash Encryption from Learning Problems
	3.1 Hash Encryption
	3.2 Hash Encryption from LWE
	3.3 Hash Encryption from Exponentially Hard LPN

	4 Non-compact One-Time Signatures with Encryption
	5 Compact One-Time-Signatures with Encryption via Hash-Encryption
	6 KDM-Secure Public-Key Encryption
	6.1 Correctness
	6.2 Security

	References

	Key Dependent Message Security and Receiver Selective Opening Security for Identity-Based Encryption
	1 Introduction
	1.1 Background
	1.2 Our Results
	1.3 Overview of Our Techniques
	1.4 Organization

	2 Preliminaries
	2.1 Garbled Circuits
	2.2 Public Key Encryption
	2.3 Secret Key Encryption

	3 Identity-Based Encryption
	3.1 KDM Security for IBE
	3.2 RSO Security for IBE

	4 KDM Secure IBE from KDM Secure SKE and IND-ID-CPA Secure IBE
	5 SIM-RSO Secure IBE Based on IND-ID-CPA Secure IBE
	6 KDM Secure PKE from KDM Secure SKE and IND-CPA Secure PKE
	7 SIM-RSO Secure PKE Based on IND-CPA Secure PKE
	References

	Tightly SIM-SO-CCA Secure Public Key Encryption from Standard Assumptions
	1 Introduction
	1.1 Our Contribution
	1.2 Technique Overview
	1.3 Instantiation Overview

	2 Preliminaries
	2.1 Prime-Order Groups
	2.2 Simulation-Based, Selective-Opening CCA Security of PKE
	2.3 Efficiently Samplable and Explainable (ESE) Domain
	2.4 Cross-Authentication Codes

	3 Key Encapsulation Mechanism
	3.1 mPR-CCCA Security for KEM
	3.2 RER Security of KEM

	4 SIM-SO-CCA Secure PKE from KEM
	4.1 PKE Construction
	4.2 Tight Security Proof of PKE

	5 Instantiations
	5.1 KEM from MDDH
	5.2 KEM from Qualified Proof System with Compact Public Key

	References

	Searchable and Fully Homomorphic Encryption
	Multi-Key Searchable Encryption, Revisited
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	3 Defining Multi-Key Searchable Encryption
	4 MKSE with Fast Search
	5 MKSE with Short Share Keys
	5.1 MKSE from Differing-Inputs Obfuscation
	5.2 MKSE from Public-Coin Differing-Inputs Obfuscation

	6 Extensions and Open Problems
	References

	Fully Homomorphic Encryption from the Finite Field Isomorphism Problem
	1 Introduction
	1.1 Subfield Attack
	1.2 A Sketch of the Main Ideas
	1.3 Related Work
	1.4 Paper Organization

	2 The Finite Field Isomorphism (FFI) Problem
	2.1 Preliminaries
	2.2 Discussions and Proofs
	2.3 An Algorithm to Find an Isomorphism
	2.4 Known Approaches to Recovering the Secret Isomorphism

	3 Fully Homomorphic Encryption Based on DFFI
	3.1 Fully Homomorphic Encryption Definitions
	3.2 Somewhat Homomorphic FF-Encrypt Construction
	3.3 From Somewhat to Fully Homomorphic Encryption

	4 Conclusion
	A  Constructing the Inverse Isomorphism
	B  Noise Analysis
	B.1  Worst Case Analysis
	B.2  Worst Case for Arbitrary 

	C  Sample Parameters and Their Security Estimates
	D  Testing Results for Observation 2
	References

	Public-Key Encryption
	Hybrid Encryption in a Multi-user Setting, Revisited
	1 Introduction
	1.1 Our Contributions

	2 Notation
	3 Traditional KEM/DEM Composition and Its Weakness
	3.1 Syntax and Security of PKE, KEMs, and DEMs
	3.2 Hybrid Encryption

	4 Deterministic DEMs and Their Multi-instance Security
	4.1 A Passive Multi-instance Distinguishing Attack on DEMs
	4.2 A Passive Multi-instance Key-Recovery Attack on DEMs

	5 Augmented Data Encapsulation
	5.1 Relations Between ADEMs with Uniform and Nonce Tags
	5.2 Augmented Hybrid Encryption

	6 Constructions of Augmented Data Encapsulation
	6.1 Counter-Mode Encryption
	6.2 Security of Function-Based Counter Mode
	6.3 On the Security of Permutation-Based Counter Mode

	7 ADEMs Secure Against Active Adversaries
	7.1 Augmented Message Authentication
	7.2 The ADEM-Then-AMAC Construction
	7.3 A Multi-instance Secure AMAC

	References

	KEM Combiners
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 KEM Combiners
	3.1 The XOR Combiner
	3.2 The XOR-Then-PRF Combiner
	3.3 KEM Combiners from Split-Key PRFs

	4 Split-Key PRFs in Idealized Models
	4.1 Split-Key PRFs in the Ideal Cipher Model
	4.2 Split-Key PRFs in the Random Oracle Model

	5 A KEM Combiner in the Standard Model
	5.1 The PRF-Then-XOR Split-Key PRF

	References

	Revisiting Proxy Re-encryption: Forward Secrecy, Improved Security, and Applications
	1 Introduction
	1.1 Contribution
	1.2 Intuition and Construction Overview
	1.3 Related Work and Outline

	2 Preliminaries
	3 Security of (Forward-Secret) Proxy Re-encryption
	3.1 Syntax of Forward-Secret Proxy Re-encryption
	3.2 Security of Forward-Secret Proxy Re-encryption
	3.3 Stronger Security for Proxy Re-encryption

	4 Constructing Fs-PRE from Binary Tree Encryption
	4.1 Forward-Secret Delegatable Public-Key Encryption
	4.2 Constructing fs-DPKE from BTE
	4.3 Constructing fs-PRE from fs-DPKE
	4.4 Separating fs-PRE- from fs-PRE+

	References

	Encryption with Bad Randomness
	Hedged Nonce-Based Public-Key Encryption: Adaptive Security Under Randomness Failures
	1 Introduction
	2 Preliminaries
	3 Hedged Security for Nonce-Based Public-Key Encryption
	3.1 Chosen-Ciphertext Security Against Chosen-Distribution Attacks
	3.2 Separations Between NBP1/NBP2 Security and IND-CDA2 Security
	3.3 The RSV Version of IND-CDA2 Security

	4 Construction of H-PKE in the Random Oracle Model
	5 Construction of H-PKE in the Standard Model
	A From Non-adaptive IND-CDA to Adaptive IND-CDA2
	References

	Related Randomness Security for Public Key Encryption, Revisited
	1 Introduction
	1.1 The Related Randomness Setting
	1.2 Our Results
	1.3 Technique
	1.4 Related Work

	2 Preliminaries
	2.1 Notation and Basic Notions
	2.2 t-wise Independent Hash Functions
	2.3 Output Unpredictability and Collision Resistance
	2.4 Pseudorandom Function
	2.5 Public Key Encryption

	3 Related Refreshable Randomness Security
	3.1 Basic Function Family Restrictions

	4 Restrictions on the Complexity of Function Families
	5 On the IND-RR-CCA Security of REwH in the Random Oracle Model
	6 Bounded RKA and Correlated-Input Security from t-wise Independent Hash Functions
	6.1 Key-Dependent Leftover Hash Lemma for Correlated Inputs
	6.2 Correlated-Input Secure Functions
	6.3 Bounded RKA-Secure PRF

	7 IND-RRR-CCA Security in the Standard Model
	References

	Subversion Resistance
	Subversion-Zero-Knowledge SNARKs
	1 Introduction
	2 Definitions
	2.1 Notation
	2.2 NP Relations and NI Systems
	2.3 Standard Notions: SND, KSND, WI and ZK
	2.4 Notions for Subverted CRS: S-SND, S-KSND, S-WI and S-ZK
	2.5 Bilinear Groups and Assumptions
	2.6 SKE in the Generic-Group Model

	3 SNARKs
	4 Asymmetric Pinocchio
	5 Groth's Near-Optimal SNARK
	References

	Public-Key Encryption Resistant to Parameter Subversion and Its Realization from Efficiently-Embeddable Groups
	1 Introduction
	2 Preliminaries
	3 Public-Key Encryption Resistant to Parameter Subversion
	3.1 Public-Key Encryption Schemes
	3.2 Key Encapsulation Mechanisms
	3.3 Symmetric Encryption
	3.4 PKE from Key Encapsulation and Symmetric-Key Encryption

	4 KEMs from Efficiently Embeddable Group Families
	4.1 Efficiently Embeddable Group Families
	4.2 Key Encapsulation from Efficiently Embeddable Group Families

	5 Efficiently Embeddable Group Families from Curve-Twist Pairs
	5.1 Elliptic Curves
	5.2 An Eeg Family from Elliptic Curves
	5.3 A Parameter-Free Eeg Family Using Rejection Sampling
	5.4 A Parameter-Free Family Using Range Expansion

	References

	Cryptanalysis
	A Practical Cryptanalysis of WalnutDSATM
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work
	1.3 Outline

	2 Preliminaries
	2.1 Security Definition
	2.2 Braid Groups
	2.3 Factorization Problem in Non-Abelian Groups

	3 WalnutDSA
	3.1 E-Multiplication
	3.2 Key Generation
	3.3 Message Encoding
	3.4 Cloaking Elements
	3.5 Signing
	3.6 Verifying

	4 Practical Cryptanalysis of WalnutDSA
	4.1 Reduction to the Factorization Problem
	4.2 Solution to the Factorization Problem
	4.3 Meet-in-the-Middle Approach
	4.4 Complexity Analysis and Experiments
	4.5 Practical Improvements

	5 Discussion and Further Work
	5.1 Increasing the Parameters
	5.2 Checking Signature Length
	5.3 Limitations of the Countermeasures

	6 Conclusion
	A The Garside Normal Form
	References

	Speed-Ups and Time–Memory Trade-Offs for Tuple Lattice Sieving
	1 Introduction
	1.1 Contributions
	1.2 Approximate k-list Problem
	1.3 Generalized Configuration Search
	1.4 Generalized Locality-Sensitive Filters
	1.5 Combining Both Techniques
	1.6 Open Problems

	2 Preliminaries
	2.1 Configurations and Concentration Results
	2.2 Transformation

	3 Generalized Configuration Search
	3.1 Analysis
	3.2 Case of Interest: k=3
	3.3 Trade–off Curves

	4 Generalized Locality-Sensitive Filters
	4.1 Application to the Configuration Problem
	4.2 Comparison with Configuration Extension

	5 Combining both Techniques
	6 Tuple Gauss Sieve
	6.1 Gauss Sieve with k=3 in Practice

	References

	Fast Lattice Basis Reduction Suitable for Massive Parallelization and Its Application to the Shortest Vector Problem
	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Related Work

	2 Preliminaries
	2.1 Lattice
	2.2 Natural Number Representation
	2.3 Shortest Vector Problem and SVP Challenge

	3 Brief Introduction to Sampling Reduction
	3.1 Overview of Sampling Reduction
	3.2 Fukase–Kashiwabara Algorithm

	4 Overview of Our Parallelization Strategy
	4.1 Technical Hurdles and Brief Review of Parallelization Methodology
	4.2 Key Idea of Our Parallelization Strategy

	5 Our Algorithm
	5.1 Basis Reduction Strategy Using Evaluation Function
	5.2 Parallelization Strategy
	5.3 Parameter Choice

	6 Application to SVP Challenge
	6.1 Equipment
	6.2 Experimental Results

	7 Conclusion
	References

	Composable Security
	Reusing Tamper-Proof Hardware in UC-Secure Protocols
	1 Introduction
	1.1 Our Contribution
	1.2 Our Techniques
	1.3 Related Work

	2 Preliminaries
	2.1 UC Framework
	2.2 Commitments
	2.3 Witness-Indistinguishability
	2.4 Digital Signatures

	3 Real Signature Tokens
	3.1 Model
	3.2 UC-Secure Commitments

	4 Ideal Signature Tokens
	4.1 Model
	4.2 UC-Secure Non-Interactive Two-Party Computation

	5 Limitations
	References

	On Composable Security for Digital Signatures
	1 Introduction
	1.1 Formalizing Message Authentication
	1.2 Background and Previous Work
	1.3 Contributions

	2 Preliminaries
	2.1 Discrete Systems and Notation
	2.2 Definition of Security
	2.3 Digital Signature Schemes

	3 Message Repositories
	3.1 Description of Message Repositories
	3.2 Modeling Security Guarantees by Access to the Repository
	3.3 Example: Modeling Networks Through Repositories

	4 A Constructive Perspective on Digital Signatures
	4.1 The Basic Definitions
	4.2 Unforgeability of Signatures Implies Validity of Construction
	4.3 Chaining Multiple Construction Steps
	4.4 Validity of Construction Implies Unforgeability of Signatures
	4.5 Digital Signatures with Message Recovery

	5 On the Transferability of Verification Rights
	6 Application 1: Implementing a Registration Service
	7 Application 2: Authenticating Sessions Using Assertions
	References

	Oblivious Transfer
	Equational Security Proofs of Oblivious Transfer Protocols
	1 Introduction
	1.1 Oblivious Transfer Extension
	1.2 Oblivious Transfer in the Random Oracle Model
	1.3 Discussion/Conclusions

	2 Background and Notation
	2.1 Domain Theoretical Background
	2.2 Computational Model
	2.3 Security
	2.4 Notation

	3 Oblivious Transfer Length Extension: A First Attempt
	4 OT Length Extension
	5 The OT Protocol of Chou and Orlandi
	5.1 Corrupted Sender
	5.2 Corrupted Receiver
	5.3 Revised OT Definition

	6 Conclusion
	References

	Extending Oblivious Transfer with Low Communication via Key-Homomorphic PRFs
	1 Introduction
	1.1 Contributions of This Work
	1.2 Overview of Techniques

	2 Preliminaries
	2.1 Universally Composable Security
	2.2 Key-Homomorphic Pseudorandom Functions

	3 OT Extension Protocol
	3.1 Setup Functionality
	3.2 Random OT Protocol
	3.3 Security
	3.4 Choosing the Parameters

	4 Actively Secure Base OTs
	4.1 Security

	A Conversion to 1-out-of-2 OTs
	References

	Multiparty Computation
	Committed MPC
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Homomorphic Commitments
	3.1 Two-Party Homomorphic Commitments
	3.2 Multiparty Homomorphic Commitments
	3.3 Realizing  in the -hybrid Model

	4 Committed Multiparty Computation
	4.1 Augmented Commitments
	4.2 Generating Multiplication Triples
	4.3 Reorganization of Components of a Commitment

	5 Protocol for Multiparty Computation
	6 Efficiency
	7 Applications
	7.1 Bit Committed OT

	References

	Fast Garbling of Circuits over 3-Valued Logic
	1 Introduction
	1.1 Background – Three-Valued Logic
	1.2 Applications in SQL
	1.3 Naively Garbling a 3VL Gate
	1.4 Our Results

	2 Encoding 3VL Functions as Boolean Functions
	2.1 Notation
	2.2 3VL-Boolean Encoding
	2.3 Composition of 3VL Functions
	2.4 More Generalized Encodings

	3 A Natural 3VL-Boolean Encoding
	4 A More Efficient Encoding Using a Functional Relation
	4.1 An Efficient Function Transformation for 3,3 Gates
	4.2 An Efficient Function Transformation for 3 Gates

	5 Encoding Using a Non-functional Relation
	6 Efficiency Summary of the Different Methods
	7 A Black-Box Protocol for Computing 3VL Circuits
	8 Lower Bounds
	A Exhaustive Search for Expressions with One Boolean AND
	B Insecurity of the Naive Protocol for Evaluating 3VL Functions
	C Formal Proofs of Encodings via Truth Tables
	C.1  Correctness of the Natural Encoding
	C.2  Correctness of the Encoding Using a Functional Relation
	C.3  Correctness of the Encoding Using a Non-functional Relation

	References

	Efficient Covert Two-Party Computation
	1 Introduction
	2 Preliminaries
	3 Defining Concurrent Covert Two-Party Computation
	4 Covert Protocol Building Blocks
	5 Covert Simulation-Sound Conditional KEM (CKEM)
	6 Covert CKEM's for LMI and -Protocol Languages
	6.1 2-Round Covert CKEM for -Protocol Languages in ROM

	7 Covert Computation of General 2-Party Functions
	References

	Towards Characterizing Securely Computable Two-Party Randomized Functions
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Preliminaries
	3 Characterization of Functions up to Ternary Output Alphabet
	3.1 Compact Representation of Secure Protocols
	3.2 Binary Output Alphabet
	3.3 Ternary Output Alphabet

	4 Functions with 2-Round Secure Protocols
	5 Complexity of Randomized Functions
	5.1 Smaller Simple Functions Which Are Not Securely Computable
	5.2 Limits of Unique-Transcript Protocols

	A  Security for Simple Symmetric Functions
	B  Example for Sect.5.2
	References

	On the Message Complexity of Secure Multiparty Computation
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	3 The Lower Bound
	4 Upper Bounds
	5 Conclusions and Future Research
	A  Secure Multiparty Computation
	References

	Author Index



