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Chapter 1
Introduction

Lynda Ball, Silke Ladel and Hans-Stefan Siller

Abstract The use of technology in mathematics education, which encompasses the
use of both classical and digital technologies, has a long and broadly discussed
tradition. The potential impact of technology on what and how students learn (e.g.
Fey et al. in Computing and mathematics. The impact on secondary school cur-
ricula. National Council of Teachers of Mathematics, Reston, VA, 1984) is an issue
which has existed for decades and there is now a growing corpus of studies which
provide insight into the role of technology in mathematics education (see for
example, Blume and Heid in Research on technology and the teaching and learning
of mathematics: volume 2 cases and perspectives. IAP, Charlotte, NC, 2008;
Drijvers et al. in Uses of technology in lower secondary mathematics education: a
concise topical survey. Springer, Cham, 2016; Heid and Blume in Research on
technology and the teaching and learning of mathematics: volume 1 research
syntheses. IAP, Charlotte, NC, 2008; Hoyles and Lagrange in Mathematics edu-
cation and technology–rethinking the terrain. Springer, New York/Berlin, 2010;
Moyer-Packenham in International perspectives on teaching and learning mathe-
matics with virtual manipulatives. Springer International Publishing, Switzerland,
2016). Consideration of the impact of technology on the teaching and learning of
mathematics has been the topic of considerable research and continues to be of
interest as researchers investigate the potential of technology-enabled mathematics
education. For these reasons, it is not surprising that technology use was the focus
of three Topic Study Groups (TSGs 41, 42 and 43) at the 13th International
Congress on Mathematical Education (ICME), held in Hamburg in 2016.
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These three TSGs focused on the uses of technology (i.e. digital tools) in mathe-
matics education across the spectrum of school mathematics from primary to upper
secondary. The aim of this book is to provide an overview of some of these studies
related to the use of technology across this age spectrum, as well as point towards
future directions for the use of technology in school mathematics. As the field of
technology use is a very broad one, the three Topic Study Groups had different foci
related to working and using digital tools in teaching and learning of mathematics.
The next section provides insight into the intended foci of each of the three TSGs as
this foregrounded the work of the three groups at ICME 13.

Keywords Teaching mathematics � Learning mathematics � Technology
School mathematics � Digital tools

TSG 41 focused on “Uses of technology in primary mathematics education (up to
age 10)”. This TSG noted that although many types of digital technology and
environments have been available for primary education since before the turn of the
century, individual drill and practice software and interactive tools for exposition
appeared to be prevalent in many primary classrooms where technology is used
(Attard & Orlando, 2016; Bate, 2010; Loong, Doig, & Groves, 2011; Zuber &
Anderson, 2013). Today, all over the world, young children bring their experience
with hand-held and other technology into the classroom and in recent years, these
have included tools to communicate in the cloud. In the context of this experience,
two questions were raised:

1. Do primary teachers keep up with digital natives?
2. Which types of technology use are emerging to enrich and foster mathematics

learning at primary school?

Taking these questions into account, TSG 41 focused on the issues of ‘use of
technology’, ‘key success factors’ and ‘innovations’ in the context of primary
mathematics education, with children up to 10 years old, namely:

• How do schools and teachers around the world, and in differently advantaged
communities, use technology to enrich mathematics learning at primary level?

• Which factors contribute to successful and sustained use of technology in pri-
mary settings?

• Which innovations in digital technology for education enable primary children
to inquire, problem solve and think mathematically and to share their learning?

TSG 42 focused on “Uses of technology in lower secondary mathematics
education (age 10–14)”, with this age range bridging primary and secondary
schooling in many countries. TSG 42 considered technology-related issues from
both a learner and teacher perspective, focusing on four themes. The four themes
and associated research questions shown below initiated the work of TSG 42:

2 L. Ball et al.



• Evidence for effect—What are the research findings about the benefits for
student learning of the integration of digital tools in lower secondary mathe-
matics education?

• Mathematics education in 2025—What will lower secondary mathematics ed-
ucation look like in 2025, with respect to the place of digital tools in curricula,
teaching and learning? How can teachers integrate physical and virtual
experiences to promote deep understanding of mathematics?

• Digital assessment—What are features of appropriate online assessment of, for
and as learning?

• Communication and collaboration—How can digital technology be used to
promote communication and collaborative work between students, between
teachers, and between students and teachers? What are the potential profes-
sional development needs of teachers integrating digital tools into their
teaching, and how can technology act as a vehicle for such professional
development activities?

TSG 43 focused on “Uses of technology in upper secondary mathematics
education (age 14–19)”. The TSG focused on four themes:

• Theoretical Aspects. New technologies can create new kinds of activities and
new forms of interactions between learners and teachers hence the need to
examine current theory for developing and analyzing the implementation of new
technologies from cognitive and epistemological perspectives.

• Role of Emerging Technologies. For example, how tablets, smartphones, Virtual
Learning Environments, Augmented Reality environments, and haptic tech-
nologies might mediate new forms of access to mathematics.

• Interrelations between technology and the mathematics taught at this age level.
• Teacher Education. New challenges and opportunities for teachers to reflect on

their practices and how they develop with the use of new technologies.

One key point to be considered in any discussions about technology in mathe-
matics education is that access to technology does not, of itself, result in improved
teaching and learning. Therefore, the topic study groups on technology are crucial
to highlight findings from a range of international perspectives, as well as look
forward to future research directions. Consideration of the themes and research
questions across the three topic study groups highlights the evolutionary nature of
research into digital technology and the need for future research in this area. The
following section outlines the chapters in this book, discussed in three sections
which align with the three topic study groups.

Topic Study Group 41 was concerned with primary mathematics education up to
age 10 and Chaps. 2–8 focus on the use of technologies and digital tools in this age
range. In Chap. 2 Moyer-Packenham et al. present the results of a study that
examines changes in the performance and efficiency of young children’s learning as
they engaged with several touch-screen virtual manipulative mathematics apps.
They found that changes in the children’s learning could be explained by the
content alignment of the apps, as well as having similarity in the structure of the

1 Introduction 3



apps used for assessment and for learning. This suggests that technical familiarity
could be a consideration when a teacher is choosing an app to develop or assess a
student’s understanding. Tucker also focused on touch-screen apps in Chap. 3
applying the Modification of Attributes, Affordances, Abilities, and Distance
(MAAAD) for learning framework to evaluate potentialities of apps.

Larsen et al., in Chap. 4, found that the purposeful use of screencasting apps
supported mathematical discourse and has the potential to impact teacher practices.
In Chap. 5 Voltolini questions the bonus brought by technology in situations that
link digital and material tools. The author shows how the duo of a digital and a
material tool supports the learning processes of children with regards to processes
of assimilation and adaptation.

Larkin and Milford (Chap. 6) provided an analysis of 53 apps that support
geometry learning to promote discussion about the use of apps in primary mathe-
matics education. In Chap. 7 Walter investigated students’ use of a physical ‘twenty
frame’ and the ‘twenty frame’ tablet-app for a group of students with special
learning needs. The different approaches used by different children suggested that
potential learning gains may not be achieved by all students, using either physical
twenty-frames or the given app. The structure of an app was identified as a potential
inhibitor to development of understanding in this case. Calder and Murphy (Chap. 8)
also reported on the affordances of an app, Math Shake, and the potential for
reshaping learning experiences in primary-school mathematics. While their results
show the importance of the affordances of mobile technologies for students’
learning, they also show that the teacher’s pedagogical approach is influential.

These seven papers focus on different aspects related to the use of technology to
enhance mathematics teaching and learning in primary education, but each paper
shows the great potential that technologies hold—if used in a useful way.

Drijvers et al. (2016) provided a topical survey to stimulate the work of topic
study group 42 at ICME 13; this international perspective included a survey of
research findings and future directions for lower secondary mathematics
(ages 10–14) in the context of a technological age. Evidence for effect, to assess
whether technology has been shown to improve student outcomes, was examined.
In addition, the role of the teacher, as well as the role of technology in summative
and formative assessment, was considered. The potential for communication and
collaboration enabled through technology provides two challenges—how to capi-
talize on technologies to promote this communication and collaboration and the
resultant professional development needs for teachers who are teaching in these
contexts. Finally, the topical survey attempted to look ahead to mathematics edu-
cation in 2025, providing a vision for a technology-rich mathematics education. The
presence of technology has provided researchers and teachers with opportunities to
re-conceptualize mathematics education at lower secondary education, including a
rethinking of goals for curriculum, assessment, teaching and learning (Drijvers
et al., 2016).

Chapters 9–14 in this book provide insight into the TSG 42 themes focusing
specifically on evidence for effect, assessment and communication. Chapters 9 and
10 provide reviews of quantitative and qualitative studies related to technology in
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lower secondary mathematics. Drijvers (Chap. 9), provides a review of quantitative
studies related to technology use and student achievement. Although significant
positive effects are reported, with moderate effect sizes, the question is posed about
whether quantitative studies provide the detail about how technology can benefit
students’ learning of mathematics. In Chap. 10, Heid reviews qualitative literature
related to mathematics learning, highlighting the important role that these studies
play in probing students’ mathematical work and in illustrating that technology use
has the potential to enrich a student’s mathematical experience. Qualitative studies
provide detail into both what has been observed in student work and why this might
be the case, thus providing reasons for observed changes in mathematical
understanding.

Maschietto, in Chap. 11, provides one case study which highlights the interplay
between classical and digital technologies. In this study the Pythagorean Theorem is
explored in a laboratory setting with access to both classical and digital technolo-
gies. The chapter highlights the cognitive processes evident through kinesthetic
experiences with the machines, as well as the role of the teacher in orchestrating the
classroom to promote these processes. In Chap. 12, Ball and Barzel focus on an
overview of communication in the presence of digital technology. The focus on
communication follows on from the previous chapter, where use of a laboratory
approach involved communication mediated by technology. Communication in the
presence of technology has been categorized by Ball and Barzel as communication
through, with and of technology and the ways that this communication can promote
conceptual, procedural and metacognitive knowledge is elaborated and illustrated.
This provides a lens through which to consider how the development of different
types of mathematical knowledge can be supported through the affordances of
different types of technology.

Chapters 13 and 14 focus on assessment in the presence of digital technology;
this fosters consideration of the ways that technology can assist in assessment and
how use of assessment information can inform teaching. In Chap. 13 Grugeon and
colleagues analyse results from a study on the use of Pépite, an online assessment
and teaching tool which provides information for teachers about students’ reasoning
and thus can support planning for differentiation in the classroom. The focus here is
on formative assessment where the technology provides an analysis of students’
algebraic reasoning. In Chap. 14, Dick proposes a prototype for an assessment
system that utilizes both a computer algebra system (CAS) and a dynamic geometry
environment (DGE) with the goal of assessment being carried out automatically
within the system. Both assessment focused papers discuss systems where assess-
ment can be carried out within technology and they provide insight into future
possibilities for technology-assisted assessment. These chapters highlight the
importance of consideration of online assessment systems that provide teachers
with information about students’ understanding to inform teaching. This formative
assessment can assist teachers in targeting teaching to improve students’ outcomes.
These six papers serve to highlight that there are still many considerations that need
to be addressed with regards to technology use in lower secondary mathematics.

1 Introduction 5



The work in TSG 43 was prompted by a topical survey by Hegedus et al. (2016);
this publication identified four challenging themes that impact the use of technology
in upper-secondary mathematics education:

• Technology in secondary mathematics education: Theory
• The role of new technologies: Changing interactions
• Interrelations between technology and mathematics
• Teacher education with technology: What, how and why?

Chapters 15–25 each address one theme and focus on either the use of DGE or
CAS. Across these chapters, DGE was the most used technology, particularly when
the research focus was related to process orientated observations such as exploring
or modeling. Some chapters also reported DGE studies investigating the teaching of
specific mathematical concepts or skills. In contrast, CAS (handheld calculators, as
well as software) was used only for research topics concerning proofs and
justification.

By looking at the papers of TSG 43 from a meta-perspective one will be able to
recognize several research foci related to taxonomies for orchestration of students’
work with technology; the ways that research informs teachers’ knowledge and
professional development to optimize students’ learning with technology; new
opportunities for interactions between teachers and students in the presence of
technology and the role of teachers in these interactions.

Using digital tools in education with the aim to experiment can be identified in
two ways. On the one hand the main aim could be the promotion of mathematical
thinking and design of educational digital resources, such as in Traglová et al.
(Chap. 15). Concerning the issue of implementing new technologies (such as a Wii)
or technology using sensors, there is potential to explore changes in the ways that
students learn. Ng and Sinclair (Chap. 16) investigate the use of innovative
approaches, such as a 3D drawing pen for the learning of functions and calculus,
where mathematics moves from the traditional 2-D (such as on paper) to 3D. Ferrari
and Ferrara (Chap. 17) suggest that these types of resources can only be produced
within an innovative socio-technological environment and therefore requires col-
laboration by a community of mathematics teachers, computer scientists and
researchers in mathematics education.

When working with technology one must be aware that representing, docu-
menting and reflecting are key issues in the context of technological learning
environments, as discussed in Chaps. 18–24. For example, Beck in Chap. 18,
analyzed written notes of students who worked with CAS in upper secondary
mathematics and noted the potential to promote discussion about communication of
mathematical working. Interactions with digital tools and technological learning
environments seems to be advantageous, as outlined by Moreno-Armella and Brady
(Chap. 19). Donevska-Todora (Chap. 20) discusses a framework for developing
deep understanding of concepts in linear algebra. Greefrath and Siller (Chap. 21)
study the extent to which the systematic application of the dynamic geometry
software GeoGebra supports “Mathematical Modelling” and Misfeldt and Jankvist,
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in Chap. 22, investigate the role of CAS in text books. Trgalová and Tabach
(Chap. 23) describe existing ICT standards at the international and national levels,
arguing that these standards are too general. In Chap. 24 Bowman proposes that
graphing calculators as daily tools can enrich the mathematical learning of students.

In Chap. 25 Thurm provides empirically based recommendations for teacher
education. A common concern in the TSG 43 chapters was the necessity for more
research about teaching with technology to inform teacher professional develop-
ment and this issue is evident throughout this book.

The issues associated with teaching and learning mathematics with technology are
multi-faceted and the chapters in this book have highlighted some current research
and theoretical perspectives in primary and secondary mathematics education. With
technology evolving at a fast rate there is a need for qualitative, quantitative and
theoretical studies to provide analysis of the benefits of current technologies, but also
to drive new questions as we look towards the future of mathematics teaching and
learning in the presence of existing and new technologies.
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Chapter 2
Using Video Analysis to Explain How
Virtual Manipulative App Alignment
Affects Children’s Mathematics
Learning

Patricia S. Moyer-Packenham, Kristy Litster, Emma P. Bullock
and Jessica F. Shumway

Abstract In this inquiry, researchers sought to understand changes in young
children’s learning by examining their performance and efficiency while they
engaged with a variety of touch-screen virtual manipulative mathematics apps. We
were particularly interested in understanding how the alignment of the apps selected
for two different learning sequences might contribute to these changes. A total of
100 children, ages 3–8, participated in interviews. Researchers examined the
interviews using a frame-by-frame video analysis to interpret children’s interactions
with six different mathematics apps on iPads in a clinical interview setting. Results
revealed improvements in children’s mathematics performance and efficiency
between the pre and post assessment apps. Apps that were content aligned and
structurally aligned, within each of the learning sequences, helped to explain the
changes in children’s learning.

Keywords Virtual manipulative � Mathematics apps � Touch screen
Video analysis � Content and structural alignment

2.1 Purpose

Mathematics apps, that contain virtual manipulatives, have become a popular tool
and an effective way of supporting children’s mathematics learning. Originally,
virtual manipulatives were designed as mouse-driven apps for the computer. Since
the release of the first iPad in 2010, touch-screen devices have become wide spread
platforms for personal and educational use. There are now thousands of mathe-

P. S. Moyer-Packenham (&) � K. Litster � J. F. Shumway
Utah State University, Logan, USA
e-mail: patricia.moyer-packenham@usu.edu

E. P. Bullock
Sam Houston State University, Huntsville, USA

© Springer International Publishing AG, part of Springer Nature 2018
L. Ball et al. (eds.), Uses of Technology in Primary and Secondary Mathematics
Education, ICME-13 Monographs, https://doi.org/10.1007/978-3-319-76575-4_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76575-4_2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76575-4_2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76575-4_2&amp;domain=pdf


matics apps (i.e., applications for mobile devices with a touch screen; Gröger,
Silcher, Westkämper, & Mitschang, 2013) available for download in online stores.
Not all apps have the same quality or value as is evident in the evaluations of apps
that have appeared in the literature (Boyer-Thurgood, 2017; Schrock, 2011; Walker,
2010).

The purpose of this project was to utilize frame-by-frame video analysis to
examine young children’s interactions with virtual manipulative mathematics
touch-screen apps. Specifically, we were interested in how app alignment con-
tributed to changes in children’s learning. In this study, we identified two types of
app alignment: content alignment and structural alignment. We examined how
these two aspects of app alignment contributed to changes in children’s learning.

2.2 Research Perspective

Virtual manipulatives (first defined in 2002 by Moyer, Bolyard, & Spikell) are
defined as: “an interactive, technology-enabled visual representation of a dynamic
mathematical object, including all of the programmable features that allow it to be
manipulated, that presents opportunities for constructing mathematical knowledge”
(Moyer-Packenham & Bolyard, 2016, p. 13). Today, there are thousands of virtual
manipulatives, with representations of mathematical objects, currently available or
under development that can be used with a touch-screen interface (e.g., iPads). The
current research on virtual manipulative mathematics apps includes a variety of
results on learning outcomes.

2.2.1 Mathematics Apps and Learning Outcomes

The use of touch-screen apps can improve students’ mathematics performance.
Barendregt, Lindström, Rietz-Leppänen, Holgersson, and Ottosson’s (2012) study
with 87 five-, six-, and seven-year-olds found that using the subitizing iPad app,
Fingu, as part of their practice supported an increase in children’s computation
abilities with addition and subtraction. In another study, Kermani and Aldemir
(2016) designed and implemented mathematics interventions for at-risk
preschoolers using iPad apps with a focus on properties of number (i.e., counting
and subitizing). They found significant differences in learning between the 25 iPad
intervention children and the 25 control children in a traditional classroom inter-
vention. Kiger, Herro, and Prunty (2012) looked at the use of iPod Touch devices as
supplemental practice tools for children to use at home. They found that the mobile
learning interventions led to a statistically significant difference in performance for
the intervention group over children who used the standard curriculum materials.
Bakker, van den Heuvel-Panhuizen, and Robitzsch (2015) added new insights to
the role of home and school in children’s learning. They examined the effects of
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home and school use of virtual manipulatives with 719 second graders. They found
that children who used the app at home after an in-school debrief had significant
differences in multiplicative reasoning (i.e., skip counting) over children who used
the app just at home or just at school.

These studies show that using mathematics apps on mobile devices can have a
positive impact on young children’s learning; however, they do not explain why
they have an impact. This is an important point related to the research in this paper,
because through video analysis of children’s interactions with apps, we hoped to
identify possible indicators that explained children’s learning.

2.2.2 Defining Two Types of App Alignment

App alignment may play a role in children’s mathematical learning. For the pur-
poses of this study, we defined two types of app alignment: content alignment and
structural alignment. We defined content alignment as the degree to which the
specific mathematics topics contained in an app were aligned with the specific
mathematics topics contained in each of the other apps in the interview sequence.
For example, if one app focused on counting 1–10 blocks and another app focused
on identifying the numeral that named the number of blocks from 1 to 10, we would
say that the apps were closely aligned in terms of content because they both focused
on developing the skill of counting a group of objects from 1 to 10. However, if one
app focused on counting 1–10 blocks and another app focused on identifying the
place value of a digit in a three-digit number, we would say that the apps were not
closely aligned in terms of content because one app is developing the skill of
counting while the other app is developing an understanding of place value.

We defined structural alignment as the degree to which objects and tasks con-
tained in an app were aligned with the objects and tasks contained in each of the
other apps in the interview sequence. For example, if one app displayed a group of
squares of different sizes and children were asked to order the squares from largest
to smallest, and another app displayed a group of rods of different sizes and children
were asked to order the rods from longest to shortest, we would say that the apps
were closely aligned in terms of structure because they both contained objects of
different sizes and the tasks in both apps asked the child to seriate the objects.
However, if one app focused on placing a number on a number line and another app
focused on creating a numerical representation for a three-digit number given
orally, then we would say that the apps were not closely aligned in terms of
structure, because one app has a number line as the object with a task of placing the
number on the line while the other app has place value cards as the object with the
task of creating a numeral with the cards.
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2.2.3 Potential Learning Benefits of App Alignment

In this study, we hypothesized that the content alignment of the four apps in the
interview sequence would be important for children’s learning. In prior research,
Edwards Johnson, Campet, Gaber, and Zuidema (2012) suggested that teachers
should consider alignment between the activity and the target mathematical content.
Their research, using clinical interviews with children in Grades 2–5, found that
virtual manipulatives with features that were aligned with mathematical content and
procedures reinforced target concepts and addressed children’s common error
patterns. For example, one error pattern they noted was that children thought that 5
tens and 4 ones equaled 9. The virtual base ten blocks supported the development of
place value concepts by allowing students to convert ten unit blocks into one unit of
ten and emphasized the meaning of digits in the tens and ones place (p. 203). This
shows the potential importance of aligning the mathematical content of each of the
apps that children use when they are learning a specific mathematical topic if we
want to support children’s learning of that topic.

We hypothesized that the structural alignment of the four apps in the interview
sequence would be less important for children’s learning, because of the research that
shows that being able to translate among a variety of mathematics representations
supports learning (Lesh, Landau, & Hamilton, 1983). Therefore, if the structure of the
apps is not aligned, this simply means that the child is exposed to a variety of
different representations (i.e., different objects and different tasks) of the same
mathematical topic, which should support learning. While there is little research that
directly looks at the structural alignment of apps, there are related findings that may
provide some insight about structural alignment. For example, Uttal et al. (2013)
reported on the alignment of tests for transfer. They conducted three experiments to
examine transfer from: (1) written or physical manipulative instructional methods to
written tests, (2) written or physical manipulative instructional methods to physical
manipulative tests, and (3) standard and distinctive physical manipulative instruction
to written tests. They concluded that posttest performance depended on whether the
learning method matched the testing method and suggested that relational similarities
may help children transfer learning. In related research, Segal (2011) examined the
structural congruence of gestures in direct touch and mouse click applications. Her
study compared four different digital conditions: (1) direct touch interface with a
congruently mapped application, (2) direct touch interface with an incongruently
mapped application, (3) mouse-click interface with a congruently mapped applica-
tion, and (4) mouse-click interface with an incongruently mapped application.
Congruence was defined as matching the gesture children would complete when
using a physical manipulative (e.g., turning) to the gesture children used with a virtual
manipulative (e.g., swiping to turn vs. tapping to turn). Findings suggested that direct
touch interfaces with a congruent mapping of gestures increased student efficiency
and accuracy. While these two studies did not directly address structure, their results
may provide some insights on how structural alignment may be important.
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2.2.4 The Complexity and Diversity of App Features
and Structures for Learning

Five categories of affordances were identified in a meta-analysis by
Moyer-Packenham and Westenskow (2013): “focused constraint, creative variation,
simultaneous linking, efficient precision, and motivation” (p. 35). These five cat-
egories are common among virtual manipulatives that have been shown to have
positive impacts on mathematics learning. In addition, touch-screen devices, such
as iPads, have interactive properties that afford learning opportunities. For example,
Segal (2011) found significant differences in haptic modality (mouse vs. touch
screen) in that iPads encouraged less guessing, better accuracy, and efficiency when
compared with the same app on a computer. This means that app features and
device modalities may not affect all children in the same way. In fact research has
confirmed these differences. For example, Barendregt et al.’s (2012) Fingu app,
intended to develop conceptual subitizing skills, helped different children develop
different skills in subitizing. Baccalini-Frank and Maracci (2015) examined
preschoolers’ number sense with multi-touch devices and found that each app had
different characteristics which fostered the development of various aspects of
number sense. Children’s prior achievement levels also seem to impact their
learning with mathematics apps. For example, Moyer-Packenham and Suh (2012)
found that low achievers accessed the step-by-step procedures features of fraction
apps, while high achievers accessed the evident patterns afforded by the apps.
Researchers have also reported that different children access app features in dif-
ferent ways. For example, Moyer-Packenham et al. (2015a) reported that children’s
access to helping and hindering features (or affordances) in mathematics apps
influenced the children’s progress. The children who accessed the helping affor-
dances were more likely to progress between the pre and post assessments. These
studies imply that the complexity of app features and the diversity of app structures
affects different children in different ways.

This paper seeks to contribute to an understanding of why some app experiences
help children to progress while others do not by using a frame-by-frame video
analysis as a way to identify possible features that may explain children’s learning
in similar content topics (i.e. counting, subitizing, skip counting) and across dif-
ferent content topics (i.e. seriation, quantities, place value). We were specifically
interested in understanding how learning apps that were content aligned and
structurally aligned explained changes in children’s learning.

2.3 Research Question

While the research base on virtual manipulative mathematics apps is growing, there
is a need for further investigation into how content- and structurally-aligned apps
may play a role in changes in children’s learning performance and efficiency.
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This study examined the following research question: How do content-aligned and
structurally-aligned virtual manipulative mathematics apps contribute to changes in
children’s learning performance and efficiency? In this study, learning performance
was defined as a change in accuracy between the pre- and post-assessment tasks that
children completed using virtual manipulative touch-screen apps. Learning effi-
ciency was defined as changes in the speed with which children completed the pre-
and post-assessment tasks, after completing a variety of learning tasks using virtual
manipulative touch-screen apps. Based on the findings of Edwards Johnson et al.
(2012), our hypothesis was that aligning the pre- and post-assessment apps with the
two learning apps, in terms of their mathematical content, would increase the
likelihood of positive changes in children’s performance and efficiency.

2.4 Methods

2.4.1 Research Design

To answer the research question, we used an explanatory mixed methods design.
We collected and analyzed quantitative and qualitative data and then merged the
results to answer our mixed methods research question (Creswell & Plano Clark,
2011; Tashakkori & Teddlie, 2010). The rationale for this design was to obtain
complementary data on the same topic to better understand the research problem.
We collected the video data for this paper in one of our previous research projects
(Moyer-Packenham et al., 2015b). We then used these video data in several dif-
ferent analyses focusing on different research questions, such as the research
question in this paper.

In this study we coded videos of children’s interactions with a pre-app, two
learning apps, and a post-app. We quantitized the learning performance and effi-
ciency data from the pre- and post-assessment activities and explored these data
using SPSS. We used qualitative methods to analyze how children’s interactions
with the apps might explain their outcomes for learning performance and efficiency,
which allowed a holistic overall interpretation.

2.4.2 Participants

A total of 100 children (Preschool, ages 3–4, N = 35; Kindergarten, ages 5–6,
N = 33; Grade 2, ages 7–8, N = 32) participated in this study. They were recruited
using informational brochures and letters distributed to local public and charter
elementary schools, the university campus lab school, and the university campus
preschools. The demographics of the children were: Asian (1%), Caucasian (89%),
Hispanic (2%), and Mixed Race (8%). One-third (34%) of children’s parents
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reported them receiving free- or reduced-lunch services at school (indicating low
socio-economic status). The parents of the participating children completed surveys
and reported children’s prior iPad use and experiences with technology. Parents
reported on the use of touch-screen devices in the home with 11% having more than
five touch-screen devices, 78% with between one and four, and 8% with none.
Thirteen percent of the children had access to their own touch-screen device at
home. Parents reported that the children used the touch-screen devices every day
(45%), 4–5 days per week (2%), 1–3 days per week (40%), and never (10%).
Figure 2.1 shows a preschooler interacting with an iPad.

2.4.3 Data Sources

We used four instruments to collect data during the study: pre- and
post-assessments (to document mathematics accuracy and speed), GoPro video
recordings of the iPad screen, wall-mounted video recordings of children and the
interviewer, and observation protocols.

The pre- and post-assessment apps used in this study focused on two mathe-
matical content topics for each age-level group. The preschool children (ages 3–4)

Fig. 2.1 Preschooler interacting with an iPad app under the direction of an interviewer in the
clinical interview room

2 Using Video Analysis to Explain How Virtual Manipulative … 15



were assessed on seriation and counting content. The kindergarten children (ages 5–
6) were assessed on quantities and subitizing content. The Grade 2 children (ages
7–8) were assessed on place value and skip counting content. The same mathe-
matics app was used for the pre- and post-assessments on each mathematical
content topic for each age-level group. To determine mathematics performance (i.e.,
accuracy), we identified the number of tasks the child completed correctly on the
pre-assessment and the number of tasks the child completed correctly on the
post-assessment. To determine efficiency (i.e., speed), we identified the time it took
the child to complete the tasks on the pre-assessment and the time it took the child
to complete the same tasks on the post-assessment. Speed of completion can show
several things about the child’s learning while using a mathematics app: (1) fa-
miliarity and confidence with the mathematics content, (2) familiarity and confi-
dence with the features and tools in the app, or (3) a desire to complete the tasks
quickly without regard to the content of the app. By viewing the interview videos to
understand the child’s overall interactions with the app, we could determine why
children became faster or slower when they completed the pre- and post-assessment
tasks. The mathematics content topics of seriation, subitizing, counting, skip
counting, and place value were selected for study with young children because
these concepts are critical foundations to later mathematics learning. Learning the
count sequence, object counting, learning cardinal ideas, understanding the seri-
ation of numbers, and skip counting are interrelated counting ideas that serve as the
gateway to young children’s developing counting strategies and understanding
patterns that make up the place value number system. Current research indicates the
existence of consistent relationships between counting, number relationships and
basic operations, and later mathematics achievement (Jordan, Glutting, &
Ramineni, 2010).

Two video views were important sources of data for the project: GoPro video
recordings and wall-mounted video recordings. Each child was equipped with a
wearable GoPro camera that was positioned to capture an up-close view of their
interactions on the touch-screen iPad device. This video recording process captured
all of the on-screen motions of the mathematics objects and tasks initiated by the
children. It also captured audio interactions between the child and the interviewer as
well as audio interactions between the child and the iPad. The wall-mounted video
recordings captured a broad view of the child, the interviewer, the iPad, and all
actions and interactions that occurred during the interviews. The second video
source served as a back-up for the data collected by the GoPro camera and as a
broader perspective of the child’s actions that were outside the GoPro camera view
and away from the iPad.

The final data source was an observation protocol. One observer watched the
interview from an observation booth and recorded notes on the interview. Schubert
(2009) suggests that the development of these protocols be based on current the-
ories related to the phenomenon of interest and the researcher’s own experience
with observing the phenomenon. In line with that recommendation, we used the
mathematics education literature to focus our attention on how the children inter-
acted with features of the mathematics apps.
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2.4.4 Procedures and Data Collection

Parents brought their children to a research building on a university campus.
Children participated in individual clinical interviews in an early childhood edu-
cation research building equipped with two-way mirrors, audio observation rooms,
and built-in video cameras. The view that observers had from the observation room
is pictured in Fig. 2.2. Prior to each interview, researchers collected information
from the parents of the participating children, completed the consent form, and
answered questions. During interviews, children used interactive mathematics apps
on iPads. The research team had experts with experience in conducting mathematics
clinical interviews with young children.

Table 2.1 displays the interview order for each of the mathematics apps used
with each age-level group in the study. The research team selected three apps to
further preschoolers’ (ages 3–4) learning of seriation and three apps to further
preschoolers’ learning of counting. The team selected three apps to further
kindergartens’ (ages 5–6) learning of combining amounts and three apps to further
kindergarteners’ learning of building and representing numbers. Finally, the team
selected three apps to further second graders’ (ages 7–8) learning of base-10 place
value and three apps to further second graders’ learning of skip-counting. Screen
shots of each of the apps are displayed in Tables 2.3, 2.4, and 2.5 by age level.

Fig. 2.2 A view of the clinical interview room showing observers watching an interview from the
observation room
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As seen in Table 2.1, during each interview, children interacted with a
pre-assessment app on the iPad, then interacted with two learning apps that con-
tained a series of mathematical tasks, and finally interacted with a post-assessment
app that revisited the tasks from the pre-assessment. This procedure was repeated
for a second mathematics content topic for each of the age-level groups using
different apps and app tasks. Our goal was to select apps so that each series of
learning and assessment tasks (i.e., pre-app, learning app 1, learning app 2,
post-app) focused on one specific mathematics content topic that was
age-appropriate for the children in that age-level group. This ensured that children
spent time interacting with multiple apps, and therefore, interacting with multiple
representations of the same mathematics content topic, to support concept devel-
opment of that particular topic. Apps were selected by content alignment and were
not selected based upon structural alignment.

During interviews, one researcher served as the interviewer and presented the
mathematics tasks on the iPad to the child. A second researcher started the
recording equipment and viewed the interview from the observation booth.
A real-time video capture on a laptop allowed the second researcher to record
observational notes while the interview was occurring. At the end of each interview,
researchers downloaded the video data from the wall-mounted camera and the
GoPro camera and secured it on an external hard drive device.

Table 2.1 List of mathematics apps and interview order for each age-level group

Interview order Preschool (age 3–4) Kindergarten
(age 5–6)

Grade 2
(age 7–8)

Seriation tasks Subitizing tasks Skip counting
tasks

App #1 (pre-assessment) Pink tower—free
moving

10-frame 100s chart

App #2 (learning app 1) Pink tower—tapping Hungry guppy Frog number
line

App #3 (learning app 2) Red rods Fingu Counting beads

App #1 (post-assessment) Pink tower—free
moving

10-frame 100s chart

Counting tasks Quantities tasks Place value
tasks

App #4 (pre-assessment) Base-10 blocks Base-10 blocks Base-10 blocks

App #5 (learning app 1) Base-10 blocks: 1–5 Base-10 blocks:
11–20

Zoom number
line

App #6 (learning app 2) Base-10 blocks:
numerals

Base-10 blocks:
numerals

Place value
cards

App #4 (post-assessment) Base-10 blocks Base-10 blocks Base-10 blocks
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2.4.5 Data Analysis

Researchers first coded the video data through frame-by-frame video analysis to
interpret children’ interactions with the mathematics virtual manipulative apps.
Video data were analyzed and coded for learning performance (i.e., children’s
accuracy in completing the tasks) and efficiency (i.e., changes in the speed with
which the children completed the tasks). In the quantitative analysis, we used
descriptive statistics to explore the data. Because the data were not normally dis-
tributed, we used the Wilcoxon Signed Ranked Test to analyze changes in learning
performance and efficiency. This non-parametric statistical test uses the median of
related samples (e.g., pre- and post-assessment scores) to compare data sets and is
appropriate for skewed data and small samples.

In the qualitative analysis, we analyzed and coded the video data to identify
children’s actions, interactions, and access to app features for each app using a
process of open coding. As themes emerged, we revisited the video data using axial
coding to develop major categories. We identified specific examples to summarize
patterns of children’s observable interactions, to note when these interactions
resulted in changes in performance or efficiency, and to note the content and
structure of the apps that were being used at that time. Further, researchers iden-
tified samples in the videos to highlight trends in the data and that may contribute to
the discussion on app alignment.

Our results in this paper focus specifically on children’s learning performance
and efficiency during the pre- and post-assessment portions of the interviews and on
how the alignment of the apps might explain the changes. Other papers, based on
the data collected in this large research project, detail children’s learning progres-
sions, explore app affordances, and describe strategies children used during inter-
actions with the apps (e.g., Bullock, Moyer-Packenham, Shumway, Watts,
MacDonald, 2015; Moyer-Packenham et al., 2014a, 2014b, 2015a, 2015b; Tucker
& Moyer-Packenham, 2014; Tucker, Moyer-Packenham, Shumway, & Jordan,
2016; Watts et al., 2016).

2.5 Results and Discussion

The research question in this study focused on how the use of content-aligned and
structurally-aligned virtual manipulative mathematics apps contributed to children’s
mathematics learning. The results presented discuss the quantitative findings, the
qualitative frame-by-frame video analysis, and the complementarity of the results to
understand how app alignment may explain some of the changes in children’s
learning. In the first section, we present the statistical results and discuss each of
these results by age group. In the second section, we present the apps children used
in each age group, along with figures from the video analysis that provide a rep-
resentative composite panel of the children’s interactions with the apps in each part
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of the interview sequences (i.e., a basic storyboard that shows a view of what
children were doing with the mathematics objects within each of the apps). We then
merge the quantitative and qualitative data to discuss the role of app alignment.

Learning Performance and Efficiency Results for All Age Groups

A summary of the pre- and post-assessment results for each age group is pre-
sented in Table 2.2. This table focuses on the significant results for all age groups
for performance and efficiency.

As Table 2.2 shows, preschool children’s (age 3–4) learning performance scores
on the seriation and counting sequence tasks remained relatively constant, while
their efficiency scores significantly improved for seriation and counting. Improved
efficiency on both sequences could be the result of improved understanding of the
tasks or it could be a function of learning the technology and more comfortably

Table 2.2 Summary table of performance and efficiency outcomes for pre- and post-assessment
apps

Measures N Mean rank
Posta

Mean rank
Prea

z p

Preschool seriation 35

Performance measure NS

Efficiency measure 16.35 16.89 −2.095 .036*

Preschool counting 35

Performance measure NS

Efficiency measure 1 18.52 14.00 −4.244 .000**

Efficiency measure 2 18.65 13.07 −3.522 .000**

Kindergarten subitizing 33

Performance measure 2.67 7.25 −2.228 .026*

Efficiency measure NS

Kindergarten quantity 33

Performance measure NS

Efficiency measure 18.17 12.22 −2.880 .000**

Grade 2 skip counting 32

Performance measure 1 .00 3.50 −2.214 .27*

Performance measure 2 .00 3.50 −2.214 .27*

Efficiency measure 1 14.98 20.17 −3.539 .000**

Efficiency measure 2 14.20 15.58 −2.495 .013*

Grade 2 place value 32

Performance measure NS

Efficiency measure NS
aNegative ranks are shown first; then positive ranks for each paired condition. *Significant at
p < .05; **significant at p < .001; NS indicates that the measures were not significant. This table is
a reproduction of the results which were first reported in Moyer-Packenham et al. (2015a)
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working with the apps on the post-assessments. While learning performance
remained constant, preschoolers seemed to learn the physical mechanics needed to
complete the tasks in a more efficient manner resulting in improved overall effi-
ciency for both seriation and counting tasks.

Kindergarteners (age 5–6) showed significant increases in learning performance
for subitizing, and improved efficiency for quantity. Kindergarteners seemed to
improve in learning performance while also learning to use the technology effi-
ciently. The Kindergarten quantity task included pre- and post-assessment apps and
two learning apps that were all variations of the base-10 block virtual manipulative,
which may have allowed the children to become familiar with the design of this app
and its features. Additionally, kindergarteners’ fine motor skills may have become
more refined as they interacted with each base-10 block app.

The Grade 2 (age 7–8) results in Table 2.2 showed significant increases in
learning performance and efficiency for skip counting, but not for place value. Once
again, these results could be due to improved skill in skip counting after working
through the learning apps, greater facility with the apps, or a combination of
improved mathematical understanding and efficiency with the technology. Results
could have also been influenced by the similarity of the skip counting tasks because,
in each task for skip counting, children were asked to count by 4s, 6s, and 9s. There
seemed to be a ceiling effect on the pre-assessment for place value, with many
children mastering the app tasks initially.

2.5.1 App Alignment Results for Preschool

This section presents the six apps used by preschoolers and the composite story-
board panels of typical preschoolers’ interviews using video frames taken from the
video data. We will use the term video frame throughout the paper when we are
referring to the still images that were pulled from the video clips as a way to
distinguish the static image (video frame) from the dynamic videos (video clip). In
the sections that follow the presentation of the preschool data, we also present
similar examples for kindergarten participants and Grade 2 participants. A screen
shot of the six apps used by the preschool children (age 3–4) is presented in
Table 2.3.

The screen shots in the left column of Table 2.3 show the counting task apps. In
the Pre and Post App, children build a target number within 9 using base ten blocks.
In Learning App 1, children build the sequence of numbers from 1 to 5 using base
ten blocks. In Learning App 2, children count a set of base ten blocks within 9. We
consider all three apps in the counting sequence to be content aligned because they
all asked children to count, and we consider them structurally aligned because they
all used the same mathematical objects (base ten blocks) and the same task
(counting). All three apps were goal oriented (as opposed to open ended), because
there was a correct response for each task.
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The right column of Table 2.3 displays the seriation task apps. In the Pre and
Post App, children build a tower with different sized free moving blocks from
largest to smallest by dragging the blocks. In Learning App 1, children build a
tower from largest to smallest with different sized static blocks by tapping the
appropriate block. In Learning App 2, children order different sized rods from
largest to smallest by dragging the rods. We consider all three apps in the seriation
sequence to be content aligned because they all asked children to seriate similar
objects from largest to smallest. We consider all three apps to be structurally
aligned because they use similar mathematical objects (squares and rectangles) and
the same task (seriate from largest to smallest). All three apps were goal oriented.

Preschool children’s learning performance remained constant, but they experi-
enced changes in efficiency for counting and seriation; therefore, we reviewed the
video data to understand how app alignment may have contributed to changes in
efficiency. Figure 2.3 shows a composite storyboard that includes video clips from
six different preschool participants on the preschool seriation task. It includes four
common participant errors by preschoolers on the pre-assessment, a sample of one
participant using the Pink Tower learning app, and a sample of a successful par-
ticipant on the post-assessment.

The top row of Fig. 2.3 shows four common participant errors made by the
preschoolers on the seriation pre-assessment app. These were coded as errors
because the expectation was that children would put the blocks in order from largest
to smallest, building a pink tower. These four errors illustrate the variety of levels of
conceptual understanding that children in the preschool interviews brought with
them to the seriation task. Child #1 is an example of the first common error that
children made; they stacked blocks directly on top of each other to create a short
pile of blocks. Like others who built a pile of blocks, Child #1 did not stack the
blocks in seriation order; rather, the blocks were stacked primarily by their prox-
imity to the pile. Child #2 is an example of another common error where children
built a misshapen tower. In this example, Child #2 builds a leaning tower with

Table 2.3 Screen shots of preschool apps

Counting tasks Seriation tasks

Pre/post app
Montessori numbers (1–9)

Pre/post app
Pink tower (free
moving)

Learning app 1
Montessori numbers (1–
20: 1–5)

Learning app 1
Pink tower (Card
#12)

Learning app 2
Montessori numbers (1–9)

Learning app 2
Intro to math (red
rods)
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about half of the blocks and then randomly added blocks to the middle or side of the
tower. Sometimes these blocks appeared to be used to fill in gaps or curves in the
shape. As seen in this video frame example, the smallest block was often left out of
the odd shaped towers completely. Child #3 shows an example of a third common
error where children created multiple towers. In this example, Child #3 created a
short tower at the bottom of the iPad screen and then created a second tower by
stacking blocks in a single pile. Other children stacked their second tower verti-
cally, horizontally, or in a single pile. The fourth common error is shown by Child
#4 where the child built a single tower, but not in seriation order from largest to
smallest. Other children made similar errors such as having one or two blocks out of

Common Participant Errors by Four Different Preschoolers on the Seriation Pre-Assessment App

Sample of One Preschool Participant using the Pink Tower Learning App 

. 

Sample of One Preschool Participant Successfully Completing the Seriation Post-Assessment App

Child #1 creates a 
short pile of blocks.

Child #2 randomly 
adds blocks to a shape 
and does not use all 
the blocks. 

Child #3 creates 
multiple towers.

Child #4 builds a 
single tower that is 
not in seriation order. 

Child #5 is asked to 
build a tower by 
tapping blocks in 
order. 

Child #5 correctly taps 
a block and it moves 
to the correct position
automatically.

App constraint feature 
does not allow Child 
#5 to make a wrong 
answer.

Child #5 finishes 
building the tower 
after a series of trial 
and error selections. 

Child #6 is asked to 
stack the blocks in a 
tower from largest to 
smallest.

Child #6 starts by 
dragging largest block 
to bottom of screen. 

Child #6 continues to 
stack blocks on top of 
each other, large to 
small.

Child #6 completes 
block tower faster 
than on the pre-
assessment.

Fig. 2.3 Composite storyboard of Preschool participants’ video examples from the seriation
learning progression
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order or creating a pattern of alternating small and large blocks as is seen in the
example of Child #4.

The middle row in Fig. 2.3 shows one preschooler, Child #5, using the pink
tower learning app. The Pink Tower learning app had a close structural alignment
with the pink tower pre- and post-assessment apps. As with the Pink Tower pre- and
post-assessment apps, in the Pink Tower learning app children are presented with
pink blocks of different sizes organized on the screen in a random order. However,
in the Pink Tower learning app, when the child selects an incorrect block size, the
block does not move. When the child selects the correct block size to put the blocks
in seriation order, the blocks move automatically into the tower position. In the first
video frame, Child #5 taps the largest block to begin building the pink tower. In the
second video frame, after the child taps each block, the app moves the blocks
automatically to the appropriate location to build the tower. As the third video
frame for Child #5 shows, when the child selects the wrong block the app constraint
feature in the Pink Tower learning app does not allow the child to build the tower
incorrectly. When an incorrect block is selected, the block shrinks, turns in a circle,
and settles back into its original position. The final video frame for Child #5 shows
a completed tower after the child has made a series of trials and errors. This
completed tower is the same size and structure as the tower presented to children
before they interact with the pre- and post-assessment apps. The Pink Tower
learning app may have helped increase preschoolers’ efficiency on the
post-assessment due to its close structural alignment with the pre- and post-
assessment apps.

The bottom row of Fig. 2.3 shows one preschooler, Child #6, successfully
building the pink tower in correct seriation order on the post-assessment app. In the
first video frame, Child #6 is given the pink blocks in random order on the screen.
In the second video frame, Child #6 starts building the tower at the bottom of the
iPad screen. Although many children started building their tower in the middle of
the screen on the pre-assessment app, all children efficiently started building their
tower at the bottom of the screen on the post-assessment app. This may be due to
children’s experiences with the pre-assessment app or it may be due to the fact that
the Pink Tower learning app started the tower at the bottom of screen. Overall, the
majority of preschool participants were more efficient on the post-assessment app,
completing their tower faster than the pre-assessment app. In the third and fourth
video frames, Child #6 is seen completing the pink tower by stacking blocks
vertically in the correct seriation order. Over half the children accurately stacked the
blocks on the post-assessment app. Although this increase in performance was not
statistically significant, the qualitative video analysis showed that preschool par-
ticipants made fewer errors on the post-assessment app. The first two errors (piles as
shown by the Child #1 example, and random shapes as shown by the Child #2
example) were virtually eliminated on the post-assessment app. Errors in multiple
towers and seriation order were less pronounced on the post-assessment app, with
the final towers more closely resembling the Pink Tower learning app in size, order,
and orientation.
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All preschool apps were chosen for their content alignment with counting and
seriation. Repeated practice, due to content alignment, may have played a role in
children’s learning and efficiency. The close structural alignment of the Pink Tower
apps for the seriation task, as well as the similarities in structural alignment of the
base ten blocks for the counting task, likely contributed to preschool children’s
increases in performance and efficiency.

2.5.2 App Alignment Results for Kindergarten

We next present the video results for kindergarten (age 5–6). A screen shot of the
six apps selected for kindergarten is presented in Table 2.4.

The left column of Table 2.4 shows that the kindergarten quantities apps all
included base-10 blocks. In the Pre and Post App, children build a target number
between 10 and 99 using base ten blocks. In Learning App 1, children build the
sequence of numbers from 11 to 20 using base ten blocks. In Learning App 2,
children count a set of base ten blocks between 10 and 99. We consider all three
apps in the quantities sequence to be content aligned because they all asked children
to build or identify quantities and we consider them structurally aligned because
they all used the same mathematical objects (base ten blocks) and the same tasks
(building quantities). All three apps were goal oriented.

The screen shots in the right column of Table 2.4 show the subitizing task apps.
In the Pre and Post App, children subitize amounts within 10 and tell “how many
more” to build the correct number. In Learning App 1, children subitize amounts
within 10, combine amounts to create new quantities, and drag them to the fish. In
Learning App 2, children subitize amounts of fruit by using all of their fingers to
enter the correct amount on the touch screen. We consider all three apps in the
subitizing sequence to be content aligned because they all asked children to subitize

Table 2.4 Screen shots of kindergarten apps

Quantities tasks Subitizing tasks

Pre/post app
Montessori numbers (10–99)

Pre/post app
Friends of ten

Learning app 1
Montessori numbers (1–20:
11–20)

Learning app 1
Hungry guppy
(dots)

Learning app 2
Montessori numbers (10–99)

Learning app 2
Fingu (level 1)

2 Using Video Analysis to Explain How Virtual Manipulative … 25



and combine quantities. We do not consider them to be structurally aligned because
they differ in mathematical objects (ten frame vs. bubbles vs. fruit) and mathe-
matical tasks (build vs. identify). All three apps were goal oriented.

Kindergartener’s learning performance and efficiency produced mixed results
(i.e., improved performance for subitizing, improved efficiency for quantities);
therefore, we reviewed the video data to understand how app alignment may
explain these results. Figure 2.4 shows a composite storyboard that includes video
frames from six different kindergarten participants on the quantities tasks. It

Common Participant Errors by Four Different Kindergarteners on the Quantities Pre-Assessment 
App

Sample of One Kindergarten Participant using the Montessori Numbers Learning App

Sample   of One Kindergarten   Participant Successfully   Completing the Quantities Post-
Assessment App

Child #7 randomly 
places blocks and 
counts them 
individually
attempting to make 
14.

Child #8 counts 1 and 
4 with unit cubes for a 
total of 5 cubes, while 
attempting to make 
14.

Child #9 confuses 
tens and ones to 
create 41, while 
attempting to make 
14.

Child #10 counts 9
tens (90) and 5 ones 
(5) because 9+5=14, 
while attempting to 
make 14. 

Child #11 watches as 
app counts from 11 to 
20, highlighting each 
number as it is 
spoken. 

Child #11 moves a 
tens rod to model the 
number 10. 

Child #11 moves 5 
ones to complete 
modeling a total of 15 
cubes 

Child #11 watches as 
app counts 15 cubes 
as 10, 11, 12, 13, 14, 
15, highlighting each 
cube. 

Child #12 is asked to 
show 14 using blocks. 

Child #12 places 1 
tens rod in the tens 
column.  

Child #12 places 4 
unit blocks in the ones 
column. 

Child #12 completes 
post-assessment faster 
than pre-assessment.

Fig. 2.4 Composite storyboard of kindergarten participants’ video examples from the quantity
learning progression
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includes four common participant errors by kindergarteners on the pre-assessment
app, a sample of one kindergarten participant using the Montessori Numbers
learning app and a sample of one kindergarten participant who was successful on
the post-assessment app.

The top row of Fig. 2.4 shows four common participant errors made by kinder-
garteners on the quantities pre-assessment app. These were coded as errors because
students were expected to build the target number. These four errors illustrate the
variety of levels of conceptual understanding that kindergarteners brought with them
to the quantities task. Child #7 is an example of the first common error in which
children randomly placed a number of rods in the tens column and unit cubes in the
ones column. Child #7 counted each cube individually, counting all 40 cubes in the
tens column for the model she created, and ignored the cubes in the ones column. The
second common error can be seen in the video frame for Child #8. This child counted
one unit cube to represent the digit 1 in the number 14 and then counted four more
unit cubes to represent the digit 4 in the number 14 for a total of 5 unit cubes. Other
children made similar errors using only ten rods to count out the number 14. The third
common error can be seen in the video frame for Child #9 where the tens and ones
place values are confused. Child #9 placed one unit cube in the ones column and four
tens rods in the tens column for a total of 41 cubes instead of 14. Child #10 shows the
fourth common error where children counted a total of 14 rods or unit cubes. Child
#10 filled the tens column with 9 rods—the maximum for the tens column. She then
continued adding 5 unit cubes to the ones column, counting 10, 11, 12, 13, 14. Other
children started with the ones columns and ended in the tens column or switched
between tens rods and unit cubes for a total of 14 items. Similar errors were enacted
for the other pre-assessment numbers of 31 and 50. All four of these common errors
can be categorized as place value errors.

The middle row in Fig. 2.4 shows one kindergartener, Child #11, using the
Montessori Numbers learning app. As seen in the first video frame, Child #11 can
observe the Montessori Numbers app as the audio portion of the app counts the
numbers from 11 to 20. This audio feature allows Child #11 to hear the number
names and associate them with the numerals. Children are then prompted to move
cubes to build each number, starting with the tens and ending with the ones. The
second video frame for Child #11 shows him adding a single tens rod to represent
the number 10 in the number 15. The third video frame shows him adding five unit
cubes to the tens rod to create a total of 15 (one ten and five ones). The app
constraint feature does not allow Child #11 to add more tens rods or unit cubes than
needed for each number. If children do not have enough cubes, the app will prompt
them to add cubes until the correct number of cubes has been created. The last video
frame for Child #11 shows the app audio counting the total number of cubes,
starting with the tens rod and saying “10” and continuing to count unit cubes as 11,
12, 13, 14, 15, to the target number. The counting strategy in this learning app
focuses children on place value concepts by highlighting tens and ones separately
and as a whole. The second learning app also focuses on place value by high-
lighting the relationship between numerals in the tens or ones place and the number
of tens rods or ones unit cubes.
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The bottom row of Fig. 2.4 shows one kindergartener, Child #12, who was
successful on the post-assessment app by building the number 14 using the
appropriate number of tens rods and unit cubes. The first video frame for Child #12
shows him at the starting point with open tens and ones columns, rods and unit
cubes at the bottom, and the number 14 at the top of the iPad screen. In the second
video frame, Child #12 selects a tens rod and counts “10” out loud. In the next
video frame, the child adds four unit cubes to the ones column, counting 11, 12, 13,
14. The final video frame shows Child #12 accurately portraying the number 14
using one tens rod and four unit cubes with the base-ten blocks.

About three-quarters of the children accurately represented the numbers 14, 31,
and 50 on the quantities post-assessment app. Alignment of counting strategies in
the learning apps that focused on place value may have contributed to a reduction of
common place value errors on the post-assessment app for the quantities task. The
narrow content alignment of multiple representations of different objects and
amounts, which engaged children in app interactions where they repeatedly prac-
ticed subitizing amounts, likely contributed to kindergarten children’s increases in
performance for the subitizing tasks. The lack of structural alignment between
subitizing tasks may have played a role in the lack of efficiency gains for the pre-
and post-assessment apps in this mathematical content topic.

The majority of kindergarteners were more efficient on the post-assessment app
for the quantities task, building the three numbers faster than on the pre-assessment
app. The tens rods and unit cubes in both Montessori learning apps are identical in
structure to the pre-assessment app. This structural alignment likely increased
kindergarteners’ familiarity with the post-assessment app tasks.

Table 2.5 Screen shots of grade 2 apps

Place value tasks Skip counting tasks

Pre/post app
Montessori numbers
(100–999)

Pre/post app
100s board

Learning app 1
Math motion zoom
(levels 2–4)

Learning app 1
Number lines (skip
counting)

Learning app 2
Place value cards
(3-digit)

Learning app 2
Skip counting beads
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2.5.3 App Alignment Results for Grade 2

This section presents the video analysis results for children in Grade 2 (age 7–8).
A screen shot of the six apps selected for Grade 2 is presented in Table 2.5.

The left column of Table 2.5 displays the place value tasks. In the place value
Pre and Post App, children build target numbers with base-10 blocks. In Learning
App 1, children place a target number on a movable number line by swiping the
number line left and right. In Learning App 2, children create a target number by
dragging place value cards. We consider all three to have a broad content alignment
as all three focus on different aspects of place value (e.g., numerical place value,
expanded notation place value, and place value on a number line). We do not
consider the place value apps to be structurally aligned because they differ in
mathematical objects (blocks vs. number line vs. place value cards) and mathe-
matical tasks (build vs. locate). All three apps were goal oriented.

The right column of Table 2.5 displays the skip counting tasks. In the Pre and
Post App, children touch numbers on a hundreds board to identify numbers in a
skip counting sequence. In Learning App 1, children move a frog along a number
line to skip count by a given amount. In Learning App 2, children skip count by
grouping beads and matching skip counting numerals to the grouped beads. We
consider all three to have close content alignment because all three focus on skip
counting. We do not consider them to be structurally aligned because they differ in
mathematical objects (hundreds board vs. number line vs. beads) and mathematical
tasks (identify vs. build vs. match). All three apps were goal oriented.

Grade 2 learning performance and efficiency improved significantly for skip
counting but remained constant for place value tasks; therefore, we reviewed the
video data to understand how app alignment may have contributed to student
outcomes. Figure 2.5 shows a composite storyboard that includes video frames
from six different Grade 2 participants for the apps in the skip counting sequence. It
includes four common participant errors by Grade 2 participants on the
pre-assessment, a sample of one Grade 2 participant using the Number Lines
Learning App 1, and a sample of one Grade 2 participant successfully completing
the post-assessment app.

The top row of Fig. 2.5 shows four common errors made by Grade 2 participants
on the skip counting pre-assessment app. These were coded as errors because
students were expected to choose the correct numbers to count by a given number
in the skip counting sequence. These four errors illustrate the variety of levels of
conceptual understanding that children brought with them to the skip counting task.
Child #13 is an example of the first common error for Grade 2 where children
would not attempt to skip count using the hundreds board pre-assessment
app. Child #13 told the interviewer: “I do not know how to do nines” and did not
complete this portion of the pre-assessment, even though he had previously
attempted to skip count by 4 and 6. Child #14 is an example of another common
error where children miscounted using their fingers to assist in the counting process.
This child counted the first finger as 9 and, after counting several more fingers,
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ended on 16 instead of 18. The third common error, made by Child #15, was
children relying on a visual pattern rather than a numerical pattern. Child #15
selected every other number in the same column, starting with 9. Other visual
patterns that caused children to make errors included double columns such as
counting the number sequence 4, 8, 14, 18, 24, 28. Child #16 is making the fourth
common error which was children miscounting or selecting random numbers.
Usually, these types of errors did not end on the number requested by the inter-
viewer. Child #16 was asked to skip count by 9s to 36. The child selected 9, 18, 25,

Common Errors by Four Different Grade 2 Participants on the Skip Counting Pre-Assessment
App

Child #13 does not 
attempt to answer pre-
assessment – he says 
“I don’t know.” 

Child #14 uses fingers 
to skip count by nines,
but makes errors.

Child #15 skip counts 
using a visual, rather 
than a numerical, 
pattern.

Child #16 makes
errors in counting and 
does not end on the 
correct number. 

Sample of One Grade 2 Participant using the Number Lines Learning App 

Child #17 is asked to 
skip count by 4s, 
starting on 1. 

Child #17 notices that 
app highlights number 
in yellow when placed 
correctly.

Child #17 observes 
that app allows child
to use a variety of 
counting strategies. 

Child #17 correctly 
counts by given 
number. 

Sample of One Grade 2 Participant Successfully Completing the Skip Counting Post-Assessment 
App

Child #18 is asked to 
tap multiples of 9 up 
to 36. 

Child #18 starts by 
tapping 9 as first 
multiple. 

Child #18 continues to 
tap multiples of 9. 

Child #18 correctly 
completes post-
assessment faster than 
pre-assessment. 

Fig. 2.5 Composite storyboard of Grade 2 participants’ video examples from the skip counting
learning progression
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30, and 37. Other miscounting errors included choosing a number smaller than the
original number such as the sequence 9, 8, 18.

The middle row of Fig. 2.5 shows one Grade 2 participant, Child #17, inter-
acting with the Number Lines learning app. What is unique about this task, is that
the app does not start the skip counting on a multiple of the requested number. For
example, in the first picture, Child #17 is asked to skip count by 4s with a starting
number of 1. This focuses children on using strategies other than memorization.
The app highlights the number in yellow when the frog is correctly placed, as seen
in the second picture on the middle row. The app waits 3 s before highlighting a
correct answer. This allows children to use a variety of counting strategies. In the
third picture, Child #17 uses a strategy of “plus 3 and 1 more” to skip count 4
spaces from 9. He knew that 9 plus 3 was 12 and one more was 13. A similar
strategy was used by this child on the post-assessment.

The bottom row of Fig. 2.5 shows one Grade 2 participant, Child #18, suc-
cessfully skip counting by 9s to 36 on the post-assessment app. In the first picture,
Child #18 begins the task with a blank hundreds board. In the second picture, Child
#18 selects 9 as the first multiple. In the third picture, he quickly continues the task
by selecting multiples of 9. The fourth picture shows Child #18 successfully
completing the skip counting task by stopping on 36.

Almost all Grade 2 children increased in accuracy and efficiency for the skip
counting sequence. The content alignment of the apps and the tasks played a
significant role in the results. Each app used a different representation (i.e., hun-
dreds board, number line, and grouped beads) to visualize skip counting. In addi-
tion, the numbers in all three apps were closely content aligned to focus primarily
on skip counting by 4s, 6s, and 9s. This close content alignment of the tasks, as well
as using multiple representations to complete the tasks, likely explains the signif-
icant changes in Grade 2 children’s performance on skip counting tasks as well as
their increased efficiency with the numbers 4, 6, and 9.

The place value task did not have significant gains in either efficiency or per-
formance. Although the apps appeared to be content aligned, it appeared that the
focus of the content covered too broad a range of place value skills (e.g., numeral
place values, expanded notation place value, and place value on a number line). In
addition, the place value apps did not have a close structural alignment. The lack of
a more specific and focused content alignment, as well as the lack of structural
alignment, may be one reason that there were no significant changes in children’s
performance and efficiency on the place value tasks.

2.6 Conclusion

Research on the use of mathematics apps frequently shows that experiences with
the apps have a positive influence on young children’s learning. However, most
studies do not go beyond the performance outcomes to explain why the apps have
an impact. This study contributes insights that may explain why some mathematics
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apps may lead to improvements in children’s mathematics performance and effi-
ciency. The degree of content alignment and structural alignment may explain why
significant results were not reached for performance and efficiency in all of the tasks
in this study and in results reported in other studies.

As our results showed, in some cases, changes were related to the mathematical
content alignment and the structural alignment of the apps. When the learning apps
had a focused mathematical content alignment, as found in the kindergarten
subitizing task and the Grade 2 skip counting task, children significantly increased
in their performance. Additionally, when the focused content alignment targeted
common errors and misconceptions, children’s performance increased. As Edwards
Johnson et al. (2012) observed, there were learning benefits for a close alignment
between tasks and mathematical content topic. In our study, the results support this
idea for mathematical topics that were closely aligned (e.g., skip counting in Grade
2) and those that were not as closely aligned (e.g., place value in Grade 2). For the
children in this study, content alignment appeared to be beneficial to performance
outcomes. However, we have no evidence of long term effects on performance.

When the learning apps were structurally aligned, as found in the preschool tasks
and the kindergarten quantities tasks, children demonstrated significant improve-
ments in completing tasks with greater efficiency (and this greater efficiency
coincided with greater accuracy, although not statistically significant). Using a
variety of apps with the same structure may have reduced technological distance.
Technological distance is defined as “the degree of difficulty in understanding how
to act up on [something] and interpret its responses” (Sedig & Liang, 2006, p. 184).
The opportunities to use structurally similar apps may have reduced some of the
technological distance between the app and the child and better allowed the child to
focus on the mathematical tasks presented within the app. As Uttal et al. (2013)
reported, alignment between structural format of learning and testing method had a
positive influence. In our study, we observed a similar phenomenon about the use of
the same app for multiple tasks. When the same app and similar apps were used,
that is, they had the same structure (i.e., structural alignment) this appeared to be
beneficial to efficiency outcomes.

It is important to support young children’s conceptual development by designing
learning experiences that engage them in the use of multiple representations within
the same mathematical content topic. As the research reported in this paper
demonstrates, aligning apps for content can contribute to young children’s per-
formance; and, aligning apps closely in structure can improve children’s efficiency
with tasks in the mathematics apps in a short period of time. Further research is
needed to explore how the alignment of apps for instruction might influence chil-
dren’s learning over time.
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Chapter 3
Applying the Modification of Attributes,
Affordances, Abilities, and Distance
for Learning Framework to a Child’s
Multi-touch Interactions
with an Idealized Number Line

Stephen I. Tucker

Abstract Technologies such as touchscreen apps are increasingly popular in
mathematics education. Researchers have begun to investigate children’s interac-
tions with the apps, outcomes of using apps, and the characteristics that contribute
to outcomes. This study applies the Modification of Attributes, Affordances,
Abilities, and Distance (MAAAD) for Learning Framework to an 11 year-old
child’s interactions with the mathematics app Motion Math: Zoom to evaluate the
outcomes, contributors, and interactions. This framework accounts for relationships
among attributes, affordance-ability relationships, and distance involved in inter-
actions. Interacting with Motion Math: Zoom involves using multi-touch gestures to
navigate an idealized number line with changeable interval scales. Findings indicate
that the framework can contribute to research on the outcomes, contributors, and
interactions, as well as linking the three.

Keywords Attributes � Affordances � Distance � Number line � Multi-touch

3.1 Introduction

Technology is becoming ubiquitous in education, including as a support for
learning mathematics. In particular, touchscreen mobile devices (e.g., iPads) fea-
turing mathematics apps are becoming popular in schools. An array of research has
focused on outcomes of using apps to learn mathematics, finding generally positive
results (e.g., Moyer-Packenham et al., 2015; Riconscente, 2013). Researchers have
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begun to identify characteristics of apps that may contribute to these outcomes (e.g.,
Larkin, 2015). Other researchers have begun closely examining the children’s
interactions with multi-touch mathematics apps and their implications for the
experience of learning mathematics (e.g., Baccaglini-Frank & Maracci, 2015).
Recently, the Modification of Attributes Affordances, Abilities, and Distance
(MAAAD) for Learning framework (Tucker, 2015, 2016) emerged, modeling
relationships among key constructs that contribute to user-tool interactions. This
study applies the MAAAD for Learning framework to a child’s interactions with a
multi-touch mathematics app involving conceptually congruent gestures to navigate
an idealized number line, demonstrating its potential for examining outcomes,
characteristics contributing to the outcomes, and user-tool interactions.

3.2 Perspectives on Learning Mathematics
with Touchscreen Technology

Research on learning mathematics with technology often focuses on outcomes,
characteristics that contribute to outcomes, and the user-tool interactions themselves.
In particular, this section focuses on research involving touchscreen mathematics
apps (“apps”). Studies often have a main focus among the three areas. Research
emphasizing outcomes often found that using apps has positive effects on children’s
mathematics. In a study of 122 fifth grade children, using the app Motion Math:
Fraction Bounce led to statistically significant improvements in performance on
fractions assessments and attitude towards fractions relative to instruction without the
app (Riconscente, 2013). However, changes in children’s performance and efficiency
while completing mathematics tasks using apps can vary by age and mathematics
content. A study of 100 children completing tasks using apps found that preschool
children increased efficiency and maintained performance, Kindergarten children
increased performance and maintained efficiency, and second grade children
increased performance and efficiency in skip counting but not place value
(Moyer-Packenham et al., 2015). Researchers have also documented content-specific
progressions in children’s learning while using apps, identifying developmental shifts
and related behavior patterns (Watts et al., 2016). Outcome-focused research suggests
that apps can be effective tools for learning mathematics.

Research has also focused on characteristics of apps that may contribute to
outcomes. Influential characteristics include modality (i.e., sensory perception) and
gestural congruence (i.e., degree to which the input gesture reflects the mathe-
matics). Research suggests that direct manipulation modalities (e.g., touch object on
screen to control) may be more effective for learning mathematics than indirect
manipulation modalities (e.g., touch mouse to control object on screen) (Paek,
Hoffman, & Black, 2016). Furthermore, using a direct manipulation app with
conceptually congruent gestures (e.g., on a static number line, dragging to move an
indicator into position rather than only tapping to indicate a location) can have a
positive impact on children’s mathematical understanding relative to using an
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otherwise identical mouse-controlled app or an app with non-congruent gestures
(Segal, Tversky, & Black, 2014). Affordances related to these characteristics may
influence children’s outcomes on mathematics tasks. In particular, there may be
relationships between helping or hindering affordance access patterns and children’s
task performance and efficiency (Moyer-Packenham et al., 2016). Many effectively-
used apps include virtual manipulatives, which are “an interactive, technology-
enabled visual representation of a dynamic mathematical object, including all of the
programmable features that allow it to be manipulated, that presents opportunities for
constructing mathematical knowledge” (Moyer-Packenham & Bolyard, 2016, p. 13).
Virtual manipulatives offer specific categories of affordances that positively influence
learning, including efficient precision, which involves allowing efficient, accurate use
of precise representations (Moyer-Packenham & Westenskow, 2013, 2016).
Researchers also synthesized and applied research on digital technology use and
student learning to generate criteria for evaluating apps, generally concluding that few
apps support deep learning and meaningful development of mathematical knowledge
(e.g., Goodwin & Highfield, 2013; Larkin, 2015). Some evaluation and design
frameworks explicitly integrate affordances, such as a set of cognitive guidelines for
evaluating and designing apps (Ginsburg, Jamalian, & Creighan, 2013). Research
indicates that app characteristics can influence mathematical learning outcomes.

Studies primarily focused on user-tool interactions have found unique occur-
rences during children’s interactions with apps, including multi-touch apps.
Researchers investigating preschool children’s interactions with three multi-touch
number sense apps found patterns in student strategies that provided evidence of
components of number sense, leading them to conclude that multi-touch technology
may offer unique opportunities for developing number sense and observing
development of number sense (Baccaglini-Frank & Maracci, 2015). Other
researchers examined groups of 6–8 year-old children’s interactions with a
multi-touch counting and arithmetic app, TouchCounts, finding that physical and
social engagement involving children and the app created rhythms of social
interactions that moved from specific to generalizable (Sinclair, Chorney, &
Rodney, 2015). However, relatively few apps leverage multi-touch capabilities for
mathematically relevant purposes (Byers & Hadley, 2013). Research focusing on
the user-tool interactions suggests that using multi-touch technology may have
distinctive implications for learning mathematics.

The aims are not mutually exclusive and inform each other, and although many
of the aforementioned studies have implications for multiple aims, other research
more explicitly addresses these areas. For example, an iterative design-based
research study reported on empirical outcomes, app characteristics, and user-tool
interactions involved in 5–7 year-old children’s use of the early number sense app
Fingu (Holgersson et al., 2016). Researchers found that playing Fingu had positive
effects on immediate and delayed assessments, that children who answered tasks on
advanced levels quickly were more likely to use subitizing affordances on tasks
involving non-canonical representations of five than other children, and that
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children could adapt response patterns to suit their preferences. Research suggests
that apps have the potential to support mathematics learning, but that outcomes,
contributors, and interactions bear investigation.

3.2.1 Navigating the Number Line

The mathematics in this study focused on navigating a number line. In theory, a
number line is infinite in scale and magnitude, but in practice, representations are
constrained. Even so, a physical representation of a number line can be an effective
tool for developing understandings of magnitude and comparison, concepts chil-
dren often struggle to comprehend (Rittle-Johnson, Siegler, & Alibali, 2001).
Although using number lines may support exploration of otherwise unfamiliar
ranges of numbers (Siegler & Booth, 2004), when using a number line, people may
process negative numbers more slowly than positive numbers (Fischer & Roitmann,
2005). Many children have difficulty with the concept of density, which involves
understanding that intervals always contain infinitely many numbers (Vamvakoussi
& Vosniadou, 2010), the foundations of which can be explored on a number line.
Thus, despite constraints of commonly used number line representations, they often
feature in mathematics instruction.

Representations and interactions used in number line research vary. Research
involving number lines frequently includes pictorial representations of number lines
in physical space, often drawn on paper (e.g., Geary, Bailey, & Hoard, 2009; Laski
& Siegler, 2007; Siegler & Booth, 2004). These representations of number lines are
constrained by the space available and the difficulty of depicting density (i.e.,
inability to fluidly change magnitude and scale). Research involving virtual number
lines often resembles those used with a paper-based number line. These number
lines range from involving indirect manipulation using non-congruent gestures via a
mouse or keyboard (e.g., Fischer & Roitmann, 2005), indirect manipulation using
relatively congruent gestures via mouse drag (e.g., Cohen & Blanc-Goldhammer,
2011), direct manipulation using non-congruent gestures via tapping the screen at
the intended place (e.g., Schneider, Grabner, & Paetsch, 2009), or direct manipu-
lation using relatively congruent gestures via dragging an indicator across the
screen to label the number line (e.g., Dubé & McEwen, 2015; Segal et al., 2014). In
each case, participants could not affect the magnitude or scale displayed on the
number line.

Multi-touch technology can afford direct manipulation with congruent gestures
to navigate a moveable number line. Compared to a physical number line, the
“idealized” interactive digital representation available in some virtual manipulative
number lines (e.g., in Motion Math: Zoom) is more faithful to a theoretical number
line, which is infinite in both scale and magnitude (Kirby, 2013). An interactive
idealized number line can include fluid movement and changeable interval scales
(Zhang, Trussell, Gallegos, & Asam, 2015) that would not be possible without
digital technology (Carpenter, 2013). Combined with conceptually congruent
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multi-touch gestures, this may offer unique possibilities for exploring a number line
and developing understandings of the relevant mathematical concepts. Although
studies have included multi-touch apps featuring interactive idealized number lines
(e.g., Moyer-Packenham et al., 2015; Tucker, Moyer-Packenham, Shumway, &
Jordan, 2016; Zhang et al., 2015), there has been little elaboration on the interac-
tions involving interactive idealized number lines.

3.2.2 The Modification of Attributes, Affordances, Abilities,
and Distance for Learning Framework

The MAAAD for Learning framework models relationships among key constructs to
describe user-tool interactions, including mathematical practices and changes in these
practices (Tucker, 2015, 2016). The framework originated in theories of represen-
tation and embodied cognition (see Tucker, 2015 for detailed discussion), which can
be set within Activity Theory. Activity is an ongoing interaction between subject and
object (Leontiev, 1978). Subjects, such as humans, have needs that must be met,
including learning (e.g., forming understandings, developing skills). In order to meet
these needs, subjects interact with objects, which exist independently of humans and
have widely accepted meanings. Through this activity, subjects create an image or
understanding of an object. However, the image is a representation of the object and
is not necessarily consistent with the widely accepted meaning. Activity can involve
learning mathematics, which consists of physically embodied interactions with rep-
resentations of mathematics, including internalizing external representations (e.g.,
interpreting graphs, symbols, and pictures) and externalizing internal representations
(e.g., writing, speaking, manipulating digital objects) (Goldin & Kaput, 1996). This
occurs via perceptuomotor integration during physical interactions with the envi-
ronment, interrelating perceptual and motor aspects of tool use (Nemirovsky, Kelton,
& Rhodehamel, 2013). During this activity, physical engagement in mathematical
practices is equivalent to mathematical thinking, and changes in these practices are
mathematical learning. In this context, the tools are the artifacts that represent
mathematics (i.e., the object), mediating the subject-object interaction (Ladel &
Kortenkamp, 2016). Therefore, examining constructs that contribute to physically
embodied mathematical practices involved in these user-tool interactions (i.e.,
activity) can shed light on mathematical learning.

3.3 Building the Framework

Attributes, affordances, abilities, and distance are interrelated in children’s
interactions with technology tools (see Fig. 3.1). The framework begins with
attributes, which are characteristics of people or things (Attribute [Def. 5], 2014).
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Users and tools have attributes that contribute to the interactions. In this context, an
affordance relates attributes of a tool to an interactive activity undertaken by a user,
whereas an ability relates attributes of a user to an interactive activity involving a
tool (Gibson, 1986; Greeno, 1994). Therefore, attributes, via affordances and abil-
ities, are involved in the activity involving user and tool. An affordance and its
corresponding ability exist only in relation to each other (Greeno, 1994), linked in a
continuous system (Chemero, 2003). Affordance-ability relationships are complex, as
each attribute may contribute to multiple affordance-ability relationships and attribute
changes influence affordance-ability relationships (Tucker, Moyer-Packenham,
Westenskow, & Jordan, 2016). For example, a hammer affords driving nails into a
wall. The weight, shape, and balance attributes of the hammer contribute to this
affordance. To access this affordance, a user draws on an ability that combines attri-
butes of strength, coordination, and perception. These attributes combine differently in
the affordance-ability relationship of removing nails from a wall.

Another relevant construct is distance, which is the “degree of difficulty in
understanding how to act upon [something] and interpret its responses” (Sedig &
Liang, 2006, p. 184). In this context, distance is the difference in alignment of
related clusters of attributes, which does not remain static (Tucker, 2015, 2016).
Modifying attributes may increase or decrease distance. Distance also interacts with
affordance-ability relationships. Continuing the example from above, an experi-
enced carpenter may encounter a low degree of distance when using a hammer. Her
relevant attributes align with those of the hammer, as her strength is sufficient for
moving the hammer, she can coordinate these motions to account for its balance,
etc. These attributes also combine to form abilities that permit fluent access to nail
driving and nail removal affordances. However, a novice with less strength and
coordination may encounter a high degree of distance. Modifying his strength
attribute to become stronger, he may be able to swing the hammer, decreasing
distance. Nevertheless, he may miss the nail when attempting to access the nail
driving affordance and he may not recognize that the claw of the hammer con-
tributes to the nail removal affordance. Throughout the interactions, there is
potential for modifying attributes, affordance-ability relationships, and distance,
each of which can influence the other constructs.

Fig. 3.1 Modification of attributes, affordances, abilities, and distance for learning framework
(Tucker, 2015, p. 117)
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3.4 Applying the Framework

The MAAAD for Learning framework can apply to various types of user-tool
interactions including children’s interactions with mathematics apps (see Fig. 3.2)
(Tucker, 2015, 2016). Users and apps have categories of attributes that form the
base of these interactions. Both users and apps have mathematical attributes related
to the mathematics involved in the interactions. For both, subcategories of math-
ematical attributes include content (e.g., multiplicative identity property) and rep-
resentations (e.g., pictorial form). Users also have a subcategory of flexibility,
which involves connections among content and representations (e.g., one fourth,
0.25, one object out of four). The difference between relevant clusters of mathe-
matical attributes forms mathematical distance (e.g., low: strong knowledge of
addition as presented by the app). Users and apps also have technological attributes
related to the physical elements of the interactions. User technological attribute
subcategories include motor skills (e.g., coordination) and input familiarity (e.g., do
I tap or drag?). App technological attribute subcategories include input range (e.g.,
pinch recognized unless vertical) and input complexity (e.g., two fingers moving
apart). The difference between relevant clusters of technological attributes forms
technological distance (e.g., high: struggle to coordinate fingers to produce a
gesture the app recognizes). Apps have structural attributes, which are the elements
that support the presentation of mathematical and technological attributes, including
scaffolding (e.g., hint option), context (e.g., leveled game), and feedback (e.g.,
reward depends on objectives met). Users have personal attributes, which
are personality characteristics that influence the interactions, including affect

Fig. 3.2 Modification of attributes, affordances, abilities, and distance for learning framework
applied to learning mathematics through user-app interactions (Tucker, 2015, p. 119)
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(e.g., positive association with the app), persistence (e.g., trying again after mis-
take), and goals (e.g., finish quickly). Combinations of attributes across categories
contribute to affordance-ability relationships (e.g., user coordinates tap gesture to
perform additive identity property, app recognizes input and responds by simulta-
neously linking the gesture to changing representation).

Modifications influence the other elements of the framework (Tucker, 2015,
2016). Users and tools modify attributes by changing attributes or applying different
attributes during the interactions. Reactive attribute modification involves the app
modifying app attributes, the user responding by modifying user attributes, the app
responding by modifying app attributes, etc. (e.g., app presents one-step equation,
user applies correct property, app presents equation requiring use of same property
twice). Proactive attribute modification occurs when the app modifies app attri-
butes, the user modifies user attributes, and the user also modifies app attributes
(e.g., app presents equation requiring two properties, user struggles to sufficiently
modify user attributes to apply second property, user chooses a task that isolates the
second property). Reactive attribute modification is relatively common, and
although proactive modification can occur at times, children often do not perceive
opportunities to proactively modify tool attributes (Tucker & Johnson, 2017).
Modifying attributes can modify distance (e.g., user strengthens understanding of
required property, decreasing mathematical distance) and modify affordance-ability
relationships (e.g., app constrains focus by presenting new property in isolation,
then alters constraint by including another property) (Tucker, 2015, 2016). These
relationships form the MAAAD for Learning framework, as applied to children’s
interactions with mathematics apps.

3.5 Methods

This study reports on a single illustrative case that is part of an exploratory qual-
itative investigation into the focus constructs applying iterative data collection and
analysis (Anfara, Brown, & Mangione, 2002). The larger project focused on evi-
dence of and relationships among key constructs in children’s interactions with
mathematics virtual manipulative iPad apps (Tucker, 2015). As part of the inves-
tigation, ten fifth-grade children (aged 10–11 years old) participated in individual
semi-structured task-based interviews in interview rooms, during which they
interacted with two developmentally appropriate iPad apps selected during piloting:
Motion Math: Zoom and DragonBox Algebra 12+. Participants interacted with one
app for up to thirty minutes without researcher interference before answering
follow-up questions about the interactions. The steps repeated for the second app
and the interview closed with summative questions. All follow-up questions were
semi-structured, allowing for researchers to accommodate participants’ responses
and directions while focusing on important and emergent themes (Rossman &
Rallis, 2003), supporting the exploratory, iterative nature of the research.
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Parents were permitted to watch the interview from an adjoining room, through a
one-way window. Participants could choose to end the interview at any time.

The researcher collected data during the sessions using video recordings
observation field notes. To focus on the physically embodied interactions with the
app, which were primarily hand gestures, recordings centered on the hands-on
interaction space (see Fig. 3.3), whereas notes focused on occurrences outside the
camera views. Interview sessions lasted 55–80 min each, varying by durations of
interactions and responses to questions. Data analysis centered on evidence of the
focus constructs, relationships among the constructs, and emergent themes.
Analysis involved analytic memoing to generate codeable written data to accom-
pany the visual data, and eclectic coding in iterative, interrelated stages of analysis
and interpretation (Saldaña, 2013). Due to the exploratory qualitative nature of the
study (Stebbins, 2001) and the focus on trustworthiness rather than generalizability
or validity (Rolfe, 2006), the researcher collected minimal participant background
information beyond eligibility for the study (e.g., 10–11 years old, enrolled in fifth
grade, no previous experience with the apps). (For additional detail about piloting
and the larger project, see Tucker, 2015.)

3.5.1 Motion Math: Zoom

Motion Math: Zoom is an iPad app with levels presenting tasks involving mag-
nitude, comparison, density, and base-ten relationships on the number line,
including positive and negative numbers and intervals from hundredths to thou-
sands. The app includes 24 levels organized by mathematics content, with most
levels featuring 10–14 tasks. Each task within a level presents a bubble with a target
number in it, requiring the user to navigate the number line to find the space where
the target number belongs and pop the bubble (see Fig. 3.4a–d). The app offers an
option to use a timer function (“needle”) that pops a bubble (i.e., ends a task and
level) if the user takes too long to complete an individual task.

The virtual manipulative in Motion Math: Zoom is an interactive idealized
number line, allowing changeable intervals and navigation beyond what is

Fig. 3.3 Screenshot from
video of hands-on interaction
space
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immediately present on the screen, although navigation is constrained (i.e., not
infinite) during tasks. Interacting with the app requires single-touch and multi-touch
gestures that are relatively conceptually congruent with widely accepted mathe-
matical meanings. Swiping left or right moves the number line to increase or
decrease magnitude, aligning with the continuous nature of the theoretical number
line (Fig. 3.4b). Changing interval scale involves pinching, which works most
fluidly when performed horizontally instead of vertically or diagonally, aligning
with the horizontal orientation of the virtual number line presented in the app
(Fig. 3.4c). Pulling fingers apart “zooms in” to smaller base-ten intervals, as if
pulling apart the range chosen to find numbers contained within. Pushing fingers
together “zooms out” to greater base-ten intervals, as if pushing together the
numbers to find ranges that contain them. Although indicating an answer requires
tapping the bubble to pop it (Fig. 3.4d) upon reaching the correct placement of the
target number, this is conceptually congruent with physics, and the act of finding
the placement remains reliant on continuous gestures (e.g., swiping and pinching).

The virtual manipulative in Motion Math: Zoom affords efficient precision,
presenting precisely marked ranges on the number line that imply what numbers are
within the range. One can use this to guide navigation, such as determining where
to change intervals (e.g., to find 24 from intervals of ten, change to ones at 20–30).
In the context of this study, “interval” refers to the scale (e.g., tens) and “range”
refers to individual spans marked on the number line (e.g., 10–20, 20–30). Efficient
navigation refers to the path taken to find the target number. For example, to find
151 from 700 when shown intervals of one hundred, navigating by one hundred to
100–200 and changing to tens, then navigating to 150–160 and changing to ones

Fig. 3.4 Completing a task in motion math: zoom (clockwise from top left): task presentation (a),
pinching to change interval scale (b), swiping to increase magnitude (c), and tapping to indicate
answer (d)
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before popping the bubble at 151. Less efficient navigation would involve taking an
alternative path, such as immediately changing to ones at 700 and navigating by
ones until reaching 151 and popping the bubble. Although both are mathematically
accurate, the former is more efficient than the latter and demonstrates relatively
advanced understandings of magnitude, comparison, density, and base-ten rela-
tionships on the number line in this context.

3.5.2 Participant: Alex

The entirety of each participant’s semi-structured task-based interviews informed
the construction of the framework (see Tucker, 2015), but this study focuses on a
single case of one child interacting with one app to allow detailed analyses and
application of the MAAAD for Learning framework. The researcher selected Alex’s
experience with Motion Math: Zoom because Alex’s experiences included elements
commonly seen across most participants (e.g., repeating Level 15; varying navi-
gation efficiency), Alex interacted with the app for an uninterrupted thirty minutes
before providing insightful follow-up comments, and the interactions included
easily distinguishable phases that support the focus of this study (i.e., outcomes,
contributing constructs, interactions, mathematics). During the permission and
consent process, 11 year-old Alex enthusiastically proclaimed, “I like math!” Alex
remained engaged throughout the interview and requested additional interaction
time after the summative questions. During these interactions, Alex attempted 13 of
24 levels of Motion: Math Zoom and did not activate the timer function.

3.6 Findings

Many examples of the constructs and relationships in the MAAAD for Learning
framework were present in the data. The findings cover the entirety of Alex’s
semi-structured task-based interview, highlighting select interrelated examples that
evolved throughout the interactions. The findings are organized into five sections:
four phases of Alex’s interactions with Motion: Math Zoom: (a) integers 0–40,
(b) decimals to hundredths, (c) integers −300 to 10,000, and (d) decimals from
tenths to hundredths, followed by the semi-structured interview comments. Each
phase involved applying and modifying versions of magnitude and comparison on
the number line (mathematical attributes), using gestures (technological attributes),
differences between Alex’s attempts and the app’s requirements (distance), and
accessing efficient precision (affordance-ability relationship). Figures in each sec-
tion illustrate relevant applications of the framework.
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3.6.1 Phase 1: Integers 0–40

Alex began by requiring four attempts to complete Levels 1–3, which involved
positive integers 0–40. Level 1 (introduction to navigation and zooming) posed
little challenge (see Fig. 3.5a). Alex repeated Level 2 (range of 0–40 by intervals of
one), having first completed it too slowly for the app to prompt a continuation to
Level 3 (0–40 by ones, tens allowed but not required). Alex usually accurately
identified when to increase or decrease along the number line and correctly placed
the target numbers, suggesting alignment of user mathematical attributes with app
mathematical attributes (i.e., low degree of mathematical distance) throughout
Phase 1. Although Alex swiped within intervals without difficulty (e.g., moving
from 3 to 13 by ones), Alex sometimes struggled to zoom. At times, Alex pinched
nearly vertically instead of horizontally, which the app did not always recognize as
zooming (i.e., some technological distance). Most tasks involved small differences
between target numbers, so Alex’s choice of range at which to zoom in (e.g., 0–10
to find 13) barely hindered efficiency (i.e., little need to access efficient precision of
range contents). By the end of Phase 1 (see Fig. 3.5b), Alex’s coordination
improved somewhat, leading to consistent use of a diagonal but recognizable, if not
smooth pinching gesture (i.e., modifying user attribute leads to modification of
distance). After completing Level 3, Alex ignored the prompt to try Level 4 and
instead returned to the menu.

3.6.2 Phase 2: Decimals to Hundredths

From the menu, Alex chose the most advanced unlocked option: Level 15 (0–2 by
ones, tenths, and hundredths). This proactive user modification of app mathematical
attributes immediately increased mathematical distance, as Alex’s mathematical
attributes no longer aligned with the mathematical attributes required to effectively

Fig. 3.5 a, b Applying the MAAAD for learning framework to phase 1
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complete the tasks (see Fig. 3.6). Alex struggled to identify correct placement on
the number line, repeatedly encountering similar difficulties throughout this phase.
The most common mistake involved confusing tenths and hundredths when starting
at the opposite interval (e.g., shown intervals of one tenth, trying to place 0.05 at
0.5). Alex frequently traveled using inefficient intervals (e.g., 1.0–1.81 by hun-
dredths), often immediately zooming to the smallest interval in the target before
moving toward it (i.e., user mathematical attributes form ability leading to little
access to efficient precision of range contents). While rushing through tasks, Alex
habitually pinched diagonally when attempting to zoom, which hindered progress
(e.g., personal attribute: goal of speed, influences distance). Alex made these
mistakes throughout four consecutive unsuccessful attempts to complete Level 15
(i.e., did not modify attributes enough to decrease distance to the point of consis-
tently accurate task completion). Finally, Alex again returned to the menu to choose
a different level.

3.6.3 Phase 3: Integers −300 to 10,000

Alex proactively modified app attributes via the menu, choosing to return to Level 3
and play most levels through Level 10, beginning with positive integers and moving
to negative integers (see Fig. 3.7a). This decreased mathematical distance, as Alex’s
mathematical attributes aligned with the app’s mathematical attributes at first.
However, mathematical distance and technological distance increased when more
intervals were accessible. For example, on Level 3, the app permits travel only by

Fig. 3.6 Applying the MAAAD for learning framework to phase 2
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ones and tens and no tasks require changing intervals, but by Level 5 (0–1000 by
ones, tens, and hundreds), the app also permits travel by more intervals and many
tasks require changing intervals. Alex usually navigated in the correct direction (e.g.,
decreasing to find 33 from 250), but sometimes used a diagonal pinch to zoom and
often traveled by inefficient intervals (e.g., when shown intervals of ten to find 33
from 250, zooming in immediately and navigating by ones). When rushing to
complete a task, Alex was prone to mixing up zooming in with zooming out and
incorrectly answering before the correct placement appeared (i.e., personal attributes
influence technological distance and mathematical distance, respectively). Over
time, Alex more frequently chose efficient navigation intervals while progressing
through integer-only levels, purposefully zooming in when closer to the target (i.e.,
modified user mathematical attributes, which modified ability involved in accessing
efficient precision of range contents and decreased mathematical distance).

Alex fluently completed Level 9 (−25–25 by ones), correctly comparing to place
target numbers (i.e., aligned mathematical attributes) without being required to
zoom (i.e., modified app technological attributes modifies technological distance)
(see Fig. 3.7b). When first attempting Level 10 (−300–300 by ones and tens), Alex
rushed to complete each task, often passing the target number (i.e., personal attri-
butes influencing mathematical distance). Upon repeating Level 10, Alex balanced
speed and accuracy, used smoother, nearly horizontal pinching gestures, and often
chose efficient ranges to change intervals (e.g., zooming in at 0–10 to find 3),
successfully completing the level (i.e., modified user personal, technological, and
mathematical attributes and accessed efficient precision, decreasing mathematical
and technological distance). Next, Alex returned to the menu.

3.6.4 Phase 4: Decimals from Tenths to Hundredths

From the menu, Alex chose the least advanced level to feature decimals, Level 12
(0–3 by ones and tenths), proactively modifying app mathematical attributes

Fig. 3.7 a, b Applying the MAAAD for learning framework to phase 3
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(see Fig. 3.8a). Slowly but accurately completing most tasks, Alex usually chose
efficient navigation intervals, traveling in the correct direction but pinching hori-
zontally to zoom on the few tasks that required changing intervals. The only greatly
inefficient navigation interval arose when crossing 1.0, as Alex chose to remain at
tenths (e.g., shown intervals of one tenth to find 2.5 from 0.2, navigating by tenths
instead of zooming out to ones, moving to the midpoint of 2 and 3, then zooming
into tenths). While repeating Level 12, Alex further honed the horizontal pinching
gesture and zoomed at relatively efficient places (e.g., from previous example,
returning to tenths upon reaching 2), quickly and accurately completing the tasks
(i.e., modified user technological and mathematical attributes to access efficient
precision). Advancing to Level 13 (0–20 by ones and tenths), Alex showed similar
performance, navigating the number line with reasonable efficiency and accuracy,
with sporadic inefficient navigation choices.

Next, Alex revisited Level 15 (see Fig. 3.8b). Alex made similar errors as on
previous attempts at Level 15, but addressed them more often than before,
increasing overall accuracy (i.e., modified mathematical attributes decreases
mathematical distance). Though continuing to confuse tenths and hundredths when
starting at the opposite interval, Alex quickly recognized the error, rather than
repeatedly attempting to input the incorrect answer. When beginning to travel by

Fig. 3.8 a–c Applying the MAAAD for learning framework to phase 4
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inefficient intervals, Alex sometimes paused to change intervals. However, espe-
cially when crossing 1.0, Alex continued to immediately switch to the interval
shown in the target number (e.g., shown intervals of one tenth to find 1.65 from 0.3,
zooming into hundredths then increasing toward 1.65). After slowly completing
Level 15, Alex chose Level 14 (tens, ones, and tenths, 0–110) (see Fig. 3.8c). Alex
usually chose appropriate navigation intervals and zooming ranges throughout this
attempt, and consistently used a horizontal pinching gesture to zoom (i.e., relatively
low degree of mathematical distance and technological distance). The researcher
informed Alex that the interaction time had ended and Alex returned to the menu.

3.6.5 Semi-structured Interview Comments

During the follow-up interview, Alex said that the app was “really fun” and that
only Level 15 was challenging. When asked about choosing levels, Alex pointed to
Levels 21–24 on the menu, saying “I played the hardest [unlocked] one [but] it
wouldn’t let me go up levels so I went back and I tried to go back as many as I
could [to get there]” (i.e., proactive attribute modification). Regarding navigation,
Alex noted, “You could have it stay at the hundredths… but it would be tons harder
and long… [but] when you zoom out there’s not the numbers” (i.e., varying
mathematical distance). Alex also mentioned, “I basically knew where everything was,
but you had to go there” (i.e., links between mathematical distance and technological
distance).

3.7 Discussion

The MAAAD for Learning framework models interrelated constructs involved in
mathematical activity involving user-tool interactions, including a child’s interac-
tions with a mathematics app. In this context, the framework supported an inves-
tigation of outcomes, contributors to outcomes, and the interactions that occurred.
These applications have implications for learning mathematics and using technol-
ogy, which are relevant for practitioners, technology developers, and researchers.

3.7.1 Linking Outcomes, Contributors, and Interactions

One can use the framework to examine outcomes of user-tool interactions, con-
tributors to the outcomes, and the interactions themselves. For Alex, outcomes
included increasing accuracy and efficiency while navigating the number line for
integers and decimals, and honing the pinching input gesture. This supports find-
ings from other studies that interactions with iPad apps featuring virtual
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manipulatives could lead to improvements in children’s task performance and
efficiency (e.g., Moyer-Packenham et al., 2015). By the end, Alex fluently navi-
gated the number line on integer tasks, but still encountered some difficulties,
particularly on two types of decimal tasks. Alex progressively began to use range
contents to guide task completion, but remained inconsistent when tasks involved
hundredths, often inefficiently navigating by hundredths whenever they were part of
the target number, rather than immediately changing to a more efficient interval
(e.g., tenths) and returning to hundredths when closer to the target. Follow-up
comments reinforced Alex’s dilemma of reconciling the easy but inefficient method
of navigating by smaller intervals with the option of navigating without smaller
intervals visible, which requires stronger understanding of density, comparison, and
magnitude in base ten. Alex also accurately completed tasks involving tenths when
comparing within the same whole (e.g., 1.1 vs. 1.9) but struggled when tasks
involved different wholes, especially when starting from less than 1 (e.g., 0.9 vs.
1.3). This is consistent with findings from other research (e.g., Vamvakoussi &
Vosniadou, 2010) which indicate that children develop understandings of density in
stages, with recognition of intermediate numbers often beginning between natural
numbers (e.g., 0–1 contains 0.1, 0.2, etc.). One can also use the framework to
examine what contributed to these outcomes.

In the context of the MAAAD for Learning framework, Alex began with user
attributes that aligned with app attributes as required for successful task completion
of early levels (e.g., integer comparison, number line, swiping), indicating low
degrees of mathematical distance and technological distance. As the app modified
app attributes by presenting tasks with different mathematics content (e.g., hun-
dredths) and input gesture requirements (e.g., pinching), both types of distance
increased and Alex attempted to modify user attributes to decrease distance (e.g.,
hone pinching). Interacting with the idealized number line may have supported
Alex’s efforts to strengthen relevant user mathematical attributes (e.g., density,
comparison, and magnitude of integers and decimals) and user technological
attributes (e.g., coordination), modifying ability to access the efficient precision of
range contents for integers (e.g., 1–10 also contains 2, 3 … 9), with this access in
turn influencing further modification of the relevant attributes. Alex also proactively
modified app attributes to modify mathematical distance, both by choosing easier
content (e.g., Level 15 hundredths to Level 3 integers) and more challenging
content (e.g., Level 10 integers to Level 12 tenths). Modifying distance allowed
targeted attribute modification, such as strengthening understanding of density as
represented in range contents with integers and then attempting to flexibly apply it
to decimals. Each of these constructs and relationships may have contributed to the
improvements in task completion, aligning with research that applies the framework
(Tucker, 2015, 2016) and considers patterns related to specific constructs (e.g.,
affordances: Moyer-Packenham et al., 2016; attribute modification: Tucker &
Johnson, 2017).

In the context of Activity Theory and embodied cognition, the activity consisted
of internalizing and externalizing representations via physical engagement in
mathematical practices, providing evidence of mathematical thinking and learning
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(Nemirovsky et al., 2013). Over time, Alex became adept at the input gestures
required to traverse this interactive representation of the idealized number line (i.e.,
modifying user technological attributes to decrease technological distance). Alex
became very accurate and efficient on some tasks (e.g., comparing integers) and
began exploring more advanced mathematics content with mixed success (e.g.,
comparing decimals to hundredths). The interactions may also provide evidence of
in-progress transfer across related contexts, as Alex appeared to develop under-
standings of magnitude, comparison, base-ten, and density for integers that aligned
with widely accepted meanings, and attempted to extend these to decimals. The
ongoing changes in embodied mathematical practices during the interactions imply
that Alex continued learning throughout. This aligns with findings from other
research indicating that children’s embodied mathematical practices can change
during interactions with mathematics apps (e.g., Holgersson et al., 2016; Sinclair
et al., 2015; Tucker et al., 2016a). This also suggests that conceptually congruent
interactions with an idealized number line representation may facilitate develop-
ment of mathematics knowledge (i.e., modification of user mathematical attributes).
Therefore, the MAAAD for Learning framework may be used to examine out-
comes, contributors to outcomes, and interactions that occur when children interact
with mathematics apps, including those involving conceptually congruent interac-
tions with idealized representations.

3.8 Implications and Future Directions

The findings and applications of the framework have implications for practitioners,
researchers, and technology developers. All three groups may be interested in
Alex’s changing mathematical practices throughout this activity, as findings suggest
that interacting with touchscreen virtual manipulative apps that involve conceptu-
ally congruent gestures to navigate an idealized representation of a mathematical
concept may have positive effects on mathematical learning. These findings add to
research involving non-idealized number lines that suggest using number lines can
support development of comparison and magnitude in base ten (e.g., Rittle-Johnson
et al., 2001) and facility with unfamiliar numbers (Siegler & Booth, 2004). Notably,
these findings also suggest that conceptually congruent interactions with an ideal-
ized number line may contribute to developing understandings of density, which
research indicates can be difficult even for secondary school students (Vamvakoussi
& Vosniadou, 2010). Therefore, it may be beneficial for these stakeholders to
consider what constitutes “conceptually congruent” in various contexts, as well as
the role of conceptually congruent gestures in the development and evaluation of
mathematical practices and mathematics knowledge in these contexts.

Practitioners could use the MAAAD for Learning framework to consider attri-
butes of a child and tool, the distance involved, and affordance-ability relationships
that could help bridge this distance. For example, Alex often effectively compared
within a given interval (e.g., comparing only by tens). However, the depth of Alex’s
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mathematical understandings involved in the efficient, precise use of the idealized
number line was unclear until Alex honed the horizontal pinching gesture to zoom
(i.e., mathematical distance influenced by technological distance). Alex encoun-
tered a lower degree of mathematical distance on levels featuring only integers than
those with decimals, suggesting relatively underdeveloped understandings of dec-
imals. Observations based on these constructs might inform decisions such as
which child should use a particular app for a certain learning goal (e.g., Tucker
et al., 2016a), which may be especially useful when combined with app evaluations
(e.g., Goodwin & Highfield, 2013; Larkin, 2015).

Technology developers can use the MAAAD for Learning framework to inform
the design process. For example, some developers consider tool attributes and
affordances when designing technology (e.g., Ginsburg et al., 2013; Holgersson
et al., 2016). Alex’s inconsistent access to efficient precision of range contents
supports assertions that affordance access is complex (Tucker et al., 2016b) and can
affect learning in various ways (Moyer-Packenham et al., 2016). However, the
framework also incorporates distance and affordance-ability relationships that
involve the user and tool, encouraging explicit consideration of the interactive links
between user and tool. For example, although the app afforded efficient precision of
range contents, during the interactions, variations in distance based on differences in
user and tool attributes influenced Alex’s access to this affordance. Therefore, it
may be beneficial to consider interrelationships among the constructs when
designing multi-touch technology. Alex’s changing mathematical practices related
to density based on interactions with the idealized number line support previous
research indicating that virtual manipulatives (Moyer-Packenham & Bolyard, 2016;
Moyer-Packenham & Westenskow, 2016) and multi-touch technology may offer
unique opportunities for mathematics learning (Baccaglini-Frank & Maracci, 2015),
while adding to calls for app developers to intentionally utilize multi-touch capa-
bilities (Byers & Hadley, 2013). Using the framework during the design process
might also help developers purposefully address this, such as by considering how to
minimize technological distance without significantly compromising idealized
representations of mathematics or conceptual congruence of gestures.

In addition to studying practical and design applications, researchers may con-
tinue using the MAAAD for Learning framework to investigate children’s mathe-
matical interactions with technology. The findings support prior research indicating
that the framework may be useful for examining activity involving embodied
mathematical practices and the relationships that influence the development of these
practices (Tucker, 2015, 2016). This may be particularly useful for further explo-
ration of children’s mathematical interactions with idealized representations,
including those involving conceptually congruent gestures. Furthermore, this study
focused on qualitative outcomes, so future studies could examine if quantified
outcomes relate to the constructs and relationships in the framework (e.g., specific
change in attributes and subsequent affordance access leads to growth from pre- to
post-assessment). Thus, the findings in this study related to both the MAAAD for
Learning framework and interactions with an idealized number line have applica-
tions and implications for researchers, practitioners, and technology developers.
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3.9 Conclusion

The Modification of Attributes, Affordances, Abilities, and Distance for Learning
framework may be useful for research on activity featuring mathematical interac-
tions with technology, including the outcomes of the interactions, contributors to
the outcomes, and interactions themselves. Practitioners may use the framework to
evaluate technology tools and learning that occurs during children’s interactions
with the tools, influencing classroom technology use. Developers of educational
technology may use the framework to influence the design process, including
consideration of what representations and gestures to incorporate into the app
experience. Findings also implied that using conceptually congruent multi-touch
gestures to interact with an idealized representation of a number line might support
developing understandings of mathematics concepts, including density. Each of
these stakeholders and aims are influential for the development and use of educa-
tional technology for learning mathematics, and each may benefit from involving
the MAAAD for Learning framework.
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Chapter 4
Using One-to-One Mobile Technology
to Support Student Discourse

Shannon Larsen, Kelly McCormick, Josephine Louie
and Pamela Buffington

Abstract Education researchers, administrators, and classroom teachers in
Auburn, Maine, USA are using a design-based, iterative research approach to
examine how screencasting apps can support student discourse in K–2 mathematics
classrooms equipped with one-to-one mobile technology (iPads). Preliminary data
analysis shows that in addition to enhancing mathematical communication, the
purposeful use of screencasting apps supports more equitable opportunities for
student participation in mathematics discourse, facilitates effective talk moves such
as wait time, involves students in self and peer assessment, and engages students in
productive struggle. Early findings also suggest that when teachers utilize this
approach in their classroom, their beliefs about student capabilities may increase
and their teaching practices may change.

Keywords Screencasting � Mathematical discourse � Formative assessment
Productive struggle � Research-practice partnership

4.1 Introduction

In this paper, we explain how a group of education researchers, higher education
faculty, district and building administrators, math coaches, and early elementary
classroom teachers worked collaboratively to identify and address persistent
learning problems in mathematics within a school district in a small city in Maine.
Because early elementary school classrooms (kindergarten–second-grade) in the
district were equipped with one-to-one (1–1) mobile technology, specifically iPads,
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using this technology to support student learning significantly shaped our approach.
After a brief review of the literature that influenced the development of the theo-
retical framework, we identify the overarching research questions and then outline
the components of the qualitative, design-based research methodology used in the
study. We also describe how ongoing professional learning, tightly coupled with
classroom data collection, critically influenced our work. We then share the
emerging findings from the first two years of the study, with a focus on the ways in
which the use of screencasting apps support students’ mathematical discourse and
the changing nature of teachers’ beliefs as a result.

4.2 Theoretical Framework

Research suggests that interactive digital technologies have the potential to support
and enhance the learning of mathematics in the early grades (e.g., Attard & Curry,
2012; Ginsburg, Jamalian, & Creighan, 2013; Goodwin & Highfield, 2013; Soto,
2015; Soto & Ambrose, 2014; Soto & Hargis, 2014). One-to-one, hand-held,
mobile technology, such as iPads, provides students with unique learning oppor-
tunities. Using recording tools available through apps or the iPad camera, students
can document their problem-solving approaches and share their thinking with
others (Attard, 2013). Moreover, multisensory recordings allow students to review,
reflect on, and critique their own as well as others’ written work, representations,
and oral explanations. The ease with which students can create and share recordings
provides them access to different ways to solve problems and allows them the
opportunity to reflect on their own and others’ explanations and even discover and
correct their own and others’ mistakes and misconceptions (Hattie & Timperley,
2007; Soto, 2015; Soto & Hargis, 2014). Producing video recordings of their work
engages students and can help them view themselves as creators of their own
mathematical ideas (Yelland & Kilderry, 2010). Recordings of students’ mathe-
matical thinking can also provide students and teachers with evidence of their
learning and be a source of motivation and encouragement (Blair, 2013; Sedig &
Liang, 2006; Soto & Ambrose, 2014). Students who use screencastings to explain
their mathematical thinking often become aware of and attentive to an audience.
Therefore, they adopt a teaching identity through which they describe the process
for their mathematical solution and provide a justification for that work (Soto,
2015). Moreover, audio-visual recording capabilities may be particularly beneficial
for young students who often are better able to express their thoughts through
speaking rather than through writing.

In their 2014 publication, Principles to Actions: Ensuring Mathematical Success
for All, the National Council of Teachers of Mathematics (NCTM) identifies “fa-
cilitat[ing] meaningful mathematical discourse” as a research-based, high-leverage
practice that improves the teaching and learning of mathematics. NCTM (2014)
indicates that supporting mathematical discourse among students is central to
ensuring the meaningful learning of mathematics. Teachers who encourage their
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students to share their work with one another provide their students with the
opportunity to justify and clarify their mathematical ideas, communicate their ideas
verbally or in writing using mathematics vocabulary and visual representations, and
make sense of other approaches to solving problems (NCTM, 2014). Research
suggests that students who have opportunities to engage in mathematical discourse
may develop a deeper conceptual understanding of mathematics (Attard, 2013;
Moschkovich, 2012; NCTM, 2014). The Common Core State Standards for
Mathematics (CCSSI, 2010) includes “construct viable arguments and critique the
reasoning of others” as one of the eight Standards for Mathematical Practice (SMP).
This student practice standard closely parallels the teaching principle of facilitating
meaningful mathematical discourse (NCTM, 2014) and highlights the important
nature of discourse in mathematics for all members of the learning community.
Supported by this research, and prompted by teachers’ observations of students in
early elementary grades using screencasting apps in the classroom, the study’s
co-investigators hypothesized that when students regularly use screencasting apps
to record and review their mathematical explanations, their mathematical commu-
nication and reasoning skills improve.

4.3 Research Questions

As collaborating partners in the project, the researchers, administrators, and
teachers investigated how screencasting apps support students’ mathematical
learning in the early grades by asking students to use a screencasting app to record
their written work and oral explanations as they solve mathematical problems. The
following co-developed research questions guided the investigation:

1. In what ways do teachers enact a strategy that encourages students to record and
review explanations of their mathematical thinking using iPad-based recording
tools?

2. What types of mathematical reasoning and discourse outcomes emerge from use
of this strategy?

3. How might use of this strategy be related to teachers’ instructional practices and
students’ mathematical outcomes?

4.4 Design and Methodology

This study is part of the Research + Practice Collaboratory, a project that is funded
by the National Science Foundation and is committed to using a partnership
approach between researchers and practitioners to develop promising ways to
bridge the gap between research and practice in STEM education. The project
conjectures that when researchers and educational practitioners work
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collaboratively to exchange knowledge and to design and develop educational
interventions, researchers are more likely to incorporate practitioner knowledge into
their research, and educators are more likely to use evidence-based practices in their
instruction. Equal positioning of researchers, administrators, and kindergarten—
second grade teachers plays a key role in the study’s methodological approach.
Each partner is considered a co-investigator and plays a critical part in collabora-
tively identifying important needs to address, designing possible solutions, testing
these solutions, and planning for the sustainability and scale of the reform strategies
that emerge (Penuel, Fishman, Haugan Cheng, & Sabelli, 2011). The collaborative
approach to this study draws from design-based research methodology. Five central
principles of design-based research are: (i) the development of theories and learning
environments are interconnected, (ii) research and implementation take place in
ongoing iterative cycles, (iii) generated theories must be applicable to practitioners
and other designers, (iv) research occurs in real environments, and (v) the data
collected highlights both enacted work and outcomes (Design-Based Research
Collective, 2003).

Our collaborative work means that we have remained deeply committed to
providing ongoing professional learning for all participants throughout the duration
of the study. Loucks-Horsley et al. (2003) indicate that professional learning for
educators needs to support them in acquiring new knowledge, skills, behaviors,
attitudes, and depth of content knowledge. A critical feature of effective profes-
sional learning is that it provides opportunities for collaboration with colleagues
(Loucks-Horsley et al., 2003). Research shows that typical one-day professional
development sessions have limited impact on teaching practice as teachers transfer
less than 10% of the content into their classroom practices (Showers & Joyce,
1996). Similarly, Attard (2013) found that teachers are less likely to embed effective
teaching practices with technology into their teaching without planned and sus-
tained professional dialogue focusing on technology, pedagogy, and content
knowledge. Ongoing professional development provides teachers with necessary
multiple opportunities to reflect on and re-conceptualize their practice to accom-
modate the technology and new practices. According to Dorph and Holtz (2000),
high-quality professional development meets four conditions. It should be (i) con-
nected to content knowledge, (ii) designed with a clear and focused audience in
mind, (iii) sustained over time with a coherent plan, and (iv) structured with
opportunities for practitioners to reflect, analyze, and work on their practice.
Professional learning communities (PLCs), defined as learning models in which
collective inquiry supports changes in attitudes, beliefs and practices (Dufour &
Eaker, 1998), can be one tool used to engage in the type of high quality professional
learning described by Dorph and Holtz. With this in mind, education researchers,
higher education faculty, administrators, math coaches, and classroom teachers
participated collaboratively each month in a PLC to shape shared insights into
possible research questions, examine research related to mathematics teaching and
learning, share tools and strategies, and reflect on the work done in classrooms.

The partnership started in the spring of 2014 when a wide range of stakeholders,
including pre-kindergraten through third-grade teachers, specialists, and principals
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from the six elementary schools in the district as well as the district’s curriculum
director, assistant superintendent, and superintendent, met to focus on problem
identification. This work provided the team with a broad base of input and support,
which enabled the work to move forward over two years. It also provided the team
with a more clearly defined area of focus. In the summer of 2014, the collaborative
work began with eight kindergarten–second-grade teachers, a math coach, and the
principals of the three lowest-performing schools. The technology integration
specialist, curriculum director, assistant superintendent, and superintendent were
also members of the team. Three teachers, the math coach, and another specialist
left the project after the first year. In the second year of the project, we scaled up our
work, and kindergarten–second-grade teachers and administrators from two addi-
tional schools joined the partnership. Practitioner participants in year two included
eight administrators, fourteen kindergarten–second-grade teachers (five from year
one and nine new teachers) and one new coach.

In the summer of 2014, the co-investigative group met over eight days. During
this time, 17 educators from cohort 1 (8 classroom teachers and 9 building
administrators) worked collaboratively with a group of education researchers from a
non-profit educational research organization and local state universities. We worked
together to identify persistent student-learning problems and to study aspects of
high quality mathematics learning and teaching. Teachers, administrators and
researchers participated in a shared reading of Fosnot and Dolk (2001) book, Young
mathematicians at work: Constructing number sense, addition, and subtraction.
The teachers became particularly interested in two pedagogical ideas highlighted in
the reading. The first, “learning landscapes” (Fosnot & Dolk, 2001) presented them
with potential learning trajectories that students might follow as they encounter big
ideas in early mathematics learning. The second, “math congress” (Fosnot & Dolk,
2001), introduced them to the importance of whole class discourse in early math-
ematics classes and the purposeful sharing of students’ work at the end of a
mathematics class. After reading and discussing this work, teachers in the study
became more aware of their own students’ engagement in mathematical commu-
nication and expressed concern over their students’ mastery of numeracy.

During the summer months of 2014 and the beginning of the 2014–2015 aca-
demic year, we studied research related to the implementation and use of tech-
nology, particularly iPads, in early learning classrooms. We examined affordances
of various mathematical apps, engaged in mathematics using the iPad apps we
explored, and discussed ways in which these tools could support mathematical
learning in early mathematics classrooms. In the fall of 2014, we implemented a
“toe-in-the-water” induction phase when teachers explored the mathematics
learning strategies and mobile technology tools we examined with their own stu-
dents. Building on our work in the summer of 2014, participating teachers returned
to their classrooms that fall with a goal to focus their mathematics instruction on
number sense and to pay particular attention to the CCSSI (2010) SMP 3: Construct
viable arguments and critique the reasoning of others, SMP 4: Model with
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mathematics, and SMP 5: Use appropriate tools strategically. All kindergarten–
second-grade students in this district have iPads, so we focused our work on how
using this mobile technology could support and improve student learning.

From experimenting in their own classes during this trial phase, participating
teachers became curious about the ways in which the screencasting app Explain
EverythingTM (EE) might support student discourse and whole-class discussions in
their classrooms. Specifically, the teachers became excited by the level of
engagement and mathematical discourse that their students displayed when using
screencasting apps to record, explain, and review their thinking when solving
mathematics problems. Thus, after seven months of professional work together, we
agreed on a group strategy that we would co-investigate. We decided that for the
remainder of the school year and the following school year, the teachers would
integrate this strategy into their mathematics lessons at least once a month.
Employing 30-day plan-do-study-act cycles, we agreed to co-investigate how
teachers implemented this strategy, how students responded to this strategy, and for
whom and under what conditions this strategy might generate improved mathe-
matics learning outcomes.

Over the 2014–2015 and 2015–2016 academic years, classroom teachers
implemented project-related lessons at least once a month during which time stu-
dents recorded their work using a screencasting app. For each implementation, the
teachers completed and submitted a strategy planning and reflection form.
Education researchers observed and video-recorded each classroom once a month
and then completed an observation log. The team also collected student work done
on iPads as evidence of student learning. Finally, teachers and researchers com-
pleted surveys and interviews throughout the two years of the project.

Therefore, the project adopted a three-tiered approach that coupled our profes-
sional learning and research objectives. The first was ongoing monthly professional
learning experiences, facilitated by mathematics education researchers and uni-
versity faculty, which were driven by the questions that emerged from the teachers’
implementation of previous learning or their responses to regular surveys. The
second was monthly classroom observations, video recordings, and online logs that
teachers completed to record their methods of strategy implementation and
observed student outcomes. The third was the sharing and discussing of student
work at the monthly meetings. Through these different avenues, we collected data
via:

• Reflections on and discussion about student work over one-and-a-half years
• Reflections on and sharing about strategy implementation over one-and-a-half

years
• Online logs completed by teachers each month, which addressed strategy

implementation in individual classrooms, and observations of potential student
impact over one-and-a-half years

• Monthly surveys, conducted during our PLC meetings, in which participants
reflected on their strategy implementation, outcomes, and broader themes related
to our collaboration
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• Student screencasts over two years
• Classroom videos over two years
• Interviews with 17 members of the collaborative team, including teachers,

administrators, researchers, teacher educators, and teacher leaders at the end of
the second year

• Email correspondence between researchers and educators over two years
• Final written reflections from teachers at the end of the project

Together, the data collected and topics discussed both formally and informally
informed our design choices as we cycled through the iterative process.

4.5 A Focus on Ongoing Professional Learning

As previously noted, a critical piece of our work is the fact that the research and
ongoing professional learning experiences have been tightly coupled. We knew that
without such appropriate professional development, the potential for the iPads to
enhance the teaching learning of mathematics may likely be wasted (Attard, 2013).
Thus, we highlight below the foci of our ongoing professional learning over the
course of the project.

When we first came together in 2014, we quickly identified that the teachers
lacked opportunities to engage in learning about best practices related to both
teaching and learning mathematics and the use of technology to support students’
early mathematics learning in elementary school classrooms. Similarly, they had
experienced few chances to reflect deeply on their own classroom practices related
to teaching mathematics and using technology to support their students’ mathe-
matics learning. In order to identify whether and how the use of technology in the
classroom may support students’ mathematical discourse, the team realized that we
needed ongoing opportunities to examine research, test out ideas, and deeply
consider the outcomes of the work. Put simply, we wanted to ensure that we based
our study around the use of technology in kindergarten–second-grade classrooms
on research-based practices that support high-quality mathematics teaching and
learning. Consequently, we needed to work together to identify, understand, and
implement high-quality practices.

To achieve this, the team used the data collected to support continued profes-
sional learning opportunities. We also considered areas of interest as identified by
teachers or needs as identified by both teachers and education researchers. After our
initial work together engaging with technological tools and examining research
around early mathematics learning trajectories (Clements & Sarama, 2004) and
math congress (Fosnot & Dolk, 2001) as an avenue to foster mathematical dis-
course, we found that teachers needed information regarding additional topics in
order to facilitate the type of learning they wished to see in their students.
Therefore, in subsequent meetings we learned about and engaged in rich tasks
(Stein, Smith, Henningsen, & Silver, 2000; NCTM, 2014) and open questions and
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parallel tasks (Small, 2012). The introduction of rich tasks into classroom practice
led to discussions around productive struggle (Warshaur, 2015) and the use of wait
time. Later, we began to examine the district’s mathematics textbook and discussed
ways to align project work with the text. We also began to explore different models
and representations of mathematics problems. To facilitate this learning, we created
research and practice briefs, which present short summaries of existing literature,
around topics of interest or need. For example, we provided the teachers with and
discussed one brief that synthesized the literature on the learning trajectories for
counting and cardinality, another about technology in early grades’ mathematics
classrooms, and a third that detailed research on discourse in mathematics
classrooms.

In addition to providing educators the opportunity to deepen their professional
knowledge around best practices in mathematics instruction, the monthly PLCs
gave the teachers space to share the strategies they used to implement the use of
screencasting apps in their classrooms and to observe, analyze, and discuss
examples of student screencasts from other teachers’ classrooms. Because this time
was fundamental for teachers’ own learning and efficacy, and because we gained
great insight about what was occurring in each classroom, we engaged in these
activities monthly.

4.6 Findings

After two years of study, emerging data suggests that the strategic use of screen-
casting apps in K–2 classrooms can encourage students to communicate, reflect on,
and revise their mathematical ideas. Because students record themselves explaining
their mathematical thinking, they also listen to their own ideas and the ideas of their
classmates through the screencast recording. We see evidence of increased student
engagement in self-assessment and peer-assessment, which often prompts them to
revise their own work. Similarly, students in our study show evidence of more
persistence when working on higher-level math tasks. Participating teachers’
teaching practices, meanwhile, have become more closely aligned with the
high-leverage practices identified by NCTM in Principles to Actions: Ensuring
Mathematical Success for All (2014). Specifically, we see evidence of teachers
facilitating meaningful mathematical discourse, posing purposeful questions,
implementing higher-level tasks that promote reasoning and problem solving, and
supporting productive struggle in learning mathematics. Because students in the
classrooms now explain their thinking more than before the study began, teachers
have become more knowledgeable about what their students know and can do
mathematically. In turn, teachers appear to be shifting their beliefs about the
learning and teaching of mathematics that are possible in their classrooms.

In this section, we detail qualitative data that suggest the ways in which student
discourse in mathematics classes has changed through teachers’ participation in this
study. We identify pedagogical practices that seem to support this increased
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discourse including the use of rich tasks, wait time, enabling students to engage in
productive struggle, and the use of routines and teacher-created resources. We then
highlight how the use of screencasting apps appears to have provided both teachers
and students with increased opportunities to participate in meaningful formative
assessment work. We also highlight the ways in which these changes in practices
align with changes in teachers’ beliefs about their students’ learning. Namely,
teachers are more apt to see their students as capable and competent mathematics
learners. We share emerging insights into how the use of screencasting apps in early
mathematics classrooms may support equity in student learning by engaging stu-
dents who are often marginalized in classrooms. Finally, we identify challenges that
teachers faced when implementing the research strategy.

4.6.1 Student Discourse

Some research (e.g., Hall, 2015) suggests that using handheld mobile technology in
early grades classrooms promotes isolated learning that prohibits social interaction
and limits hands-on learning. However, our research indicates that careful and
strategic use of screencasting apps (specifically, EE) has quite the opposite effect.
When our work began in the district, students most often used iPads individually.
They wore headphones and interacted with devices only by tapping their screens.
Two years into the study, participating classrooms now look and sound very dif-
ferent. Kindergarten–second-grade students are solving richer mathematical tasks
on their own and with their peers. They create their screencasts individually at times
and in small groups at other times. Invariably, the students recognize that they will
share their work with the teacher, a classmate, in a small group, and/or with the
whole class. As students record and share their work, there is generally lively
mathematical discourse occurring between students.

Participating teachers noted and are excited about this change as well. They
report that students now have conversations with one another about math, sharing
their mathematical strategies and improving their ability to communicate about their
mathematical reasoning and their use of vocabulary. In one online strategy log entry
(12/15/2015), a participating second-grade teacher, Mrs. K, wrote that “EE offered
the opportunity for students to practice verbalizing how they subtracted.” Mrs.
K continued to reflect on her practice over the course of the project. At the end of
the second year of the study, she reported in her interview,

I guess I didn’t realize how little I had students talking about math. And I’ll find now just
sitting on the carpet students will just be engaging in conversation while I’m writing
something up on the board and it’s about a math problem. And they’re arguing with each
other but being really reasonable and they’re doing those things that we’re practicing but
without that scaffold of the video. Which I think is really the goal. I feel like the videos are a
stepping stone towards just having math conversations with each other.
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Mrs. M, another second-grade teacher, indicated in her strategy log (12/9/2015)
that “when students talk through what they know and how they know it, they make
connections. It also helps their classmates make connections and have ‘aha’s’.
Connections = new learning!” Importantly, teachers identified that the use of
screencasting apps in their classrooms changed their overall math instruction. An
example of this change comes from Mrs. B, a third second-grade teacher, who
noted that without this project “I wouldn’t have been doing as much discussion and
be really thinking about my instruction to foster discussions among the students”
(Online Strategy Log, 10/8/2015). In her interview at the end of the second year,
Mrs. B told researchers,

In the past, my kids have said, ‘Well, this is how I did it.’ Or, ‘I just knew it,’ and they don’t
discuss anymore. This year, they’re having discussions and talking about their thinking and
responding to others.

Ultimately, survey data indicates that teachers believe that this increased com-
munication, supported by the use of classroom technology, provided their students
with more ownership over their learning and improved their mathematical language
and justifications.

We see evidence of this increased mathematical discourse not only when students
use the screencasting tool itself, but also without the technology. It appears that
students and teachers became more comfortable and confident with communication
in mathematics class. For example, a researcher in one second-grade classroom
observed students sitting around an easel at the beginning of the lesson. After the
teacher prompted them to solve an addition problem and share their strategy with the
group in a whole class discussion, students began to talk to one another about their
approaches using phrases such as, “I’m wondering why you…” or “I started the
same way as you, but then I…”. In a different second-grade classroom, we observed
students frequently engaging in the routine of sharing work with one another before
providing each other with a compliment and a question about their work.

4.6.2 Pedagogical Practices that Support Discourse

While we strongly believe that the use of the screencasting apps facilitated students
increased mathematical communication both when using mobile devices and in
general, we also consider the teachers’ use of high-leverage practices and instruc-
tional supports, studied and shared during our monthly PLCs, to be instrumental in
the improved student discourse. Other researchers, such as Attard (2013), have also
noted the need for a more symbiotic connection between professional development
that focuses on pedagogical content knowledge and professional development that
focuses on technology integration. Attard (2013) reported on a study that highlights
the need for appropriate professional development that addresses all aspects of
technological and pedagogical content knowledge to ensure successful integration of
innovative technologies and to ensure the new teaching practices actually enhance
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the teaching and learning of mathematics. We found that coupled with such pro-
fessional development, the nature and affordances of the iPad and screencasting app
can help promote the use of high-leverage practices and routines that support pro-
ductive discourse (e.g. rich tasks, wait time, and productive struggle).

Rich Tasks. When our project first began, like many teachers in the United
States, the participants in our study felt pressure to “get through” the
district-adopted textbook. Through our examination of research around rich and
open tasks, teachers considered how they might open up and/or increase the level of
cognitive demand of some of the questions provided in their text and began to
create their own rich tasks related to the mathematical content being studied.
Teachers also started to identify areas in the textbook that were already ripe for
richer mathematical discussion. When describing how she used the screencasting
app with her students, Mrs. K reported that the best use of the tool was “definitely
the more open-ended math problems.” She then added,

When we come to a more challenging kind of an open response or open-ended math
problem that’s when we take that time to really explain our thinking. So any opportunity,
we have our math curriculum and there’s a lot of opportunities within that math curriculum
when they say to explain our thinking […] Instead of a few lines or a little space for them to
explain how they thought which is hard for a second grader to do. They now get to talk their
way around it and figure that out. (Interview, 2/2/2016)

To support their student discourse, teachers realized the importance of giving
their students richer, more open tasks. For example, Mrs. B reported,

I think having those open, rich questions and tasks and having the conversations and having
the ability to use all those different apps because those apps let them see things in different
ways. I think all that together has really been positive. (Interview, 1/26/2016)

School administrators also noticed that students engaged more frequently with
open tasks. In her interview (2/1/2016), Principal Mrs. S said,

If you have an open enough task, regardless of ability level, a student is going to be [able]
to access that task […] How they come up with answers […] might differ, but […] it’s been
good to sort of facilitate more of those open-ended, multiple entry tasks versus the skill and
drill.

When teachers first began to use rich tasks in their classrooms, they primarily
drew upon examples provided by researchers at PLC meetings. Later, however,
they started to identify areas in their text with richer tasks than they might have first
assumed, as is evidenced by Mrs. K’s previous statement. Teachers also began to
create their own open tasks for students, grounded in contexts related to their own
classrooms. For example, we observed this in spring 2015, when the Mrs. S, a
second-grade teacher, used the following prompt: “I bought a package of cardstock
yesterday. The package contained four colors (red, yellow, blue, and green) and 50
sheets of cardstock. How many of each color might have been in the package?” As
the project has progressed, teachers have more deliberately chosen open questions
and rich mathematical tasks for their students. These types of problems allow
students to identify a variety of possible solutions and use multiple strategies, and
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they help to promote more prolific mathematical explanations that students can
capture on their screencasting apps.

Wait Time and Productive Struggle. Participating teachers indicated that using
the screencasting tool promoted their use of wait time. Because students pre-record
their solutions and play them from beginning to end, the teachers would not
interrupt a student’s presentation to prompt his or her thinking as they traditionally
would do when the student would orally present the work off of technology.
Furthermore, because teachers cannot get to all students as they record their videos,
students often talk or think through a problem themselves. The teachers discovered
that students often self-correct in the middle of the video when the teacher doesn’t
interrupt the students’ thinking.

One math coach shared that the examination of research around productive
struggle was valuable for the primary-level teachers and indicated in her interview
at the end of the second year,

[T]hat’s the piece we want to make sure, for some teachers, it’s not just regurgitating what
you told them to do. It’s really letting children think and explore their own thinking and
then being able to listen to what the children have said, and identify where they’re at, to find
out where to move them next. This would be probably a challenge for some teachers,
because, especially in the primary level, we’re still coddling and motherly types. We don’t
like to teach in struggle. So needing to really have a clear understanding that productive
struggle is where kids learn might be new learning for some.

A school administrator, Mrs. D, echoed this sentiment in her interview (3/11/
2016) and told researchers that she sees evidence of this in the classrooms that
participate in the study: “[W]hat I’ve seen is that students are willing to take risks
and engage in productive struggle […] And for kids the end result is a better
understanding of the learning process itself.”

Providing students with wait time and opportunities to experience productive
struggle in tandem with the rich, open tasks described above appears to have
resulted in students persevering through challenging problems for longer periods of
time. When the teacher does not immediately provide the student with the correct
answer or an appropriate strategy, and when the student is tasked with creating a
video explaining his or her thinking, students invest in sorting through their mis-
conceptions and incorrect answers. Students are also now more comfortable sharing
their partial solutions and sharing what they have found challenging with one
another. They solicit feedback and ideas from one another when they struggle with
a problem. They then use this information to help them record and re-record their
work multiple times until they are satisfied with their final product. For example,
when second-grade students worked on solving the cardstock problem above, the
teacher had the students come together after about 15 min of work time in order to
share their ideas. Three students shared their videos even though no one had the
correct answer. Before one video played, the student told the class, “I don’t have an
answer, I only know how many sheets there are.” His first attempt showed only the
number 50 on his screencast. The students talked about the problem together and, in
a conversation facilitated by the teacher, came up with new ideas for approaching
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the work. The students then continued working on the problem for another 30 min
before coming together again to observe three finished videos, all with correct
solutions to the problem.

Instructional Routines and Resources. In addition to implementing
research-based practices in their classrooms, teachers further adjusted their practice
to enable students to use their iPads to communicate their ideas. Teachers adapted,
refined, and shared with one another pedagogical practices that support the use of
screencasts to improve communication. Kindergarten teacher, Mrs. G, for example,
started to incorporate math tools, such as the rekenrek and number frames, into her
every day classroom activities. Guided by information in one of the project’s
research and practice briefs about developmentally appropriate use of technology,
Mrs. G provided her students with opportunities to explore both hands-on and
technology-based versions of the same tool. One researcher observed a morning
routine change in a second-grade classroom so that the teacher now provides stu-
dents the opportunity to critique their own reasoning and that of their peers. In this
routine, each child solves a math problem and records his or her solution on the
iPad. The class then observes, discusses, and reflects on some of the videos.
Children return to their iPads to continue working on their solutions by re-recording
their work if their thinking changed, or to add to their original work if it did not. In
another second-grade classroom, the teacher, Mrs. H, introduced the notion of a
“Math Guest Teacher of the Day.” For this activity, the teacher chooses one stu-
dent’s video to be shared at the beginning of math class. After they share the video,
the students in the class discuss what made the video strong and what might make it
even stronger. Additionally, they ask one another questions about and discuss the
mathematics shared. The teacher tries to incorporate this instructional routine into
her lessons at least three times a week.

In their surveys, teachers reported the use of other pedagogical moves such as
modeling teacher-created videos of various quality for class discussion and anal-
ysis, pausing during a lesson to share “quality” videos in order to keep students on
track, ensuring time for students to share their work with partners before coming
together as a whole class, and a series of moves that includes student think time,
time for partners to record and watch videos together, and sharing and critiquing
videos in small groups.

Teachers also identified and researchers observed a variety of tools being created
and used by teachers to support their students’ communication. These include the
use of sentence starters (e.g. I know my work is correct because…), sentence frames
(e.g. I started at __ and counted up to 10. That was __ jumps. Then I counted to __.
That was __ jumps. Then I added my jumps to get __. So, __- __ = ___),
co-constructed checklists of indicators that contribute to a strong video (e.g. I can
hear my explanation; I can see a picture that helps to explain my thinking; My
picture and writing are clear and easy to read; I say what problem I am solving; My
explanation is easy to understand; I explained the math words when needed; My
math is correct), discussion guidelines (e.g. It’s OK to change your mind, It’s OK to
feel confused), and anchor charts about quality explanations. Notably, after teachers
created these tools, they often shared information about the tools during the
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monthly PLCs. They shared templates with one another, information about how
they use the tools in class, and their reflections on how the tools promote student
learning. Some of these teacher-created, shared tools have been adopted by other
teachers across the district.

4.6.3 Formative Assessment and Student Discourse

One, unanticipated, promising result of using the EE screencasting app in the early
elementary school setting has been a noticeable increase in the use of formative
assessment, done by both teachers and students. Research emerged over the last two
decades that shows the critical nature of formative assessment, including peer and
self-assessment, in fostering growth in student learning and engagement (Black &
Wiliam, 1998; Fontana & Fernandes, 1994; Hwang, Hung, & Chen, 2014).
Likewise, Wiliam (2000) suggests that “effective learning involves having most of
the students thinking most of the time” (pp. 21–22) and that when formative
assessment becomes an everyday routine, students think more deeply and reflect on
their own academic progress.

Teacher Formative-Assessment. The teachers in our study reported that the
recordings provide a valuable source of assessment data. For example, Mrs.
M indicated,

The opportunity to observe students self-correct their thinking as they talk out a problem
with a peer gives us lots of information. It gives us a window into their thinking and helps
us plan next steps for instruction and explorations for students. (Email message to author,
April 11, 2015)

Similarly, Mrs. K reported,

[W]hereas before it was one teacher and 20 students, so I didn’t always get to listen to how
every student was listening and sharing their thinking. [Now,] I can look at those students
who I know are struggling and take time to review their recording later, and then I can meet
with them again. So, it’s a nice snapshot of how students are doing with a particular
problem at that moment. (Interview, 2/2/2016)

Multiple teachers share that observing their students’ screencasts helps them to
plan instruction to meet their students where they are in their learning trajectory.
We theorize that the fact that teachers now have the opportunity to hear each of
their students explain their mathematical ideas allows the teachers to better
understand the abilities and misconceptions held by their students. Additionally,
because the teachers now have the ability to watch a student work through a
problem and listen to their students’ explanations via the screencasts, teachers have
a better sense of what the children understand than they did when looking at static
work, which is typically handed in on paper. In his interview, school Principal Mr.
D called the screencasting app a “fantastic” tool for formative assessment and
praised its potential to provide teachers with powerful information for their
instructional decision making. Teachers also appreciate that the EE videos serve as
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a “container” that holds student thinking over time and helps show students’
learning progress. Some even shared their students’ videos with parents during
conferences.

Student Peer and Self-Assessment. Teachers not only found more frequent and
meaningful ways to assess their students’ thinking, but the use of the screencasting
app also appears to support students’ own ability to engage in self and peer
assessment. Black and Wiliam (1998) suggest that this type of formative assessment
is “essential to good learning” (p. 6). After students record their solutions on the
iPad, they often review their own recording either on their own or with prompting
from their teachers. As they hear themselves explain their thinking, they can
identify areas in which their explanations are unclear or where they misrepresent
their thinking. The students often delete their work and start this process again in
order to create a stronger explanation. Soto (2015) identified similar evidence of
students engaging in self-assessment when using EE to describe their mathematical
work. However, Soto’s study examined students’ screencasts in a 1–1 environment,
in which a researcher and student sat together, while the student recorded his or her
video. Our research indicates that Soto’s (2015) findings around improved student
self-assessment hold true in a classroom environment even when the student and
teacher do not interact 1–1.

We found multiple examples of students correcting their work in their screen-
casting samples. For example, when one second-grade student, Brendan, recorded
his solution to the problem “You bought something at the store that costs 72 cents.
You paid one dollar. How much change did you receive?,” he began by making
jumps on an open number line. He started at 72 and jumped to 80. As he did this, he
said, “I’m going to skip to 80 and I’ll put ten” and then wrote a 10 underneath the
jump from 72 to 80. Brendan then made a second jump to 90 and said, “then I’m
going to skip to 90, and I’ll put ten right there” as he recorded a second 10 under the
second jump. He then said, “oh, this isn’t ten, I accidentally messed up” at which
point the screencast shows him erasing the first ten he recorded while saying, “so,
this is actually eight.”

Another student in the same class, Brian, recorded a screencasting video for a
similar problem. This time, though, the amount of money spent was 63 cents. In his
first video, we see the student making 7 jumps of one from 63 to 70 and then a
“really big hop” of 30 to 100. When he recorded his final answer, he miscounted the
jumps of one and recorded 38 cents as his solution to the problem. Students in this
class then shared their work with a peer and used the class’ co-constructed “Is
My EE Video Complete?” checklist to guide their conversations. The teacher did
not expect students to fix their videos during their peer discussions. However, she
found that most of her students decided to make new videos. Brian was one of those
students. His second video shows a more efficient strategy as he takes a jump of
seven and a jump of 30 to reach 100. In his second video, Brian also records the
correct answer, 37 cents.

Teachers and researchers also observed students self-correct their work. While
the timing, method, and rationale behind the students’ self-corrections vary widely,
the EE app enables students to decide independently to fix their work in order to
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make it stronger. In her strategy log (11/18/2015), Mrs. K reported that a math
congress, in which a small number of students shared their videos, helped deepen
students’ understanding of the math content and that “through this conversation,
many students were able to revise their thinking and went back to change their
work.”Mrs. M, also spoke to this during her interview (3/11/2016) when she stated,
“I think a really big ‘aha’ is that kids will self-correct. They self-correct when they
make a mistake.”

The teachers also indicated that students often report that they “change their
minds” about their mathematical work or solution after seeing a partner’s video.
The teachers suggested that this is because students now observe their peers’ work,
reflect, and learn from their own errors. Mrs. C, a math coach, told researchers in
her end of year interview,

When they’re doing their work and recording, and then they go back and listen, they can
either deepen their understanding, or be reflective in the sense of self-correcting. Like, ‘Oh,
wait a minute. I meant this.’ And within that piece, [they] may also clarify a misunder-
standing they may have had.

Administrators also noted this change in student learning. In his interview (2/9/
2016), Mr. D indicated,

With the use of that technology as a tool, they’re able to go back, and reflect on their work,
and revise as needed […] Our biggest learning comes in reflection, and when students can
hear their tablets, […] It’s so powerful when you can see students self-correct on the spot
or, even after the fact, when they’re reviewing it […] So, I think students’ understanding of
math is enhanced by this.

Notably, Mrs. B connected student self-assessment to increased engagement,
interest, and confidence in their math work:

The videos were extremely helpful because we could follow students’ thinking as it
unfolded. Often students would self-correct as they were making their videos and revise
their thinking. Students were engaged and eager to share their thinking. I saw my students
gain confidence in solving problems not just to have the correct answer but to be a part of
the process of solving the problem and deepen their understanding. (Final Project
Reflection, 6/29/16)

Teacher survey data further indicated that students not only correct their own
work, but they offer suggestions to help their peers improve their work as well. In
one interview (1/26/16) Mrs. M underscored the fact that teachers across the district
were noticing and commenting upon improved student assessment:

I see a difference between my students and what they’re learning and how they’re talking
about their learning and their thinking […] In our groups at our meetings, the other teachers
are mentioning that they’re seeing the same thing… They’re seeing that their students are
looking at their work and they’re making the corrections and they’re pointing out each
other’s mistakes and they’re doing it in a respectful way. And the other teachers, […]
they’re seeing this growth in their students with math.
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Overall, participants reported that students have a greater awareness of their own
work, more recognition of multiple strategies for solving problems, and a deeper
level of engagement with and reflection about their mathematics due to using the
screencasting app.

4.6.4 Changing Teacher Beliefs

Over the course of the study, education researchers observed that participating
classroom teachers changed their beliefs about what it means for children to know
and do mathematics. Our evidence also suggests that the teachers came to believe
that their students are more mathematically capable than they had originally
assumed. Teachers’ participation in our collaborative study appears to have sup-
ported a change in teacher beliefs in two ways.

The first is the way in which they understand what it means for students to be
engaged in doing mathematics. For example, during one second-grade class, stu-
dents struggled to find a correct solution to the problem presented. Students’
recorded explanations on their iPads helped to prompt a lively conversation about
the problem, and by the end of the day’s lesson, the students identified their
misconception and how they might fix it. After the observation, the teacher, Mrs. S,
indicated to the researcher that in the past she would have considered the lesson a
failure because none of the students got the right answer. She reported that she now
considers this to be a very successful lesson because her students were able to think
deeply, reason mathematically, and determine what their new approach would be.
Additionally, Mrs. S noted that the students all remained engaged and excited by
the work. A kindergarten teacher, Mrs. G admitted, “In the past, I’d never really
thought about how important it is to have [students] explain what they’re doing,
what they’re thinking. So it has been huge for me; it’s really been an eye-opener,
and a changer, in how I teach my kids” (Interview, 02/25/2016). In her end of
project reflection (6/29/2016), Mrs. G added, “My practice has become more
thoughtful and reflective in what and how I teach math to my Kindergarten chil-
dren. I no longer am the teacher in charge, but put that role in the hands of my
children.” Similarly, Mrs. K reported in an interview (2/2/2016), “I’m finding
myself trying to step away and talk less to allow the students to talk more […]
Students can really learn a lot from each other and that’s valuable.” Other teachers
echoed this belief in their surveys. They indicated that they now find it important to
allow students to struggle and that teachers shouldn’t be afraid of this. One teacher
stated that she and her students discovered that mistakes help with learning. These
findings align with other research in mathematics education, which highlights the
importance of productive struggle for learning (NCTM, 2014; Warshaur, 2015).

A second way that teachers’ beliefs changed relates to their estimation of their
own students’ mathematical abilities. Many students in this project come from
low-income households, and participating schools have experienced chronic
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underachievement in mathematics. Kindergarten teacher, Mrs. T, explained in her
interview (2/3/2016),

I have [a student] that just [makes] video after video […] His are just right on and he’s
picking up and using tools that I haven’t even taught yet. And he’s using them correctly and
it’s just a lot of really neat stuff from that kid that I did not expect.

After just one year of work on the project, these changing beliefs were evident.
Mrs. S reported,

“I watched children from other schools explain their thinking and assumed they were just
‘smarter’ than the kids I work with. Now my students are those ‘smart’ kids because they
can explain and show their thinking” (Email message to author, 05/20/2015).

4.6.5 Equity

Perhaps the most important finding from our work is the way that the use of
screencasting apps in mathematics classrooms provided more equitable learning
experiences for the children involved in the study. Our findings suggest that using the
screencasting tool in mathematics classrooms has the potential to support equitable
learning for all students in the mathematics class. Only a few students may have the
opportunity to present their ideas each day in a typical math class. In classrooms using
screencasting apps, every student records and explains his or her work. In essence,
each student creates, and often revises, a presentation of his or her mathematical ideas
each time the screencasting tool is used, even if that presentation is not shared with
another student or with the entire class. In an interview, Mrs. K stated that the
screencasting tool “forces everyone to engage in that problem and everyone to talk”
(Interview, 02/2/2016). Mrs. K further commented in her log about this fact stating,
“creating the videos requires ALL students to think” (01/23/2016) and that during
their whole class discussions, students begin to make connections and “light bulbs”
go on. Principal Mr. D also shared ways in which using the screencasting app sup-
ported equitable learning in the classroom in his interview (2/9/2016),

We may come up with the same answer, we may all have taken a different route to get there,
and I think that being able to capture these things honors that process of we all think
differently, and so what students are sharing out in the classroom [is] OK.

Mrs. B an English language learner teacher reported in an interview (01/26/
2016),

Sometimes they don’t have the language and the ability to write down what they’re
thinking. But if they can use this recording tool and an app, they can show it and can talk
about what they’ve done a little bit more easily than if it was pencil/paper.

Moreover, we observed children who receive intervention supports, children
with autism, and a student who is selectively mute record their voices using the
screencasting tool and share their video-recordings with their classmates. In this
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manner, students who may commonly be marginalized in a classroom or who may
not have opportunities to share their ideas publically participated more fully in
mathematics lessons. School administrator, Mrs. D reported in her interview (3/11/
2016), “In a classroom where this is happening all of the students are equal par-
ticipants. And all of the students’ ideas are equally valued.” This emerging evidence
suggests that screencasting tools, such as EE, may provide a platform for a wider
range of learners to communicate their ideas and have their voices heard in math
class.

4.6.6 Challenges

Unsurprisingly, some challenges occurred with implementing the screencasting tool
in classrooms. As expected, both teachers and students experienced a learning curve
related to the use of new technology, and this held true with the EE app and its
features. In surveys, interviews, and monthly debriefing sessions, teachers and
administrators cited overcoming discomfort with the technology itself as a hurdle.
Furthermore, the teachers confronted the challenges of poor recording quality,
particularly with sound, storing the videos for later reference, and ease of accessing
the videos once stored. Teachers also identified difficulties with internet strength,
particularly during the state-mandated testing period when students in the upper
grades used much of the bandwidth to complete their assessments. Additionally,
teachers struggled with finding time to learn the technology themselves, to teach the
students how to use it, and to integrate the project strategy into their already busy
schedules. With time and practice, many of these challenges dissipated and teachers
reported them less frequently. We suggest, however, that these are akin to chal-
lenges that might be faced when introducing any new tool in a mathematics
classroom, tangible or technological. We know that students and teachers need time
to become comfortable and familiar with a new tool and its use.

Beyond the use of technology in the classroom, but closely connected with the
work done on the project, teachers and administrators indicated that classroom
management (specifically keeping students focused on their task), allowing time for
productive struggle, supporting student explanations and critique, and under-
standing the development of numeracy skills proved to be difficult. We addressed
many of these topics during our professional learning time; however, we believe
that the teachers might have confronted a disequilibrium between the newly
introduced high-leverage, research-based practices and those they currently
implemented, which teachers commonly experience when introducing new peda-
gogical approaches into their teaching, whether or not technology is a part of the
work. While we recognize that these challenges were indeed real, we also suggest
that they were an important component of improving practice.
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4.7 Discussion

After two years of study, our findings suggest that there is not just one way to
implement the use of screencasting apps, such as EE, in kindergarten–second-grade
mathematics classrooms. Instead, we found that the participating teachers used this
tool in a variety of ways, depending on their context and on what was most
comfortable for them and their students. Some teachers used screencasting tools
more frequently than others. Some teachers had students create videos with a
partner, while others had them share their videos with a peer. Some classes used
screencasts to respond to problems that came from the district-wide curriculum, and
in other classes teachers created problems for students to respond to when using
screencasts. In some instances, students shared their work with the whole class, and
in other instances, they shared it with small groups. Sometimes, students solved a
problem directly on the screencast. Other times, students solved a problem, took a
picture of their completed work, and then described it. Regardless of the approach,
however, we observed commonalities across classrooms.

In all classrooms, students and teachers began to attend to one another’s
mathematical ideas. Students first began to explain and later justify their mathe-
matical thinking. Because students in every class shared their screencasts with at
least one other person, and because students in every class viewed at least one other
video each time the tool was used, the children in this study began to consider how
they might present their ideas to someone else in the best way. Our findings suggest
that the opportunities to see and hear others’ work allow students to assess, edit, and
re-do their own work. Additionally, because students viewed one another’s work
and heard one another’s mathematical thinking process, they became more com-
fortable with the idea that in mathematics there is often more than one appropriate
approach and sometimes more than one correct solution to a problem. This allowed
students to engage in problem solving and persevere through challenging moments.

We observed that teachers in this study began to change their teaching practices
as a result of the increased student discourse. As students began explaining their
thinking in more detail, teachers began to recognize the need for richer mathe-
matical tasks. Additionally, because of the pre-recorded nature of the screencasts,
teachers were essentially forced to engage in wait time. This allowed students to
self-correct as they worked through a problem. As students began to solve more
cognitively demanding problems and were provided with sufficient time to think
through them, teachers realized that their students were capable of more sophisti-
cated mathematical thinking than they previously thought.

Teachers in this study recognized the need to support their students not only with
the task of solving mathematics problems, but also with the task of creating a
high-quality explanation. Teachers, therefore began creating tools such as sentence
starters, checklists, discussion guidelines, and sentence frames. They also began to
take time during math class to discuss not just the mathematics, but also the
components of a strong mathematical justification.
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The fact that the research (observation, survey, interviews, logs) was tightly
coupled with ongoing professional learning was critical to our work on this project.
Not only did our summer meetings and monthly PLCs provide teachers with a
shared, research-informed, vision of high quality mathematics instruction, it also
provided them the opportunity to share tools and implementation strategies with
one another. This chance to both reflect on and take ownership over their profes-
sional learning and teaching practice is, we believe, strongly linked to the outcomes
of the study.

4.8 Limitations

One notable limitation of this study is its sample size. Moreover, school-based
partners, particularly participating teachers, self-selected to participate. Participation
in this study required an intensive time commitment. In addition to allowing
researchers into their classrooms, and to completing monthly strategy logs, par-
ticipants committed to summer professional development sessions, monthly meet-
ings of the PLC during the school year, and pre- and post-observation meeting
times. The time required to participate in this study prohibited some teachers from
joining the project and others from returning during the second year. Students in
this study each had access to 1–1 iPads in their classrooms, which is atypical in
many early elementary school classrooms. The work done on this project would be
strengthened with additional research including, but not limited to, studies done in
different community settings, with larger numbers of participants, in grades beyond
kindergarten–second-grade, and in schools with and without 1–1 mobile technol-
ogy. While we recognize the significant time challenge for all participants in the
study, we also strongly believe and other research supports (Attard, 2013; Attard &
Curry, 2012) that the professional learning was a critical feature in the design of the
study, and that the outcomes would not be possible if this were removed.

4.9 Conclusion

The project’s collaborative team of researchers and practitioners believe that the use
of screencasting apps in early elementary mathematics classrooms holds significant
potential for supporting mathematical discourse among students. Participating
teachers reported and researchers observed improved student communication in
mathematics, which in turn allowed for changing teaching practices and beliefs,
increased use of formative assessment by both teachers and students, more evidence
of student self-correction and perseverance, and a more equitable learning envi-
ronment for all. As one second-grade teacher, Mrs. M, indicated in her strategy log
(10/9/2015), “the EE app is great tool for students to share their thinking. If we start
students at an early age talking about problem solving in all curriculum areas, it will
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be natural for them to share their thinking. We will be able to see learning in action
as students use their prior knowledge to make connections to new learning. WOW!
This is what learning and school is all about!!”
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Chapter 5
Duo of Digital and Material Artefacts
Dedicated to the Learning of Geometry
at Primary School

Anne Voltolini

Abstract Our research project questions the bonus brought by technology and the
complementarities of material and digital frameworks in situations which link
together digital tools and material tools. We will present here some features to
define a duo of digital and material artefacts. We will illustrate our point with a
situation to stimulate the use of a pair of compasses as a tool to construct a triangle
with given lengths of the sides. We will show that digital technology can bring a
didactic bonus, an extra value to a material tool for learning. Digital technology can
raise functionalities which refer to a material tool, and vice versa, the material tool
can enrich the digital tool. We will show how a duo of artefacts, both material and
digital, used in a situation, brings processes of assimilation and adaptation of uti-
lization schemes from one instrument to the other which assist in their instrumental
geneses and lead to conceptualisation.

Keywords Digital and material artefacts � Didactic bonus � Duo of artefacts
Utilization schemes � Instrumental geneses

5.1 Introduction

The aim of this research work is both the design, and the evaluation, of software
allowing mathematics learning at primary school. This software consists of an
experimental approach based on playing with representations of mathematical
objects on the computer interface, and linking the digital objects with the use of real
tools. For this kind of technological framework linked together with the use of
concrete material tools we question the effectiveness in stimulating the pupil to
uncover mathematical concepts: can the technology bring some extra value to the
material tools, helping thus to overcome some difficulties or some epistemological
obstacles?
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5.2 Digital and Material Artefacts

5.2.1 Literature Review

Moyer-Packenham et al. (2013) studied the effects of physical and virtual manip-
ulatives in mathematics on student achievement during fraction instruction. They
randomly assigned participants, from third- and fourth-grade classes, to one of two
treatment groups. One treatment group used texts and physical manipulatives in a
regular classrooms; the other treatment group used virtual manipulatives in a
computer lab. Their results demonstrate that using either physical or virtual
manipulatives produces similar student achievement for third- and fourth-grade
students learning the fraction concept.

In mathematics classrooms, digital technology is often either seen as a
replacement or an adjunct of a text or physical manipulative activity. The exami-
nation of the role of the conjunction between digital and physical manipulatives is
not often studied. Maschietto and Soury-Lavergne created two situations calling up
a duo of artefacts in order to make the pupils learn the number system (2013) and
the geometry (2015). In both cases the duo consists in linking a given material
artefact with a Cabri Elem1 e-book which refers to the material artefact. They show
that what happens in terms of learning when using the real artefact is different from
what happens when using the digital artefact in the e-book.

We take the same basic idea, calling up a duo of material and digital artefacts in
order to design and analyze another didactic situation (Brousseau, 1997). Our main
idea is not only to substitute a computer framework to the use of a material tool but
link a digital artefact to a given material artefact. We claim that on top of the
achievement of a task, tools will also become a contribution of mathematics activ-
ities of the pupils, yielding the emergence of mathematical concepts. We believe that
it is possible to use the potentialities and constraints of a digital technology in order
to create an artefact linked to a material artefact in such a way that this linking is an
added value for the conceptualization. This program implies to answer the following
questions: What is the advantage of such a digital and material duo for the learning
process? How can we design the linking together between the physical and digital
tools in a complementary way, in order to favour the learning? Is it possible to
overpass the technical aspect when calling up a duo? And finally, can the duo
contribute to the pupil’s individual elaboration of mathematics knowledge?

5.2.2 Instruments Which Benefit from One Another

The use of artefacts, whether they are material or digital, forces the user to build and
develop cognitive structures, called schemes (Vergnaud, 2009) to properly use the

1The Cabri Elem software developed by the Cabrilog company is used in this project in the
framework of the scientific collaboration between Cabrilog and the Frensh Institute for Education.
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artefact when accomplishing a task. An artefact’s potential uses and restrictions
influence the actions and strategies used to solve a given problem. The artefact
becomes an instrument through a process of instrumental genesis (Rabardel, 1995)
when the user has appropriated it and integrated it in his or her activity. Depending
on the type of the given task, while using the artefact, the user creates utilization
schemes to properly use it to accomplish the given task. The utilization schemes
organise the actions taken, they are developed in situation and bound to one use. An
instrument is a dual entity, mixing the artefact as well as the utilization schemes
created by the user to accomplish a given task. “The instrumental genesis is a
complex process, needing time, and linked to the artefact characteristics (its
potentialities and its constraints) and to the subject’s activity, his/her knowledge
and former method of working” (Trouche, 2004).

In a situation which uses a duo of material and digital artefacts, the two artefacts
interact with each other as they are used, and thus the two instrumental geneses are
mixed. According to Rabardel (ibid), the utilization schemes are bound to their
artefacts as well as the objects with which the artefacts interact. “However, uti-
lization schemes cannot be applied directly. They must be adapted to the specificity
of each situation. They are implemented in the form of a procedure relevant to the
particularities of the situation” (ibid, p. 85). When the assimilation of a situation
does not allow accomplishment, the scheme is progressively adapted to become a
new scheme. “The implementation of utilization schemes in new but similar situ-
ations (assimilation process) leads to the generalization of schemes by extension of
the classes of situations, of artefacts and objects they are relevant to. It also leads
to their differentiation since most often they have to change to adapt to new and
different aspects specific to situations” (ibid). In a situation which uses a duo of
artefacts, both material and digital, we question the scheme’s process of assimila-
tion and adaptation from one instrument to the other. We formulated and tested the
following research hypothesis: a duo of artefacts, both material and digital, used in
a situation, brings processes of assimilation and adaptation of utilization schemes
from one instrument to the other which assist in its instrumental geneses and lead to
conceptualisation.

5.3 A Duo of Artefacts, Both Material and Digital,
to Introduce the Compasses in the Geometric
Construction of a Triangle

5.3.1 A Material Artefact: The Material Compasses

We suggest a situation which consists in teaching the geometric construction of a
triangle using a ruler and a pair of compasses, knowing the lengths of its three sides.
There are two objectives: firstly, to give meaning to the use of the compasses in the
construction of a triangle of which we know the lengths of its three sides.
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The second objective is to make the pupil’s knowledge of triangles grow. Often, the
use of the compasses in a geometric construction is linked to a technical ability. The
goal of using the compasses is never mentioned. “There is a confusion between the
ability to trace precise lines for a circle with the compasses and the knowledge of
reasons why the tool is adequate”2 (Artigue & Robinet, 1982). To understand the
procedure of constructing a triangle with compasses is one thing, but to understand
why the compasses are adequate to accomplish this construction is another. Much
like Artigue & Robinet (ibid), we believe that depending on the given task, the
conceptions used in the use of compasses are different.

Multiple kinds of difficulties can be shown in the process of using a pair of
compasses to construct a triangle of which we know the lengths of its three sides.
We identify two of them: the difficulty relative to the dimensional deconstruction of
the triangle (Duval, 2005) and the difficulty of the instrumental genesis of the
compasses. Indeed, in this construction, the compasses are not the tool which
allows the tracing of the outline of the triangle—it’s the tool which allows the
determination of the triangle’s third vertex a 0 dimensional object, hardly appre-
hended by the pupils.

We discern two types of tools: those which produce the sought-out object, and
those who produce an intermediary object which doesn’t belong to the sought-out
object. The ruler, used to trace a segment, produces a segment, and the compasses,
used to trace a circle, produce a circle. But the compasses, used in the construction
of a triangle, do not produce one of the triangle’s sides. To move from the
“compasses to trace a circle”, instrument which produces the circle, to the “com-
passes to determine the triangle’s third vertex”, instrument which produces circles
(circular arcs), an intermediary object, is at the heart of the design of our duo.

We will present later on our methodology regarding the design of a duo and the
choices made in a digital environment:

• first of all, to help the pupil to create the compasses instrument to draw a
triangle;

• second of all, to put into place the dimensional deconstruction of the triangle
without necessarily, first, going to the 0D objects.

5.4 Methodology on the Design of the Duo

“Tools only having meaning when relating to situations in which they are used,” (see
Footnote 2) (Bruillard & Vivet, 1994). A duo of artefacts, material and digital, is
attached to a didactical situation (Brousseau, 1997) and makes itself useful in this
given situation. Our situation combines both digital and pen-and-paper environments,
and allows the articulation between the manipulation of digital tools and the use of a

2Translated by the author from the original article in French.
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material tool. After having done an epistemological and cognitive analysis of the
material artefact, at the same time, we develop a digital artefact articulating with the
material one as well as a situation in which the duo is used. In such a situation, our
digital and material tools rely on one another, and the technology brings an additional
element on a conceptual scale. A duo of digital andmaterial artefacts is not necessarily
characterised by a digital artefact which simulates precisely the material artefact.
Nevertheless, it is necessary that the articulation between the two artefacts shows the
links between the two and presents elementswhich follow a logical continuity in terms
of learning. But some discontinuities are also necessary to promote the evolution of
pupil knowledge.

5.4.1 A Situation Which Involves Material Compasses
and E-Books

The technology used to design digital environments was the Cabri Elem software.
The Cabri Elem technology allows us to create all of the elements with which the
pupil will interact: the objects to be manipulated, the possibilities of actions that can
be done on these objects as well as the environment’s feed-backs. Such a digital
environment is organised within an e-book. The user can go through the pages
freely, and can do the different suggested tasks (Mackrell, Maschietto, &
Soury-Lavergne, 2013). An e-book offers several tasks which bring the user to use
appropriate strategies to accomplish each of them. Thus, Cabri Elem technology
allows us to design tools and tasks in a digital environment, articulating with
material tools. It allows the thought of articulation between the digital tool and the
material tool.

Our situation includes two e-books and two pen-and-paper activities. Its
orchestration (Trouche, 2004) was put in place with the intention of alternating
activities set in a digital environment and in a pen-and-paper environment.
Accomplishing the situation consists in successively handling an e-book and a
pen-and-paper activity then a second e-book and a second pen-and-paper activity
(Fig. 5.1). In the first e-book, the primary objective is to form triangles by
manipulating digital segments. It provokes the elaboration of a rotation-dragging
instrument to rotate the segments. This rotation-dragging brings the use of com-
passes in the pen-and-paper environment. The first pen-and-paper activity’s
objective is to include the material compasses in the triangle’s construction. The
connection between the first e-book and the first pen-and-paper activity is meant to
implement the dimensional deconstruction of the triangle without having, at first, to
get down to geometrical points. The second e-book is meant to bring in the circle as
a tool in the geometric construction of the triangle. Playing with the tools available
through the e-book’s pages makes the circle tool a necessary strategy. Finally the
objective of the second pen-and-paper activity is to construct triangles with the
compasses and ruler. In the design of the duo, a range of didactic variables and
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mobilized artefacts induce the elaboration and evolution of strategies during the
situation and of the connection between the digital artefacts and the material
compasses.

5.4.2 A Choice from a Range of Didactic Variables

The first didactic variable is the length of the segments corresponding to the tri-
angle’s sides (a, b, c). For the three lengths 0 < a < b < c, three values are asso-
ciated to this variable. (a, b, c = a + b) The triangle is flat. (a, b, c with c < a + b)
The lengths verify the triangular inequality and the triangle exists. (a, b, c with
c > a + b) The triangle does not exist. The three values for this variable intervene in
each part of the situation. The segment lengths suggested in the e-books and in the
pen-and-paper activities allow the discovery of cases where the triangle does and
does not exist. The flat triangle can be seen in the first e-book.

The second didactic variable concerns the possible dragging for the segments of
the triangle’s sides. Five values are associated to this variable: translation only;

Fig. 5.1 A situation with the material compasses and e-books
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rotation only; simultaneous translation and rotation; dissociated translation and
rotation; no movement. The chosen values of this dragging variable at the different
steps of the situation influence the implementation of strategies which, as we will
later see, are the vehicles of learning.

The third didactic variable concerns the tools of geometry. We choose, in the
design of the e-books, to provide the pupils with a toolbox available even when
these tools are not useful to resolve the given tasks. In the first e-book all of the
dynamic geometry tools are available even if none of them is necessary to resolve
the given tasks. In the second e-book however these tools must be used to resolve
the given tasks and the chosen values of the tool didactic variable influence the
strategies that must be implemented. In the pen-and-paper environment all tools
(pencil, ruler, setsquare and compasses) are always available. It is up to the pupil to
choose which ones he must use to resolve the problem.

Our intention in designing a situation which makes use of a duo of artefacts,
digital and material, in learning about the construction of the triangle with a ruler
and the compasses is to characterise a milieu (Brousseau, 1997) that encourages the
dimensional deconstruction of the triangle and the instrumental genesis of the
compasses through this problem. We want the learning process to be included in the
strategies implemented by the subject to resolve the set problems. In the next
paragraph we detail the a priori analysis of the situation.

5.5 A Duo: Rotation Dragging and Material Compasses

5.5.1 Asymmetrically Dynamic Segments

The first duo mobilised in the situation consists of the material compasses and a
digital artefact included in the first Cabri Elem e-book. The Cabri Elem software
suggests the virtual compasses but both of the artefacts instrumented by the subject
in this duo are the material compasses and the rotation-dragging of a point in a
digital environment. In the e-book, the pupil is lead through the treatment of two
tasks: forming triangles by the direct manipulation of segments with fixed and
defined lengths, and determining whether three segments can be the three sides of a
triangle (Fig. 5.2). The second task, on whether the triangle exists or not, is a
mathematical question which problematizes the investigation of a triangle, thus
resorting to drag the segments. The displayed segments on this page are represented
as asymmetrical on screen and when they are moved.

Two types of movement are possible for a segment: translating the segment by
holding the segment or its round end, and rotating the segment around its fixed
round end by moving its cruciform end. The graphical distinction between the
extremities, round or cruciform, lets the user anticipate the movement before doing
it. The asymmetry of the digital segments relative to their movements is an
essential part of the milieu constituted by this e-book. In fact, the digital
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environment places limits on the double dragging of the digital segments and forces
a dissociation of the rotation and translation motions. When manipulating material
objects, these two movements (rotation and translation) are realised simultaneously.
Thus the digital environment highlights the rotation necessary to form a triangle
from digital segments. Furthermore, the asymmetrical dragging of the segments
induces an efficient winning strategy in building a triangle. The fact that both of the
segment’s ends do not rotate makes difficult an adjustment strategy. The easy
adjustments to make are those by rotation, which lets the “broken line strategy” take
shape. An efficient winning strategy for building a triangle from the asymmetrical
segments given in the digital environment consists in forming, with three segments,
a broken line whose extremities are cruciform. The triangle is then formed by
rotating the two end-most segments of the broken line (Fig. 5.3). Thus the digital
environment creates a milieu which highlights rotation, essential to form a triangle
from digital segments, and leads to the implementation of a winning strategy that
promotes learning. The broken line is one of the first steps in the dimensional
deconstruction of the triangle. The activity in which we form a triangle in a digital
environment with three segments by going through the broken line rests on a
reconstruction of the two dimensional triangle starting from the one dimensional
broken line. This strategy makes apparent that a triangle is a closed broken line.

In this first e-book, two dragging instruments emerge: translation-dragging and
rotation-dragging. The rotation-dragging instrument is made to rotate the segments,
particularly those segments at the ends of the broken line. It is essential to form a
triangle in a digital environment. This instrument is what will spur the use of the
compasses in the pen-and-paper environment. Firstly the segment, asymmetrical in
its representation on the screen and in its movements, brings to mind the material

Fig. 5.2 Illustration of manipulations of digital segments in the e-book

Fig. 5.3 The broken line strategy
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compasses: one arm remains fixed while another arm turns. Secondly, in the digital
environment, the rotation-dragging instrumentation produces utilization schemes
which can be adapted to the use of the material compasses.

So as to permit the setup of anticipation strategies, the value of the dragging
didactic variable is modified on one of the e-book’s pages. Only the
translation-dragging is possible on this page. Rotating the segments is no longer
possible, and thus forming the triangle is no longer possible. Another strategy must
be set up to predict whether the three segments can be the three sides of a triangle.
Since the dynamic geometry compasses tool is available on the page, it can be used
to set up a strategy. Strategies mobilising the dragging to translate the segments can
also be elaborated. The two smaller segments can be juxtaposed over the longest
one like a broken line, or in the style of triangular inequality (Fig. 5.4).

5.5.2 A New Function for the Compasses

The e-book is connected to the use of the material compasses in the pen-and-paper
environment. This first pen-and-paper activity consists in constructing triangles
whose sides are presented as segments drawn on the paper. The given segments are
either in broken line formation or parallel to each other (Fig. 5.5). To complete
these tasks, the pupil is given geometry tools: a pencil, a ruler, a setsquare and a pair
of compasses.

The purpose of the first pen-and-paper activity is to mobilise the compasses in
the construction of the triangle. Some of the milieu’s elements, generated by the
e-book, also appear in the pen-and-paper environment. The segments corresponding
to the triangle’s sides are already present on the paper, as they were in the digital
environment. Furthermore, the broken line has completely integrated into the
milieu. The broken line is part of the continuity of the digital and material duo of
artefacts. This line whose extremities the pupils must rotate permits the switch from

Fig. 5.4 Juxtaposed strategies

Fig. 5.5 First pen-and-paper activity
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the rotation-dragging in the digital environment to the material compasses in the
pen-and-paper environment. The material compasses are the artefact that replaces
the rotation-dragging. The material compasses allow the subject to rotate a segment.
The segment is stuck between the compasses’ two arms. A new compasses
instrument is created: the compasses to rotate a segment. In the first e-book, during
the manipulation of digital segments, the pupil constructs schemes relative to the
rotation-dragging to rotate the digital segment. These schemes can be associated to
utilization schemes for the material compasses. A utilization schemes for rotating a
digital segment can be described as: determine the two ends of the segment then
grab the cruciform end and drag to rotate the end point. A utilization scheme for
rotating a segment with the help of the compasses can be described as: distin-
guishing each arm of the pair of compasses, placing the needle on the steady end of
the segment, spreading the arms and placing the pen lead on the end to be moved,
and at least rotating the compasses whilst keeping the same spread and create a
visible trace. Assimilations and adaptations between utilization schemes can be
identified from one instrument to another. Whether in a digital or a pen-and-paper
environment, in each utilization scheme for rotating a segment, these must be
distinguished: the segment’s extremities; the compasses arms. In each scheme the
segment or the compasses must be rotated. When using the material compasses,
there are some necessary adaptations: the compasses produce a visible line, marking
the extremity of the rotating segment; since the original does not rotate, a stand-in
for the rotated segment must be drawn.

5.6 The Material Compasses and the Dynamic Geometry
Circle

5.6.1 The Dynamic Geometry Circle

The goal of the second e-book is to bring the circle as a tool used in the construction
of the triangle. It is by playing with the allowed tools that the circle becomes the
tool adapted to the situation (Fig. 5.6). At the beginning, the circle is used to verify
if a broken line can be the outline of a triangle or not. The circle thus becomes the
image of the trajectory of the extremity of a rotating segment.

This second e-book is connected to the use of the material compasses in the first
pen-and-paper activity. Some elements of the milieu made in the pen-and-paper
environment are kept in the second e-book so as to maintain continuity in the
articulation of digital and material artefacts: the material compasses and the dy-
namic geometry circle. The broken line is still a key element of the milieu in the
first pages of the e-book. It is still the element of continuity between the duo and the
given situation. The milieu in the e-book is enriched by the dynamic geometry
tools, more precisely, by the forbidden dynamic geometry tools.
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A tool initially used to verify then becomes a tool used to create. Afterwards, one
must use the circle tool to determine the third vertex of the triangle (Fig. 5.7). The
new instrument which is created in this e-book is the circle instrument used to
identify a distance.

5.6.2 The Material Compasses to Construct a Triangle

The situation ends with a second pen-and-paper activity using the material com-
passes to construct a triangle. This second pen-and-paper activity consists, if pos-
sible, in constructing triangles of which the lengths of sides are given through
numbers. This activity marks the end of the situation and allows the making of a
summary of elements taught through the use of digital artefacts used with the
material compasses.

5.7 Experiments and Results

Experiments of this situation were done over the course of three consecutive years
in French primary school level CM2 classes (ten years’ old pupils). These exper-
iments were all done in the same elementary school. Every year, two classes and

Fig. 5.6 Use of the dynamic geometry tools to involve the circle into the construction of a triangle
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their teachers participated in it. Over 130 pupils tested this situation (38 in 2014, 50
in 2015 and 44 in 2016) over three years. Footage recording the work of each pupil
in the e-books were filmed. The pen-and-paper work of three out of four pupils was
filmed on video cameras. The reactions of the pupils, as well as the remarks made
by the teachers have allowed us to bring modifications to the situation each year.
Additionally, these three years of experiments have allowed us to put our research
hypotheses to the test.

5.7.1 A Rotation-Dragging Instrument Used to Rotate
a Segment

The traces of the work of each pupil in the first e-book allow us to identify two
levels of action in the e-book. Firstly, all the pupils interact with the given objects
on the first page. We can observe interactions with digital segments in an attempt to
move them and interactions with the given dynamic geometry tools. Right from the
first page the pupils delve into the manipulation of segments. They grab and drag
the segments. We can observe that pupils would like to rotate the segment by one of
its ends: the rounded end is clicked upon and the cursor is moved in circular
fashion. The two movements, by translation and by rotation around a given point
are necessary for pupils. Secondly, strategies have been developed by the pupils to
accomplish the given tasks. The double movement of segments is mastered when
the pupil understands that only one action on the cruciform end allows the rotating
of the segment. If the segment is grabbed by the rounded end or by a point of the
segment then it is displaced. If the segment is grabbed by the cruciform end then the
segment rotates around the other end which remains still. Finally, throughout the
pages of the e-book, the double movement of digital segments is mastered by over
90% of the pupils. Over the course of the manipulation of asymmetrical digital
segments in their movement, the pupils have created a utilization scheme to rotate a

Fig. 5.7 The circle used to
determine the third vertex of
the triangle
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digital segment: distinguishing each end of the segment, then grabbing the cruci-
form end and dragging to rotate that end.

After every pupil completes the e-book, the teacher makes a synthesis of what
has been done in the e-book with all the pupils. The videos show us that pupils
caught three points: they have to form triangle; the rotation-dragging is essential;
they can’t always form a triangle with three given length.

5.7.2 The Material Compasses Used to Rotate a Segment

In the pen-and-paper environment, when a broken line into three segments is given
to the pupils, more than 80% of them use a pair of material compasses (Fig. 5.8).
These pupils say that the compasses are used here to replace the rotation-dragging
used in the digital environment to rotate a segment. Several assimilation and
adaptation processes of the utilization schemes used to rotate a digital segment are
translated to a utilization scheme of material compasses to rotate a segment in the
pen-and-paper environment. In the video we can see the pupils’ organisation:
distinguishing each arm of the pair of compasses, placing the needle on the steady
end of the segment, spreading the arms and placing the pen lead on the end to be
moved, and at least rotating the compasses whilst keeping the same spread and
create a visible trace. The continuity between the rotation-dragging to move the end
of the segment and the movement of the compasses which rotates upon it, give
meaning to the compasses used to rotate segments of a broken line in the con-
struction of the triangle. In the pen-and-paper environment, the initial segment does
not rotate as it does in the digital environment. The compasses produce the trace of
the rotating end—creating thus a circle, or a circular arc. Another trace representing
the rotating segment must be drawn. 90% of the pupils who used the compasses to
rotate a segment traced the new representations of the rotated segments (Fig. 5.8).
These pupils thus drew the triangle obtained by closing the broken line.

To use the pair of compasses to rotate segments of the broken line also allows
these pupils to recognize that a broken line may not allow the creation of a triangle
(Fig. 5.9).

5.7.3 The Circle: A Tool in the Construction of the Triangle

In the second e-book, we observe in the videos that the presence of a broken line on
the page leads the pupils to try to rotate its extremities. Even if it is explained that
the broken line’s segments can no longer rotate (Fig. 5.6), the pupils take one of the
extremities and move the cursor in a circular motion. The segments’ lack of
movement forces them to set up strategies that mobilize the available dynamic
geometry tools. When the compasses tool is available on the page, the pupils use it
to rotate segments as with the material compasses in the first pen-and-paper activity.
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The circle tool is mobilized by 70% of pupils to replace the compasses tool. Only
60% of them (only 42% of all pupils) mobilize it correctly. The others activate the
circle tool but cannot manage to use it to solve the problem. These pupils’ difficulty
lies in not knowing where to place the centre of the circle. Even if the utilization
schemes for the compasses and dynamic geometry circle tool seem similar, as
shown in Table 5.1, we can identify some obstacles in the utilization schemes for
the circle tool. On the one hand, the centre of the circle is a 0 dimensional object
hardly apprehended by primary school pupils as we already said before. On the
other hand, the compasses tool allows a level of visual control that brings to mind
the rotating digital segment (Fig. 5.10), which simplifies its use in the task.

So in this situation, the material compasses and the dynamic geometry circle are
not a duo of artefacts. There is too wide a gap between the utilization schemes of
each artefact to solve the task. Assimilation and adaptation processes of utilization
schemes from one instrument to the other cannot be identified.

On the last two pages of the e-book the circle tool must be mobilized to identify
a distance, the length of the triangle’s side (Fig. 5.7). It is the only available tool to
determine the desired distances. Only 15% of pupils manage to use the circle
wisely. The perception of a circle as a set of points equidistant from a centre is not
yet mastered by pupils at the end of elementary school.

Fig. 5.8 The compasses used to rotate a segment

Fig. 5.9 Illustration of a broken line which may not allow the creation of a triangle
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5.7.4 A Triangle Is a Broken Line for More Than 75%
of Pupils

The second pen-and-paper activity reveals what the pupils have learned in the
situation. In the first e-book, the “broken line strategy” comes in as an efficient
winning strategy to form a triangle in the digital environment (Fig. 5.3). The videos
show us the implementation of a broken line strategy in the pen-and-paper envi-
ronment. It is transposed into the pen-and-paper environment as a step in the
triangle’s construction (Fig. 5.8) by more than 75% of pupils. Pupils draw a broken
line with the three segments, and then use the compasses to rotate the segments at
both ends of the broken line, and finally they draw the triangle if it exists. Video
capture allows us to point out certain pupils’ remarks. One pupil says: “The broken
line helps because before, we didn’t know we had to use the compasses to construct
a triangle.”3 Only 15% of pupils construct the triangles they are asked for with ruler
and compasses without using the broken line. Some of them identify the two
solutions for the third vertex. They draw the two triangles. The other 10% of pupils
draw the triangle by using only the ruler by successive approximations.

Table 5.1 Utilization schemes for the dynamic geometry

Utilization schemes for the dynamic
geometry compasses tool

Utilization schemes for the dynamic geometry
circle tool

Click on the compasses tool
Click to fix the needle
Spread the arms
Click to place the lead
Pivot the lead-end to draw a trace

Click on the circle tool
Click to define the circle’s centre
Spread the circle
Click to define the circle’s size and fix its
image on the screen

Fig. 5.10 Compasses tool versus circle tool to rotate a segment

3Translation of the original sentence «La ligne brisée ça nous aide parce qu’avant on savait pas
qu’il fallait utiliser le compas pour tracer un triangle».
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A triangle being a closed broken line is a new conception (Balacheff, 2013) of the
triangle resulting from the design of the duo of digital and material artefacts. This
conception allows a 1Dunderstanding of the triangle: a triangle is a polygonwith three
sides. The broken line is a dimensional deconstruction of the 1D triangle, halfway
between the 2D three-sided triangle and the triangle determined by its 0D vertices.
Furthermore, this conception includes a control structure on the existence or not of the
triangle. If the end segments of the broken line meet then the triangle exists. If the end
segments of the broken line do not meet then the triangle does not exist.

The rotation-dragging and material compasses’ duo for rotating the end seg-
ments of a broken line also create a new conception of the circle. A circle is the
trajectory of the extremity of a rotating segment. Controls here do not only focus on
the compasses’ production. A new control is present: pivoting compasses corre-
sponds to pivoting a segment between its arms. This conception highlights the
notion of constant distance associated to the circle.

5.8 Conclusion

Our research project questions the added effect brought by digital technology in si-
tuations operating on the basis of linking together digital tools and material tools.
With an example in geometry, we have illustrated the characteristic elements of a
digital and material duo of artefacts, and its incidence on the learning process. The
main idea behind a duo is that each artefact improves the other so that the duo
encourages the pupils’ construction of individual knowledge. Continuity and dis-
continuity in the two artefacts connection are essential and relay knowledge. In our
example we have highlighted how the connection between manipulating in a digital
environment and using the material compasses allows the pupils to elaborate a new
instrument: the compasses to rotate a segment. The duo of artefacts in situation
promotes the assimilation and adaptation of utilization schemes from one instrument
to the other. Thus the situation mobilizing a duo of digital and material artefacts
participates in the instrumental genesis of the compasses through the
triangle-construction task and gives meaning to its usage in this task. Furthermore
the duo brings about the elaboration of teaching strategies. The broken line strategy
allows the setup of the triangle’s dimensional deconstruction 2D/1D. Indeed the duo
produces the circumstances that rely on the broken line to implement the triangle’s
dimensional deconstruction without necessarily going to the point a 0 dimensional
object. This broken line also participates in the elaboration of a new conception of
the triangle: a triangle is a closed broken line. Thus the digital artefact, or more
precisely the duo of artefacts, brings additional value to the material tool which helps
in breaking through certain difficulties or epistemological obstacles. The duo and the
connection between digital and material artefacts in the situation give meaning to the
material artefact’s use in solving a task, enrich the system [subject/milieu] by
relating problems and reiterating experiences while varying constraints, and are thus
favourable to the elaboration of the subject’s individual knowledge.
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Chapter 6
Using Cluster Analysis to Enhance
Student Learning When Using
Geometry Mathematics Apps

Kevin Larkin and Todd Milford

Abstract Mathematical applications (apps) are becoming commonplace in edu-
cational settings. Despite their increasing use, limited quantitative research has been
undertaken that might support teachers in making appropriate pedagogical deci-
sions regarding their use, nor how teachers might go about selecting appropriate
apps from the multitudes available at iTunes or Google Play. This chapter explores
how cluster analysis can be used to identify homogeneity among elements within
apps, thus assisting teachers to make decisions regarding which apps might be most
appropriate. Based upon selection criteria and rankings generated via a number of
scales, the cluster structure of 53 apps to support geometry learning in elementary
mathematics classrooms is reported. The chapter concludes by exploring the
homogeneity and heterogeneity of these clusters of apps and suggests how to use
these apps to enhance student mathematical learning.

Keywords Apps � Cluster analysis � Digital manipulatives � Number
Primary mathematics

6.1 Introduction

The exploration detailed in this chapter is a derivation of a broader ongoing
research project. In phase one of the project, Larkin (2013, 2015a) investigated the
effectiveness of 142 largely number-oriented mathematics applications (apps). In
phase two, a further 53 apps specifically targeted at Geometry, were evaluated using
a variety of modified evaluative frameworks (Larkin, 2015b, 2016). Despite a range
of worthwhile and meaningful outcomes resulting from those two phases, a number
of questions remained unanswered: whether and how various Geometry apps may
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be used in combination with other apps for a specific teaching purpose; whether and
how apps that may have scored poorly overall might still be useful for specific
purposes in concert with other apps; and how the data gathered in phase two might
be made more useful by additional analysis at a more granular level. This last
question is explored here as we employ a targeted methodology to provide more
information than just the allocation of an overall cumulative score. To this end we
use cluster analysis more closely to examine 53 Geometry apps in order to provide
a more fine-tuned selection of apps for subsequent use by teachers. We will argue in
this chapter that cluster analysis is a highly versatile and useful methodology that
can assist classroom teachers in their initial selection of Geometry apps, as well as
providing additional information on pedagogical approaches to support teachers’
classroom practices. Because of this versatility and usefulness, it is our intention to
use cluster analysis in future research to evaluate more precisely the usefulness of
mathematics apps.

6.2 Literature Review

Geometry is broadly defined in curricula documents as a branch of mathematics that
dealswith shape, size, position and the properties of space (AustralianCurriculum and
Reporting Authority [ACARA], 2009). It is a core content component of primary
mathematics education and is linked to a number of other mathematics strands, as well
as informing approaches to learning and teaching in curricula and policy documents.
For example, the Australian Curriculum (ACARA) offers Geometry (including
sub-strands such as Shape, Transformation and Location, and Geometric Reasoning)
as one of the six core strands from Foundation (i.e. Kindergarten) until Year 10
(ACARA, 2009). These sub-strands cover concepts relating to 1D lines, 2D shapes,
3D objects, transformations, co-ordinate geometry, angles and symmetry. Similarly,
the National Council of Teachers ofMathematics (NCTM) recognizes the importance
of Geometry in establishing productive learning environments by “calling on students
to analyse characteristics of geometric shapes and make mathematical arguments
about the geometric relationship, as well as to use visualization, spatial reasoning, and
geometric modelling to solve problems” (NCTM, ND, 3).

Research suggests that student knowledge and understanding of geometry is vital
for a number of reasons. For example, it enables students to understand and interpret
their environment; it relates to other mathematics concepts such as arrays or pat-
terning; and it links to other discipline areas such as Science, Geography, Art, Design
and Technology (Jones&Mooney, 2003). Consequently, Geometry is now viewed as
a core component in promoting higher-level thinking skills in mathematics and
beyond (Clements & Sarama, 2011). From this overview, it is therefore clear that
curriculum authorities (e.g. ACARA in Australia and the National Research Council
(ARC) in the Unites States), recognise the importance of Geometry in their respective
national curriculum and policy documents (Moss, Hawes, Naqvi & Caswell, 2015),
regarding it as a critical component of student success in school mathematics per se
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and also in related discipline areas, particularly those in the Science, Technology,
Engineering or Mathematics (STEM) domains (Sinclair & Bruce, 2015).

6.2.1 Digital Technologies and Geometry

What is also overtly recognised in numerous international curricula, includingACARA
and the NRC, is the important role of digital technologies in the teaching of mathe-
matics. For example, the Australian Curriculum: Mathematics explicitly states that
“Digital technologies allow new approaches to explaining and presentingmathematics,
as well as assisting in connecting representations and thus deepening understanding”
(ACARA, 2009, 12, para 7). As a consequence of this recognition, there has been
interest in how best to incorporate digital technologies into teaching. It is therefore not
surprising that a range of technologies (Interactive Whiteboards, Laptops, Visualisers,
Tablets etc.) are becoming increasingly common in primary mathematics classrooms
(Moyer-Packenhamet al., 2015),with amore recent trendbeing the use ofmathematical
apps on devices such as iPads or other tablets (Ladel & Kortenkamp, 2016; Larkin,
2015a). It is generally accepted in the research literature that both concrete and digital
manipulatives support mathematical learning. Therefore, as was the case in previous
research (Larkin, 2015a, 2016), it is taken as given in this chapter that manipulatives
(concrete and digital) support mathematical learning (e.g. Carbonneau, Marley, &
Selig, 2013; Moyer-Packenham et al., 2015; Sarama & Clements, 2009). Although
desktop computer virtualmanipulatives havebeenwidely researched, there ismuch less
research as to the effectiveness of apps in supporting mathematics learning, despite the
rapid expansion of their use in the educational domain in recent years.

We include iPad apps as part of a general class of mathematics objects known as
virtual manipulatives (VM). According to Moyer-Packenham and Bolyard (2016), a
VM is “an interactive, technology-enabled visual representation of a dynamic
mathematical object, including all of the programmable features that allow it to be
manipulated, that presents opportunities for constructing mathematical knowledge”
(p. 1).We acknowledge that not all mathematics appsmeet this definition i.e. theymay
be static andmerely convey knowledge via text based definitions (e.g.BasicGeometry
App); however, apps such as this did not meet the initial criteria for further evaluation
in this research. Calder (2015) and Larkin (2015a) both acknowledge this lack of
current research and note that this has contributed to the largely ad hoc implementation
of tablets (iPads and Androids) in many school contexts.

The trend to incorporate digital technologies into mathematics education has sig-
nificant implications for all strands of mathematics but particularly for Geometry, with
the extra requirement of accuracyof external representations (Larkin, 2016;Manches&
O’Malley, 2012). Despite the increasing proliferation of iPads in the primary mathe-
matics classroom, how best to select and use many of the more recent technologies—
e.g. tablets—are still relatively unexplored (Moyer-Packenham et al., 2015), both
conceptually and methodologically. Previous research (Larkin, 2015b) reported that,
despite the limited quality of apps available for student learning in Geometry, there are
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some apps that are very useful for primary school classrooms. Our goal in this chapter is
to determine whether some of the lower quality apps (as indicated by raw scores)
contain useful content for specific teaching contexts. We use cluster analysis to do so.

6.2.2 Cluster Analysis

Cluster analysis is a collection of multivariate (i.e. analysis of more than one sta-
tistical outcome variable at a time) techniques that group individuals or objects into
clusters so that objects in the same cluster are more similar to one another than they
are to objects in other clusters (Hair, Black, Babin, Anderson & Tatham, 2006).
Essentially, it seeks to maximize the homogeneity within clusters, while at the same
time maximizing the heterogeneity between clusters. In essence, it tries to keep more
‘like things’ together while keeping ‘unlike things’ separate. Although similar to
factor analysis in assessing structure, cluster analysis groups objects as opposed to
grouping variables and is focused more on uncovering the common dimension
suggested by natural groupings and proximity than on patterns of variation (corre-
lation). Cluster analysis was selected as a methodological approach for the research
outlined here as it was anticipated that the Geometry apps selected for this analysis
would show similarities and differences that would allow researchers to identify
groupings that could: (a) be linked to relevant curriculum documents (cf. ACARA,
NRC) and to theories of geometric learning (cf. van Hiele), and (b) be transferable to
teachers to assist their decision-making regarding the use of apps in their classrooms.

Cluster analysis can be found referenced in the literature as supporting a wide
variety of educational investigations; however, as Shavelson (1979) indicated, “it is
a little used but important technique for examining data in educational research”
(p. 1). Some of its uses within educational research include students’ learning
behaviour during problem-solving activities in an on-line environment (Antonenko,
Toy, & Niederhauser, 2012), and student responses to open-ended questions on
Algebra (Di Paola, Battaglia, & Fazio, 2016). However, cluster analysis is hardly a
silver bullet and is not without its detractors. For example, the method has been
criticized for being primarily descriptive and a-theoretical, as clusters always form
from data without necessarily indicating meaningful groupings. In addition, results
are not generalizable in the parametric sense of the word (Hair et al., 2006).

We use cluster analysis in this research to answer the following research
question: How does the cluster structure of apps, based upon three evaluation scales
assist teachers make decisions about the quality of apps for use in their mathematics
classrooms?
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6.3 Study Design—Factor Analysis and Cluster Analysis

6.3.1 Target Population and Criteria for Inclusion

The target population in this study were elementary Geometry apps identified as
being appropriate for school children aged 5–11. Evaluation of the apps (initially
reported in Larkin, 2015b) began with a targeted search for mathematics apps at the
iTunes Appstore. The following search terms were used: Geometry Elementary
Education; Geometry Junior Education; Geometry Primary Education; Symmetry
Education and Transformations Education. A variety of criteria were used to
immediately critique the apps as worthy of further review: only one app in any
series was reviewed; apps categorised as Games, Entertainment or Lifestyle were
excluded; apps where mathematics was part of a larger package of reading, writing,
and spelling skills were not reviewed; and apps that required access to websites for
further (often costly) resources were also excluded. A total of 53 apps met the initial
criteria established for this population and these were subsequently used for both
the rating according to the previously mentioned scales (Bos, 2009; Dick, 2008;
Haugland, 1999), as well as in the cluster analysis. The full list of apps, including a
qualitative evaluation of their usefulness or otherwise, can be found at http://tinyurl.
com/Geometry-Cluster-Analysis.

6.3.2 Materials and Procedures

The characteristics that formed the data set for later cluster creation were based
upon previous work (Larkin, 2015b) which evaluated primary or elementary school
Geometry apps, based upon the evaluation criteria of Bos (2009), Dick (2008) and
Haugland (1999). For this study, the scales were further modified by the authors to
be weighted evenly and targeted specifically at mathematics apps.

Bos’ research suggested that the structural format of a virtual digital resource
greatly influences the type of mathematical learning that it might support. As noted
by Kortenkamp and Ladel (2013), “the actions carried out with a manipulative
should support the mathematical design” (p. 188) of an app; therefore, the design
format of an app is a critical consideration in determining its future potential to
support learning. In brief, the modified Bos scale is based on six types of software:
static tools, informationals, quizzes/tests, drill and practice games, virtual manip-
ulatives (VM), and interactive maths objects (IMO). The modifications made by
Larkin (2015b), and utilized here, included a more precise matching of evaluative
criteria to iPad technology and scoring the apps quantitatively on a scale of 1–10
rather than Bos’ descriptive analysis, which only indicated low, medium or high
accuracy in terms of mathematics.

The Haugland Software Developmental Scale (Haugland, 1999)—henceforth
referred to as the Haugland Scale—is a criterion-based tool used to evaluate the
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appropriateness of web-based applications and software for use by children. To
measure the particular affordances of apps in terms of student use, Larkin (2013)
modified the original Haugland Scale which was initially designed to evaluate
computer software. In order to more accurately measure mathematics apps, elab-
orations were added to the initial ten criteria to investigate the quality of the apps in
relation to mathematics education. The original scale of (1–10) provided generic
information regarding the quality of software in relation to its use by primary
students and was not particular to mathematics (e.g. presence of violence or gender
stereotypes were indicators of appropriateness). The Haugland scale was further
modified for iPad research by clustering the ten dimensions into three
sub-dimensions (Child-Centred, Technical Design and Learning Design), and
relating each dimension to an aspect of mathematics education. Each sub-dimension
contributed to the overall score with child-centred scoring (0–4), technical design
(0–3) and learning design (0–3).

The modified fidelity measures were based on the work of Dick (2008) who
measured quality according to three types offidelity: Pedagogical, Mathematical and
Cognitive. In brief, Pedagogical fidelity is defined as the degree towhich a student can
use a tool to further their learning and refers to “the extent to which teachers (as well as
students) believe that a tool allows students to act mathematically in ways that cor-
respond to the nature of mathematical learning that underlies a teacher’s practice”
(Zbiek, Heid, Blume,&Dick, 2007, p. 1187). The second of the three fidelities used to
evaluate the apps is Mathematical fidelity—defined as the “faithfulness of the tool in
reflecting the mathematical properties, conventions, and behaviors (as would be
understood or expected by the mathematical community)” (Zbiek et al., 2007,
p. 1173). The final element is Cognitive fidelity—“the faithfulness of the tool in
reflecting the learner’s thought processes or strategic choices while engaged in
mathematical activity” (Zbiek et al., 2007, p. 1173). These notions of fidelity are
obviously very important in Geometry apps which are likely to require the use of
external representations. The virtual nature of many app objects does allow for high
degrees offidelity; for example, 3D objects can be pulled apart and put back together,
and in so doing, can reinforce the link between 3Dobjects and their 2D representations
(i.e. nets). The methodological contribution of the authors was to use each of the three
fidelities and score the apps on a (1–10) scoring continuum. Thus, the combination of
the scales resulted in five measures overall (Haugland, Bos, and the three separate
fidelities) generating a potential range of scores from 5 to 50.

The internal reliability of the evaluation of the apps across each of the Haugland
and fidelity scales is presented in Table 6.1 (the Bos scale only had one rating and
thus internal reliability could not be calculated). The internal reliability for the three
sub-dimensions of the Haugland Scale was calculated at a = .661. Although the
Haugland Scale’s alpha score is slightly less than 0.7, previous research (Larkin,
2015a) using the Haugland Scale reported an alpha score of 0.768. As alpha is
sensitive to both number of participants as well as number of items (Tavakol &
Dennick, 2011), the decrease noted here is unsurprising. For subsequent analysis,
we used a total summed score of all three sub-dimensions (Child-Centred,
Technical Design and Learning Design) for the Haugland scale score and treated
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the three fidelity subscales of Pedagogical, Mathematical and Cognitive as separate
entities. The internal reliability for these three subscales was calculated at a = .889.
For subsequent analysis we looked at each of the three scales of the fidelity scale as
independent. This information is further detailed in Table 6.1.

Based upon the results of the ratings of each app, as generated by the three scales
(i.e. Format, Haugland and Fidelity), a cluster analysis was performed on these 53
apps with SPSS v.22. We initially measured similarities as the squared Euclidian
distances between each pair of apps on each of the 5 scale characteristics [i.e. Bos,
Haugland and three fidelities (pedagogical, mathematical, and cognitive)]. In this
way, smaller distances were viewed as indicating greater similarity. Once the
similarity measures were calculated, a hierarchical procedure via Ward’s method—
which joins cases into clusters such that the variance is minimized—was applied to
the clusters. Lastly, the number of clusters was determined, based upon the output,
with the objective of generating the simplest structure possible while still repre-
senting homogeneous groupings. The number of clusters was determined by both
the output and also a decision by the researchers to generate the simplest structure
possible while still representing homogeneous groupings. The Dendrogram in
Fig. 6.1 provides a graphical portrayal of the clustering process. The vertical axis
represents respective apps and the horizontal axis represents the distance used in
joining clusters. This horizontal axis is scaled so that closer distances between
combinations indicate greater homogeneity (Hair et al., 2006). Based upon the
cluster analysis a solution of five clusters was determined. The blue vertical line in
Fig. 6.1 represents the final decision.

6.4 Findings

Initial descriptives for the scales used to run the cluster analysis are presented in
Table 6.2. All variables are measured on the same 10-point (1 lowest to 10 highest)
scales and all meet the assumptions of univariate normality.

A correlational analysis (see Table 6.3) was subsequently run on the five scales
to determine if their inclusion in the cluster analysis would be appropriate, or if any
overlap (i.e. multicolinearity) might account for double counting. Multicolinearity
acts as a weighting process not apparent to the observer but affecting the analysis
(Hair et al., 2006).

Table 6.1 Scales and reliabilities

Scale Subscale Reliability

Format (Bos) – –

Haugland Child centred, technical design and learning design a = .661

Fidelity (Dick) Pedagogical, mathematical and cognitive a = .889
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Fig. 6.1 Dendrogram—with blue vertical line indicating point of cluster formation

Table 6.2 Descriptives

Variable N Mean (SE) Median Skew (SE) Kurtosis (SE)

Format (Bos) 53 5.69 (.28) 6.00 .33 (.33) −1.16 (.64)

Haugland 53 5.39 (.28) 5.50 −.12 (.33) −1.13 (.64)

Fidelity

Pedagogical 53 4.94 (.31) 4.00 .36 (.33) −1.12 (.64)

Mathematics 53 4.30 (.26) 4.00 .31 (.33) −.31 (.64)

Cognitive 53 3.71 (.29) 3.00 .93 (.33) .28 (.64)

Table 6.3 Correlations of the 5 scales

Format Haugland Pedagogical Mathematics Cognitive

Format (Bos) 1.00

Haugland .620** 1.00

Pedagogical .556** .878** 1.00

Mathematics .622** .569** .625** 1.00

Cognitive .701** .745** .741** .840** 1.00

**Correlation is significant at the 0.01 level (2-tailed)
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Based upon this analysis, it was determined that the scales were all highly
correlated (i.e., between .556 and .878) and a Principal Component Analysis
(PCA) was run using Varimax rotation to create orthogonal variables from these
scores for the subsequent cluster analysis. The rotated component matrix is pro-
vided in Table 6.4.

From the results of the PCA and the rotated component matrix (see Table 6.4), a
four-component solution was accepted for use in the subsequent cluster analysis.
The four component solution (i.e. components 1 thru 4) was justified as it accounted
for over 98% of the variance and none of the scales loaded highly on the 5th
component even after the Varimax rotation.

As indicated, a cluster analysis was performed with SPSS using the four com-
ponent scores of the PCA. Cluster analysis involves three steps: (1) a measure of
similarities as the squared Euclidian distances between each pair of apps on each of
the four component scores; (2) a hierarchical procedure via Ward’s method—which
joins cases into clusters such that the variance is minimized; and (3) the number of
clusters determined based upon the output and an effort to get the simplest structure
possible while still representing homogeneous groupings. The results of this anal-
ysis are provided in Figs. 6.1 (Dendrogram) and 6.2 (Scree Diagram) and, based
upon the data represented in Figs. 6.1 and 6.2, a solution of five clusters (i.e.,
53 − 48 = 5) was determined. Details of the 5 retained clusters and some of their
associated apps are provided in Table 6.5.

Table 6.4 Rotated component matrix

Component

1 2 3 4 5

Format (Bos) .281 .293 .902 .146 .015

Haugland .860 .227 .309 .195 .274

Pedagogical .889 .324 .214 .143 −.198

Mathematics .284 .904 .283 .151 .010

Cognitive .448 .581 .355 .579 .021

Fig. 6.2 The scree plot
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Because we used an agglomerative method to determine clusters (i.e. each app
started out as its own cluster), the Dendrogram detailed in Fig. 6.1 is read from left
to right. Starting on the left with each of the 53 apps as its own cluster, using
Ward’s method of similarity, apps are combined one step at a time, based upon
which two are the most similar, and formed into a new cluster. The vertical lines
between when clusters are formed are a measure of homogeneity. The longer the
vertical line the more dissimilar the clusters are that are merged. Based upon this
distance measure, the blue vertical line was placed on the Dendrogram indicating a
five cluster solution.

As an additional criterion for the selection of number of clusters, the Scree Plot
detailed in Fig. 6.2 is appropriate as it offers more detailed information on the level
of dissimilarity of the apps within the cluster. When the “bends” in the scree plot
are the most exaggerated, identification of the number of clusters is the most
accurate. In the case here, and additionally by examining the Dendrogram in
Fig. 6.1, the most exaggerated bend was after five clusters. Thus, based upon both
graphical depictions, a five cluster solution was accepted.

6.5 Discussion

The primary purpose of using cluster analysis was to identify homogeneity between
apps that may not have been apparent in the earlier work that primarily focused on
the cumulative scores. Hence, there was a grounded theory type approach to the
research. Once the clusters had been created via the cluster analysis process, the
authors began to look at each of the clusters to determine the particular features of
each app within each cluster that resulted in their being classed as homogenous.
Although not apparent in the earlier research, an examination of the clusters
revealed that different clusters of apps appeared to match particular levels of the

Table 6.5 Cluster labels and example apps

Cluster
number

Number
of apps

Mean
score
(SD)

Cluster name Example apps

1 11 16.7
(5.0)

Visualisation Geometrie; JustShapes; Koala Math 1-5
Geometry

2 6 39.3
(3.3)

Active
learning

Coordinate Geometry (Ventura); Attribute
Blocks; Transformations (Investigate)

3 13 17.0
(4.4)

Quizzes Math Geometry; MathApp - Geometry 1;
Geometry Test

4 18 29.3
(5.0)

High fidelity
manipulatives

Geometry (Montessori); Pattern Shapes;
Isometry Manipulative;

5 5 21.2
(4.6)

Low fidelity
manipulatives

Geometry 2D Pad; Hands-on Maths
Geoboard;

110 K. Larkin and T. Milford



van Hiele model of geometric thinking (Crowley, 1987). Prior to discussing how
and why this is the case, it is useful to quickly provide a refresher on the model
which is widely accepted within the mathematics community (see Pegg, 1985;
Teppo, 1991) and which forms the basis of the Geometry learning sequence in
many mathematics curricula around the world (ACARA, 2015; NGA, 2016). The
van Hiele model is generally considered to describe characteristics of student
thinking in Geometry and consists of five levels of understanding—Visualisation,
Analysis, Informal deduction, Formal deduction, and Rigor (Crowley, 1987). In the
presence of appropriate instruction “the learner moves sequentially from the initial,
or basic, level (visualisation), where space is simply observed-the properties of
figures are not explicitly recognized, through the sequence listed above to the
highest level (rigor), which is concerned with formal abstract aspects of deduction”
(Crowley, 1987, p. 1). Other authors discern as many as eight levels (Jones, 1998)
including, in the view of Clements and Battista (1992), a pre-recognition level
evident before the visualisation level. This is not a significant concern as most
children are at the visualisation level by the time they commence formal schooling.
Additionally, none of the reviewed apps focussed on pre-recognition.

Not all researchers favour the van Hiele model and indicate that it has been
subject to some critical discussion (Jones, 1998). For example, the discreteness of
the levels and the precise nature of levels 1 and 4 have been queried (Pegg, 1985).
A second line of research, questions more broadly, any axiomatic approaches (e.g.
van Hiele or Piaget), arguing instead that the generation of meaningful geometrical
justifications by students is a more realistic approach (Battista & Clements, 2013).
In brief, these approaches favour students working collaboratively to make con-
jectures and resolving shape/object conflicts by presenting arguments. The teacher’s
role here is to “involve students in the crucial elements of mathematical discovery
and discourse conjecturing” (Battista & Clements, 2013, p. 5). Battista and
Clements (2013) also note that “regardless of whether an axiomatic or a justification
methodology is favoured—establishing the validity of geometric ideas, and making
sense of them mathematically should be the major goal of the Geometry curricu-
lum” (p. 6). Whilst it is apparent that some level of disagreement remains regarding
how students develop geometrical understanding, for the purposes of this chapter,
the initial van Hiele levels of Recognition, Analysis and Informal Deduction,
considered most relevant to the geometric thinking of students aged 5–11, are used.
There is little argument that teacher intervention is instrumental in assisting students
to move towards deeper levels of geometric thinking (Crowley, 1987; Pegg, 1985).
This is confirmed by Teppo (1991) who cites research suggesting that “appropriate
instruction can be used to move students successfully from a lower to a higher level
of geometric thinking” (p. 214).

A second, largely uncontested, area is the critical role of language in the
development of geometric thinking. Each of the initial three van Hiele levels is
characterised by a vocabulary that is used to represent the concepts, structures, and
networks within that level of geometric understanding. Students at a lower level of
thinking are unlikely to understand language presented to them at a higher level of
thought. The critical role of language has profound implications for use of
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mathematical and symbolic language in the Geometry apps. It is the case that some
apps, targeted at Foundation or Year One (ages 5–6 years old), are using mathe-
matical or symbolic language likely beyond the level of understanding of young
students. Therefore, a key consideration in evaluating the usefulness of the apps
relates to linguistics and the potential mismatch between app language and student
language. Therefore, in our initial thinking Cluster 5 apps (Low fidelity manipu-
latives) are more appropriately used in terms of language at the Analysis level, and
Cluster 2 (Active Learning) are more useful at the Informal deduction level. Cluster
4 apps (High fidelity manipulatives) are considered appropriate as a transitional
device between van Hiele levels 2 and 3. Thus Cluster 4 can operate as a scaffold
between Cluster 5 and Cluster 2, supporting language development from Analysis
to Informal Deduction. With this emergent learning framework in mind, the process
of classifying and later labelling the clusters took shape, based on both the quan-
titative (Bos, Haugland, Dick) and qualitative data from phase two of the broader
project (Larkin, 2015a, b). We analysed how the apps clustered as they did, and in
doing so, made pedagogical decisions regarding their usefulness to teachers in
terms of a recommended learning framework and in terms of Geometry content.
The pattern for the analysis of each cluster is a discussion on the three quantitative
measures and then a synthesis of the qualitative data. A full list of the apps in each
cluster is available at http://tinyurl.com/Geometry-Cluster-Analysis.

6.5.1 Cluster 1—Visualisation

According to the scores on the summed measures, this was the worst performing
cluster, as the average for this cluster was 16.77, significantly lower than the overall
average for all apps which was 24.06. Only one app in this cluster, Symmetry Draw,
scored a pass mark. The cluster is labelled as Visualisation (van Hiele level one)
because the apps primarily involved recognition of whole shapes. Despite being
adequate in terms of being child-centred, this cluster scored very poorly on the
Haugland sub-strand of Maths learning with most apps scoring 0/3. Apps in this
cluster therefore do not support deep learning. They may be used in revision
activities for testing declarative type knowledge about shapes, objects or basic
symmetry. Apps located in this cluster are intuitive with low Mathematical fidelity
and low cognitive load. Students at level 1—Visualisation—could use the apps in
this cluster. As indicated, the majority of apps in this cluster relate to whole of
shape activities. Recommendations for apps to use from this cluster are either My
Geometrie Universe or Koala Maths as they both contain real-world depictions of
shapes. A number of symmetry apps are included in this cluster primarily because
they relate to early recognition of symmetry in the natural and built environment
involving bilateral symmetry. In this cluster there were no opportunities for con-
jectures or relationships; however, at this stage, this is a positive aspect as students
at the Visualisation level are unlikely to be capable of forming conjectures or
identifying relationships and will likely become confused if asked to do so.
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6.5.2 Cluster 2—Active Learning

This is the best performing of the five clusters: it contains the top three apps overall.
All six apps in this cluster are in the top 10 apps overall, and all are evaluated as
either VM or IMO. In contrast to the virtual manipulatives in Cluster 5, which are
more static, and those in Cluster 4, which are dynamic without necessarily pro-
moting active learning, manipulatives in Cluster 2 are those that promote active
learning via engagement. These apps were all exceptional in the Haugland scale
across all three sub-strands as well as exceptional across all three fidelities. These
apps are therefore considered to be the best of the reviewed apps. The majority of
the apps involved transformations and are best used at the later stages of the van
Hiele model as they provide linkage, and in some cases capacity, for students to
engage in Informal Deductions. These apps, as was the case with Cluster 1, are still
highly intuitive. The key difference is that they go beyond ease of use to emphasise
a number of mathematical and cognitive elements: namely, active participation;
logical transitions from one concept in the app to other; and opportunities for
developing patterns and forming conjectures. However, a third of the apps in this
cluster are very high in Mathematical fidelity and Cognitive fidelity, but low in
Pedagogical fidelity, indicating that students will need significant support from
classroom teachers to be able to meaningfully engage with the app. Although this
cluster consists primarily of transformations, some 2D Shape apps and 3D Objects
apps are included here as the shapes and objects within the apps can be manipulated
using rotations and enlargements; thus, the shape work in this app is non-static as
opposed to static representations in Cluster 1.

6.5.3 Cluster 3—Quizzes

This was generally a very weak cluster, with the best app, Math Geometry only
scoring 25/50 overall. The majority of the apps were quizzes and all apps in the
cluster are below average on every quantitative measure. This cluster is particularly
poor on Maths learning in the Haugland Scale as nine of the 13 apps scored zero in
the learning dimension of the scale. Key observations regarding this cluster include
the fact that apps are static, contain only standard orientations and prototypes, and
lack patterning and connection to real-world mathematics. In effect they are digital
worksheets, which are often multiple choice. Ten of the thirteen apps within this
cluster primarily related to geometric reasoning, either solely, or in combination
with content from another sub-strand such as Shape or Transformations. There is no
opportunity to use the apps in this cluster as a transition from level 2 Analysis to
level 3 Informal deduction, as patterns and conjecture-forming opportunities are
missing. This is despite geometric reasoning being one of the indicators of devel-
opment from analysis to informal deductions. In addition, they are not appropriate
for level 1 Visualisation as mathematics language is utilised.
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6.5.4 Cluster 4—High Fidelity Manipulatives

There were a broad range of app formats in this particular cluster, ranging from
informational apps through to virtual manipulatives. This is the largest cluster (18
apps), consisting mainly of drill and practice style apps. Manipulative apps in the
cluster are closer to Cluster 2 rather than Cluster 5 manipulatives. This means that
they are dynamic in nature, demonstrating high fidelity, rather than being static,
demonstrating low fidelity. A second difference is that the manipulatives in this
cluster are primarily related to shapes and geometrical reasoning rather than
transformations. The apps in this cluster were more child-centred, and demonstrated
effective design features, but were significantly lower in terms of Maths learning
than Cluster 2 apps. These apps all scored above average; however, when compared
to Cluster 2 they were similar in Pedagogical fidelity but much lower in
Mathematical and Cognitive fidelity scores. This reflects the fact that transformation
apps, featuring prominently in Cluster 2, are more likely to support
conjecture-forming. The majority of the apps in this cluster were combination apps;
combining either shapes and geometric reasoning, or shapes and transformations.
The positive of many of the apps in this cluster was that they were accurate
mathematically; however, a negative feature was their limited connection to the real
world and limited conjecture-forming opportunities which is a clear point of dis-
tinction from Cluster 2 apps. Apps in Cluster 4 could be used at level 2 Analysis as
the Mathematical fidelity is high and students will be learning accurately about the
attributes of shapes, objects and some transformations. However, despite the fact
that mathematical accuracy was high, they did not make the transformative step that
occurs in Cluster 2 apps where this participation can lead to conjecture forming.

6.5.5 Cluster 5—Low Fidelity Manipulatives

This is a small cluster containing only five apps. Despite the fact that most are either
VM or IMO, they generally scored poorly across the three Haugland
sub-dimensions and only one app scored in the top half of the 53 apps. It is a useful
reminder that interactivity is a necessary, but not sufficient, condition for an app to
be considered useful. This cluster can be characterised as manipulatives that are
lacking purpose and fidelity. Thus Cluster 5 is similar to Cluster 2, which also
contained a small number of manipulative apps. The key difference between the two
clusters is that active learning is not encouraged in this cluster. A related difference
is that this cluster did not afford opportunities for conjecture-forming or
relationship-building. In contrast to Cluster 2, where shape apps included trans-
formations, in this cluster the manipulation of shapes largely involves
2-dimensional concepts or mirror line prototypical flips. Overall in this cluster, the
shapes and objects are largely prototypes and presented in vertical or horizontal
orientations.
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6.6 Limitations

There are a number of limitations to be noted in relation to this novel approach to
evaluating apps:

Firstly, and as previously mentioned, cluster analysis has three main limitations
(a) that clusters are primarily descriptive and atheoretical; (b) that clusters can form,
even if no coherent structure underpins the clusters; and (c) that solutions are not
generalizable as they are dependent upon the variables used to differentiate the
clusters initially. Our efforts to address these limitations are based upon the careful
and transparent efforts we have made to ensure that we had a strong conceptual and
theoretical basis for the study that preceded our analysis. To this end, we linked our
scales to previous research concerning three types of fidelity; the content area linked
to major strands in mathematics curriculum and policy; and we used a
well-researched theoretical foundation in the van Hiele model. Our intention is to
continue to extend this work, based on the strong conceptual and theoretical
position established in this chapter.

Secondly, the cluster analysis is based on scores generated by Larkin (2015a, b)
earlier evaluation of the 53 apps. Although a very robust methodology (including
qualitative and quantitative aspects), it would be beneficial in future work with
cluster analysis if inter-rater reliability on the initial scores could be utilised.
Likewise, although the five clusters of apps were generated independently after the
cluster analysis process, the synthesis of the clusters was again performed solely by
the lead author. When we use the cluster analysis process in future research, a team
of mathematics educators will independently examine the clusters generated to
identify the themes that emerge from the data. Finally, as noted in Larkin (2013),
due to the large and exponentially growing number of “educational” apps, it is very
difficult to find, and therefore review, all potentially relevant apps. The problem of
the sheer number of apps is compounded by a further limitation of the poorly
structured iTunes Appstore user interface. Search results are presented graphically
as icons and are not sorted in alphabetical order. They are often labelled inaccu-
rately and are in a state of flux as new apps are added, renamed, upgraded, or
deleted. It is therefore possible, and indeed likely, that there are existing, high
quality apps available for teachers to use that the lead author did not find and,
therefore, did not evaluate.

6.7 Conclusion

In this chapter, we have outlined the use of a multivariate data analysis tool (i.e.
cluster analysis) to group Geometry apps grounded in the characteristics they
possess. The results presented here suggest that there are five distinct clusters of
Geometry apps: Visualization, Active learning, Quizzes, High fidelity manipula-
tives, and Low fidelity manipulatives. There appears to be a stark division between

6 Using Cluster Analysis to Enhance Student Learning … 115



those apps identified in clusters as Active Learning and High fidelity manipulatives
at one end and Visualisations and Quizzes at the other in terms of mean scores. Low
fidelity manipulatives appears to occupy the middle ground. This is unsurprising as
those apps associated with the lower end of the mean score values are unidimen-
sional in the competencies they seek to develop or assess, while those in the higher
end are multidimensional, inquiry-driven, and promote mathematical investigations.

Through these distinctions, the clusters from this study offer teachers further
information in terms of suggested classroom usage than that which is provided
using the raw scores of the rating scales alone. Thus, cluster analysis “value adds”
by providing a much finer-grained analysis of the apps than would be possible to
obtain using descriptive analysis alone. Shavelson (1979) has demonstrated the
wide application of cluster analysis within educational research by detailing its use
both in determining teaching styles for effective pedagogy as well as its use in
exploring the nature of mathematics content. In this later example, this author
demonstrated how an operational system such as addition could be clustered to
correspond very closely with our knowledge of the subject. Similarly, the data
generated by our cluster analysis is useful for teachers in identifying either indi-
vidual apps within a cluster or entire clusters of apps that will be appropriate for
meeting the educational requirements of their students.

We argue that the clusters formed from the cluster analysis provide two types of
useful information for teachers. Firstly, apps that score highly on the rankings are
captured within the clusters so that they can be assured of high quality and peda-
gogically useful tools for their students. Secondly, the cluster categories offer a more
nuanced opportunity for the teacher to align their choice of classroom apps to the
curriculum standards for which they are accountable. For example, initial results from
the rating scales for individual apps are certainly captured within some of the clusters
(e.g. Active learning contains a number of the highest rated apps); however, and we
think more usefully, clusters such as Visualisation or Quizzes contain useful apps that
can be quickly alignedwith curriculum and/or pedagogical needs but whichmight not
otherwise have been selected as they were not individually high-scoring apps on the
scale rankings. Despite being very familiar with the apps, the creation of the five
clusters, via the cluster analysis process, forced the researchers to look again at why
certain apps were homogenous. As a result of the cluster-analysis-guided re-analysis
of the Geometry apps, it became clear that the clusters can be utilised by teachers for
specific geometry teaching, broadly aligned with the initial three levels of the van
Hiele model. This will have educational benefits for students using the apps and also
minimises some of the potential negatives of some of the apps e.g. inappropriate
mathematics language for younger students or lack of non-prototypical shapes when
forming informal deductions. In addition, if teachers use the evaluation system to
evaluate new apps, and begin to see patterns in the scoring that correspond to the
scoring patterns in the five clusters, this will be a key indication of when and how such
new apps should be used by students.

With the proliferation of apps available for selection, and the increased
time-pressures on teachers (Larkin, 2015a), robust research tools are required to
assist teachers to easily determine the quality of apps. This chapter has indicated,
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in brief, the usefulness of cluster analysis for researchers investigating the quality of
apps. This process was certainly beneficial and we will use cluster analysis again to
re-critique the 142 apps initially evaluated in Phase 1 with the intended outcome of
determining clusters of apps to promote student learning in other areas of mathe-
matics such as number, measurement and proportional reasoning.
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Chapter 7
How Children Using Counting
Strategies Represent Quantities
on the Virtual and Physical ‘Twenty
Frame’

Daniel Walter

Abstract This chapter presents a study that investigated the students’ usage of a
physical ‘twenty frame’ and the ‘twenty frame’ tablet-application. Nineteen stu-
dents with special learning needs were interviewed, with a focus on those who
predominantly solve addition problems through counting strategies. The aim of the
research project was to investigate if, and how, students make use of digital media’s
potential to internalize non-counting strategies. Analysis clarifies that quite a few
students make use of these potentials after a short introduction. It was revealed that
both the virtual and the physical ‘twenty frame’ can be detrimental and beneficial.
Accordingly, no statements could be made as to which of the tools assisted counting
students most in their individual usage preferences. Mathematical-didactical
advantages could be identified in specific processing procedures for both materials.

Keywords Representing quantities � Twenty frame � Tablet-app
Special learning needs � Primary mathematics education

7.1 Introduction

With the development of Tablet computers, discussions - some of them highly
controversial - have increasingly arisen on questions regarding the expedient
application of digital media in lessons across all school levels. This applies in
particular to primary schools, for which no common ground can be found either on
the question of “whether” nor the “how” in science and practice. The exceptionally
wide spectrum of opinions on the use of digital media can amongst other things be
reasoned by the fact that, in spite of the unequivocal topicality of the topic, only a
few research projects are available which focus in particular on student interactions
with digital media and Tablet Apps and thus offer empirical findings on the clari-
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fication of the question (see e.g. Moyer-Packenham et al., 2015). This observation
applies in particular for the subject of mathematics. Too little is known on how
students with different performance capabilities use software developed for the
learning of mathematics. The objective of the research project presented below is to
record the methods of use by children of examples of software for Tablet computers
in order to contribute towards closure of this research gap.

This chapter is structured as follows: In Sect. 7.2, the theoretical background to
the research work is presented. Here the focus is on both current findings on
counting arithmetics in mathematics lessons and on indications for the predominant
usage of counting strategies. Subsequently, an analysis is conducted on whether the
current range of software available appears suitable for the support of children in
overcoming counting strategies. Section 7.3.1 contains a description of the research
questions and the design of the empirical study. The resulting empirical findings are
described in detail in Sect. 7.4. In the closing remarks (Sect. 7.5), the central results
are summarised and discussed.

7.2 Theoretical Background

In this section, the theoretical background to the empirical investigation is pre-
sented. Initially, research findings on the occurrence of counting strategies in
Mathematics lessons are presented in Sect. 7.2.1, after which central difficulties are
described which frequently trouble students when learning non-counting strategies.
Building on this, Sect. 7.2.2 concerns itself with the question of whether the current
range of software offered can, from a theoretical perspective, contribute towards
overcoming these difficulties.

7.2.1 Counting Strategies in Simple Arithmetic: Research
Findings and Indications

Using predominantly counting strategies to solve simple arithmetic problems can
indicate ‘mathematics learning disability’ (e.g. Baroody, 2006; Wartha & Schulz,
2013) and by the end of grade one, students should either know addition and
subtraction facts till twenty directly or compute them via derived fact strategies (e.g.
Gerster, 2009). However, several research projects show that there are many stu-
dents who do not reach this early goal of mathematics education. For many chil-
dren, counting remains the main solution strategy when dealing with basic addition
tasks over the course of the first school year (e.g. Doschko, 2011; Gaidoschik,
2010; Gray, 1991). The investigation by Benz (2005) shows that children also carry
their counting solution strategies into the second school year, and, at least at the
beginning of the second school year, use this as the main solution strategy when
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working through addition and subtraction tasks within a number range up to 100. In
addition, the main application of counting strategies has been empirically verified
for older children (e.g. Fresemann, 2014; Ostad, 1998) and even at adult age (e.g.
Wartha & Schulz, 2013).

Considering these empirical results, there should be more emphasis placed on
fostering students’ individual pathways to overcome the main usage of counting
strategies. Many children do not automatically turn away from preferred counting
strategies used in their lessons. They require targeted support methods, which are
orientated on the central difficulties for counting children. With regard to this, three
empirically-reasoned indications could be identified which counteract the detach-
ment process for children using counting solution strategies:

• Difficulties in the structured representation and determining of quantities (e.g.
Lorenz, 2011; Lüken, 2012): During the determination of quantities represented
through a structured hands-on material (e.g. a ‘twenty frame’), it can frequently
be observed that many children persist in the slow process of counting up
individual elements. Many children also find it hard to structure unstructured
quantities so that the number of objects available can be recorded “at a glance”.
Without these capabilities for structured presentation and recording, the pro-
curement of non-counting strategies may be complicated or even prevented.

• Sequential understanding of numbers (e.g. Fuson, 1992; Gaidoschik, 2011): The
acquisition of non-counting strategies not only requires the internalisation of
sequential but also of cardinal conceptions of numbers. If cardinal number
conceptions are not grasped, numbers can only be thought of sequentially when
dealing with basic additive tasks. In such cases, the counting strategy remains
the only logical consequence.

• Difficulties when switching between the representative levels (see e.g. Ladel,
2009; Radatz, 1990): The capacity for translating flexibly between different
presentations of a mathematical object is considered of decisive importance for
the learning of mathematics in general and also for the acquisition of
non-counting solution strategies. At the same time, this capability does not just
represent an essential capability for the understanding-based use of derived facts
strategies. This is also an obstacle, which many children are unable to overcome.

Based on these three indications, the question arises in the context of this
research project as to whether the current range of software available appears
suitable for adequate support of students in the overcoming of such difficulties. The
following section looks at this question in more detail.

7.2.2 Learning with Digital Media in Primary School
Mathematics Lessons

Especially in Germany, research concerning the implementation of digital media
has indicated, that so-called ‘educational software’ is a crucial component of early
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media use in primary mathematics education (e.g. Institute for Demoscopy
Allensbach, 2014). However the observation that the majority of mathematics
educational software is mainly based on ‘drill-and-practice’-methods has suffi-
ciently been perceived and criticized as well (e.g. Goodwin & Highfield, 2012;
Krauthausen, 2012; Larkin, 2015). There are only a few ICT-based learning
arrangements, which can support the development of (and not simply practice on)
mathematical conceptual knowledge (e.g. Sinclair & Baccaglini-Frank, 2016; Urff,
2014). Therefore the majority of software currently in existence does not appear
suitable for overcoming learning difficulties—and therefore for the counting strat-
egy, especially because drill-and-practice software primarily permits the automation
of understood knowledge and basic understanding is the prerequisite for adequate
use. If children with learning difficulties were to use drill-and-practice software,
they would hardly be assisted in overcoming their learning obstacles—on the
contrary: their incorrect conceptions would be reinforced as a consequence of the
repetitive application of disadvantageous procedures and the subsequent demoti-
vating error feedback.

The comparatively small range of software offers which basically appear suitable
for the support of the acquisition of conceptual mathematical knowledge may also
explain the scarce amount of research in this field. Above all - but not only - with
regard to the research of student interactions with touchscreen Apps,
Moyer-Packenham et al. (2015, p. 62), have established that this
mathematical-didactical branch of research is “still in its infancy” (see Goodwin &
Highfield, 2013; Padberg & Benz, 2011). Accordingly, only individual findings are
available which refer, based on research, to the possibilities and opportunities for
the use of software developed to build up conceptual knowledge, and to possible
learning obstacles when dealing with the same (see Ladel & Kortenkamp, 2014;
Sinclair & Heyd-Metzuyanim, 2014).

In view of the described research situation, it is necessary to research the
methods of software use by children during the initial phases of a learning process.
For the selection of suitable software, it appears to be important not just to use
digital translations of physical media already existing. Rather more, the software
should take into account the main mathematical-didactical potentials of digital
media. The implementation of central potentials is illustrated in Sect. 7.3.2 based
on the example of the virtual ‘twenty frame’, which is used in the study described in
this article.

7.3 Research questions and the design of the investigation

After the presentation of the theoretical background in the previous section, the next
section acts as the link to the empirical results. First the research questions are
presented (Sect. 7.3.1). Then the presentation of the functional method and the
potentials of the virtual ‘twenty frame’ (Sect. 7.3.2) are conducted before infor-
mation is given on the investigation process (Sect. 7.3.3) and the sample gets
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described (Sect. 7.3.4). The Section closes with remarks on the assessment of the
collected data (Sect. 7.3.5).

7.3.1 Research Questions

Section 7.2 described how relatively little is known on how children use software—
in particular Tablet Apps which are not only intended for the automation of
already-understood mathematical concepts, but which also appear suitable for the
acquisition of mathematical concepts as yet not understood. This results in the
central objective of this research work, which consists of finding out more on how
children use this type of software. Over and above this, however, the intention is to
work out how the methods of use by children during the operation of a virtual
hands-on material differ from those used on a physical hands-on material. The
virtual ‘twenty frame’ (Urff, 2012) and the traditional physical ‘twenty frame’ are
intended for use as examples for research based on the processing procedure for
quantities. Appropriately, the following two research questions represent the
starting point for the empirical investigation.

• How do students with learning difficulties represent quantities on the virtual
‘twenty frame’?

• Which differences result in the methods of use by children during the presen-
tation process of quantities on the virtual ‘twenty frame’ in comparison to the
physical ‘twenty frame’?

During research on the methods of use by children, it is of interest whether the
use of each ‘twenty frames’ version supports children in overcoming learning
difficulties or rather appears to inhibit them. In addition, investigations are made on
to what extent the situations in the ‘twenty frames’ support the individual user
preferences of children during the representation of quantities.

7.3.2 Potentials of the Tablet App ‘twenty frame’

The virtual ‘twenty frame’ (see Fig. 7.1)1 was developed in order to support the
development of mathematical understanding in children with and without learning
difficulties, and in particular to support them in overcoming counting strategies (see
Urff, 2012). This can be reasoned through the fact that the software offers three
main features that can be valued as potential to overcome difficulties on the way to

1To distinguish the counters in this paper the originally reds are labelled with a R (red) and
originally blue counters are labelled with a B (blue).
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internalize non-counting strategies (Sect. 7.2.1). These mathematical-didactical
potentials (see Walter 2017) are represented below.

Potential: Add five counters simultaneously As shown in Fig. 7.2, five counters can
be represented simultaneously by touching the ‘stack of fives’. In this way, the
presentation process can be supported by not (only) representing numbers and tasks
sequentially using individual counters (e.g. Ladel & Kortenkamp, 2009; Urff 2012).
In contrast to the physical ‘twenty frame’, on the other hand, individual counters
can be deleted from five simultaneously placed counters.

The simultaneous representation of five counters provides us with a potential to
understand numbers as a compilation of other numbers by taking the sophisticated
method of laying out numbers as the subject. For example, the number eight can
either be represented as an additive figure using 5 + 1 + 1 + 1 or a subtractive
figure using 5 + 5 – 1 − 1 counters. Both methods of representation require the
same number of touch inputs, whereby they represent more economical alternatives
to the sequential addition of eight individual counters. The comparison of these
methods of representation offers us the opportunity to prevent a primarily sequential
sense of numbers.

Fig. 7.1 Tablet application, virtual ‘twenty frame’ (developed by Urff, 2012)

Fig. 7.2 Simultaneous presentation of five counters on the virtual ‘twenty frame’
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Potential: Multiple External and Linked Representations A further potential of the
virtual ‘twenty frame’ results from the design principle of multiple external linked
representations (MELRs, see Fig. 7.3). Due to the fact that different representations
of a mathematical object are represented and changes to a representative have a
direct effect on the other representations, an opportunity arises for understanding
the relationship between different representations. Appropriately, this design prin-
ciple has the potential to support children in overcoming difficulties when switching
between different representations (e.g. Ainsworth, 1999; Goldin & Kaput, 1996;
Goodwin & Highfield, 2013; Ladel, 2009; Paek, Hoffman, Saravanos, Black, &
Kinzer, 2011).

On the virtual ‘twenty frame’, the MELRs are implemented as follows: a pre-
sented task (here: 8 + 6) can be changed virtually-enactively, starting from the
nonverbal-symbolic level (here 6 is changed by ‘+1’). Linked to this, both the
appropriate number and the iconic representation change. Alternatively, however,
the iconic representation can be changed in order to achieve the same result. To do
this, operation of a touch function is required to add a blue counter. Then the
appropriate number changes.

Potential: Support in Structuring Different ‘supports in structuring’ are to be
named as the third potential of the virtual ‘twenty frame’. For example, represented
counters are consistently positioned precisely on the ‘twenty frame’. In addition, the
counter-representation can be changed flexibly. At the touch of a button, the
placement methods ‘side by side’ and ‘line by line’ can be changed. Furthermore,

Fig. 7.3 MELRs on the virtual ‘twenty frame’
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the represented counter image is always automatically ordered. No iconic repre-
sentation of the virtual ‘twenty frame’ can be conducted in an unstructured manner.
Therefore, for example, Fig. 7.4 shows how a red counter is deleted, which would
produce a gap in the iconic representation. The software prevents this by moving a
blue counter from the second row into this position. Originally it was showing four
red and ten blue counters.

By always presenting the counter image in a structured manner, students can be
supported in basically determining quantities simultaneously (e.g. Clements, 1999).
The obstacle of first structuring them independently is removed. Children can
dedicate themselves directly to the mathematical structures of the ‘twenty frame’.

7.3.3 Process of the Investigation and Interview Tasks

In this section, information is given on the investigation process and the interview
tasks posited. Table 7.1 first provides an approximate overview over the content of
the qualitative interview series, in which both the virtual and the physical ‘twenty
frame’ were used.

As shown in Table 7.1, both the physical and the virtual ‘twenty frame’ were
used. In terms of content, the fields of tasks were orientated on the competence area
centrally important for overcoming counting strategies: Calculating with number
relations.

After the introduction to work with the physical ‘twenty frame’ had taken place in
Interview 1, the children were requested first to calculate the addition tasks without
using the hands-on material and to check the results by using the ‘twenty frames’ to
ensure that they were correct. Then they were requested to generate further ways of
placement for the tasks until they were of the opinion that they could not generate any
more new representations. The same procedurewas conducted in Interview2 based on
taskswith the same structure, whenworkingwith the virtual ‘twenty frame’, to be able
to determine any differences. In addition, reflection questions are asked, on the basis of
which the use of the ‘twenty frames’ in general and the potentials implemented there in

Fig. 7.4 Support in structuring on virtual ‘twenty frame’
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particular were critically observed (e.g. “Which of the ‘twenty frames’ do you prefer
when representing quantities?” or “Can you imagine why it would be good to add five
counters at once?”). The interview sessions were conducted on subsequent days in
order to limit the possibility of the children having increased their knowledge through
lessons.

With the physical ‘twenty frame’, the children were set the tasks 7 + 6 and 3 + 8
in session 1; on the virtual ‘twenty frame’, on the other hand, they were set the tasks
8 + 7 and 4 + 9. Precisely those tasks were set which, from the point of view of
practised mathematicians, offer the use of derived fact strategies. In this way, the
results of the tasks 7 + 6 and 8 + 7 could be derived for example from 7 + 7 using
the ‘Tie strategy’. Tasks 3 + 8 and 4 + 9 can also be solved through non-counting
methods, for example by ‘Bridging through ten’. Within the scope of this research
work, the identical structure of the tasks 7 + 6 and 8 + 7 or 3 + 8 and 4 + 9 is
assumed based on the consensual change in the addends and the ‘bridging through
ten’ occurring in all the tasks. Overall, the use of these tasks of identical structure
permitted research to be conducted on the differences in the methods of use by a
child when using a virtual medium and its physical counterpart.

The individual interviews conducted within the scope of this study by the author
in a separate room of the school were videoed from two perspectives. Whereas one
camera provided a frontal view of the child and the interviewer, the second camera
recorded the test persons from the side and was focussed on the respective ‘twenty
frame’. This permitted both the mimicry and gestures of the children to be recorded,
as well as their actions.

Table 7.1 Interview series process

(n=19; August/September 2014)
Calculating with number relations on the (virtual) ‘twenty frame’

Interview 1 Interview 2

• Physical ‘twenty frame’ - Introduction • Virtual ‘twenty frame’ - Introduction

• One task (7+6 / 3+8) – many strategies • One task (8+7 / 4+9) – many strategies 
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7.3.4 Information on the Sample

The initial selection of the pupils was conducted on the basis of the estimation by
the respective specialist Mathematics teacher as to whether the children in the
learning group could be classified as ‘children with learning difficulties’ and
whether they primarily used counting strategies when processing basic additive
tasks. Then the teacher assessment was inspected within the scope of the qualitative
interview session using selected diagnosis tasks (e.g. Peter-Koop, Wollring,
Spindeler, & Grüßing, 2007; Wartha & Schulz, 2013). The teacher assessment was
considered confirmed if procedural methods could be detected in a child during at
least half of the diagnosis tasks relevant for the investigation which appeared
detrimental for the overcoming of counting strategies.

Accordingly, children were investigated in this study who were unable to
achieve the central target of the initial arithmetics lessons of mainly solving the
basic additive tasks within a number range up to 20 using derived facts strategies
and who were running the risk of remaining stuck in the counting solution strategies
they preferred to use.

Whereas, according to the assessments by the participating teachers, 21 children
could be described as ‘children with learning difficulties’, only 19 of these children
were estimated as primarily using counting strategies after participating in the qual-
itative interview. All 19 children took part in the two described qualitative interview
sessions. None of the children investigated knew the virtual ‘twenty frame’ prior to the
interview series, whereby the fluency of the functions and the use of the application
could be trained exclusively through the introductory sessions.

7.3.5 Data Assessment

The assessment of the data material obtained from the qualitative interview was
primarily undertaken based on the transcripts produced, which reproduce both the
manner of speaking and the actions of the students. In case uncertainties arise,
however—for example in case of ambiguous transcript points—reference was
always made to the video recordings of the interviews in order to interpret the
respective situation appropriately.

The assessment methods used were qualitative content analysis (Mayring 2015)
and comparative analysis (Glaser & Strauss, 2005). Based on the data material,
categories were developed for the different methods of use for students in the
application of the two ‘twenty frames’ represented. Accordingly, inductive category
formation was undertaken which developed into a structured analysis of the con-
tents as the assessment process continued.
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7.4 Results: Representation of Quantities on the ‘Twenty
Frames’

In this section, the results of the investigation are presented on the methods of use
by the children during the representation of quantities on the ‘twenty frame’.2 The
focus on representations during the presentation process of quantities is first
explained in more detail (Sect. 7.4.1). Then the use of the simultaneous represen-
tation of five counters is explained (Sect. 7.4.2), before a closer look is taken at the
generation of different iconic representations of the tasks represented previously on
the ‘twenty frame’ (Sect. 7.4.3). Here the focus is initially placed on the methods of
use by each child during the work with the virtual ‘twenty-frame’, whereby in each
case the question of whether these procedural methods could also be observed
during work with the physical ‘twenty frame’ is addressed.

7.4.1 Focussing on Representations During
the Presentation of Quantities

After the schoolchildren had first processed the additional tasks selected in this
investigation (7 + 6 and 3 + 8 on the physical ‘twenty frame’ or 8 + 7 and 4 + 9 on
the virtual ‘twenty frame’) without using any hands-on material, they were then
asked to present the task in the way in which they had calculated it. During the
representation of quantities with the ‘Twenty frame’ three different approaches were
detected, which are characterised through different focuses on synchronously pre-
sented representations. These three methods of use are described Fig 7.5.

Focussing on Nonverbal-Symbolic Representation If the user of the virtual ‘twenty
frame’ presses one of the buttons symbolised by different counters on the top edge
of the screen, this causes individual or several counters to be added. Here the
counters ‘float’ slowly to the respective predetermined position. With regard to the
presentation levels, it is important that the nonverbal-symbolic presentation does
not change until each counter has taken up position in the ‘twenty frame’. However,
whilst the counters move across the screen, the number symbols remain unchanged
even though more counters are de facto presented than the nonverbal-symbolic
representation states (see Fig. 7.6 left).

Resulting from this software characteristic, the initial method of use for pre-
sentation of quantities on the virtual ‘twenty frame’ can be identified, and is
described as focussing on the nonverbal-symbolic representation. The orientation to

2The investigation results shown in this section are taken from Walter (2017).
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the given symbolic representation can be detected by analysing a student’s body
tension and attention regarding the tablet’s display, as shown below in the example
featuring the student Lars.

As Fig. 7.6 shows, Lars keeps his middle finger extended in the direction of the
counter selection for addition of counters until the number ‘7’ appears at the bottom
edge of the screen. Only then does he lay his hands on the table, thus signalling that
he has completed the representation of the task. The suspicion that Lars focusses on
the number symbols during the presentation is confirmed in a subsequent dialogue
on the procedure he used.

Fig. 7.5 Focussing on the numerals

Addition of counters with regard to the 
nonverbal-symbolic representation

When the number ‚7’ appears on the screen, 
Lars positions his palms on the table.

Fig. 7.6 Focussing of nonverbal-symbolic representation based on Lars as an example
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1 I Tell me, what did you concentrate on when you placed the counters? On the
numbers or on the counters?

2 L On the numbers

3 I Did you look when an eight and a seven appeared there (points to number symbols)?

4 L Mmh (positive)

However, it is not possible to conclude, from the observation that a child
focusses on the nonverbal-symbolic representation level, whether this method of
use appears to impede or support the overcoming of counting strategies. It occurred
both in children who exclusively added counters in sequences, and in those students
who also made use of the function by which five counters could be presented at a
time, which may be a contribution towards the comprehension of number as a
compilation of other numbers. Accordingly, the accompanying mental processes
and the related decisions on how a number can be split appear more important than
merely focussing on the nonverbal-symbolic representation.

Focussing on the Selection of Counters As a second method of use, focussing on
the selection of counters could be determined (see the area marked in Fig. 7.7). The
procedure by the student David illustrates important properties inherent in this
method of use. The transcript excerpt starts at the point after which he had solved
the task 8 + 7 without the use of the virtual ‘twenty frame’ using a counting
strategy.

1 I Would you like to place that the way you calculated it?

2 D (places eight individual red counters and seven individual blue counters)

3 I What did you just concentrate on when you placed the counters? What did you
look at?

4 D (points to the upper section of the screen) Those here

5 I Not the numbers?

6 D Hmhm (negative)

7 I Just the pictures?

8 D Mmh (positive)

9 I And when did you know how to stop with the counters?

10 D Because I counted every time I pressed

David adds all 15 counters using sequential representation by pressing eight
times, one after the other, on the button to add the red counters, and then seven
times accordingly to represent the blue counters (line 2). Then he states that he
counted each counter as he did so, without focussing on the iconic representation of
the counters on the ‘twenty frame’ or on the number symbols (lines 4–10).

7 How Children Using Counting Strategies Represent … 131



Children who focussed exclusively during the representation of tasks on the
selection of counters exclusively added individual counters and did not take
advantage of the possibility to represent five counters simultaneously. Accordingly,
this method of use would appear hardly suitable for overcoming counting solution
strategies, as no utilisation is made of the structuring elements offered.

Focussing on the Iconic Representation When focussing on the iconic represen-
tation, learners only refer during the course of task representations to the resulting
counter image located in the central area of the screen (see marked area in Fig. 7.8).
Here learners can either use a pure counting strategy and/or make use of the
structures. A mixed form is clarified below using the example of the student
Valerie. The transcript excerpt begins after she has correctly solved the task 8 + 7,
counting on from the initially stated addends without the use of the ‘twenty frame’.

Fig. 7.7 Focussing on the
selection of counters

Fig. 7.8 Focussing on the
iconic representation
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1 I So now place the task the way you calculated it.

2 V Fifteen then now?

3 I Place eight plus seven so that eight plus seven is shown down here
(pointing to nonverbal-symbolic representation.

4 V Five (places five red counters at once), six (places one red counter),
seven (places one red counter), eight (states the numbers before they
are presented nonverbal-symbolically by the software, and looks at the
centre of the screen). Plus seven.

5 I Exactly.

6 V (places five blue counters and
counts the counters one after
the other individually on the
‘twenty frame’). Six, seven
(quietly) (and places two
individual counters). First I
counted the eight and then
the seven.

7 I What did you concentrate on when you placed the counters? On the
numbers (points to the nonverbal-symbolic representation) or the
counters (points to the ‘twenty frame’)?

8 V On the place of the counters

9 I You didn’t look at the numbers at all?

10 V (shakes her head) You can count that yourself.

11 I Mmh, you can count that yourself.
Can you see easily that they are fifteen counters, without having to look
at that underneath (points at the covered-up result), if you #

12 V #but I just did that

13 I If you only look at the counters, can you see that easily #

14 V #fifteen

15 I Yes. Can you see that easily somehow?

16 V Mmh, yes look, here are ten# (points at the first lines
of the ‘twenty frame’)

17 I #Yes

18 V And there are five (points to the second line and then presses the two
blue counters in the top half so that these counters turn red and the task
10 + 5 appears).

Although the interviewer inadvertently orientates Valerie towards the
nonverbal-symbolic representation (Line 3), she does not refer to this representation
during her presentation of the task. This interpretation approach can above all by
supported by the fact that she states the numbers she is looking for before they
appear on the screen (Line 4) and also strictly negates the reference to the
nonverbal-symbolic level (Line 10). Also, she doesn’t orientate herself on the
counter selection presented in the upper screen section, in particular because she
frequently looks towards the centre of the screen and counts the counters with her
fingers on the ‘twenty frame’ (Line 6). The fact that Valerie not only records the
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counters presented in the iconic representation through a counting strategy, but also
using a structure, is proven over the course of the interview when she smartly uses
the counter-turning function on the virtual ‘twenty frame’ (Lines 11–18), although
we should take into account here that the interviewer had set a targeted impulse for
quasi-simultaneous number recording (Line 15).

Focussing of Representations on the Physical ‘Twenty Frame’ In the previous part
of this section, the different focuses on representation in the representation of
quantities as observed in the empirical investigation were described for the virtual
‘twenty frame’. Below you can find a brief description of whether these methods of
use also occurred during the work on the physical ‘twenty frame’.

The assessment of the interviews has shown that both the focussing on the iconic
representation and the focussing on the selection of counters could be observed in
the same (as described above) or in a mildly different manner during the presen-
tation of quantities on the physical ‘twenty frame’. However, focussing on the
nonverbal-symbolic representation was not pursued by the children on the physical
‘twenty frame’, and this for a comprehensible reason: the physical ‘twenty frame’
does not feature nonverbal-symbolic representation on which the children can
focus. Accordingly, it is only logical that this method of use cannot exist on the
physical ‘twenty frame’. In addition, no methods of use occurred which were only
pursued on the physical but not on the virtual ‘twenty frame’.

Final Comments on the Focussing of Representations Overall, it can be recorded
here that three different versions of focussing on the presented representations could
be observed on the virtual ‘twenty frame’: (1) focussing on the nonverbal-symbolic
representation, (2) focussing on the selection of counters and (3) focussing on the
iconic representation. On the physical ‘twenty frame’, however, only the two latter
methods of use occurred. Based on the fact that some children focussed on the
nonverbal-symbolic representation level on the virtual ‘twenty frame’, it can be
stated that the additional offer of this representation level caters for the individu-
alism of childrens’ access methods to the representation of quantities. However, this
does not represent a statement on whether this offer can have positive or negative
effects on learning mathematics. This is merely a difference noticed in the design on
the two ‘twenty frames’, which has noticeably been reflected in the methods of use
utilised by the children and which therefore has earned attention from
mathematical-didactical researchers.

Of the three empirically-reasoned procedural methods for the presentation of
quantities on the virtual ‘twenty frame’, only the focussing on the selection of
counters can be characterised as impeding the overcoming of numeracy difficulties,
in particular as this method of use is distinguished through an external represen-
tation of a sequential sense of numbers. On the other hand, the methods of use in
which either a focussing of the nonverbal-symbolic representation or a focussing of
the iconic representation is undertaken, the overcoming of counting strategies
cannot be classified de facto as detrimental. The quality of the mental processes
accompanying the focusses, such as an understanding of numbers as a compilation
of other numbers by representing several counters simultaneously, appears to be a
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primary criteria for whether a child can detach themselves from counting strategies.
Whether and how children have used this aspect during the representation of tasks
on the ‘twenty frames’ is shown in the next section.

7.4.2 Simultaneous Representation of Five Counters
for the Representation of Quantities

The ‘twenty frames’ used in this work offer to an equal extent the possibility of
presenting five counters simultaneously. Whereas this aspect can be realised on the
physical ‘twenty frame’ by laying strips of five, the virtual ‘twenty frame’ permits to
present a “stack of five” simultaneously simply by pressing a button. A central
difference between the two versions is that individual counters can subsequently be
deleted from the stacks of five on the virtual ‘twenty frame’. No comparable
function is available on the physical ‘twenty frame’, because the ‘strips of five’
should not be destroyed by cutting them up with scissors or by tearing apart single
counters in the investigation. Table 7.2 shows how many children reverted to the
simultaneous addition of five counters during the use of the respective ‘twenty
frame’ during the representation of quantities.

The data reveals that the children only rarely used strips of five during the course
of the representation of tasks on the physical ‘twenty frame’. In the case of the task
7 + 6, only three of the 19 children interviewed used strips of five for the addends.
For the representation of the task 3 + 8, again only three children used strips of five,
but exclusively for the representation of the second addend. In all other cases, the
children exclusively reverted to the sequential representation of individual counters.

On the virtual ‘twenty frame’, however, use was made of the stacks of five far
more frequently. During the representation of the task 8 + 7, eight children used
stacks of five to represent both addends, and two children for one addend at least.
A similar effect could be observed during the representation of the task 4 + 9.
Seven children used stacks of five for at least one of the addends, and three children
for both addends.

Overall, it can be determined based on the recorded data that the children in the
investigation presented here tended to revert to the use of stacks of five on the
virtual ‘twenty frame’ than to the use of strips of five on the physical ‘twenty frame’
for the representation of quantities with the same structure. The described research
results can however merely depict a tendency in the methods of use by the children
in view of the low numbers of test persons used. Unambiguous causal interrela-
tionships cannot be developed here within the scope of this work. Nevertheless,
possible influence factors can be identified which may explain the results of this
investigation. Three feasible influence factors are sketched out below.

The first influence factor can be determined in the compact representation in the
counter selection of the virtual ‘twenty frame’, which may have led to multiple use
of the stacks of five. The counter selection is positioned directly above the iconic
representation in the virtual ‘twenty frame’. On the other hand, counters and strips

7 How Children Using Counting Strategies Represent … 135



of five must be removed from a box next to the medium when representing
quantities on the physical ‘twenty frame’, which may involve a comparatively
difficult application of motor skills (see Fig. 7.9).

In relation to this, in the reflection phases on their use of both ‘twenty frames’,
almost all children said that they preferred the placement process of the counters on
the virtual ‘twenty frame’, frequently stating as the reason the increased speed of
use. In addition, some children consciously waived the use of strips of five by
frequently removing the strips of five positioned on the counters so that they could
remove the individual ones from the box. The children selected this method of use
although the advantages of the strips and stacks of five had been mentioned in the
course of the introduction phase.

As a second influence factor, the frequent use of stacks of five or the less
frequent use of strips of five can be due to the mathematical-didactical quality of the
materials used. As already mentioned, it is possible on the virtual ‘twenty frame’ to
take individual counters. This aspect is not supported through the physical ‘twenty
frame’, as the strips of five would have to be destroyed for the purpose. The
representation process of the children may be influenced through this design aspect.
Here in particular the role of addends of less than 5 appears to be of particular
interest. As shown in Table 7.2, only three children represented a addend with a
strip of five during the task 3 + 8 on the physical ‘twenty frame’. In all three cases,

Table 7.2 The use of strips of five and stacks of five for the representation of quantities

Number of children who … ‘Strips of five’
(physical
‘twenty frame’)

‘Stacks of five’
(virtual ‘twenty
frame’)

7 + 6 3 + 8 8 + 7 4 + 9

… represented both addends through simultaneous
addition of five counters

3 0 8 3

… represented one addend through simultaneous
addition of five counters

0 3 2 7

… represented no addends through simultaneous
addition of five counters

16 16 9 9

Selection of counters on the 
virtual ‘twenty frame’

Selection of counters on the 
physical ‘twenty frame’

Fig. 7.9 Selection of counters on the ‘twenty frames’
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this concerns the number 8. The number 3 was not represented by any of the
children using the strips of five, which isn’t necessarily surprising, in particular as
this would involve a relatively complex representation process on the physical
‘twenty frame’. A strip of five would have to be placed and then swapped directly
into five individual counters so that two individual counters could then be removed.
The use of three individual counters appears far more economic here. On the virtual
‘twenty frame’, such a swapping process is not required, as individual counters can
be directly removed from the five placed counters. The number 4 was frequently
represented by the children in this manner. Five counters were simultaneously
represented and one single counter deleted.3 However, we should also note here that
those numbers which were larger than 5 were also represented by the children far
more frequently by children using the five simultaneously on the virtual ‘twenty
frame’ than on the physical ‘twenty frame’.

The third possible influence factor can be reasoned through preliminary expe-
riences related to the material. If children have, in their previous mathematics
lessons, (almost) exclusively utilised individual counters when working with the
physical ‘twenty frame’, they may pursue this procedure within the scope of this
study, too. It would appear improbable that a brief introductory phase in which the
advantages of the use of strips of five on the physical ‘twenty frame’ were men-
tioned can decisively change the pattern of action familiar to the children. However,
the children had never used the virtual ‘twenty frames’ before prior to the interview
sessions. Therefore the functional method of the software had to be processed. In
this way, the children may have been inspired to use the stacks of five relatively
frequently in the methods of use.

It remains to be noted that the children in this investigation used the stacks of
five in the virtual ‘twenty frame’ far more frequently that the strips of five in the
physical ‘twenty frame’ for the representations of quantities. This result was
explained through the description of three possible influence factors: (1) the com-
pact representation of the counter selection on the virtual ‘twenty frame’, (2) the
mathematical-didactical quality of the ‘twenty frame’ and (3) preliminary experi-
ence related to the ‘twenty frame’. Linked with this, it is possible to support a
hypothesis worthy of further investigation that the virtual ‘twenty frame’ tends to
motivate children to simultaneously represent five counters than is the case for the
physical ‘twenty frame’, whereby with the first hands-on material, with regard to
this specific representation process, a larger contribution can be made towards the
overcoming of numeracy difficulties.

3This data material cannot be used to clarify whether the children would also have proceeded in the
same way with the representation of the number 3. However, we hereby note that three pushes of
the button are required to represent the number 3 both with and without the use of simultaneous
representation. Either three individual counters are added in sequence, or five counters are rep-
resented, whereupon two individual counters are then deleted. In this way, the use of stacks of five
is in this special case to be viewed theoretically as equally economical as the exclusive use of
individual counters.
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7.4.3 Generation of Further Iconic Representations
of Quantities

Once the children had represented tasks on the ‘twenty frame’, they were requested
in this investigation to generate further iconic representations of the respective
quantity. In this section, a comparison is drawn between the methods of use for the
generation of iconic representations on the ‘twenty frames’.

As shown in Sect. 7.3.2, the iconic representation of a task on the virtual ‘twenty
frame’ is always presented in structured form. Due to the standard activated
automatic sorting function, it can never be the case that an unstructured counter
image occurs. Red counters are always represented before blue counters. Gaps can
never occur in the iconic representation. These structuring aids have advantages as
positive design elements with regard to the support of schoolchildren during the
quasi-simultaneous determination of quantities (e.g. Walter 2017). However, it
could also be verified that the structuring support on the virtual ‘twenty frame’ in
part makes the generation of further representations more difficult—or can even
suppress them, as the software only permits two different versions of the iconic
representation for one task in its standard settings. In this way, for the task 8 + 7
only the iconic representations presented in Fig. 7.10 can be generated.

Based on both of the ‘twenty frames’, the generation of further iconic repre-
sentations was requested after previous representation of tasks. Whereas on the
virtual ‘twenty frame’ the subject concerned the tasks 8 + 7 and 4 + 9, the tasks
with the same structure 7 + 6 and 3 + 8 were the subject of the work on the
physical ‘twenty frame’. After the representation of the tasks on the respective
‘twenty frame’, the children were asked to generate further counter representations
until they signalled that they could derive no further placement methods. Whilst the
children were exclusively able to generate he placement methods shown in Fig. 7.10
and the appropriate representations of the swapping task 7 + 8 during the course of
this process on the virtual ‘twenty frame’, the same children represented numerous
methods of placement on the physical ‘twenty frame’ which could not be generated

Line by line Side by side 

Fig. 7.10 Iconic representations on the virtual ‘twenty frame’ based on the example 8 + 7
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on the virtual ‘twenty frame’. Table 7.3 shows an overview of the all the repre-
sented counter images for the task 8 + 7. The grey-highlighted representations can
be presented on the virtual ‘twenty frame’, but the others are not possible.

Table 7.3 shows that the children generated far more counter representations
during the representation of the task 7 + 6 than the virtual ‘twenty frame’ can
actually permit. This finding applies both for the methods of laying types ‘side by
side’ and ‘line by line’. In addition, the children generated diverse counter repre-
sentations which cannot be assigned to any of the placement methods described
above.

Analogue results can also be determined with regard to the representations of
counters derived during the course of the representation of the task 3 + 8. The
following Table 7.4 shows the iconic representations generated by the children for
this task.

The recorded data shows that the children were able to generate far more rep-
resentations of counters when working with the physical ‘twenty frame’ than the
virtual ‘twenty frame’ can actually produce. In addition, only a few of these

Table 7.3 Observed methods of placement for the representation of the task 7 + 6 on the physical
‘twenty frame’

Side by side Line by line Further structures

Left-aligned Power of five

Right-aligned Other

Centered
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placement methods can transfer onto the structures specified by the ‘twenty frame’
which permit the quasi-simultaneous ascertainability of counter representations.
Accordingly it can be stated that the structuring aids implemented in the virtual
‘twenty frame’ do not always support the individual - and in part smart - methods of
representation used by the children.

Based on these results, however, it is not possible to plead that the structuring
aids incorporated into the virtual ‘twenty frame’ appear to be de facto unsuitable for
learning mathematics. Rather more, they serve as an indicator that an excessively
rigid framework on computer-supported structures many restrict the individualism
of childrens’ procedural methods. At the same time, the strengths of the structuring
aids in the consistent quasi-simultaneous ascertainability of the counter image can
be perceived. This aspect is frequently, but not always given when the children are
producing the numbers themselves.

Table 7.4 Observed laying methods for representation of the task 3 + 8 on the physical ‘twenty
frame’

Side by side Line by line Further structures

First line filled Left-aligned Column-wise

Second line filled Centered Other

With gaps 
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7.5 Closing Remarks

The descriptive analyses of the data have shown that schoolchildren use the virtual
‘twenty frame’ when representing quantities in very different ways. It became clear
that a few students already made use of digital medias’ potential (e.g. generating
five counters simultaneously by tapping on the ‘stack of five’-button) just after
getting introduced to the software’s features. Hence, the usage of tablet-applications
might contribute to overcome central difficulties of students. Nevertheless it should
be taken into account that usages with possibly counterproductive effects occurred,
too. Several observed approaches might rather facilitate the predominantly appli-
cation of counting strategies than fostering the development of non-counting
approaches. Thus, software features, which are sometimes labelled as auspicious
potential of digital media by mathematics experts and software developers does not
necessarily fulfil these expectations in its entirety. The fact that software provides a
potential does not guarantee that students make use of it in an appropriate way.
Likewise, it should be regarded that how students use software determines if the
mathematical learning processes can be facilitated.

In comparison to the use of the physical ‘twenty frame’, we were able to
determine that no conclusions could be made on which of the two ‘twenty frames’
tended to cater for the individual usage preferences of the children. During the
different processing procedures in the course of the representation of quantities, it
emerged that the virtual and the physical ‘twenty frames’ each permit methods of
use which cannot be implemented by or can only be implemented with difficulty by
the respective other medium. Accordingly the question regarding the use of virtual
or physical materials appears less relevant than the question of in which specific
situations virtual and physical materials display mathematical-didactical advantages
in order to support children with (and without) numeracy difficulties as effectively
as possible in overcoming their learning difficulties.
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Chapter 8
Reshaping the Learning Experience
Through Apps: Affordances

Nigel Calder and Carol Murphy

Abstract This paper reports on how the affordances of the app Math Shake reshaped
the learning experience—an aspect of a research project examining the ways mobile
technologies are used in primary-school mathematics. Students used different digital
tools within the app to solve word problems, while the affordances, including
simultaneous linking, focussed constraint, creative variation, dynamic and haptic,
made the learning experience different from when using pencil-and-paper technology.
However, while the affordances of the mobile technologies are important, the teacher’s
pedagogical approach was also influential in the learning.

Keywords Digital technologies � Apps � Primary mathematics
Learning � Affordances

8.1 Introduction

There has been a proliferation in the availability and use of mobile technologies
(MT) over the last five years, including in educative settings. Their low instru-
mentation and ease of operation, coupled with the interaction being focused pri-
marily on touch and sight, make using them intuitive for learners. Linked to this
increase in MT is the growth in educational apps. Questions have been raised
regarding the appropriateness of the content and pedagogical approaches of apps
(e.g., Philip & Garcia, 2014) but if MT are an inevitable and relatively enduring
element of the evolving digital world, we need to consider their potential for
learning. This paper reports on an aspect of a research project examining the ways
iPad apps, as an example of MT, are used in primary-school mathematics. The
project considers the pedagogy that might best facilitate the learning with students
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(ages 7–10) when engaging in mathematics through MT. In particular, the paper
reports on the affordances of the app Math Shake and how they might be seen to
reshape learning experiences in primary mathematics.

The use of digital technologies has the potential for introducing new ways of
engaging with mathematical concepts and processes, and for re-envisaging aspects
of mathematical education, along with alternative ways to facilitate understanding
(e.g., Borba & Villarreal, 2005; Calder, 2011). Borba and Villarreal (2005) per-
spective saw understanding emerging from the reconciliation of re-engagements of
the collectives of learners, media, and environmental aspects with the mathematical
phenomena. Borba and Villarreal contend that each engagement re-organizes the
mathematical thinking and initiates a fresh perspective that in turn transforms the
nature of each subsequent engagement with the task. This iterative process of
re-engaging with the task from each new perspective continues until some form of
shared negotiated understanding occurs (Calder, 2011).

Meanwhile, Meyer (2015) suggested that MT offer a socio-material bricolage for
learning. Drawing on Fenwick and Edwards’ (2012) notion of socio-material
approaches to learning, she envisaged complex systems where resources interact
with knowledge distributed across people, communities and sites of practice. She
used the term socio-material bricolage to describe the “ecological entanglement of
material and social aspects of teaching and learning with technology” (Meyer,
2015, p. 28). The notion of bricolage suggests that there is a mutually influential
collective of tools and users affecting the dialogue, learning experience, and
mathematical thinking, in particular and personalized ways. In an associated
viewpoint, de Freitas and Sinclair (2014) identified finger-screen-voice-five
assemblages through which a child was involved in a rhythmic engagement
when counting to five with the Touch Counts app. They contend that these
assemblages were not static but fluent, and might manifest in varying constitutions
and combinations.

The dynamic nature of these assemblages, with the accompanying relationships
between social and technical elements, suggests that the experience will unfold for
each individual in a personalized, differentiated way. Hence, the teacher might also
structure the learning experience or facilitate a learning environment and class
culture so that the students’ learning might be both personalized, and differentiated
conceptually. The learning experience and associated learning will be contingent on
this mutually influential weave of digital features and the accompanying social
aspects. Important in this discussion is the symbiotic relationship between the
digital media and the user. While the digital medium exerts influences on the
student’s approach, and hence the understanding that evolves, it is his/her existing
knowledge that guides the way the technology is used, and in a sense shapes the
technology. The student’s engagement is influenced by the medium, but also
influences the medium (Hoyles & Noss, 2003). The reciprocity of the relationship
between the user and the digital pedagogical medium resonates with the notion of
affordances.
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8.2 Affordances

In relation to Gibson (1977) notion of affordance as the complementarity of the
learner and the environment and to Brown (2005) acknowledgement of the potential
relationship between the user and the artifact, the visual and dynamic affordances of
MT may be seen to fashion the learning experience in distinctive ways, and so
reposition students’ engagement with mathematics. This relationship affords
opportunities and constraints: Opportunities to envisage and engage with mathe-
matical phenomena in particular ways that might distinctively shape the learning.
Some of these affordances might constrain the nature of the engagement or focus
the interaction on limited elements of the mathematics or mathematical thinking.
We might consider affordances as perceived opportunities and constraints offered
through the pedagogical medium in relationship with the propensities and intentions
of the user (Calder, 2011).

One affordance frequently associated with digital environments is the notion of
multiple representations. The ability to link and simultaneously interact with visual,
symbolic, and numerical representations in a dynamic way has been acknowledged
extensively in research (e.g., Ainsworth, Bibby, & Wood, 1998; Calder, 2011).
Sacristán and Noss (2008) illustrated how the engagement of computational tasks in
a carefully designed micro-world might lead to different representational forms
(such as visual, symbolic and numeric): a process that they called representational
moderation. In a similar way, various studies involving dynamic geometry soft-
ware, report that the dynamic, visual representations enhanced the understanding of
functions (e.g., Falcade, Laborde, & Mariotti, 2007). This dynamic affordance,
allied with the propensity of MT to give instant feedback to input, transforms the
nature of the learning experience compared to pencil-and-paper technology.

Virtual manipulatives (VM) are frequently part of mathematical apps. They are
described as interactive, web-based visual representations of dynamic objects
(Moyer, Bolyard, & Spikell, 2002) that might afford opportunities for mathematical
thinking. In Math Shake word problems are generated at various levels, and it
provides a range of digital pedagogical tools (e.g., empty number lines, counters,
ten frames), that students can select to help with their solutions. Through the use of
dynamic, visual representations, VM offer potential to extend the learning experi-
ences beyond those with pencil-and-paper medium (Arcavi & Hadas, 2000).

Moyer-Packenham and Westenskow (2013) identified the affordances of focused
constraint, creative variation, simultaneous linking, efficient precision and moti-
vation when students used apps in their mathematical learning. These affordances
do not typically manifest in isolation. They interact, and appear to be influential on
each other. The Math Shake app appears to afford three of them in particular:
focused restraint, where the app might focus students’ attention on particular
mathematical concepts or processes; creative variation, where the app might
encourage creativity, hence evoking a range of student approaches and potential
solutions; and simultaneous linking, where the app might link representations
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simultaneously and connect them to student activity (Moyer-Packenham &
Westenskow, 2013). In Math Shake a word problem is generated, and the students
highlight the words associated with the appropriate mathematical process (sug-
gesting focused constraint). They can select tools, such as an empty number line, to
help with solving the problem (suggesting focused constraint and creative variation)
while these representations can be linked to each other and also to the students’
actions in the form of immediate feedback or response to their input (suggesting
simultaneous linking). The connections made between pictorial and symbolic
representations, mediated through the actions executed on these representations, can
emphasize the associated mathematical concepts and processes (Moyer-Packenham
& Westenskow, 2013). In a study examining the differences in learning effects of
virtual and physical manipulatives, the importance of students’ facility with rep-
resentations and tools was confirmed (Moyer-Packenham et al., 2013). They also
indicated that a lack of familiarity with different representations might negatively
influence students’ understanding.

As well as having affordances similar to other digital technologies, such as the
opportunity to engage dynamically, the glass interface of an iPad presents a further
affordance through touch. Student interaction is more directly responsive to input,
enhancing the relatively high agency of the medium. There is direct interaction with
the phenomena, rather than being mediated through a mouse or keyboard, making
the iPad more suitable for young children than desktop computers (Sinclair &
Heyd-Metzuyanim, 2014). Apps might use this haptic affordance (e.g., with
Multiplier, where within the task, the student drags out the visual area matrix
associated with multiplication facts). This app also evokes multi-touch function-
ality, enabling students to make sense of individual effects of particular screen
touches (Hegedus, 2013), and to create personal explanations of their thinking. This
is similar to the simultaneous linking and creative variation that Moyer-Packenham
and Westenskow (2013) identified. There is a linking between the various repre-
sentations of the number fact that the app affords (i.e., symbolic, area, colour and
aural) suggesting simultaneous linking, while the student is creating and evaluating
their representation, suggesting creative variation.

Others have indicated that affordances of digital technologies, together with the
associated dialogue and social interaction, may lead to students exploring powerful
ideas in mathematics, learning to pose problems, and create explanations of their
own (Sandholtz, Ringstaff, & Dwyer, 1997). They also reported improved
high-level reasoning and problem solving linked to learners’ investigations in
digital environments. iPads and apps also foster experimentation (Calder &
Campbell, 2016), allowing space for students to explore. The apps affordances of
interactivity and instantaneous feedback foster the learner’s willingness to take
cognitive risks with their learning (Calder & Campbell, 2016). They allow students
to model in a dynamic, reflective way. Others contend that MT can provide new
forms of personal ownership (e.g., Meyer, 2015) that in turn supports learners’
personal understanding and conceptual frames (Melhuish & Falloon, 2010).

In a similar way to apps such as Explain Everything, Math Shake allows students
to screencast, a digital recording of the output on the screen, to record individual or
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group presentations of mathematical processes, strategies and solutions. When
students submit this to internal intranets or Google classroom spaces, the teacher
can attend to them individually and evaluate their strategies and understanding.
They can offer feedback and feed forward to better scaffold the learning, with
potential to enhance the mathematical understanding. Further to this, Math Shake
generates word problems at different levels that might be explored through the
range of digital pedagogical tools students can select to assist with realizing their
solutions. The screencasting feature of the app, and the simplicity with which it is
enabled on an iPad, opens up other learning opportunities that would not be pos-
sible with approaches that use pencil-and-paper as pedagogical tools exclusively.
Such an app introduces a further multi-representational feature that can create an
aural representation that students can listen to.

In this paper, we focus on the affordances of simultaneous linking, focused con-
straint, creative variation (Moyer-Packenham & Westenskow, 2013) as well as the
dynamic interaction that is afforded. Simultaneous linking is perceived as the
multi-representation affordance used with digital technologies in general, but
including the haptic aspect particular to iPads and other mobile devices. With Math
Shake the different representations used in the screencasting, and with the digital tools
also offered opportunity for the simultaneous linking of various representations. We
report on teachers’ and students’ perceptions of the learning opportunities afforded
through the use of Math Shake, as an example of an app that uses screencasting, the
digital recording of the computer screen, along with voice recording.

8.3 Motivation

Much of the discussion and consideration of the ways iPads and apps might
influence the learning experience, is centred on the notion of student engagement
(e.g., Attard, 2015) with students being actively enthralled and interested, often by
the visual and interactive characteristics of the pedagogical medium (Carr, 2012).
Meanwhile, motivation is not observed directly, but rather is marked through
behaviour and attitudes. Enhanced student engagement would suggest an increase
in student motivation. Hannula (2006) described motivation as a preference towards
doing some things and avoiding others. Motivation is related to personal interest
(Wæge, 2010) and plays a role in student achievement (Pintrich, 2003). The
influence of students’ positive attitudes on their sense of autonomy, and hence their
learning and performance in school has also been reported (e.g., Deci & Ryan,
2000). There appears to be a relationship between motivation and engagement, with
peer pressure and classroom culture influencing students’ learning opportunities in
mathematics (e.g., Sullivan, Tobias, & McDonough, 2006). If students perceive the
quality of instruction positively it increases their enjoyment of the learning and
lessens feelings of anxiety towards mathematics (Frenzel, Pekrun, & Goetz, 2007).
This suggests that such positive perceptions influence students’ engagement with
mathematics learning.
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Research investigating students’ perceptions of their learning environments
contend that these perceptions affect emotional and social behaviour (e.g.,
Anderman, 2002). Hannula (2006) contends that there was constrained opportunity
to meet students’ needs, competence and autonomy in teacher-centred classrooms,
implying a need to consider other types of learning environments. Student-centred
group learning situations give opportunity for positive dispositions towards math-
ematics to develop, with enjoyment and enhanced motivation reported in a range of
studies (e.g., Hänze & Berger, 2007; Schukajlow et al., 2012).

Learning environments are not just physical attributes, including tools such as
mobile technologies and apps, but include social interactions (Frenzel et al., 2007),
with classroom culture influential on the nature of the environment (Hunter &
Anthony, 2012). Frenzel et al. (2007) also contend that students’ perceptions of
their environment were related to achievement in mathematics, although they
suggested that there were only tentative links between emotions and student
achievement.

The literature suggests that there are synergies and inter-relationships between
the integration of mobile technologies and apps into mathematics programs; the
opportunities and constraints they afford; the assemblage of social and technical
elements associated with those affordances; and hence the affective aspects of
learning mathematics such as motivation and engagement. When the learning
environment, in the broader sense, changes the way that the mathematical phe-
nomena are engaged with, and this in turn evokes more positive dispositions and
attitudes in the learner, then we can surmise that the learning might be different and
the understanding that emerges might also differ from if the MT was not involved.
Hence, the reshaping of the learning experience would be influential in the students’
understanding. In the research study undertaken, the data also suggested this.

8.4 Methodology

The research used an interpretive methodology that relates to building knowledge
and developing research capability through collaborative analysis and critical
reflection of classroom practice and student learning. The research design is aligned
with teacher and researcher co-inquiry whereby the university researchers and
practicing teachers work as co-inquirers and co-learners (Hennessy, 2014), with an
emphasis on collaborative knowledge building. In the first year of the two-year
project, three teachers, all experienced with using MT in their programs were
involved in the study. One teacher taught a year-4 class using a ‘Bring your own
Device’ (BYOD) approach, while the other two teachers team-taught in a year-5
and 6 class with one-to-one iPad provision. Data, obtained through different sources
(focus group interviews, classroom observations, interviews with teachers, and
blogs) were analyzed using NVivo via a mainly inductive or grounded method to
identify themes. Refinement of the identified themes occurred through joint critical
reflection between teacher practitioners and academic researchers in research
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meetings. The research question that specifically relates to this paper is: How does
the use of mathematics apps influence student engagement and learning? In the
paper we present extracts of data from the first year of the project: the teacher and
student interviews, and the student blogs concerned primarily with the use of the
Math Shake app. These responses are analyzed in relation to the emerging themes
of the project.

8.5 Results

8.5.1 The Teacher Interviews

One teacher commented on the direct interface of the iPad screen, suggesting that
the students were interacting more directly with the content of the mathematics.
“Like a physical object that they’re interacting with.” As well as the haptic affor-
dance, this suggests focused restraint as the teacher perceived the app facilitating
more direct interaction with mathematical content. The teacher further explained
how apps involving screencasting for recording students’ strategies were powerful
agents in learning as the students were “creating something…explaining their own
thinking, creating their own content, their own language.” This teacher comment
points to the notion of creative variation affordance. The students are creating their
own content and language, hence differentiating the experience and learning to
some extent.

Another teacher noted how screencasting enabled less confident students to
explain their thinking in a “nonthreatening environment” with “no teacher staring at
them, no other kids waiting for them to hurry up.” “They’re in a safe place where
they can just record their thinking without any pressure.”

The teacher also saw benefits in assessing the students’ thinking as the recording
provided them with an understanding of “what’s going on in the kid’s head.” Also,
in giving feedback to the students on their learning. The non-threatening envi-
ronment for feedback seemed to resonate with the simultaneous linking affordance.
Here the linking was between the student’s action and the instantaneous, onscreen
feedback.

8.5.2 The Student Interviews

Several students referred to the idea of drawing on the iPad screens or of tapping to
select a tool and how this made their work “easier and tidier” (Year 4 student (Y4)).
This suggests the haptic affordance, with the students using touch to interact
directly with the app. Use of screencasting to record their solution strategies seemed
a key feature for the students. The students talked of videoing themselves doing
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maths, and recording their working out. As one said, “It’s just like making a movie
for maths” (Year 6 student (Y6)). The opportunity to record their voices whilst
writing and drawing seemed important as it was “hard to explain without writing
down. You can write it down as well as explaining it while you’re recording” (Year
5 student (Y5)) This student comment suggests that they were utilising the
simultaneous linking affordance to articulate their explanation of the strategy that
they were using. It also has elements of simultaneous linking, between the
recording, writing and drawing features. The opportunity to pause and edit their
recordings also appeared to be significant. “The cool thing is that you can actually
pause it and then think about what you’re going to do” (Y5). Students also com-
mented on the assurance that they had a correct solution, and hence had confidence
in their strategies to start recording, “when you have your question and you’ve got
your equation right” (Y6).

Some students commented how the feedback and opportunity to record their
solutions had helped their learning in mathematics: “We can write things down and
answer questions to see if we are right or wrong” (Y6). This comment also has
elements of the simultaneous linking between the student actions and the digital
feedback resulting from the mathematical processes taking place within the digital
learning environment. Others referred to the opportunity to use the different tools on
the iPad and how these introduced them to new strategies: “I like learning new
strategies; using a number line and place value” (Y5). Math Shake opened up
opportunities for engaging with the mathematics phenomena more easily through
the use of digital tools. Some students noted specific instances of learning: “I learnt
how to use the reversing strategy on the number line” (Y6). These student com-
ments suggested focused constraint, with the app focusing the student’s attention on
particular mathematical concepts or processes. Some could not identify specific
learning but noted increased confidence. “I still use the same problems and the way
I do them, but for some reason I feel more confident doing my maths” (Y6). Other
students indicated emerging learning and confidence when working on a problem
involving money with comments such as: “I’m sort of good at counting money
now” (Y4).

While it might be argued that these opportunities could be enacted through other
pedagogical media, it is the ease of use and the tactile nature of the experience with
this app that seemed to facilitate these processes more easily, and make them more
student directed when the students used the apps. They are also integrated into one
device, one that can be moved seamlessly between learning situations. The students
often had choice with where and how they worked and could shift furniture and
settings if desired. This enabled a sense of personalisation of the learning space and
to some extent helped facilitate a sense of ownership with the learning.
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8.5.3 Student Blogs

The student blog data were consistent with the interview data regarding the
recording aspect of the screencasting feature of Math Shake and the ways that this
influenced the learning process through simultaneous linking. The data indicated
positive student perceptions about engaging with the mathematics phenomena
through the Math Shake app. Typically, the blog comments described how the
recording of the strategies they used, enabled them to understand the processes that
they were using. For example:

Anna (Y6): I useMath Shake—it is a helpful app because you have choices of what you need
to work on. You can record your learning and you can see what stage you are working on.

There is also an element of creative variance here as the student chooses and
then creates an individual recording and uses that to self-evaluate their learning.
Other data also suggested that the ease of recording was conducive to a positive and
productive learning experience:

Josh (Y5): Using math apps helped us so much! Instead of writing stuff in our book we can
just record our voices and upload it to a app called Google Classroom! It has got us so far
by using these apps and no one here wants to go back to writing in our books!

Other student blog data were indicative of the features and affordances of various
apps supporting the learning process. For instance, the simultaneous linking and
dynamic affordances:

Matiu (Y6): Tickle and Hopscotch are a big hit in our class, as you can see your creations
move around.

Jess (Y5): I use these apps to help me with my learning. Multiplier helps me because it
shows what it looks like, so I know how to do it.

Also, students found the simultaneous linking affordance was facilitated through
having various resources embedded in the app.

Autumn (Y6): The apps were useful for me because it has helped with all the resources in
the app Math Shake. For example, the number lines and the fraction pieces.

Students were observed moving between these representational resources in a
relatively seamless way, discussing and comparing their suitability.Math Shake was
frequently mentioned in the data in terms of the students’ perceptions of the tools that
it made available. These tools, in conjunction with other features, appeared to have
helped with their mathematical problem solving. The following is typical of the data:

Alana (Y6): Math Shake is a great learning tool because it can help you with your problem
solving. So you can choose a level for you, so just say you were genius or easy or confident
or even beginner, there are a lot of levels to choose from. And there are also some amazing
tools to help you solve your word problem. For instance, number-lines, fractions, counters,
and there is also different coloured pencils that you have to earn.

There was also a suggestion of focused constraint as the apps and their features
focused the students on particular conceptual or pedagogical elements.
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Trish (Y6): I used apps to help me learn about decimals, different types of triangles, (with
Hopscotch and Tickle) fractions, ratios, proportions, all sorts of very interesting math
strategies, lots of things. Math Shake is cool as well. It is awesome for showing your
learning.

The reflective nature of composing the recording is suggested here. Similarly,
with student comments regarding other apps that have a screencasting feature:

Alice (Y4): Using apps has helped to solve my problems. By using Explain Everything you
can record and pause and think about what you are saying.

As with the interview data, the student blog entries were relatively cohesive
about the affordances making the learning process more engaging and enjoyable.
The affordances of the MT motivated some students with their learning. The fol-
lowing are indicative of this motivational aspect.

Whetu (Y4): I enjoyed using the apps because they make learning much (much!) more fun
and intriguing.

Tom (Y5): I like using maths apps because instead of using paper we can explain faster.
Using apps makes it easy for me, because they are fun and they are easy to use.

Jay (Y6): Apps like Explain Everything and Math Shake let you have a creative and fun
learning experience.

There is also a suggestion there of the recording of the screencast facilitating a
more confident approach in some students. This was an aspect of the recording
noted by several students. For instance:

Mel (Y5): I enjoyed using the apps because I can confidently record my voice and feel OK
with others hearing my recordings.

Ella (Y6): Math Shake—because it has helped me to be more confident in my math by
(me) reading the problems and showing how I work it out.

The benefits for the students’ mathematical learning derived from the affor-
dances of the apps reshaping the mathematics learning experience, and motivating
students to engage positively with the mathematics phenomena, are difficult to
measure. Nonetheless, various mathematics education research in the affective
domain suggests the positive influence of student motivation on mathematical
learning (e.g., Attard, Ingram, Forgasz, Leder, & Grootenboer, 2016). The student
blog entries also indicated this relationship between the affective and cognitive
aspects of learning in mathematics. For example:

Jake (Y5): I enjoyed using the apps because they were exciting to work with. They helped
me learn new things. Math Shake can help you to challenge yourself.

Jackie (Y6): I enjoyed using the apps because they helped me make my learning better
because they showed me different learning skills and strategies.

The data were likewise suggesting that there was an element of student auton-
omy in the selection and the ways that the apps were used. This is an important
aspect, as students being more engaged in the mathematics learning process, and
becoming more self-directed, has the potential to facilitate more self-directed
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learning. Some students were positive about the apps enabling more intrinsic
motivation. For example:

Tui (Y6): Some apps challenged me and I really like that.

8.6 Discussion

Teacher and student responses pointed to the acknowledged potential of the iPad
use in manipulating objects dynamically onscreen. The teacher spoke of acting
directly with the object, in this case the mathematics, and the students related to
tapping and drawing on the screen. Students also commented on using the different
digital tools to solve their problems, and so engaging with simultaneous linking. In
this way, the simultaneous linking and dynamic affordances were acknowledged as
part of the emerging theme related to affordances. Some students reflected on
examples of new learning through the use of the app, but more clearly the use of
screencasting and voice recording had advantages in motivating students and in
increasing confidence. As such, the use of the app supports findings regarding
simultaneous linking and dynamic affordances and affective aspects such as moti-
vation, enjoyment and confidence.

Furthermore, the screencasting feature of the app was seen to introduce new
representations. It seemed that the simultaneous dynamic visual recording (drawing,
using images, manipulating digital tools, and writing symbols and words) along
with speaking, created a dynamic aural-visual representation. This resonates with
Moyer-Packenham and Westenskow (2013) simultaneous linking affordance, as the
links between different representations influenced the articulation of mathematical
ideas and thinking, and by inference, the students’ understanding to some extent.

Not only did the teachers and students note that having the multi-representations
being used and linked simultaneously was a way to show the thinking processes in
solving a word problem, it appeared that, through pausing and editing, the students
took time in preparing and perfecting their recordings. They were able to reflect on
what had been said and think about what to say next. The teachers spoke of the
students creating their own content and language and of having a safe space to do
this. There was a creative element to their work in Math Shake. As the students
created their own representations and linked these in an individual way when
articulating solutions, there was a personal aspect to their screencasts both in the
appearance and in the processing of the mathematics (creative variation). This
suggested that some differentiating of the learning had taken place as well, with
students following more individual learning trajectories.

The student comments suggested the inter-relationships between the opportu-
nities that the apps afforded and the creating of both individual and group dis-
cussion, presentations of solutions, and strategies. They used linked
multi-representations (simultaneous linking) to present their thinking. The record-
ings were then available for the individual students to refer back to as a dynamic
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aural-visual representation of their own thinking, as well as a representation to share
with other students for discussion and with their teachers for assessment and
feedback.

8.7 Conclusions

Previous research has suggested that MT can offer affordances that might reshape
the learning experience. Through a more immediate and explicit interaction, stu-
dents can manipulate and create dynamic images on the screen to explore mathe-
matical objects. The use of screencasting along with voice recording furthers the
simultaneous linking affordance by introducing dynamic aural-visual representa-
tions that are created by the students themselves. The process of verbalisation,
along with the manipulation of images, drawing and writing in a safe environment
that the student controls, would suggest a new learning experience. Further study of
this new learning experience is needed to understand how it might be reshaping the
learning of mathematics. Insight into the ways screencasting might interact with
other forms of technology, the mathematics, the students, and the associated social
elements, might enable us to better understand the influence of this learning
experience on students’ mathematical thinking and understanding.

Math Shake offered three of the affordances that Moyer-Packenham and
Westenskow (2013) identified. While simultaneous linking resonates with the
multi-representation affordance, it also contains elements of instantaneous feed-
back, where the students’ actions and the ensuing onscreen transformations are
directly linked. Their notion of creative variation connects to the emerging project
themes of personalization and differentiation of the learning, while the affordances
of Math Shake constrained the learners’ focus on particular virtual learning objects
and processes.

Complementing the potential of the affordances of the apps to influence the
learning experience, is the pedagogical approach taken by the teacher. The tasks
given, and the classroom culture that the teacher develops, are key elements of the
learning. The students might have apps available but not necessarily engage with
them in ways that optimise the mathematics learning. These aspects were implicit in
the interview data rather than being commented on directly. However, coupled with
observations in the classroom, the importance of the teacher’s pedagogical
approach seemed clear. For instance, the task of creating a presentation of their
solution and strategies opened opportunity to explore and discuss the mathematics
through utilising the affordances of Math Shake. The classroom culture including
reflecting on processes, exploring in collaborative groupings, and sharing outcomes
in a safe learning environment are all conducive to developing mathematical
thinking. The seamless engagement with the app, especially in the one-to-one iPad
class, was also part of the class culture. The teachers and the students were excited
about the learning, and enhanced motivation, cognitive risk taking and confidence
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were also evident. It appears that it is the assemblage of digital media, learners,
mathematics and environmental elements that reshape and hence influence the
learning.

The emerging themes of the project and a corresponding framework are being
co-constructed with the teacher co-researchers. This process will continue during
the second year of the project as the teacher co-researcher group expands into a
group of 12 teachers and classes, representing a wide range of year levels, with the
teachers having varying levels of experience and expertise in using mobile tech-
nologies in their mathematics programmes. This will bring more diverse perspec-
tives as the initial themes and interpretations evolve through iterations of action,
reflection and changing perspectives.

We wish to acknowledge the support of the Teacher and Learning Research
Initative.
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Chapter 9
Empirical Evidence for Benefit?
Reviewing Quantitative Research
on the Use of Digital Tools
in Mathematics Education

Paul Drijvers

Abstract The benefit of using digital tools in education, and in mathematics
education in particular, is subject to debate. To investigate this benefit, we focus on
effect sizes on student achievement reported in reviews of experimental and
quantitative studies. The results show significant positive effects with modest effect
sizes. Possible causes for this are discussed and illustrated with one case study. We
wonder if the review studies capture the subtlety of integrating digital tools in
learning as much as qualitative studies do, and question their potential to address
the “how” question. As a conclusion, a plea is made for replication studies and for
studies that identify decisive factors through the combination of a methodologically
rigorous design and a theoretical foundation in domain-specific theories from
mathematics didactics.

Keywords Digital technology � Mathematics education � Effect size
Student achievement

9.1 Introduction

The benefit of using digital tools in education, and in mathematics education in
particular, is subject to debate. For example, the header of a September 2015 BBC
news item was “Computers ‘do not improve’ pupil results, says the OECD”.1 A
Dutch news site2 provided an even stronger claim: “Poorer school performance
through increased computer use.” Both items were based on a report by the

P. Drijvers (&)
Freudenthal Institute, Utrecht University, Utrecht, The Netherlands
e-mail: p.drijvers@uu.nl

115 September 2015, http://www.bbc.com/news/business-34174796.
215 September 2015, http://nos.nl/artikel/2057772-slechtere-schoolprestaties-door-meer-computer
gebruik.html.

© Springer International Publishing AG, part of Springer Nature 2018
L. Ball et al. (eds.), Uses of Technology in Primary and Secondary Mathematics
Education, ICME-13 Monographs, https://doi.org/10.1007/978-3-319-76575-4_9

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76575-4_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76575-4_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76575-4_9&amp;domain=pdf
http://www.bbc.com/news/business-34174796
http://nos.nl/artikel/2057772-slechtere-schoolprestaties-door-meer-computergebruik.html
http://nos.nl/artikel/2057772-slechtere-schoolprestaties-door-meer-computergebruik.html


Organisation for Economic Co-operation and Development (OECD) on student
achievement and the use of computers, that just had been published (OECD, 2015).
Indeed, the results of this study included negative correlations between mathematics
performance and computer use in mathematics lessons and led to conclude that
there is little evidence for a positive effect on student achievement:

Despite considerable investments in computers, internet connections and software for
educational use, there is little solid evidence that greater computer use among students leads
to better scores in mathematics and reading. (OECD, 2015, p. 145)

Even if correlations do not imply causality, the “little solid evidence” in the
above OECD quote at least challenges the research community. Other voices,
however, point out the benefits of using digital technology in education. For the
case of mathematics education, the National Council of Teachers of Mathematics
claimed that we cannot and should not neglect digital tools: “Technology is an
essential tool for learning mathematics in the 21st century” (NCTM, 2008, p. 1).
This quote recognizes the potential of digital technology for mathematics teaching
and learning, including a possibly changing focus in mathematics curricula towards
conceptual understanding and higher order thinking skills. This potential is
underpinned by research findings, such as the ones reported by Ronau et al.:

Over the last four decades, research has led to consistent findings that digital technologies
such as calculators and computer software improve student understanding and do no harm
to student computational skills. (Ronau et al., 2014, p. 974)

Others (e.g., Hoyles & Lagrange, 2010; Hoyles & Noss, 2003) took a more
nuanced stance, claiming that it is the how that determines the effect of ICT use on
performance in mathematics education: how to design effective ICT environments
and how to “exploit” them for student learning?

These different claims and opinions with respect to if, how, and how much to use
digital tools in mathematics education raise several questions. What does empirical
research really tell us about the effects on student performance of using digital
technology in mathematics education? Does the answer depend on student grade,
on the mathematical topic, on the type, size, scale and duration of the intervention?
Do we see trends in research findings on these questions over the recent decades
according to review studies? How can we explain the differences between studies?
Is it possible anyway to answer such overarching questions through the review of
empirical studies? What are the limitations of this approach? These questions form
the core of this chapter, and will lead to considerations on the relationship between
qualitative studies, addressed in more detail in Heid’s chapter in this volume on the
one hand, and quantitative studies and review studies on the other. A reflective
stance is taken; as such, this chapter has an essay-like character rather than a
traditional research paper format.

In this chapter, we will first revisit and synthesize the results of five important
review studies on empirical, quantitative studies on the use of digital technology in
mathematics education (Sect. 9.2). This section is central in the chapter. To illus-
trate the difficulty to find convincing evidence of the potential of digital tools in
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such (too?) general review studies, Sect. 9.3 describes one empirical study that was
grounded in qualitative work and well-focused, but not successful in terms of
student performance. Some possible causes are discussed. In the reflective
Sect. 9.4, we reflect on the interpretation of effect sizes, the subtlety of using digital
tools in mathematics education and some methodological issues. Finally, in the
concluding Sect. 9.5 limitations of review studies are addressed, and a plea is made
for an appropriate integration of qualitative and quantitative methods, and for
methodologically rigorous studies grounded in theories on the learning of
mathematics.

9.2 Revisiting Review Studies

9.2.1 Some Relevant Studies Before 2010

Of course, the question of the benefits of integrating digital tools in mathematics
education is not new and has been investigated before. In this section, we briefly
review early studies in the field, that is, studies that were published before 2010 that
try to summarize research findings in the field. In one of the first synthesizing
studies, Heid (1997) provided an overview of principles and issues of the inte-
gration of digital technology, and sketched the landscape of the different types of
tools and their pedagogical potential. On the topic of using handheld graphing
technology in particular, Burrill et al. (2002) reported on 43 studies and concluded
that these devices can be important in helping students develop a better under-
standing of mathematical concepts; this conclusion, however, is not quantitatively
underpinned. Ellington (2003, 2006) also focused on graphing calculators, which
were indeed important in the implementation of digital tools in mathematics edu-
cation at the end of the 20th century. Her review of 54 studies showed an
improvement of students’ operational skills and problem-solving skills when cal-
culators are an integral part of testing and instruction. The effect sizes, however,
were small—which is not uncommon in educational research. Lagrange, Artigue,
Laborde and Trouche (2003) developed a multi-dimensional framework to review a
corpus of 662 mostly qualitative research studies on the use of technology in
mathematics education and to investigate the evolution of research in the field, to
identify trends, without explicitly addressing learning outcomes. Kulik (2003) did
address learning outcomes and reported an average effect size of d = 0.38 in 16
studies on the effectiveness of integrated learning systems in mathematics.3

3The effect sizes reported here are means to express the differences between two populations in
terms of their pooled standard deviation. The most commonly used methods are Cohen’s d and
Hedge’s g. The difference between the two is important for small sample sizes, but neglected in
this paper as we do not want to get into measurement details too much. The d reported here means
that the average difference between experimental group and the control group equals 0.38 of their
pooled standard deviation, which is considered a weak to medium effect.
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Two subsequent large-scale experimental studies by Dynarski et al. (2007) and
Campuzano, Dynarski, Agodini and Rall (2009), however, concluded that the
effects of the use of digital tools in grade 9 algebra courses was not statistically
different from zero. For the use of computer algebra systems, Tokpah (2008) found
significant positive effects with an average of d = 0.38 over 102 effect sizes.

Altogether, these early studies provided mixed findings on the effect of using
digital tools in mathematics education and showed different degrees of quantitative
evidence. Also, the dissemination of digital tools and the experience teachers and
students had with their use in class were limited by that time. These considerations
provide ample reason to look at more recent studies in more detail.

9.2.2 Five More Recent Review Studies

To further investigate more recent findings, we now focus on five review studies
that provide information on the effect of using digital technology in mathematics
education through reporting effect sizes.4 The selection of these five studies is not
based on a systematic database survey, but on an informal literature and Google
Scholar search using terms such as review study, mathematics education, and
digital technology. It is interesting to notice that the studies included in each of
these review studies are very different and hardly show any overlap, due to different
criteria and foci.

The first one is the study by Li and Ma (2010). It reviewed 46 studies on using
five different types of computer technology (tutorials, communication media,
exploratory environments, tools, and programming languages) on mathematics
education in K–12 classrooms, reporting in total 85 effect sizes. The researchers
found a statistically significant effect with a weighted average effect size of
d = 0.28, which led them to report “… a moderate but significant positive effect of
computer technology on mathematics achievement” (Li and Ma 2010, p. 232). The
reported unweighted average effect size, d = 0.71, seems less appropriate as it does
not take into account the number of students involved. Additional findings were that
higher effect sizes were found in primary education compared to secondary, and in
special education compared to general education. Also, effect sizes were bigger in
studies that used a constructivist approach to teaching, and in studies that used
non-standardized tests. Differences with respect to the five types of technology were
not found.

The second review study by Rakes, Valentine, McGatha, and Ronau (2010)
focused on algebra in particular. The authors included two studies that were also in
the Li and Ma (2010) study, and found 109 effect sizes. The interventions were
categorized; here we only report on the categories Technology tools (with calcu-
lators, graphing calculators, computer programs, and java applets as categories) and

4We addressed three of them in earlier publications (Drijvers, 2014, 2015).
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Technology curricula, being computer-based curricula for use in onsite classes,
online courses, and tutoring curricula. The average weighted effect sizes for these
two categories were d = 0.151 and d = 0.165, respectively. Over all categories, the
authors concluded that interventions focusing on conceptual understanding provide
about twice as high effect sizes as the interventions focusing on procedural
understanding. Also, they noted that interventions over a small period of time may
have significant effect, and that the grain size differences in interventions
(whole-school study versus single-teacher interventions) did not make a significant
difference.

The third review study by Cheung and Slavin (2013) took into account 74 effect
sizes from 45 elementary and 29 secondary studies on K–12 mathematics. The
primary studies included one study that was also part of the Rakes et al. review; the
secondary studies category included the two studies addressed in the previous
paragraphs. The average effect size was d = 0.16. The authors’ final conclusion
refers to a modest difference: “Educational technology is making a modest differ-
ence in learning of mathematics. It is a help, but not a breakthrough.” (Cheung &
Slavin, 2013, p. 102). Some additional findings are worth mentioning. First, the
overall effectiveness of educational technology did not improve over time. Second,
like Li and Ma (2010), the authors found higher effect sizes in primary than in
secondary education. Third, lower effect sizes were found in randomized experi-
ments compared to quasi-experimental studies. Fourth and final, effect sizes in
studies with a large number of students were smaller than in small-scale studies.

The fourth review study by Steenbergen-Hu and Cooper (2013) focused on the
effectiveness of intelligent tutoring systems (ITS) on K–12 students’ mathematical
learning. The authors’ corpus of studies had four studies in common with the Rakes
et al. (2010) study. The 65 effect sizes included in their study ranged from g = 0.01
to g = 0.09. This led the authors to careful conclusions: “ITS had no negative and
perhaps a very small positive effect on K–12 students’ mathematical learning rel-
ative to regular classroom instruction” (Steenbergen-Hu & Cooper, 2013, p. 982).
Additional findings were that the effects of the ICT interventions proved less big in
cases of long interventions (more than one school year). Also, the general student
population seemed to benefit more from the ITS use than their low achieving peers,
which questions the potential of ITS for reducing achievement gaps.

The fifth and final study we address here is a meta-study carried out by
Sokolowski, Li, and Willson (2015). The authors particularly investigated the use
of exploratory computerized environments (ECEs) for grade 1–8 mathematics. The
interventions focused on digital tools for supporting word problem solving and
exploration. The average of the 24 effect sizes included was g = 0.60, which is a
moderate effect size. Additional findings were that the effects were most positive in
middle school grades (grades 6–8). Concerning the mathematical domain, the effect
sizes tended to be slightly higher for geometry than for algebra. In terms of teaching
styles, teacher-based support proved to be more effective than computer-based
support, which led the authors to claim that in spite of the positive effects, “this
finding does not diminish the importance of good teaching” (Sokolowski, Li, &
Willson, 2015, p. 13).
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Table 9.1 summarizes the findings of the five review studies with respect to the
effect sizes and their global conclusion. The overall image is that the use of digital
technology in mathematics education can have a significant positive effect, with
effect sizes ranging from small to moderate. The average of these (average!) effect
sizes is about 0.2, and we notice quite some variation: comparing the value for
g ranging from 0.01 to 0.09 in one study and being 0.6 in another, the results do not
really converge. On the one hand, this is somewhat disappointing; on the other, the
different studies are based on different sets of research studies with different foci.
Meanwhile, we conclude that these studies do not provide an overwhelming evi-
dence for the effectiveness of the use of digital tools in mathematics education.

Of course, this summary of review studies provides a highly (or even too?)
aggregated view and neglects detailed differences. Can we learn more about
decisive factors that explain these different effects? A first possible factor is student
age and student level. Sokolowski, Li and Willson (2015) found the effects to be
most positive in middle school grades (grades 6–8), whereas Steenbergen-Hu and
Cooper found the highest effects in elementary school (grades K–5). Both Li and
Ma (2010) and Cheung and Slavin (2013) reported higher effect sizes in primary
education compared to secondary. The former also claimed that effects are higher in
special education compared to general education. This is in line with the finding by
Steenbergen-Hu and Cooper (2013), who concluded that the general student pop-
ulation seemed to benefit more from ITS use than low achieving students. In sum,
evidence of benefit is larger in primary and lower secondary education, and it is not
self-evident that digital tool use helps to bridge the gap between high and low
achieving students. We can conjecture about the reasons for the latter point: if
digital environments provide rich learning opportunities, it seems likely that high
achieving students manage to better exploit these opportunities. As for grade level,
we do not know why digital tools would work better for younger students; maybe
other factors such as the availability of the tools and the mathematical sophistication
needed play a role here?

Table 9.1 Effect sizes reported in five review studies

Study Number of
effect sizes

Average
effect size

Global conclusion

Li and Ma (2010) 85 d = 0.28
(weighted)

Moderate significant positive
effects

Rakes et al. (2010) 109 d range
0.151–0.165

Small but significant positive
effects

Cheung and Slavin
(2013)

74 d = 0.16 A positive, though modest
effect

Steenbergen-Hu and
Cooper (2013)

61 g range
0.01–0.09

No negative and perhaps a
small positive effect

Sokolowski, Li, and
Willson (2015)

24 g = 0.60 A moderate positive effect size
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This brings us to the second factor: the mathematical domain. Steenbergen-Hu
and Cooper (2013) found bigger effect sizes for basic math than for algebra. The
Rakes et al. (2010) study showed low effect sizes in the domain of algebra, whereas
a review study by Chan and Leung (2014) reported a high effect size (d = 1.02) for
the use of Dynamic Geometry Systems. These findings are in line with Sokolowski,
Li, and Willson (2015), who reported effect sizes to be slightly higher for geometry
than for algebra. Again, we wonder why this would be the case. Is using digital
tools for geometry more natural, and are geometry tools more intuitively used than
algebra tools that may require more syntax? These questions clearly need further
investigation.

A third possible factor concerns learning goals and teaching style. Li and Ma
(2010) found bigger effect sizes in studies that used a constructivist approach to
teaching. More or less in line with this, Rakes et al. (2010) reported the largest
effect sizes in studies on conceptual understanding rather than on procedural skill
acquisition. Sokolowski, Li, and Willson (2015) found high effect sizes in studies
explicitly focusing on word problem solving and exploration, and teacher-based
support in these studies was more effective than computer-based support. Even if
these findings are somewhat eclectic, they suggest that using digital tools can be
effective in interventions focusing on higher-order learning goals, such as con-
ceptual insight and problem solving, with a constructivist view on learning and with
an important role for the teacher. These findings are interesting as they may
challenge the view of digital tools mainly supporting skill acquisition with no
important role for the teacher.

Possible external factors that might impact on learning effects are the inter-
vention’s duration and sample size. Rakes et al. (2010) showed that short inter-
ventions may have significant effect, and Steenbergen-Hu and Cooper (2013)
claimed that interventions shorter than one school year are more effective than
longer ones. It seems that short interventions do not necessarily lead to weaker
effects. With respect to sample size, Cheung and Slavin (2013) found that effect
sizes in studies with a large number of students were smaller than in small-scale
studies. Steenbergen-Hu and Cooper (2013) reported higher effect sizes for studies
with less than 200 participants. In contrast to this, Rakes et al. (2010) found that
single-teacher interventions were not more effective than whole-school interven-
tions. Apparently, the picture with respect to sample size remains unclear.

As a final factor, we briefly address the development over time. Over the last
decades, digital tools for mathematics have become more sophisticated, ICT
infrastructures have drastically improved both in schools and at home, and both
teachers and students have become more familiar with using ICT in education.
Therefore, one might expect the benefits for student achievement to increase over
time. If we consider these review studies in more detail, however, we agree with
Cheung and Slavin (2013) and with Steenbergen-Hu and Cooper (2013) that the
effect sizes reported in the different research reports did not significantly increase
over time. A possible explanation might be that there indeed is a positive devel-
opment over time, but that it is compensated by other factors, such as more rigorous
study designs and methods, and bigger sample sizes.
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One might wonder if publication bias might play a role in the review studies
addressed above. Would it be possible that actual effect sizes are smaller, due to the
fact that studies that did not result in significant effects were not published? Most
review studies took this into account. For example, both Steenbergen-Hu and
Cooper (2013) and Sokolowski, Li, and Willson (2015) found little evidence that
publication bias had impact on their findings.

All in all, the review studies show that the use of digital technology in mathe-
matics education can have a significant positive effect, with effect sizes ranging
from small to moderate and with considerable variation in size. Benefits seem to be
best for younger students (primary level or early secondary), better for geometry
than for algebra, effective in interventions focusing on higher-order learning goals,
and already beneficial in short interventions. Over the last decades, effect sizes do
not increase and publication bias does not seem to play a role in this picture.

9.3 An Example: The Case of Applets for Algebra

The picture provided by review studies, however, is limited. Different types of
interventions, students, mathematical domains and digital tools are merged into one
global average effect size. Would this merging of studies with different perspectives
explain the modest overall benefits in terms of student performance? In this section,
we counterbalance the global picture by briefly presenting one single empirical
study that reported no significant results. It illustrates that, in spite of a focus on one
mathematical topic and one type of digital tool and the qualitative preparatory
study, providing empirical evidence for the benefits of using digital tools is not
straightforward. Some tentative explanations will be provided.

In the study (Drijvers, Doorman, Kirschner, Hoogveld, & Boon, 2014), two
online algebra modules were used in 8th grade. The modules were designed in the
Digital Math Environment, which proved to be successful in improving student
achievement in algebra in grade 12 (Bokhove & Drijvers, 2012). Also, teachers had
reported success while implementing the online materials in lower grades.
Figure 9.1 shows a task from one of the modules.

The study had an experimental design, in which each of the involved teachers
taught to two classes in parallel, each randomly assigned to the experimental
condition of using the online modules, or to the control condition of regular
teaching. Figure 9.2 shows the results of the pretest, the intermediate test
(Post_Linear), the posttest (Post_Quadractic) and the two retention tests, all
administered with paper-and-pen. In spite of the earlier positive experiences with
these types of modules, the results show that the experimental condition did not
lead to students outperforming their peers in the control condition. The experi-
mental group did not catch up the small initial (and coincidental) lag; indeed, this
gap became significantly larger in the final retention test.
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As a possible explanation for these findings, the authors mention a spill-over
effect. All participating teachers taught one control and one experimental class, and
they may have picked up pedagogical ideas from the online intervention and used
these in the control classes as well. Such a spill-over effect is well-documented in
research literature (e.g., see Creemers, Kyriakides, & Sammons, 2010). A second
possible explanation is that the work on the online tasks was not an adequate
preparation for more complex tasks. Third, the feedback provided in the digital
environment might have lacked quality, and, finally, the integration of
paper-and-pen skills and digital practice might not have been optimal, so that
transfer to the “traditional media” was hindered. In short, in spite of a careful
experimental design and an environment that had proven to be useful in other
settings, the researchers did not find a positive effect.

Fig. 9.1 Algebra task in the Digital Math Environment
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9.4 Reflection

To reflect on the above findings from quantitative studies, we first discuss the
interpretation of effect sizes and next address two other factors that may play a role:
the too general claims made, which ignore the subtlety of using digital tools for
learning, and the methodological weaknesses that some studies suffer from.

9.4.1 Interpreting Effect Sizes

First, let us notice that the results from experimental and quantitative studies are
more positive than the correlational findings from the OECD (2015) study cited in
this chapter’s introduction. However, the effect sizes, with their overall average in
the order of d = 0.2, are modest. How do we interpret them? Higgins et al. (2012)
claimed that technology-based interventions produce just slightly lower effect sizes
than other types of educational interventions not involving digital tools, thus sug-
gesting that these results are not that disappointing. Slavin (2016) supported this
stance, pointing out that the interpretation of an effect size mainly depends on two
factors: the sample size and whether or not the students are assigned randomly to
the different conditions. For a number of large scale studies with random assign-
ment on different topics, Slavin found an average effect size of 0.11, suggesting that
it is very optimistic to expect more. From this perspective, the reported effect sizes

Fig. 9.2 Average grades for control and experimental group (N = 842)
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are not that low. In the meanwhile, the interpretation of effect sizes should be done
with care and is subject to debate, as is the case for the interpretation of significant
p-values.5

9.4.2 The Too General Claims that Ignore the Subtlety
of Using Digital Tools for Learning

Would we not all agree that research findings such as “The use of paper-and-pen
has a positive effect on student achievement” would be too general? Why, then,
would we try to find evidence for similar claims on the use of ICT? It makes sense
to assume that digital technology is not a panacea, and that its effectiveness will
largely depend on particular implementations and situations. The following two
quotes underline that the effect of ICT in mathematics education is a subtle matter
and will depend to an important extent on the specific technological application, the
educational setting and the orchestration by the teacher. It is the “how” that counts!

The range of impact identified in these studies suggests that it is not whether technology is
used (or not) which makes the difference, but how well the technology is used to support
teaching and learning. There is no doubt that technology engages and motivates young
people. However this benefit is only an advantage for learning if the activity is effectively
aligned with what is to be learned. It is therefore the pedagogy of the application of
technology in the classroom which is important: the how rather than the what. (Higgins,
Xiao, & Katsipataki, 2012, p. 3)

There have been several reviews of the benefits of ICT to student learning in mathematics
that suggest positive effects from the use of digital technology. […] However, the type and
extent of the gains are a function of how the technology is used in the teaching of math-
ematics. (Drijvers, Monaghan, Thomas, & Trouche, 2015, p. 15).

If we agree that the learning of mathematics is a complex domain and that we
need to know more about the factors that determine the contribution of digital tools
to it, it is important that research is grounded in theoretical knowledge from
domain-specific mathematics pedagogy and from man-machine interaction. To
mention just some possible perspectives, theories on reification (Sfard, 1991), on
emergent modeling (Doorman, Drijvers, Gravemeijer, Boon, & Reed, 2012), or on
instrumental genesis may offer such a theoretical basis (Drijvers, Kieran, &
Mariotti, 2010). Educational research on the use of digital tools for mathematics
education that is not based on domain-specific didactical knowledge may miss
opportunities to discover decisive factors.

As an aside, we should note that didactical knowledge and practice may also
change under the influence of digital technology. In fact, this is what the OECD
mentions as a possible explanation for their surprising findings:

5For a current debate on p-values see http://www.statslife.org.uk/news/2116-academic-journal-
bans-p-value-significance-test.
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… we have not become good enough at the kind of pedagogies that make the most of
technology. […] Technology can amplify great teaching but great technology cannot
replace poor teaching (OECD 2015, pp. 3–4).

In this line of reasoning, an important research question would be “What type of
student achievement can be improved through which type of use of which kind of
digital tools?” rather than the very general “Does the use of digital tools improve
student achievement?”

9.4.3 Methodological Limitations

In this chapter, we limited ourselves to review studies that summarize the results
from experimental studies. The body of such experimental studies shows some
remarkable methodological characteristics. First, replication studies have hardly
ever been carried out. Why is this the case? If replication studies had been done,
would we encounter similar replication issues as in the field of cognitive and social
psychology?6 Do we manage to control relevant variables? Second, it is interesting
to notice that smaller studies tend to report bigger effect sizes than larger ones and
that the reported effect sizes do not seem to increase over time. This suggests that
scaling up successful interventions identified in effective small-scale studies may
not be so easy. As far as the trend over time is concerned, the criteria for publication
and for inclusion in review studies seem to be getting higher, and this is indeed
what we should strive for according to Ronau and colleagues, who in a recent study
on the quality of 480 mathematics education technology dissertations argued for
higher quality in both research reports and reviews:

The mathematics education technology research community must in turn begin to demand
greater quality in its published studies, through both how researchers write about their own
studies and how they review the works of others. (Ronau et al. 2014, p. 1002)

A possible cause of the lack of positive trends in reported effect sizes, therefore,
might be these higher methodological standards, which might filter out the studies
that report high effect sizes. From a methodological point of view, more rigor in
research methods to improve the quality of our results is welcomed of course.

6See, for example, http://www.theguardian.com/science/2015/aug/27/study-delivers-bleak-verdict-
on-validity-of-psychology-experiment-results.
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9.5 Conclusion

In the introduction, we raised the question of what empirical research really tells us
about the effects on student performance of using digital technology in mathematics
education. The literature review revealed mixed results. The OECD correlational
study showed little evidence for benefit. Experimental studies, and their review
studies in particular, reported significant positive effects, with average effect sizes
ranging from small to moderate with considerable variation. Compared to effect
sizes reported for other types of innovative interventions, the evidence for benefit is
not overwhelming. Also, insight into factors that are decisive for the (lack of)
positive benefit of the use of digital tools is limited. Younger students (primary
level or early secondary) seem to benefit more, results are better for geometry than
for algebra, interventions focusing on higher-order learning goals may be effective,
and short interventions may be beneficial. Over the last decades, effect sizes do not
increase and publication bias does not seem to play a role in this picture.

Of course, the above conclusion has some important limitations. First, review
studies are based on studies that themselves are older, and one might wonder if the
picture has changed over, say, the last five years. The fact that effect sizes so far
have not been increasing, however, does not favor this argument. Second, we focus
on experimental, quantitative studies and neglect qualitative studies and studies that
follow a design research paradigm, whereas such studies can contribute to the body
of knowledge, and in many cases take an in-depth view on student learning and are
firmly grounded in theories from the field of mathematics didactics.7 The study
described in Sect. 9.3 shows that there can be many reasons why the effect of using
of ICT in mathematics education may not show up. A third limitation of the type of
review studies revisited is that these studies do not differentiate between educational
levels, types of technology used, and other educational factors that may be decisive.
Rather, they provide an overview without nuances, which may cause us to miss
important insights in the phenomenon.

In spite of these limitations, the conclusion is that evidence for the benefit of
using technology in mathematics education from experimental studies is modest
and that evidence-based insights in factors that affect these benefits are limited.
What we need on our research agendas, therefore, are studies (including replication
studies) that focus on the identification of decisive factors that determine the
eventual benefits in specific cases. Such studies should on the one hand be
methodologically well designed according to the standards from educational sci-
ence, and on the other hand be strongly based in sound theoretical foundations from
domain-specific mathematics didactics, as to better address the “how”-question. In
many cases, preliminary qualitative studies may show to be indispensable to set up
learning arrangements that also will result in positive effects in experimental
studies. To combine the best of both worlds is the challenge we are facing.

7The findings from qualitative studies are addressed in the chapter by Heid in this volume.
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Chapter 10
Digital Tools in Lower Secondary School
Mathematics Education: A Review
of Qualitative Research on Mathematics
Learning of Lower Secondary School
Students

M. Kathleen Heid

Abstract Mathematics-specific digital technology has an ever-increasing presence in
school mathematics learning, and qualitative research has shed light on the potential
nature of that learning. Particularly for students at the critical early teen age (ages 10–
14, or lower secondary school students), the incorporation of mathematics-specific
digital technology in their mathematics instruction can change the representations
they see, the mathematical activity in which they engage, and the mathematical
content they learn. Research on the impact of mathematics-specific digital technology
on lower secondary school students has focused on the mediation of the technology
on the relationships between the student and mathematical representation, mathe-
matical activity, and/or mathematical content. To examine the nature of under-
standing of mathematics learning that can be gleaned from this research, a review of
the qualitative research literature on the mathematics learning of lower secondary
students in the context of mathematics-specific digital technology was conducted.
Fifty-three relevant studies were identified and examined based on a pyramidal model
describing the mediation by digital technology of the relationships between the
student, and some combination of mathematical activity, mathematical representation,
and mathematical content. This chapter uses selected studies from that review to
represent ways in which qualitative research probes students’ mathematical work.
The selected studies are used to illuminate the breadth and depth of students’
experience with mathematical activity, mathematical representation, and mathemat-
ical content, and the relationships among them.
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10.1 Background and Purpose

Options for learning have expanded over the past few decades with the increasingly
widespread personal and classroom availability of digital technology. The demands
of learning in mathematics and the opportunities to address those demands differ in
substantial ways from the demands and opportunities in other disciplines. The
nature of mathematics-specific technology, with its frequent involvement of a broad
range of reasoning strategies and linked representational registers, further enhances
the potential for digital technology to affect learning in mathematics. Since the
advent of classroom-accessible graphing and symbolic-manipulation technology
more than three decades ago and the explosive growth in new tools and platforms
ever since, mathematics-specific digital technology has continually opened new
venues for mathematics learning, and mathematics education researchers have
engaged in addressing the challenge of understanding the effects of those tech-
nologies on mathematics learning.

Mathematics education research on the impact of mathematics-specific digital
technology approaches on students’ mathematical experience and learning includes
both quantitative and qualitative studies, although the results of the studies in these
two arenas differ in purpose. Studies that rely on quantitative data and statistical
analysis offer a substantively distinctive sort of knowledge–knowledge that offers
statistically qualified conclusions about the effects of specific instructional or
learning conditions. Such studies are informative to those charged with making
decisions about whether to adopt specific curriculum or instructional strategies, but
they suffer from the inability to investigate the learning of mathematics more
deeply. It is not within the purview of such studies to probe deeply into the nature,
the whys, and the affordances of such studies. On the other hand, qualitative studies
offer a substantially different set of important opportunities to learn about the
learning of mathematics. Much of the qualitative research in this area highlights the
mediating effects of digital technology. This set of opportunities is especially
helpful in revealing the potential nature of the learning of mathematics with
technology.

The purpose of this chapter is to identify and characterize the nature of what can
be or has been learned from qualitative research on the learning of mathematics in
the context of mathematics-specific digital technology. The goal of this chapter is
not to provide a complete synthesis of qualitative research in this area but rather to
provide salient representative examples of what qualitative research can contribute
to our understanding of the impact of digital tools on students’ mathematics
experience and learning. Given the widely varying needs and experiences of
learners of different age and experience levels, it is useful to focus on a single age
group. The mathematics learning of students in lower secondary school is of par-
ticular interest, especially with Piaget’s characterization of the development of
cognitive abilities that begin to crystallize for many during those critical ages
(approximately ages 10–14). The research characterized in this chapter describes
the mathematics experience and learning of lower secondary school students in the
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context of mathematics-specific digital technology. Although this chapter focuses
on the affordances of qualitative research, it does so in recognition of the limitations
of such studies.

10.2 Literature Search

Research studies on the mathematics experience and learning of lower secondary
students in the context of digital tools can be parsed in myriad ways. The orga-
nization of the research reported in this review was developed to be reflective of the
set of studies identified in the search. This review was confined to the mediating
effects of mathematics-specific digital technology (e.g., GeoGebra, Desmos, Cabri,
Fathom, CAS) on mathematics learning and experience, and did not include the
effects of digital tools that are not mathematics-specific on learning in general. The
literature search was confined to studies that focused on the mathematics learning of
lower secondary school students, and to studies published in or since the year 2000.
The search started with an issue-by-issue examination of the following journals
over the relevant time period: Cognition and Instruction, Educational Studies in
Mathematics, International Journal for Technology in Mathematics Education,
Journal for Research in Mathematics Education, Journal of Mathematical
Behavior, Mathematics Education Research Journal, and Technology, Knowledge
and Learning (previously published under the title: International Journal of
Computers for Mathematical Learning). It also included a follow-up Google
Scholar search using terms and phrases such as technology, digital tools, mathe-
matics, middle grades, lower secondary school students (or students ages 10–14),
and qualitative research. This search for relevant research studies initially yielded
110 sources, not all of which directly addressed the focus of the search (e.g., a
number of the studies focused on the learning of high school mathematics).

The list of studies was pared down to the 53 studies (from among the 110
sources located) published in or since 2000 that used qualitative methodologies and
empirical data to investigate the impact of mathematics-specific digital tools on the
mathematics learning and experience of students in lower secondary school. The
relevant 53 studies (and reports) were then reviewed to develop an understanding of
the scope of research in the area, so that the smaller set of studies on which the
chapter would focus could reasonably represent the relevant body of research.

10.3 A Framework for This Body of Research

Since the body of literature identified for this review focused on students’
mathematics learning and experience, it was appropriate to use a framework that
included students’ relationships to mathematics content and mathematics activity.
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Because digital technology provides new mathematical representations, and
mathematics-specific digital technology opens the door to new content and to new
experiences with content, a framework that included mathematical content, math-
ematical representation, and mathematical activity seemed reasonable. The frame-
work suggested in Zbiek, Heid, Blume, and Dick (2007) (which, for the purpose of
this chapter, will be called a digital mediation framework) includes nodes of
Mathematical Content, Mathematical Representation, and Mathematical Activity,
and accounts for the impact of digital technology on each of those nodes as well as
on the relationships between the students and one or more of these nodes. Using
this framework allowed me to categorize each of the studies in the identified body
of literature as an investigation of the impact of mathematics-specific digital
technology on one of the nodes (student, mathematical content, mathematical
representation, and mathematical activity) or on the relationship between student
and one or more of the other nodes. Because this digital mediation framework
provides an apt structure for categorizing the body of studies under consideration, it
was adopted for this review.

Figures 10.1 and 10.2 illustrate the framework. The pyramidal shape depicted in
Fig. 10.2 is meant to suggest digital tools as mediators of the relationships between
the student and aspects of their mathematics experience and learning categorized as
Mathematical Content, Mathematical Activity, or Mathematical Representation.
Each section of this chapter highlights a dominant mediation (e.g., how digital
technology mediates the relationship between the student and mathematical

Fig. 10.1 Mathematics
learning as the interaction of
students with mathematical
activity, representation, or
content. Printed with
permission.
Figure reproduced from Zbiek
et al. (2007, p. 1172)

Fig. 10.2 Technology
mediating the interaction of
students with mathematical
activity, mathematical
representation, or
mathematical content. Printed
with permission.
Figure reproduced from Zbiek
et al. (2007, p. 1172)
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representations DT![S–MR]). This chapter uses versions of the diagram with a
specific part in Fig. 10.2 highlighted to represent each dominant mediation.

The purpose of this chapter is not to provide a complete synthesis of research in
the targeted area but to characterize what qualitative research can contribute to the
field’s understanding of the impact of digital tools on mathematics learning and
experience. It contains descriptions of some of the ways that studies focusing on
students’ digital technology experience with Mathematical Representation,
Mathematical Content, and Mathematical Activity contribute to that understanding.

10.3.1 Digital Technology as Mediator

Experience with mathematics-specific digital tools can affect the student, the
mathematical representations, the mathematical activities, and the mathematical
content. As suggested by the pyramidal diagram in Fig. 10.2, digital technology
(shown at the top vertex of the pyramid) can also affect the relationships between
students and one or more of the other three components (Mathematical
Representation, Mathematical Activity, and Mathematical Content). Digital tech-
nology can affect the mathematical activity in which students engage, the mathe-
matical representations that students use, and the mathematical content to which
students are exposed. Digital tools can also mediate the relationship between the
student and the mathematical representation, content, or activity. Many of those
mediations have been examined through qualitative research studies, and this
chapter is intended to characterize studies representing those mediations. The
dashed and solid line segments in Fig. 10.2 suggest the effect of digital technology
on a single component or the mediation of digital technology of the relationship
between the student and one or more other components. For example, a dashed line
between the component of Digital Technology (DT) and the line segment that
connect Student (S) and Mathematical Activity (MA) represents an examination of
the mediation of digital technology on the ways in which students engage in
mathematical activity (signified by DT![S–MA]). A dashed line between Digital
Technology and the triangular region connecting Student, Mathematical Activity,
and Mathematical Connection represents an examination of mediation of digital
technology in the interaction among these three components (signified by DT![S–
MA–MC]). Following the digital mediation framework suggested in Zbiek et al.
(2007), this chapter describes qualitative studies that document ways in which
digital technologies can affect these relationships.1 The following sections illustrate
how qualitative research can shed light on different mediation types.

1Whereas the chapter in the Lester book uses a digital mediation framework to focus on constructs
that research on technology in mathematics education has suggested, this chapter focuses on
characterizing the types of findings about students’ mathematical experience and learning that
qualitative research on different nodes and composition of nodes have and can be generated.
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10.3.2 Digital Technology as It Affects Student
Characteristics DT![S]

In addition to affecting the mathematical representations, activity, and content to
which students are exposed, digital technology can affect the personal identity of
the student who is using the technology. For example, use of digital technology can
change a student’s preferences or beliefs about mathematics or about technology, or
about himself or herself as a doer of mathematics. For example, some qualitative
research on digital technology has focused on determining students’ preferences,
ratings, and beliefs regarding such technology (see Fig. 10.3 for a representation of
that mediation). While quantitative research can measure, for example, students’
self-reports of their perceptions of the roles of technology in mathematics learning,
qualitative research allows triangulation of data and the construction of a more
robust, more complex, and more nuanced picture of student perceptions. A study by
Bragg (2007), in which the main instructional activity involved learning mathe-
matics through mathematics games, for example, investigated the effects of digital
technology on students’ attitudes about the use of games. The qualitative approach
of the study allowed the researcher not only to document the effects of the tech-
nology experience on student beliefs but also to provide potential explanations for
those effects. For example, the researcher explained “that for some students the
game-playing environment provided the scaffolding needed to bridge constructively
their conceptual understandings” (p. 38). In that study, triangulation of survey and
interview data yielded contradictory results, generating questions that required
further study. Qualitative analysis of the effects of digital technology on the
mathematical actions available to students as well as on students’ beliefs and
preferences allowed a more nuanced analysis of student performance, accounting
not only for what they do but also for why they may have done it.

Fig. 10.3 DT![S]. Digital
technology as it affects
student characteristics
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10.3.3 Digital Technology as It Mediates Students’
Relationships to Mathematical Activity. DT![S–MA]

Digital technology can expose students to new forms of mathematical activity, and
qualitative research has provided evidence about the potential impact of that
technology on the nature of students’ mathematical experience (see Fig. 10.4 for a
representation of that mediation). Particularly in the context of digital technology, a
qualitative research approach can make the nature of students’ mathematical
activity more transparent. Some digitally enabled mathematical activity has been
shown to foster students’ need for mathematical activities such as conjecturing and
deductive reasoning. Qualitative research on those efforts have shed light not only
on the mathematical processes but also on conditions of the instructional setting that
promote activity such as deductive reasoning. In addition, qualitative studies have
examined how mathematics-specific digital technologies broaden not only the set of
mathematical activities available to students, but also the affordances that
mathematics-specific technology allow to students who struggle with mathematics.
Finally, the alternative approaches to problem solving fostered within particular
digital tools provides a new venue for the study of critical junctures in learning
progressions. The following subsections discuss specific studies that address each
of these ways that digital technology can mediate students’ mathematical activity.

10.3.4 Form and Transparency of Mathematical Activity
in the Context of Digital Tools DT![S–MA]

Mathematics-specific digital tools can engage students in new mathematical activity
or in new forms of familiar mathematical activity. Research has shed light on the
potentially changing nature of deductive reasoning in digital technology environ-
ment, and qualitative research makes the nature of deductive reasoning in digital

Fig. 10.4 DT![S–MA].
Digital technology as a
mediation factor affecting
students’ mathematical
activity
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technology environments more transparent. For example, research focused on
environments in which technology such as dynamical geometry environments
(DGE) is available has accentuated the concern that students may consider
empirical evidence, without further deductive reasoning, as sufficient to convince
them of the veracity of a claim. Qualitative research allows the researcher to delve
more deeply into this phenomenon noting not only the fact that students are con-
vinced by empirical evidence but also the nature of the empirical evidence that
convinces them. Hadas, Hershkowitz, and Schwartz (2000) conducted a study
designed to investigate the extent of this behavior in the context of innovative
technology-intensive activities designed to cause surprise and uncertainty. Looking
for the appearance and frequency of deductive explanations for these surprises, the
researchers identified a previously unexpected genre of explanations (which they
termed visual/variational) that were either based on the (dynamic) displays or
stemmed from students’ (presumably DGE-based) imagery. An example of that
genre comes from the work of a pair of students on the task of finding the sum of
the exterior angles of a polygon as the number of sides increases. These students
identified and reasoned from a visual attribute, providing a diagram like the one in
Fig. 10.5 and stating: “There is a whole turn around the polygon, therefore the sum
is 360°” (Hadas et al., 2000, p. 136). Because the research was designed to examine
the explanations students gave rather than only determine the match between stu-
dents’ explanations and those the researchers were expecting, the door was opened
to recognizing a possible new norm for mathematical explanations.

Digital tools that make several types of mathematical activity available to stu-
dents can give researchers the opportunity to characterize and compare the nature of
students’ cognitive processes in different settings. Research by Parnafes and Disessa
(2004) identified connections between type of computational representation and
patterns of reasoning students used in their problem solving. The work of
eighth-grade and ninth-grade students in the study formed the basis for the
researchers’ “moment-by-moment” analysis of the students’ problem solving.
Students had access to a microworld that displayed two informationally equivalent
representations of a motion problem: a numerical representation that displayed
numerical value for position, velocity, and acceleration for two racing turtles; and a

Fig. 10.5 Facsimile of
student sketch to explain why
the sum of the exterior angles
of a pentagon is 360°.
Adapted from Hadas et al.
(2000, p. 136)
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dynamic representation that modeled the race (see Fig. 10.6). The cognitive pro-
cesses students used were tied to the representations they used, with the numerical
representation being associated with what the researchers called “Constraint-based
reasoning” (the process of satisfying a given set of constraints by checking whether
various sets of values for the variables satisfy a given set of constraints) and the
dynamic representation being associated with “Model-based reasoning” (creating
and checking a mental model of the motion scenario). Qualitative analysis of the
problem-solving process allowed the researchers to delve into the pattern of rea-
soning and conditions that motivated students to shift their strategies.

Digital tools can allow students access to new forms of mathematical activity,
and qualitative research can make the nature of that activity more transparent. With
this transparency of mathematical activity across students, researchers can better
describe differences and nuances among students’ mathematical engagements. The
results are better articulations of students’ mathematical activity and discovery of
new patterns of mathematical activity.

Fig. 10.6 Depiction of two informationally equivalent representations (from p. 254 of Parnafes &
Disessa, 2004)
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10.3.5 Environments that Foster Students’ Perceived Need
for Deductive Reasoning DT![S–MA]

Whereas some qualitative studies analyzed how particular digital tools promoted
student engagement in particular mathematical activity, others have examined
aspects of technology-intensive instruction that may be necessary for the promotion
of those activities. To address the goal of understanding how to enhance students’
deductive reasoning in the context of dynamical geometry environments, Jones
(2000) analyzed data from a longitudinal study that examined how 12-year-old
students, who were using dynamical geometry environments, interpreted geomet-
rical objects and relationships. The study examined students’ use of hierarchical (an
inclusive definitions such as a trapezoid being a quadrilateral with at least one pair
of parallel sides) and partitional (an exclusive definition such as a trapezoid having
exactly one pair of parallel sides) relationships among different types of quadri-
laterals. Jones identified defining features of an instructional setting (e.g., carefully
designed tasks, a classroom that fosters conjecturing) that supported students for-
mulating mathematical explanations and coming to terms with inclusive definitions.
He conjectured that the technology in settings that did not have these defining
features would mediate learning by reducing the students’ perceived need for
deductive proof. The longitudinal nature of the study and qualitative examination of
the data allowed Jones to analyze the mediation of the software on how students
interacted with the technology. He found that the dynamical geometry software
afforded students a representation of the mathematical idea of functional depen-
dence, and that students developed an understanding of the constraint of robustness
of a figure under “dragging” as an important mathematical feature. The rich array of
data coupled with the triangulation of the data inherent in qualitative research made
it possible to study the complex and nuanced mathematical activity of mathema-
tization in ways that would not have been possible in a strictly quantitative study.

Qualitative studies have led researchers to identify features of technology-
intensive instruction that seemed to be necessary to promote student engagement in
mathematical activities such as formulating mathematical arguments and math-
ematization. These features included using carefully designed tasks and developing
an environment that encouraged conjecturing and mathematical explanations.

10.3.6 Accommodation of Achievement Levels DT![S–MA]

Qualitative research has suggested that mathematics instruction facilitated by digital
technology allows students of various achievement levels to engage in a range of
mathematical activity that was broader than expected. Yerushalmy’s (2006) study
of “less successful” students in grades 7–9 documented that, when compared with
typical behavior of such students, these “slower” students in a functions-based
algebra course that had regular access to graphing software adopted a broader view
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of the contextual problems they were asked to solve than students of similar
abilities who did not have such access. They were also more likely to use the
technology to confirm their conjectures when compared to the traditional problem
solving patterns of students of similar abilities. The range of strategies used by the
students in the graphing software/functions approach was greater than expected,
although these students delayed the use of symbolic representations and approa-
ches. One might conjecture that this delay was natural because the technology
favored numeric and graphical representations rather than symbolic representations
and strategies. Left unanswered is the question of whether the delay was related
more to a greater conceptual difficulty of symbolic representations or to the nature
of the technology used in the study. In this case, qualitative research identified
critical areas of needed research that might help explain the mathematical reasoning
of students whose mathematical thinking is seldom studied.

10.3.7 Range of Mathematical Activity in Which Students
Engage DT![S–MA]

Qualitative research allows insight into how the robustness of the digital tools
available to students can affect the range of solution strategies students use to
approach non-routine tasks. For example, one study (Kordaki & Potari, 2002) gave
secondary students (14-year olds) access to a computer micro-world designed to
provide tools for the measurement of the area of a region by iterating unit shapes.
The micro-world was designed to facilitate a variety of approaches to measuring
area. The approaches used by students drew on fundamental concepts of area,
including the concept of unit of area, the conservation of area, the role of unit
iteration, and the inverse relationship between size of covering unit and number of
units needed to cover an area. Although their school experience had included area
formulas, a majority of the students in the study did not use formulas to measure
area but implemented a spatial approach. Because of the open approach of their
qualitative analysis, the researchers were able to identify eleven distinct solution
strategies that students brought into play. The researchers concluded that “an
environment providing the students with the opportunity to select various tools and
asking them to produce solutions ‘in any possible way’ can stimulate them to
construct a plurality of solution strategies” (p. 65).

The theme of a greater variety of approaches in digital technology environments
was corroborated in Papadopoulos and Dagdilesis’s (2008) comparison of the
verification processes of fifth and sixth grade students who worked on nonroutine
geometry problems that centered on the calculation of area for irregular plane
figures. The researchers analyzed students’ paper-and-pencil work and recordings
of their computer work, and supplemented this analysis with interviews to clarify
parts of the student work that were not clear. In computer environments students’
work evidenced a broader range of verification processes when compared to the
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processes typically used in a traditional paper-and-pencil environment. Data also
allowed researchers to identify and describe a range of students’ verification
processes.

Given appropriate digital technology environments, students in these qualitative
studies used a greater variety of approaches to non-routine problem solving and a
greater variety of verification processes. The consequence of this larger menu of
options is not yet clear. Having available a greater range of approaches might
provide new routes to successful problem solving, and/or it may provide ways to
circumvent particularly difficult approaches.

10.3.8 Learning Progressions Seen in Students’
Engagement in Mathematical Activity DT![S–MA]

Not only can qualitative research on use of digital tools document the broad ranges
of solution strategies and verification processes open to students of varying
achievement levels, but it can test and document learning progressions for students
as they overcome roadblocks to their understanding of sophisticated mathematical
ideas. One such roadblock is the tendency to students to view sequences only
through recursive lenses and to have difficulty progressing to explicitly defined
sequences. In the context of a design experiment, Mor, Noss, Hoyles, Kahn, and
Simpson (2006) developed a set of mathematical activities in which lower sec-
ondary students (ages 10–14) used the ToonTalk programming environment to
engage in concrete experiences with sequences through controlling the movement
of simulated robots on a screen. Through these experiences, students engaged with
concrete manifestations of variables, partial sums, equivalence and rate of change.
Through these experiences, they could “make sophisticated arguments regarding
the mathematical structures of the sequences without requiring the use of algebra”
(p. 65).

10.3.9 Digital Technology and Mediation of Mathematical
Activity DT![S–MA]

Mathematics-specific digital technology has the capacity to change the nature of the
mathematical activity in which students engage, and qualitative research can make
the nature of that activity more transparent to researchers. Researchers have used
widely available software to investigate specific types of mathematical activity. For
example, dynamical geometry programs are likely to affect the mathematical
activities of conjecturing, deductive reasoning, or proving. On the other hand,
researchers have tailored software to specific mathematical goals in order to test
hypotheses about the students’ mathematical activity in different technological
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contexts. Researchers have then used their observations of students’ work with
mathematics-specific digital technology to identify features of instructional settings
that support particular types of mathematical activity. Research on the mediation of
mathematical activity in the context of digital tools has led to observations about the
multiple cognitive styles and achievement levels accommodated and the consid-
erable range of solution strategies and verification processes observed in student
work. All told, mathematics-specific digital tools can mediate students’ mathe-
matical activity, both by encouraging those activities and by providing the setting in
which such activity is natural. A fairly consistent result of the mediation is that the
variety of activities and strategies is considerable, the range of personal attributes
accommodated is broad, and the capacity of qualitative research to describe the
activity in new ways and fine detail is considerable.

10.3.10 Digital Technology as It Mediates Students’
Relationships to Mathematical Representation.
DT![S–MR]

Just as digital technology can affect students’ experience with mathematical
activity, digital technology also mediates students’ relationships to mathematical
representation, both through its generation of previously unfamiliar representations
and through new mathematical activity with familiar representations (see Fig. 10.7
for a representation of that mediation). As discussed previously, Parnafes and
Disessa (2004a) identified connections between types of computational represen-
tation and patterns of reasoning (constraint-based reasoning and model-based rea-
soning) students used in their problem solving. The qualitative analysis in this study
enabled the researchers to fine-tune observations of patterns in student reasoning.

Students’ interpretations of various representations are not unproblematic,
however, and students must develop the ability to see particular features in a
representation, an ability referenced by Stevens and Hall (1998) as “disciplined

Fig. 10.7 DT![S–MR].
Digital technology as a
mediation factor affecting
mathematical representation
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perception”. Noble, Nemirovsky, Dimattia, and Wright (2004a) studied how, in the
context of studying the mathematics of change, sixth grade students learned to see
particular features in a representation. In a study of sixth graders’ work with rep-
resentational tools available in their classroom, students worked with software
environments that included a simulation of a moving elevator linked to a graph of
velocity as a function of time. Using qualitative research methodology, researchers
were able to describe the progression of understandings that the sixth graders
exhibited as they learned to notice more and more about the representations. Not
only did they recognize that students developed an ability to attend to specific
features of the representations, but they also documented students’ development of
the ability to imagine motions associated with given graphs of velocity versus time.
Inter-representational connections such as these might be fostered in digital tech-
nology arenas in that they have the potential for enriching students’ concept images.

The construct of instrumental genesis (Vérillon & Rabardel, 1995), the evolution
for individuals of a digital artifact into a digital instrument, is central to under-
standing students’ use of digital tools in their mathematical work. Tabach,
Hershkowitz, and Arcavi (2008) studied the instrumental genesis of seventh grade
beginning algebra students in the context of a spreadsheet-available, functions
approach to algebra. Their qualitative analysis of the work of four to five pairs of
students on the same problem enabled them to articulate students’ transformation of
digital artifacts into instruments that allowed them to make connections between
numbers and symbols. Because of the free access to the spreadsheet, students could
capitalize on their facility with the spreadsheet’s numerical representations to make
meaningful symbolic generalizations. The study shed some light on the power of
access to different representational registers (e.g., numeric, symbolic, graphical).

Finally, qualitative research allows examination of a broad range of represen-
tations, and hence a broad range of ways to understand mathematical ideas.
A representation register of increasing interest in mathematics education is that of
gestures, and qualitative research opens mathematics education research to the
examination of the progression of understanding in the context of a range of rep-
resentation registers. Specifically, it allows researchers to document the evolution of
reification of knowledge in the context of gestures. In a teaching experiment with an
eighth grade class using graphing calculators and a motion detector to study motion
(still, uniform, and accelerated), Robutti (2006) was able to document a series of
semiotic steps in the development of objectified knowledge of motion, including a
sequence of physical and iconic gestures, use of metaphor connected to dynamic
gestures, and explanation, in terms of a previous classroom experience, of a graph
in terms of the relation between variables. Bazzini (2001), in a study of eighth
graders’ use of an on-line measurement tool and graphing calculators, also used the
construct of embodied cognition to identify new roles for grounding metaphors
(metaphors that “ground our understanding of mathematical ideas in terms of
everyday experience”, p. 262) in the development of an understanding of mathe-
matical ideas.

The body of qualitative research that focuses on the mediation of digital tools on
students’ experience with mathematical representation includes consideration of
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several different aspects of representation use. Digital tools can support a broader
range of representations, they may be tailored to support connections to particular
mathematical processes, and they may foster a more fine-tuned understanding of
particular representations. Moreover, the effect of digital tools is a function of the
relationships of the user to the tool, with progress in the processes of instrumen-
talization and instrumentation (Artigue, 2002) providing a venue for connections
among representation registers.

Digital tools can assist users in focusing on and investigating the meaning of and
relationships among specific features of a representation. Just as digital tools can
stimulate a wide range of mathematical activity, they can generate a broad range of
mathematical representation. The nature of qualitative inquiry and technological
advances in capturing and analyzing qualitative data have supported this foray into
research on new representation types. Chief among those new representation reg-
isters is that of gesture as an indicator of mathematical understanding, and inquiry
into the meaning of gestures has been assisted though an embodied cognition lens.
With this broader range of representation types in view by researchers, their work
has also investigated relationships between representation type and patterns of
reasoning, an indicator of the intimate relationship between the type of mathe-
matical representation and the type of mathematical activity in which students
engage using that representation. The connections among mathematical activity,
mathematical representation, and mathematical content seem to be inescapable.

10.3.11 Digital Technology as It Mediates Students’
Relationships to Mathematical Content.
DT![S–MC]

Digital technology can affect students’ relationships to mathematical content for
several reasons (see Fig. 10.8 for a representation of that mediation). Familiar
concepts may be developed more deeply in the context of digital technology.
For example, because of the many ways that technology can represent change,
digital technology can contribute to students developing a deeper understanding of
fundamental concepts such as rate of change. Digital access to representations of
rate of change was a major focus of the SimCalc project (Hegedus & Roschelle,
2013), Kaput’s technological manifestation of his commitment to democratizing
access to calculus. With the ease of digital access to representations of change in
tools such as JavaMathWorlds (animated simulation software developed by the
SimCalc project), Herbert and Pierce (2008) were able to study the engagement of
students (14–15 year olds) in an extensive series of lessons concerning the meaning
of rate of change in the context of speed. The researchers noted the importance of
the lesson series as “a careful exploration of the mathematical aspects of speed.”
(p. 248) in developing a deeper understanding of rate of change. The initial “model
of” understanding of rate of change in a context of speed held by many of the
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students evolved into a deeper understanding of rate of change as a “model for” that
could be applied to understanding of rate of change that did not involve motion
(Gravemeijer, 1999). Identification of the subtle difference between understanding a
mathematical entity as a “model of” and understanding it as a “model for” was
facilitated through the one-on-one interviews conducted in this qualitative research.
Similarly, students (13–15 years old) using a dynamical geometry environment in a
study by Kordaki and Belamenou (2006) developed a more global and connected
view of area than is typical in a paper-and-pencil environment. Qualitative analysis
and access to a dynamical geometry tool allowed a more nuanced articulation of
students’ understanding of area. For example, student understanding advanced to
embed the notion of congruent triangles in the broader notion of equivalent trian-
gles (in this case, equivalent triangles are ones with the same area but not neces-
sarily the same perimeter), they used several different measurement representations
systems, and, taking advantage of the range of available tools in Cabri-II, they
readily linked their prior knowledge to the concept of area in triangles. As a
supposed consequence of studying area and perimeter in relation to each other for a
variety of figures, what researchers took as evidence of a broader understanding of
area included observation of students’ construction of equivalence classes of tri-
angles and observation of students’ development of the ability to distinguish
between area and perimeter.

Of course, not all uses of mathematics-specific digital technology result in
enhanced conceptual understanding. Muir (2014), in a study of the use of online
mathematical resources accessed by students in grades 5 through 9 (lower sec-
ondary school), observed that “The procedural nature, however, of many of the
online resources needs to be acknowledged; while they may assist students with
procedural understanding or fluency, it is less likely that relational understanding
(Skemp 1978) will develop as a result of watching the clips or participating in drill
and practice” (p. 835).

Fig. 10.8 DT![S–MC].
Digital technology as a
mediation factor affecting
mathematical content
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10.3.12 Digital Technology as It Mediates Students’
Relationships to Mathematical Content
and Mathematical Representation.
DT![S–MR–MC]

Digital technology, through its use of new representations, can mediate the rela-
tionships among students, mathematical content, and mathematical representation
(see Fig. 10.9 for a representation of that mediation). Although the set of research
studies discussed in this chapter was selected to focus on the learning of mathe-
matics using mathematics-specific technology, there are times when the use of
mathematics-specific technology in those studies entails non-mathematics-specific
uses. Some of that research was heavily tied into mathematics-specific technology
that facilitated communication and connections across users. Among the more
intensively researched technologies that tied mathematics-specific technology to
technology for communication and connections is Kaput’s aforementioned SimCalc
technology (Hegedus & Roschelle, 2013). The body of SimCalc research centered
on giving lower secondary students access to fundamental ideas in higher level
mathematics (e.g., rate of change) through engaging with multiple dynamic rep-
resentations. Many of the chapters of the SimCalc book focus on examining the
learning of lower secondary students as they engaged in networked activities using
simulations and multiple representations of motions (e.g., races and elevator rides)
to develop an understanding of important mathematical underpinnings of calculus.
Research examined student understanding of the concept of rate of change as well
as their use of representations. One qualitative study (Bishop, 2013) focused on
student learning and based conclusions on analysis of video footage of the same
SimCalc curriculum unit (rates of change through piecewise linear graphs of
motion) across 13 seventh grade classrooms. Because the researcher had the
opportunity to analyze qualitative data in a large number of similar settings (seventh
grade classes using the same curriculum material) she had the unusual opportunity
to develop, across a range of settings, a qualitative synthesis of the intellectual work
involved in this use of technology. It was through the dynamic representations

Fig. 10.9 DT![S–MR–MC].
Digital technology as a
mediation factor affecting the
relationship among students,
mathematical activity, and
mathematical representation
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inherent in SimCalc that student attention could be drawn to the sophisticated
concept of rate of change–evidence of the role of technology in connecting the
mathematical content and the representations used to convey that content.

10.3.13 Digital Technology as It Mediates Students’
Relationships to Mathematical Activity
and Mathematical Representation.
DT![S–MR–MA]

The mathematical activities in which students engage when digital technology is
available depend on their interpretation of features of the representations generated
by the technology (see Fig. 10.10 for a representation of that mediation), and their
interpretation of features can define the mathematical activity in which they engage.
Interpretation of the features of dynamic technology comes with its own set of
challenges. Central to the challenges inherent in dynamical geometry environments
is the dependency relationship between technological “child” and technological
“parent”. That is, if the construction of one mathematical object builds on an
existing object, the existing object is called the “parent” and the object being
constructed is called the “child”. When Talmon and Yerushalmy (2004) asked ninth
grade students in their study to predict the dynamic behavior of points in a con-
struction the students had created, the students erroneously predicted that dragging
the child would affect the behavior of the parent. This behavior was consistent with
what Jones (2000) described as students thinking of an intersection of two objects
as the “glue” that tied together the elements that formed the intersection, regardless
of which of the objects was the parent and which was the child. In these cases,
students’ mathematical activity was a function of their interpretation of the

Fig. 10.10 DT![S–MR–MA]. Digital technology as a mediation factor affecting the relationship
among the student, mathematical representation, and mathematical activity
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mathematical representations generated by the technology–evidence of the close
relationship of mathematical activity to the instrumental genesis of the mathemat-
ical representation.

10.3.14 Digital Technology as It Mediates Students’
Relationships to Mathematical Content,
Mathematical Activity, and Mathematical
Representation. DT![S–MC–MA–MR]

Previous sections of this chapter have examined the effects of digital technology on
mathematical content, mathematical activity, or mathematical representation, at
times as if these relationships are separable. But throughout these sections was
continual evidence of the connectedness of these components. One can easily argue
that the components of mathematical content, mathematical activity, and mathe-
matical representation, are inseparable when analyzing the engagement of students
in mathematical work using digital technology (see Fig. 10.11 for a representation
of that mediation). Digital technology provides access to new forms of represen-
tation and new ways to interact with those representations. A result is that the use of
this technology can open the door to new mathematical content, although it does
not always do so—as reminded by Pea (1987) in his distinction of using technology
as a reorganizer and using technology as an amplifier (the reorganizer use sug-
gesting new content and the amplifier use suggesting renewed emphasis on familiar
content). One example of a mathematical concept that mathematical digital tools
can make more accessible is that of parameter, a focus of Drijvers’ extensive study
(2004) of the learning of algebra in a computer algebra environment. The computer
algebra environment defined not only the mathematical representational registers

Fig. 10.11 DT![S–MC–MA–MR]. Digital technology as a mediation factor affecting the
relationships among the student, mathematical content, mathematical activity, and mathematical
representation
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that would be available to students but also the mathematical activities in which
they could engage. Drijvers noted the importance of the concept of parameter,
pointing to its use in involving students in the mathematical activities of general-
izing and abstracting. Computer algebra (CAS) tools gave students fingertip access
to multiple representations of variables and of parameters, and CAS tools could
ostensibly be used by students to nimbly orchestrate conceptual movement between
representations of parameters as fixed values and representations of parameters as
varying quantities that defined families of functions. Drijvers’ study exemplifies the
mediation by digital tools of the relationship among students, mathematical content,
mathematical activity, and mathematical representation. Qualitative research
enabled the tightly connected study of that relationship. A conceptual analysis of
the concept of parameter allowed Drijvers to define growth in student under-
standing of parameter, and a qualitative approach afforded him the opportunity to
document that growth in his participants. His qualitative approach also uncovered
the difficulty students experience with instrumentation (i.e., with the ways in which
the students’ thinking must accommodate the technology) and the impact of that
difficulty on the development of conceptual understanding. Because of its extensive
and thorough attention to the nature of qualitative data and its sensitivity to the
construct of instrumental genesis, the study was able to shed new light on the
difficulty of conceptualizing parameters and the ways that sophisticated digital tools
may compete for students’ cognitive attention. Qualitative analysis afforded
Drijvers the opportunity to document the trajectory of students’ relationships to the
digital tools they were using.

10.4 Affordances of Applying Multiple Theoretical
Frameworks in Qualitative Research

A discussion of qualitative research would not be complete without some attention
to the construct of theoretical framework. Theory that one uses to frame a study has
a substantive and defining impact on the conclusions that might be drawn from the
study. Application of multiple frameworks in qualitative research can generate
robust and compatible observations. Lagrange and Psycharis (2014) designed a
study of the differential effects of using two different theoretical frameworks in the
analysis of data from similar studies. The researchers used two very different
theoretical traditions to analyze data that focused on computer environments for the
teaching and learning of functions and for the conceptualization of functions. The
study compared learning in two different national settings (France and Greece) and
two different grade levels (middle school and high school) levels. The researchers
identified tensions between the goals of the two traditions. One of the traditions,
Brousseau’s (1997) Theory of Didactic Situations, was concerned with repro-
ducibility and ran into difficulty with the limited predictability of students’ inter-
pretation of software feedback while the other tradition sought to develop insight
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into the learning process and benefited from students’ emergent ideas and gener-
alizations. Moreover, the two theoretical traditions required different foci for the
data. The constructionist tradition required the analysis of particular students’ work
while the Theory of Didactic Situations tradition required observation at the level of
the classroom. Nevertheless, the researchers concluded that “Overall, the synthesis
of the results leads to a more complete view of the potential of digital technologies
for the learning of functions from the two perspectives” (Lagrange & Psycharis,
2014, p. 283). The qualitative approach that allowed the collection and analysis of
both individual and classroom-level data resulted in a balanced view of learning in
the context of mathematical technology. Two theoretical lenses can productively be
used to analyze data from qualitative studies, and the analyses provided by the two
lenses can complement each other. Drijvers, Godino, Font, and Trouche (2013)
demonstrated how, when qualitative data gathered with an Instrumental Genesis
theoretical lens was re-analyzed through an Onto-Semiotic lens, a fuller under-
standing resulted of an excerpt of data describing student CAS-intensive work with
a problem centrally focused on parameters. One might hypothesize that multiple
theoretical lenses could enrich the field’s understanding of mathematics learning, as
long as researchers accommodate the need for different foci and different data and
as long as the lenses are based on compatible assumptions.

10.5 Conclusion

This chapter categorizes and characterizes qualitative research published in the 21st
Century on the effects of mathematics-specific digital technologies on the mathe-
matics learning of lower secondary school students. The lens through which the
research is viewed shifts its focus among mediation of the relationship of students
to mathematical representation, mathematical activity, or mathematical content, or
to relationships between the student and two or more of the other components.
Whereas any one of the research studies described may have involved all three of
these components, the emphasis on one component or on a relationship among
components was chosen to illustrate the nature of the particular type of mediation.
The remarkable (and continually expanding) ability of digital technologies to
stretch the type of representation to be used to convey a mathematical entity
inevitably licenses a broad range of mathematical activity, which, in turn, can lead
to consideration of new mathematical content. The omni-presence of mathematical
representation, mathematical activity, or mathematical content in the context of
research on mathematics-specific digital technology begs for examination of the
mediation of the technology on these components—an endeavor that has been well
initiated over the past two decades.
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Chapter 11
Classical and Digital Technologies
for the Pythagorean Theorem

Michela Maschietto

Abstract This paper aims to discuss the use of material tools, called mathematical
machines, and digital tools in approaching the Pythagorean theorem. These math-
ematical machines are related to different proofs of the theorem. Teaching exper-
iments with 13-year old students were carried out within the laboratory approach
developed from the theoretical frameworks of the Theory of Semiotic Mediation
and Instrumental approach in mathematics education. Their analysis shows that
behind the kinesthetic experience with the machines, there are important cognitive
processes such as the identification of invariants, relationships between the com-
ponents and usage schemes. It also shows the only manipulation of the first machine
does not imply the emergence of the mathematical meanings embedded in the
materials tools and the crucial role of the teacher with his different instrumental
orchestrations in that process.

Keywords Artifacts � Geometry � Laboratory � Lower secondary school education
Pythagoras

11.1 Introduction

This paper focuses on the integration of physical and virtual experiences in
mathematics teaching and learning through the use of material and digital tools. The
use of material tools in mathematics has been witnessed since the Greek geometry
and, over the centuries, these tools have accompanied the development of mathe-
matics (Monaghan, Touche, & Borwein, 2016). An example of the relationship

M. Maschietto (&)
Department of Education and Humanities, University of Modena
and Reggio Emilia, Reggio Emilia, Italy
e-mail: michela.maschietto@unimore.it

© Springer International Publishing AG, part of Springer Nature 2018
L. Ball et al. (eds.), Uses of Technology in Primary and Secondary Mathematics
Education, ICME-13 Monographs, https://doi.org/10.1007/978-3-319-76575-4_11

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76575-4_11&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76575-4_11&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76575-4_11&amp;domain=pdf


between the use of tools and the development of mathematics is represented by
projective geometry: the theoretical development has its roots in perspective with its
tools for perspective drawings (called perspectographs1), that have been built in the
XVI and XVII centuries (Bartolini Bussi & Maschietto, 2006). These tools are
considered in the collection of mathematical machines and are defined as:

an artefact designed and built forcing a point, a line segment or a plane figure (supported by
a material support that makes them visible and touchable) to move or to be transformed
according to a mathematical law that has been determined by the designer. (Maschietto &
Bartolini Bussi, 2014, p. 1)2

A well-known case is the pair of compasses, in which the lead point is forced to
move on a circle. It can be considered the ancestor of many curve-drawing devices.
This paper is concerned with the use of some mathematical machines in mathe-
matics education (Maschietto & Bartolini Bussi, 2011).

The reference to tools, in particular material tools, in the discussion about
mathematics education started at the end of XIX century. It was often related to the
new methodology of mathematics laboratory (Giacardi, 2012). In that context, even
the use of squared paper for mathematics was questioned (cf. Maschietto &
Trouche, 2010). The interest in the educational use of tools has not decreased over
time, but it involves different kinds of tools. Bartolini Bussi and Borba (2010), in
WG4 Resources and technology throughout the history of ICMI3 at the ICME
Symposium 2008, collected the contributions of different countries to the discussion
about the use of tools in mathematics teaching and learning, referring to both
classical and new technologies. In particular, for digital technologies, Drijvers
(2015) points out a crucial question, which is how to exploit the potential of ICT for
learning and teaching mathematics. He recalls three didactical functionalities of
digital technology (p. 136):

(1) the tool function for doing mathematics, which refers to outsourcing work that could
also be done by hand, (2) the function of learning environment for practicing skills, and
(3) the function of learning environment for fostering the development of conceptual
understanding. Even if these three functionalities are neither exhaustive nor mutually
exclusive, they may help to position the pedagogical type of use of the technology
involved. In general, the third function is the most challenging one to exploit.

The contribution of this paper is between these two strands: it aims to construct
and study a learning environment, following Drijvers (2015) in which material and
digital tools are available for students’ activities and teacher’s actions. In our case, it

1http://www.macchinematematiche.org/ and http://archiviomacmat.unimore.it/CR/Copertina.html.
Accessed: 2 January 2017.
2http://www.mathunion.org/fileadmin/ICMI/files/Digital_Library/ICMEs/Bulletin_Maschietto_
BartoliniBussi2_01.pdf. Accessed: 2 January 2017.
3https://www.unige.ch/math/EnsMath/Rome2008/WG4/WG4.html. Accessed: 2 January 2017.
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contains: material tools related to the Pythagorean theorem (described later in
Sect. 11.4.1); digital tools as Interactive Whiteboard (IWB) and its software, and
Dynamic Geometry Software (DGS). Referring again to Drijvers, the interest is in
the third functionality. The teaching experiment analyzed in this paper concerns the
Pythagorean theorem at lower secondary school in Italy (Barbieri, Scorcioni &
Maschietto, 2014).

The paper is structured in seven sections. Section 11.2 recalls some proofs of the
Pythagorean theorem and describes the technologies used in the teaching experi-
ment. Section 11.3 presents the theoretical framework of this research, while the
following section contains the analysis of the artifact, the structure of the teaching
path and the research questions. Section 11.5 contains the methodology of the
experimental research. Then, results are presented and discussed respectively in
Sects. 11.6 and 11.7.

11.2 The Pythagorean Theorem

The Pythagorean theorem is a traditional topic not only in the Italian school, but in
general in the mathematics curriculum of secondary schools of several countries
(Moutsios-Rentzos, Spyrou, & Peteinara, 2014; Sinclair, Pimm, Skelin, & Zbiek,
2012). There exist several proofs of this theorem,4 some of which are visual and
“without word” (Rufus, 1975; Fig. 11.1).

Often, the theorem is first proposed geometrically (e.g. see Fig. 11.1) and it is
then soon converted into formulas and related to algebraic calculations. For
example, in algebraic proofs of the theorem, the Fig. 11.1 (on the right) is often
used: the legs of the right triangles are called a and b, while the hypotenuse is
denoted c. If the area of the big square (whose side is equal to a + b) is expressed as
the sum of the areas of the right triangles and of the square inside, algebraic
manipulation leads to the Pythagorean formula.

A result of focusing more on the algebraic relation rather than on the geometrical
meaning of the theorem can be observed when visual proof is considered. For
instance, Bardelle (2010) proposes a visual proof of this theorem (Fig. 11.2, on the
left) to university students. She finds that they tried to look for the algebraic relation
among sides starting from the expression “c2 = a2 + b2” rather than rearrange the
parts of the figures itself, as is characteristic of a visual proof (Fig. 11.2, on the right).

In the treatment of Fig. 11.2, Bardelle finds that the students did not feel the
need to prove that the figure that looked like a square was a square. Then, this
theorem also represents an opportunity to deal with some related mathematical
meanings such as perpendicularity and right triangle (Moutsios-Rentzos et al.,
2014) or to focus on its hypothesis of the right triangle (for instance by a DGS, cf.
Anabousy & Tabach in Drijvers et al., 2016).

4http://www.cut-the-knot.org/pythagoras/index.shtml. Accessed: 2 January 2017.
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Moreover, some of these proofs are also available by DGS or java applet,5 as the
proof referring to Fig. 11.1.6 Concerning applets, Moyer, Bolyard and Spikell
(2002) claim that several websites offer interactive experiences for users. In many
cases, they contain applets that “demonstrate and verify” (Moyer, Bolyard, &
Spikell, 2002, p. 373) this theorem. In particular, the applets allow students to
investigate the theorem “by moving pieces of the square that represent a2 and b2

and placing them into the area that represents c2. The various applets use different
methods for fitting the pieces into c2” (Moyer et al., 2002, pp. 373–374).

Visual proofs are often based on the rearrangement of some parts of the figure.
Because of this, they can be proposed as material exhibits in mathematical exhi-
bitions (for instance, Pythagoras and his theorem by Il Giardino di Archimede7)
and/or spread as gadgets (Eaves, 1954). In this case, they can be given to the
students for manipulation or for evidence of the theorem.

Fig. 11.2 The figure proposed to university students and its rearrangement (Ibidem, pp. 253–254)

Fig. 11.1 The proof without word by Rufus (1975) (Copyright 1975 Mathematical Association of
America. All Rights Reserved)

5http://www.dynamicgeometry.com/JavaSketchpad/Gallery/Geometry/Pythagoras.html. Accessed:
2 January 2017.
6http://nlvm.usu.edu/en/nav/frames_asid_164_g_3_t_3.html?open=instructions&from=category_
g_3_t_3.html. Accessed: 2 January 2017.
7Pitagora e il suo teorema, https://php.math.unifi.it/archimede/archimede/pitagora/immagini/
virtuale.php?id=1. Accessed: 2 January 2017.
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In the teaching experiment analyzed in this paper, the mathematical machines
proposed to classes embed two of those proofs, one of them related to Rufus’s proof
without words. Even if they can be considered as exhibits to show the theorem, the
educational perspective is different here. Following Mariotti (2007) on the rela-
tionships between an “intuitive approach to geometry” (Mariotti, 2007, p. 289) and
proving processes, the aim is not to visualize the theorem and “convincing pupils of
its obviousness” (Mariotti, 2007, p. 289), but to give arguments to justify the
theorem. Then, we ask if and how it is possible to approach the Pythagorean
theorem starting from some mathematical machines artifacts with 7-grade students
in a leaning environment also containing digital tools.

11.3 Theoretical Framework and Research Questions

11.3.1 Theories of Semiotic Mediation and Instrumental
Genesis

The use of artifacts is proposed and analyzed within the Theory of Semiotic
Mediation (Bartolini Bussi & Mariotti, 2008), grounded in the Vygotskian notion of
semiotic mediation and role of artifacts in cognitive development. Within this
framework, the teacher chooses artifacts evoking specific mathematical meanings,
that are consistent with his/her learning objective for students, and uses them to
mediate those meanings. The artifacts are analyzed in terms of their semiotic
potential, defined as the double semiotic link established between: the artifact and
personal meanings, emerging in students’ mind when they use it to accomplish
tasks (that have to be accessible for students) on one hand; the artifact and math-
ematical meanings evoked by that use and recognizable as mathematics by an
expert on the other hand. Personal meanings can be related to knowledge that
students can recall in solving tasks.

Based on the analysis of the semiotic potential, the teacher plans several
activities and tasks; some of them have to be solved with the artifacts. Activities and
tasks are organized in terms of didactic cycles with group work, individual work
and collective discussions orchestrated by the teacher. The mathematical meanings
emerge from the use of the artifacts and from the interactions among peers and
between the peers and the teacher, who has the role of an expert guide. In all the
activities, students are involved in a semiotic activity (producing gestures, words
and/or drawings, which are all called artifact signs, referring to the context of the
use of the artifact). The teacher makes evolving artifact signs into mathematical
signs (i.e. linked to mathematical content) by the means of pivot signs, acting as
bridges between the artifact signs and the mathematical ones. In this sense, the
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teacher uses the artifact as a tool of semiotic mediation of mathematical meanings.
From the students’ perspective, there is the passage from a technical instrument to a
psychological one.8

From the perspective of the instrumental approach (Rabardel & Bourmaud,
2003), the use of an artifact to accomplish specific tasks fosters the emergence of
utilization schemes, as a part of a subject’s cognitive activity. In particular, two
constituents are distinguished: usage schemes, which are related to the management
of characteristics and specific properties related to the artifact; and
instrument-mediated action schemes (instrumented action schemes in this text),
oriented to carry out specific tasks. The instrumental genesis accompanies the
constitution of an instrument for the subject, as a cognitive entity composed of
utilization schemes and artifact.

In the Theory of SemioticMediation, thefirst didactic cycle usually beginswith the
exploration of the chosen artifact in small group. The activities are structured fol-
lowing questions such as: “How is the machine made?”, “What does the machine
make?” or, “How do you use the artifact?” and “Why does it make it?” (Bartolini
Bussi, Garuti, Martignone, & Maschietto, 2011, p. 128). In general, the first three
questions try to take into account students’ processes of instrumental genesis: the first
questionmainly corresponds to the emergence of artifact components, while the other
two correspond to the product of the artifact and to the ways to use it. The fourth
question aims to identify the difference between a technical use of the instrument and a
psychological one, because it solicits students’ processes of formulation of conjec-
tures and argumentation that are very important in mathematical activity and strongly
emphasized in a mathematics laboratory. These processes are also supported by the
question “What could happen if…?”, by which the students are encouraged to vary
some parameters of the artifact and to anticipate and interpret the results in the light of
what took place before (Bartolini Bussi et al., 2011).

11.3.2 Instrumental Orchestration

The presence and the use of artifacts in a classroom requires specific actions by the
teacher. They correspond to the choice of the artifacts and to the construction of
tasks, according to the Theory of Semiotic Mediation. The teacher should also take
into account students’ instrumental geneses. She/he should manage the different
artifacts during the lessons, deciding, for instance, when the students can use an
artifact or another one, or which artifact is available at a certain moment. Trouche
(2004) has proposed the notion of instrumental orchestration, defined by:

8Referring to the example of a pair of compasses (Bartolini Bussi & Maschietto, 2008), this can be
used as technical tools to produce round shapes. It is externally oriented (Vygotskij, 1978). As a
psychological tool it has the potentiality to evoke the peculiar feature of circles (i.e., the constancy
of the radius) and to create the link with the geometrical static relational definition of Euclid. It is
internally oriented (Vygotskij, 1978).
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(1) Didactical configurations, as arrangements of artifacts in the environment;
(2) Exploitation modes of the didactical configurations;

Drijvers, Doorman, Boon, Reed, and Gravemeijer (2010) further developed this
notion and added a third component, the didactical performance, characterized as
“the ad hoc decisions taken while teaching on how to actually perform the enacted
teaching in the chosen didactic configuration and exploitation mode: what question
to raise now, how to do justice to (or to set aside) any particular student input, how
to deal with an unexpected aspect of the mathematical task or the technological tool,
or other emerging goals” (Drijvers et al., 2010, p. 215).

The instrumental orchestration has been mainly analyzed in rich technological
environments (with graphic calculators, projector, handled devices, and so on;
Kratky, 2016). In the case of this paper (as in Maschietto & Soury-Lavergne, 2013),
didactical configurations include both material and digital tools.

11.3.3 Research Questions

The research questions concern the didactical exploitation of a learning environ-
ment in which material and digital tools are present. In this paper, three questions
are central.

1 and 2. If and how the Pythagorean theorem can be approached from using a
mathematical machine as M1 (cf. Sect. 11.4.1) with 7-grade students, in a com-
posite environment. In particular, which tasks can be proposed to students for
meaning making?

3. Which instrumental orchestrations could the teacher make in such as learning
environment?

11.4 Technologies in the Classroom

This section contains the description of the two mathematical machines and the
educational context in which the technologies are used in the mathematics classes
of Italian schools.

In this work, the use of technologies is rooted in the Italian idea of mathematics
laboratory (Maschietto & Trouche, 2010). It is present in the documents of the
Commission of the Italian Mathematical Society for Mathematics Instruction
(Anichini, Arzarello, Ciarrapico, & Robutti, 2003), in which mathematics labora-
tory is defined as follows9:

9 http://www.umi-ciim.it/wp-content/uploads/2013/10/Mat2003.zip. Accessed: 2 January 2017.
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A mathematics laboratory is (…) rather a methodology, based on various and structured
activities, aimed at the construction of meanings of mathematical objects. (…) We can
imagine the laboratory environment as a renaissance workshop, in which the apprentices
learned by doing, seeing, imitating, communicating with each other, in a word: practicing.
In the laboratory activities, the construction of meanings is strictly bound, on one hand, to
the use of tools, and on the other hand, to the interactions between people working together
(without distinguishing between teacher and students) (Anichini et al., 2003, PREM_C,
p. 23).

In the mathematics laboratory, students’ processes of formulation of conjectures
and argumentation are strongly motivated (Bartolini Bussi, 2010). The papers on
the Italian use of mathematics laboratory mention a number of different tools,
including the mathematical machines and DGS.

11.4.1 Material Tools: Mathematical Machines

In this paper, the mathematical rule embedded in the mathematical machines is the
Pythagorean theorem according to the proof proposed by Rufus (1975) and the
proof attributed to Leonardo da Vinci (Il Giardino di Archimede, 2001).

The first mathematical machine (M1 in Fig. 11.3) is composed of a wooden
square base and four wooden right triangles (i.e., triangular prisms) that are all
congruent to each other. The square base is surrounded by a frame. For helping the
distinction between triangles (figures) and squares (“holes” on the background), a
red paper is added into the frame (that corresponds to color the square base and
highlights the figure-ground perception, in which one picture can be perceived in
two different ways depending on how the students look at it). The triangles are
placed within the frame and can shift on it, from one configuration to another one
(Fig. 11.3, in the center and at right).

The second mathematical machine (M2) embeds the mathematical proof of the
Pythagorean theorem attributed to Leonardo da Vinci. It has two configurations
(Fig. 11.4a, b) showing two different ‘holes’: in Fig. 11.4a there are two right

Fig. 11.3 The mathematical machine M1
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triangles and a square constructed on their hypotenuse (made by two elastics); in
Fig. 11.4b there are two squares on the legs (made by two elastics) of two right
triangles. The right triangles are all congruent. The transformation from one con-
figuration to another one is given by the material rotation of a half of M2 by a crank
(Fig. 11.4b, on the right side). Referring to Fig. 11.4c, the material rotation cor-
responds to a reflection with respect to OW (perpendicular to BH); the polygon
ABCJHI corresponds to the first configuration (Fig. 11.4a), while the polygon
ADEFGC corresponds to the second configuration (Fig. 11.4b). The quadrilaterals
ABHI, JHBC, DEFG and ADGC are all equivalent. Let us consider the quadri-
laterals ADGC and BCJH. Since the right triangle ABC is a part of the two
quadrilaterals, the other parts together have the same area. In other words, the sum
of the area of DADB and DBGC (respectively, half the square constructed on the
legs of DABC) is equal to the area of half of the square constructed on the
hypotenuse AC.

11.4.2 Digital Tools: IWB and DGS

In the classrooms, an IWB was installed, next to a blackboard. Several software
were available. Contrary to the mathematical machines, the digital tools were
always present in the classrooms. The IWB contains its software for writing and
taking notes. With respect to the classical blackboard, this software allows saving of
all the texts written on the board, not only to make them available from one lesson
to the next, but also to go back to previous steps and, in general, to manage the time
stream of the lesson. Furthermore, the teacher can add pictures and use the tool
(called the “duplicator”) to duplicate chosen figures. Then, these figures can be

Fig. 11.4 The mathematical machine M2
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dragged on the screen. She/he can also easily use colored pens. A DGS was
available, and internet too. In such a way, it was possible to show simulations of the
machines, above all of M2.10

Students and teacher could use the IWB, in the different steps of the teaching
experiments. A teacher also used his smartphone and/or video-camera for taking
pictures and sharing them through the IWB.

11.5 Methods

The teaching experiment proposes a learning environment in which material and
digital artifacts are present. This section contains the analysis of the semiotic
potential of the artifacts used in the teaching experiments according to the theo-
retical framework of Theory of Semiotic Mediation. It is carried out following the
components of mathematical content, utilization schemes related to specific tasks
and students’ personal meaning. Then, the choices and the steps of the teaching
path are presented.

11.5.1 Analysis of the Semiotic Potential of the Artifacts

In the mathematical machine M1 (Fig. 11.3) the fundamental relationship between
the prisms and the square base (red square in Fig. 11.3) is that the sum of the legs of
the right triangles (base of the prism) is equal to the side length of that square. As
written above, M1 shows a proof of the theorem (Rufus, 1975). In order to support
students’ visualization and make evident the interior squares (two squares in
Fig. 11.3b and one square in Fig. 11.3c) with respect to the base, we have added a
red paper into the frame.

The proof shown in Fig. 11.1 is discussed by Duval (2005) in his analysis of the
role of visualization in proving process. He claims that the visualization is not
complete if it only considers the two configurations of Fig. 11.1, because the
relationship between the big square and the hypotenuse of the right triangles on one
hand, and the other two squares and the legs of the same right triangles on the other
hand, is expected to be assumed knowledge for the reader. Duval claims that the
interpretation of the figures is not obvious. However, if an arrow from left to right,
for instance, connects the two representations, the relationship and transformation
from one representation to another can be realized. This relationship is based on the
analysis of the figures and on a computation (i.e., the difference between the big
square and the four triangles). Referring to M1, the transformation of

10http://www.macchinematematiche.org/index.php?option=com_content&view=article&id=162&
Itemid=243&lang=it. Accessed: 2 January 2017.
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representations corresponds to a specific movement of the four right triangles. In
contrast to the graphical representations, the ability to view these representations
simultaneously is not possible when manipulating M1.

The usage scheme of this mathematical machine is quite simple: shift the
prisms-triangles into the frame, without raising them from the base and without
overlapping them (this condition is evident because of the height of the prisms).

The mathematical meanings embedded in this artifact are: geometrical figures as
the right triangle and square, area and equivalence of area by addition/subtraction of
congruent parts. The mathematical machine itself fosters the hypothesis of the
theorem since it shows squares and right triangles. We are aware that M1 involves
3D figures, while the statements (and the theorem above) all concern 2D figures.
Nevertheless, we make the assumption that students’ attention will be paid to 2D
shapes because of the movement of the wooden pieces on the red square.

Two tasks are proposed: (1) in the square frame, place the prisms-triangles for
obtaining square hole(s) (squares as figures in the background with respect to the
triangles); (2) pass to a configuration to the other one (Fig. 11.3b, c). The task
(1) involves geometrical figures that should be familiar to lower secondary school,
as squares and triangles. Task (2) is based on the previous one. Another task
involving the invariance of area can be proposed, for instance looking for several
configurations of prisms-triangles on the frame and comparing the area of the holes.
But this is not interesting for our purpose. The movement of the prisms is bound by
the frame, which ensures the invariance of the sum of the areas of the
prisms-triangles and the square holes or, in other words, the invariance of the area
of the squares, whatever it is. For students, the movement with the same pieces in
different configurations could evoke other manipulations, as Tangram puzzle. In
each task, the students can recognize the squares on the legs or on the hypotenuse of
the right triangles.

According to the analysis of the semiotic potential, we make the hypothesis that
M1 can support a geometrical approach to the theorem and an informal proof
leading to a formal one, according to Sinclair et al. (2012).

In the mathematical machine M2 as for in M1, there are two configurations
(Fig. 11.4 on the left and in the center). The usage scheme of M2 is turning the
crank placed on the middle of a side. When acting, M2 passes from one configu-
ration to another. The two possible tasks are: (1) switching the configurations,
(2) comparing the configurations. There are no other manipulations possible for the
students, not even changing the lengths of the sides of the triangles.

M2 evokes the mathematical meanings of right triangles, square (above all,
squares on legs and hypotenuse), but also perpendicularity, reflection, central
symmetry, bisector and the criteria for congruence of triangles. The task (2) requires
identifying the figures inside the hexagonal hole that change their sides in the two
configurations because of the elastics. For instance, the hypotenuse of the upper
triangle in Fig. 11.4a is transformed into a segment whose length is equal to the
sum of the length of the legs; or a leg becomes the side of a square. Even if all the
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triangles appear congruent, this congruence cannot be verified by superposition of
components (as in M1), but by measuring sides and angles and referring to the
criteria for congruence of triangles.

Based on these analyses, we have chosen to propose to use M1 first in our
experiment. We also ask students to reproduce 1:1 M1 on paper (four triangles and
base square corresponding to the interior of the frame) and cut the triangles. This
choice is due to the fact that there is one wooden model for the classroom and small
groups have to be proposed with the same kind of artifact (following the didactic
cycle, Sect. 11.3.1). In such a way, the students are supposed to construct a new
artifact, that we call M1-paper.

Then, we want to pay attention to the two elements that characterize the semiotic
potential of the reproduction of M1: the negligible thickness for all the components
of the M1-paper and the lack of the frame. The first element can force the students
to transfer constraints of the manipulation of M1, because they have to check that
the triangles do not overlap. The material constraint of M1 should become explicit
for the corresponding usage scheme for M1-paper. The second element can help to
make evident the range of the movement of the right triangles on the square base:
they have to remain inside the base square. And this is an usage scheme for
M1-paper.

11.5.2 The Design of the Teaching Experiment

According to the theoretical frameworks within the mathematics laboratory
methodology, activities for students are organized in didactic cycles (Sect. 11.3.1),
consisting of small group work (GW), individual activities (IW), and collective
mathematical discussions (CW). They correspond to the three phases A, B and C
below.

Phase A concerns the work on M1 and M1-paper until the formulation of the
theorem (9 h):

(1) GW: Exploration of the first mathematical machine M1 (Fig. 11.3);
(2) CW: sharing of the description of the M1;
(3) GW: construction of the M1 by paper;
(4) GW: study of the possible configurations of the four triangles of M1;
(5) IW: representation of M1 on workbook;
(6) CW: identification of relationships (invariants) between the components of M1/

M1-paper.

Phase B deals with historical aspects and generalization of the theorem (3 h):

(7) History of the Pythagorean theorem and Pythagorean triples;
(8) GW: Generalization of the theorem by different puzzles.

214 M. Maschietto



Phase C proposes the exploration of M2 (4 h):

(9) CW: Exploration of the second mathematical machine M2 (Fig. 11.4);
(10) GW: Preparation of posters of the two mathematical machines.

The a priori analysis of these three phases points out some relevant
considerations.

The two mathematical machines are proposed in two different phases, or didactic
cycles, with two different aims. M1 is used to introduce the Pythagorean theorem to
7-grade students who have not yet met it, while M2 is proposed to the same
students at the end of a teaching path when they have already dealt with the
theorem.

In the collective discussion at the end of Phase A, the formulation of the rela-
tionship between areas is a crucial point. Depending on students’ available
knowledge, it could be based on (1) writing an algebraic treatment of the areas of
the squares on legs and hypotenuse, or (2) other situations of equivalence of areas,
as in the Tangram puzzle.

The mathematics laboratory, as it has been presented before, strongly demands
students’ involvement not only during the group work with the machines, but also
during the collective discussion in which the explorations are shared and collective
texts are written. In this, argumentation and proving processes are requested.
Research on argumentation and proof (Hoyles & Healy, 2007) highlights students’
difficulties that are taken into account in the a priori analysis.

The teaching experiments started in 2013, and have involved six Italian classes of
13-years old students (n = 135) and two teachers.11 In this paper, we consider the data
from two classes and a teacher. The analysis is carried out on students’ worksheets,
videos and photos of the two classes, and IWB files made during classes.

11.6 Results

In this section, we analyze Phase A and Phase C.

11.6.1 Phase A, Steps 1 and 2. Work with the Material
Artifact in Small Group and Collective Description

During the first two steps, the students worked in small groups and were given the
task of describing the machine M1 and deciding on the elements useful for its

11They regularly follow the methodology of mathematics laboratory with their classes and take
part of the research team of mathematics education at the Laboratory of Mathematical Machines at
the University of Modena and Reggio Emilia.
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reproduction with colored paper (for instance, the types of triangles, the length of
the sides). After the exploration of M1, the collective discussion enabled students to
share their explorations and to agree on a written description of the machine. At the
end, the students agreed on a collective description for M1 in which the right
triangles were identified as congruent and equivalent, as well as on which kinds of
figures can be obtained with the triangles. They also made conjectures about the use
of M1; for instance:

[2C] It might serve for the equidecomposability principle, composition of different shapes
(rectangle, parallelogram, isosceles trapezoid, rhombus, isosceles triangle, deltoid, some
[figures] go out of the base), movement of figures and dynamic geometry. As in Tangram
the shapes composed of 4 pieces all have the same area (they are equivalent).

[2D] The machine could be used to build equivalent geometric forms, to calculate the area
or the perimeter, to think, and to make calculations.

Students’ descriptions of M1 contained their personal meanings that the
exploration of the machine evoked. This corresponds to our analysis of the semiotic
potential, that is, a link is created between the artifact and students’ knowledge.
Students’ description of M1 also contained relevant elements for approaching the
Pythagorean theorem, as Tangram puzzle and the idea of ‘same area’. Finally,
students’ descriptions show their effort to use a geometrical language. We note that
it concerns 2D figures, even if the students act on 3D shapes. This confirms the
assumption of the a priori analysis at Sect. 11.5.1.

In his instrumental orchestration, the teacher decides two didactical configura-
tions: the first configuration with M1 and paper and pencil, the second configuration
with the IWB. In the latter, he used the IWB to collect students’ descriptions and
write the shared presentation of M1. The IWB, available in the classes, represents
an added value with respect to a non-technology classroom under different ele-
ments. The first element is that all the descriptions can be written (using a word
processor) and shown to all the students. This means that those descriptions, with
their artifact signs and mathematical terms, are shared not only by reading them. In
such a way, the teacher fosters to compare and/or contrast them. The second ele-
ment is that the space for writing in the IWB is wider than in the blackboard; the
teacher inserts new text within the text already written also using different colors to
emphasize correct or wrong sentences.

11.6.2 Phase A, Steps 3 and 4. Construction and Work
with M1-Paper

The students easily obtained the reproduction in scale 1:1 by measuring and using
tools for drawing (above all, rules and sets square). After this, the students had to
fill in a worksheet with the properties of the two figures, square and right triangle,
constituting the machine.
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The manipulation of this new paper machine is guided by the task of looking for
“square holes”. This task requires applying the usage schemes of M1-paper: the
triangles must remain in the big square (Fig. 11.5 on the left) and do not overlap
each other (Fig. 11.5 on the right).

During the students’ work, the configuration with the two square holes (Fig. 11.6
on the left) often appeared before the configuration with the square, which alone
demanded more time (Fig. 11.6 on the right). This could be due to the fact that the
sides of the square are not parallel to the side of the square frame, but also to the
shared meaning of compositions offigures. In Step 1, the students had composed two
prisms-triangles and obtained a rectangle, as in Fig. 11.6 (on the right). In general,
they did not consider the prisms-triangle separately inside the frame; only a group
wrote about the second configuration in the description of Step 1.

Fig. 11.5 Incorrect configurations by manipulating M1-paper

Fig. 11.6 The two configurations by M1-paper
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11.6.3 Phase A, Step 4. Individual Work for Representing
the Two Configurations with Paper and Pencil

The passage from the manipulation of the artifact (Steps 1–3) to graphic repre-
sentation on the workbook takes into account other relationships between the ele-
ments of the machine. Although the students had correctly described the
congruence of the four triangles, in the representation in the workbook several
students drew right triangles, not all congruent (Fig. 11.7). In actual fact, the review
of all the representations shows that an important invariant (the side of the square
base is equal to the sum of the two legs of the machine) is not usually taken into
account by the students. When the drawings were not correct, the teacher shared
and discussed the wrong representations.

The didactical configuration contains students’ drawings, a camera, IWB and
M1. The teacher took pictures of some drawings and showed them by the IWB
in the collective discussion. In his exploitation mode, he performed an important
step: he used students’ drawing as pivot signs. The drawings can be considered
as artifacts signs, if they are seen from a global and holistic point of view, but
the drawings of the two configurations of M1 are required to represent the
invariant of the machine. By the IWB, the teacher planned a checklist with the
geometrical properties of the components of the machine that had been shared in
the previous discussion for comparing the different representations. Considering
the drawings by the IWB and comparing them with M1 fosters correct
representations.

The analysis shows the exploration of M1 carried out by the students is not
enough for the emergence of mathematical meanings embedded in the machine and
confirms the role of the teacher as mediator.

Fig. 11.7 Students’ representations of the M1 on their workbooks
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11.6.4 Phase A, Step 6. Collective Discussion with IWB

In the collective discussion the teacher took into account the passage from acting on
the machine (both wooden and paper) to identify properties and relationships
between the two configurations. The machine M1 is represented on the IWB by a
photo. This passage is crucial.

Five moments are identified in this discussion. First, the students reproduced M1
on IWB starting from a picture of the configuration with two squares. Secondly, the
teacher supported students’ argumentations on the geometrical properties of the two
holes: they are two squares and they are constructed on the two legs of the right
triangle. Then, the students passed from that configuration to the other one and
made argumentations on the right angles of the hole. In the fifth and last moment,
the two configurations were compared.

In the first moment, after reproducing M1 from a picture (Fig. 11.8a) using
“duplicator of figures” (available by the IWB software) for the congruent right
triangles, the teacher wrote the known components of M1 below the picture
(Fig. 11.8b). The instrumental orchestration with the IWB supported this discus-
sion, enabling a new collective manipulation of the machine.

Then, the students started to answer the question asked by the teacher “Are you
sure the two holes are squares?”. This is a question pivot between an instrumental
and perceptive result and the geometrical property of the holes. The task of Step 3
to look for square holes is based on a perceptive control, which guides the
manipulation of M1 and supports the representations of the two configurations.
Even if the drawings made by the students in Step 4 confirms the kind of shape of
the holes, the justification of those results has not been considered and shared at that
moment. For using the expression “the squares on legs and hypotenuse”, it needs to
be sure that the figures are squares.

Fig. 11.8 First moment
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By the teacher’s orchestrations, the IWB became the place for sharing ideas and
constructing the justification of what was performed with M1. These orchestrations
were based on the teacher’s practice and on his use of the IWB as instrument during
mathematical lessons, for himself and the students. When this teaching experiment
was performed, the students had already started their instrumental genesis con-
cerning the IWB.

In the third moment, the students passed from that configuration to the other one
by dragging the right triangles as they made with the material machine (Fig. 11.9).

In the fourth moment, the students were faced with the square on the hypotenuse.
This second argumentation process is strongly supported by what happened in the
second moment.

In the last moment of Step 6, the teacher put together the two configurations
(Fig. 11.10) and supported the comparison of the holes.

The use of IWB allows for the merging of the mathematical machine and its
geometrical drawings, paying attention to the sides of the three red squares
(Fig. 11.10). The screenshot of the IWB (Fig. 11.10) seems not very different from
Fig. 11.1, but in our case it is the final point of the exploring and formulating
processes. The standard representation of the Pythagorean theorem was drawn after
this moment. The collective use of the digital machine allowed students to link the
manipulation of the triangles to the manipulation of Tangram pieces (Fig. 11.10),
which had been evoked at the beginning of the activities. In this way, the con-
servation of the areas of the holes is emphasized. The Pythagorean theorem
becomes a particular case of equivalence of areas.

The last element is the numerical interpretation of the relationship between areas,
leading to a formulation as “square of the legs and hypotenuse” (Sinclair et al., 2012).

Fig. 11.9 Third moment: the passage from a configuration to the other one

Fig. 11.10 Fifth moment

220 M. Maschietto



11.6.5 Phase C

In this phase, the second mathematical machine was introduced in the classroom. It
was explored in a collective session. By the use of ruler and sets square, the
students identified the right triangles and the squares in the two configurations. In
particular, the triangles are verified congruent by measuring their sides. The stu-
dents quickly linked this machine to the Pythagorean theorem.

As for M1, the graphical representation of M2 by paper and pencil was not
simple at all for the students. With respect to Step 4, the teacher did not revise the
representations, keeping them as holistic drawings of the machine. But he supported
the argumentation of the equivalence of the two configurations, in which the
attention was paid to the hexagonal holes (true holes in this case).

The manipulation of M1, M2 and their graphical representations suggested a
graphical treatment allowing two students to show the relationship between the M1
and M2. This aspect was not considered in our a priori analysis. The students drew
the two configurations of M1 and deleted four sides in one figure (in the bottom in
Fig. 11.11a)

1 S: In this figure too [Fig. 11.11a he indicates the figure on the top], we delete these two
triangles (Fig. 11.11b, at the top).

2 S: We obtain the figure (Fig. 11.11c)

The teaching experiment ended with small group work for preparing posters for
the two mathematical machines. Those posters were exposed during an exhibition
in the school, in which the students presented the machines and the theorem to
parents and visitors.

11.7 Conclusion and Discussion

In this teaching experiment, the use of different tools is related to specific steps of
the didactic cycles implemented within the methodology of mathematics laboratory.

Fig. 11.11 From M1 to M2
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The first research question about if and how the Pythagorean theorem can be
approached by using material and digital tools has been partially addressed.

The first element concerns the link between the planned tasks and students’
personal meanings, as required by the definition of semiotic potential. More pre-
cisely, students’ answers confirm that tasks in Step 1–3 were accessible; for
instance, they show recognition of shapes and use geometrical language in the
description of the machine. In the same sense, the task of looking for squared holes
involves students, and in particular it is based on a global and perceptive appre-
hension of the machine, fostering a perceptive control of the action. All these
elements constitute tasks in which the students know what they have to obtain, but
they do not know how to reach the result. I think that this is a strong element in
defining the link between artifact and personal meanings. The passage from this
perceptive level to a geometrical justification, that is, a link between artifact and
mathematical meaning, is taken into account by the teacher in the collective dis-
cussion at Step 6. The second relevant link corresponds to the reference to Tangram
puzzle and equivalence of areas. It is already present in some students’ description
at Step 1 and can appear in the work by task 2. But there the students were not
asked to look for the invariant of the two configurations. In our analysis that
meaning could be less strong that the previous one, or form a different perspective,
a meaning for few students. Nevertheless, it becomes relevant to include it as a part
of the collective discussion. If that link to Tangram puzzle manipulation does not
appear, it becomes a meaning to construct for the teacher, proposing the operation
of adding/subtracting areas also through symbolic writing with respect to the area of
square base. In any case, this work on areas makes the Pythagorean theorem a
particular case of experienced equivalence.

The tasks just discussed are also based on visualization, for the mathematical
machines and its representations with paper and pencil and by IWB. Referring to
Duval (2005), the representation of a machine results a relevant task for discussing
about its geometrical properties and support the passage from holistic drawings to
geometrical drawings. In terms of TMS, students’ drawings can be used as pivot
signs for this passage. In addition, the comparison of drawings contains the germ of
generalization for any right triangle.

The analysis shows that behind the kinesthetic experience with the machine, there
are important cognitive processes such as the identification of invariants, relation-
ships between the components and usage schemes. The relationship, that is not
foreseen in our a priori analysis between M1 and M2, proposed by some students
highlights the potential of rearranging pieces for equivalent figures (Sinclair et al.,
2012) and confirms the relevance of the choices for the didactical path.

On the second research question about instrumental orchestrations by the tea-
cher, the use of the IWB plays a crucial role during the collective discussions. The
IWB is an instrument orchestrated by the teacher, but also used by the students who
can perform actions close to the manipulation of the machine. It not only allows the
students to manipulate the represented machine, but also allows the teacher to
reproduce some components in order to support the argumentation process. In this
way, the use of IWB also supports students’ visualization and this represents a
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dynamic dimension with respect to students’ personal drawings using paper and
pencil. When the machine and its movement are simulated in the IWB, a link
between the two technologies is performed for both students and teacher. Following
Drijvers, then, we could say this case refers to the third didactical functionality of
ICT. But this functionality seems to be based on the fact that IWB is already an
instrument for the students, that is, its instrumental genesis has already occurred.
Furthermore, it has to be taken into account by the teacher in his teaching practice.
The role of the IWB in the collective work should be more studied within the
framework of the semiotic mediation. In the classrooms, other instruments were
used only by the teacher, such as a videocamera and a camera for taking pictures to
show at IWB, but there are also instruments used only by the students such as paper
and pencil, M1 and M1-paper.

In this work, the choice of the artifacts, and, in particular, their introduction in
specific moments of the teaching path are also part of teacher’s instrumental
orchestration, corresponding to didactical configurations and exploitation modes,
related to the identification of didactical functionalities of the artifacts. The first
mathematical machine is used at the beginning, with a strong emphasis on
manipulation of its components and its description. The second proposes another
proof of the theorem and fosters the identification of its components. In the di-
dactical configuration, we should also consider the other artifacts that could be
available in the classroom, as the paper models. The proposition of two different
mathematical machines in two different phases of the teaching experiment suggests
that it is necessary to distinguish the way in which an artifact can be used by the
teacher, introducing the idea of “didactical use”. The ‘didactical’ use of an artifact
depends on its semiotic potential (in which students’ personal meanings are con-
sidered), teacher’s goals for students’ learning and, finally, by the didactical cycle in
which the artifact is introduced. The didactical uses can be: (i) to explore a new
property or meanings (in this case by M1), (ii) to assess students’ processes and
knowledge (in this case by M2). The choice of a didactical use influences the kinds
of questions asked to students and expected answers. This is an idea that needs
further discussion. We have not analyzed other relationships between the two
mathematical machines.

The analysis of this teaching experiment allows to propose the idea of a learning
environment composed by different kinds of tools, material and digital, in which
students are involved in several tasks and activities with those tools and teacher
performs different instrumental orchestrations. We would use the expression of
“composite learning environment” for it and deeps the discussion on its features,
potentialities and limitations. And this represents an element that needs further
research.

This work opens the perspective of further investigation on cognitive processes
concerning the use of the mathematical machines and their graphical representa-
tions with the geometrical properties embedded in the material machines. The work
on graphical representations at Step 4 seems to be consistent with the construction
of figural concepts (Mariotti, 2005), in which the visual aspects are dominant at the
beginning but then formal constraints become more relevant. It pays attention to
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what could be implicit in the exploration and manipulation of material tools in
mathematics education. In our opinion, this teaching path can also give new
insights on the visual proofs of the Pythagorean theorem.
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Chapter 12
Communication When Learning
and Teaching Mathematics
with Technology

Lynda Ball and Bärbel Barzel

Abstract In this chapter the role of technology in supporting interactions between
students, between students and teachers and between students and technology is
investigated. The way that interactions in the presence of technology support the
development of different types of mathematical knowledge—conceptual, proce-
dural and metacognitive knowledge—is also considered. These considerations led
to our investigation of different types of technology specific to mathematics edu-
cation and the type of communication supported by these technologies. We
developed the distinction between ‘communication through technology’ (e.g.
through use of social networks to work collaboratively on problems), ‘communi-
cation with technology’ (e.g. syntax entry to obtain a result), and ‘communication
of technology displays’ (e.g. when technology displays are used as a stimulus for
communication). Opportunities for the development of students’ knowledge are
discussed from the perspectives of the different types of communication and col-
laboration enabled through the presence of technology in mathematics education.

Keywords Technology �Mathematics education �Communication with technology
Communication through technology � Communication of technology

12.1 Introduction

There has been considerable research, including research reviews, related to tech-
nology in mathematics education over the past few decades (e.g. Barzel, 2012;
Blume & Heid, 2008; Drijvers et al., 2016; Heid & Blume, 2008). With increasing
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access to technology, there are increased opportunities for pedagogical use of
technology (e.g. Pierce & Stacey, 2010) and these can motivate teachers’ reflection
on teaching and learning. These increased pedagogical opportunities will require
teachers to rethink their personal pedagogical practices, as the process of instru-
mental genesis in integrating technology in students’ individual learning trajectories
is manifold and complex (Guin & Trouche, 1999; Trouche & Drijvers, 2014). In
this chapter, we use the lens of communication and interaction to improve our
understanding of the complexity of teaching and learning with technology, as
students’ learning of mathematics can be shaped through language and communi-
cation (Steinbring, 2015).

Classroom dialogues around use of technology will evolve as pedagogical
opportunities become accessible and as teachers become aware of these opportu-
nities through professional development (PD), professional reading and experience.
In addition, there will be possibilities for collaboration and communication beyond
the classroom as the potential of technology is harnessed, resulting in mathematics
education becoming accessible to more students and teachers through
distance-education, online interactions and social media. To prepare teachers for the
challenges posed by new opportunities it is imperative to understand the influence
of communication on development of students’ conceptual, procedural and
metacognitive knowledge.

12.2 Theoretical Background

In this section, we provide the theoretical background concerning communication
and technology to provide insight into the role of technology in communication in
the teaching and learning of school mathematics.

12.2.1 Communication in Mathematics Education

Communication is a crucial aspect in students’ learning to develop mathematical
knowledge (e.g. Mueller, Yankelewitz, & Maher, 2012). Steinbring (2015) noted
“Students’ learning of mathematics in teaching processes is enclosed in language
and communication” (p. 282), indicating that all sorts of communicative actions—
speaking, depicting and gesturing—are included in a meaningful exchange.
Following the core idea of enactivism and embodied cognition, any intelligent
behavior and cognition can only be developed by interaction between the “complete
agent” and its environment (Maturana & Varela, 2009; Goodchild, 2014). A big
challenge in the frame of mathematical environments is that mathematics is abstract
and not directly accessible by senses. Therefore, Duval (2000) points out “The only
way gaining access to them [i.e. the mathematical objects] is using signs, words or
symbols, expressions or drawings.” (p. 61). Signs and symbols do not have a
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meaning on their own but instead this meaning must be produced by the learners
themselves using objects of reference or reference contexts (Steinbring, 2009). The
signs refer at the same time to a certain content and mathematical knowledge. The
interplay between objects of reference, the concept and the signs are represented in
the epistemological triangle (Steinbring, 2009) to model the construction of
mathematical knowledge during an interaction—and a sequence of such triangles
connected to each other cover the whole process of interactions and learning. This
triangle serves as a model for any interaction in the frame of a mathematical
environment—either to promote conceptual knowledge by initiating activities like
investigating, structuring and categorizing of mathematical objects or to develop
procedural knowledge. For both, the observed interplay between signs, concepts
and reference contexts helps teachers and researchers to understand how learning
occurs.

There has been extensive research related to communication in mathematics
education, with one focus on the development of sociomathematical norms in
classrooms (e.g. Yackel, 2002). Finding an acceptable justification for the solution
to a problem or finding a convincing and correct argumentation for a mathematical
relationship are examples of activities which strongly require an exchange of ideas,
thoughts and knowledge. These kinds of classroom interactions were observed
between primary students, as they discussed their reasoning when solving mathe-
matics problems (Yackel & Cobb, 1996). These interactions clearly contributed to
the students’ development of an understanding about what was considered to be an
acceptable justification for the solution to a mathematical problem. The work of
Yackel and colleagues serves to highlight the important role of communication in
the mathematics classroom.

Types of mathematical environments with regards to different social settings
were a focus of a review of research on interactive learning in mathematics edu-
cation. Kahveci and Imamoglu (2007) investigated the role of different types of
interactions (such as classroom interactions, small group interactions and interac-
tions with technology) on mathematical learning. The studies examined provided
examples of interactions that enhanced higher order mathematical skills (such as
mathematical reasoning, self-regulation and metacognition). Improvement of such
skills requires students to communicate mathematically, hence interaction with
peers, teachers or communication through technology.

To use technology for effective collaboration and communication in mathe-
matics classrooms it is necessary to consider the role of technology in the episte-
mological process developing mathematical knowledge. Given the broad range of
technologies available in classrooms currently, there is impetus to consider how
technology can be utilized to promote conceptual, procedural, and metacognitive
knowledge.
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12.2.2 Technology in Mathematics Education

There are two types of technologies to be considered in the development of
mathematical knowledge, namely general-purpose technologies and
specific-purpose technologies (Drijvers, Barzel, Maschietto, & Trouche, 2006).
A general-purpose technology for use in mathematics education has broad appli-
cability across a range of lessons and mathematical topics (i.e. mathematical soft-
ware such as a computer algebra system, spreadsheet, geometry package or
dynamic statistics package). A specific-purpose technology for use in mathematics
education, such as an applet, could target scaffolding of a procedure (e.g. a virtual
balance model for supporting ‘do the same to both sides’ when solving linear
equations) or support development of a particular concept (e.g. zooming in on a
virtual number line to show that between any two numbers you can always find
another number—the concept of decimal density). There is a substantial difference
in the affordances of a technology that allows integration over time in different
topics compared to one focused on one or two specific lessons. There is also an
additional consideration and this is concerned with teachers’ knowledge of syntax
and their familiarity with the technology. For specific purpose technologies, there
will be a need for teachers to learn how to use the technology each time a new
technology is encountered, even though they are often designed to be intuitive. For
a general-purpose technology, a teacher often knows the syntax of the technology,
or is at least familiar with aspects of syntax, so the focus can be on how to utilize a
familiar technology for a particular pedagogical purpose, rather than learning how
to use a new technology. Both types of technology, specific-purpose and
general-purpose, have important roles in the mathematics classroom and both can
drive communication and collaboration. The role of these types of technologies in
fostering communication and collaboration will be discussed later in this chapter.

In addition to specific-purpose and general-purpose technologies for teaching
and learning mathematics, there are a range of general online communication
technologies (e.g. virtual worlds, audience response systems, social networking
software, etc.) and offline communication technologies (e.g. data projector, inter-
active whiteboards, powerpoint); these communication technologies support inter-
actions between students, and between students and teachers, both inside and
outside the classroom.

In many countries, there has been, and continues to be, a focus on the use of
offline technologies for teaching and learning mathematics; these can include
specific-purpose, general-purpose and communication technologies. Offline tech-
nologies are available on a range of devices including handheld (such as graphic or
CAS calculators, tablets or laptops), desktop computers or interactive whiteboards.
When technologies don’t require an internet connection this means that teachers
and students can use the technology in a range of classrooms across a year (or
longer) and the technology can be available for classwork, homework (if the student
has the appropriate handheld device or software or app) and assessment. Given that
online networks and internet access are still not stable in all regions of some
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countries, offline technology is currently still an important option to enable inte-
gration of technology in mathematics classrooms. The mathematical software
available for offline technologies and online technologies can enable similar ped-
agogical opportunities for teaching in a mathematics classroom due to the ability for
material to be shared. Offline technologies can also support classroom connectivity
between a teacher and students or between students by creating a local area network
(e.g. Clark-Wilson, 2010a) or simply by displaying a screen (e.g. through use of a
data projector or smartboard), thus enabling public display of mathematical work of
the teacher or a student, or collection and display of results from different students,
or using quick polls with an audience response technology. In addition, there are a
range of online options for sharing material and these technologies have the
additional affordance that information can be shared outside the physical classroom.
For example, Symons and Pierce (2015) studied the type of talk used by year 5
students who participated in online collaborative problem solving. According to the
specific orchestration and design of the classroom, technology can foster commu-
nication and collaboration when students share screens and observe the work of
peers or a teacher (Drijvers, Monaghan, Thomas, & Trouche, 2015; Goos et al.,
2009).

Online access becomes crucial in situations where it is necessary to exchange
data with the outside world, for example, when downloading a dataset from the web
for analysis (for example, when using dynamic statistics), or working collabora-
tively on problem solving or modeling tasks using synchronous online media
together with people who are not collocated. We anticipate that the problem of
well-established online access will decrease with time, but currently it provides a
need to consider both online and offline technologies.

12.2.3 Communication and Technology

All the above-mentioned types of technology (specific-purpose technologies,
general-purpose technologies and general communication technologies) have an
influence on communication when learning and teaching mathematics inside and
outside the classroom as all of them foster specific cognitive activities in the process
of learning and understanding mathematics.

A benefit of using general communication technology was also reported by
Roschelle et al. (2010), who found that students in their study using a technology that
provided group feedback were more likely to discuss their mathematical work (in this
case examples related to fractions) than students in a control groupwithout technology.

Pierce and Stacey (2010) provide information about the range of pedagogical
opportunities available in the presence of mathematical analysis software (MAS), a
general-purpose technology which integrates CAS features, statistics, graphing and
dynamic geometry. The authors highlight the ability to use MAS to promote,
among other things, cognitive activities in the classroom that foster communication
like discussing, explaining, structuring and classifying. It is possible to use
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technology displays as a prompt for inquiry learning (Fuglestad, 2009) and class
discussions, to use multiple representations (e.g. symbolic, graphical, numerical and
dynamic visualisations) to deepen students’ understanding, and to scaffold students’
learning of procedures through the availability of automatic performance of routine
procedures. These approaches can support the development of either conceptual
understanding or procedural knowledge and extend the range of task formats
possible, for example pattern finding when different graphs or expressions are
generated by the technology (e.g. Barzel, 2012). Ainley, Bills, and Wilson (2005)
reported use of a spreadsheet to develop students’ understanding of the meaning of
a variable, thus using technology to support development of conceptual under-
standing. Vincent, Chick, and McCrae (2005) reported two year 8 students who
used pre-made Cabri models to explore virtual representations of real situations and
to support argumentation. The ability to collect data from many cases led to
cooperative development of conjecture and proof.

Besides these examples with general-purpose technologies you can also find
examples of specific-purpose technologies which foster communication as these
technologies quite often are constructed to give a certain stimulus to initiate the
learning of a certain mathematical idea or they provide a dynamic visualization for
exploration. An example is the virtual base-10 blocks available through sites such
as National Library of Virtual Manipulatives (http://nlvm.usu.edu). Virtual base-10
blocks is a dynamic visualization to support the development of conceptual
knowledge of regrouping, when dealing with whole numbers. The ability to use
multiple representations with technology may contribute to students’ ability to think
flexibly (Reimer & Moyer, 2005), which in turn can provide a stimulus for
exploring mathematics to develop understanding.

The purpose of communication is an important consideration when working with
technology. For different people, there will be different purposes for communica-
tion; teachers may want to provide written examples that give exemplars for solving
problems, while using verbal communication to pose questions to students to check
their mathematical understanding. Students may work alone, in pairs or in groups,
with a technology, to explore mathematical situations and use verbal communica-
tion to make sense of technology displays and to find some structure in the results
through their explanations. There are a multitude of possibilities for the ways in
which communication can occur in the mathematics classroom and the ways that
technology can influence the nature of communication.

12.3 Communication Through, With and Of Technology

The interest of this study was to gain deeper understanding of how the different
types of technology influence communication in the classroom. For this we
investigated the type of cognitive activities which are supported by the different
types of technology in the development of mathematical knowledge. The following
questions directed our study:
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• What role does technology play with respect to communication when learning
mathematics, in the interaction between students, between students and teachers
and between students and technology?

• How do these interactions in the presence of technology support the develop-
ment of the different types of mathematical knowledge: conceptual, procedural
and metacognitive?

To investigate these questions, we surveyed the literature, and drew on experi-
ences from Australia and Germany in the integration of technology into curriculum.

The result of our investigation is that communication in the presence of tech-
nology can be categorized as communication through technology, with technology
or of technology displays. These three aspects reflect the different ways that
communication occurs in a classroom with access to technology and increasingly
between individuals outside the classroom (e.g. in virtual worlds or through social
networking).

• Communication through technology involves use of technology to support
face-to-face communication or communication between students and/or teachers
who are not in the same location.

• Communication with technology considers the entry of syntax, selection of
menu items, programming or any command that drives the technology to pro-
duce a display. This communication is, for example, through key strokes, by
touching a screen, using gestures to move objects on the screen, or by providing
verbal commands.

• Communication of technology displays is evident when a technology display is
a stimulus for discussion. This discussion could occur in a range of contexts, for
example, through two students’ consideration of one shared screen or through
public display of student work via technology such as an interactive whiteboard
or a data projector.

Consideration of these three aspects of technology and associated communica-
tion is important to gain insight into potential affordances and constraints of any
technology. Although we distinguish between these three roles for technology, we
are cognizant of the fact that these do not occur in isolation. It is likely that two or
three aspects of communication may occur simultaneously while using technology
in mathematics classes. For example, when entering syntax (communicating with
technology) there can be interpretation of the correctness of the entry (communi-
cation of technology displays). The inability to separate these two roles in real
classrooms is alluded to by Schneider (2002) and Peschek (2007) who suggest that
when working with technology (CAS in their case) students will view the CAS as
the ‘expert’. Peschek (2007) argues that precise communication (i.e. entry of
syntax, etc.) is required when viewing technology as an expert (to communicate
with the expert), as well as a need to interpret the information provided by the
‘expert’ (i.e. to understand the display of the technology). These comments serve to
highlight the ideas of communication with and of technology. The notion of a
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technology as an ‘expert’ suggested an interplay between these two roles in the
development of mathematical understanding.

It is important to identify the cognitive activities supported by technology that
lead to improved learning for students and use this to guide utilization of tech-
nology in classroom interactions. Woo and Reeves (2006) suggest that in order to
design activities to facilitate effective interaction within web-based learning envi-
ronments it is first important to understand the nature of interaction in the presence
of technology. The mere presence of technology does not guarantee good teaching
and deep learning. To maximize the chance that technology does positively impact
student learning it is essential to investigate and understand how the interactions
enabled by access to technology can promote mathematics learning.

In the following sections; the influence of communication through, with and of
technology is elaborated and illustrated in terms of the contribution to the devel-
opment of conceptual, procedural and metacognitive knowledge.

12.3.1 Communication Through Technology

Communication through technology should be regarded on three geographical
levels. The first level describes the communication through technology inside the
classroom enabled through display technologies or linked devices to share screens.
This allows the screens to be an object of reference (i.e. mathematical results
produced by students or the teacher) used as a stimulus for mathematical discussion
between teacher and students or between students. The second level is virtual
communication between students of one class taking place outside the classroom.
This is realized through technology opening avenues for discussion of mathematics
beyond the confines of the physical classroom, for example, when doing homework
collaboratively or supporting each other from home via general social networks or
specific school networks. In the third geographical level, social networks provide
opportunities for cross-cultural communication between mathematics classrooms
(e.g. Isoda, McCrae, & Stacey, 2006) from different places in the world showing
students that mathematics is learned and used internationally (e.g. Erasmus program
of the European Union).

On the first level, inside the classroom, communication through technology
occurs whenever a screen is shared to present mathematical objects and discuss
them. Guin and Trouche (1999) reported the positive nature of implementing the
classroom culture of having a ‘Sherpa student’ who uses the technology under the
guidance of the teacher by displaying his or her calculator screen for the whole class
(Trouche, 2004). Besides presenting one screen, which could also happen on a data
projector or more dynamically on an interactive whiteboard—networking programs
allow even more options which can influence the communication in the classroom.
For example, Clark-Wilson (2010a) investigated the potential of using a wireless
hub as a self-contained system where internet is not required. Calculators are
connected to enable a quick collection of classroom data through screen capture.
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In this case the technology can provide an aggregate of the class results to support a
meaningful mathematical classroom discourse. It also enables formative assessment
for current and future lessons by either running a quick poll of individual student
answers or by gaining insight into students’ understanding during discussions about
the technology displays. For example, a teacher could provide students with a photo
of a bridge which could be shared using a wireless hub. Students could be given the
task of finding a parabola to approximate the shape of the bridge. Screens from
multiple devices could be projected simultaneously and a class discussion could
follow about approaches used to produce given curves. The focus of the discussion
could be about placement of axes on the photo, choice of points, selection of the
quadratic form based on given information and how well the given curves fit the
shape of the bridge.

The key aspect of technology use here is the ability to display screens and share
files, questions and information relatively quickly (e.g. Muir, 2014) enabling more
time to be spent discussing the mathematics, prompted by the technological dis-
plays. Observation of the work of other students may encourage self-monitoring,
when students compare their own mathematics to that being displayed, thus sup-
porting metacognition and reflection.

There is still untapped potential in the harnessing of social networks, virtual
environments and other communication technologies to connect students who are
learning school mathematics together, but in different locations. When we consider
communication through technology, the nature of technology use changes how
students do, learn and think about mathematics; it has the potential to shift from
being an individual pursuit, where a student uses technology to learn or do math-
ematics by themselves, to a tool to promote collaboration and communication with
the potential to enrich mathematics for students.

12.3.2 Communication With Technology

We regard communication with technology as the ability of a student or teacher to
drive a technology (e.g. through syntax entry, or programming, or use of a touch
screen command). But is this a communication? The German sociologist Luhmann
(1994) does not classify an interaction with a machine (i.e. the ability to commu-
nicate with technology) as communication as it does not occur in a social system.
The underlying philosophy here is that communication must include moments of
information, utterance and understanding, so that each participant cannot predict or
control what is communicated, which is not the case when entering syntax or
driving a technology to perform a given task. But in alignment with Schneider
(2002) and Peschek (2007), who investigated students’ work with CAS and
regarded it as a communication with an “expert”, we would classify the commands
to make a technology produce a display as communication with technology.
Another example is the construction of a point of intersection in a geometrical
construction. In contrast to a paper-and pencil-construction it is necessary to specify
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the point as a “bounded” point based on the two lines rather than a “free” point.
These requirements of the technology can trigger reflections on the nature and the
dependencies of the different elements of the geometrical construction and by this
enhance understanding.

These examples show that even though there are more signs and symbols
referring to the specific commands to use the technology in an appropriate way, the
use of technology can have the benefit of supporting conceptual and procedural
knowledge.

In communicating with technology, there is a necessity to know the conventions
of the technology, aligned with the necessity for students to communicate with an
expert. Choice of appropriate commands and syntax to produce desired results may
deepen a student’s conceptual knowledge, for example, when working with a
graphing package students must think about the roles of letters in functions and
identify dependent and independent variables when letters other than x and y
appear. It is important to understand the different roles of letters in algebraic
expressions, functions or equations when entering commands to obtain results from
a computer algebra system. A specific example is the solving of an equation, such
as 2x + by = cy + 3. Students need to correctly enter the equation into CAS; noting
that in pen-and-paper mathematics there is implicit multiplication between two
letters, but in CAS (refer to the first two lines of Fig. 12.1) cy will be a two-letter
variable, with a different meaning to c � y. In Fig. 12.1, the first two lines show
that cy is treated differently to c � y (note that this is displayed as c�y, rather than
show c � y or cy). In this case the machine convention, where cy is a two-letter
variable, is different to pen-and-paper mathematics where two adjacent letters have
implicit multiplication unless stated otherwise; this stimulates discussion of the
meaning of the letters in an equation. A further consideration in communicating
with the machine is that students or teachers will need to indicate whether they are
solving for x, y, b or c when solving the equation, as it is possible to solve for any of

Fig. 12.1 Screen capture showing TI Nspire display for variables
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these unknown letters; again, this encourages students to consider the role of the
letters. Technology displays can prompt discussion of the different roles of letters in
algebraic expressions, functions or equations; this requires communication of
technology, in other words, discussion of the results of communication with tech-
nology. These types of communication rarely happen in isolation, as technology
users need to monitor their work with technology, through consideration of syntax,
conventions and reflection on technology results.

Correct choice of syntax or commands also enables procedures to be carried out
correctly, which supports procedural knowledge. In addition, the display produced
once commands or syntax is entered provides immediate feedback to students so
that they can be in control of their own work and monitor their work. In this way,
the communication with the technology includes personal interpretation of the
display to enable students to be able to continue to communicate with the tech-
nology and enter the next command or syntax. Finally, decisions about appropriate
features of technology for a given purpose and choice of syntax or commands can
promote reflection and mathematical discussion, thus supporting metacognition.

12.3.3 Communication Of Technology Displays

Hiebert and Carpenter (1992) highlight that it is important to help students build
mental models and internal representations of procedures that become part of larger
conceptual networks. For example, the use of an area model to support the
understanding of fraction multiplication (Lamon, 2012) may help students to
develop a mental model to support the learning of an algorithm for multiplication of
fractions. It is important to develop mental models and internal representations prior
to application of routine procedures to a range of problems. Students should be able
to carry out the steps required for given procedures and be able to decide on the
appropriateness of a procedure in a given context through awareness of conditions
for applicability of a procedure (Barzel, Leuders, Prediger, & Hußmann, 2013).

One means of building rich webs of relationships of mathematical phenomena is
through multiple representations of mathematical objects, which can be fostered by
using technology (Dick & Edwards, 2008). In many ways this can be considered to
be contributing to larger conceptual networks as students explore and make sense of
mathematical phenomena through the use of technological representations. Rezat
and Sträßer (2012) note the important role that technology takes in mediating
learning of mathematics in the classroom and we believe that discussion of tech-
nology displays is crucial in this regard. Communication of technology displays,
where students and students (or the teacher) consider the display of the technology
as a prompt for mathematical discussion, can foster students’ mathematical
knowledge. Conceptual knowledge can be supported by use of a technology display
as a stimulus for verbal communication about mathematical concepts. Some general
purpose technologies can be used to focus on specific skills or concepts. For
example, Fitzallen and Watson (2014) noted secondary students using Tinkerplots
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(https://www.tinkerplots.com/) to explore multiple representations in order to
deepen their understanding of statistics. A further example of use of technology to
promote conceptual understanding is when students learn about a variable as a
generalized number through use of a spreadsheet. As shown in Fig. 12.2, students
can use the spreadsheet to explore the option of generating values for a and 2a,
starting with whole numbers (1–7) then exploring increments of 0.5, followed by
increments of 0.1. The ability to quickly produce many values in a table (only a few
shown here) and the ease with which students can carry out their own exploration
and produce results to discuss can promote understanding of the meaning of a
variable.

In addition, a cell in a spreadsheet operates as a variable (see Fig. 12.3) when the
number in the cell (e.g. 2 in this case) is used in the formula in a second cell
(=A1 + 3 here), and as the number in cell A1 changes there is a resultant change in
cell B1. This ability to explore situations quickly with technology has provided
opportunities in the mathematics classroom (and outside the classroom) that were
not possible in pen-and-paper only classrooms.

Some specific-purpose technologies can also support the development of stu-
dents’ conceptual understanding. Use of these technologies will require students or
teachers to know the specific communication with the technology to obtain required
results, as well as the need to interpret the displays and recognize any constraints in
using the technology. For example, use of an applet, such as National Library of
Virtual Manipulatives (NLVM) base blocks (http://nlvm.usu.edu/en/nav/frames_
asid_152_g_1_t_1.html) for making and writing numbers can help students deepen
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Fig. 12.2 Investigating patterns in results to explore the concept of a variable

Fig. 12.3 A cell in a spreadsheet represents a variable
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their understanding of the base ten system. NLVM base blocks enables students or
teachers to move objects on the screen to represent specific numbers and then
combine or separate blocks in line with the base ten system. The students must
interpret the display provided, for example if the display shows twelve unit blocks
then the number ‘12’ will not be displayed until ten of the unit blocks are combined
to form 1 ten to give 1 ten and 2 units. This example highlights the interplay
between communication with and of technology, where interpretation/discussion of
a display can prompt syntax or choice of the next step with technology. The
provision of immediate feedback to students enables them to be in control of their
own work. Advantages in using technology to prompt discussion also occur in use
of dynamic geometry or dynamic applets, for example the exploration of dynamic
applets for Pythagoras’ theorem can provide a stimulus for discussion about links
between the theorem and the dynamic representation. The use and subsequent
interpretation of virtual manipulatives can strengthen students’ understanding of
geometric transformation (e.g. Gulkilik, 2016). In a study of third grade students it
was found that the use of virtual balances supported development of students’
relational thinking through multiple representations (Suh & Moyer, 2007). The
students in the study used the technology display showing step-by-step working to
support their explanations of their solution processes. Thus, the technology pro-
vided a prompt to support verbal reasoning about solutions, which in turn supports
procedural knowledge.

More generally, when doing constructions within a dynamic geometry package it
is important to follow a clear sequence of steps to take account of dependencies and
hierarchies within the program, to ensure that constructions are robust and maintain
their underlying structure when points are moved. Making these decisions about
commands to produce a given construction can foster the conceptual knowledge
behind procedures. This potential is also evident in other technologies.

Comparison of technology results to results obtained through pen-and-paper
work or mental strategies can prompt verbal communication of procedural
knowledge. This may occur when the technological result is in a different format to
that produced using pen-and-paper, for example, when a computer algebra system
reorders letters in an expression due to inbuilt conventions, or when an applet
produces an answer in a format different to expected; this can prompt discussion of
what the technology has done, treating the technology as a third party in the
classroom. For example an automatic simplification of an algebraic expression by a
CAS can be quite surprising for a student and discussion of why a given input and
output belong together can foster “algebraic insight” (Pierce & Stacey, 2004). In
this case an unexpected, surprising result given by the technology can foster
thinking, reflecting, discussion and maybe further understanding. These “hiccups”
(Clark-Wilson, 2010b), in other words, unexpected results, can occur for example
when working with a CAS or a Geometry package. Metacognition can also be
promoted as individuals work with technology, notice unexpected results and then
discuss and potentially rethink concepts/procedures as a result of discussion about
unexpected results (Barzel, 2006).
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Interactive media, such as programs that enable students to work together, can be
used to solve problems collaboratively, with students reflecting on and discussing
personal understanding as problems are solved. Through discussion of technology
here, metacognition can be promoted as students develop their personal under-
standing of mathematics through working with other students.

We believe that technology can contribute to development of mathematical
knowledge by promoting deeper understanding, scaffolding learning and by pro-
viding immediate feedback to students on their mathematical work. In addition to
feedback provided to students, with teachers having increased access to formative
assessment through technology there is the potential for teachers to target discus-
sion with students to provide impetus for metacognition through reflection.

12.4 Conclusion

Communication and collaboration with technology is multifaceted. A focus on
communication and collaboration enables reconsideration of ways to promote
development of conceptual, procedural and metacognitive knowledge. Consideration
of the communication fostered through, with and of technology is a useful construct
for analyzing and understanding the different roles of technology in teaching and
learning mathematics. Although we distinguish between the three different roles, in
reality technology use involves intertwining types of communication, as a technology
user is unlikely to enter syntax without simultaneously watching the technology
display and considering the result of the entry. It is important for teachers to consider
the role of technology use for different purposes in order to capitalize on the potential
affordances for teaching and learning in school mathematics.
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Chapter 13
Online Automated Assessment
and Student Learning: The PEPITE
Project in Elementary Algebra

Brigitte Grugeon-Allys, Françoise Chenevotot-Quentin, Julia Pilet
and Dominique Prévit

Abstract The automated digital diagnostic assessment presented in this paper con-
cerns the elementary algebra for students of secondary education (12–16 years) in
France. The paper addresses the design of tasks for the test “Pépite”, to favour students’
algebraic thinking. The selection of the tasks and the analysis of students’ responses are
based on an epistemological reference of the algebraic domain. The information pro-
vided by “Pepite” enables identification of students’ consistent reasoning and calcu-
lation and assists teachers’ planning for differentiated instruction for groups of students.
The paper reports some results on the integration of the tools in the usual teaching
practices and on students’ learning, based on trialling with a group of teachers.

Keywords Online automated assessment � Elementary algebra
Epistemological reference � Design tasks � Algebraic reasoning

13.1 Context of the Study

Diagnostic assessments are an important part of instructional decision-making and
support strategies of formative assessment for students’ learning (Wiliam &
Thompson, 2007). Usually, assessment results are generated from standardized and
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psychometric models. Studies highlight the strengths and limitations of such an
approach for making instructional decisions (Kettelin-Geller & Yovanoff, 2009).
One may rightfully ask oneself how a didactical approach would make it easy to
identify features of appropriate digital diagnostic assessment of, for and as learning.
Since the 1990s, our research team has developed multidisciplinary projects
(Delozanne, Prévit, Grugeon-Allys, & Chenevotot-Quentin, 2010; Grugeon-Allys,
Pilet, Chenevotot-Quentin, & Delozanne, 2012) concerning the design, develop-
ment and implementation of a digital diagnostic assessment tool, named “Pépite”,
that provides information for teachers to use to plan differentiated instruction for
groups of students. Pépite is relevant for learning elementary algebra for students in
middle/lower secondary grades (12–16 years old) in France. We have disseminated
it on platforms1 largely used by teachers and students.

Two research questions are considered. How could an epistemological study
support the design and the development of an appropriate digital diagnostic
assessment for learning elementary algebra in lower/middle secondary grades?
How should the results of this diagnostic assessment be used in a formative way to
support every day teaching of elementary algebra according to students’ learning
needs?

First, we present the theoretical foundations of diagnostic and formative
assessment. We specify it with Pépite assessment for grade 9th students in France
(14–15 years old). We characterize both the didactical model (test design, response
analysis, student’s profile) and the computer model that automatically generates
generic tasks, analyses students’ answers and provides descriptions of students’
profiles. Secondly, we describe how to use Pépite diagnostic assessment to plan
differentiated instruction for groups of students. We present both the didactical
model and the computer model of differentiated instruction according to learning
needs for groups of students and conclude with some results on the integration of
our tools in the usual teaching practices and on students’ learning. Finally, we
discuss the potentialities and limits of features of this digital assessment and
answers to the research questions.

13.2 The Theoretical and Methodological Framework

In the educational system, assessment is a complex issue. To identify the features of
appropriate diagnostic and formative assessment, we have chosen both a cognitive
and epistemological approach and an anthropological approach, whose potentiali-
ties are described in Grugeon-Allys, Pilet, Chenevotot-Quentin, and Delozanne
(2012).

1Pépite tools are available on LaboMep platform, developed by Sésamath, a French maths’
teachers association (http://www.labomep.net/) and on WIMS environment (an educational online
learning platform spanning learning from primary school to the university in many disciplines).
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13.2.1 Epistemological and Cognitive Approach

In order to assess students’ learning processes, we privilege an epistemological
point of view. Designing a test requires selecting a set of tasks that enables the
assessment to be realized. We agree with Vergnaud (1986) who stated, “Studying
learning of an isolated concept, or an isolated technique, has no sense” (p. 28).
Furthermore, Vergnaud introduced a strong assumption: dialectics between genesis
of a student’s knowledge and mathematical knowledge structure. Beyond a quan-
titative analysis of responses, we have to define a qualitative didactic analysis,
based on a collection of students’ responses to the tasks, to identify the type of
procedures and knowledge used by students in solving the tasks.

To provide descriptions of a student’s consistent reasoning related to their
conceptions, it is necessary to define a reference modelling the mathematical
competence, in a given mathematical field, while within the scope of a given school
grade.

13.2.2 Anthropological Approach

The cognitive approach is not sufficient in order to take into account the impact of
the institutional context on students’ learning. Indeed, the nature of mathematical
content depends on the institution with which we are dealing, as the institution
influences mathematical activity. According to the process of didactic transposition
(Chevallard, 2006), institutions involve different bodies of knowledge that do not
coincide: for instance, “scholar” knowledge produced by scholar mathematicians,
“knowledge to be taught” produced by the educational system, “taught knowledge”
implemented in classrooms by teachers, and “learnt knowledge” by students.

To study the process of didactic transposition, Chevallard (1999) analyses
mathematical activities in terms of praxeologies.2 Praxeology involves two opposite
blocks: the “practical block” or know-how and the “theoretical block” or knowl-
edge, used to describe and justify mathematical activities. More precisely, a prax-
eology is made of four components: type of tasks, techniques, technologies and
theories. The “practical block” contains a set of types of tasks and the techniques
used to solve these tasks. The “theoretical block” is made of a double-leveled
discourse: a discourse on the technique, named “technological discourse” or tech-
nology, developed in order to describe, explain what is done, and justify techniques
(properties, rules, logical arguments); theoretical discourse or theory that justify
“technological discourse”. Therefore, designing an assessment requires the identi-
fication of praxeologies that are representative of a mathematical field. It is the

2Praxeology originates from two Greek words praxis and logos.

13 Online Automated Assessment and Student Learning … 247



reason why we defined a praxeology of elementary algebra (Garcia, Gascon,
Higueras, & Bosch, 2006; Bosch, 2015). We analyze technological discourse used
by students to solve types of tasks in order to evaluate their mathematical activity.

13.2.3 Praxeology of Elementary Algebra

Praxeology of elementary algebra is based on results from the didactics of algebra
(Artigue, Grugeon, Assude, & Lenfant, 2001; Chevallard, 1989; Kieran, 2007).
This praxeology covers all types of tasks in the algebraic domain. In its tool
dimension (Douady, 1985), there are tasks for generalizing, modelling, putting into
equation, proving. In its object dimension, there are tasks focused on calculations
with algebraic expressions (calculating, substituting a number for a letter, ex-
panding) or equations (solving). This praxeology aims to define appropriate con-
ditions for a reasoned and controlled algebraic calculation, based on equivalence of
algebraic expressions and dialectic between numeric and algebraic treatment
modes.

Indeed equivalence of algebraic expressions and dialectic between numeric and
algebraic treatment modes are two substantial epistemological features. Kieran
(2007) sets the equivalence of expressions in the core of theoretical elements of
algebraic activity. Equivalence of expressions has a fundamental role in theoretical
control to ensure that the transformed expression is equivalent to the initial one.
This control can theoretically be made in two ways either by reference to the
algebraic properties used (proof when the equivalence is true), either by linking
with numeric and substituting numerical values to letters (counter-example when
the equivalence is false). However students experience great difficulty in identifying
properties used when transforming algebraic expressions (Kieran, 2007) and, par-
ticularly in France, in linking transformation of expressions with substitution of
numerical values (Chevallard, 1984).

In addition, in the anthropological approach, Ruiz-Munzón, Matheron, Bosch,
and Gascón (2012) propose an epistemological model of “algebra to be taught”
with different stages as a process of ‘algebraization’. The first stage focuses on the
need to introduce algebraic expressions and calculation rules and leads to the
equivalence of calculation programs (CP) and thus the equivalence of algebraic
expressions associated.

13.2.4 What Are the Potentialities of Such an Approach?

This methodological approach presents several potentialities:

• Designing an assessment based on a praxeology has great validity with regards
to coverage of mathematical domain and representativeness of tasks;
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• This approach allows adaptation of assessment from one grade to another, by
playing on values of didactical variables associated with the tasks (for instance,
nature and complexity of algebraic expressions, identities or equations, register
of representation…) and implementation of automated digital assessment;

• A praxeology of elementary algebra allows the researcher to define criteria and
associated values for analysing students’ responses. This feature of assessment
makes it possible to analyse the responses at the level of technological discourse
involved in techniques and not only at the level of technique. It also enables
determination of students’ profiles. This choice makes it possible to do a
transversal analysis on several tasks, that is, to code responses to several tasks
using the same codes. It allows identification of consistent reasoning and cal-
culation across the set of tasks. This is a major contribution compared to other
approaches;

• A previous study supports strategies for differentiation to serve the groups of
students’ learning needs, taking into account the learning needs often ignored by
curricula (Grugeon-Allys et al., 2012). We present such strategies for differ-
entiation in Sect. 13.4 of this text.

13.3 Features of “Pépite” Digital Assessment

We now present the features of Pépite digital assessment. The didactical model of
Pépite digital diagnostic assessment is based on the praxeology of elementary
algebra presented above, both for designing tasks and analysing the students’
responses to the test. We will rely on the 9th/10th grade level test for 14–15 years
old students to explain the modalities of Pépite test and to describe the responses
analysis.

13.3.1 The Didactical Model

Pépite test

The diagnostic test is composed of ten diagnostic tasks (27 individual items)
(Table 13.1) covering the algebraic field.

Representative tasks of elementary algebra are divided among three sets of types
of tasks:

• Calculation (expanding algebraic expressions, solving equations) (4 items);
• Production of algebraic objects (expressions, formulas, equations) (8 items);
• Recognition of mathematical relationships from a register of representation to

another (16 items).
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To ensure that the diagnostic test includes all types of tasks involved in ele-
mentary algebra, we characterize each item of a diagnostic task by one or more of
the previous types of tasks. We consider that the diagnostic test covers the algebraic
field if all the four sets of types of tasks are involved. As shown in Table 13.1, the
ten diagnostic tasks cover the algebraic field.

The tasks may be multiple-choice items (Fig. 13.1a–c) or open-ended items
(Fig. 13.2). For example, the goal of the second task “Determining if an algebraic
equality is always true” (Fig. 13.1a) is to identify whether a student recognizes the
structure of expressions and also which rules of algebraic writing he/she mobilized
and how he/she articulates semantic and syntax.

For the first item of the second task, the student selects a reason according to
whether the response is “true” (Fig. 13.1b) or “false” (Fig. 13.1c). The chosen
arguments indicate the type of reasoning used in this context by the student.

The ninth task “Proof and calculation program” (Fig. 13.2) is a generalization
task whose goal is to identify whether a student generalizes and proves a property
with arithmetic or with algebraic strategies. It also provides information about the
types of connections between a semiotic register to another and the arguments used
by a student.

Responses analysis: the multidimensional model of algebraic assessment

The students’ responses are not only evaluated as correct/incorrect but also
coded in terms of consistency. The coding of responses is determined by a pre-
liminary analysis of the task in order to anticipate solving procedures or strategies,
techniques and reasoning. They correspond either to appropriate skills and abilities
for the grade level considered or to recurring errors. Students’ responses are
evaluated according to technological discourse that justifies the techniques they use
(refer to Sect. 13.2).

More precisely, the Pépite diagnostic assessment includes three analysis levels:

• The local diagnosis (on a single task) analyses each student’s answer on several
dimensions and not only in terms of correct/incorrect; the diagnostic system also

Table 13.1 Organization of the 9th/10th grade level test in terms of types of tasks

Types of tasks Number of
items

Test items

Calculation 4/27 5.1/5.2/5.3/5.4

Producing algebraic
expressions

8/27 3.1/6/8.1/8.2/8.3/9/10.2/10.3

Translation or recognition 16/27 1.1/1.2/1.3/1.4/2.1/2.2/2.3/3.2/4.1/4.2/4.3/4.4/
4.5/6/7/10.1

The total of the three categories of items is 28 but the table indicates a total of 27 because Item 6
appears in both categories “Producing algebraic expressions” and “Translation or recognition”
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provides a set of codes that characterize this answer according to anticipated
answers;

• The individual global diagnosis (on a set of tasks) collects similar codes on
different exercises, on the one hand, to build the student’s cognitive profile
expressed by a level on a three component scale of skills; on the other, success
rates and personal features (relative strengths and limitations, false rules and
correct rules);

Determining if an algebraic equality is always true 
Indicate whether the following statements are true for all values of a.

Among the reasons offered, choose the most appropriate. 

(a)

(b)

Fig. 13.1 a Second task: “determining if an algebraic equality is always true”. b Second task, first
item: arguments suggested if a student selects “true”. c Second task, first item: arguments
suggested if a student selects “false”
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(c)

Fig. 13.1 (continued)

Proof and calculation program 
A magician is certain of the result of the calculation program below:

“Choose a number, add 8, multiply the result by 3, subtract 4, add the initial number, divide by 4, 
add 2, and subtract the initial number. You will end up with 7.” 

Indicate whether this statement is true or false. Justify.

Fig. 13.2 Ninth task: “proof and calculation program”
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• The collective global diagnosis defines groups of students who have close
cognitive profiles.

The local diagnosis (for each task) analyses the students’ responses on several
assessment dimensions. In addition to the validity of the response (V), student’s
consistency in algebraic activity is analysed in four dimensions: the use of letters as
variables (L), the algebraic writing produced during symbolic transformations (EA),
the algebraic rationality (J) and the connections between a semiotic register to
another (T) (Grugeon-Allys, 2015). As shown in Table 13.2, students’ responses
are coded with assessment criteria depending on knowledge and reasoning involved
in the techniques.3

We illustrate the multidimensional model of algebraic assessment on the task
“Proof and calculation program” (Fig. 13.2). To solve this task, two strategies are
possible: an arithmetic strategy using a number and an algebraic strategy mobilizing
a variable. Several incorrect techniques can illustrate an arithmetic strategy
(Table 13.3) according to the rules used to translate numerical expressions.
Algebraic strategy may be incorrect (J3) if the conversion rules (T3 or T4) or
algebraic transformation rules (EA3 or EA4) are inadequate (Table 13.4).

Student’s profile

The individual global diagnosis (on a set of tasks) builds the student’s cognitive
profile, which locates a student on a scale with three components and collects
personal features (success rates, strong points/weak points, list of errors/list of
success). More precisely, we describe the student’s algebraic skills in three
components:

• Ability and adaptability in the various uses of Algebraic Calculation (coded
CA);

• Use of Algebra for solving problems (coded UA);
• Flexibility in translating a semiotic register to another (geometric figures,

graphical representations, natural language, algebraic expressions) (coded TA).

For each of those three components, we identified (Grugeon-Allys, Pilet,
Chenevotot-Quentin, & Delozanne, 2012) (Table 13.5) different levels of techno-
logical discourse (cf. II). Thus a level describes a student’s algebraic skills on CA, a
level on UA and a level on TA.

3Contrary to usual practices in assessment, we do not attribute a code by technique for each task.
This would lead to a multiplicity of codes on various tasks and would be unusable for a cross
analysis on all the tasks of the test.
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Groups and differentiated instruction strategies

Finally, the collective global diagnosis consists in defining groups of students
who have close cognitive profiles. With the aim of proposing viable differentiated
instruction in classrooms, students are divided into three predefined groups
according to their levels on CA and on UA:

• Group A: use of semantic and syntactic arguments, taking into account structure
and equivalence of expressions and expected technology, adapted use of algebra
in problem solving (CA1 and UA1-UA2);

• Group B: use of formal syntactic arguments weakly articulated to the numeric,
allowing to live the incorrect use of the parenthesis, the use of false rules, for
example of type (a + b)2 → a2 + b2 (CA2),

– unsuitable use of algebra in problem solving (UA3-4, subgroup B−),
– use of algebra in at least one type of problem (UA1-2, subgroup B+);

Table 13.2 The multidimensional model of algebraic assessment (partial view)

Assessment dimensions Assessment criteria

Validity of response (V) V0: No answer
V1: Valid and optimal answer
V2: Valid but non optimal answer
V3: Invalid answer
Vx: Unidentified answer

Use of letters (L) L1: Correct and optimal use of letters
L2: Correct but non optimal use of letters
L3: Letters are used with incorrect rules
L5: No use of letters
Lx: No interpretation

Algebraic writing produced during
symbolic transformations (EA)

EA1: Reasoned and controlled algebraic calculation
EA2: Correct algebraic calculation but without
arguments
EA3: Incorrect calculation based on syntactic rules
(without taking into account the equivalence of
expressions)
EA4: Incorrect calculation based on arithmetic rules
EAx: No interpretation

Algebraic rationality (J) J1: Correct algebraic reasoning
J2: Arithmetic reasoning
J3: Algebraic reasoning but using incorrect rules
Jx: No interpretation

Connections between a semiotic
register to another (T)

T1: Correct and optimal translation
T2: Correct but not optimal translation
T3: Incorrect translation taking into account the
relationships
T4: Incorrect translation without taking into account
the relationships
Tx: No interpretation
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• Group C: use of arithmetic approaches and inadequate use of symbolism, which
could result in errors linked to concatenation rules a + b → ab or duplication
errors a2 → 2a (CA3 and UA3-4).

Table 13.3 Preliminary analysis of arithmetic strategies

Solutions Reasoning Coding

For number 3
((3 + 8) × 3 − 4 + 3)/4 + 2 − 3 = 7

Correct arithmetic strategy with
global expression that uses
parenthesis

V3, L5,
EA1, J2,
T1

For number 1
1 + 8 = 9; 9 × 3 = 27; 27 − 4 = 23;
23 + 1 = 24; 24/4 = 6; 6 + 2 = 8;
8 − 1 = 7

Correct arithmetic strategy with
partial expressions

V3, L5,
EA2, J2,
T2

For number 36
36 + 8 × 3 − 4 + 36/4 + 2 − 36 = 7

Erroneous arithmetic strategy with
global expression that uses no
parenthesis

V3, L5,
EA3, J2,
T3

For number 1
(1 + 8)3 = 27 − 4 = 23 + 1 = 24/
4 = 6 + 2 = 8 − 1 = 7

Erroneous arithmetic strategy with
calculation by step (procedural
aspect)

V3, L5,
EA3, J2,
T4

Table 13.4 Preliminary analysis of algebraic strategies

Solutions Reasoning Coding

((x + 8) × 3 − 4 + x)/4 + 2 − x
= (3x + 24 − 4 + x)/4 + 2 − x
= (4 x + 20)/4 + 2 − x
= x + 5 + 2 − x
= 7

Correct algebraic strategy
with global expression that
uses parenthesis

V1, L1, EA1, J1, T1

(x + 8) × 3 = 3x + 24;
3x + 24 − 4 = 3x + 20;
3x + 20 + x = 4x + 20;
(4x + 20)/4 = x + 5;
x + 5 + 2 = x + 7;
x + 7 − x = 7

Correct algebraic strategy
with calculation by step
(procedural aspect)

V2, L1, EA1, J1, T1

x + 8 × 3 − 4 + x/4 + 2 − x
= x + 24 − 4 + x/4 + 2 − x
= 2x − x + 24 − 4/4 + 2
= 2x + 24 − 1 + 2
= 2x + 25

Erroneous algebraic
strategy with global
expression that uses no
parenthesis

V3, L3, EA32, J3, T3

(x + 8) × 3 = 3x + 24 = 27x;
27x − 4 = 23x;
23x + x = 24x;
24x/4 = 6x;
6x + 2 = 8x;
8x − x = 7

Erroneous algebraic
strategy with calculation by
step (procedural aspect)

V3, L3, EA42, J3, T3
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The definition of groups relies on levels of technological discourse described in
Table 13.5. For a learning objective defined by the teacher, Pépite generates tasks
adapted to students’ learning needs (Grugeon-Allys et al., 2012).

13.3.2 The Computer Model

An iterative process between educational researchers, computer scientists and
teachers was used to design and test different Pépite prototypes to improve the
didactical model. Delozanne and Prévit defined the conceptual IT model of classes
of tasks, which allows characterizing equivalent tasks on a diagnosis point of view
(Delozanne, Prévit, Grugeon, & Chenevotot, 2008). Prévit developed PépiGen, a
software that automatically generates the tasks and their analysis, at different grade
levels. It uses Pépinière, a Computer Algebra System that generates anticipated
student’s correct or incorrect answers, according to a preliminary analysis of the
tasks. For example, Pépinière deals with similar expressions by referring to the
commutative property, correct and incorrect rules, as well as the equivalence of
expressions.

Pépite automatically calculates an individual student’s profile, as well as profiles
for groups of students. Figure 13.3 shows the individual global diagnosis for Colin,
a 9th grade student with CA2-UA2-TA2. His personal features enlighten his strong
points and weak points.

Pépite diagnostic tasks may be multiple-choice items or open-ended items with
multistep reasoning. Of course, the computer programming of the multiple-choice
items is easier than the one-line open-ended items. Multiple-choice items are difficult

Table 13.5 Description of levels of technological discourse on each component

Component Level Description

Algebraic
calculation (CA)

CA1 Reasoned and controlled calculation taking into account the
equivalence of expressions

CA2 Calculation based on syntactic rules without taking into account
the equivalence of expressions

CA3 Calculation with arithmetic strategies and without operating
priorities

Use of algebra
(UA)

UA1 Algebraic tool mastered

UA2 Algebraic tool adapted in some types of problems

UA3 Algebraic tool used but without sense for letters

UA4 Low, because arithmetic reasoning

Algebraic
translation (TA)

TA1 Controlled translation

TA2 Translation without support on the reformulation

TA3 Translation as to schematise
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to design but easy to analyse. For one-line open items, the analysis of students’
answers is automatic, effective and generic. Howeer, 10–15% answers of the
open-ended items (Delozanne et al., 2010) are not analysed due to the complexity of
the algebraic reasoning that need specific treatments for each sort of task.4

13.4 Differentiated Instruction Adapted to Students’
Learning Needs

The information provided by Pépite allows the teacher to identify students who have
close learning needs in elementary algebra and to plan differentiated instruction.

13.4.1 The Didactical Model

In the French context, the pedagogical differentiation of teaching is advocated by
official instruction without the conditions being explained so that this differentiation
is profitable for the students (Bolon, 2002; Kahn, 2007). Teachers, who are often
destitute, set up pedagogical devices that often take little account of the specificities
of the content, for instance by grouping together “good, medium and weak stu-
dents” but without characterizing the learning needs of students according to the
mathematical content. That is why the didactical model of differentiated instruction
we have defined considers the mathematical content (Pilet, 2015). For keeping a
collective advance of didactical time for the class group, teaching is differentiated in
the following way: the learning objective is the same for the whole class—all
students work on the same type of tasks—but each task is adapted to individual
student’s learning needs as identified by the Pépite diagnostic assessment. The
differentiated instruction supports formative assessment in the sense of Black and
Wiliam (1998) since it enables students to understand the gap between what they
produce (here in elementary algebra, notably with Pépite) and what is expected
from them.

The prior identification of learning objectives is based on the praxeology of
elementary algebra defined above. It makes it possible to consider both learning
needs ignored by the institution and learning needs identified by the diagnostic
assessment Pépite (Pilet, 2012, 2015). For instance, students in groups B and C,
who give a weak meaning to letters, need to visit again the role of algebra in solving
problems of generalization and proof; the treatment of this aspect of algebrais weak
in French textbooks. Moreover, in order to give meaning to algebraic expressions

4Most of the non-coded answers are those in which the student uses natural language together with
algebraic expressions, which disrupts the analysis; some are not coded because they are not
predicted in the preliminary analysis of the answers. The basis of answers is regularly updated.
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and to control algebraic transformations, students need to develop the notion of
equivalence of algebraic expressions, which is currently little used in teaching.

A differentiated instruction session is composed of:

• Tasks that relate to a common teaching objective and are adapted to the learning
needs of students. A task is characterized by: the involved component(s) (UA,
TA, CA), the type of task, the object of algebra involved in the task (expres-
sions, equation, etc.), the nature and complexity of expressions (in relation to the
group A, B or C in which the student is assigned), the input and output frames
(numeric, algebraic, natural language, geometric, graphic, functional), the
complexity of the task.

Colin belongs to the group B, sub-group B+

Description of the sub-group B+
Use of formal syntactic arguments weakly articulated to the numeric, allowing to live the incorrect 
use of the parenthesis, the use of false rules, for example of type (a+b)2 a2 + b2

Use of algebra in at least one type of problem

Levels of technological discourse on each 
component

Personal features

Algebraic Calculation
CA2
Calculation based on syntactic rules without 
taking into account the equivalence of 
expressions

Technics
Sucess rate on asked questions: 4/12

Interpreting algebraic expressions
Success rate on asked questions: 11/23

Strong points                              See More
Good mastery of algebraic rules
Some good interpretations of algebraic 
expressions

Weak points                                See More
Low mastery of algebraic calculation

Use of Algebra
UA2
Algebraic tool adapted in some types of 
problems

Mathematical modeling
Success rate on asked questions: 5/9

Strong points                              See More
Good mastery of algebra use on some problems

Weak points                                See More
Justification by school authority

Algebraic Translation
TA2
Translation without support on the 
reformulation

Translating situations to algebra
Success rate on asked questions: 12/24

Strong points                              See More
Good translation of mathematical relations

Weak points                                See More
Low mastery of algebraic translation

Fig. 13.3 An overview of Colin’s cognitive profile automatically built
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• A didactical management articulating an individual work, a collective formu-
lation and validation of a student’s procedures and an institutionalization.

We illustrate this model with an example developed by Pilet (2012). This
example concerns a differentiated instruction session on equivalence of calculation
programs (Ruiz-Munzón, Matheron, Bosch, & Gascón, 2012) and therefore the
study of equivalence of algebraic expressions. Given that students in groups B and
C take little account of the equivalence of expressions to guide and control the
algebraic transformations, the challenge for them is to build the meaning that two
expressions can be equal for any value of the letter, even if the expressions pre-
sented by the calculation programs have different algebraic writings.

Therefore, the equivalence is first conjectured from numerical substitutions and
proved with algebraic reasoning from the distributive property. For this purpose,
tasks are differentiated according to groups A, B and C (example in Fig. 13.4).
These tasks differ in the choice of values for didactical variables: the nature of the
algebraic expressions and the form of the statements (guided task or open task).
Help support is also differentiated for each group.

Group B 
Are the following three calculation programs equal? 

Program 1 Program 2 Program 3 
- Choose a number 
- Multiply this number by 4 
- Add 3 to the product 

- Choose a number 
- Multiply this number by 7 

- Choose a number 
- Multiply this number by 4 
- Add the triple of the 
starting number 

1. Choose three numbers and test each program with each of the numbers. You can use a calculator.
2. What programs seem to be equal? 
3. Write an algebraic expression for each program. 
4. With these three expressions, write an equality that is always true. Justify. 
5. Use this equality to check your answer to question 2 and demonstrate which programs are equal.

Group C 
Are the following three calculation programs equal? 

Program 1 Program 2 Program 3 

- Choose a number 
- Multiply this number by 2 
- Square the result 

- Choose a number 
- Square the result 
- Multiply by 2 

- Choose a number 

4 
- Multiply the result by the 
starting number 

1. Choose three numbers and test each program with each of the numbers. You can use a calculator.
2. What programs seem to be equal? 
3. Write an algebraic expression for each program. 
4. Demonstrate that programs are equal. 

Fig. 13.4 An example of a differentiated task for 9th grade students (15 years old) in France
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13.4.2 The Computer Model

The automatic generation of differentiated instruction results from collaboration
between researchers in mathematics education and computer science researchers
(Delozanne et al., 2010). Thanks to an ontology of the algebraic domain, we have
indexed tasks involved in the differentiated instruction sessions with the following
criteria characterizing the tasks: the type of tasks, the registers of representation
given in the task and expected in the student’s response, the complexity of the task.

The team of researchers designed and implemented PépiPad software
(Fig. 13.5). After the students passed Pépite assessment, a teacher can choose a
teaching objective and then the system automatically selects differentiated
instruction sessions for identified groups of students of his class.

13.5 Experiments and Results

To test the relevance of our tools, we conducted experiments in 2011 and 2012 with
teachers in six classes of 9th and 10th grades.

Student 
interface 

PépiDiag 

Student 
cognitive 
profiles 

Teacher interface 

PépiPad Exercises database 
indexed according 

to the ontology 

Teacher Students 

Interact on the 
plateform 

Generates 

Takes as input 

Takes as input 

Chooses learning 
objectives 

Generates 
differentiated 

instruction sessions 

Teachers choices 

Takes as 
input 

Fig. 13.5 PépiPad software
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13.5.1 A Collaborative Group with Teachers

These teachers and mathematics education researchers collaborated in an IREM
(Institute of Research on Mathematics Teaching) group at the Paris-Diderot-
University. In this group, teachers and researchers worked on several issues:

• The interpretation and categorization of errors in elementary algebra, in relation
to the constitution of groups;

• The types of tasks for working students’ learning needs;
• The coherent integration of differentiated instruction with “usual” sequences in

order to work learning needs often ignored by curricula (the numeric/algebraic
dialectic, the role of equivalence of expressions in an algebraic transformation);

• The statements for the different groups of students;
• The didactical management, especially during the individual work, pooling and

institutionalization phases.

The teachers of the IREM group have agreed to set up differentiated instruction
in their classes and to collect data (student productions and videos).

13.5.2 Study of a Case: Garance’s Class

We now report on an experiment with Garance (one of the teachers of the IREM
group) and one of her 9th grade classes. Twenty-three students passed the Pépite
test: thirteen students often calculate with arithmetic strategies and without oper-
ating priorities (group C) and seven students calculate expressions without using
semantic rules (group B). Garance proposed differentiated instruction sessions for
motivating the production of algebraic expressions. Students solved problems for
generalizing and proving; after their production, they studied their equivalence.
For example, the problems proposed in Fig. 13.6 are about calculating the number
of square units in patterns. The problems differ by patterns according to the groups
of students: the calculation leads either to expressions of the first degree or to
expressions of the second degree (Pilet, 2012).

This experiment shows the real potential of both the Pépite test and the differ-
entiated instruction sessions but also points to the need of an appropriation of the
tools by the teachers. A long period of preparation with teachers is necessary
regarding two points: on one hand, they must be aware of the links between
students’ difficulties in elementary algebra and implicit or ignored students’
learning needs and, on the other hand, they must develop their algebraic teaching
practices. For this reason, we collaborated with teachers about didactical issues and
management in the class.
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13.5.3 Results on the Evolution of Students’ Cognitive
Profile

We also conducted experiments about the evolution of grade 9th students’ cognitive
profiles.

Students of several grade levels have passed the Pépite test. Some passed it at the
beginning of the school year, others in the middle or at the end of the school year.
The experiment totals 289 passes of the Pépite test. Figure 13.7 shows the distri-
bution of the profiles according to the students’ grade and the period of the school
year. It appears that many students are in groups C and B. This reveals important
learning needs on the role of algebra, meaning of letters and equivalence of alge-
braic expressions. More 9th grade students belong to group C than to the other two
groups, whereas the 10th grade students are distributed across groups A, B and C.

Group B Group C
Pattern 1 Expressions Pattern 2 Expressions

(a+2)2 - 2(a+1)
a2 + 2(a + 1)
a(a+2) + 2
a2 + 2a + 2

4 x + 4
4(x+1) 

2x + 2(x+2) 
4(x+2) – 4 

Fig. 13.6 Patterns for students of groups B and C

Fig. 13.7 Collective global diagnostic assessment for 9th/10th grade students
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This result highlights the development of algebraic competence from one grade
to another.

98 students (15 years old) passed Pépite test twice. Between the two assess-
ments, students received differentiated instruction. We followed the evolution of
their cognitive profiles between the first and the second assessment. We observed
(Fig. 13.8) that the students’ cognitive profiles increased, particularly on the CA
component (Pilet, Chenevotot, Grugeon, El-Kechaï, and Delozanne, 2013).
Students whose level decreased were often students who were not attending classes
on a regular basis and were on the margins of the school system.

13.6 Discussion and Perspectives

The research presented here concerns the design of diagnostic assessment tools and
differentiated instruction sessions adapted to students’ learning needs, implemented
on an online platform, and how they can be used in class. This research is part of the
Pépite project, which is very challenging: helping teachers to manage the hetero-
geneity of students’ knowledge and skills in elementary algebra. We argued the
theoretical and methodological framework in order to define the didactical and
computer models of diagnostic assessment and differentiated instruction for
improving the learning of elementary algebra.

We have shown the potential of an epistemological study to support the design
and the development of an appropriate digital diagnostic assessment for learning
elementary algebra in middle/lower secondary grades. With such an approach, we
defined a praxeology of elementary algebra, which gives us a reference to conceive
a valid assessment with regards to coverage of the algebraic field and representa-
tiveness of tasks. This praxeology of elementary algebra allows the researcher to

Fig. 13.8 Evolution of levels on the three components (Pilet, 2012) for 98 students
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define criteria and associated values for analysing students’ responses. Thanks to a
transversal analysis on several tasks (encoding several tasks with the same codes),
we can identify consistent student reasoning and calculation on several tasks that
we interpret as level of technological discourse involved in techniques related to the
praxeology of elementary algebra. These levels support the definition of groups of
students’ learning needs and differentiated instruction strategies taking into account
the learning needs often ignored by curricula (Grugeon-Allys et al., 2012).

Since 2012, Pépite tools have been implemented on LaboMep and WIMS
platform for 7th/8th grade (13–14 years old), 8th/9th grade (14–15 years old) and
9th/10th grade (15–16 years old) (Chenevotot-Quentin et al., 2016). The diagnostic
assessment Pépite gives the teacher a very precise cognitive profile, for each stu-
dent, concerning his or her skills in elementary algebra. The software automatically
builds groups of students, identified as having close profiles, and differentiated
instruction sessions (refer to Fig. 13.5).

We now return to the conditions for Pépite tools in order to support a formative
assessment in every day teaching of elementary algebra.

Some teachers, collaborating with researchers, tested them in class. Pilet (2015)
analysed the evolution of students’ cognitive profiles from 9th to 10th grades where
teachers had put in place differentiated teaching practices adapted to the learning
needs of the students. We observed that the skills of some students increased
(Fig. 13.8), even though the evolution was low.

Bedja (2016) studied the integration of diagnostic assessment tools and differ-
entiated instruction sessions in teaching practices for two teachers involved in
collaborative group. They needed a long time to appropriate the new types of
algebraic tasks and to develop their algebraic teaching practices.

Those studies concerned only few teachers and students. Furthermore, middle
schools and high schools are still not well enough equipped with computers in
France, and few teachers regularly use software environments in their teaching.
Beyond this qualitative study, a quantitative one would be necessary to confirm the
first results, both for the students and the teachers.

This research is continuing in several directions. As differentiated instruction
sessions defined by Pilet (2015) concerned only algebraic expressions, Sirejacob
(2016) has conducted a similar research on equations based on an epistemological
study of equations (Sirejacob, Chenevotot-Quentin, & Grugeon-Allys, to coming).
In addition, Grapin has also defined a praxeology of the domain of arithmetic of
integers. The transfer of the theoretical and methodological framework is relevant to
design the features of an appropriate assessment (Grapin, 2015).
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Chapter 14
Using Dynamic CAS and Geometry
to Enhance Digital Assessments

Thomas P. Dick

Abstract Summative assessments, and in particular, online digital summative
assessments are dominated by items that present a limited number of possible
responses for selection (with multiple choice being the most prevalent example).
Less constrained constructed responses to a task might be submitted via digital
technology, but in many cases require human evaluation. To avoid this, we present
a prototype for enhancing digital assessment by using dynamic computer algebra
systems linked with dynamic geometry environments. The technology enhanced
items created by this system allow students to create mathematical objects required
to have stated properties, and the satisfaction of those properties can be evaluated
for mathematical correctness automatically by the system.

Keywords Computer algebra systems � Dynamic geometry � Technology
enhanced test items � Mathematics assessment

14.1 Background

Our focus in this paper is on describing how linkages between computer algebra
systems and dynamic geometry software can be exploited to create summative
assessment tasks that (1) require virtually no specialized tool knowledge by the
student, (2) require students to construct responses rather than make a selection of
presented options, and (3) are entirely machine evaluated for mathematical cor-
rectness automatically.

Our premise is that a wider use of such tasks for summative assessment could be
influential in encouraging teachers in the use of technology to support student
learning in the classroom. We also describe a prototype of an authoring system that
would allow teachers or test developers to easily create not only the assessment task
but the mechanism for its automatic scoring.
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In the remainder of this background section we provide a framing for our work
by highlighting the distinctions in purpose between summative and formative
assessments, the importance of high cognitive level tasks in assessments for pro-
moting student learning, the special challenges of using technology in large scale
summative assessments, and our strategy of using linked computer algebra and
dynamic geometry to create assessment tasks that admit many solutions but are
nevertheless machine scorable. In the second section, we will turn to a detailed
description of several exemplars of these assessment tasks and in the third section
we describe a prototype of an authoring system for creating them. We conclude the
paper with some remarks that include the possible uses of the assessment tasks in
the classroom. However, we emphasize that our design work has been motivated by
the desire to influence the design of large scale summative assessments, and we
have not undertaken any systematic study of the alternative formative uses of the
tasks in classroom settings.

14.1.1 Summative and Formative Assessments

Black, Harrison, Lee, Marshall, and Wiliam (2003) have noted the terms summative
and formative as applied to performance tasks indicate a distinction in purpose rather
than a descriptor of the content or type of task. In other words, the same performance
task could serve either or both of summative and formative purposes. Summative
assessment is concernedwith documentation of achievement or attainment (whether it
be of factual recall, computational proficiency, skill attainment, problem solving,
reasoning, or evaluation/justification) as evidenced by the student’s successful per-
formance on a task. The designers of summative assessments are accountable to one or
more stakeholders (the national or regional government, the school system, future
employers or academic programs) to provide a valid and reliable measure that has
value for making comparisons. Those comparisons may be of the same student at
different times in an instructional sequence, between students in competition for an
employment position, or between educational systems or instructional approaches
(and hence, could be impactful in making policy decisions).

Black et al. (2003) have focused considerable attention on formative assessments
that serve as assessments for learning—where the highest priority of purpose is in
advancing the learning of students. Such assessments can be quite informal and
used during ongoing instruction. The information yielded by a formative assess-
ment may serve as feedback to the student and/or influence the next instructional
move of the teacher. The usefulness of a formative assessment task lies in either
moving students’ thinking forward or in eliciting for the teacher some insight into
how students are thinking.

Stein, Smith, Henningsen, and Silver (2000) have described a Mathematical Task
Framework to assist teachers in selecting or designing mathematical tasks that pro-
mote student learning. The authors contend that the higher the level of cognitive
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demand of a task, the more opportunities for learning that task affords. The
Mathematical Task Framework describes four cognitive demand levels (from lowest
to highest):

Memorization (Simple Recall of Facts or Definitions)
Procedures without connections (to understanding, meaning, or concepts)
Procedures with connections (to understanding, meaning, or concepts)
Doing mathematics (explorations of relationships, complex or nonalgorithmic
thinking).

The distinction between tasks considered as procedures without connections
versus procedures with connections lies in whether the tasks can be successfully
completed by simply applying an algorithm as opposed to also needing to explain how
the procedure works, its connections to multiple representations, or its conceptual
foundations. The case is made that higher cognitive demand tasks such as procedures
with connections or doing mathematics not only afford more opportunities for student
learning, they also are more discourse worthy for purposes of facilitating small group
or whole class discussions. Smith and Stein (2011) have described five essential
practices (anticipation, monitoring, selecting, sequencing, and connecting) for
teachers to orchestrate mathematically productive discourse around publicly shared
student work on such tasks. Effectively, such discussions can both inform the teacher
about student thinking while also moving students’ thinking forward.

14.1.2 Technology in Support of Assessment

Viewed through an assessment lens, the literature on technology use in mathematics
education has been primarily on the formative side, with the most attention devoted
to using technology to promote student learning. Focus in High School
Mathematics: Technology to Support Reasoning and Sense Making (Dick and
Hollebrands, 2011) includes a wide variety of illustrations of technologies
(graphing calculators, computer algebra systems, dynamic geometry environments,
probability and statistics applets, and others) used in the mathematics classroom,
with special attention to mathematical tasks requiring conceptual understanding and
mathematical reasoning. The chapter by Cohen and Hollebrands (2011) in that
volume discusses how screen sharing technology can be used in tandem with
mathematical software to support the five practices for orchestrating productive
mathematical discourse described by Smith and Stein (2011).

In research studies comparing the impact on student learning of instructional
approaches employing technology use with approaches that do not, technology use
is almost always in an independent variable role. Summative assessment measures
play the role of dependent variable and these are usually administered by paper and
pencil with no technology tool use allowed, given that the control group did not
have experience with the technology.
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There has been a long history of work in developing diagnostic assessment items
where the technology supports the analysis of student responses. An example of
early work in this arena is DEBUGGY, a system that identified common errors in
students’ arithmetic procedural work (see McFarland & Parker, 1990, for a
description of DEBUGGY and other early diagnostic programs). A more recent
example is the work on Pépite (Delozanne, Prévit, Grugeon, & Chenevotot, 2008),
a technology based diagnostic assessment system that analyzes students’ algebraic
work entered by typing into response fields for tasks posed by the system. In these
examples, the technology supports formative diagnostic assessment and teachers’
work in the classroom assisting individual student learners.

Large scale and high stakes summative assessment programs are naturally keenly
interested in platforms that allow computer scoring or evaluation of student responses.
The savings in time and expense coupled with the accuracy and automaticity of
recording student performance are the obvious drawing cards to machine aided
assessment. At the same time, the stakeholders accountable to these assessments are
naturally deeply concerned with the validity of the psychometric measures they yield
—do these measures fairly and adequately reflect the students’ proficiencies and
knowledge in assessing whether or not the stated standards are met?

There are primarily two types of assessment items, characterized by how stu-
dents must respond:

(1) Selected response item—a finite collection of possible responses to the question
or task are explicitly presented to the student, and the student must choose
which of these possible responses is correct or “best.”

(2) Constructed response item—the student must present a response requiring
creative construction, either within an entirely free format or by making cre-
ative changes or additions to a pre-existing structure.

Constructed responses can be very involved, and such items might require an
interpretive essay, a complete mathematical proof, the construction of a table or a
graph, or the creation of a detailed diagram. However, note the nature of the content
of a response is technically independent of the item type (multiple choice or con-
structed response). A constructed response item might ask for nothing more than a
single numerical value with no accompanying supporting work (and many such
items exist), while a multiple choice item could present a set of five detailed
explanations and ask the student to choose the best one (such items are more rare).

In terms of potential for machine scoring, selected response items are the easiest
and most straightforward to implement. The evaluation of student responses is
trivial and depends on nothing more than comparison of the student’s submitted
choices with the coded correct choices (the “answer key”). In terms of cognitive
level, selected response assessment items work relatively well for vocabulary (recall
knowledge of terminology), application of definitions, recognition tasks, and pro-
cedural skill performance.

The most significant limitation of a selected response item is inherent and cannot
be remedied—students are only asked to select from presented response choices
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without needing to present one of their own formulation or construction. The
disadvantage of multiple choice items lies in the difficulty in adequately assessing
higher level cognitive performance when students are merely selecting from choices
and not creating their own responses. Multiple choice items also open up the
possibility of students choosing correct responses through either lucky blind
guessing or through strategic elimination of the distractor choices (that might dis-
play more awareness of “test taking tricks” rather than evidence of actual content
knowledge).

For constructed response items to be machine scored, there usually must be some
constraints on the form of the student response. For example, suppose a constructed
response item called for an answer that has an exact numerical value 2.5, and
furthermore, suppose the student is required to express the response in decimal form
(i.e., 2½ or 5/2 would be unacceptable forms). This means that the only acceptable
response is a completely determined string of three characters—the digit “2”, fol-
lowed by the decimal point, followed by the digit “5”. With these constraints, the
machine need only perform a sequential symbol by symbol matching check to
evaluate the correctness of the response. In a computer testing environment for such
an item, the student might be presented with distinct individual response fields for
each symbol to aid in the automatic symbol matching process.

In general, constructed response items are widely viewed as more suitable than
multiple choice items for assessing higher level cognitive performance. However, if the
format of the student response is very strictly constrained to allowmachine scoring, then
the value for assessing higher level cognition may be compromised. Constructed
response items may also provide for partial credit or holistic levels of evaluation, based
on the completeness, correctness, and quality of the presented response.

14.1.3 How Can Technology Be Used to Enhance Digital
Summative Assessment?

Suppose we consider multiple choice and constructed response assessment items,
not as two dichotomous categories, but rather as intervals at the ends of a contin-
uum indicating the level of freedom in student response, and correspondingly, the
ease of machine scoring. As shown in Fig. 14.1, the more freedom in form the
student is allowed in constructing a response, the more challenging that response
will be to evaluate by machine (Drijvers et al., 2016). The territory lying in between
these extremes is fertile ground for enhancement through technology.

An overarching goal of technology enhancement is to provide more freedom in
student response while maintaining machine evaluation or scoring. The means by
which this goal can be achieved is to present an electronic “smart” slate for the
student to enter or create their response—an environment that can detect and analyze
structure, properties, and qualities of the response that go beyond simply matching
against a predetermined answer key. Technology can provide both surface and
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analytical enhancements in an assessment environment. By surface enhancements
are those that provide for ease of construction of a response at the surface of the
screen, and so are visible and readily apparent to the student. Ideally, there should be
little or no time needed for the student to become familiar with how the surface user
interface works to engage in the assessment task. By analytical enhancements are
those that provide tools for identifying structure, properties, and qualities of the
response, and hence are “under the hood,” providing for the machine evaluation of
the student response.

For example, if a machine assessment platform was simply capable of performing
at least arithmetic calculation of student entered numerical expressions, then more
freedom could be allowed in the form of the student response via keyboard entry. If
the correct numerical answer to a constructed response question was simply 2.5, an
arithmetically “smart” platform would allow students who typed in “5/2” or
“1 + 1 + ½” or “3 − 0.5” all to be judged to have submitted the numerical equiv-
alent of 2.5, and these could be evaluated as correct responses. If the machine
assessment platform has CAS (Computer Algebra System) capabilities, then evalu-
ated text entry can also be extended to algebraically equivalent expressions.

Unfortunately, much of what are being portrayed as “technology enhanced
items” have neither surface enhancements nor analytic enhancements. Rather, they
are effectively just multiple choice items where the student selection mechanism has
been superficially dressed up or altered. For example, rather than choosing a letter
corresponding to one of five presented response options, the student might be
directed to drag the chosen response option across the screen to an answer box or
location. Selection by clicking on an option or dragging an option to some specific,
but arbitrary location, introduces screen level “interaction” that is cosmetic only and
essentially devoid of any content implications.

The machine scoring by simply matching the label of a response (A–B–C–D–E)
to the keyed response has now been replaced by matching the location of a click or
origination/destination of a drag on screen to a predetermined keyed location.
Hence, there is no analytical enhancement at play. A truly technology enhanced
mathematical assessment item is one where either the surface tools aid the student
in constructing a response that has discernable mathematical meaning (examples:

Multiple Choice Constructed Response

highly constrained Freedom of Student Response no constraints

Multiple Choice Constructed Response

trivial Machine Scorability difficult 

Fig. 14.1 The level of constraints on student response is related to its machine scorability
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numbers, expressions, graphs, tables, geometric objects, proofs), or some aspects of
the mathematical meaning of a constructed response are discernable by the
technology.

14.1.4 Harnessing Dynamic CAS and Geometry to Enhance
Digital Summative Assessment

There can be a powerful synergy between the surface and analytical enhancements
to an assessment task, provided the technology allows

• the linking of the results of student use of surface construction tools to variables;
• the values of those variables being sufficient for the machine to analytically

determine whether or not, or to what extent, the requirements of the task have
been fulfilled.

The opportunities abound if the surface construction tools themselves lie within
a mathematically sensitive environment. That is, suppose the student can create
and/or manipulate objects (expressions, parameter values, points, lines, geometric
objects, graphs, etc.) such that properties of, and relationships among these objects
can effectively be linked “under the hood” to variable values. If these variable
values can, in turn, be dynamically linked to logical expressions whose truth values
can be evaluated by CAS, then this opens up a tremendously rich constructed
response setting that is instantly machine scorable.

If a constructed response task asks for students to come up with a symbolic
expression that is completely determined up to algebraic equivalence, then the only
analytic role of CAS is to check the student’s submitted expression for equivalence
with an answer key expression. While this is not an insignificant enhancement, it is
only the tip of the iceberg in terms of potential. Many routine mathematical tasks
present the student with an object and ask them to find something related to it, such
as: find the solutions to this equation, find the area and perimeter of this polygon,
find the mean and standard deviation of these data, etc. Such tasks can be “jeop-
ardized” (in the sense of the game show “Jeopardy” where contestants are presented
with answers and must come up with the questions), by providing students with a
mathematically aware environment and asking them to create a mathematical object
with certain properties.

Two design principles that Dick and Burrill (2016) have proposed for dynamic
interactive mathematics learning environments are also relevant to the surface
design of digital assessment tasks: mathematical fidelity and cognitive fidelity
(Zbiek, Heid, Blume, & Dick, 2007). Mathematical fidelity refers to the faithfulness
of the technology-based behavior and properties of objects on screen to the
mathematical behaviors they are intended to represent, while cognitive fidelity
refers to the match between cognitive perception and the actual mathematical
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action. For example, if the underlying vertical and horizontal scales in a coordinate
plane are not the same, rigid motions of objects might not be perceived as angle
preserving by the user, even when they are mathematically correct.

14.2 Examples of Technology Enhanced Assessment Items

In this section we illustrate the potential for enhancing assessment items through the
use of dynamic Computer Algebra Systems and Dynamic Geometry technology.
The particular platform used to create the exemplars is the TI-Nspire CAS software,
but a similar strategy could be used with other systems that provide for dynamic
linking of variables in computer algebra and dynamic geometry.

Each assessment task presents the student with a mathematical object in the form
of a graph or a geometrically figure, and a set of mathematical conditions or prop-
erties that the object should satisfy. The student can readily modify this object by
moving one or more points on screen, or by editing an algebraic equation defining
the object. The coordinates of movable points are linked to variables in stored logical
expressions whose truth-value indicate whether the conditions or properties have
been satisfied. Similarly, if an object is defined by an algebraic expression, that
expression is linked to the underlying computer algebra system for analysis.

The evaluation of the assessment item is actually dynamic, as the truth value of
the logical expressions is continuously updated as the student modifies the object.
Of course, this dynamic truth-value is not normally visible to students as they
modify the object, for in many cases this would open up a “trial and error” search
strategy that is not purposeful mathematically. (Making the dynamic truth-value
visible could have some merit in a formative assessment setting if accompanied by
reflective questioning requiring student explanation of this feedback.) In the sum-
mative assessment setting, a student would indicate completion of the task by way
of a “submit” button. In the screenshots shown for the examples discussed below,
we have made the dynamic machine evaluation visible, and added the reminder that
this would normally not be visible to the student undertaking the assessment task.

The assessment tasks we describe were motivated by mathematical content
standards found in the Common Core State Standards—Mathematics (http://www.
corestandards.org/Math/) for algebra and geometry in middle grades:

• Draw (freehand, with ruler and protractor, and with technology) geometric
shapes with given conditions. (Grade 7, Geometry)

• Understand congruence and similarity using physical models, transparencies, or
geometry software. (Grade 8, Geometry)

• Find the equation of a line parallel or perpendicular to a given line that passes
through a given point. (High School Geometry: Expressing Geometric
Properties with Equations)

• Translate between the geometric description and the equation for a conic sec-
tion. (High School Geometry: Expressing Geometric Properties with Equations)
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Example 1
The opening screen for the task is shown in Fig. 14.2 (note that the dynamic
machine evaluation shown would normally not be visible to the student). Points
P and Q are fixed, and the remaining two points R and S can be moved by the
student by simple “click and drag” using either a mouse or touchscreen. The
placements of the points R and S are restricted to a rectangular lattice (on which
P and Q also lie).

While there are no visible coordinate axes, the lattice is coordinatized for the
purposes of the machine evaluation of whether or not the segments connecting
points P and R and the points Q and S have a common midpoint. The screenshots in
Fig. 14.3 show two of the possible successful completions of the task.

Note that many correct solutions to the task are possible, even under the con-
straint of the lattice. The lattice allows for a more precise placement of the points by
the student. Without it, placing the points to achieve the condition on the diagonals
would be quite difficult. If used in a classroom setting where student solutions could
be compared with each other and discussed, the task could lead to a conjecture that

Fig. 14.2 Opening screen for a quadrilateral creation task

Fig. 14.3 Two successful attempts at creating a quadrilateral with mutually bisected diagonals
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the condition forces the quadrilateral to be a parallelogram—a potential theorem to
be proven. The next two screenshots in Fig. 14.4 show solutions that share an
additional property: the diagonals are also of the same length. This additional
property suggests a conjecture that such a quadrilateral is forced to be a rectangle.
The screen in Fig. 14.5 shows a figure that exhibits two mutually bisected seg-
ments, but this is a self-intersecting figure that is not a quadrilateral.

Example 2
The opening screen for the task is shown in the first screenshot of Fig. 14.6 (again,
the dynamic machine evaluation shown would not be visible to the student). While
the previous example admitted several correct solutions, for this task there is a
unique location on the available screen lattice that satisfies the condition. (Other
points would satisfy the condition if an “extended” screen lattice were available.)
The task requires identification of the required scale factor (2 or 1/2, depending on
direction of scaling) as a critical step. Once the scale factor is determined, the
rectangular lattice provides an important means of comparing segment lengths in
locating the unique point satisfying the condition. That point is shown in the second
screenshot of Fig. 14.6.

Fig. 14.4 Two solutions to the quadrilateral task that also have diagonals of equal length

Fig. 14.5 An interesting
incorrect solution to the
quadrilateral task
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Example 3
The opening screen for the task is shown in Fig. 14.7, as well as one typical
solution. The isosceles trapezoid shown in Fig. 14.7 is not the only possible
solution, however. There is a family of “kites” that can be created having the line
through Q and S as a line of symmetry. Two such kites are shown in Fig. 14.8.

The point S can be placed in many lattice point positions that make the line
through Q and S a line of symmetry for the figure (and these point positions
themselves are collinear), but not all of these locations satisfy the desired condition
(Fig. 14.9). Quadrilaterals satisfying the condition need not be convex (Fig. 14.10).

In all of the solutions except the isosceles trapezoid, the line through Q and S is
the line of symmetry. For the isosceles trapezoid, the line of symmetry goes through
the two midpoints of opposite of the quadrilateral. Is it possible to create a different
isosceles trapezoid that satisfies the reflection symmetry condition? In this case, the
constraint of the given rectangular lattice does not allow for the placement of this
point (an attempt that comes “close” is shown in Fig. 14.11), but this limitation
itself opens up opportunities for discussion: Exactly where would the desired point
need to be placed between lattice points?

Fig. 14.6 Opening screen and a successful completion of the similar triangle creation task

Fig. 14.7 Opening screen and a typical solution to the quadrilateral symmetry task
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Fig. 14.9 Does this figure
have exactly one line of
symmetry?

Fig. 14.10 One of the
non-convex “dart”
quadrilaterals that can be
created

Fig. 14.8 Two “kite” solutions to the quadrilateral symmetry task
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These first three examples all employ a (coordinatized) rectangular lattice of
points to provide an easy means for students to create geometric figures. The
dynamic links of the point coordinates to variables allow for the machine evaluation
of whether the desired properties are satisfied. No programming was required to
create these items, for the machine is simply the evaluating the truth of a logical
statement that is the coordinatized translation of the condition(s).

In the following examples involving algebraic functions and their graphs, the
coordinate system for the Cartesian plane is now on display to the student. The
connection between a function’s algebraic expression and its graph is exploited in
both directions. In some cases, the task for the student is to create an algebraic
expression for a function that satisfies certain graphical properties. In other cases,
the student creates a graph that fits algebraic specification.

Example 4
The opening screen for this task is shown in Fig. 14.12. The graph of the proto-
typical y = x2 is the dotted curve, while the solid parabola is manipulated by
moving the two points indicated.

Fig. 14.11 A quadrilateral
that is “close” to being an
isosceles trapezoid

Fig. 14.12 Opening screen
of a parabola task
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A student might make a first step of moving the vertex point to its correct
location. Adjusting the second point’s location can then successfully complete the
task (Fig. 14.13).

Example 5
Students are presented with two distinct control points to determine the line
(Fig. 14.14). While only one line satisfies the requirements, there are many choices
of locations for the two points determining that line. Figure 14.15 shows screens
resulting from first using one point to locate the x-intercept, and then second point
to locate the y-intercept.

Example 6
In this example, the representational direction is reversed. The opening screen is
shown in Fig. 14.16. Now the student’s action is to submit a functional equation for
the line. Figure 14.17 shows two typical incorrect choices for the slope.
Figure 14.18 shows one of the correct solutions (any line with slope −3).

Fig. 14.13 A first move (locating the correct vertex) and a successful parabola creation

Fig. 14.14 Opening screen
of a line creation task
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Fig. 14.15 Completing the line creation task by locating the intercepts

Fig. 14.17 Two incorrect student solutions (reciprocal slope, equal slope)

Fig. 14.16 Opening screen of a task asking for an algebraic expression
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Example 7
The opening screen is shown in Fig. 14.19. Two correct solutions are shown in
Fig. 14.20. Note that the computer algebra capabilities of the system allow for
different but equivalent expressions representing the same parabola.

Fig. 14.19 Opening screen of a task asking for a quadratic expression

Fig. 14.18 A correct student
solution to the linear function
task
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14.3 Next Steps: Technology Enhanced Item Authoring
Tools

We hope that these examples serve to illustrate that there is vast potential for
technology-based assessments to move well beyond the constraints of
multiple-choice format while still allowing for automatic machine evaluation.
While no programming was required for the examples discussed above, the logical
statement evaluated by the machine can be complicated. In Example 3 where the
student is asked to create a quadrilateral with exactly one line of symmetry, the
logical statement is quite involved, for it needs to additionally check for
non-collinearity of the points as well as ruling out a second line of symmetry.

We are now investigating the development of an authoring tool that would allow
the teacher to easily create such assessment items simply by specifying the math-
ematical requirements of the object to be created by the student. Based on these
specifications, the authoring tool would create both the item task as well as for-
mulating all the required logical checks. We have developed such a prototype item
generator for triangle properties as an exemplar. The prototype system allows the
teacher to present a student with a dynamic triangle △ABC on a rectangular lattice
grid that can be manipulated by moving one or more vertices (zero, one, or two of
the vertices A, B, or C could be fixed). The teacher selects from a variety of
properties and/or measurements to be satisfied by the student’s triangle.

Example 8
Suppose the teacher wished to author a machine scorable assessment item that asks
the student to create an acute triangle having area 12. The author’s specification
screen is shown in Fig. 14.21.

Fig. 14.20 Two correct quadratic expression (one in standard form, one in vertex form)
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On the properties setup screen, the item author chooses which triangle properties
are desired by entering the measurements or category codes in the appropriate line
of the properties table. The task statement is then automatically generated here and
on the task screen that will be presented to the student. The possible specifications
include requiring a particular perimeter and/or area measurement, the category of
triangle determined by its angles (acute, right, obtuse) or by its side lengths
(equilateral, isosceles, or scalene). The author could also specify a second triangle
for which the student must create a congruent or similar triangle.

Solid black points and moveable vertices indicate locked vertices by “open”
(white) points. If a second triangle △DEF is to be provided, then the item author
moves its vertices to their desired positions and then locks all three vertices D, E,
and F. (Locking or unlocking any vertex is accomplished on the TI-Nspire by
simply using the attributes menu for the vertex points.)

Through the use of computer algebra linked to the geometry environment, all
these properties are dynamically checked by the system, and in turn, the system can
provide feedback regarding exactly which of the specified properties or measure-
ments were satisfied and which were not.

For this example, if the author wished to make all three vertices movable, the
screen presented to the student for this task would appear as shown in Fig. 14.22.

All measurements and properties of the triangle are dynamically recorded on a
report page. In addition, whether or not the requirements specified by the author are
also checked for satisfaction. For the triangle initially shown in Fig. 14.22, the
report page is shown in Fig. 14.23, indicating that this triangle is actually a right
triangle having area 25.

Figure 14.24 shows a student’s triangle that does successfully satisfy the
requirements, as well as the dynamically updated report page.

Fig. 14.21 Setting the specifications for a triangle task using an authoring tool
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Fig. 14.23 The initial triangle satisfies neither the angle nor area conditions

Fig. 14.22 Triangle creation task as presented to student

Fig. 14.24 A triangle that satisfies the task requirements
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14.4 Concluding Remarks

There is a tension that exists between technology use on summative assessment
tasks and technology use in the classroom for teaching and learning. For too many
teachers, a restriction on allowable technology on high stakes summative assess-
ments may be interpreted as implying a corresponding restriction on the appropriate
use of technology in the classroom. These imagined limitations that perceived
accountability to the summative purposes unnecessarily imposes on instruction are
unfortunate. An even more serious concern arises, when the measurement (test
score) of a learning goal becomes the goal itself. If high performance on the
summative assessment becomes the target objective rather than the actual student
learning that the same assessment purports to measure, then instructional practice
may be warped into “teaching to the test,” that is, instruction is judged by how
directly it supports student performance on summative assessment items. For
example, if the summative assessment tasks tend to be at the lower cognitive levels
as described by the Mathematical Task Framework, then it may become more
difficult to convince teachers to engage their students around higher cognitive level
tasks in the classroom.

Mathematically “active” software tools such as computer algebra systems and
dynamic geometry environments are valued for the impact they can have on
mathematics teaching and learning. Our intent in this paper is to illustrate the
potential these tools could have to enhance technology-based summative assess-
ment to be more open-ended and of higher cognitive level. The tasks that can be
created by such tools are far less constrained than multiple choice, and can have
multiple correct solutions, all of which can be evaluated automatically by the
machine. The implications are significant for changing the landscape of large scale
online digital summative assessments.

While we have focused our attention on the use of mathematically active
environments to widen the types of items that could be used for summative
assessment, we close by noting that such systems could easily be repurposed as
tools for formative assessment for teachers and as a source of feedback for students.
Paired with screen sharing capabilities, students’ responses could be also be used by
teachers to facilitate productive mathematical discourse in the classroom.
A significant advantage to these tasks lies in the absence of specialized tool
knowledge needed by the student to engage in the tasks, making these items
suitable for administration to students with a very wide variety of previous expe-
rience with technology tools in learning settings, including no experience at all.
Again, our hope is that imaginative employment of mathematically active envi-
ronments in summative assessments in turn could encourage more teachers to make
use of technology as tools to promote student learning of mathematics.
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Chapter 15
Design of Digital Resources
for Promoting Creative
Mathematical Thinking

Jana Trgalová, Mohamed El-Demerdash, Oliver Labs
and Jean-François Nicaud

Abstract In this chapter, we present our experience with the design of educational
digital resources aiming at promoting creative mathematical thinking, taking place
in the MC Squared project, The resources are produced within an innovative
socio-technological environment called “C-book technology” (C for creative) by a
community gathering together mathematics teachers, computer scientists and
researchers in mathematics education. In this chapter, we discuss the choices made
in the design of the “Experimental geometry” c-book resource to evidence the
affordances of the C-book technology for designing resources promoting creativity
in mathematics.
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15.1 Introduction

Promoting creative mathematical thinking (CMT) is a central aim of the European
Union by being connected to personal and social empowerment for future citizens
(EC, 2006). It is also considered as a highly valued asset in industry (Noss &
Hoyles, 2010) and as a prerequisite for meeting current and future economic
challenges. CMT is seen as an individual and collective construction of mathe-
matical meanings, norms and uses in novel and useful ways (Sternberg, 2003).
Exploratory and expressive digital media provide users with access to and potential
for engagement with creative mathematical thinking in unprecedented ways
(Hoyles & Noss, 2003). Yet, new designs are needed to provide new ways of
thinking and learning about mathematics and to support learners’ engagement with
creative mathematical thinking using dynamic digital media.

The MC Squared project, briefly presented in Sect. 15.2, looks for new
methodologies that would assist designers of digital educational media to explore,
identify and bring to the fore resources stimulating more creative ways of mathe-
matical thinking. The chapter then focuses on the design of one such resource, the
“Experimental geometry” c-book, highlighting, in Sect. 15.4, the design choices
and the resource affordances to foster creative mathematical thinking (defined in
Sect. 15.3) in its users. Concluding remarks summarizing the C-book technology
affordances and bringing forward factors stimulating creativity in digital resources
collaborative design are proposed in the final Sect. 15.5.

15.2 The MC Squared Project

The MC Squared (MC2) project (mc2-project.eu/) aims at designing and devel-
oping an intelligent computational environment, called C-book technology, to
support stakeholders from creative industries involved in the production of media
content for educational purposes to engage in collective forms of creative design of
appropriate digital media. The C-book technology provides an authorable dynamic
environment extending e-book technologies allowing meshing text with various
dynamic widgets on the same page (Fig. 15.1), an authorable data analytics engine
and a tool supporting asynchronous collaborative design of educational resources,
called “c-books”.

It also comprises a powerful back-end that stores the student’s work at any time,
so whenever she leaves her c-book and comes back again later, it looks exactly as it
has been left. Moreover, the teacher may decide how much of the student’s work
will be logged to a database and will thus be provided with a large number of
analytic tools that will assist her in her teaching. An outstanding feature of the
C-book environment is that it does not only come with a large number of existing
widgets in the mathematical context, but it also comes with so-called widget fac-
tories allowing the teacher to create tailored widgets. Moreover, all these diverse
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Fig. 15.1 Snapshot of a c-book resource designed with the C-book technology

Fig. 15.2 A screenshot of a c-book page (Cinderella widget on the left, EpsilonWriter widget on
the top right, and EpsilonChat widget on the bottom right)
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widgets work perfectly together in a cross-widget communication. For example,
EpsilonWriter is an interesting tool for manipulating formulas and equations via a
unique drag and drop interface (right part of Fig. 15.2). But it neither has a built-in
function grapher tool nor geometric construction capabilities. These aspects are
some of the specialties of the programmable dynamic geometry system Cinderella
(upper left part of Fig. 15.2). In the c-book page shown in the screenshot in
Fig. 15.2, the mentioned two communication channels between three widgets have
been established by the author of the page using drag and drop. When working with
the c-book, a student may have produced a reasonable equation of a function with
EpsilonWriter, and she can visualize it by using the ‘draw’ tab. The graph of the
function will be shown in the Cinderella construction at the right. As the example
illustrates, cross-widget communication is a quite powerful feature that opens the
opportunity for the c-book author to make explicit connections between different
representations of a mathematical object: a curve represented as a geometric locus,
its formula with the ability to modify it dynamically, and a geometric figure
combining both the construction as a locus and the visualization of the curve given
by the equation. Within the C-book environment, such opportunities exist in other
branches of mathematics as well, e.g., via this mechanism statistics and probability
widgets may be connected to geometry, algebra, or even to a logo programming
widget, to name just a few more cases.

The research reported in this chapter aims at exploring the affordances of the
C-book technology for the design of digital resources enhancing creative mathe-
matical thinking that we define in the next section.

15.3 Creative Mathematical Thinking

In this section we elaborate on the concept of creativity and especially mathematical
creativity, and present the operational definition of creative mathematical thinking
adopted within the MC2 project, which constitutes the theoretical frame of our
study.

15.3.1 Creativity

One of the most influential definitions of creativity was proposed by Torrance
(1969), seeing it broadly as the process of grasping a problem, searching for pos-
sible solutions, drawing hypotheses, testing and evaluating, and communicating the
results to others. Most recent definitions can be grouped under what is called ‘high’
or ‘Big-C’ creativity and ‘ordinary’ or ‘little-c’ creativity. ‘Big-C’ creativity refers
to the achievements and the person characterised by a non-conventional way of
thinking and having a substantial contribution to the advancement of our knowl-
edge of the world. On the other hand, ‘little-c’ creativity assumes that creativity is a
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quality or a potential all people are capable of displaying, and which can guide
choices and route-finding in everyday life (Craft, 2000). These paradigms echo the
distinction between absolute and relative creativity (Lev-Zamir & Leikin, 2011),
the former being connected with great historical (mathematical) works and
achievements, while the latter refers to discoveries by a certain person in a specific
reference group. Applicable to both paradigms are the definitions by Sternberg and
Lubart (2000) who see creativity as the ability to predict “non-predictable” con-
clusions that are useful and applicable, or by Tammadge (cited in Haylock, 1997)
who defines creativity as the ability to see new relationships between previously
unrelated ideas.

15.3.2 Mathematical Creativity

The problem of defining mathematical creativity is an old and still unresolved one
in a sense that no single and widely accepted definition exists. Some conceptual-
isations of mathematical creativity focus rather on the process while others place
their emphasis on the product. Along the process line of thought, Hadamard (1945)
refers to the mathematicians’ creative process using the four-stage model: prepa-
ration—incubation—illumination—verification. Liljedahl (2013) extends
Hadamard’s model by adding the AHA! experience phenomenon. Ervynck (1991)
sees mathematical creativity as the ability to solve problems and/or to develop
thinking in structures, taking into account the peculiar logico-deductive nature of
the discipline. Liljedahl and Sriraman (2006) refer to it as (1) the process resulting
in an unusual (novel) and/or insightful solution to a given problem, and/or (2) the
formulation of new questions and/or possibilities that allow an old problem to be
regarded from a new perspective. The product approach to creativity focuses on the
outcomes that result from creative processes. It is based on the assumption that, in
order to deem a process or activity as creative, one has to discern the existence of
some creative outcome. An example is the suggestion by Chamberlin and Moon
(2005) to see creativity as the generation of novel, desired and useful solutions to
(simulated or real) problems using mathematical modelling.

Considering creative process that leads to creative products, it is worth raising
the question whether there is a considerable input of mathematical knowledge to the
development of mathematical creativity. Mann (2006) argues that there is a strong
relation between mathematical experience (knowledge and abilities) in a school
setting and mathematical creativity. On the contrary, Sriraman (2005), among
others, emphasizes that there is not necessarily a relationship between mathematical
abilities and creativity, implying thus that mathematical creativity can be developed
in students if properly supported. Likewise, Silver (1997) sees creativity as a dis-
position toward mathematical activity that can be fostered in the school population.
This view suggests that teaching toward creativity might be conducive for a broad
range of students, and not merely for a few gifted individuals.
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15.3.3 Creative Mathematical Thinking in the MC2 Project

In the MC2 project, we have adopted a “little-c” creativity paradigm leading us to
assume, in line with Silver (1997), that mathematical creativity can be developed in
students through appropriate learning situations. Based on this assumption, we first
agreed upon a definition reflecting our vision of creative mathematical thinking
(CMT) that defines it as an intellectual activity generating new mathematical ideas or
responses in a non-routinemathematical situation.Drawing onGuilford (1950)model of
divergent thinking, the generation of new ideas shows the abilities of fluency (ability to
generate quantities of ideas), flexibility (ability to generate different categories of ideas),
originality (ability to generate newandunique ideas that others arenot likely togenerate),
and elaboration (ability to redefine a problem to create others by changing one or more
aspects).We then searched for conditions and characteristics of situations likely to foster
the development of CMT in students. The following characteristics of situations or
problems are deemedas appropriate to engage students in creativemathematical activity:

• Situations based on the interplay between problem-posing and problem-solving
(Silver, 1997);

• ‘Problematic situations’ serving as the organizing centre and context for learning
(Torp & Sage, 2002) or open-ended situations that are not solved easily or with
a specific formula (El-Demerdash & Kortenkamp, 2009);

• Students seen as active problem solvers and learners; teachers acting as cog-
nitive and metacognitive coaches (Torp & Sage, op.cit.);

• Social interactions in problem-solving processes (Sriraman, 2004).

Our research question is the following: what affordances of the C-book tech-
nology can be exploited in the design of resources intended to enhance CMT in
students? To bring to the fore such affordances, we present, in the next section, one
of the resources designed with the technology, discuss the design choices and
highlight the affordances that made them possible.

15.4 The “Experimental Geometry” C-Book

Jareš and Pech (2013) claim that the notion of geometric locus of points is difficult
to grasp at all school levels and that technology can be an appropriate media to
facilitate its learning. The authors suggest using dynamic geometry software
to “find the searched locus and state a conjecture” and a computer algebra system
to “identify the locus equation”.

The challenge in designing the “Experimental geometry” c-book was to exploit the
C-book technology affordances to propose a comprehensive study of geometric and
algebraic characterization of some loci. We decided to create activities aiming at
studying loci of special points in a triangle. These loci (e.g., a locus of the orthocentre)
are generated by the movement of one vertex of a triangle along a line parallel to the
opposite side (see Fig. 15.2). These are classical problems that were solved even
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before the advent of dynamic geometry (Botsch, 1956). Elschenbroich (2001) revisits
the problem of the orthocentre locus with a new media, dynamic geometry software
(DGS). El-Demerdash (2010) uses this example to promote CMT in high school
mathematically gifted students.

15.4.1 The C-Book Description

The c-book invites students to experiment geometric loci generated by intersection
points of special lines of a trianglewhile one of its verticesmoves along a line parallel to
the opposite side (see Fig. 15.3a, b). The activity can give rise to a number of various
situations, which makes it a rich situation for exploring, conjecturing and proving.

The c-book is organized in three units. The first unit proposes the main activity
called “Loci of special points of a triangle”. It starts by inviting the students to
explore, with the dynamic geometry system (GDS) Cinderella, the locus of the
orthocentre D of a triangle while its vertex C moves along a line parallel to the
opposite side [AB] (Fig. 15.3a). The students are asked to explore the situation,
formulate a conjecture about the locus of D and test the conjecture by visualizing
the trace of D (Fig. 15.3b).

The students are then asked to find an algebraic formula of the locus, which is a
parabola. The formula is to be written using the EpsilonWriter widget (www.
epsilonwriter.com) and the interoperability between this widget and Cinderella
allows the students to check whether the provided formula fits the locus or not.

The students are then encouraged to think of, explore, and experiment the
geometric loci in other similar situations, such as the locus of the circumcentre
(perpendicular bisectors intersection), the incentre (angle bisectors intersection) or
the centroid (medians intersection). Other situations can be generated by consid-
ering the intersection of two different lines, for example a height and a perpen-
dicular bisector. Twelve such situations can be generated. For each case, one page
is devoted offering to the students:

1. a Cinderella widget with a triangle ABC such that the vertex C moves along a
line parallel to [AB] and a collection of tools for constructing intersection point,
midpoint, line, perpendicular line, angle bisector, locus, and the trace tool;

2. an EpsilonWriter widget enabling a communication with Cinderella;
3. an EpsilonChat widget enabling remote communication among students.

The other two units of the c-book present background knowledge required for
completing the main unit of the c-book; students may switch to these units if they
need to revise or acquire this knowledge. Unit 2 called “The concept of geometric
locus” aims at introducing the concept of locus of points. It starts by leading the
students to discover the fact that a circle can be characterized as a locus of points
that are at the same distance from a given point. The students first experiment a
“soft” locus (Healy, 2000) of a point A placed at the distance 6 cm from a given
point M (Fig. 15.4a), and then they verify their conjectures by realizing a “robust”
construction of the circle cantered at A with a radius 6 cm (Fig. 15.4b).
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The next page is constructed in a similar way and allows the students to explore
perpendicular bisector as a locus of points that are at the same distance from two
given points. Finally, the last page proposes a synthesis of these two activities and
provides a definition of the concept of geometric locus of points.

The third, and last, unit, “Algebraic representation of loci”, proposes a guided
discovery of algebraic characterization of the main curves that can be generated as
loci of points: a circle, a perpendicular bisector and a parabola.

15.5 Design Choices and Rationale

Personalized non-linear path. The c-book is designed to allow students to go
through it according to their knowledge and interest. They are invited to enter by
the main activity in Sect. 15.1 and start exploring a locus of the orthocentre of a

Fig. 15.4 Circle as a locus of points: a “soft” locus, and b “robust” locus

Fig. 15.3 a Geometric situation proposed with Cinderella. b Visualizing the trace of D while C
moves on the line L
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triangle. However, the concept of geometric locus is a prerequisite in this activity.
In case this knowledge is not acquired yet, or the students need revising it, they can
reach Sect. 15.2 via internal hyperlinks from various places of the main activity.
Similarly, Sect. 15.3, allowing the students to learn about algebraic characteriza-
tions of some common curves, is reachable from the main activity. The students are
thus given the opportunity to “read” the c-book in a non-linear personalized way,
depending on their knowledge about geometric or algebraic aspects of loci of
points. Therefore, the C-book technology affords creating conditions for students to
be active problem solvers and learners.

Promoting creative mathematical thinking. The main activity is designed to call
for students’ elaboration: they are invited to modify the initial situation by con-
sidering various combinations of special lines in a triangle, whose intersection
generates a locus to explore. They thus enter in the interplay of problem posing—
problem solving. Fluency and flexibility are fostered by providing the students with
a rich environment in which they can explore geometric situations and related
algebraic formulas while benefitting from feedback allowing them to control their
actions and to verify their conjectures (see learning analytics below). Specific
feedback is implemented toward directing students to produce different and varied
situations (flexibility) and help them to break down their mind fixation by consid-
ering yet different configurations, such as two different kinds of special lines in a
triangle passing through the movable vertex (e.g., a height intersecting with an
angle bisector), and then the intersection of two different lines that do not pass
through the movable vertex. The c-book provides the students not only with digital
tools enabling them to explore geometric and algebraic aspects of the studied loci
separately, but also with a so-called “cross-widget communication” between
Cinderella and EpsilonWriter, dynamic geometry and algebra environments
respectively, which makes it possible to experimentally discover the algebraic
formula matching the generated locus in a unique way; this feature contributing to
the development of original approaches by the students (originality). The possibility
to provide students with various cross-communicating widgets available within the
same working environment enabled us to create a resource intended to support the
development of CMT through promoting its components: elaboration; fluency,
flexibility and even originality.

Learning analytics and feedback. One of the important aspects of this c-book
enabled by the C-book technology affordances for designing appropriate feedback
was to decidewhich of the student’s activities should be logged to a databasewhile she
is studying the c-book. There are many different types of logs implemented in this
c-book. These logs enable the teacher to capture the student’s path in studying the
c-book, e.g., whether the student starts from the c-book main activity, what pages she
goes through and in which order, how far she goes through the additional two
activities, whether she goes back and forth through the c-book pages and activities and
when, whether she uses the provided hyperlinks to look for further information, how
she uses the available hints and how many levels of hints etc.

Moreover, logs are implemented to trace the student’s trails or attempts while
she is using the provided tools to construct a configuration to elaborate the given
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problem situation: the time the student spends on each page and each activity as an
indicator of motivation; the number of student’s trials for each page and each
activity of the c-book; the student’s use of EpsilonChat as a social aspect of cre-
ativity and collaborative work with others whether in pairs or groups. Two types of
feedback are provided to students, while they are studying the c-book to guarantee
their smooth move from page to page and switch between the c-book activities:
mathematical or educational feedback and technical feedback. Mathematical or
educational feedback includes hints and comments oriented toward solving the
given problem or developing creative mathematical thinking. This type of feedback
is in the form of a message sent in a pop-up window, of a hyperlink or of an internal
link. Examples of such feedback suggest to the student to explore the two activities
complementing the first activity offering the problem to be solved when a lack of
prerequisite knowledge is diagnosed (feedback intended to support the student’s
problem solving), or prompting her to look for another approach to solve the
problem (feedback intended to support the development of fluency and/or
flexibility). Technical feedback aims at helping students to master the available
widgets so that technical issues do not become obstacles to the problem solving
processes. This type of feedback is in the form of hints or instructions how to use
the provided tools Cinderella or EpsilonWriter, or hints regarding the use of
cross-communication between the two widgets.

15.6 Conclusion

The c-book presented in this chapter is the result of a collaborative work of a group
of designers coming from various professional backgrounds, as the group com-
prises researchers in mathematics, mathematics education and computer science, as
well as educational software developers. Without the synergy among those group
members, a number of design choices would have remained in a hypothetical state,
namely the technological advances in terms of cross-widget communication and
learning analytics features. The design of the c-book has thus become a driving
force in the C-book technology development, and in return, the unique C-book
technology features enabled the creation of a resource in which the designers
implemented affordances likely to promote creative mathematical thinking.

This experience brings to the fore the C-book technology affordances that the
designers can exploit for the design of resources fostering creative mathematical
thinking in students. Among these, the availability of numerous dynamic widgets
that can be embedded in the same page, the cross-widget communication and the
possibility to design appropriate feedback enabling the students to work autono-
mously are among the most outstanding features making the technology, in our
view, a unique authorable environment empowering teachers to envisage more
creative ways of mathematics teaching.
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Chapter 16
Drawing in Space: Doing Mathematics
with 3D Pens

Oi-Lam Ng and Nathalie Sinclair

Abstract Scholars generally agree that evolutions in technology, such as the
printing press, lead to deep changes in thinking, learning and doing mathematics. In
this paper, we investigate the potential changes in thinking, learning and doing that
may arise from the use of 3D Drawing Pens, which enable mathematics to be done
in space, thus shifting a two-millennium old tradition of drawing on 2D sand, paper
and screens. We describe our rationale for undertaking this research, theoretical
framework, methodology and preliminary findings about the role of 3D drawing in
the learning of functions and calculus in a high school mathematics classroom.

Keywords 3D printing � Drawing in space � Inclusive materialism
Gestures � Calculus and functions

16.1 Introduction

Our interest in 3D drawing stems from a long-standing inquiry into the role of
gestures and diagrams in mathematics thinking and learning. Specifically, we
contend that a mathematical drawing can also be seen as a hand motion that plays
both a communicative and an epistemic role. Thus, gestures “in the air” can
transform into marks on a page, which can in turn transform into new gestures.
According to Châtelet (2000), this interplay between gestures and diagrams is at
heart of mathematical invention and crucial in helping shed light on how embodied,
material actions can evolve into a formal mathematical discourse. In our context,
the three-dimensional nature of gesturing “in the air” is even closer to the potential
of drawing “in the air” with a 3D Drawing Pen, thereby further disturbing the
boundary between gesture and diagram.
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The 3D Drawing Pen is a novel handheld 3D printing device that operates in the
same manner as a 3D printer. It extrudes small, flattened strings of molten ther-
moplastic (ABS or PLA) and forms a volume of “ink” as the material hardens
immediately after extrusion from the nozzle. As the pen moves along with the hand
holding it, a 3D drawing is created at once, either on a surface or in the air
(Fig. 16.1a–c). 3D drawing frees the hand—as well as that which the hand makes—
from the flat constraints of paper-and-pencil.

Besides the ease of creating and visualising 3D objects generated through the
moving hands, 3D drawing enhances the experience of drawing 2D figures.
A diagram that would have been drawn with paper-and-pencil, like a triangle, can
be re-created and become physical object that can be held, moved and turned. This
enables a learner, for example, to interact with 2D figures in ways that were not
possible with either paper-and-pencil or the computer screen. Drawings of 3D
objects can also be made, as in the cube shown in Fig. 16.1a, without having to rely
on the rules of perspective drawing. As such, a 3D drawing has a dual nature: it is
both a diagram and a physical manipulative. We hypothesise that this characteristic
could be significant in the learning of upper secondary school mathematics topics in
which geometrical, diagrammatic and manipulative components are involved, such
as: the study of functions, trigonometry and calculus.

3D drawing is dynamic and unregimented; it opens up a new, “3D territory” for
mathematising that was unimaginable in the era of paper-and-pencil, and even in
the era of the computer screen. The present research aims to explore the potential of
3D drawing in the context of upper secondary school mathematics and to study the
effect of its use on mathematical learning, both in terms of the changes in mathe-
matics they might occasion as well as the changes in thinking. Because of its novel
nature, our research questions are exploratory, as we investigate:

(1) What are the possible affordances of 3D Drawing pens in the learning of school
mathematics?

(2) How might mathematical ideas develop through 3D drawing, and how are they
communicated (both verbally and non-verbally)?

(3) How might the interplay between 2D (paper-and-pencil) and 3D drawing
support learning?

Fig. 16.1 a Drawing a cube with a 3D drawing pen. b 3D drawing “in the air.” c A spiral
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This exploratory study is informed by previous scholarship on the interaction
between technological and mathematical evolution (Hegedus & Moreno-Armella,
2014; Rotman, 2008; Schaffer & Kaput, 1999) and by research on the mathematical
impact of new ways of doing and representing mathematics (Cuoco, Goldenberg, &
Mark, 1996; Papert, 1980). Finally, our research resonates with the growing interest
in the interplay between gestures and new touchscreen technologies that enable
learners to interact directly with mathematical objects, and that highlight the
material genesis of gesture as hand manipulations having both epistemic and
communicative functions (see Sinclair & de Freitas, 2014). Indeed, ‘drawing in the
air’, even while holding a pen, can be seen as a form of gesturing that may function
both epistemically and communicatively.

16.2 3D Drawing Tasks

For the present paper, we discuss two learning tasks in which 3D drawing can be
incorporated in the learning of functions and calculus. These two tasks were chosen
because of our research context, which was a secondary calculus course. One task
was used at the beginning of the course related to differential calculus, and the other
one near the end of the course related to integral calculus. Our first example
illustrates how the three-dimensional nature of 3D drawings may be exploited by
utilising them as physical manipulatives in the learning of instantaneous rate of
change. Figure 16.2a shows the graph of y = x2 lightly attached on grid paper as it
was initially drawn in 3D. It also shows how one can draw a “line” in 3D, place two
fingers on it, and push it towards the graph of y = x2 until it “just touches” the
parabola at one point, the point of tangency. Note that unlike with physical
manipulatives, these graphs were created by the students before being used as
manipulatives. We point out that this tangent line can then be moved physically and
dynamically along the graph by asserting a force on one of the fingers, and we see
this activity as being quite different from, for example, what can be done in DGEs
because one can feel a force exerted at the point of tangency while the tangent line
is physically moved along with the two fingers touching it. Meanwhile, the very
movement of the fingers is also the gesture that determines the slope of tangent at
different points on the function—which highlights the intricate interaction among
gesture, diagram and mathematical thinking that we sought to explore in the study.

Our second example extends our previous work exploring middle school stu-
dents’ (ages 12–14) learning of “area without numbers” (Ng & Sinclair, 2015),
where we challenged a measurement- and formula-driven approach of learning area.
In this example, the “volume of solids of revolution” (Fig. 16.2b) and the “volume
of solids with similar cross sections” (Fig. 16.2c) can be visualised through drawing
the mesh of the respective solids in 3D. The actual drawing process is worth
describing because of the way different aspects of the concept of volume are
highlighted. One might begin, for example, by drawing a parabola, either tracing it
from a piece of paper, or making a freehand one. Then one places the 3D Drawing
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Pen at the tip of one arm of the parabola and rotates the parabola gently while
holding the 3D Drawing Pen in place, which results in a curved line in space. When
the parabola has been turned by one full rotation, that curved line will have formed
a circle. Repeating this drawing process at different points of the parabola would
result in a mesh of a paraboloid where its circular cross sections are highlighted,
hence supporting students’ decomposition of the solid from 3D to its 2D parts. As
such, the “3D” nature of the drawing refers to the ‘surface’ on which the drawing
occurs, rather than to the nature of the shape produced.

16.3 Theoretical Considerations

In considering the nature of mathematical concepts and the role of technology in
doing mathematics, we adopt de Freitas and Sinclair’s (2014) inclusive materialist
perspective. This perspective offers a re-conceptualisation of mathematics thinking
and learning as the intra-action between mathematical knowledge, teacher, students
and material surrounding. This contrasts with the assumptions of other mathematics
education theories, which typically conceptualise learners, tools and mathematics as
three distinct ontological ‘actors’ and merely interact one with the other. In these
theories, tools are seen as mediating student learning, but as leaving the mathe-
matics more or less independent of these tools. The notion of intra-action highlights
the essential intertwinement of humans, concepts and tools.

A significant influence of inclusive materialism is the work of the philosopher
Châtelet’s (2000), who also advanced a materialist conception of mathematics,
seeking to move beyond the dichotomies of concrete/abstract and body/mind that
pervade most mathematics education theories. In his study of inventive moments in
the history of mathematics, Châtelet highlights the role of diagramming and ges-
turing in mathematical thinking, showing how the mobility of the human hand (in
gestures, which are then “captured” by diagrams) gives rise to new concepts. But
these diagrams are not to be seen merely as representations of some static or

Fig. 16.2 a A 3D drawing as both a diagram and a manipulative. b Skeleton of a solid of
revolution drawn by a 3D drawing pen, and c Skeleton of a solid with known cross sections
contrasted by a 2D diagram of it
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abstract mathematics. Indeed, the notion of representation reifies the concrete/
abstract dichotomy that Châtelet aims to avoid; the diagramming act aims to create
a mathematical object, not simply represent an existing, static abstraction. They are
the mathematics that gets figured, de-figured and re-figured through repeated
drawing and gesturing. This chosen theoretical framework encourages us to focus
on the novel gesture-diagram interactions that might arise out of 3D drawing. The
ontological assumption made by inclusive materialism enables us to focus less on
how the 3D pens might mediate particular, established mathematical ideas and
instead explore what new concepts emerge out of the 3D drawing activities.

16.4 Methodology

While we anticipate that 3D drawing could potentially impact a broader range of the
K–12 curricula, we have chosen to focus on its role in the learning of upper sec-
ondary mathematical topics for two reasons. Firstly, we intend to contest a common
perception that the higher level of secondary mathematics, the more “abstract” and
“intangible” it becomes. Secondly, we are motivated by the work of researchers such
as Gerofsky (2009), who has shown the pedagogical potential of having students
gesture functions in the air. If students could also be creating functions as they draw
“in the air” they could be productively combining the gestural act with the tracing
one, and producing an object that can then be manipulated and shared. 3D drawing
may thus be a useful way to introduce curve sketching in calculus and to explore
increasing/decreasing functions and concavity, by integrating the gestural forms of
thinking as well as the sense of touch into one’s graphing experience.

We undertook a classroom-based research, using the two tasks described above,
in order to increase the likelihood that the results of research are applicable while
also shedding light on how and why certain situations work (Stylianides &
Stylianides, 2013). In keeping with this line of research, the teacher-researcher (first
author) designed and delivered lessons in a secondary school calculus class with a
class set of 3D Drawing Pens. During these 75-min lessons, the teacher invited
students to produce 3D drawings as a means to diagram, visualise and explore the
target calculus ideas in groups. Then, the teacher led a whole class discussion about
the activities and posed problems where students were to provide solutions repre-
sented by 3D drawing and on paper. An explicit emphasis was put on the impor-
tance of representation with both media. The participants are 25 grade 12 (age 17–
18) students enrolled in a culturally diverse high school in Canada with no prior
experience with calculus before the study.

Data was collected in the form of videos captured by the students’ iPads as well
as videos captured by both researchers while observing and interacting with stu-
dents as they engaged in the 3D drawing tasks during lessons. For example, during
the final task of the “derivative functions” lesson, students were asked to draw a
cubic function free-hand in 3D and then to graph its derivative function with the aid
of the “tangent line” also drawn in 3D, while one student in each group filmed the

16 Drawing in Space: Doing Mathematics with 3D Pens 305



graphing process. In response to the research questions, we examined the way
students communicated about calculus linguistically and with their hands when
engaging in the designed learning tasks within a 3D drawing environment. We
focused on the specific words, actions and interactions with drawings that seemed
to be situated in the task as exploited by the use of 3D Drawing Pens. In doing so,
we illustrate how 3D drawings may complement the learning of functions and
calculus. In what follows, we present findings upon analyzing the video data col-
lected from both lessons as well as offer some speculations about the affordances of
a 3D drawing environment.

16.5 Findings

From the videos gathered during the classroom interventions, we identified four
aspects of 3D drawing that were significant to the students’ learning during the
lessons and that were specifically afforded by the medium of 3D drawings. We
discussed these findings in the following sub-sections.

16.5.1 3D Drawing Facilitates the Thinking of Functions
as Processes and Objects

At the beginning of the “derivative functions” lesson, the teacher showed a 3D
drawing of y = x2 lightly attached on the grid, demonstrated the variance of the
tangent slope at different points on the graph by maneuvering the tangent line from
one side to another with her fingers, and drew the graph of the corresponding
derivative function in between the movement of the tangent line. The students
repeated this same activity and were given two follow-up questions immediately
after: they were asked to draw the graphs of y = x2 − 2 and then y = −x2 with 3D
Drawing Pens along with the graphs of their derivative functions with pencils. We
noticed that even though different grids were provided for students to draw the three
graphs, all student groups eventually used their previous 3D drawings of y = x2 or
y = x2 − 2 as the graph of y = − x2 by detaching the graph of their previous
drawings and placing them on the new grid with the appropriate translation and/or
reflection. The students did so without being told and explained their strategies in
terms of translation (“it is translated 2 units down”), reflections (“it is reflected
along the x-axis”) and stretches of functions (“the shape of the graph does not
change”). These statements indicate that that the students were thinking about
functions as objects. These comments were made after they had drawn the graphs
temporally and dynamically with the 3D Drawing Pens, which suggests that they
thought of the graphs as a process. Hence, 3D drawing gives rise to the creation of
functions as processes and objects. We underscore here the ability to pick up a 3D
drawing (the graph of a function) and manipulate (translate and reflect) it as an
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affordance of 3D drawings additional to the ability to touch and feel the function—
and not merely a representation of it—physically.

In addition, the students’ linguistic communication accompanying their manip-
ulations of the tangent line enabled the emergence of the concept of function as a
singular object. Our data shows that the nouns “tangent” and “tangent line” were
always used in a singular form. For example, when asked by the researcher to
explain his graphing process, one student explained that, “I am using the tangent
line to find the slope at each point.” We drew attention to the use of nouns in
“tangent line” and “slope” and “point” as a singular rather than plural, which were
markedly different from what we found in the wording of the students’ calculus
textbook: “By measuring slopes at points on the sine curve, we get strong visual
evidence that the derivative of the sine function is the cosine function” (Stewart,
2008, p. 172). Based on our previous work (Ng, 2016), the use of the singular in all
of the utterances found in our data about the “tangent line” provides an indication
that the students saw the tangent line as one object moving along the graph con-
tinuously, whereas the textbook conveys the change of “slopes” in a discrete sense.

We observe that the students physically interacted with the functions as
“mathematical objects” that were not possible with the paper-and-pencil medium.
During the integral calculus part of the course, students were invited to draw the
mesh of “solids of revolution” before they learned to solve for their volume using
definite integrals. The students employed various 3D drawing strategies which are
worth describing because of how the students made use of their own 3D drawings
in the process. For example, when asked by the classroom teacher to visualize the
solid formed by revolving a curve about the x-axis, they invented a strategy that
made use of the “x-axis” as a manipulative and the action of spinning the axis.
Having drawn a curve and the coordinate axes with a 3D Drawing Pen, they picked
up the drawing from the piece of paper, held the two ends of the x-axis and began
rotating it physically and rapidly (Fig. 16.3a–c).

(a) (b) (c) (d)

Fig. 16.3 a–c Picking up the graph drawn and rotating the axis physically to visualize the solid
formed. d Gesturing a semi-circle above the diagram
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16.5.2 3D Drawing Slows Down the Drawing of Functions

While drawing graphs with their 3D Drawing Pens, the students took much time to
finish their drawings. From the video data collected, the students spent an average
of 14 s to draw the graph of a cubic function free-hand on a regular-sized paper
during the final task. Although we did not obtain comparison data about students’
drawing of the same cubic function with paper-and-pencil free-hand, we suggest
that the time that they took to draw in 3D seemed much longer than what they
would take to draw functions with paper-and-pencil. Hence, we point out that 3D
drawing slows down the drawing of graphs. Furthermore, the two types of speeds of
extruding “ink” in 3D offered by the 3D Drawing Pens, although not that different,
seemed to take on a decisive factor of how fast (or slow) and steady one draws in
3D. In contrast, ink from a pen or lead from a pencil is not extruded, and we
speculate this difference as having implications on the students’ attention to the
drawing process as well as their sense of the temporal nature of graphing.

16.5.3 3D Drawing Supports Continuous Constructions

Another interesting observation about drawing graphs in 3D was the continuity of
the drawing process. Our data shows that all student groups drew the functions from
left to right, continuously without stopping and picking up the 3D Drawing Pens
(Fig. 16.4a). By comparison, when students drew graphs (either the function or its
derivative) with the paper-and-pencil medium, they drew them in a discontinuous
manner, in the sense that they drew different parts of the graph with different
domains, sometimes from left to right, and other times from right to left, as if they
were piece-wise functions (Fig. 16.4b). Some students also drew over their sketches
repeatedly on paper by stroking with the pencils to refine their sketches, which was
not observed when they explored the derivative tasks with the 3D Drawing Pens.
Rather than refining a 3D drawing, they would discard the drawing as a whole and
draw a new one when they were dissatisfied with their 3D drawings.

Like the speed of their drawing process, we had not anticipated that the students
would draw graphs in 3D in these significantly different ways. Perhaps, extruding
“ink” in 3D is more closely tied to temporality than drawing with a pen or pencil
because of the way 3D material is “coming out” or being created over time while
drawing. We think that there is room for further exploration of the effect of 3D
drawing on temporal and motion-based thinking with respect to both of these
findings.
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16.5.4 3D Drawing Offers New Gestural Forms of Thinking

Through the students’ hand movements accompanying their interactions with the
3D drawings, we recognise that 3D drawings enabled students to physically feel the
mathematical idea of tangent to a curve during the “derivative functions” lesson.
This was evident in our observations that students used their index fingers to push
their tangent lines against the graph while estimating the slope of tangent during the
final task. Physically, when a straight line is pushed onto a curve, the slope of the
line is re-oriented to be the same as the one locally straight to the curve at the point
of contact. During the final task, one student took the extra effort to adjust the
tangent line and make it lean parallel to the curve with her index finger (Fig. 16.5a)
after it was initially pushed against the curve by another student with her finger.
Similarly, another student used his left and right index fingers to push the tangent
line and the graph towards each other (Fig. 16.5b) to re-orient the tangent line more
precisely. Besides achieving a more accurate reading of the slope of tangent with
their own fingers, these hand movements gave rise to new gestural forms of
thinking about tangent to a curve that is afforded by the 3D drawings. Given our
theoretical consideration, these new gestures are the very movement that give rise to
new mathematical meanings that are both physical and abstract.

Fig. 16.4 a Drawing graphs continuously with a 3D pen and b discontinuously with a pen

Fig. 16.5 a Physically feeling tangent to a curve with one or b two fingers. c Gesture-diagram
interaction while exploring slope of tangent at different points on the function
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We also noticed that the students did use their two fingers to act as “anchors” of
the tangent line, which we anticipated would constitute a gesture-diagram inter-
action since the fingers that moved along with tangent line at different points were
also the fingers that determine the slope of tangent (Fig. 16.5c). However, we did
not observe students talking about the slope of tangent while making this gesture or
made reference about this gesture when exploring slope of tangent. Therefore, we
did not obtain evidence to claim that the students took advantage of the gesture-
diagram interaction in the learning of derivative functions. We aim to study further
the impact of gesture-diagram interaction in mathematical thinking and learning.

16.6 Discussion

In response to the first research question, our findings suggest twomain features of 3D
drawings that distinguish them from drawing on 2D surfaces or pre-made manipu-
latives. The first is related to its manipulative dimension. The three-dimensional
nature of 3D drawings facilitated the emergence of the concept of function at an object
level, offered a form of physical interactions with them, and generated new gestural
forms of thinking. Even if the task is 2D in nature like the first one, in that students
draw parabolas and lines, the third dimension does come into play with the moving
and touching of the tangent lines which offered new gesture-diagram interaction and a
physical substantiation of tangent to a curve. Secondly, 3D drawings weremuchmore
than pre-made physical manipulatives because they are created over time in the
process of drawing with the 3D Drawing Pens. In this way, the 3D drawings captured
the diagramming process and facilitated thinking about functions as process.
Therefore, the act of 3D drawing is a gestural act that give rise to new mathematical
concepts. We are intrigued by the future possibilities of incorporating both of these
features in more 3D drawing tasks, particularly the “drawing in space” kind, which
seem to offer more significantly novel opportunities in terms of the dimensional
decomposition that Duval (2005) has argued is central to the learning of geometry.
The 3D Drawing pens provide an unusual form of deconstruction in that the shapes
that inhabit a 3D space are being created using essentially 2D objects (lines), even
though those 2D lines are created in 3D!With respect to the second research question,
we saw that a 3D drawing environment influenced the way “change” is conveyed.
Based on the students’ linguistic communication, we suggest that they thought of the
tangent line as one object (a singular)moving along the graph continuously rather than
discretely. In terms of hand movements, we noticed that 3D drawings slowed down
the students’ drawing process and made them draw in a continuous manner. We
hypothesise that since “ink” in 3D was extruded at a steady speed, this may facilitate
temporal and motion-based mathematical thinking. On the other hand, when creating
solids of revolution, the students’ hand movements were much more complex; they
spun their drawings and gestured over it (Fig. 16.3d) in order to generate the solids
virtually. In other words, their hands were very much entangled with the solids
formed. We encourage similar studies to examine what we call “mathematising in
3D”, where doing mathematics is much more than writing symbols or drawing
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diagrams on paper but is integrated with the 3D space, the moving hands and the
physical experience of interacting with 3D drawings.

Finally, with regards to the third research question, the task we provided for the
lesson on derivative functions did invite the students to work with two media: they
needed to draw graphs with the 3D Drawing Pens and then the corresponding
derivative functions with paper-and-pencil. The students worked with both media
back and forth throughout the lesson, during which they drew graphs differently with
each medium. We also found evidence of students’ gesture-diagram interactions
during both tasks and interactions between 2D and 3D drawings in the “volume by
revolution” and “volume of solids with similar cross sections” lessons. Typically, in
Canadian secondary school classrooms, teaching these topics required students to
visualize the solids formed by drawing representations of the 3D solids on paper. In
contrast, a 3D drawing environment offered the possibility of drawing a solid in 3D.

Based on the two core features of 3D drawing, we can speculate that 3D drawing
may impact teaching and learning mathematical topics in the current curricula in two
ways. First, we recognise that our subjects found it quite powerful even to produce 3D
drawings that were flat. They were attracted to the tangibility of their creations—the
ability to pick up and interact with the drawings physically even if they were 2D in
nature. Thus, 3D drawing may be useful to support learning of 2D shapes or functions
in ways that were not possible with either paper-and-pencil or the computer screen.
For example, it is suggested that the physical movement and tactile interactions of
drawing, touching and turning a 2D figure may be helpful for young children to learn
about shapes, in particular, overcome difficulties related to non-prototypical shapes.

In the secondary mathematics level, the learning of trigonometry and plane
geometry may be exploited with 3D Drawing Pens through drawing, manipulating
and comparing angles and line segments without introducing numerical measure-
ments. These geometrical topics are traditionally introduced with measurements
with the media of paper-and-pencil or computer screen because it would be
otherwise difficult to compare lengths or angles. However, the ability to draw, pick
up and manipulate 3D drawings make it possible to compare geometrical objects by
superimposing one onto another or by the sense of touch. While these drawings are
illustrations of particular examples, they also maintain a sense of generality since
they did not rely on numerical measurements.

Fig. 16.6 a–b Drawing a rectangular pyramid with a 3D drawing pen
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Secondly, when drawing 3D figures, one does not need to rely on the rules of
perspective drawing. For this reason, diagramming prisms, cones, pyramids and
polyhedrons with a 3D pen can be very significant for one’s learning about the
geometrical properties of 3D solids. As opposed to drawing flat diagrams, 3D
drawing requires reconstructing the 3D solids in space, through which particular
features, such as perpendicularity, parallelism, height, and relationships between
faces and vertices can be observed. Teachers can exploit the diagrammatic and
manipulative dimensions by guiding students to draw, touch and explore certain
planes, cross sections and line segments of 3D figures, which can be underscored by
drawing them in different colours. Figure 16.6 shows the process of constructing a
regular pyramid with a 3D pen. The drawing process makes it possible to observe
the relationship between the height and the diagonals of the base of the pyramid
(Fig. 16.6a) as well as the three different right triangular plane that are perpen-
dicular to the rectangular base of a pyramid (Fig. 16.6b). Drawing these with a 3D
Drawing Pen may help support students who may otherwise have difficulties
visualising 3D figures drawn on paper or computer screen.

16.7 Conclusion

In summary, our first encounter with the 3D Drawing Pens provided important
insights on the affordances of a 3D drawing environment for mathematics learning.
We also illustrated how 3D drawings may enhance the learning of 2D shape
recognition and transformation in early grades; shapes and space in the middle
school level; as well as functions and calculus in the secondary level. In terms of
future research directions, we are interested in what sorts of learning and thinking
possibilities arise when there is a material record of one’s gestural history. It is this
detail that most intrigues us around the pedagogical possibilities of doing mathe-
matics with the 3D Drawing Pens.

References

Châtelet, G. (2000). Figuring space: Philosophy, mathematics, and physics (R. Shore & M. Zagha,
Trans.). Dordrecht: Kluwer.

Cuoco, A., Goldenberg, E. P., & Mark, J. (1996). Habits of mind: An organizing principle for
mathematics curricula. Journal of Mathematical Behavior, 15, 375–402.

de Freitas, E., & Sinclair, N. (2014). Mathematics and the body: Material entanglements in the
classroom. Cambridge, UK: Cambridge University Press.

Duval, R. (2005). Les conditions cognitives de l’apparentissage de la géométrie: Développement
de la visualisation, differenciation des raisonnement et coordination de leurs fonctionnements.
Annales de didactique et sciences cognitives, 10, 5–53.

Gerofsky, S. (2009). ‘Being the graph’: Using haptic and kinesthetic interfaces to engage students
learning about functions. In C. Bardini & P. Fortin (Eds.), Proceedings of ICTMT 9. France:
Université de Metz, Metz.

312 O.-L. Ng and N. Sinclair



Healy, L., & Sinclair, N. (2007). If this is our mathematics, what are our stories? International
Journal of Computers for Mathematical Learning, 12(1), 3–21.

Hegedus, S., & Moreno-Armella, L. (2014). Information and communication technology
(ICT) affordances in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics
education SE—78 (pp. 295–299). Netherlands: Springer.

Ng, O. (2016). Language, gestures, and touchscreen-dragging in school calculus: Bilinguals’
linguistic and non-linguistic communication (Unpublished doctoral dissertation). Canada:
Simon Fraser University.

Ng, O., & Sinclair, N. (2015). ‘Area without numbers’: Using touchscreen dynamic geometry to
reason about shape. The Canadian Journal of Science, Mathematics, and Technology
Education, 15(1), 84–101.

Papert, S. (1980).Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
Rotman, B. (2008). Becoming beside ourselves: The alphabet, ghosts, and distributed human

beings. Durham: Duke University Press.
Shaffer, D. W., & Kaput, J. (1999). Mathematics and virtual culture: A cognitive evolutionary

perspective on technology and mathematics education. Educational Studies in Mathematics, 37
(2), 97–119.

Sinclair, N., & de Freitas, E. (2014). The haptic nature of gesture: Rethinking gesture with new
multitouch digital technologies. Gesture, 14(3).

Stewart, J. (2008). Calculus: Early transcendental (6th ed.). Belmont, CA: Brooks Cole.
Stylianides, A. J., & Stylianides, G. J. (2013). Seeking research-grounded solutions to problems of

practice: Classroom-based interventions in mathematics education. ZDM—The International
Journal on Mathematics Education, 45(3), 333–342.

16 Drawing in Space: Doing Mathematics with 3D Pens 313



Chapter 17
Diagrams and Tool Use: Making
a Circle with WiiGraph

Giulia Ferrari and Francesca Ferrara

Abstract Using Châtelet’s perspective on the gesture/diagram interplay, we aim to
contribute to the current discussion on the role of technology showing influences of
tool use on some grade 9 students’ diagrammatic activity. The students have been
engaged in graphing motion experiences in the context of a teaching experiment
with WiiGraph, a software application modelling the movement of two controllers
of the game console Nintendo Wii. In particular, we focus on the activity of making
a circle and the circle emerging as a gradient of speeds and directions out of
students’ movements. Telling the story from the point of view of the diagram, we
focus on the new dimensions and movements that arise from, within and about the
working surface, as dynamic sources and sites of mathematical thinking.

Keywords Circle � Diagram � Gesture �Movement � Tool use �WiiGraph

17.1 Introduction

Drawing on lines offlight offered by the recent book “Mathematics and the Body” of
de Freitas and Sinclair (2014), we propose to use the work of the philosopher of
mathematics Gilles Châtelet to analyse a technology-related task and the diagrams
used by some secondary school students to face the task. Châtelet allows us to
explore the huge potential of the diagram in mathematics education. He ascribes
several functions to diagrams and sees diagrams as technologies intertwined with
other technologies of writing. Interestingly, Châtelet discusses the diagram of an
interval pointing out the virtual dimensions of its length, which is traditionally seen
as originating from a point stuck in the plane. In so doing, Châtelet rethinks the
notion of length imagining two extremities spreading out at the same time and the
creation of “the diagram of the opening out with its indifference centre” (Châtelet,
1993/2000, p. 151). He points out the way in which tool use is tangled up in this
mobilization of the interval. Pincers or compasses might:
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give a point of view to the hand, by associating an angle in which the interval is ‘seen’ with
the grasp. The angle refers to a degree of embracing and allows the lateral to resume its
rights. It invites a second dimension, another world where the geometer may virtually
propel himself: the hand inhabits the angle and the angle incites the end to open out into
two sides. (ibid., p. 151)

Another aspect, which de Freitas and Sinclair discuss in their work, is the
pedagogical force of diagrams, a force that could be integrated in the mathematics
classroom. In this paper, we propose to join elements of this view with tool use in
mathematical thinking.

In particular, our interests are on the way that the technology in use in the
mathematical activity can mobilize, reconfigure and expand the diagrams created by
the students, unfolding new meanings and mathematical dimensions. Focussing on
this aspect, we look at diagrams as “kinematic capturing devices”, using the words
of de Freitas and Sinclair (2014), instead of looking at them as external represen-
tations of mathematical concepts. We also look for diagrammatic and gestural signs,
as well as for the gesture/diagram interplay that not simply recalls, but literally
brings forth the activity with the tool.

In this chapter, attention is specifically drawn to the activity of making a circle in the
context of a classroom-based intervention devoted to studying function through the use
of a technology that graphsmotion. The activity engages secondary school students in a
discussion in which they are asked to relate the diagram of a circle to pairs of
one-dimensional motions that combine to make the circle, which the students
encountered using the technology.Wewill see how the initial diagram is mobilized and
expanded throughout the discussion and how this movement engenders new and
unexpected kinds of mathematical experiences for learners. This helps us better study
the relationships betweenmatter andmeaning that are implicated in contingent tool use.

17.2 Theoretical Committments: Diagrams and Gestures

The French philosopher of mathematics Châtelet takes episodes in the history of
mathematics and physics to explore the interplay gesture/diagram under a per-
spective that considers the physical in the mathematics, rather than seeing the
mathematical and the physical as separated, like in “the Aristotelian division
between movable matter and immovable mathematics” (de Freitas & Sinclair, 2014,
pp. 63–64). In so doing, he troubles the ontology of the relationship between
mathematics and the physical world, as well as the classical vision of what it means
to do mathematics. What is peculiar about this relationship is how the concept
partakes in the virtual dimensions of the material world.

The virtual is at play when we reconceive concepts less as static abstract entities
and more in terms of their power of affecting and being affected, their animating
force, their potentiality and mobility, their capacity of giving rise to new configu-
rations, alterations and mutations. So, for example, the circle can be thought of in
terms of the virtual motions that it generates instead of being thought of as a static
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geometrical object. In “L’enchantement du virtuel”, Châtelet (1987) takes the
example of the circle when he discusses how points might be considered not as
given in the plane, but as being somehow algebraic powers. For him, an “abstract”
point of the circle has absolutely no interest. Instead, interesting things about the
circle will be really emerging when one will “build functions on the circle or, for
example, put some sine [curve]”, when one will “wrap a straight line in a circle with
the sine, a constantly dynamic perspective in mathematics”. Researchers have
discussed the affordances of technologies that mobilize mathematics implicating
gestural and diagrammatic engagement. Nemirovsky and Ferrara (2009), for
example, illustrate the case of one girl’s gestures tracing the motion of two laser
lights in order to discover a defined triangle shape as the trajectory of the combined
motion. Similar work on a circle shape with a drawing machine is instead inves-
tigated in Noble, DiMattia, Nemirovsky, and Barros (2006). Others, e.g. Hegedus
and Tall (2016), Sinclair, Chorney, and Rodney (2016), focus on how multitouch
devices might offer new mathematical experiences in environments mainly
designed for the study of geometry and early arithmetic.

Following Châtelet, the relationship between gestures and diagrams can be
rethought, through their coupling and looking at gestures as “capturing devices”
and diagrams as “physico-mathematical” entities. De Freitas and Sinclair (2014)
notice the relevance of his vision with respect to present literature: “In contrast to
current work on gestures, on the one hand, and diagrams, on the other hand,
Châtelet insists that separating one from the other is both awkward and possibly
misleading” (p. 64). For him:

A diagram can transfix a gesture, bring it to rest, long before it curls up into a sign, which is
why modern geometers and cosmologists like diagrams with their peremptory power of
evocation. They capture gestures mid-flight; for those capable of attention, they are the
moments where being is glimpsed smiling. (1993/2000, p. 10)

Châtelet argues that the diagram is by its very nature never complete, and the
gesture is never just the enactment of an intention. Instead, the two participate in
each other’s provisional ontology:

Like the metaphor, they [diagrams] leap out in order to create spaces and reduce gaps: they
blossom with dotted lines in order to engulf images that were previously figured in thick
lines. But unlike the metaphor, the diagram is never exhausted: if it immobilizes a gesture
in order to set down an operation, it does so by sketching a gesture that then cuts out
another. (ibid., p.10)

Châtelet insists that gestures and diagrams are both pivotal sources of mathe-
matical meaning and they mutually presuppose each other and share similar
mobility and potentiality. De Freitas and Sinclair (2014) underline that “For
Châtelet, diagrams ‘lock’ or ‘capture’ gestures. ‘Capturing’ is contrasted to ‘rep-
resenting’ in that the latter is bound to a regime of signification that curtails our
thinking about diagramming and gesturing as events” (p. 64). Briefly speaking, if
the gestural gives rise to the very possibility of diagramming, so the diagrammatic
gives rise to new possibilities for gesturing. Instead of being seen as external
representations of existing knowledge, the diagrams are “kinematic capturing
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devices, mechanisms for direct sampling that cut up space and allude to new
dimensions and new structures” (p. 65). The coupling and interplay of diagramming
and gesturing are of interest for their being “embodied acts that constitute new
relationships between the person doing the mathematics and the material world”
(de Freitas & Sinclair, 2012, p. 134).

Rotman (2008) considers as an essential aspect of diagrams in Châtelet’s under-
standing their “after-life”, the future alterations that are latent in them and that never
get “exhausted”, suddenly bringing into life new unexpected gestures and move-
ments. Thus, the diagram is a material surface, which is not an inert static part of the
mathematical event but actively and dynamically partakes in mathematics thinking
and learning, with its gaps and flaws. Mathematics emerges out of this actual and
virtual mobility of the gestural and the diagrammatic, prompted by the continual
movement and becoming that shape the activity. Elsewhere (Ferrara & Ferrari, 2017),
we have taken a similar perspective to discuss the assembling of learners with
mathematical meanings and their material surrounding in pattern generalisation
activity that did not involve technological tools. Once gestures and bodily activity are
entangledwith tool use, the interplay gesture/diagram, and therefore themathematical
activity, is enriched and reconfigured by those actions that have incorporated the tool:
new dimensions can be unfolded from the static appearance of the diagram, and this is
sustained by new unexpected ways of capturing mathematical relationships.

To investigate the complex processes of becoming that new technologies can
create in teaching and learning mathematics, the main idea of this study is to focus on
the ways in which past experiences with tool can re-inject movement and time into
the mathematics that the students are exploring, rather than focussing on specific tool
use. Drawing on an example of students’ diagrammatic activity through Châtelet’s
vision, we look at the mathematical activity telling the story from the point of view
of the diagram, so that we can recognise the partaking of the technological devices in
the essence of the diagrams as “kinematic capturing devices”. We embrace a vision
similar to that offered by Roth (2016), who proposes to look, rather than at the
“finished and finalized diagrams students make”, at “the actual flows of the move-
ments that got their makers to those end points” (p. 4). We are interested in looking at
how diagrams are in becoming as lines or traces of students’ mathematical thinking,
and at the gestures and words around and about these diagrams. In particular, in this
study we want to shed light on the dynamic process of “making a circle” as it
emerges out from an activity of graphing motion in two dimensions.

17.3 The Study

17.3.1 Participants and Methodology

The data presented here come from a medium-term teaching experiment that
involved a class of thirty grade 9 students and their regular mathematics teacher in
graphing motion experiences to introduce the concept of function and the
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mathematics of change. The teaching experiment held in Northern Italy and con-
sisted of 9 two-hour sessions, during the 4-months period from December 2014 to
March 2015. The tasks were all designed by three people, the two authors and the
teacher. During the sessions, the second author led the activity, while the first
author and the teacher were active observers. The students were engaged in col-
lective discussions, group work and individual written tasks, and were filmed by the
first author. The students made use of a specific software application for modelling
motion called WiiGraph, which works by means of two controllers of the game
console Nintendo Wii. The meetings took place in a laboratory room, which was
used for the embodied interactions with the technological tools.

In the specific case of this chapter, we will mainly devote attention to the con-
tingent interventions of five students in the activity: Barbara and Lucrezia as vol-
unteers who move the controllers to make a circle; Emanuele, Federico and Tiziana
as participants in the following discussion about the mathematics of the circle and its
relationship with the movement performed by the two girls. As participant observers
involved in the teaching and learning setting, we are materially implicated in the
research process and entangled with spaces, resources and technologies, as well as
with learners, method, theory and the data—which is our research matter and con-
sists of all the written productions and the video. This speaks directly to the ethical
dimension of the research, as discussed in Ferrara and Ferrari (2017) (see also
Haraway (2008), for extensive discussion on the space of ethics).

17.3.2 WiiGraph: Line and Versus

WiiGraph has been built for didactic purposes byRicardoNemirovsky and colleagues
at the Centre of Research in Mathematics and Science Education of San Diego State
University. It allows for exploring and creating many types of motion graphs, by
capturing over time the positions of two Wiimotes (the controllers of the Wii) with
respect to a sensor bar. Here we focus on two specific options: Line and Versus. Line
furnishes in real time two space-time graphs that depicts the distance of the controllers
over time, being the Wiimotes moved by two users in the interaction space in front of
the sensor (Fig. 17.1a). Time and spatial ranges can be set and modified for the
Cartesian axes. Labelledwith a and b the two distances, the lines of a(t) and b(t) appear
coloured in different ways (according to the colours associated to the controllers by
default). In our experiment, we projected the graphs on an IWB (Interactive White
Board) so that they could be shared and watched by all the students. Versus plots
at each time t an ordered pair of the two distances: (b(t), a(t)), leaving time implicit (on
the Cartesian plane ba). One of the most interesting challenges for a Versus graph
involves the creation of plane shapes, like rectangles and circles (Fig. 17.1b). The
circle is the shape of interest in the case of the collective discussion, which is the focus
of our study. From the mathematical point of view, the case of the circle is intriguing
with respect to a(t) and b(t) being the sinusoidal functions that describe a circular
motion.
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17.4 Making a Circle

During the collective discussion, we aimed to connect the experience of making a
circle with Versus, with the corresponding Line graphs. This explicitly drew
attention to the nature of the circle as a planar motion trajectory (a parametric curve)
with respect to the nature of the sinusoidal line graphs as the distance-time func-
tions associated to the two-dimensional motion. The students had already worked
on this connection in an intuitive way when they had first tried to make the circle
using Versus, and then, keeping moving the controllers in the same way, had
switched to the Line option to discover the associated graphs of a(t) and b(t). On
that occasion, Lucrezia and Barbara had first moved the controllers in a coordinated
way along parallel directions (Fig. 17.1c, d) being able to obtain quite a circular
shape more times (Fig. 17.2a). If one thinks of the circle as a gradient of speeds and
directions, one realises how challenging the task is in that it affects and is affected
by the students’ need for becoming coordinated together and with the software.
This agreement in movement is a sort of obligation to the task that pushes the
students (both those moving and those watching by their seats) to begin perceiving
how mutual position, direction and change of speed are implicated in the process of
creating a circle.

Fig. 17.1 a Line session; b Versus session; c, d Lucrezia and Barbara making the circle

Fig. 17.2 a Circular shapes with Versus; b sinusoidal Line graphs; c the circle; d–e Tiziana’s
orthogonal movements
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In a second moment, while Lucrezia and Barbara were trying to maintain their
coordination, we had changed Versus to Line and all the students had been able to
see the graphs shown in Fig. 17.2b (that we might take as sinusoidal curves). In this
case, the two graphs appear only little translated in respect to each other, but the
students could start perceiving such a geometrical property as part of Lucrezia and
Barbara’s coordinated movement. Partaking in the experience as observers or
movers becomes relevant as soon as the explicit connection between the graphs and
the circle, as well as the relation between the two graphs, comes to be discussed.
Attention was shifted during the next meeting from making the circle with
WiiGraph to talking about the circle, without using WiiGraph, in a collective
discussion. In light of the theoretical commitments outlined above, our analysis of
the discussion will not specifically focus on the students’ speech but on the alter-
ations and changes in the diagrammatic activity, which speak directly to changes in
mathematical thinking about the circle.

17.4.1 Moving Hands and Changing Diagrams

Even if the coordinated movement of the movers/controllers requires agreement not
only in space but also in time, in the making of a circle with Versus time seems to
disappear. This is true in the only sense that time as a variable does not belong to
the Cartesian plane displayed by Versus, where a figure is indeed captured as a set
of couples of positions. However, time is still present in the circle as the parameter
that fundamentally determines and rules the relation between the elements of each
couple. From the mathematical point of view then, its role is crucial to grasp the
connection between the circle as a trajectory and the sinusoidal graphs of distance
versus time that describe circular motion. Accordingly, the collective discussion
mainly focuses on making explicit the role of time in this connection.

The starting point of the episode is the drawing on a whiteboard of two kinds of
Cartesian planes: ba on the left and st on the right, where s is the label used for
distance (no matter whether corresponding to a or to b). We draw attention to a
brief passage of the discussion, in which we look at the evolution of the diagram
changing throughout the movement of the body and the hands of several students.
To this aim, we centre on some pictures, extracted from the video of the discussion,
that capture changes of the diagram and that we see as the site of the gestural/
diagrammatic interplay (Figs. 17.2c–e and 17.3). The first picture is that of a circle
added by Tiziana on the ba plane (Fig. 17.2c). At this moment, the circle is simply
a circular shape, like that obtained at the end of a Versus session with WiiGraph.
While two orthogonal movements seem to be implicated in the graphical shape

17 Diagrams and Tool Use: Making a Circle … 321



(Tiziana: Fig. 17.2d, e), those movements are still detached from the vision of the
circle as a geometrical object, so they do not bring about new elements to the
diagram. As soon as a point is drawn on the circle (Federico: Fig. 17.3a), the circle
is no longer only a closed line but becomes a motion trajectory that reveals and
unfolds a dimension in which the point is movable. The dotted lines spilling out
from the point in orthogonal directions add to the diagram another dimension,
which freezes the movement of the point in a specific position, capturing two
specific distances a and b of the controllers from the sensor bar. The few hyphens
that bring into being the two projections now tie the variable point on the circle to
its position in the plane through entanglement with the Cartesian axes. Notation for
the position is explicitly attached to the diagram, correspondingly to the point
(Federico: Fig. 17.3b). The circle becomes then a set of points, once the first author
points to a different new point on the circle (Fig. 17.3c).

The set of points inherently implies a set of couples of dotted lines, each couple
linked to one point. While the circle is discretised by the hand jumping to far
positions instead of continuously flowing along the line, the diagram starts telling a
different story. The new point, which is actualised by the moving hand, recovers the
virtual presence of time in the circular motion trajectory, making present on the
diagram a new position in time, which corresponds to an eventual new frozen
moment reachable by the moving point (and to a new couple of dotted lines). The
dimension of time enriches the diagram with the discreteness of specific positions (b,
a) along the circle. In fact, different positions cannot be reached by the moving point
at the same time instant, which the dynamic nature of the diagram makes emerge out
of the researcher’s pointing to distinct points of the circle. Two points are of course
distinct as positions in the plane (distinct couples of coordinates), but also as posi-
tions on a motion trajectory, along the temporal dimension. At this moment, the
students recognise that time indirectly plays a role in the diagram/trajectory. This
shifts the focus of the discussion to that which is instead directly linked to time.

Fig. 17.3 a Federico adding point and dotted lines; b notation for the point on the circle; c new
point on the circle; d marking room for vertical displacement
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The activity changes again when two graphs that unfold the axis of time in
relation to the changes of a and b are added to the diagram, in two perpendicular
directions (Emanuele: Figs. 17.3d and 17.4a, b). First, the circle implicates the
drawing of the horizontal and vertical lines that define room for horizontal and
vertical displacement of the position (Fig. 17.3d). Then, the spatial dimension is
entangled with the temporal dimension through the new movements that originate
the lines of a(t) and b(t) (Fig. 17.4a, b). The new dimension of the functions over
time and of their connection with a circular motion appears. This dimension
unravels the meaning of the two graphs in terms of the previous physical motion
experiences with Line. There are significant aspects to take into account here. On
the one hand, these lines unexpectedly emerge out of (and really from) the space
containing the circle (the quadrant of the Cartesian plane ba): the one on the bottom
(b(t)), the other on the left (a(t)); the one perpendicularly to the axis of b, the other
to the axis of a. This perpendicular direction introduces time as that dimension
which captures the making of the two graphs in unscripted space. On the other
hand, the lines are both constrained to the defined room, no matter which is the
direction of their making. Therefore, the new diagram embeds limits in relation to
the circle shape (the displacements of position are bounded to the circle’s size: see
e.g. Fig. 17.4c, d for the vertical displacement). These limits speak directly to the
definition of the circle as a geometrical object. But the diagram also embeds
freedom(s) about the ways that each line grows as a function of time in the available
space (the constraint is given by the borders of the whiteboard).

Fig. 17.4 a–b b(t) and a(t) on the diagram; c–d vertical bounds

Fig. 17.5 a–c Tiziana’s gestures on the diagram; d Emanuele’s coordinated movements
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At this point, new gestures emerge out of the diagram. Tiziana’s left index finger
moves close to the diagram to actualise the new Cartesian plane containing the
graph of b(t), in particular the axis of time (Fig. 17.5a–c). While this draws
attention to the role of time as a variable and to the link with the plane st, the
following gestures condense the situation by taking time away and, moving thought
in reverse, bring back the coordination and the collaboration through which the
circle was made. Emanuele’s moving hands bring into life the two contemporary
movements necessary to have the point moving along the circle (Fig. 17.5d), before
unwrapping their developments along the dimension of time. Such new movements
recover the essence of the activity with the tool, embedding it in the space con-
strained to the diameters’ projections on the axes, again in perpendicular directions.
In the rest of the activity, the students transfer the graphs of the two functions on the
plane st starting from thinking of the displacement constraints for the vertical and
horizontal positions.

Summarizing, the concept of circle emerges from the actualization of constraints
that are embedded in the diagrammatic and forged by the gestural, from the
breaching and unfolding of dimensions for movement to expand and evolve, and
from the exploring of duration and coordination among hands, people and vari-
ables. The technology is also implicated in all this emergence in a way that cre-
atively and unexpectedly perturbs both the mathematics of the circle and the
entanglement of diagrams, gestures and students in the activity.

17.5 Concluding Remarks

In the very brief episode that we have presented here, it is as if the students included
themselves in the drawings of, on and around the circle on the whiteboard, not only
projecting themselves into the diagramming activity but also into the past experi-
ence with tools. We have seen how learners, tools and diagrams are entangled
within the mathematics classroom: boundaries between them always change,
mobilizing activity towards/across unexpected and unscripted lines that engender
new meanings for the making of the circle. In particular, we have proposed to tell
the story from the point of view of the diagram, marking new dimensions and
movements within and about the working surface, on which the several students
intervened. In this way, we have focused more on all the movements that have
originated from and have animated the diagram, rather than on the diagram itself as
a finished product of the mathematical activity. This perspective helps us shift
attention from seeing diagrams as representations of existing concepts to diagrams
as emergent speculative mathematical doings. It allows us to see how mathematical
thinking about the circle is throughout developed for the students, and especially
how the kind of concept of circle that emerges out of the activity is one of a gradient
of speeds and directions, which implicates coordinated movement and timing in/for
its making.
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This vision also helps us draw attention to how, in the same way as the graphs
with WiiGraph arise from and change with movement, the diagram arises from and
moves with the students’ gestures that incorporate their past experiences with the
technology. In this respect, we have shown how the nature of the particular tool
used by our students has forged the becoming of the gestural/diagrammatic inter-
play. On the other hand, de Freitas and Sinclair (2014) point out that the vision of
Châtelet “challenges educators to reconsider the power of student diagramming as a
disruptive and innovative practice” (p. 84). As mathematics educators, we believe
to have taken this challenge in telling the story from the point of view of the
diagram. It is this viewpoint that has pushed us to reconsider the power and the
affective force of the diagramming as an inventive way of making a circle within
the mathematics classroom.
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Chapter 18
A Linguistic Approach to Written
Solutions in CAS-Allowed Exams

Johannes Beck

Abstract The context of my study is the use of computer-algebra-systems (CAS)
as permanently available tools in upper secondary education, where the docu-
mentation of CAS-use is a major challenge for both teachers and students. This
article focuses on a descriptive model with which students’ written solutions can be
analysed from a linguistic point of view. Furthermore, this model may help teachers
to reflect about the functional aspect of “writing down notes” and thus to allow for a
deeper insight into the way the process of communication of mathematics can be
shaped.

Keywords Computer-algebra-systems � Exams � Linguistic approach
Documentation � Communication

18.1 Introduction: Solving Tasks with CAS

The use of digital technologies like computer-algebra-systems (CAS) changes
various aspects of mathematics education (cf. Barzel, Hußmann, & Leuders, 2005).
Thanks to the many available functions of a CAS, students perform typical activ-
ities—such as differentiating a function—in a different way than they would have
done in a traditional mathematics class. While shortcutting the work of calculating
with pen and paper enables classes to have more time for mathematical reasoning,
the availability of CAS also forces teachers and students to think about how to
document the process of working on a task.

In this study, I focus on mathematics classes that work with CAS as a perma-
nently available tool from 10th to 12th grade. The respective students choose in
grade 9 that they want to participate in such a class. The CAS will be allowed in
most exams during this three-year-period although this is not obligatory. In the final
exam (called Abitur) the students are obligatorily allowed to use the CAS.
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The aim of this study is to analyse students written solutions and identify how
they communicate in their final written exam. Furthermore, it is my intention to
provide didactical material that helps teachers and students with the challenges and
difficulties of documenting their solutions.

18.2 Theoretical Background: Communication
in Mathematics

What exactly is the nature of documentation in mathematics? In this article, I
distinguish the solving process, i.e. the activities, from the documentation, which is
a written-down “text”. The central aspect of “text” is the fixation of meaning in
written form (cf. Beck & Maier, 1994). During the solving process, both mental and
non-mental activities—such as operating the computer—are performed by the
learner. In traditional CAS-free classes, the performed activities—such as differ-
entiating a function—might need to be written down on paper in order to perform
them and, hence, the performed activities and their documentation are not separable.
In comparison, if a CAS is used many activities can be performed with it auto-
matically and the formerly step-by-step process is hidden within the tool.
Consequently, certain CAS-related activities might or might not be documented
whereas they would have been written down as part of a traditional, CAS-free
solving process.

Any author of a mathematical text can choose different representations to fixate
meaning on paper. The extended modelling cycle for modelling with the help of
technology distinguishes three worlds: the real world, the mathematical world, and
the technological world (cf. Greefrath & Siller, 2010). I argue that each world has
its own forms of typical representations or, as Moschkovich puts it: “research will
need […] to consider the interaction of the three semiotic systems involved in
mathematical discourse—natural language, mathematics symbol systems, and
visual displays” (Moschkovich, 2010, p. 153). Thus, three different groups of
representations can be distinguished: (1) The natural language (e.g. German or
English) allows to connect the mathematical content with the real world. Normally,
this is the students’ first language. (2) The mathematical world offers the symbolic
language of numbers and formulas as well as the mathematical register. Pimm states
that “[p]art of learning mathematics is learning to speak like a mathematician, that
is, acquiring control over the mathematics register” (Pimm, 1987, p. 76).
Furthermore, mathematical content is often represented by a variety of graphical
representations such as tables and graphs. (3) The technical world has its own
register and symbolic expressions that allow to fixate meaning that is closely
connected to the computer, and more prominently the command language with
which the digital tool is operated. While all these three worlds have symbols that
traditionally have a specific meaning in certain contexts, any author can also create
new symbols and other forms of representations. Godfrey and O’Connor speak of
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the mathematics community as a “community that creates new measures and
symbols as they are needed, flexibly applying the means that already exist and
adding to those tools when necessary” (Godfrey & O’Connor, 1995, p. 328). In the
long term, students have to learn to use the mathematical register and the symbolic
language in order to be able to participate in the communication of the community
of mathematicians.

Regarding the writing practise, Pimm highlights three different styles of the
mathematical writing of students within a continuum of styles: “verbal, mixed and
symbolic” (Pimm, 1987, p. 118). Students of each type prefer using representations
from the name-giving source. Pimm stresses “that all the recording styles […] have
the potential for accurate and precise written records of mathematics” (Pimm, 1987,
p. 118). In the context of CAS-use, a fourth style might occur: a style that relies
heavily on writing down computer-commands and results in the representational
forms used by the tool.

As mentioned above, the primary object of written solutions in exams is to
communicate mathematical knowledge and to make it accessible to the teacher for
grading. If Jakobson’s model for describing communication situations
(cf. Jakobson, 1960) is applied to the examination its six different factors can
be clarified as follows: the learner is the ADDRESSER, the teacher is the
ADDRESSEE and the written-down solution is the CONTACT (or channel) for the
MESSAGE. The CODE in this communication situation consists of the afore-
mentioned representations, which both the addresser and the addressee at least
partially must share and understand. The CONTEXT includes the examination tasks
as well as the screen of the CAS as its most important factors.

In exams, the written documentation is the only channel by which the addresser
sends the message to the addressee. Naturally, in such a situation it is neither
possible nor allowed for the corrector to inquire in case he does not understand a
part of the solution. Thus, Busse calls all written communication as “reduced
communication situation[s]”, arguing that only the text itself and the recipient of the
text are really participating in the situation (2015, p. 320, translation JB), although
the producer of the text is still implicitly present through his text. Thus, the
understanding of texts is conceptualized as the allocation of the recipient’s
knowledge to certain elements of the text. In this regard, Busse claims that the
producer of a text can influence the understanding of the text by setting the degree
to which this allocation is open or closed (cf. Busse, 2015). In any test, it is in the
interest of the addresser to avoid misunderstandings with the addressee. The pur-
pose of documentations in exams is to enable the corrector(s) to understand and
judge the way along which the student has found the solution (cf. Ball & Stacey,
2003). Those parts of the written solution, which fail to make the underlying
thoughts clear, are commonly marked as “unclear” and not rewarded with the
maximum of achievable points. Thus, the addressers have to take care that they
explain their solving process well enough. Furthermore, most mathematics curricula
require students to show a certain degree of formalism, that is, using the mathe-
matics register and the symbolic language appropriately. It has to be part of the
preceding lessons that students learn which requirements they have to meet.
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Students should also develop the competence to communicate mathematically in
different situations and for different purposes, not only for grading. Generally, if
somebody writes in mathematics one either writes for oneself or for somebody else
(cf. Pimm, 1987). Brenner distinguishes different types of communication in the
context of mathematics.

“Communication About Mathematics entails the need for individuals to describe problem
solving processes and their own thoughts about these processes. […] Communication In
Mathematics means using the language and symbols of mathematical conventions […]
Communication With Mathematics refers to the uses of mathematics which empower
students by enabling them to deal with meaningful problems (Brenner, 1994, p. 41)”.

At the end of their school life students should be able to communicate com-
petently in all three types. This article focuses mostly on communication in
mathematics. How students can develop this competence is a major challenge.
Against this theoretical background, different research questions arise. In this
article, I focus on the following:

1. How do students write down their solutions in final exams when a CAS is
available? Which different forms of documentations do they use? What kinds of
problems or difficulties (if any) are connected with these forms?

2. How can students’ written solutions be described by means of a category
system?

18.3 Methods: A Descriptive Model for Analysing Written
Solutions

In order to answer the first and second question, Bavarian teachers of CAS-classes
have been asked to send in nine written solutions each from the final exams. Three
solutions came from students who have been average, three from students who have
been above average, and three from students who have been below average in the
preceding semester. Similar data has been collected every year (starting with 2014)
for further evaluation and research. Four to five teachers answer this request every
year.

The first question is how students document their solving process in exams. So
far, in Bavaria (Germany) only little official advice about documentations of solving
processes is given. Normally, the Institute for School Quality and Educational
Research (ISB) provides such material and official notes in addition to the cur-
riculum. In order to develop such advice, it is a very valuable first step to analyse
authentic documentations and to develop a descriptive model with which problems
and difficulties can be identified and categorized.

Based on linguistic theories, I developed a preliminary model which will be
tested against authentic, students’ written solutions. By means of a form-function
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analysis, which is a typical pragmatic approach (cf. Meibauer, 2008), two
dimensions can be derived (cf. Fig. 18.1). The following question is the main focus
of the analysis: With which forms of representations do students document each
step of the solving process? The categories in each dimension have been developed
by means of a qualitative content analysis (cf. Mayring, 2010).

The representational dimension describes with which forms of representation
students document. There might be expressions, which use some kind of formulaic
symbols (traditional mathematical, computer-syntax, mixed-forms), verbalisations
(both natural language and the special mathematical vernacular) and graphic rep-
resentations. In the latter category, mixed forms (such as graphs, tables, sketches,
etc.) are also counted.

The second, activity dimension describes which purpose an element has, that is
what actually is documented with it and which step, or activity, in the solving
process it is related to. Central categories are:

• CAS-related notes make the use of CAS explicit, either by stating the CAS
command (input), by writing down the output (e.g. “false”, which is odd in a
German text), or by unspecifically writing—in short form—that the CAS was
used (e.g. “CAS: …”).

• According to Wagner and Wörn (2011) explanations comprise three different
facets: concepts and ideas (what-explanation), algorithms and procedures
(how-explanation), argumentations and logical connections (why-explanation).
They often focus on:

representational dimension

activity dim
ension

CAS-related 
notes 

explanations 

mathematical 
idea 

results

structuring 
elements

formulaic 
expressions 

verbalisations graphic 
representations 

Fig. 18.1 Category system for description of students’ solutions
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• mathematizations, which show that information given in the task-description
is translated into mathematical notation or terminology;

• interpretations, which are translations of computer-output and the con-
struction of meaning in relation to the task.

The terms mathematizations and interpretations are related to the respective
activities in the modelling cycle by Siller and Greefrath (2010).

• Furthermore, there are elements which refer to the underlying mathematical
idea, e.g. in order to find the maximum of a function f it is necessary to solve the
equation f′(x) = 0. From this element, the mathematical idea can be
reconstructed.

• Results
• Structuring elements are used to structure the text on the surface (the layout) and

the way the information is presented. They can also be used to set up links
between pieces of information such as single steps in the solving process and the
chronological order in which they were performed. Thus, one examples in
Fig. 18.3 is “then” (the German version has “dann” which means “then” or
“next”) which adds a chronological order to the text.

18.4 Exemplary Analysis of Some Documentations

In the following part, I present some examples of the analysis of students’ written
solutions. For the purpose of better readability, I use translations of the authentic
material instead of the material itself. The individual characteristics of every doc-
umentation are reflected as far as possible, e.g. parts that have been crossed out are
crossed out as well. Where the crossed-out text could not be deciphered anymore %
& has been used.

18.4.1 Students’ Documentation Styles

The model above offers a framework for analysing and comparing students’
solutions. Three directions are fruitful and offer some insight into the matter: the
analysis of individual students through all tasks of the final exam may show if
different styles of documentations occur and are generally solid (cf. above and
Pimm, 1987). The comparison of students within one class offers insight into the
individual practise of the respective teacher and what he/she deems important in a
documentation. The comparison between the documentations of different classes, as
the third directions, is a natural by-product of the former analytical direction.

Further distinction: CAS-style (relying heavily on copying CAS-commands
from the screen); mathematical style (no CAS-references at all), verbalized style
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(referring to CAS-use in verbalized form); mixed (different sub-types; any com-
bination of the aforementioned or no preference at all). Here, I present two solutions
from one class with different styles and a third solution from a different class
(different teacher), where the mathematical style was the only one.

The task is taken from the final exam of 2014 for CAS-classes (CAS-Abitur). All
final exams have two different parts: in part A no digital tools are allowed; in part B
the students are allowed to use the CAS. Part B is further divided into three
thematic blocks—calculus, geometry and data & statistics. For each block one of
two different groups of tasks can be chosen by the teacher for his students on the
morning of the final exam. The task is taken from the final exam of 2014 for CAS-
classes, part B, group of tasks 1. The real-world context is an exit lane of a highway
which is described by a polynomic function s which was given. In this context
different tasks—(a) to (k)—have to be solved by the students. In sub-task (h) the
coordinates of the point on the function s with the minimal distance to another,
fixed point (cell tower in the real-world context) had to be found. The term of the
function which describes the distance of a point on s was given in sub-task (g).
The task was formulated as such: “One point on the southern exit lane is closest to
the cell tower. Find this distance on basis of the model” (cf. ISB, translation by JB).

In Fig. 18.2, we see a documentation of a solution to this task in CAS-style. The
student starts with writing down the CAS-input with which he defines a function
d that describes the distance between a point on s and the cell tower. In the next two
lines, he explicitly but incompletely states CAS-input. The following two lines use
the same command as line 3 but do not show them explicitly. Instead, the
solve-command is reduced to quotation marks and “<0”, indicating that the same
command as in the line above is used for a different inequality. In the last line, the
student has already begun to indicate with “(i)” that he starts the next task, yet he
completes task (h) without indicating to which task this line actually refers.

Figure 18.3 shows how a student wrote his solution. He documents his use of the
CAS (category CAS-related notes) with two different forms of representations. In
line 3, he describes his use by stating a CAS command explicitly. In line 1, he
verbally describes a mathematical activity that only in relation to line 3 becomes
obvious as a reference to the CAS-use. The result of the activity in line 1 is used in

Fig. 18.2 Student’s documentation (teacher A)
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line 3 (“d1s xð Þ”). Thus, the student uses a mixed style, combining verbalization and
CAS-input. In the second half of the documentation, the student uses the CAS as a
normal calculator and does not refer to this in any way. The final result is marked by
underlining it twice.

The examples (Figs. 18.2 and 18.3) are typical for each student. Both were in the
class of teacher A. It can be concluded that teacher A allowed both styles of
documentation: the CAS-style of Fig. 18.2 and in Fig. 18.3 the style with the
mixture of verbalizations and CAS-commands.

The next example is from a student from a different class (teacher B). It is typical
for the documentations from this class that almost no references to the CAS appear.
The style is mainly symbolic. Figure 18.4 shows mathematical ideas in the mathe-
matical symbolism (line 2 and 5). Results are given in lines 3 and 5. The explanation
in the last line is interesting insofar that it gives mathematical reasoning and that it is
not clear if it is part of the solution or not. Normally, if something is crossed out it is
clear that it is the student’s intention that the teacher does not mark the respective
passage. If a student puts something in brackets (outside of the mathematical or CAS
notation) then it is not clear if it is a valuable part of the solution or a
“meta-comment” on it. Thus, the student does not communicate clearly. The
important question (that cannot be answered with my analysis, however) is if the
student thinks that verbal explanations should not be part of a mathematical text
(conceived of as a series of symbolic expressions) and therefore put it in brackets.

In conclusion of this part, the first result that can be observed is that in regard to
the documentation of CAS-commands the style was very homogenous throughout
each class. In one of the classes, CAS-commands have been documented (teacher A).
In the second class, the CAS-use was indicated by writing “CAS” either over an

Fig. 18.3 Student’s documentation (teacher A)

Fig. 18.4 Student’s documentation (teacher B)
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equation or at the beginning of a line. In the third and fourth class there were no
CAS-commands at all (teachers B and C). This phenomenon can be explained by
the normative standards that the respective teacher as the authority in the classroom
had set in the preceding year(s). This could happen either explicitly by
classroom-standards or conventions about how the solution has to be written down;
or an implicit norm is set by the teachers’ practice (cf. Ball, 2014, p. 15–16, 145ff).
A further result of the analysis of the students’ documents is that written solutions
without verbalised explanations were often harder to understand and that the
solving process could not be reconstructed that easily. The following part elaborates
on students’ explanations.

18.4.2 Explaining and Explanations

In relation to the category system (Fig. 18.1), my expectation that students performing
above average explain more than students performing below average, with the average
students somewhere in between, was not satisfied. Instead, the quality and style of
given explanations differed. Some students from the below-average group formulated
their explanations like steps in a recipe or an algorithm at the time they have to be
carried out. For example, one student from this group wrote: “Which x does one need
so that f 0 x0ð Þ ¼ 0” (original in German: “Welches x braucht man, damit f 0 x0ð Þ ¼ 0
wird?”, translation JB; note: The original formulation sounds like “Which x does
one need for f 0 x0ð Þ to become 0?”) Well-performing students, on the contrary, often
tried to give an overview at the beginning or the end of their documentation about
how the task can be solved and what the mathematical idea is (Fig. 18.6).

As shown above, elements of written solutions can have different functions.
Among them explanations can contribute a lot to make students’ documents easily
understandable. This is going to be shown in the following example. According to
Jörissen and Schmidt-Thieme explanations are characterised as “primarily verbal
statements” with the goal that the reader can understand connections (Jörissen &
Schmidt-Thieme, 2015, p. 401, translation by JB). The three sub-categories of
Wagner and Wörn (2011, see above) appear rudimentarily in the students’ solutions
in verbalised form although the wording of the task did not explicitly ask for it. The
task to the example (Fig. 18.5) is to check whether there is a point at which the exit
of a highway—modelled by a polynomial function s—runs parallel to another road
—the route B299, which is modelled by a linear function.

The student explains the mathematical idea of his solution verbally at the
beginning. It is a rudimentary how-explanation. The verbal inaccuracy at this point
is not that important because the information given in the text is supported by a
mathematical formulaic expression, which is the equation. The output (“{}”) fol-
lows after an unspecific CAS-use. The student confuses proper mathematical syntax
with device-specific CAS-language and mixes both into “an incorrect” expression.
As a concluding answer to the task a verbal interpretation of this output is written
down.
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In terms of the three worlds of the extended modelling cycle by Siller and
Greefrath (2010) this documentation starts in the real world, then moves on to the
mathematical world via the process of mathematization. In line 7, the transition to
the computer world and back to the mathematical world is made (the result, as
explained above, is written down in the representational form of the computer). The
answer at the end returns to the real world. The transitions are not made explicit in
verbal form but the student uses arrows whenever such a transition is taking place.

18.5 Discussion

As the examples above show, an analysis of students’ written solutions with the
descriptive model (Fig. 18.1) can help to understand written solutions better and
reveal aspects that need further research. However, the descriptive model cannot
avoid the problem that basically no element used in spoken or written language has
only one single function. A CAS command such as “solve(f′(x) = 0,x)” does
indicate that this command has been used to solve an equation. But it also shows
which mathematical idea originally led the student to use the command. Therefore,
the categories of neither the activity nor the representational dimension should be
viewed as strictly separate. Instead, the model might help to make the
multi-functionality of documentations more apparent and thus help teachers (and
learners) to communicate their thoughts more clearly. For the linguistic description
of this phenomenon a metaphor is useful: each element is a box and can contain a
smaller box in it (and can be part of the content of a bigger box). In the case of
“solve(f′(x) = 0,x)” the CAS-command is the bigger box and contains the mathe-
matical idea “f′(x) = 0” in it. Furthermore, I created first drafts of possible
best-practice examples of written solutions, using the categories of the model
above. It is my intention to raise teachers’ awareness for the diversity of approaches
to documenting. The following example (Fig. 18.6) shows a documentation which
is highly verbalized and makes the transitions between the different worlds clear.

Examples like this (Fig. 18.6) need to be integrated into a model that tries to give
ideas about how the broader learning process of students (and teachers) could look.

Fig. 18.5 Student’s documentation (teacher C)
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This process has to be integrated into theories of learning mathematics with CAS.
Drijvers et al. describe the instrumental approach for example as follows:

The instrument, then, is the psychological construct of the artefact together with the mental
schemes the user develops for specific types of tasks. In such schemes, technical knowledge
and domain-specific knowledge (in our case mathematical knowledge) are intertwined.
Instrumental genesis, in short, involves the co-emergence of mental schemes and tech-
niques for using the artefact, in which mathematical meanings and understandings are
embedded (Drijvers et al., 2010, p. 1349).

In written solutions, students use various signs and symbols to inscribe meaning
into a text. How these signs become meaningful to the students and how this
process relates to the instrumental genesis has not been explained completely yet.

It is important that students develop the competence to create and judge if a
solution is acceptable. This process needs time and may start with students creating
their own meaningful symbols for documenting their solutions with CAS. As
Godfrey and O’Connor point out: “Through creating and using nonstandard,
student-generated symbols and measures, it is hoped that students will more readily
deal with traditional mathematical texts and language as real communication”
(Godfrey & O’Connor, 1995, p. 328). This of course means that teachers discuss
the practise of communicating mathematics in written form in their classes. To
provide support for this development is a major challenge for modern mathematics
education.

Fig. 18.6 Exemplary solution using the categories as a basis
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Chapter 19
Technological Supports
for Mathematical Thinking
and Learning: Co-action and Designing
to Democratize Access to Powerful Ideas

Luis Moreno-Armella and Corey Brady

Abstract The enterprise of understanding and supporting processes of mathe-
matical cognition is both epistemologically deep and politically urgent. We cannot
ignore that new technology-mediated learning environments have the potential to
democratize access to powerful ideas. The importance of technology in this respect
is bound up with the essential nature of mathematical objects as symbolic entities
that can only be expressed and conjured up through the mediation of representa-
tions. A key question for the design of technology-enhanced learning environments
is whether the cognitive tools—material and digital-symbolic—that have been
developed in recent decades might offer learners access to modes of activity with
disciplinary structures that have historically been achievable only by ‘maestros’ of
the discipline. In this article we elaborate the construct of “co-action” as a means of
describing humans’ mathematical interactions with the support of such tools.

Keywords Technological infrastructure � Co-action � Collaboration
Mathematical representations

19.1 Introduction

In this paper, we argue that concrete challenges involved in understanding and
supporting processes of mathematical thinking, learning, and activity as they unfold
in today’s classrooms are both epistemologically deep and politically urgent.
Scenes of teaching and learning hold epistemological interest because the behav-
iors, ideas, and struggles that emerge while students learn to work with mathe-
matical entities can illuminate fundamental structural features of the underlying
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mathematics. Work to support school-based mathematics learning is also politically
important because these new technology-mediated learning environments have the
potential to democratize access to powerful ideas, enabling learners to experience
powerful ways of operating with mathematical symbols and structures.

We argue that the representational peculiarities of mathematics thinking and
learning make it an ideal setting for illuminating new modalities of interaction and
meaning-making enabled by an array of technologies—technologies that support
dynamic, executable representations and technologies that support real-time col-
laboration among learners. A distinctive form of interaction between learners and
learning environments is enabled in such settings, which we call co-action
(Moreno-Armella & Hegedus, 2009). We articulate our emerging understanding of
co-action as a framework for understanding human activity in the context of rep-
resentation and communication infrastructures through two brief examples. We
hope that this construct may help researchers to explore the ways in which tech-
nological changes can radically transform thinking and learning processes in the
discipline of mathematics.

19.2 The Special Challenges of Mathematical Reference

As we approach mathematical cognition in classroom learning environments, the
symbolic dimension of mathematics becomes sharply salient. Mathematical dis-
course is always social, always culturally situated and always shaped by its insti-
tutional context; thus the semiotic dimension is always important. However, in
learning settings the nature of mathematical objects is very often in question and not
(yet) taken-as-shared, so that efforts to evoke these objects and to communicate
clearly about them receive particular attention and social pressure.

As a way of framing the problems involved in the relationships between
mathematical representations and objects, consider Magritte’s The Treachery of
Images. This famous painting explores issues of representation, in ways that are
relevant to mathematical representations. The artist has written “Ceci n’est pas une
pipe” (“This is not a pipe”), in painted script, under the painted image of a pipe. The
focus is on the viewer’s idea of a pipe: within the painting, there are two explicit
“pipes”—the pictorial image of a pipe and the painted words “une pipe.” The
painting puts these two “pipes” in conversation with one another and with the
viewer’s Pipe idea. The image falls short of the idea: it is “not a pipe”—one cannot
hold it, fill it with tobacco, or smoke it.

Now suppose, instead of a pipe, Magritte had painted a circle with the inscribed
legend, “Ceci n’est pas un cercle.” A different dynamic would have emerged.
Magritte would not, even in theory, have been able to reach into his pocket and
produce the geometric circle that had served as the model for the painting, and that
the painted image is not. In fact, one might argue that the legend, “Ceci n’est pas un
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cercle” would be false: at least in the sense that every representation of a circle does
express circle-ness in some degree, and that, further, nothing except a collection of
such representations does so.

The essentially symbolic dimension of mathematical thought and discourse
highlights a unique epistemological feature. Because a mathematical object cannot
be pointed at independently of its manifestations within one or more representa-
tions, mathematical work and learning must occur in settings that are entirely
mediated by representations. This further heightens the importance of symbolic
production in the learning process, both as learners formulate their thoughts and as
they and their teachers exchange symbols and representations in attempting to
create shared meanings and understandings. In this vein, Duval (1999) remarks that
“the use of systems of semiotic representation for mathematical thinking is essential
because, unlike the other fields of [scientific] knowledge (botany, geology,
astronomy, physics), there is no other way of gaining access to mathematical
objects but to produce some semiotic representations” (p. 4).1

19.2.1 The Permanence of Symbolic Beings

The fact that mathematical objects are wholly symbolic beings, which can only be
found, expressed, or conjured up through representations, also paradoxically gives
them a permanence that cannot be achieved by physical beings or objects. This is
why, if we were to read in the newspaper tomorrow morning that the Natural
Numbers had been destroyed in a fire, we would smile. We know this is not
possible, even though many instances of representations of the Natural Numbers do
exist in perishable material media.

Part of the reason for the more enduring nature of symbolic entities like the
Natural Numbers is the very fact that they do not refer directly to specific objects in
the physical or cultural world. Instead, they connect with and express very general
features of the human experience of the world. For this reason, the representational
and symbolic challenges with which we opened this discussion are also sources of
mathematical power. To understand the nature and power of symbolic entities, we
can look first at how they emerged in human history and then at how they operate in
modern discourse.

1We amend Duval’s text by adding “scientific” because many forms of knowledge in the arts and
the humanities, for example, also face the challenge that the objects of their study are inextricably
embedded in semiotic/symbolic representations.
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19.2.2 The Emergence of Symbolic Entities

Among the first symbolic entities in human history may have been the records that
have been found scratched in bones and dating from about 35 thousand years ago.
These marks may have been used to keep track of the number of animals killed in a
hunt or the number of days in a lunar cycle. Any external mark or trace that carried
and communicated meaning was already a symbolic object: that is, a thing whose
purpose was to represent another thing. Moreover, it was perhaps the infeasibility of
making an iconographic symbol in available media that led these early humans to
produce representations that were loosely coupled to the particular animals or days
they described, capturing instead the notion of quantity. The loose coupling of the
symbol to its referent made it possible to see relations between two such symbols,
even when there was no relation between the objects whose quantities these
symbols represented. Thus, the “five-ness” of five sheep, five days, or five pieces of
fruit could come to be represented, rather than, and independent of, the
“sheep-ness”, the “day-ness” or the “fruiti-ness” of the objects. In this way, the
number five came to be lifted off of the concrete groups of objects that it described,
gaining the status of an independent symbolic entity. In general, symbols can be
thought of as crystallized actions—in this case, the action of counting.

As symbolic entities, mathematical objects have a doubly paradoxical relation to
the physical world. They exist on a different plane from physical objects, having
been decoupled from that world through processes of abstraction and generaliza-
tion. Moreover, as we have suggested, they cannot be depicted directly or com-
pletely. Instead, through representations, certain facets of symbolic entities can be
captured, but it is in their nature that they supersede any particular representation.
For instance, consider the mathematical symbolic entity of a straight line. In a
geometric drawing, we can represent the line as an object in a plane. Applying a
coordinate system, we can produce the equation of that line, another representation.
Neither of these two representations of the line encompasses the entirety of its
mathematical nature, yet each of them captures a facet of that nature. In general,
each system of representation highlights or reveals an aspect of the mathematical
entities it describes, while concealing or leaving behind other aspects. Thus the
choice of a representation is always a consequential choice that constitutes the view
and access we have to the mathematical object.

Symbolic entities shared some features with early concrete physical tools, while
they also differed from these early tools in other respects. Vygotsky’s (1978)
famous analysis of this relation was that while tools enabled humans to operate on
and exert control over the world, they also enabled humans to exert control over
themselves and to regulate their own internal thinking processes, participating
actively in these processes. In coming to operate with tools and symbolic entities,
human beings gained enormous new powers. Donald (2001) describes this process
as the advent of “theoretical culture” and it is the centerpiece of the Baldwinian
interpretation of cultural evolution (Baldwin, 1896). With tools, humans encoded
processes of labor and craft in physical objects that afforded (Gibson, 2014) the
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actions that constituted those processes. In this way, tools began to structure human
society, so that emerging habits of mind and ways of life were reflected and
transmitted in the characteristics sets of tools that supported them. Thus, these
extensions to human nature also supported intergenerational development, captur-
ing successful innovations in a transmission medium more flexible and more easily
shareable than the biological substrate of DNA. With the symbolic system of
written language, communications could be detached from particular interpersonal
contacts, enabling new forms of literature, history, science, and philosophy. And
with the symbolic system of mathematical discourse, the study of abstract form and
structure could take shape and transcend the lives and lifespans of individual
thinkers.

19.2.3 Mediated Activity and Co-action

This shift in human history was so significant that many thinkers view human
activity as essentially and distinctively mediated activity (e.g., Wertsch, 1991):

The most central claim I wish to pursue is that human action typically employs mediational
means such as tools and language and that these mediational means shape the action in
essential ways (p. 12).

Moreover, because tools and human activity are so deeply intertwined, their
interaction must be taken account of not only in phylogenetic analyses of devel-
opment at the level of civilizations and our species, but also (a) in analyses of
development at the level of learning communities and of the individuals that
compose them, and (b) in micro-genetic analyses of the activity of humans oper-
ating with tools. As a broad framework for understanding the dynamic interplay of
tools, learning, and activity, Moreno-Armella and Hegedus (2009) have introduced
the construct of co-action.

Premises of the co-action perspective include: (1) that the activity of tool use
involves reflexive adaptation, in which all of the components—human, tool,
activity, and context—are continuously transformed; (2) that this interaction is
dialogic, not only for learners but also (and perhaps even more radically) for
maestros in a discipline; and (3) that analogies in development across the scales
suggested above can offer strong clues for both analysis and design. Although there
is not space here to articulate the co-action framework fully, in the remainder of this
article, these premises will be illuminated in action.

The concept that there are symmetries in the interactions between tools, users,
and tasks is encompassed in many socio-cultural perspectives (including Wertsch’s
and Vygotsky’s). For instance, Cole (1996), quoting Alexander Luria, writes that
tools, or artifacts, “not only radically change [man’s] conditions of existence, they
even react on him in that they effect a change in him and his psychic conditions.”
(Luria, 1928, p. 493, qtd in Cole, 1996, p. 108).

19 Technological Supports for Mathematical Thinking and Learning … 343



This premise has clear implications for our understanding of maestro perfor-
mances with tools and artifacts. For instance, consider the relationship between an
expert musician and her instrument, as, for example in Jacqueline du Pré’s ren-
dering of Elgar’s cello concerto. During the performance, the artist and the
instrument appear to become one. It is certainly not the case that the performance
appears effortless; the striking thing about it is that it appears to be co-produced by
the musician and the instrument. It seems incorrect to describe the performance as
“Du Pré playing on the cello;” instead, it seems appropriate to say, “Du Pré and her
cello co-produced the music.” Moreover, “her cello” here refers not only to a
physical object, but also to the conceptual image of the cello that Du Pré was able to
internalize over the course of many years of hard, reflective practice. There is
fluidity in this human-artifact integration, making the cello acquire a sound and
texture distinctive to the artist (that is, the source of the music is Du Pré and her
cello). We use the term co-action (Moreno-Armella & Hegedus, 2009) to describe
this generative and creative interplay between humans and tools or symbol systems.

For another example, Gleick’s (1993) biography of Richard Feynman records an
exchange between Feynman and the historian Charles Weiner. Feynman reacted
sharply to Weiner’s statement that Feynman’s notes offer “a record” of his
“day-to-day work.”

“I actually did the work on paper”, Feynman said.

“Well,” Weiner said, “the work was done in your head, but the record of it is still here.”

“No, it’s not a record, not really. It’s working. You have to work on paper, and this is the
paper. Okay?” (Gleick, 1993, p. 409)

The distinction that Feynman makes here shows how he sees his work as
intrinsically interconnected with the symbolic system that he is working with. His
ideas do not occur separately from their realization in written symbols; rather, they
emerge through interaction with that symbol system. It is the same as with Du Pré
and her cello, where there is no music without both the artist and the instrument
being present.

The Feynman example further clarifies that dialogic interaction with tools and
representations is not only a feature of ‘finished’ performances; it is also a core
component in processes of exploration and discovery. For discovery writing in
literature, this account of exploratory interactions with language is expressed in
Forster’s (1927) famous question: “How can I tell what I think until I see what I
say?”.

Beyond maestro performances, co-action can be seen as a theme present within
many forms of learning. Indeed, the process of coming to operate fluently and
effectively with tools and symbols is common to all learners as they appropriate the
practices and “habits of mind” of a discipline. In a way that invites suggestive
analogies with phylogenetic processes, the human mind (and indeed the human
brain) re-forms itself to accommodate these new discipline-specific ways of oper-
ating. For instance, Donald (2001, p. 302) has argued that literacy skills transform
the functional architecture of the brain and have a profound impact on how literate
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people perform their cognitive work. The complex neural components of a literate
vocabulary, Donald explains, have to be built into the brain through years of
schooling to rewire the functional organization of our thinking. Similar processes
take place when we appropriate numbers at school. It is easy to multiply 7 by 8
without representational supports, but if we want to multiply 12,345 by 78,654 then
we write the numbers down and follow the specific rules of the multiplication
algorithm. It is because we have been able to internalize reading, writing, and the
decimal system, that we are able to perform the corresponding operations with an
understanding of their meaning.

19.2.4 Democratizing Access to Co-action

Nevertheless, the kind of rich and generative interplay between mind, tool, and
symbolic system that we see with Du Pré and Feynman have historically been
accessible only to the maestros of a discipline. A key question for the design of
technology-enhanced learning environments is whether the cognitive tools that
have been developed in the last 30 years might play a role in democratizing access
to this generative mode of interacting with disciplinary structures.

If the most sophisticated users of representations and symbolic systems in the
past have been able to engage in active and creative interplay with these systems, it
is in part because they were able to establish and sustain a dynamic relationship
between their thinking and inquiry on one hand and the symbolic system on the
other. This is possible because they have internalized the system so thoroughly that
they are able to mentally simulate it as a dynamic field of potential, enabling them
to engage in “what-if” interactions of an exploratory, conversational nature. In
mathematics, this ability is particularly powerful, because of the dependence on
representations that we have described above.

We will describe several classes of technology environments that provide
dynamic and/or socially-distributed interfaces to representational systems that are
fundamental to mathematics. These environments offer the potential for learners
(even very young learners) to enter into a relationship with those systems, which we
describe as co-action. We argue that the experience of relationships of co-action
with mathematical structures can contribute to a transformative educational pro-
gram. Of course, we do not argue that a technology that opens a possibility for
co-action is sufficient in itself to give learners access to mathematical understand-
ings that were the hard-won rewards of a lifetime of study for mathematicians of the
past. However, we do suggest that carefully planned educational experiences within
such environments can remove barriers to broader participation in a culture of
mathematical literacy and fluency.

Extreme care is necessary here, as the long history of teaching and learning with
static representations should not be ignored in the work to envision its future
successor. Instead, we must proceed by pondering how digital and socially dis-
tributed representations of mathematical entities can contribute in new ways to
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genuine mathematical understanding. We see digital and shared representations as
capable of adding dimensions to static representational systems and further
improving the cycle of exploration, conjecture, explanation, and justification.
Moreover, as educational systems incorporate such environments and experiences,
traditional pathways of learning will gradually give way to new cultural and
institutional structures that realize the potential of these innovations. In the sections
below, we give two brief examples of co-action supported by new technologies: one
emphasizing dynamic representations, and the other highlighting socially dis-
tributed representations.

19.2.5 Co-action with Dynamic Digital Representations

Consider the family of triangles ABC (see Fig. 19.1) whose side AC contains a given
point P in the interior of angle B. The particular triangle in which A and C are chosen
so that P is the midpoint of side AC has the least area among all possible triangles.

We explored this situation with teachers, making use of a dynamic geometry
environment (in this case, GeoGebra). Beginning from triangle ABC, the teachers
built a construction that allowed them to vary a point H along the side BA, thus
determining a point D on BC for which triangle HBD included point
P. Experimenting with the diagram and watching a readout of the area measure, they
began to believe that the proposition about minimum area was true. Nevertheless,
significant doubt remained. Following the logic of their construction, the teachers
then extended the aspect of their sketch that hinged on the dependency relation
between point H and area. They used the length BH as the domain of a function that at
each point delivers the area of the corresponding triangle (Fig. 19.1b). Of course we
could have—and we did—graph the function using a traditional coordinate system as
well. But we show the hybrid Euclidean/Cartesian construction that emerged because
we want to emphasize the possibilities that digital media offer learners, in allowing
them to manipulate the objects under study. Such environments enable a wide range
of interactions that support learners in exploring and building conjectures.

Fig. 19.1 a Finding the triangle with the least area. b Introducing a graphical representation of the
value of the area changing with placements of vertices along rays BA and BC
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The interaction between learners and dynamic geometry environments can be
theoretically addressed in terms of the complex process Rabardel (1995) studied
under the name instrumental genesis, which casts light on the mutually defining
relationships between a learner and the artifact she is trying to incorporate into her
strategies for solving problems. Initially the learner feels the resistance that the
artifact opposes, but eventually she can drive it. In the case of GeoGebra, teachers
needed to understand, in particular, the syntactical rules inherent to the software in
order to use the medium as a mediator of mathematical knowledge. For this to
happen, there must be a melody to be played—that is, teachers need an appropriate
mathematical task. This task acts as an incentive to integrate in meaningful ways the
dynamic power of the symbolic artifact with their own intellectual resources. If this
happens, we say with Rabardel, that the artifact has become an instrument and the
activity for solving problems in partnership with it, becomes an instrumented
activity.

In such activities, the mobility of the dynamic digital representation becomes a
crucial feature of the represented entity for the learner. Exploring what remains
invariant under dragging, for instance, reveals structural aspects of mathematical
objects: motion and invariance combine to enable us to see structure. Importantly,
too, the motion is induced by the learner, who takes advantage of the executability
of the digital representation to reveal structure and meaning. Perceiving structure
through motion is a deeply embodied act—similar to how the bird sees the moth as
the latter moves about on the bark of the tree. These features, absent from static
symbolic representations, help the learner to develop new strategies as she explores
mathematical problems. Moreover, they are particularly important for the mathe-
matics taught at upper school levels, supporting a focus on variables and functions.
The digital representation here becomes a semiotic mediator—that is, an artifact
that supports the creation of meaning within the mathematical system and among its
objects. Because the interaction depends on the particular learner’s ways of
thinking, there is also a strong social dimension to this co-action. The learner makes
sense in the context of others, and also through others—co-acting together.

19.2.6 Co-action with Socially-Distributed Representations

Even apparently individual co-action becomes social as learners work together to
process the meaning of representations. However, the social dimension can become
even more pronounced in learning environments that promote collective work with
distributed representations. Our second example of co-action involves students
interacting collaboratively with the representation and communication infrastructure
(Hegedus &Moreno-Armella, 2009) of a classroom network of graphing calculators.
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Within that setting, we can give each student control of a single point in a Cartesian
environment, which she can move using the calculator’s arrow keys. In real time, the
points of all the students in the class are displayed in a shared Cartesian space, which
is projected at the front of the classroom. The following activity was created by a
teacher to enable his class to encounter the perpendicular bisector of a segment as the
locus of points equidistant from the segment’s endpoints. As students move their
point (point C), they see it represented on their calculator screen as the third vertex of
a triangle with the segment AB as its opposite side, where the measures of the
variable sides of the triangle are also shown (Fig. 19.2a, c). The teacher asks the class
to search for points where the distances from point C to points A and B are the same.2

As students locate points that satisfy the condition, a pattern emerges in the shared
space, indicating the perpendicular bisector of AB as a locus of points, with
ever-increasing clarity (Fig. 19.2b).

Of course, a dynamic geometry environment can provide this representation on
an individual’s screen. However, the socially distributed nature of the locus of
points in this activity provides an important experience and tool for thinking for the
classroom group. As individuals, they have “felt their way around” the Cartesian
space, searching for points that meet the equidistance criterion. On finding one,
they recognize an isosceles triangle and experience a particular sensation of sym-
metry. However, based on their own point-based explorations, they can see each of
the points in the shared space as solutions to a local problem. This supports a deep
and flexible way of thinking about the locus of points and the perpendicular
bisector, which has value beyond that which would be gained from the individual
experience of a dynamic geometry environment alone.

Fig. 19.2 a, c Students search for points for which the two variable sides of the triangle are of
equal length (i.e., which are equidistant from the endpoints of the segment shown in bold). b The
perpendicular bisector emerges as the locus of such points in the shared space

2If the class contains fewer than 25 or so students, this activity can be modified to allow students to
mark or stamp their point at two or more locations that satisfy the condition.
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19.3 Conclusion: Mathematical Cyborgs

In speaking of mediated action, we have suggested that human cultures are con-
stituted and extended through the creative production of cognitive and symbolic
tools. These tools express ways of being in the world, and once internalized, they
transform how people perceive and conceive of their worlds. Thus, humans are
essentially cyborgs: biological beings who express themselves through tools. In
particular, we are already behaving as cyborgs when we engage even in “tradi-
tional” mathematical thinking, leveraging the power of Arabic numerals, of the
Cartesian system, and so forth.

But in this article we have emphasized the power and importance of dynamic
and distributed representations to support new ways of learning how to think and
operate with the symbolic entities of mathematics. In the classroom, co-action and
the integration of artifact + learner, open the potential to democratize access to the
powerful ways of operating with representations that characterize disciplinary ways
of knowing. Instrumental genesis, we argue, should be a keystone in the design of
new digital curricula that take full advantage of these opportunities. International
efforts show ample evidence that this process has already begun. However, school
cultures are expressed through institutional forms that have developed over cen-
turies and that are not prepared to adapt nimbly to the rapid changes characteristic
of new technologies. Engaging in the mathematics of co-action will require, and
produce, a gradual but permanent re-orientation of classroom and school practices,
and of the cognitive and epistemological assumptions that underlie them. Our
argument here is that as members of a society in which mediated action is deeply
entrenched and constitutive, humans are always-already cyborgs. Thus, the question
is not whether to involve learners in symbiotic relations with technologies, but
rather which technologies to choose for which purposes, and how to integrate them,
so as to maximize all students’ agency.
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Chapter 20
Recursive Exploration Space
for Concepts in Linear Algebra

Ana Donevska-Todorova

Abstract The complexity of the role of digital media in facilitation of learning
mathematics can be approached by utilizing multiple theoretical frameworks. In this
chapter, three theoretical frameworks have been applied with an aim to analyze the
contribution of a created Dynamic Geometry Environment in developing deep
understanding of concepts in linear algebra. The first one, which is in the main
focus, refers to the integration of different description and thinking modes in linear
algebra, such as synthetic-geometric, arithmetic and analytic-structural (Hillel in On
the teaching of linear algebra. Springer, Netherlands, pp. 191–207, 2000;
Sierpinska in On the teaching of linear algebra. Springer, Netherlands, pp. 209–246,
2000). The second one is related to the attributes of Dynamic Technological
Environments, such as Recursive Exploration Space (Hegedus et al. in Proceedings
of CERME5, WG 9. Tools and technologies in mathematical didactics 1331,
pp. 1419–1428, 2007); and the third one is semiotic mediation (Bussi and Mariotti
in Semiotic mediation in the mathematics classroom: artifacts and signs after a
Vygotskian perspective handbook of international research in mathematics educa-
tion. New York, pp. 746–783, 2008) of the dragging tool. A landscape of net-
working strategies for connecting theories (Prediger et al. in ZDM Math Educ 40
(2):165–178, 2008) has been exploited as an attempt to ensure quality of the
analysis.
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20.1 Introduction

This paper represents a continuation of previous work that has been made available
to the audience of the 13th International Congress on Mathematical Education in
Hamburg (see Donevska-Todorova, 2016). The initial work responded to the Call
of the Topic Study Group 43 for investigating cognitive and epistemological per-
spectives of technological utilization in mathematics education. It focused on
mathematical cognition in terms of three kinds of mathematical thoughts, which
characterize the learning of linear algebra and students’ difficulties regarding such
diversity of the thinking modes specific to the mathematical content, in particular to
the axiomatic properties. Those elaborations have opened further research questions
if and how exactly technologies could contribute to activating and connecting
modes of thinking of concepts in linear algebra. To what extent are Dynamic
Geometry Systems (DGSs) beneficial towards achieving transparency of the
coherence between the thinking modes? In order to approach these questions, this
paper discusses the suggested Recursive Exploration Space (RES) about the dot
product of vectors further by using an additional theoretical framework about
semiotic mediation. Combining the theories, about RES and semiotic mediation
allows for an insightful analysis of the benefits of the DGE usage in facilitating
integration of the three thinking modes.

20.2 Theoretical Background

Among many cognitive activities in mathematics education, mathematical thinking
is a complex phenomenon described by diverse theories. For example, it is viewed
as a “kind of thinking in advanced mathematics” (Harel & Sowder, 2005, p. 27) or
“an important component of general problem-solving skills” (Bransford, Sherwood,
Hasselbring, Kinzer, & Williams, 1990, p. 126) or “thinking that requires deductive
and rigorous reasoning about mathematical notions that are not entirely accessible
to us through our five senses” (Edwards, Dubinsky, & McDonald, 2005, p. 15).
This paper does not discuss a precise definition of mathematical thinking (e.g., Tall,
1991), rather some of its aspects which are specific for the content of linear algebra.
Discussions regarding the ways in which educational technologies can promote
mathematical thinking have started almost three decades ago (e.g., Pea, 1987) but
are still actively going on. As advanced mathematical thinking supported by
technologies is often being brought into context of representational issues, I refer to
the theories of Hillel (2000) and Sierpinska (2000) about three different modes of
description and thinking in linear algebra.
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20.2.1 Three Modes of Thinking at Tertiary and Secondary
Level Linear Algebra

Corresponding to the Hillel’s (2000) three modes of description and language:
abstract, algebraic and geometric, Sierpinska (2000) distinguishes three modes of
thinking in linear algebra: analytic-structural, arithmetic and synthetic-geometric.
These three modes, however, do not exist in isolation of each other. Rather, the
arithmetic and the synthetic-geometric coexist and could be perceived as nested
within the analytic-structural mode (Donevska-Todorova & Steward, 2017, to
appear). The modes and their interpretations, distinctions and translations from one
into another are already discussed through concepts as vectors, dot product of
vectors and determinants at two levels of education from both theoretical (e.g.
Donevska-Todorova, 2012, 2014; Filler & Donevska-Todorova, 2012) and
empirical perspectives (e.g. Donevska-Todorova, 2015, 2016). Advanced courses
in linear algebra, group theory and abstract algebra characterize with the analytic-
structural mode of thinking of mathematical concepts for the reason that axiomatic
definitions of mathematical concepts constitute the formalism of their theories.
Unlike the abstract algebras, a typical linear algebra course in school does not use
the abstract mode, rather the geometric and the arithmetic modes of description. At
upper-secondary education, these two modes are often kept distant one from
another, although they represent the dual nature of a single concept, and this dis-
tance is even bigger in lower-secondary mathematics. The geometric mode, further
on, can be coordinate-geometric and synthetic-geometric, each with its own
strengths and limitations. The abstract mode of description is rarely considered at
high school level of education and if so, is usually reduced to axiomatic properties,
which are not used for defining mathematical concepts in axiomatic structures, but
for their descriptions instead.

20.2.2 Upper High School Students’ Difficulties
with Axiomatic Properties of Concepts
in Linear Algebra

The inverse treatments of the axiomatic properties for defining and applying usage
at tertiary and secondary educational level respectively, point out the awareness of
possible obstacles for learning. In continuation, I name two affirmed students’
difficulties with the axiomatic properties of some concepts in linear algebra.

(1) On the base of the validity of one property, for example commutativity, high
school students may immediately conclude validity of another property, for
example associativity, or the other way around. It is not straightforward for a
high school student to notice that associativity does not necessarily imply
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commutativity of an operation. Indeed, many groups are non-abelian. This may
be illustrated by the cross product of vectors, an operation that is associative
and anti-commutative.

(2) On the basis of the axiomatic properties of one concept students may derive
false conclusions for the validity of the same properties for another concept. For
example, associativity of the dot product of two vectors (or scalar product or
inner product in the context of Euclidean space), does not imply associativity of
their cross product. Neither holds the opposite statement.

I suspect that both difficulties may further on lead to problematic acquisition of
other properties of the same concepts, for example, distributive properties of the dot
and cross products of vectors (with respect to vector addition), or of other concepts,
such as the scalar triple product of vectors. Similar warnings are emphasized by Dray
and Manogue, who “strongly discourage teaching the dot and cross products at the
same time—students tend to get them mixed up!” (Dray & Manogue, 2008, p. 9).

These deficits are a result of various reasons. First, they may originate in the
lower-secondary mathematics. Due to a longer experience and confidence with
operations with numbers in comparison to operations with vectors, students may
derive incorrect analogies between the properties of the operations addition and
multiplication with real numbers and the properties of the mentioned operations
with vectors. This means that they may primary apply the arithmetic mode and fail
to link it to the geometric mode of thinking. A second reason may arise from the
way that new concepts are introduced in the upper-secondary mathematics. Dray
and Manogue argue that it should not be done with algebraic formulas, but with
geometric definitions that are coordinate independent (Dray & Manogue, 2008,
p. 1), although it is unclear if this suggestion refers exclusively to university or also
high school students.

20.3 Research Question

The analysis above allows me to pose the following research question:
How can a Dynamic Geometry Environment (DGE) mediate an integration of all

three modes of thinking (and therefore facilitate in overcoming some students’
difficulties regarding axiomatic properties of concepts in linear algebra) on the basis
of its attributes as RES?

The research question is not a trivial one from several aspects. First, it has a
content-specific focus on mathematical knowledge, second, it relates the domain of
cognition in learning, and third, it refers to the use of technologies in mathematics
education. Therefore, in the beginning of the next section, I describe a hypothetical
approach regarding the dot product of vectors pointing out the attributes of a DGE
and instruments for semiotic mediation. Then, I illustrate it by a concrete example.
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20.4 Integration of Thinking Modes in a Dynamic
Geometry Environment

When students are being asked to find the dot product of two vectors in a
paper-pencil environment and end-up with a resulting scalar, its geometric inter-
pretation is the next quite challenging cognitive task. The same problem in a DGE
might undergo the following reasoning sequence. Students draw both vectors, but
realize that the resulting scalar does not appear on the geometry-window. Then,
they open the CAS-window. The vectors appear in their component form, i.e. in
algebraic mode of description. They try to link the geometric and the algebraic
representations by dragging points in the geometry-window. Further on they
explore how components of vectors in the CAS-window change and if the resulting
scalar will appear on the geometry-window. Since it does not, they may try to zoom
in or out. Yet again, the scalar does not appear. They search for the reasons and
think what that could mean. Such a sequence, guided by the DGE, exemplifies a
Recursive Exploration Space (Hegedus, Dalton, & Moreno-Armella, 2007).
Namely, students’ actions in searching for connections between the geometric and
the algebraic modes by the dragging or the zooming tools receive responses from
the DGE (constant absence of the scalar on the geometry-window). Consequently,
action-reaction loops are formed. In this way, the DGE stimulates a distribution of
cognition on more than just one thinking mode and challenges further students’
engagements with the digital tools. The thinking sequence might proceed in the
following way. The students activate the option “Show” from the Main Tool Bar
(previously being fixed to “Hide”). Then, a rectangle occurs in the geometry-
window (e.g., see Figs. 20.1 and 20.2 in Donevska-Todorova, 2015, pp. 200, 201).
In this moment the “cognitive distance between the students and the problem
diminishes” (Hegedus et al., 2007, p. 1422). Manual dragging and mindful
reflecting procedures repeat more frequently and lead to refined and precisely
focused examinations. Namely, the students explore the rectangle and the lengths of
its sides in connection to projections of vectors. They discover how the area of the
rectangle (geometric mode) is related to the resulting scalar (algebraic mode) of
the dot product and conclude that the absolute value of the scalar equals the area of
the rectangle. The coherence between the algebraic and the geometric thinking
modes becomes transparent now. After students realize and grasp these connec-
tions, they may proceed investigating axiomatic properties of the dot product, e.g.,
the commutative property, also called symmetry at university (related to obstacles
(1) and (2) stated above). They enter the vectors in the opposite order and receive
feedback from the DGE with the same resulting scalar. Simultaneously, the
geometry-window shows a new rectangle. The lengths of its sides are now different,
but its area remains unchanged. Finally, students translate this geometric inter-
pretation into algebraic and derive analogies between the commutativity of multi-
plication of numbers and of the dot product. This means that the students and the
DGE exchange their roles in leading the process of integrating the three thinking
modes of the concept.
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20.5 An Example of a Recursive Exploration Space (RES)

In this section, I aim to exemplify a hypothetical reasoning sequence in a RES,
similar to the above, for exploring another property, namely the additive property of
the dot product over vector addition. The additive and the homogeneity properties
form the bi-linearity property that is one of the three axiomatic properties for
defining the dot product in the usual university approach (see Donevska-Todorova,
2016). The additive property of the dot product over vector addition is also called a
distributive property of the dot product over vector addition, which is a designation
also used to point out high school students’ difficulties in the third section of this
article. In order to achieve the aim, I present a dynamic applet, which was created in
GeoGebra (Fig. 20.1). The applet shows a simultaneous presence of both the
geometric and the algebraic mode of description in the geometry-window, although
the algebraic data are also viewable and changeable in the CAS-window. It has
three draggable points B, C and D i.e. the terminal points of the vectors~u,~v and ~w,
respectively. Under the dragging modalities described by Arzarello, Olivero, Paola,
and Robutti (2002), students may discover invariant properties, for example, that
the geometric figures are always rectangles and the area of one of them equals the
sum of the areas the other two. Recognition of such invariant properties contributes
in “understanding of the underlying abstract mathematical concept” (Leung, 2008,
p. 136). Such a created RES has continuous dynamic (as much as the software

Fig. 20.1 Additive (distributive) property of the dot product
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allows it), in comparison to static inert, static kinesthetic/aesthetic or static com-
putational features (Moreno-Armella, Hegedus, & Kaput, 2008). They may be
changed to discrete dynamic features, by implementing integers, instead of decimal
numbers, as entries of the components of the vectors or the coordinates of the
points. This adaptation depends on the focus group, for example university or high
school students, and may vary according to their capabilities or needs.

Support of the geometric mode of thinking in the RES

In the geometric mode of description, the dot product represents an oriented area
of the rectangle spanned by the vectors ~u and~v~u—the projection of~v over ~u (and
analogically,~u and ~w~u—the projection of ~w over~u). With the usage of this applet,
students have the possibility to explore the “positive area” when the vectors~u and
~v~u have the same direction and orientation (e.g.~u �~v ¼ 38 in Fig. 20.1) or “negative
area” when the vectors ~u and ~w~u have the same direction but opposite orientation
(e.g., ~u �~w ¼ �26 in Fig. 20.1).

By students’ actions of changing the magnitude, the direction or the orientation
of one, or more, of the vectors~u,~v and ~w while dragging their terminal points in the
geometry-window, the applet simultaneously shows new lengths of the sides and
areas of the corresponding rectangles. At the same time, new results of the dot
products, which are displaced directly on the corresponding rectangles by matching
colors, appear. These responses of the dynamic software in fact represent reactions
of the RES. Even a single such co-action loop, further on, stimulates students’ novel
actions immediately followed by reactions of the created applet. As the frequency
of these action-reaction loops is increasing, the time-intervals between the loops are
decreasing. These exchanges proceed until the student ends up with the desired
discovery.

Support of the arithmetic mode of thinking in the RES

The expressions in the upper right corner of the applet (Fig. 20.1), where vectors
are given with their component form, aim to support the arithmetic mode of
thinking of the dot product. Namely, the calculations are embedded in the applet, so
that students do not necessarily have to compute. This allows students’ activities
focusing on the modes rather than distraction of learning processes by
time-consuming calculations, in particular with decimals.

An alternative to using this algebraic mode of description of the dot product
would be an opening of the field “Point” in the CAS-window (upper left corner in
Fig. 20.1) and entering the coordinates of the points B(7, 1), C(5, 3) and D(−4, 2)
(terminal points of the vectors ~u, ~v and ~w, respectively). Such action—a manual
entrance of the coordinates of the pints in the CAS-window would also be followed
by a reaction—a display of the result of the dot product in the upper right corner of
the geometry-window. Here, I note that the support of both the geometric and the
arithmetic modes of thinking do not necessarily have to be considered by the
separation into split windows. Nevertheless, this distinction is made in order to
show that this possibility exists.
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Support of the analytic-structural mode of thinking in the RES

The dot product of vectors is defined by three axioms: bi-linearity (additivity and
homogeneity), symmetry and positivity. The designed applet supports primarily the
additive (distributive) property of the dot product over vector addition. In addition
to this one, the rest of the axiomatic properties can also be examined with the
applet. However, there are similar applets in which they are more transparent (e.g.
see Donevska-Todorova, 2015).

What is essential regarding the students’ difficulties is that, the distributive
property of the dot product over vector addition substantially differs, and should not
be confused, with the distributive property of the scalar multiplication over vector
addition. The first operation results in a scalar and the second one in a vector. In my
opinion, this differentiation is made viewable by the suggested DGE by connecting
the resulting scalar with oriented areas.

20.5.1 Semiotic Potential of the Artifact

The specification of the three modes of thinking above does not aim at classification
of different segments of activities rather at an epistemological insight of the concept
and easier description of the prospective of the created artifact. The modes of
thinking do not appear according to a certain recipe but as an interplay between the
modes of description enabled by the artifact. This can be explained further as the
following.

Required students’ cognitive efforts to accomplish the task of finding the dot
product by using the created GeoGebra file on the one hand, and interpreting its
geometric meaning by exchanging the modes of description implemented in the
artifact on the other hand, clarify the semiotic potential of the artifact (Bussi &
Mariotti, 2008, p. 754). This twofold semiotic relationship for crystalizing the
meaning of the operation dot product result carried out with the use of the RES,
guided through direct activities with the artifact (e.g. dragging points in the ge-
ometry-window), may stimulate individual and collective production of signs
(Bussi & Mariotti, 2008, pp. 754–755), like drawings of the emerging rectangles
and assigning corresponding areas. Artifact signs, as a category, such as those
appearing in the CAS or the geometry-window, initiate occurrence of mathematical
signs, as another category (Bussi & Mariotti, 2008, pp. 756–757), for expressing
the additive (distributive) property of the dot product in upper high school math-
ematics context. This means that the designed DGE plays a dual role, one as a mean
for undertaking a concrete mathematical task and two, as a tool of semiotic me-
diation to achieve a didactical objective (translating between multiple representa-
tions). In such didactical cycle, the teacher acts as a mediator and guides the
students towards gaining mathematical knowledge.
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20.6 Discussion

As long as we continue to treat the mathematical concepts without their (axiomatic)
properties in school, they continue to occur as separate mathematical objects in the
students’ minds. Technologies may enable us to start treating them as constituents
of a single concept, whose existence is impossible if even one property is omitted. If
research has been so far treating the contributions of technologies in supporting
geometric and algebraic representations it is now the time to more seriously con-
sider their role in supporting the teaching and learning of the third mode of the triple
nature of the mathematical concepts, namely the analytic-structural. The RES, in
this sense, is more than an infrastructure for embodied actions, more than a tech-
nical mediator. It is rather a collaborator in co-actions which allow self-control of
the user. The enactive interface of the DGE offers possibilities for rich interactions
and activities. The dependency between the independent-movable (B, C and D) and
the dependent-constructed (all other) points allow the students to experience in-
variant properties, e.g. additive (distributive) property of the dot product. The roles
of the dragging and the zoom tools in connecting the modes of thinking described
above show that these tools might be perceived as instruments of semiotic
mediation.

The constrains of this article do not allow for an in-depth analysis of the con-
nections of the created DGE, because of the attributes of being a recursive
explorations space with embodied dynamic and executable representations, with the
three embodied, symbolic-procedural and formal-axiomatic worlds of Tall (2003,
2004). However, I consider this information worth mentioning for possible further
investigations.

The networking of both theoretical frameworks (RES and Semiotic mediation)
used in this paper in the sense of Prediger, Bikner-Ahsbahs, and Arzarello (2008),
enables understanding of the way DGE may facilitate integration of the thinking
modes. They were applied to compare, combine and coordinate information about
the epistemic values of variation of the Dragging tool from two perspectives. Both
theories have been integrated locally in order to deeply “explain the contribution of
the tool mediated action to concept formation” (Falcade, Laborde, & Mariotti,
2007, p. 321), in this case the concept of the dot product. It offers an increased level
of explanatory and descriptive data, which may further contribute to development
of empirical studies.

20.7 Conclusions

This chapter discusses the growth of mathematical cognition in students at three
different levels of education with a focus on thinking modes of linear algebra
concepts. The arithmetical cognition of the commutative or the distributive prop-
erty of the dot product of vectors (in lower secondary level) have a major impact on
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the way other, geometric (in upper secondary level) and abstract (in tertiary level),
cognition proceeds. I find the role of technology in coherence with attributes of a
dynamic geometry environment (DGE) being a Recursive Exploration Space for
semiotic mediation and integration of three modes of description and thinking.
Executable multiple dynamic characteristics of a technology-rich environment in
contrast to single static representations on paper/board mediate and participate in
development of mathematical cognition for the reason that students co-act with the
environment by exchanging their roles in switching from one into another mode of
description and thinking. I summarize with a suggestion for a modification (though
not negation) of the paper, as a frozen (Hegedus et al., 2007), to the DGE as a fluid
medium for thinking of mathematical concepts.
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Chapter 21
GeoGebra as a Tool in Modelling
Processes

Gilbert Greefrath and Hans-Stefan Siller

Abstract Applying digital technology in mathematical teaching is frequently cited
as important and fundamental to the understanding-based learning of mathematical
content. In this article, we study the extent to which the systematic application of
the dynamic geometry software GeoGebra supports the competency “Mathematical
Modelling”. By giving students an application-oriented modelling problem to solve,
modelling processes are analysed, assessed, and represented. By observing students
at the 10th grade level with respect to a qualitative study hypotheses are formulated
about applying a digital tool at different stages of the modelling cycle.

Keywords Technology � Digital tools � Computer � Qualitative empirical research

21.1 Introduction

Digital tools have much to offer in the context of mathematical teaching. They can
be used in such a way so that certain fundamental conditions for technological
applications are met (Barzel, 2012). For this purpose, Rögler (2014, p. 983) states:
“These conditions include among others utilization within a student-centered and
understanding-oriented teaching context, and the stimulation of conceptual
knowledge”.

In the German national educational standards (KMK, 2015, p. 13), the potential
of these tools is emphasised, in particular

• when mathematical relationships are first encountered …;
• in order to facilitate the understanding of mathematical relationships, especially

by using multiple possible representations;
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• in order to reduce schematic processes and to make it possible to consider larger
datasets;

• to exploit opportunities for self-checking work.

Thus, major topics in mathematical modelling can be identified as within the
scope of these tools, and the close relationship between digital tools and the
competencies of mathematical modelling is obvious. There are multiple opportu-
nities for integrating digital tools into a modelling cycle (Blum & Leiss, 2007; Siller
& Greefrath, 2010) as shown in Fig. 21.1. Geiger (2011, p. 312) also describes an
approach that allows technology to be inserted into different stages of the modelling
cycle. Such support can be improved by making informed choices about the specific
tools to use, including GeoGebra. In addition to specific integrated representations
when using digital tools in the context of modelling, the literature also describes
digital tools as an independent domain located between mathematical modelling
and mathematical results (e.g. see Daher & Shahbari, 2015; Siller & Greefrath,
2010).

Accordingly we focus on a qualitative study which deals with the use of digital
tools within the process of modelling. Therefore, we analyse two different cate-
gories of action—using digital tools and then using them in the various steps of the
modelling cycle.

Fig. 21.1 Integration of digital tools into the modelling cycle based on Blum and Leiss (2007)
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21.2 Theoretical Background

The concept of mathematical modelling has been discussed comprehensively as
Blum (2015) has shown in his review article. In our understanding the concept of
mathematical modelling can be understood as a schema, which consists of various
elements that have to be addressed—as shown in Fig. 21.1. Starting either in or
with a real situation, one is able to create a situation model through cognitive
activity, and by idealising this situation model, a real model can be found which is
fundamental in the modelling cycle. Here, one starts to translate the given real
situation into the world of mathematics. By mathematising, a mathematical model is
created which should be solved and re-interpreted, so that the results can be
evaluated within the given situation. At first glance this cycle seems easy to handle,
but looking at different research results, like Riebel (2010), we can see that espe-
cially the process of mathematising and (re-) interpreting, is in fact very difficult for
students.

Observing different stages in the modelling cycle enables a sophisticated look at
those stages. Because, in mathematics classrooms, the use of digital tools is
increasing continuously, it makes sense look at those stages with the help of
technology. In this context GeoGebra can take on a wide range of roles.

One of these roles is that of experimenting or exploring (Fahlgren & Brunström,
2014). In this context GeoGebra can serve as a tool for drawing and constructing in
the classroom (Hohenwarter, Hohenwarter, Kreis, & Lavicza, 2008). Another
application of GeoGebra is that of calculating numerical or algebraic results that
would not be feasible for students in the given timeframe, without the help of digital
tools (Siller & Greefrath, 2010). Other opportunities for application could include
the self-checking of results obtained by other means. Furthermore, GeoGebra can
be used for giving presentations.

Such technological tools are considered to promote and improve student
understanding of the modelling context and in relation to modelling competencies,
so that they exert a decisive impact on mathematical modelling (e.g. see Carreira,
Amado, & Canário, 2013; Gallegos & Rivera, 2015).

GeoGebra supports several of the different modelling processes (e.g. Hall &
Lingefjärd, 2016). Graphical representations are seen as relevant (Pead, Bill, &
Muller, 2007) for understanding the mathematical content. In particular, the
diversity of opportunities for representation (see also Moreno-Armella, Hegedus,
& Kaput, 2008), for example by using the chart window and the spreadsheet
window when working with function terms, and the opportunities for self-checking
(see also Arzarello, Ferrara, & Robutti, 2012), for example by changing a point to
control the geometric construction, can support modelling processes at various
stages of the modelling cycle—as shown in Fig. 21.1.

Of course, the use of GeoGebra influences the process of mathematical mod-
elling. This is also shown by Galbraith and Stillman (2006) or Confrey and
Maloney (2007). In our opinion, this is a crucial point for understanding the
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connection between mathematical modelling and the use of digital tools, when we
investigating by means of a qualitative study in order to raise first hypotheses.

21.3 Empirical Study

21.3.1 Research Questions and Instruments

On the basis of the theoretical background given above, the following research
questions were investigated:

• What kinds of action do students undertake in practice when using GeoGebra
for modelling?

• Where do these actions fit into the modelling cycle?

To study the modelling processes of students, an open, real-life situation
described by Laakmann (2005, p. 86) was used:

On a foggy November day, a patrol boat sets out from its safe harbor to hunt down pirates.
As you can imagine, the conditions are not very favorable, and the visibility of the patrol
boat is only 0.5 km. Nonetheless, the captain orders the patrol boat to sail north-east out of
the harbor at a speed of 20 km/h. At the same time, a pirate boat is sailing south-east at
15 km/h. As the patrol boat leaves the harbor, the pirate ship is 8 km to the north and 2 km
to the east of the harbor (Laakmann 2005, p. 86).

This problem of whether the patrol boat will catch the pirates can be solved in
several ways by using the graphical view, the spreadsheet view or the CAS view in
GeoGebra. Various mathematical models can be discussed by using those different
options, so that different perspectives are raised and can subsequently be taken into
consideration (see Siller & Greefrath, 2010). Specifically, we can observe the fol-
lowing differences in the mathematical model, depending on the chosen view of
GeoGebra. In the chart window, students have to draw a chart or diagram of the
given situation. In the example given above, students can draw two lines with
points on them representing the two boats. It is possible to move the points auto-
matically to find the minimum distance of the boats (see Fig. 21.2).

The CAS window allows the students to describe the situation for both ships, by
using functions and through functional thinking. One possibility is to use a
two-dimensional expression for the position, depending on the time, as used in
analytic geometry. The students can then calculate the distance between the two
boats. The minimum of the distance may then be determined by using the derivative
(see Fig. 21.3). With the help of the spreadsheet window, students compute in a
discrete manner with certain data, in order to solve the given problem. In the
context of this task, students can calculate the position of each boat, depending on
the time (see Fig. 21.4).
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Fig. 21.2 Chart window of GeoGebra (two positions of the boats)

Fig. 21.3 CAS window of GeoGebra
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21.3.2 Random Sample and Study Implementation

For the presented study, students were chosen who were already experienced in
working with the dynamic geometry software package Geogebra in the classroom.
This qualitative study was performed in a Gymnasium (academic, university ori-
ented high school) in Muenster (Germany) at 10th grade level. The mathematical
background of the students corresponds with the grade. They could solve the
selected task using the spreadsheet window or the chart window of GeoGebra. The
CAS solution, with the aid of analytical geometry, is not to be expected on the basis
of previous knowledge. Four pairs of students were observed as they solved the
problem. The task was given to the students with the aim of solving the problem
with GeoGebra, but they did not receive any further guidance or advice from a third
party. The approach of each students pair was recorded on video.

21.3.3 Data Analysis

In order to assess the observations, the video footage was transcribed in full. The
script includes all verbal comments and also the actions in GeoGebra. The script was
then marked for assessment in multiple stages. During marking, each of the ideas
suggested by the students was given a conceptual description. These descriptions
were discussed and modified over the course of multiple revisions of the script (see
Strauss & Corbin, 1990). The objective was to describe the students’ modelling
process independently of the given problem at hand, so that the categories thus
obtained could be used as a basis for further study, enabling modelling phases to be

Fig. 21.4 Spreadsheet window
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compared in terms of these categories. For this purpose, categories were developed
which do not depend on the specific task, but describe the processing generally. In a
second stage, the categories were corrected and verified.

The following categories were among those identified from the collected
material in connection with the application of digital tools (Vehring, 2012):

• Mathematical drawing: Drawing simple geometrical objects within a coordinate
system

• Constructing: Drawing more complex geometrical objects and configurations,
with the aid of intermediate steps

• Measuring: Determining the distance between points, the length of line seg-
ments, the magnitude of angles and the slopes of lines or segments

• Experimenting: Varying the parameters, conditions or assumptions of a sketch
and observing the effects

• Calculating: Performing calculations using a physical or software-based
calculator.

An example of a situation in which the students measure shows the following
detail in the transcript:

C: That’s ((points at G)) THE point; that’s the ship.
T: We could just have a look if that’s right. How about just measuring the length
((looks for a suitable tool, picks the tool “length and distance”)). Must be some-
where here ((measures the distance between A and E and the distance between F
and G)). From THIS point to THAT one it’s 1.41. And from THAT point to that
one it should be 1.1 times that. ((looks for his calculator in his backpack)) Wait,
Something’s wrong.

An example of a situation in which the students experimentation shows the
following detail in the transcript:

C: We can just pick another way of calculating this for the time being. Let’s have
look how long that takes. Just do it. Let’s just give it a try. Otherwise we’ll never
get there.
T: ((selects the tool “circle with centre and radius”)) Here, thus with that radius
((points at F))
C: THAT one back to B. No need to draw a circle around here. Around F.

An example of a situation in which the students drawing shows the following
detail in the transcript:

T: Northeast direction. So we could theoretically go Northeast ((puts the point C at
the position (1.5/1.5) and draws the line AC [direction of the patrol boat]/moves
point C and the line AC moves along accordingly/finally C has the coordinates
C(4/4).)) So let’s just add one more point and make a line now. Yes. Let’s move the
point now, you see until it Northeast. That should be four–four, theoretically.
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Furthermore, the methodology included an analysis of two different categories of
action—as mentioned above—using digital tools and steps in the modelling cycle.
To identify the modelling processes within the modelling cycle, the partial com-
petencies of modelling in the cycle described by Blum and Leiss (2007) were used
as a basis for categories. Important partial competencies are constructing, simpli-
fying, mathematising, working mathematically, interpreting and validating.

21.4 Results

By using the categories integrated into the modelling cycle, we were able to
reconstruct the individual modelling processes of the pairs of students, and are able
to formulate hypotheses concerning digital tools when working on modelling
problems. In the following Table 21.1 we see a typical part of the modelling
process of two students using GeoGebra.

The activities corresponding to each category in the application of digital tools
were also established. In this way, the individual modelling path of each student
pair, including the way they used GeoGebra, could be reconstructed for each of
them. Overall, all of the categories listed above were identified in the modelling
processes of the four pairs of students. However, these categories all occurred at
different stages of the modelling cycle. Generally, we found that GeoGebra was
only applied in the modelling cycle between the stages of real model, mathematical
model, and mathematical results. However not all categories were present in each of
these steps (see Table 21.2).

Constructing and drawing were identified between the real model and the
mathematical model, whereas measuring, calculating and experimenting were
identified between the mathematical model and the mathematical results.

Table 21.1 Typical modelling process using GeoGebra

Step in modelling cycle Using digital tools

Real model—mathematical model Drawing

Mathematical model—situation model

Situation model—mathematical model Drawing

Mathematical model—real model Measuring

Real model—mathematical model

Mathematical model—real model Drawing

Real model—mathematical model Constructing

Mathematical model—real model

Real model—mathematical model Constructing

Mathematical model—mathematical results Experimenting
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21.5 Discussion

This study shows that the modelling cycle used, as well as the cycle described by
Geiger (2011), can meaningfully describe the application of digital tools. Our study
suggests that special activities with digital tools can be found, together with special
partial competencies in modelling. A combined description of modelling and the
use of digital tools as in Fig. 21.5, can therefore be more specific than the general
view of technology as in Fig. 21.1. Students make use of the tools in a wide variety
of ways, including constructing, drawing, calculating, measuring and
experimenting.

This study contributes the debate on how modelling with GeoGebra may be
implemented and demonstrated. Our observations show that the digital tool was
indeed applied at different stages of the modelling cycle. These results seem to
confirm our hypothesis in Siller and Greefrath (2010), where we described the

Table 21.2 Categories used in the presented study

Step in modelling cycle Using digital tools

Constructing

Simplifying Experimenting

Mathematising Constructing, drawing

Working mathematically Calculating, measuring, experimenting

Interpreting

Validating

Fig. 21.5 Modelling cycle based on Blum and Leiss (2007) with specific use of digital tools
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modelling cycle with technology with respect to three “worlds”, namely the real,
mathematical and technology worlds. We have stated that these three worlds
influence each other. The mathematical model according to a real situation, depends
on the situation itself, the available mathematics and the digital tool used. This can
be seen here. Moreover, we have evidence supporting the statement of Blum and
Niss (1991, p. 58) found in Monaghan, Trouche, and Borwein (2016, p. 166):

More complex applied problems… relief from tedious routine… Problems can be analysed
and understood better by varying parameters … [and] Problems which are inaccessible
from a given theoretical basis … may be simulated numerically or graphically.

However, our example revealed that students did not use the tools for the pur-
poses of interpretation or validation but for the other purposes mentioned above.
This may be due to the fact that only a small number of student pairs were
observed. Also, the chosen problem could not adequately highlight self-checking
opportunities.

With the help of this study, we are able to meaningfully describe the utilisation
of digital tools in modelling processes. It is evident that students do not focus on
different representations or different options in the same program at the same time.
Students only focus on a certain way and are unaware of the variety of possibilities
shown here. They seem only to follow their individual perceptions and conse-
quently use the accompanying mathematical model to solve the task. Even if the
students did not have any analytical geometry skills, the program offered them two
very different approaches. It is possible that students are not used to solving tasks in
different ways. Therefore, they do not consider this aspect. Yet, the variety of
solutions to a task seems to be a crucial point (see Blum, Drueke-Noe, Hartung, &
Köller, 2012; Büchter & Leuders, 2005). Obviously, these students are not aware of
them, particularly when using digital tools for solving tasks. This could suggest a
need to look for more examples like the one shown here. Elementary modifications
may help, as shown in Siller and Greefrath (2010). However, we need more
examples like this, with relevance to applications and with different approaches. In
particular, we need to take a closer look at different student strategies when mod-
elling with a digital tool. Even in teacher education, it would be possible to discuss
examples like that of Laakmann (2005), by focussing on different models.
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Chapter 22
Instrumental Genesis and Proof:
Understanding the Use of Computer
Algebra Systems in Proofs in Textbook

Morten Misfeldt and Uffe Thomas Jankvist

Abstract In this chapter we investigate the role of Computer Algebra Systems
(CAS) in textbook proofs. We describe two cases of CAS use in textbook proofs
and use the instrumental approach, and in particular the distinction between epis-
temic and pragmatic mediations, to understand the consequences of the so-called
CAS-assisted proofs. We end with a discussion of the experienced shortcomings of
the instrumental approach in relation to CAS use in justification of mathematical
results, and suggest the inclusion of alternative frameworks for filling the gap.

Keywords Proof � Computer algebra system � Instrumental genesis

22.1 Introduction: CAS and Proofs

Thirteen years ago (as part of a reform), CAS massively entered the upper sec-
ondary school mathematics program in Denmark: in the classroom teaching; the
written national examinations; and the textbooks. The Danish Ministry of Education
provided the guidance that CAS should not only serve the role of a tool for solving
problems, etc. but also be seen as an instrument for underpinning conceptual
understanding. However, the actual implementation of CAS into the mathematics
program was pretty much left up to the schools, the teachers (Jankvist, Misfeldt, &
Marcussen, 2016), and not least the textbook authors. As a consequence, textbook
authors of more than one textbook system “invented” the notion of “CAS proofs”.

A CAS proof, or CAS-assisted proof as we shall prefer to call it, is a textbook
proof of a statement or theorem, where one or several steps are outsourced to a CAS
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tool. This might be in smaller details of a proof consisting of algebraic manipu-
lations, reductions, etc. But sometimes the textbook authors have gone further and
outsourced steps of a proof, which appear to be rather crucial for understanding
what is actually going on. And at other times, CAS comes to play the role of an
“authority” upon which the correctness of traditional proofs are valued or judged.

The general problem framing our work in this chapter is how to understand such
CAS-assisted proofs. We focus on the degree to which the instrumental approach
(Artigue, 2002; Trouche, 2005) offers insights to this property. Of course, a number
of constructs related to proofs and proving are important in this discussion: e.g.
Hanna’s (1989) discussion of pedagogical aspects of proof; and Harel’s and
Sowder’s (2007) notion of proof schemes. However, when discussing the role of
CAS in relation to proofs, we also need constructs that seriously address the cog-
nitive and pedagogical influences of the advanced tool itself, i.e. CAS. The in-
strumental approach is broadly adopted in the mathematics education community as
a way of looking at students’ work with CAS. Hence, it also suggested itself as a
natural choice of framework for addressing the problem of CAS in proofs. But as
indicated above, we experienced difficulties with this approach. Due to the broad
adoption of the instrumental approach, we believe that our experienced problems
with the limitations of the framework are of general interest for the mathematics
education research community. Our argument consists of showing an example of a
CAS-assisted proof from a textbook, introducing the main constructs from the
instrumental approach, and describing problems and shortcomings with applying
these constructs to the case.

Having looked at how Danish upper secondary school mathematics textbooks
use CAS in relation to proofs, we see at least three different approaches: a complete
outsourcing of the proof to the CAS tool; an outsourcing of specific technical
aspects; and a use of CAS to somehow check the result of an analytic proof. Of
course, we do not suggest that these three approaches necessarily make up an
exhaustive list of the different ways CAS can be used in proofs and proving, rather
we suggest that these three ways of using CAS for proving exists in the Danish
upper secondary school, and that the two latter (outsourcing specific technical
aspects and checking results) are somewhat common in Danish textbooks. In this
chapter we introduce the instrumental approach and describe two cases of
CAS-assisted proofs. The first case is a complete outsourcing of the proof to the
CAS system, and the second example is a proof where CAS is used to perform a
specific technical aspect of a classical algebraic proof, furthermore we briefly
describe the third type of CAS use for checking proofs. We discuss how these three
cases constitute examples of pragmatic and epistemic uses of CAS for proving and
we end with suggesting categories for describing CAS-assisted proofs informed
both by the pragmatic/epistemic distinction and by theoretical constructs addressing
proof practices among students.
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22.2 The Instrumental Approach

The instrumental approach addresses students’ use of technology when learning
mathematics from the perspective of appropriating digital tools for solving math-
ematical tasks, and in that sense it views computational artefacts as mediating
between user and goal. The approach suggests that we view a student’s
goal-directed activity as shaped by the use of tools (this process is often referred to
as instrumentation), and simultaneously the goal-directed activity of the student
reshapes the tool (this process is often referred to as instrumentalization). In stu-
dents’ work with technology a distinction is made between epistemic mediations
and pragmatic mediations. Epistemic mediations relate to goals internal to the user,
i.e. affecting his or her conception of, overview of, or knowledge about something
—Rabardel and Bourmaud (2003) use the example of a microscope, and Lagrange
(2005) refers to experimental uses of computers. Pragmatic mediations relate to
goals outside of the user, i.e. making a change in the world. Rabardel and
Bourmaud (2003) use the example of a hammer, and Lagrange (2005) refers to the
mathematical technique of “pushing buttons”. CAS of course serves both pragmatic
and epistemic purposes (Artigue, 2002; Trouche, 2005).

22.3 Proof Schemes

Harel and Sowder (2007, p. 809) define “proof scheme” as a combination of
ascertaining and persuading. Ascertaining is the process employed to remove one’s
own doubts about the truth of an assertion, while persuading is the process
employed to remove other’s doubts. Harel and Sowder (2007) provide a taxonomy
consisting of three overall classes of proof schemes: (1) external conviction proof
schemes; (2) empirical proof schemes; (3) our usual deductive proof schemes as
practiced in mathematics. The external conviction proof schemes may be expressed
by an authoritarian proof scheme, e.g. that something is true because the teacher or
the textbook says so; a ritual proof scheme, e.g. that a geometry proof must have a
two-column format; or a non-referential symbolic proof scheme, e.g. that a proof
must contain symbols and symbol manipulations. The empirical proof schemes
come into play when using examples to justify the truth of general (universal)
statements.

22.4 A Complete Outsourcing to CAS

As an example of the first approach, i.e. complete outsourcing of the
mathematical justification, we present an example from a textbook (Clausen,
Schomacker, & Tolnø, 2007), where the entire proof is outsourced to CAS.
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The example (Fig. 22.1a, b) is taken from a textbook for the third and final year of
upper secondary school mathematics (“A level at stx”). The CAS proof, which
appears in the very beginning of this textbook, gives a theorem (“sætning”)—
Theorem 1—stating that “The functions cosine and sine are differentiable in every real
number x and cos′(x) = −sin(x), sin′(x) = cos(x).”

As for the proof of this theorem, the authors continue: “We provide a CAS
proof, cf. Figure 109” where the box of Figure 109 simply displays the claims of
Theorem 1 all over again, only in a screenshot from what appears to be a TI-89. No
means for reasoning and explanation whatsoever are provided for the students; the
entire act of proving is outsourced to the CAS tool (cf. Fig. 22.1b).

The above example left us somewhat puzzled when attempting an analysis: the
proof does not explain anything; and the verification that it does provide is not
satisfactory either. So, how can we understand this “proof”?

22.5 Pragmatic Use of CAS in Proof and Proving

If we try to characterize the use of CAS in the textbook case using the instrumental
approach and the epistemic-pragmatic distinction, the framework seems to run short.
In a sense the “CAS proof” is an example of a very pragmatic use of CAS, since no
attempt is made at explaining or visualizing why cos′(x) = −sin(x) and sin′(x) = cos
(x). However, stating that CAS only serves pragmatic purposes in the proof does not
really make sense either, since proving is essentially an epistemic activity related to
the establishment of truth. Hence, complete outsourcing to CAS in proving activities

Fig. 22.1 a Differential quotient for cos and sin (Clausen et al., 2007, p. 12). b We provide a
CAS-proof … (Clausen et al., 2007, p. 13)
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is difficult to place within either of these two categories. Still, there is a distinction
between work process and object of the activity that calls for further clarification.
Artigue’s distinction between epistemic and pragmatic mediations is developed
around a work practice of solving mathematical problems and tasks, and not around
practices of working with proofs and proving. As stated, pragmatic mediation serves
a purpose outside of the individual. In the case of a proof, pragmatic mediations
would mean that the built argument is convincing and trustworthy towards the
communicational situation that the proof is presented within. In this respect, the
“CAS proof” above is both convincing and trustworthy, but it is neither concerned
with questions of meaning nor with explaining the connections between the math-
ematical interties and ideas constituting the proof. Hence, this CAS-assisted proof is
not a proof that explains (Hanna, 1989), but only a proof that may convince.
Moreover, the proof convinces by referring to a technological authority—namely
CAS. Hence, the educational value of such proofs can surely be discussed, since they
place the value of the proof as distinct from the author of the proof. The value is
solely in the proof’s ability to settle any debate over whether the theorem at stake is
true or not. In that sense, the “CAS proof” could give rise to what may be termed a
“techno-authoritarian” external conviction proof scheme; techno-authoritarian proof
schemes being technical because the proof only makes sense in reference to a
specific technology (in this case CAS), and authoritarian because the scheme builds
on black boxing (Buchberger, 1990; Jankvist & Misfeldt, 2015; Nabb, 2010), in the
sense that the students need to trust the technology in order to believe in the proof,
i.e. as if the technology is an authority.

As mentioned, the above proof is rather puzzling in the sense that many of the
qualities that we usually assign to a proof in a textbook are missing, e.g. that it has
explanatory power, exercises logic, and is concerned with mathematical concepts.
These aspects make it likely to believe that the proof is a rare exception, a joke or a
mistake. But going through a number of Danish textbooks for upper secondary
school we have seen other examples of such heavy outsourcing approaches to the
use of CAS in proofs (Jankvist & Misfeldt, in review).

22.6 Outsourcing and Checking of Specific Technical
Aspects

Let us now see another example of a CAS-assisted proof. This example displays a
different approach to including CAS in proving. The theorem to be proved is again
that the derivative of f(x) = sin(x) is f 0(x) = cos(x). The proof follows a classical
approach to calculating the derivative: first setting up the difference quotient
f xþ hð Þ�f hð Þ

h , next reduce and/or algebraically manipulate the difference quotient as
much as possible—cf. (1) in Fig. 22.2a; and finally calculate the limit of the dif-
ference quotient when h approaches 0 (which takes place on Fig. 22.2b). The proof
follows this structure and the limit is estimated in the text by using the observation
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that sin(k) = k, when k is very small. CAS is used to augment the, in other respects
classical, proof in two different ways, both supporting the “calculation” that
limn!1 sin k

k ¼ 1.
The first use—suggested in the first line of the CAS window of Fig. 22.2b—is to

use CAS to calculate limn!1 sin k
k , when k is a specific but small number (in this

example k = 0.05). The second line in the window uses CAS to calculate the limit
—verifying the calculation carried out above. These uses represent a different
approach to mathematical verification than the naïve outsourcing, as seen in the first
example of a CAS-assisted proof. First of all, the core structure of a classical
algebraic proof is articulated clearly in the second example; the CAS-based argu-
mentation is merely an augmentation.

However, the CAS use is not redundant, since one of the core points in the proof
is only weakly argued for. The argument takes place in the text below Fig. 9 (on
Figure 22.2), the unit circle: “On the unit circle we see (Fig. 9) that if k is a number
(angle measured in rad) close to 0, is sin k (y-coordinate to k) and k (as measured on
the unit circle) almost the same size, hence we have that …” (Carstensen et al.,
2007, p. 88).

22.7 Epistemic Use of CAS in Proof and Proving

As described in the above, the first textbook example uses CAS to establish truth in a
very efficient, but also very pragmatic way. In the second example, we see a different
use of CAS to perform a proof of the same theorem. From a pragmatic perspective
this use is much weaker. Whereas the use of CAS in example 1 gets the job done of
proving the theorem in question, the second use is merely augmenting the classical
argumentation by establishing empirical (by checking with small numbers) and
techno-authoritarian (by asking the CAS tool to calculate the limit) reasons to believe
the critical step in the proof, namely that limn!1 sin k

k ¼ 1. With concepts from the
instrumental approach we may describe the use of CAS for calculation of examples
with very small values of k as epistemic, in the sense that the activity of checking
these values is meaningfully embedded in testing a specific aspect of the proof,
namely the limit when k becomes very small. There is of course no logical necessity
related to investigating this, and therefore the activity does not formally play a role
in the proof. Hence, the notion of this use of CAS as epistemic is challenged. It
would be better to build on the notion of proof schemes and talk about empirical,
epistemic use of CAS. The use of CAS to verify the limit calculation may, on the
other hand, play a crucial role in the logical argument. As presented here in the text,
the CAS-based result is merely an add-on to the algebraic proof, and hence
redundant. However, in contrast to example 1, this use of CAS for establishing truth
does not deprive but rather highlights a key idea in the proof. For that reason we
suggest that this notion is considered epistemic, even though it is verification ori-
ented in the same techno-authoritarian way as described in example 1.
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Fig. 22.2 a Proof of
derivative (Carstensen,
Frandsen, & Studsgaard,
2007, p. 87). b
Proof continued (Carstensen
et al., 2007, p. 88)
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22.8 CAS as a Means for Checking Validity

Besides the complete outsourcing and the distributing of specific difficult or tech-
nical aspects of a proof, we also see a third approach to the use of CAS in proving,
where CAS is used after the formal proof is completed in a traditional manner.
Also, this approach to the use of CAS is not unusual in Danish upper secondary
school textbooks.

As a simple third example, the classical algebraic proof of the derivative of the
tangent function is followed by checking the proof using CAS in a way similar to
the CAS proof in the first example—although with the important difference that the
algebraic proof has been given just before introducing CAS (Carstensen et al.,
2007, p. 90).

It is worth considering both the intentions of the authors as well as the possible
outcomes for the students in such a combination of classical and technological
proof practice. Of course, it is a good idea to make students aware that there are
different routes to the verification of results, and that taking several of these routes
is a way to validate mathematical results—and that such approaches to validation is
found among professional mathematicians as well (Johansen & Misfeldt, 2016).
However, we do know that students in upper secondary school in general have
difficulties with developing a sound conception of what a proof is. Hence, it makes
sense to ask what idea of proof such CAS-assisted poofs leaves the students with.

The sound practice of checking for human calculation mistakes by using dif-
ferent mathematical routes to the same result might be confused by the students
with a process of gathering several instances of evidence that this formula for the
derivative of tangent is actually correct. From a proof scheme perspective, such a
conception of the activity of checking results will push students in the direction of
viewing either mathematical results as something that needs inductive validation
(aligning the proof and the CAS check as just two pieces of evidence that the
formula is true), or viewing CAS as an authority against which the proof is checked,
because “CAS knows best”. The first conception clearly supports an empirical
proof scheme, which is known to be a major epistemic obstacle for the transition to
work with actual proofs (Education Committee of the EMS, 2011). The second
conception supports the development of a techno-authoritarian proof scheme, since
students may get the impression that the proof is correct because CAS says so. And
hence that “check with CAS” is a necessary process for establishing mathematical
truth rather than a practical process of helping us to discover flaws in our own
calculations and proofs. This conception is supported by the fact that what is
checked is a (flawless) textbook proof, not a (potentially wrong) student calculation.
The potentially resulting techno-authoritarian proof scheme may leave students
with the impression that mathematics is the output of a digital computer rather than
a human endeavour.
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22.9 Reflected and Non-reflected Use of CAS in Proving

Looking at the main differences between the three examples, we have phrased the
following four questions. We propose that these may be used to structure the
discussion of CAS use in relation to proofs and proving.

1. Does the CAS use establish truth? In example 1 it does. In the first line of the
CAS window of example 2 it does not, whereas in the second line of the CAS
window it does. This is an important aspect of pragmatic use of CAS.
When CAS is used for checking proofs that are completed without technological
aids, CAS cannot be said to establish truth. However, it does add to the prob-
ability that no human calculation error was conducted as part of the proof.

2. Does the CAS use allow interaction and experimentation? In example 1 it does
not. In the first line of the CAS window in example 2 it does to some extent, but
in the second line of the CAS window this is not the case. If CAS is used to
verify classical proofs this can be done in several ways. But in the case con-
sidered, there is almost no interaction other than verifying the formula.

3. Is the argumentation inductive, deductive or authoritarian? We see inductive
argumentation (first line of the CAS window in example 2), and authoritarian
(example 1 and second line of the CAS window in example 2), but it can be
argued that the way the limit calculation is part of a larger mathematical
argument in example 2 does represent deductive reasoning. When “checking”
proofs with CAS in a textbook there is a risk that students experience mathe-
matics as a field, where inductive reasoning is important and closely connected
to proof practice. The good practice of checking your work for mistakes and
errors by applying different (for example technological) methods to obtain the
same result, might in this case end up being misunderstood as a proof practice
consisting of gathering a number of more or less contingent pieces of “evi-
dence” suggesting that a mathematical result is true.

4. Does the argument highlight important aspect of the proof or the mathematical
relationships? This is the case in example 2, but not in example 1. In example 2
the limit process is outsourced to the CAS tool. This process is two-sided; on the
one hand it highlights that taking the limit is a necessary and difficult aspect of
the proof, and on the other hand it frees the student from having to work with the
limit without the CAS tool. When using CAS for checking a proof, as in the
third example, the main idea of the proof will often not be highlighted.

These four questions, we propose, can act as an initial guiding framework for
considering the value of CAS in textbook proofs, mediating between the concerns
related to ensuring epistemic use of technology, as highlighted in the instrumental
approach (Artigue, 2002), and the concerns related to ensuring that students can
develop deductive proof schemes (Harel & Sowder, 2007), when working with
textbook proofs in upper secondary school—as well as experiencing CAS-based
proofs that explain rather than just pragmatically establishing some mathematical
truth.
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22.10 Conclusion

In conclusion, the shortcoming of the instrumental genesis framework in relation to
CAS-assisted proofs may be partially remedied by filling the gap with frameworks
from proofs and proving in mathematics education. In particular Hanna’s (1989)
distinction between proofs that prove and proofs that explain and Harel’s and
Sowder’s (2007) notion of proof schemes appear useful in explaining the educa-
tional effects of CAS-assisted proofs (Jankvist & Misfeldt, in review). In relation
hereto, it may be remarked that even though verification practices involving CAS
can be mathematically healthy and meaningfully included in mathematics textbooks
at upper secondary level, the notion of CAS-assisted proofs appears to potentially
reinforce the observed educational problems with proofs and proving, e.g. in
relation to non-deductive proof schemes, and may thus end up increasing students’
difficulties with verification and justification through proof, argumentation, and
reasoning.
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Chapter 23
In Search of Standards: Teaching
Mathematics in a Technological
Environment

Jana Trgalová and Michal Tabach

Abstract A number of research studies on teacher professional development
(TPD) at the high school level express dissatisfaction regarding the outcomes of
TPD programmes. The main reason seems to be a gap between teachers’ expec-
tations and TPD programme contents. We assume that this situation may be caused
by a lack of standards specifying the knowledge and skills teachers need in order to
use technology effectively in their classes. In this chapter, we tackle the issue of
standards by describing existing ICT standards at the international and national
levels and analysing them through the lenses of the TPACK model and double
instrumental genesis. We argue that these standards are too general and do not refer
specifically to school level or subject matter. We call on the mathematics education
research community to take this issue into consideration.

Keywords Mathematics teachers’ knowledge for ICT � Standards for teaching
with ICT � TPACK model � Double instrumental genesis

23.1 Introduction

Teacher education was one of the four central themes discussed by the Topic Study
Group 43, Uses of technology in upper secondary mathematics education (age 14–
19) at the ICME 13 Congress. In our contribution to this theme (Hegedus et al.,
2016), we pointed out that in a number of research papers, authors were disappointed
with the outcomes of teacher education programs aimed specifically at high school
teachers. The gap between teachers’ needs and the teacher education contents was
identified as the main reason. This calls attention to the need for teacher educators to
better understand what teachers need to know in order to use Information and
Communication Technology (ICT) effectively, thus raising the issue of ICT com-
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petency standards. We therefore searched for an institutional framework regarding
teachers’ knowledge for teaching mathematics with technology. Surprisingly, we
were able to find very few such standards for mathematics teachers or even for
teachers in general. Therefore, we recommended that “Elaboration of ICT standards
for mathematics teacher education might become one of the goals of the mathematics
education international community” (ibid., p. 30).

In this chapter we expand on the standards we consider crucial for teacher
education: standards aimed at teachers, and in particular mathematics teachers,
specifying professional knowledge and skills needed for ICT use in mathematics
classes. We discuss both international and national levels.

23.2 Theoretical Perspective

Several researchers have suggested theoretical frameworks for examiningand analysing
teacher knowledge in general (e.g., Grossmann, 1990; Ball, Thames, & Phelps, 2008).
These frameworks draw on Shulman’s (1986) construct of pedagogical content
knowledge (PCK). Shulman rejected the view of content knowledge and pedagogical
knowledge as two distinct bodies of knowledge and suggested a partial overlap between
them. This overlap implies a unique type of knowledge specific for teachers—PCK.

In theorizing about the unique knowledge needed for teaching with digital tech-
nology, Mishra and Koehler (2006) introduced the concept of technological peda-
gogical content knowledge (TPCK or TPACK): the knowledge and skills teachers
need to meaningfully integrate technology into instruction in specific content areas.

These authors suggested an additional body of knowledge to the PCK model,
namely technological knowledge (TK), which partially overlaps CK and PK.
Figure 23.1 depicts the resulting image of teachers’ knowledge, which includes
seven bodies of knowledge.

Other models of teachers’ professional knowledge have been built on Shulman’s
PCK. Hill, Schilling, and Ball (2004) introduced the construct of mathematics
knowledge for teaching (MKT), which they define as “subject-matter knowledge in
ways unique to teaching” (p. 122). Their conceptualization of MKT is driven by the
search of measurement methods to uncover this knowledge, thus positioning MKT
in particular mathematical domains and tasks. Taking technology into account, the
MKT construct has given rise to knowledge for teaching mathematics with tech-
nology (KTMT) (Rocha, 2013).

The TPACK framework offers a theoretical lens that enables us to analyse
teachers’ professional knowledge at a more general level, as opposed to the KTMT
model that requires a specific context to be taken into account. TPACK is used by
many researchers and several different interpretations are currently accepted
(Voogt, Fisser, Pareja Roblin, Tondeur, & van Braak, 2012): T(PCK) as extended
PCK; TPCK as a unique and distinct body of knowledge; and TP(A)CK as the
interplay between three domains of knowledge and their intersections. In the current
chapter we adopted the TP(A)CK view, as from the perspective of professional
development, each knowledge domain and their intersection should be developed.
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The theoretical construct of double instrumental genesis (Haspekian, 2011)
encompasses both personal and professional instrumental geneses in teachers using
ICT. While the personal instrumental genesis is related to the development of a
teacher’s personal instrument for mathematical activity from a given artefact, the
professional instrumental genesis yields a professional instrument for the teacher’s
didactical activity. These two processes mobilize knowledge of the artefact
(TK) and the abilities to solve mathematical problems using it (TCK), to orchestrate
ICT-supported learning situations (TPK) and to teach mathematics with ICT
(TPACK).

23.3 Methods

In this chapter, we review institutional documents in an attempt to answer the
following questions: What competency standards are set for teachers working in
technological environments? What are the specificities for mathematics teachers
that are unique to this sub-group of teachers?

Fig. 23.1 TPACK (with permission from TPACK.org)
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Two types of data sources were available for us. At the international level, we
searched the web for organizations that published documents on the topic. We
found the UNESCO ICT Competency Framework for Teachers (2011) and the
International Society for Technology in Education (ISTE1) Standards-T (2008),
both of which relate to teachers in general. At the national level, we considered the
NCTM (2011) from the US that is specific for teaching mathematics, yet focused
mainly on standards for learning, as well as the recent publication by the
Association of Mathematics Teacher Educators (2017). We also considered avail-
able documents from France and Israel to obtain a wider national perspective.

While examining each of the data sources, we tried to relate them to one of the
four knowledge areas that pertain to technology, as reflected by the TPACK
framework.

23.4 Findings

23.4.1 ICT Standards Around the World

UNESCO ICT Competency Framework for Teachers (ICT-CFT) (2011) sets out
“the competencies required to teach effectively with ICT” (p. 3). The framework
stresses that

it is not enough for teachers to have ICT competencies and be able to teach them to their
students. Teachers need to be able to help the students become collaborative, problem
solving, creative learners through using ICT so they will be effective citizens and members
of the workforce. (ibid.)

The framework is therefore organized according to three different approaches to
teaching corresponding to three stages of ICT integration. The first is Technology
Literacy “enabling students to use ICT in order to learn more efficiently”; the
second is Knowledge Deepening “enabling students to acquire in-depth knowledge
of their school subjects and apply it to complex, real-world problems”; and the third
is Knowledge Creation “enabling students, citizens and the workforce they become,
to create the new knowledge required for more harmonious, fulfilling and pros-
perous societies” (p. 3). It is interesting to note that these stages are formulated in
terms of students’ abilities to exploit the ICT potential as a result of the ways
teachers use ICT. All aspects of teachers’ work, namely understanding ICT in
education, curriculum and assessment, pedagogy, ICT, organization and adminis-
tration, and teacher professional learning, are addressed in all three stages
(Fig. 23.2).

1International Society for Technology in Education, http://iste.org.
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The authors of the UNESCO framework claim that

[t]he successful integration of ICT into the classroom will depend on the ability of teachers
to structure the learning environment in new ways, to merge new technology with a new
pedagogy, to develop socially active classrooms, encouraging co-operative interaction,
collaborative learning and group work. This requires a different set of classroom man-
agement skills. The teaching skills of the future will include the ability to develop inno-
vative ways of using technology to enhance the learning environment, and to encourage
technology literacy, knowledge deepening and knowledge creation. (ibid., p. 8)

The framework specifies competencies teachers need in all aspects of their work.
At the level of Technology Literacy,

teacher competences […] include basic digital literacy skills and digital citizenship, along
with the ability to select and use appropriate off–the-shelf educational tutorials, games,
drill-and-practice software, and web content in computer laboratories or with limited
classroom facilities to complement standard curriculum objectives, assessment approaches,
unit plans, and didactic teaching methods. Teachers must also be able to use ICT to manage
classroom data and support their own professional learning. (ibid., p. 10)

Referring to the TPACK model, we may consider “basic digital literacy” as part
of TK and the ability to select appropriate resources to “complement […] standard

Fig. 23.2 The UNESCO ICT competency framework for teachers (UNESCO, 2011, p. 13)
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didactic teaching methods” as part of TPACK. TPK and TCK are mentioned
together with TPACK at the next level, Knowledge Deepening:

teacher competences […] include the ability to manage information, structure problem
tasks, and integrate open-ended software tools and subject-specific applications [TCK] with
student-centred teaching methods and collaborative projects in support of students’ in-depth
understanding of key concepts [TPACK] and their application to complex, real-world
problems. To support collaborative projects, teachers should use networked and web-based
resources to help students collaborate, access information [TPK], and communicate with
external experts to analyze and solve their selected problems. Teachers should also be able
to use ICT to create and monitor individual and group student project plans, as well as to
access information and experts and collaborate with other teachers to support their own
professional learning. (ibid., p. 11)

Finally, at the level of Knowledge Creation, teachers

will be able to design ICT-based learning resources and environments; use ICT to support
the development of knowledge creation and the critical thinking skills of students
[TPACK]; support students’ continuous, reflective learning [TPK]; and create knowledge
communities for students and colleagues. (ibid., p. 14)

The UNESCO document provides examples of syllabi for teacher education that
demonstrate ways to operationalize the ICT competency framework. Table 23.1
provides a few examples of tasks suggested in the syllabi at the three levels of
teachers’ competencies—technology literacy (TL), knowledge deepening (KD) and
knowledge creation (KC)—organized according to the TPACK model and the
double instrumental genesis concept.

These examples of teachers’ competencies show that the UNESCO ICT
framework takes into account teachers’ personal as well as professional ICT
knowledge and skills, although the personal knowledge and skills are only present
at the TL and KD levels, while teachers at the KC level are thought to have
sufficient personal mastery of technology. All technology-related categories of the
TPACK model are present, although the TPACK itself is not specific to subject
matter or grade level.

The ISTE Standards-T (2008) define five skills teachers “need to teach, work
and learn in the digital age”:

(1) “Teachers use their knowledge of subject matter, teaching and learning, and
technology to facilitate experiences that advance student learning, creativity, and
innovation”, (2) “Teachers design, develop, and evaluate authentic learning
experiences and assessments incorporating contemporary tools and resources”,
(3) “Teachers exhibit knowledge, skills, and work processes representative of an
innovative professional”, (4) “Teachers … exhibit legal and ethical behavior in
their professional practices”, and (5) “Teachers continuously improve their pro-
fessional practice …, exhibit leadership in their school and professional community
by promoting and demonstrating the effective use of digital tools and resources”.

These skills are rather general and refer to various aspects of the teaching
profession. They do not relate to TK per se. It seems that in these standards,
teachers’ TK is taken as a starting point. Moreover, as the standards are not sub-
ject specific, they do not relate to TCK. In fact, this set of skills is about TPK.
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Note that the standards encompass various aspects of the teaching profession—
designing, teaching, evaluating, leading their peers in school and in their profes-
sional community, as well as legal behaviour. An indication that some adaptation to
the content taught is needed can be found at the beginning: “Teachers use their
knowledge of subject matter…”. Yet, this does not directly convey that adaptation
of these skills to different content areas within K-12, namely focusing on TPACK,
may yield different results for different subject matters or grade levels.

To summarize, at the international level the standards are aimed mostly at
teachers in general, with no specific adaptation to any school subject. As a result,
the documents refer to teachers’ TPK, rather than to TCK or TPACK, which are
only referred to by evoking “didactic teaching methods” or “support of students’ in-
depth understanding of key concepts”.

Table 23.1 Examples of teachers’ competencies mentioned in the UNESCO ICT framework

Personal instrumental genesis Professional instrumental genesis

Teachers
should be
able to…

TL—Describe the purpose and basic
function of graphics software and use a
graphics software package to create a
simple graphic display (TK)

TL—Identify the appropriate and
inappropriate social arrangements
for using various technologies
(TPK)

TL—Use common communication and
collaboration technologies, such as text
messaging, video conferencing, and
web-based collaboration and social
environments (TK)

TL—Match specific curriculum
standards to particular software
packages and computer
applications and describe how these
standards are supported by these
applications (TCK)

TL—Use ICT resources to support their
own acquisition of subject matter and
pedagogical knowledge (TCK, TPK)

TL—Incorporate appropriate ICT
activities into lesson plans so as to
support students’ acquisition of
school subject matter knowledge
(TPACK)

KD—Identify or design complex,
real-world problems and structure them
in a way that incorporates key subject
matter concepts and serves as the basis
for student projects (TCK)

KD—Structure unit plans and
classroom activities so that
open-ended tools and
subject-specific applications will
support students in their reasoning
with, talking about, and use of key
subject matter concepts and
processes while they collaborate to
solve complex problems (TPACK)

KD—Operate various open-ended
software packages appropriate to their
subject matter area, such as
visualization, data analysis, role-play
simulations, and online references
(TCK)

KC—Help students reflect on their
own learning (TPK)
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23.4.2 ICT Standards at the National Level

The National Council of Teachers of Mathematics (NCTM) has published docu-
ments, statements and position papers aimed at the US, yet these documents are
influential beyond the national level. In many countries they serve as a model for
national documentation. The NCTM refers specifically to mathematics teachers, as
can be viewed from explicit references to mathematics, as well as to digital tools
specific to mathematics.

NCTM (2011) claims that

Programs in teacher education and professional development must continually update
practitioners’ knowledge of technology and its application to support learning. This work
with practitioners should include the development of mathematics lessons that take
advantage of technology-rich environments and the integration of digital tools in daily
instruction, instilling an appreciation for the power of technology and its potential impact
on students’ understanding and use of mathematics.

The NCTM position toward technology in mathematics education emphasizes
three conditions for an efficient integration of technology that should guide the
development of teacher education programs: teachers’ awareness of the technology
added value in terms of improving students’ understanding of mathematics, which
refers to TPACK; teachers’ continuous upgrading of their knowledge of technology
and its use in teaching, which relates both to teachers’ TK and to their TPK; and
designing teaching resources taking advantage of affordances of digital tools, which
refers to TPACK.

In a position statement from 2015 the NCTM further stated that

Effective teachers optimize the potential of technology to develop students’ understanding,
stimulate their interest, and increase their proficiency in mathematics. When teachers use
technology strategically, they can provide greater access to mathematics for all students.

The document further refers to particular technologies to be used, from mathe-
matical and non-mathematical domains:

Content-specific mathematics technologies include computer algebra systems; dynamic
geometry environments; interactive applets; handheld computation, data collection, and
analysis devices; and computer-based applications. Content-neutral technologies include
communication and collaboration tools, adaptive technologies, and Web-based digital
media.

Teachers are viewed as orchestrators and coaches of strategic use, and their
major considerations should stem from the mathematics they are teaching.
Technology is used at the service of mathematics. Although not specifically stated,
it seems that for the NCTM, TCK, TPK and TK all play central roles in the
knowledge teachers must have in order to teach with ICT. This impression is
enhanced by the fact that in most of the publications, ICT appears in the back-
ground rather than up front.

A recent publication issued by the US Association of Mathematics Teacher
Educators (2017) is aimed specifically at mathematics teachers, focusing on
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preparing teachers to teach quality mathematics. The researchers who compiled the
document view the use of mathematical tools and technology as a component of
mathematics concepts, practices and curriculum standards. They further detailed
this issue for high school mathematics teachers:

Well-prepared beginning teachers of mathematics at the high school level are proficient
with tools and technology designed to support mathematical reasoning and sense making,
both in doing mathematics themselves and in supporting student learning of mathematics.
In particular, they develop expertise with spreadsheets, computer algebra systems, dynamic
geometry software, statistical simulation and analysis software, and other mathematical
action technologies as well as other tools, such as physical manipulatives. (p. 117)

In this description we can see references to the double instrumental genesis—
both at the level of the teachers’ own knowledge of technology use (TK) and in
teaching their students (TPK and TPACK). Specific mathematical software pack-
ages are mentioned, acknowledging the fact that although general knowledge about
communication technology is welcome, high school mathematics teachers also need
specific knowledge relevant to mathematics (TCK).

The situation in Israel is quite different in terms of teachers’ standards for
teaching in an ICT environment in general and for mathematics teachers in par-
ticular. At the national level of preservice teacher education, only general reference
is made to 21st century skills. In other words, reference is made to TK, which is
expected from all citizens and not teachers in particular. At the mathematics edu-
cation level, again there are no particular standards regarding what mathematics
teachers need to know. This is not typical, as the Israel Ministry of Education
usually adopts a very centralistic approach.

Until 2014, France was one of the European countries that required a certificate
of digital skills known as a “certificate of computer science and Internet” to become
a primary or a secondary school teacher. Since 2014, this certification has been
integrated into preservice teacher education. This certification was created in 2010
to guarantee professional skills in the pedagogical use of common digital tech-
nologies necessary for all teachers and trainers to work in their profession. National
standards of competencies related to this certification comprise two main parts:
(A) general skills related to the exercise of the profession, and (B) skills needed for
ICT integration into teaching practice. The general skills (part A) are organized in
three domains: “A1—mastery of professional digital environment” (e.g., select and
use the most appropriate tools to communicate with the actors and users of the
education system); “A2—development of skills for lifelong learning” (e.g., use
online resources or distance learning devices for self-training); and “A3—profes-
sional responsibility in the education system” (e.g., take into account the laws and
requirements for professional use of ICT). The skills for ICT integration are clas-
sified into four domains: “B1—networking with the use of collaborative tools”
(e.g., search, produce, index, and share documents, information, resources in a
digital environment); “B2—design and preparation of teaching content and learning
situations” (e.g., design learning and assessment situations using software that is
general or specific to the subject matter, field and school level); “B3—pedagogical
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enactment” (e.g., manage diverse learning situations by taking advantage of the
potential of ICT); and “B4—implementation of assessment techniques” (e.g., use
assessment and pedagogical monitoring tools). While the skills from part A refer
mostly to TK, those from part B refer to TCK, TPK and TPACK. Numerous
intersections can be found between the French national and UNESCO international
standards, mainly in considering various aspects of the teaching profession. The
standards are not only restricted to teachers’ classroom activity, but take into
account both personal and professional mastery of ICT. Like the other standards
presented above, the French ones are common to all teachers, whatever their school
level and the subject matter they teach.

23.5 Conclusion

In this chapter we asked two connected questions: What knowledge standards are
set for teachers working in technological environments? What are the specificities
for mathematics teachers that are unique to this sub-group of teachers? To answer
the two questions, we searched for institutional documents, both at the worldwide
level and at the national level. In the findings section we detailed our analysis of the
few documents we found, through the lenses of the TPACK framework for
teachers’ knowledge and the double instrumental genesis concept. We found a
document formulated by UNESCO that elaborated ICT standards for teachers in
general, regardless of subject matter or grade level. The second document was
written by the International Society for Technology in Education, again at the
general level. We were surprised to find only these two documents. We would like
to point out that these two documents do not address any specific grade level,
suggesting that the knowledge and skills for teaching in an ICT environment at any
grade level are the same. In addition, the documents do not address any specific
subject matter, nor do they suggest that particular adaptations are needed for
teaching various school subjects.

At the national level we searched for documentation from three countries: US,
France and Israel. There are profound differences between these three countries in
terms of national level standards for teaching with ICT, as well as some striking
similarities. As is the case at the international level, both in Israel and France
reference is made only to teaching in general, with no relation to specific age level
or subject domain. Yet, while in Israel some reference is made to 21st century ICT
skills needed for any citizen, with emphasis on TK, in France we saw awareness of
both personal TK as well as professional knowledge needed for teaching, in line
with the double instrumental approach. The findings from the US differ in the sense
that the standards are aimed specifically at teaching mathematics and are elaborated
per school levels. Indeed, the analysis shows that these standards refer to all types
of TPACK knowledge. Nevertheless, they lack specifications.

We are currently at a time of change in terms of teachers’ technological
knowledge. Newcomers to the profession are expected to be more skilful at the
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personal level than are veterans. Nonetheless, we think that teachers’ mastery of
ICT, in terms of both TK and TCK, should not be taken for granted. Rather, this
personal level in the double instrumental genesis should be addressed by standards.
Moreover, and even after considering the more recent document from the US, we
call on the mathematics education research community to consider elaborating sets
of standards for teaching with ICT for different age groups and school subjects so as
to allow for the promotion of the professional level of instrumental genesis.
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Chapter 24
Using Graphing Calculators to Graph
Quadratics

Elayne Weger Bowman

Abstract Insufficient classroom time to provide mastery to Algebraic content and
intense requirements to meet state and national standards create challenges for
many secondary (ages 14–17) mathematics educators. Additional test driven
impetus to include graphing calculators in the teaching of quadratics and polyno-
mials, along with teacher evaluations tied to student proficiency on mandated
exams provide many points for heated discussions among mathematics educators.
A culmination of two studies at a large Midwestern United States secondary school
combines the findings of graphing calculator use in a secondary course of Algebra
while introducing the graphing of quadratics with high stakes testing standards and
their combined impact on secondary mathematics teachers. The author believes that
using graphing calculators as daily tools can ease the tensions in mathematics
education and enrich the mathematical learning in students.

Keywords Graphing calculators � Algebra � Quadratics � High-stakes testing
Common core state standards

24.1 Introduction

“The consequences of a plethora of half-digested theoretical knowledge are
deplorable,” (Whitehead, 1929, p. 4).

Mathematics education is ever-changing. The challenge of staying current on the
diverse directions of mathematics curriculum requires stamina, flexibility, and
determination. The decision to become a mathematics instructor should not be taken
lightly, as that decision comes with responsibility and commitment to a common
vision. Achieving that vision “requires solid mathematics curricula, competent and
knowledgeable teachers who can integrate instruction with assessment, education
policies that enhance and support learning, classrooms with ready access to
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technology, and a commitment to both equity and excellence” (NCTM, 2000, p. 3).
Not everyone is ready for that challenge. The integration of technology into
mathematics continues to be a cause of controversy among mathematics educators
and researchers. Many studies exist establishing justification for technology, such
as graphing calculators, in mathematics learning, but studies showing how and
when to use the technology are difficult to find. This study set forth to fill in the gap
in existing literature to examine whether students might benefit from introducing
the graphing calculator earlier in the learning sequence when graphing quadratics.

24.2 Testing and Technology

High-stakes testing takes on many forms in different countries. In the United States,
continual efforts of mathematics curriculum reform to meet the needs of society’s
work force have included emphasis on rich technology usage in the mathematics
classroom. Classroom teachers continue to disagree on whether the technologies,
such as graphing calculators, are necessary for the teaching and learning of
Algebraic concepts, such as graphing linear, quadratic, or other polynomial equa-
tions. Recent reform efforts, however, have taken the decisions away from the
classroom teachers. The inclusion of graphing calculators on the high-stakes exams
that students take at the end of their secondary mathematics courses in Algebra is
driving the teaching decisions that teachers make inside their own classrooms.

24.2.1 High Stakes Testing

High stakes testing is driving the mathematics curriculum, now more than ever
before, and the stakes have changed significantly. The attention-to-standards-
mathematics that teachers following National Council of Mathematics recommen-
dations (NCTM, 2000) already practice is now not only expected, but demanded.
High stakes testing is often used to evaluate schools and teachers. The past decade
has seen an increase in the number of end of instruction exams for secondary core
subjects, especially in mathematics. The National Education Association
(NEA) cites in a recent article that nearly half of the teachers they surveyed were
considering leaving teaching over the standardized testing that “was sucking the
oxygen out of the room” (Walker, 2014) and the article reports that over forty
percent of the teachers indicated that these same tests were strongly linked to their
teacher evaluations.

400 E. W. Bowman



24.2.2 Mathematics Technology

Along with the mandated testing and extended curriculum, the emphasis on the use
of technology in algebra continues to increase. Some teachers instruct their students
in step-by-step calculator-button-pressing methods to attain correct answers on the
end of instruction exams, without any attention given to meaning. On the other end
of the spectrum, other teachers believe that making calculators available in the
algebra classroom at all is ill-advised. Studies have shown that the technological
beliefs of the instructors implementing the technology use strongly affect the out-
come of the students (Martin, 2008; Smith & Shotsberger, 1997). There must be a
certain amount of conviction in the technology and certainly, there must be
appropriate training for the instructors and the students. The purpose of the tech-
nology used must be clear to both instructors and students.

According to the National Council of Teachers of Mathematics, “technology is
essential in teaching and learning mathematics; it influences the mathematics that is
taught and enhances students’ learning” (NCTM, 2000, p. 24). However, tech-
nology should never be used to replace basic understanding or intuition; rather, its
primary use should be to “foster those understandings and intuitions…with the goal
of enriching students’ learning of mathematics” (p. 25). Technology in algebra is
not limited to graphing calculators, but also includes computer spreadsheets, dy-
namic geometry software, and calculator-based-laboratory (CBL) systems. These
tools, used in conjunction with appropriate activities and guidance, help to blur
“some of the artificial separations among topics in algebra, geometry, and data
analysis by allowing student to use ideas from one area of mathematics to better
understand another area of mathematics” (p. 26). Using the recommendations from
the National Council of Teachers of Mathematics, numerous researchers have
conducted studies and agree that graphing calculators certainly have a place in the
algebra classroom (Kastberg & Leatham, 2005; Martin, 2008; Smith & Shotsberger,
1997, e.g.). Nonetheless, the question of how and when to use the graphing cal-
culators in the classroom still remains elusive (Bowman & Conrady, 2014;
Kastberg & Leatham, 2005).

24.2.3 Mathematics Teacher Concerns

In theUnited States, the impact of the CommonCore State Standards forMathematics
alongwithmandated high stakes testing on all offered precollege algebra courses have
created additional points of concern for the instructors responsible for teaching the
courses. Among these concerns is the use of graphing calculators on the exams.
Graphing calculators are currently included in pop-up or drop-down windows in
online orchestration of many high-stakes algebra exams, so whether or not mathe-
matics instructors agree with their use is irrelevant. It is essential for instructors to
teach their students how to use them appropriately and thoughtfully.
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In the United States, “current algebra curriculum has a vast range of discrete
information that teachers are asked to cover thoroughly. That vast range of infor-
mation is quite wide and is growing seemingly wider with each new educational
mandate” (Bowman, 2015, p. 91). For example, Algebra 2, an advanced course in
precollege algebra that covers quadratics, polynomials, conics, and other similar
topics, is the latest of the secondary mathematics courses to come under the aus-
pices of end of instruction testing in the United States. It is a challenging course for
most students to fully comprehend, and yet all advanced mathematics requires full
understanding of its concepts. The Common Core State Standards for mathematics,
adopted in 2010, added significant content standards to be addressed in Algebra 2
bringing the content to the level of course material normally covered in a course of
college-level algebra. This course is a minimum requirement for college readiness
in many secondary schools and colleges in the United States, so for the majority of
students, the impact of changes to the content and rigor in Algebra 2 is powerful.

Innovative teachers are those who engineer and pioneer effective methods of
reaching children. Far beyond a classroom lecture and worksheet, familiar in so many
mathematics classrooms, innovative teachers’ classrooms are living spaces where
students are actively engaged in interactive problem-based learning, known to
facilitate greater learning in all students (Reynolds, 2010). The teacher in my study, a
male in his mid-50s, had taught mathematics at the secondary level for sixteen years.
His students enjoyed his classes and came tomy calculus classes well prepared in their
mathematical learning. As the standards began to change in our state, this teacher was
quite worried over how students’ learning might be affected by including graphing
calculators regularly in his algebra class. However, hewas alsoworried that if they did
not have practice with the graphing calculators during the learning phases of the
course, how that might affect their scores during the high-stakes testing at the end of
the course. This teacher was well-versed on current trends in mathematics education
and used technology in his classroom in innovative ways. Nonetheless, he was con-
flicted over being forced to use them, rather than being given the choice to do so when
he thought it made sense. I asked him if he was willing to participate in a study to see
whether the graphing calculators would make a difference in the students’ test scores
in his quadratics equations unit and he agreed.

24.3 The Graphing Calculator Study

24.3.1 Setting

The mixed methods study took place in a large (n > 2500) Midwestern United
States secondary school (ages 14–17) in four sections of a course of advanced
Algebra. The advanced Algebra course covered typical topics of pre–college al-
gebra, such as quadratic equations, polynomial equations, factoring polynomials,
conics, and rational equations. The question directing this study was “Does the
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timing of introducing a graphing calculator matter when teaching students to graph
quadratic equations?” The courses were all taught by the same instructor, a mid-50s
male who had taught mathematics to this age group for sixteen years. Although
over 100 students were enrolled in the four sections of his classes, only 40 signed
the paperwork to consent to the study. The results of all 40 students as well as the
reflections of the instructor were included in the study.

24.3.2 Methodology

Before the study began, all students received a pretest (see Fig. 24.1) to determine
initial knowledge and understanding of the key components of the graphs of
quadratic equations. The pretest was a ten question test that asked for key infor-
mation from quadratic equations or their graphs, such as the vertex, minimum or
maximum, and intercepts. Additionally, three questions on the pretest were in the
context of a real world problem where the students were to interpret the graph in
terms of when and where a projectile would land. Following the pretest, the study
was designed in such a way that all students would have the opportunity to learn to
graph quadratic equations by two different methods, but the order in which the
methods would be presented was reversed. The two methods were a traditional
paper and pencil method and a graphing calculator method. In the traditional paper
and pencil method, students were led by the teacher to construct t-charts of ordered
pairs and then graphed the ordered pairs on coordinate axes. In the graphing cal-
culator method, students were given the graphing calculator as a tool to graph the
equations. In both methods, students were to identify the key components of the
graphs—intercepts, vertices, direction (opening up or down), and axis of symmetry.

The teacher of the course randomly selected which classes would be taught with
each method first. Two sections received the traditional paper and pencil teaching
for one week, followed by the graphing calculator teaching. The other two sections
received the graphing calculator teaching for one week, followed by the traditional
paper and pencil teaching. At the end of the two weeks of instruction, the teacher
administered a posttest that tested the same features of quadratic equations and their
graphs as the pretest.

24.4 Quantitative Findings from the Study

Table 24.1 shows the results of a paired samples t-test comparing the two groups’
pretests to check forvariability between the twogroups, eachgroup’s pretest andposttest,
and the two groups’ posttests. Group A is the two sections that were first taught tradi-
tionally, using paper and pencil only, and then taught the same lesson with use of the
graphing calculator. Group B is the two sections that were first taught using the graphing
calculators and then taught the same lesson traditionally with paper and pencil only.
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Fig. 24.1 Pre test
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A confidence interval of 95% was used for all tests. As shown in Table 24.1, the two
groups of students, those who had the traditional paper and pencil teaching first (Group
A) and those who had the graphing calculator teaching first (Group B) did not differ
significantly (p > 0.05) at the outset of the study.

Both groups A and B had statistically significant (p < 0.05) gains in mathe-
matical knowledge over quadratic equations and their graphs between the pretest
and posttest. The students in Group B, however, had a statistically significant
(p < 0.05) gain over the students in Group A.

24.5 Qualitative Findings from the Study

The instructor of the course observed that the levels of student questions during the
learning processes differed extensively between the students of Groups A and B.
Students in Group A, those who began the study without a graphing calculator, asked
critical and higher level questions that teachers would like them to be thinking about.
On the other hand, the students in Group B, those who began the study using the
graphing calculators, asked questions pertaining only to the use of the technology. The
instructor observed during class that his students often relied on the output of
the calculator with little thought given to the sense-making of the problem.

Fig. 24.1 (continued)

Table 24.1 Comparison of Groups A & B

Paired samples Mean difference Standard deviation t-value p-value

Groups A & B pretest 0.15789 2.14121 0.321 .752

Group A posttest/pretest 3.00000 2.44949 5.339 .000

Group B posttest/pretest 4.14286 1.65184 11.493 .000

Group B & A posttest 1.47386 1.89644 3.387 .003
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24.6 Discussion

Students introduced to the graphing of quadratics with the graphing calculator first
engaged with the mathematics at a higher level and retained more knowledge
through the unit, even though from a qualitative point of view they seemed to be
more concerned about the technology during the initial stages. Graphing calculators
allow students to engage in challenging mathematics while still being involved in
essential foundation building sense-making. Combining students’ need for
sense-making and their engagement with technology leads to activities that can
utilize both. In our work with teaching students in precollege mathematics, it is
essential that we instruct them appropriately with both paper and pencil and with
technology, teaching them to think critically and carefully about their answers.

24.7 Seeking Common Ground

Exploring solutions for covering the vast curriculum in the allotted amount of time,
integrating graphing calculators, and helping teachers to accomplish both is a worthy
goal. In striving for this goal with other teachers, I have observed that when students
are simply given the formulas, definitions, and recipes for success, they fail to grasp
the concepts; they do not struggle to persevere. However, when introduced to topics in
contextual venues they can relate to, their interest as well as their conceptual
understanding improves (Bowman, 2015). As a recurring result of the TIMSS (Trends
in International Mathematics and Science Study), in which American students are
continually being compared to their international counterparts, Gasser (2011)
developed Five Ideas for 21st Century Math Classrooms. He proposed that just by
focusing on these five ideas, we could better prepare our students for competition
against “the best of the best” in the work force. His ideas are to: (1) Incorporate
problem-based instruction; (2) Foster student-led solutions; (3) Encourage risk tak-
ing; (4) Have fun; and (5) Provide ample collaboration time for both students and
teachers (Gasser, 2011). Paul Ernest writes, “The motivation for including ‘know
how’ as well as propositional knowledge as part of mathematical knowledge is that it
takes human understanding, activity, and experience to make or justify mathematics
—in short, mathematical know-how” (Ernest, 1998, p. 136). Students who are
problem-solvers, thinkers, and decision-makers—those with “know how”—will be
beyond the touch of button-pressing, machine-replaceable workers.

To reach these goals, curriculum can be reworked into project-sized bits where
one project or unit would cover multiple standards and objectives while imple-
menting all eight of the mathematical practices found in the Common Core State
Standards for Mathematics: (a) Make sense of problems and persevere in solving
them, (b) Reason abstractly and quantitatively, (c) Construct viable arguments and
critique the reasoning of others, (d) Model with mathematics, (e) Use appropriate
tools strategically, (f) Attend to precision, (g) Look for and make use of structure,
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and (h) Look for and express regularity in repeated reasoning (NCTM, 2014, p. 8).
Projects do not have to be created from scratch. Many such projects have been
teacher-created and are available for sharing. Nonetheless, creating the projects is
great fun for teachers and students, alike.

Such projects might be like the one below, from Embracing the Common Core
State Standards One Project at a Time (Bowman, 2015):

In order to manufacture widgets, the We Make Do-Dads Company (WMDDC) needs to
rent a building, hire employees, pay for utilities, buy materials and equipment, and produce
Do-Dads. WMDDC can obtain a start-up loan up to $200,000 at the We Give Loans to
Small Companies bank at 5 percent per year. WMDDC has six months after receiving the
loan before it must start making monthly payments back to the bank, and it has 10 years to
totally repay the loan. As accountants and planners for WMDDC, your responsibility is to
propose the amount of the loan needed to start the company. You must determine values for
rent, employees, utilities, materials, equipment, and how much to charge for Do-Dads.
Your proposal should be accompanied by appropriate calculations, spreadsheets, graphs, or
any other supporting mathematics you used to prepare your proposal. (p. 94)

A second project (Bowman, p. 94) explored electrical circuitry, which required a
real use for complex numbers. Teachers often complain that they do not have time to
add projects to their curriculum. However, such projects are not intended as additions
to the teachers’ curriculum, but rather replacements. A project such as either of these
would address multiple standards and objectives in the Algebra 2 curriculum, require
appropriate technology to solve for the variables, and engage the students in a manner
not possible with assignments from worksheets or textbooks. The assessment of the
unit would be the finished proposals for each group of students.

Such open-ended projects give students a chance to use the technology that they
carry with them for educational purposes. It is difficult to explain to students who
have computers in their pockets why they need to look up formulas in a textbook,
why they needs to memorize the quadratic formula, and why they must learn to
factor and solve polynomial equations. Some days, I am not certain that they
should. As each project goes along there are opportunities for discussion, tech-
niques, exploration, and even rules of operation; but inside a realistic context so that
there is a reason for the tediousness of the algebra. That makes all the difference for
students. Being able to cover multiple standards and objectives, engaging students
in meaningful activities, and still preparing for the inevitable high-stakes testing,
might make teaching fun and perhaps allow teachers to enjoy teaching mathematics
and students as much as I do.
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Chapter 25
Teacher Beliefs and Practice When
Teaching with Technology: A Latent
Profile Analysis

Daniel Thurm

Abstract Designing effective teacher education for teaching mathematics with
technology requires a profound understanding of teacher beliefs and classroom
practice. In this quantitative study with 160 upper secondary in-service teachers
from Germany the relation between technology-related beliefs and classroom
practice is examined. A latent profile analysis reveals four subgroups of teachers
with respect to the relation of beliefs and practice: “positive beliefs—frequent
users”, “positive beliefs—infrequent users”, “negative beliefs—infrequent users”
and “negative beliefs—frequent users”. Furthermore, beliefs referring to discovery
learning and time constraints show the strongest link to frequency of technology
use. Based on the results, recommendations for teacher education are given.

Keywords Teacher education � Professional development � Beliefs
Technology � Mathematics

25.1 Introduction

A large amount of research shows that digital technology can facilitate students’
conceptual knowledge when teaching complies with specific conditions (e.g. Zbiek,
Heid, Blume, & Dick, 2007). However, the use of technology only plays a marginal
role in mathematics classrooms (Hoyles & Lagrange, 2010). The introduction of
technology into the mathematics classroom is thus not a straight-forward task and it
is important for teacher educators to understand the factors associated with tech-
nology integration. Research shows that, among other factors, mathematics teach-
ers’ beliefs influence the successful implementation (Hennessy, Ruthven, &
Brindley, 2005). However, the link between teacher beliefs and technology use has
not yet been studied in much detail on a quantitative basis and the lack of research
in this area hinders profound development of teacher education programs. In this
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paper we analyze the link between teachers’ technology related beliefs and tea-
cher’s frequency of technology use in a latent profile analysis. We identify four
subgroups of teachers with respect to the relation between beliefs and technology
use and discuss consequences for professional development (PD) programs.

25.2 Theoretical Background

Digital technology can play an important role in enhancing the learning of math-
ematics (e.g. Zbiek et al., 2007). This can be achieved for example by shifting
classroom practice from computation and skill development to an emphasis on
conceptual understanding, problem solving, modelling and more interpretative
tasks (Ellington, 2006; Hoyles & Lagrange, 2010; Simonsen & Dick, 1997).
Technology provides the opportunity to easily work with different forms of rep-
resentations which is crucial for developing an understanding of mathematical
concepts (Duval, 2006). In particular, it allows to dynamically link multiple rep-
resentations and explore relations between different forms of representations
(Kaput, 1992). Moreover, technology can promote discovery learning in the
classroom (e.g. Barzel & Möller, 2001) and support individual approaches to
solving a mathematical problem. If used properly, technology can be a facilitator of
change in the classroom, leading to a shift from a teacher centered to a student
centered teaching style where students take more responsibility for their learning
and where classroom activities comprise more discussion, inquiry and cooperative
learning (Penglase & Arnold, 1996). To achieve these benefits, it has been shown,
that students need frequent and regular access to technology (Burrill et al., 2002).
Only then students develop fluency in operating the technology and the process of
instrumental genesis (Drijvers & Trouche, 2008), during which the object or arte-
fact is turned into an instrument can take place. In the following, we use the term
‘technology’ for all digital tools which afford the described benefits, specifically
allowing dynamically linked multiple representations of mathematical concepts (i.e.
graphing calculators (GC) or computer algebra systems [CAS]).

However, despite the described benefits, there is a “widely perceived quantita-
tive gap and qualitative gap between the reality of teachers’ use of [technology] and
the potential for [technology] suggested by research and policy” (Bretscher, 2014,
p. 43). The introduction of technology into the mathematics classroom is thus not a
straight-forward task. As Kissane (2003, p. 153) pointed out “Availability of
technology is not by itself adequate, of course, to effect changes in the mathematics
curriculum. A crucial mediating factor is the teacher, and curriculum developers
ignore the real needs of teachers at their peril. Mathematics teachers need profes-
sional development directly related to graphics calculators if they are to be the main
agents of reform, and ultimately directly responsible for whatever happens in the
classroom.”

Hence it is important for teacher educators to understand the needs of teachers
and the factors that influence technology integration. Research shows that, among
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other factors, mathematics teachers’ beliefs have profound implications on their
classroom practices as well as on student performance (Staub & Stern, 2002). By
the term “belief”, we refer to the definition of Philipp (2007, p. 259) who defines
beliefs as “Psychologically held understandings, premises, or propositions about the
world that are thought to be true”. Specifically, it can be shown that teacher’s
beliefs directly related to teaching with technology have a profound impact on
successful technology implementation (e.g. Ertmer, 2005; Hennessy, Ruthven, &
Brindley, 2005). And even so “[…] it is not clear whether beliefs precede or follow
practice (Guskey, 1986), what is clear is that we cannot expect to change one
without considering the other” (Ertmer, 2005, p. 36). Hence if PD programs aim at
changing classroom practices and teachers’ beliefs, designers of PD programs need
to understand the relationship between these two, in order to design effective
interventions. In particular, PD programs need to account for individual differences
regarding the relation between beliefs and practice among participants. This is
especially important since research shows that participant orientation, which means
centering on the heterogeneous and individual prerequisites of participants is a
crucial design principle for PD programs (Clarke, 1994) and comprises the basis for
content-related and methodological design decisions in PD programs.

However despite the need to understand the link between teacher beliefs and
technology use when teaching mathematics with technology, this facet has not yet
been studied in much detail on a quantitative basis. There are mostly qualitative
studies available (e.g. Jost, 1992; Molenje, 2012; Simmt, 1997; Tharp,
Fitzsimmons, & Ayers, 1997). These studies indicate consistency between teachers’
beliefs and practice. Teachers with beliefs in favor of technology tend to use
technology more frequently and in ways more compatible with a constructivist
approach to learning. However, studies in other areas than mathematics have also
described inconsistencies between teachers’ beliefs and their classroom practice
(Calderhead, 1996; Chen, 2008; Fang, 1996) and proposed that contextual factors
might be responsible for these inconsistencies. Thus it is necessary to further clarify
the link between beliefs and practice in the domain of teaching mathematics with
technology since the lack of research in this area hinders profound development of
teacher education programs.

25.3 Research Questions and Methodology

The study aims at exploring the relation between technology-related beliefs and
frequency of technology use in more detail in order to examine aspects which
facilitate or inhibit its use and addresses the following questions: Which subgroups
of teachers in upper secondary school can be identified with respect to the relation
of beliefs and technology use? Which aspects of technology related beliefs show the
strongest link to frequency of use?

To answer the question, it is necessary to measure teachers’ technology related
beliefs as well as teachers’ technology use. To measure teachers’ technology use,
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one needs to decide on how to measure it. Since research shows that it is difficult for
teachers to self-report the quality of their teaching we focus on self-reported fre-
quency of technology use which has been proven to be validly captured by teacher
self-reports (Mayer, 1999). The development of the questionnaire to measure the
frequency of technology use started by identifying relevant areas which are influ-
enced by the integration of technology into the classroom. The following areas were
identified from literature (e.g. Hoyles & Lagrange, 2010; Penglase & Arnold, 1996;
Zbiek et al., 2007):

(f1) use of technology for discovery learning

Technology can support the exploration and discovery of mathematic relation-
ships. This can be achieved for example by generating examples and exploring
patterns, providing students with the opportunity to learn mathematic as a con-
structive activity.

(f2) use of technology for linking multiple representations

Technology can be used to link multiple representations. Different forms of
representation should be used in the classroom in order to build connections among
them in order to facilitate a conceptual understanding of mathematics.

(f3) use of technology when practicing

Practicing is an important phase in the learning process in order to consolidate
and strengthen the knowledge. In this teaching phase, technology can play an
important role in supporting the learning process.

(f4) use of technology for individual learning

Technology can be a catalyst to allow students to pursue individual solution
strategies. The teacher may encourage a dual approach to problem solving using
graphic or algebraic methods and use tasks which allow multiple solution strategies.

(f5) reflection of technology use

If technology use is coupled with a reflection of its use, especially on the
limitations of technology it may be possible to prevent misconceptions which can
arise from technology use.

After these areas were identified, a set of items was developed for each area. In
cycles of cognitive interviews (Willis, 2005) with teachers and experts the items
were refined until validity of the item set was agreed on by teachers and experts.
Response categories for each item were chosen as follows: “almost never”, “once or
twice a quarter”, “once or twice a month”, “once a week”, “almost every lesson”.

To measure teacher beliefs we used a questionnaire which consisted of the five
following scales (Rögler, Barzel, & Eichler, 2013): (b1) beliefs that technology
supports discovery learning, (b2) beliefs that technology support multiple repre-
sentations, (b3) beliefs that technology is too time consuming (as there is a general
concern that there is not enough time to cover the technology and the required
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curriculum), (b4) beliefs that technology has a negative impact on computational
skills (as there is a common concern that pen-paper-skills may be lost in the
presence of technology), (b5) beliefs that students must master concepts and pro-
cedures prior to technology use. Each scale consisted of 3–5 items. Responses were
given on a five point response format ranging from 1 = “strongly disagree” to 5 =
“strongly agree”. Hence high values on the scales (b1) and (b2) with simultaneously
low values on the scales (b3)–(b5) reflect positive beliefs about the use of tech-
nology in mathematics education.

Data for the statistical analysiswas collectedwithin a larger research study that was
carried out in the federal state of North Rhine-Westphalia in Germany (Thurm,
Klinger, & Barzel, 2015). In this German federal state, the use of technology (GC or
CAS) is compulsory since the schoolyear 2014/15. Both questionnaires were
administered to 160 teachers teaching mathematics in grade 10 of upper secondary
school. There was a large portion of teachers which were not yet experienced in using
technology. Of the 160 teacher, 71 teachers did not have any previous experience and
only 50 teachers had more than 4 years’ experience in teaching mathematics with
technology. Thus, a large portion of the teachers consisted of novices.

We used confirmatory factor analysis to determine whether a five-factor mea-
surement model for the questionnaire assessing frequency of technology use could
represent the data well. To assess the goodness of fit we used the chi-square-fit
index (v2/df), the root mean square error of approximation (RMSEA), the stan-
dardized root mean square residual (SRMR) and the comparative fit index (CFI).
For identifying subgroups of teachers a latent profile analysis (LPA) was used on
the mean values of all subscales. LPA tries to identify subgroups in the data that
show similar response patterns and assumes that a categorical latent variable can
explain the relationship among indicators (Vermunt & Magidson, 2002). In contrast
to a variable-centered approach (e.g. factor analysis,), LPA is person centered
approach, where the relation among persons is the main interest. Different than
traditional cluster analyses methods (e.g. k-means), LPA is a model-based approach
that offer advantages compared to the traditional methods (Goodman, 2002). In
particular, different competing models can be assessed through various model fit
statistics. However, despite these benefits and the popularity of LPA in other dis-
ciplines as psychology, to my knowledge, mixture models have yet not been
applied to the study of the relation between beliefs and practice in the domain of
teaching mathematics with technology.

25.4 Results: Linking Teacher Beliefs and Classroom
Practice

In a first analytical step we validated the five-factor structure of the questionnaire
for teacher self-reported frequency of technology use in a confirmatory factor
analysis. The analysis yielded a good model fit with RMSEA = 0.069,
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SRMR = 0.070, CFI = 0.936, and v2/df = 1.704 as literature reports the following
as sufficient for a good fit: v2/df < 3; RMSEA < 0.08; SRMR < 0.11 and
CFI > 0.9. Reliability of the scales was high with Cronbach’s alpha ranging from
0.78 to 0.88 (Table 25.1).

Subsequently, we examined the correlation between all measured constructs on a
latent level (Table 25.2). As expected beliefs in a specific domain correlate highly
with technology use in this domain. For example positive beliefs about the use of
technology to support multiple representations leads to significant use of technol-
ogy in this area. Remarkably, the scale (b1) measuring beliefs referring to discovery
learning and the scale (b3) measuring beliefs referring to time constraints have
significant correlations with frequency of technology use in various areas. Teachers
holding the belief that technology can support discovery learning use technology
more frequently not only to support discovery learning but also in phases where
students practice content and to allow individual learning opportunities. In contrast,
the belief that technology integration is too time consuming leads to a significant
lower use in exactly these areas.

Table 25.1 Scales, sample items and Cronbach’s alpha for self-reported technology use

Scale (#items) Sample item Cronbach’s
a

(f1) Discovery
Learning (5)

How often was the GC/CAS used to explore
mathematical relationships?

0.85

(f2) Multiple
representation (4)

How often was the GC/CAS used to link graphical and
algebraic representation?

0.88

(f3) Practice (4) How often was the GC/CAS used to practice
mathematical content?

0.88

(f4) Individual
learning (3)

How often was the GC/CAS to support students to find
their own way to solve a task?

0.78

(f5) Reflection (5) How often did you discuss limitations of GC/CAS? 0.81

Table 25.2 Results of the correlation analysis

(b1)
Discovery
learning

(b2) Multiple
representations

(b3) Time
consuming

(b4)
Understanding
and skills

(b5)
Time
point

(f1) Discovery
learning

.319*** .107 −.283** −.193* −.211*

(f2) Multiple
representations

.78 .328*** −.077 −.018 .030

(f3) Practice .241** .154 −.290*** −.079 −.164

(f4) Individual
learning

.277** .178 −.266** −.159 −.054

(f5) Reflection −.108 −.011 .013 .036 .013

* (p<0.1)
** (p<0.01)
***(p<0.001)
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Subsequently, using LPA, a four subgroups structure was found where the
number of groups was determined by likelihood tests, the Akaike information
criterion (AIC) and the Bayesian information criterion (BIC). The models were
analyzed by using Mplus software 7.31 (Byrne, 2012; Muthen & Muthen, 1998–
2015). Figure 25.1 (right) shows the AIC and BIC for different numbers of sub-
groups. As it can be seen AIC and BIC clearly indicate a four subgroup structure
keeping in mind model parsimony.

Figure 25.1 (left) shows the estimated means of the four subgroups for the
several scales. When looking at frequency of use it can be seen that teachers can be
classified in “frequent users” and “infrequent users” with the first averaging around
2 on the scales (f1)–(f5) and the latter averaging around 3.5 on these scales. Taking
teachers beliefs into account as well, the following four subgroups can be identified:
Subgroup 1 named “positive beliefs—frequent users” (37.9%) have high values on
scales (b1) and (b2) and low values on scales (b3)–(b5), thus holding positive
beliefs towards technology and also using technology frequently. In contrast,
subgroup 2 named “positive beliefs—infrequent users” (27.6%) has a similar belief
structure as subtype 1 but is not using technology frequently. Subgroup 3 named
“negative beliefs—infrequent users” (16.8%). Subgroup 4, named “negative beliefs
—frequent users” (17.8%), holds negative beliefs about technology use but still
uses technology frequently in their classroom. However, the two subgroups holding
positive beliefs and the two subgroups holding negative beliefs show almost
identical pattern on the belief scales respectively. Thus, it cannot be said, that
specific aspects of technology related beliefs are potentially causing the difference
in frequency of use. There must be other factors than the beliefs that were included
in the study that determine subgroup membership.

Fig. 25.1 Profiles of the four subgroups (left) and AIC and BIC for the different number of
subgroups (right)
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25.5 Discussion

The study aimed at connecting teacher beliefs regarding technology and classroom
practice when teaching mathematics with technology. Results show that beliefs
regarding discovery learning and time constraints are strongly related to frequency
of technology use. Furthermore, four subgroups of teachers with respect to the
relation between beliefs and classroom usage of technology could be identified.

The subgroups named “positive beliefs—frequent users” and “negative beliefs—
infrequent users”, can be said to act consistent with regard to their beliefs about
technology. The first is holding more positive beliefs about technology integration
and hence uses technology frequently. The latter tends to be more negative about
technology use and thus integrates technology only from time to time in their
classrooms. In contrast, the two subgroups, named “positive beliefs—infrequent
users” and “negative beliefs—frequent users” seem to act inconsistent with their
beliefs and the question remains what causes this apparent inconsistency. We agree
with Philipp (2007) who pointed out “the inconsistencies exist only in our minds,
not within the teachers, and [I] would strive to understand the teachers’ per-
spectives to resolve the inconsistencies. Inconsistencies should still present prob-
lems, but for researchers instead of teachers” (Philipp, 2007, p. 276). It might be,
that teachers in the subgroup “positive beliefs—infrequent users” encounter
obstacles due to external factors, have low self-efficacy beliefs about technology
integration or a limited or inadequate understanding of the promoted concepts that
hinders them to use technology more frequently. Furthermore, it might be possible,
that teachers other conflicting beliefs (i.e. need to cover a lot content to guide
student learning) might hinder technology integration as observed in a study by
Chen (2008). The subgroup, “negative beliefs—frequent users” might only use
technology because it is compulsory in the curriculum. Another explanation for this
subgroup might be, that these teachers do not hold positive beliefs about technology
but want to give it a try in order to observe if the learning of students improves
through the use of technology. This would be in line with Guskeys model of teacher
change (Guskey, 2002) in which “significant change in teachers’ attitudes and
beliefs occurs primarily after they gain evidence of improvements in student
learning” (Guskey, 2002, p. 383).

From the results several recommendations can be derived for professional
development programs and teacher education. Teacher educators promoting the use
of multi-representation technology in the mathematics classroom should focus
specifically on the aspects of how technology can support discovery learning as this
factor seems to be linked to frequency of technology use in a strong way.
In addition, teacher educators must address the fear of teachers that technology
integration is too time consuming. They must give practical approaches showing
how the benefits of technology can be utilized while still achieving curricular
prescriptions in time.

Finally, teacher educators must be aware of the four different subgroups of
teachers identified in this study. This study finds, that the regularly assumed link
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that positive beliefs about technology use lead to frequent use and negative beliefs
about technology use lead to infrequent use does not hold for a large portion of
teachers. Consequently, the different subgroups identified in this study probably
have different needs that must be addressed in PD programs. Teachers in subgroup
“positive beliefs—infrequent users” will most likely be aware of the benefits of
technology. A PD program that emphasizes changing teachers’ belief might not
have much impact on this subgroup. Instead, this subgroup might need to identify,
discuss and reflect on the obstacles that hinder them to act according to their beliefs
and focus on increasing self-efficacy and on methods to bring teachers beliefs into
practice. Teachers in the subgroup “negative beliefs—frequent user” bring a good
starting point for changing their beliefs since they are already using technology in
their classroom. Hence, this subgroup needs support directly related to their current
technology use that enables them to see the benefits so that their beliefs might
change subsequently. The subgroup “positive beliefs—frequent users” seems to
already have a solid foundation that supports technology integration. Teachers in
this subgroup might rather need reflection and support that focus on enhancing the
quality of their teaching. The subgroup “negative beliefs—infrequent user” seems
to be the most challenging to as they are more technology hostile and not using
technology regularly. This subgroup might need a dual approach focusing on
reflecting on their beliefs, with direct support aimed at getting started to integrate
technology into their practice.

In summary, to our knowledge, this study provides the first quantitative analysis
of subgroups of teachers with respect to the relation of beliefs and practice. The
study indicates that we must focus on the heterogeneous needs of the different
subgroups of teachers if we want to take teachers need seriously and change the
degree of technology integration. However, follow up studies are needed to
examine the four subgroups in more detail. Qualitative studies should follow
to study the different subgroups in more detail and quantitative studies need to
investigate if the subgroups can be identified in other populations as well and to
what extent covariates like age or teaching experience influence subgroup
membership.
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Chapter 26
Uses of Technology in K–12
Mathematics Education:
Concluding Remarks

Paul Drijvers, Michal Tabach and Colleen Vale

Abstract The aim of this closing chapter is to reflect on the content of this book and
on its overall focus on the development of mathematical proficiencies through the
design and use of digital technology and of teaching and learning with and through
these tools. As such, rather than making an attempt to provide an overview of the
field as a whole, or trying to define overarching theoretical approaches, we chose to
follow a bottom-up approach in which the chapters in this monograph form the point
of departure. To do so, we reflect on the book’s content from four different per-
spectives. First, we describe a taxonomy of the use of digital tools in mathematics
education, and set up an inventory of the different book chapters in terms of these
types of educational use. Second, we address the learning of mathematics with and
through technology. Third, the way in which the assessment of mathematics with and
through digital technology is present in this monograph is reflected upon. Fourth, the
topic of teachers teaching with technology is briefly addressed. We conclude with
some final reflections, including suggestions for a future research agenda.

Keywords Teaching mathematics � Learning mathematics � Digital technology
Digital tools � Assessment � Taxonomy

26.1 Taxonomy of Educational Use of Digital Tools

The title of this book mentions tools, topics and trends, so it seems appropriate in
this closing chapter to look back at the different types of digital tools that are used
throughout the chapters, and the role these tools play in mathematics education.
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To frame this synthesis, a taxonomy might be useful. As a point of departure, we
take the model shown in Fig. 26.1, which is adapted from earlier work (Arcavi,
Drijvers, & Stacey, 2017; Drijvers, 2015). In this model, three different didactical
roles for digital technology in mathematics education are distinguished: as a tool for
outsourcing mathematics, as a tool for practicing skills, and as a tool for concept
development.

In the first role, the didactical function of the digital tool comes down to out-
sourcing mathematics. The tool acts as a ‘mathematical assistant’ who takes over a
(often more procedural or low-level) part of the work from the student, so that he
can concentrate on the core issues at stake. Even if this may sound easy, the student
constantly has to take decisions on what kind of job to outsource to the tool, how to
do this, and how to critically interpret the results. As such, there is certainly a
learning aspect involved in this type of use and in the process of instrumental
genesis (Artigue, 2002).

The second didactical role focuses on practicing mathematical skills. For
example, online applets may be used to practice skills such as equation solving, or
algebraic expansion and factorization. Students can practice as long as they want, in
private, and don’t need a teacher. Randomization generates many tasks and auto-
mated feedback can be delivered. As is shown in the chapter by Drijvers (Chap. 9),
however, online practice does not always lead to better achievement.

The third didactical role of digital tools concerns concept development, and
probably is the most subtle one. Through graphical and dynamic representations,
digital tools offer expressive power to students. This may lead them to engage in
activities that support concept development. In many cases, this type of use includes
outsourcing basic work to the technology, so this third role may encompass the first
role. Also, we should point out that these different didactical roles do not just rely
on the opportunities and constraints of the digital technology, but also on the type
of task or activity, and its orchestration in the learning process. As such, we should
not assign different roles too tightly to different digital tools.

Fig. 26.1 Taxonomy of didactical roles of digital technology for mathematics
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How do the different chapters in this volume address these didactical roles? The
first one, digital technology as a tool for outsourcing mathematics, is apparent in
many contributions, even if it is sometimes addresses implicitly. Dick’s chapter
(Chap. 14) focuses on digital assessment. It is suggested that assessment may be
enhanced through the use of digital technology such as dynamic geometry systems.
Basic procedural skills, such as graphing lines and parabolas, or changing triangles
and quadrilaterals by moving points, are taken care of by the digital environment.

The second didactical role, digital technology as a tool for practicing skills, is
addressed only to a limited extent. Moyer-Packenham et al. (Chap. 2) studied the
use of apps in a touch screen environment with young children addressing a variety
of skills, appropriate to the children’s age, like count skipping. Drijvers (Chap. 9)
describes an experiment with an applet on practicing equation solving, the results
which were slightly disappointing. Some possible causes are discussed.

The third didactical role, digital technology as a tool for concept development,
dominates the book, even if it in many cases builds upon the outsourcing role. In
Chap. 3, Tucker studied the use of apps to foster the concept of a number line, and its
infinite density in particular—a concept known to be challenging for students. Note
that the students were only 11 years old. Larsen and colleagues (Chap. 4) focus on
discourse and communication that foster higher-order skills such as problem solving.
The contributions by Voltolini and the one by Maschietto (Chaps. 5 and 11,
respectively) both focus on conceptual understanding in geometry through the use of
“duo’s of artefacts”, consisting of material and digital tools. In the case by
Maschietto, this concerns Pythagorean theorem, whereas Voltolini addresses the
concept of triangle. Both see the two types of tools as complementary and the
articulation of the two as productive for concept development. In Chap. 6, the active
learning cluster was the strongest in the cluster analysis carried out by Larkin and
Milford. Even if active learning can address different kinds of skills, our impression is
that the focus, again, is on conceptual understanding in most cases. In her overview,
Heid (Chap. 10) discusses in somewhat more detail a study by Parnafes and Disessa
(2004), in which the focus was on reasoning with different computer-based repre-
sentations of motion. Ball and Barzel’s examples in Chap. 12 focus on the concept of
variable, as it is manifest in the type of representations and interactions that are
provided by computer algebra devices and spreadsheets. In the contribution by
Trgalova and colleagues (Chap. 15), the tool draws geometrical elements for the
student, and in this sense it may address the first function of outsourcing; yet the
whole idea of the c-book is to allow for an expressive way to relate to geometrical
concepts so that the students will be creative in experiencing links and general
properties. As such, the chapter focuses on concept development. In the chapter by
Ng and Sinclair (Chap. 16), the 3D pen is used to conceptualize ideas based on
“drawing” a three-dimensional object. The opportunities to create tangible, movable
and rotatable drawings is exploited to enhance conceptual learning. In a similar
approach, but with different technological tools, Moreno-Armella and Corey Brady
(Chap. 19) draw on the dynamic and connected representational power of techno-
logical tools to foster conceptual understanding. In Chap. 20 by Donevska-Todorova,
the emphasis on outsourcing is more prevalent than in the other chapters mentioned
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in this paragraph. However, also in this case the main motivation is to use dynamic
representations to support the learning of abstract concepts.

To summarize this brief inventory, the first conclusion is that many contributions
in this book focus on the didactical opportunities digital technology offers for
concept development. Apparently, this is the role that researchers find the most
relevant or urgent to investigate. In many cases, the concept development activity is
rooted in some functionality that can be outsourced to the digital technology, so
from this perspective the outsourcing role is often implicitly present. A second
conclusion is that the didactical role of tool for practicing skills is addressed only to
a limited extent. Taking into account the popularity of apps, online tutors, exercisers
and repositories that focus on skill mastery among students, this is slightly sur-
prising. Is the mathematics education research community not so much interested in
skill training? Are there no pressing research issues in this domain? Does this
limited attention relate to the preference for qualitative research, addressed in the
contribution by Heid? These are interesting questions to further explore.

26.2 Learning With and Through Technology

One of the enduring focuses of research concerning the use of digital technologies
in mathematics education has been the design and use of digital tools with regard to
their impact on student learning and the ways in which students might engage with
mathematics through their use of these tools. Much of this research activity arises
because the continual development of digital technology such as tablets, touch
screens, virtual manipulatives and screen casting which opens up new possibilities
for the use of digital tools and apps for mathematics learning. These developments
highlight the need for further research on the interdependence of tools, tasks,
pedagogical approaches and learning outcomes (Hoyles & Lagrange, 2010).

Recent reviews of research have reported on the transformation of learning with
and through digital technology (Bartolini & Borba, 2010; Hoyles & Lagrange,
2010; Larkin & Calder, 2016; Trouche & Drijvers, 2010). A number of studies
included in this monograph focus on the way in which learners interact with digital
tools for their learning of mathematics or reported on what students learned when
using digital technology. Previous research on learning with and through technol-
ogy has been dominated by instrumental theories informing studies as the
researchers focused on the interplay between the learner and the tool for the
learning of mathematics and instrumental genesis theory that is more explicit and
focused on the way in which students’ thinking is shaped by the tool and shapes
their interaction with the tool (Drijvers et al., 2010). However socio-cultural the-
ories of learning have also been evident, for example Borba and Villarreal (2005)
humans-with-media theory. Beatty and Geiger (2010) reported that as digital
technology continued to develop, new possibilities for student investigation and for
communication and collaboration between students and between the teacher and
students opened up. Studies of tools and learning environments taking advantage of

424 P. Drijvers et al.



these affordance tend to be informed by Vygotsky’s socio-cultural theories of
learning. These theories of learning shift the focus from the individual learner and
their interaction with the tool to the learner and their communication with and
through the tool. Other factors aside from the affordance of the tool such as the
classroom environment and the teacher’s pedagogical practice become critical to
the investigation of student learning in this context.

In this section of the chapter, we consider “learning with” and “learning
through” technologies and the learning theories informing these studies as they
relate to the purpose of the study or the features of the digital technologies used. We
also consider the learning objectives of the mathematical tasks and tools in the
research with respect to mathematics proficiencies to consider whether there has
been a shift in the learning objectives of research of the impact of digital tech-
nologies on students’ learning.

26.2.1 Distinguishing the With and the Through

Previous research has noted the different ways in which teachers intend the digital
tool(s) to be used and students to interact with and use digital tools for their learning
of mathematics. Goos, Galbraith, Renshaw, and Geiger (2003) provided a model
with which to frame the purpose and way in which students used or interacted with
digital technology. They identified four relationships: master where the student
become dependent on the digital tool to do the mathematics where their knowledge
and skills are limited and thus become more limited; servant where the student uses
it as an efficient and speedy tool to replace calculating and reasoning by pen and
paper; partner when the student uses the tool to experience and explore different
representations or perspectives or to mediate communication; and extension of self
when students use the digital technology autonomously to investigate and problem
solve. The relationships of servant and partner might be described as concerning
learning with digital tools, and depending on the tool, partner along with extension
of self could be described as learning through digital tools.

As researchers, we are often concerned at the prevalence of digital tools being
the master for some students and the prevalence of pedagogical practices which
result in digital tools being a servant for many students. Bowman (Chap. 24)
conducted a large study of 14–17 year old secondary students’ use of graphics
calculators to graph quadratics and their learning in order to address many concerns
that teachers have about the use of digital tools as the master or a servant in upper
secondary mathematics. The pre-and post-testing found that students who were
introduced to graphic calculators at the beginning of the topic demonstrated higher
levels of engagement with mathematical knowledge and retained their acquired
knowledge more than students who commenced the topic with traditional trans-
mission teaching and pen and paper exercises. These findings support the notion
that students were more inclined to use the graphic calculator as a partner when first
being introduced to a topic.
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Greefrath and Sillar (Chap. 21) report on 10th grade students’ use of GeoGebra
for mathematical modelling. They report that students used the tool to draw, con-
struct, measure and experiment, and observed that the task and the tool enabled the
students to shift their perception and use of the digital tool from servant to partner.
Whilst establishing the use of digital software for a number of steps in the mathe-
matical modelling process they did not relate their work to a particular learning theory
and in this chapter did not report on what the students learned. A number of other
chapters, Moyer-Packenham, Lister, Bullock, and Shumway (Chap. 2), Tucker
(Chap. 3), Walter (Chap. 7) and Calder and Murphy (Chap. 8) also report on studies
where the purpose of the study was either to evaluate a tool for its potential to enable
to learner to interact with or through the tool as a partner, or to use the tool as a
mediator for discussion. The teacher in Maschietto (Chap. 11) study used an inter-
active whiteboard (IWB) to orchestrate whole class discussion of proof of
Pythagoras’ Theorem using images of proofs using paper-folding. Whilst there may
have been opportunity for this study to investigate the use of an IWB to shift students
from using digital tools as a servant to that of a partner, the teacher remained in
control of the technology and therefore the study did not explore this possibility.

Three research studies investigated students’ interactions with touch screens
(Moyer-Packenham et al., Chap. 2; Tucker, Chap. 3, and Walter, Chap. 7). Each of
these studies investigated the way in which students interacted with these tools.
They explored the potential of these tools to represent mathematical concepts in
different ways as occurs when learners use tools as a partner. They followed the
tradition of instrumentation and instrumental genesis as the theoretical frame
informing their studies (Drijvers et al., 2010) though only one of these studies
specified a particular learning theory. Tucker (Chap. 3) uses activity theory and case
study methods to identify factors that influence students’ mathematical thinking
when interacting with a dynamic number line tool. According to activity theory
learning occurs when students’ interaction with an object that is, the mathematical
concept represented by the tool or artefact, changes to indicate new understandings
of the concept. The study found that the decreased technological distance that is, the
touch screen and dynamic number line, enabled the creation of the images that
supported students’ mathematical thinking and learning.

The other two studies involving touch screens and number sense might have
framed their study using instrumental genesis or activity theory. Moyer-Packenham
et al. (Chap. 2) argue that students need experiences with multiple representations
of concepts to enhance learning. Their study used pre- and post-testing of
pre-school to Grade 2 students’ use of a number of different touch screen apps each
using different representations of number concerning place value, number facts and
derived addition strategies. They used pre- and post-testing to measure changes in
students’ performance and efficiency and found that there were not consistent
improvements for both performance and efficiency for each grade level. They
conclude that improvement in students’ performance and efficiency occurred when
there was both mathematical and structural alignment between the tool and the
mathematics, and when the mathematical representations of the app accounted for
and addressed common student misconceptions. Walter (Chap. 7) study might also
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have been framed by instrumental genesis or activity theory as he compared the
learning that occurred when primary students with mathematic learning needs
concerning efficient strategies for adding interacted with physical models and touch
screen digital tools. He found that the affordance of the touch screen app provided
potential for experiencing alternate representations of number but not all students
took advantage of the tools’ affordances to interpret the representation of number
for learning to occur. So in spite of alternate representations of number that the
touch screen tool provided, the tool was not influencing some students’ mathe-
matical interpretation of the digital representation and students were not using their
mathematical understanding of number to create representations of number that
showed evidence of number sense.

Calder and Murphy (Chap. 8) study provides a different perspective on learning
with technology as a partner. In their study where Grade 4 students used an app to
solve worded problems, and present and explain their solution, the digital technology
acted as a mediator of classroom discourse. Not surprisingly, they used a social
constructivist theory of learning, socio-materialism to frame their study. They cite
Meyer (2015) and explain socio-materialism as recognising the complex and dynamic
inter-relationships between people, communities such as classrooms, and tools where
the dialogue and learning experience is changing and personalised. In their study,
students created their own content, using their own language to create a movie to
communicate their solution and explain their solution process. Screen casting along
with audio recording provided a new mathematical learning experience for these
students. Larsen et al. (Chap. 4) also investigated the use of screen casting technology
in K–2 grade classrooms over a number of years and report that screen casting
technology encourage students to communicate, self-assess and revise their mathe-
matical ideas. Their study illustrated the way in which students in the early years of
school interact with both digital tools as partners and with each other for their learning.

Only one study in the manuscript really explored the use of digital technology as
an extension of self. Ng and Sinclair (Chap. 16) reported on Grade 12 calculus
students’ use of 3D pens to explore properties of quadratic functions. Their study
can be argued to be concerned with extending self as they argued that using 3D
pens enabled students to use gesture to explore and develop their understanding
when using the 3D pens to ‘draw’ in 3D space. They framed their study using
inclusive-materialism that is, the entwinement of humans, tools and concepts. They
observed new gestural forms of thinking to make sense of the curve and tangent to
the curve in both a physical and abstract sense.

26.2.2 Developing Mathematical Proficiencies
with and Through Digital Technology

While there has been much research that focused on how students learn mathematics
with and through digital technology and some studies have focused on mathematics
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achievement (see section of assessment this chapter), attention with respect to what
students learn has mostly been directed at particular mathematics topics and con-
cepts. With the increased emphasis given to the need for mathematics curriculum to
include and develop students’ problem solving and reasoning, however, it is worth
considering which mathematical proficiencies can be supported with and through
digital technology and whether or not the research is focused on this question.
Mathematical proficiencies are included in the mathematics curriculum of many
countries, most being influenced by the Adding it Up report (Kilpatrick et al., 2001).
This report identified five proficiencies: conceptual understanding; procedural flu-
ency that is, carrying out procedures efficiently, flexibly and accurately; strategic
competence that is, formulating and solving problems; adaptive reasoning that is,
logical thought, generalising, justifying and proving; and productive disposition that
is, seeing mathematics as relevant and useful and makes sense (Kilpatrick, Swafford,
& Findell, 2001).

We could argue that teachers in both primary and secondary school have been
focused on using digital apps and tools to develop students’ fluency (procedural
knowledge) for practice and to target teaching and student practise of exercises
using digital resources which provides automatic feedback for the student and
records for the teacher. This negative perception of the use of digital tools—
graphics calculators, was one of the main reasons for Bowman’s study (Chap. 24).
She was able to show that whilst graphics calculators may serve to assist with
procedural fluency, using them at the introduction of the topic along with inquiry
type activities promoted deeper engagement with the concepts.

Much research has focused on developing apps and digital tools to develop
student understanding, especially in primary school, hence the focus on affordances
and constraints and trialing and evaluating of tools and apps with both small and
large sample sizes. This is the case with studies reported in this monograph.
Moyer-Packenham et al. (Chap. 2), Tucker (Chap. 3), Walter (Chap. 7), Calder and
Murphy (Chap. 8), and Ng and Sinclair (Chap. 16) have all focused on students
developing understanding with and through digital tools. For younger students this
included developing number sense for numbers to 20 and using this sense for
adding numbers to 20 (Moyer-Packenham et al., Chap. 11; Walter, Chap. 7) and
developing number sense for whole numbers and decimals (Tucker, Chap. 3).

The assumption has been that secondary teachers would use digital tools, soft-
ware and apps for inquiry to develop new understandings for example by exploring
properties of shapes, functions and forming and testing conjectures about these
properties. However, the focus of the secondary studies reported here concerned
developing understanding. The study by Ng and Sinclair (Chap. 16) focused on
students’ understanding of tangents to quadratic functions rather than forming and
testing conjectures or generalising and Maschietto (Chap. 11), who studied a lesson
that used an IWB to explore proofs of Pythagoras’ theorem, focused on developing
conceptual understanding rather than adaptive reasoning.

Three studies where there was a focus on learning with or through technology
were concerned with or reported on developing one or more of the other three
proficiencies: strategic competence, adaptive reasoning and productive disposition.
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Greefrath and Sillar (Chap. 21) set out to show that GeoGebra could be used by
secondary students to solve a modelling problem and showed that digital tools and
tasks could be used to develop students’ strategic competence or problem solving.
They did not however report on the learning outcomes in this chapter. In the study
by Calder and Murphy (Chap. 8) students solved word problems and reported and
explained their solution and solution process using an embedded screen casting
technology. They reported that the tool and tasks provided a degree of student
autonomy and motivated students to articulate and communicate their mathematical
thinking. Likewise, Larsen et al. (Chap. 4) study illuminates the potential for screen
casting technology to promote young students’ mathematical reasoning. The
teachers’ learning goal for these mathematics lessons was to construct viable
arguments and to critique others’ arguments. The way in which these students were
able to verbalise mathematical processes and make connections between concepts
resulted in teachers improving their attitudes about their students’ capabilities.

26.3 Conclusion

The studies reported at the 13th ICME conference and those published in this
monograph concerning learners and learning tend to focus on how learning occurs
with or through digital technology rather than providing evidence of learning with
or through technology. These studies are also predominantly concerned with
developing students’ understanding of mathematics concepts rather than engaging
students in problem solving and adaptive reasoning or developing productive dis-
positions. Two studies published here, Moyer-Packenham et al. (Chap. 2) and
Bowman (Chap. 24), used a large sample, to evaluate the effectiveness of digital
tools for learning, however further evidence may be needed to convince teachers
that these tools can develop students’ proficiencies regarding understanding,
problem solving and reasoning in order for them to shift from the dominant practice
of using these tools to develop fluency or as servants to do mathematics. One study
focused on the learning of students with specific mathematics learning needs,
however for the most part these studies do not consider the student cohort, their
needs or funds of knowledge. Research is needed concerning particular cohorts of
students, especially groups who are disadvantaged or where lower student out-
comes have persisted overtime such as girls, low socio-economic and Indigenous
students. Students who are differently abled are beginning to receive research
attention, especially as digital technology enables other means of interacting with
the tool and representations. Instrumental genesis theory and activity theory were
the most used frameworks for these studies though others that drew upon
socio-cultural theories of learning were evident in the research where students were
expected to communicate solutions and problem solving processes or mathematical
reasoning. Inevitably, theoretical frameworks will evolve as we deepen our
understanding of the role and place of digital technology for learning mathematics.
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26.4 Assessment with and Through Technology

Learning, specifically in formal institutions like schools, cannot do without
assessment. The more than 20 years old Assessment Standards for School
Mathematics (NCTM, 1995) are still valid for large-scale and classroom assess-
ments in mathematics education: ensuring that assessments contain high quality
mathematics; enhance student learning; reflect and support equitable practices; open
and transparent; inferences made from assessments are appropriate to the assess-
ment purpose; and finally the assessment—together with the curriculum and
instruction, form a coherent whole. Often “assessments define what counts as
valuable learning and assign credit accordingly” (Baird, Hopfenbeck, Newton,
Stobart, & Steen-Utheim, 2014, p. 21). It is therefore clear that the integration of
technology into mathematics teaching and learning should be coupled by integra-
tion of technology into both formative and summative mathematics assessments.

An important distinction between two types of technology-rich assessment,
based on the work by Stacey and Wiliam (2013), was made by Drijvers et al.
(2016): assessment with technology and assessment through technology.
Assessment with digital technology concerns paper-and-pen written tests, during
which students have access to digital technology such as (graphing or CAS) cal-
culators or computers. In assessment through digital technology, the test is deliv-
ered and administered through digital means. Think, for example, of online tests, in
which all student responses are entered in the digital test player environment. Both
types of assessment may relieve students from computation and drawing, hence
affects the type of skills assessed, the goals of the assessment, the tasks, and the
validity and the reliability of the assessment. Students’ mathematical literacy
abilities can be assessed more easily, as well as their conceptual understanding,
strategies, and modelling and problem-solving skills.

In their state-of-the-art survey about assessment, Suurtamm et al. (2016) raised
several questions for further studies, which concern assessment and technology:

How does the use of technology influence the design of assessment items? What
are the affordances of technology? What are the constraints? (p. 12).

What are some of the additional challenges in assessment when hand-held
technologies are available (e.g., graphing calculators) or mobile technologies are
easily accessible (e.g., smart phones with internet connections)? (p. 19).

Three papers in this volume address these questions and others, and provide
initial answers which for the most part reflect three different directions—from
theoretical and practical dimensions, at the middle and high school levels: Dick
(Chap. 14) focused on geometry; Grugeon-Allys, Chenevotot-Quentin, Pilet, and
Prévit (Chap. 13) focused on algebra; and Beck (Chap. 18) focused on written
solutions in CAS allowed tests.

In the context of middle school geometry, Dick (Chap. 14) describes the
development of an assessment with technology tool that will allow teachers to
create their own assessments tasks. To go beyond the trivial, multiple-choice
questions, which are checked against a pre-determined given key, he used DGE and
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CAS. Students are presented with a geometric figure or graph, and are asked to
modify the object so that it fulfils a given set of constrains. The system can check
logical conditions or symbolic expressions, hence is able to accept a range of
responses as valid. In this way, the system allows design of higher order tasks
(Stein et al., 2000). The developers also created an interface by which the teacher
can determined the specific tasks that his students will receive, and also retrieve his
students’ performances. The system was examined with some teachers and their
classes, and is seen as a first promising step towards a fuller implementation. Dick’s
study highlighted both—the possibilities which open up while assessing with
technology, as well as some constraints.

A very different example of the opportunities and limitations offered by
assessment with technology is provided by Grugeon-Allys et al. (Chap. 13). The
system developed by the researchers may be classified as assessing through tech-
nology. The aim was to develop a diagnostic tool—that will classify students’
performance level using three specific sub-competencies in middle school algebra.
The tasks in the diagnostic tool were design by the developers (and not the teachers)
based on a comprehensive epistemological and cognitive analysis. This analysis is
the basis for the classification of students’ answers to three general levels of algebra
competencies. It is important to note that the diagnostic tool is able to assess not
only technics but also verbal answers by the students. Furthermore, the system also
provides the teacher with a lesson or sequence of lessons that includes tasks on their
chosen topic directed at learners that where classified to the three levels. First
implementations of the system with teachers have already started.

The third study by Beck (Chap. 18) presents yet a different angle stemming from
assessment with technology. When technology is used by the students as part of
available tools in a test situation, the students may choose to use the technology at
hand while answering the test items. Students have to decide what to do with the
available technology, and to report on their uses as part of their paper and pencil
report on the solution process. Beck used linguistic means to analyze students
written reports on their solution process. His study highlighted the importance of
communicating in class about how a written solution, which was partially based on
open technology like CAS may look like to enable another person to make sense
of the process. This is an example of a new challenge that arose as a result of
incorporating technology with assessment.

26.5 Teachers Teaching with Technology

The mathematics-education research-community has a specific interest in teachers
and technology. This is noted, for example, by the topic working group 15, focused
on teaching mathematics with resources and technology during CERME10
(Clark-Wilson, Aldon, Kohanová, & Robutti, in press). The issues under study
varied from professional development (PD) aimed at pre-service teachers to that of
practicing teachers, possible gains from implementing technologies in teaching and
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learning mathematics and affective issues concerning implementation of that type.
These issues and others are under ongoing study, as reflected also by four authors in
the current volume.

An example of possible gains from implementing technology with young
learners is provided by Calder and Murphy (Chap. 8). Teachers who worked with
young students in class with touch-screen technology commented on its similarity
to interacting with physical representation of a mathematical object. Also, students
were able to create their own mathematical objects and speak about them using their
own terminology in a safe, non-judgmental environment. Such student behavior
provided the teachers with access to students’ ways of thinking.

A different perspective to understand teachers’ frequent use of technology is
linking it to teachers’ beliefs. Effective aspects have a major influence on human
behavior. Specifically, teachers’ beliefs about technology are an important factor in
the teachers’ choices to implement mathematics teaching and learning in a tech-
nological environment. Thurm (Chap. 25) studied 160 high school mathematics
teachers’ responses to questions about the frequency of technology use in class and
about teachers’ beliefs about the value of such integration. By means of latent
profile analysis, he was able to identify four distinct groups of teachers. Two groups
acted in a consistent way with regard to technology use and beliefs: “positive
beliefs—frequent users” and “negative beliefs—infrequent users”. The two other
groups acted in inconsistent ways: “positive beliefs—infrequent users” and “neg-
ative beliefs—frequent users”. More research is needed to understand these
teachers’ actions. In any case, PD providers need to be aware of these four
sub-groups, as they span a range of needs to be taken into account.

Yet another perspective to be considered with respect to teachers’ work is
suggested by Ball and Barzel (Chap. 12). The researchers pointed at three com-
municational roles of technology: communication through technology (e.g. social
networks), communication with technology (e.g. syntax entry), and communication
of technology (e.g. when technology displays are used as a stimulus for commu-
nication). From the teacher perspective, they call for professional development
aimed first to help teachers to be confident in how to make personal use of the
technology. Second, teachers need to learn how to use communication technologies
to enable students learning in a technological environment. These two levels of
knowledge are captured by the theoretical construct of double instrumental genesis
(Haspekian, 2011). While the personal instrumental genesis is related to the
development of a teacher’s personal instrument for mathematical activity from a
given artefact, the professional instrumental genesis yields a professional instru-
ment for the teacher’s didactical activity.

This same line of thought is further explored by Trgalová and Tabach (Chap. 23).
Based on an extensive literature review of PD programs offered and implemented
with high-school teachers, it turned out that most PD providers are not satisfied with
teachers’ knowledge by the end of their program. This dissatisfaction is stressed by
the fact that in most cases the researches themselves are highly involved in pro-
viding the PD. Interestingly, a search for standards for teachers’ knowledge while
working in ICT environments at the international level yield only a few and very
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general recommendations. At the national level, there are variations between
countries. The few available documents were analyzed by Trgalová and Tabach to
identify if and how they address the double instrumental genesis, and to which of
the seven knowledge-area suggested by Mishra and Koehler (2006) they relate.

26.6 Conclusion

To conclude this chapter, we now briefly revisit each of the sections and extrapolate
some possible future research topics. In Sect. 26.2, it is remarkable that so many
chapters in this monograph seem to focus on the use of digital technology to foster
conceptual understanding. Of course, we don’t want to argue against the importance
of conceptual understanding in mathematics education, but we do recommend
further research into the use of digital environments for other didactical purposes,
such as practicing skills. It is our impression that online practicing environments are
popular among students, so it might be worthwhile to know more about the con-
ditions that make such practice most efficient and fruitful.

Section 26.3 also identified a need for studies that focus on using technology to
develop problem solving and reasoning proficiencies. It ends with a plea for more
attention to be given to the use of digital technology for students with special needs,
which we repeat here. Are there specific characteristics or criteria for digital
technology, as to make different types of students all benefit from the opportunities
these tools offer? Much remains unknown on this topic.

A core distinction in Sect. 26.4 concerns assessment with and assessment
through technology. Even if this distinction seems fruitful in many cases, the
question still is how this with-through dimension impacts on different types of
assessment, including formative assessment, peer assessment and self-assessment.
How to set up these types of assessment in a fruitful way in digital environments?

In Sect. 26.5 on mathematics teachers’ professional development with respect to
the use of digital technology in their teaching, much is unknown about what exactly
the knowledge and skills needed encompass. Also, the different theoretical
approaches are not convergent. The TPACK model by Mishra and Koehler (2006),
for example, is useful but does not include teachers’ beliefs. As teachers’ practices
are crucial in education, further elaboration of successful models for teachers’
professional development is needed.

Overall, the monograph on the one hand provides a wide range of relevant
contributions to the knowledge in the field of using digital technology in mathe-
matics education. On the other hand, much work needs to be done to fully exploit
its potential in everyday teaching.
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